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ABSTRACT 

 

 

AN EFFECTIVE APPROACH FOR COMPARISON OF ASSOCIATION 

RULE MINING ALGORITHMS BASED ON CONTROLLED DATA, 

STATISTICAL INFERENCE AND MULTIPLE CRITERIA 

 

 

 

Azadiamin, Sanam 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

 

February 2016, 89 pages 

 

Association rules are an important set of data mining results, which are helpful in 

handling large amount of data and extracting useful association information from 

them. There are many algorithms developed for finding interesting association rules 

and also some other algorithms for rule reduction purposes. All of the proposed 

methods have some strong and weak points, which can be useful according to their 

application areas. In the literature, there exist several comparison studies trying to 

find the best algorithm according to the user’s interests. But every comparison 

approach considers these algorithms using different measures, and it is hard to assess 

performance of an algorithm with respect to a measure since interesting association 

rules are unknown.  A novel comparison method has been proposed by Jabarnejad 

(2010) based on interesting rules generated by logistic regression to compare rule 

reduction algorithms. In this study, this approach is extended to cover all association 

rule mining algorithms, on a broader set of test data developing and using relevant 
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comparison measures. This approach utilizes design and analysis of experiments to 

generate test data. Furthermore, it defines several comparison measures, and the 

dependency and importance of these measures are analyzed using statistical methods 

such as factor analysis, ANOVA and nonparametric hypothesis tests. Finally, if 

statistical analyses show significant differences between applied association rule 

mining methods, it handles multiple comparisons using PROMETHEE. The 

approach is demonstrated by comparing three association rule mining algorithms. 

The results are discussed and future research directions are presented.  

 

Key Words: Association rule mining, comparison of association rule mining 

methods, interesting rules, comparison measures, factor analysis, ANOVA, 

nonparametric hypothesis test, PROMETHEE. 
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ÖZ 

 

BİRLİKTELİK KURAL MADENCİLİĞİ ALGORİTMALARININ 

KARŞILAŞTIRILMASI İÇİN KONTROLLÜ VERİ, İSTATİSTİKSEL 

ÇIKARIM VE ÇOK KRİTER TABANLI ETKİLİ BİR YAKLAŞIM 

 

 

 

Azadiamin, Sanam 

Yüksek Lisans, Endüstri Mühendisligi Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

 

Şubat 2016, 89 Sayfa 

 

Birliktelik kuralları, veri madenciliğinin önemli sonuçlarından biri olarak hacimli 

verilerin analizine ve onlardan faydalı bilgiler çıkarılmasına yardımcı olur. İlginç 

birliktelik kuralların bulunması ve bunların azaltılması için bir çok algoritma 

geliştirilmiştir. Tüm önerilen metotların güçlü ve zayıf noktaları vardır ve bu 

metotlar uygulanılan veriye göre faydalı olabilir. 

Literatürde birliktelik kural madenciliği algoritmalarını karşılaştıran bazı çalışmalar 

mevcuttur. Ancak bunlar en iyi algoritmayı belirlemede yeterince başarılı değildir. 

Her karşılaştırma yöntemi bu algoritmaları farklı ölçülere göre değerlendirmekte ve 

doğru kurallar bilinmediği için bu değerlendirme yeterince güvenilir sonuç 

veremeyebilmektedir. Jabarnejad (2010) lojistik regresyona dayalı bir 

mekanizmadan ilginç kurallar elde eden ve bunları bulmada en başarılı olan kural 
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azaltma algoritmasını belirleyen bir yöntem geliştirmiştir.   Bu çalışmada, bu yöntem 

genel olarak birliktelik kural madenciliği algoritmalarını karşılaştırmak üzere 

genişletilmiştir.  Bu amaçla doğru kuralların nasıl türetileceği, algoritmaların hangi 

veriler üzerinde test edileceği, karşılaştırmada hangi ölçülerin nasıl kullanılacağı ile 

ilgili bir yaklaşım önerilmiştir. Test verilerinin oluşturulması için istatistiksel deney 

tasarımı ve analizi; karşılaştırma ölçülerinin ilişkilerinin ve önemlerinin 

değerlendirilmesi için faktör analizi, ANOVA ve parametrik olmayan hipotez testi 

gibi istatistiksel metotlar kullanılmıştır. Sonuçta, eğer karşılaştırılan birliktelik kural 

madenciliği algoritmaları arasında önemli istatistiksel farklar varsa, bunların 

karşılaştırması PROMETHEE ile yapılmıştır. Yöntem, örnek olarak seçilen üç 

algoritmanın karşılaştırılması için uygulanmıştır. Sonuçlar tartışılmış, ileri araştırma 

konuları sunulmuştur. 

 

Anahtar kelimeler: Birliktelik kural madenciliği, birliktelik kural madenciliği 

metotlarının karşılaştırılması, ilginç kurallar, karşılaştırma ölçüleri, faktör analizi, 

ANOVA, parametrik olmayan hipotez testi, PROMETHEE. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Data mining is a well advanced field of study that helps data analysts in 

interpreting very large amount of data, and extracting interesting and useful 

information from them. Many data mining approaches have been presented in 

the literature. One of the most useful approaches is association rule mining. 

Association rule mining is searching the data to find the relationships and 

associations between different attributes of data (Narvekar et al., 2015). To find 

such associations and the rules between them, many algorithms and methods 

have been proposed and developed, each method has several advantages and 

shortcomings, and each one is useful for a specific application or a specific data 

type. Each algorithm mines some rules according to some defined interestingness 

measures without knowing the exact desired rules. Every run of these algorithms 

cause a large number of mined association rules which may contain many 

redundant rules. To overcome these problems some approaches are introduced. 

One of them is the concept of closed set of items which drastically reduces the 

rule set and helps in giving more abstract information (Zaki, 2000). Other 

approaches consider some other interestingness measures in addition to support 

and confidence (Brin et al., 1997; Fukuda et al., 1996; Nakaya et al., 1999; 

Padmanabhan et al., 1998). Some methods are also developed to group and prune 

redundant rules and get desired rules (Bayardo et al., 2000; Berrardo et al. 2007; 

Strehl et al., 1999; Ng et al., 1998; Srikant et al., 1997; Toivonen et al., 1995). 

But there also exist approaches that do the both job at the same time; they find 

the association rules while pruning the redundant ones (Vu et al., 2014). 
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Some comparisons of these algorithms have been performed in the literature by 

considering different measures and by testing the algorithms on various real and 

artificial data sets. Most of these comparison methods consider the algorithmic 

aspects of association rules (Hipp et al., 2000), or considering the running time 

of the algorithms. Some of them are also considering some common 

interestingness measures like support or confidence. In fact, to the best of our 

knowledge, no method in the literature considers all these criteria simultaneously 

and can select the best algorithm accordingly. Actually an important problem is 

that the user’s interesting rules or in other words “true” rules are not known in 

any of these cases, so the comparisons are subject to inaccuracies or even errors. 

 

In this thesis study, this comparison problem is addressed. For this purpose, we 

use a novel comparison approach proposed by Jabarnejad (2010), and develop 

and test it further to compare association rule mining algorithms in general. Use 

of a statistical experiment is proposed to compare the algorithms for different 

sizes and types of data as well as other factors such as number of attributes and 

support value. New performance measures are developed to compare the 

association rule mining algorithms, since those developed by Jabarnejad (2010) 

are appropriate only to compare the rule reduction algorithms. As there may be 

dependencies between some of these newly defined performance measures, and 

as we prefer to use measures that show different properties of the association rule 

mining algorithms, we propose to find and select independent measures, to the 

best we can, based on a factor analysis of the experimental results. Our 

comparison approach, then, proposes to perform hypothesis tests to find out if all 

of the algorithms have the same average performance or not. Such statistical 

comparisons of the algorithms may reveal that algorithms perform equally well 

for some or all selected comparison measures. Otherwise, if according to the 

statistical test results the algorithms seem to be different for at least two 

comparison measures, we propose the use of an appropriate Multi Criteria 

Decision Making approach such as PROMETHEE to compare the algorithms.  
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In order to demonstrate our comparison method, some association rule mining 

algorithms are selected among the ones commonly used in the literature for 

comparison (Hipp et al., 2000; Zheng et al., 2001; Margahny et al., 2006; Vu et 

al., 2014; Fournier-Viger et al., 2014) and also by considering availability of their 

software (Fournier-Viger et al., 2014; Borgelt, 2015). 

 

The thesis is organized as the following: In Chapter 2, a literature review is given 

and a background about association rule mining algorithms and their comparison 

methods is provided for the thesis work. A review about some multi criteria 

decision making approaches including PROMETHEE is also provided in this 

Chapter. In Chapter 3, Jabarnejad’s comparison method (Jabarnejad, 2010) is 

reviewed in detail, and true rules generation using sample regression model is 

covered. Then experimental data generation is described, comparison measures 

are developed, and the comparison approach is presented. Chapter 4 contains 

information about an application of the comparison method on the selected 

algorithms. Statistical analyses of these selected algorithms are also explained in 

this chapter as part of the proposed comparison approach. Conclusions and future 

work directions are provided in Chapter 5. 
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CHAPTER 2 

 

 

LITERATURE REVIEW AND BACKGROUND 

 

 

 

Association rules include important information for data interpreters, and many 

association rule mining algorithms are developed to extract these information for 

different applications. In the literature a brief description about association rules and 

the related algorithms is given, and comparisons done in various studies about these 

methods considering several comparison measures are provided. Furthermore, a 

background on PROMETHEE, one of the most effective multi criteria decision 

making approaches, is given. 

 

2.1 Association Rule Mining and Rule Reduction Algorithms 

 

Association rules are first introduced by Agrawal et al. (1993). An association rule 

shows a transaction in the form of x ⇒ y, in which x and y are two sets of items that 

do not share common items. These two sets are called an item set. In this kind of 

expression, x stands as an antecedent, and y stands as a consequent of the association 

rule. The goal of association rule discovery is to find these kind of associations 

among items from a set of transactions in data set. The most evident example of one 

association rule can be found in a market basket data set which shows the relation of 

two items; when someone buys a bread he will probably buy an egg. So a bread and 

an egg are an item set of this rule. 
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There are many algorithms developed for finding association rules. Most of them 

and especially the most basic ones are trying to find all association rules. This leads 

to finding many association rules that most of them may be redundant and not 

interesting for users. These algorithms work with some predefined measures or 

interestingness measures which help users in finding association rules. The most 

common used interestingness measures, are support and confidence that are defined 

according to user’s interests. The support of an item set x ⇒ y in the database D is 

defined as the percentage of transactions that contain x ⇒ y. It measures the 

generality of the rule. The confidence of (x ⇒ y) is the percentage of transactions in 

D containing x that also contain y. It measures the strength of the rule. The user 

defines the minimum thresholds for support and confidence and if the rule’s support 

and confidence are above specified thresholds, it will be discovered by that 

association rule mining algorithm.  

