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1ABSTRACT 

 

 

 

INVESTIGATION OF THE BRAIN CONNECTIVITY DISTURBANCE IN 

DYSLEXIC PATIENTS 

 

 

Rasoulzadeh, Vesal 

M.Sc., Department of Biomedical Engineering 

Supervisor: Assoc. Prof. Dr. Ilkay Ulusoy 

Co-Supervisor: Prof. Dr. Canan Kalaycıoğlu 

 

 

February 2016, 99 pages 

 

 

 

Dyslexia is a learning disability that makes reading a challenge, despite normal level 

of intelligence and receiving adequate instructions. The core deficit in dyslexia is 

attributed to phonological processing. It’s been suggested that dyslexia is a 

disconnection syndrome. In this sense, the major sites of phonological processing in 

the brain are intact and the interconnection between these areas are disturbed. In this 

study, the disturbance in dyslectic brains based on effective connectivity models in 

“pre-reading” and “while reading” stages is investigated, which explains the causal 

interactions between different regions of the brain. Dynamic Bayesian Networks were 

constructed for the EEG data in theta, alpha and beta frequency bands to model the 

effective connectivity patterns of the brain in dyslectic and normal subjects in these 

bands. Analysis was performed based on the data obtained from two independent 

experiments, reading a word and a non-word by each subject. As the main objective 

of the thesis, dyslexic and normal children were classified based on the information 

obtained from the underlying effective connectivity models of their brains which 

reveal the abnormal patterns in the brain that may lead to detection and diagnosis of 

the condition. Dyslectic subjects were found to have a different effective connectivity 

patterns in “pre-reading” period, regardless of the reading task and theta frequency 
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band is reported to be the most informative one about the disturbance in the casual 

influence between two groups in this period. The classification rate of 86.21% were 

obtained based on “pre-reading” models. the classification rates of 86.21% in reading 

a word experiment and 81.03% in reading a non-word experiment were obtained in 

alpha band. Features used to classify two groups are the connectvity weights (obtained 

fron DBN models) that are significantly different between dyslectics and controls. The 

connection include the ones from both dorsal (which is more activated while reading 

a word) and ventral (which is more activated while reading a non-word) pathways. 

This indicates the distruption of them both in dyslectic brains. 

 

Keywords: Dyslexia, EEG, Effective Connectivcity, DBN. 
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3ÖZ 

 

 

 

DYSLEXIC HASTALARDA BEYİN BAĞLANTI BOZUKLUĞUNUN 

İNCELENMESİ 

 

 

Vesal, Rasoulzadeh 

Doktora, Fizik Bolümü 

Tez Yöneticisi: Doç. Dr. Ilkay Ulusoy                                                                 

Ortak Tez Yöneticisi: Prof. Dr. Canan Kalaycıoğlu                                                                   

 

 February 2016, 99 sayfa 

 

 

 

Disleksi, normal zeka seviyesi ve yeterli öğrenme düzeyine karşın okumayı zor hale 

getiren bir öğrenme bozukluğudur. Disleksideki temel bozukluk fonolojik işlemlerden 

kaynaklanmaktadır ve disleksinin bağlantısal bozukluktan kaynaklandığı öne 

sürülmektedir. Yani, fonolojik işlemlerin gerçekleştiği beyin bölgelerinin bağlantılı 

fakat arabağlantılarının bozulmuş olduğu söylenebilir. Bu çalışmada, disleksik 

beyinlerdeki bozukluk, beynin farklı bölgelerinin nedensel bağlantılarını 

açıklayan efektif bağlantısallık modellerindeki "ön-okuma" ve "okuma" aşamalarında 

incelenmektedir. EEG verilerindeki teta, alfa ve beta frekans bantları ile, bu bantlara 

göre normal ve disleksik beyinlerdeki efektif bağlantısallığı modellemek için Dinamik 

Bayesyen ağlar oluşturulmuştur. Analiz, kelime ve kelime olmayan sözcükleri 

okumadan oluşan, birbirinden bağımsız iki farklı deneyden toplanan verilerle 

gerçekleştirilmiştir. Tezin ana amacı olarak, disleksik ve normal çocuklarda beyindeki 

efektif bağlantısallık modellerinden elde edilen bilgilere dayanılarak sınıflandırma 

yapılmıştır. Bu sınıflandırma, bozukluğa neden olabilecek durumların tanı ve 

teşhisinde kullanılabilecek normal olmayan durumları ortaya çıkaracaktır. Okuma 

görevinin ve teta frekans bandının iki grup arasındaki nedensel etkilenmede bozukluk 

hakkında çok bilgi verdiği söylense de, "ön-okuma" sürecinde disleksik deneklerin 

daha farklı efektif bağlantısallığa sahip oldukları bulunmuştur. Sınıflandırma oranı 

"ön-okuma" modellerinde 86.21% olarak elde edilmiştir. Kelime  
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okuma deneyinde elde edilen 86.21% sınıflandırma oranı ile kelime olmayan sözcük 

okuma deneylerinde elde edilen 81.03% sınıflandırma oranı alfa bandından elde 

edilmiştir. İki grubu sınıflandırmada bağlantısallık ağırlıkları (Dinamik Bayesyan 

Ağları modellerinden elde edilmiştir) kullanılmıştır ve bu özellik disleksik ve kontrol 

grubunda büyük farklılık göstermektedir. Bağlantılar dorsal (daha çok kelime okuma 

sırasında etkinleşmektedir) ve ventral (daha çok kelime olmayan sözcük okuma 

sırasında etkinleşmektedir) yolları içermektedir. Bu, disleksik beyinlerde ikisinin de 

bozulduğunu göstermektedir. 

 

Anahtar kelimeler: Dislkesi, EEG, Efektif bağlantısallık, DBN. 
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CHAPTER 1 

 

 

1INTRODUCTION 

 

 

 

Dyslexia is a reading disability with neurobiological origin. It is characterized by a 

constant failure to gain fluent and accurate reading skills, despite the normal 

intellectual capacity and adequate education [1, 2, 3]. The act of reading, requires a 

well-established correspondence between phonemes (sounds) and graphemes 

(graphical symbols) in the brain. Dyslexia is the outcome of any failure in this 

correspondence [4]. Prevalence of dyslexia among school-aged children is reported to 

range from 5% to 17.5% which indicates the fairly broad range of population suffering 

from the condition [1, 5]. 

In 1996, based on the findings from PET and the neuropsychological studies, Paulesu, 

E., et al. suggested that dyslexia is a disconnection syndrome. Despite the intact 

function of major sites of phonological processing, findings suggest a connectivity 

problem between these areas [6]. Later on, in multiple studies neuroimaging 

techniques, like DTI and fMRI were used to provide evidence for disturbed 

connectivity patterns in dyslectic brains [7, 8, 9]. 

Three different forms of connectivity, namely, structural, functional and effective 

connectivity are introduced to study the interactions between different regions of the 

brain [10].  Effective connectivity, capable to extract directional influences between 

ROIs, is essential in the assessment of the functional integration of neuronal population 

and normal function of the brain [11]. There are multiple computational methods 

introduced in the literature to extract effective connectivity (e.g., SEM, GC, DBN) 

from neuroimaging data. Dynamic Bayesian network extract the dependencies in the 

system in a complete statistical sense and is capable of dealing with non-stationary and 

uncertain complex systems, which makes it suitable to model causal interactions in 

brain network. 
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Classification of normal subjects and the ones with neurological inabilities, may reveal 

the abnormal patterns in the brain that leads to detection and diagnosis of neurological 

brain disorders (e.g., dyslexia, epilepsy and attention-deficit hyperactivity disorder 

(ADHD)).  

In this thesis, dyslexic and normal children were classified based on the information 

obtained from the underlying effective connectivity models of their brains. Figure 1.1 

represents a schematic diagram of the employed algorithms. To our knowledge, this is 

the first attempt to study abnormalities in dyslexic subjects based on effective 

connectivity models derived from Dynamic Bayesian Networks (DBNs). 

 

 

Figure 1.1. Schematic diagram of the employed algorithms to classify dyslectics 

from normal subjects. 
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1.1 Outline of the Thesis 

 

The content of this thesis is organized as follows. In Chapter 2, preliminary knowledge 

that may help to a deeper understanding of the neurobiological basis of dyslexia is 

discussed. It starts with an explanation over the neurobiological models that have been 

suggested for reading in the brain. It continues by a review over the studies about 

dyslexia and the hypothesized impairments in dyslectic brains. Later in this chapter, 

effective connectivity studies of dyslexia are inspected. In Chapter 3, different 

computational methods for effective connectivity assessment are discussed and at the 

end, DBN is introduced as an efficient method for this case of study. In Chapter 4, 

initially, the data used in the analysis is explained. Later, the band-pass filtering and 

discretization methods are described, which are necessary prior to the application of 

DBN. Following, the DBMCMC MATLAB toolbox is explained, which is employed 

in this study to extract dynamic Bayesian models. At the end of the chapter, feature 

reduction and classification algorithms are explained. Chapter 5 contains the results 

and the discussion over the results. Ultimately, in Chapter 6, discussions in the Chapter 

5 are summed up and multiple suggestions are made for future studies, which may 

improve the obtained results. 
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CHAPTER 2 

 

 

2PRELIMINARIES 

 

 

 

Dyslexia, as the most common reading disorder, is said to have its core deficiency in 

phonological processing. Paulesu, E., et al. (1996) [6] and Horwitz et al. (1998) [12] 

suggested that dyslexia is a disconnection syndrome. This means that the inability of 

learning to read in dyslexics is about weak interaction between language components 

of the brain rather than possible deficits in related components. 

This section is a review over the studies that contributed to a better understanding of 

the neural basis of dyslexia. It starts by describing the models proposed for functional 

anatomy of reading. It is continued by a review over studies that discover abnormalities 

in dyslexia. Following, studies that investigate effective and functional connectivity of 

dyslectic brains are reviewed. Finally, studies that address classification of dyslectic 

and normal subjects based on neuroimaging data are reviewed. 

 

 

 

Figure 2.1. Anatomical components of 19-th century model [13]. 



6 

 

2.1 Reading Models in the Brain 

 

The early model of reading, the well-known 19-th century model, is constructed based 

on the results obtained from Dejerine’s studies and previously found Wernicke’s and 

Broca’s areas. In 1891, Dejerine associated the problem with alexia with agraphia – a 

case in which the patient is unable to read or write, to a lesion in the left angular gyrus 

and suggested that this is the site of word form area [14]. In 1892, he reported a left 

occipito-temporal lesion in a patient with pure alexia- a case when the patient is able 

to write or speak, but reveals problems in reading task [15]. In this case, knowledge of 

word forms seemed to be intact, as the patient was capable to write. Therefore, the 

problem was reported to be in a connection between the visual processing in occipital 

region and word form recognition in the angular gyrus. Figure 2.1 shows the 19th-

century neurological model of reading. Due to this model, reading a written word starts 

in occipital cortex and via the left angular gyrus, Wernicke’s area and Broca’s area, it 

ends in speech output. These areas were supposed to be respectively responsible for 

visual processing, visual word from images, auditory word from images, motor images 

and articulation. In 1885, Lichteim suggested that there exists an area, “concept 

centre”, that has connections to and from auditory and motor cortex, and is responsible 

for word comprehension [16]. Figure 2.2 represents the cognitive components of the 

model. 

 

Figure 2.2. Cognitive components of 19-th century model [13]. 
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There are multiple experiments that challenged the 19th-century model. Warrington 

and Shallice (1980) associated the reading problem of their cases to a word form 

system. Based on their explanation of word form system, there needs to be separate 

word form areas for reading and writing which is not explainable by the 19-th century 

model [17]. This model also fails to explain the “double dissociation” phenomenon 

between surface dyslexia and phonological dyslexia. Although phonological dyslectics 

are better at reading meaningful words than meaningless ones, pure dyslectics have 

semantics impairments. Thereafter, cognitive models start to consider more routes to 

meaning [18, 19]. 

