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ABSTRACT

SUPER RESOLUTION ON LINUX TELEVISIONS

Mahleç, Ahmet Ege

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

February 2016, 116 pages

Demand of obtaining better quality image is becoming very important topic in tele-
vision market. Since many content providers still broadcast videos in SD or HD
resolution, upscaling input video to display it on FHD or UHD television with better
quality is the key point of image quality. Because basic interpolation algorithms do
not satisfy this demand, super resolution algorithms are needed to obtain better qual-
ity output video. Therefore, many chip providers claim that their chip supports super
resolution algorithms.

Throughout this thesis, single-frame and multi-frame super resolution algorithms’
performance and complexity will be investigated to find an optimal algorithm which
is able to run on Linux televisions in real-time. Moreover, effect of the motion esti-
mation on multi-frame super resolution algorithms will be investigated.

As a second contribution of this thesis, mmrgLibrary will be presented. This image
processing library is developed in order to unify all the third party libraries into one
library and in order to implement customize algorithms. This library is cross-platform
API which can be executed on ARM platforms, X86 platforms or any platforms if the
toolchain of this platform is provided.

Keywords: Super Resolution, Image/Video Enhancement, Motion Estimation
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ÖZ

LİNUX TELEVİZYONLARDA SÜPER ÇÖZÜNÜRLÜK

Mahleç, Ahmet Ege

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Şubat 2016 , 116 sayfa

Televizyon pazarında daha kaliteli resim elde etmek çok önemli bir konudur. Birçok
içerik sağlayıcı halen daha SD veya HD çözünürlükte içerik dağıttığı için; girdi vide-
onun yeniden boyutlandırılarak FHD veya UHD ekranlarda daha iyi gösterilebilmesi
resim kalitesi açısından anahtar noktalardan birisidir. Basit ara değerleme algoritma-
ları bu ihtiyacı karşılayamadıkları için, süper çözünürlük algoritmaları daha iyi kalite
çıktı video oluşturmak için gereklidir. Bundan dolayı, birçok çip sağlayıcı kendi çip-
lerinin süper çözünürlük algorithmalarını desteklediklerini iddia etmektedirler.

Bu tez boyunca, Linux televizyonlarda gerçek zamanlı çalışan en uygun algoritmayı
bulmak için tek-resim kullanan ve çok-resim kullanan süper çözünürlük algoritmaları
performans ve işlem yükü olarak karşılaştırılacaktır. Bunun yanı sıra, hareket kesti-
rimi algoritmalarının çok-resim kullanan süper çözünürlük üzerindeki etkileri araştı-
rılacaktır.

Bu tez kapsamında bir yenilik olarak mmrgLibrary sunulacaktır. Bu görüntü işleme
kütüphanesi bütün yardımcı kütüphaneleri birleştirmek ve ihtiyaca göre düzenlenmiş
algoritmaları uygulamak için geliştirilmiştir. Bu kütüphane ARM, X86 ve araç zinciri
sağlanmış her platformda çalışabilir.

Anahtar Kelimeler: Süper Çözünürlük, Resim/Video İyileştirme, Hareket Kestirimi

vi



To my family

Ayten Mahleç, Mustafa Mahleç, Ece Mahleç Yılmaz and Hakan Yılmaz

To her

Esra Özcan

vii



ACKNOWLEDGMENTS

I would like to thank to my advisor, Prof Dr Gözde Bozdağı Akar, for her guidance,
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the evolution of the higher resolution displays, obtaining high resolution images

is must for consumer electronics. With the advent of the UHD resolution, many stan-

dards are implemented in order to display UHD resolution which is defined by ITU.

Especially by the aid of High Efficiency Video Codec Standard, HDMI 2.0 Standard

and VP9 Standard; the use of 4K resolution are increasing day by day. Since formerly

recorded movies are low resolution and also some television broadcasters are still

broadcasting in low resolution due to limit of transmission bandwidth, the low reso-

lution frames must be upscaled to be fitted to screen. This upscaling process mostly

handled by using basic interpolation algorithms ,due to their low computational load,

which may cause too much artifacts depend on the feature of input images. If this

case happens, the perceptual picture quality will decrease remarkably. Since quantity

of the sales are dependent of picture quality for the devices which use larger displays,

such as televisions and computers; obtaining high resolution image with high quality

is a remarkable topic which is highly correlated with the demand of the industry. In

order to satisfy this demand; nowadays, many chip providers which produce solu-

tions for television industry use super resolution algorithms in their chips to obtain

high resolution image with high quality.

Super resolution is the general name of the techniques to increase spatial or optical

resolution of input image while retrieving the lost high frequency components, also

called as "details". These techniques use low resolution image or a set of low res-

1



olution images as input to reconstruct a high resolution image as output. If a super

resolution approach uses single low resolution image to reconstruct high resolution

image, this super resolution approach is classified as single-frame super resolution

approach. On the other hand, if a super resolution approach uses multiple low reso-

lution images to reconstruct high resolution image, this super resolution approach is

classified as multi-frame super resolution approach.

As it is mentioned, the straightforward way to upscale an image is applying basic

interpolation algorithms. Well-known examples of these algorithms are Nearest-

Neighbor interpolation, Bilinear interpolation and Bicubic interpolation. These al-

gorithms are suitable for real time implementation because of their simplicity.

Single-frame super resolution algorithms need more computational power when com-

pared with basic interpolation algorithms. However, they are formed an output image

which has higher quality when compared with basic image interpolation algorithms.

Among all the algorithms in the literature; Iterative-Back Projection algorithm and

Edge-Adaptive Interpolation algorithm will be examined in this thesis.

Multi-frame super resolution algorithms use a set of low resolution images to form

high resolution output image. In order to obtain high resolution image, these algo-

rithms estimate motion information between consecutive frames. By compensating

motion between consecutive frames, they are fusing several low resolution images

into one high resolution image.

The output image quality of classical multi-frame super resolution algorithms highly

depend on accuracy of motion estimation algorithms. In the classical multi-frame

super resolution algorithms, the aligned frames are fused into output high resolution

image regardless of the correlation of the input images. Since general content movies

have complex motion, it is hard to estimate the motion between consecutive frames

accurately.

Recently, a few video interpolation algorithms are proposed to obtain a better re-

sult for general content movies. These video interpolation algorithms are the special

case of the multi-frame super resolution algorithms. In the formulation process, they

ignore the blurring and adding noise operations and in addition to that they offer
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probabilistic motion estimation to prevent the artifacts caused by motion estimation

algorithms. However, these algorithms generates blur output image, since the algo-

rithms are very similar with the bilateral filter implementation.

1.2 Scope of Thesis

In this thesis, super resolution algorithms will be compared with respect to their per-

formance and complexity. The aim of this thesis is to find a suitable algorithm which

can be used in real time applications running in linux platforms. All the algorithms

will be implemented on computer which has Intel i7 processor and on the Arçelik

television which has Arm processor whose details can be found in Appendix D.

1.3 Outline of Thesis

In chapter 2, motion estimation, picture quality assessment and bilateral filter algo-

rithms will be explained.

In chapter 3, literature survey of super resolution algorithm is going to be given.

In chapter 4, super resolution algorithms’ performance-wise and complexity-wise re-

sults will be presented.

In chapter 5, OPENCL API will be introduced and performance of OPENCL support

of mmrgLibrary whose details can be found in Appendix B will be explained.
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CHAPTER 2

BACKGROUND METHODS

In this chapter, auxiliary algorithms will be explained. These algorithms are used in

various parts of the super resolution algorithms. This chapter will be discussed in

three parts.

First part is dedicated to explain the quality metrics; namely Peak Signal to Noise

Ratio (PSNR), Differential Mean Opinion Score (DMOS) and Attention Weighted

Differential Mean Opinion Score (ADMOS).

Second part of this chapter is dedicated to explain motion estimation algorithms

which will be used in the registration part of multi-frame super resolution meth-

ods. In the registration part of multi-frame super resolution methods, the motion

between consecutive frames are estimated and these motions are eliminated so that

consecutive frames are aligned with reference frame. Therefore, motion estimation

forms a set of aligned frames to be used in the reconstruction part of the multi-frame

super resolution algorithms. In this thesis, Block Matching Exhaustive Search and

Projection-based Motion Estimations will be investigated to be used in the registra-

tion part. These two algorithms are selected because the characteristic of these two

algorithms are very different. While Projection-Based Motion Estimation is only

capable of estimating global motion, Block Matching Full Search algorithm can esti-

mate local motion. The other difference between these two algorithms is that while

Block Matching Full Search algorithm has too much computational load, Projection-

based Motion Estimation algorithm is as fast as possible to be applicable to real time

implementation. Therefore, these two motion estimation algorithm will be used in

the registration part of the multi-frame super resolution algorithm and the results will
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be discussed.

In the third and final part of this chapter, bilateral filter denoising algorithm and its

adaptive variants will be explained. This denoising technique is the origin of the

modern super resolution algorithms which is discussed in this thesis. The detailed

explanation and the results will be given in the third part of this chapter.

2.1 Image Quality Metrics

Throughout this thesis; PSNR, DMOS and ADMOS image quality metrics are used

to measure the quality of processed images. These three methods are the members

of full reference objective quality metrics. In these metrics, processed image and

original image are compared to measure quality of processed image.

Although the working principles of these metrics are similar, the performance of these

quality metrics to simulate human visual system is different. PSNR is the most prim-

itive method among all the three metrics. This measurement is well known as having

less correlation with subjective ratings. However, it is easy to implement and easy

to adopt to real time systems. DMOS is perceptual-based measurements using hu-

man visual system models. It provides more accurate rating results, correlating more

closely to human subjective tests than the PSNR measurement alone. DMOS mea-

surement evaluates how much impairment viewers will perceive in test video content.

ADMOS is the special type of DMOS measurement with the addition of a part of hu-

man cognition that accounts for what spectators are most likely to watch in any given

scene.[2]

2.1.1 Peak Signal to Noise Ratio (PSNR)

PSNR is the most widely used quality metric to evaluate the super resolution algo-

rithm in the literature. As it is indicated above, the calculation is very straight forward.

PSNR = 10 ∗ log10(
(2n − 1)√
MSE

) (2.1)
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Table 2.1: Mean Opinion Scores

MOS Quality Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

MSE is calculated as

MSE =
1

MN

M∑
i=1

N∑
j=1

(x(i, j)− y(i, j))2 (2.2)

Where x(i,j) represents the original image and y(i,j) represents the processed(modified)

image. i and j are the pixel position of the MxN image and n is the channel bit depth.

As it is stated before, PSNR and MSE is the most primitive quality metrics which

are not suitable for simulating human visual system as it is shown in figure 2.4a. For

example, it is a well-known fact that humans are more sensitive to noise occurred in

the low frequency area than the noise occurred in the high frequency area. However,

if we measure the PSNR values of these two cases, it will give the same result for

both cases. The other example can be counted as the perceptual difference of same

noise on different luminance levels. Although the same noise, which is observed on

regions which has different luminance values, is perceived differently; PSNR metric

gives same result for both regions. Although PSNR has these disadvantages; it will be

used to measure performance of the algorithms in this thesis, since it is widely used

in the literature.

2.1.2 Differential Mean Opinion Score (DMOS)

Mean Opinion Score (MOS) is used to evaluate the video quality subjectively. The

scores and their meanings of MOS can be found in table 2.1.

Differential Mean Opinion Score (DMOS) is calculated by finding the difference be-
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Table 2.2: Differential Mean Opinion Scores

MOS Quality Impairment
1 Excellent Imperceptible
2 Good Perceptible but not annoying
3 Fair Slightly annoying
4 Poor Annoying
5 Bad Very annoying

tween original and processed sequence’s MOS. Less the difference between MOS

score, better will be quality of processed video. Therefore, the scores and their mean-

ing of DMOS can be found in table 2.2.

Although DMOS is a subjective quality metric, Tektronix Picture Quality Analyzer

Software (PQASW) gives predicted DMOS scores by comparing the original video

and processed video objectively. Since it is a commercial product, technical details

of this algorithm cannot be found. However, advantage of this approach is shared by

Tektronix.[2]

This predicted DMOS method takes into consideration different display types used to

view the video (for example, interlaced or progressive and CRT or LCD) and differ-

ent viewing conditions (for example, room lighting and viewing distance) and mean

luminance, spatial frequency, temporal frequency of evaluated regions. It is a well

known fact that PSNR does not take into consideration the spatial or temporal fre-

quency and the characteristic of the input image. The examples of these cases can be

found below.

Assuming that low frequency image and high frequency image are suffered from the

same noise as it can be shown in the figure 2.1. Although PSNR results of these

images are same, DMOS results state that noise on the low frequency image can be

perceived higher than noise on the high frequency image as it can be seen in figure

2.1e and figure 2.1f.

The other advantage of predicted DMOS result is that it considers the temporal fre-

quency of input videos. Flicker video (luminance value of even frame’s pixels are

128 whereas luminance value of odd frame’s pixels are 0) is played in 10Hz and

8



(a) Low Frequency
Image

(b) High Frequency
Image

(c) Low Frequency
Image with Noise

(d) High Frequency
Image with Noise

(e) DMOS Graph of Low Frequency Image
with Noise

(f) DMOS Graph of High Frequency Image
with Noise

Figure 2.1: Illustration of the effect of the noise on Low Frequency Image and High
Frequency Image

100Hz while video (luminance value of all frame’s pixels are 128) is used as ref-

erence video. While PSNR gives same result for this case, DMOS gives consistent

result with human visual system as it can be seen in figure 2.2. It is because of the

fact that sensitivity of human eye decreases as long as the temporal frequency is in-

creasing.