 

There are many algorithms trying to find the association rules by searching the data 

set and counting the support values of frequent item sets. These algorithms can be 

categorized into two approaches according to the search strategy they apply on data 

sets (Hipp et al., 2000). The first approach employs the breadth-first search (BFS) 

strategy, and the other one employs the depth-first search (DFS) strategy. The 

strategies work like this: if there are k-item sets in the data, BFS strategy counts 

support values of all (k - 1)-itemsets before counting the support values of the k-

itemsets. Unlike this, DFS starts counting the support values of k-itemsets, and then 

proceeds to counting other support values recursively. The most well-known 

association rule mining algorithm is Apriori algorithm developed by Agrawal et al. 

(1993), which is the basic of many other algorithms developed later. It discovers all 

significant association rules in data sets by using the BFS strategy. AprioriTID and 

AprioriHybrid are extensions of the basic Apriori algorithm that were developed in 

order to improve some properties of it (Agrawal et al., 1994). Later Han et al. (2000) 

proposed FP-growth to mine the frequent itemsets. It works according to the DFS 
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strategy and frequent-pattern tree structure based on prefix-tree. FP-growth improves 

the efficiency of the mining process by avoiding the costly and repeated data scans, 

and mining a set of smaller tasks using partitioning-based method in order to reduce 

the search space. This causes the faster performance in comparison to Apriori. There 

are many developed algorithms introduced later for finding association rules like 

Eclat (Zaki, 2000), Charm (Zaki et al., 2002), Closet (Pei et al., 2000) which discover 

frequent itemsets. Recursive elimination, known as Relim (Borgelt, 2005), is also 

one of these algorithms for finding frequent itemsets. It works without applying 

prefix trees, processes the transactions directly, and performs the task of mining by 

using the simple recursive structure. 

 

There are several software packages that apply these methods such as Weka (Weka, 

2016) and SPMF (Fournier-Viger et al., 2014). SPMF, which is used for the 

application of association rule mining algorithms in this thesis, is a java open source 

data mining library which provides java codes of more than 100 data mining 

algorithms with a simple user interface for application purpose. The user defines 

some thresholds like the minimum support value according to the selected method, 

and gets the output in the form of text file. Different performance tests are provided 

in this source in order to evaluate the performance of SPMF. 

 

Association rule finding algorithms are not enough by themselves to find interesting 

and desired rules, since they may find many redundant rules. In order to prune these 

redundant rules, some methods have been developed which help in delivering the 

interested results. This sometimes also happens by defining some more 

interestingness measures in addition to support and confidence. These methods and 

approaches are also known as rule reduction algorithms (Zaki, 2000; Brin et al., 1997; 

Fukuda et al., 1996; Nakaya et al., 1999; Padmanabhan et al., 1998; Bayardo et al., 

2000; Berrardo et al. 2007; Strehl et al., 1999; Ng et al., 1998; Srikant et al., 1997; 

Toivonen et al., 1995). 

http://www.philippe-fournier-viger.com/spmf/zaki2000.pdf
http://www.philippe-fournier-viger.com/spmf/Charm02.pdf
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2.2 Comparison Methods of Association Rule Mining Algorithms 

 

By studying the comparisons of association rule mining algorithms published in the 

literature, it can be seen that they almost use the same measures such as execution 

time of algorithms on different data, or they look at usability of these algorithms in 

sparse or dense data sets, and by considering different support values defined by user. 

 

Hipp et al. (2000) deals with the algorithmic aspects of association rule mining 

algorithms. In their work, the performance analyses are done using both runtime 

experiments and theoretic considerations. In this work, three important algorithms, 

namely Apriori, Eclat, and Partition have been compared, and although they have 

employed different strategies, runtime behavior is found similar for them in the 

performed experiments. 

 

Zheng et al. (2001) compares five well-known algorithms (Apriori, FP growth, 

Closet, Charm, and MagnumOpus) for their running time and by considering 

different support values, on several real and artificial data sets. The results showed 

that FP-growth has the best performance in running time. It also showed that new 

algorithms like FP-growth and Charm are much faster than Apriori. However, 

Apriori is faster than others for high minimum support in these experiments. Also on 

the real dataset, for minimum support, FP-growth is better than Apriori. It also shows 

that the algorithm selection is mostly dependent on the support value. 

 

Margahny et al. (2005) compares Apriori, Eclat, and FP-Growth according to the 

number of data scans and also data structures, and at last develops a method to 

address the deficiency of these algorithms. It can be seen that FP-growth is better 

than the others, since it has showed less number of data scans in these experiments. 
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Vu et al. (2014) also compares the running time of three well-known algorithms 

(Apriori, Eclat, and FP-Growth) on sparse and dense data sets. According to the 

results, each algorithm shows different performance on different data types. Eclat 

performance is the best on dense data, while FP-growth has the fastest run on the 

sparse data. Apriori shows the weakest performance from the point of support with 

regard to other mentioned methods. 

 

Fournier-Viger et al. (2014) also compares the running time of some well-known 

algorithms. Execution time of several important algorithms including Apriori, FP-

growth, and Relim on dense and sparse dataset samples have been compared. FP-

growth shows the best performance for both execution time and memory usage 

measures. 

 

There is also a novel comparison method proposed by Jabarnejad (2010), which 

enables data analysts to precisely evaluate the performance of different rule 

reduction methods on controlled data sets for which true rules are known. This 

method is used and extended in this thesis study.  

 

2.3 Comparison Measures 

 

In the literature certain measures are used to compare the algorithms. The execution 

time is one of them, which is used in almost every comparison study. Interestingness 

measures which play an essential role in association rule mining in order to find the 

desired rules according to user’s interest, can also be used as comparison measures. 

There are many studies in the literature, which deal with interestingness measures to 

find the best rules especially in the post processing step of association rule mining. 

The most well-known and classical measures to characterize association rules are 



10 
 

support and confidence. Jimenez et al. (2013) defines interestingness measures for 

standard association rules. These include support, confidence, lift and conviction. 

Omiecinski (2003) introduces three metrics according to the rules confidence to find 

the interesting rules. McGarry (2005) divides the measures of interest into subjective 

and objective measures, and the characteristics of them have been discussed in his 

work. In his work, objective criteria such as rule coverage, rule complexity, rule 

confidence and rule completeness are often used as a measure of the interestingness 

of the discovered rules. Geng et al. (2006) also provides the list of probability based 

objective interestingness measures for rules in which some privilege measures like 

support, confidence, and lift can be seen. Bramer (2007) also uses confidence, 

support and completeness as three main and common measures. There are also other 

works like Vo et al. (2011) that make use of these common interestingness measures. 

In Choi et al. (2005) business values of rules are discussed according to three 

categorizations. Tan et al. (2002) provides a comparative study according to certain 

attributes and an original approach to the selection of measures by an expert. Later, 

Lenca et al. (2008) has completed this work by providing the list of some important 

and different measures which help users to find the best rules. This measures list is 

developed by defining some attributes which help users to select interesting and 

important measures by the means of PROMETHEE approach. The list of the most 

preferable measures determined by PROMETHEE includes BF, CONV, 

CENCONF, LOE, and CONF. 

  

2.4 PROMETHEE and Other MCDM Approaches 

 

In many problems, several objectives or criteria should be considered at the same 

time to find the desired results and solve the problems. These problems are handled 

in the domain of multi criteria decision making (MCDM), and they can be solved 

using methods available in this area. The study of the association rule mining 

methods considering several performance measures defined for comparing purpose, 
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can be considered as one of these multi criteria decision making problems since 

different algorithms may behave differently for different criteria, and the best method 

selection is not the easy challenge for the users in many cases. 

 

Many MCDM approaches make decision making process easier. Analytic Hierarchy 

Process (AHP) (Saaty, 1988) is one of the most well-known methods in this area, 

which is helpful in finding the most desirable alternative solution considering several 

independent criteria. Founder of AHP, Saaty, says “Many decision problems cannot 

be structured hierarchically because they involve the interaction and dependence of 

higher-level elements on lower-level elements. Not only does the importance of the 

criteria determine the importance of the alternatives as in a hierarchy, but also the 

importance of the alternatives themselves determines the importance of the criteria. 

Feedback enables us to factor the future into the present to determine what we have 

to do to attain a desired future” (Saaty, 2000). In such cases, Saaty (2000) proposes 

to use Analytic Network Process (ANP). The Analytical Network Process (ANP) is 

a generalization of the Analytic Hierarchy Process (AHP) and developed by Saaty 

(2000) which deals with problems with interdependent elements, and it works with 

constructed network structure. ANP does pairwise comparisons by asking several 

questions to the decision maker.  

 
 

PROMETHEE (Preference Ranking Organization Method for Enrichment 

Evaluation) is another MCDM approach introduced by Brans (1985). Priorities of 

alternatives under multiple criteria can be evaluated by this method. PROMETHEE 

assumes criteria are independent of each other. Therefore in the case of dependent 

criteria, some researchers prefer finding weights of criteria by ANP and then using 

PROMETHEE for ranking the alternatives (Anaklı, 2009; Tseng, 2009; Barve et al., 

2015; Sakthivel et al., 2015). PROMETHEE has several steps which is briefly 

covered here (Anaklı, 2009). 
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Step 1: Data matrix is constructed and notation is: 

A: Alternatives  

K: Set of criteria (the criteria indices) 

F: Real valued criteria  

W: weight of criteria (relative importance of criterion fk, which can be obtained 

using ANP Method for dependent criteria, and AHP Method for independent 

criteria.)  

Step 2: preference functions, which represent the intensity of the preference of one 

alternative over another, are determined for each criterion according to the properties 

of each criterion. Preference function has to be a non-decreasing function and its 

value equals to zero for negative values of d. 

