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ABSTRACT 

 

 

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF 

ULTRASOUND PROPAGATION IN PACKED BEDS 

 

 

 

Karakaş, Zeynep 

M.S., Department of Chemical Engineering 

Supervisor: Prof. Dr. Yusuf Uludağ 

 

February 2016, 119 Pages 

 

 

Ultrasound propagation through porous medium is investigated theoretically and 

experimentally in this study. Allowing measurements with opaque medium, giving 

fast measurements, requiring low cost and being non-invasive make the use of 

ultrasound based techniques convenient. Propagation of sound is directly related to 

the physical properties of a porous medium such as porosity, bulk modulus of 

medium, density of medium, particle size and physical properties of sound such as 

frequency. Therefore, it becomes possible to characterize a porous medium by using 

ultrasonic techniques provided that useful models capturing the sound propagation 

through such medium are readily available.    

Newton – Laplace equation is available for the investigation of ultrasound 

propagation through porous medium. According to Newton-Laplace equation, as 

porosity increases, sound velocity shows a negative dispersion as expected. Since 

this equation includes only the bulk modulus, density and porosity, dependence of 
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the sound speed on different characteristics of porous medium, such as particle size, 

cannot be captured. Therefore, Biot model is used to investigate frequency effect 

on sound speed.  

In Biot model, frequency range is in between 1 to 200 kHz for water saturated 

medium sand medium in which wavelength to grain size ratio is changing between 

375 and 18.75. For the water saturated glass beads media, lower limit of frequency 

again set as 1 kHz but upper limit is changing due to wavelength to grain size ratio. 

For that reason, upper limits of frequency are selected as 400 kHz, 1 MHz and 3.5 

MHZ, where wavelength to grain size ratio are 3.75, 2.14 and 1.6, for the porous 

media with size of grains 1 mm, 700 microns and 300 microns, respectively. In all 

porous media, phase velocity shows positive dispersion. Also investigation of 

attenuation coefficient shows that it increases with frequency up to a value; 

however it starts to decrease from that point. Since decrease in attenuation 

coefficient is an unexpected results, it is concluded that Biot model is not applicable 

for high frequency values. That’s why experimental studies are needed to be 

conducted for the investigation of high frequency effect on sound velocity.   

Frequency values, f, used in the experiments are 1 MHz, 2 MHz and 4 MHz. Size 

of medium sand is 400 microns and glass beads are 1 mm, 700 microns and 300 

microns. In all cases, wavelength to grain size ratio is very small which means value 

of wavelength is similar to grain size. Even for the frequency value of 4 MHz, grain 

size values are larger than wavelength. It is observed that phase velocity shows 

negative dispersion for each medium. Opposite to literature, deviation in sound 

speed has the lowest value for the medium with the highest grain size. Similarly, in 

contrast to literature, frequency dependency has the lowest value in the medium 

with the highest grain size. This is because of this medium having the higher grain 

size than wavelength. 

Keywords: Ultrasonic Doppler Velocimetry, Biot Model, Phase velocity, Signal 

Processing 
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ÖZ 

 

 

GÖZENEKLİ ORTAM İÇERİSİNDE ULTRASON YAYILIMININ TEORİK 

VE DENEYSEL OLARAK İNCELENMESİ 

 

 

 

Karakaş, Zeynep 

Yüksek Lisans, Kimya Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yusuf Uludağ 

 

Şubat 2016, 119 Sayfa 

 

 

Bu çalışmada gözenekli ortamlarda ultrason yayılımı teorik ve deneysel olarak 

incelendi. Opak ortamlara uygulanabilir olması, hızlı sonuç vermesi, düşük bütçeli 

ve zararsız olması ultrasonic teknikleri çalışmalara uygun hale getirmektedir. Sesin 

gözenekli ortamlarda yayılımı ortamın gözenekliliği, esneklik katsayısı, yoğunluğu, 

parçacık boyutu gibi ortamın fiziksel özelliklerine ve frekans gibi sesin fiziksel 

özelliklerine bağlıdır. Bu nedenle ultrasonic teknikler, uygun teorilerin kullanması 

ile gözenekli ortamların karakterizasyonunun yapılmasına olanak sağlar.  

Newton-Laplace denklemi gözenekli ortamlarda sesin yayılmasını gözlemlemek 

için kullanılır. Newton-Laplace denklemine göre gözeneklilik oranı arttıkça, 

beklendiği gibi ses hızında azalma gözlenir. Ancak bu denklemede kullanılan 

değişkenlerin sadece ortamın yoğunluğu ve esneklik katsayısı olması sebebi ile 

parçacık boyutu gibi diğer fiziksel değişkenlerin etkisi gözlemlenemez. Bu nedenle 

Biot teorisi kullanılmıştır.  
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Biot teorisi ile yapılan incelemede su ile doyurulmuş kum ortamı için frekans aralığı 

1 kHz ile 200 kHz arasındadır. Bu aralıkta dalga boyunun parçacık boyuna oranı 

375 ile 18.75 arasında değişmektedir. Su ile doyurulmuş cam boncuk ortamları için 

en düşük sınır 1 kHZ olarak ayarlanmış olup, yüksek limit dalga boyu ile parçacık 

boyu arasındaki ilişkiye göre ayarlanmıştır. Bu nedenle 1 mm, 700 mikron ve 300 

mikron boyutlarında parçacıklara sahip olan gözenekli ortamlar için yüksek limitler 

sırasıyla 400 kHz, 1 MHz ve 3.5 MHz olarak ayarlanmıştır. Bu frekans değerlerinde 

dalga boyunun parçacık boyuna oranı azalan parçacık boyutuna göre sırasıyla 3.75, 

2.14 ve 1.6’dır. Tüm gözenekli ortamlarda ses hızı artan bir dağılım göstermiştir. 

Ayrıca enerji yitimi katsayısı belli bir frekans değerine kadar artmış ancak 

sonrasında azalmıştır. Enerji yitim katsayısındaki beklenmedik azalma Biot 

teorisinin yüksek frekans değerleri için uygulanabilirliğini kaybettiğini gösterir. Bu 

sebeple yüksek frekans değerlerinin ses yayılımına etkisini gözlemlemek için 

deneysel çalışmalar yapılmıştır.  

Deneysel çalışmalarda kullanılan frekans değerleri 1 MHz, 2 MHz ve 4 MHz’dir. 

Kullanılan kumun boyutu ortalama 400 mikron, cam boncukların boyutları ise 1 

mm, 700 mikron ve 300 mikron’dur. Bu parçacık boyutları ve çalışılan frekans 

değerleri için dalga boyu parçacık boyuna çok yakındır. Hatta 4 MHz frekans değeri 

için parçacık boyutları dalga boyundan daha büyüktür. Bütün ortamlarda ses 

hızında azalan bir dağılım gözlenmiştir. Daha önce yapılan çalışmaların tersi olarak 

ses hızındaki sapma en büyük parçacık boyuna sahip ortam için en küçük değere 

sahiptir. Aynı şekilde enerji yitimi katsayısının frekansa olan bağlılığı en büyük 

parçacık boyutuna sahip ortam için en küçük değere sahiptir. Bu farklılıkların 

nedeni bu ortam için parçacık boyunun dalga boyundan daha büyük olmasıdır.  

Anahtar Kelimeler: Ultrasonic Doppler Velocimetry, Biot Teorisi, Faz Hızı, 

Sinyal Prosesi 
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          CHAPTER 1 

 

1. INTRODUCTION 

 

 

In recent years, investigating sound propagation through porous medium by the 

help of ultrasonic methods has become promising because of some advantantages 

of this method. Allowing measurements with opaque medium, giving fast 

measurements, requiring low cost and being non-invasive make this technique 

convenient (Mihoubi et al. 2008). The main purpose of the studies on the sound 

propagation inside a porous medium is to develop a practical method to investigate 

the medium morphology in terms of porosity, bulk modulus of medium, density of 

medium etc. Sound measurements are done to reveal impact of the medium on 

sound speed and/or amplitude. Although for a single medium, speed of sound is 

calculated according to Newton-Laplace equation, for porous media this equation 

cannot be applied directly. This is because of the change in amplitude or energy of 

sound waves. As the ultrasonic wave propagates through a medium, it loses some 

of its energy due to scattering, absorption and reflection which is called as 

attenuation (Pandey and Pandey, 2010). These energy loss mechanisms are effected 

by the medium and sound wave properties.   

The first study to investigate the ultrasound propagation in a fluid-saturated porous 

media was done by Biot in 1955. The study was based on demonstrating a model 

in which phase velocity and attenuation were depended on frequency, elastic 

properties of the materials, porosity, permeability, and tortuosity. The main 

assumption behind this model was that the wavelength was much larger than the 

grain size. In the model, water saturated silt medium was used and therefore the 
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size of the grains was approximately 500 micrometers and the frequency values 

were lower than 400 kHz. In this theory, equation of motion for each phase were 

derived and these derivations were developed based on energy considerations 

(Fellah et al. 2008). For a selected cubic control volume, forces exerted on solid 

and fluid parts were defined as stress and pressure, respectively. Furthermore, 

kinetic energy was defined according to particles displacement as sound wave 

propagates and forces are defined by Lagrange equations (Sharma, 2007). By the 

equality of these forces, speed of sound and attenuation were obtained. The Biot’s 

theory estimated two compressional waves and one shear wave propagating through 

the medium. Moreover, the model stated that these three waves were dispersive in 

the region of maximum attenuation (Turgut and Yamamoto, 1990). According to 

Biot’s model, phase velocity exhibited positive dispersion with increasing 

frequency. Furthermore; attenuation showed f dependency which means 

attenuation increases linearly with increasing frequency.  Based on the main 

assumption, the only reason for the attenuation was absorption (Biot, 1955). 

Nevertheless, as the frequency values increase or the grain size increases, the size 

of the wavelength and the grain size approaches to each other and the attenuation 

mechanism changes. Hence, scattering becomes more important than absorption 

(Ohkawa, 2006). In order to investigate the effect of high frequency range, Biot also 

published another paper which includes high frequency range. 

Robb et al. experimentally investigated the frequency dependency on sound speed 

and attenuation with the frequency range between 16 to 100 kHz. They used water 

saturated sandy and silty sediments as the porous media. They observed that 

although the sound speed was non-dispersive in sandy sediment, it exhibited 

positive dispersion in silty sediments and this was because of that the sand sediment 

has higher grain size than that of silty sediment. Moreover, the frequency 

dependence of attenuation was linear. These results were similar to those reported 

by Biot for low frequency range (Robb et al. 2006).  



3 
 

Biot made the investigation with higher frequency range which was determined by 

critical frequency values in which the Poiseuille flow breaks down. He followed 

similar methodology that he used for the low frequency values. However; in this 

situation viscous correction factor was needed to be identified in order to investigate 

the deviation from Poiseuille flow with changing frequency values. In this study, 

Biot again observed positive dispersion for the sound propagation; however, when 

the frequency values were increased the attenuation dependency showed not f 

dependency but f0.5 dependency which indicated a non-linear dependency of sound 

attenuation on the frequency (Biot, 1956).  

Hampton experimentally studied the ultrasonic propagation through porous 

medium and this time the porous medium was water-saturated clay and water 

saturated clay-sand mixtures. The controlled physical parameters were grain size 

and volume concentration. For that reason, Hampton investigated sound speed and 

attenuation for three different media; 15% sand by weight, 30 % sand by weight 

and pure sand. The frequency range was in between 4 to 600 kHz that included both 

the low frequency range and high frequency range compared to grain size used. 

According to his study, sound speed showed positive dispersion. However, 

attenuation was nonlinear. For the 15% sand by weight the attenuation showed f1.37 

dependency, for the 30 % sand by weight it showed f0.7 dependency and for the pure 

sand it showed f0.5 dependency (Hampton, 1697). 

Turgut and Yamamoto investigated ultrasound propagation through sediments 

experimentally and theoretically. Sediments are formed using different size of 

grains which are silt, medium sand, coarse sand and porous rock. Phase velocity 

was not different from what Biot observed. Again phase velocity showed positive 

dispersion and deviation was found as 8.9% changing between 1580 m/s and 1720 

m/s. Also the attenuation mechanism was due to viscous losses. The main purpose 

of this study was to calculate porosity and permeability values for a porous medium. 

Calculated porosity values based on the experimental results showed well 
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agreement with the input parameters for the Biot model for sand medium when the 

frequency values were in between 1 and 30 kHz (Turgut and Yamamoto, 1990).  

Kim et al. investigated the dependency of ultrasound propagation on frequency and 

porosity and they used water saturated sandy sediments as porous medium. The 

frequency values they used were in between 0.15 MHz and 1 MHz. In this study, 

the experimental values were compared with the theoretical results done according 

to Biot’s model. Experimental phase velocity showed well agreement with Biot’s 

model and showed positive dispersion when the frequency values were higher than 

0.7 MHz. However, although the attenuation values agreed well with the Biot’s 

theory in the frequency range from 0.15 MHz to 0.7 MHz, it showed disagreement 

in the frequency range from 0.7 MHz to 1 MHz. This can be because of the changes 

in the attenuation mechanism since it is known that as the frequency values increase 

the main mechanism for attenuation is scattering as opposed to absorption (Kim et 

al. 2004). 

Nolle et. al., made the investigation by using three frequency values, 0.2 MHz, 0.5 

MHz and 1 MHz and the grain size were 80, 160, 320 and 640 microns. According 

to their results sound speed was independent of the grain size and frequency. 

However, attenuation showed f1/2 dependency which was identical to the result of 

Biot’s model for high frequency values. Here the viscous effects were suggested as 

the main attenuation mechanism (Nolle et al. 1963).  
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Table 1. Summary of earlier studies in which positive dispersion is observed 

(Robb et al. 2006) 

Researcher 
Sediment 

Type 

Frequency 

(kHz) 
Velocity (m/s) 

Attenuation 

Coefficient 

(dB/m) 

Shumway (1960) Sand 20-40 - 0.1-2.48 

Hampton (1967) Clay 3-200 (0.93-0.99).Vwater 1-200 

McCann (1967) Silt 375-935 1560-1741 - 

Lewis (1971) Silt 5-50 - 0.3-1.86 

Hamilton (1972) Sand 14-100 1704-1712 0.6-74.3 

Hovem et al. 

1979) 

Glass 

beads 
20-300 - 3-34 

McLeroy & 

DeLoach (1986) 

Sand/Silt 

/Clay 
15-1500 

1.189.Vwater (non-

dispersive) 
- 

Turgut & 

Yamamoto 

(1990) 

sand 1-30 1580-1720 - 

Courtney & 

Mayer (1993) 

Silt and 

Clay 
100-1000 - 40-150 

Stoll (2001) Sand 0.125-50 1580-1755 
- 

 

Buckingham& 

Richardson 

(2002) 

Sand 25-100 1727-1797 8-60 

Williams et al. 

(2002) 
Sand 0.125-400 (1.05-1.17).Vwater - 
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As explained in all of these studies, phase velocity showed positive dispersion both 

experimentally and theoretically. However, according to the investigation of Kang 

et. al. (2007), phase velocity showed negative dispersion. In their study they used 

frequency values in between 0.3 MHz and 1 MHz and the grain size were in 

between 250 to 500 microns. They investigated phase velocity and attenuation both 

experimentally and theoretically. According to the experiment they conducted, 

decrease in phase velocity with respect to increasing frequency indicated a negative 

dispersion. However, when the experimental results were compared with the 

theoretical ones, some disagreements were observed. According to Biot’s theory 

phase velocity was non dispersive in this frequency range. Moreover according to 

grain-shearing model phase velocity showed very little positive dispersion. Also 

attenuation showed nonlinear increase with frequency experimentally. Grain 

shearing modeling, on the other hand, predicted a linear increase. According to 

Biot’s theory, however, it was constant. The disagreements between the 

experimental values and theoretical values were mainly because of the assumed 

attenuation mechanism. Since scattering is the principal mechanism for phase 

velocity and for the sound attenuation dependence on frequency at high frequencies 

(Lee et al. 2007).  

However, in these studies wavelength was much larger than the grain size. This is 

one of the important criteria for the mechanism of scattering that causes attenuation. 