The last advantage of predicted DMOS result is that it considers characteristic of in-

put images. Contrast and sharpening is the major factor of perceived picture quality.

(a) DMOS Graph of Flicker Video played in
10Hz

(b) DMOS Graph of Flicker Video played in
100Hz

Figure 2.2: Illustration of the effect of the temporal frequency on DMOS
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(a) Original Image (b) Low Contrast
Image

(c) High Contrast
Image

(d) DMOS Graph of Low Contrast Image (e) DMOS Graph of High Contrast Image

Figure 2.3: Illustration of the effect of the contrast on DMOS metric

Assuming that the original image, and two output image, which are shown in fig-

ures 2.3a, 2.3b and 2.3c respectively, will be compared to evaluate the algorithms

performance. Although the PSNR gives same result for these two output images, pre-

dicted DMOS algorithm gives consistent result with human visual system. Therefore,

DMOS shows that the second algorithm outgoes first algorithm as it can be seen in

figure 2.3d and figure 2.3e.

2.1.3 Attention Weighted Differential Mean Opinion Score (ADMOS)

As it is stated before, Attention Weighted DMOS measurement provides DMOS re-

sult with weighting apportioned by probable areas in the sequences on which the hu-

man eye is focusing. The weights of the features; namely motion, center, foreground,

contrast, color, shape and size can be arranged in PQASW.

Communication Research Center in Canada conducted an experiment to measure the

performance of PSNR, DMOS and ADMOS quality metrics.[1] The subjective scores

had been obtained by contribution of the 33 participants. Every reference and pro-

cessed image sequence is shown to participants to evaluate the reference and pro-

cessed sequence by using MOS scores. These MOS scores had been used to obtain
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(a) PSNR vs Subjective DMOS[1] (b) DMOS vs Subjective DMOS[1]

(c) ADMOS vs Subjective DMOS[1]

Figure 2.4: Correlation of Subjective DMOS resuls with PSNR, DMOS and ADMOS
results

DMOS scores. These subjective DMOS scores had been compared with the result of

PSNR, DMOS and ADMOS quality metrics. As it can be seen in the figures 2.4a,

2.4b and 2.4c, the results shows that ADMOS has the best correlation with subjective

DMOS results, while PSNR has the worst correlation.

2.2 Motion Estimation Algorithms

Motion between consecutive frames can be in any form. Form of the motion can be

divided in two categories with respect to size of moving blocks. If every objects in

the scene has the identical motion, this motion type is called as global motion. This

motion type is the result of the camera movement. While the objects are stationary,

if camera has horizontal and/or vertical motion, global motion is occurred in video.

This motion type is easy to detect and can be compensated with the motion estimation

algorithms.

The other motion type is local motion. While some objects are moving in the scene, if
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Figure 2.5: The illustration of working principle of Projection-based Motion Estima-
tion

the others are stationary, this motion type is called as local motion. This motion type

is hard to detect and needs more computational power when compared with global

motion. The reason why local motion is hard to detect is that the moving objects

can be in any shape and velocity. In addition to that, luminance change or noise may

affect the performance of these algorithms.

Motion can also be divided in two categories with respect to the way blocks move.

First one of them is the translational motion. If a moving block has vertical and/or

horizontal motion, this motion is called as translational motion. Translational motion

can be local motion or global motion.

The second of them is the rotational motion. If a moving block or a group of pixels

has circular motion, this motion is called rotational motion. Rotational motion is very

hard to detect and the motion estimation algorithms which are going to be explained

in this thesis are not capable of detecting rotational motion.

In this chapter, Projection-Based Motion Estimation and Block Matching Exhaustive

Search Motion Estimation will be explained.

2.2.1 Projection-Based Motion Estimation

This method is only capable of detecting global translational motion. Local motion

and any rotational motion cannot be detected by using this method. The working

principle is very simple.
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As it is shown in the figure 2.5, four arrays are created to store the sum of the values

for horizontal lines and vertical lines. Two of them will be used for the reference

image and others will be used for the image whose motion vectors are tried to be cal-

culated. After sum of each lines is calculated and saved to the arrays, mean absolute

error is calculated by sliding one array on another array. The motion vector which

produces minimum mean absolute error will give us the global motion vector. This

process is applied both for vertical direction and horizontal direction. As a result,

translational vertical and horizontal global motion is estimated.[4]

The main advantage of this algorithm is the fast enough to be adoptable to real time

implementation. The other advantage is that the output image does not suffer from

the blockiness artifact. However, its algorithm is partially appropriate for parallel

implementation. In other words, summing the vertical and the horizontal line part

can be implemented by using parallel programming; however, finding motion vectors

can hardly be implemented by using parallel programming. The other disadvantage

of this motion estimation algorithm is that projection-based motion estimation is not

capable of local translational motion or any rotational motion.

2.2.2 Block Matching Exhaustive Search Motion Estimation

This approach is the best approach to find the local motion. Working principle of

block matching exhaustive search motion estimation is very straight forward. Sim-

ply, every block in the second frame is searched in the reference frame to find the

best match. In other words, the algorithm tries to minimize the equation to find the

optimum displacement vector d. The complexity depends on the size of the search

window, image width and height.[3] This approach is very appropriate for parallel

programming. However, it is not capable of finding rotational motion. If the block

size is selected small enough, rotational motion can be detected partially. Although

this approach is suitable for parallel programming; since it needs too much compu-

tational power, it is not appropriate for real time implementation unless a dedicated
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 2.6: PSNR Comparison of Block Matching Full Search and Projection-Based
Motion Estimation

hardware or an advanced GPU which has thousands of cores are used.

E(d) =
∑
p∈R

|I(p, t1)− I(p+ d, t2|2 (2.3)

where t1 and t2 indicate frames observed in that time, I indicates the luminance value

of the pth pixel.

The PSNR, DMOS and ADMOS comparisons of motion estimation algorithms, which

are explained above, can be found in the figures 2.6 - 2.8. In these figures, two con-

secutive frames are used to evaluate the performance of the motion estimation al-

gorithms. By using the current frame as reference frame, motion of the previous

frame with respect to reference frame is estimated and compensated. Compensated

frame and reference frame are compared by using PSNR, DMOS and ADMOS met-

rics. In the figures 2.6 - 2.8, Block Matching Exhaustive Search Motion Estimation

algorithm’s results are shown in red; while Projeciton-Based Motion Estimation al-

gorithm’s results are shown in blue. It is very important to note that PSNR graphs are

shown as a mirror version with respect to x-axis. While maximum value is located at

the bottom of the graph, the minimum value is located at the top.

14



(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 2.7: DMOS Comparison of Block Matching Full Search and Projection-Based
Motion Estimation

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 2.8: ADMOS Comparison of Block Matching Full Search and Projection-
Based Motion Estimation
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Table 2.3: Execution time of motion estimation algorithms for different resolutions
on INTEL architecture whose details are listed in Appendix D

QCIF CIF SD HD FHD
PBME 1 msec 6 msec 24 msec 54 msec 120 msec
BMFS 151 msec 744 msec 3304 msec 7753 msec 17714 msec

Table 2.4: Execution time of motion estimation algorithms for different resolutions
on ARM architecture whose details are listed in Appendix D

QCIF CIF SD HD FHD
PBME 10 msec 50 msec 200 msec 450 msec 1010 msec
BMFS 1200 msec 5920 msec 26130 msec 60760 msec 139680 msec

The interpretations of figures 2.6 - 2.8 are as follows.

• When there is not any motion between consecutive frames or when there is just

global motion between consecutive frames, two motion estimation algorithm

has same performance as it can be seen in figures 2.6b, 2.7b and 2.8b. After

240th frame, both motion estimation algorithms have same performance.

• When scene change occurs, both motion estimation algorithms fail as it can be

seen in figures 2.6c, 2.7c and 2.8c. The three minimum values which are shown

in these figures happens because of the scene change.

• If there is a dominant local motion between two consecutive frames, Block

Matching Motion Estimation algorithm outgoes Projection-based Motion Esti-

mation algorithms as it can be seen in figures 2.6 - 2.8.

Although Block Matching Full Search algorithm outgoes Projection-Based Motion

Estimation algorithm, Block Matching Full Search algorithm’s computational load is

much more higher than Projection-Based Motion Estimation algorithm. The execu-

tion time of motion estimation algorithms for different resolutions can be found in

tables 2.3 and 2.4.
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Figure 2.9: Illustration of the effect of the range and distance filters for bilateral filter.

2.3 Bilateral Filter

Bilateral filtering is a special kind of Gaussian filter. The advance of bilateral filtering

is preserving the slope of edge while eliminating noise. It has composed of two

filters: range filter and distance filter. The distance filter is very similar with the

classical Gaussian filter, whereas range filter is special filter giving the characteristic

of the bilateral filter. Distance filter is checking for how close neighbour pixel and

the center pixel are so that it can assign larger weight to closer pixels; whereas range

filter is checking for how similar neighbour and center pixel are so that it can assign

larger weight to similar pixels. The effect of the filters by using different variance

values is shown on the figure below.

As shown at figure 2.9 that, if we increase the variance of the distance filter, the

output image suffers from "cartoonize effect", whereas if we increase the variance

of the range filter, the bilateral filter is very similar with the classic Gaussian filter.

In our experiment, we set the variance of the distance value to a fixed value and we

change the variance of the range filter. The mathematical formula for bilateral filter
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(a) Original Lena
Image

(b) Gaussian Noise
with 0.001

(c) Gaussian Noise
with 0.006

(d) Gaussian Noise
with 0.01

Figure 2.10: Gaussian noise is added to original Lena image by using different vari-
ance values

is as follows.[5]

Ifiltered(i, j) =

∑
k,l I(k, l) ∗ w(i, j, k, l)∑

k,l w(i, j, k, l)
(2.4)

where the weight (w(i,j,k,l)) is calculated as

w(i, j, k, l) = e
− (i−k)2+(j−l)2

2σ2
d

− ||I(i,j)−I(k,l)||
2

2σ2r (2.5)

In order to test the performance of the bilateral filter, noisy images are prepared by

using White Gaussian Noise with different variances. The noisy images which are

used in our experiment can be seen in the figure 2.10 and figure 2.11.

PSNR table is presented in figure 2.13 in order to understand the effect of the bilateral

filter for different regions, which is shown in figure 2.12, ( for Lena Image; region 1

is the smooth region, region 2 is the high frequency region and region 3 is the edge

region; for MMRG Image, region 1 is the smooth region, region 2 and 3 are the high

frequency region and region 4 is the edge region) and for different noise levels.
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(a) Original MMRG Image (b) Gaussian Noise with 0.001

(c) Gaussian Noise with 0.006 (d) Gaussian Noise with 0.01

Figure 2.11: Gaussian noise is added to original MMRG image by using different
variance values

(a) Lena Image (b) MMRG Image

Figure 2.12: Examined regions for MMRG Image and Lena Image

19



Figure 2.13: PSNR results of the bilateral filter response to noisy images with dif-
ferent noise levels.BF(50) means that variance of the range filter is 50. ABF is the
abbreviation of the Adaptive Bilateral Filter, whereas ABF CLC is the abbreviation
of the "Adaptive Bilateral Filter Considering Local Characteristics"

As it can be seen in the figure 2.13, under the low variance noise condition, bilateral

filter with low variance should be applied to the high frequency regions, whereas

bilateral filter with high variance should be applied to low frequency regions. Under

the high variance noise condition, bilateral filter with high variance should be applied

to the noisy images.

Instead of selecting the values for different images and for different noise levels man-

ually, an algorithm is needed to select the variance value automatically. Therefore,

adaptive bilateral filter is explained in the next two subsection.
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2.3.1 Adaptive Bilateral Filter

The aim of the adaptive bilateral filter is

• To improve the results of the output image for different regions ( high frequency

region and low frequency region)

• To improve the results of the output image for different noise levels. (robustness

to noise)

Adaptive Bilateral Filter approach claims that variance of the range filter should be

inversely proportional to the pixel fluctuations. By using this idea, the variance of the

range filter is calculated by using the equations given below.[6]

∆ =

∑
qεΩ |Iq − Iq|

m
; n = 11; σd = 3 ∗ n; σr =

96

∆
(2.6)

This approach is very useful for different regions. When we are in the low frequency

region with low pixel fluctuations, variance of the range filter is high. Therefore,

bilateral filter compress the noise more powerfully when we compare with the high

frequency region. To prove that our statement is true, figure 2.14 is a good choice to

show this.

The difference map shows that adaptive bilateral filter is not modifying the high fre-

quency regions (such as texture regions or edges); on the other hand, it applies pow-

erful filtering for the low frequency regions. This algorithm is very effective when we

consider the different regions, however it is not that far effective for different noise

levels as it can be seen in the figure 2.13.