Then we define d = fk(A1) – fk(A2) for all criteria and for all pairwise alternative 

comparisons. 

We can also define Pk(A1,A2) = p(f1(A1) – f2(A2)). 

After choosing the preference function and calculating d values, next step is 

determination of corresponding parameters for preference function by asking several 

questions to decision maker. Then according to these values and defined preference 

function, Pk is calculated for all pairwise comparisons. 

Step 3: multi – criteria preference index, ∏, is calculated as: 

∏ (A1, A2) = 
∑ 𝑤𝑗
𝑘
𝑗=1 𝑃𝑗(𝐴1,   𝐴2)

∑ 𝑤𝑗
𝑘
𝑗=1

  

∏ (A1, A2) represents the decision maker’s preference intensity of alternative A1 over 

A2 by considering all sub criteria at the same time.  

∏= 0 means weak preference of alternatives, and ∏= 1 means strong preference of 

alternatives.  
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Using above formula, ∏ values are calculated for pairwise comparisons of all 

alternatives and then gained the overall comparison of all alternatives by considering 

all criteria. 

Step 4: 

Then leaving and entering flows for each alternative are defined, like: 

 

𝛷−(𝐴1) =   ∑ ∏(𝐴𝑖,𝑖∈𝐼 , 𝐴1)        Entering flow of alternative 1 

 

𝛷+(𝐴1) =   ∑ ∏(𝐴1,𝑖∈𝐼 , 𝐴𝑖)        Leaving flow of alternative 1 

 

𝛷(𝐴1) =  𝛷
+(𝐴1) − 𝛷

−(𝐴1)      Net flow of alternative 1 

Step 5: 

Complete preorders are determined in this step by comparing the net flow values. So, 

Priorities can be determined by this way, and the best association rule mining 

algorithm will be selected. 
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CHAPTER 3 

 

 

ASSOCIATION RULE MINING ALGORITHM COMPARISON 

METHOD 

 

 

 

A new comparison method based on regression model, statistical analyses, and 

MCDM approaches is developed. This method applies the comparison process 

between different association rule mining algorithms considering the real interesting 

rules defined by the user using regression model. Several steps are defined for this 

comparison approach including defining the real interesting rules or true rules, 

generating experimental data, defining comparison measures, and finally comparing 

algorithms using the values of comparison measures and different analyses. 

 

3.1 Overview of the Method 

 

The idea of the comparison method proposed by Jabarnejad (2010) is to intentionally 

generate sample data considering several factors with evident interesting association 

rules (true rules), then apply different association rule mining algorithms on the 

generated data, and finally evaluate the performance of the applied association rule 

mining algorithms based on some measures. Data consist of independent and random 

variables (in his thesis work some process variables and one failure status). In this 

method, a logistic regression model is used to simulate the failure incidence of, say, 

a manufacturing system. The power of this method is that, unlike other comparison 

methods, we know the true rules expressed in the form of a logistic regression model. 
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Therefore, we can compare the rules derived by the algorithms with the true rules. 

Jabarnejad (2010) compares rule reduction algorithms. We extend this method to the 

case where we can compare association rule mining algorithms, in general. For this 

purpose, we revise the comparison measures, develop new ways of generating test 

data including sparse and dense data. We use some statistical analyses in the 

proposed comparison approach. We also improve the way we compare the 

algorithms under multiple criteria or measures. 

 

3.2 Generation of True Rules  

 

After selecting the algorithms and defining the comparison measures, we need 

several data sets to perform our comparison. For this purpose, we generate some 

artificial data with known rules which we call true rules, apply selected algorithms 

on them, and finally measure performance of each algorithm on each data set using 

a set of comparison measures. For generating these data, we basically use the 

approach of Jabarnejad (2010), which is explained here briefly. According to this 

approach, some independent binary variables 𝑥1, 𝑥2 ,…, 𝑥𝑛  representing, say, 

manufacturing process variables and one binary variable z representing the failure 

status of the manufacturing system are defined. Then a logistic regression model is 

used to predict the probability of not observing the failure event. In order to explain 

the true rule’s generation process clearly, one sample regression model can be 

defined as in Equation (3.1).  

 

𝑦 = 2.999 − 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4 − 𝑥5 +  ɛ                     (3.1) 

 

For our proposed model, we consider five process variables which have significant 

effects on the failure event. These are effective process variables which are 

independent of each other, and have uniform distributions. Value of a process 
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variable is taken as 1, if it is available and active in the system, otherwise zero. For 

this model, we also consider that all these five process variables have negative effect 

on logit y, so their coefficients are considered to be  ̶ 1 in the given logistic regression 

model. According to this model, logit y is calculated using Equation (3.1) in which 

ɛ , representing the error, is supposed to have a normal distribution with mean 0 and 

variance 0.1. The constant term of the model which can be considered as the initial 

effect of the setup on the system, is taken as 2.999 to obtain a clear failure status as 

explained below. 

 

The independent process variables are assigned random values according to a 

designed experiment, ɛ is assigned a random value, and from Equation (3.1) the 

corresponding logit (y) value is obtained. Probability of not observing the failure, 

f(y), is calculated after placing the y value in Equation (3.2) 

 

𝑓(𝑦) =  
𝑒𝑦

𝑒𝑦+1
                                                     (3.2) 

 

Then the failure status is determined by Equation (3.3): 

 

𝑧 =  {
1 if 𝑓(𝑦) < 0.5

0 if 𝑓(𝑦) > 0.5
                                      (3.3) 

 

If z = 1 there is a failure, and if z = 0 no failure occurs. When f(y) = 0.5, failure status 

remains at a borderline. To avoid this situation, the constant term in Equation (3.1) 

is selected as slightly different than 3.  

In this thesis, we use the logistic regression model of Equation (3.1). The sample 

generated data with four runs is given in Table 3.1. 
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Table 3.1 Sample Generated Data with Four Runs 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 z 

0 0 0 0 1 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

1 1 0 0 1 1 

 

Since there are two levels for each of the five process variables in the defined model, 

there are 32 possible combinations of the process variable values. The resulting 

expected logistic function values for all possible combinations of the process 

variables are listed in Appendix A. In the table provided in appendix A, f ′(y) shows 

the probability of observing the failure, which is f′(y)=1 ̶  f(y), and f(y) shows the 

probability of observing the success.  

 

Every one of these 32 combinations can be considered as an association rule. When 

association rule mining algorithms are applied on these generated data, we have two 

consequents which are failure probability f ′(y), or success probability f (y). So we 

have 64 association rules with defined confidences. The confidences of rules, with 

the success event as consequent, are consistent with the probabilities of not observing 

a failure event or f (y). Similarly, the confidences of rules, with the failure event as 

consequent, are consistent with the probabilities of observing a failure event or f ′(y). 

We assume the data analyst is interested in failure event with minimum confidence 

of 50%, as we have 32 rules consistent with failure event and just 16 of them have 

confidence more than 50%, these 16 association rules become important failure 

association rules. In this thesis, we call them as true rules which are listed in Table 

3.2. These true rules will be considered as a benchmark to analyze the association 

rule mining algorithms. 
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Table 3.2 True Rules 

 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 y 
 

f (y) 
 

Confidence 

 

1 0 1 0 1 1 -0.0010 0.4997 0.5002 

2 1 0 1 0 1 -0.0010 0.4997 0.5002 

3 1 0 1 1 0 -0.0010 0.4997 0.5002 

4 1 1 0 1 1 -1.0010 0.2687 0.7312 

5 1 1 0 0 1 -0.0010 0.4997 0.5002 

6 1 1 1 1 0 -1.0010 0.2687 0.7312 

7 0 0 1 1 1 -0.0010 0.4997 0.5002 

8 0 1 1 0 1 -0.0010 0.4997 0.5002 

9 1 1 1 0 1 -1.0010 0.2687 0.7312 

10 1 1 0 1 0 -0.0010 0.4997 0.5002 

11 1 1 1 0 0 -0.0010 0.4997 0.5002 

12 1 0 0 1 1 -0.0010 0.4997 0.5002 

13 0 1 1 1 0 -0.0010 0.4997 0.5002 

14 0 1 1 1 1 -1.0010 0.2687 0.7312 

15 1 0 1 1 1 -1.0010 0.2687 0.7312 

16 1 1 1 1 1 -2.0010 0.1190 0.8809 

 

 

3.3 Design of Experiments and Generation of Experimental Data 

 

By applying the regression analysis method explained in the previous section, we 

can generate artificial data with known rules, and by defining desired confidence 

level and thresholds, we can determine true rules. By doing this, we will know 

interesting rules and use them as our benchmark in evaluating the performance of 

applied association rule mining algorithms. As mentioned above, we obtained 16 true 

rules shown in Table 3.2. Jabarnejad (2010) in his thesis work defines four true rules 

and uses them in comparing two grouping and pruning methods for association rules, 

and the method is good, if it does not prune these rules and also if it does not keep 

other rules except them as much as possible. As a result, important failure rules, 

namely, true rules can be used to measure the performance of rule reduction methods 

from the view of information loss. In this thesis, we extend this method and evaluate 
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the association rule mining algorithms to see if they give us these true rules, and how 

they are efficient in giving the less number of redundant rules and more of the true 

rules. We also evaluate their performance on several generated data sets based on 

some performance measures. 

   

In this study, in order to have better and more realistic comparison results, we 

propose to apply the comparison method on data sets generated according to a 

statistically designed experiment taking into account properties of real data sets. In 

the proposed experimental design, the following factors are taken into account: Data 

type (DT) (sparse, dense), number of attributes (NA), size of data (number of runs 

of the desired regression model) (NR), support value (SV). These different data sets 

can be generated using the logistic regression based method explained in Section 3.2. 

 

Let us define these factors in detail, and the way they are defined in generated data. 

Data type (DT) is one of the most important factors which should be considered when 

applying different association rule mining algorithms. As it is mentioned in the 

literature, many association rule mining algorithms have different results on different 

data sets and in order to understand and compare them better, they should be applied 

on different data types. Sparsity and density show data type which may have different 

definitions according to their application areas. In numerical analysis, sparsity 

describes the percentage of cells in a database table that most of the elements are 

zero. By contrast, density shows the percentage of cells in a database table that most 

of the elements are nonzero. The fraction of zero elements over the total number of 

elements in a matrix is called the sparsity (Tewarson, 1973). By using these 

definitions, we have calculated sparsity considering the 0 and 1 elements in our 

generated data sets; if sparsity is below 45, we have considered that data set as dense, 

otherwise sparse. So we have considered two levels for Data type (DT): sparsity < 

45 (D) or sparsity > 45 (S). 

