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ABSTRACT 

COMPUTATIONAL INVESTIGATION OF HYDRODYNAMICS OF 

VISCOELASTIC FLUIDS FLOWING AROUND SQUARE CYLINDER AND 

COMPLEX FLUID RHEOLOGY VIA MAGNETIC RESONANCE IMAGING 

Tezel, Güler Bengüsu 

Ph.D., Department of Chemical Engineering 

Supervisor: Prof. Dr. Yusuf Uludağ 

Co-Supervisor: Assoc. Prof. Dr. Kerim Yapıcı 

January 2016, 138 pages 

The flow past bluff bodies, especially cylinders, have been an attraction in all kinds 

of fluid mechanical investigations for a long time. The analysis of external flow past 

a square cylinder is a key to various engineering applications such as shell and tube 

heat exchangers, coating processes, cooling towers, extruders and membrane 

processes. It involves complex phenomena like flow separation and reattachment, 

drag formation. 

In the present study, the main objective is to investigate flow of a viscoelastic fluid 

around a confined square obstacle computationally. Phan-Thien Tanner (PTT) and 

Oldroyd-B are used as constitutive viscoelastic fluid models. Finite volume method 

is employed to solve coupled equations of continuity, motion and constitutive model 

along with appropriate boundary conditions. The stress terms in the momentum and 

constitutive equations are approximated by a higher-order and bounded scheme of 
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Convergent and Universally Bounded Interpolation Scheme for the Treatment of 

Advection (CUBISTA) to get accurate numerical solutions.   

Effects of inertia in terms of Reynolds number Re, elasticity in terms of Weissenberg 

number, We, and constitutive equation parameters on the recirculation length, drag 

coefficients, Cd and on the flow field in terms of stress and velocity fields are 

examined and presented in detail. Differences between the behavior of Newtonian 

and viscoelastic fluids flowing such over square cylinder as the normal stress effects 

are highlighted.  

In order to verify the computational methodology employed, Particle Image 

Velocimetry technique was used to get velocity field around the immersed cylinder 

in the case of Newtonian fluid. Experimental measurements and computational 

results compared well qualitatively.  

Online and offline rheological measurements on complex fluid such as 

Carboxylmethyl cellulose, and Carbopol solutions fluid flow is presented in detail. 

Magnetic Resonance Imaging (MRI) are used for online measurements. 

Keywords: Square cylinder; PTT fluid; Oldroyd-B fluid; Finite volume method; 

CUBISTA; MRI 
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ÖZ 

KARE KESİTLİ SİLİNDİR ETRAFINDAKİ VİSKOELASTİK AKIŞ 

DİNAMİĞİNİN SAYISAL OLARAK İNCELENMESİ VE KARMAŞIK 

AKIŞKAN REOLOJİSİNİN MANYETİK REZONANS İLE GÖRÜNTÜLENMESİ 

Tezel, Güler Bengüsu  

Doktora, Kimya Mühendisliği Bölümü Tez 

Yöneticisi: Prof. Dr. Yusuf Uludağ Yardımcı 

Tez Yöneticisi: Doç. Dr. Kerim Yapıcı 

Ocak 2016, 138 sayfa 

Akışa dik olan, özellikle, kare kesitli silindir yüzeyler üzerinden olan akışlar, akışkan 

mekaniği çalışmalarında uzun süredir ilgi çekmektedir. Kare kesitli silindir üzerinden 

olan akış, çeşitli ısı değiştiricilerde, kaplama ve zar süreçlerinde, ekstruder gibi 

mühendislik uygulamalarında önemli rol almaktadır. Bu tür akışlar, akış ayrılması, 

girdap ve sürüklenme oluşumları gibi karmaşık olaylar içermektedir. 

Bu çalışmanın temel amacı viskoelastik akışkanların sınırlandırılmış kare kesitli 

silindir üzerinden olan akışlarının sayısal olarak incelenmesidir. Phan-Thien Tanner 

(PTT) ve Oldroyd-B viskoelastik yardımcı gerilim eşitlikleri kullanılmıştır. Sonlu 

hacimler methodu uygun olan sınır koşulları ile birlikle, birbirlerine kuvvetli bağlı 

süreklilik, hız ve yardımcı gerilim eşitliklerini çözümlemek  için kullanılmıştır. Hız 

ve yardımcı gerilim eşitliklerindeki, konveksiyon terimleri için yüksek dereceli ve 

sınırlandırılmış CUBISTA şeması, hassas sayısal çözüm eldesi için kullanılmıştır.  
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Bu çalışmada, Reynolds sayılarının, elastisitenin ölçüsü olarak Weissenberg 

sayılarının ve de yardımcı gerilim eşitliklerindeki parametrelerin, akış alanındaki hız 

ve gerilim bileşenlerine, devir-daim uzaklığına, sürüklenme katsayısılarına olan 

etkileri detaylıca incelenmiş ve sunulmuştur. Newtonumsu ve viskoelastik 

akışkanların karesel silindir üzerinden olan, normal gerilim bileşenlerinden kaynaklı 

davranış farklılıkları vurgulanmıştır. 

 

Sayısal yöntemi doğrulamak için, Newtonumsu akışkan içerisine daldırılmış silindir 

etrafındaki hız alanı, Parçacık Görüntüleme Hız tekniği kullanılarak incelenmiştir. 

Deneysel ölçümlerin ve sayısal sonuçların nitekliksel olarak gayet uyumlu olduğu 

görülmüştür.  

 

Karboksimetil selüloz ve Carbopol gibi  karmaşık yapıdaki çözeltilerin  dinamik ve 

durağan reolojik  ölçümleri detaylı bir şekilde sunulmuştur. Dinamik ölçümlerde, 

Manyetik Rezonans Görüntüleme  tekniği kullanılmıştır. 

 

Anahtar Kelimeler: Kare kesitli silindir; PTT akışkan; Oldroyd-B akışkan; Sonlu 

Hacim Methodu; CUBISTA; MRI 
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CHAPTER 1 

INTRODUCTION 

1.1. Scope of Thesis 

Over the years, a voluminous body of knowledge has increased on the flow of fluids 

past cylinders of various cross sections. The bulk of the literature pertains to circular 

cylinders, followed by square, elliptic and rectangular cylinders or obstacles [1-3]. 

Indeed, even for the simplest shape of a circular cylinder which is free from 

geometrical singularities [4], the flow exhibits a rich variety of phenomena 

depending upon the nature of the mainstream flow (type of fluid Newtonian or non-

Newtonian), blockage ratio of the cylinder (length to diameter ratio) and the 

characteristic Reynolds number of the flow. 

The flow over square cylinders such as high-rise buildings according to 

aerodynamical characteristics, cooling towers, chimneys, tube banks in heat 

exchangers, in coating processes, in pipe and pump flows are encountered 

extensively in engineering applications. These objects, which under normal 

circumstances usually create an effective wake region behind the square cylinder. 

Understanding the flow field around these cylinders is important in many 

applications related with efficient use of energy [5] and structural design [6].  

The behavior of a fluid flow past a square cylinder often has many complex 

phenomena such as flow separation, vortex shedding, recirculation length of wake 

flow (the flow path behind the square cylinder), distribution of the shear and normal 

profile around the solid surfaces of the square cylinder and, drag and lift force 

coefficients [4-6]. 
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Majority of these studies in the literature deal with flow of a Newtonian fluid around 

a circular obstacle and to a smaller extend, around a square obstacle. For example 

Breuer et al. [7] examined laminar Newtonian flow around a square cylinder in a 2D 

channel using two different computational techniques, finite volume and lattice-

Boltzmann automata. Their blockage ratio B, defined as the ratio between the 

obstacle dimension and channel height, was 1/8. They compared the results of the 

techniques in terms of velocity field, drag coefficient, Cd, recirculation length and 

Strouhal number. They observed an excellent agreement between the results of the 

techniques. 

 

A numerical study to investigate Newtonian flow past a square cylinder for Reynolds 

numbers Re≤40 was conducted by Sen et al. [8] using a stabilized finite-element 

formulation with a non-uniform structured mesh. In order to mimic an unconfined 

flow, a small blockage ratio, B =1/100, was employed. For comparison purposes they 

also used cylinders of elliptical and circular cross-sections. They investigated impact 

of Re on the flow separation angle and Cd. They found that, flow separation over the 

square cylinder occurs at a smaller Re compared to the other cylinders giving rise to 

the highest Cd among the investigated obstacles. 

 

The flow structures and wake flow characteristics, vortex shedding behavior of 

behind square cylinder at high Reynolds numbers were experimentally studied using 

particle image velocimetry (PIV) [36] with different blockage ratios by Biswas et al. 

[9]. They employed the two-dimensions flow past a stationary square cylinder at zero 

incidence for Reynolds number, Re⩽150 using a stabilized finite-element 

formulations. They also compared with a circular cylinder that the flow separated at 

a much lower Re from a square cylinder leading to the formation of a bigger wake. 

Consequently, at a given Re, the drag on a square cylinder was higher more than that 

on drag of a circular cylinder.  
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In spite of their important industrial implications, number of studies involving non-

Newtonian fluids around enclosed obstacles is much smaller than those on 

Newtonian fluids in the literature. For example in their computational study Dhiman 

et al. [10] employed finite volume technique to investigate 2D flow of power-law 

fluids around a confined square cylinder. The fluids had index values between 

0.5≤n≤2.0. Their results revealed that the effects of Re and B on the size of the 

recirculation zone and on Cd were stronger than that of the power-law index. 

 

In their other study Dhiman et al. [11] excluded the presence of channel wall while 

keeping the other parameters, such as Re and n, identical to their earlier study. They 

observed stronger impact of n on Cd at low values of Re compared to the elevated 

values of Re. Moreover, as the value of n gets closer to one or the shear thinning 

behavior gets weaker, Cd becomes smaller at a given Re.  

 

Momentum and forced convection heat transfer characteristics for steady flow of 

shear-thinning and shear-thickening fluids past a square cylinder were investigated 

using finite difference based numerical solution for Reynolds number (5≤Re≤40) 

with blokage ratio 1/15 by Paliwal et al. [12]. They presented velocity and 

temperature fields around a square cylinder immersed in a streaming power liquid 

and also reported that shorter wake regions in shear thinning liquids and slightly 

larger recirculation lengths in shear-thickening media were observed in their flow 

patterns.  

 

P. Koteswara Rao et al. [13] extended the results on momentum and heat transfer 

characteristics to highly shearthinning fluids, especially n≤0.5 at low Reynolds 

number. Fluid elements followed the contour of the square cylinder and flow 

remained attached to the surface. These works reveal that shear-thinning behavior 

increases both Cd and the rate of convective heat transfer from the square cylinder 

surface. Shear thinning behaviour not only delays the formation of a visible wake but 

the resulting wake is also somewhat shorter than that of Newtonian fluid case. The 
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shear thickening, on the other hand, has exactly the opposite influence on wake 

formation. 

 

In another computational study on the hydrodynamics of power-law fluids around a 

square cylinder, Ehsan et al. [14] analyzed the effects of n and Re on drag and lift 

coefficients, Strouhal number, stream functions and time-averaged velocities both at 

laminar and turbulent conditions. They reported the impact of n and Re on the flow 

hydrodynamics in detail. For example, they observed weaker dependence of Cd on n 

as the inertial effects in the flow gets stronger. Their other interesting finding was 

that at turbulent conditions, effect of Re on the flow appeared to be modest compared 

to that of power-law index n.  

 

In their recent study Nilmarkar et al. [15] investigated 2D creeping flow of Bingham 

plastic fluids past a square cylinder of square section by using a finite element based 

solver, COMSOL Multiphysics. They reported the effect of Bingham number, Bi, on 

both various qualitative and quantitative features of the flow including size of the 

yielding and unyielding regions, stress and pressure fields. At elevated Bi yielding or 

fluid like regions in the flow shrank owing to the higher yielding stress to overcome. 

Their other major finding was the weaker dependence of investigated flow quantities 

on Bi at its elevated values. 

 

In the case of non-Newtonian fluid flow around confined obstacles, the literature is 

dominated by the studies with generalized Newtonian model to capture shear 

thinning or thickening effects. On the other hand, investigating the effects of 

viscoelasticity [16-20] on the hydrodynamics of the flow around the obstacles has 

potentially crucial implications on many industrial applications. Therefore the 

absence of viscoelastic flows around various obstacles in the literature merits a study 

on the hydrodynamics of such industrially important flows to reveal both 

microscopic and macroscopic flow quantities.  
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1.2. Objective of Thesis 

 

The objective of this study is to investigate flow of a viscoelastic fluid, a linear PTT 

fluid, and Oldroyd-B around a confined square obstacle computationally. Finite 

volume method is employed to solve coupled equations of continuity, motion and 

constitutive model along with appropriate boundary conditions. At high elasticity of 

viscoelastic flow, expressed via Weissenberg numbers, We≥1, exhibits severe stress 

boundary layers on sharp vicinity of square obstacle. Their presence also creates 

convergence problems for numerical algorithm. So, the stress terms in the 

constitutive equations are approximated by a higher-order and bounded scheme of 

Convergent and Universally Bounded Interpolation Scheme for the Treatment of 

Advection (CUBISTA) to get accurate numerical solutions.   

 

Effects of inertia in terms of Re, elasticity in terms of Weissenberg number, We, and 

constitutive equation parameters on the recirculation length, drag coefficients, Cd 

and on the flow field in terms of stress and velocity fields are examined and 

presented in detail. 

 

Another outcome of this study is related to the application of MRI rheometry on the 

measurement of complex fluid such as CMC (Carboxylmethyl cellulose), and 

Carbopol solutions flow. Online and offline rheological measurements on solutions is 

presented in detail. Magnetic Resonance Imaging (MRI) is used for online 

measurements. 
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1.3. Outline of Thesis 

 

The study is divided into self-contained chapters, as follows. 

 

Chapter 2 provides general background on numerical methodology and governing 

equations and constitutive equations of the system used in this work. 

 

Chapter 3 reports investigation of Newtonian flow around the square cylinder with 

the effect of inertia on the developed finite volume code. This study prepares the 

ground for viscoelastic flow around the square cylinder. Experimental visualizations 

done by PIV also are presented in this section. 

 

In Chapter 4 the effects of inertia and elasticity on viscoelastic flow (PTT and 

Oldroyd-B) around the square cylinder are investigated numerically. Stress fields and 

drag coefficients are presented and compared for both model in detail.  

 

In Chapter 5, application of MRI rheometry on the measurement of complex fluid. 

This chapter is studies on rheological behaviour of non-Newtonian fluids. The fluids 

used are Power law and Herschel-Bulkley type. 

 

Chapter 6 includes the main conclusions of this study and some recommendations for 

further work.  
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CHAPTER 2 

 

 

GOVERNING EQUATIONS AND NUMERICAL METHODOLOGY 

 

 

 

In this section numerical method used in the viscoelastic flow simulations are 

explained in detail. Flow geometry and boundary conditions and governing equations 

are also presented. Finite Volume (FV) method is used the integral form of the 

conservation equations, which are discretized over the control volumes. The stress 

terms in the constitutive equations are approximated by a higher-order and bounded 

scheme of Convergent and Universally Bounded Interpolation Scheme for the 

Treatment of Advection (CUBISTA). 

 

2.1. Flow Geometry 

 

In this study isothermal flow of a viscoelastic fluid over a 2D confined square 

cylinder is considered. The flow system is schematically depicted in Figure 2.1. The 

ratio between heights of the square and the channel, referred to as the blockage ratio, 

is 1/4 (b/H=1/4). In the computations the upstream region length is set as 1/6 of the 

total channel length, L to ensure fully developed flow region. The ratio between 

channel length and height was set as L/H=30. 

 

Figure 2.1 Schematic of 2D flow around a square cylinder 
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The formulation of the flow begins by considering basic equations of fluid flow, i.e. 

continuity and momentum equations given below. 