2.3.2 Adaptive Bilateral Filter Considering Local Characteristics

This approach chooses bilateral filter’s range parameter considering the “Gradient

Map”. Gradient map of an image is created using horizontal and vertical Gaussian

gradients. After that, they associate the range parameter of bilateral filter with gradi-

ent value.
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(a) Original Lena
Image

(b) Gaussian Noise
with 0.001

(c) Adaptive Bilat-
eral Filter is applied
to the image which
is shown in (b)

(d) Difference map
((b) - (c))

Figure 2.14: The illustration of the working principle for Adaptive bilateral filter for
different regions

As it is mathematically stated in the equations 2.4 and 2.5, σr and σd are the standard

deviations of the range filter and the domain filter respectively. These parameters con-

trol the strength of the bilateral filter. As it is stated before, range filter is important

filter which makes bilateral filter unique. Therefore, this approach adjusts the stan-

dard deviation of the range parameter, σr, according to the context of the image in

order to process the image locally and adaptively.Gaussian gradient map is used since

it gives the local information about regions. The Gaussian gradient map equation is

given as

G =
√
G2
x +G2

y (2.7)

Gx andGy are two directional horizontal and vertical Gaussian gradients respectively.[7]

According to article, the value of current gradient and the value of the range standard

deviation, σr have certain relationship. Therefore, they set the range filter standard

deviation, σr as the inverse function of gradient to classify the pixels automatically

without setting threshold manually. The range filter variance is calculated according
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to equation below.

σr(x, y) = k(x, y) ∗ 1

G(x, y)
+ b(x, y) (2.8)

where (x,y) denotes the current pixel coordinate; k(x,y) and b(x,y) are the parameters

which control the relation of current σr(x, y) and the current G(x,y). For simplicity,

k and b values are set to same value for the whole image. Moreover, k is equalized to

maximum value of G which is shown in equation (2.7).
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CHAPTER 3

LITERATURE SURVEY

Super resolution has been investigated over the past two decades. In these two decades,

many different approaches have been proposed to obtain an output image having high-

est quality. These methods can be divided into two main groups, namely, single-frame

super resolution methods and multi-frame super resolution methods. Before super

resolution algorithms were proposed, basic interpolation algorithms had been used to

upscale images. These basic interpolation algorithms are also used in today’s world

because of their simplicity and low computational load. Therefore, first of all, basic

interpolation algorithms will be introduced in this chapter; after that super resolution

algorithms will be explained.

3.1 Basic Interpolation Algorithms

Basic interpolation techniques rely on the surface fitting by using the known pixels.

These techniques do not consider the feature of input image. Three well-known exam-

ples of these techniques are Nearest Neighbour Interpolation, Bilinear Interpolation

and Bicubic Interpolation.

While Nearest Neighbour Interpolation fills all the missing pixels with the value

of closest pixel, Bilinear Interpolation estimate missing pixels by assuming that the

known pixels are located on the linear surface. Therefore, while Nearest Neighbour

Interpolation causes jagged edges, Bilinear Interpolation incurs blur edges.

Bicubic Interpolation is the most widely used benchmark algorithm in the literature.
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Every articles in the literature compares their algorithms with the Bicubic Interpola-

tion as it is also done in this thesis. Every algorithm will be compared with the Bicubic

Interpolation by using PSNR, DMOS and ADMOS quality metric. The results will

be presented in Chapter 5.

Bicubic Interpolation is the two dimensional version of the Cubic Interpolation. In

order to apply Bicubic Interpolation to an image; first, the image divides into four

by four windows to calculate the sub-pixel values located between the middle of the

two pixels. For every windows, missing pixels or sub-pixels are calculated in the

x-direction by using Cubic Interpolation. After that, Cubic Interpolation is applied

to find the missing pixels in the y-direction. This approach is used to take advan-

tage of the separable filters. This approach requires less computational power when

compared with the 2-D convolution.

Cubic Interpolation uses third degree polynomial and its derivative to find the missing

values. Here is the derivation of the cubic interpolation. Assuming that the values and

the derivatives of the points at x = 0 and x = 1 are known.[8]

f(x) = ax3 + bx2 + cx+ d (3.1)

f ′(x) = 3ax2 + 2bx+ c (3.2)

The values of the polynomial and its derivative at x = 0 and x = 1 are

f(0) = d (3.3)

f(1) = a+ b+ c+ d (3.4)

f ′(0) = c (3.5)

f ′(1) = 3a+ 2b+ c (3.6)

The four equations ,which are listed above, can be written is as follows.
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a = 2f(0)− 2f(1) + f ′(0) + f ′(1) (3.7)

b = −3f(0) + 3f(1)− 2f ′(0)− f ′(1) (3.8)

c = f ′(0) (3.9)

d = f(0) (3.10)

Since we are using four by four window to determine the missing pixel, we know the

values at the point x = -1, x = 0, x = 1 and x = 2, whose values are denoted as p0,

p1, p2, p3 respectively. By convention, in order to find the value and derivative of the

polynomial at x = 0 and x = 1, we use the formulas below.

f(0) = p1 (3.11)

f(1) = p2 (3.12)

f ′(0) =
p2 − p0

2
(3.13)

f ′(1) =
p3 − p1

2
(3.14)

By using the four formulas given above, we can rewrite the polynomial function’s

coefficients in terms of the known points as it is given above.

a = −p0

2
+

3p1

2
− 3p2

2
+
p3

2
(3.15)

b = p0 −
5p1

2
+ 2p2 −

p3

2
(3.16)

c = −p0

2
+
p2

2
(3.17)

d = p1 (3.18)

Therefore, the final formula becomes

f(p0, p1, p2, p3, x) =(−p0

2
+

3p1

2
− 3p2

2
+
p3

2
)x3 + (p0 −

5p1

2
+ 2p2 −

p3

2
)x2+

(−p0

2
+
p2

2
)x+ p1

(3.19)
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Every missing pixels which are located between x = 0 and x = 1 will be estimated by

using the equation (3.19).

Bicubic interpolation produces higher quality images when compared with the bilin-

ear and nearest neighbour interpolation. However, since the algorithm doesn’t con-

sider the feature of the images, the edge regions will be blurry and ringing effects are

seen.

3.2 Single Frame Super Resolution

For single frame super resolution techniques, only spatial information of video is used

to improve the resolution of the output image. A Fast Edge-Adaptive Interpolation

and Iterative-Back Projection algorithm will be examined as example of single frame

super resolution techniques. In this section, advantages and disadvantages of this

technique will be discussed.

3.2.1 Fast Edge-Adaptive Interpolation

As it is mentioned in the previous section of this chapter, the basic interpolation tech-

niques do not consider input image characteristics. The difference of this technique

is that it looks for the best correlation between consecutive pixels (two by two pix-

els). Therefore, missing pixels will be filled by averaging the two pixels having best

correlation. This leads to better quality for the edge region of the images and slope

of edges is preserved. As a result, the output high resolution image has sharp edges

depend on the edge condition when we compare with Bicubic Interpolation.

Figure 3.1a shows pixel map of the up-sampled input image by a factor of two. While

Y2i+2p,2j+2q pixels are low resolution pixels, Y2i+2p+1,2j+2q+1 pixels are high resolu-

tion pixels where p, q ∈ Z. This algorithm preserves the low resolution pixels by

up-sampling them on high resolution grid as it can be seen in figure 3.1b. The miss-

ing pixels which are labelled as Y2i,2j+1, Y2i+1,2j and Y2i+1,2j+1 are estimated by using

the Algorithm 1 which can be found in Appendix A.

As it can be seen in Algorithm 1, this algorithm can be parallelized since the main
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(a) Pixel Map of High Resolution Image

(b) 2x2 block of pixels with
low resolution pixels labelled
as filled circle and high resolu-
tion pixels(missing pixels) la-
belled as hollow circle

(c) Calculating similarities for
every direction on edge region

Figure 3.1: Fast Edge-Adaptive Interpolation Algorithm [9]

loop has no inter-dependency between different iterations. The results of this algo-

rithm will be shared in Chapter 5.

3.2.2 Iterative Back-Projection Approach

This approach is very similar with the reconstruction of 2-D object from 1-D pro-

jections in Computer-Aided Tomography. Estimated high resolution image is con-

structed by upsampling the averaged form of the motion compensated low resolution

images. This estimated high resolution image is used to form estimated low resolu-

tion images to compare with the original low resolution images. Error between the

original low resolution images and estimated low resolution images are estimated to
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back-project it to high resolution image. The mathematical expression can be found

below.[10]

x̂n+1[n1, n2] = x̂n[n1, n2] +
∑

m1,m2∈Y
m1,m2
k

(yk[m1,m2]− ŷnk [m1,m2])× hBP [m1,m2;n1, n2]

(3.20)

where ŷnk = DHPSF x̂n are the estimated low resolution images after nth iteration

using the imaging model. In our experiment, 3x3 box filter is used for HPSF . The

important part of this approach is choosing the iterative back projection kernel which

is represented as hBP . In our experiment, 3x3 box filter is also used for hBP , since

Irani et al claims that choosing hBP equals to HPSF is a good choice because this

choice prevents nonzero frequency components from varying much in few iterations,

hence remaining similar in their initial value.For the same reason, noise is not am-

plified by such frequency components. The other possible choice of hBP is choosing

inverse filtering for debluring. Irani’s article claims that this choice tends to amplify

noise.

In Irani’s and Peleg’s article, motion estimation method which is proposed by Keren

et al is used to compensate the motion between consecutive frames. This motion es-

timation techniques assumes that motion between consecutive frames are very small.

Therefore, it uses Taylor expansion to find the final equation. Since small displace-

ment between consecutive frames is not the usual scenario, this method is imple-

mented as single frame super resolution algorithm. It is because of the fact that

Irani also states that Iterative-Back Projection algorithm can also be implemented

as single-frame super resolution algorithm. Therefore, this approach is explained

in single frame super resolution section. In this thesis, the result of Single-Frame

Iterative-Back Projection Super Resolution method will also be shared in Chapter 5.

3.3 Multi-Frame Super Resolution

Temporal information of input video is used to enhance the resolution of the output

video in multi-frame super resolution algorithms. In other words, a set of frame is

used to enhance the resolution of output frame. These techniques are much more
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powerful to recover the lost information of images in case of motion estimation is

done accurately. However, for general content movies, it is hard to accomplish mo-

tion estimation since general content movies have complex motion which consists of

global and local motion.

In this section, multi-frame super resolution methods will be explained. Moreover,

advantages and disadvantages of these methods will be discussed.

3.3.1 Interpolation-Restoration Type Method

Interpolation- restoration type method consists of three steps; namely, registration, in-

terpolation and restoration. In the registration step, according to the reference frame,

motion vectors of other frames are estimated by using a motion estimation algorithm.

In this thesis, block matching exhaustive search is used for the registration step. After

motion of every block is estimated and compensated; in the interpolation part, high

resolution output image is obtained by using reference frame and motion compen-

sated form of other frame. The missing pixels of the high resolution output frame

are calculated inversely proportional to the sub-pixel distance of the low resolution

reference frame pixels and low resolution compensated from of the other frames. In

the restoration part, a filter is used for denoising and deblurring.

This method is the basic method among the multi-frame super resolution methods.

It is easy to implement and suitable for parallel implementation. Nevertheless, the

artifacts for the general content movies are quite disturbing. It is because of the fact

that motion estimation cannot be done accurately even if we use the block matching

exhaustive search or optical flow, which are the best methods among the motion esti-

mation algorithms. Therefore, especially at the edge region of the image, the staircase

effect is observed because of the fact that blocks with fixed square size are used in the

registration part.
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3.3.2 Model Based Super Resolution

This method tries to minimize the cost function which is given below. [11]

Cost =
K∑
k=1

||DHFkx− yk||22 (3.21)

Equation 3.21 is used by assuming the following forward problem equation.

yk = DHFkz + nk k = 1, ...K (3.22)

D, H and Fk are decimation operator, blurring operator and motion warp operator

respectively. x is the estimated high resolution image while z is the original high

resolution image. yk is the set of adjacent low resolution frames. The number of

elements in this set will be denoted by K. The cost function, which is shown in equa-

tion (3.21), should be calculated for every iteration and for every adjacent frames, and

the estimated high resolution image should be updated after every iteration.

In order to minimize the cost function, gradient descent method was used in this

thesis. The derivative of the cost function is computed as follows.

∇Cost =
K∑
k=1

2(DHFk)
T ((DHFk)x− yk) (3.23)

By substituting∇Cost into xn+1 = xn − β∇Cost ,

xn+1 = xn + β
K∑
k=1

(DHFk)
T (DHFkx

n − yk) (3.24)

where n denotes the number of iteration. In this thesis, β is selected as 0.5 and

Projected-Based Motion Estimation and Block Matching Full Search algorithm were

used to compensate motion between consecutive frames. Therefore, if there is a

global motion between consecutive frames, this algorithm gives high quality image

no matter which motion estimation algorithm is used; whereas if there is a local mo-

tion between consecutive frames, while this algorithm with Projection-Based Motion
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Estimation gives low quality output image with motion blur, the algorithm which use

Block Matching Motion Estimation gives high quality output result. This approach

is sensitive to scene cuts. If the consecutive frames are different, the performance of

this approach will decrease sharply.

The article claims that this approach may produce unstable result for noisy input im-

ages, which means small amounts of noise on the input images will be amplified by

this algorithm and many disturbing artifacts can be seen on the output image. There-

fore, regularization is needed to obtain stable result. Regularization term compen-

sates the missing measurement information with some general prior information of

the desirable high resolution image. The generalized minimization cost function is as

follows.

