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ABSTRACT 

 

 

ADAPTIVE ROLL CONTROL OF GUIDED MUNITIONS 

 

 

Öveç, Naz Tuğçe 

M.S., Department of Aerospace Engineering 

Supervisor: Asst. Prof. Dr. Ali Türker Kutay 

 

January 2016, 90 Pages 

 

This thesis presents an adaptive roll control scheme for guided munitions. Guided 

munitions are air-to-air or air-to-surface weapons which have enhanced target hit 

capabilities with laser seekers or similar guidance utilities. The dynamic 

interferences in nonlinear regions of the flight envelope, leads the studies on control 

of guided munitions to search for adaptive solutions. The missile used in this study 

has no propulsive forces and do the adequate maneuvers commanded by the 

guidance algorithm with its initial kinetic and potential energy. 

In this study first, the baseline roll autopilot is developed which is in cascaded two 

loop architecture augmented with a feedforward controller and a model reference 

controller structure. Since the coupling effects could not be eliminated with the 

baseline architecture, the control algorithm is improved with a model reference 

adaptive controller with Chebyshev polynomials based uncertainty parameterization. 

Then the study is extended by utilizing concurrent learning algorithm as the 

adaptation law to learn and reveal the unknown pitch-roll couplings. 

 

 

 

 

Keywords: Concurrent Learning Adaptive Control, Uncertainty Parameterization 

with Chebyshev Polynomials, Control of Guided Munitions  
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ÖZ 

 

 

GÜDÜM KİTİ TİPİ MÜHİMMATLARIN ADAPTİF YUVARLANMA 

KANALI KONTROLÜ 

 

Öveç, Naz Tuğçe 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ali Türker Kutay 

 

Ocak 2016, 90 Sayfa 

 

Bu tez güdüm kiti mühimmatların adaptif yuvarlanma kanalı kontrolü üzerine 

yapılan çalışmayı içermektedir. Güdüm kiti tipi mühimmatlar havadan havaya veya 

havadan karaya, hedef vurma kabiliyetleri lazer arayıcı başlık veya benzeri güdüm 

kitleriyle arttırılmış bombalardır. Bu mühimmatların uçuş zarfının doğrusal olmayan 

bölgelerindeki eksenler arası etkileşimler, kontrol probleminin çözüm uzayını adaptif 

kontrolcülere doğru genişletmiştir. Bu çalışmada kullanılan füze, motoru ve itki 

kuvveti bulunmayan ve güdüm algoritmasının ürettiği komutları ayrılma anındaki 

kinetik ve potansiyel enerjisi yardımıyla yardımıyla gerçekleyen bir Mk-82 bomba 

türevidir. 

Bu çalışmada öncelikle, ara değerleme prensibiyle çalışan iki döngülü yuvarlanma 

açısı kontrolcüsü ve onun ileri besleme kontrolcüsüyle güncellenmiş versiyonu 

ayrıca model takip eden kontrolcü yapıları ele alınmıştır. Dönü kanalına sirayet eden 

dinamik etkileşimler bu temel tasarımlarla bastırılamamış ve belirsizlik 

parametrizasyonu Chebyshev polinom açılımları ile yapılan model takip eden adaptif 

kontrolcülerle bu bozucu etki ortadan kaldırılmıştır. Çalışmanın devamı olarak da 

geçmiş ve güncel bilgileri kullanarak belirsizliği eşyönlü öğrenen bir algoritma ile 

model takip eden adaptif kontrolcü güncellenmiş ve bilinmeyen yuvarlanma-

yunuslama kanalı belirsizliklerine ait bir model elde edilebilmiştir. 

Anahtar Kelimeler: Eşyönlü Öğrenen Adaptif Kontrolcü, Güdümlü Bomba, 

Chebyshev Polinomlarıyla Belirsizlik Parametrizasyonu 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

1.1 Motivation 

 

There has been an increasing demand for affordable aerial vehicles with superior 

performances which leads the missile studies to the design of more agile missiles 

with relatively low costs. As a part of this rising trend, traditional iron bombs have 

been modified for more precision on target hit and longer guided flights. These types 

of weapons are called as guided munitions: air to surface or air-to-air weapons which 

have been upgraded with a guidance kit for improved target hit capability. These 

munitions are designed as a family of weapons with minor differences by combining 

various components around the same body. The guided bombs meet the desired 

performance requirements with their disengagement velocities mostly in a nonlinear 

flight envelope due to drastic maneuvers with high angles of attack. As a result, these 

highly nonlinear flight regimes bring about the dynamic interferences and couplings 

among roll, pitch and yaw axes. On this basis, the need arises for a controller which 

is able to overcome dynamic couplings and handle several different configurations 

without compromising performance. 

A flight control problem is usually approached with linear control theory, firstly. The 

linear controllers that are designed locally are applied to the nonlinear problems with 

gain scheduling technique which requires large tables of data. The performance of a 

linear controller is granted only around a restricted local area which is the major 

problem of linear control theory. To overcome this issue numbers of design points 

are increased and it brings about a substantial effort to find the controller gains for all 

design points. Besides, these gains usually need an update to preserve the controller 
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performance if the plant undergoes some improvements during its utilization time. 

These issues of the linear control theory lead the control studies through the robust, 

nonlinear and especially adaptive control solutions, recently. 

The adaptive control theory emerged in 1950s with the need for active control of 

agile aircrafts. The milestone of the adaptive control studies was the stability 

guarantee of the controller which is proven by Narendra in 80s [1] using Lyapunov 

stability theory. Adaptive controllers have distinguished in time with the flexibility 

they offer in modelling and uncertain environments. Especially in flight control 

applications, a significant effort must be spent to obtain an accurate model of the 

aerial platform which begins with modelling the system using basic principles and 

goes up to the system identification and model verification. Even if an adequately 

accurate model is obtained, it is usually in a nonlinear and coupled form and it 

becomes impossible to work with a single linear controller that is efficient on the 

whole operating domain. Nonlinear controllers are generated based on the nonlinear 

model of the system and consequently they are also dependent on the model’s 

accuracy. Moreover, it is hard to assess the performance of the controller since the 

well-known indicators such as transient response characteristics could not be easily 

extracted from the nonlinear content. The robust controllers like the adaptive 

controllers do not need restrictively accurate plant models; nevertheless they are 

conservative and this situation brings about performance issues. 

The inspiration for this study emerged on this basis to find genuine adaptive 

solutions for roll control of air -to-surface guided munitions. The research begins 

with linear control solutions which constitutes a base for more complex approaches 

and concludes with the proposition of an adaptive autopilot structure. 
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1.2 Literature Review 

 

Flight control of guided munitions is a challenging problem which leads the 

designers to search for smart control solutions due to the operating envelope of the 

weapon with wide dynamic pressure, Mach number and altitude ranges. Additionally 

the dynamics of these munitions tends to be highly nonlinear due to separation-

dominated flow. These problems make the adaptive solutions suitable candidates for 

handling the flight control of the munitions. Instead of developing a fixed controller 

over a space of model uncertainty, adaptive control adjusts the controller online 

based on detections of plant deviations from a reference model. Adaptive control 

augments and further extends the performance and robustness of the flight control 

system. 

The original concept of adaptive control was proposed by Whitaker et al. [2]. The 

main idea was specifying the desired response of a system by means of tracking a 

reference model which was later called the explicit model following control and the 

architecture became known as model reference adaptive controller (MRAC). Modern 

adaptive controllers are mainly classified as direct and indirect adaptive controllers. 

Direct adaptive controllers response fast and track the reference model efficiently 

whereas they suffer from short time learning since they are not focused on estimating 

johnson the uncertainty. Their tracking performance might not enhance even though 

the same command is tracked repeatedly. On the contrary, indirect controllers are 

designed to identify uncertainty and their tracking performance improves eventually. 

However, this dependency on the plant dynamics estimation could degrade their 

transient performance and makes it hard to guarantee performance and stability. 

The widely studied class of direct adaptive control methods is known as model 

reference adaptive control (MRAC) [3]–[6]. In MRAC, the plant is forced to track a 

reference model which characterizes the desired response. Many physical examples 

could be found in the literature that involves control using MRAC approaches such 

as, flight vehicle control [7], [8] , or robotic arms [9]. Most MRAC methods achieve 
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the reference model tracking by using a parameterized model of the uncertainty 

which is also named as the adaptive weights or the adaptive element. Adaptive 

elements in MRAC are classified as the ones that are designed to cancel structured 

uncertainties and the others that are designed for unstructured uncertainties. If the 

uncertainty is structured, a known basis used to parameterize the uncertainty [10]. If 

the structure of the uncertainty is unknown but it is defined over a compact domain 

and continuous, Neural Networks (NN) are used commonly to parameterize the 

uncertainty [11]–[15]. The universal approximation property of NNs guarantees the 

optimal approximation of the uncertainty with a bounded error. MRAC scheme 

ensures asymptotic command tracking despite the system uncertainties but achieving 

smooth transients or having adaptive parameters converge to their ideal values are 

not formulated as the design goals. Nevertheless, there are cases when parameter 

convergence takes place alongside the desired tracking. A sufficient condition for 

parameter convergence is given by the persistency of excitation (PE) which imposes 

certain restrictions on the reference command signal. However, the condition on PE 

reference input is often not feasible or hard to monitor online. In order to guarantee 

robustness and uncertainty elimination without PE reference inputs, various methods 

have been offered such as the σ-modification [16] and the e-modification [10]. These 

methods ensure that the adaptive weights do not diverge even when the PE condition 

is violated. But the increased damping on the weights due to these terms could 

prevent the learning and convergence of the weights [17]. The weight convergence 

benefits in many ways to the system. It indicates exponential error convergence, 

uniform approximation of the plant uncertainty and the guaranteed exponentially 

bounded transient performance. Uniformly cancelled uncertainty let the plant track 

the reference model exponentially which means that reference model and the plant 

responses become indistinguishable at some point. Hence, it would be possible to 

assess the performance of the controller using the linear stability metrics of the 

reference model. It is commonly studied to merge indirect and direct methods to 

guarantee the tracking error reduction and to cancel the uncertainty uniformly which 

bring about the weight convergence [18], [19]. However, these methods require 
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persistent excitation of the system for weight convergence. Concurrent learning 

adaptive law distinguishes from the others with its flexibility on PE condition which 

is proposed by Chowdhary [17], [20]–[22]. Concurrent learning algorithm uses the 

recorded data with the current data for adaptation uses a sufficient richness condition 

on the recorded data to guarantee the weight convergence instead of the restrictive 

PE condition on the reference input. This condition is more preferable than the PE 

condition since its requirements are dependent on the spectral properties of the 

recorded data whereas the PE condition puts restrictions on the future data which is 

hard to monitor and hard to guarantee. 

Adaptive control of guided bombs has been addressed by many studies recently each 

focused on different aspects of the problem. In addition to stand alone adaptive 

controller schemes [1], adaptive elements are also used as augmentations to roughly 

designed baseline controllers. One of many is [2], in which a dynamic inversion 

based autopilot is upgraded with Model Reference Adaptive Control (MRAC) and 

L1 adaptive elements. In this study, it is shown that adding an adaptive part to the 

controller, renders possible to ease the time consuming baseline autopilot design. 