 

        (2.1) 

 

       (2.2) 

where u is the velocity, p is the pressure, η0 is the total viscosity and τ represents the 

polymer or non-Newtonian contribution to the deviatoric stress tensor. The constant 

β is the ratio between the solvent viscosity and the total viscosity (β=ηs/η0). A 

viscoelastic constitutive model provides the additional relation needed to solve the 

conservation equations.  

 

In this study, Oldroyd-B model (constant viscosity with elasticity) and the PTT 

model (shear thinning with elasticity) are used to capture viscoelasticity. Linear PTT 

model [21] and Oldroyd-B model [20, 22], given by Equations 2.3-5 are employed. 

Linear PTT model captures both shear thinning and normal stress effects in the flow. 

The PTT fluid model generally refers to a nonlinear viscoelastic equation derived by 

Phan-Thien and Tanner [23] using the network theory. Unlike other non-Newtonian 

fluids, a distinctive advantage of PTT model is the inclusion of an extensional 

parameter, (ε). In this study, the extensional parameter is considered ε ≥ 0, as a 

constant. The extensional parameter imposes an upper bound on the extensional 

viscosity which is inversely proportional to ε [24, 25]. It is worth mentioning that 

ε=0.25 in the PTT model correspond to the flow behavior of extremities for 

concentrated polymer melts polymer solutions [25].  
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The linear PTT model: 

 
        (2.3) 

 
        (2.4) 

  

The Oldroyd-B model: 

 

                                                                                                               (2.5) 

 

 

where ƞp  is the zero shear rate viscosity for  viscoelastic flow contribution and τ  is 

the extra stress tensor,λ  is the relaxation time of flow. Total viscosity, ƞ, p sη η η= +  

is the sum of the viscoelastic flow contribution viscosity and solvent or Newtonian 

flow contribution viscosity parts.  

 

2.2. Dimensionless Form of Governing Equations 

 

 The set of equations which are derived above are converted into their dimensionless 

form by using the following dimensionless variables.  

 

U
H

U
pHp

U
uu

H
yy

H
xx

η
ττ

η
===== *****  , , , ,  

 

where H and U are the characteristic length and velocity in the flow, respectively. In 

the subsequent sections of the text, quantities without asterisk will be used to express 

dimensionless quantities for the sake of simplicity. For a two dimensional system of 

rectangular coordinates (x,y), the dimensionless steady state problem can be written 

as: 

 

 

)..()()(. ττλητττλ TT
p uuuuTrfu

t
u

∇+∇+∇+∇=+



 ∇+
∂
∂

( )( ) ( )τ
η
ελτ trtrf
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+= 1

. ( ) ( . . )T T
p

u u u u u u
t

λ τ τ η λ τ τ∂ +∇ + = ∇ +∇ + ∇ +∇ ∂ 
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Continuity 

0=
∂
∂

+
∂
∂

y
v

x
u       (2.6) 

x–momentum 

( ) ( )Re 1 Re 1  + xyxx
r r

u u puu w vu w
x x y y x x y

ττ ∂  ∂∂ ∂ ∂ ∂ ∂ − − + − − = − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   (2.7)                          

y-momentum 

( ) ( )Re 1 Re 1 yy xy
r r

v v puv w vv w
x x y y y y x

τ τ∂ ∂ ∂ ∂ ∂ ∂ ∂ − − + − − = − + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   (2.8)                                                    

Dimensionless form of the stress components xxτ , yyτ  and xyτ  are given through 

Equations 2.9-14.  

 

Phan-Thien-Tanner (PTT) constitutive equation: 

 

Stress components of xxτ  
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Stress components of yyτ  
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Stress components of xyτ  
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Oldroyd-B constitutive equation: 

 

Stress components of xxτ  
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Stress components of yyτ  
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Stress components of xyτ  
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     (2.14) 

    

Where the Reynolds number and the Weissenberg number which is defined as the 

ratio of characteristic fluid relaxation time to characteristic time scale in the flow are 

given by 

η
ρUH

=Re         (2.15) 

UWe
H
λ

=         (2.16) 

In this study, the material parameters β, extensibility parameter ε and polymer 

contribution viscosity ratio wr are set as 0.2, 0.25 and 0.8, respectively. Extensibility 

parameter ε is zero for Oldroyd-B model.  

 

12 

 

 



   2.3. Boundary conditions for flow domain      

  Use of appropriate boundary conditions is crucial to capture the physics of the flow.    

Due to the two-dimensional nature of flow, there is no flow in the z-direction and no 

flow variables depending upon the z-direction. The following inlet conditions are 

imposed for x and y-components of the velocity being u and v, respectively. 

  The imposed boundary conditions are: 

 

( )21 1 0.5

0
0 4

u y

v
y

= − −

=
≤ ≤

(2.17)

  No slip boundary condition at the channel and obstacle walls is imposed through: 

0, 0, 0, 0, , 0yy xyxxu v P
x x x x x x

τ ττ ∂ ∂∂∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂ ∂
           (2.18)

Outlet and inlet boundary stresses conditions :  (2.19)      

( )
2

2 1xx
uWe
y

τ β
 ∂

= −  ∂ 
         

0=yyτ

( )1xy
u
y

τ β ∂
= −

∂
 

At the channel wall stresses conditions:    (2.20) 

1 ( ) / ,xx yy ra Weε τ τ ω= + +  

 ( )1 /xy
u a
y

τ β ∂
= −

∂
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( )
2

2 1 /xx
uWe a
y

τ β
 ∂

= −  ∂ 
 

0=yyτ  

When “a” goes to 1, we get boundary conditions for Oldroyd-B model fluid, since 

the extensibility parameter ε is zero for Oldroyd-B model.  

2.4. Finite Volume Method 

In Finite Volume (FV) method the integral form of the conservation equations, which 

are discretized over the control volume, are used. The discretization of the governing 

set of PDEs given above is performed using Finite Volume method. Finite volume 

approximation of fluid flow systems is advantageous in terms of computer space and 

time requirements as well as in terms of numerical stability compared to the finite 

element method [26, 47]. 

Continuity, momentum and constitutive equations can be written in the general form 

as follows: 

φ
φφφφ S
y

u
yx

u
x

=







∂
∂

Γ−Λ
∂
∂

+







∂
∂

Γ−Λ
∂
∂

  (2.21) 

 Convective flux term       Diffusive flux term    

where Λ  is either density ρ or relaxation time λ, depending on the conservation or 

constitutive equation; φ  is one of the dependent variables; Γ  is the diffusion 

coefficient and φS is the source term. Corresponding dimensionless quantities of 

these variables are listed in Table 2.1. 

Integrating Equation (2.21) over a control volume shown in Figure 2.2, the following 

equation can be obtained 
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Using the divergence theorem 

∫∫∫ =
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where A is the surface enclosing volume V, and 
−
n  is the unit vector normal to the 

surface. Integration of equation (2.23) gives 
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 (2.24)      

where each quantity in the brackets is calculated on the corresponding face of the 

control volume. 

Figure 2.2 Schematic diagram of a control volume 

15 



Table 2.1 Finite volume method constants and functions for governing equations 

Equation Λ  Γ Sϕ 

Continuity 1 0 0 
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2.5. Discretization of Governing Equations 

There are two kinds of grid arrangements used in being staggered grids and 

nonstaggered or collocated grids to supply discretization of equations [27]. In 

staggered grid arrangements stress components τxx and τyy are located at the center of 

the control volume depicted in Figure 2.3, while generally τxy is located at the corners 

and velocities are placed on the faces of the control volume. Whereas in collocated 

grids, all flow variables are located at the center of the control volumes. The 

coefficients in the discretization equations are identical for all velocities for 

collocated grids, pressure derivatives show zig-zag pressure distribution. It causes 

divergence of numerical solution and decreases numerical stability.  

Staggered grid was used to discretize the governing the set of governing equations as 

shown in Figure 2.4. In staggered grid arrangement, the velocity components of u, v 

(ui,vi) are distributed around the pressure points, p. This layout has the advantage 

that, when multiplied by the cell face area, the velocity components give the exact 

volume fluxes and this leads to a simplified mass balance computation and results in 

fully-coupled velocity and pressure fields. To avoid checkerboard or zig-zag pressure 

distribution, staggered grid arrangements are also preferred in study. 
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Figure 2.3 Flow variables on staggered grid arrangements 

(a) (b) 

 Figure 2.4 (a) u-momentum control volume cell (b) v-momentum control volume 

cell on staggered grid arrangement 
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2.5.1. Second Order Central Difference Scheme 

Central difference scheme is used for the approximation of the gradients in Equation 

2.24 which is associated with the diffusion term. Then the equation can be expressed 

as follows: 

        East Face : 

               West Face:     
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 (2.26)          
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 (2.28)               

A new symbol, F, for the convective terms in equation is inserted into Equation 2.24 

for the sake of convenience as follows:  

eee AuF Re= www AuF Re=    (2.29)   

nnn AuF Re= sss AuF Re=   (2.30) 
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n s

e e E P e E P
e E P

y y
A D

x x x
φ φ φ φ φ

−∂   Γ = − = −   ∂ −   
(2.25) 
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“F” can be considered as a coefficient of the cell face convective fluxes. Equations 

2.25 to 2.30 are inserted in to the Equation 2.24 to yield the following the 

convection-diffusion equations: 

[ ] ( ) ( )[ ]{ }
[ ] ( ) ( )[ ]{ } VSDDFF

DDFF

SPsPNnssnn

WPwPEewwee

∆=−−−−−+
−−−−−

φφφφφφφ
φφφφφφ

 (2.31) 

The next step is to solve the set of algebraic equations which are non-linear due to 

the source term in the constitutive equations. To make the equations linear, first, 

source term Sφ  is assumed to be a linear function of variable φ  such that,

C P PS S Sφ φ= +
 (2.32) 

where SC is constant part of the Sφ  that is independent of φ  while PS  is the 

coefficient of Pφ  which is set as negative to enhance the numerical stability [24]. 

2.5.2. Convergent and Universally Bounded Interpolation (CUBISTA) Scheme 

Convective terms in the constitutive equations are approximated by at least second-

order accurate, bounded and non-uniform version of CUBISTA scheme using 

dimensionless form of given in Equation 2.34. This scheme is preferred due to its 

documented advantages on the higher order schemes when viscoelastic fluids are 

considered [29,33]. Mathematical expression of CUBISTA scheme proposed by 

Alves et al. [28] is given in Equation 2.35 for a nonuniform mesh structure. The 

implementation of the CUBISTA scheme is carried out via deferred correction 

method that was proposed by Khosla and Rubin [30]. To ensure stability of the 

higher-order schemes, a well known and widely used technique, the “deferred 

correction,” [25] is used for the evaluation of the variables at the faces of the control 

volumes. Mathematically this technique may be stated as; 
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( )0
LOHOLOf += φφφφ −             (2.33)    

The first term in Equation 2.33 is the result from the low order (LO) scheme, and is 

used to evaluate the coefficient of the discretized equation. The other term is 

obtained at the previous iteration, and is used in the source term. Upwind 

Differencing Scheme (UDS) [31] is used to handle the first term in Equation 2.33. 

High order (HO) results are also obtained using Equation 2.34. The corresponding 

matrix coefficients are therefore always diagonally dominant. The purpose of the 

convection scheme use is then to specify the values of ϕf  (ϕw, ϕe) at the face, based on 

existing values at the neighbouring cell centres, ϕc (ϕP) as in Figure 2.5. 

Figure 2.5 General representation for grid points in the x direction one dimensional 

Cubista  

         (2.34) 
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The simplest scheme satisfying the transportive property is upwind, whereby ϕf = ϕP 

where P is the cell centre situated on the upwind side in relation to face f (measured 

by Ff > 0). Upwind differencing is a first-order scheme. The UDS [31] is 

unconditionally bounded and highly stable. But it may produce severe numerical 

diffusion due to its first order accuracy. Besides, for the differential constitutive 

equations found in viscoelastic flows, which do not have a diffusion-like term, 

upwind scheme is too inaccurate because it introduces excessive numerical diffusion 

errors in the solution. So, we need higher order and stable scheme to discretize 

convection terms in the governing equations. Equation 2.35 is more generalized form 

of CUBISTA in the normalized coordinates to handle the non-uniform meshes.  

( )
( )
( )

( )
( )

( )

( )
( )( ) ( )



















<
−

−+
−

−

−
−

−

−+
≤≤

−

−
+

−

−

<<














−

−
+

=

elsewhere          ˆ

ˆˆ
ˆˆ2

ˆˆ21
 ˆ1ˆ12

ˆ1
1

ˆ
ˆˆ2

ˆˆ21ˆˆ
4
3 ˆ1

ˆˆˆ
ˆ

ˆ1ˆ

ˆ1ˆ

ˆ
4
3ˆ0 ˆ

ˆ

ˆ

ˆ13

ˆˆ
1

ˆ

P

PP
Pf

Pf
P

P

f

P
Pf

Pf
PP

P

Pff
P

PP

ff

PPP
P

f

P

Pf

f

φ

φξ
ξξ

ξξ
φ

ξ

ξ

ξ
ξξ

ξξ
φξ

ξ

ξξξ
φ

ξξ

ξξ

ξφφ
ξ

ξ

ξ

ξξ

φ   (2.35)       

In this formulation the advacted variable φ̂  is normalized as; 
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Use of these in the Cubista equation yields the following expression for τxx where 

τxxeP  is the face value of control cell as depicted in Figure 2.6. 
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Where; 

ˆ xxP xxW
xxP

xxE xxW

τ ττ
τ τ

−
=

−

It should be noted that, details of the discretisation of τxx  are provided. For the other 

components of the stress, the same methodology is employed. Definition of 

normalized coordinates in Cubista functions, when ζ goes to x according to our 

nomenclature in Equation 2.38 as follows: 
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Figure 2.6 General representation for grid points in the x direction as one 

dimensional Cubista. Dashed lines represent face values of the control volume cells.           

           

 

After getting τxx components in all faces (τxxe, τxxw , τxxn,   τxxs)  using  the bounded 

CUBISTA scheme, they are expressed in their matrix form as in Equation 2.42. 

Discretization of the PTT constitutive equation by using CUBISTA scheme is given 

through Equations 2.39-45. Two dimensional discretised model equations over the 

control volume can be expressed symbolically as follows for τxx : 

 

[ ]{ } [ ]{ }e xxe w xxw n xxn s xxsF F F F S Vφτ τ τ τ− + − = ∆                                                     (2.39)                                                     

 

 

where ,  ,   and e w n sF F F F ,  are convective terms that are defined as in Equation 2.40.  
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                                         (2.40)                            

 

 Discretized form of the  Equation 2.39 is  expressed as, 

          

          , 1, 1, , 1 , 1 ,P xxi j E xxi j W xxi j N xxi j S xxi j xxi jA A A A A bτ τ τ τ τ τ+ − + −= + + + +                       (2.41)                                
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where the coefficients are given by the through following relations for the case of  

CUBISTA scheme. 
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Source terms in Equation 2.42 are given as follows in Equation 2.43-45.  

 

Source term of  xxτ  equations: 
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Source term of  yyτ  equations: 
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Source term of  xyτ  equations: 
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where superscript 0 denotes the values obtained at previous iteration. Gradients of 

velocities are computed by central differences [26] and also they are solved using 

CUBISTA scheme at the related interior domain. 

 

The SIMPLE [32] method is employed to solve the coupled system of the continuity, 

momentum and constitutive equations. The set of linearized algebraic equations are 

solved by using the Thomas algorithm or the tridiagonal matrix algorithm (TDMA).                                                               

The solution process is reiterated until the maximum relative change of flow 

variables (u, v, p, xxτ , yyτ , xyτ ) are less then a prescribed tolerance or residual as: 
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CHAPTER 3 

 

 

STEADY NEWTONIAN FLOW AROUND SQUARE OBSTACLE 

 

 

 

The confined flow of a Newtonian fluid around a square cylinder mounted in a 

rectangular channel (blockage ratio B=1/4) was investigated both numerically and 

experimentally. The flow variables including streamlines, vorticity and drag 

coefficients were calculated at 0≤Re≤50 using finite volume method. Particle image 

velocimetry (PIV) was also used to obtain the two-dimensional velocity field. The 

flow measurements were conducted for 1≤Re≤100.  Streamline and vorticity results 

obtained by PIV are compared with those of the numerical simulations.  