Cost =
K∑
k=1

||DHFkx− yk||22 + λΥ(x) (3.25)

where λ,the regularization parameter , will be used to arrange the weight of the regu-

larization cost function which is shown by Υ.

One of the most widely used regularization cost function is the Tikhonov cost function

ΥT (x) = ||Cx||22 (3.26)

where C is the highpass filter. The logic behind this regularization is to smooth the

result to compress the noise. Since both noisy and edge regions have high frequency

energy, they will be compressed in the regularization process and the output high

resolution image will not contain sharp edges. This is not a desired outcome for the

super resolution techniques.

Other widely used regularization method in the literature is the total variation (TV)

method. The TV criterion penalizes the total amount of the change in the image by

using the following regularization cost function. Since TV regularization does not
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penalize the steep local gradient, it preserves edge regions.

ΥTV (x) = ||∇x||1 (3.27)

3.3.3 Bayesian Methods

Bayesian methods try to estimate the most probable super resolution image by maxi-

mizing a posteriori pdf, namely, P (x|y1, y2, ...yK) with respect to x. The mathemati-

cal representation is as follows.

x̂MAP = argmax(P (x|y1, y2, ...yK)) (3.28)

Bayes’ theorem states that

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(3.29)

If we apply the Bayes’ theorem which is stated at equation (3.29) on the Bayesian

general equation stated at equation (3.28), the equation becomes

x̂MAP = argmax(
P (y1, y2, ...yK |x) ∗ P (x)

P (y1, y2, ...yK)
) (3.30)

Since P (y1, y2, ...yK) term is used for normalization and will not affect the maximiza-

tion, this term can be removed.

x̂MAP = argmax(P (y1, y2, ...yK |x) ∗ P (x)) (3.31)

Assuming that all the low resolution images, yk, are independent. The equation be-

comes,

x̂MAP = argmax({
K∏
k=1

P (yk|x)} ∗ P (x)) (3.32)
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3.3.3.1 Maximum Likelihood Method

If there is no priori information for the high resolution image, maximum likelihood

method is used to find the best estimate of the high resolution image by using the

formula.

x̂ML = argmax(
K∏
k=1

P (yk|x)) (3.33)

Assuming that the noise distribution in equation (4.1) is Gaussian, the noise is mod-

eled as

P (n) =
1

(2πσ)N/2
e−

nT n
2σ2 (3.34)

where N denotes the size of the noise vector. By replacing the noise expression,

denoted as "n", with (yk − (DHFk)x) according to equation (4.1), equation (3.34)

becomes,

P (yk|x) =
1

(2πσ)N/2
e−

(yk−DHFkx)
T (yk−DHFkx)

2σ2 (3.35)

By concatenating equation (3.33) and equation (3.35),

x̂ML = argmax(
K∏
k=1

1

(2πσ)N/2
e−

(yk−DHFkx)
T (yk−DHFkx)

2σ2 ) (3.36)

In order to find the maximum of the equation, we need to take the logarithm of the

equation so that we use the advantages of the logarithm on the derivation. Since

logarithm is the non-decreasing function, it will not affect the maximum.

x̂ML = argmin(
K∑
k=1

(yk −DHFkx)T (yk −DHFkx)

2σ2
− ln(

1

(2πσ)N/2
)) (3.37)
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Therefore, the cost function for maximum likelihood solution under the Gaussian

Distributed noise is

Cost =
K∑
k=1

||DHFkx− yk||22 (3.38)

As it can be noticed easily, equation (3.21) and equation (3.38) are the same. Al-

though they are applying different ways to solve the linear equation, they obtained

same cost function.

3.3.4 Super Resolution With Probabilistic Motion Estimation

This algorithm assumes that low resolution images are obtained without applying

blurring operation and adding noise operation in common. It proposes new way to

prevent the artifacts caused by motion estimation. For this purpose, the algorithm

uses the probabilistic motion estimation in the reconstruction instead of using classi-

cal motion estimation methods in the registration part. For this purpose, this approach

modifies the formulation posed in equation (3.21) by proposing the following proba-

bilistic maximum likelihood penalty, [12]

Cost =
1

2

M∑
m=1

T∑
t=1

||DHFmx− yt||2wm,t (3.39)

If the size of the maximal translation is at most D pixels, then a set of M = (2D+1)2

displacements covers all the possible motion vectors. Therefore, Fm indicates the all

possible motion vectors.

In order to minimize the cost function, pixel-wise method is used to obtain a high

resolution image with better optical resolution. Therefore, every pixels are estimated

by using the formula below.

x(i, j) =

∑
[k,l]∈N(i,j)

∑T
t=1Wm,t[k, l]yt[k, l]∑

[k,l]εN(i,j)

∑T
t=1 Wm,t[k, l]

(3.40)
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by defining the neighborhood set as

N(i, j) = [k, l]|∀m ∈ [1,M ], s.k = i+ dx(m), s.l = j + dy(m) (3.41)

where s is the scaling factor.

Equation 3.40 shows that every candidate pixels located at the adjacent frames will

be multiplied by a weight and the result will be normalized to obtain the pixel value

which is located at the high resolution frame. This approach is very similar with the

block matching exhaustive search algorithm which is explained in Section 2. The

main difference between these two algorithms is that while block matching exhaus-

tive search motion estimation seeks for the best match block, probabilistic motion

estimation super resolution algorithm estimates the weight by considering the ques-

tion how much these two blocks are similar. The weights are calculated by using the

formula given below.

Wm,t[i, j] = e
||Ri,j(DFmx−yt)||

2
2

2σ2 f(
√

(dx(m))2 + (dy(m))2 + (t− 1)2 (3.42)

As it can be seen in equation (3.42), the formula is very similar with the weight

equation in the bilateral filter. The only difference with bilateral filter weight equation

is that probabilistic motion estimation approach are using a patch of predetermined

size instead of using only one pixel. Every patch or block in the current frame are

shifted by using set of probable motion and the similarities will be evaluated by using

the Euclidean spatial distance of the blocks and Euclidean luminance distance of the

blocks.

Although this approach arises from finding a better solution the weakness of the mo-

tion estimation, it suffers from the blurring artifacts because of its similarity to bilat-

eral filter denoising algorithm. Therefore, this approach does not represents a good

quality of high resolution image. In addition to that, this approach is the most com-

putationally costly approach among all the super resolution methods.
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(a) Twelve motion trajectories of the
pixel of interest y[i,j]

(b) Conventional error computation
which is obtained from the difference be-
tween y[i,j] and xt[k, l](The new error is
the difference between xt[k, l] and z[u,
v] on the extended motion trajectory, and
the second frame, x2, is shown.)

Figure 3.2: Illustration of Extended Motion Trajectory

3.3.5 Fast Video Interpolation/Up-Sampling Using Linear Motion Model

This approach is very similar with the Super Resolution with Probabilistic Motion

Estimation approach which has been explained in the previous section. This algorithm

improves its performance by using linear motion assumption. Instead of using the

spatial filter which is formulated in equation (3.42), another filter to penalize the

similarity along the motion trajectory is used beside the domain filter. The formula

which is used to compute weight is as follows.[13]

Wm,t[k, l] = e

||R1
k,l(x2−xt)||

2
2

2σ21 e

||R2
k,l(F

L
m,tz−xt)||

2
2

2σ22 (3.43)

where z is the low resolution frame for which the extended ending point locates.

(Fm,t)
M
m=1 denotes the possible warping operator. As it is stated in the previous sec-

tion, Rk,l ’s are the predetermined patch size to compute the error better. The figures

illustrated at figure 3.2a and figure 3.2b will be very useful to explain extended ending

point. As it can be seen in figure 3.2a, figure 3.2b and algorithm 4, the missing pixels

are estimated by using the neighbor pixel of the missing pixel located in the previous

frame(x1 in figure 3.2a) and extended ending point of this neighbor pixel located in

the next frame(x3 in figure 3.2a).

As it is stated before, this approach assumes that there is a linear motion between the
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consecutive frames; therefore, it is penalizing the similarity along the motion trajec-

tory. However, in order to reduce the computational load of the algorithm, maximum

motion vector is defined as one as it is shown on the figure 3.2a. Therefore, while

this algorithm produces good results for the videos which have slow motion between

consecutive frames, it fails for the movies which consists fast moving objects. If we

increase the search window; since averaging many pixels, the output image suffers

from the blurriness.
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CHAPTER 4

RESULT OF ANALYZED ALGORITHMS

In this chapter, the performance-wise and complexity-wise results will be discussed.

The results of analyzed algorithms which are explained in Chapter 3, will be pre-

sented. The results are composed of PSNR, DMOS and ADMOS graphs. PSNR,

DMOS and ADMOS results are obtained by using PQASW Picture Quality Analyzer

which is developed by Tektronix. The user inferface of this tool can be found in figure

4.1. While the original video can be seen at the top left side, the processed video is

located at the top right side. The rectangle on the original video and processed video

indicates region of interest. By using this region of interest, perceived difference map

is estimated. Graph indicates the metric results versus frame numbers. In the first

section of this chapter, algorithms’ performance-wise results will be presented.

Figure 4.1: Picture Quality Analyzer User Interface

In the second section of this chapter, comparison of analyzed algorithms will be
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presented. The measurements are taken by using Arçelik Television and Lenova

Thinkpad T550 whose processors’ details can be found in Appendix D.

4.1 Performance Results of Super Resolution Algorithms

The algorithms are applied to four videos which are widely used in the literature;

namely, Flower, Foreman, News and Stefan. CIF format of these videos whose

chroma sub-sampling is 4:2:0, are downsampled by a factor of two to obtain QCIF

format of input videos by using the equation 4.1.

yk = DHzk k = 1, ...K (4.1)

D and H are decimation operator and blurring operator respectively. 3x3 box filter is

used as blurring operator. While zk is original kth high resolution frame yk is kth low

resolution frame. The total number of frame in a video is denoted as K.

The decimated low resolution video is upscaled by the analyzed algorithms by a factor

of two. PSNR, DMOS and ADMOS graphs are given below. All the algorithms will

be compared with Bicubic Interpolation. While the blue line in the graphs indicates

Bicubic Interpolation, red line indicates the analyzed algorithm. It is very important

to note that PSNR graphs are shown as a mirror version with respect to x-axis. While

maximum value is located at the bottom of the graph, the minimum value is located

at the top.

The characteristic of the videos which are used in the measurements are quite impor-

tant. While Flower video has continuous global motion and texture regions, Foreman

video has dominant local motion at the beginning of the video and global motion at

the end. It is important to note that Foreman video has a set of scene whose energy

is concentrated on the low frequency around 200th frame. News video has not any

global motion whereas it has dominant local motion between 90th and 150th frames

and after approximately 240th frame. Also it should be emphasized that news video

has three scene cuts on the television located behind the newsmen. While Stefan

Video has global motion at first 15 frames and the frames between approximately
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50th and 75th, it has local motion almost every frame of the video. However, local

motion which exists in Stefan Video is not so dominant.

The selected frames of each video can be found in the Appendix C in order to show

the characteristic of the videos. Upscaled frames by using the analyzed algorithms

and perceived difference maps for PSNR, DMOS and ADMOS are also provided in

Appendix C. 200th frame is selected for flower video in order to show the effect of

foreground object on DMOS and ADMOS quality metric and the performance of the

analyzed algorithms on texture regions. 155th frame is selected for foreman video in

order to illustrate the performance of the algorithms for local motion. 22nd frame is

selected for news video in order to show the performance of the algorithms in case of

scene cuts occurred.

4.1.1 Fast Edge-Adaptive Interpolation

The algorithm outgoes Bicubic Interpolation for the four videos when we consider

PSNR results. When we consider DMOS and ADMOS results; performance of Bicu-

bic Interpolation Fast Edge Adaptive Interpolation are same for flower video. It is

because of the fact that the flower videos has too much texture regions. It is an ex-

pected behaviour that this algorithm fails for texture regions. However, when we

consider foreman, news and stefan video, Fast-Edge Adaptive algorithm has much

better performance since texture region does not exist in these videos.

As it is also seen in perceived difference map images for foreman and news videos,

shown in Appendix C, Fast Edge Adaptive Interpolation estimates the missing pixels

better in the edge regions.

The PSNR results of the Fast Edge-Adaptive Interpolation can be found in the figures

4.2.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.2: PSNR Comparison of Fast Edge-Adaptive Interpolation and Bicubic In-
terpolation

The DMOS results of the Fast Edge-Adaptive interpolation can be found in the figures

4.3.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.3: DMOS Comparison of Fast Edge-Adaptive Interpolation and Bicubic
Interpolation

The ADMOS results of the Fast Edge-Adaptive interpolation can be found in the
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figures 4.4.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.4: ADMOS Comparison of Fast Edge-Adaptive Interpolation and Bicubic
Interpolation

In these results, the other critical point can be noticed when 200th frame of the fore-

man video is considered. This frame is full of low frequency regions and both algo-

rithm has excellent performance for low frequency regions.

4.1.2 Iterative-Back Projection Algorithm

Single-Frame Iterative-Back Projection algorithm outgoes Bicubic Interpolation for

the four videos when we consider PSNR, DMOS and ADMOS results. Since the

decimated videos are obtained using the equation 4.1 which includes blurring kernel,

Single-Frame Iterative-Back Projection algorithm deblurs the output videos as it is

stated in Irani’s article. Therefore, all the results are better than Bicubic Interpolation.