                           

Figure 2.3. Three-route model of                             Figure 2.4. Triangular model of                                                              

              reading [13].                                                               Reading [13].                           

                                                                     

Later, popular models of reading were introduced, none of which has physiological 

validation. Orthography and phonology terms in the models indicate visual word form 

and auditory word form respectively, except the newly used terms involve both lexical 

and sub-lexical processes. The model illustrated in Figure 2.3 provides routes for 

reading unfamiliar non-words through sub-lexical path, familiar words in the absence 

of semantics through lexical path and semantic route which is on the basis of 

orthography rather than phonology. Second model illustrated in Figure 2.4 provides 

routes for reading meaningless non-words via orthography to phonology, meaningful 

words with irregular spellings via semantics and meaningful normal spelling words 

could be read through either routes. An interactive model of reading is represented in 



8 

 

Figure 2.5. According this model, visual information flow throughout orthographic-

phonologic-lexical-semantic networks. In this figure, unbroken lines indicate feed 

forward and dashed lines indicate backward connections [20]. 

 

 

Figure 2.5. Interactive model of reading [21]. 

 

Studies from neuroimaging techniques were also used to identify the subcomponents 

of the neural system required for reading and make suggestions about the role of 

different regions of the brain. In general, findings from neuroimaging studies were not 

found to be in conflict with the neurological model except that a highlighted activity 

of left mid-fusiform area was reported from neuroimaging studies during reading, 

which was not specified in neurological model. It was proposed that the left mid-

fusiform serves as the visual word form area and angular gyrus which was previously 

assumed to be visual word from area is involved in semantic processes [13]. 

 

 Reading Circuit in the Brain 

 

Reading, as a unique human cognitive process, requires cooperation of the signals from 

visual, auditory and language compartments of the brain. The reading circuitry in the 

brain network is studied through diffusion-weighted magnetic resonance imaging in 
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multiple researches. The highlighted findings are discussed here. Three large fascicles, 

identified to take part in reading circuit, are the arcuate fasciculus, the inferior 

longitudinal fasciculus and the posterior corpus callosum. Figure 2.6 represents these 

fascicles [22].  

 

 

Figure 2.6. Identified fascicles in reading circuit [22]. 

 

 

Diffusion MRI techniques assess the diffusion process of water molecules in biological 

tissues and fractional anisotropy (FA) is a measure of this diffusion. Positive 

correlation between reading skills and FA in arcuate fascicles (shown in blue) [23, 24, 

25] and inferior longitudinal fascicles (shown in orange) [26, 27] and negative 

correlation between reading skills and FA in posterior (temporal) callosal regions 

(green) were reported in multiple researches [28, 29, 30]. As a consequence, these 

three mentioned fascicles are considered to be as a part of reading circuitry in the 

network of the brain.  
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 Reading a Word vs. a Non-word 

 

Dorsal (tempo-parietal) and ventral (occipito-temporal) circuits are the two recognized 

reading systems in the left hemisphere (dominant hemisphere) of the brain. To perform 

a skilled reading task, collaboration of these two systems are reported to be necessary. 

At early stages of reading, the dorsal pathway is dominant. It is associated with the 

learning process that incorporates the orthographic features with phonological and 

lexical-semantic ones. Later, ventral pathway develops involving the word form 

system, which is responsible for the fulfillment of fluent reading. Although integrity 

of both circuits is reported to be necessary to perform a skilled reading task, as shown 

in Figure 2.7 reading words is more dependent on ventral pathway where reading non-

words involve dorsal pathway [31]. 

 

  

Figure 2.7. Representation of Occipito-temporal (Ventral) and Tempo-parietal 

(dorsal) regions [32]. 

 

 

 



11 

 

2.2 Dyslexia 

 

Developmental dyslexia is a brain disability that impairs the ability of learning to read, 

even with normal level of intelligence and adequate instruction. Neuroimaging 

techniques were widely used to investigate neural basis of dyslexia. There is a growing 

agreement that the focal deficit in dyslexia is associated with phonological processing. 

However, studies to address the neuronal impairment in dyslexia fall into three classes, 

studies that investigate phonological impairments, the ones that focus on visual 

processing and the studies that go over auditory processing abnormalities in dyslexics 

[33]. 

 

 Phonological Processing and Dyslexia 

 

There exists significant evidence for the importance of phonological information and 

its influence on all stages of reading, from word identification to passage 

comprehension [34]. From studies conducted to investigate phonological processing 

in dyslexia, disrupted activity patterns exist in widely distributed brain regions from 

occipito-temporal to posterior temporal, precentral and frontal cortical areas in 

dyslectic patients [35]. The most consistent areas with abnormal activation in dyslexic 

brains are reported to be in the left posterior inferior temporal lobe, [36, 37, 38] the 

angular gyrus [37, 39, 40, 41] and the left inferior frontal cortex. 

There is not a consistent postulation about the function of the left posterior inferior 

temporal area. In some researches, it is postulated to take role in retrieving phonology 

from semantics [42, 43]. Nevertheless, it is suggested to serve as a word form area in 

some others [44, 45]. 

Historically, angular gyrus was reported to be a crucial component to perform reading 

task (Dejerine, 1891). Reduced activation in dyslexic brains was observed in many 

studies in this region. However, from variety of studies, activity of angular gyrus is 

necessary for processing semantic information across input modalities and not just for 

reading [46, 47, 48]. This leads to the conclusion that angular gyrus is not the center 

of the phonological deficit in dyslexia and the reduced activation in this area is a 

consequence of phonological impairment. Finally, significantly increased activation 
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was reported in left frontal regions in dyslexics, which was suggested to be the 

compensatory reflection of the brain for inadequate phonological specification. 

Lately, Richlan, F., in a mini-review meta-analysis of dyslexia emphasized on the 

dysfunction of occipito-temporal, inferior parietal and inferior frontal areas. Figure 2.8 

is representative of these areas on the left hemisphere of the brain. Occipito-temporal 

region involves fusiform gyrus which is suggested to be the visual word form area 

(VWFA) and takes role in the visual input processing before information takes its 

journey to the phoneme center, the Wernicke’s area. As mentioned earlier, the 

abnormal function of frontal region is related to the compensatory pathways that the 

brains take to make up for the dysfunction in posterior language regions. As shown in 

the Figure 2.8, there is a strong evidence for the structural and functional connectivity 

between left occipito-temporal cortex (OT) and left inferior frontal gyrus (IFG) 

regions. However, the interconnection of these areas and left inferior parietal lobule 

(IPL) is less significant [49]. 

 

 

Figure 2.8. Dysfunction of a left hemisphere reading network in developmental 

dyslexia [49]. 

 

 Visual and Auditory Processing Disturbance in Dyslexia 

 

Although the focal impairment in dyslexia is associated to phonological processing, 

there exist variety of studies that suggest visual abnormalities in dyslexics [50]. 

Despite the inconsistencies in the results reported from these studies, generally, 
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dyslexic group appears to reveal differences in some of visual processing areas [51, 

52, 53]. Other than visual processing, auditory processing is also investigated and 

postulated to be impaired in dyslexic brains. Studies of auditory repetition and tonal 

memory tasks reported right hemisphere differences in dyslexic brains [53]. However, 

Temple et al. reported reduced activation only in left prefrontal cortex in a study 

comparing rapid and slow auditory transitions between dyslexic and normal brain [54]. 

 

2.3 Brain Connectivity and Dyslexia 

 

As mention earlier, the core deficit in dyslexia is attributed to phonological processing. 

In 1996, for the first time, Paulesu, E., et al. proposed that the phonological dysfunction 

of dyslectic brains is related to the weak connections between language areas [6]. Later 

in 2013, Boerts et al. found that phonetic representations are undamaged in dyslectic 

brains. However, the problem is associated to the accessibility of phonological 

information. They reported that the disturbed structural and functional connectivity 

patterns in temporal and frontal language-associated regions, blocks the access to the 

phonological knowledge [55]. 

 

 Structural Connectivity 

 

Diffusion tensor magnetic resonance imaging (DTI) reveals fiber pathways in the brain 

based on the diffusion of the water molecules in a specific direction. The diffusion 

coefficient or the fractional anisotropy depends on the number, orientation and the 

density of the axons. DTI is used in multiple studies to identify the abnormalities in 

structural connectivity of dyslexic brains [56]. Anomalies in tempo-parietal white 

matter [7, 57], arcuate fascicles [58] and shape of corpus callosum [59] are reported in 

dyslectic brains from these studies. 
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 Functional and Effective Connectivity 

 

Functional and effective connectivity disturbance in dyslectic patients is studied in 

multiple researches. These studies are classified into two main categories, resting-state 

and task-based ones. 

Pre-stimulus and resting-state connectivity patterns are investigated in multiple 

studies. Table 2.1 contains a summary of these studies. In 2002, 60] Hampson, M., et 

al. employed two independent data sets to identify the correlations between the 

elements of the language system in the brain. A functional connectivity between 

Broca’s area and Wernicke’s area was reported in healthy subjects at rest based on 

correlation analysis of signal fluctuations of MR images [60]. In 2013, Koyama, M. 

S., et al. studied the intrinsic functional connectivity of control and dyslectic subjects 

by calculating the correlation between the time series of each region of interest (ROI) 

- determined based on previous studies- and every other brain voxel, based on the 

resting state fMRI data obtained from control subjects and three dyslectic groups (i.e., 

dyslectic subjects with no remediation, partial remediation and full remediation). 

Different intrinsic functional connectivity patterns were reported between controls and 

dyslectic groups. Specifically, reduced connectivity was observed between left 

intraparietal sulcus and left middle frontal gyrus in all dyslectic groups, which 

indicates the failure of the fronto-parietal (attention) network in dyslectic. Successful 

remediation also is characterized by changes in the intrinsic functional connectivity of 

the left fusiform gyrus [61]. In 2014, Schurz, M., et al. computes the temporal 

correlation between a given area to all other areas to analyze the functional 

connectivity between the regions of interest (ROIs) of left hemisphere and found a 

reduced connectivity between left posterior temporal areas (fusiform, inferior 

temporal, middle temporal and superior temporal) and left inferior frontal gyrus in 

dyslectic group in both resting-state and task-based conditions [62]. Lately, Zhou, W.,  

et al. studied the functional connectivity of dyslectic subjects at rest, based on fMRI 

data, by computing the temporal correlation between a specific region of interest (seed) 

and all other voxels in the brain. They found disturbed functional connectivity from 

middle frontal gyrus (MFG) to two specified regions, namely, visual word form area 

(VWFA) and intraparietal sulcus (IPS) [63].  

Task-specific investigation of functional and effective connectivity of dyslectic 

subjects was done in multiple researches. Table 2.2 represents a summary of these 
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studies. In 1998, Horwitz, B., et al. employed the positron emission tomography (PET) 

data obtained from dyslectic and control subjects while reading a single word to 

analyze the functional connectivity disturbance in dyslectic brains. In PET images 

neural activity of the brain is determined by the regional cerebral blood flow (rCBF) 

between brain regions. In Horwitz’s study the correlation between the rCBF of the 

voxel attributed to angular gyrus [Talairach coordinates (x, y, z) = (±44, -54, +24)] and 

all other voxels in the brains was calculated, as a measure of functional connectivity. 

Disconnection of left angular gyrus from visual areas, Wernicke’s area and inferior 

frontal cortex in dyslectic group was reported from their study [12]. In 2000, Pugh, K. 