 

3.1. Introduction 

 

The flow past bluff bodies have been an attraction in all kinds of fluid mechanical 

investigations for a long time. The analysis of external flow past a square cylinder is 

a key to various engineering applications such as shell and tube heat exchangers, 

coating processes, cooling towers, extruders and membrane processes [28]. It 

involves complex phenomena like flow separation and reattachment, drag formation. 

Most experimental [29] and numerical studies concerning the external flow past a 

stationary square cylinder have been carried out at moderate to high Reynolds 

numbers. In this regime, the flow is unsteady. There are also many steady flow 

studies on square cylinders. 

 

Characteristics of the steady confined flow past a square cylinder have been reported 

by Breuer et al. [7]. They presented results for Re=0.5–300 in two-dimensions. The 

results were computed via finite-volume and lattice-Boltzmann simulations. A 

blockage of 1/8 was used. Separation was not observed for Re<1. Gupta et al. [34] 
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employed the finite difference method and studied the steady flow and heat transfer 

characteristics in conjunction with the power-law fluids for Re=5–40 and B=1/8. 

Sharma and Eswaran [35] presented results for B=1/20 and Re=1−160 by using a 

finite-volume formulation. These studies are related to the physics of the Newtonian 

flow past a square cylinder and the accuracy of numerical predictions of simulations.  

The results of the theoretical studies (especially numerical simulations) on fluid flow 

mechanics should be evaluated with respect to the experimental studies performed at 

similar conditions. In this study, Particle Image Velocimetry (PIV) is used to carry 

out flow field measurements experimentally. PIV has been used for both Newtonian 

and non-Newtonian fluid flow measurements [36]. This technique enables the 

qualitative and quantative flow visualization by means of accurate measurement at 

multiple points over the entire flow. 

In this study, Newtonian flow around square cylinder with B=1/4 analyzed by 

developing non-uniform staggered 372x162 grids on finite volume code as in Figure 

3.1. Objective of this chapter is twofold. One is to obtain accurate numerical 

solutions of the system providing a background for complex flow simulations. The 

other one is to compare and verify to the corresponding results in literature. 

Figure 3.1 Non-uniform mesh around the obstacle with minimum cell size of 

Δx= 0.02 and Δy= 0.01 for B=1/4. 

28 



 

 

3.2. Numerical Results and Discussion 

 

Streamline profiles calculated in around the cylinder are shown in Figures 3.2a-d. 

The series of profiles illustrates how the wake gradually decreases in intensity and 

spreads laterally with increasing distance from the cylinder. Near the cylinder the 

profiles are quite similar but there are growing differences further downstream, 

indicating the greater development of the wake as the Reynolds number increases 

from 0 to 50. The length of the vortex pair obtained also increased with growing 

wake region as in Figures 3.2c-d. 
 

 

 

 

 

 

Figure 3.2 Streamlines around the square cylinder for different Reynolds numbers 

(a)Re=0 (b)Re=10 (c)Re=30 (d)Re=50. 
 

 

 

  (a) 

 

 (b) 
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Figure 3.2 Streamlines around the square cylinder for different Reynolds numbers 

(a)Re=0 (b)Re=10 (c)Re=30 (d)Re=50 (continued). 

 

Figures 3.3-5 show velocity profiles of streamwise or x-component velocity (u) and 

vertical velocity (v) along the centerline of the channel (y=2) at Re=0, 10, 30, 50. 

After x=21 position, wake region, asymmetric velocity distribution is obtained with 

increased Re numbers in Figure 3.3 due to dominancy of inertial effects. Vertical 

velocity (y-component velocity) has sharp profile due to suddenly changed boundary 

conditions at the vicinity of obstacle (at singularity points). Figure 3.5 illustrates 

distribution of the velocity component, u at several positions of the flow field for Re 

numbers along the center line. 

 

 

 

 (d) 
 

   (c) 

30 

 

 



 

 

At x=19 that is the position of near cylinder region, the velocity profiles differs from 

Poiseuille flow. In the wake region, at x=22, maximum velocity point shifts with 

respect to increasing Re. This behavior can be attributed to the vortex formation 

behind of obstacle. 

 

 

 

 
      Figure 3.3 Streamwise (u) velocity along the centerline y=2 at Re=0, 10, 30, 50. 

 

 

Figure 3.4 Vertical velocity (v) along the centerline y=2 at Re=0, 10, 30, 50. 
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Figure 3.5 Velocity component, u, profiles for different positions at x=19 (near 

cylinder), x=22 (wake region) for Re=0, 10, 30, 50 along the centerline (y=2). 
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Figure 3.6 shows the effect of Re number on the confined flow patterns around the 

square obstacle in terms of streamline and vorticity profiles for Re=0, 10, 20, 30, 50.  

The streamline profiles are shown in the upper half of figures, while the vorticity 

contours are shown in the lower half. No separation occurs from the surface of the 

cylinder for Re=0 due to creeping nature of the flow. However, flow separation was 

observed at higher Re numbers. As Re number increases from Re=10 to 50, the flow 

separation gets more pronounced at the vicinity of the obstacle edges. A closed 

recirculation region consisting of two symmetric vortices develop in the wake region 

as shown in Figures 3.6c-e.  

 

Dimensionless recirculation length that is also known as the wake region is defined 

by Breuer et al. [7] as the distance between the obstacle surface and reattachment 

point of streamlines (i.e., ψ=0 on the axis of symmetry at y=2) to form the 

encapsulated region behind the obstacle. As Reynolds increased, this length gets 

larger.  

 

Vorticity profiles can also be used to investigate the behavior of the fluid flow 

around the obstacle. Stream function, ψ, and vorticity,ω , are obtained through the 

solution of the following Equations 3.1 and 3.2. 

    2ψ ω∇ = −                                                                                                    (3.1)                         

u v
y x

ω ∂ ∂
= − +

∂ ∂
                                                                                                     (3.2)                                                                           

 

Vorticity are also helpful in locating separation points. These contours seem to transit 

from being symmetrical at Re=0 to being asymmetrical at higher Re numbers as in 

Figures 3.6. The vorticity also is seen to persist for a very long way downstream of 

tile cylinder at higher Re numbers. The magnitude of the corner vorticity increases 

with Re number at the upstream of the flow for Re=20, 30, 50.  
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Values of the stream function and vorticity and their primary axial wake locations at 

x=22, 23, 24 and vertical locations at y=2.5, 3 are tabulated in Table 3.1. These 

points are also considered as near wake (x=22, y=2.5) and far wake region (x=24, 

y=3) of the obstacle. In the near wake region, vorticity values are larger compared to 

far wake region due to highly intense velocity gradients in that region. Gupta et al. 

[34] and Dhiman et al. [11] have also reported similar vorticity distribution for 

Newtonian flow around the square cylinder in the range conditions 1≤Re≤45. For 

small Re flows, vicinitiy vorticities get higher, since v-velocity component gradient 

is also higher at small Re (see Figure 3.4). 

(a) 

Figure 3.6 Streamline and vorticity profiles (upper and lower parts gives the results 

for streamline and vorticity, respectively) for a for different Reynolds numbers 

(a) Re=0 (b) Re=10 (c) Re=20 (d) Re=30 (e) Re=50. 
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(b) 

(c) 

Figure 3.6 Streamline and vorticity profiles (upper and lower parts gives the results 

for streamline and vorticity, respectively) for a for different Reynolds numbers 

(a) Re=0 (b) Re=10 (c) Re=20 (d) Re=30 (e) Re=50 (continued). 
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(d)  

 

(e)  

Figure 3.6 Streamline and vorticity profiles (upper and lower parts gives the results 

for streamline and vorticity, respectively) for a for different Reynolds numbers  

(a) Re=0 (b) Re=10 (c) Re=20 (d) Re=30 (e) Re=50 (continued). 
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Table 3.1 Intensities of the primary eddies and vorticity and their locations in the 

wake region 

Re ω ψ x y 
0 -1.8930 1.6636 22 3 
0 -1.7269 1.6874 23 3 
0 -1.4988 1.7168 24 3 
0 -4.3842 1.3526 22 2.5 
0 -3.0359 1.3762 23 2.5 
0 -2.2318 1.4061 24 2.5 
10 -1.9136 1.6246 22 3 
10 -1.8391 1.6379 23 3 
10 -1.7330 1.6548 24 3 
10 -2.9159 1.3424 22 2.5 
10 -2.3837 1.3531 23 2.5 
10 -2.0887 1.3668 24 2.5 
20 -1.9703 1.6089 22 3 
20 -1.9091 1.6177 23 3 
20 -1.8289 1.6291 24 3 
20 -2.6605 1.3589 22 2.5 
20 -2.2703 1.3442 23 2.5 
20 -2.0476 1.3316 24 2.5 
30 -2.0254 1.6021 22 3 
30 -1.9662 1.6084 23 3 
30 -1.8932 1.6167 24 3 
30 -2.3695 1.3365 22 2.5 
30 -2.1791 1.3397 23 2.5 
30 -2.0538 1.3438 24 2.5 
50 -2.0765 1.5949 22 3 
50 -1.9779 1.5985 23 3 
50 -1.9034 1.6035 24 3 
50 -2.1139 1.3343 22 2.5 
50 -2.0603 1.3351 23 2.5 
50 -1.9946 1.3359 24 2.5 
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For the same region, say x=22 and y=2.5, streamline magnitudes are similar for 

different Re number. However, vorticity intensity shows a decreasing trend as 

compared to upstream locations. It can be resulted from that v velocity component 

changing with respect to x creates smaller gradients in the wake region for high Re 

numbers as shown in Figure 3.4. On the other hand, u-velocity component changing 

with y axis has more symmetrical distribution due to the imposed parabolic velocity 

profile at the inlet of the channel. It is also nearly independent of Re numbers (see 

Figure 3.5). 

3.3. Drag coefficient around the obstacle 

One of the most important characteristic quantities of the flow around a cylinder is 

the drag coefficient Cd. In the region of small Reynolds numbers the drag coefficient 

varies strongly with Re. The contributions of the viscous and pressure forces to the 

total drag are of the same order of magnitude as in Table 3.2. A comparison of the 

computed results of different studies is shown in Table 3.3 at 0≤Re≤50. A Cartesian 

non-uniformly structured mesh with 372x162 grid system is used to represent the 

flow system having a blockage ratio of B=1/8 and B=1/4. 

Drag coefficient is obtained by integrating the shear stress (viscous) and pressure 

contributions over the square cylinder surfaces denoted as f front, r rear, t top, and b 

bottom similar to the methodology reported by Dhiman et al. [11]. The relation for 

Cd can be written as:  

1 1

, ,
0 0

2 [(( ( ) ( )) ] 2 [( ( ) ( )) ]
Re xy t xy b r fCd x x dx P y P y dyτ τ= + + −∫ ∫  (3.3) 
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   Table 3.2 Viscous and pressure effects of Cd in steady flow regime for various 

Re numbers 

Re 

Viscous Effect 

Contribution to Cd 

Pressure Effect 

Contribution to Cd Cd 

1 17.711 18.567 72.557 

5 5.531 6.535 15.282 

10 3.263 3.737 8.127 

20 1.821 2.261 4.702 

30 1.234 1.736 3.555 

50 0.791 1.288 2.608 

 

 

Viscous and pressure contributions of the total drag are listed in Table 3.2. The 

decreasing trend of Cd with increasing Re is captured. The impact of Re on Cd 

becomes more pronounced at low Re region. At very low Re region (Re<1) that strong 

impact can be deduced through the Stokes drag coefficient as Cd=24/Re. The drag 

results are also listed in Table 3.3 along with the available values in literature. No data 

is found in the literature for B=1/4 for the Newtonian case. Therefore, comparison was 

only done for B=1/8. When B=1/8, the results of this study and those earlier studies 

compare well with each other. Therefore the methodology followed in this study 

seems to be accurate to simulate the flow for the Newtonian case.  

 

Another interesting result is associated with the effect of the blockage ratio on the Cd. 

Due to the Newtonian nature of the flow, the drag originates from the form drag 

acting on the front and rear surfaces and shear drag on the top and bottom surfaces. 

When flow gets more restricted due to presence of a larger obstacle, i.e. larger B, 

higher velocities between the channel and the obstacle give rise to higher shear stress 

and form drag effects, i.e. larger Cd values as shown in Table 3.3.   
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Table 3.3 Comparison of Cd in steady flow regime with literature for various Re 

numbers 

Re 

B=1/4 

(present) 

B=1/8 

(present) B=1/8 [11] B=1/8 [34] B=1/8 [7] 

0 7.114x105 3.115x105 - - - 

1 72.557 23.687 - - 24.612 

5 15.282 5.761 5.849 5.549 5.814 

10 8.127 3.699 3.663 3.511 3.872 

20 4.702 2.462 2.442 2.448 2.578 

30 3.556 2.214 - - 2.278 

40 3.236 1.826 1.852 1.864 1.925 

50 2.608 1.793 1.751 1.762 1.854 

3.4. Visualization of Flow Field 

PIV is a non-intrusive laser optical measurement technique for analyzing laminar and 

turbulence flow, microfluidic flow processes. Standard PIV measures two velocity 

components in a plane using a single camera. The principle behind PIV is to derive 

velocity vectors from sub-sections of the target area of the particle-seeded flow by 

measuring the movements of particles between two light pulses: 

xv
t

∆
=
∆

 

In a standard, two-dimensional system, illumination of the flow field is provided by a 

narrow sheet of light. The flow is seeded particles, and the images of these particles 

are recorded by a camera placed at 900 to the light sheet as in Figure 3.7.  
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Figure 3.7 Schematic set-up of particle image velocimetry [36] 

Low Reynolds number PIV studies in the literatüre are scarce due to difficulties 

encountered to obtain a high quality velocity measurements. On the contrary, reports 

on numerical investigation at low Reynolds number flows are more readily available 

as mentioned in section 3.1. 

In this section, we qualitatively describe the sequence of changes that occurs to the 

flow pattern around a cylinder with blockage ratio of 1/4 with Reynolds number 

within the range of 1 and 100 using PIV.  

A large number of studies have been performed to investigate the Newtonian flow 

over single square cylinder to analyze turbulence flow characteristics. Okajima [37] 

carried out an experimental study of flow past a square cylinder as well as 

rectangular cylinder for 70<Re<20,000 to determine the vortex shedding frequencies 

for unsteady flow. Okajima found that the highest Strouhal number (St) was observed 

when 104<Re<2x104. Oudheusden et al. [38] studied the vortex shedding  and drag 

force characteristics in the near wake of a square cylinder placed  at various angles 

(Ɵ) to the mean flow for Reynolds numbers of 4,000, 10,000, and 20,000 using PIV. 

They found that the flow separation occurred at both front corners and the shallow 

recirculation regions were observed above and below the obstacle while the angle is 

0. The separation points move downstream while Ɵ>0.  Furthermore, two other large
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recirculation regions appeared in the wake behind the body in a similar fashion as 

that for the circular cylinder. According to Berrone et al [39] as Re is increased, the 

upstream–downstream symmetry of the streamlines disappeared and two eddies 

appeared behind the cylinder. These eddies get bigger with increasing Re, but do not 

move off downstream: the flow in the wake is still steady. At high Re, the flow 

becomes unsteady due to wake instability mechanisms and the phenomenon of 

vortex shedding, known also as von Kármán Street [40]. 

The literature review indicates the importance of turbulence characteristics for bluff 

bodies at high Reynolds numbers. These are mainly related to the unsteady flow 

around the obstacle. Current PIV measurements were conducted to investigate the 

impact of square obstacle inside a channel. Particle image velocimetry (PIV) was 

used to measure the two-dimensional velocity field to reveal streamlines and 

vorticity patterns in a qualitatively manner. The changes of flow structure of the 

system due to effect of Re number were compared with computational results 

obtained at similar conditions. 