If the wavelength is much larger than the grain size all the scattered wave spreads 

uniformly. However, when the grain size is much larger than the wavelength half 

of the scattered wave spreads less uniformly and also behind the obstacle an edge-

shadow happens (Morse and Ingard, 1968). In the study of Salin and Schön, 

frequency range was from 200 kHz to 10 MHz and the grain size was in between 

50 to 500 microns. For the experimental investigation they used four sets: S1 (40-

50 microns), S2 (80-100 microns), S3 (200-250 microns) and S4 (400-500 

microns). In the experimental results, it was stated that for the low frequency values 

where the wavelength was high, attenuation increased as grain size decreased. 
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However, for the high frequency values where the wavelength was low, attenuation 

increased as grain size increased because of the Rayleigh scattering. Furthermore, 

it was observed that based on the grain size the dependency of attenuation changed 

between f to f4 (Salin and Schön, 1981).  

Another study that investigated the ultrasound propagation was reported by Lee et. 

al. They used 400 kHz to 1.1 MHz for frequency values and the grain size were in 

between 90 to 875 microns. As Salin and Schön did, they made the experiments 

with six particle sets. S1 (90 microns), S2 (150 microns), S3 (375 microns), S4 (500 

microns), S5 (625 microns) and S6 (875 microns). Although sound speed exhibited 

negative dispersion, they could not observe the sound speed for the S6 set after 

frequency value 600 kHz. Since for this grain size, as the frequency values 

increased wavelength became as the same with grain size and velocity showed a 

sharp negative dispersion. Moreover, attenuation dependency changed between f to 

f4 dependency. For the S1 and S2 sets it followed f dependency, for the S3 set when 

frequency values were lower than 500 kHz it followed f dependency while when 

the frequency values were higher than 800 kHz it followed f2 dependency, and for 

the S4, S5 and S6 sets it showed f4 dependency (Lee et al. 2009) 

Sessarego and Guillermin also investigated the sound propagation by using 200 kHz 

to 900 kHz as frequency range and 70 microns to 3.3 mm as the grain size range. 

The sets for the investigation were E1 (70-110 microns), E2 (200-400 microns), E3 

(400-600 microns), E4 (1-2.5 mm) and E5 (2.5-3.3 mm). Again they observed 

negative dispersion for the phase velocity and nonlinear increase for the attenuation 

coefficient. For the set E2 it followed f dependency, for the set E3 when frequency 

values were lower than 600 kHz it followed f dependency and f2 dependency for 

the frequency values were higher than 600 kHz, and for the set E4 it followed f4 

dependency for the frequency values were higher than 300 kHz. It was clearly seen 

that for the high frequency values, as the grain size increased attenuation also 

increased (Sessarego and Guillermin, 2012).  
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According to the earlier studies, propagation of ultrasound in a porous medium is 

mainly related to attenuation and the attenuation dependency on sound frequency 

is related to grain size. For that purpose, the aim of this study is to investigate the 

ultrasound propagation in porous medium when the wavelength is at the same order 

with the grain size. In this study the frequency values are 1 MHz, 2 MHz and 4 

MHz and the grain size range is in between 300 micron to 1 mm. Corresponding 

ultrasound wavelengths are 3.75, 0.75 and 0.375 mm, respectively. Furthermore, 

the experimental results are compared with those of the theoretical model that is 

constructed by Biot.  
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           CHAPTER 2 

 

2. PHYSICS OF ULTRASOUND 

 

 

2.1. Sound and Ultrasound 

Sound is a kind of a vibration travels through an elastic medium as a mechanical 

wave of pressure and displacement. Propagation of sound depends on particles. 

Particles are initially at equilibrium and as sound propagates, the perturbations 

make tiny particle to move from their equilibrium positions. The disturbed particles 

remove their original place and this procedure repeats itself. By this way, sound 

wave propagates through only an elastic medium.  

According to the number of waves that complete their cycle in a given amount of 

time, sound waves can be grouped as subsonic range, audible range and ultrasonic 

range. For the ultrasonic measurements, there are upper and lower limits. Lower 

limits is related to the wavelength of the wave at this frequency because as the 

wavelength becomes larger means frequency is lower, then the spatial resolution 

becomes poorer. Besides, upper limits are related to the power levels because as the 

frequency increases, attenuation also increases and by this way very small amount 

of wave returns to the transducers (Messer, 2005).   
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Figure 1. Schematic representation of sound ranges (Panametrics, 2004) 

 

As it is seen from Figure 1, ultrasound has the wave travelling at frequencies above 

20 kHz, which is above the range of human hearing. Since the frequency is higher 

than that of audible sound, wavelength of the ultrasound is lower than that of 

audible sound. This property of ultrasound makes it more suitable for the 

measurements. Ultrasonic wave can be reflected with very small particles and for 

that reason ultrasonic measurements are non-destructive (Pandey and Pandey, 

2010). 

Ultrasonic waves can be categorized into four groups such as longitudinal waves, 

shear (transverse) waves, surface waves and Lamb waves (Messer, 2005). But the 

most common ones are longitudinal and transverse waves. In longitudinal wave, the 

displacement of the particle as sound propagates are parallel to the direction of the 

propagation, whereas in transverse waves the displacement of the particles are 

perpendicular to the direction of propagation as shown in Figure 2 (Pandey and 

Pandey, 2010). Surface waves propagate between two different media with an 

elliptical particle motion. Finally, Lamb waves are elastic waves and the particle 

motion is in the plane which contains the direction of wave propagating (Olympus, 

2010). 
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Figure 2. Representation of longitudinal wave (top) and transverse wave (bottom) 

(Støylen, 2015) 

 

Ultrasonic waves travels through solid, liquids and gas medium as both longitudinal 

and transverse waves; however, in liquids longitudinal waves are dominant and in 

gases transverse waves are negligible (Bruneau, 2006).  

2.2. Properties of Ultrasound  

2.2.1. Frequency and Wavenumber 

Number of cycles that are completed in a given time is called as frequency and it is 

measured as Hertz (Hz) or cycles per second (cps). Moreover, if this complete cycle 

is completed in one seconds (which is equal to 1 Hz), then angular frequency is 

equal to; 

𝜔 = 2𝜋𝑓 (1) 

Since frequency measures the cycles, it is directly related with wavelength. A 

wavelength of sound wave is the distance between two complete cycles. 

Multiplication of frequency and wavelength gives the sound speed in this medium. 

Sound of speed in a medium is related to the properties of medium and other factors 

affecting the properties of the medium such as humidity, pressure, temperature etc. 

For sound to propagate in a medium, the medium should contain particles and be 
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elastic. For that reason, sound cannot propagate in vacuum. Furthermore, as the 

intensity of particle in the medium increases, the speed of sound increases. That is 

why the speed of sound in solid is higher than the speed of sound in air. In Table 2, 

typical sound speed in different media are tabulated. 

 

Table 2. Sound speed in different media 

Material Sound Velocity (m/s) 

Air 330 (Bjornsson, 2013) 

Water 1497 (Greenspan, 1957) 

Blood 1570 (Azhari, 2010) 

Bone 2100 – 3300 (Nemet, 2001) 

Metal 3000-6000 (Støylen, 2015) 

Muscle 1550 – 1630 (Laugier, 2011) 

 

 

The relationship between the sound speed and frequency is as follows; 

𝑐 = 𝜆 ∙ 𝑓   (2) 

Typical ultrasonic devices make the measurements in the frequency range between 

2 to 15 MHz (Laugier, 2011). In Figure 3, representation of high and low frequency 

values are illustrated. Since frequency and wavelength are inversely proportional, 

it is seen that sound has a higher wavelength in which frequency is lower.  
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Figure 3. Representation of short and long wavelength (Usra, 2015) 

 

Also, the number of wavelengths per distance can be found by wavenumber by 

following relation; 

𝑘 =
2𝜋

𝜆
 

(3) 

 

2.2.2. Phase Velocity and Group Velocity 

For a single frequency value, phase velocity gives the propagation of a given phase. 

For a given point x in the coordinate system, if the phase term (𝑘𝑥 − 𝑤𝑡) is constant 

then the term cos(𝑘𝑥 − 𝑤𝑡) is also constant. That means, the phase velocity gives 

the propagation of the same point in a wave. This is called as phase velocity 

(Karaoğlu, 1998). For the ultrasonic measurements, if phase velocity is dependent 

on frequency, the medium is said to be dispersive. It means that for different 

frequency values phase velocity does not travel at constant velocity. For a 

dispersive medium, group and phase velocities correspond to different velocities. 

Group velocity is the velocity where sound energy is transported in the propagation 
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direction (Laugier and Ha¨ıat, 2011). According to the relationship between the 

phase velocity and group velocity, medium can be categorized. For the cases in 

which phase velocity and group velocity are equal to each other, medium in non-

dispersive. Larger phase velocity compared to the group velocity (which is 

expected) indicates dispersive medium. On the other hand, for the cases in which 

group velocity is larger than the phase velocity, medium is anomalous dispersive 

(Santhanam, 2015). Phase velocity can be calculated by the following equation (He, 

2000); 

𝐶𝑝 =
2𝜋𝑓𝑑

2𝜋𝑓
𝑑
𝐶𝑟

− ∆∅
 

(4) 

In equation 4, f is the frequency, d is the distance between the transducer and 

receiver and ∆∅ is the unwrapped phase delay. For the calculation of unwrapped 

phase delay following equation can be used; 

∆∅ = arctan(
𝐼𝑚

𝐴𝑔

𝐴𝑟

𝑅𝑒
𝐴𝑔

𝐴𝑟

) + 2𝑛𝜋 

(5) 

In equation 5, Ag is the fast Fourier transform of signals that is received when sound 

is propagated through grains and Ar is the fast Fourier transform of signals that is 

received when sound is propagated through reference medium.  

2.2.3. Amplitude 

Amplitude is the energy of sound waves and related to the changes in pressure of 

the medium. Higher amplitude values correspond to higher energy of the sound 

waves. In Figure 4, it is seen that sound has a higher amplitude when its energy is 

higher.  
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Figure 4. Representation of higher and lower amplitude values of a sound wave 

(Henderson, 2015) 

 

2.3. Attenuation 

Sound attenuation is one of the important parameters in the measurement of 

ultrasonic systems. It is the decrease of the energy of sound as it propagates through 

a medium due to some mechanisms; such as, scattering, absorption and diffraction 

(Lionetto, 2009). Attenuation occurs because of absorption due to the change in the 

physical properties of the system and attenuation occurs because of scattering and 

diffraction due to shape and macroscopic structure of the medium (Pandey and 

Pandey, 2010). 

2.3.1. Reflection 

The main assumption for this attenuation mechanism is that particles or 

inhomogeneity are larger than ultrasound wavelength. When ultrasonic wave 

strikes a smooth plane, part of it is transmitted to the medium while the rest is 

reflected. As can be seen in Figure 5, according to phase of the planes, transmitted 

wave mechanism changes. Since sound travels in the solid as longitudinal and shear 

waves, when sound propagates through a fluid medium to a solid medium, there 

happens two transmitted waves as shear and longitudinal waves. On the other hand, 

since sound propagates through a fluid medium only as longitudinal wave, when 

the two media are in fluid phases then only transmitted wave is longitudinal wave. 
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Figure 5. Reflected and transmitted wave; fluid-fluid interaction (on the left), 

fluid-solid interaction (on the right) (Laugier, 2011) 

 

The relationship between the refracted and reflected waves is explained by Snell’s 

law. It states that the angle of the incident wave is equal to the angle of reflected 

wave and the relation between the transmitted wave angle and incident wave angle 

for the fluid-fluid interface is; 

𝑠𝑖𝑛𝜃2

𝑐2
=

𝑠𝑖𝑛𝜃1

𝑐1
 

  (6) 

Furthermore, the relation for the solid-fluid interface is; 

sin (𝜃1)

𝑐1
=

sin (𝜃2𝐿)

𝑐2𝐿
=

sin (𝜃2𝑇)

𝑐2𝑇
 

  (7) 

Longitudinal waves travel in solids faster than in fluids. For that reason, the angle 

of transmitted wave is higher than the angle of incidence wave. Furthermore, if the 

angle of incident wave is higher than a critical angle (𝜃c), there is no longitudinal 

wave. This critical angle is represented as (Laugier, 2011);  

sin(𝜃𝑐) =
𝑐1

𝑐2𝐿
 

  (8) 
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2.3.2. Absorption 

Absorption is the energy loss due to conversion of mechanical energy of the sound 

wave to heat. Viscous effects are the reason for the absorption of sound waves. 

Absorption depends on sound frequency and density of the medium. As the 

frequency increases, absorption increases. Likewise, as the density of the medium 

increases, adsorption increases. For that reason, adsorption is higher in solid 

materials than that of fluid materials (Støylen, 2015).     

2.3.3. Scattering 

As ultrasonic waves propagate in a medium and strike to an inhomogeneity part of 

it is scattered. This inhomogeneity represents any difference in density or bulk 

modulus within the system. This phenomena is dependent on the relationship 

between the wavelength of the ultrasonic wave and the size of inhomogeneity. 

 

 

 

Figure 6. The scattered wave representations for different surfaces 

 

The first image in Figure 6 shows perfect scattering and most of the energy of sound 

reflects with high amplitude as the fourth one. However; in the second and third 

images, almost all energy of sound is reflected but probe, which is the device taking 

and conveying measurements, gets less amplitude. The last one represents irregular 
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surface and the sound wave scatters in all directions and again the sound energy 

obtained in the probe has low intensity (Støylen, 2015).     

Relationship between the wavelength and the grain size is the most important 

parameter for the scattering mechanism. If the grain size is much lower than the 

wavelength then the scattered wave is propagated in all directions. On the contrary, 

if the grain size is much higher than the wavelength or at the same size, half of the 

sound waves scatter and the other half is collected behind the grain and create a 

sharp-edged shadow (Morse, 1968). 

 

Table 3. Attenuation coefficient values for different media 

Medium Attenuation coefficient (dB.cm-1MHz-1) 

Cancellous bone 10 - 40 

Cortical Bone  1 – 10 

Fat 0.8 

Muscle 0.5 – 1.5 

Skin 2 - 4 

 

 

2.4. Ultrasonic Field 

According to Huygen, when a source generates a sound wave, these waves can 

create a secondary wave front which also creates secondary source as time passes. 

This new wave front creation leads to decrease in the energy and intensity of the 

wave. In Figure 7, representation of created new wave-front is exemplified.  
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Figure 7. New wave-front representations according to Huygen’s principal 

(Physicsmynd, 2014) 

 

In Figure 8, ultrasonic field is represented based on Huygen’s principle. As can be 

seen, when sound wave is generated, in the near field, waves are moving as 

cylindrical shape. The amplitudes in this regions are changing and creates many 

maximum and minimum points. On the other hand, in the far field, sound waves are 

travelling as conical shape. As the distance increases, intensity and amplitude of the 

waves are decreasing as Huygen stated (Kino, 1987). 

 

Figure 8. Representation of ultrasonic field (Signal-Processing, 2015) 

 

.  
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    CHAPTER 3 

 

3. EXPERIMENTAL 

 

 

3.1.Design of UDV 2000 

DOP 2000 is a pulsed ultrasonic Doppler velocimetry. In general architecture of 

the system is illustrated. System parameters are emitting frequency, PRF, 

emitting power, sensitivity, number of gates, resolution, burst cycle, etc. 

Through user interphase, axial resolution, position of first channel, number of 

gates, PRF and burst length can be selected. After identifying these parameters, 

master oscillator provides trigger for the emission of signal at specified emitting 

frequency and emitting power. Signal coming from the master oscillator is gated 

by the help of pulse repetition frequency generator. Afterwards, signals are 

amplified and by this way transducer is activated. In pulsed velocimetry, single 

transducer is used both to emit and receive the US signal. Another important 

parameter is the time gain control which is arranged to avoid saturation. After 

filtering the signal, it is again amplified and converted to digital signal by 

analog/digital converter. For the further processing, sensitivity, number of 

profiles to record, number of emissions per profile and computation and display 

can be adjusted.   

4.  