Also, the suggested L1 element patched autopilot structure is proven to handle the 

nonlinear dynamic couplings of which the baseline autopilot is incapable to 

overcome. [3] is another example of MRAC scheme which is used to converge the 

closed loop response of the plant with unknown coefficients to a desired performance 

level. Neural network augmentation is another commonly used control architecture 

which is powerful for estimation of model uncertainties. [4]-[7] present pioneering 

researches on the application of neural network augmentation to baseline dynamic 

inversion controllers for air to air missiles, aircraft, tilt-rotor and helicopter. In [8] 

and [9] an implementation and application of an online learning neural network 

augmentation to a dynamic inversion based acceleration autopilot of a family of 

guided munition is given. One of the most famous adaptive control applications of 

guided munitions was conducted by Boeing Company in 2005. A model reference 

adaptive controller was implemented to a modified version of Mk-82 Joint Direct 

Attack Munition (JDAM). An LQR baseline controller is modified with an MRAC 
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adaptive element to handle the external configuration changes due to the guidance kit 

addition. The flight tests of JDAM were culminated successful in 2006. The open 

problems encountered in JDAM flight tests related to the operation of adaptive 

controller is explained in detail in [10].  

1.3 Contributions of This Thesis 

 

In literature, the most common approach to model the uncertainty in adaptive control 

schemes is to express the uncertainty as a function of the system states. In spite of the 

fact that any uncertainty shows itself as a disturbance on the system states could be 

defined by way of the system states, it should also be possible to express the 

uncertainty as a function of the conclusive origin of the uncertainty. This study states 

that if the source of the disturbance is apparent and sufficient information related to 

its dynamics is known, the relation between the plant and the source of the 

uncertainty could be learned and controlled through appropriate basis functions and 

concurrent learning adaptive control algorithms. In this research, the roll-pitch 

coupling of the guided munition which affects the roll stabilization is studied as an 

example to the claimed statement. The decoupled roll dynamics are stable around the 

local linearization point, but violation of the linearization conditions such as 

maneuvers with high angles of attack triggers the dynamic couplings. The unknown 

and unaccounted relation between the pitch and roll channels is known to arise with 

pitching maneuvers; hence, the uncertainty is expressed as a function angle of attack 

rather than a combination of the roll rate (roll channel angular velocity) and the roll 

angle.  

Since the structure of the uncertainty is unknown, the basis function selection should 

be carefully established. Despite the fact that there exist many wing rock dynamics 

theories and models in the literature, the phenomenon apparent in this study is not 

consistent with the well-known definition of the wing-rock notion which refers to 

limit cycle oscillations in the roll dynamics. A neural network based uncertainty 

parameterization is not leaned to due to the excessive number of tuning parameters 
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and the difficulty in weight convergence of commonly used activation functions. The 

activation functions should span the whole uncertainty domain to make the adaptive 

weights converge as a necessary, but not sufficient condition, and such construction 

effort could be troublesome and time consuming. In [23]–[26] Nguyen proposes 

using Chebyshev polynomials as basis function for a least-squares MRAC scheme. 

Chebyshev polynomials form a series of orthogonal polynomials which is vital in the 

theory of approximation. The orthogonality property ensures the linear independency 

of the polynomial series which contribute to weight convergence and enclosure of 

the whole uncertainty domain.  

Considering all these, in this study, the angle of attack dependent uncertainty is 

modelled via Chebyshev orthogonal basis functions and the concurrent learning 

MRAC is used to control and learn the dynamics of pitch-yaw couplings. This thesis 

proposes a novel uncertainty parameterization method and merges the prominent 

contributions of different adaptive control studies to enhance and identify roll-pitch 

couplings of a guided munition.  

1.4 Organization of the Thesis 

 

The remainder of the thesis is organized as follows. Chapter 2 includes general 

missile dynamics derivation for unfamiliar readers. In Chapter 3, linear models are 

derived and baseline autopilot schemes with linear augmentations are proposed. 

Chapter 4 addresses the theoretical background of the classical and concurrent 

learning model reference adaptive controllers. The Chebyshev polynomial basis 

functions and uncertainty parameterization using disturbance states are covered. The 

linear model implementations of the studied controllers are also given in Chapter 3 

and 4. In Chapter 5, evaluation of the controller performances are conducted through 

the 6 DoF nonlinear flight simulation in pre-specified flight conditions which 

simulates the challenging and nonlinear maneuvers .The conclusions and further 

researches are summarized in Chapter 6. The pitch and yaw channel acceleration 
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autopilots and their designs are also included in the Appendix A for the integrity of 

the content. 
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CHAPTER 2  
 

 

MISSILE DYNAMICS AND CHARACTERISTICS 

 

 

 

In this chapter, equations of motion for a generic missile are derived using Newton's 

2
nd

 law of motion for rigid bodies. The structure of the nonlinear aerodynamic 

database that is used in the high fidelity 6 degree of freedom simulation is 

introduced; the reference coordinate frames and the dynamical model of the missile 

are presented. 

2.1 Coordinate Systems 

 

In order to describe the motion of the missile, missile body fixed coordinate system 

and the Earth fixed coordinate system are used. The Earth fixed coordinate system is 

assumed as the inertial reference frame considering the fact that the missile's motion 

is much faster than earth's rotation and the missile's range is much shorter than the 

radius of the earth. 

Referring to the Figure XX, (Xe, Ye, Ze) denotes the right-handed Earth-fixed 

coordinate system in which the Xe,-Ye lie in the horizontal plane and the Ze -axis 

points down vertically in the direction of gravity. The body axis system is denoted by 

(Xb, Yb, Zb) is fixed with respect to the missile. The positive Xb-axis coincides with 

longitudinal axis in forward direction, the positive Zb-axis points down and Yb-axis is 

the complementary right handed axis with respect to Xb and Zb. The Euler angles (ψ, 

θ, φ) describes the missile's attitude with respect to the Earth-fixed axes. In Figure 

XX, the Euler angles and rates are defined whereby the order of rotation of the 

missile axes is yaw, pitch and roll. 
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Figure 2.1-1 Orientation of the missile axes with respect to the Earth-fixed axes 

 

The orthogonal transformation matrix from the missile body axes frame to the Earth-

fixed coordinate system 
( , )e b

C  is achieved by a yaw, pitch and roll rotation about the 

longitudinal, lateral and normal axes, respectively. The transformation can be written 

as follows 

 
( , )

e b
e b

e b

e b

X X

Y C Y

Z Z

   
   
   
      

  (2.1) 

The transformation matrix is defined below where c and s stands for cosine and sine 

functions. 

 
( , )

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

e b

C

           

           

    

  
   
 
  

  (2.2) 
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It should be noted here that ambiguities (or singularities) can result from using the 

above transformation (i.e., as θ, φ, ψ → 90◦). Therefore, in order to avoid these 

ambiguities, the ranges of the Euler angles (φ, θ, ψ) are limited as follows 

 

0 2

0 2

 

  

 

 

  

 

  (2.3) 

  

2.2 Rigid Body Equations of Motion 

 

The assumptions made for deriving the equations of motion are given as follows: 

 1- The missile is assumed to be a rigid body with a constant mass which does 

not undergo any change in shape and size.  

 2- The aerodynamic forces and moments acting on the vehicle are assumed to 

be invariant with the roll position of the missile relative to the free-stream velocity 

vector. 

 3- The missile equations of motion are written in the body-axes coordinate 

frame and vehicle aerodynamics are nonlinear 

Translational and rotational motions of the missile are expressed as follows with the 

conservation of both linear and angular momentum. 

  
I

d
F mV

dt
   (2.4) 

 

I

d H
M

dt
    (2.5) 
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The force equation takes the following form in terms of the body axes 

  M
M

B

dV
F m m V

dt
     (2.6) 

For a missile with b bX Z  plane of symmetry, missile's linear equations of motion 

are expressed in the following scalar form 

 

x

y

z

F mu qw rv

F mv ru pw

F mw pv qu

  

  

  

  (2.7) 

where , ,x y zF F F  are components of the total force acting on the missile expressed in 

the body frame, including aerodynamic and gravitational forces. 

The conservation of the angular momentum is expressed as given below in the body 

coordinate frame 

 

B

d H
M H

dt
     (2.8) 

where  

  H r mV mr r        (2.9) 

Using (2.8) and (2.9), the scalar angular momentum equations are obtained as given 

below 

 

   

   
   

2 2

X Z Y xz

Y X Z xz

Z Y X xz

L pI I I qr r pq I

M qI I I pr p q I

N rI I I pq p qr I

    

    

    

  (2.10) 
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It should be noted that for cruciform missiles with rotational symmetry, Z YI I  and 

0XZI   .Also, due to the usual the symmetry of air vehicles about the b bX Y  plane, 

the products of inertia that involve y are usually omitted and the moment equations 

could be rewritten as follows 

 

 

 

 

X Z Y

Y X Z

Z Y X

L pI I I qr

M qI I I pr

N rI I I pq

  

  

  

  (2.11) 

Total velocity and wind angles are calculated as given under no wind assumption 

 2 2 2V u v w     (2.12) 

  1tan w
u

    (2.13) 

  1tan v
u

    (2.14) 

2.3 Aerodynamic Forces and Moments 

 

Since guided munitions are missiles with no propulsion unit, the forces acting on the 

missile could be classified as gravitational and aerodynamic forces. In this section, 

aerodynamic forces and moments acting on the body are defined, briefly. 

 

X X

B

Y Y

Z Z

F X G

F F Y G

F Z G

   
     
   

      

  (2.15) 

The total force acting on the body could be expressed as a column vector written in 

body axes as given in (2.12). In this expression, , ,X Y Z  defines aerodynamic forces 

and , ,X Y ZG G G defines the gravitational forces. The aerodynamic forces are 

expressed as follows 
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X

Y

Z

X QSC

Y QSC

Z QSC







  (2.16) 

where the aerodynamic coefficients are functions of Mach, M, angle of attack, , 

and side-slip angle,  , elevation, rudder and aileron deflections, , ,e r a   , and body 

rates, , ,p q r  as given below 

 

( , , , , )

( , , , ); ( , , )

( , , , ); ( , , )

STATIC DYNAMIC

STATIC DYNAMIC

STATIC DYNAMIC

STATIC DYNAMIC

X e r

Y Y Y

Z Z Z

Y r Y

Z e Z

C f M

C C C

C C C

C f M C f M V r

C f M C f M V q

   

  

  



 

 

 

 

  (2.17) 

Aerodynamic moments and moment coefficients are expressed as below with the 

coefficients calculated at the center of gravity of the missile 

 

L

M

N

L QSdC

M QSdC

N QSdC







  (2.18) 

 

( , , , ); ( , , )

( , , , ); ( , , , )

( , , , ); ( , , , )

STATIC DYNAMIC

STATIC DYNAMIC

STATIC DYNAMIC

STATIC DYNAMIC

N N N

L a L

M e M

N r N

C C C

C f M C f M V p

C f M C f M V q

C f M C f M V r

  

   

   

 

 

 

 

  (2.19) 

Dynamic pressure, Q, in the equations (2.13) and (2.15) is defined as functions of 

missile total velocity and air density as given below 

 
21

2
Q V   (2.20) 
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The air density in the above expression is defined with the following equation 

 
4.256

0

0.000151( 10000)

; 10000(1 0.00002256 )
( )

; 100000.412 h

h mh
h

h me




 

 
  

 
   (2.21) 

 

2.4 Gravitational Forces 

 

The gravity originated force components are expressed as below in the body frame 

 

sin

sin cos

cos cos

X

B

Y

Z

G mg

G G mg

G mg



 

 

   
    
   
      

  (2.22) 

2.5 Missile Characteristics 

 

In this section, physical parameters and of the missile are given. Physical 

specifications of the gravity drop bomb Mk-82 is obtained via [27] as follows 

2302.41

1503.86 663.19

684.78 355.6

88.90

142.75

43.26

960.12
5.41 AXIS OF CANT

382.52

270

297.94
W/O 

COATING

25.4 

NOMINAL

 

Figure 2.5-1 Layout of Mk-82 General Purpose Low Drag (GPLD) 500 lb bomb (all 

dimensions in mm) 

The physical characteristics of Mk-82 are tabulated in the following table. 
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Table 2.5-1 Physical characteristics of 500 lb (225 kg) Mk-82 GPLD bomb 

Length, assembled 2.30 m 

Body diameter 0.27 m 

Fin (conical type)  

            Span 0.3835 m 

            Chord 0.2692 m 

            Weight 10.9 kg 

Total Weight (nominal) 240.9 kg 

Explosive Weight (nominal) 87.1 kg 

Case Weight (nominal) 141.1 kg 

Center of Gravity (from nose) 0.96 m 

Moments of inertia  

            Pitch 49.8 kgm
2 

            Yaw 49.8 kgm
2
 

            Roll 2 kgm
2
 

 

 



17 

CHAPTER 3  

 

 

BASELINE ROLL AUTOPILOT AUGMENTATIONS 

 

 

 

There has been an increasing demand for greater performance from aerial vehicles 

which leads to wider flight envelopes with large range of altitudes, speeds and higher 

angles of attack with rapid changes in aerial platform’s aerodynamic characteristics. 