PIV visualizations were performed at Nanotechnology Engineering Department at 

Cumhuriyet University, Sivas. The experiments were carried out in a 300 cm long 

channel plexiglas of ½ in with the inner cross-section of 12x12 cm. The channel and 

the closed flow loop to circulate clean tap water via a magnetic pump are depicted in 

Figure 3.8. Square obstacle made of plexiglas was installed in the test section as 

shown in Figure 3.9. The dimensions of obstacle were 3 cm height, 0.5 cm in 

thickness, and 12 cm in width to provide a blockage ratio of 1/4. B is the ratio of 

obstacle diameter over channel diameter. 

Experiments were done at the Reynolds numbers of  1, 20, 30, 40, 50, 100 where the 

Reynolds number was defined based on the diameter of the channel and the mean 

water velocity. To observe two-dimensional flow field of the system, illumination of 

the flow field was provided by a narrow sheet of light. The flow was seeded by 

Polyamide particles of size 50 μm and the images of these particles were recorded by 

a camera placed at 900 to the light sheet depicted in Figure 3.10.  
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Figure 3.8 Experimental flow loop set-up 

Figure 3.9 Illustration of square obstacle inside experimental set-up 
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Figure 3.10 Schematic of test section 

Solid state Nd: YAG lasers using frequency-doubling crystals to produce light at 532 

nm was used as the light source. 256 pair of images were taken by PIV camera as 

seen in Figure 3.10 and these images yields velocity vectors by cross-correlating the 

interrogation region in the first 5 image with the corresponding search region in the 

second image pair [36]. Averages of these images were taken by PIV processor to get 

flow field. 

Figure 3.11 Experimental velocity vector field at Re=30 
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Two dimensional mean velocity vector fields at Re=30 is presented in Figure 3.11. 

The plot represents the typical behavior flow past over an obstacle. The flow shows 

that the flow is affected by the obstacle mainly in the surrounding region with the 

flow separation off the top and bottom edges of the obstacle. Figure 3.11 also 

exhibits strong recirculation region at downstream of the obstacle. Stagnation areas 

are observed near the obstacle wall. 

 

Vortices induced by the obstacle enhance mixing in the recirculation zone. 

Subsequent plots in Figures 3.12b and 3.12f give the vortex patterns. These locations 

cover the spatial extent of the flow within the given field of view from the region 

immediately downstream of the obstacle including the recirculation zone up to the 

region where the flow reattaches itself. Comparing the flow patterns for both results, 

symmetrical vortex region can be identified similar to the numerical results in Figure 

3.2. At Re=20, small vortexes start to occur near attachment of the wake region as 

shown in Figure 3.12b. The wake area or recirculation region also increases as the 

effect of inertial forces increases when Re is increased from Re=30 to Re=100. With 

an increase in Re number, symmetrical vortexes become more dissernable due to the 

increased accuracy of PIV at higher velocities. 

 

Large part of the flow domain is affected by the obstacle and larger vortex appeared 

behind the obstacle as shown in Figure 3.12e-f compared to Figure 3.12c-d when the 

Reynolds number increased. 
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Figure 3.12 Experimental streamline profiles around the square cylinder for different 

Reynolds numbers by PIV (a) Re=1 (b) Re=20 (c) Re=30 (d) Re=40 (e) Re=50 (f) 

Re=100. 

 

 

          (a) 

(b) 
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                                                            (d) 

 

                                                             (e) 

Figure 3.12 Experimental streamline profiles around the square cylinder for different 

Reynolds numbers by PIV (a) Re=1 (b) Re=20 (c) Re=30 (d) Re=40 (e) Re=50 (f) 

Re=100 (continued). 

(c) 
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(f) 

 

Figure 3.12 Experimental streamline profiles around the square cylinder for different 

Reynolds numbers by PIV (a) Re=1 (b) Re=20 (c) Re=30 (d) Re=40 (e) Re=50 (f) 

Re=100 (continued). Contour levels are shown from 0 to 2.5 with the increment of 

0.5. 

 

Vorticity field is calculated based on the velocity field shown in Figure 3.12. The 

mechanism of the vorticity production is dependent on the no-slip boundary 

condition at the obstacle surface and the surface curvature. Hence, at the edges of the 

obstacle where boundary conditions of the system changes suddenly, highest 

intensity of the vorticity is obtained in the normal direction to the flow. But in the 

region between obstacle and the channel wall there is high shearing of the fluid and 

the vorcitiy magnitude is lower in this region as shown in Figure 3.13. 

 

In order to study influence of Re on the vorticity dynamics of Newtonian flow 

around the obstacle, contour maps of the vorticity field of flow for different 

Reynolds numbers are presented in the following plots in Figures 3.13a-f. There are 

qualitative similarities between numerical and experimental results. For all Reynolds 

numbers, symmetrical vorticity distribution is attained in Figures 3.13a-d. Vorticity 

is almost uniform and its intensity remains the same at the corner of the obstacle 

depicted in Figure 3.13a and 13d. 
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Increase of flow inertia leads to increase in the intensity of the vorticity contours as 

shown in Figure 3.13c and 3.13d. Contour layers at the edges of the obstacle are 

more distinguishable, a behavior similar to the numerical predictions. As Reynolds 

number increases, vorticity pattern disperses symmetrically in the flow direction as 

shown in Figure 3.6. Vortex area is also found to be higher as Reynolds number gets 

larger.  

Figure 3.13 Experimental vorticity profiles around the square cylinder for different 

Reynolds numbers by PIV (a) Re=1 (b) Re=10 (c) Re=50 (d) Re=100. 

       (a) 

(b) 
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Figure 3.13 Experimental vorticity profiles around the square cylinder for different 

Reynolds numbers by PIV (a) Re=1 (b) Re=10 (c) Re=50 (d) Re=100 (continued). 

Contour levels are shown from -20 to 20 with increment of 5. 
 

 

 

 

                  (c) 

                 (d) 
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CHAPTER 4 

 

 

STEADY VISCOELASTIC FLOW AROUND SQUARE OBSTACLE 

 

 

This study focuses on the implementation of a structured non-uniform finite volume 

method for the 2-D laminar flow of viscoelastic fluid past a square section of 

cylinder in a confined channel with a blockage ratio 1/4 for Re=10-4, 5, 10 and 20. 

Oldroyd-B model (constant viscosity with elasticity) and the PTT model (shear-

thinning with elasticity) are the constitutive models considered. Finite volume 

method is used with the staggered grid arrangement. The stress terms in the 

constitutive equations are approximated by a higher-order and bounded scheme of 

Convergent and Universally Bounded Interpolation Scheme for the Treatment of 

Advection (CUBISTA). In this section, effects of the elasticity and inertia on the 

stress field around the square cylinder and drag coefficient are obtained and 

discussed in detail.  

 

4.1. Introduction 

 

In the case of non-Newtonian fluid flow around confined obstacles, the literature is 

dominated by the studies with generalized Newtonian model to capture shear 

thinning or thickening effects. On the other hand, investigating the effects of 

viscoelasticity on the hydrodynamics of the flow around the obstacles has potentially 

crucial implications on many industrial applications. Therefore it is important to 

study the hydrodynamics of such industrially important flows to reveal both 

microscopic and macroscopic flow quantities. Hence, the objective of this study is to 

investigate flow of a viscoelastic fluid, a linear PTT fluid and Oldroyd-B fluid, 

around a confined square obstacle computationally. Finite volume method is 

employed to solve coupled equations of continuity, motion and constitutive model 

along with appropriate boundary conditions. Effects of inertia in terms of Re, 
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elasticity in terms of Weissenberg number, We, and constitutive equation parameters 

on the recirculation length, drag and on the flow field in terms of stress and velocity 

fields are examined and presented in detail. 

 

4.2. Numerical Results and Discussion 

 
A Reynolds number range 10-4≤Re≤20  was investigated numerically, where Re is 

based on the cylinder diameter b and the maximum flow velocity umax of the 

parabolic inflow profile (see Figure 2.2) The following section starts with a 

description of the different  flow patterns observed with respect to Re and We . The 

subsequent sections present a detailed comparison of the computed results based on 

velocity, pressure and stress profiles at several positions in the flow field for both of 

the viscoelastic model. Furthermore, the computations are analyzed and compared in 

terms of drag coefficient. 

 

4.2.1. Streamlines around the obstacle 

 

We begin presenting the computational results of the flow system by the inertial and 

elasticity effects on the recirculation patterns behind the obstacle depicted in Figure 

4.1. The values of the constitutive model parameters used to obtain these results are 

ε=0.25 and β=0.2. Dimensionless recirculation length that is also known as the wake 

region is defined by Breuer et al. [7] as the distance between the obstacle surface and 

reattachment point of streamlines to form the encapsulated region behind the 

obstacle. It should be noted that at a given Re upper limit of We is determined by the 

stability of the computations. The higher the value of Re, the lower We that can be 

attained for stable computations. For example when Re is set as 20, the maximum 

value of the attainable We is 3 in this study. Figures 4.1 illustrate that increasing fluid 

elasticity or inertia leads to larger recirculation lengths and eventually formation of 

symmetric vortexes as depicted in Figure 4.1.c similar to the results reported by 

Breuer et.al. [7]. Larger recirculation lengths and observed vortexes can be attributed 

to Hoop stresses getting stronger at increased fluid inertia and elasticity. Hu and 

Joseph [41] used UCM model, which has the same behavior as Oldroyd-B, and 
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reported similar trend in the flow around circular cylinder. They also observed larger 

vortices with increasing elasticity. 

 

The flow quantities such as stress and velocity fields are determined through the 

complex interactions between inertia, elasticity and shear thinning that gets stronger 

at elevated Re and We. In Figure 4.2, viscoelastic fluid effects on the recirculation 

length (Lr) are compared at different Re. Oldroyd-B fluid with constant viscosity 

flow has larger wake region size or recirculation length depicted in Table 4.1. 

P.Y.Huang and J.Feng [42] obtained the same wake lengths for Oldroyd-B flow 

around circular cylinder at Re=10 when We is increased zero to one. Also, Lr is 

increased with Re numbers as in Newtonian flow. 

 

Viscoelastic wake behind square obstacle is longer than the Newtonian wake 

(We=0). Because, the wake phenomena has strong dependence on the structure of the 

flow and on the presence of vortices in the region of highest stress that resides 

downstream of the rear stagnation point of obstacle surface. Therefore, lacking shear 

thinning property, Oldroyd-B fluid leads to higher stresses and larger wake field 

around the obstacle compared to PTT and Newtonian flows. Oldroyd-B flow vortex 

centers also shift upward and downward direction with respect to PTT fluid due to 

expanding wake region in Figure 4.2b and 4.2c. This can be clearly seen in Table 

4.2. The vortex pair size increases in wake region as Re number increases as in 

Figure 4.2c, when vortex intensities increase for both model listed in Table 4.2.   

 

However, at Re=10, the magnitude of vorticity becomes lower. This behavior is 

different from Newtonian case (see Table 3.1). For low Re number, inertial force gets 

lower and impact of the elasticity on the flow is comparatively smaller than at high 

Re number. So, at Re=20, the elasticity of polymer molecule is higher for Oldroyd-B 

than PTT flow in Figure 4.2c. So, vortex intensity values in wake region 

(1.3079<ψ<1.3179) gets higher at x locations away from the obstacle at a constant 

y=2.2006 for Oldroyd-B flow at Re=20 as depicted in Table 4.2.  Also, this vortex 

enhancement may be attributed to large and constant elongational viscosity of 
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Oldroyd-B flow. Because, large elongational viscosity delays the acceleration of the 

fluid which results in the increase of vortex size (see Figure 4.2c).  

 

    
                                                            (a) 

 

                                                            (b) 

           

                                                             (c) 

                

                                                            (d) 

Figure 4.1 Effect of We on the recirculation length for PTT fluid at 

a) Re=0 b) Re=5 c) Re=10 d) Re=20 
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 (a) 

  (b) 

 (c) 

Figure 4.2 Viscoelastic fluid effect on the recirculation length for 

a) Re=5 b) Re=10 c) Re=20
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Table 4.1 Variation of recirculation length (Lr) with Reynolds number (Re) for 

different We numbers 

Re We 
Lr of 

PTT  at  
(ψ=0) 

Lr of 
Oldroyd-B at  

(ψ=0) 
0 20.2132 20.2132 
1 21.6133 22.8912 

5 2 21.9957 23.0755 
5 23.4713 25.1997 
6 23.8912 25.3664 
0 21.0341 21.0341 
1 24.7001 25.1285 
2 25.1213 26.4356 

10 3 25.3634 27.3259 
4 26.1784 27.8712 
5 26.2467 28.0125 
0 22.3452 22.3452 
1 25.7823 26.5648 

20 2 26.1239 27.1547 
3 26.8745 28.7645 
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Table 4.2 Intensities of the primary eddies and vorticity and their locations in the 

wake region 

PTT                                                                     
We Re ω ψ x y 
5 10 -0.1275 1.3314 21.2222 2.1487 
5 10 -0.1462 1.3315 21.2502 2.1487 
5 10 -0.1855 1.3317 21.3040 2.1487 
5 10 -0.2073 1.3320 21.3405 2.1487 
5 10 -0.2284 1.3324 21.3501 2.1487 
5 10 -0.2504 1.3329 21.4063 2.1487 
3 20 -0.2354 1.3263 21.5527 2.1487 
3 20 -0.2620 1.3267 21.6340 2.1487 
3 20 -0.2891 1.3276 21.7213 2.1487 
3 20 -0.3024 1.3282 21.7673 2.1487 
3 20 -0.3154 1.3291 21.8149 2.1487 
3 20 -0.3495 1.3322 21.9683 2.1487 

Oldroyd                                                               
We Re ω ψ x Y 
5 10 -0.1281 1.3051 21.5527 2.2006 
5 10 -0.1591 1.3068 21.6340 2.2006 
5 10 -0.1963 1.3076 21.7212 2.2006 
5 10 -0.2172 1.3085 21.7673 2.2006 
5 10 -0.2402 1.3104 21.8149 2.2006 
5 10 -0.3305 1.3123 21.9683 2.2006 
3 20 -0.3884 1.3073 22.2625 2.2006 
3 20 -0.3918 1.3086 22.3278 2.2006 
3 20 -0.4036 1.3112 22.3954 2.2006 
3 20 -0.4095 1.3117 22.4654 2.2006 
3 20 -0.4145 1.3157 22.6128 2.2006 
3 20 -0.4176 1.3179 22.6905 2.2006 
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4.2.2. Mesh Tests 

 

Cartesian non-uniform structured mesh is used to represent the flow system having a 

blockage ratio of B=1/4. Section of the mesh around the axial location of the obstacle 

is depicted in Figure 4.3 and 4.4. Owing to the specific geometry in the present 

study, only cartesian grids are applied. Minimum size of the mesh is employed at the 

vicinity of the obstacle with  Δx= 0.02 and Δy= 0.01.  

 

Grid points can be clustered in regions of large gradients in the vicinity of the 

obstacle and coarser grids can be used in regions of minor interest. Only y-dimension 

grid size is changed due to nature of parabolic velocity profile of the flow. Total 

numbers of the cells are 372x81 and 372x162 in Figures 4.3 and 4.4 respectively. 

The FVM allows the application of non-equidistant grids.  

 

Figure 4.3 Non-uniform meshes around the obstacle with 372x81 cells 
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Figure 4.4 Non-uniform meshes around the obstacle with 372x162 cells 

 

The impact of the mesh refinement on the magnitudes of the vorticity, normal stress 

and shear stress component at the primary vortex center is examined for each of the 

used constitutive model through the mesh structures tabulated in Table 4.3 at Re=10. 