  

 



22 
 

Logical Unit
Master 

Oscillator
Gate

Emission 

Amplifier

Reception

Amplifier

Synchronized 

Demodulation

Low-Pass 

Filter

Sample/Hold

Circuit

Band-Pass 

Filter
Amplification

Analog/Digital

Converter

Further 

Processing

Pulse Length

Adjust

Gate Position/

Length

Adjust

SYSTEM

  

Figure 9. Design of DOP 2000 Velocimetry (Messer, 2005) 

 

3.2. Parameters of DOP 2000 

3.2.1. Emitting Frequency 

The electrical signal is converted into mechanical energy by transducers and by this 

way sound waves are generated. The emitting frequency is therefore related to the 

transducer specifications. In emission amplifier panel in DOP 2000, emitting 

frequency can be chosen from 0.5 MHz to 8 MHz in 1 kHz steps based on the 

connected transducer.  

3.2.2. Pulse Repetition Frequency and Burst Length 

This is the number of the pulses sent to the system in unit time. This is one of the 

important parameters for the ultrasonic measurements because it determines the 

maximum measurable depth.  
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Figure 10. Representation of pulse repetition frequency and burst length 

(Davison, 2015) 

 

In Figure 10, a wave signal is represented with a pulse repetition time.  In DOP 

2000, pulse repetition frequency can be selected as microsecond, millimeter and 

Hertz. The values are changing in between 64 μs and 10000 μs. In pulsed ultrasonic 

velocimetry, a signal with a defined pulse length is emitted to the system which is 

denoted as the burst length. This is also important parameter because according to 

the burst length, the sample volume is determined.  



24 
 

 

Figure 11. Representation of sample volume (Messer, 2005) 

 

DOP 2000 sends the signals to the system as bursts and these signals hit an 

inhomogeneity and then receives back. While the signals are turning back, they are 

sampled in a region which is called as sample volume and it is illustrated in Figure 

11. This sample volume is related to the delay time. Hence, it can be said that, delay 

time determines the sample volume size and sample volume size determines the 

resolution. In DOP 2000, the burst cycle can be chosen as 2, 4 and 8 cycles. 

3.2.3. Resolution 

Resolution is the distance between the sample volumes. In order to obtain more 

meaningful results, there must be some distance between sample volumes. There 

are two types of resolution; lateral and axial. Lateral resolution is the distance 

between the samples volumes in a plane which is perpendicular to the beam; on the 

other hand, in axial resolution it is the distance in sample volumes which are parallel 

to the beam (Dumond, 2006). In DOP 2000, resolution is arranged according to 

PRF, emitting frequency and burst length.  
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3.2.4. Time Gain Control (TGC) 

In the system, the emitted signal is amplified by the emission amplifier. If, the 

amplification level is not reduced then the saturation occurs. In Figure 12, the image 

on the bottom shows the saturation. Since the set value is lower than the amplitude 

of the signal, the maximum peak gives the set value. If the amplification level is 

decreased, then the system gives the real value of the amplitude. Hence, it can be 

concluded that if saturation occurs, received signal does not give the correct values, 

therefore amplification level should be reduced by time gain control (TGC). This 

arrangement can be done in three ways. First one is the slope method in which the 

start and end values of TGC are introduced to the system. Second one is the custom 

method in which the region is selected. Finally the third one refers to uniform 

method in which a constant value of TGC is entered into the system.  

 

Figure 12. Representation of saturation in the system (Upadhyay, 2015) 
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3.3. Experimental Procedure 

3.3.1. Porosity Calculation 

For the porosity calculation, a tank (100 mL) filled with grains is saturated with 

water at room temperature. Porosity is the fraction of void space volume and total 

volume. Since the void is filled with water, volume of water needed to saturate glass 

beads are calculated by the density definition. Since both the total volume and water 

volume (void space volume) is known, based on the definition of porosity, it is 

calculated for each medium. Porosity values for each medium are given in 

Table 4.  

 

Table 4. Porosity values for water saturated porous media 

Grain Size (m) Porosity 

1 ∙ 10−3 0.39 

7 ∙ 10−4 0.34 

3 ∙ 10−4 0.3 

 

3.3.2. Speed of Sound Measurement for water medium 

Sound speed in a medium can be measured by the help of DOP 2000. Necessary 

parameters are the frequency value, time gain control (TGC) and measurement 

distance. By changing the TGC value, saturation is eliminated from the system. 

After setting these values, maximum peak is selected in the panel. Then, distance 

between the transducer and receiver is changed based on the value entered to system 

as measurement distance. In DOP 2000, time is measured which is necessary for 

sound to travel the measurement distance and by this way sound speed can be 

calculated. In Figure 13, experimental setup is shown with sound speed 

measurement unit.  
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Figure 13. Experimental setup 

 

3.3.3. Speed of Sound and Attenuation Measurement in Porous Medium 

Porous media are created with glass beads and medium sand. Glass beads have the 

size of diameter as 1 mm, 700 microns and 300 microns. Also, according to sieve 

analysis, diameter of medium sand is approximately 400 microns. For the 

development of model, bulk modulus value for the grains are taken from the 

literature. 

Frequency values used in this study are 1 MHz, 2 MHz and 4 MHz. In the frequency 

ranges, sound has a wavelength 1.5, 0.75 and 0.375 mm, respectively. After creating 

water saturated porous media, samples are waited for half a day in order to get rid 

of the bubbles because bubbles also effects the propagation of sound. In order to 

calculate phase velocity, equations 4 and 5 are used. From the experimental setup, 

in-phase and quadrature values of signals in media are taken and they are converted 

into ASCII format by the help of a software (AnalIQ). Parameters are arranged 

according to porous media and frequency values. These parameters are emitting 

power (low), PRF (7812 Hz), TGC (6 dB), resolution and gates number. Arranged 

resolution and gates number are tabulated in Table 5.  
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Table 5. Parameters for the experimental setup 

1 MHZ Resolution: 2.44 

Gates Number: 36 

2 MHz Resolution: 1.31 mm 

Gates Number: 68 

4 MHz Resolution: 0.75 mm 

Gates Number: 100 

 

From the system, amplitudes are obtained for an interval of time. In order to 

calculate attenuation, amplitude values are needed to be achieved from the system. 

Also, for phase speed calculation in-phase, quadrature and amplitude values are 

taken for the water medium. Since the media are saturated with water, values 

obtained for water medium are the reference values.  
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      CHAPTER 4 

 

4. RESULTS AND DISCUSSION 

 

 

4.1. Newton –Laplace Equation 

As sound propagates through a medium, it firstly compresses the molecules and 

then rarefactions. When the molecules are compressed, heat is liberated. However, 

since the procedure is very fast, sound propagation is an adiabatic process. 

Furthermore, the disturbed particles during this process turn to their initial 

positions. Hence this process is also reversible.  For that reason it is concluded that 

this process is not an isothermal process as Newton suggested. Instead it is an 

isentropic process as Laplace suggested. Therefore, for gases, sound velocity can 

be written as the following formula;  

 𝑉2 =
𝛾 ∙ 𝑃

𝜌
 

(9) 

In equation (9) , γ.P gives the isentropic bulk modulus for an ideal gas and 𝜌 is the 

density of the medium. So for gases sound velocity can be calculated by the 

following formula;  

𝑉2 =
𝐾

𝜌
 

(10) 

In equation (10), K is the isentropic bulk modulus for gases. For solid and liquid 

medium isothermal bulk modulus and isentropic bulk modulus are very similar. 

This information makes useful this equation also for liquid and solid phases. In 

Table 6, sound velocity values are tabulated for different media based on Newton-

Laplace equation at room temperature. When sound speed values in the following 
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table are compared with the values in Table 2, it is seen that literature values are 

similar to the values obtained by Newton-Laplace equation. 

 

Table 6. Sound velocity values for different medium calculated by Newton-

Laplace equation at room temperature 

 

 

While sound waves travel through a porous medium, they are effected by the 

parameters of porous medium such as porosity, permeability, density of medium, 

bulk modulus of medium, grain size etc. Therefore, if the influence of these 

parameters on sound waves are well defined, then they can be obtained using a 

technique based on ultrasonic measurements. For that purpose, firstly porosity 

dependency on sound propagation is investigated. First investigation is done using 

Medium Density (
𝒌𝒈

𝒎𝟑) 
Bulk Modulus 

(Pa) 

Calculated 

Sound 

Velocity 

(m/s) 

Water 1000 (Turgut,1190) 
2.3 ∙ 109 

(Turgut, 1190) 
1516 

Air 1.292 (Harris, 1984) 
1.42 ∙ 105 

 (Halliday, 1997) 
340 

Bone 1900 (Halliday, 1997) 
9 ∙ 109  

(Halliday, 1997) 
2176 

Blood 1060 (Wang, 2006) 
2.2 ∙ 109 

 (Mourad, 2000) 
1440 

Steel 7860 (Halliday, 1997) 
1.6 ∙ 1011  

(Halliday, 1997) 
4512 
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Newton-Laplace equation. This equation is valid for a single medium but if the 

density of medium and bulk modulus of medium are calculated, then this equation 

can be applied for a porous medium. In Table 7, parameters for water saturated 

medium sand medium and water saturated glass beads medium are tabulated.   

 

Table 7. Parameter used in Newton Laplace equation for both water saturated 

medium sand medium and water saturated glass beads medium (Turgut, 1990) 

Density of water (𝑘𝑔/𝑚3) 𝜌𝑓 1000 

Density of medium sand( 𝑘𝑔/𝑚3) 𝜌𝑠 2650 

Density of glass beads (𝑘𝑔/𝑚3) 𝜌𝑔 2460 

Bulk modulus of water (𝑃𝑎) 𝐾𝑤 2.3 ∙ 109 

Bulk modulus of medium sand (𝑃𝑎) 𝐾𝑔 3.6 ∙ 1010 

Bulk modulus of glass beads (𝑃𝑎) 𝐾𝑠 4.15 ∙ 1010 

 

 

According to Hampton and Wood (Hampton, 1967) density and compressibility of 

the medium are depended on porosity; therefore these parameters can be written in 

terms of porosity by volume averaging method.  

𝜌 = 𝜌𝑓 ∙ 𝛽 + 𝜌𝑔 ∙ (1 − 𝛽) (11) 

𝑘 = 𝑘𝑓 ∙ 𝛽 + 𝑘𝑔 ∙ (1 − 𝛽) (12) 

𝐶 = √
𝐾𝑓𝐾𝑔

(𝐾𝑔𝛽 + 𝐾𝑓(1 − 𝛽)(𝜌𝑓𝛽 + 𝜌𝑔(1 − 𝛽))
 

(13) 
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Figure 14. Sound velocity versus porosity for water saturated medium sand 

medium obtained from Newton Laplace equation by averaging theorem 

 

Sound propagates at velocity 3685 m/s in medium sand according to Newton-

Laplace equation. In Figure 14, this value corresponds to the bulk material or zero 

porosity. As porosity increases, medium starts to contain both solid and fluid 

particles. Since sound speed in solid is higher than that of liquids, as porosity 

increases, sound speed is expected to decrease. This is observed in Figure 14. At 

the porosity value of one, speed of sound has the lowest value which is equal to 

speed of sound in water. Furthermore, it is seen that for the water saturated glass 

beads and medium sand media, sound speed with respect to porosity gives nearly 

the same values. This stems from the parameters used in Newton Laplace equation. 

Since the value of density and bulk modulus of solid particles for each media are 

very close. However, propagation of sound in medium depends on other physical 

properties of porous medium such as size of grains, permeability of medium, 
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kinematic viscosity of fluid etc. Moreover, the frequency value is significantly 

important. In order to capture the effect of other physical parameters, Biot model is 

used for the theoretical investigation.  

4.2. Biot Model  

Assumptions; 

1. The medium is fully saturated with liquid  

2. Particle size is uniform inside the medium 

3. Isotropic medium  

4. Wavelength is much larger than the grains size  

5. The only attenuation mechanism is absorption 

6. The porous medium is elastic 

7. The fluid inside the porous medium is viscous and compressible  

8. Particles are spherical 

Biot model predicts sound velocity for water saturated porous medium. However, 

this model requires a large number of parameters and also it is not suitable for the 

cases in which the wavelength is smaller than grain size. For the model, cubic 

control volume of porous medium is selected. As sound propagates through a 

medium, it causes force acting on solid and liquid parts. Forces acting on solid body 

can be written in terms of stresses and on liquid body in terms of pressure. 

Moreover, as sound propagates through medium, it disturbs the particles and 

particles start to move. Here, the important criteria is the movement of liquid 

particles. In porous medium as solid particles move, some of liquid particles are 

stuck on solid particles and they move with them. Also, because of the movement, 

liquid particles have velocity relative to solid medium. In the model, the velocity 

terms are given in terms of displacement of solid and liquid particles. Particles 

possess kinetic energy due to their movement. Biot defined this kinetic energy 

according to displacement of solid particles, displacement of liquid particles and 

relative velocity of liquid particles. From the definition of kinetic energy, Biot 



34 
 

derived the force acting on each body by Lagrangian method. From the equality of 

forces and elastic moduli definitions, dynamic equations for sound propagation in 

porous medium are obtained as the following equations. 

𝜇∇2𝑢 + (𝐻 − 𝜇)∇(∇ ∙ 𝑢) + 𝐶∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
(𝜌𝑢 + 𝜌𝑓𝑤) 

(14) 

 

𝐶∇(∇ ∙ 𝑢) + 𝑀∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
(𝜌𝑓𝑢 +

(1 + 𝛼)𝜌𝑓

β
𝑤) + 𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕𝑤

𝜕𝑡
 

(15) 

𝑀 =
𝐾𝑟

{1 −
𝐾𝑏

𝐾𝑟
+ 𝛽 (

𝐾𝑟
𝐾𝑓

− 1)}
 

(16) 

 

𝐶 = (1 −
𝐾𝑏

𝐾𝑟
)𝑀 

(17) 

𝐻 = (1 −
𝐾𝑏

𝐾𝑟
) 𝐶 + 𝐾𝑏 +

4

3
𝜇 

(18) 

Equations (14) and (15) are the governing equations and M, C and H are the Biot 

elastic moduli definitions (Biot, 1955). According to governing equations, finally 

speed of sound for the general cases is obtained. Furthermore, limiting cases are 

investigated which are when frequency goes to zero and infinity. These relations 

are given in the following equations, respectively. 

𝑉2 = 𝑅𝑒 [
(𝐻𝑚′ + 𝑀𝜌 − 2𝐶𝜌𝑓)

(𝜌𝑚′ − 𝜌𝑓
2)

] 
(19) 

𝑉2 =
𝐻

𝜌
 

(20) 

 

𝑉2 =
𝐻𝑚 + 𝑀𝜌 − 2𝐶𝜌𝑓

𝜌𝑚 − 𝜌𝑓
2  

(21) 
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Porosity dependency according to Biot model is investigated for water saturated 

medium sand medium. Necessary parameters are tabulated in Table 8.  

 

Table 8. Parameter for water saturated medium sand medium used in Biot Model 

(Turgut, 1990) 

Density of water (𝑘𝑔/𝑚3) 𝛲 1000 

Density of medium sand (𝑘𝑔/𝑚3) 𝜌𝑓 2650 

Bulk modulus of water (𝑃𝑎) 𝐾𝑤 2.3 ∙ 109 

Bulk modulus of medium sand (𝑃𝑎) 𝐾𝑔 3.6 ∙ 1010 

Porosity (-) 𝛽 0.4 

Dynamic shear modulus of fluid (𝑃𝑎) 𝜇𝑠  5 ∙ 107 

Permeability (𝑚2) 𝑘𝑠  1 ∙ 10−11 

Added mass coefficient of skeletal frame (-) 𝛼 0.25 

Kinematic viscosity of water (𝑚2/𝑠) ν 1 ∙ 10−6 

 

 

Figure 15. Sound velocity versus porosity according to limiting cases of Biot’s 

Theory for water saturated medium sand medium 
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The limiting cases of Biot theory discarded frequency from the model. It is seen in 

Figure 15, when frequency is not taken into account, porosity dependency of sound 

speed is very close to the averaging theorem of Newton-Laplace equation. As the 

porosity or amount of liquid increases, sound velocity is expected to decrease. 

However, the effect of frequency and grain size are not included. Since the 

mechanism of sound propagation changes with respect to frequency, it is one of the 

important parameters. Therefore, frequency is also needed to be taken into account. 

This dependency is also illustrated in Figure 16. As can be clearly seen, for the 

cases in which frequency values are very low, Newton – Laplace equation gives 

reasonable results for the investigation of porosity dependency on sound speed. 

However, as frequency increases, the deviation between the Biot model and 

Newton- Laplace equation increases.  