 

http://en.wikipedia.org/wiki/Numerical_analysis
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Number of attributes (NA) is also one important factor which have been considered 

in generating data sets. As mentioned in part 3.2, some process variables should be 

defined for suggested regression model in order to generate association rules. For 

our model we have considered five process variables or attributes which are effective 

in failure / success events. However, in real data, we commonly encounter with many 

process variables that make data more complex, and due to this, many redundant 

association rules are mined that makes the role of association rule mining algorithms 

more important in finding true rules and also finding the least number of redundant 

rules. So in order to make our artificial data show the characteristics of real data, we 

add some other ineffective process variables in the model, which do not have any 

effect on failure / success event, but make artificial data more real and complex. 

Some of these variables are assigned randomly, and some of them can take values 

dependent on other effective process variables’ values. Two kinds of these attributes 

have been considered in our model. The first type is dependent on other effective 

process variables, and can be defined as: 

 

If 𝑥1  +  𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≥ 3, then 𝑥6 = 1, otherwise 𝑥6 = 0. 

 

This variable shows that if at least 3 effective process variables have the value of 1, 

then it will be 1. Otherwise, it will be 0. 

 

Second type ineffective attribute also does not have any effect on failure/success 

event, and also it is not dependent on other effective process variables. The value of 

this variable is assigned randomly as 0 or 1. 

 

Two levels have been considered for number of attributes (NA) factor, 7 or 14, in 

which 7 attribute level shows data set having 5 effective and 2 ineffective attributes, 

and this data set may not reflect the real data sets completely. In contrast, 14 

attributes may reflect real data sets better, by considering much more ineffective 

attributes as defined above. 
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One other factor that is defined for generating data sets is data size (NR), which 

shows the number of runs of the suggested regression model. 100 or 10000 tuples is 

considered for data generation, the first one shows a small data set, the second level 

shows a big data set. 

 

As mentioned in literature, support value is one of the most effective factors the user 

determines. As mentioned, different association rule mining algorithms show 

different performances with different support values. Support value (SV) is not 

effective in generating the data sets, but it is the threshold we define when applying 

association rule mining algorithms on generated data. Since it is important in 

performance of association rule mining algorithms, we consider it as one factor in 

experimental designs. Two levels are defined for it: 0.05 or 0.20. The first one is 

considered as a low support value, and the second one as a high support value. The 

reason of setting low support value as 0.05 is that, it causes mining approximately 

all association rules by selected algorithm. And, the reason for selecting 0.20 as high 

support value is that, setting higher values cause approximately no rule mining. A 

Matlab code is developed for generation of the suggested data sets. 

 

In creating different data sets, we consider DT, NA and NR. SV is not important for 

generating different data sets, because support values are just considered in applying 

different algorithms on data sets. Hence, we have 2×2×2=8 different data sets. We 

can compare any number of algorithms on these data sets, and with two different 

support values. For example, if we compare three algorithms, this leads to a full 

factorial design with 8×2×3=48 different experiments to conduct. But we can also 

use a fractional factorial design instead of the full one (Hedayat et al., 2012). Since 

we need a comprehensive comparison considering all defined factors and levels, we 

use a full factorial design. The full factorial design for collecting data to compare 

three algorithms using selected factors and levels is available in Appendix B. 
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We need to run each association rule mining algorithm on these designs, and totally 

for three association rule algorithms, we have 48 experimental runs. 

 

For having better results, we suggest replicating generating datasets at least twenty 

times, therefore 960 experiments to be performed. 

 

3.4 Comparison Measures 

 

We have used Tan et al. (2002) and Lenca et al. (2008) in the selection of 

interestingness measures, since they have provided a complete evaluation of these 

measures used in previous works, and ranked them according to user’s interest by 

using multi criteria decision making approaches. The interestingness measures 

selected are shown in Table 3.3. In this selection, we have tried to choose commonly 

used and different ones that constitute a complete set. 

 

Their absolute and relative definitions are available in Table 3.4, based on the 

following explanations and notation. 

 

Given a rule A B, define 

𝑟1 = 𝑛𝑎𝑏= the number of records satisfying both A and B (the examples of the rule), 

𝑟2 = 𝑛𝑏= the number of records satisfying B, 

𝑟3 = 𝑛�̅�= the number of records not satisfying B, 

𝑟4 = 𝑛𝑎�̅�= the number of records satisfying A but not B (the counterexamples of 

the rule), 

𝑟5 = 𝑛𝑎= the number of records satisfying A, 

r6 = n = the total number of records, 
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r7= the number of records satisfying both A and B, and also including other 

redundant attributes in antecedent and consequent 

 

𝑃𝑎 = probability of observing a  

𝑃𝑏 = probability of observing b 

𝑃�̅� = probability of not observing b 

𝑃𝑎�̅� = probability of observing a but not b 

𝑃𝑎 𝑏⁄  = probability of observing a if b is available in the consequent of a rule 

𝑃𝑎 𝑏⁄  = probability of observing a if b is not available in the consequent of a rule 

𝑃𝑏 𝑎⁄  = probability of observing b if a is available in the antecedent of a rule 

 

For the case of true rules, A is the antecedent of the true rules, and B is the failure 

event.  

We have defined 7 rules as defined by notations (r1, r2, …, r7) for true rules, using 

a Matlab code, for calculating the above mentioned interestingness measures. 

 

Table 3.3 Selected Interestingness Measures 

Measure name Abbreviation 

Bayes Factor BF 

Confidence CONF 

Conviction CONV 

Lift LIFT 

Loevinger LOE 
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Table 3.4 Absolute and Relative Definitions of the Selected Measures (Lenca et al., 2008) 

 

 

 

 

 

 

 

 

 

 

We have customized these interestingness measures according to the true rules 

defined in our proposed method. Hence, we define the following five interestingness 

measures to be used in the comparison: 

 

 𝐌𝟏 = 

 BF′ =  
probability of the availability of antecedents of true rules if failure exist

probability of the availability ofantecedents of true rules if success exist
 

 

 𝐌𝟐 = 

   CONF′ = probability of failure if antecedents of true rules exist  

 

 𝐌𝟑 =

  CONV′ =  
probability of the availability of antecedents of true rules∗probability of success

probability of success in availability of antecedents of true rules
 

 

 

 

 Absolute definition Relative definition 

BF 

 

𝒏𝒂𝒃𝒏𝒃
𝒏𝒃𝒏𝒂𝒃

 
𝑃𝑎 𝑏⁄

𝑃𝑎 𝑏⁄

 

CONF 𝒏𝒂𝒃
𝒏𝒂

 𝑃𝑏 𝑎⁄  

CONV 

 

𝒏𝒂𝒏𝒃
𝒏𝒏𝒂𝒃

 
𝑃𝑎𝑃�̅�
𝑃𝑎�̅�

 

LIFT 𝒏𝒏𝒂𝒃
𝒏𝒂𝒏𝒃

 
𝑃𝑏

𝑎⁄

𝑃𝑏
 

LOE 𝒏𝒏𝒂𝒃 − 𝒏𝒂𝒏𝒃
𝒏𝒂𝒏�̅�

 
𝑃𝑏

𝑎⁄
− 𝑃𝑏

1 − 𝑃𝑏
 



26 
 

      𝐌𝟒 = 

              LIFT′ =
probability offailure if antecedents of true rules exist

probability of failure
 

 

  𝐌𝟓 = 

               LOE′ =
probability of failure if antecedents of true rules exist−probability of failure

probability of success
 

 

 

These measures are calculated for true rules presented with our logistic regression 

model for each association rule mining algorithm. 

  

We interpret these measures from statistical viewpoint (as suggested by Omiecinski, 

2003; Tan, 2004; Hahsler, 2016) as follows. 

 

Bayes factor (BF) is the degree to which we favor one hypothesis over another. For 

example, for the case of true rules, we want to know to what degree observing the 

antecedents of true rules in failure events is favored to observing the antecedents of 

true rules in success events. If BF is greater than 1, since our defined true rules have 

failure in their consequents, it means that the data favor true rules, so the measure is 

good and desirable for this experiment. Similarly, if BF is smaller than 1, this means 

that the algorithm does not perform well regarding the BF measure and the case this 

happened. BF ranges between [0, ∞]. 

 

Confidence (CONF) also shows the proportion of the transactions that contains 

antecedent of the rule which also contains consequent of the rule. For the case of 

defined true rules, confidence means the probability of observing the true rules by 

the algorithm. So, if the CONF is close to 1, the algorithm is more efficient in finding 

desired true rules. CONF ranges between [0, 1]. 
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Conviction (CONV) is supposed as an alternative to confidence which is not 

sufficient to capture the direction of associations. Conviction can be interpreted as 

the ratio of the expected frequency that antecedent of the rule occurs without its 

consequent. In other words, it is the frequency that the rule makes an incorrect 

prediction. For the case of true rules, CONV can be interpreted as the probability of 

not observing the true rule. It also ranges between [0, 1]. 

 

Lift is another interestingness measure which considers the dependency degree of 

the antecedent and consequent of the rule. It measures how many times more often 

antecedent and consequent of the desired rule occur together than expected if they 

were statistically independent. For the case of true rules, it shows the occurrence of 

true rules by considering the statistically dependency of the antecedent and 

consequent of the true rules. Lift ranges between [0, ∞]. When it becomes 1, it means 

antecedent and consequent are independent. 

 

Loevinger (LOE), which is also known as certainty factor, is a measure of variation 

of the probability that consequent of the desired rule is in a transaction when only 

considering transactions with antecedent of that rule. An increasing LOE or a 

negative LOE shows the decrease of the probability that consequent is not in a 

transaction that antecedent is in. In the case of true rules, an increasing or negative 

LOE shows a high probability of observing true rules when applying the desired 

association rule mining algorithm. LOE ranges between [-1, 1]. 

 

Besides these five interestingness measures, we propose to use two other measures 

which can be more helpful in evaluating the strength of association rule mining 

algorithms in finding interesting and also non redundant rules.  