With shrinking length scales in the velocity gradients, larger stress values can be 

expected in the computations obtained by the integration of the velocities for both 

model at 372x162 meshes. The impact of mesh size on computational results was 

considered negligibly small for the dense mesh of 372x162. The presented results 

were obtained by using 372x162 meshes. 
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Table 4.3 Effect of mesh refinement on vortex intensities, normal stress components 

of  τxx,  shear stress components of τxy  at the center of primary vortex at Re=10 for 

PTT and Oldroyd-B fluid 

PTT 
We   ω (372x81)   ω (372x162) 
1 -0.2315 -0.2325 
5 -0.1275 -0.1282 

We   τxx (372x81)  τxx(372x162) 
1 0.1713 0.1753 
5 0.0356 0.0361 

We   τxy (372x81)  τxy(372x162) 
1 -0.04683 -0.04772 
5 -0.00912 -0.00924 

Oldroyd-B 
We   ω (372x81)   ω (372x162) 
1 -0.1467 -0.1469 
5 -0.4801 -0.4821 

We   τxx (372x81)  τxx(372x162) 
1 0.0594 0.0598 
5 0.3823 0.3836 

We τxy (372x81) τxy(372x162) 
1 -0.0151 -0.0159 
5 -0.1238 -0.1245 
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4.2.3. Velocity and Pressure profiles around the obstacle 

 

Figures 4.5 and 4.6 present velocity distribution of component, u and v, at several 

positions of the flow field for Re=0 and Re=20 with different We numbers along the 

center line. Velocity profile near cylinder and in the wake region differs more than 

Newtonian flow case (see Figure 3.4). At x=19 that is the position prior to the 

cylinder region, the velocity profiles differ from Poiseuille flow. Streamwise 

velocity, u, has a local minimum points for each We numbers. As the We number 

increases, the local minimum velocity decreases as in Figure 4.5 a, c and d at x=19 

for both model. On the other hand, at x=22, local maximum velocity increases at 

elevated We. 

 

In the wake region, x=22, u- velocity profiles become highly modified due to the 

presence of the obstacle. For both model, flow is nearly independent of We number 

at Re=20. These results associated with the velocity field can be attributed to shear 

thinning property of the fluid that becomes more pronounced at elevated We values 

as shown in Figure 4.5a and b for PTT fluid.  On the other hand, u velocity for 

Oldroyd-B has more deformation due to more elastic behavior and the maximum 

velocity region shifts (see Figure 4.5c and d). In other words, the elasticity changes 

dramatically the flow at high We numbers. The streamwise velocity at high We is 

slower to recover the undisturbed bulk velocity than low We flows especially in the 

wake region as seen in Figures 4.5a-d. 

 

Figure 4.5e and 4.5f show influence of We on profiles of the streamwise velocity 

component, u, along the centerline (y=2) for PTT fluid. We also compare these 

results with the corresponding numerically computed velocity profiles for a 

Newtonian fluid under at Re=5 and Re=20 (see Figure 4.5e-h). Upstream of the 

cylinder the flow is essentially independent of We along the cylinder, in agreement 

with Figure 4.5e, f, h.  
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For PTT flow, required length to achieve the fully developed velocity, (∂ u/∂ x=0),  

is nearly the same for all We numbers plotted in Figure 4.5e and 4.5f while fully 

developed velocity in magnitude is lower than Newtonian flow. Axial velocity is 

shifted downstream and thus decreases relative to Newtonian flow with increasing 

We. 

For Oldroyd-B flow in Figure 4.5g, a slight velocity overshoot is observed far from 

the cylinder, at high We at which elastic effects are dominant. Elasticity of the fluid 

leads to increase in the required length for velocity recovery. When inertia increases, 

shear and viscous effects also play important role in the flow and recovery of the 

velocity occurs at even larger lengths as shown in Figure 4.5h.  

Figure 4.6 shows cross-stream velocity, v, along the center line at y=2. This 

component of the velocity is smaller than u. Therefore it becomes challenging to 

predict it accurately compared to Newtonian flow case (see Figure 3.3).  

For the flow of PTT, more symmetric velocity profiles around obstacle are observed 

as shown in Figure 4.6a and 4.6b. With low elasticity, higher vertical velocity, v, is 

obtained. As We number increases, the maximum value of vertical velocity 

component decreases in magnitude.  However, at Re=0 and Re=20, Oldroyd-B flow 

has overshoot and undershoot peaks especially for We=3 in Figure 4.6c and 4.6d. 

Absolute magnitude of vertical velocity component range is also higher than PTT. 

The overshoot and undershoot at the centerlines can be attributed to the purely elastic 

and constant viscosity behaviors of Oldroyd-B flows. They get more pronounced as 

We increases.  In the wake region, vertical velocity approaches to zero at Re=0 as in 

Figure 4.6c. Also, some oscillations appear at high Re in Figure 4.6d.  
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       (a)Re=0 

      (b) Re=20 

Figure 4.5 Velocity component, u, profiles for different positions at x=19 (before 

cylinder), x=22 (wake region) (a) and (b) for PTT fluid (c) and (d) for Oldroyd-B 

fluid, at y=2 (centerline) (e) and (f) for PTT fluid (g) and (h) for Oldroyd-B fluid. 
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   (c)Re=0 

 

    (d)   Re=20 

Figure 4.5 Velocity component, u, profiles for different positions at x=19 (before 

cylinder), x=22 (wake region) (a) and (b) for PTT fluid (c) and (d) for Oldroyd-B 

fluid, at y=2 (centerline) (e) and (f) for PTT fluid (g) and (h) for Oldroyd-B fluid. 
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       (e) Re=5 

(f) Re=20 
Figure 4.5 Velocity component, u, profiles for different positions at x=19 

(before cylinder), x=22 (wake region) (a) and (b) for PTT fluid (c) and (d) for 

Oldroyd-B fluid, at y=2 (centerline) (e) and (f) for PTT fluid (g) and (h) for 

Oldroyd-B fluid (continued). 
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(g) Re=5 

(h) Re=20 

Figure 4.5 Velocity component, u, profiles for different positions at x=19 (before 

cylinder), x=22 (wake region) (a) and (b) for PTT fluid (c) and (d) for Oldroyd-B 

fluid, at y=2 (centerline) (e) and (f) for PTT fluid (g) and (h) for Oldroyd-B fluid 

(continued). 
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    (a)Re=0 

(b)Re=20 

Figure 4.6 Velocity component, v, profiles at y=2 (a) and (b) for PTT fluid (c) and 

(d) for Oldroyd-B fluid. 
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   (c)Re=0 

(d)Re=20 

Figure 4.6 Velocity component, v, profiles at y=2 (a) and (b) for PTT fluid (c) and 

(d) for Oldroyd-B fluid (continued). 
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Figure 4.7 shows the pressure variation in the flow. For viscoelastic flow case, 

pressure gradients are generated by mainly elastic effects in near front and rear 

stagnation points of the cylinder. Viscoelastic pressure drop values are also higher 

than Newtonian flow case due to increasing effect of longitudinal flow as seen in 

Figure 4.7.   

Figure 4.7a and Figure 4.7b depicts pressure profiles for PTT flow. As We increases, 

pressure value decreases as shown in Figure 4.7a, b, c. This result can be attributed to 

the smaller extensional viscosities associated with higher We for a PTT fluid. 

However, at Re=20, pressure drop gets amplified as in Figure 4.7d due to the 

breaking of the fore-aft symmetry of flow around obstacle  at higher We (see Figure 

4.5h). It can be concluded that, shear thinning property of the PTT fluid causes lower 

pressure drop compared to the Oldroyd-B fluid.  
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                                                    (a)Re=5 

 

    (b)Re=20 

Figure 4.7 Pressure profiles around the cylinder (a) and (b) for PTT fluid (c) and (d) 

for Oldroyd-B fluid along the centerline. 
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  (c)Re=5 

 

     (d)Re=20 

Figure 4.7 Pressure profiles around the cylinder (a) and (b) for PTT fluid (c) and (d) 

for Oldroyd-B fluid along the centerline (continued). 
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4.2.3. Normal and Shear stress profiles around the obstacle 

 

In order to further examine the behavior of viscoelastic flows around the obstacle, we 

plot shear and normal stress profiles as in Figures 4.8 and 4.13. τxx and τxy variation 

around the cylinder are given along x and y direction of the flow. Both shear and 

normal stresses are zero at the front and the rear stagnant points since the velocity 

gradient ( ∂ u/∂ x=0) is zero at the centerline as in Figures 4.8 and 4.12. In the case of 

PTT fluid, at Re=0 and 10, absolute value of normal and shear stresses decreases as 

We increases due to stress decaying of flow field as shown in Figure 4.8.  Higher the 

We is, stronger the shear thinning effects that lead to the lower stress values as 

depicted in Figure 4.8b and 4.10b.  

 

As the inertial effects get amplified, τxx and τxy along the x direction becomes smaller 

at y=0. Also, shear stress peak is observed at the front stagnation point due to sudden 

change in the boundary condition (at singularity point) for all We numbers as shown 

in Figure 4.10a. 

 

For the Oldrody-B fluid, absolute magnitude of stresses increases compared to PTT 

in the flow field. In Figure 4.9a overshoot in τxy profile occurs at We=15. It may be 

resulted from u velocity gradient with respect to y direction at x=19 (see Figure 

4.5c). On the other hand, as We gets higher, there is an increase in all stress gradients 

as shown in Figure 4.9b and 4.11b. The saturation of normal stresses at the obstacle 

surface was also observed in creeping flow of Oldroyd-B fluid around cylinder [43]. 
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      (a) 

  

      (b)  

Figure 4.8 Shear stress, τxy, and normal stress, τxx,  profiles around the obstacle for  

PTT fluid at Re=10-4. 
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     (c) 

Figure 4.8 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for  

PTT fluid at Re=10-4 (continued). 

 (a) 

 Figure 4.9 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for  

Oldroyd-B fluid at Re=10-4. 
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      (b) 

 

        (c) 

Figure 4.9 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for  

Oldroyd-B fluid at Re=10-4 (continued). 

 

At Re=10, for PTT in the wake region, shear stress relaxation occurs in an oscillation 

manner as in Figure 4.10a. However, Oldroyd-B have more absolute shear stresses, 

stress relaxation is more quickly and suddenly owing to more flexible behavior of 

polymer chain, when the stress source removed (away from the cylinder), it is 

returned into undeformed case of the flow as in Figure 4.11a.  

 
75 

 

 



 

 

Another important flow feature is the response of normal stress behavior along the 

obstacle surface at x=20 (see Figure 4.10c and 4.11c). Normal stresses can be 

considered conceptually due to the tension of the streamlines of the flow field. 

Normal stress relaxation or distribution occurs between the obstacle surface and the 

channel wall at y=0. PTT fluid delays τxx momentum transfer from the obstacle 

surface to the channel wall.  

 

Near the obstacle walls, the deformation rate of the fluid gets higher that in turn 

results in decrease in the shear viscosity decreases along with the normal stress. For 

Oldroyd-B fluid, all elastic or normal stresses are nearly recovered as suggested by 

the plots in Figure 4.9c. However, as Re increases, elastic stresses reach a maximum 

value (We=5) at the channel wall as in Figure 4.11c. Oldroyd-B flow relaxes quickly 

elastic stresses at the center of obstacle compared as PTT flow. 
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         (a) 

        (b) 

Figure 4.10 Shear stress, τxy, and normal stress, τxx,  profiles around the obstacle for  

PTT fluid at Re=10. 
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          (c) 

Figure 4.10 Shear stress, τxy, and normal stress, τxx,  profiles around the obstacle for  

PTT fluid at Re=10 (continued). 

          (a) 

Figure 4.11 Shear stress, τxy, and normal stress, τxx,  profiles around the obstacle for  

Oldroyd-B fluid at Re=10. 
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         (b) 

                         

             (c) 

Figure 4.11 Shear  stress, τxy, and normal stress, τxx,  profiles around the obstacle for  

Oldroyd-B fluid at Re=10 (continued). 
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Figures 4.12 and 4.13 show shear and normal stresses  at different positions for both 

PTT and Oldroyd-B fluids. At Re=20, nonlinear inertial forces become dominant. 

Observations suggest that the shearing properties of the fluid get stronger with 

increasing elongational properties. At the center of the channel (y=2), shear stresses 

get higher value especially for Oldroyd-B fluid at We=3 in Figure 4.12a. Figure 

4.12b also depicts that there is a remarkable asymmetry shear stresses between 

upstream and wake region at the vicinity of the obstacle (y=2.5). Y. Xiong et al. [43] 

also observed asymmetry for Oldroyd-B flow around a circular cylinder. In the wake 

region, while shear stress diminishes, normal stresses become dominant (see Figure 

4.13b). 

Figure 4.13 illustrates distribution of normal stresses at the front (x=20) and back 

(x=21) surfaces of the obstacle along the channel height. Stress profiles in the case of 

Oldroyd-B fluid are more steep than than those of the PTT fluid. The profiles at the 

front of the obstacle exhibit smooth increasing or decreasing pattern as opposed to 

those at the back of the obstacle for both fluids. For example especially as elasticity 

of the fluids get stronger, two maxima are observed near the walls of the channel and 

obstacle. 
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     (a) 

       (b) 

Figure 4.12 Normal stress, τxy, comparison around obstacle for Oldroyd-B and PTT 

fluid at Re=20 (a) center at y=2 and (b) at y=2.5. 
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       (a) 

 

      (b) 

Figure 4.13 Normal stress, τxx, comparison around obstacle for Oldroyd-B and PTT 

fluid at Re=20 along the obstacle surface (a) x=20 and (b) x=21. 

 

 

 

 

82 

 

 



 

 

Figures 4.14-18 show representative contours of normal and shear stresses around 

the obstacle. Figures 4.14a and 4.14d show the effect of the We numbers on the 

dimensionless magnitude of normal stress component τxx at the creeping flow 

condition. Dimensionless contour values in the figures are 1 and -0.1. The stress field 

is symmetric as expected and overall stress patterns resemble closely for both fluid 

model in the corresponding regime. However, stress gradient is different each other.  

Another interesting observation is that at the top and bottom surfaces of the normal 

stresses extend further in the flow direction. These stress contours extend longer 

distances in the wake region as We is increased as in Figures 4.14a, c, 4.15a, c and 

4.16a, c. This is an expected result since higher relaxation times lead to longer 

convection distances of the stresses. On the other hand, near the channel wall there is 

no such increasing or decreasing pattern of the stress with respect to We for PTT 

fluid in Figure 4.14a. However, for Oldroyd-B flow when We is 5 and 15, normal 

stresses effects increase near the channel wall as in Figure 4.14c (see Figure 4.9c). 

 

Figure 4.14b and 4.14d give negative normal stresses, -0.1, around the obstacle. They 

predominantly occur in front of the obstacle. At the highest fluid elasticity, We= 15, 

no negative normal stress is observed in Figure 4.14b and 4.14d. Normal stresses are 

in tensile in nature as opposed to compressive type. Diverted flow near the leading 

front of the obstacle gives rise to the Hoop stresses generated by normal stresses. At 

lower We, in this flow region one can then expect negative or compressive stresses 

associated with the faster relaxation than that of higher We. Negative stress has the 

same approach for range of We for both model (see Figure 4.15b, d and 4.16b, d). 

 

Figures 4.15 and 4.16 illustrate normal stress field at Re=10 and Re=20, respectively. 

Contour values in the figures are the same as that of Figure 4.14. The figures depict 

that as the fluid inertia increases the stress fields in the wake region get larger and 

eventually encapsulate the region developed at the top and bottom surfaces of the 

obstacle. At Re=20, flow circulations behind the object in Figure 4.2c lead to the 

division of the stress field behind the object into two symmetric regions as shown in 

Figure 4.16a due to shear thinning effect. 
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However, for Oldroyd-B flow, normal stress wake becomes longer, extending to 

nearly the whole length of the channel displayed in Figure 4.16c. With increasing 

We, the variation of the pressure near the cylinder surface is large. It can be seen that 

there is a strong pressure gradient around the cylinder for We > 1, produced by the 

stress boundary layer on the surface of cylinder. There is also a large pressure 

gradient in the wake (see Figure 4.7d). Another impact of these circulations is the 

formation of negative stress fields in the wake region associated with the hoop 

stresses as in Figures 4.16b and 4.16d with range of We numbers.  At We=3, there is 

no negative normal stress in the wake as shown Figure 4.16d. As inertial effects 

increases, Hoop stresses at contour value of 1 is observed at high We flow (see 

Figures 4.15c and 4.16c). 
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Figure 4.14 Effect of We on the normal stress component τxx at Re=0. Contour 

values are (a) and (c) 1 (b) and (d)-0.1 for PTT and Oldroyd-B. 