The PSNR results of the Iterative-Back Projection algorithm can be found in the fig-

ures 4.5. For this approach, single frame is used with twenty iterations.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.5: PSNR Comparison of Iterative Back Projection and Bicubic Interpolation

The DMOS results of the Iterative-Back Projection algorithm can be found in the

figures 4.6.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.6: DMOS Comparison of Iterative Back Projection and Bicubic Interpola-
tion

The ADMOS results of the Iterative-Back Projection algorithm can be found in the

figures 4.7.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.7: ADMOS Comparison of Iterative Back Projection and Bicubic Interpola-
tion

4.1.3 Maximum-Likelihood Algorithm

This section will be introduced in two parts. Whereas the results of the first part

belongs to the Maximum Likelihood algorithm which uses Projection-Based Mo-

tion Estimation to compensate the motion between consecutive frames, the results

of the second part illustrates the Maximum Likelihood Algorithm which uses Block

Matching Full Search Algorithm. For two different approaches, three bi-directional

consecutive frames are used with four iterations. Search window size of both motion

estimation algorithm is seventeen.

4.1.3.1 Maximum Likelihood with Projection-Based Motion Estimation

The PSNR results of the Maximum-Likelihood algorithm with Projection-Based Mo-

tion Estimation can be found in the figures 4.8.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.8: PSNR Comparison of Maximum Likelihood with Projection-Based Mo-
tion Estimation and Bicubic Interpolation

The DMOS results of the Maximum-Likelihood algorithm with Projection-Based

Motion Estimation can be found in the figures 4.9.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.9: DMOS Comparison of Maximum Likelihood with Projection-Based Mo-
tion Estimation and Bicubic Interpolation

The ADMOS results of the Maximum-Likelihood algorithm with Projection-Based
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Motion Estimation can be found in the figures 4.10.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.10: ADMOS Comparison of Maximum Likelihood with Projection-Based
Motion Estimation and Bicubic Interpolation

Maximum-Likelihood algorithm outgoes Bicubic Interpolation for the three videos

when we consider PSNR, DMOS and ADMOS results except foreman video. Since

it it takes blurring into account, it generates sharp images. Therefore, DMOS and

ADMOS results are better when compared with the Bicubic Interpolation.

On the other hand, since foreman video has too much local motion in the beginning

of the video, Maximum-Likelihood algorithm fails because of the performance of

Projection-Based Motion Estimation algorithm. As it is shown in figure C.9, when

there is local motion between consecutive frames, this algorithm generates disturbing

motion blur. Nonetheless, when there is scene cuts in the video, this algorithm gener-

ates disturbing artifacts as it is shown in the figure C.13. It is because of the fact that

this algorithm tries to minimize the equation 3.38 regardless of evaluating similarity

between consecutive frames. Therefore, in case of scene cut, the output image is kind

of averaged form of consecutive frames.
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4.1.3.2 Maximum Likelihood with Block Matching Full Search Motion Esti-

mation

When PSNR, DMOS and ADMOS results of foreman and news videos are consid-

ered, the effect of motion estimation on multi-frame super resolution algorithms can

be understood easily. If there is dominant local motion between consecutive frames

as it is shown in figure C.9, Maximum Likelihood with Projection-Based Motion

Estimation algorithm fails because of the accuracy of Projection-Based Motion Es-

timation. However, Maximum-Likelihood with Block Matching Full Search gives

better results for this condition.

The PSNR results of the Maximum-Likelihood algorithm with Block Matching Full

Search Motion Estimation can be found in the figures 4.11.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.11: PSNR Comparison of Maximum Likelihood with Block Matching Full
Search and Bicubic Interpolation

The DMOS results of the Maximum-Likelihood algorithm with Block Matching Full

Search Motion Estimation can be found in the figures 4.12.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.12: DMOS Comparison of Maximum Likelihood with Block Matching Full
Search and Bicubic Interpolation

The ADMOS results of the Maximum-Likelihood algorithm with Block Matching

Full Search Motion Estimation can be found in the figures 4.13.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.13: ADMOS Comparison of Maximum Likelihood with Block Matching
Full Search and Bicubic Interpolation

No matter which motion estimation algorithm is used, Maximum Likelihood algo-
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rithm’s performance decreases when scene cut occurs as it is shown in the figure

C.13.

4.1.4 Super Resolution with Probabilistic Motion Estimation Algorithm

Super resolution with Probabilistic Motion Estimation algorithm falls behind the

Bicubic Interpolation when PSNR, DMOS and ADMOS results are considered. Since

the decimated videos are obtained using the equation 4.1 which includes blurring

kernel, Super Resolution with Probabilistic Motion Estimation algorithm has also

denoising characteristic since its algorithms is very similar with Bilateral Filter. Its

results are worse than Bicubic Interpolation results, because output videos suffer from

cartoonize effect as it is shown in figure C.9 and C.13. However, this algorithm is very

resistant to scene cuts and local motion.

The PSNR results of the Super Resolution with Probabilistic Motion Estimation al-

gorithm can be found in the figures 4.14. Three bi-directional consecutive frames are

used in the experiments with two iterations. The search window size is selected as

nine and the patch size is selected as three.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.14: PSNR Comparison of Super Resolution with Probabilistic Motion Esti-
mation and Bicubic Interpolation
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The DMOS results of Super Resolution with Probabilistic Motion Estimation algo-

rithm can be found in the figures 4.15.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.15: DMOS Comparison of Super Resolution with Probabilistic Motion Es-
timation and Bicubic Interpolation

The ADMOS results of Super Resolution with Probabilistic Motion Estimation algo-

rithm can be found in the figures 4.16.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.16: ADMOS Comparison of Super Resolution with Probabilistic Motion
Estimation and Bicubic Interpolation
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4.1.5 Fast Video Interpolation/Up-Sampling Using Linear Motion Model

This section will be introduced in three parts. Whereas first part shows thre result

of Fast Video Interpolation without motion estimation technique, the remaining two

parts illustrate the result of Maximum Likelihood algorithm which uses Projection-

Based Motion Estimation and Block Matching Motion Estimation respectively. In the

experiments, three bi-directional consecutive frames are used. The patch size of the

algorithm is selected as three.

4.1.5.1 Fast Video Interpolation without Motion Estimation

The PSNR results of Fast Video Interpolation algorithm can be found in the figures

4.17.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.17: PSNR Comparison of Fast Video Interpolation without Motion Estima-
tion and Bicubic Interpolation

The DMOS results of Fast Video Interpolation algorithm can be found in the figures

4.18.

54



(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.18: DMOS Comparison of Fast Video Interpolation without Motion Estima-
tion and Bicubic Interpolation

The ADMOS results of Fast Video Interpolation algorithm can be found in the figures

4.19.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.19: ADMOS Comparison of Fast Video Interpolation without Motion Esti-
mation and Bicubic Interpolation

Fast Video Interpolation algorithm gives good result when the scene is stationary.
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As it can be seen in PSNR and DMOS results of news video, it outgoes Bicubic

Interpolation. However, if global or local motion exist between consecutive frames

as it can be seen at foreman and stefan videos, the performance of the algorithm

decreases. Even the algorithm claims that there is no need to register images, motion

estimation algorithm is needed to eliminate the decrease of the performance.

Nonetheless, if there is local motion between consecutive frames, this algorithm fails

to estimate the missing pixels correctly as it can be seen on the hand of dancer in

figure C.13. This is because of the fact that the weights shown in equation (3.43) are

very small, therefore it is truncated to zero.

One of the main advantages of this algorithm is that it is resistant to scene cuts. When

the scene is changed, this algorithm doesn’t generate disturbing artifacts like mo-

tion blur as it can be seen in figure C.13. The other advantage of this algorithm is

that although Maximum Likelihood algorithm generates jagged edges, this algorithm

generate very straight edges as it can be seen in the figures in Appendix C.

4.1.5.2 Fast Video Interpolation with Projection Based Motion Estimation

As it can be seen at the stefan video which has global motion, Fast Video Interpolation

with Projection-Based Motion Estimation algorithm outgoes Fast Video Interpolation

algorithm without motion estimation. However, when there is local motion between

consecutive frames as it is shown in foreman video, this algorithm fails because of the

fact that the weights shown in equation (3.43) are very small, therefore it is truncated

to zero.

The PSNR results of Fast Video Interpolation algorithm with Projection Based Mo-

tion Estimation can be found in the figures 4.20.
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(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.20: PSNR Comparison of Fast Video Interpolation with Projection-Based
Motion Estimation and Bicubic Interpolation

The DMOS results of Fast Video Interpolation algorithm with Projection Based Mo-

tion Estimation can be found in the figures 4.21.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.21: DMOS Comparison of Fast Video Interpolation with Projection-Based
Motion Estimation and Bicubic Interpolation

The ADMOS results of Fast Video Interpolation algorithm with Projection Based
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Motion Estimation can be found in the figures 4.22.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.22: ADMOS Comparison of Fast Video Interpolation with Projection-Based
Motion Estimation and Bicubic Interpolation

4.1.5.3 Fast Video Interpolation with Block Matching Full Search Motion Es-

timation

As it can be seen PSNR graph of foreman and news video; where there is local mo-

tion between consecutive frames, Fast Video Interpolation with Block Matching Full

Search algorithm outgoes Fast Video Interpolation with Projection-Based Motion Es-

timation. The artifacts which are seen in the Fast Video Interpolation with Projection-

Based Motion Estimation cannot be seen in this algorithm. It is because of the fact

that all consecutive frames are properly aligned; therefore, the weights which is seen

in equation (3.43) is estimated properly. However, all the Fast Video Interpolation

algorithm gives worse result because of the nature of the algorithm. This algorithm is

also very similar with Bilateral filter. The denoising characteristic of this video cause

blur output images therefore DMOS and ADMOS result are worse than Bicubic In-

terpolation.

The PSNR results of Fast Video Interpolation algorithm with Block Matching Full

Search Motion Estimation can be found in the figures 4.23.

58



(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.23: PSNR Comparison of Fast Video Interpolation with Block Matching
Full Search and Bicubic Interpolation

The DMOS results of Fast Video Interpolation algorithm with Block Matching Full

Search Motion Estimation can be found in the figures 4.24.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.24: DMOS Comparison of Fast Video Interpolation with Block Matching
Full Search and Bicubic Interpolation

The ADMOS results of Fast Video Interpolation algorithm with Block Matching Full
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Search Motion Estimation can be found in the figures 4.25.

(a) Flower Video (b) Foreman Video

(c) News Video (d) Stefan Video

Figure 4.25: ADMOS Comparison of Fast Video Interpolation with Block Matching
Full Search and Bicubic Interpolation

4.2 Comparison of Super Resolution Algorithms

In this section, performance-wise and complexity-wise results of analyzed algorithms

will be presented. The performance-wise results of the analyzed algorithms are shown

in tables 4.1, 4.2, 4.3 and 4.4.

Table 4.1: Comparison Table of Super Resolution Algorithms for Flower Video

PSNR(dB) DMOS ADMOS
min mean max min mean max min mean max

Bicubic Interpolation 20,86 21,63 22,93 13,48 72,10 78,94 28,55 78,06 87,00
Fast Edge-Adaptive Interpolation 21,26 21,94 22,93 13,48 73,13 78,52 31,40 78,70 86,74

Iterative-Back Projection 21,68 22,87 23,57 13,48 65,43 74,54 25,58 73,50 80,30
Maximum Likelihood with PBME 21,28 22,04 22,93 13,48 70,20 77,06 29,61 77,00 83,77
Maximum Likelihood with BMFS 21,38 22,11 22,93 13,48 69,93 76,39 26,97 76,85 82,96

Super Resolution with PME 20,59 21,37 22,17 14,97 76,80 80,67 29,13 81,81 89,20
Fast Video Interpolation 21,24 21,94 22,93 13,48 73,53 77,57 31,40 78,73 84,01

Fast Video Interpolation with PBME 21,15 22,04 22,93 13,48 73,43 80,01 30,75 78,57 89,06
Fast Video Interpolation with BMFS 21,30 21,98 22,93 13,48 73,51 77,35 30,98 78,63 84,19
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Table 4.2: Comparison Table of Super Resolution Algorithms for Foreman Video

PSNR(dB) DMOS ADMOS
min mean max min mean max min mean max

Bicubic Interpolation 27,59 31,49 39,64 0,57 48,11 66,96 0,88 52,30 70,28
Fast Edge-Adaptive Interpolation 28,07 32,25 40,45 0,57 46,26 66,57 0,87 51,99 71,66

Iterative-Back Projection 28,54 32,51 40,05 0,57 35,81 60,77 0,88 41,61 66,18
Maximum Likelihood with PBME 27,85 30,86 37,26 0,57 47,31 66,15 0,88 53,20 70,34
Maximum Likelihood with BMFS 27,96 31,61 38,72 0,57 45,26 66,08 0,88 49,84 70,58

Super Resolution with PME 26,80 30,42 34,95 9,89 68,18 78,02 15,79 70,96 80,69
Fast Video Interpolation 27,09 31,22 35,82 0,57 56,75 71,62 0,88 60,72 75,01