 

 

Figure 16. Sound speed versus porosity for water saturated porous medium by 

Newton-Laplace equation and Biot Model (with different frequency values)  
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4.2.1. Biot Model For Frequency Dependency of Sound Speed 

In order to capture the effect of frequency on sound speed in a porous medium, Biot 

model is used for water saturated medium sand and water saturated glass beads 

media. As mentioned before, Biot model is developed for the grains sizes which are 

much smaller than wavelength. First investigation is done for the medium sand 

medium. Frequency range is in between 1 kHz to 200 kHz.  

 

 

Figure 17. Sound velocity versus frequency for water saturated medium sand 

medium obtained by Biot Model 

 

According to Figure 17, it is seen that sound velocity increases with frequency. For 

the frequency value of 1 kHz the ratio between the wavelength and grain size is 

375. As frequency increases, this ratio becomes smaller and the increase in sound 

speed goes down. Up to frequency 3 MHz, in which the wavelength to grain size 

ratio is 1.1, sound speed continues to increase slightly but after that point it remains 

constant. However, increase in sound speed after frequency value of 200 kHz is 

very small, therefore in the plot only this range is plotted. This is an expected result 
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for the case in which wavelength is much larger than particle size. In this case, 

attenuation mechanism is only absorption. Therefore, as sound propagates through 

the medium, its energy loss remains limited.  

Also since the medium contains both solid and liquid particles and since sound 

travels through solid faster, sound velocity is larger than that of water. However, as 

the grain size increases and gets closer to the value of wavelength, attenuation 

mechanism changes. For this situation, absorption is negligible and scattering is 

dominant. Hence, as sound propagates through a medium, energy loss becomes 

appreciable; therefore, sound velocity is expected to show negative dispersion.  

However, since this model only includes absorption as attenuation mechanism, the 

effect of the grain size on sound velocity cannot be captured by applying Biot 

model.  

In order to apply Biot model for water saturated glass beads medium; firstly the 

necessary parameters should be defined. For the calculation of permeability of 

water saturated glass beads medium, Cozeny-Karman correlation is used (Carman, 

1956). According to Cozeny-Karman correlation, permeability depends on size of 

particles, d, viscosity of fluid, 𝜇 and porosity 𝛽. 

𝑘 =
𝑑2

180 ∙ 𝜇
∙

𝛽3

(1 − 𝛽)2
 

(22) 

 

Since three different size of glass beads are used for the water saturated glass beads 

medium, porosity values are different for each medium. Experimentally measured 

porosity values and calculated permeability values are listed in Table 9. The 

methodology employed to obtain porosities is explained in Appendix E.  
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Table 9. Permeabilities obtained by using Cozeny-Karman Correlation  

Grain Size (m) Porosity (-) Permeability (𝒎𝟐) 

1 ∙ 10−3 0.39 8.9 ∙ 10−7 

7 ∙ 10−4 0.34 2.5 ∙ 10−7 

3 ∙ 10−4 0.3 2.8 ∙ 10−8 

 

 

Furthermore, real part of shear modulus, 𝜇0, and bulk modulus of skeletal frame, 𝐾𝑠 

are also needed in the model. They are calculated by the following equations, 

respectively (Taheri, 2014); 

𝜇0 = 6.8 ∙ 107 ∙ 𝑧0.5 ∙
(1 − 𝛽)1.6

𝛽1.1
 

(23) 

𝐾𝑠 = 𝜇0 (
2𝑛

1 − 2𝑛
+

2

3
) 

(24) 

 

In equations (23) and (24), 𝑛 is the Poisson’s ratio and it is equal to 0.3. Based on 

these equations, sound speed versus frequency graph is obtained for each media as 

shown in Figure 18.  

. 
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Figure 18. Sound speed versus frequency for three water saturated glass beads 

media based on Biot Model 

 

For these media, frequency range is between 1 kHz and 800 kHz. When frequency 

is 1 kHz, ratios between the wavelength and grain size are 150, 214 and 500 for the 

medium with grains 1 mm, 700 microns and 300 microns, respectively. It is clearly 

seen in Figure 18 that sound speed shows positive dispersion for each media. For 

the medium with 1 mm grain size firstly a sharp increase in sound speed is observed 

and this deviation becomes smaller from the frequency value of 400 kHz where the 

wavelength to grain size ratio is 3.75. Increase in sound velocity continues up to 

frequency 1.5 MHz but the deviation is very small. After that point wavelength to 

grain size ratio becomes 1. For the medium with 700 microns grain size sharp 

increase in sound speed is obtained up to frequency of 1 MHz where the ratio is 

2.14 then increase goes down but continues to frequency value of 2 MHz.  

Analogously, for the medium with 300 microns grains sharp increase in sound 
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speed is observed up to frequency of 3.5 MHz where the wavelength to grain size 

ratio is 1.6. Furthermore, it can be concluded that sound velocity has the lowest 

value for the medium with the highest grain size and sound velocity has the highest 

value for the medium with the lowest grain size. Understanding the behavior of 

sound waves in porous medium in this frequency range requires the investigation 

of attenuation.  

4.2.2. Biot Model For Frequency Dependency Of Attenuation 

For the observation of propagation of ultrasonic waves in a medium, the other 

important parameter is the decrease of the energy of wave which is named as 

attenuation. According to Biot model, attenuation mechanism is assumed as only 

absorption based on the assumption that wavelength is larger than grain size. In 

these cases, scattering does not have a huge effect; therefore it is not included into 

the model. According to Biot model, attenuation coefficient is calculated by the 

following equation.  

𝜑 =

𝑉2
2

𝑉1
2 − 1

𝑚𝑖

𝐴
+ (

𝐴
𝑚𝑖

) ∙ (
𝑉2

2

𝑉1
2)

 

(25) 

 

For the attenuation investigation in water saturated medium sand medium, 

frequency range is selected according to Figure 17 where sharp increase in sound 

speed is observed. Therefore frequency range is between 1 kHz to 20 kHz (ratio 

between wavelengths to grain size is 188. It is seen in Figure 19 that attenuation 

firstly increases with frequency but it starts to decrease after frequency value of 6 

kHz where the wavelength to grain size ratio is 833. However decrease in 

attenuation coefficient with frequency is not an expected result because it is known 

that attenuation always increases with frequency. Since scattering effect does not 

adapted into this model, it does not capture its effect for high frequency values.  
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Figure 19. Attenuation coefficient versus Frequency for water-saturated medium 

sand medium obtained by Biot Model 

 

Based on the calculated and estimated parameters in the previous section, 

attenuation coefficients are calculated using the Biot model for the water saturated 

glass beads media. In Figure 20, attenuation coefficient change with respect to 

frequency for water saturated glass beads media with three different grain sizes is 

illustrated. Since for the medium with 300 microns grains, deviation occurs in 

sound speed up to frequency value of 3.5 MHz, attenuation is investigated for the 

frequency values between 1 kHz to 3.5 MHz. For the medium with 1 mm grain size 

attenuation increases up to frequency value of 20 kHz where the wavelength to 

grain size ratio is 75. For the medium with 700 microns grain size, attenuation 

increases up to frequency of 40 kHz where the wavelength to grain size ratio is 53. 

For the medium with 300 microns grain size attenuation increases up to frequency 

value of 2.5 MHz where the ratio of wavelength to grain size ratio is 2.5.  In all 

cases, in these frequency ranges sound speed shows sharp positive dispersion. 

Moreover, in all cases wavelength is larger than grain size.  
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Figure 20. Attenuation coefficient versus frequency for three different size of 

water saturated glass beads medium according to Biot Model 

 

4.3. Experimental Phase Velocity Observation 

In Figure 21, it is seen that as frequency increases, phase velocity decreases. 

Therefore, opposite to Biot estimation, phase velocity shows negative dispersion in 

high frequency values. However, in the experimental observation, frequency values 

are very high. Therefore, the size of grains are getting closer to wavelength which 

is the most important assumption of Biot model. For that reason, phase velocity in 

high frequency ranges is expected to be different from what Biot observed. 

According to Figure 21 phase velocity shows negative dispersion with increasing 

frequency. Furthermore, values of the experiments are in well-agreement. The 

deviation in the first experiment is 1078 m/s, and the deviation in the second 

experiment is 1023 m/s. Although results of third experiment are close to the value 
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of other two experiments for the frequencies 2 MHz and 4 MHz, there is a slight 

difference when frequency is 1 MHz.  

 

 

Figure 21. Phase velocity versus frequency for water saturated medium sand 

medium 

 

Phase velocity observation for water saturated glass beads medium experimentally, 

parameters given in Table 6 are used. After sieve analysis is done, porous media 

are prepared. In order to get rid of air bubbles inside the media, one hour is waited 

and then experiment is conducted. In the following figures, phase velocity versus 

frequency for each set is plotted. 
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Figure 22. Phase velocity versus frequency for water saturated glass beads 

medium with size of 1 mm 

 

According to Figure 22, phase velocity shows negative dispersion with increasing 

frequency. Deviation in the first experiment is 458 m/s, in the second experiment 

552 m/s and in the third experiment 492 m/s. Experimental results are very close 

when frequency is 4 MHz. However, when frequencies are 1 MHz and 2 MHz, 

again there is a slight difference between the experimental values.  
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Figure 23. Phase velocity versus frequency for water saturated glass beads 

medium with size of 700 microns 

 

Phase velocity variation with respect to US frequency is depicted in Figure 23 for 

700 micron particles. Similar to 1 mm particle results, phase velocity shows 

negative dispersion with increasing frequency. The deviation in the first experiment 

is 741 m/s, in the second experiment 656 m/s and in the third experiment 787 m/s. 

Again the same conclusion can be drawn. Experimental results are very close when 

frequency is 4 MHz. However, when frequencies are 1 MHz and 2 MHz, again there 

is a slight difference between the experimental values.  
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Figure 24. Phase velocity versus frequency for water saturated glass beads 

medium with size of 300 microns 

 

According to Figure 24, phase velocity shows negative dispersion with increasing 

frequency. The deviation in the first experiment is 813 m/s, in the second 

experiment 899 m/s and in the third experiment 926 m/s. Again the same conclusion 

can be drawn. For the three medium, it can be concluded that, as frequency 

increases, phase velocity decreases. Therefore, phase velocity shows negative 

dispersion.  
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Figure 25. Phase velocity versus frequency for each water saturated glass beads 

medium 

 

For the observation of grain size effect on sound speed for different frequencies, 

phase velocity versus frequency results are combined in a single plot as shown in 

Figure 25. It is observed that when frequency is 4 MHz, phase velocity values are 

very close. When frequency is 1 MHz, medium with size of grains 1 mm is highly 

different from other media and when frequency is 2 MHz, medium with size of 

grains 300 microns is different than other media. The fraction between wavelength 

and grain size are 1.5, 2.14 and 5 for grain sizes 1 mm, 700 microns and 300 

microns, respectively when frequency is 1 MHz. When frequency is 2 MHz, the 

fractions are 0.75, 1.71 and 2.5 for grain sizes 1 mm, 700 microns and 300 microns, 

respectively. When frequency is 4 MHz, the fractions are 0.375, 0.536 and 1.25 for 

grain sizes 1 mm, 700 microns and 300 microns, respectively. The difference 

between these values can be attributed to the dependence of sound speed on grain 

size and wavelength. For the medium with 1 mm grains, when f is 1 MHz, 

wavelength and grain size have almost the same value. This situation occurs for the 
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medium with 700 microns when f is 2 MHz and for the medium with 300 microns 

when frequency is 4 MHz.  

4.4. Experimental Attenuation Coefficient Observation 

For the measurement of attenuation, the amplitude values for each medium is 

obtained by using UDV. The main parameters are PRF, emitting power, resolution, 

gates number and TGC. For the best fitted parameter values, the amplitudes values 

for water and the porous media are obtained for each frequency values. For the 

attenuation calculation following equation is used. 

𝛼 =
20

𝑑
log (

𝐴𝑤

𝐴𝑠
) 

(26) 

In Figure 26, amplitude of sound in water is plotted with respect to time when 

frequency is 1 MHz.  The maximum peak in water medium is observed when the 

time is approximately 27 ms and its value is 1210 mV.  

 

 

Figure 26. Amplitude versus time plot for water when the emitting frequency is 1 

MHz 
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In Figure 27, amplitude of sound in water saturated medium sand medium is plotted 

against time. The maximum peaks for the porous medium is observed 

approximately 5 ms. Difference in time is because of the presence of solid particles. 

Since sound propagates through solid medium much faster than liquid medium, 

time needed for the signal to reach maximum peak for porous medium becomes 

smaller. Also, it is seen that the amplitude of the signal in water medium has the 

highest value because the loss of signals is less than that of porous medium. 

According to experimental values and equation (26), attenuation coefficient is 

calculated for water saturated medium sand medium.  

 

 

Figure 27. Amplitude versus time plot for water saturated medium sand medium 

when the emitting frequency is 1 MHz 
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Figure 28. Attenuation coefficient versus frequency water saturated medium sand 

medium in log-log scale 

 

In Figure 28, it can be observed that as frequency increases, attenuation also 

increases and it shows f1.4 dependency for water saturated medium sand medium. 

In contrast to Biot model, in the experimental studies scattering effect can be 

captured. Increase in the attenuation is due to the effect of scattering.  

Attenuation investigation is also done for the water saturated glass beads media. 

Similar with the observation of attenuation for water saturated medium sand 

medium, again amplitude versus time graphs are plotted for each medium and each 

frequency. In this part amplitude graphs are given only for 1 MHz. The other graphs 

are given in Appendix Part D.  
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In Figure 29, amplitude versus time graph is plotter for water. It is seen that 

maximum amplitude values is obtained when time is approximately 23 ms. 

Maximum amplitude is 1700 mV.  

 

 

Figure 29. Amplitude versus time plot for water when frequency is 1 MHz 

 

In Figure 30, amplitude versus time graph is plotted for medium with 1 mm grains 

when frequency is 1 MHz. It is seen that maximum amplitude is 980 mV and this 

amplitude is obtained when time is approximately 4 ms. Since in solid medium 

sound propagates at a higher speed than water, time is less than that of water for 

achieving maximum amplitude. Also, since medium is multiphase, energy is being 

lost much more than water. Therefore, maximum amplitude value is less than that 

of water.  
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Figure 30. Amplitude versus time plot for water saturated porous medium (1 mm 

glass beads) when frequency is 1 MHz 

 

In Figure 31, amplitude versus time plot for medium with 700 microns is plotted. 

Maximum amplitude value is obtained as 1400 mV and time is approximately 4 ms.  

 

 

Figure 31. Amplitude versus time plot for water saturated porous medium (700 

micrometer glass beads) when frequency is 1 MHz 
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In Figure 32, amplitude versus time plot for medium with 300 microns is plotted. 

Maximum amplitude value is 1200 mV and the time is approximately 4 ms.  

 

  

Figure 32. Amplitude versus time plot for water saturated porous medium (300 

micrometer glass beads) when the emitting frequency is 1 MHz 

 

In order to observe the effect of frequency, the experimental procedure is repeated 

for 2 MHz and 4 MHz also. The amplitude versus time plots for the other frequency 

values are given in the Appendix Part D. Based on equation (26), attenuation 

coefficients are calculated. It is seen in Figure 33, attenuation increases with 

frequency. Furthermore, attenuation coefficient values are much higher when 

compared to Biot model. This is because of the frequency ranges. In the 

experimental study, frequency values are much higher than the ones used in Biot 

model.  
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Figure 33. Attenuation coefficient versus frequency for three different porous 

media having different size of glass 

 

In Figure 34, frequency dependency of attenuation coefficient is illustrated. It is 

observed that f dependency of attenuation has the lowest value for the medium with 

size of 1 mm glass beads. As the diameter of the grains increases, the extend of 

sound passing through interface between two very distinct materials, i.e. solid 

particles and water, gets more and more limited as opposed to the porous medium 

of smaller particles. Hence stronger dependence of sound attenuation on the 

frequency can be expected in the case of smaller particles. For example, if 700 

microns and 300 microns are taken into account, as the grain size increases, f 

dependency of the attenuation will increase, from f1.44 to f2.01. It should also be noted 

that, in the literature, frequency values are very low compared to this study. In 

literature, the frequency range is in between 100 kHz to 1.1 MHz. On the other 

hand, in this study the highest frequency value is 4 MHz. When frequency is 4 MHz, 
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grain sizes are larger than wavelength. Therefore, at this frequency, phase velocity 

values are almost same. Hence it can be concluded that phase velocity is highly 

depended on this relationship. However, the deviations from 1 MHz to 4 MHz are 

different for each medium. Therefore, physical properties of a porous medium can 

be calculated with the knowledge of the deviations.   