We=1
We=5
We=15

(a) PTT 

   (b) PTT 

     (c) Oldrody-B 

   (d) Oldrody-B 
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Figure 4.15 Effect of We on the normal stress component τxx at Re=10. Contour 

values are (a) and (c) 1 (b) and (d)-0.1 for PTT and Oldroyd-B. 

We=4
We=3
We=1

We=4
We=3
We=1

(a) PTT 

               (c) Oldrody-B 

       (b) PTT 

          (d) Oldrody-B 
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Figure 4.16 Effect of We on the normal stress component τxx at Re=20. Contour 

values are (a) and (c) 1 (b) and (d)-0.1 for PTT and Oldroyd-B. 

We=3
We=2
We=1

We=3
We=2
We=1

 (b)  PTT 

(c) Oldrody-B 

      (d) Oldrody-B 

(a) PTT 
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Figures 4.17 and 4.18 show the effect of the Re on the shear stress field, τxy, at We=3, 

ε=0.25 and β=0.2 for PTT and ε=0 for Oldroyd-B flow, respectively. Several features 

in the shear stress field are interesting. For example high values of the stress first 

appears at the front corners of the object where highest contribution of the Hoop 

stresses can be expected due to sudden turn in the flow as in Figures 4.17 and 4.18. 

Their contribution to the stress field can also be observed at the back corners 

especially at creeping flow condition as shown in Figures 4.17a and 4.18a.  

Due to the flow separation at higher Re, shear stresses become relaxed as depicted in 

Figures 4.17b and 4.18b. For Oldroyd-B shear stress elongates through the flow 

direction in sharper form in Figure 4.18b. Higher values of the shear stress at the 

front corners eventually extend to the upper and lower surfaces as Re increases.  

Therefore these findings confirm that, shear stresses occur in the region dominated 

by the flow tangential to the solid boundaries and that shear stresses get amplified. At 

high Re, shear stress contours become more smooth. Stress contour density decreases 

around the obstacle surfaces. Flow is also more stabilized due to relaxing of shear 

stresses in Figures 4.17c and 4.18c (see Figures 4.12a and 4.12b).  
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                     (a)                                    (b) 

 

(c) 
 

 

Figure 4.17 Effect of fluid inertia on shear stress field, τxy, for PTT fluid 

around the obstacle at We=3, ε=0.25 and β=0.2 for a) Re=0 b) Re=10 and 

c) Re=20 
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  (a)    (b) 

  (c) 

Figure 4.18 Effect of fluid inertia on shear stress field, τxy, for Oldroyd-B fluid around 

the obstacle at We=3, ε=0 and β=0.2 for a) Re=0 b) Re=10 and c) Re=20. 
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4.3.Viscoelastic Drag Phenomena over the square cylinder 

Drag coefficient is obtained by integrating the stress and pressure contributions over the 

square cylinder surfaces denoted as f front, r rear, t top, and b bottom similar to the 

methodology reported by Dhiman et al. [11] The relation for Cd can be written as:  

1 1

, , , ,
0 0

2 [( ( ) ( )) ( ( ) ( )) ] 2 [( ( ) ( )) ]
Re xx r xx f xy t xy b r fCd y y dy x x dx P y P y dyτ τ τ τ= + + + + −∫ ∫

The corresponding drag coefficient can be splitted into three parts. These are drag 

coefficient due to normal stress contribution, drag coefficient due to shear stress 

contribution, drag coefficient due to pressure drop contribution. All these contributions 

are expected to be functions of Re and We numbers and also coupled each other. This 

relationship is investigated in this section.   

At constant Re results of the two different mesh size, 372x162 and 372x81, are included 

in Table 4.4 in order to reveal the possible impact of the mesh size on the computational 

results. Negligible differences between the results of the meshes indicate the 

computational results are free of the mesh structures used in this study. Therefore in the 

following sections, the presented results were obtained by using 372x162 cells. 

The effects of increasing viscoelasticity and fluid inertia on Cd are given in Table 4.4 

for PTT fluid. The first striking feature is higher Cd values at non-zero We than those of 

Newtonian fluid in Table 3.2 at a given Re. Interestingly, further increase in We leads to 

the smaller Cd values as shown in Table 4.4. This behavior suggests that up to a certain 

critical We value, that seems to be between 0 and 1, normal stresses play a significant 

role in the increase of Cd as tabulated in Table 4.6 especially after We>0.8.  Beyond that 

critical We=1, shear thinning becomes more and more pronounced to counter the 

normal stresses.  Hence, decrease in Cd is observed with respect to increasing We at a 

given Re as depicted in Table 4.4. This trend is also clear in Table 4.5 in terms of Cd* 

values normalized with Cd at We=0.  

(4.1) 
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The combined effects of elasticity and shear thinning properties are not really 

distinguishable for viscoelastic effects on the drag at the very low Reynolds number. 

Flow behaviour differences diminish and drag values approach each other. However, for 

viscoelastic flow drag coefficient has larger value due to higher viscous behavior than 

elastic behavior of the flow. Drag enhancement occurs compared with Newtonian flow 

as the Cd* is higher than one. With increasing We, the drag correction factor (Cd*) 

reaches smoothly up to nearly two times the Newtonian value. This behavior was also 

observed in earlier studies on the flow of PTT fluid around circular cylinder at Re=0 

[44-46].    

Pressure drop contribution to the drag force increases with increased Re number (see 

Figures 4.7a and 4.7b), while shear and normal stresses decays due to shear thinning 

effects. Table 4.4 also reveals that dependence of Cd on Re appears to be same as 

Newtonian fluid.  

Inertia has decreasing effect on Cd. At a given We, say 1 or 2, there is a decreasing 

pattern in Cd behavior with respect to increasing Re. A reduction in Cd is observed 

when the value of Re is changed from 5 to 20 similar to Newtonian fluid case in Table 

4.4. At high Re flows, shearing of the fluid will be more important to the viscous 

dissipation of PTT fluid than its elongational property. So, the discrepancies between 

Newtonian (We=0) and viscoelastic drag (We>0) are larger for Re=20. On the other 

hand, in the region of Re=5 and Re=10 the contribution of normal stresses to the 

Newtonian drag are of the same order magnitude for viscoelastic drag enhancement 

(around ~7%).  

Table 4.7 shows drag coefficients variation with polymeric viscosity ratio. In our 

governing equations, polymer concentration effect is characterized by the polymer 

viscosity ratio, wr. Polymeric concentration affects both the viscosity and the relaxation 

time of polymer molecules in viscoelastic medium. We carry out a few tests for various 

wr for We=1, 2 and 3 at fixed Re=20 tabulated in Table 4.7. Although shear and normal 

stresses contribution to drag increase, the variation of Cd is nearly same for the range of 
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We. However, pressure drop contribution has slightly increased with wr. The higher is 

the value of wr, the more drag enhances for We=3 case due to increased elasticity effect. 

 

In the case of Oldroyd-B fluid, investigation of drag coefficients becomes more 

involved  due to occurance of higher stress gradients than those of PTT fluid as shown 

in Figures 4.14-17. The drag increases with We number as tabulated in Table 4.8. This 

increase in drag is associated with a remarkably long recirculation region as shown in 

Table 4.1. Another reason is the formation of Hoop stresses at high We flows in the 

wake region. For PTT fluid, this region is more stabilized owing to decaying of stress 

field as shown in 4.16a.  

 

When We increases, shear and normal stresses contributions to drag coefficient are 

small due to constant viscosity of Oldroyd-B fluid at a given Re.  At Re=5, up to We=4, 

there is an effective balance between normal stress and shear stress drag contribution 

leading to nearly the same drag coefficients. For We=5 and 6, pressure drop contribution 

to drag coefficient decreases because pressure magnitude suddenly drops as in Figure 

4.7c, while the normal stress contribution to drag coefficients gets amplified. 

Furthermore, Cd increases slightly with increased We at high Re.  This behavior of drag 

can be explained by the secondary flow formation resulting from vortex pairs in the 

wake region. They also cause overshoot of vertical velocity, v, (see Figure 4.6d) and 

break of fore/aft symmetry in streamwise velocity, u. (see Figure 4.5h). 

 

At Re=20, large deformation is observed in normal stress field especially at We=3 as in 

Figure 4.16c. Therefore, normal stress contribution to drag coefficient increases from 85 

to 108, along with stronger pressure contribution as shown in Table 4.8. Also, the rapid 

change of pressure and the formation of normal stress boundary layer generates high 

extensions and shears around the obstacle. For We<3, negative normal stress field 

around the obstacle has also decreasing effect in magnitude of normal stress 

contribution to drag coefficient (see Figure 4.17c).   
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Table 4.9 indicates that the drag coefficient becomes almost ten times larger than that 

of the Newtonian fluid when We increases due to stronger elastic effects. As 

demonstrated in Table 4.10, at higher wr, drag coefficient increases at a constant We. 

At high We flows, further increase of polymer concentration makes no significant 

contribution to drag force around the obstacle as shown in Table 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94 

 

 



 

 

 

Table 4.4 Drag coefficients for PTT fluid at Re= 5, 10 and 20   

Re We 

Pressure 

Contribution 

to Cd 

(372x162) 

Shear Stress 

Contribution 

to Cd 

(372x162) 

Normal 

Stress 

Contribution 

to Cd 

(372x162) 

  
   

 

Cd 

(372x162) 

Cd 

(372x81) 

 

1 13.530 50.646 92.910 84.492 84.482 

 2 11.542 50.537 86.760 78.273 78.002 

5 3 10.123 48.932 84.923 73.912 73.788 

 4 9.923 32.874 81.125 65.652 65.439 

 5 9.606 28.415 80.640 62.932 62.835 

 6 9.317 21.912 78.120 58.738 58.647 

 

1 15.917 51.961 83.391 59.023 58.904 

10 2 14.004 49.359 82.510 54.427 54.383 

 3 13.118 38.317 71.370 48.412 48.174 

 

4 12.602 31.289 66.416 44.858 44.745 

 

5 12.124 29.812 62.136 43.012 42.869 

 1 21.483 49.076 75.840 55.512 55.456 

20 2 19.704 46.934 71.230 51.301 51.224 

 3 18.950 39.357 70.370 48.998 48.874 

 

 

 

Table 4.5 Drag coefficients for PTT fluid at Re=0.0001 where Cd*=Cd/Cd at We=0 

We   Cd    Cd* 

0  7.114x105                  1.000 

1 1.984x106                    2.789 

5 1.557x106                   2.189 

10 1.428x106                     2.007 

15 1.369x106                   1.924 
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Table 4.6 Drag coefficients for PTT fluid at Re=20 for low We≤1 flows 

We 

Pressure 
Contribution 

to Cd 

Shear Stress 
Contribution 

to Cd 

Normal Stress 
Contribution 

to Cd Cd 
0 2.261 1.821 - 4.702 

0.1 6.089 8.481 11.250 14.152 

0.2 9.492 16.167 20.255 22.627 

0.3 12.471 23.050 28.810 30.123 

0.4 15.025 29.155 36.942 36.660 

0.5 17.151 34.457 44.624 42.218 

0.6 18.860 38.969 51.865 46.804 

0.7 20.141 42.670 58.660 50.410 

0.8 21.050 45.590 64.310 53.089 

0.9 21.345 47.665 72.232 54.669 

1 21.483 49.076 75.840 55.456 

Table 4.7 Drag coefficients for PTT fluid at Re=20 for different polymer viscosity ratio 

We wr 

Pressure 

Contribution 

to Cd 

Shear Stress 

Contribution 

to Cd 

Normal Stress 

Contribution 

to Cd Cd 

 

0.5 21.076 39.264 58.813 51.960 

1 0.6 21.131 34.884 62.087 51.959 

0.7 21.290 41.441 73.045 54.030 

0.8 21.483 49.076 75.840 55.456 

 

0.5 18.727 33.503 47.132 45.517 

2 0.6 18.841 38.548 49.264 46.463 

0.7 19.147 44.937 65.063 49.294 

0.8 19.704 46.934 71.230 51.224 

 

0.5 18.079 29.123 45.342 43.604 

3 0.6 18.342 34.456 55.654 45.695 

0.7 18.920 37.342 63.651 47.939 

0.8 18.951 39.357 70.370 48.874 
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   Table 4.8 Drag coefficients for Oldroyd-B fluid at Re= 5, 10 and 20  

Re We 

Pressure 
Contribution 

to Cd 

Shear Stress 
Contribution 

to Cd 

Normal 
Stress 

Contribution 
to Cd Cd 

1 21.017 111.277 117.345 133.484 

 

2 19.752 118.123 119.123 134.402 

5 3 18.807 119.860 121.854 134.310 

4 17.494 120.037 129.797 134.922 

5 12.182 121.342 150.182 132.975 

6 11.176 122.959 160.955 139.917 

 

1 16.062 105.028 114.612 76.051 

10 2 16.092 107.543 115.453 76.783 

3 16.149 109.912 118.582 77.821 

4 17.023 110.123 118.591 79.788 

5 17.699 114.723 119.400 82.222 

1 18.595 94.852 83.381 55.013 

20 2 18.909 95.695 85.561 55.943 

3 22.642 96.088 108.727 65.767 

Table 4.9 Drag coefficients for Oldroyd-B fluid at Re=0.0001 where Cd*=Cd/Cd at 

We=0 

We Cd Cd* 
0 7.11x105 1 
1 4.77x106 6.710 
5 5.44x106 7.650 
10 6.35x106 8.920 
15 8.35x106 11.730 
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Table 4.10 Drag coefficients for Oldroyd-B fluid at Re=20 for different polymer 
viscosity ratio 

We wr 
PressureContribution 

to Cd 

Shear Stress 
Contribution 

to Cd 

Normal Stress 
Contribution to 

Cd Cd 

 

0.5 16.453 42.234 44.321 41.561 

1 0.6 17.262 43.564 49.124 43.792 

0.7 18.231 44.122 51.984 46.072 

0.8 18.595 44.852 53.381 47.013 

 

0.5 17.231 54.546 54.235 45.340 

2 0.6 17.871 55.167 55.146 46.773 

0.7 18.453 55.875 55.456 48.039 

0.8 18.909 55.695 55.561 48.943 

 

0.5 22.134 56.972 65.123 56.477 

3 0.6 22.345 57.012 66.341 57.025 

0.7 22.456 58.981 67.891 57.599 

0.8 22.643 59.0887 68.727 58.067 
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CHAPTER 5 

 

 

COMPLEX FLOW RHEOLOGY ANALYSIS 

USING MRI (MAGNETIC RESONANCE IMAGING) 

 

 

 

In this chapter, online and offline rheological measurements on complex fluid is 

presented in detail. Online measurements were performed with an MRI (Magnetic 

Resonance Imaging) at Food and Science Technology Department at University of 

California, Davis.  

 

Offline methods for rheological measurements such as cylindirical coquette, cone 

and plate geometries (conventional rheometries) generally is used for the study of 

fluid motion in shear.  However, obtained results from these types of geometries 

need to be verified with suitable online or inline methods.  Especially, many 

industrial processes, such as extrusion, transfer processes involve established or 

developing flows in pipes or tubes. Therefore, online techniques based on the 

measurement of the velocity profile in a pipe flow using MRI, which is a non-

invasive method, and simultaneously determining the pressure drop, are promising 

for use a product quality or rheology control tool during the fluid flow.  