 

If we define r1 and r7as 

r1= the number of all mined true rules  
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r7= the number of all mined true rules and all other true rules including redundant 

attributes 

 

Then, 
𝑟1

𝑟7
 shows the ratio of true rules without redundant elements to true rules 

including redundant attributes. It ranges between [0, 1]. When it becomes 1, it means 

that all the found true rules have non-redundant elements. If it is 0, it means that the 

algorithm could not find any non-redundant true rule, and this is the worst case. 

 

𝑛𝑎𝑏

𝑛𝑏
 , is another measure that shows the ratio of true rules to all rules including failure 

event. It also ranges between [0, 1], and the value 1 means that all the rules including 

the failure event in their consequent are true rules, and this is the best case.  

 

Besides the above measures, we include two other measures that most of the 

comparison studies in the literature have used them in their works. These two 

measures are, Time and memory use. We get the values of them from the software 

we use for applying the selected algorithms on generated data. As it is evident, Time 

shows the execution time it takes for the algorithm to find the association rules on 

the generated data. Memory use shows the memory used by the applied algorithm in 

finding the rules. 

 

A complete list of all the measures proposed for use in comparing the association 

rule mining algorithms is available in Table 3.5. 
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Table 3.5 Complete List of All Comparison Measures 

Measure name Measure name 

BF 𝑟1

𝑟7
 

CONF 𝑛𝑎𝑏
𝑛𝑏

 

CONV   Time 

LIFT Memory use 

LOE  

 

 

3.5 Preference Functions 

 

As mentioned, in the second step of PROMETHEE, preference functions are to be 

determined for each criterion according to the properties of the criterion. There are 

six main types of preference functions including Usual, U-shape, V-shape, Level, 

Linear, and Gaussian (Brans et al., 1985). In order to select one of these preference 

functions for each criterion, we need to define the criteria and relevant objective 

functions properly. Then related parameters for each preference function are 

determined by asking several questions to decision maker and also using some 

statistical analyses.  

 

The V-shape and Linear preference functions are appropriate for quantitative criteria 

(Brans et al., 1985; Behzadian et al., 2010).  

 

Since our defined comparison measures are all quantitative criteria, the Linear or V-

shape preference functions are suitable. So, according to the pairwise comparisons 

of algorithms as mentioned in the next section, the preference and indifference 

parameters are determined for each criterion. For each criterion defined in this thesis, 

if the decision maker decides not to define an indifference parameter for a criterion, 

V-shape function can also be chosen. Otherwise the Linear preference function is 
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appropriate. These preference functions need to be calibrated according to the 

statistical analyses. 

 

Since indifference parameter is important in defined comparison measures, two 

different shapes of linear preference function are used for selected comparison 

measures according to the definitions and objective functions. The proposed 

preference function and its formula for BF, CONF, LIFT, and LOE measures are as 

defined in Figure 3.1. 

 

The proposed preference function and its formula for CONV, Time, and Memory 

use measures are as defined in Figure 3.2. 

     

Figure 3.1 Preference Function for BF, CONF, LIFT, and LOE Measures 

 

 

 

        

Figure 3.2 Preference Function for CONV, Time, and Memory Use Measures 
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3.6 Comparison Method  

 

The first step in comparison of a set of association rule mining algorithms is to collect 

comparison measure data by applying the algorithms on the data sets generated 

according to the experimental design and the logistic regression model explained in 

Sections 3.3 and 3.2, respectively. 

 

In comparing association rule mining algorithms and identifying the most favorable 

ones based on multiple criteria, it is preferred to consider an independent and 

complete set of evaluation criteria. Some of the criteria defined in the previous 

section may be correlated with each other for a given set of association rule mining 

algorithms (alternatives) and data sets they are applied on. Therefore, before 

proceeding to a comparison, a factor analysis of the collected data is suggested to be 

performed to identify highly correlated measures. It is advisable to choose a single 

measure in each group of highly correlated measures loaded under a factor, for use 

in the overall comparison.  In choosing these measures, we can utilize matrix plots 

to observe types of dependencies (linear or nonlinear) between pairs of these 

measures. The measures distributed independently from the others should be 

favored. 

 

The next step is testing the set of hypotheses that all algorithms perform the same on 

the average or not with respect to the selected comparison measures, separately. For 

this purpose, ANOVA of the collected measure data can be performed. The ANOVA 

model should consider the main effects of data size (NR), sparsity (DT), number of 

attributes (NA), and support value (SV) as blocking variables, and the algorithm as 

the main variable we are interested in. If ANOVA assumptions that errors are 

distributed normally with a constant variance are not satisfied, an appropriate data 

transformation can be tired. If this does not help satisfying the error assumptions, 

then a nonparametric hypothesis test alternative such as Friedman test can be used. 

The Friedman test may consider a main factor (the algorithm), and also a blocking 
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variable. The blocking variable can be a combined one of some or all of the variables 

NR, DT, NA and SV. For this purpose, we can investigate plots of measure values 

of the algorithms versus the variables NR, DT, NA and SV. If these plots indicate 

that performances of the algorithms change to a considerable extend with some or 

all of these blocking variables, then a new blocking variable can be identified by 

combining the influential variables in such a way that the levels of the combined 

variable correspond to the tested combinations of the levels of the individual 

variables.  

 

Unless the mean performance of at least one algorithm is different than those of the 

others in statistical sense for at least one comparison measure, we conclude that the 

algorithms perform equally well. Otherwise, we identify for how many measures the 

algorithms seem to be different. If algorithms seem to be different for only one 

measure, we conclude based on the statistical test results (parametric or non-

parametric). If the algorithms seem to be different for at least two measures we can 

use a combination of AHP/ANP and PROMETHEE to compare them.  

 

PROMETHEE requires identification and use of preference function values in 

comparing pairs of algorithms for each of the selected comparison measures. If the 

difference between a given pair of algorithms is not statistically significant according 

to a certain measure under consideration, then the preference function value 

corresponding to that difference is advised to be taken as zero. In order to help the 

assessment of preference function values of such differences, we can perform 

hypothesis tests of equality of means of each and every possible pair of algorithms 

(using again the blocking variables) for each and every comparison measure selected. 

Since this requires, for each comparison measure and n algorithms, n (n-1)/2 tests, 

type I errors of them might add up to an undesirable amount. In order to overcome 

this problem, we can use a low significance level, α value, for each of these pairwise 

tests.  For all practical purposes, α = 2×0.10/ (n (n-1)) can be used. 
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As it is explained in Section 2.4, PROMETHEE consists of several steps. The first 

step is data matrix construction, and for this step weights of the comparison criteria 

need to be identified. These weights can be found by using AHP, if the criteria are 

independent of each other. In spite of the use of factor analysis results in selecting 

the criteria, if the selected criteria are believed to have considerable dependencies, 

then one can identify their weights by using ANP. 

 

At the second step of PROMETHEE, preference functions are determined separately 

for the criteria. In Section 3.5, certain preference function types are suggested for the 

comparison measures. Here, these functions need to be calibrated for the selected 

measures based on the pairwise comparison of the algorithms. For example, if the 

difference of means of any two algorithms is found statistically insignificant, then 

the preference function value corresponding to the absolute difference between their 

means (and any lower difference value) can be taken as zero or close to zero.  The 

other shape parameters of the preference functions such as the difference 

corresponding to a maximum preference value can be identified again by considering 

the maximum difference value observed in the data and also by using the expert 

knowledge about the algorithms and measures.  

 

At the third step, a multi-criteria preference index is calculated for each pairwise 

comparison. According to these results, entering and leaving flows are defined for 

each alternative. Finally at the last step, priorities are determined by comparing the 

net flows of all alternatives. 

 

We can use PROMETHEE in two separate ways for comparing the algorithms. First, 

we can consider algorithms as alternatives, and compare them comprehensively 

considering all the criteria and all data types, as explained above. Second, we can 

compare the algorithms under specific levels of the blocking variables (data size, 

sparsity or data type, number of attributes, and support value) separately. In the latter 

case, alternatives can be considered as algorithms under specific levels of the 
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blocking variables. For example, it is possible to compare algorithms to each other 

only for the cases of small and sparse data with small number of attributes and small 

support value. Similarly, it is possible to compare algorithms under certain levels of 

the blocking variables to those under certain other levels of the blocking variables. 

Such comparisons can be done in a similar manner as explained above for the overall 

comparison of the algorithms.  
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CHAPTER 4 

 

 

APPLICATION OF THE METHOD 

 

 

 

In this chapter, use of the comparison method is demonstrated on some selected 

association rule mining algorithms. Use of the method in comparison of other 

algorithms are discussed. 

 

4.1 Selected Algorithms for Application 

 

In order to demonstrate the comparison method, the following association rule 

mining algorithms are selected among the ones used in the literature for comparison: 

Apriori (Agrawal et al., 1994), FP-growth (Han et al., 2000) and Relim (Borgelt, 

2005). In this selection, availability of their software (Fournier-Viger et al., 2014) is 

considered besides their being subjects to a comparison in the literature (Zheng et 

al., 2001; Margahny et al., 2006; Vu et al., 2014; Fournier-Viger et al., 2014), 

showing different performance to some extent. 

 

4.2 Design of Experiments, Experimental Data, True Rules 

 

We have used the full factorial design described in Chapter 3 and available in 

Appendix B to collect the data needed for comparison of the algorithms. Other than 

the algorithm and support value, we have three factors (DT, NA, NR) that can be 
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used in generating the data sets. As explained in Chapter 3, there are 8 possible 

combinations of these factors each at two levels.  

 

For each combination, say data generator, we have generated 20 data sets as 

replicates. Each data set generated has a different sparsity value, which we categorize 

into low and high levels by considering the 0.45 threshold for sparsity. The complete 

list of these sparsity values obtained for the replicates is given in Table 4.1. 