R., et al. applied multiple regression analysis on fMRI data to evaluate the correlational 

structure among selected regions of the brain. Data were obtained while performing 4 

tasks varying in demands on orthographic, phonological, lexical-semantic processing 

from normal and dyslectic subjects. They reported disturbed functional connectivity 

between angular gyrus and left-hemisphere language-related regions, while 

performing tasks requiring phonological assembly in dyslectic group [23]. In 2006, 

Stanberry, L. I., et al. reported disturbed connectivity between left inferior frontal 

gyrus and frontal, occipital and cerebellar regions in the right hemisphere based on 

functional connectivity analysis of fMRI data obtained while reading pseudo-words. 

Functional connectivity patterns were extracted via clustering analysis [8]. In 2008, 

Richards, T. L., et al. investigate the group differences between functional connectivity 

of dyslectic and normal subjects before and after instructional treatment. Functional 

connectivity models were obtained from fMRI data based on seed-voxel correlation 

analysis. Disrupted functional connectivity is reported between left inferior frontal 

gyrus and multiple regions (right and left middle frontal gyrus, right and left 

supplemental motor area, left precentral gyrus, right superior frontal gyrus) [64]. In 

2008, Quaglino, V., et al. applied structural equation modelling (SEM) on fMRI data 

obtained while performing a task including single word reading, pseudo word reading 

and picture-naming, to extract effective connectivity between specified regions of 

interest (ROIs) in a reading experiment and reported disturbed effective connectivity 

between supermarginal cortex and inferior frontal cortex in dyslectic group [65]. In 

2008, Cao, F., et al, applied dynamic causal modelling (DCM) on fMRI data obtained 

during rhyming judgments to visually presented words, to study effective connectivity 

among specified regions of interest (ROIs) and suggested that the dyslectic subjects 

have problems to use left inferior parietal lobule to integrate orthography and 
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phonology and left inferior frontal gyrus to engage in phonological segmentation [66]. 

In 2010, Ligges, C., et al. applied time variant granger causality to study the effective 

connectivity disturbance in dyslectics and reported the right hemisphere language 

areas to participate in compensatory mechanism of dyslectic brains for phonological 

deficits [67]. In 2011, van der Mark, S., et al. based on a functional connectivity MRI 

study, where cross-correlation of the time series between specified ROIs and all other 

voxels in the brain were calculated to index functional connectivity, reported disturbed 

connectivity from visual word from area to frontal and parietal regions in dyslectic 

group [68]. In 2014, Finn, E. S., et al. analyze the functional connectivity based on 

fMRI data obtained from dyslectic and normal readers while performing a word- and 

a non-word-rhyming task from control and dyslectic subjects. They reported anomalies 

in the connection between visual regions and prefrontal areas, which indicates the 

more efficient integration of visual information in normal readers in comparison to 

dyslectic group. For dyslectic group an alternate phonology-based reading circuit is 

suggested [69].  

 

2.4 Classification of Dyslectic and Normal Subjects 

 

Classification of dyslectics from normal subjects with non-impaired reading disability 

provides the opportunity to detect future dyslectic subjects. A few researches aimed to 

classify two groups based on information obtained from neuroimaging techniques. In 

1980, 70] Duffy, F. H., et al. classified EEG signals recorded while resting and 

activated testing condition based on a statistical technique and a classification of 80% 

to 90% was acquired [70]. In 2013, Karim, I., et al. applied kernel density estimation 

(KDE) to extract features from EEG signals obtained from dyslectics and controls 

during open and close eyes resting state and classified them by multilayer perception 

(MLP) method. They achieved a more than 90% accuracy in detecting the condition 

[71]. Table 2.3 represents a summary over these studies. 
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Table 2.1. Summary over studies on the resting-state functional and effective 

connectivity disturbance in dyslexia.   

Authors Year Material Method Result 

Hampson, 

M., et al. 

[60] 

2002 Two independent 

sets of resting state 

MR images from 11 

healthy subjects 

aged between 23-49. 

A hypothesis is made 

about connectivity 

between the elements of 

language system based 

on one data set and 

evaluation of the 

hypothesis based on 

correlation measures of 

the other data set. Then 

the roles of the data sets 

are changed and the 

procedure is repeated 

for other probable 

connections. 

Functional connection 

between Broca’s and 

Wernicke’s area in 

healthy subjects at rest 

Koyama, 

M. S., et 

al. [61] 

2013 Resting-state fMR 

images from 33 

control subjects and 

three dyslectic 

groups(i.e., no 

remediation, partial 

remediation, full 

remediation – total 

11 subjects) 

Correlation between 

brain activity from a 

specific region of interest 

(seed) to all other voxels 

in the brain is computed. 

Reduced connectivity 

between left intraparietal 

sulcus and left middle 

frontal gyrus in all 

dyslectic groups. Changes 

in  functional connectivity 

of the left fusiform gyrus 

in successfully remediated 

dyslectics 

Schurz, 

M., et al. 

[62] 

2014 Resting state and 

reading-based fMR 

images of 14 control 

and 15 dyslectic 

subjects 

Correlation between 

brain activity from a 

specific region of interest 

(seed) to all other voxels 

in the brain is computed. 

A consistent reduced 

connectivity between left 

posterior temporal areas 

(fusiform, inferior 

temporal, middle 

temporal and superior 

temporal) and left inferior 

frontal gyrus in dyslectic 

group 

Zhou, W., 

et al. [63] 

2015 Resting state fMR 

images of 26 control 

and 21 dyslectic 

subjects 

Correlation between 

brain activity from a 

specific region of interest 

(seed) to all other voxels 

in the brain is computed. 

Disturbed functional 

connectivity between IPs 

and MFG and also 

between VWFA and MFG 
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Table 2.2. Summary over studies on the task-based functional and effective 

connectivity disturbance in dyslexia.  

Authors Year Material Method Results 

Pugh, K. 

R., et al.  

[23] 

2000 fMRI data obtained while 

performing 4 tasks 

varying in demands on 

orthographic, 

phonological, lexical-

semantic processing from 

31 normal and 29 

dyslectic subjects 

Multiple 

regression 

analysis is used to 

examine the 

correlational 

structure between 

angular gyrus and 

posterior 

temporal occipital 

sites. 

Functional connectivity 

disturbance in dyslectic 

subjects while performing 

tasks requiring phonological 

assembly between angular 

gyrus and left-hemisphere 

language-related regions. 

Quaglino, 

V., et al. 

[65] 

2008 fMRI data obtained while 

performing a task 

including single word 

reading, pseudo word 

reading and picture-

naming from 6 normal 

and 6 dyslectic subjects 

Structural 

equation 

modelling (SEM) 

was applied to 

extract effective 

connectivity. 

Disturbed effective 

connectivity between 

supermarginal cortex and 

inferior frontal cortex in 

dyslectic group 

Cao, F.,  

et al. [66] 

2008 fMRI data obtained 

during rhyming 

judgments from 12 

normal and 12 dyslexic 

subjects 

Dynamic causal 

modelling (DCM) 

was used to 

extract effective 

connectivity 

models. 

Deficits in integrating 

orthography and phonology 

utilizing left inferior parietal 

lobule, and in engaging 

phonological segmentation 

via the left inferior frontal 

gyrus by dyslectics. 

Ligges, 

C., et al. 

[67] 

2010 EEG and fMRI data 

obtained while 

performing a task 

involving basic visual, 

orthographic and 

phonological processing 

from 14 normal and 15 

dyslexic subjects 

 Time variant 

granger causality 

was applied to 

study the effective 

connectivity. 

Right hemisphere language 

areas to participate in 

compensatory mechanism of 

dyslectic brains for 

phonological deficits 

van der 

Mark, S., 

et al. [68] 

2011 fMRI data obtained 

during a continuous 

reading task requiring 

phonological and 

orthographic processing 

from 24 control and 18 

dyslexic subjects 

Cross-correlation 

of the time series 

between specified 

ROIs and all other 

voxels in the brain 

were calculated. 

Significant disruption of 

functional connectivity 

between the VWFA and left 

inferior frontal and left 

inferior parietal language 

areas in dyslectic children. 
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Table 2.2. Continued. 

Finn, E. S.,  

et al. [69] 

2014 fMRI data obtained while 

performing a word and 

non-word-rhyming task 

from 32 control and 43 

dyslectic subjects  

Pairwise 

correlation 

coefficient between 

the time courses of 

each possible pair 

of nodes was 

calculated to 

estimate functional 

connectivity 

 

Anomalies in the 

connection between visual 

regions and prefrontal 

areas 

Stanberry, 

L. I., et al. 

[8] 

2006 fMRI data obtained while 

reading pseudo-words 

(continuous phoneme-

mapping task)  from 10 

control and 13 dyslexic 

subjects 

Clustering method 

is applied to 

extract regions 

with similar 

temporal behavior 

Disturbed connectivity 

between left inferior 

frontal gyrus and frontal, 

occipital and cerebellar 

regions in the right 

hemisphere in dyslectic 

subjects 

Richards, 

T. L., et 

al. 

[64] 

 

2008 fMRI data obtained from 

21 normal and 18 dyslectic 

subjects while performing a 

phoneme mapping task 

before and after receiving 

treatment by dyslectic 

group 

Seed voxel 

correlation 

analysis was used 

to extract 

functional 

connectivity  

Disrupted connectivity 

between left inferior 

frontal gyrus  and multiple 

regions ( right and left 

middle frontal gyrus, right 

and left supplemental 

motor area, left precentral 

gyrus, right superior 

frontal gyrus) before 

treatment and no 

difference were reported 

between two groups after 

treatment  

Horwitz, 

B., et al. 

[12] 

 

 

1998 PET images obtained while 

reading a single word from 

14 control and 17 dyslexic 

subjects 

Correlation 

between brain 

activity from a 

specific region of 

interest (seed) to 

all other voxels in 

the brain is 

computed 

Disconnection of left 

angular gyrus from visual 

areas, from Wernicke’s 

area and from inferior 

frontal cortex in dyslectic 

brains. 
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Table 2.3. Summary over studies that challenge the classification of dyslexics from 

normal subjects. 

Author year Material Method Result 

Duffy, F. 

H., et al. 

[70] 

1980 EEG and evoked potentials 

gathered from 18 normal and 

11 dyslectic subjects, during 

13 experiments varying from 

no instruction to complex 

discrimination task (A total 

183 features were extracted 

from the measurements).  

After feature 

reduction, classic 

discriminant 

analysis was 

applied to 

demonstrate 

statistically 

significant 

differences between 

two groups 

classification 

rate of 80 to 

90%  

Karim, I., et 

al. [71] 

2013 EEG signals recorded during 

resting state from 3 control 

and 3 dyslectic children aged 

between 4-7. 

Feature extraction 

via Kernel Density 

Estimation (KDE) 

and classification 

by multilayer 

perception (MLP) 

was applied on data 

classification 

rate of more 

than 90% 
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CHAPTER 3 

 

 

3CONNECTIVITY ANALYSIS OF HUMAN BRAIN 

 

 

 

In the human brain, there exist multiple individual elements. These elements interact 

with each other to combine their individual actions. The integrated response of specific 

interacting elements gives rise to specific human brain function. As so, for a normal 

brain function, a well-established connectivity is necessary between multiple brain 

regions. Studying interconnections among neuronal components could shed light on 

the basics of neurological disorders like dyslexia [72, 73]. 

Three different but related forms of connectivity, namely, structural, functional and 

effective are introduced to analyze interactions between neuronal components of the 

brain [10]. Structural connectivity is about understanding the anatomical links that 

exist in the brain and is commonly determined by fiber tracking from Diffusion tensor 

MR images [74]. Plausibility of the estimated functional and effective connectivity can 

be verified by the findings from structural connectivity analysis [75]. Functional 

connectivity is expressed as temporal dependencies between remote neuronal units. 