The technologic developments bring the focus on agile aerial vehicles whereas the 

industry is steered through cheaper and accessible alternatives. The guided munitions 

are emerged in response to this need. The gravity bombs which had widely been in 

use until the second half of World War II are retrofitted with a guidance kit to 

increase their target hit success while decreasing the collateral damage caused by 

traditional gravity bombs. These guidance kits usually involve GPS, INS, seeker, fin 

actuators and some other structural elements to regulate the air flow on the advanced 

munition. All these additional components enhance the target hit capability of the 

munition significantly but they bring along some aerodynamic challenges as well. 

The munition studied in this thesis, tends to undergo dynamic couplings during high 

angle of attack required manoeuvers. The main consequence of this situation 

manifests itself with the difficulties in stabilization of the roll channel. The 

decoupled aerodynamics assumption which is put forward during linear controller 

design holds any longer and the induced roll angle aggravates the command tracking 

performance of pitch autopilot. This study briefly focuses on the stabilization of roll 

channel under cross-coupled interactions by means of augmentations on the roll 

autopilot. In this chapter, baseline augmentations are commentated and the work is 

extended to adaptive control algorithms in the next chapter. 

 



18 

3.1 Cascaded Roll Autopilot Design 

 

The roll channel controller is a cascaded two-loop regulator as given in Figure 3.1-1 

with proportional control. 

δcomφeΦ command

--
Kφ ++

p

φ

1
s

φLδ

s-Lp
Kp

 

Figure 3.1-1 The baseline roll autopilot structure 

 

Baseline roll channel control law is defined in (3.1) 

  e pbl
K p K       (3.1) 

The gain selection procedure is similar to the one given for the acceleration 

autopilots design. Since the order of the system is reduced by eliminating control 

actuation system states   and   in the feedback, the parametric transfer function of 

the closed loop system could be obtained easily as follows 

 
2

2 2 2
( )

( ) 2

P n
CL

P P P n n

K K L
G s

s K L L s K K L s s

 

  



 
 

    
  (3.2) 

Using the mathematical relations, the following analytical expressions are attained 

for the gains K
 and 

pK  

 
2 n P

P

L
K

L

 
   (3.3) 
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2

2

n

n P

K
L









  (3.4) 

By setting the desired damping ratio as 1  , the gains become the function of 

desired natural frequency only. The desired response of the roll autopilot is defined 

as being able to reset 10  roll angle  .with adequate transient response 

characteristics. This should not be interpreted as the failure of the roll autopilot at 

higher roll angles. It must be noted that this is a design approach. The autopilot resets 

the error and provides the 0   condition ultimately in nominal cases by means of the 

implicit integrator of roll dynamics. In real life applications, the autopilot commands 

are limited in order not to saturate the control authority suddenly. The autopilot 

operates only knowing the amount of the error that is being commanded at a time 

instant which makes the mentioned design approach reasonable. 

 

3.2 Roll Autopilot Augmentation with Feedforward Controller 

 

The initial approach to control the munition is to control acceleration on pitch and 

yaw channels via full state feedback control law and to use cascaded two-loop 

autopilot to regulate roll dynamics. The design of pitch and yaw acceleration 

autopilots are included in Appendix A for the integrity of the context. Acceleration 

commands on pitch and yaw channels induce a rolling moment and roll angle on the 

missile due to dominant pitch-roll and yaw-roll coupling characteristics and the 

cascaded roll autopilot remains incapable to suppress this induced rolling motion. 

The first idea to enhance the roll stabilization comes up with the analysis of roll 

aerodynamics. The roll moment coefficient variation with angle of attack for a 

chosen Mach point at different angles of attack and fin deflections are given in 

Figure 3.2-1 and Figure 3.2-2 
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Figure 3.2-1 Variation of Roll Moment Coefficient with α at 0° β 

It could be interpreted from Figure 3.2-1 that the variation of roll coefficient with 

angle of attack is linear at 0° β for different fin deflections. Figure 3.2-2 shows that 

the linear variation of Cl with α is highly dependent on β. At side slip angles greater 

than 10°, the linear dependency of Cl on α is limited with ±5° α 

 

Figure 3.2-2 Variation of Roll Moment Coefficient with α at 0 δa 
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In the view of such information, it is concluded that on a limited operation envelope, 

it is possible to express the variation of roll coefficient with angle of attack linearly. 

Hence the linear expression for roll dynamics is expanded with a term that defines 

the rolling moment contribution of angle of attack. The aim of the lC  vs   curve at 

0° β and 0° δa defines an additional aerodynamic coefficient which is denoted with 

lC


 in this study. The rolling moment contribution of angle of attack is calculated 

like the other static aerodynamic derivatives. 

 
lL Q S C
      (3.5) 

 
aX aPL p I L p L L            (3.6) 

At this point, the main aim is to obtain a relation between the angle of attack and the 

roll rate p. The transfer functions derived from equation (3.6) are given in equation 

(3.7) 

a

X

pa

X

L
Ip

L
s

I








 
X

p

X

L
Ip

L
s

I







  (3.7) 

 

The angle of attack induced roll moment is defined with the linear variation of roll 

rate with α. Starting from this, the control strategy is developed leaning on the 

following logic: Any maneuver which requires angle of attack, induces an amount of 

roll rate on the missile which is defined with p/α transfer function and the necessary 

aileron deflection to overcome an amount of roll rate is known via p/δa transfer 

function. Based on these facts, one could build a linear relation between the angle of 

attack and the aileron deflection. Hence, the necessary additional control effort which 

compensates the induced roll rate could be calculated. 
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1 2

2
a a

p

X Xa

a p

X X

L LL
s

I Ip p

L L L
s

I I



 



  


 
    

     
 
 

 

  

 

  (3.8) 

The low frequency gain of the above biproper transfer function is the ratio between 

the angle of attack on the missile and the necessary aileron deflection which 

overcomes the roll moment induced due to this angle of attack. Hence, the low 

frequency gain of this transfer function is assigned as a feedforward control gain Kff 

on angle of attack and the control law is updated as shown in equation (3.9) 

 com bl ind
      (3.9) 

where the baseline control input δbl and the induced control input δind are defined as 

 
 
ind ff

e pbl

K

K p K

 

 

 

   
  (3.10) 

The controller is tested in linear model where the alpha induced roll moment is also 

included using the transfer functions in equation (3.7). Linear model with 

feedforward augmented controller is given below. The control actuation system is 

assumed to be perfect and included as unity in the linear analysis. 

φeφ command p

φ

1
s

φ

-+-+
p

δ
++

p
α

Kp

Kff

Kφ
++

α

δcom

δind

δbl

 

Figure 3.2-3 The linear test model for roll autopilot 

In order to include the effect of angle of attack in linear roll dynamics, the related 

transfer function is taken into the loop as shown. An angle of attack profile which is 
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1 Hz square wave with 10° amplitude and 2° offset is introduced to the test model. 

The initial conditions are arranged as 0 0
[10 0]

T
p      and the controller is 

expected to set the states to zero. The responses of linear model with and without 

feedforward controller are shown in Figure 3.2-4 and Figure 3.2-5 

 

Figure 3.2-4 Linear Simulation Roll Rate Responses of the Cascaded Roll Autopilot 

with and without Feedforward Controller 

 

 

Figure 3.2-5 Linear Simulation Roll Angle Responses of the Cascaded Roll 

Autopilot with and without Feedforward Controller 

 

The body angular velocity around x-axes, p, and the roll angle φ responses show that 

the induced roll moment due to angle of attack could be eliminated in linear space 
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with feedforward control signal. The problem with this control strategy is that it is 

based on the linear relation between angle of attack and roll rate. This linear relation 

only holds true between the linear region limits of the aerodynamic database which is 

roughly ±5° angle of attack, side slip angle and fin deflection angle. The other point 

to consider is the effect of the aerodynamic uncertainties to the feedforward control 

scheme. The robustness performance of the controller should be assessed by taking 

the uncertainty tolerances of the database into account. Also, it must be emphasized 

that the studied munition is not symmetric and has different aerodynamical 

characteristics in pitch and yaw channels. Hence, the linear relation constituted 

between angle of attack and roll rate could not be established between side slip angle 

and roll rate. Nonlinear application of the feedforward controller and its further 

drawbacks are discussed in Chapter 4. 

3.3 Fixed Gain Model Reference Controller Design for Roll Channel 

 

The cascaded roll autopilot remains incapable to suppress the induced rolling motion 

from dominant coupling characteristics and the feedforward control scheme is only 

applicable to a small region which is limited by linear α-Cl interaction envelope. To 

eliminate this phenomenon, a fixed gain model reference controller is designed as 

explained in this section. This concept aims to match the system asymptotically with 

the desired reference model behaviour. The control law forces the system to imitate 

the reference model responses where the reference model is chosen such as: 

 ( ) ( ) ( )rm rm rm rmx t A x t B r t    (3.11) 

The reference model in our case is driven by the commanded roll angle and produces 

the reference roll rate and the reference roll angle. The system is assumed to be 

modelled perfectly 

 ( ) ( ) ( )x t Ax t Bu t    (3.12) 

The error which is intended to be eliminated is expressed as 
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      rmt t te x x    (3.13) 

A feedback-feedforward control law is defined in (3.14) 

        
T

pd ff rm rtu K K x K r te t t    (3.14) 

The error dynamics is derived as given below 

      rme t x t x t    (3.15) 

              rm rm rmt t te A x B r Ax t B u t x       (3.16) 

Inserting equation (3.13) and (3.14) into (3.16) and gives the following where 

rm
A A A     

              pd ff rrm rm rmt A t t t BK e t BK t BK r te x B r Ae x        (3.17) 

The matching condition states that 

        rm rm rm rffAx t B r t BK x t BK r t      (3.18) 

which leads to the following relations 

 
rm ff

rm r

A A BK

B BK

 


  (3.19) 

The error dynamics is simplified as given in (3.20) 

      pde t A BK e t    (3.20) 

Using error feedback instead of state feedback in fixed gain model reference 

controller allows designer to obtain any desired transient response while tracking a 

given reference command. The structure of MRC and the linear model responses 

under the presence of angle of attack presence are given as follows. 
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Figure 3.3-1 Model Reference Controller Structure 

 

It should be noted that the plant could be easily modified to let the angle of attack 

originated disturbance enter the system through the control channel which defines it 

as a matched disturbance. 