 

In this study, the application of MRI rheometry on the measurement of complex fluid 

such as CMC (Carboxylmethyl cellulose), and Carbopol solutions flow, there is no 

linear relationship between stress and shear rate in simple shear flow, was described 

in the following sections. 
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5.1. Introduction 

Magnetic resonance imaging (MRI) can be used as a viscometer, based on analysis 

of a measured velocity profile of fluid flowing in a tube coupled with a simultaneous 

measurement of the pressure drop driving the flow [48]. This type of measurement is 

well suited for rheological characterization of non-Newtonian fluids. 

MRI is based on the interaction between nuclear magnetic moments and applied 

external magnetic fields. MRI can be used to measure composition, structure, 

molecular mobility, molecular diffusion, and bulk material motion. In an MRI 

experiment, a sample is placed in a magnetic field within a radio-frequency probe, 

energy is added in the radio-frequency range, and the response of the material to that 

energy is recorded in terms of its attenuation, frequency, and phase [49].  

MRI data can be made sensitive to a variety of variables including position, 

displacement, diffusion, velocity, density, relaxation times, or combinations of these. 

The MRI signal intensity, S, in the velocity-encoded images described in given by; 

( , ; ) [ ( ) exp( 2 ) ( , ; ) exp( 2 ) ] xS k q T x i k x P z x T i q d z dx z x zρ π π= ∆ ∆∫ ∫ �

and is due to protons in the fluid, primarily from water. The expression for signal 

intensity in Equation (5.1) has a density component, a position component, and a 

displacement component. The variable kx is the reciprocal space vector with units of 

1/m and given by a product of the magnetogyric ratio (γ), the phase encoding 

gradient duration, and the applied phase encoding gradient. The variable qz is the 

reciprocal space vector of displacement with units of 1/m and is given by the product 

of γ, duration of the displacement encoding gradient, and the applied displacement 

gradient vector.            

  (5.1) 
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A two-dimensional Fourier transform with respect to qz and kx produces a map of 

P(Δz, x; T)ρ(x) with respect to displacement Δz and position x. The product P(Δz, x; 

T)ρ(x) is the conditional probability density that a nucleus at x will displace Δz 

within the pulse sequence time interval T, which is referred to as the flow time. The 

position-dependent density of spins attributed to each displacement is given by ρ(x). 

The measurement of fluid velocity is accomplished through this displacement 

component (Δz) by measuring the distance a volume of fluid has moved in a specific 

time (T). When the motion is steady, the velocity is calculated from the ratio of the 

distance to the elapsed time. Details of the technique and applications are given by 

Callaghan [50] and McCarthy [51]. 

The MRI process viscometry requires that a well-defined flow field be established. 

To evaluate shear viscosity in tube (or capillary) flow, an incompressible fluid must 

undergo steady pressure-driven flow in the laminar regime. The conservation of 

linear momentum, which equates pressure forces to viscous forces, provides the 

relationship between the shear stress, σ, and radial position, r: 

( )
2

Pr r
L

σ −∆
= �

where ΔP is the pressure drop over the tube length L. In tomography-based methods, 

the shear rate is obtained at the same radial position using the velocity profile 

obtained from a flow image. The expression for the shear rate in tube flow is: 

( )( ) dV rr
dr

γ = �

where v is the axial velocity. Using Equations 5.2 and 5.3, the apparent viscosity η is 

determined by the ratio of shear stress to shear rate: 

( )( )
( )
rr
r

ση
γ

=
�

 (5.2) 

 (5.3) 

 (5.4) 
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Figure 5.1 Data processing procedure and velocity image sample [52] 

Graphical User Interface (GUI) programs were developed in the lab to analyze data 

and display results. This automation of data analysis provided rapid and consistent 

evaluation of multiple data sets. A schematic of the data processing steps and a 

sample velocity image are shown in Figure 5.1. Major steps in the data processing 

procedure include calculating the shear stress as a function of radial position in the 

pipe, processing the velocity profile image to obtain a velocity profile, calculating 

the shear rate as a function of radial position from the velocity profile, and generating 

the rheogram by plotting the shear stress against the shear rate [52]. Calculating the 

shear stress is straightforward from Equation 5.2.  

Extracting the velocity profile from the image and calculating the shear rate data 

presents several challenges. The image data need to have sufficient signal-to-noise 

and sufficient velocity resolution to achieve a desired range of shear rates. The 

maximum shear rate is determined in the same manner as a conventional capillary 

viscometer (that being the shear rate at the wall). The minimum shear rate depends 

upon the velocity resolution [53-55]. After the appropriate velocity resolution is set 

and the image acquired, a velocity profile is extracted. Shear rates are calculated as a 

function of radial position by taking the derivative of the velocity profile. At each 

radial position the shear rate is matched to its shear stress to create a rheogram. As 

with most rheological measurements, the shear stress/shear rate data are modeled 

with a specific constitutive expression to determine rheological parameters, e.g., 
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Herschel–Bulkley [56] parameters, or, alternatively, the shear viscosity versus shear 

rate is plotted. 

For all studies, a small tank serves as a fluid reservoir that feeds a positive 

displacement pump. Depending on the circumstances, the fluid may be agitated in 

the tank to ensure homogeneity. If the fluid is evaluated at temperatures other than 

room temperature (20 0C) or if viscous heating is anticipated, the fluid is pumped 

through a coil heat exchanger to maintain a constant and known temperature. The 

fluid then flows at a constant and known flow rate into a section of nonmagnetic pipe 

that is centered in an MRI magnet/spectrometer. Studies have been performed using 

an Aspect Imaging 1 Tesla MRI spectrometer and industrially compatible permanent 

magnet (Aspect Imaging, Shoham, Israel). The magnet is designed to be compatible 

with process environments and has essentially zero external magnetic field. In other 

words, the magnetic field at the surface of the magnet is on the order of a few Gauss. 

The system has 30 G/cm peak gradient strength. Typically a solenoid radio-

frequency coil imparts and receives radio-frequency energy. Velocity profiles are 

obtained noninvasively using a velocity-encoded pulsed gradient spin echo sequence 

(PGSE). Data can be acquired as fast as one image every 5 s. Typical measurement 

times are on the order of 1 min. In addition to the MR velocity image, an 

independent pressure drop is obtained over the straight length of pipe positioned in 

the magnet. A typical pipe diameter is 20 mm, though smaller and larger diameters 

have also been used. The pipe diameter is limited by the magnet construction. For 

this 1 Tesla Aspect unit, the maximum diameter (OD) is 59 mm. Alternate designs of 

the magnet can accommodate larger pipe diameters [57, 58].  

Usually the fluid is recirculated, as shown in Figure 5.2. However, a number of 

studies have also been performed with fluids that have been single pass, which is 

important when evaluating shear-sensitive fluids. Image and data analyses are 

performed using MATLAB (MathWorks, Natick, MA, USA). GUI programs have 

been developed to analyze data and to communicate results. The data are reported in 
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a form similar to that acquired from a standard research-grade laboratory rheometer 

(shear stress vs. shear rate). 

Figure 5.2 Flow loop for MRI rheometer studies 

5.2. MRI Rheometry Acquisition and Processing 

Figure 5.3 below shows a typical velocity profile acquired, in the software used. It is 

common window used in all data processings of MRI images. To get accurate 

rheological results, it is needed to adjust some important imaging parameters shown 

in Figure 5.4.  

Figure 5.3 Acquisition program of MRI 
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Figure 5.4 Imaging Parameters of MRI 

 

In Figure 5.4, imaging parameters should be adjusted to capture steadily imaging 

files. Slice of thickness (mm) gives thickness of shell or slice of normal direction of 

flow. Thicker slice improves the signal intensity during imaging. Field of view 

(FOV) gives the thickness of vertical direction of flow approach to the signal. Larger 

values also improve the signal, but sometimes reduces radial resolution of image. 

Velocity Sweep Width (VSW) is adjusted with respect to velocity of flow and 

decides to the velocity resolution of image. It is critical parameter to capture velocity 

of flow accurately. Larger number of averages improves signal-to-noise ratio, 

increases imaging time. Repetition time (TR) and Gain are related signal intensity 

parameters.  Larger TR can improve signal in some fluids increases imaging time 

and also gain increases signal to noise ratio of the image. 

 

 
Figure 5.5 Processing program of MRI 
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An example for measured velocity profile is shown in Figure 5.5.. A first step is to 

compute the stress-rescaled velocity function process [58] using Equation (5.5) to 

Equation (5.8). Re-scaled smoothing method of velocity is applied to obtain 

rheological information from velocity experiments coupled with pressure drop 

measurement. 

( ) ( ( ))max 2
PU r V V r
L

∆
= − �

( )
2

Pr r
L

τ ∆
= �

.
( )

0
U d

τ
τ γ τ= ∫ �

.'( )U τ γ= � 

Next step is to compute an auxilliary function g; 

( )( ) Ug ττ
τ

= �

A smoothed version of this function is almost a rheogram. This feature can be 

exploited to avoid  artifacts that occur near the extremes of the rheogram if one tries 

to use other methods such as smoothing the velocity profile directly. We take the 

derivative of Equation (6.9) with respect to τ.  

'
'( )

2
dg U Ug

d
τ τ
τ τ

−
= = �

            (5.5) 

            (5.6) 

            (5.7) 

           (5.8) 

        (5.9)

       (5.10) 
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' ' UU gτ
τ

= + �

Substitute Equation 5.8 and Equation 5.9 into Equation 5.10,  Equation 5.12 yields; 

. 'gγ τ τ= + � 

The shear rate can be computed as in Equation 5.12. Smoothed shear stress v.s. shear 

rate data plot is given as seen in Figure 5.6.  

Figure 5.6 Rescaled Smoothing Process [51] 

      (5.11) 

 (5.12)
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5.3. Results and Discussion 

5.3.1. Rheological Parameter Evalutions of CMC Solutions 

The CMC, with nominal molecular weight of 250,000 g/mol was supplied by Sigma. 

Aqueous solutions of CMC were prepared by dissolving the appropriate amount of 

CMC powder in distilled water. The high CMC concentration solutions (0.5%, 

1.0%,  1.5%, 2% w/w.) were prepared by using water heated at 50 oC by gentle 

stirring with the sufficient time < 24 h. 

Using flow loop depicted in Figure 5.7. MRI Flow Imaging Tests were done  for 0.5, 

1, 1.5, 2% (w/w) CMC solutions to determine rheological constitutive equations 

parameters. Inlet diamater of PVC tube was 38.1 mm. The test fluid was recirculated 

using Moyno pump (Integrated Motor Drive System, Franklin Electric) at 22oC 

Pressure drop was obtained at the ends of pipe with a constant length of 1.68 m using 

pressure transducer (Siemens Company). 

     Figure 5.7 Flow loop setup for CMC testing A) Positive displacement pump 

B) MRI magnet
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In Figure 5.8 flow image for an example of 0.5% CMC flow, can be seen with data 

processing window. The velocity profile is used to obtain shear rate distribution, 

while the pressure drop is used to calculate the shear stress distribution. By taking the 

ratio of these quantities at a radial position, local viscosity can be obtained within the 

shear rate range in the flow, zero at the center, and maximum at the wall, within 

minutes. 

 

 
Figure 5.8 MRI Image for 0.5% CMC 

 

Figure 5.9 shows the flow curves of the CMC solutions at different concentrations.  

Instrument CVO rheometer (Bohlin Insturements) with a cone and plate rheometer 

(with a cone angle 4o and diameter 40 mm) at 22oC was used for offline 

measurement. A steady state shear rate ramp from 0.085 to10 s-1 was performed in 

logarithmic mode with 10 points/ decade. For MRI measurements at the different 

pump speed of flow loop and  also measured using a conventional technique and the 

agreement between the results is satisfactory shown in Figure 5.9.  

 

MRI measurement results of CMC solutions are also listed in Table 5.1 with 

changing pump speed of flow loop shown in Figure 5.7. All obtained rheograms for 

different CMC solutions are  listed in Table 5.1. Rheological properties are 

independent of flow velocity. Hence, zero shear viscosities are nearly constant during 

the flow. As Reynolds number and concentration of flow increased, fluid shear stress 

acting on the pipe wall also increased as seen in Table 5.1. 
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Rheological parameters for CMC solutions are listed in Table 5.2. Depending on 

CMC concentration, Power law or H.Bulkley models give the best fit according to 

MRI flow result. Power Law model is  valid for 0.5% and 1.0% CMC. On the other 

hand, 1.5% and 2.0% CMC solutions flow are well described by Herschel–Bulkley 

model.   

 

Consistency index, K,  and  power law index, n,  and yield stress, τ0 , data values are 

obtained from shear stress v.s. shear rate data using online (MRI Rheometry) method 

and  offline (CVO Rheometry ) method. R2 values of the fittings are also satisfactory.  

As CMC concentration increased, yield stress gets larger. These results are also in 

good agremeent with those reported by Benchabane et. al [59]. 
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(a) 

                  
(b) 

Figure 5.9 Shear stress v.s. Shear rate plot for (a) 0.5% CMC (b) 1.0% CMC 

(c) 1.5% CMC (d) 2.0% CMC. 

 

 

111 

 

 



 

 

 
(c) 

                    
(d)  

Figure 5.9 Shear stress v.s. Shear rate plot for (a) 0.5% CMC (b) 1.0% CMC 

 (c) 1.5% CMC (d) 2.0% CMC (continued). 
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Table 5.1 MRI flow measurement for CMC solutions 

 
Pump Speed 

(rpm) V(m/s) Re Wall stress 
(Pa) 

Zero Shear 
Viscosity 

(Pa.s) 

 330 0.023 2.176 4.371 0.412 

 400 0.039 4.020 4.840 0.411 
0.5%CMC 700 0.078 8.840 7.590 0.411 

 1000 0.121 14.445 11.730 0.413 

 1500 0.196 25.013 15.240 0.415 

 330 0.032 1.620 7.230 1.002 

 430 0.043 2.312 9.350 1.003 
1.0%CMC 600 0.060 3.390 12.780 1.001 

 1000 0.122 7.870 20.670 1.002 

 1500 0.193 13.590 28.605 1.001 

 330 0.035 0.970 16.800 2.001 

 460 0.047 1.400 21.560 1.989 
1.5%CMC 600 0.058 1.850 27.770 2.012 

 1000 0.094 3.300 42.540 2.014 

 1500 0.183 7.690 55.550 2.001 

 330 0.031 0.180 53.681 9.012 

 500 0.053 0.360 77.670 9.022 
2.0%CMC 800 0.077 0.580 95.431 8.912 

 1000 0.095 0.760 106.071 8.993 

 1500 0.147 1.340 127.350 8.912 
 

 

Table 5.2 Rheological Parameters for CMC solutions 

 
MRI Rheometer CVO Rheometer 

Goodness of 
the fit R2 

(MRI- CVO) 

0.5%CMC K=0.550 n=0.753 K=0.512 n=0.730 0.9993-0.9987 

1.0%CMC  K=0.825 n=0.653 K=0.863 n=0.670 0.9983-0.9985 

1.5%CMC τ0=0.436 K=2.176  
n= 0.607 τ0=0.424 K=2.640   n=0.608 0.9994-0.9996 

2.0%CMC τ0=9.054 K=14.731 
n=0.495 τ0=9.150 K=13.120 n=0.507 0.9986-0.9991 
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5.3.2. Low Shear Rate Flow Rheology study on Carbopol Solutions  

 

An analysis of complex (yielding) rheological flow behavior of 0.1, 0.13, 0.15 wt %  

Carbopol solutions has been carried out using MRI velocimetry within  the low shear 

rate region (10-4 -10 s-1) for gravity driven flow system. For this study, flow 

kinematics in a pipe was performed at the steady and creeping conditions (Re<1) to 

get accurate dynamic yield value of Carbopol solutions. Then we show that in this 

range of shear rates, MRI velocimetry works well with using the suitable image data 

acquisition process. (Re-scaled smoothing method of velocity) 

 

The shear viscosity of Newtonian and Generalized Newtonian flow can be monitored 

by MRI based viscometry techniques. Velocity profile imaging can be extracted with 

the known of pressure drop and pipe dimensions of entire flow using MRI 

techniques.  Conversion of velocity profiles into rheological data is only based on 

computing relation between shear rates and shear stress data processing during on-

line flows [54]. It can be applied various geometry flow analysis for rheological 

characterization with some experimental limitation of resolution or quality of 

velocity data.  Accuracy of MRI velocity data implementation is given by Arola et. al 

[53]. 