Correlation, coherence and such statistical measures in either time or frequency 

domain is been broadly applied on neurophysiological data to evaluate functional 

connectivity, as a fundamentally statistical concept [76, 77, 78, 79]. Effective 

connectivity is a measure of “the influence one neural system exerts on another” [10]. 

It captures the causal relationships between neuronal populations and determines the 

directionality of the information flow between brain networks [80, 81, 82]. 
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3.1 Effective Connectivity 

 

Investigating effective connectivity is been reported to be essential in the assessment 

of the functional integration of neuronal population and normal function of the brain 

[11, 76]. The connectivity patterns of the brain are usually restricted by structural 

connectivity and the related anatomical links. Still, it is not possible to infer effective 

connectivity, which is a dynamic model and changes with the context of the 

experiments, from structural connectivity [74]. Furthermore, since more than one 

arrangement of neurons may result in the same final behavior, information from 

structural connectivity cannot give rise to a unique effective connectivity model [83]. 

Functional connectivity, as a measure of statistical dependencies, is a function of 

probability distributions over observations (an information theoretic measure) and 

involves no inference about the coupling between two brain regions [78]. Conversely, 

effective brain connectivity corresponds to the parameters of a model that explains the 

dependencies between brain regions and correlates with the notion of coupling and 

directed causal influence [78]. In general, effective connectivity is becoming 

increasingly popular in the analysis of functional integration of the brain since its 

underlying model indicates the mechanism of neuronal coupling and provides 

information about directionality of the information flow between brain regions [74]. 

 

3.2  Methods to Model Effective Connectivity  

 

Although statistical measurements like covariance and correlation are mostly used to 

find functional connectivity, various mathematical methods are used to model 

effective connectivity. Here is a brief review over these methods. 

 

  Transfer Entropy (TE)  

 

In 2000, transfer entropy was introduced as a measure of causal influences in a coupled 

complex network by Schreiber. This method is able to quantify the statistical 

coherence between the elements of linear or non-linear networks. Detecting the 

information exchange between elements in the system is a challenging task. Transfer 

entropy derives directional interaction properly by ignoring the common input and 
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common history of the elements in the computations [84, 85]. Sabesan, S., et al. 

applied TE on EEG data obtained from epileptic patients and the foci specified by the 

method was in total agreement with the clinically assessed centers in the brain [85]. 

However, the execution of this method depends on the estimation of transition 

probabilities requiring selection of the memory of the variables [79]. Mathematical 

basics of transfer entropy (TE) is explained below [85].  

Probability of a specific state of a k-th order Markov process depends only on the k 

past states of the system, as expressed in Equation (3.1), where P defines the 

conditional probability of a random process X taking the value 𝑥𝑛+1 at time n + 1: 

 

𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1 ) =  𝑃(𝑥𝑛+1|𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘 ).                                 (3.1)  

Past k states of the random process X, [ 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘+1 ], is specified by 𝑥𝑛
(𝑘)

. An 

extension of Equation (3.1), is the Markov interdependence of two random processes 

X and Y, as expressed in Equation (3.2), where 𝑦𝑛
(𝑙)

 defines the past l state of random 

process Y: 

 

𝑃(𝑥𝑛+1|𝑥𝑛
(𝑘)
) =   𝑃(𝑥𝑛+1|𝑥𝑛

(𝑘)
, 𝑦𝑛

(𝑙)
).                                                                       (3.2) 

This implies that the probability of the random process X happens to be at state 𝑥𝑛+1 

at time n + 1, is independent of  past l states of process Y and it only depends on the 

past k states on process X. However, if the past states of both processes (X and Y) 

influences the state of process X at time n + 1, Kullback–Leibler measure determines 

the divergence between the hypothesized transition probability,  𝑃(𝑥𝑛+1|𝑥𝑛
(𝑘)
), and the 

true transition probability, 𝑃(𝑥𝑛+1|𝑥𝑛
(𝑘)
, 𝑦𝑛

(𝑙)
 ). This measure quantifies the influence 

of random process Y on random process X and is expressed in Equation (3.3), where 

N indicates the number of points of the processes in the system and k and l are the 

orders of the Markov process for X and and Y, respectively: 

 

𝑇𝐸(𝑌 →  𝑋)    =    ∑ 𝑃(𝑥𝑛+1|𝑥𝑛
(𝑘)
, 𝑦𝑛

(𝑙)
 )𝑁

𝑛=1  𝑙𝑜𝑔2
𝑃(𝑥𝑛+1|𝑥𝑛

(𝑘)
,𝑦𝑛
(𝑙)
 )

𝑃(𝑥𝑛+1|𝑥𝑛
(𝑘)
 )
.                          (3.3) 

Transfer entropy (TE) can be also expressed in terms of conditional entropies, as in 

Equation (3.4), where 𝐻(𝑥𝑛+1|𝑥𝑛
(𝑘)
 )  is the information obtained about 𝑥𝑛+1 based on 

the information of 𝑥𝑛
(𝑘)

 and 𝐻(𝑥𝑛+1|𝑥𝑛
(𝑘)
, 𝑦𝑛

(𝑙)
 )   is the information obtained about 𝑥𝑛+1 
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based on the information of 𝑥𝑛
(𝑘)

 and 𝑦𝑛
(𝑙)

. So, 𝑇𝐸(𝑌 →  𝑋) is the extra information 

that the past l point of Y provides about the  future state of X: 

 

𝑇𝐸(Y →  X)  = 𝐻(𝑥𝑛+1|𝑥𝑛
(𝑘)
 )   −  𝐻(𝑥𝑛+1|𝑥𝑛

(𝑘), 𝑦𝑛
(𝑙) ).                                          (3.4) 

 

 Multivariate Autoregressive Model (MVAR) 

 

The linear multivariate autoregressive is considered to be a simple approach to model 

the interactions of a multivariate time series. The basic assumption of the method is 

that the current state of the series can be estimated by a linear combination of its last 

N points. The coefficients of the model are determined such that the relative linear 

combination of the past values gives the best possible prediction for the current value 

(evaluated in the least square sense). The coefficients of the model can be interpreted 

as the influence of one time series upon the other one [86]. MVAR is a linear measure 

and imposes problem when dealing with clearly nonlinear networks like brain [75], 

[87]. Following is an explanation over the mathematical basics of multivariate 

autoregressive model (MVAR) [86]. Considering a univariate time series, current 

value of the variable is modelled by a weighted linear summation over its previous 

values. Number of previous data points used in the modelling process is the order of 

the model and the weights are the parameters of the model. An extension of this 

approach to multivariate time series gives rise to multivariate autoregressive model 

(MVAR). In a MVAR a vector of current values of all variables is represented as a 

linear weighted sum over previous values of the variables in the system. Consider a d-

dimensional multivariate system modelled by a MVAR of order p. The value of the 

multivariate d-dimensional system is predicted by the weighted linear summation over 

previous p vectors, as shown in Equation (3.5), where  

𝑦𝑛 = [𝑦𝑛 (1), 𝑦𝑛 (2), … , 𝑦𝑛 (𝑑)], is the n-th sample of the time series, A(i) is a d-by-d 

matrix containing the weights and e(n) is the error vector which is considered to be a 

Gaussian noise with zero mean: 

𝑦𝑛 = ∑ 𝑦𝑛−𝑖 𝐴(𝑖) + 𝑒(𝑛).                                                                              
𝑝
𝑖=                (3.5) 
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Parameters of the model determines the influence of a random variable on other 

variables. In other words, weights are a measure of linear dependency between 

variables and a zero weight indicate the independency between pair of variables in the 

system. 

 

 Directed Information Theory (DIT) 

 

Directed information is a method that recently attract attentions for quantifying causal 

relationship from neurophysiological data [79]. This method involves measures such 

as transfer entropy which explains it in an information theoretic sense and make it 

suitable to be used in neuroscience problems [88]. However, it is incapable to 

distinguish between totally dependent and independent processes [79]. Hinrichs, H.,  

et al. provide evidence that directed information theory (DIT) can be used as an 

efficient method to extract directional information flow among cortical regions of the 

brain based on EEG/MEG data obtained during a visual spatial attention task [89]. 

Mathematical essentials of DIT is discussed here. Considering two random variables 

X and Y, mutual information of them is defined as the amount of information that Y 

provides about X, as illustrated in Equation (3.6): 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 | 𝑌).                                                                                  (3.6) 

An extension of the mutual information to random vectors (𝑋𝑁 = (𝑋1, 𝑋2, … , 𝑋𝑁) and 

𝑌𝑁 = (𝑌1, 𝑌2, … , 𝑌𝑁)), mutual information is expressed as Equation (3.7): 

 

 𝐼(𝑋𝑁; 𝑌𝑁) = 𝐻(𝑋𝑁) − 𝐻(𝑋𝑁 | 𝑌𝑁).                                                                       (3.7) 

Mutual information is incapable of revealing any causal or directional influences in 

the system. This problem is addressed by introducing the concept of directed 

information, formulized as shown in Equation (3.8), where 𝐻(𝑌𝑁 | |𝑋𝑁) is the entropy 

of 𝑌𝑁 causally conditioned on 𝑋𝑁 and its value is calculated by Equation (3.9): 

 

DI(𝑋𝑁 → 𝑌𝑁) = 𝐻(𝑌𝑁) −  𝐻(𝑌𝑁 | | 𝑋𝑁).                                                               (3.8) 

𝐻(𝑌𝑁 | |𝑋𝑁) = ∑ 𝐻(𝑌𝑁 | 𝑌𝑁−1 𝑋𝑁).𝑁
𝑛=1                                                                    (3.9)   
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 Granger Causality (GC) 

 

In 1956, Weiner proposed that causal influence between two series can be identified, 

if statistical information of one of them, augments the prediction of the other one. Later 

in 1969, the popular operational definition of causality, the so-called, “Granger 

Causality” was introduced by Granger. It indicates that if a time series X provides 

predictive information about the future of time series Y better than past values of Y, X 

is said to Granger-cause Y. Although Granger causality is usually estimated with 

multivariate autoregressive (MVAR) methods, there exist other methods like mutual 

information which might be used to investigate Granger causality (GC) [75, 90]. 

Following a mathematical explanation for the case GC is estimated based on MVAR 

model. Suppose that X and Y are two elements of a multi-variate system. Equations 

(3.10) and (3.11) represent the univariate autoregressive models of X and Y and 

Equations (3.12) and (3.13) illustrate the bivariate autoregressive models of them: 

 

𝑥(𝑛) =  ∑ 𝑎1𝑘𝑥(𝑛 − 𝑘) + 𝑢1(𝑛).
𝑝
𝑘=1                                                                       (3.10) 

𝑦(𝑛) =  ∑ 𝑏1𝑘𝑦(𝑛 − 𝑘) + 𝑣1(𝑛).
𝑝
𝑘=1                                                                        (3.11) 

In univariate autoregressive models, the prediction of the signal depends only on the 

past value of the signal, where in bivariate autoregressive models, the past values of 

the own signal and also the other signal both influence the predicted value of the signal: 

 

𝑥(𝑛) =  ∑ 𝑎2𝑘𝑥(𝑛 − 𝑘)
𝑝
𝑘=1 + ∑ 𝑐2𝑘𝑦(𝑛 − 𝑘) + 𝑢2(𝑛).