 

Table 4.1. Sparsity Values for 20 Replications 

Data 

Index rep1 rep2 rep3 rep4 rep5 rep6 rep7 rep8 rep9 rep10 

1 0.56 0.51 0.52 0.52 0.52 0.52 0.52 0.55 0.54 0.51 

2 0.56 0.52 0.50 0.49 0.51 0.51 0.52 0.50 0.52 0.51 

3 0.40 0.36 0.39 0.37 0.39 0.38 0.38 0.38 0.40 0.40 

4 0.31 0.27 0.26 0.30 0.25 0.27 0.26 0.28 0.29 0.27 

5 0.54 0.51 0.51 0.51 0.52 0.51 0.51 0.51 0.51 0.52 

6 0.52 0.51 0.51 0.51 0.50 0.51 0.51 0.51 0.50 0.51 

7 0.42 0.39 0.40 0.38 0.39 0.39 0.39 0.39 0.39 0.39 

8 0.29 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

Data 

Index rep11 rep12 rep13 rep14 rep15 rep16 rep17 rep18 rep19 rep20 

1 0.51 0.52 0.49 0.49 0.48 0.50 0.50 0.52 0.54 0.50 

2 0.50 0.52 0.51 0.51 0.49 0.51 0.52 0.51 0.52 0.51 

3 0.38 0.39 0.37 0.37 0.37 0.38 0.36 0.37 0.41 0.40 

4 0.28 0.29 0.25 0.30 0.29 0.29 0.29 0.26 0.28 0.28 

5 0.51 0.51 0.51 0.51 0.52 0.51 0.52 0.51 0.52 0.51 

6 0.51 0.51 0.50 0.50 0.51 0.50 0.51 0.51 0.50 0.51 

7 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 

8 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

 

 

Selected algorithms have been run on each and every replicate data set, using the 

java code provided in SPMF website (Fournier-Viger et al., 2014), according to the 

experimental design provided in Appendix B.  
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4.3 Results for Comparison Measures  

 

We have calculated the comparison measures provided in Chapter 3, based on the 

collected data, for Apriori (Algorithm 1), FP-growth (Algorithm 2), and Relim 

(Algorithm 3). A Matlab code has been developed and used for this purpose. The 

sample results of the calculated measures for one replication are shown in Table 4.2.  

 

Table 4.2 Results for Comparison Measures for Some Experiments 

  Alg. NR DT NA SV BF CONF CONV LIFT LOE nab/nb r1/r7 Time Memory 

1 1 1 1 1 1 1.16 0.46 0.54 2.13 0.83 0.16 0.40 20 12.44 

2 1 1 1 1 2 * * * * * 0 * 2 20.32 

3 1 1 1 2 1 1.61 0.47 0.91 1.76 0.43 0.01 0.05 175 25.16 

4 1 1 1 2 2 * * * * * 0 * 6 27.38 

5 1 1 2 1 1 1.07 0.47 0.55 1.94 0.80 0.15 0.33 45 8.38 

6 1 1 2 1 2 * * * * * 0 * 2 10.6 

7 1 1 2 2 1 1.42 0.46 0.88 1.60 0.37 0.01 0.05 86 14.94 

8 1 1 2 2 2 * * * * * 0 * 5 23.51 

9 1 2 1 1 1 1.10 0.47 0.56 1.94 0.77 0.17 0.36 159 9.87 

10 1 2 1 1 2 * * * * * * * 41 17.24 

11 1 2 1 2 1 1.78 0.47 1.03 1.72 0.36 0.01 0.07 2120 30.25 

12 1 2 1 2 2 * * * * * 0 * 314 17.7 

13 1 2 2 1 1 1.09 0.47 0.56 1.94 0.77 0.17 0.35 91 25.84 

14 1 2 2 1 2 * * * * * * * 68 10.46 

15 1 2 2 2 1 1.79 0.47 1.03 1.73 0.36 0.01 0.07 2109 24.59 

16 1 2 2 2 2 * * * * * 0 * 328 8.65 

17 2 1 1 1 1 1.22 0.46 0.53 2.27 0.88 0.18 0.45 15 19.74 

18 2 1 1 1 2 * * * * * 0 * 12 22.18 

19 2 1 1 2 1 1.61 0.47 0.91 1.76 0.43 0.01 0.05 152 28.04 

20 2 1 1 2 2 * * * * * 0 * 17 17.07 

*: indefinite values 
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4.4 Comparison of the Algorithms  

 

After calculating the defined measures on different data sets according to the 

experimental design, we need to compare the results of these measures to find the 

most effective algorithm(s). The results of the comparison measures may not 

dominantly favor one specific algorithm. Every algorithm will probably have its own 

pros and cons. Therefore, we need to use a multi criteria decision making approach 

to have a proper comparison of the results by considering all criteria simultaneously. 

We use PROMETHEE for this purpose, but before proceeding to it, the statistical 

analyses suggested in Chapter 3 are needed to be done. 

 

First, comparison measures should be studied in detail in order to find the 

correlations among them for the purpose of reducing them to independent and 

complete set of evaluation criteria for PROMETHEE, to the best we can.  

 

In order to identify highly correlated measures, a factor analysis is performed of the 

collected data in our experiments. As it can be seen in Table 3.5, we use 7 

interestingness measures, and two other measures (time and memory use) used in the 

previous comparisons in the literature. Time and memory usage are two uncorrelated 

measures according to these results as shown in Table 4.2. But high correlations exist 

among the interestingness measures BF, CONF, LIFT, and LOE, and also among 

CONV, 
𝑛𝑎𝑏

𝑛𝑏
, and  

𝑟1

𝑟7
.  
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Figure 4.1 Factor Analysis Results 

 

We select a representative measure from each of these groups of correlated measures. 

In order to have a proper selection, we utilize matrix plots shown in Figure 4.2 to 

observe types of dependencies (linear or nonlinear) between pairs of these measures. 

We try to eliminate measures with not only strong linear dependencies, but also 

having distinct nonlinear dependency patterns, if any. We have chosen BF and 

CONV that are suggested to give the useful information about association rule 

mining algorithms according to some works in the literature and definitions used for 

them (Tan et al., 2002; Lenca et al., 2008). They also show the less dependency with 

the other measures. We could also use some other measures instead of them like 

LIFT, but we prefer to use BF and CONV in this work. As a result, we reduce the 

measures to four important ones: BF, CONV, time, and memory use.  
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Figure 4.2 Matrix Plots of the Interestingness Measures 

 

The next step is testing the set of hypotheses that all algorithms perform the same on 

the average or not with respect to the selected comparison measures, separately. For 

this purpose, ANOVA of the collected measure data is performed. The ANOVA has 

been done considering the main effects of data size, sparsity, number of attributes, 

and support value as blocking variables, and the algorithm as the main variable we 

are interested in. But as stated before in Chapter 3, we should check if errors are 

distributed normally with a constant variance or not as one of the important 

assumptions of ANOVA, and if it is not satisfied for a measure, an appropriate data 

transformation should be done for that measure. For this purpose, we have used Box-

Cox transformation for all comparison measures except CONV. Since CONV ranges 

between [0, 1], we have tried Arcsin√CONV transformation for it. But for BF, even 

the transformations have not helped satisfying the error assumptions. Therefore, 

instead of ANOVA, we have used a nonparametric hypothesis test option, the 

Freidman test, and evaluated all the variables data size, number of attributes, support 

value, and sparsity as blocking variables, and the algorithms as the main factor. We 
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have noticed from plots of measure values of the algorithms versus the variables NR, 

DT, NA and SV, that performances of the algorithms change to a considerable extend 

with almost all of these blocking variables. Therefore, in order to reflect the effect 

of all these factors simultaneously, a new blocking variable is identified by 

combining all these variables in such a way that the levels of the combined variable 

correspond to the tested combinations of the levels of the individual variables. The 

residual plots and results of all these parametric and nonparametric hypotheses tests 

are available in Appendix C. It should also be noted that we have considered all the 

attributes categorical in ANOVA tests, because all of them have 2 or 3 levels. We 

have also taken α = 0.1 for these hypotheses tests. 

 

In all of these tests, we have observed that at least one algorithm shows a 

significantly different performance than the others on the average, for all comparison 

measures. Since the algorithms seem to be different for all measures, we can use 

PROMETHEE to compare them. The preference functions to be used in 

PROMETHEE need to be calibrated based on pairwise comparisons of the 

algorithms using hypothesis tests as explained in Chapter 3. We have performed all 

these hypothesis tests for pairwise comparisons of algorithms with α = 0.03. 

According to the results of these tests summarized in Appendix D, algorithms 1 and 

2 cannot be considered as significantly different from each other on the average in 

their CONV and BF performance, but all the other pairwise comparisons show 

statistically significant differences between the algorithms. 

 

Comparison of the algorithms using PROMETHEE is performed according to the 

steps described in Chapter 2 as follows: 

 

Step 1: A data matrix is constructed from alternatives (algorithms), criteria 

(comparison measures), and weights of criteria, W. We have assumed the same 

weights for all the criteria. (It is possible to adjust these weights using AHP for these 
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independent criteria, if found more appropriate.) The averages of the algorithms for 

the comparison measures BF (f1), CONV (f2), Time (f3) and Memory use (f4) are 

provided in Table 4.3. 

 

Table 4.3 Data Matrix Structure 

 A1 A2 A3 W 

f1 0.5973 0.5967 0.4914 0.2500 

f2 0.9777 0.9783 0.5768 0.2500 

f3 354.8941 137.1500 152.7844 0.2500 

f4 40.4407 48.2535 94.7381 0.2500 

 

 

Step 2: Preference functions are determined for each criterion according to the data 

type. These functions need to be calibrated for the selected measures based on the 

pairwise comparison of the algorithms. Ranges of the Criteria and Objective 

Functions are given in Table 4.4. Since the data are real valued, continuous functions 

are preferable. And, since small differences between two alternative methods are 

negligible up to a point, and preference intensity starts to increase from that point, 

we choose the “Criterion with Linear Preference and Indifference area” preference 

function for all four criteria (see Section 3.5). Figures 3.1 and 3.2 display the 

mentioned preference function for defined criteria. 
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Table 4.4 Ranges of Criteria and Objective Functions 

Criteria 
Objective 

Function 

0 ≤ CONV ≤ 1 Min 

0 ≤ BF ≤ +∞ Max 

0 ≤ Time ≤ +∞ Min 

0 ≤ Memory ≤ +∞ Min 

 

We define d = fk(Ai) – fk(Aj) for criterion k and for all (Ai, Aj) pairwise alternative 

comparisons. These values are shown in Table 4.5. 