 

Figure 3.3-2 Linear Simulation Roll Angle Responses of Model Reference Controller 
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Figure 3.3-3 Linear Simulation Roll Rate Responses of Model Reference Controller 

 

In the above example, the nominal closed loop model of the cascaded roll autopilot is 

used as a reference model. The plant is at 10° roll angle initially and the MRC is able 

to stabilize the states which are disturbed by induced roll rate due to angle of attack. 

MRC is applied with a high and a low error feedback gain and both of the two 

configurations are able to track the reference model adequately in nominal case. The 

low gain configuration underperforms in disturbed case whereas the high gain 

configuration still performs well. However, the simulation step size is needed to be 

reduced about a 1000 times to prevent the divergence of high gain configuration 

which brings about a computational load and usually restricted with practical 

limitations in real applications. Another and the most important issue of MRC is the 

ideal plant assumption which is rarely the case in real world. Parametric uncertainties 

could lead to instabilization of the plant; even if the plant stays stable, the closed 

loop performance of the system could degrade to a level beyond the admissible 

limits. 
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CHAPTER 4  

 

 

ADAPTIVE ROLL AUTOPILOT DESIGN 

 

 

 

In the previous chapter, the system dynamics is assumed to be known completely, 

which is hardly the case in reality. The aerodynamic parameters are rarely known 

exactly and this type of uncertainty is called the parametric uncertainty. The 

controllers as such in the previous chapter could lead to deterioration of the closed 

loop performance and even instabilities if the parameters are drastically distinct from 

their true values. This situation emerges an inspiration for using adaptive gain 

adjustment mechanisms. The baseline autopilots are controllers with limited flight 

envelope coverage and adaptive augmentation is expected to adjust the baseline 

control inputs appropriately to guarantee the expected performance even under off-

design conditions. The adaptive control theory gained popularity in the early 1950s 

to cover the control expectations of agile aircrafts and the concept of model reference 

adaptive systems (MRAS) was suggested soon in 1958 by Whitaker et al. at MIT [2]. 

The idea was to dictate the desired servo-tracking performance using a difference 

equation (reference model). This control concept is now called as explicit model 

following and the related controller scheme is known as the model reference adaptive 

control (MRAC). In this chapter, firstly a model reference adaptive controller 

(MRAC) is designed for roll channel, and then the MRAC is augmented with a 

concurrent learning algorithm as in [17], [28]. 
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4.1 Why Adaptive Control? 

 

The need for using adaptive schemes arises in view of the following few issues. The 

most prominent reason is the uncertainties in the database considering that to put an 

aerodynamic database into a final form is a long process. The initial versions of a 

database usually do not include the protrusions around the main body such as the 

GPS antenna or the external wireway between the seeker and the actuator. Hence, the 

database does not necessarily reflect the undesired aerodynamic effects of these 

asymmetric structural elements. In addition, computational studies are generally 

conducted for limited design conditions and might not reveal the whole story behind 

any possible problematic phenomena. Besides, the structural design usually goes 

under improvements with the evolving operational needs as the project proceeds. 

Despite all these, the controller design task should be conducted up to a level relying 

on the available information provided with the database and the adequate robustness 

should be introduced to lower the labour of fine tuning with any design update. 

Using an adaptive controller scheme contributes to enhance all of these mentioned 

issues. Adaptive schemes introduce robustness against the parametric uncertainties 

and reduce the development costs and schedule by eliminating the need for 

expensive wind tunnel testing. Also, the studied guidance kit is designed to be 

compatible with a family of iron bombs with various mass properties and 

aerodynamic characteristics hence a self-adaptive controller becomes a must to 

ensure adequate control capability over a wide range of configurations. 

4.2 Uncertainty Parameterization Independent of the System States 

 

The punchline of a superior control is directly related to having a plant model which 

adequately captures the actual physical system. However, the model simplifications 

and idealized assumptions usually rule out the nonlinear, coupled and time varying 

system dynamics. The uncertainties that come naturally with the real life applications 

such as measurement noise and environmental disturbances (ea. turbulence) together 
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with the model simplifications could lead to excluding important physical 

characteristics from the mathematical model. The unknown effects of these ignored 

dynamics are usually included as an uncertainty term in the model and either a robust 

control scheme is employed to maintain consistent performance in the presence of 

uncertainty or an additional control effort is set aside to identify and cancel this 

uncertainty in the model by means of adaptive controllers. 

The uncertainties could be structured or unstructured depending on whether they 

could be linearly parameterized using a set of known basis functions. If the MRAC is 

designed to cancel the structured uncertainties, the adaptive element is formed by 

using this known basis. Parametric uncertainties are included in this class. When the 

structure of the uncertainty is unknown, but it is defined over a compact domain and 

continuous; the uncertainty could be approximated up to certain level with Neural 

Networks or other well-known regression techniques such as polynomial 

approximation.  

The well accepted way to define an uncertainty, either structured or unstructured, 

expresses the uncertainty as a function of the system states. 

      *Tx t W f x t    (4.1) 

where W* denotes a constant unknown gain matrix and f(x(t)) denotes the structure 

of the uncertainty. 

In literature, many examples could be found for this type of uncertainty modelling 

[29], [30]. Despite the fact that any uncertainty that is apparent on the states as 

disturbance could be modelled through the system states; it should also be possible to 

include the uncertainty through its directly related variable if there is one. The idea 

offered in this study is to relax the assumption of the state dependent uncertainty. 

Defining the uncertainty with its’ conducive parameter is expected to contribute 

especially in identifying the unstructured uncertainties. Even though the structure of 

the uncertainty is unknown, usually the phenomenon inducing the uncertainty is 
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conspicuous but it might not be expressed well with system states as happened so in 

this study.  

The main motivation to switch to an adaptive gain update algorithm is to prevent the 

induced roll motion due to tightly coupled dynamics. The uncertainty dealt with in 

this study is a modelling error which makes the induced rolling motion unobservable 

in linear model but it becomes apparent in nonlinear simulation with the presence of 

angle of attack. Since the main source of the uncertainty is addressed as α; the 

uncertainty is modelled as a function it throughout this study. 

      *Tt W f t     (4.2) 

where ζ(t) is called the uncertainty state and it is either α or β or a function of α and β 

depending on the case. In spite of the fact that the uncertainty is assumed to be 

independent of the system states, the matched uncertainty assumption still holds, 

which means that the uncertainty enters the system through the control channel. The 

advantages and disadvantages of system states independent uncertainty modelling are 

discussed further in the following chapter. 

4.3 Model Reference Adaptive Controller Design for Roll Channel 

 

In the previous chapter, it is stated that the cascaded roll autopilot remains incapable 

to suppress the induced rolling motion from dominant coupling characteristics and 

the feedforward control scheme is only applicable to a small region which is limited 

by linear α-Cl interaction envelope. The MRC assumes the plant is known exactly 

which makes it sensitive to the parametric uncertainties. This problem reveals a 

motivation for integrating adaptive controllers to the system as a part of the solution.  

To make the roll channel adaptive against the coupled dynamics, the MRC scheme is 

augmented with an adaptive element. The adaptive controllers are mainly classified 

as direct and indirect adaptive schemes. The direct adaptive schemes adapt controller 

in response to system variations whereas indirect control schemes require an 
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estimation algorithm, estimate the unknown parameters then adapts the controller 

according to that estimation. In this study, direct MRAC is employed which is highly 

popular in the control of uncertain systems. 

In direct MRAC, the overall plant is modelled as a combination of a nominal 

(known) part and an unknown part. A reference model is chosen as in MRC which 

specifies the desired behavior of the closed loop system. The control strategy consists 

of two parts like the plant: first part is the nominal control which is designed by only 

considering the known part of the plant. The second part is the adaptive control 

which is driven by the error between the reference model and the true plant. When 

there is no uncertainty the adaptive control mechanism does not contribute to the 

control signal. In the presence of uncertainties, adaptive control provides additional 

feedback to drive error to zero asymptotically. 

Many examples to applications of MRAC could be found in the literature [4], [25], 

[31]. In view of the related studies, the control law for MRAC roll autopilot is 

presented in this section. First, the system with matched uncertainty is defined as 

follows. 

 ( ) ( ) ( ( ) ( ( ))x t Ax t B u t t     (4.3) 

where ( )  denotes a scalar uncertainty which is a continuous function of the 

uncertainty states and the pair ( , )A B  is assumed to be controllable. The term 

“matched” implies that the uncertainty enters the system where the control input is 

applied. The matching condition suggests that the controller would be able to cancel 

the system uncertainties if the uncertainties are known and the matched uncertainty 

assumption assures existence of at least one control solution. A reference model is 

designed which forces the plant to perform the desired closed loop response. 

 ( ) ( ) ( )rm rm rm rmx t A x t B r t    (4.4) 
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where ( )r t  is bounded reference signal and the system matrix is Hurwitz. The 

control law is constituted in equation (4.5) where eu  is the error feedback control 

signal, rmu is the feedforward part and adu  is the adaptive part. 

        e rm adt t t tu u u u     (4.5) 

The feedback and feedforward control signals are defined in equation (4.6) and the 

adaptive part is derived in the following sections. 

 
      
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




  (4.6) 

 

4.3.1 Tracking Error Dynamics 

 

In order to define the adaptive control signal, tracking error dynamics is derived 

based on the error definition given in (4.7) 

 ( ) ( ) ( )rme t x t x t    (4.7) 

Differentiating (4.7) gives the following 

   ( ) ( ) ( ) ( ) ( ) ( )rm rm rme t A x t B r t Ax t B u t        (4.8) 

Equations (4.5) and (4.6) are substituted in (4.8) which results in: 

               ( )
rmrm rm rm pd adt t t t ee A x B r Ax B u t K t u t          (4.9) 

At this point, to make the error visible in the above equation the following 

expressions are defined, cl pdA A BK   and rm clA A A    

             ( )
rmrm rm cl adt t t te Ax B r A e B u t u t         (4.10) 
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A matching condition is assumed to exist such that   ( ) ( )rm rm rmBu t Ax t B r t   . The 

feedforward control signal is designed considering this condition. Hence, equation 

(4.10) is simplified as follows: 

         cl ade t A e t B u t      (4.11) 

The cascaded controller gain
pdK  should be selected such that 

cl pdA A BK   is 

Hurwitz to guarantee the existence of a solution P  for the following Lyapunov 

equation for any positive definite Q   

 0T

cl clA P PA Q     (4.12) 

 

4.3.2 Adaptive Controller Design 

 

4.3.2.1 Case I: Structured Uncertainty 

 

Adaptive elements in MRAC are divided into two: one of which is designed to 

cancel the structured uncertainties and the other of which is designed to cancel the 

unstructured uncertainties. The structured uncertainty means that the uncertainty 

could be linearly parameterized using a set of nonlinear basis functions. Using this 

information, the adaptive control signal is generated with a weighted combination of 

the known basis. Wing rock dynamics is the commonly known member of this type 

of uncertainty and is widely included in the literature [32]–[38]. In this section, the 

adaptive controller input adu  is designed to cancel the structured and matched 

uncertainty ( ) . The uncertainty assumption is going to be relaxed and elevated for 

the unstructured case in the following section.  