Fast Video Interpolation with PBME 27,74 31,69 37,79 0,57 56,50 72,22 0,88 59,44 75,10
Fast Video Interpolation with BMFS 27,91 31,99 38,45 0,57 55,98 71,69 0,88 58,68 74,71

Table 4.3: Comparison Table of Super Resolution Algorithms for News Video

PSNR(dB) DMOS ADMOS
min mean max min mean max min mean max

Bicubic Interpolation 26,02 26,42 28,27 11,76 59,67 71,02 12,76 57,56 72,17
Fast Edge-Adaptive Interpolation 27,15 27,48 28,27 11,37 48,04 67,84 12,76 50,36 66,17

Iterative-Back Projection 28,15 28,63 28,96 6,47 35,31 59,32 9,43 36,47 55,56
Maximum Likelihood with PBME 23,51 27,09 28,27 11,69 46,82 62,20 17,36 51,19 68,57
Maximum Likelihood with BMFS 26,01 27,43 28,27 9,65 46,1 61,85 12,19 49,55 75,22

Super Resolution with PME 25,33 25,69 25,92 19,53 67,19 72,57 28,88 68,18 75,12
Fast Video Interpolation 26,20 27,33 28,27 11,76 55,01 68,93 15,19 58,58 71,92

Fast Video Interpolation with PBME 26,20 27,33 28,27 11,76 55,01 68,93 15,19 58,41 70,07
Fast Video Interpolation with BMFS 27,09 27,48 28,27 11,76 54,26 68,94 16,13 56,59 68,76

Table 4.4: Comparison Table of Super Resolution Algorithms for Stefan Video

PSNR(dB) DMOS ADMOS
min mean max min mean max min mean max

Bicubic Interpolation 23,51 23,86 25,78 1,65 61,16 69,77 2,29 65,40 73,08
Fast Edge-Adaptive Interpolation 24,55 25,05 26,56 2,51 58,82 69,10 3,61 63,73 74,66

Iterative-Back Projection 25,97 26,58 27,86 2,51 38,78 55,29 3,61 45,09 60,65
Maximum Likelihood with PBME 24,00 24,84 26,56 2,51 56,59 68,85 3,61 63,56 70,20
Maximum Likelihood with BMFS 24,51 25,18 26,56 2,51 55,53 68,75 4,20 60,37 69,92

Super Resolution with PME 23,43 23,91 24,93 13,39 68,45 75,16 19,22 71,22 77,14
Fast Video Interpolation 22,32 23,81 26,56 2,51 65,42 72,08 3,61 68,72 76,31

Fast Video Interpolation with PBME 24,13 25,14 26,71 2,51 59,88 68,88 3,61 66,34 76,31
Fast Video Interpolation with BMFS 24,59 25,22 26,56 2,51 58,39 68,27 7,03 64,23 72,37

The interpretations of the tables 4.1, 4.2, 4.3 and 4.4 are as follows.

• Accuracy of the motion estimation affects the performance of the multi-frame

super resolution algorithms.

• Iterative Back Projection algorithm is the outgoing algorithms since it is a sin-

gle frame algorithm which takes blurring into account.

• Fast Edge-Adaptive algorithm is one of the best algorithm which gives higher
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quality images when compared with Bicubic Interpolation unless video has tex-

ture region.

• When Maximum Likelihood and Fast Video Interpolation algorithm are com-

pared, it is seen that while Fast Video Interpolation outgoes Maximum Like-

lihood algorithm for PSNR results, Maximum Likelihood algorithm outgoes

Fast Video Interpolation algorithm for DMOS and ADMOS results. It is be-

cause of the fact that while Maximum Likelihood algorithm applies deblurring

to output image. Therefore, DMOS and ADMOS results Maximum Likelihood

algorithm is higher than Fast Video Interpolation.

The resolutions in the tables 4.5 and 4.6 indicates output resolutions. Scale factor is

two for all the experiments.

Table 4.5: Execution time of super resolution algorithms for different resolutions on
INTEL architecture whose details are listed in Appendix D

CIF SD HD FHD UHD
Bicubic Interpolation Native 35 msec 148 msec 353 msec 799 msec 3223 msec
Bicubic Interpolation Opencv 1 msec 1 msec 2 msec 5 msec 18 msec

Fast Edge-Adaptive Interpolation 7 msec 31 msec 73 msec 161 msec 656 msec
Iterative-Back Projection 259 msec 1031 msec 2846 msec 6451 msec 21357 msec

Maximum Likelihood with PBME 256 msec 994 msec 2664 msec 6002 msec 20651 msec
Maximum Likelihood with BMFS 542 msec 2427 msec 8983 msec 20730 msec 54194 msec

Super Resolution with PME 17275 msec 76706 182821 411213 NA
Fast Video Interpolation 1161 msec 4859 msec 11507 msec 26020 msec 105541 msec

Fast Video Interpolation with PBME 1161 msec 4881 msec 12052 msec 26219 msec 105843 msec
Fast Video Interpolation with BMFS 1408 msec 6191 msec 17434 msec 39922 msec 135337 msec

Table 4.6: Execution time of super resolution algorithms for different resolutions on
ARM architecture whose details are listed in Appendix D

CIF SD HD FHD UHD
Bicubic Interpolation Native 750 msec 3140 msec 7670 msec 16740 msec 66970 msec
Bicubic Interpolation Opencv 10 msec 20 msec 40 msec 80 msec 270 msec

Fast Edge-Adaptive Interpolation 60 msec 270 msec 610 msec 1400 msec 5510 msec
Iterative-Back Projection 2680 msec 10880 msec 29360 msec 66420 msec 223780 msec

Maximum Likelihood with PBME 2450 msec 9840 msec 25990 msec 58740 msec 201940 msec
Maximum Likelihood with BMFS 4900 msec 21830 msec 78290 msec 180280 msec 480340 msec

Super Resolution with PME 481230 msec NA NA NA NA
Fast Video Interpolation 12040 msec 51260 msec 118510 msec 270220 msec 1087590 msec

Fast Video Interpolation with PBME 11150 msec 47210 msec 117990 msec 273730 msec 1096820 msec
Fast Video Interpolation with BMFS 14280 msec 62690 msec 171570 msec 398390 msec 1383840 msec

The interpretations of the tables 4.5 and 4.6 are as follows.
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• Multi-frame super resolution algorithms needs more computational power when

compared with single frame super resolution algorithms. This computational

cost is the consequence of the motion between consecutive frames and neces-

sity of processing many input frames to obtain one output frame. Unless a

powerful dedicated device or advanced GPU with many cores are used, multi-

frame algorithms are not suitable for real time implementation.

• There is a huge difference in Bicubic Interpolation between OPENCV im-

plementation and the native C++ implementation. It is because of the fact

that OPENCV uses SSE, SSE2, SSE3 and SSSE3 for INTEL architecture and

NEON for ARM architecture. If the algorithm can be made vectorize, these

API’s make the implementation fast enough to be applicable to real time. How-

ever, since super resolution algorithm cannot be made vectorize, it is hard to

use these API’s. Moreover, since these API’s are platform specific, it is very

hard to implement all the algorithms for INTEL Platform and ARM platform

separately.

4.3 Discussion

In this chapter, PSNR, DMOS and ADMOS of analyzed algorithms are presented.

The results show that motion estimation to detect local motion is a must in order

to obtain artifact-free high resolution output image even if modern super resolution

algorithms are used. Since computational load of estimating local motion is high, it

is not proper for real time implementation. When execution time and performance

of the algorithms are considered, Fast Edge Adaptive Algorithm is the most suitable

algorithm to be implemented for real time.
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CHAPTER 5

PARALLEL PROGRAMMING

Since super resolution algorithms’ computational complexity is too high, parallel pro-

gramming is needed to speed up the algorithms. In order to run the instructions in

parallel for multiple data, there are many APIs to accomplish this task. If the appli-

cation is running on INTEL processor, SSE can be used; if the application is running

on ARM processor, the algorithm can be speeded up via NEON if the algorithms can

be made vectorize. If the platform has NVIDIA GPU; CUDA API can be used to

speed up the algorithm even if the algorithm cannot be made vectorize. The only

prerequisite to implement the algorithm in CUDA is that algorithm should be suitable

for parallel programming. In other words, there should be a loop which has no in-

terdependency between different iterations. In case of absence of any advanced GPU

in the platform, programmer should learn Verilog or VHDL to run the computational

costly algorithms on FPGA.

Since there are too many APIs, which depend on architecture, to speed up the al-

gorithms; it is very hard to manage the software and adopt new modifications to

program. In order to eliminate this difficulty, OPENCL was released in 2008 by

Khronos Group, an independent standards consortium which consists of many com-

panies such as 3Dlabs, ATI, Discreet, Evans & Sutherland, Intel, NVIDIA, SGI and

Sun Microsystems. OPENCL blends them to create a hardware independent soft-

ware development environment. It supports single or multiple device systems con-

sisting of CPUs,GPUs, FPGA and potentially other future devices. OpenCL pro-

vides parallel computing using task-based and data-based parallelism. It currently

supports CPUs that include x86 and ARM, and it has been adopted into graphics

65



Figure 5.1: OPENCL Platform Model [16]

card drivers by AMD, Apple, Intel, and NVIDIA.[15][18] Also, Altera and ARM

has released OPENCL SDK to be used in their FPGAs and Graphic Processing Unit

respectively.[17][19]

In this chapter, first OPENCL will be introduced briefly. After that, OPENCL support

of mmrgLibrary, whose details can be found in Appendix B, will be explained.

5.1 Introduction to OPENCL

OPENCL platform model is defined as a host and connected OPENCL supported

devices as it is shown in figure 5.1.

While host can be any CPU such as ARM or X86; OPENCL devices can be GPU,

DSP, FPGA or a multi-core CPU. An OPENCL device consists of a collection of

one or more compute units (cores). A compute units or cores is composed of one

or more processing elements (threads). Processing elements execute the instructions

specified in the OPENCL kernel as Single Instruction Multiple data principle. In

other words, every threads are executing same code blocks in parallel. Since compute

units typically contain many more processing elements than application processors

(host), they can compute at a much higher rate than application processors.

Host device controls the flow of the program. Every intensive data processing task

will be directed to compute device by copying data to memory of compute device
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Figure 5.2: OPENCL Memory Model [16]

from memory of host device. The copied data will be processed in parallel by many

threads which are created by compute unit. The processed data will be copied back

to host memory again. The figure 5.2 shows the regions of the accessible memory by

host and compute devices.

Host device determines the instructions of the compute device by introducing kernel.

Kernels are the basic unit of executable code that runs on one or more OpenCL de-

vices. Kernels are similar to a C function that can be data- or task-parallel. Every

processing element execute the same kernel by using different data. The correspond-

ing data is determined by ID of the processing element. The simple example can be

found in figure 5.3.

In figure 5.3, the Scalar C function runs in CPU serially. In other words, result[n]

will be calculated after result[n-1] is calculated. On the contrary, result[n], result[n-
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Figure 5.3: Simple Example of Scalar Versus Parallel Implementation [16]

1]..., result[0] will be calculated in parallel in the Data-Parallel function by the aid

of the parallel architecture. Therefore, the super resolution algorithms which has

loop without interdependencies between iterations can be implemented by parallel

programming.

5.2 mmrgLibrary OPENCL Support

In order to use OPENCL support of mmrgLibrary, the driver of the OPENCL device

should be installed to the computer. Since INTEL processor whose details are listed

in Appendix D, INTEL SDK for OPENCL was installed to the computer. INTEL

SDK is using INTEL HD Graphics 5500 as compute device.

OPENCL usage of mmrgLibrary can be controlled via the configuration file as it

is shown in the figure B.2. OPENCL support is enabled by setting OPENCL vari-

able to "USED" or OPENCL support is disabled by setting OPENCL variable to

"NOT_USED".

All the OPENCL kernels are located at the ocl_kernels directory under src path of

mmrgLibrary. For now, there are only two kernel files which are used in OPENCL

implementation of Fast Edge-Adaptive Interpolation.

As it is shown in figure 5.4, OPENCL implementation of Fast Edge-Adaptive Inter-

polation is called by passing OPENCL enumeration as input parameter.

When figure B.6 and 5.4 are compared, the only difference between these two figures

is the parameter passing as function argument. Whenever the OPENCL function is

called from the application layer, EN_MMRG_USED_API_OPENCL enumeration

must be used.
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Figure 5.4: mmrgLibrary Resize Image Example by using OPENCL implementation
of Fast Edge-Adaptive Interpolation

Table 5.1: Execution time of Serial and Parallel Fast Edge-Adaptive Interpolation for
different resolutions on INTEL architecture whose details are listed in Appendix D

CIF SD HD FHD UHD
Fast Edge-Adaptive Interpolation Serial 7 msec 31 msec 73 msec 161 msec 656 msec

Fast Edge-Adaptive Interpolation Parallel 2 msec 9 msec 21 msec 47 msec 189 msec

Execution time comparison of serial and parallel implementation is shown in table

5.1.

As it can be seen in table 5.1, parallel implementation is four times faster than the

serial implementation.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In the light of the information given in this thesis, it can be deduced that DMOS and

ADMOS are better quality metrics to simulate the human visual system when they

are compared with PSNR. Since DMOS and ADMOS consider characteristic of the

input video, it should be preferred to compare super resolution algorithms in order to

obtain more reliable results.