 

Table 4.5 Calculated d Values for Alternative Pairs 

Criterion d(A1,A2) d(A1,A3) d(A2,A3) d(A2,A1) d(A3,A1) d(A3,A2) 

BF 0.0006 0.1059 0.1053 -0.0006 -0.1059 -0.1053 

CONV -0.0006 0.4008 0.4014 0.0006 -0.4008 -0.4014 

Time 217.7441 202.1098 -15.6344 -217.7440 -202.1100 15.6343 

Memory -7.8127 -54.2973 -46.4846 7.8127 54.2973 46.4845 

 

Then, q and p, which are the indifference and preference thresholds, respectively, are 

determined according to the literature and results of the pairwise comparisons of the 

algorithms by statistical hypothesis tests. Two important questions are asked for this 

purpose: 

 

1) What is the smallest d value at which the preference function, P (d), equals 

to 1? This gives the p value. 
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2) What is the highest d value at which preference function, P (d), equals to 0?  

This gives the q value. 

 

Statistical tests show that A1=A2 can be assumed for CONV and BF. Therefore, 

these two algorithms show the same performance for these two measures 

statistically, and q, which is the indifference threshold, can be assigned for these two 

measures according to the absolute differences between A1 and A2. So the absolute 

difference between CONV (A1) and CONV (A2) is calculated, similarly the absolute 

difference between BF (A1) and BF (A2) is calculated. The results of these 

calculations can be seen in the Table 4.5. Then, q values for CONV and BF are 

assigned close to these absolute differences. Since other pairwise comparisons show 

that algorithms have different performances, p values are assigned considering the 

absolute differences between all algorithms. 

 

Similarly, p and q values for Time and Memory are assigned according to the most 

and the least absolute differences between all algorithms. The assigned p and q values 

are shown in Table 4.6. 

 

 Table 4.6 p and q Values of Criteria 

 

 

 

 

 

 

 

Criterion p q 

BF 0.1000 0.0010 

CONV 0.4000 0.0010 

Time 200.0000 10.0000 

Memory Use 50.0000 5.0000 
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Then according to these p and q values, and defined preference function, we have 

calculated Pk for all pairwise comparisons as it can be seen in Table 4.7: 

 

 Table 4.7 Calculation of Preferences for All Pairwise Comparisons 

 

Step 3: The multi criteria preference index is calculated for all pairwise comparisons 

of the alternatives. The results are given in Table 4.8. 

 

Table 4.8 Multi Criteria Preference Index 

∏ (A1, A2) ∏ (A1, A3) ∏ (A2, A3) 

0.0156 0.5000 0.4878 

∏ (A2, A1) ∏ (A3, A1) ∏ (A3, A2) 

0.2500 0.5000 0.2500 

 

Step 4: Leaving and entering flows for each alternative is defined and the results are 

provided in Table 4.9.  

 

 

Criterion P(A1, A2) P(A1, A3) P(A2, A3) P(A2, A1) P(A3, A1) P(A3, A2) 

BF 0 1 1 0 0 0 

CONV 0 0 0 0 1 1 

Time 0 0 0.0296 1 1 0 

Memory 0.0625 1 0.9218 0 0 0 
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Table 4.9 Calculated Flows for Each Alternative 

𝜑−(𝐴1) 𝜑−(𝐴2) 𝜑−(𝐴3) 

0.7500 0.2656 0.9878 

𝜑+(𝐴1) 𝜑+(𝐴2) 𝜑+(𝐴3) 

0.5156 0.7378 0.7500 

𝜑(𝐴1) 𝜑(𝐴2) 𝜑(𝐴3) 

-0.2343 0.4722 -0.2378 

 

Step 5: Priorities can be determined by this way: 

A2 > A1 > A3 

FP-growth > Apriori > Relim 

 

As a result, taking into consideration all of the selected comparison criteria and all 

studied data characteristics, we can conclude that FP-growth is the best algorithm 

among all three algorithms. 

 

It is also possible to use PROMETHEE for comparing the algorithms under specific 

levels of the blocking variables (data size, sparsity, number of attributes, and support 

value) separately. For example, we may want to compare algorithms for sparse data, 

and also for dense data, separately. As we have 3 algorithms, this leads to six 

alternatives for PROMETHEE analyses. In other words, the alternatives can be 

considered as algorithms under specific levels of a blocking variable. The detailed 

results of these comparisons are available in Appendix E. As it can be seen from the 

provided results, for most of the cases and factors, FP-growth is better than the 

others. The results obtained for time and memory use measures are also consistent 

with the literature results (Zheng et al., 2001; Vu et al., 2014; Fournier-Viger et al., 

2014). But there exist some differences between the results we obtain by using the 
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proposed method and the literature results. As it is mentioned in Zheng et al. (2001), 

for time measure, FP-growth performs better than Apriori in low support values. 

Meanwhile Apriori is faster in high support values. But, our results show that FP-

growth is the best algorithm for both low and high support values. We also find that 

for small data and low attribute numbers, Apriori is the best algorithm. This is not 

provided in the literature for Apriori, and our proposed method reveals this fact. 
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK SUGGESTIONS 

 

 

 

Selecting the most appropriate association rule mining algorithm for the desired 

application has always been considered as a challenging problem, since there exist 

many different association rule mining algorithms, several criteria are considered in 

comparing them, and true interesting rules are unknown for the test data available in 

the literature. This study provides an objective way of comparing the association rule 

mining algorithms, based on known true rules, considering all relevant comparison 

criteria and data characteristics as well as statistically significant differences. 

Jabarnejad (2010) addresses this issue by proposing the novel method for comparing 

the rule reduction methods. In this thesis, we have used the main idea presented in 

Jabarnejad (2010), and extended it to the case of comparing association rule mining 

algorithms. We have contributed to this approach by systematically generating a 

representative and wide variety of data sets using the logistic regression models and 

considering many effective factors such as sparsity. This method enables data 

analysts to precisely evaluate association rule mining algorithms by considering 

these various data sets, several interestingness and other comparison measures, and 

the most important of all by knowing the exact true rules defined by the user using 

logistic regression models.  
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Another contribution of the thesis is to suggest and demonstrate use of statistical and 

multi criteria decision making approaches in an integrated manner in this particular 

case of comparing the association rule mining algorithms.  

 

Although we propose a method with defined comparison measures for comparing 

the association rule mining algorithms, there also exist algorithms performing rule 

reductions. As a future work, similar analyses can be done on these rule reduction 

algorithms by defining appropriate comparison measures for them. Larger series of 

experiments can be conducted for these kinds of algorithms to select the most 

desirable one(s) which can mine the association rules more efficiently and also group 

and prune the redundant rules at the same time. 

 

We provide several comparison measures for comparing the association rule mining 

algorithms. These measures can be studied further to include other relevant and 

important measures to express more efficient and comprehensive results.  
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APPENDIX A 

 

 

EXPECTED LOGISTIC FUNCTION FOR ALL COMBINATIONS OF 

PROCESS VARIABLE VALUES 

 

 

 

Table A.1 Expected Logistic Function for All Combinations of Process Variable Values 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 E (y|x ) 

 

f (y) 

 

f ′ (y) 

 

0 1 0 1 1 -0.0010 0.4997 0.5002 

1 0 1 0 1 -0.0010 0.4997 0.5002 

0 0 1 1 0 0.9990 0.7308 0.2691 

1 0 1 1 0 -0.0010 0.4997 0.5002 

1 1 0 1 1 -1.0010 0.2687 0.7312 

1 0 0 0 0 1.9990 0.8806 0.1193 

1 0 1 0 0 0.9990 0.7308 0.2691 

0 0 0 0 1 1.9990 0.8806 0.1193 

0 0 1 0 0 1.9990 0.8806 0.1193 

0 0 0 1 0 1.9990 0.8806 0.1193 

1 1 0 0 1 -0.0010 0.4997 0.5002 

1 1 1 1 0 -1.0010 0.2687 0.7312 

0 0 1 1 1 -0.0010 0.4997 0.5002 

0 1 0 0 0 1.9990 0.8806 0.1193 

0 1 0 1 0 0.9990 0.7308 0.2691 

0 1 0 0 1 0.9990 0.7308 0.2691 

1 0 0 1 0 0.9990 0.7308 0.2691 

0 1 1 0 1 -0.0010 0.4997 0.5002 

0 1 1 0 0 0.9990 0.7308 0.2691 

1 1 1 0 1 -1.0010 0.2687 0.7312 

0 0 0 1 1 0.9990 0.7308 0.2691 

1 1 0 1 0 -0.0010 0.4997 0.5002 

1 1 1 0 0 -0.0010 0.4997 0.5002 



60 
 

Table A.1 (Continued) 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 E (y|x ) 

 

f (y) 

 

f ′ (y) 

 

1 0 0 1 1 -0.0010 0.4997 0.5002 

0 1 1 1 0 -0.0010 0.4997 0.5002 

1 1 0 0 0 0.9990 0.7308 0.2691 

0 1 1 1 1 -1.0010 0.2687 0.7312 

1 0 1 1 1 -1.0010 0.2687 0.7312 

1 0 0 0 1 0.9990 0.7308 0.2691 

0 0 0 0 0 2.9990 0.9525 0.0474 

1 1 1 1 1 -2.0010 0.1190 0.8809 

0 0 1 0 1 0.9990 0.7308 0.2691 
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APPENDIX B 

 

 

FULL FACTORIAL DESIGN ON SELECTED FACTORS AND LEVELS 

 

 

 

Table B.1 Full Factorial Design on Selected Factors and Levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment DS DT NA SV 

1 100 S 7 0.05 

2 100 S 7 0.2 

3 100 S 14 0.05 

4 100 S 14 0.2 

5 100 D 7 0.05 

6 100 D 7 0.2 

7 100 D 14 0.05 

8 100 D 14 0.2 

9 10000 S 7 0.05 

10 10000 S 7 0.2 

11 10000 S 14 0.05 

12 10000 S 14 0.2 

13 10000 D 7 0.05 

14 10000 D 7 0.2 

15 10000 D 14 0.05 

16 10000 D 14 0.2 
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APPENDIX C 

 

 

THE RESIDUAL PLOTS AND RESULTS OF ALL PARAMETRIC AND 

NONPARAMETRIC TESTS 

 

 

 

 

Figure C.1 CONV before Transformation 

 

  

Figure C.2 CONV after Transformation with Box-Cox 
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Figure C.3 CONV after Transformation with arcsin  

 

  

Figure C. 4 ANOVA Results for CONV 
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Figure C.5 BF before Transformation 

 

 

  

Figure C.6 BF after Transformation with Box-Cox 
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Figure C.7 ANOVA Results for BF 