 

 

Figure 34. Attenuation coefficient versus frequency for three different porous 

media having different size of glass in log-log scale 
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4.5. Comparison of Theoretical and Experimental Results for Sound Velocity 

In order to understand the difference between theoretical and experimental results, 

sound velocity versus frequency is plotted for each medium. Figure 35 is plotted 

for water saturated medium sand medium. According to Biot model, sound velocity 

shows positive dispersion up to frequency value of 200 kHz. Based on experimental 

results, sound velocity shows negative dispersion in the frequency range of 1 MHz 

to 4 MHz.  

 

 

Figure 35. Sound velocity versus frequency for water saturated medium sand 

medium both theoretically and experimentally 

 

In Figure 36, sound velocity behavior with respect to frequency is illustrated for 

water saturated glass beads medium with size of grains of 1 mm. According to Biot 

model, up to frequency 400 kHz, sound velocity increases with frequency. On the 

other hand based on the experimental results it shows negative dispersion in the 

frequency range of 1 MHz to 4 MHz.  
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Figure 36. Sound velocity versus frequency for water saturated glass beads 

medium with size of grains of 1 mm both theoretically and experimentally 

 

In Figure 37, representation of sound velocity versus frequency for water saturated 

glass beads medium with size of grains of 700 microns is given. It is seen that sound 

velocity increases with frequency up to frequency 1 MHz. However, it decreases 

with frequency in the range of 1 MHz to 4 MHz according to experimental results. 
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Figure 37. Sound velocity versus frequency for water saturated glass beads 

medium with size of grains of 700 microns both theoretically and experimentally 

 

In Figure 38, similar results are obtained. Again according to Biot model sound 

velocity shows positive dispersion up to frequency value of 3.5 MHz; on the other 

hand according to experimental studies, negative dispersion is observed in the 

frequency range of 1 MHz to 4 MHz. These figures shows more clearly the change 

in the behavior of the sound signal between low frequency and high frequency. 

Speed of sound in water at room temperature is around 1500 m/s. For water 

saturated porous medium, due to existence of solid particles speed of sound 

increases when frequency values are low. In these frequency ranges, energy loss 

can be assumed only as absorption; therefore attenuation is very low. However, as 

frequency increases, scattering effects becomes more important for the attenuation 

mechanism. Its effect is much more than absorption. Since the decrease in the 

energy of sound signal becomes higher in high frequency range, speed of sound 

starts to shows negative dispersion.  
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Figure 38. Sound velocity versus frequency for water saturated glass beads 

medium with size of grains of 300 microns both theoretically and experimentally  
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     CHAPTER 5 

 

5. CONCLUSION 

 

 

The following conclusions can be drawn based on the theoretical and experimental 

results obtained in this study. 

As porosity increases, sound velocity decreases as expected for water saturated 

porous media according to Newton-Laplace equation. However, difference in sound 

velocity between two media (water saturated medium sand and water saturated 

glass beads media) are insignificant. This is because of the parameters used in this 

equation are only density, porosity and bulk modulus of each phases. Solely, speed 

of sound in a porous medium has a much more complicated mechanism and it 

depends other physical properties of medium and sound waves. For example 

according to this equation, the effect of grain size, permeability and frequency are 

not captured. Therefore, Biot model is more suitable. Based on the comparison of 

Newton-Laplace equation and Biot model for porosity dependency shows that 

Newton-Laplace equation can be applied for low frequency values.  

Further investigations are done for the frequency effects on sound speed and 

attenuation. Theoretical investigations are done for the low frequency values. (1 

kHz to 400 kHz). For a selected cubic control volume, forces acting on solid and 

liquid phases as sound propagates are defined. Moreover, as sound wave propagates 

through a medium, it disturbs the particles and by this way kinetic energy of 

medium changes. Biot also defined this kinetic energy and by using Lagrangian 

mechanic, Biot defined forces according to kinetic energy definition. Based on the 

equality of these forces, sound velocity is obtained. This model is applied for water 
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saturated medium sand medium and water saturated glass beads medium. In all 

media, sound velocity shows positive dispersion. Sound velocity is investigated for 

water saturated medium sand medium for the frequency range from 1 kHz to 200 

kHz where wavelength to grain size ratio changing between 375 to 18.75. In this 

frequency range a sharp increase in sound velocity is observed but it continues to 

increase up to frequency value of 3 MHz where wavelength to grain size ratio is 

1.1. For water saturated glass beads medium with  1 mm grains, a sharp increase in 

observed up to frequency value of 400 kHz where wavelength to grain size ratio is 

3.75. Similarly, increase in sound speed continues up to frequency of 1.5 MHz 

where wavelength to grain size ratio is 1. Again for the medium with 700 microns 

grain size a sharp increase in sound speed is obtained up to frequency of 1 MHz 

where the ratio is 2.14. Then increase slows down but continues to frequency value 

of 2 MHz.  Analogously, for the medium with 300 microns grains sharp increase in 

sound speed is observed up to frequency of 3.5 MHz where the wavelength to grain 

size ratio is 1.6. Increase in sound speed in low frequency range is an expected 

result because of the existence of solid particles inside the medium. For these porous 

media attenuation coefficients are also investigated according to Biot model. For 

water saturated medium sand medium it is observed that attenuation increases up 

to 6 kHz where wavelength to grain size ratio is 833. Furthermore, for the medium 

with 1 mm grain size attenuation increases up to frequency value of 20 kHz where 

the wavelength to grain size ratio is 75. For the medium with 700 microns grain 

size, attenuation increases up to frequency of 40 kHz where the wavelength to grain 

size ratio is 53. For the medium with 300 microns grain size attenuation increases 

up to frequency value of 2.5 MHz where the ratio of wavelength to grain size ratio 

is 2.5.  After these frequency values; however, attenuation decreases which is an 

unexpected result. Conversely, as frequency increases attenuation mechanism 

changes and continues to increase with frequency. However, Biot model cannot 

capture the change in the attenuation mechanism. Hence, Biot model cannot be used 

for the investigation of high frequency values. Additionally, it is observed that 
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phase velocity has the highest value in the medium with the smallest grain size and 

it has the lowest value in the medium with the largest grain size. In Biot model, 

sound velocity is related to the energy of the sound waves. Since energy loss in the 

medium with 1 mm grain size has the highest value, propagation velocity is lower 

compared to other media.  

In order to capture the effect of high frequency values on sound velocity in porous 

media, experimental studies are conducted. In all porous media, negative phase 

velocity observed. However, although sharp decrease is expected in the medium 

with grain size of 1 mm, it is observed in the medium with grain size of 700 microns. 

Besides, attenuation coefficient increases with frequency as expected in all porous 

media. Attenuation coefficient values are much larger than the ones obtained 

theoretically in low frequency range. This is because of the scattering effect which 

has a more pronounced effect on energy loss than absorption. Again there is an 

inconsistency with literature. Frequency dependency of attenuation is expected to 

be higher in the medium with 1 mm grain size. On the other hand, the experiments 

revealed that it has the highest value in the medium with 700 microns grain size. 
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          APPENDIX A 

 

A. BIOT MODEL 

 

 

A1. Construction of the Model 

 

Figure 39.Cubic control volume 

 

Water saturated medium sand medium or water saturated glass beads medium 

contain both solid phase and liquid phase. Therefore, obtaining the governing 

equation, cubic control volume can be selected as illustrated in Figure 39. Since one 

of the assumptions for this multiphase system is that the medium is saturated with 

the liquid, sum of the volume of liquid and solid gives the total volume. Also sound 

propagates only in elastic media, compression of each medium is very important. 

For that purpose, firstly, stress and strain relations are taken into account. 

𝜎𝑖𝑗 = 𝑝 + 𝜏𝑥𝑥 (27) 

𝜎𝑖𝑗 is the normal stress which included both the pressure force and shear stress. In 

tensor notation this can be rewritten as; 

𝜎𝑖𝑗 = 𝑝𝛿𝑖𝑗 + 𝜏𝑥𝑥  (28) 
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When i is not equal to j, then Kronecker delta will be 0. Since pressure force is 

always perpendicular to the surface, it is valid only for the x, y and z directions. For 

the system in Figure 39, force exerted on each side of the cube can be written for 

solid medium as;  

[

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] (29) 

According to Cauchy’s first law of motion, stress tensor for the liquid which is 

under hydrostatic equilibrium can be written as; 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 (30) 

Hence for the Cartesian coordinates stress tensor for the fluid part in porous medium 

can be written as the following matrix; 

[

−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

] (31) 

If x-direction is taken into account, force is normal to the x-direction. However, 

force in the x-direction is the shear stress in y and z directions for the solid part of 

the system. For the static liquid phase, the only force exerted on the system is the 

normal forces.  

The Lagrangian Finite Strain Tensor relationship can be defined as the following 

equation. Here the second order term is neglected because the deformation caused 

by ultrasound is very small. Furthermore, these relation is written based on the 

displacement gradient.   

𝜀 =
1

2
(∇𝑢 + (∇𝑢)

𝑇
+ ∇𝑢(∇𝑢)

𝑇
) =

1

2
(∇𝑢 + (∇𝑢)

𝑇
) (32) 

𝜀𝑥𝑥 = 𝜎𝑥𝑥 =
1

2
(
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑥
) =

𝜕𝑢𝑥

𝜕𝑥
 (33) 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
) (34) 
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𝜀𝑥𝑧 =
1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
) (35) 

According to infinite small Langarian strain tensor relation, the deformation for the 

solid part finally can be written as; 

𝜀̅ =

[
 
 
 
 
 
 

𝜕𝑢𝑥

𝜕𝑥

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
)

1

2
(
𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑦
)

𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
)

1

2
(
𝜕𝑢𝑧

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑧
)

1

2
(
𝜕𝑢𝑧

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑧
)

𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 
 
 

 (36) 

Moreover, strain tensor can also be written for the liquid phase as; 

𝜖 =

[
 
 
 
 
 
 
𝜕𝑊𝑥

𝜕𝑥
0 0

0
𝜕𝑊𝑦

𝜕𝑦
0

0 0
𝜕𝑊𝑧

𝜕𝑧 ]
 
 
 
 
 
 

 (37) 

As sound propagates through the medium, it causes movement of solid and liquid 

particles. Hence, for the bulk medium, kinetic energy per unit volume is expressed 

by Biot (Biot, 1962); 

𝐾𝑒 =
1

2
𝜌1 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

}

+
1

2
𝜌𝑓 ∭{[(

𝜕𝑢𝑥

𝜕𝑡
) + 𝑉𝑥]

2

+ [(
𝜕𝑢𝑦

𝜕𝑡
) + 𝑉𝑦]

2𝑐

𝑉

+ [(
𝜕𝑢𝑧

𝜕𝑡
) + 𝑉𝑧]

2

} 𝑑𝑉 

(38) 

In equation (38), Vx, Vy and Vz represents the components of relative micro velocity 

of fluid particles in the bulk medium. If the vector field of fluid micro velocity in 

the medium is𝑤, then, it can be expressed in terms of microvelocity of the fluid. 
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𝑤 = |

𝑉𝑥
𝑉𝑦
𝑉𝑧

| =

𝑉𝑥 = 𝑎11

𝜕𝑤𝑥

𝜕𝑡
+ 𝑎12

𝜕𝑤𝑦

𝜕𝑡
+ 𝑎13

𝜕𝑤𝑧

𝜕𝑡

𝑉𝑦 = 𝑎21

𝜕𝑤𝑥

𝜕𝑡
+ 𝑎22

𝜕𝑤𝑦

𝜕𝑡
+ 𝑎23

𝜕𝑤𝑧

𝜕𝑡

𝑉𝑧 = 𝑎31

𝜕𝑤𝑥

𝜕𝑡
+ 𝑎32

𝜕𝑤𝑦

𝜕𝑡
+ 𝑎33

𝜕𝑤𝑧

𝜕𝑡

 (39) 

In equation (38), second term can be written also; 

1

2
𝜌𝑓 ∭{[(

𝜕𝑢𝑥

𝜕𝑡
) + 𝑉𝑥]

2

+ [(
𝜕𝑢𝑦

𝜕𝑡
) + 𝑉𝑦]

2

+ [(
𝜕𝑢𝑧

𝜕𝑡
) + 𝑉𝑧]

2

}

𝑐

𝑉

𝑑𝑉𝑓

=
1

2
𝜌𝑓 ∭{[(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ 2(
𝜕𝑢𝑥

𝜕𝑡
)𝑉𝑥 + (𝑉𝑥)

2]

𝑐

𝑉𝑓

+ [(
𝜕𝑢𝑦

𝜕𝑡
)

2

+ 2(
𝜕𝑢𝑦

𝜕𝑡
)𝑉𝑦 + (𝑉𝑦)

2
]

+ [(
𝜕𝑢𝑧

𝜕𝑡
)
2

+ 2(
𝜕𝑢𝑧

𝜕𝑡
)𝑉𝑧 + (𝑉𝑧)

2]} 𝑑𝑉 

(40) 

In equation (40), integral terms can be separated. 

1

2
𝜌𝑓 ∭{(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

} 𝑑𝑉

𝑐

𝑉

=
1

2
𝜌𝑓𝛽 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

} 

(41) 

1

2
𝜌𝑓 ∭{2(

𝜕𝑢𝑥

𝜕𝑡
)𝑉𝑥 + 2(

𝜕𝑢𝑦

𝜕𝑡
)𝑉𝑦 + 2(

𝜕𝑢𝑧

𝜕𝑡
)𝑉𝑧} 𝑑𝑉

𝑐

𝑉

= 𝜌𝑓 {(
𝜕𝑢𝑥

𝜕𝑡
) (

𝜕𝑤𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡
)(

𝜕𝑤𝑦

𝜕𝑡
)

+ (
𝜕𝑢𝑧

𝜕𝑡
) (

𝜕𝑤𝑧

𝜕𝑡
)} 

(42) 
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From the fluid micro velocity field given in equation (39); 

1

2
𝜌𝑓 ∭[(𝑉𝑥)

2 + (𝑉𝑦)
2
+ (𝑉𝑧)

2] 𝑑𝑉 = ∑
1

2
𝑚𝑖𝑗 (

𝜕𝑤𝑖

𝜕𝑡
)

𝑖𝑗

𝑧

𝑠

𝑉

(
𝜕𝑤𝑗

𝜕𝑡
) (43) 

𝑚𝑖𝑗 = 𝑚𝛿𝑖𝑗 (44) 

In equation (44), 𝛿𝑖𝑗 is Kronecker delta. Hence, the relation given in equations (43) 

and (44) become; 

1

2
𝜌𝑓 ∭[(𝑉𝑥)

2 + (𝑉𝑦)
2
+ (𝑉𝑧)

2] 𝑑𝑉

𝑤

𝑉

=
1

2
𝑚 {(

𝜕𝑤𝑥

𝜕𝑡
)
2

+ (
𝜕𝑤𝑦

𝜕𝑡
)

2

+ (
𝜕𝑤𝑧

𝜕𝑡
)
2

} 

(45) 

When all these terms are substituted into equation (38), kinetic energy becomes; 

𝐾𝑒 =
1

2
𝜌1 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

}

+
1

2
𝜌𝑓𝛽 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

}

+ 𝜌𝑓 {(
𝜕𝑢𝑥

𝜕𝑡
) (

𝜕𝑤𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡
)(

𝜕𝑤𝑦

𝜕𝑡
) + (

𝜕𝑢𝑧

𝜕𝑡
) (

𝜕𝑤𝑧

𝜕𝑡
)}

+ 
1

2
𝑚 {(

𝜕𝑤𝑥

𝜕𝑡
)
2

+ (
𝜕𝑤𝑦

𝜕𝑡
)

2

+ (
𝜕𝑤𝑧

𝜕𝑡
)
2

} 

(46) 

In equation (46), 𝜌𝑓𝛽 gives the density of fluid in the control volume. Furthermore, 

the bulk density of the medium is equal to the sum of the density of fluid in the 

medium and density of solid in the medium. Therefore, 𝜌 = 𝜌1 + 𝜌2. If these 

definitions are introduced to the equation (46), kinetic energy becomes; 
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𝐾𝑒 =
1

2
𝜌 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

}

+ 𝜌𝑓 {(
𝜕𝑢𝑥

𝜕𝑡
) (

𝜕𝑤𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡
)(

𝜕𝑤𝑦

𝜕𝑡
) + (

𝜕𝑢𝑧

𝜕𝑡
) (

𝜕𝑤𝑧

𝜕𝑡
)}

+
1

2
𝑚 {(

𝜕𝑤𝑥

𝜕𝑡
)
2

+ (
𝜕𝑤𝑦

𝜕𝑡
)

2

+ (
𝜕𝑤𝑧

𝜕𝑡
)
2

} 

(47) 

In equation (47), the term (
𝜕𝑊𝑥

𝜕𝑡
) defined the relative microvelocity of fluid. 