The accuracy of motion estimation algorithms is very critical for the performance of

multi-frame super resolution algorithms. The motion compensation algorithms which

will be used in the registration part of multi-frame algorithms should compensate all

the motion in order to obtain high picture quality. Even if the modern super resolution

algorithms penalizes the outliers between consecutive frames, it is observed that the

quality of the output image suffers from various artifacts if the accuracy of motion

estimation is not good enough.

Although modern super resolution algorithms produce artifact-free edges, the output

image suffers from blurriness since these algorithms originate from Bilateral filter.

Although Bilateral filter is edge-preserving filter, it loses the high frequency com-

ponents since it is a de-noising filter. Nevertheless, the complexity of these algo-

rithms are so high that it is hard to implement for a real time implementation. On

the other hand, Maximum Likelihood algorithm produces high picture quality output

if Block Matching Full Search Motion Estimation algorithm is used. However, since

Block Matching Full Search Motion Estimation algorithm’s complexity is too high,
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it is hard to implement for real time implementation. Nonetheless, since Maximum

Likelihood algorithm does not penalize the outliers between consecutive frames, the

output suffers from the motion and scene-cuts artifacts.

Fast Edge Adaptive Interpolation is the best application if performance/complexity ra-

tios of the algorithms are considered. It is very fast algorithm and it can be applicable

to parallel programming. The performance is one of the best among all the analyzed

algorithms. Therefore, this algorithm is selected to be implemented on Arçelik Linux

Television. However, since the algorithm complexity is too high to give FHD and

UHD output, parallel programming is needed to implement the algorithm in real time.

In order to accomplish this task, OPENCL API was used to speed up the algorithm

on INTEL on-board GPU as a first step. In future, embedded parallel implementation

of this algorithm will be implemented.

6.2 Future Works

As a future plan, OPENCL will be used on our Arcelik Televisions. Our televisions

have MALI 760 GPU which supports OPENCL and OPENGL. Fast Edge-Adaptive

Algorithm and other new algorithms will be implemented on television environment.

In parallel with this task, Altera FPGA will be bought and all the super resolution

algorithms which are suitable for parallel implementation including Block Matching

Motion Estimation are implemented by using OPENCL SDK of ALTERA.
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APPENDIX A

ALGORITHMS

Algorithm 1 Fast Edge-Adaptive Interpolation
1: procedure IMRESIZE(LR, HR)

2: Scale_x← LR_Width/HR_Width

3: Scale_y ← LR_Height/HR_Height

4: while HR_y < HR_Height do

5: LR_y ← HR_y × Scale_y
6: while HR_x < HR_Width do

7: LR_x← HR_x× Scale_x
8: CalculateMissingP ixel(HR,HR_x,HR_y, LR,LR_x, LR_y)

9: HR_x← HR_x+ 1

10: end while

11: HR_y ← HR_y + 1

12: end while

13: HR_y,HR_x,Diff1, Diff2, Diff3, Diff4← 0

14: while HR_y < HR_Height do

15: while HR_x < HR_Width do

16: if EDGE_MAP (HR_x,HR_y) is true then

17: CalculateEdgeP ixel(HR,HR_x,HR_y, EDGE_MAP )

18: end if

19: HR_x← HR_x+ 1

20: end while

21: HR_y ← HR_y + 1

22: end while

23: end procedure
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Algorithm 2 CalculateMissingPixel Method
1: procedure CALCULATEMISSINGPIXEL(HR,HR_x,HR_y,LR,LR_x,LR_y)

2: if HR_x is even & HR_y is even then

3: HR(HR_x,HR_y)← LR(LR_x, LR_y)

4: else if HR_x is odd & HR_y is even then

5: if |LR(LR_x+ 1, LR_y)− LR(LR_x, LR_y)| < Threshold then

6: HR(HR_x,HR_y) ← (LR(LR_x + 1, LR_y) +

LR(LR_x, LR_y))/2

7: else

8: EDGE_MAP (HR_x,HR_y) = true . MARK AS EDGE

9: end if

10: else if HR_x is even & HR_y is odd then

11: if |LR(LR_x, LR_y + 1)− LR(LR_x, LR_y)| < Threshold then

12: HR(HR_x,HR_y) ← (LR(LR_x, LR_y + 1) +

LR(LR_x, LR_y))/2

13: else

14: EDGE_MAP (HR_x,HR_y) = true . MARK AS EDGE

15: end if

16: else if HR_x is odd & HR_y is odd then

17: if |LR(LR_x+ 1, LR_y + 1)− LR(LR_x, LR_y)| < Threshold then

18: HR(HR_x,HR_y) ← (LR(LR_x + 1, LR_y + 1) +

LR(LR_x, LR_y))/2

19: else if |LR(LR_x, LR_y + 1) − LR(LR_x + 1, LR_y)| < Threshold

then

20: HR(HR_x,HR_y) ← (LR(LR_x, LR_y + 1) + LR(LR_x +

1, LR_y))/2

21: else

22: EDGE_MAP (HR_x,HR_y) = true . MARK AS EDGE

23: end if

24: end if

25: end procedure
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Algorithm 3 CalculateEdgePixel Method
1: procedure CALCULATEEDGEPIXEL(HR,HR_x,HR_y,EDGE_MAP )

2: Y2i,2j edge pixel will be calculated which is shown in Figure 3.1c

3: if EDGE_MAP (HR_x−1, HR_y) is false & EDGE_MAP (HR_x+

1, HR_y) is false then

4: Diff1← (HR(HR_x− 1, HR_y) +HR(HR_x+ 1, HR_y))/2

5: else

6: Diff1← 255

7: end if

8: if EDGE_MAP (HR_x + 1, HR_y − 1) is false &

EDGE_MAP (HR_x− 1, HR_y + 1) is false then

9: Diff2← (HR(HR_x+1, HR_y−1)+HR(HR_x−1, HR_y+1))/2

10: else

11: Diff2← 255

12: end if

13: if EDGE_MAP (HR_x,HR_y − 1) is false &

EDGE_MAP (HR_x,HR_y + 1) is false then

14: Diff3← (HR(HR_x,HR_y − 1) +HR(HR_x,HR_y + 1))/2

15: else

16: Diff3← 255

17: end if

18: if EDGE_MAP (HR_x − 1, HR_y − 1) is false &

EDGE_MAP (HR_x+ 1, HR_y + 1) is false then

19: Diff4← (HR(HR_x−1, HR_y−1)+HR(HR_x+1, HR_y+1))/2

20: else

21: Diff4← 255

22: end if
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Algorithm 3 CalculateEdgePixel Method (Continued)

23: MinDiff ← min(Diff1, Diff2, Diff3, Diff4)

24: if MinDiff = Diff1 then

25: HR(HR_x,HR_y) ← (HR(HR_x − 1, HR_y) + HR(HR_x +

1, HR_y))/2

26: else if MinDiff = Diff2 then

27: HR(HR_x,HR_y) ← (HR(HR_x + 1, HR_y − 1) + HR(HR_x −
1, HR_y + 1))/2

28: else if MinDiff = Diff3 then

29: HR(HR_x,HR_y)← (HR(HR_x,HR_y−1)+HR(HR_x,HR_y+

1))/2

30: else if MinDiff = Diff4 then

31: HR(HR_x,HR_y) ← (HR(HR_x − 1, HR_y − 1) + HR(HR_x +

1, HR_y + 1))/2

32: end if

33: end procedure
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Algorithm 4 Fast Video Interpolation

1: procedure IMRESIZE(LR[3], HR) . 3 LR Input Images, HR Output Image

2: LR_y ← 0 . Low Resolution Image Vertical Position

3: LR_x← 0 . Low Resolution Image Horizontal Position

4: HR_y ← 0 . High Resolution Image Vertical Position

5: HR_x← 0 . High Resolution Image Horizontal Position

6: Scale_x← LR_Width/HR_Width

7: Scale_y ← LR_Height/HR_Height

8: NeighborSetSize← 1 . Half of Search Window Size

9: PatchSize← 1 . Half of the Patch Window Size(3x3)

10: V ARIANCE1← 2000 . Equals to 2 * σ2
1

11: V ARIANCE2← 60 . Equals to 2 * σ2
2

12: PatchP ixelNumber ← (2 ∗ PatchSize+ 1)2

13: numerator ← 0

14: denumerator ← 0

15: patch1_error ← 0

16: patch2_error ← 0

17: while HR_y < HR_Height do

18: LR_y ← HR_y × Scale_y
19: while HR_x < HR_Width do

20: LR_x← HR_x× Scale_x
21: ImageIndex← 0

22: while ImageIndex < 3 do . Since there are 3 input LR images

23: Neighbor_x← −NeighborSetSize
24: while Neighbor_x ≤ NeighborSetSize do

25: Neighbor_y ← −NeighborSetSize
26: while Neighbor_y ≤ NeighborSetSize do

27: Shift_x← −PatchSize
28: while Shift_x ≤ PatchSize do

29: while Shift_y ≤ PatchSize do
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Algorithm 4 Fast Video Interpolation (Continued)
30: patch1_error ← patch1_error +

|LR[ImageIndex](LR_x + Neighbor_x + Shift_x, LR_y + Neighbor_y +

Shift_y)− LR[1](LR_x+ Shift_x, LR_y + Shift_y)|
31: patch2_error ← patch2_error +

|LR[ImageIndex](LR_x + Neighbor_x + Shift_x, LR_y + Neighbor_y +

Shift_y)− LR[2− ImageIndex](LR_x−Neighbor_x + Shift_x, LR_y −
Neighbor_y + Shift_y)|

32: Shift_y ← Shift_y + 1

33: end while

34: Shift_x← Shift_x+ 1

35: end while

36: patch1_error ← patch1_error/nPatchP ixelNumber

37: patch2_error ← patch2_error/nPatchP ixelNumber

38: patch1_error ← (patch1_error)2

39: patch2_error ← (patch2_error)2

40: numerator ← numerator+LR[ImageIndex](LR_x+

Neighbor_x, LR_y + Neighbor_y) ∗ e−(patch1_error)/V ARIANCE1 ∗
e−(patch2_error)/V ARIANCE2

41: denumerator ← denumerator +

e−(patch1_error)/V ARIANCE1 ∗ e−(patch2_error)/V ARIANCE2

42: patch1_error ← 0

43: patch2_error ← 0

44: Neighbor_y ← Neighbor_y + 1

45: end while

46: Neighbor_x← Neighbor_x+ 1

47: end while

48: Neighbor_x← −NeighborSetSize
49: while Neighbor_x ≤ NeighborSetSize do

50: Neighbor_y ← −NeighborSetSize
51: while Neighbor_y ≤ NeighborSetSize do
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Algorithm 4 Fast Video Interpolation (Continued)
52: Shift_x← −PatchSize
53: while Shift_x ≤ PatchSize do

54: while Shift_y ≤ PatchSize do

55: patch2_error ← patch2_error+|LR[1](LR_x+

Neighbor_x + Shift_x, LR_y + Neighbor_y + Shift_y) − LR[1](LR_x −
Neighbor_x+ Shift_x, LR_y −Neighbor_y + Shift_y)|

56: Shift_y ← Shift_y + 1

57: end while

58: Shift_x← Shift_x+ 1

59: end while

60: patch2_error ← patch2_error/nPatchP ixelNumber

61: patch2_error ← (patch2_error)2

62: numerator ← numerator+LR[ImageIndex](LR_x+

Neighbor_x, LR_y +Neighbor_y) ∗ e−(patch2_error)/V ARIANCE2

63: denumerator ← denumerator +

e−(patch2_error)/V ARIANCE2

64: patch2_error ← 0

65: Neighbor_y ← Neighbor_y + 1

66: end while

67: Neighbor_x← Neighbor_x+ 1

68: end while

69: HR(HR_x,HR_y)← numerator/denumerator

70: numerator ← 0

71: denumerator ← 0

72: ImageIndex← ImageIndex+ 1

73: end while

74: HR_x← HR_x+ 1

75: end while

76: HR_y ← HR_y + 1

77: end while

78: end procedure
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APPENDIX B

INTRODUCTION TO MMRGLIBRARY

In the scope of this thesis, mmrgLibrary, which is developed by me, will be intro-

duced. This is a computer vision library which consists of many third party libraries,

such as OPENCV, FFMPEG, X264, X265, DirectFB, Posix Thread and OPENCL;

moreover, customized algorithms which are implemented by taking reference of pub-

lished articles. This API is capable of running both in X86 linux platform and ARM

linux platform. If toolchain is provided for other platforms, the API can be built again

easily and it can be used in other platforms by the aid of CMake.

One of the main reason of creating this library is that it makes developing an algorithm

simple for developers. It makes the developing environment compact so that every

complicated task can be done just by using one command. When this complicated

command is called, the customer do not need to know the details about this command.

Although OPENCV library includes many algorithms, it was first created and opti-

mized for INTEL platform since it is developed by INTEL.[14] Then it can support

arm platforms for developer boards such as Raspberry Pi, Pandaboard or Beaglebone

etc. These developers board mostly have operating system inside it and all the pack-

ages are provided with the operating system. The foremost example for this case is

showing the image on the screen. When imshow function is called in OPENCV; GTK

and QT graphic libraries should be installed in your system in order to see the image

on the screen. However, when we consider an embedded device without operating

system, such as linux televisions, GTK and QT are not installed. Therefore, when

the developer calls imshow function provided by OPENCV, the system will crash or

OPENCV library cannot be compiled since the libraries cannot be found. Instead of

using GTK and QT, the television platform uses another graphic library, called Di-
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rectFB. The other reason of creating this library is that it should also be worked for

television platform or any embedded device without operating system.