 

 

Figure C.8 Friedman Test Results for BF 

 

We used algorithms as the main variable, and a combination of other factors as the 

blocking variable in Friedman test. 
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Figure C.9 Time before Transformation 

 

 

Figure C.10 Time after Transformation with Box-Cox 
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Figure C.11 ANOVA Results for Time 

 

 

 

 

 

 

 



69 
 

  

Figure C.12 Memory Use before Transformation 

 

  

Figure C.13 Memory Use after Transformation with Box-Cox 
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Figure C.14 ANOVA Results for Memory Use 
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APPENDIX D 

 

 

THE RESIDUAL PLOTS AND RESULTS OF ALL PARAMETRIC AND 

NONPARAMETRIC TESTS FOR PAIRWISE COMPARISONS 

 

 

 

ANOVA for comparing algorithms 1 and 2 with regard to CONV: 

 

 

Figure D.1 Residual Plots for Trans (CONV) for Comparing Algorithms 1 and 2 
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Figure D.2 ANOVA Results for Trans (CONV) for Comparing Algorithms 1 and 2 
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ANOVA for comparing algorithms 1 and 2 with regard to BF: 

 

   

Figure D.3 Residual Plots for BF for Comparing Algorithms 1 and 2 

 

 

Figure D.4 Friedman Test Results for BF for Comparing Algorithms 1 and 2 

  

We used algorithms as the main variable, and a combination of other factors as the 

blocking variable. P values show that Algorithms 1 and 2 algorithms 1 and 2 cannot 

be considered as significantly different from each other on the average with α=0.03. 
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ANOVA for comparing algorithms 1 and 2 with regard to Time: 

 

 

Figure D.5 Residual Plots for Transformed Time for Comparing Algorithms 1 and 2 

 

 

Figure D.6 ANOVA Results for Time for Comparing Algorithms 1 and 2 
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ANOVA for comparing algorithms 1 and 2 with regard to Memory Use: 

 

 

Figure D.7 Residual Plots for Transformed Memory Use for Comparing Algorithms1 and2 

 

 

Figure D.8 ANOVA Results for Memory Use for Comparing Algorithms 1 and 2 
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ANOVA for comparing algorithms 1 and 3 with regard to CONV: 

 

 

Figure D.9 Residual Plots for Trans (CONV) for Comparing Algorithms 1 and 3 

 

 

Figure D.10 ANOVA Results for Trans (CONV) for Comparing Algorithms 1 and 3 
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ANOVA for comparing algorithms 1 and 3 with regard to BF: 

 

 

Figure D.11 Residual Plots for BF for Comparing Algorithms 1 and 3 

 

 

Figure D.12 Friedman Test Results for BF for Comparing Algorithms 1 and 3 

 

P values show that Algorithms 1 and 3 can be considered as significantly different 

from each other for this measure with α=0.03. 
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ANOVA for comparing algorithms 1 and 3 with regard to Time: 

 

 

Figure D.13 Residual Plots for Transformed Time for Comparing Algorithms 1 and 3 

 

 

Figure D.14 ANOVA Results for Transformed Time for Comparing Algorithms 1 and 3 
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ANOVA for comparing algorithms 1 and 3 with regard to Memory Use: 

 

 

Figure D.15 Residual Plots for Transformed Memory Use for Comparing Algorithms 1 

and 3 

 

 

Figure D.16 ANOVA Results for Transformed Memory Use for Comparing Algorithms 1 

and 3 
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ANOVA for comparing algorithms 2 and 3 with regard to CONV: 

 

 

Figure D.17 Residual Plots for Trans (CONV) for Comparing Algorithms 2 and 3 

 

 

Figure D.18 ANOVA Results for Trans (CONV) for Comparing Algorithms 2 and 3 
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ANOVA for comparing algorithms 2 and 3 with regard to BF: 

 

 

Figure D.19 Residual Plots for BF for Comparing Algorithms 2 and 3 

 

 

Figure D.20 Friedman Test Results for BF for Comparing Algorithms 2 and 3 
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ANOVA for comparing algorithms 2 and 3 with regard to Time: 

 

 

Figure D.21 Residual Plots for Transformed Time for Comparing Algorithms 2 and 3 

 

 

Figure D.22 ANOVA Results for Transformed Time for Comparing Algorithms 2 and 3 
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ANOVA for comparing algorithms 2 and 3 with regard to Memory Use: 

 

 

Figure D.23 Residual Plots for Transformed Memory Use for Comparing Algorithms 2 

and 3 

 

 

Figure D.24 ANOVA Results for Transformed Memory Use for Comparing Algorithms 2 

and 3 
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APPENDIX E 

 

 

COMPARISON OF THE ALGORITHMS WITH REGARD TO DATA SIZE, 

SPARSITY, NUMBER OF ATTRIBUTES, AND SUPPORT VALUE 

FACTORS 

 

 

 

PROMETHEE with regard to Sparsity: 

 

Table E.1 Notations for Alternatives (Regarding DT) 

Algorithm1= Apriori Algorithm2=FP-growth Algorithm3= Relim 

A1= Algorithm1 on 

sparse data 

A3= Algorithm2 on 

sparse data 

A5= Algorithm3 on sparse 

data 

A2= Algorithm 1 on 

dense data 

A4= Algorithm 2 on 

dense data 

A6= Algorithm 3 on dense 

data 

 

Table E.2 Data Matrix Structure (Regarding DT) 

 

 Table E.3 Calculated Net Flows for Each Alternative (Regarding DT) 

A1 A2 A3 A4 A5 A6 

-0.5707 -0.3323 0.8488 1.0304 -0.5747 -0.4014 

 

 A1 A2 A3 A4 A5 A6 W 

f1 0.5801 0.6145 0.5796 0.6137 0.4776 0.5051 0.25 

f2 0.9360 1.0193 0.9374 1.0191 0.5528 0.6008 0.25 

f3 368.2563 341.5320 151.1500 123.1500 161.2438 144.3250 0.25 

f4 40.8390 40.0425 46.5290 49.9781 93.3005 96.1757 0.25 
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Priorities are: 

A4>A3>A2>A6>A1>A5 

 

Algorithm 2 performs better on dense data than on sparse data. Overall, it performs 

better for both sparse and dense data than the others. 
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PROMETHEE with regard to Number of Attributes: 

 

 
Table E.4 Notations for Alternatives (Regarding NA) 

Algorithm1= Apriori Algorithm2=FP-growth Algorithm3= Relim 

A1= Algorithm1 with 7 

NA          

A3= Algorithm2 with 7 

NA   

A5= Algorithm3 with 7 

NA   

A2= Algorithm 1 with 

14 NA 

A4= Algorithm 2 with 14 

NA 

A6= Algorithm 3 with 

14 NA 

 

Table E.5 Data Matrix Structure (Regarding NA) 

  A1 A2 A3 A4 A5 A6 W 

f1 0.4397 0.7549 0.4385 0.7548 0.3652 0.6175 0.25 

f2 0.8214 1.1340 0.8216 1.1349 0.5028 0.6509 0.25 

f3 48.8625 660.9258 50.5687 223.7313 42.9812 262.5875 0.25 

f4 39.2484 41.6331 43.7816 52.7254 85.6579 103.8183 0.25 

 

 

Table E.6 Calculated Net Flows for Each Alternative (Regarding NA) 

A1 A2 A3 A4 A5 A6 

1.2663 -0.6396 0.7088 0.0424 -0.1367 -0.7406 

 

 

Priorities are: 

A1>A3>A4>A5>A2>A6 

 

Algorithm 1 is good for low attribute numbers, but Algorithm 2 is good for high 

attribute numbers. 
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PROMETHEE with regard to Data Size: 

 

Table E.7 Notations for Alternatives (Regarding NR) 

Algorithm1= Apriori Algorithm2=FP-growth Algorithm3= Relim 

A1= Algorithm1 with 

low NR         

A3= Algorithm2 with 

low NR          

A5= Algorithm3 with low 

NR          

A2= Algorithm 1 with 

high NR 
 

A4= Algorithm 2 with 

high NR 

A6= Algorithm 3 with 

high NR 

 

 

Table E.8 Data Matrix Structure (Regarding NR) 

  A1 A2 A3 A4 A5 A6 W 

f1 0.4961 0.7997 0.4956 0.7988 0.4157 0.6426 0.25 

f2 0.7428 1.4474 0.7428 1.4493 0.4405 0.8494 0.25 

f3 43.5062 666.2820 28.9687 245.3313 32.3062 273.2625 0.25 

f4 37.7192 43.1623 35.5018 61.0052 87.0812 102.3950 0.25 

 

Table E.9 Calculated Net Flows for Each Alternative (Regarding NR) 

A1 A2 A3 A4 A5 A6 

1.6223 -0.7291 0.9612 -0.4445 -0.2444 -1.1654 

 

Priorities are: 

A1>A3>A5>A4>A2>A6 

 

Algorithm 1 is good for small data. Algorithm 2 is good for large data. 
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PROMETHEE with regard to Support Value: 

 

Table E.10 Notations for Alternatives (Regarding SV) 

Algorithm1= Apriori Algorithm2=FP-growth Algorithm3= Relim 

A1= Algorithm1 with 

low SV         

A3= Algorithm2 with 

low SV          

A5= Algorithm3 with 

low SV       

A2= Algorithm 1 with 

high SV 
 

A4= Algorithm 2 with 

high SV 

A6= Algorithm 3 with 

high SV 

 

Table E.11 Data Matrix Structure (Regarding SV) 

  A1 A2 A3 A4 A5 A6 W 

f1 0.7697 0.2525 0.7688 0.2525 0.6198 0.2344 0.25 

f2 1.4028 0.1273 1.4037 0.1273 0.8310 0.0685 0.25 

f3 612.0008 97.7875 194.1563 80.1437 166.8313 138.7375 0.25 

f4 40.3347 40.5468 52.1138 44.3933 95.6903 93.7858 0.25 

 

Table E.12 Calculated Net Flows for Each Alternative (Regarding SV) 

A1 A2 A3 A4 A5 A6 

-0.6746 1.0154 0.2457 1.0802 -0.8939 -0.7351 

 

Priorities are: 

A4>A2>A3>A1>A6>A5 
  

Algorithm 2 is good for both low and high support value. It performs better for 

high support values. 

 

 

 

 