Therefore, the following relation can be used for the definition of velocity of fluid 

particles. 

𝑤𝑖 = 𝛽(𝑊𝑖 − 𝑢𝑖) 

𝜀 =
𝜕𝑤𝑥

𝜕𝑡
+

𝜕𝑤𝑥

𝜕𝑡
+

𝜕𝑤𝑥

𝜕𝑡
 

(48) 

If equation (48) is substituted into equation (47); 

𝐾𝑒 =
1

2
𝜌 {(

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

}

+ 𝜌𝑓𝛽 {(
𝜕𝑢𝑥

𝜕𝑡
) (

𝜕𝑊𝑥

𝜕𝑡
−

𝜕𝑢𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡
) (

𝜕𝑊𝑦

𝜕𝑡
−

𝜕𝑢𝑦

𝜕𝑡
)

+ (
𝜕𝑢𝑧

𝜕𝑡
) (

𝜕𝑊𝑧

𝜕𝑡
−

𝜕𝑢𝑧

𝜕𝑡
)}

+
1

2
𝑚𝛽2 {(

𝜕𝑊𝑥

𝜕𝑡
−

𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑊𝑦

𝜕𝑡
−

𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑊𝑧

𝜕𝑡
−

𝜕𝑢𝑧

𝜕𝑡
)
2

} 

(49) 
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Finally kinetic energy equation for the medium becomes; 

𝐾𝑒 = {(
𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

} (
1

2
𝜌 − 𝜌𝑓𝛽 +

1

2
𝑚𝛽2)

+ {(
𝜕𝑢𝑥

𝜕𝑡

𝜕𝑊𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡

𝜕𝑊𝑦

𝜕𝑡
) + (

𝜕𝑢𝑧

𝜕𝑡

𝜕𝑊𝑧

𝜕𝑡
)} (𝜌𝑓𝛽

− 𝑚𝛽2) + {(
𝜕𝑊𝑥

𝜕𝑡
)
2

+ (
𝜕𝑊𝑦

𝜕𝑡
)

2

+ (
𝜕𝑊𝑧

𝜕𝑡
)
2

} (
1

2
𝑚𝛽2) 

(50) 

Biot defined the dynamic coefficient based on the kinetic energy definition. In 

equation (50), 𝜌 − 2𝜌𝑓𝛽 + 𝑚𝛽2 gives 𝜌11, 𝑚𝛽2 gives 𝜌22 and 𝜌𝑓𝛽 − 𝑚𝛽2 

gives𝜌12. The last term is the Biot’s coupling parameter (Biot, 1956). When these 

dynamic relations are taken into account, kinetic energy becomes; 

𝐾𝑒 = {(
𝜕𝑢𝑥

𝜕𝑡
)
2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

} (
1

2
𝜌11,)

+ {(
𝜕𝑢𝑥

𝜕𝑡

𝜕𝑊𝑥

𝜕𝑡
) + (

𝜕𝑢𝑦

𝜕𝑡

𝜕𝑊𝑦

𝜕𝑡
) + (

𝜕𝑢𝑧

𝜕𝑡

𝜕𝑊𝑧

𝜕𝑡
)} (𝜌12)

+ {(
𝜕𝑊𝑥

𝜕𝑡
)
2

+ (
𝜕𝑊𝑦

𝜕𝑡
)

2

+ (
𝜕𝑊𝑧

𝜕𝑡
)
2

} (
1

2
𝜌22) 

(51) 

Moreover, because of the relative motion between fluid and solid, some of the 

mechanical energy turns into heat and therefore, there happens energy dissipation. 

According to Biot, energy dissipation can be expressed as; 

2𝐸𝑑 =
𝜂

𝑘
{(

𝜕𝑤𝑥

𝜕𝑡
)
2

+ (
𝜕𝑤𝑦

𝜕𝑡
)

2

+ (
𝜕𝑤𝑧

𝜕𝑡
)
2

} (52) 

 A2. Lagrangian Mechanics 

From the definitions of particle displacement for both mediums, the kinetic energy 

of the medium is obtained. In order to solve the Biot Theory, force exerted on the 

medium per volume should be found and by this way forces can be found exerted 

on the cubic control volume. In order to find the force exerted to medium per 
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volume, Lagrangian approach is used (Schulten 2000, Morin 2007). This method is 

used for the function which has stationary value (minimum, maximum or saddle 

point). To find the distance between points x1 and x2, following relations can be 

written; 

∆𝑧 = √∆𝑥2 + ∆𝑦2 (53) 

𝑑𝑧 = √𝑑𝑥2 + 𝑑𝑦2 (54) 

𝑧 = ∫ (1 + (𝑦′)2)𝑑𝑥

𝑥2

𝑥1

 (55) 

It is clearly seen that, the minimum distance between these points depends on the 

function of y, the derivative of the function y and function x. Although in here the 

minimum distance is explained in terms of distance, these can be also surface area, 

shape of time etc. Therefore, in general it can be represented as; 

𝑆 = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥

𝑥2

𝑥1

 (56) 

Assume a function m(t)=m0(t)+aα(t) which has a stationary point at m0(t). Here, 

one of the important thing is that the function has fixed end points such as 

α(t1)=α(t2)=0. aα(t) represents the perturbations. The function m(x) changes with 

respect to aα(t). For example, for the functions; 

𝑚0(𝑡) = 𝑡 + 1 (57) 

𝑎𝛼(𝑡) = 𝑎(−(𝑡 − 4)2 + 1) (58) 

𝑚(𝑡) = 𝑡 + 1 +  𝑎(−(𝑡 − 4)2 + 1) (59) 
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Figure 40. Lagrangian approach 

 

It is seen that according to value of ‘a’, the maximum value of the function m(x) 

changes.  

For the time domain, the functional for the Lagrangian equation is; 

𝑆 = ∫ 𝐿(𝑥, 𝑥̇, 𝑡)𝑑𝑡

𝑡2

𝑡1

 (60) 

In equation (60), S is the functional group and it has dimensions 

(Joule).(Seconds).For the function m(t), the action depends on a as explained in 

Figure 41. For the derivative of functional, chain rule is applied.  

𝜕

𝜕𝑎
𝑆(𝑚(𝑡)) =

𝜕

𝜕𝑎
∫ 𝐿

𝑡2

𝑡1

𝑑𝑡 = ∫
𝜕𝐿

𝜕𝑎
𝑑𝑡 = ∫ {

𝜕𝐿

𝜕𝑚

𝜕𝑚

𝜕𝑎
+

𝜕𝐿

𝜕𝑚̇

𝜕𝑚̇

𝜕𝑎
} 𝑑𝑡

𝑡2

𝑡1

𝑡2

𝑡1

 (61) 
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According to function m(t), 
𝜕𝑚

𝜕𝑎
= 𝛼(𝑡) and 

𝜕𝑚̇

𝜕𝑎
= 𝛼(𝑡)̇ . For the simplicity, equation 

(61) can be written in terms of 𝛼(𝑡) and 𝛼(𝑡)̇  as follows; 

𝜕

𝜕𝑎
𝑆 = ∫ {

𝜕𝐿

𝜕𝑚
𝛼(𝑡) +

𝜕𝐿

𝜕𝑚̇
𝛼(𝑡)̇ } 𝑑𝑡

𝑡2

𝑡1

 (62) 

For the second term in equation (62), chain rule can be applied which is defined as; 

∫𝑣
𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑢𝑣 − ∫𝑢

𝑑𝑣

𝑑𝑥
𝑑𝑥 (63) 

Finally, the change in the action with respect to a can be found as; 

∫ ((
𝜕𝐿

𝜕𝑚
)𝛼(𝑡) −

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑚̇
) 𝛼(𝑡)̇ )

𝑡2

𝑡1

𝑑𝑡 (64) 

And according to Lagrangian approach, change in the action with respect to ‘a’ 

must be zero. By this way, Lagrangian equation is obtained as;  

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑚̇
) −

𝜕𝐿

𝜕𝑚
= 0 (65) 

In order to find the forces exerted on solid and liquid part in the medium, the 

following relations are used, respectively. 

𝐹𝑠 =
𝜕

𝜕𝑡
(

𝜕𝐾

𝜕𝑢𝑖

𝜕𝑡

) 

𝐹𝑙 =
𝜕

𝜕𝑡
(

𝜕𝐾

𝜕𝑤𝑖

𝜕𝑡

) +
𝜕𝐸𝑑

𝜕𝑤𝑖

𝜕𝑡

 

(66) 
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When Lagrange methodology is applied for the kinetic energy given in equation 

(47) for the x-direction; 

𝐹𝑠 =
𝜕

𝜕𝑡
(𝜌

𝜕𝑢𝑥

𝜕𝑡
+ 𝜌𝑓

𝜕𝑤𝑥

𝜕𝑡
) =

𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) (67) 

𝐹𝑙 =
𝜕

𝜕𝑡
(𝜌𝑓

𝜕𝑢𝑥

𝜕𝑡
+ 𝑚

𝜕𝑤𝑥

𝜕𝑡
) +

1

2

𝜇𝛽2

𝑘

𝜕𝑤𝑥

𝜕𝑡

=
𝜕2

𝜕𝑡2
(𝜌𝑓𝑢𝑥 + 𝑚𝑤𝑥) +

𝜂

𝑘

𝜕𝑤𝑥

𝜕𝑡
 

(68) 

Now forces acting on solid and fluid part in multiphase system are found based on 

the movement of particles as sound propagates through the medium. The forces 

acting on the solid and liquid part found by kinetic energy and shear forces are equal 

to each other (Verruijit, 2013). Then, the following relations are obtained as; 

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑦

𝜕𝑦
+

𝜕𝜏𝑧

𝜕𝑧
=

𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) (69) 

𝜕𝑠

𝜕𝑥
=

𝜕2

𝜕𝑡2
(𝜌𝑓𝑢𝑥 + 𝑚𝑤𝑥) +

𝜂

𝑘

𝜕𝑤𝑥

𝜕𝑡
 (70) 

A3. Biot’s Elastic Moduli 

𝜎𝑥 = 2𝜇𝑒𝑥 + [(𝐻 − 2𝜇)𝑒 − 𝐶𝜀]𝛿𝑖𝑗 (71) 

𝜎𝑦 = 2𝜇𝑒𝑦 + [(𝐻 − 2𝜇)𝑒 − 𝐶𝜀]𝛿𝑖𝑗 (72) 

𝜎𝑧 = 2𝜇𝑒𝑧 + [(𝐻 − 2𝜇)𝑒 − 𝐶𝜀]𝛿𝑖𝑗 (73) 

𝜏𝑥 = 𝜇𝛾𝑥 (74) 

𝜏𝑦 = 𝜇𝛾𝑦 (75) 

𝜏𝑧 = 𝜇𝛾𝑧 (76) 

𝑝 = 𝑀𝜀 − 𝐶𝑒 (77) 

𝑠 = 𝐶𝑒 − 𝑀𝜀 (78) 

𝑒 =
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
= 𝑑𝑖𝑣(𝑢) = ∇ ∙ 𝑢 (79) 

𝜖 =
𝜕𝑊𝑥

𝜕𝑥
+

𝜕𝑊𝑦

𝜕𝑦
+

𝜕𝑊𝑧

𝜕𝑧
= 𝑑𝑖𝑣𝑤 = ∇ ∙ 𝑊 (80) 
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When the relative motion between the solid and fluid particles inside the medium; 

𝜀 = − 𝑑𝑖𝑣𝑤 = −∇ ∙ 𝑤 (81) 

Firstly, introduce the definitions to equation (69). 

𝜕

𝜕𝑥
(2𝜇

𝜕𝑢𝑥

𝜕𝑥
+ (𝐻 − 2𝜇)𝑒 − 𝐶𝜀) +

𝜕

𝜕𝑧
(𝜇𝛾𝑦) +

𝜕

𝜕𝑦
(𝜇𝛾𝑧)

=
𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) 

   

(82) 

2𝜇
𝜕2𝑢𝑥

𝜕𝑥2
+ (𝐻 − 2𝜇)

𝜕𝑒

𝜕𝑥
− 𝐶

𝜕𝜀

𝜕𝑥
+

𝜕

𝜕𝑧
(𝜇

𝜕𝑢𝑥

𝜕𝑧
+ 𝜇

𝜕𝑢𝑧

𝜕𝑥
)

+
𝜕

𝜕𝑦
(𝜇

𝜕𝑢𝑥

𝜕𝑦
+ 𝜇

𝜕𝑢𝑦

𝜕𝑥
) =

𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) 

   

(83) 

Second term in equation (83) is; 

(𝐻 − 2𝜇)
𝜕𝑒

𝜕𝑥
= (𝐻 − 2𝜇)

𝜕

𝜕𝑥
(
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
)

= (𝐻 − 2𝜇) (
𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
) 

(84) 

Substitute equation (84) into equation (83); 

2𝜇
𝜕2𝑢𝑥

𝜕𝑥2
+ (𝐻 − 2𝜇) (

𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
) −  𝐶

𝜕𝜀

𝜕𝑥

+ 𝜇 (
𝜕2𝑢𝑥

𝜕𝑧2
+

𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
+

𝜕2𝑢𝑥

𝜕𝑦2
+

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
)

=
𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) 

(85) 

((𝐻 − 2𝜇) + 𝜇) (
𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
) + 𝜇 (

𝜕2𝑢𝑥

𝜕𝑧2
+

𝜕2𝑢𝑥

𝜕𝑦2
+

𝜕2𝑢𝑥

𝜕𝑥2
)

−  𝐶
𝜕𝜀

𝜕𝑥
=

𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥) 

 (86) 

𝜇∇2𝑢𝑥 + (𝐻 − 𝜇)
𝜕𝑒

𝜕𝑥
− 𝐶

𝜕𝜀

𝜕𝑥
=

𝜕2

𝜕𝑡2
(𝜌𝑢𝑥 + 𝜌𝑓𝑤𝑥)  (87) 
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Now, substitute the definitions into equation (70);  

𝜕

𝜕𝑥
(𝐶𝑒 − 𝑀𝜀) =

𝜕2

𝜕𝑡2
(𝜌𝑓𝑢𝑥 + 𝑚𝑤𝑥) +

𝜂

𝑘

𝜕𝑤𝑥

𝜕𝑡
 

(88) 

Equation (87) and (88) are obtained for the x direction. When all directions are 

taken into account the following equations are obtained for y and x directions. 

𝜇∇2𝑢𝑦 + (𝐻 − 𝜇)
𝜕𝑒

𝜕𝑦
− 𝐶

𝜕𝜀

𝜕𝑦
=

𝜕2

𝜕𝑡2
(𝜌𝑢𝑦 + 𝜌𝑓𝑤𝑦) 

         

(89) 

𝜕

𝜕𝑦
(𝐶𝑒 − 𝑀𝜀) =

𝜕2

𝜕𝑡2
(𝜌𝑓𝑢𝑦 + 𝑚𝑤𝑦) +

𝜂

𝑘

𝜕𝑤𝑦

𝜕𝑡
 

         

(90) 

𝜇∇2𝑢𝑧 + (𝐻 − 𝜇)
𝜕𝑒

𝜕𝑧
− 𝐶

𝜕𝜀

𝜕𝑧
=

𝜕2

𝜕𝑡2
(𝜌𝑢𝑧 + 𝜌𝑓𝑤𝑧) 

  

(91) 

𝜕

𝜕𝑧
(𝐶𝑒 − 𝑀𝜀) =

𝜕2

𝜕𝑡2
(𝜌𝑓𝑢𝑧 + 𝑚𝑤𝑧) +

𝜂

𝑘

𝜕𝑤𝑧

𝜕𝑡
 

  

(92) 

Here, sum of the displacements of solid and liquid particles gives the vector field 

for the displacements of particles. 