 

Zero shear rate or creeping flow rheology has crucial potential for measuring of yield 

stress of complex fluid.  Conventional yield stress measurement methods sometimes 

fail due to accuracy of torque measurement. From a practical point of view, yield 

stress concept has a significant relationship to consumer perception of product 

quality.   

 

In this study, Carbopol, known as a complex fluid flow [60] due to physical structure 

during pipe flow, low shear rate rheology is investigated by measuring the steady 

fluid velocity profile using MRI.  
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Cross-linked polyacrylate polymer (Carbopol940, Lubrizol Corporation) was used at 

different concentrations (0.1%, 0.13%, 0.15% w/w). These solutions were prepared 

using powder form of Carbopol-940 mixed with distilled water in a stirred tank for 

approximately 7 days. The polymer solutions were neutralized with TEA (tri 

ethanolamine) solution to pH 7.1. The neutralization process is crucial because of the 

strong dependence of the flow behavior of Carbopol solutions on pH. The 

neutralization allows the solution to achieve its maximum viscosity since the 

polymer chains disentangle at this pH [61].  

 

The closed flow loop system is used in this study supplies gravity driven flow 

serving low velocity measurement for MRI imaging. The flow loop is shown 

schematically in Figure 5.10. The test fluid is recirculated using a Moyno pump 

(Integrated Motor Drive System, Franklin Electric) through a pipe with an internal 

diameter of 38.1 mm made of PVC pipe connected with stainless steel fitting parts. 

Pressure drop was obtained at the ends of pipe with a constant length of 1.68 m using 

pressure transducer (Siemens Company). To ensure fully developed flow in the 

imaging part of pipe 4.5 m with straight fittings upstream of magnet (between exiting 

of pump and entrance of pipe section) (L/d=120). Flow driven tank height is changed 

to between 50-150 cm using a lab cart with an adjustable height platform. 
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Figure 5.10 Components of the flow system:  1. Storage tank, 2. Imaging magnet 

3.Temperature bath 4. Flow driven tank, 5. Moyno pump (positive displacement 

pump) 

 

Velocity and rheological measurements were carried out using MRI under pulsed 

gradient spin echo sequence (PGSE) [50] on an Aspect Imaging 1 Tesla permanent 

magnet (Aspect Imaging, Shoham, Israel). The slice of thickness and field of view 

were 30 mm and 50 mm respectively. The radial and velocity encodings used 256 

steps. Small velocity sweep width values (VSW) to capture accurate low velocity 

flow imaging through the pipe are used depicted as in Table 5.3. The radio frequency 

of coil was a solenoid with four turns, encasing a cylindrical volume 60 mm in 

diameter and 60 mm long. System temperature is kept constant at 22.2 oC using 

temperature controller and heat exchanger. Steady state shear flow experiment 

parameters is used shown in Table 5.3. The Reynolds number is smaller than unity.  
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Table 5.3 Some typical example of experimental parameters used in imaging process 

Carbopol 
Conc.(%) VSW (cm/s) Q (l/min) Re 

0.10 9 1.235 0.370 
0.13 6 0.864 0.020 
0.15 5 0.746 0.015 

 

 

Measured velocity MRI images for 0.15% Carbopol solutions for no- flow and axial 

velocity flow condition are given in Figure 5.11 and Figure 5.12, respectively. MRI 

no- flow condition is acquired prior to initiating flow and also has same signal for 0.1 

and 0.13% Carbopol solutions. The signal intensity depicts the axial velocity as a 

function of radial position.  The vertical bright region in the center of no-flow image 

spans the width of the pipe which indicates the position of pipe walls. The bright 

region position in the center of the image is for axial velocity, v=0, at no-flow 

condition.  

 

Under the flow condition for 0.15% Carbopol velocity profiles are shown in Figure 

5.12.  As the flow rate is increased, the signal intensity is positioned more to the right 

as expected with higher velocities.  At low flow rate, 0.25 l/min, the image exhibits a 

more blunted velocity profile for VSW value at 5 cm/s. It is sufficient to capture 

small shear rate ranges for the flow.   
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Figure 5.11 No flow condition of solutions (no wall slip). 

 

Measured velocity profile images are given for % 0.15 Carbopol solution at different 

volumetric flow rates and are shown in Figures 5.12. Plug like shape velocity profile 

expands as volumetric flow rate is increased. Carbopol solutions do not exhibit slip 

velocity at these low Reynolds numbers as seen in Figures 5.12. 
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(a)                                                            (b) 

     
                                (c)                                                (d) 

 
                                                            (e)  

Figure 5.12 Measured Velocity Profile 0.15% Carbopol Solutions with different 

flow rates   (a) 0.25 l/min (b) 0.5 l/min (c) 0.75 l/min (d) 1.0 l/min  (e)1.5 l/min. 
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Figure 5.13 shows the velocity profiles for Carbopol solutions with no-slip at wall.  

They are given as function of pipe radius. The flow is unidirectional flow and 

velocity field is simply given by V=V(r) for different pressure drop measurements.  

Velocity magnitude is even small as order of 10-2 and 10-3 m/s and sufficient to 

observe low shear rate flow measurement. Velocity data exhibits apparent plug-like 

behavior. The minimum shear rate data point is determined at the lowest rate 

investigated shown in Figure 5.13. 

 

 

 

 
        (a) 

Figure 5.13 Velocity profiles for Carbopol solutions:(a) 0.1%(b) 0.13%(c) 0.15%. 
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         (b) 

        
           (c) 

Figure 5.13 Velocity profiles for Carbopol solutions: (a) 0.1% (b) 0.13% (c) 0.15% 

(continued). 
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In Figure 5.14, rheograms were given for three different Carbopol concentrations 

determined using in- line and off-line methods. The square symbol lines represent the 

values obtained with the off-line conventional rheometer. The circles correspond to 

MRI velocimetry data. For conventional methods, shear rates start from 0.085s-1. 

MRI velocimetry data match closely with the off-line data for all concentrations. 

Instrument CVO rheometer (Bohlin Insturements) with a cone and plate rheometer 

(with a cone angle 4o and diameter 40 mm) at 22 oC was used for offline 

measurement. A steady state shear rate ramp from 0.085 to10 s-1 was performed in 

logarithmic mode with 10 points/decade. Many rheological measurements at 

different flow rate conditions shear stress/shear rate data is obtained as shown in 

Figure 5.13. The lower shear rate is limited by the velocity resolution of flow image 

because no data are acquired on shear rates below the minimum calculated velocity 

resolution for the MRI method (see Figures 5.9).  

 

For this study the minimum shear rate range is on the order of 10-4 s-1 for VSW=5 

shown in Table 5.13. It must be consistent with measured experimental shear rate 

data to estimate of the quality of shear stress and shear rate data. The minimum shear 

rate can be calculated using the relationship between nondimensionalized minimum 

shear rate and resolution of velocity data [53]. The results are obtained using rescaled 

smoothing process pre-described by Tozzi et.al [57]. This rescaling feature also helps 

to eliminate artifacts that can occur in the velocity profiles during data acquisition 

process performed using MATLAB. It removes potential sources of error which can 

be resulted from image acquisition. Accurate dynamic yield values estimates can be 

obtained from this process and are shown in Figure 5.14. Lower yield stress is 

achieved for lower concentration of Carbopol as expected. From the data in Figure 

5.14, yield stress (τ0) can be found as 9.8, 22.8, 58.4 Pa which correspond to the 

intersection of shear stress value when approaching shear rate is nearly zero. 
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    (a) 

     
(b) 

Figure 5.14 Rheograms for Carbopol solutions (a) 0.1% (b) 0.13% (c) 0.15%. 
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(c) 

 Figure 5.14 Rheograms for Carbopol solutions (a) 0.1% (b) 0.13% (c) 0.15% 

(continued). 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

6.1. Conclusions 

 

In this study numerical and experimental studies are carried out for steady laminar 

flows of both Newtonian and non-Newtonian fluids around the confined square 

cylinder to reach physical mechanism of flow behavior around the square obstacle. 

Oldroyd-B model (constant viscosity with elasticity) and the PTT model (shear 

thinning with elasticity)  are used to capture viscoelasticity. Flows are simulated at 

various Reynolds and Weissenberg numbers by utilizing the finite volume method on 

non-uniform staggered grid systems. Upwind and CUBISTA approximations are 

employed for the viscoelastic stress and convective terms in the momentum 

equations to get accurate numerical solutions. Particle image velocimetry (PIV) was 

also used to obtain the two-dimensional velocity field. The Newtonian flow 

measurements were conducted for Re=1≤Re≤100. Finally MRI was employed for 

rheological characterization of viscoelastic fluids. The results obtained in this study 

allow one to draw the following conclusions: 

 
 

1. Symmetrical vortex structure are found to be higher with an increase in the 

Reynolds number for Newtonian flow around the obstacle at Re>20. Highest 

intensity of vorticity is obtained in the normal direction to the flow. 

Symmetrical vortex structures at the wake region is observed when Re 

increased. Numerical simulations is confirmed by the experimental 

visualization method, PIV. The effect of inertia on vorticity distribution 
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around the obstacle is analyzed and the results getting of two methods show 

that increasing the Reynolds number leads to increase of vortex area and 

intensity.  

 

2. The impact of Re number on Cd becomes more pronounced at low Re region. 

As inertial effects increase, the contributions of the viscous effect and 

pressure effect to the total drag coefficient decrease for Newtonian flow. 

 

3. Results for mesh refinement along y-direction in the system, with shrinking 

length scales in the velocity gradients, the impact of mesh size on 

computational results was considered negligibly small for the dense mesh of 

372x162. Convergence of CUBISTA scheme is nearly independent to get 

convergence solution. CUBISTA scheme also prevents numerical instabilities 

at high We flows. At creeping flow condition maximum attainable 

Weissenberg number is 15 for both model. 

 

4. Increasing fluid elasticity or inertia leads to larger recirculation lengths and 

eventually formation of symmetric vortexes.  

 

5. Strong impact of Re on the highest attainable We was observed for stable 

computations. At higher value of Re, upper limit of We should be reduced to 

get stable solutions for PTT and Oldroyd-B model. 

 
6. A detail examination of velocity profiles around the obstacle of PTT and 

Oldroyd-B flow reveal that streamwise velocity at high We flow delays 

recover undisturbed bulk velocity in the wake region for both flow at constant 

Re number. On the other hand, for PTT flow, required length to achieve the 

fully developed is nearly same for Newtonian flow at all We. But for 

Oldroyd-B flow with increased of We , elasticity of fluid leads to increase 

required length to achive the fully developed region in the wake compared to 

Newtonian flow. 
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7. With respect to vertical velocity changing around the obstacle for the flow of 

PTT, more symmetric distribution profile around obstacle is observed. With 

low elasticity flow, more raising vertical velocity is appeared. However, 

Oldroyd-B flow has overshoot and undershoot peaks especially at We=3. 

Absolute magnitude of vertical velocity component range is also higher than 

PTT.  
 

8. For viscoelastic flow case, pressure gradients are generated by dominancy of 

elasticity of flow in near front and rear stagnation point of the cylinder. 

Therefore, viscoelastic pressure drop values are also higher than Newtonian 

flow case due to increasing effect of longitudinal flow. Larger We attenuates 

the extensional viscosity and pressure for PTT flow. However, at Re=20, 

pressure drop gets amplified due to more breaking the fore-aft symmetry of 

flow around obstacle at higher We for Oldroyd-B flow. The pressure drop for 

PTT fluid is smaller than that of Oldroyd-B fluid owing to low stresses 

because of shear-thinning effects at high We. 

 

9. Higher We and higher Re are the stronger shear thinning effects that lead to 

the lower shear stress values as for PTT flow. An opposed to the PTT fluid 

flow, for Oldroyd-B flow absolute magnitude of shear stresses especially at 

the vicinity of obstacle (singularity point) increases compared to PTT in the 

flow field with increasing We and Re. However, shear stress relaxation is 

more quickly than PTT in the wake region. 

 

10. Another important feature is the response of normal stress behavior along the 

obstacle surface. Normal stress relaxation occurs between obstacle surface 

and the channel wall. PTT fluid delays normal stress momentum transfer 

from obstacle surface to the channel wall. As the deformation rate is raisen, 

shear viscosity decreases approaching to the channel wall and normal stress 

loss is observed. For Oldroyd-B model, all elastic or normal stresses are 
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nearly recovered and absorbed by the channel wall. It relaxes quickly elastic 

stresses compared as PTT model. 

 
11. Normal stress contours extend longer distances in the wake region as We is 

increased for both model. This is an expected result since higher relaxation 

times lead to longer convection distances of the stresses. 

 

12. Low We and high Re conditions favor formation of negative normal stresses 

in the flow regions with Hoop stresses for both model. However, For 

Oldroyd-B model, positive hoop stresses are also observed in the wake region 

at high We and Re conditions. 

 
13. Shear stresses are mainly observed in the region dominated by the flow 

tangential to the solid boundaries and that shear stresses get amplified at high 

Re. Flow is more stabilized due to relaxing of shear stresses for both model.  

 
 

14. Viscoelastic wake behind the square obstacle is longer than the Newtonian 

wake. This also supplies larger drag or drag enhancement in viscoelastic 

medium compared  with  Newtonian results. 

 

15. There is no single increasing or decreasing trend in Cd with respect to 

changes in We for PTT model. Up to a certain critical We value, that appears 

to be between 0 and 1, Cd gets elevated with increasing We due to the normal 

stresses. With further increase in We, Cd values get smaller due to stronger 

shear thinning effects. At a constant We, a reduction in Cd is observed when 

the value of Re is changed from 5 to 20 similar to Newtonian fluid case. 

Decreasing intensities of the vorticity in the wake region with respect to both 

We and Re are another indication of the smaller drag coefficient. 

 
16. When We increases, shear and normal stresses contributions to drag 

coefficient changes little owing to fluid constant viscosity at constant Re for 
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Oldroyd-B. Furthermore, Cd continues slightly to enhance with increased We 

for the high Re. For We<3, negative normal stress field around the obstacle 

has also decreasing effect in magnitude of normal stress contribution to drag 

coefficient. 

 

17. At Re=20, the variation of Cd with increased wr is nearly same for the range 

of We for both model. At high We flows, further increase of polymer 

concentration makes no significant contribution to Cd around the obstacle. 

 
18.  As CMC and Carbopol concentration increased, yield stress gets larger.  

 

19. MRI flow imaging at low Reynolds number are readily obtained from the 

gravity driven  experimental flow design. 

 
20. MRI velocimetry is an effective tool for obtaining accurate yield stress data 

for Carbopol solutions at low shear rate ranges. 

 
21. Carbopol solutions did not exhibit slip velocity at these low Reynolds 

numbers. 
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       6.2. Recommendations for Future Work 

 

Although in this study a complete modeling procedure for viscoelastic flow 

around the confined cylinder presented, there are several aspects that need to be 

investigated further.  

 

Firstly, experimental measurements on viscoelastic flow around the cylinder can 

be done using PIV system to see elastic effects of flow. Therefore, PIV system 

should be re-scaled to compare numerical results quantitatively. Furthermore, 

PIV system should be improved to get rheological information of flow field by 

combined with pressure drop measurements. 

 

Secondly, modeling of flow over multiple obstacles (two or three) can be 

implemented into code. The flow patterns and wake structures for the case flow 

over square cylinders are considerably different from flow over one cylinder. 

Because, vortex behavior around between obstacles affects drag coefficient 

characteristics of flow.  Such a further study is considerable fundamental interest 

because of the fact that the wakes of multiple bluff bodies placed next to each 

others create a complex flow structure. The understanding of this flow pattern as 

well as its exact mathematical modeling and numerical simulation is a 

challenging task. 
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