The uncertainty ( )x is linearly parameterized and it is assumed that there exists a 

unique constant vector * mW R  and a vector of continuously differentiable and 
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bounded known regressor functions            1 2, ..., mt t t t          , such 

that, an interval  , ,t t t t R    exists over which      T

t t

t

t t dt 


   is positive 

definite. Then, the uncertainty is uniquely expressed as: 

      *Tt W t      (4.13) 

Letting   mW t R  denote a good estimate of *W and considering that the mapping 

between the states and the uncertainty is known, the adaptive control signal that 

eliminates the uncertainty could be written as 

        T

ad t t tu W     (4.14) 

Then by the selection of a globally radially unbounded quadratic Lyapunov function 

candidate and using the necessary Lemma’s as shown in [39] in detail, the following 

weight update law is obtained. 

   TW e PB    (4.15) 

where mxmR  is a positive definite learning rate that drives the error to zero 

asymptotically.  

4.3.2.2 Case II: Unstructured Uncertainty 

 

In many physical applications, there is no known exact structure between the input 

and the output processes. This type of uncertainty is called the unstructured 

uncertainty and it is assumed that the uncertainty is continuous and defined over a 

compact domain. If the uncertainty is structured, the apparent basis function 

candidate is engaged and when the unstructured uncertainty is the point at issue, 

universal approximators such as radial basis functions or sigmoidal neural networks 

are employed to parameterize the unfamiliar uncertainty [11]–[15], [40]–[44] 
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Multilayer Neural Networks (MLNN) are proven to learn any function theoretically. 

Nonetheless in applications, it could be challenging to generate a net covering the 

entire expected uncertainty domain or to provide the sufficient training data. Another 

issue of the neural networks is the substantial amount of effort to design the network 

with many parameters needed to be tuned such as number of layers, number of units 

and activation functions of each unit. Besides the effort in determination of the 

number of processing elements, neural networks have the problem of local minimum 

and slow convergence speed which makes them much suitable for long processes 

[39] 

The other common approach to model the unstructured uncertainties is the 

polynomial approximation. Function approximation using standard polynomials is 

problematic since the approximation is not guaranteed to converge to the true 

function independent of the degree of the polynomial. In theory, the degree of 

polynomial is directly proportional with the precision of the approximation. 

However, increasing the degree of the approximating polynomial beyond a limit, 

could cause overparameterization which results in oscillations in the approximated 

output. 

A novel idea is proposed in [24], [25] which elevates the standard polynomial 

approximation to approximation of the unstructured uncertainty by Chebyshev 

orthogonal polynomial basis functions. The main advantage of orthogonal functions 

over a regular polynomial is the better function approximation of orthogonal 

polynomials than a regular polynomial of the same degree. Orthogonal polynomial 

basis functions provide a convenient method for approximating functions with a 

series of linearly independent terms which provide fast convergence and also resolve 

the local minimum issue in neural networks [24], [25]. In this study, the unstructured 

uncertainty case is handled using Chebyshev orthogonal polynomials as basis 

functions considering its superiorities. 
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4.3.2.2.1 Chebyshev Polynomials 

 

Chebyshev polynomials form a series of orthogonal polynomials which has an 

important role in the theory of approximation. The polynomials are defined in the 

following manner for the variable [ 1,1]x    
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  (4.16) 

The explicit formula for Chebyshev polynomials is defined as 

     cos arccosnT x n x   (4.17) 

The polynomials also could be generated using the following recurrence relation for 

1n   : 

 1 12n n nT xT T     (4.18) 

The orthogonality property of these polynomials is defined within the interval 

[ 1,1]x   with a weight of  
1

21 x


  i.e. 
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






  
   

   (4.19) 

The good thing about the orthogonality property is that a set of orthogonal vectors is 

guaranteed to be linearly independent while spanning the uncertainty space. This is 

the reason for the fast convergence of orthogonal basis polynomials with relatively 

less terms than regular polynomials. 
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An arbitrary function F(s) can be approximated as follows using Chebyshev 

polynomials expansion 

    1

1

N

i i

i

F s c T x



   (4.20) 

where Ti are the Chebyshev polynomials, ci the coefficients of expansion, N the 

degree of the polynomials and x is a non-dimensional variable defined as 

 
 2 up lo

up lo

s s s
x

s s

 
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
  (4.21) 

sup and slo are the lower and upper bounds defining the range over which the 

approximation is valid [45]. 

4.3.2.2.2 Unstructured Uncertainty Modelling Using Chebyshev Polynomials 

 

The unstructured uncertainty is approximated using the Chebyshev polynomials 

expansion in (4.20). The uncertainty which is an unknown function is expressed as: 

     f t     (4.22) 

It is assumed that the function f(ζ(t)) could be approximated with Chebyshev 

expansion with N sufficient polynomial terms as follows: 

    
1

N

i i

i

f w 


    (4.23) 

where   is the normalized uncertainty state,    1i iT    and 

 1 2 N      is the basis function which is an array of Chebyshev 

polynomials up to degree N-1.  1 2 NW w w w  denotes the coefficients of 

Chebyshev polynomial terms and updated with the following weight update rule as 

in the structured uncertainty case. 
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   TW e PB    (4.24) 

The designed MRAC is tested in linear simulation for structured and unstructured 

uncertainties. The disturbance is selected as a function of α which is obtained via 

p   transfer function. 
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Figure 4.3-1 Model Reference Adaptive Controller Structure 

 

A system with uncertainties is written in the following form: 

        x t Ax t Bu t      (4.25) 

The uncertainty is defined as matched uncertainty if it is possible to express the 

uncertainty as 

    B      (4.26) 

        x t Ax t B u t        (4.27) 
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To include disturbance induced with α as a matched uncertainty in the system, the 

state space model is updated as given below 
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  (4.28) 

The basis function is constructed using the first 4 terms of the Chebyshev expansion. 

The responses of MRAC for linear system are given in the following figure. 

  

Figure 4.3-2 Linear Simulation Roll Angle, Roll Rate and the Angle of Attack 

Responses of the MRAC 

 

 

Figure 4.3-3 Structured Uncertainty and the Adaptive Control Input Histories 
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Figure 4.3-4 Adaptive Weight Histories of the MRAC 

 

Figure 4.3-2 shows that the body roll rate and the body roll angle could easily be 

driven to zero from initial 10° roll angle under the presence of angle of attack. The 

adaptive control signal and the uncertainty with opposite sign are shown in Figure 

4.3-3. It is seen that the adaptive control signal cancels the uncertainty out 

completely with Chebyshev polynomial basis function. However, the weight history 

shows that weights do not converge despite the persistently excited reference signal.  

Stated by the theory, the interest of MRAC is the asymptotic command tracking and 

it is achieved despite the system uncertainties. The controllers may yield transient 

oscillations due to higher adaption rates and weights may not resemble to the actual 

values. The error that driven asymptotically to zero does not imply the estimation of 

weights converge to their ideal unknown values. However, in some cases the 

convergence might come along with the desired tracking. A necessary condition for 

parameter convergence is the persistency of excitation (PE) which dictates hard to 

achieve restrictions on the reference signal. For linear systems, PE condition is 

satisfied if the reference signal is a sum of sinusoids with different frequencies [2]. 

But in nonlinear systems, this rule no longer holds and verifying the PE conditions 

become harder numerically. The unobtainable PE condition not only affects the 

parameter convergence, also risks the boundedness of the adaptive weights. In spite 

of the fact that there exist some modification methods to guarantee boundedness, 
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they could cause the weights to stick around their initial guesses due to redundant 

stiffness on the adaptive law. In order to avoid these problems, PE condition is 

relaxed by augmentation of classical MRAC scheme with concurrent learning 

algorithm which is declared by Chowdhary in [39]. 

4.4 Concurrent Learning Model Reference Adaptive Control 

 

The solution offered in the previous section mainly focuses on finding the 

instantaneous solution for the control problem with classical MRAC scheme. This 

scheme ensures generating an appropriate control input at every time instant to 

cancel the disturbance, however there is no guarantee about the weight convergence 

which indicates that the algorithm learns the existing disturbance and imitates this 

learned disturbance to generate the control input. The learning algorithms use the 

past information to generate a more effective control action iteratively which 

ultimately improves the tracking accuracy. There are several algorithms to force the 

online adaptive control schemes to learn the disturbance and some of them are 

commonly studied in the literature [46]–[52].The learning algorithm preferred in this 

thesis is concurrent learning algorithm that is studied by Chowdhary. Concurrent 

learning algorithm uses the past and present data together to adapt the control law 

weights. The main benefit of this algorithm is that if the recorded data is rich enough 

in terms of expressing the disturbance, the weights converge to their true values 

without the necessity of PE condition. The weight convergence is desirable since it 

ensures guaranteed exponentially bounded transient performance and exponential 

error convergence. The convergence of the weights to their true values means that 

the plant uncertainty is uniformly approximated which makes the tracking error 

dynamics linear. The linear tracking error dynamics let the plant track the reference 

model exponentially which indicates that the reference model states and the plant 

states become indistinguishable at some point if the reference model is properly 

selected. This situation leads a way through meaningfully evaluating the system in 

terms of frequency domain specifications and transient characteristics by means of 

the reference model characteristics. To emphasize the benefits of concurrent learning 
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algorithm, the PE condition should be defined properly before taking a step further. 

Boyd and Sastry define the PE condition as follows [31]: 

Persistency of Excitation (PE) Condition 

A bounded vector signal  t  is persistently exciting if for all 0t t  there exists 

0T   and 0   such that 

    
t T

T

t

d I   


     (4.29) 

where    
t T

T m m

t

d R  


   . 

This condition states that if the exogenous reference input contains as many spectral 

lines as the number of unknown parameters, then the plant states are persistently 

excited. In order to remove the PE restriction on the weight convergence using the 

recorded data, there is still one condition to satisfy on the data stack which is the 

‘sufficient richness’. This condition is characterized by the following rule of thumb 

in [39]. 

Weight Convergence Condition (WCC) 

The history stack should contain as many linearly independent elements 
m

k R   as 

the dimension of the basis of the uncertainty. If the history stack is denoted as

 1 2 PZ      , the rank condition should be satisfied that  rank Z m . 

The weight convergence condition (WCC) ensures that the history stack is 

sufficiently rich to form an appropriate basis for the linearly parameterized 

uncertainty. 

The main superiority of WCC to PE condition is the ease of practical application. It 

is straight forward to determine the rank of a matrix online whereas PE condition is 
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hard to verify in most cases. For linear systems with linear-in-parameter 

uncertainties, if the exogenous reference command is chosen as a sum of sinusoids 

with different frequencies, the PE conditions are satisfied. A single frequency gives 

exponential convergence of two adaptive gains to their corresponding true values.[2]. 

However, for nonlinear systems this rule no longer holds and generic PE conditions 

become hard to verify numerically. Furthermore, in most real cases, the exogenous 

input is not known a-priori and case dependent which makes online assessment of the 

PE condition almost impossible. Additionally, exciting the states persistently is not 

desirable in real applications because of obvious drawbacks such as limited fuel or 

unnecessary stress loads. On the contrary, the WCC could be met within a sufficient 

time range without any additional excitation effort. 

4.4.1 Concurrent Learning Weight Update Law 

 

The concurrent weight update algorithm is based on the idea of adding a data history 

based augmentation term on the online MRAC weight update law. The selection of 

data to record is handled in the following sections and in this section it is assumed 

that the history stack meets the related rank condition. For  1,2, ,j p  which 

denotes index of a recorded data point j  and  j  represents the regressor vector 

evaluated at that point, concurrent learning gradient descent algorithm is expressed 

as the following 

           
1

p
T

c x j j

j

W t t e t PB t  


        (4.30) 

where 0   represents a positive learning rate matrix and 

     T
j j jt W      is the difference between the adaptive control input and 

the modelling uncertainty. For single input case, the modelling error ( )j  is 

expressed as 
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    
1

T T
j j j jB B B x Ax Bu


        (4.31) 

In equation (4.31), , , ,j jA B u x  are known and jx  is measured or estimated 

depending on the installed hardware. In this study, it is assumed that measurement 

for jx  is available. The Lyapunov function candidate selection with related stability 

and convergence proofs for tracking error and parameter error convergence are 

covered in detail in [39]. It is also stated that adding or removing data does not affect 

the Lyapunov candidate and tracking error dynamics 0e   and the weight error 

dynamics     * 0W t W t W    are guaranteed as long as the WCC is satisfied. 