𝑢 = 𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 (93) 

𝑤 = 𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧 (94) 

Finally, when all terms are all assembled in one equation, Biot model for the 

propagation of ultrasound in fluid saturated porous medium is obtained. 

𝜇∇2(𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧) + (𝐻 − 𝜇) (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
) 𝑑𝑖𝑣𝑢

+ 𝐶 (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
) 𝑑𝑖𝑣𝑤

=
𝜕2

𝜕𝑡2
{𝜌(𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧) + 𝜌𝑓(𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧)} 

(95) 

𝜇∇2 𝑢 + (𝐻 − 𝜇)∇(∇ ∙ 𝑢) + 𝐶∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
{𝜌𝑢 + 𝜌𝑓𝑤} (96) 
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(
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
) {𝐶𝑑𝑖𝑣𝑢 + 𝑀𝑑𝑖𝑣𝑤}

=
𝜕2

𝜕𝑡2
{𝑚(𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧) + 𝜌𝑓(𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧)} +

𝜂

𝑘

𝜕𝑤

𝜕𝑡
 

(97) 

𝐶∇(∇ ∙ 𝑢) + 𝑀∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
{𝑚𝑤 + 𝜌𝑓𝑢} +

𝜂

𝑘

𝜕𝑤

𝜕𝑡
 (98) 

In equation (98), η is the dynamic viscosity of the fluid. It is known that𝜂 = 𝜌𝑓𝜈, 

where ν is the kinematic viscosity. 

𝐶∇(∇ ∙ 𝑢) + 𝑀∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
{𝑚𝑤 + 𝜌𝑓𝑢} +

𝜌𝑓𝜈

𝑘

𝜕𝑤

𝜕𝑡
 (99) 

Finally, equations (96) and (99) give the dynamical equations for the ultrasound 

propagation through fluid saturated porous media.  



87 
 

APPENDIX B 

 

B. BIOT MODEL FOR HIGH FREQUENCY VALUES 

 

 

B1. Theory of the wave propagation 

The dynamic equation for porous medium is given as the following equations; 

𝜇∇2𝑢 + (𝐻 − 𝜇)∇(∇ ∙ 𝑢) + 𝐶∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2 (𝜌𝑢 + 𝜌𝑓𝑤)    (100) 

𝐶∇(∇ ∙ 𝑢) + 𝑀∇(∇ ∙ 𝑤) =
𝜕2

𝜕𝑡2
(𝜌𝑓𝑢 +

(1 + 𝛼)𝜌𝑓

β
𝑤) +

𝜌𝑓𝜈

𝑘

𝜕𝑤

𝜕𝑡
 

(101) 

 

Where 𝑚 =
(1+𝛼)𝜌𝑓

β
. 

In equation 100 and 101, 𝑢 and 𝑤 are displacement vector of solid and relative 

displacement of liquid medium, respectively. The elastic moduli depend on 

porosity, bulk modulus of solid, bulk modulus of fluid and bulk modulus of skeletal 

frame. These elastic moduli (H, M, C and μ) are defined as; 

𝑀 =
𝐾𝑟

{1 −
𝐾𝑏

𝐾𝑟
+ 𝛽 (

𝐾𝑟
𝐾𝑓

− 1)}
 

(102) 

𝐶 = (1 −
𝐾𝑏

𝐾𝑟
)𝑀 (103) 

𝐻 = (1 −
𝐾𝑏

𝐾𝑟
) 𝐶 + 𝐾𝑏 +

4

3
𝜇 (104) 

𝜇 = 𝜇0 (1 + 𝑖
𝛿𝜇

𝜋
) (105) 
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Here, 𝜇0 is real part of shear molulus of water saturated silt medium and 𝛿𝜇 is the 

shear logarithmic decrement. ρ is the bulk density and it can be calculated as; 

𝜌 = 𝜌𝑓𝛽 + 𝜌𝑔(1 − 𝛽) (106) 

The displacement vectors of solid and fluid in equation 100 and 101 can be written 

as; 

𝑢 = ∇𝜑1 + ∇ × 𝜓1 (107) 

𝑤 = ∇𝜑2 + ∇ × 𝜓2 (108) 

Here 𝜑1 and 𝜑2 represents the scalar part of the displacement vector of solid and 

fluid, respectively and 𝜓1 and 𝜓2 represents the vectorial part of the displacement 

vector of solid and fluid, respectively. Firstly, substitute equation (107) and (108) 

into equation (100). 

𝜇∇2 {∇𝜑1 + ∇ × 𝜓1} + (𝐻 − 𝜇)∇ {∇ ∙ (∇𝜑1 + ∇ × 𝜓1)}

+ 𝐶∇ {∇ ∙ (∇𝜑2 + ∇ × 𝜓2)}

= 𝜌
𝜕2

𝜕𝑡2
{∇𝜑1 + ∇ × 𝜓1} + 𝜌𝑓

𝜕2

𝜕𝑡2
{∇𝜑2 + ∇ × 𝜓2} 

 

(109) 

𝜇∇2 {∇𝜑1 + ∇ × 𝜓1} + (𝐻 − 𝜇)∇ {(∇ ∙ (∇𝜑1)) + (∇ ∙ (∇ × 𝜓1))}

+ 𝐶∇ {(∇ ∙ (∇𝜑2)) + (∇ ∙ (∇ × 𝜓2))}

=  𝜌
𝜕2

𝜕𝑡2
{∇𝜑1 + ∇ × 𝜓1} + 𝜌𝑓

𝜕2

𝜕𝑡2
{∇𝜑2 + ∇ × 𝜓2} 

 

(110) 

It is known that the curl of a divergence of a vector field is zero, means; 

∇ ∙ (∇ × 𝜓1) = ∇ ∙ (∇ × 𝜓2) = 0 (111) 
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Therefore, the relation given in equation (110) becomes; 

𝜇∇2(∇𝜑1) +  𝜇∇2 (∇ × 𝜓1) + (𝐻 − 𝜇)∇(∇2𝜑1) + 𝐶∇(∇2𝜑2)

=
𝜕2

𝜕𝑡2
( 𝜌∇𝜑1 + 𝜌𝑓∇𝜑2)

+
𝜕2

𝜕𝑡2
( 𝜌 (∇ × 𝜓1) + 𝜌𝑓 (∇ × 𝜓2)) 

(112) 

Furthermore, following relations are necessary; 

∇2 (∇ × 𝜓1) = ∇ × (∇2𝜓1) (113) 

∇2(∇𝜑1) = ∇(∇2𝜑1) (114) 

When the relations are substituted into equation (112); 

𝜇∇(∇2𝜑1) + 𝜇∇ × (∇2𝜓1) + (𝐻 − 𝜇)∇(∇2𝜑1) + 𝐶∇(∇2𝜑2)

= ∇
𝜕2

𝜕𝑡2
( 𝜌𝜑1 + 𝜌𝑓𝜑2)

+
𝜕2

𝜕𝑡2
( 𝜌 (∇ × 𝜓1) + 𝜌𝑓 (∇ × 𝜓2)) 

(115) 

Similarly, substitute equations (107) and (108) into equation (101). 

𝐶∇ {∇ ∙ (∇𝜑1 + ∇ × 𝜓1)} + 𝑀∇ {∇ ∙ (∇𝜑2 + ∇ × 𝜓2)}

=
𝜕2

𝜕𝑡2
{𝜌𝑓𝑢 − 𝑚𝑤} + 𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕𝑤

𝜕𝑡
 

(116) 
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Once more, the relations given in equations (102), (103) and (104) are substituted, 

finally the following equation is obtained; 

𝐶∇(∇2𝜑1) + 𝐶∇ × (∇2𝜓1) + 𝑀∇(∇2𝜑2) − 𝑀∇ × (∇2𝜓2)

= ∇
𝜕2

𝜕𝑡2
( 𝜌𝑓𝜑1 + 𝑚𝜑2)

+
𝜕2

𝜕𝑡2
( 𝑚 (∇ × 𝜓2) + 𝜌𝑓 (∇ × 𝜓1)) + 𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕

𝜕𝑡
(∇𝜑2)

+ 𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕

𝜕𝑡
(∇ × 𝜓2) 

(117) 

In equations (115) and (117), scalar and vectorial parts can be separated. By this 

way following four equations are obtained. 

𝜇∇(∇2𝜑1) + (𝐻 − 𝜇)∇(∇2𝜑1) + 𝐶∇(∇2𝜑2) = ∇
𝜕2

𝜕𝑡2
( 𝜌𝜑1 + 𝜌𝑓𝜑2) 

(118) 

𝜇∇ × (∇2𝜓1)=
𝜕2

𝜕𝑡2 ( 𝜌 (∇ × 𝜓1) + 𝜌𝑓 (∇ × 𝜓2)) 
(119) 

𝐶∇(∇2𝜑1) + 𝑀∇(∇2𝜑2) = ∇
𝜕2

𝜕𝑡2
( 𝜌𝑓𝜑1 + 𝑚𝜑2)+𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕

𝜕𝑡
(∇𝜑2) 

(120) 

𝐶∇ × (∇2𝜓1) −  𝑀∇ × (∇2𝜓2)

=
𝜕2

𝜕𝑡2
( 𝑚 (∇ × 𝜓2) + 𝜌𝑓 (∇ × 𝜓1))

+ 𝜌𝑓

𝜈0𝑠

𝑘𝑠

𝜕

𝜕𝑡
(∇ × 𝜓2) 

(121) 

Ultrasound is travelling through a medium as waves. For the simple harmonic wave 

propagation description trigonometric functions such as cosine and sine functions 

are used. If wave motion is defined as𝑓(𝑥), 𝑓(𝑥 − 1) defines the forward wave and 

𝑓(𝑥 + 1) defines the backward wave.  To illustrate the wave motion behavior, 

following graph is useful. 
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Figure 41. Representation of phase shift of a wave 

The general form of harmonic motion; 

𝑈 = 𝑈0𝑒
𝑖(𝑘∙𝑟−𝑤𝑡+ 𝜑) (122) 

U0 is the amplitude of the wave, 𝑘 is the wave vector, 𝑟 is the position vector and 

𝜑 is the phase shift of the wave. Equation (122) also can be written as; 

𝑈 = 𝑈0𝑒
𝑖(𝑘∙𝑟−𝑤𝑡)𝑒𝜑 (123) 

𝑈 = 𝐴0𝑒
𝑖(𝑘∙𝑟−𝑤𝑡) (124) 

The scalar part of the displacement of solid and fluid can be written in terms of 

harmonic motion. 

𝜑1 = 𝐴𝑒𝑖(𝑘∙𝑟−𝑤𝑡) 

𝜑2 = 𝐵𝑒𝑖(𝑘∙𝑟−𝑤𝑡) 

 

   

(125) 
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Equation (125) is needed to be substituted into equation (115) and (117). Before 

substituting, following relations are necessary. 

∇𝜑1 = 𝐴𝑖𝑘𝑒𝑖(𝑘∙𝑟−𝑤𝑡) (126) 

∇2𝜑1 = 𝐴𝑖2𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) = −𝐴𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) (127) 

𝜕𝜑1

𝜕𝑡
= −𝐴𝑖𝑤𝑒𝑖(𝑘∙𝑟−𝑤𝑡) (128) 

𝜕2

𝜕𝑡2
= 𝐴𝑖2𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) = −𝐴𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) (129) 

If equation (125) is substituted into equation (118); 

−𝐻𝐴𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) − 𝐶𝐵𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡)

= −𝜌𝐴𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) − 𝜌𝑓𝐵𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) 
(130) 

𝑒𝑖(𝑘∙𝑟−𝑤𝑡){−𝐻𝐴𝑘2 − 𝐶𝐵𝑘2} = 𝑒𝑖(𝑘∙𝑟−𝑤𝑡){−𝜌𝐴𝑤2 − 𝜌𝑓𝐵𝑤2} (131) 

𝐻𝐴𝑘2 + 𝐶𝐵𝑘2 = 𝜌𝐴𝑤2 + 𝜌𝑓𝐵𝑤2 
(132) 

Furthermore, if equation (125) is substituted into equation (119); 

−𝐶𝐴𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) − 𝑀𝐵𝑘2𝑒𝑖(𝑘∙𝑟−𝑤𝑡)

= −𝜌𝑓𝐴𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡) − 𝑚𝐵𝑤2𝑒𝑖(𝑘∙𝑟−𝑤𝑡)

− 𝜌𝑓

𝜈0𝑠

𝑘𝑠

(−𝑖𝑤)𝐵𝑒𝑖(𝑘∙𝑟−𝑤𝑡) 

 

(133) 

𝑒𝑖(𝑘∙𝑟−𝑤𝑡){−𝐶𝐴𝑘2 − 𝑀𝐵𝑘2}

= 𝑒𝑖(𝑘∙𝑟−𝑤𝑡) {−𝜌𝑓𝐴𝑤2 − 𝑚𝐵𝑤2 − 𝜌𝑓

𝜈0𝑠

𝑘𝑠

(−𝑖𝑤)𝐵} 
(134) 

𝜌′ = 𝑚 +
𝜌𝑓

𝜈0𝑠

𝑘𝑠
𝑖

𝑤
= 𝜌𝑣 − 𝑖 [𝜂

𝐹(𝜅)

𝑘𝑠𝑤
] (135) 
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𝐶𝐴𝑘2 + 𝑀𝐵𝑘2 = 𝜌𝑓𝐴𝑤2 + 𝜌′𝑤2𝐵 
(136) 

|
𝐻𝑘2 − 𝜌𝑤2 𝜌𝑓𝑤

2 − 𝐶𝑘2

𝐶𝑘2 − 𝜌𝑓𝑤
2 𝜌′𝑤2 − 𝑀𝑘2| |

𝐴
𝐵
| = 0 (137) 

B2. Virtual Mass Density 

In this part, the focus point is the equation (143). For that purpose, virtual mass 

density is needed to be defined.  

 

Figure 42. Representation of virtual mass carried by solid particle 

 

For multiphase systems, as solid particles are moving through the fluid, some of 

fluid is hold by solid particle and carried. This fluid part causes the increases in the 

solid particle and creates virtual mass density. Therefore for multiphase systems, 

virtual mass density is needed to be defined.  Virtual mass is defined as; 

𝜌𝑣 =
(1 + 𝛼)𝜌𝑓

𝛽
 (138) 

Here, α is the added mass coefficient of skeletal frame. 𝜌𝑣 gives the amount of liquid 

that is carried by the solid particle. Moreover, for the multiphase systems, the most 

important force between the solid and liquid part is the drag force which is caused 

by the viscous forces. Therefore, Biot defined viscous correction factor for the 

virtual mass density depending on the relation between the pore size and oscillatory 

boundary layer thickness. This viscous correction factor is necessary for obtaining 

the deviation from Poiseuille flow (Biot, 1962).  
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𝐹(𝜖) =
1

4
{

𝜖𝑇(𝜖)

1 −
2
𝑖𝜖

𝑇(𝜖)
} (139) 

𝑇(𝜖) =
𝑏𝑒𝑟′(𝜖) + 𝑖𝑏𝑒𝑖′(𝜖)

𝑏𝑒𝑟(𝜖) + 𝑖𝑏𝑒𝑖(𝜖)
 (140) 

𝜖 = 𝑎 (
𝑤

𝜈
)
0.5

 (141) 

Furthermore, pore size can be found by the relationship between porosity and 

particle size as the following formula; 

𝑎 =
𝑑

3

𝛽

1 − 𝛽
 (142) 

Here, in equation (142), ber and ber’ are the real part and derivation of real part of 

Bessel-Kelvin function and bei and bei’ are the imaginary part and derivation of 

imaginary part of Bessel-Kelvin function.  

𝑏𝑒𝑟′(𝜖) + 𝑖𝑏𝑒𝑖′(𝜖)

𝑏𝑒𝑟(𝜖) + 𝑖𝑏𝑒𝑖(𝜖)
=

−𝑖√𝑖𝐽1(𝑖√𝑖𝜖)

𝐽0(𝑖√𝑖𝜖)
=

𝑖𝜖
2

−
𝜖3

16
+ ⋯

1 +
𝑖𝜖2

4
−

𝜖4

64
+ ⋯

 (143) 

B3. Solution of Equation 

The determinant of equation (143) is equal to zero and it gives the wavenumber. 