In this chapter; first of all, mmrgLibrary structure will be explained and the usage

of mmrgLibray will be introduced. Secondly, third party libraries, which are used in

mmrgLibrary, will be introduced briefly. After that, mmrgLibrary class diagram will

be presented and finally, an example will be given for resizing a raw video.

B.1 Structure of mmrgLibrary

mmrgLibrary is C++ shared library which is created by compiling all the source codes

located in its source directory. It also includes third party libraries externally by

linking them into mmrgLibrary. Therefore, the developer, who would like to write a

code by using mmrgLibrary, can use the methods of all the third party libraries such

as OPENCV, FFMPEG, X264, X265, DirectFB, Posix Thread and OPENCL. The

source directory and build directory can be found in figure B.1.

As it can be seen in figure B.1, there are two main directory in mmrgLibrary folder;

namely, Trunk and Build. Trunk directory is the source directory of mmrgLibrary

API. All the source codes, header files and third party libraries are located at this

folder. It is critically note that when this API is compiled, nothing will be changed in

this folder. All the output files will be created in the Build directory.

Except the third party libraries located in the 3rdparty directory, two important tools

are used to create this library. One of them is CMake, the other one is the Git.

Git is a widely-used version control system which is developed by Linux kernel de-

velopers. It stores every version when it is committed to the system. By the aid of

Git, developer can revert their modifications back. Therefore, developer can write the

code more safely.

CMake is the cross-platform, open-source build system. It is a family of tools de-

signed to build, test and package software. It is used to control the software compi-

lation process using simple platform and compiler independent configuration files. It

generates native makefiles and workspaces that can be used in the compiler environ-
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Figure B.1: View of mmrgLibrary Source and Build Directory
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ment of developer choice. While working with a project with many modules, writing

native makefiles can be very challenging task. CMake makes this process very easy

and adaptable. When a developer would like to port a new module with many source

codes, he/she needs to change just a couple of line to achieve this. Moreover, target

platform can be changed by toggling parameters in the mmrgLibrary configuration

file by the aid of CMake. As it can be seen in the figure B.2, if a developer would

like to change target platform from X86 to arm, PLATFORM parameter should be

set to ARM. The modules of third party libraries which is used in mmrgLibrary can

also be modified by using this file. If a developer would like to remove ocl module of

OpenCV, he/she needs to erase this line to disable OPENCL support of OPENCV.

After arranging the configuration file depend on the target platform, the developer

should open the terminal program in linux and enter mmrgLibrary/build directory.

All the output files will be extracted here so that it can be given to customer. There-

fore, customer will not see the source code of mmrgLibrary. In order to build the

API, compile.sh script, which is located in build directory, should be called. After

the compilation finishes, build_output folder will be created in build directory. All

the shared libraries, header files and binaries can be found under this folder as it can

be seen in the figure B.3.

Since API is compiled for x86 platform, x86 folder is created in the build_output

directory. As it can be seen in the figure B.3; the modules, which are enabled in

mmrgLibrary Cmake Configuration file for FFMPEG and OPENCV, are copied to

build directory so that it can be used in customer platform.

B.2 Class Diagram of mmrgLibrary

As it can be seen in figure B.1, there are nine modules located under the src directory.

These modules have different responsibilities. All modules are used in the scope of

this thesis and they will be explained briefly. After that, resize module class diagram

will be shown.

App module is presented ready-to-use solutions from the application layer. Customer

should call a method of this modules in order to achieve a task.
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Figure B.2: mmrgLibrary CMake Configuration File
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Figure B.3: mmrgLibrary CMake Configuration File
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Codec module is presented to save and load image from file system and showing

image to screen. As it is stated before, both GTK, QT graphic library and DirectFB

graphic library can be used depend on the platform. In our television, we are using

DirectFB library.

Color module is presented for color-wise operations such as converting color space,

splitting channels or merging channels.

Core module is the basis of the mmrgLibrary API. Most important class of this API is

mmrgImage container class. All the class are creating object of this class to process

an image. The other class of this module is mmrgFactory class. Since mmrgLibrary

is using Factory Design Pattern, all the classes, which create an instance of mmr-

gLibrary class, should call a method of mmrgFactory.

Draw module is introduced to draw a shape or text on an image.

Motion module is presented to estimate motion vectors between two frames by using

several algorithms. Also, this module is used to shift the image in horizontal and

vertical directions.

Quality module is introduced to measure the quality performance of images.

Resize module is the widely used module in this thesis. It is presented to resize

image by using many interpolation algorithms and super resolution algorithms. The

class diagram of this module can be found in figure B.4.

Video module is used to capture frame from camera or any raw video. It can also be

used to save video as raw data.

Since all the modules have same design architecture, only resize module’s class dia-

gram will be shown in this chapter. As it can be seen in figure B.4, there is a abstract

class, called mmrgResize, at the top of the diagram. Any method, which would like to

use resize function in this API, must call this class. This abstract class is responsible

to assign a proper class so that it provides what caller method requests.
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Figure B.4: mmrgLibrary Class Diagram of Resize module
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B.3 mmrgResize Example

if the caller method would like to use Bicubic Interpolation which is implemented by

OpenCV, it needs to call the function as it can be seen in figure B.5.

Figure B.5: mmrgLibrary Resize Image Example by using Bicubic Interpolation

If the caller method would like to use Edge Adaptive Interpolation, which is imple-

mented by using Native C++, it needs to call the function as it can be seen in figure

B.6.

Figure B.6: mmrgLibrary Resize Image Example by using Fast Edge-Adaptive Inter-
polation

By the aid of the App module, some of the solutions are ready to use instead of

writing many lines of codes. In order to upscale a raw video which has a chroma

sub-sampling 4:2:0, the block of codes, which is shown in figure B.7, makes the

experiment much more easy and adaptable to new algorithms. This block of code

will

• read the frames from input raw video

• split the channels of the frames, respectively luminance and two chrominance
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• upscale luminance channel by using the selected algorithm

• upscale two chroma algorithm by using nearest neighbour algorithm

• merge upscaled channels into output image

• write output frame into output file

Figure B.7: mmrgLibrary Resize Raw Video Example by using Fast Video Interpola-
tion

In the experiments whose results are presented in the next chapter, the block of code

which is shown in figure B.7 will be used.
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APPENDIX C

VISUAL RESULTS

(a) 200th HR Frame

(b) 199th
LR Frame

(c) 200th
LR Frame

(d) 201st
LR Frame

Figure C.1: Flower Video 200th HR Frame with three bi-directional LR Frames

(a) 155th HR Frame

(b) 154th
LR Frame

(c) 155th
LR Frame

(d) 156th
LR Frame

Figure C.2: Foreman Video 155th HR Frame with three bi-directional LR Frames
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(a) 91st HR Frame

(b) 90th
LR Frame

(c) 91th
LR Frame

(d) 92th
LR Frame

Figure C.3: News Video 91st HR Frame with three bi-directional LR Frames

(a) 22nd HR Frame

(b) 21st
LR Frame

(c) 22nd
LR Frame

(d) 23rd
LR Frame

Figure C.4: Stefan Video 22nd HR Frame with three bi-directional LR Frames
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(a) Original Frame (b) Bicubic Interpolation (c) Fast Edge-Adaptive Inter-
polation

(d) Iterative Back Projection (e) Maximum Likelihood with
PBME

(f) Maximum Likelihood with
BMFS

(g) Super Resolution with
PME

(h) Fast Video Interpolation (i) Fast Video Interpolation
with PBME

(j) Fast Video Interpolation
with BMFS

Figure C.5: Flower Video 200th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.6: PSNR Difference Map for Flower Video 200th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.7: DMOS Difference Map for Flower Video 200th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.8: ADMOS Difference Map for Flower Video 200th Upscaled HR Frame
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(a) Original Frame (b) Bicubic Interpolation (c) Fast Edge-Adaptive Inter-
polation

(d) Iterative Back Projection (e) Maximum Likelihood with
PBME

(f) Maximum Likelihood with
BMFS

(g) Super Resolution with
PME

(h) Fast Video Interpolation (i) Fast Video Interpolation
with PBME

(j) Fast Video Interpolation
with BMFS

Figure C.9: Foreman Video 155th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.10: PSNR Difference Map for Foreman Video 155th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.11: DMOS Difference Map for Foreman Video 155th Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.12: ADMOS Difference Map for Foreman Video 155th Upscaled HR Frame

102



(a) Original Frame (b) Bicubic Interpolation (c) Fast Edge-Adaptive Inter-
polation

(d) Iterative Back Projection (e) Maximum Likelihood with
PBME

(f) Maximum Likelihood with
BMFS

(g) Super Resolution with
PME

(h) Fast Video Interpolation (i) Fast Video Interpolation
with PBME

(j) Fast Video Interpolation
with BMFS

Figure C.13: Foreman Video 91st Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.14: PSNR Difference Map for News Video 91st Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.15: DMOS Difference Map for News Video 91st Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.16: ADMOS Difference Map for News Video 91st Upscaled HR Frame
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(a) Original Frame (b) Bicubic Interpolation (c) Fast Edge-Adaptive Inter-
polation

(d) Iterative Back Projection (e) Maximum Likelihood with
PBME

(f) Maximum Likelihood with
BMFS

(g) Super Resolution with
PME

(h) Fast Video Interpolation (i) Fast Video Interpolation
with PBME

(j) Fast Video Interpolation
with BMFS

Figure C.17: Stefan Video 22nd Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.18: PSNR Difference Map for Stefan Video 22nd Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.19: DMOS Difference Map for Stefan Video 22nd Upscaled HR Frame
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(a) Bicubic Interpolation (b) Fast Edge-Adaptive Inter-
polation

(c) Iterative Back Projection

(d) Maximum Likelihood
with PBME

(e) Maximum Likelihood with
BMFS

(f) Super Resolution with
PME

(g) Fast Video Interpolation (h) Fast Video Interpolation
with PBME

(i) Fast Video Interpolation
with BMFS

Figure C.20: ADMOS Difference Map for Stefan Video 22nd Upscaled HR Frame
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APPENDIX D

CPU DETAILS

The details of the CPU which is used in PC environment are as follows.

$ cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 61

model name : Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz

stepping : 4

microcode : 0x21

cpu MHz : 2000.578

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 0

cpu cores : 2

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 20

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm con-
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stant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf

eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16

xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow

vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid

rtm rdseed adx smap xsaveopt

bugs :

bogomips : 5187.85

clflush size : 64

cache_alignment : 64

address sizes : 39 bits physical, 48 bits virtual

power management:

processor : 1

vendor_id : GenuineIntel

cpu family : 6

model : 61

model name : Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz

stepping : 4

microcode : 0x21

cpu MHz : 1477.125

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 0

cpu cores : 2

apicid : 1

initial apicid : 1

fpu : yes

fpu_exception : yes

cpuid level : 20

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
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clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm con-

stant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf

eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16

xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow

vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid

rtm rdseed adx smap xsaveopt

bugs :

bogomips : 5187.85

clflush size : 64

cache_alignment : 64

address sizes : 39 bits physical, 48 bits virtual

power management:

processor : 2

vendor_id : GenuineIntel

cpu family : 6

model : 61

model name : Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz

stepping : 4

microcode : 0x21

cpu MHz : 2624.273

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 1

cpu cores : 2

apicid : 2

initial apicid : 2

fpu : yes

fpu_exception : yes

cpuid level : 20

wp : yes
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flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm con-

stant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf

eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16

xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow

vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid

rtm rdseed adx smap xsaveopt

bugs :

bogomips : 5187.85

clflush size : 64

cache_alignment : 64

address sizes : 39 bits physical, 48 bits virtual

power management:

processor : 3

vendor_id : GenuineIntel

cpu family : 6

model : 61

model name : Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz

stepping : 4

microcode : 0x21

cpu MHz : 2886.304

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 1

cpu cores : 2

apicid : 3

initial apicid : 3

fpu : yes

fpu_exception : yes

cpuid level : 20
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wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm con-

stant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf

eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16

xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow

vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid

rtm rdseed adx smap xsaveopt

bugs :

bogomips : 5187.85

clflush size : 64

cache_alignment : 64

address sizes : 39 bits physical, 48 bits virtual

power management:

The details of the CPU which is used in Television environment are as follows.

$ cat /proc/cpuinfo

processor : 0

model name : ARMv7 Processor rev 1 (v7l)

BogoMIPS : 2002.94

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva

idivt

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xc0d

CPU revision : 1

processor : 1 model name : ARMv7 Processor rev 1 (v7l)

BogoMIPS : 2002.94

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva
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idivt

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xc0d

CPU revision : 1

processor : 2

model name : ARMv7 Processor rev 1 (v7l)

BogoMIPS : 2002.94

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva

idivt

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xc0d

CPU revision : 1

processor : 3

model name : ARMv7 Processor rev 1 (v7l)

BogoMIPS : 2002.94

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva

idivt

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xc0d

CPU revision : 1

Hardware : monaco

Revision : 0020

Serial : 0000000000000000
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