𝑝
𝑘=1                                     (3.12) 

𝑦(𝑛) =  ∑ 𝑏2𝑘𝑥(𝑛 − 𝑘)
𝑝
𝑘=1 + ∑ 𝑑2𝑘𝑦(𝑛 − 𝑘) + 𝑣2(𝑛)

𝑝
𝑘=1 .                                   (3.13) 

The accuracy of prediction is measured by the variance of the prediction errors in 

univariate and bivariate autoregressive models, as represented in Equations (3.14) to 

(3.17): 

∑𝑋 | 𝑋− = 𝑣𝑎𝑟 (𝑢1).                                                                                                 (3.14) 

∑𝑌 | 𝑌− = 𝑣𝑎𝑟 (𝑣1).                                                                                                  (3.15) 

∑𝑋 | 𝑋−,𝑌− = 𝑣𝑎𝑟 (𝑢2).                                                                                            (3.16) 

∑𝑌 | 𝑌−,𝑋− = 𝑣𝑎𝑟 (𝑣2).                                                                                            (3.17) 
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If considering the past values of signal Y, improves the prediction of the signal X (The 

variance of prediction error decreases), it is said that signal Y causes signal X. Granger 

Causality of Y to X is expressed in Equation (3.18): 

𝐹𝑌 →𝑋 = 
∑𝑋 | 𝑋−

∑𝑋 | 𝑋−,𝑌−   
.                                                                                                  (3.18) 

And in a similar way, the granger causality of X to Y is defined as shown in Equation 

(3.19): 

𝐹𝑋 →𝑌 = 
∑𝑌 | 𝑌−

∑𝑌 | 𝑌−,𝑋−   
 .                                                                                                (3.19) 

The maximum of the terms represented in Equations (3.18) and (3.19), indicates the 

strength of direction (or in some cases bi-directional) causal interconnection between 

signals. 

 

 Directed Transfer Function (DTF)  

 

Directed transfer function (DTF) is a spectral measure to extract casual relationships 

between brain regions by detecting directional influences between each pair of 

multivariate data. This method basically relies on Granger causality concept and 

requires a MVAR model to fit the whole set of data [73, 91, 92]. DTF distinguishes 

between the forward and backward information flow and serves as a method to detect 

directionality. Furthermore, since it is not responsive to volume conduction, it is 

considered a good measure for EEG data analysis [73]. Mathematical fundamentals of 

this method is explained here [73]. A p-ordered multivariate autoregressive model of 

a M-dimensional multivariate signal X is described such that the signal at time n, is 

expressed as Equation (3.20), where 𝐴𝑘 is the coefficient matrix containing the weights 

of the model which determine the influence of each past signals at time instant n-k on 

current signal and E(n) is the noise term assumed to be zero-mean normally 

distributed: 

 

𝑋(𝑛) =  ∑ 𝐴𝑘
𝑝
𝑘=1 𝑋(𝑛 − 𝑘) + 𝐸(𝑛).                                                                     (3.20) 

After transformation into z domain and substitution of 𝑧−1 with 𝑒−𝑖2ᴨ𝑓/𝑓𝑠, Equation 

(3.20) takes the form represented in Equation (3.21), where E(f), X(f), and A(f) are the 
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E(n), X(n) and �́� in the frequency domain, 𝐴0 is the identity metrix and �́�𝑘 = −𝐴𝑘 , 

when k tkes the values from 1 to p: 

 

𝑋(𝑓) = 𝐸(𝑓) (∑ �́�𝑘𝑒
−𝑖2ᴨ𝑓/𝑓𝑠𝑝

𝑘=0 )−1 = 𝐸(𝑓)𝐴−1(𝑓) = 𝐸(𝐹)𝐻(𝑓).                       (3.21) 

 

H(f) is called the transfer matrix and DTF is measured as shown in Equation (3.22). It 

is a value between zero and one, where zero value indicates the two variables, i and j, 

are completely uncorrelated: 

 

𝐷𝑇𝐹𝑖𝑗(𝑓) =  
|𝐻𝑖𝑗(𝑓)|

√∑ |𝐻𝑖𝑗(𝑓)|
2𝑑

𝑗=1

 .                                                                                     (3.22) 

 

 Partial Directed Coherence (PDC) 

 

Partial directed coherence proposed by Baccalá, L. A., et al, in 2001 is another 

approach to describe relationships between multivariate time series. This method 

provides a frequency-domain representation for Granger causality. In comparison to 

DTF, PDC gives rise to a more statistically and numerically reliable results [93]. Bjorn 

Schelter, B., et al. applied PDC to detect directed relationships on EEG data obtained 

from a patient suffering from essential tremor [94]. Here is a brief explanation over 

mathematical background of partial directed coherence [94]. Consider a p-ordered 

multivariate autoregressive model of a n-dimensional multivariate signal x which is 

modelled by a multivariate autoregressive (MVAR) model as represented in Equation 

(3.23): 

 

𝑥(𝑡) =  ∑ 𝑎(𝑟)𝑥(𝑡 − 𝑟)𝑝
𝑟=1 +  ɛ(𝑡).                                                                      (3.23) 

Consider 𝐴(𝑤) =  𝐼 − ∑ 𝑎(𝑟)𝑒−𝑖𝑤𝑟𝑝
𝑟=1 , indicates the difference between the identity 

matrix and the Fourier transform of parameters of MVAR model. The partial directed 

coherence described in Equation (3.24) provides a measure of directed linear influence 

of 𝑥𝑗 on 𝑥𝑖 at frequency w: 
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|ᴨ𝑖←𝑗(𝑤)| =  
|𝐴𝑖𝑗(𝑤)|

√∑ |𝐴𝑘𝑗(𝑤)|
2

𝑘

 .                                                                                    (3.24) 

 

 Structural Equation Modeling (SEM) 

 

Structural equation model is reported to be the most widely used method in analyzing 

effective connectivity [91, 95]. This technique uses both available priori information 

about brain anatomy and the inter-regional co-variances between observed variables 

to extract the causal relationships in the brain network. It consists of a set of linear 

structural equations made up of observed variables and parameters of the model. These 

parameters define causal relationships between the variables and are estimated by 

minimizing the difference between the functional interaction and the knowledge of 

physical connections from priori information [95], where functional interaction is 

estimated by decomposing interregional co-variance among brain regions [96]. 

Mathematical background of the structural equation modelling is discussed here [91]. 

Consider a system having multiple variables with n observations. The structural 

equation model over the variables is illustrated in Equation (3.25), where y is a (m×1) 

vector of dependent variables, x is a (n×1) vector of independent variables, 𝜁 is a (m 

×1) vector of equation errors, B is a (m×m) coefficient matrix of dependent variables, 

𝛤 is a (m×n) coefficient matrix of independent variables. 𝜁 is assumed to be 

uncorrelated to the independent variables and the diagonal elements of B are zero since 

independent variables should not influence themselves: 

𝑦 = 𝐵𝑦 +  𝛤𝑥 +  𝜁.                                                                                               (3.25) 

 

In this model 𝛷 = 𝐸[𝑥𝑥𝑇] and  Ѱ = 𝐸[𝜁𝜁𝑇]  are considered as the covariances of the 

model, which are covariance matrix of the independent variables and covariance 

matrix of the errors, respectively. If Z is a vector containing all the variables in the 

network, in the order shown in Equation (3.26), the observed covariance will be 

described as in Equation (3.27), where Z is the n×p matrix of p variable in the network 

for each n observation. The covariance matrix from the model is calculated from 

Equation (3.28): 

𝑧𝑇 = [𝑥1…𝑥𝑛𝑦1…𝑦𝑛] .                                                                                            (3.26)                    
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∑ = (
1

𝑁−1
) .  𝑍 .  𝑍𝑇 .𝑜𝑏𝑠                                                                                             (3.27) 

∑ = [
𝛷 (𝐼 − 𝐵)−1𝛷

((𝐼 − 𝐵)−1𝛷)𝑇 (𝐼 − 𝐵)−1(𝛤𝛷𝛤 + Ѱ)((𝐼 − 𝐵)−1)𝑇
] .𝑚𝑜𝑑                          (3.28) 

 

To minimize the difference between the ∑𝒎𝒐𝒅 and ∑𝒐𝒃𝒔 , since the number of 

unknowns (the number of elements of B, Ѱ, Γ and Φ) are more than the number of 

equations, (n+m+1)(n+m)/2, SEM required a priori formulation of an anatomical 

model. This model point the existence of a few casual relationships among variables 

of the system. Parameters of the arcs that are not present in the hypothetical model are 

called free parameters. Number of free parameters (t) should be less than 

(n+m+1)(n+m)/2. These parameters are determined by minimizing a function of 

implied and observed covariance matrices. Most of the SEM applications use the 

maximum likelihood function as illustrated in Equation (3.29), where tr(.) implies the 

trace of the argument matrix: 

 

𝐹𝑀𝐿 = 𝑙𝑜𝑔 |∑𝑚𝑜𝑑 | + 𝑡𝑟(∑𝑜𝑏𝑠 ) − log|∑𝑜𝑏𝑠 | − 𝑝 .                                                 (3.29)       

 

  Dynamic Causal Modeling (DCM) 

 

Dynamic causal modeling (DCM), which was designed specifically for neuroimaging 

data, is a powerful method in investigating effective connectivity [72]. DCM initially 

estimates the underlying neuronal sources from the measured data. Thereafter, it 

models the effective connectivity based on estimated neuronal activities rather than 

the measured data. This may cause the results obtained from DCM to be more realistic 

[11]. DCM derives the dynamic interactions among different regions of the brain by 

first estimating intrinsic connections between sources and then changes the 

connections of the model considering the influence of external perturbation. Effective 

connections are evaluated by a Bayesian estimation procedure to find the best model 

[72, 97]. Alike SEM, DCM needs a prior model which usually serves as an anatomical 

constraint [96]. This method assumes deterministic relationships between different 

brain regions and do not take into account the noisy interactions [98]. The basic idea 

of DCM is explained here. Dynamic models are constructed based on a general bilinear 

state equation represented in Equation (3.30), where x indicates the state of the system, 
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ẋ indicates the changes in the state, u is the external input of the experimental 

manipulations, C is the parameters of the input which shows the direct effect of input 

on specific areas, A matrix represent the coupling between different areas in the 

absence of external manipulation and B matrix contains the changes that occurs to the 

couplings in presence of external manipulation: 

 

�̇� = ( 𝐴 + ∑ 𝑢𝑗
𝑚
𝑗=1 𝐵𝑗  ) 𝑥 + 𝐶𝑢.                                                                            (3.30) 

 

DCMs are generated multiple layouts of forward and backward self-connections and 

their modulations. These models are later analyzed via Bayesian model comparison to 

select the best model that fits the data [99]. 

 

 Bayesian Network (BN)   

 

Typical medical problems are associated with dozens or even hundreds of explanatory 

features. It is confusing and in some cases impractical to determine the joint 

distribution over all features and characterize the condition in complex networks based 

on all the data. Probabilistic graphical models provide a compact structure to describe 

the distributions over the intricate systems [100]. 

A Bayesian Network is a graphical model that represents conditional independencies 

between the variables of the network under investigation [101]. It involves concepts 

from probability, statistics and graph theory [76]. BN is able to detect the optimal 

connectivity structure without any structural knowledge. It learns the overall effective 

connectivity pattern rather than the pairwise connections between the variables of the 

system [102]. Bayesian network, involving concepts from statistics and machine 

learning, is reported to be a powerful tool to extract dependencies among the variables 

of the system under investigation [103]. As mentioned earlier, neurons in the brain 

interact with each other via the neuronal links and this interaction is modeled in a 

structurally similar way using BN. The flexibility of BN, which makes it possible to 

employ different statistical measures to explain the dependency relationships between 

random variables, makes it a very efficient method to address effective connectivity in 

the brain [11]. However, BN cannot capture the temporal characteristics, since it gives 

a single snapshot of the connectivity which is dominant over the whole data [104]. 
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A Bayesian network (BN) is a graphical representation over a joint probability 

distribution. The structure of a Bayesian network provides the opportunity to extract 

the conditional independence assumption or the local independencies in the network. 