(𝐻𝑘2 − 𝜌𝑤2)(𝜌′𝑤2 − 𝑀𝑘2) − (𝐶𝑘2 − 𝜌𝑓𝑤
2)(𝜌𝑓𝑤

2 − 𝐶𝑘2) = 0 (144) 

If the relation given in (145) is inserted into equation (144); 

𝐻𝜌′𝑎𝑏 − 𝐻𝑀𝑎2 − 𝜌𝜌′𝑏2 + 𝑀𝜌𝑎𝑏 − 𝐶𝜌𝑓𝑎𝑏 + 𝐶2𝑎2 + 𝜌𝑓
2𝑏2 − 𝐶𝜌𝑓𝑎𝑏 (146) 

𝑎𝑏 {𝐻𝜌′ − 𝐻𝑀
𝑎

𝑏
+ 𝑀𝜌 − 𝐶2

𝑎

𝑏
− 2𝐶𝜌𝑓} = 𝑏2{𝜌𝜌′ − 𝜌𝑓

2} (147) 

𝑘2 = 𝑎 

𝑤2 = 𝑏 
(145) 
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𝑎{ 𝐻𝜌′ + 𝑀𝜌 − 2𝐶𝜌𝑓} = 𝑏{𝜌𝜌′ − 𝜌𝑓
2} (150) 

𝑘2 = 𝑤2
{𝜌𝜌′ − 𝜌𝑓

2}

{ 𝐻𝜌′ + 𝑀𝜌 − 2𝐶𝜌𝑓}
 (151) 

According to the relationship between wavenumber and angular frequency it is 

known that the proportion of angular frequency to wavenumber gives the sound 

velocity. Finally, sound speed in multiphase medium can be found as; 

𝑉 = 𝑅𝑒𝑎𝑙 [√
𝐻𝜌′ + 𝑀𝜌 − 2𝐶𝜌𝑓

𝜌𝜌′ − 𝜌𝑓
2 ] (152) 

B4. Limiting Cases 

The first limiting case is that if the frequency goes to zero. Then the angular 

frequency becomes zero. If the definition of virtual mass density is taken into 

account, it is seen that as frequency goes to infinity, the value of virtual mass density 

increases and becomes much larger than the other terms in equation (152). 

Therefore, the term left in equation (152) is 𝐻𝜌′ and𝜌𝜌′. The second limiting case 

is that if frequency goes to infinity means angular frequency goes to infinity. This 

time the term 𝜌′ is directly equal to 𝜌𝑣 means virtual mass density is equal to virtual 

mass.  

 

 

𝑎

𝑏
=

𝑘2

𝑤2
=

𝑤2

𝑉2

𝑤2
=

1

𝑉2
 

(148) 

𝐻𝑀
𝑎

𝑏
≪  𝐻𝜌′ + 𝑀𝜌 − 2𝐶𝜌𝑓 

 

𝐶2
𝑎

𝑏
≪  𝐻𝜌′ + 𝑀𝜌 − 2𝐶𝜌𝑓 

(149) 
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 𝑓 → 0  

𝑉 = 𝑅𝑒𝑎𝑙√
𝐻

𝜌
 

(153) 

 𝑓 → ∞ 

𝑉 = 𝑅𝑒𝑎𝑙√
𝐻𝜌𝑣 + 𝑀𝜌 − 2𝐶𝜌𝑓

𝜌𝜌𝑣 − 𝜌𝑓
2  

(154) 
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          APPENDIX C 

 

C. MATLAB CODE FOR BIOT MODEL 

 

 

%BIOT MODEL FOR MEDIUM SAND MEDIUM 

  

%Model starts with the dynamical equations for acoustic wave propagation in 

%porous media which was governed by BIOT. 

  

%First define the parameters that are stated in the article for water 

%saturated medium sand medium. These parameters are directly obtained.  

  

kinematic=1*10^-6;  %kinematic=kinematic viscosity (m^2/s) 

ks=1*10^-11;  %ks=permeability (m^2) 

poro=0.4; %poro=porosity (beta) 

poro1=[0:0.1:1] 

alpha=0.25;  %alpha=added mass transfer coefficient of skeletal frame  

mur=5*10^7;  %mur = dynamic shear modulus (N/m^2)  

delta = 0.02;%delta = specific loss in the frame 

n=0.3;  % Poisson's ratio of skeletal frame 

Kf=2.3*10^9; %Kf=bulk modulus of fluid (N/m^2) 

Kr=3.6*10^10;  %Kr=bulk modulus of grain 

rof=1*10^3; %rof=density of fluid(kg/m^3) 

ror=2.65*10^3; %ror=density of grain     

    %Newton-Laplace Equation  
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    compwater=1/Kf 

    compbead=1/Kr 

    comp=(1/Kf).*poro1+(1/Kr).*(1-poro1) 

    Kbulk=1./comp 

    ro1=[((1-poro1).*ror)+poro1.*rof 

deltamu=0.2 

deltak=0.15 

%Biot's elastic moduli are needed to be defined in order to solve the 

%equations. Here, because of the slightly imperfect elasticity, bulk 

%modulus of the skeletal frame and shear modulus are complex values. 

mu=mur*(1+(i*deltamu/pi))  %dynamic shear modulus.  

Ks=[(2*n/(1-2*n))+2/3]*mur %Ks=bulk modulus of skeletal frame 

Dr=Kr*[1+poro.*(Kr/Kf-1)] 

      Dr1=Kr*[1+poro1.*(Kr/Kf-1)] 

H=(((Kr-Ks).^2)./(Dr-Ks))+Ks+(4/3).*mu 

      H1=(((Kr-Ks).^2)./(Dr1-Ks))+Ks+(4/3).*mu 

C=Kr.*(Kr-Ks)./(Dr-Ks) 

      C1=Kr.*(Kr-Ks)./(Dr1-Ks) 

M=(Kr.^(2))./(Dr-Ks) 

      M1=(Kr.^(2))./(Dr1-Ks) 

%f=frequency 

f=100:100:4*10^6 

%w=limiting cases 

w=(2*pi).*f 

a1=500*10^-6 

ap=(a1/3)*(poro/(1-poro)) 

kapa=ap*sqrt(w./kinematic)  %ratio of pore size to the oscillatory boundary layer 

thickness 

m=(1+alpha).*rof./(poro) 
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     m1=(1+alpha).*rof./(poro1) 

ro=[((1-poro).*ror)+poro.*rof] 

dynamic=1*10^-3   %dynamic viscosity 

ksi=ap.*(w.*rof./dynamic).^0.5 

%Then we need to define a parameter that explains the frequency dependence 

%of the drag force between the pore fluid and solid grain. 

%this parameter is called as (F) function in this situation 

%Defining F function, the definition of kelvin function is used.  

Tup=((i.*ksi)./2)-(ksi.^3./16) 

Tdown=1+((i.*ksi)./2)-((ksi.^4./(4*16))) 

T=Tup./Tdown 

F=(1/4).*((ksi.*T)./[1-((2./(i.*ksi)).*T)]) 

a=(i.*[(dynamic.*F)./(ks.*w)]) 

mprime = m-a 

V=(([H.*mprime+M.*ro-2*C*rof]./[ro.*mprime-(rof).^2]).^0.5) 

Vsound=real(V) 

V1=real(H./ro).^0.5 

       %V11=real(H1./ro1).^0.5  %as frequency goes to zero, w goes to zero 

V2=real(((H.*m+M.*ro-2*C.*rof)./(ro.*m-(rof)^2)).^0.5) %as frequency goes to 

infinity then w goes to infinity 

 %      V22=real((H1.*m1+M1.*ro1-2*C1.*rof)./(ro1.*m1-(rof)^2)).^0.5 

%legend('f goes to zero','f goes to infinity','Newton-Laplace Equation') 

%plot(f, Vsound) 

A=(ro.*m-rof^2)./ro 

attenuation=(1-

(V2)./(V1))./((imag(mprime)./A)+(A./imag(mprime)).*((V2)./(V1))) 

%plot(f, attenuation) 

 

  



100 
 

  



101 
 

APPENDIX D  

 

D. REPRODUCIBITLIY OF EXPERIMENTAL RESULTS 

 

 

Part A – Amplitude vs Time Graphs for Each Frequency for Experiment 1 

 

Figure 43. Amplitude versus time plot for water medium when the emitting 

frequency is equal to 2 MHz 

 

Figure 44. Amplitude versus time plot for water saturated porous medium (1 mm 

glass beads) when the emitting frequency is equal to 2 MHz 
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Figure 45. Amplitude versus time plot for water saturated porous medium (700 

microns glass beads) when the emitting frequency is equal to 2 MHz 

 

Figure 46.Amplitude versus time plot for water saturated porous medium (300 

microns glass beads) when the emitting frequency is equal to 2 MHz 
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Figure 47.Amplitude versus time plot for water medium when the emitting 

frequency is equal to 4 MHz 

 

Figure 48. Amplitude versus time plot for water saturated porous medium (1 mm 

glass beads) when the emitting frequency is equal to 4 MHz 
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Figure 49. Amplitude versus time plot for water saturated porous medium (700 

microns glass beads) when the emitting frequency is equal to 4 MHz 

 

Figure 50. Amplitude versus time plot for water saturated porous medium (300 

microns glass beads) when the emitting frequency is equal to 4 MHz 
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Part B. Reproducibility of Attenuation Coefficient 

 

 

Figure 51. Attenuation Coefficient versus frequency for water saturated 1mm 

glass beads medium 

 

 

Figure 52. Attenuation Coefficient versus frequency for water saturated 700 

micrometers glass beads medium 
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Figure 53. Attenuation Coefficient versus frequency for water saturated 300 

micrometers glass beads medium 
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APPENDIX E 

 

E. VOID FRACTION OF GLASS BEADS CALCULATION 

 

 

For the void fraction calculation, a tank (100 mL) is filled with glass beads with 

average diameter size 300 micrometer and it is saturated with water at room 

temperature. The mass of glass beads and mass of water saturated glass beads are 

measured as 139.95 g and 176.22 g, respectively. 

𝛽 =
𝑣𝑜𝑖𝑑 𝑠𝑝𝑎𝑐𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
 (155) 

Since the void is filled with water, volume of water needed to saturate glass beads 

are calculated by the following equation; 

𝑉𝑓 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (𝑘𝑔)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (
𝑘𝑔
𝑚3)

 (155) 

At room temperature (250C), density of water is 997.05 kg/m3 (McCabe et al. 2005). 

𝑉𝑓 =
(15.6 ∙ 10−3) 𝑘𝑔

997.05 𝑘𝑔/𝑚3
= 1.57 ∙ 10−5 𝑚3 

 

(156) 

𝛽 =
1.57 ∙ 10−5 𝑚3

4 ∙ 10−5𝑚3
= 0.39 

 

(157) 
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APPENDIX F 

 

F. F. TECHNICAL SPECIFICATIONS OF DOP 2000 

 

 

Emitting Frequency    : 5 different frequencies : 0.5, 1 , 2, 4 and 8 

MHz 

Emitting Power    : 3 levels. Instantaneous maximum power for 

setting (approx.) : 

low = 0.5 W, medium = 5 W, high = 35 W  

Number of emitted cycles   : 2, 4 or 8 cycles 

Pulse Repetition Frequency : selectable values between 10000 µs and 64 µs, 

step of 1 µs 

Number of Gates    : variables between 1000 and 3, step of 1 gate 

Position of the First 

Channel 

: movable by step of 250 ns 

Amplification (TGC)   : Uniform, Slope, Custom 

Slope mode 

 Exponential amplification between two 

defined depth values. 

Value at both depths variable between 

-40 dB and +40 dB 

Custom mode 

User’s defined values between -40 dB and + 

40 dB 

In cells. 

Variable number, size and position of the cells. 

Sensitivity   : > -100 dBm 
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Resolution 

Sampling Volume: lateral 

size 

: resolution defined by the acoustical  

characteristics of the transducer 

Sampling Volume: 

longitudinal size 

 

: Model 2032 

Minimum value of 1.2 µs or 0.9 mm 

Depends on busrt length 

Maximum value of 16 µs or 12 mm 

(c = 1500 m/s, approximate value, defined at 

50 % of the received) 

 

Display Resolution : distance between the center of each sample 

Volume selectable between 0.25 µs or 0.187 

mm  

And 20 µs or 15 mm, step of 0.25 µs (c =1500 

m/s) 

Velocity Resolution : 1 LSB, doppler frequency given in a signed 

Byte format 

Maximum = 0.0091 mm/s; minimum= 91.5 

mm/s (c=1500 m/s) 

 

Ultrasonic Processor 

Doppler Frequency 

: computation based on a correlation  

algorithm 

Bandwidth of Demodulated  

Signals 

: Model 2032 

Bandwidth 220 kHz 

Wall Filter : Stationary echoes removed by IIR high-pass 

Filter 2nd order 

Number of Emissions per 

Profile 

: between 1024 and 8, any values 
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Detection Level : 5 levels of the received Doppler energy may 

Disable the computation 

Acquisition Time per 

Profile 

: minimum: about 2-3 ms 

 

Filters on profiles 

: moving average: 

Based on 2 to 32000 profiles 

Zero values included or rejected Median, 

based on 3 to 32 profiles 

Maximum Velocity : 11.72 m/s for bi-directional flow (at 0.5 MHz, 

c = 1500 m/s) variable positive and negative 

velocity range. 

Acquisition 

Compute and Display 

: Velocity 

Doppler energy 

Echo modulus 

Velocity profile with echo modulus or  

Doppler energy 

Velocity profile with velocity versus time of 

One selected gate 

Velocity profile with flow rate versus time 

(circular section assumed) 

Velocity profile with real time histogram 

Echo modulus with real time histogram 

Doppler energy with real time histogram 

Power spectrum of one selected gated 

Cursor : displays the velocity and depth value,  

tracking 

Mode (follow the displayed curve).  

Statistical values available. 

Statistics : Mean, standard deviation, minimum,  
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maximum 

Trigger : by external signal, change in the logic state 

(TTL/CMOS level) 

 By keyboard action 

 Selectable repeated acquisition procedure 

 Of bloc of profiles 

 Automatic record capability 

Trigger Delay : from a 1 ms to 1s, step of 1 ms 

Utilities : freeze/run mode 

Velocity Component : automatic computation of the projected  

velocity component 

Replay Mode : replays a recorded measure from the disk 

Memory/Files 

Internal Memory 

: variable size, memorization from 2 to 32000 

Profiles 

 

Configuration : 10 saved configurations 

Data File : Binary 

(include: ASCII short into blocks, 476 bytes 

Of ASCII comments, all parameters, all data 

Profiles) 

ASCII (statistical information available) 
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         APPEDIX G 

 

G. ERROR MARGINS 

 

 

Part A. Phase Velocity versus Frequency Graphs With 99.9% Confidence 

Interval 

 

 

Figure 54.V vs. f for 1 mm grain size with error bars with 99.9% CI 

 

 

Figure 55. V vs. f for 700 microns grain size with error bars with 99.9% CI 
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Figure 56. V vs. f for 300 microns grain size with error bars with 99.9% CI 
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Part B. Phase Velocity versus Frequency Graphs With 95% Confidence 

Interval 

 

Figure 57. V vs. f for 1 mm grain size with error bars with 95% CI 

 

 

 

 

Figure 58. V vs. f for 700 microns grain size with error bars with 95% CI 
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Figure 59. V vs. f for 300 microns grain size with error bars with 95% CI 
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APPENDIX H 

 

H. EFFECTS OF THE VALUE OF GRAIN SIZE/WAVELENGTH 

 

 

 

Figure 60. Attenuation coefficient versus grain size/wavelength for water 

saturated medium sand medium 
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Figure 61. Attenuation coefficient versus grain size/wavelength for water 

saturated glass beads medium with size of grains of 1 mm 

 

Figure 62. Attenuation coefficient versus grain size/wavelength for water 

saturated glass beads medium with size of grains of 700 microns 
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Figure 63. Attenuation coefficient versus grain size/wavelength for water 

saturated glass beads medium with size of grains of 300 microns 