4.4.2 Data Selection Algorithm for the History Stack 

 

In the previous sections, it is stated that concurrent learning algorithm ensures weight 

convergence if the history stack has as many linearly independent elements as the 

basis of the uncertainty. Hence, the history stack should be filled with carefully 

selected data to take the spectral features of the stack under control. To meet the rank 

condition, an algorithm must be employed to prevent the logging of useless data and 

to record only the data sufficiently different from the last recorded point. If the 

history stack could be widen infinitely, there would be no need for implementation of 

such algorithm, however real applications are restricted by hardware capacity 

limitations. There are several methods mentioned in the literature for elimination of 

waste data and quantifying the useful points. One of them is cyclic data history 

algorithm, which records every sufficiently different data until the stack is full and 

overwrites the oldest data when an upcoming data is labelled as useful after the stack 

is full. This method is proven to work effectively in some cases [28], [39] but in 

general, there is no guarantee of satisfying the rank condition with cyclic stack. 

The other method is singular value maximizing (SVM) algorithm. The SVM 

algorithm is based on the fact that the rate of convergence depends on the minimum 
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eigenvalue min  of the symmetric matrix 
1

p
T

j j

j

     which has a detailed proof 

in [28]. Depending on that, the data selection criterion is linked to maximizing the 

minimum eigenvalue min  of the history stack 1[ , , ]k PZ     at any k
th

 time step. 

In the above expressions p  denote the subscription of the last stored point. j  

stands for the related history stack column that is recorded at the j
th

 time step where 

jZ  denotes the entire history stack at the same time instant. The maximum stack 

span is denoted by p  which is the maximum allowable value of p and for the 

convergence of weights p m  must be satisfied where m  is the rank of the 

uncertainty basis.  

The SVM algorithm adds any sufficiently different point to the stack until the stack 

is full. Once the stack is full, the algorithm overwrites only if the upcoming data 

increases the minimum eigenvalue of the symmetric matrix   (and resultantly kZ ) 

when it is replaced with one of the existing points. In order to assure whether the 

upcoming data is sufficiently different from the existing data, the following norm 

condition is checked 
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  (4.32) 

where   is a case dependent constant. SVM algorithm is employed whenever this 

norm condition is met. The SVM algorithm is given as a flowchart below. 
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Figure 4.4-1 Singular Value Maximizing Algorithm Flow Chart 

The concurrent learning algorithm is tested for structured and unstructured 

uncertainty with singular value maximizing data recording strategy. The same linear 

case that is analyzed in the previous sections is generated, roll angle and roll rate 

responses are given in Figure 4.4-2.  

  

Figure 4.4-2 Linear Simulation Roll Angle, Roll Rate and Angle of Attack 

Responses of Concurrent Learning MRAC 
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Despite the drastic angle of attack profile, plant is able to track the reference model. 

The initial roll angle is set to 10° and the roll autopilot tries to hold the roll angle and 

the roll rate at 0 during the whole flight. The disturbance induced by α is shown 

below with the corresponding adaptive control input. Adaptive controller is able to 

produce the exact necessary control input within the first 2 seconds and the 

disturbance is cancelled uniformly. 

 

Figure 4.4-3 Structured Uncertainty and Adaptive Control Input Histories of 

Concurrent Learning MRAC 

 

The main benefit of the learning algorithm manifests itself with weight history which 

is given in Figure 4.4-4. The weights of the Chebyshev polynomial basis function 

converge to their true values. Concurrent adaptive controller outperforms the 

classical MRAC in terms of identifying the disturbance. In classical MRAC 

applications there is no guarantee for weight convergence without requiring PE 

conditions, but concurrent learning algorithm is able to catch enough valuable 

information about the dynamics of the disturbance and learns eventually. The 

learning is completed in around 15s which is relatively high and this time could be 

shortened with a short maneuver in roll channel since this will provide more 

information to the algorithm in terms of the error between the plant model and the 

reference model.  
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Figure 4.4-4 Adaptive Weight Histories of Concurrent Learning MRAC 

 

As seen in Figure 4.4-5, the history stack is filled in the very beginning of the 

simulation and the algorithm maximizes the minimum singular value of the history 

stack from thereon which is shown in Figure 4.4-6. The major singular value increase 

is seen where the sharp angle of attack changes occurs which is due to the angle of 

attack dependent uncertainty parameterization. 

 

Figure 4.4-5 Rank of the History Stack 

 

The main issue about the singular value maximizing process is the order of the 

minimum singular value which is highly dependent on the normalization of the 

Chebyshev variable mostly. The Chebyshev variable should be normalized in its 
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expected interval which is chosen as ±15° angle of attack in this case. If the 

normalization interval is chosen much wider than the expected operational envelope, 

the expected uncertainty domain could not be covered entirely since the upcoming 

information belongs to a small portion of the normalized domain. This situation 

causes the order of the singular value to be very low so that it becomes impossible to 

capture the increase with commonly used hardware in missiles.  

 

Figure 4.4-6 Minimum Singular Value of the History Stack 

 

During this study, it is also realized that increasing stack size or decreasing step size 

help to increase the order of singular value. It stems from the fact that missiles and 

munitions have rapidly changing dynamics with short transient periods and the 

learning algorithm reads the changes in the system to enhance the controller 

performance. Hence, a transient region dominated process is more desired than a 

steady state region dominated process for the sake of learning. But in missiles, the 

information gathering part of the flight, which is the transient part mostly, does not 

last long. Decreasing step size could lead to an increase in singular value since it 

means during the same limited transient region, learning algorithm is able to iterate 

more and learns faster. In a similar way, increasing stack size allows storing more 

information; hence increases the minimum singular value of the history stack and 

expedites learning. However increasing stack size beyond to a limit makes 

decreasing step size inevitable to increase precision and also delays the contribution 
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of the concurrent learning since the adaptive control input is generated via online 

data only until the stacks are full.  

It is concluded that the despite the fact that MRAC and concurrent learning aided 

MRAC could be tuned to work well under nominal conditions for linear simulations. 

Concurrent learning aided MRAC distinguishes with elimination of PE condition for 

parameter convergence whereas the absence of PE condition leads to parameter drifts 

and bursting phenomena in classical MRAC scheme [53]. There are several methods 

in the literature to prevent bursting and parameter drift such as  and e  

modifications [2].They basically increase the damping on the weight update law 

which could restrict their effectiveness for particular cases. Increased damping could 

prevent bursting but it also makes the convergence harder and sometimes obstructs it 

especially if the weights do not scatter in the near neighborhood of 0 which is the 

usual initial condition setting for adaptive weights. The nonlinear comparison of the 

introduced control schemes take place in the next chapter and the discussion is 

elevated to a point further. 

4.4.3 Effect of the Span of Basis and History Stack Size on Learning 

 

The learning performance of the algorithm depends on few parameters besides the 

idea of merging the past and the current data. These parameters are size of the history 

stack, span of the basis function, learning rate and the eligibility condition for data 

recording. The structure of the basis and consequently the number of terms in the 

basis are strictly definite for structured uncertainties. But, for unstructured certainties 

the uncertainty is parameterized with a chosen basis function and if there is no clue 

about the complexity of the disturbance, the necessary number of terms is decided 

iteratively with intuition. In this study Chebyshev polynomial expansions are chosen 

as basis and the uncertainty is expressed with the first 6 terms of the Chebyshev 

polynomial expansion. The unsufficient basis span could prevent learning whereas 

the excessive basis span could lead to overparameterization which manifests itself 

with oscillating weights. Hence the number of terms in a basis i.e. the span of the 
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basis should be carefully decided. The effects of history stack size and the basis span 

on learning is given in the following figure. 

Span of the Basis: 3 

History Stack Size: 3 

Span of the Basis: 6 

History Stack Size: 6 

  

Span of the Basis: 6 

History Stack Size: 12 

 

Figure 4.4-7 Effects of Basis Span and History Stack Size on Learning 

 

The same scenario is repeated with different sizes of basis and different stack sizes in 

the linear simulation. The uncertainty in the linear simulation is expected to be a 1
st
 

degree polynomial, since it is added to the system using the linear relation between 

the rolling moment coefficient and the angle of attack. When the basis is restricted 

with 3 terms and an equal size of history stack is used, the algorithm learns the 

uncertainty at t =2s. However, when the basis is generated with the first the 6 terms 

of the Chebyshev polynomial and an equal sized stack is employed, the algorithm 

learns the disturbance at t=15s. This is occurred because of the unnecessarily 

crowded basis function. But the bottom figure shows that if the stack size is 
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increased to the beyond of the basis span, the weights converge at t=8s. By taking 

into consideration the above findings, it could be concluded that the number of terms 

in the basis should be selected wisely. Also as the stack size increases, the algorithm 

tends to learn faster, but the stack should be enlarged more rapidly as the basis span 

increases for faster convergence.  
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CHAPTER 5  

 

 

SIMULATION RESULTS 

 

 

 

In the previous chapters, the induced roll moment and related problems are explained 

in detail; the possible control solutions are discussed and applied to the current 

problem in linear domain. In this chapter, the controllers are tested in a more realistic 

nonlinear model. To assess the performance of the controllers, a 6 degree of freedom 

nonlinear flight simulation is built. The performance tests are generally set to make 

the missile do compelling maneuvers which force the linear limits of the 

aerodynamic database to expose the dynamic couplings. The missile is forced to 

undergo high angle of attack necessary maneuvers that excite pitch-roll couplings 

and the roll controllers are assessed in terms of their capability to hold the missile 

stable or to achieve the commanded roll angles. In the simulation, the sensors are 

assumed to be perfect and the control actuation system is a second order 

servomechanism which is able to execute the autopilot outputs in this study without 

being saturated. 

5.1 Roll Control of the Guided Munition with Baseline Roll Autopilot during 

Compelling Longitudinal Maneuvers 

 

5.1.1 Roll Control with Cascaded Autopilot 

In this section, the pitch-roll coupling that is partially modelled in the linear domain 

in previous chapter is reproduced in nonlinear simulation. A large and small 

longitudinal acceleration command series are sent to the pitch autopilot to trigger 

angle of attack dependent induced roll motion. In the lateral plane, yaw channel is 

held stable with 0 m/s
2
 acceleration command. The commanded roll angle and the 
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response of the roll autopilots are shown below for the cascaded roll autopilot and its 

feedforward augmentation. 

The scenarios are composed of ±1g (case-1) and ±0.25g (case-2) longitudinal 

repetitive acceleration commands with 0 g lateral acceleration command while 

keeping the roll angle at zero except the ±10° φ commands at 5s≤t≤9s. The munition 

is released from 5000 m with an initial velocity 0.85 M. Flight path of the munition, 

Mach and θ profiles are given as follows. 

 

Figure 5.1-1 Flight Path of the Munition 

 

 

Figure 5.1-2 Elevation Angle Profile of the Munition 
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Figure 5.1-3 Mach Profile of the Munition 

 

The control is begun as soon as the munition is separated from the host vehicle. The 

aerodynamic interaction between the host vehicle and the munition during the 

separation is assumed to be kept at minimum and is not modelled in the simulation. 