Each Bayesian network has two units, one qualitative and one quantitative unit. 

The qualitative part is a directed acyclic graph (DAG) which is the structure of 

Bayesian network. The nodes in the structure of BN are representative of random 

variables in the system and the edges between the nodes indicate the direct statistical 

dependencies between corresponding random variables. If there exists an edge from 

one node, called the parent node, to another one, called the child node, the value that 

the child node takes depends of the value of the parent node. The descendants of each 

node are all the nodes that are reachable from that node by tracking the direction of 

the edges. The rest of the nods in the system are called the non-descendants [103]. The 

quantitative part of a BN is the conditional probability distribution (CPD) specified for 

each node, given its parents [105]. For the variable that take discrete values, these 

CPDs are usually illustrated in a table. The probability of each possible value for the 

child node is represented for all feasible combination of values of its parents in a 

tabular form. Succinctly, a Bayesian network is characterized by its structure and 

associated parameters that are the existed conditional probabilities in the structure 

[105, 106]. Following is an explanation over the mathematical basics of Bayesian 

networks. 

 

3.2.9.1 Conditional Probability Distribution of Bayesian Network 

 

Consider there exists n random variables in the network denoted by 𝑋1,…, 𝑋𝑛, G is the 

Bayesian network structure over the random variables and 𝑃𝑎𝑋𝑖
𝐺  indicates the parent of 

𝑋𝑖.  

Based on the chain rule, the joint probability distribution over the random variables is 

measured from the Equation (3.31): 

 

P(𝑋1,…, 𝑋𝑛) = 𝑃(𝑋2  | 𝑋1 )𝑃(𝑋3  | 𝑋1, 𝑋2 ) … P(𝑋𝑛 | 𝑋1, 𝑋2, … , 𝑋𝑛−1).                (3.31) 

From the Bayesian network semantics, 𝑋𝑖  is independent of its nondescendants given 

its parents: 
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For each variable        𝑋𝑖 :  (𝑋𝑖 ⊥ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 𝑋𝑖   |  𝑃𝑎𝑋𝑖
𝐺  ). 

 

This property is utilized to measure the joint probability distribution over the random 

variables in the network with the involvement of reduced number of parameters. Based 

on the Bayesian chain rule, the joint probability distribution over the random variables 

is measured from the following equation which is calculated based on local probabilistic 

quantities termed as 𝑃(𝑋𝑖  |  𝑃𝑎𝑋𝑖
𝐺 ): 

 

P (𝑋1,…, 𝑋𝑛) = ∏ 𝑃(𝑋𝑖  |  𝑃𝑎𝑋𝑖
𝐺 )𝑛

𝑖=1  .                                                                      (3.32) 

The parameters of the dynamic Bayesian network are 𝑃(𝑋𝑖  |  𝑃𝑎𝑋𝑖
𝐺 ) for all the variables 

i=1,..,n in the system. 𝑃(𝑋𝑖  |  𝑃𝑎𝑋𝑖
𝐺 ) is specified by θ𝑋𝑖  |  𝑃𝑎𝑋𝑖

𝐺  in Equation (3.33). The 

parameters of the Bayesian network are the ones that maximize the log-likelihood 

function represented in Equation (3.33), where n(𝑥𝑖 , 𝑥𝑝𝑎𝑖) indicates the number of 

observed instances with a particular setting of the variable and its parents: 

 

𝑙(𝐷; θ, G) =  log (P|D) 

                = ∑ ∑ 𝑛(𝑥𝑖, 𝑥𝑝𝑎𝑖) log θ𝑥𝑖|𝑥𝑝𝑎𝑖𝑥𝑖,𝑥𝑝𝑎𝑖

𝑛
𝑖=1  .                                                    (3.33) 

 

Parameters that maximize the log-likelihood function (θ̂𝑥𝑖|𝑥𝑝𝑎𝑖
) is calculated via Equation 

(3.34), where 𝑟𝑖 is the number of different values that the variable 𝑥𝑖 takes [107]: 

θ̂𝑥𝑖|𝑥𝑝𝑎𝑖
= 

𝑛(𝑥𝑖,𝑥𝑝𝑎𝑖)

∑ (�́�𝑖,𝑥𝑝𝑎𝑖)
𝑟𝑖
�́�𝑖=1

 .                                                                                           (3.34) 

 

3.2.9.1 Structure of Bayesian Network 

 

The problem of learning a Bayesian network is about finding a network that best 

matches the training data set [108]. Multiple methods such as, K2 algorithm, Markov 

Chain Conte Carlo (MCMC), Bayesian Network Power Constructor (BNPC) and 

Greedy Search in Markov Equivalent Space, are proposed to learn the structure of a 

Bayesian network from a data set [109].   
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The methods that have been introduced to address the problem of learning a Bayesian 

network are classified into three groups, constraint-based structure learning, score-

based structure learning and Bayesian model averaging technique. 

In constraint-based structure learning, initially the aim is to extract the dependencies 

and independencies in the network and then to find a network which best explains 

these dependencies and independencies. The drawback of this method is its sensitivity 

to individual independence tests employed to extract dependencies and independencies 

in the network. Even one wrong answer may lead to a mistaken structure learning 

procedure [110]. 

In Bayesian model averaging technique, it is attempted to produce a set of possible 

structures based on Bayesian reasoning and then average over all possible structures. 

In score-based structure learning, initially a space of potential models are defined and 

then a score function is used to evaluate how well the models fit the data. Score-based 

structure learning algorithms are less sensitive to individual independence tests, since 

they evaluate the whole structure all at once. The number of structures in the space of 

potential models is 2 to the power of O(n2), where n indicates the number of random 

variables. It is obvious that scoring all the possible models is impractical and finding 

the one optimal network is a NP-hard problem. Thus, heuristic search techniques are 

applied to select a hypothesis space of possible models. Multiple methods like greedy 

hill climbing, Markov Chain Monte Carlo (MCMC), K2 and exhaustive search has 

been introduced to select the possible structures [111]. 

Scoring functions for learning Bayesian networks, are classified into two main groups, 

Bayesian scores and information-theoretic scores [105]. Information-theoretic scores 

determined how well a structure fits to data, based on the concepts from information 

theory and codification [112]. LL, AIC, BIC/minimum description length (MDL), 

Normalized Minimum Likelihood (NML) and mutual information tests (MIT) are all 

examples of information-theoretic scoring functions. The basic idea of Bayesian 

scoring methods (e.g. K2, BD, BDe, BDeu) is that a prior probability over the possible 

networks is assumed and then the posterior probability of the networks is calculated 

conditioned on the data. The best structure is the one with the highest posterior 

probability [105]. 
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 Structure Learning Algorithm 

 

As mentioned earlier, since the number of all possible networks is exponential to the 

number of nodes in the network and evaluating all the structures is impractical, score-

based structure learning algorithms require heuristic search techniques to select a 

hypothesis space of possible structures. In this study, Markov Chain Monte Carlo 

(MCMC) technique was used to select possible networks from the space of potential 

structures. MCMC simulation was started with an initial graph structure. Posterior 

probability of the initial graph was calculated. Considering the initial network, a new 

graph is generated by adding or removing an edge. The posterior probability of the 

new graph structure is calculated. Then the acceptance of the new graph is determined 

by the Metropolis-Hastings acceptance criterion (MHAC) shown in Equation (3.35), 

where posterior probabilities are calculates by Bayesian score (BDeu). The term 

𝑄(𝐺𝑜𝑙𝑑|𝐺𝑛𝑒𝑤)

𝑄(𝐺𝑛𝑒𝑤|𝐺𝑜𝑙𝑑)
  is the hasting ratio, which involves the proposal probabilities (Q): 

 

𝑃𝑀 𝐻 = 𝑚𝑖𝑛 { 1 ,
𝑃(𝐺𝑛𝑒𝑤|𝐷)

𝑃(𝐺𝑜𝑙𝑑|𝐷)
 𝑥 

𝑄(𝐺𝑜𝑙𝑑|𝐺𝑛𝑒𝑤)

𝑄(𝐺𝑛𝑒𝑤|𝐺𝑜𝑙𝑑)
  }.                                                                  (3.35) 

If 𝑃𝑀 𝐻  is bigger than one, this indicates that the proposal move, augment the fitness 

of the graph structure to the data and the new structure will be accepted. Otherwise, 

the proposal move gives rise to a graph structure which is less preferable than the old 

graph. In this case the newly generated graph is rejected, the old graph structure is kept 

and the rest of the simulation will continue with generating new structures based on 

the old graph. 

The steps of MCMC simulation are repeated for several times and eventually there 

will be an averaging task over all the kept graphs. The obtained value for each edge 

will be representative of its posterior probability. The algorithm includes a burn-in step 

that includes the initial sampled graphs. Since these initial networks are no stable and 

reliable, they are not considered in the final averaging task [103]. 

The initial graph to start the MCMC simulation is a graph with one edge, which is 

selected randomly. MCMC is simulated multiple times initiating from different one-

edge randomly selected graph structures. The final step of the algorithm is averaging 

over the posterior probabilities of edges obtained as the results of all the simulations 

which finally gives us an adjacency matrix which assign a weigh to each possible edge. 
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 BDeu Scoring Function [105] 

 

The posterior probabilities in the structure learning algorithm are calculated via a 

Bayesian-based scoring function, called BDeu scoring function. As mentioned earlier, 

to calculate the score of a network, Bayesian-based scoring algorithms consider a prior 

probability over the structure of the network and then a score is assigned to the 

structure based on the computed posterior probability conditioned on the data. 

In 1995, Heckerman et al. proposed the Bayesian Dirichlet (BD) score considering 4 

assumptions about P(B,D), where B is the Bayesian network and D is the data. 

Notations: 

𝜣𝑮 = {𝜣𝒊}𝒊=𝟏,…,𝒏  

Encodes parameters of a BN, B with underlying DAG G, where n is the number 

of nodes in the network. 

𝜣𝒊 = {𝜣𝒊𝒋}𝒊=𝟏,…,𝒒𝒊 

Encodes parameters concerning only the variable 𝑋𝑖 of X in B, 

where 𝑞𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑋𝑖. 

𝜣𝒊𝒋= {𝛩𝒊𝒋𝒌}𝒊=𝟏,…,𝒓𝒊    

Encodes parameters for variable 𝑋𝑖 of X in B given that its parents take their 

j-th configuration, where 𝑟𝑖 is the number of states of node 𝑋𝑖 in the data. 

Assumption 1. Multinomial sample 

The multinomial sample assumption indicates that the probability assigned to the t-th instance 

of data is conditionally independent of the previous observations. 

 

Assumption 2. Dirichlet 

Given a directed acyclic graph G such that P(G) > 0 then 𝛩𝑖𝑗 is Dirichlet for all 𝛩𝑖𝑗in 

𝛩𝐺. Under the dirichlet assumption, the probability distribution function for 𝛩𝑖𝑗 is 

obtained from Equation (3.36): 

 

𝜌 (𝜣𝑖𝑗| G) = ∏ 𝜌 ( 
𝑟𝑖
𝑘=1 𝜣

𝑖𝑗𝑘

𝑁′𝑖𝑗𝑘−1
 ) .                                                                         (3.36) 

where 𝑁′𝑖𝑗𝑘 > 0, where {𝑁′
𝑖𝑗𝑘
}𝑘=1,…,𝑟𝑖  are the hyperparameters (exponents) of the 

Dirichlet distribution. 
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Assumption 3. Parameter independence 

Given a directed acyclic graph G such that P(G) > 0 then  

 1)  𝜌 (𝜣𝐺 |𝐺) = ∏ 𝜌 ( 𝜣𝑖| 𝐺)
𝑛
𝑖=1     (Global Parameter Independence) 

This indicates that associated parameters with each variable is independent of the 

parameters of other variables. 