The longitudinal and lateral acceleration responses are shown in Figure 5.1-4 and 

Figure 5.1-5. 

 

Figure 5.1-4 Cascaded A/P Longitudinal Acceleration Responses 
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Figure 5.1-5 Cascaded A/P Lateral Acceleration Responses for Case-1 and Case-2 

 

The longitudinal acceleration autopilot is able to track the assigned commands and 

the roll stabilization problem which violates the decoupled axes assumption is not 

apparent on the pitch autopilot responses. But, the lateral acceleration autopilot is 

disturbed during simultaneous commands on pitch and roll channels. The angle of 

attack and side slip angle histories are shown in Figure 5.1-6 and Figure 5.1-7. 

 

Figure 5.1-6 Cascaded A/P Angle of Attack Histories for Case-1 and Case-2 

 

The angle of attack varies between ± 13° and ± 4° at most for different scenarios and 

amplitude is in a descending trend which is a result of increasing velocity, 
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descending altitude and consequently increasing aerodynamic effectiveness. The 

munition is able to achieve the commanded acceleration with less control surface 

deflection and less angle of attack through the end of the flight. The side slip angle is 

disturbed most during the synchronized roll-pitch commands. The pitch acceleration 

commands are not dominant on yaw channel which is obvious from the significantly 

decreasing disturbance amplitude with 0° φ command after t=9s.  

 

Figure 5.1-7 Cascaded A/P Side Slip Angle Histories for Case-1 and Case-2 

The body roll rate and roll angle responses are shown in Figure 5.1-9 and Figure 

5.1-8. 

 

Figure 5.1-8 Cascaded A/P Roll Angle Responses for Case-1 and Case-2 
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The cascaded roll autopilot could not hold the roll angle at near neighborhood of 0° 

and likewise could not track the ±10° roll angle command with cascaded roll 

autopilot. The feedforward augmented cascaded roll autopilot is proven to function 

in linear domain but the linearity of the angle of attack and the body axis roll rate 

relation is violated with high angles of attack. The feedforward controller provides 

additional control authority which is the source of the difference between the roll 

angle responses in Figure 5.1-8; but in the nonlinear region, which is nearly the 

region where 5  , the amount of additional necessary control is more than the 

already provided amount. It is seen in both body axis roll rate and roll angle 

responses that, the linear α-p relation becomes valid with the decrease of the angle of 

attack which is through the end of the simulation for the case-1. Hence for the first 

case, the induced roll rate and roll angle are cancelled more effectively in the last 

parts. 

 

Figure 5.1-9 Cascaded A/P Roll Rate Responses for Case-1 and Case-2 

 

The operation envelope of the guided munition involves widely varying angles of 

attack and side slip angles due to their limited aerodynamic effectiveness because of 

the absence of a thrust source. Despite the fact that the feedforward control 

augmented baseline scheme is effective in the near neighborhood of the linear region, 
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the poor performance of it during the compelling longitudinal maneuvers makes this 

scheme unsufficient for the handled problem. 

5.1.2 Roll Control with MRC 

In this section, the model reference controller is used in the same scenario. The 

autopilot is expected to enhance the roll control performance. The pitch acceleration 

command is a square wave with 1g  amplitude to excite the angle of attack induced 

disturbances on the system. The roll angle and the roll rate responses are given 

below. 

 

Figure 5.1-10 MRC Roll Angle Responses 

 

Figure 5.1-11 MRC Roll Rate Responses 
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The nonlinear and linear responses of MRC scheme are very similar, the disturbance 

induced by angle of attack is taken under control with model reference control 

scheme but it is seen it could not be cancelled out completely. There is a still a 

remaining bias on the roll angle and roll rate responses which brings forth the need 

for the adaptive augmentation. In the following case, the induced roll motion is tried 

to be controlled with a classical MRAC scheme and an MRAC based concurrent 

learning controller algorithm. 

5.2 Adaptive Roll Control of the Guided Munition during Compelling 

Longitudinal Maneuvers 

 

In this section, the scenario defined in the previous section is handled with adaptive 

controllers in the roll channel.  

5.2.1 Roll Control with Classical MRAC 

 

The roll angle and the roll rate histories are shown in the following figures. When the 

results are compared, it is realized that MRAC works better against the angle of 

attack induced disturbances than the MRC. Body roll angle is driven to 0 from an 

initial of 10° and the system is able to track the reference model. The roll rate 

tracking performance is also better than the MRC case, but it is apparent that the 

main improvement is originated from the upgraded baseline control scheme. 

Replacing the cascaded controller with model reference controller contributes most 

but could not remove the disturbance entirely where the adaptive scheme cancels out 

the remaining roll angle oscillations. 
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Figure 5.2-1 MRAC Roll Angle Responses 

 

 

Figure 5.2-2 MRAC Roll Rate Responses 

 

The weight history of the MRAC shows that either excited or not, the weights are not 

in a converging trend which proves that the current application of classical MRAC 

scheme is not able to learn the disturbance. It rather produces the necessary control 

input at every time instant without reaching the true combination of the weights. 
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Figure 5.2-3 MRAC Adaptive Weight Histories 

 

5.2.2 Roll Control with Concurrent Learning Aided MRAC 

 

The roll angle and the roll rate histories are shown in the following figures. 

 

Figure 5.2-4 Concurrent Learning MRAC Roll Angle Responses 

 

In Figure 5.2-4, the roll angle responses of the reference model and the MRAC based 

concurrent learning adaptive roll autopilot are shown. The reference model is chosen 

as a second degree transfer function with 5.5 rad/s bandwidth and 0.7 damping ratio. 

It is seen that the plant is able to track the roll angle response of the reference model.  
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Figure 5.2-5 Concurrent Learning MRAC Roll Rate Responses 

 

Similarly, the roll rate responses of the reference model and the plant are similar. The 

angle of attack is varying between -13° and 13° and the munition is subjected to 26° α 

variation at some parts of the simulation. This rapid change is apparent in both roll 

angle and roll rate responses and shown in the zoomed axes. However, it is shown 

that the concurrent learning adaptive autopilot is able to suppress the dramatic 

disturbances due to the high angle of attack profile of the simulation 

 

Figure 5.2-6 Aileron Command and Response 
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The control input command of the roll autopilot and the response of the actuator is 

given in Figure 5.2-6. It is seen that the actuator is able to track the autopilot 

commands without being saturated. The concurrent learning algorithm uses the past 

and current data to generate the adaptive control input. The valuable past data is 

stocked in the history stack by means of singular value maximizing algorithm. This 

algorithm ensures that the upcoming stack candidate data is useful and adequately 

different from the existing ones that already stocked in the memory. To check the 

validity of this condition, the minimum singular value of the history stack is 

inspected in Figure 5.2-7. The minimum singular value is in an ascending trend 

which proves that the algorithm works as expected. The minimum singular value is 

in a scale of 1e
-12

 which requires very sensitive hardware devices to make a decision 

algorithm depending on that variable in real applications. 

 

Figure 5.2-7 Concurrent Learning MRAC Minimum Singular Value of the History 

Stack 

 

A history stack that is employed to record the useful past data could use many 

different strategies. The stack could be generated unbounded theoretically to simplify 

the learning algorithm by excluding the information adequacy assessment. But this 

application needs an infinite memory or a very high data storing capacity in real case 

and brings about heavy computational workload. To prevent the computational wind 

up, a bounded cyclic data recording algorithm could be preferred which overwrites 
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the upcoming data onto the existing data when the stack is full even if the upcoming 

information is less valuable in terms of identification of the disturbance. Nonetheless, 

this algorithm does not contribute enough to the learning in every control application 

such as our case. Depending on them, a minimum singular value maximizing history 

stack algorithm is applied to the studied adaptive control scheme. The stack is 

arranged to record 10 sufficiently different data. The sufficiently different data 

means that the stack is full rank once the stack is full. The rank condition is shown in 

Figure 5.2-8 

 

Figure 5.2-8 Concurrent Learning MRAC Rank of the History Stack 

 

The history stack is full rank after t=2.3s which is the very beginning of the 

simulation and the existing information is updated when a more useful data is caught. 

The learning ability of a parameter estimation scheme is assessed by means of 

convergence of the adaptive weights. The weight history is given in Figure 5.2-9. 

When the disturbance is introduced to the system at t=2s, the weights tend towards 

their true values and after the 9
th

 second, the weights converge and remain stable in a 

small uncertainty band. Since the uncertainty is unstructured, the true values of the 

weights are not known but the learning performance could be interpreted with 

convergence.  
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Figure 5.2-9 Concurrent Learning MRAC Adaptive Controller Weights 

 

The alpha dependent uncertainty is obtained as follows in linear and nonlinear 

simulations. 

Nonlinear Model Uncertainty 

  0 1 3 4 5 60.0009 0.0457 0.0015 0.0036 0.0009 0.0016NL T T T T T T         (5.1) 

Linear Model Uncertainty 

   10.05L T     (5.2) 
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  (5.3) 

The alpha dependent uncertainty functions with respect to the angle of attack are 

shown below. It is obvious that when the angle of attack is small, both of the two 

functions give similar results, nevertheless as the angle of attack increases, the 
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nonlinear simulation based uncertainty function differs from the other one. This 

clarifies that both uncertainty functions perform well in linear region whereas the 

disturbance for the whole angle of attack envelope could be identified truly only in 

the nonlinear simulation. 

 

Figure 5.2-10 The Uncertainty Function Learned from Nonlinear and Linear 

Simulations. 

 

5.2.3 Comparison of the State Dependent Uncertainty Parametrization with 

the Angle of Attack Based Uncertainty Parameterization 

 

In this section, the effect of the uncertainty parameterization is handled. The square 

wave acceleration command is repeated in the longitudinal channel and the roll 

channel reference is kept the same. The learning rates, sampling rate, stack size and 

basis span are preserved whereas the uncertainty parameterization is changed. The 

uncertainty is assumed to be a Chebyshev polynomials based function of the states 

instead of angle of attack.  
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 Basis function generation using Chebyshev polynomial expansion for single-

variable functions 
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 Basis function generation using Chebyshev polynomial expansion for multi-

variable functions 
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The roll angle and the roll rate responses are given below. 

 

Figure 5.2-11 Roll Angle Responses with the State Dependent Uncertainty 

Parameterization 
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Figure 5.2-12 Roll Rate Responses with the State Dependent Uncertainty 

Parameterization 

 

The roll rate, roll angle responses and the weight histories show that the uncertainty 

could not be removed and could not be learned completely with state dependent 

uncertainty parameterization if the stack size and the basis span are kept constant. 

 

Figure 5.2-13 Weight Histories with State Dependent Uncertainty Parameterization 

 

In order to remove the uncertainty with state dependent uncertainty parameterization, 

the basis should be enriched which is less effective in terms of computational effort. 

Also an increase in basis span usually requires higher sampling rates, which is less 

desired. In the light of these facts it is concluded that if the dominant source of the 
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uncertainty is known, the uncertainty could be expressed more effectively using a 

parameter that is directly related to this source as the uncertainty variable. 

5.2.4 Verification of the Uncertainty Model 

 

The difference between the uncertainty functions in linear and nonlinear simulations 

stems from the nonlinearity that is not apparent on the linear database. In order to 

prove this, the aerodynamic database of the nonlinear simulation is linearized where 

the angle of attack dependent uncertainty is added to the roll dynamics through the 

static rolling moment coefficient CL. 
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Figure 5.2-14 Verification of the Uncertainty Model 
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The roll damping CLp is a function of Mach number and is independent of angle of 

attack. The nonlinear CL is the rolling moment coefficient belongs to the closed loop 

run and the flight parameters of that run are recorded and fed to the open loop 

aerodynamic derivative calculation. The uncertainty is estimated with the recorded 

angle of attack history. The flowchart of the verification process is given in the above 

figure. 