 2)  𝜌 (𝜣𝑖|𝐺) = ∏ 𝜌 ( 𝜣𝒊𝒋| 𝐺)
𝑞𝑖
𝑗=1    for i=1,…,n.    (Local Parameter Independence) 

This indicates that the parameters associated with each configuration of the parents of a 

variable are independent. 

 

Assumption 4. Parameter Modularity 

Given two directed acyclic graphs, G and G′, such that P(G) > 0 and P(G′) > 0, if 

𝑋𝑖  has the same parents in G and G′, then: 

 

𝜌 (𝜣𝑖𝑗|G) = 𝜌 (𝜣𝑖𝑗 | G′)              for all j = 1, . . . , 𝑞𝑖.                                           (3.37) 

Based on the four mentioned assumptions, the Bayesian Dirichlet score is defined as 

shown in Equation (3.38), where Γ is the Gamma function and P(B) represents the prior 

probability of the network B: 

 

BD(B,D)= log(P(B)) +∑ ∑ (𝑙𝑜𝑔 (
𝛤(𝑁′𝑖𝑗)

𝛤(𝑁𝑖𝑗   +𝑁′𝑖𝑗)

𝑞𝑛
𝑗=1

𝑛
𝑖=1 ) + ∑ 𝑙𝑜𝑔 (

𝛤(𝑁𝑖𝑗   +𝑁′𝑖𝑗)

𝛤(𝑁′𝑖𝑗)
)

𝑟𝑖
𝑘=1 ).  (3.38) 

Determining all the hyperparameters or exponents of the Dirichlet function (𝑁′𝑖𝑗𝑘) is a 

challenging task. Heckerman et al. (1995) address the problem of specifications of the 

hyperparameters by considering two more assumptions: 

 

Assumption 5. Likelihood Equivalence 

Based on this assumption, if two possible directed acyclic graphs (G and G′) are equivalent, 

then:  

ρ (𝜣𝑫|G) = ρ(𝜣𝑫| G′)) .                                                                                          (3.39) 

where 

𝜣𝐷={𝜣𝑥1,…,𝑥𝑛}𝑥𝑖 =1,…,𝑟𝑖  ,𝑖∈1,…,𝑛     and   𝜣𝑥1,…,𝑥𝑛 = ∏ 𝜣𝑥𝑖 | 𝑃𝑎(𝑥𝑖)
𝑛
𝑖=1 .  
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Assumption 6. Structure Possibility  

The probability of any complete directed acyclic graph is bigger than zero. Based on all 6 

assumptions, Heckerman et al introduced BDe scoring function defined as follows: 

If ρ(𝛩𝐷|G) is Dirichlet with equivalent sample size N′ for some complete directed 

acyclic graph G in D, then:  

 

P(B,D)= 𝑃(𝐵) ×  ∏ ∏ ( 
𝛤(𝑁′𝑖𝑗)

𝛤(𝑁𝑖𝑗   +𝑁
′
𝑖𝑗)
  ×   ∏ (

𝛤(𝑁𝑖𝑗𝑘  +𝑁′𝑖𝑗𝑘)

𝛤(𝑁′𝑖𝑗𝑘)
)

𝑟𝑖
𝑘=1  )

𝑞𝑛
𝑗=1

𝑛
𝑖=1 .                 (3.40) 

 

Where 𝑁′𝑖𝑗𝑘= 𝑁′ × P(𝑋𝑖 = 𝑥𝑖𝑘 , 𝑝𝑎(𝑋𝑖) = 𝑤𝑖𝑗 | 𝐺  )  and   𝑁′ = ∑ 𝑁′𝑥1,…,𝑥𝑛𝑥1,…,𝑥𝑛∈𝐷 . 

Calculation of BDe score is not so popular in practical, since it requires knowing  

P(𝑋𝑖 = 𝑥𝑖𝑘 , 𝑝𝑎(𝑋𝑖) = 𝑤𝑖𝑗 | 𝐺  ) for all i, j and k. 

BDeu is a special case of BDe, which was originally suggested by Buntine (1991). In 

this method a uniform probability is assigned to each configuration of a node and its 

parents. 

P(𝑋𝑖 = 𝑥𝑖𝑘 , 𝑝𝑎(𝑋𝑖) = 𝑤𝑖𝑗 | 𝐺  ) = 
1

𝑟𝑖 𝑞𝑖
 .                                                                (3.41) 

The resultant score is calculated by Equation (3.42). 

BDeu(B,D) = log(P(B)) + ∑ ∑ (𝑙𝑜𝑔 (
𝛤(
𝑁′

𝑞𝑖
)

𝛤(𝑁𝑖𝑗   +
𝑁′

𝑞𝑖
)

𝑞𝑖
𝑗=1

𝑛
𝑖=1 ) + ∑ 𝑙𝑜𝑔 (

𝛤(𝑁𝑖𝑗 𝑘  +
𝑁′

𝑟𝑖𝑞𝑖
)

𝛤(
𝑁′

𝑟𝑖𝑞𝑖
)

)
𝑟𝑖
𝑘=1 ). 

   (3.42) 

  Dynamic Bayesian Network (DBN) 

 

Dynamic Bayesian network is a modelling approach which is extended from BN to 

describe temporal processes [113]. It is reported to give rise to more precise and 

informative results in comparison to previously introduced methods. Temporal 

characteristics of the time series are considered in the modeling process which can be 

explained in a complete statistical sense [97, 104]. DBN is capable of modeling the 

temporal behavior of the system being studied. These networks provide a model that 

demonstrate the probabilistic transition from the state at time t to the state at time t+1 

for variables in the system [114]. DBN captures the non-linear dependencies in the 

network which makes it suitable to model non-linear systems like brain [115] . Studies 

based on application of DBN on fMRI data can be found in [104, 116, 117] and Anne 
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Smith et al. provided the proof for efficiency of the algorithm to infer effective 

connectivity from EEG data in her study [118]. Other promising results obtained by 

applying DBN in the analysis of time series could be found in [104, 119].  

Briefly, among all the methods that have been introduced to extract causal 

relationships and effective connectivity from neurophysiological data, DBN is the 

most preferable one. The reason lies in its solid base in statistics, potential in dealing 

with incomplete data and uncertainty [114], capability to capture temporal 

characteristic, flexibility to employ various algorithms to find dependencies, ability to 

dealing with non-linear and non-deterministic complex networks and eventually the 

graphical representation of the model which can represent the ROIs with nodes and 

the information flow between them by the edges. 

The basics of the Dynamic Bayesian network are not different than the Bayesian 

network except that the DBN includes the temporal characteristics of the time series. 

To keep away from the model complexity, in this study the temporal changes in the 

system is assumed to be stationary and first-order Markovian, which means the 

transition probabilities shown in the following equation hold for all the instances t=1, 

2, …T, as shown in Equation (3.43): 

 

P(x(t+1) | x(t),…,x(1)) = P(x(t+1) | x(t)).                                                             (3.43) 

 

The network structure of a dynamic Bayesian network illustrate the connectivity 

pattern between two consecutive scans of the system [104].  
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CHAPTER 4 

 

 

4MATERIAL AND METHODS 

 

 

 

During the past decades, investigation of disorders associated to central nervous 

system becomes feasible in vivo due to the fast development of non-invasive 

functional imaging techniques, like electroencephalogram (EEG), magneto 

encephalogram (MEG), and functional magnetic resonance imaging (fMRI) [73]. EEG 

is a measure of the brain activity derived from an ensemble of neuronal oscillating 

generators. After any cognitive, motory or sensory stimulation, generators that were 

randomly active, synchronize and this results in an alteration in EEG rhythm. It’s been 

introduced as an appropriate modality to study the dynamics of the brain due to its 

high temporal resolution and relatively low cost of acquisition [120]. 

 

4.1 Data  

 

Co-occurrence of dyslexia and Attention Deficit and Hyperactivity Disorder is 

reported from multiple studies. In this study, children using ADHD medicine were 

asked to stop taking the medicine 24 hours before recording EEG. (Recording was 

done during the school period. The period to stop taking the drug was not asked to be 

more than 24 hours to avoid any negative influence on the life of subjects) 

EEG was recorded by a 16 channel BrainAmp DC system in a continuous way. 

Electrodes, F3/F4, F7/F8, C3/C4, T7/T8, P3/P4, P7/P8, O1/O2, were positioned based 

on a subset of 10-20 system shown in Figure 4.1. Reference electrodes were placed on 

the earlobes and earth electrode was placed on the left eye. Eye artifacts are determined 

by the electrode positioned on the right eye and the ones placed around it. Sampling 

frequency is 1000(Hz) and the impedance of all the electrodes is lower than 20 KOhm. 

Data was recorded in an isolated area from sound and electromagnetic signals, with a 

low-light environment. Children were sited 114(cm) from the screen. 
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 Reading Stimulus 

 

To assess the reading ability of the subjects, a stimulus set compromising of 100 words 

was prepared. During the preliminary study, the errors of reading and writing in the 

recorded data were examined by the researchers in the project team from Ankara 

University, Faculty of Language and History, Department of Linguistics. 50 

meaningful words and 50 non-meaningful words (non-word- ex. abrık, loskum, hitmi) 

were set, based on Turkish synthetic operation principles, such that they include all 

Turkish sounds. The stimulus set was created under the leadership of lecturers from 

Middle East Technical University, Faculty of Electric and Electronics. Meaningful 

words in the stimulus set include original-based words (ex. Güzel), words derived from 

other words (ex. güçlü), and compound words. These 100 words were sequenced in a 

mixed way to construct the stimulus set. In the experiment, two different stimulus set 

were employed with the same words and different sequencing. 

Words were represented in the middle of a screen in a shuffled way. Subjects were 

asked to read the words silently. In each block of the experiment 3-4 breaks were given, 

when children were asked the last word they read to control if he/she is taking the test. 

The period that each word stays on the screen is set such that each child can read the 

word easily. EEG recording is started as the words appear on the screen. The period 

between the two stimuli is between 1000-1500(ms). EEG signals were recorded from 

27 control and 31 dyslectic subjects. 

 

 Data Analysis 

 

Recorded data was filtered between 0.5-100Hz and 50Hz notch filter was also applied. 

Independent Component Analysis (ICA) was applied to eliminate the eye movement 

artifacts. After artifact removal, the recording was sliced to pieces consisting 1000(ms) 

before stimulus and 1000(ms) after stimulus for each presentation. For each piece, 

baseline-correction was done based on the first 100(ms). For groups of words and non-

words the average was calculated over 50 pieces. To perform the averaging task, 

following latencies and amplitudes are taken into consideration. 
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Figure 4.1. Position of the electrodes on the scalp. 

 

To analyze the dynamics of the brain in the pre-reading stage, the time interval between 

50 milliseconds and 450 milliseconds before starting to read and to analyze the 

dynamics of the brain in the reading stage the time interval between 50 milliseconds 

and 750 milliseconds after starting to read is considered. Figure 4.2 and Figure 4.3 

represent the left and right hemisphere EEG signals obtained from a control subject 

(non-word reading experiment), where the pre-reading and while reading intervals are 

identified by red and green colors, respectively. 