Modified linear, linear and nonlinear rolling moment coefficients are given below.  

 

Figure 5.2-15 Rolling Moment Coefficient Histories with Linear, Nonlinear and 

Modified Linear Databases 

 

The linear CL shows a similar behavior to the angle of attack history because of the 

produced aileron commands against the uncertainty in the closed loop. But since the 

uncertainty in not included in the linear CL, it does not give similar results to the 

nonlinear CL. However, the modified linear CL is very similar to the nonlinear Cl. 

The small difference between them stems from the linear assumptions but the 

modified linear and the nonlinear coefficients are close enough to comment that the 

uncertainty function is a sufficiently good model of the actual uncertainty. 

It is not meaningful to compare closed loop responses since the controller is adaptive 

against the alpha dependent uncertainty and diminishes it even the uncertainty model 
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is different than the original uncertainty but it is presented to give the reader an idea 

about the similarities in the transient parts. 

 

Figure 5.2-16 Roll Angle Responses with Modified Linear and Nonlinear Databases 

 

It is realized that the results are rather similar with the modified linear and the 

nonlinear databases except that the peaks at the zero command parts of the nonlinear 

database aided simulation are not obvious in the modified linear database aided 

simulation. Those peaks occur simultaneously with the pitch acceleration commands 

but since the obtained nonlinearity level is limited, the peaks are not apparent on the 

modified linear database aided responses. 
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CHAPTER 6  

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this thesis, adaptive control solutions for the roll channel control of guided 

munitions have been presented. Guided munitions are enhanced versions of 

traditional iron bombs with GPS, INS and seeker integrations. The additional 

components enhance the target hit capability of the munition significantly but they 

bring along some aerodynamic challenges as well. The cross-coupled interactions are 

triggered with the sharp maneuvers and the stabilization of the roll channel is 

aggravated consequently. The decoupled aerodynamics assumption which is put 

forward for linear controller design holds no more and a significant amount of roll 

angle is induced with the presence of angle of attack on the munition. This study 

briefly focuses on the stabilization of roll channel under dominant roll-pitch 

couplings by means of augmentations on the roll autopilot. 

In the beginning of the study, it was proved that using cascaded autopilot structure is 

an ineffective control strategy to overcome dominant pitch-roll couplings. The next 

approach was to add an aerodynamic derivative term which defines the roll moment 

contribution of the angle of attack and to augment the cascaded roll autopilot with a 

feedforward controller. The problem with this scheme was stated with the fact that 

the feedforward control scheme is only applicable in a small region where the linear 

relation between the roll rate and the angle of attack is valid. Then a the fixed-gain 

model reference controller scheme was applied but the perfect plant assumption of 

the fixed gain MRC applications made the controller impotent against the parametric 

uncertainties on the plant which is inevitable in real applications. Hence, to improve 

the robustness of MRC, adaptive augmentations were proposed. Stated by the theory, 

the interest of MRAC is the asymptotic command tracking and it is achieved despite 
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the system uncertainties. The controllers may yield transient oscillations due to 

higher adaption rates and weights may not resemble to the actual values. A necessary 

condition for the weight convergence is the persistency of excitation which brings 

about hard to achieve restrictions on reference input. Besides the weight 

convergency, a non-PE reference input may lead to instabilities such as bursting 

phenomenon and parameter drift. The modifications that prevent instabilities driven 

by non-PE condition guarantee boundedness of the adaptive weights but they also 

bring along redundant stiffness on the weight update law. The MRAC scheme 

enhances the performance of the fixed gain MRC in terms of eliminating the angle of 

attack dependent disturbance; but in order to relax the PE condition, concurrent 

learning MRAC scheme was introduced. Concurrent learning algorithm uses the past 

and present data together to adapt the control law weights. If the recorded data is rich 

enough in terms of expressing the disturbance, the weights converge to their true 

values without the necessity of PE condition. Concurrent learning MRAC showed 

similar performance to the MRAC in terms of cancelling the disturbance and also 

learns the uncertainty with Chebyshev polynomials basis function. In this thesis, it 

was shown that using Chebyshev polynomial expansion is a good strategy to identify 

the uncertainty which is claimed to be the best approximation method in literature 

because of its orthogonality property.  

The main contribution of this research is the state independent uncertainty 

parameterization. It was shown that uncertainty parameterization independent of the 

system states could be a better approach depending on the case. In the studied case, 

angle of attack dependent uncertainty parameterization provides faster learning with 

a basis with less terms. Despite the fact that any uncertainty that is apparent on the 

states as disturbance could be modelled through the system states; it should also be 

possible to include the uncertainty through its directly related variable if there is one. 

Even though the structure of the uncertainty is unknown, usually the phenomenon 

inducing the uncertainty is conspicuous but it might not be expressed well with 

system states as happened so in this study. The idea offered in this study was to relax 

the assumption of the state dependent uncertainty. Defining the uncertainty with its’ 
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conducive parameter contributed especially in identifying the unstructured 

uncertainties. 

Concurrent learning MRAC scheme also gave an intuition that it could show 

superiorities over the commonly used system identification techniques for missiles. 

The system ID studies are generally focused on the uncertainties on the linear 

aerodynamic derivatives. However with concurrent learning MRAC, it could be 

possible to identify the nonlinear uncertainties which is more desired. The 

verification of the learned uncertainty shows that the nonlinearity is mainly 

embedded in the aerodynamic database whereas the contribution of the kinematic 

couplings to the nonlinearity is fewer. The detailed studies on concurrent learning 

aided system identification techniques are left as a follow through.  

To sum up, in the first chapter, the problem is defined and the related studies that 

take place in the literature are summarized. In the second chapter the munition 

dynamics and kinematics are studied for the integrity of the content. Next, the 

baseline control schemes are discussed with their advantages and insufficiencies 

which constitute a basis for the adaptive control chapter. In the fourth chapter, the 

adaptive augmentations are handled in detail. Classic MRAC law and its elevation 

with a concurrent learning algorithm are explained and their linear domain 

applications are compared. In the last chapter, the aforementioned control solutions 

are integrated to the nonlinear simulation. To assess the performance of the 

controllers, a 6 degree of freedom nonlinear flight simulation is built. The 

performance tests are generally set to make the missile do compelling maneuvers 

which force the linear limits of the aerodynamic database to expose the dynamic 

couplings. The missile is forced to undergo high angle of attack necessary maneuvers 

that excite pitch-roll couplings and the roll controllers are assessed in terms of their 

capability to hold the missile stable or to achieve the commanded roll angles. In the 

end, the MRAC based concurrent learning adaptive autopilot shown important 

superiorities over the standard MRAC algorithm. The disturbance is expressed by 

using angle of attack as state and Chebyshev polynomials are used as basis function. 



78 

The roll stabilization is ensured and the weights converge to their true values which 

show that the disturbance is learned in a small uncertainty band. The coupling 

originated disturbance is learned via the Concurrent Learning MRAC scheme and 

this nonlinearity is added to the linear database which gives similar results to the 

nonlinear database. For the future studies, it is recommended to investigate the pitch-

roll couplings during compelling yaw maneuvers. It is known that the yaw motion 

contributes to the roll coupling which is not covered considering the scope of this 

thesis; the related research is rather left as a follow-through. 
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APPENDIX A 

 

 

BASELINE AUTOPILOT DESIGN 

 

 

 

In this section, linearized dynamics of the missile are analyzed and the baseline 

autopilots are built based on the constructed linear models for the integrity of the 

content. 

A.1 Linear Model Construction 

 

Linear models provide decoupled sets of equations which simplify the autopilot 

design process and make it possible to spare the control of orthogonal motions. The 

equations of motion are linearized around 0    , 0p q r s    and 

0e r a      trim condition. The roll dynamics are assumed to be much faster 

than pitch and yaw dynamics for linearization and the longitudinal body velocity u  is 

not assumed to be constant, in contrast to the general application. The gravitational 

forces are neglected considering that they are small compared to the aerodynamic 

forces. Small angle assumptions are made whenever applicable. Based on these 

assumptions, linear equations of motion are simplified as following 
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 Pitch Dynamics 
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 Yaw Dynamics 
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 Roll Dynamics 
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In equations (A.1)-(A.6) the dimensional aerodynamic derivatives are defined as 

given below for longitudinal, lateral and directional dynamics.  

 Longitudinal Plane Aerodynamic Derivatives 
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 Lateral Plane Aerodynamic Derivatives 
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 Directional Plane Aerodynamic Derivatives 
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A.2 Autopilot Design 

 

There are many linear and nonlinear control applications for guided munitions and 

many of them are studied throughout the constitution of this thesis. In literature 

survey, outstanding studies are also mentioned. Advanced techniques are occupied 

whenever necessary but it is always wisely to try to solve the problem with the 

simplest, first. Hence, the control of guided munition is aimed to be handled via 

linear gain-scheduled autopilots. Since the linear autopilot is failed to overcome 

dynamic couplings, gain scheduling is disabled and current structure serves as a 

baseline controller for an adaptive adaptation. 
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The baseline control of the missile is handled via the control of acceleration in pitch 

and yaw axes. Roll autopilot serves as a regulator to stabilize the missile at 0    

condition.  

A.2.1  Acceleration Autopilot Design for Longitudinal and Lateral Planes 

 

The acceleration autopilot is a full state feedback controller and aims to locate the 

closed loop poles of the system in order to obtain the desired transient performance. 

The controller is designed considering the linear aerodynamic database and control 

actuation system limits. The control scheme of the acceleration autopilot is given in 

Figure A.2-1 
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Figure A.2-1 Control scheme for longitudinal acceleration autopilot 

 

The yaw axes acceleration autopilot is in the same form with the pitch axes 

acceleration autopilot with appropriate state feedbacks. The plant is a 4
th

 system 

which makes it hard to arrange how to intervene open loop poles in an artful way. 

Hence, the dominant poles of the closed loop system are assigned considering the 
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desired transient response of a similar 2
nd

 order system. The recessive poles are kept 

at the same location in the s-plane to save the control authority mostly for the 

dominant pole assignment and roll stabilization. 

Transient response characteristics are settled with the following definitions 

 Rise Time: In this thesis, rise time is defined as time required for the response 

to rise from 10% to 90%. 
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where d is defined as 
21d n      

 

 Maximum Percent Overshoot: The maximum overshoot is the maximum peak 

value of the response curve measured from the unity. 
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The desired response is specified as 0.5rt s  and 7%pM   then, the corresponding 

  and n  values are obtained which provides the required performance using 

equations (3.7) and (3.8). The 2
nd

 order system which is used to locate the dominant 

poles is formed using (3.9). 
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A sample pole-zero map of the pole assignment with the explained method is shown 

in Figure A.2-2. 
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Figure A.2-2 The pole-zero map for acceleration autopilot 

 

In Figure A.2-2, the gray markers represent the open loop poles of the system and the 

black markers represent the closed-loop system. In the stable part of the s-domain, as 

the poles are moved away from the imaginary axis, the response become faster; as 

the poles are moved away from the real axis, oscillations of the response increase as 

well as the system becomes faster. 

As can be seen in the given pole-zero map, the closed-loop poles are placed such that 

the response become faster with an intended overshoot. The integral controller which 

is included to eliminate the steady state error implies an additional pole in the closed-

loop. This additional pole enhances the degree of freedom of the control and eases to 

shape the root locus in a desired way. 
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