 

4.2 Method 

 

In this study, Dynamic Bayesian networks (DBNs) were used to describe the dynamic 

behavior of the brain in pre-reading, while reading a single word and while reading a 

single non-word stages, for each individual, separately. To be able to use the 

information lie in EEG data in frequency domain, EEG data was band-pass filtered, 

before the structure learning algorithms are applied to learn DBN. After frequency 

band separation, EEG data was discretized, since discrete time Bayesian networks are 

more efficient than continuous time Bayesian networks to model nonlinear interactions 

in the system under investigation. After the structure of the DBNs were identified, the 

associated parameters of the networks are used to classify dyslectics and normal 
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subjects. In this section, all the applied algorithms and their applications on EEG data 

are discussed in detail. 

 

 

Figure 4.2. EEG signals obtained from right hemisphere electrodes from a control 

subject. The interval marked by red color is used to model pre-reading stage and the 

interval marked by green is used to model while reading period. 
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Figure 4.3. EEG signals obtained from left hemisphere electrodes from a control 

subject. The interval marked by red color is used to model pre-reading stage and the 

interval marked by green is used to model while reading period. 
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 Band-pass Filtering 

 

In EEG data, remarkable information can be derived from frequency domain rather 

than the time domain [91]. Hence, three specific frequency bands, namely theta, alpha 

and beta, which were earlier proved to be essential in investigation of neurological 

disorders, shown in Table 4.1 were used to investigate the causal interaction between 

the regions of interest. 

 

Table 4.1. Specification of frequency bands. 

Frequency band Range 

Theta 3Hz-7.5Hz 

Alpha 8Hz-13.5Hz 

Beta 14Hz-30Hz 

 

 

Butterworth filters were used to extract the data in each frequency band. These filters 

are referred to as maximally flat magnitude filter which means frequency response of 

unity in pass-band and zero response in stop-band. They are characterized by their 

smooth, monotonically decreasing frequency response, which makes them a desirable 

filter to derive the frequency components of the data. Figure 4.4 represents the 

specification of the filters. The filters were design such that the stop-band attenuation 

and band-pass ripple was considered 20dB and 3dB, respectively. The length of the 

transition band in each filter is calculated as shown in Equation (4.1), where L indicates 

the length of the transition band, P1 is the first pass band edge frequency, P2 is the 

second pass band edge frequency and ceil function gives the smallest integer not less 

than its argument. 

 

L = (Ceil (P2–P1))/4.                                                                                              (4.1) 

 

Figure 4.5 represents the shape of the beta band pass filter as an example of 

Butterworth filter. Butterworth filter is an example of Infinite Impulse Response (IIR) 

filter. Unlike Finite Impulse Response (FIR) filters, IIR filters contain a recursive part 



47 

 

which results in a more accurate frequency response. However, their phase 

characteristics are not linear. Thus, in digital signal processing applications, where the 

phase of the signal is of importance, IIR filters are not recommended. Albeit the phase 

of the butter worth filter is nonlinear, in this study, the band pass filtering was done 

within MATLAB software, where the entire sequence was available before filtering 

initiation. This eliminates the nonlinear phase distortions and makes zero-phase 

filtering possible (by applying filtfilt function). 

 

 

Figure 4.4. Specification of filters 

 

 

 

Figure 4.5. Shape of beta band pass filter. 
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 Discretization 

 

Bayesian networks may deal with systems with discrete variables, continuous 

variables or both of them (in hybrid models). For continuous Bayesian networks, when 

variables in the system take real values, there is no presentation that can capture all 

conditional densities. Gaussian distributions is a common choice for multivariate 

continuous distributions [121]. The interaction between variables of a system modeled 

by Gaussian Bayesian networks is considered a linear relationship with Gaussian 

noise. Due to Pearl 1988, continuous variables are problematic in Bayesian networks 

of non-linear systems [122]. Discrete Bayesian networks, on the other hand, are able 

to model non-linear relationships within non-linear systems [119]. When variables in 

the system take discrete values, conditional probabilities in the system can be 

represented as a table that specifies the probability of values for each variable, per each 

configuration of its parents [121]. However, training these networks require discrete 

data and since biological data are typically continuous, data is required to be 

discretized [123]. Determination of the number of classes and the boarders that 

separate the classes is challenging. 

Information loss may occur as a consequence of discretization when important 

variations are not considered in discretization process. Then again, discretization may 

also give rise to a more robust data by getting rid of uninformative random noise. To 

control computational load for learning Discrete Bayesian network, the number of 

states of the data should be as small as possible. Here, to compromise between the 

computational load and information loss, each band pass filtered signal is discretized 

into ternary form to implement Discrete Dynamic Bayesian Network, based on a 

discretization formula applied earlier on both fMRI [113] and EEG [115] data, in 

effective connectivity studies: 

 

 𝑑𝑖(t) = 

{
 

 1,         𝑖𝑓 𝑥𝑖(t) ≥ 𝑥𝑖  +
𝑥𝑖,𝑚𝑎𝑥 –𝑥𝑖 

3
,

−1,       𝑖𝑓 𝑥𝑖(t) ≤ 𝑥𝑖 −
 𝑥𝑖−𝑥𝑖,𝑚𝑖𝑛

3
 ,   

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

                                        (4.2)                                                 

 

where 𝑥𝑖, 𝑥𝑖,𝑚𝑖𝑛 and 𝑥𝑖,𝑚𝑎𝑥 are the mean, minimum and maximum values of the data. 
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To visualize the discretization process and the efficiency of the algorithm, the 

proposed discretization method is applied on a sample signal and the result is shown 

in Figure 4.6. Figure 4.6.a represents the shape of the original signal. Figure 4.6.b 

shows the alpha band pass filtered signal and Figure 4.6.c represents the discretization 

result. 

 

 

Figure 4.6. Using proposed method to discretize data: 

a) original signal, b) filtered signal, c) discretized signal. 

 

 

 DBN via DBMCMC TOOLBOX 

 

In this study, DBMCMC (dynamic Bayesian Markov Chain Monte Carlo) Toolbox 

written by Dirk Husmeier in MATLAB is employed to obtain dynamic Bayesian 

network using Markov Chain Monte Carlo algorithm. This toolbox call commands 

from Bayesian Network Toolbox written by Kevin Murphy. Both toolboxes are 

available online [124]. 

 

The parameters inserted as input to train the structure of the DBN are as follows: 

1) Burn-in phase :  

As explained earlier, initial sampled graphs are not involved in the averaging 

process that gives rise to the posterior probabilities of edges. The number of 

steps to take before drawing samples was suggested to be 5 times the number 

of nodes which in our case of study will be 140. 



50 

 

2) Sampling phase: 

 The least number of samples to draw from the chain after burn-in step is 

suggested to be 100 times the number of nodes which in our case of study 

will be 2800. We draw 3000 samples from the Markov chain in our 

experiment for each MCMC simulation. 

3) Number of simulations: 

In our experiment, data from 14 electrodes was used to investigate effective 

connectivity pattern of the brain. Thus, number of possible edges in the structure is 

196. As explained, the initial graph to start each MCMC simulation is a graph with 

one edge which is selected randomly. If we assume that the probability of selecting all 

the edges is equal for initial graph generation, 200 times simulation will probably give 

the chance to start the simulation with all possible one-edge initial graphs. 

 

4.2.3.1 Implementation on Real EEG Data 

 

 To visualize the final output of DBMCMC toolbox, a sample of learned DBN is shown 

in Figure 4.8. Figure 4.7 illustrates the final adjacency matrix that contains the assigned 

weight for each edge of the DBN (Figure 4.8) obtained for the green segments of the 

data in Figures 4.2 and 4.3. To avoid confusion, in Figure 4.7, in the structure of the 

graph, only the edges with the weights higher that 0.1 is shown.   

 

 

Figure 4.7. A sample adjacency matrix that represents causal influence between 

electrodes. 
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Figure 4.8. DBN Representation of a sample. 

 

 Support Vector Machine (SVM) 

 

DBN models trained for all the subjects separately for pre-reading and while reading 

periods. Each model contains 196 (14 x 14) weights indicating causal relationships 

between electrode pairs. These weights are used as features to train SVM classifier. 

Support vector machine is a classification algorithm introduced by Boser, Guyon and 

Vapnik in 1992. The origins of this method lie in statistical learning theory which was 

mainly developed by Vapnik and Chervonenkis in 1960s. Support vector machine is 

been reported to be a promising classification algorithm in multiple real-world 

problems. Strong theoretical basics and rich experimental success are attributed 

characteristics of SVM classifiers [125]. Its capability of dealing with large number of 

features and small number of training set, makes it a preferable classification method 

in multiple problems [126]. The basic idea of SVM is explained in appendix. 
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In this study, MATLAB built-in function (fitcsvm) was employed to train linear SVM 

classifiers from the data. 

 

4.2.4.1 Leave One Out 

 

In machine learning problems, assessing the efficiency of the algorithm is an important 

issue [130]. To determine how well the SVM classification works, other than the train 

data set, we need a test set to evaluate the performance of the classifier. The total data 

samples used in this study was 58 (31 dyslectic and 27 control subjects). To acquire a 

more precise result, it is preferable to train the SVM classifier with higher number of 

data samples. Leave-One-Out method was used to fulfill the best possible 

classification. In this method, the classifier is trained for several times such that in each 

training tour, all the samples in the data set is used except one specific sample and the 

classification algorithm is evaluated based on that specific sample. Finally, after SVM 

was trained 58 times, each time missing one sample, the overall efficiency of the 

algorithm was calculated based on how well the classifier predicted the class of the 

missing specific samples in all 58 tours of classification. 

 

 Feature Reduction Algorithms 

 

Although SVM classifiers are capable of dealing with large number of features, still 

feature reduction algorithms are suggested to improve the generalization performances 

and avoid any probable over fitting error, since in the orientation of the learned hyper 

plane found by SVM classifiers is sensitive to the noisy features.  In this study, 

Principle Component analysis (PCA) and Statistical t-test are applied to reduce the 

dimension of features. The basic concepts of these methods are described in appendix. 
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CHAPTER 5 

 

 

5EXPERIMENTS AND RESULTS  

 

 

 

DBN models were found for each subject (dyslectic or control) in pre-reading stage 

(50ms to 450ms before starting to read) and while reading stage (50ms to 750ms after 

starting to read) separately for each of the frequency bands (theta, alpha and beta 

bands), introduced earlier in chapter four. Thus, a total of six models were obtained 

for each subject, for each of the two experiments (reading a single word and reading a 

single non-word). Figures 5.1 and 5.2 represent the adjacency matrices obtained for 

the first control subject in theta frequency band, based on the data obtained from 

“reading a non-word” experiment in pre-reading stage and while reading stage, 

respectively. The matrices illustrate the weights each of which is a measure of the 

causal influence that one electrode (name of the corresponding row of the matrix) has 

on another electrode (name of the corresponding column of the matrix). To visualize 

the effective connectivity patterns in the brain between electrode pairs, figures 5.3 and 

5.4 are illustrated which represent the DBNs associated to the matrices in figure 5. 1 

and 5.2, respectively. To avoid confusion, in these figures, only the edges with the 

weights higher that 0.1 are shown in the structure of the graph. The edges illustrated 

in the structure are colored based on the value of their weights. Weight of the edges 

colored in blue is between 0.7 and 1, where the edges with weights between 0.4 and 

0.7 are shown in red and green color implies that the weight of the corresponding edge 

is between 0.1 and 0.4. It is clearly shown in these figures that, to perform the reading 

task, the connectivity patterns in brain modify themselves, such that multiple 

connections become stronger, where some other connections become weaker. 
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Figure 5.1. Adjacency matrix of the 1st control subject in theta frequency band in 

“pre-reading” stage based on the data obtained from “a single non-word reading” 

experiment. 

 

 

 

Figure 5.2. Adjacency matrix of the 1st control subject in theta frequency band in 

“while reading” stage based on the data obtained from “a single non-word reading” 

experiment. 

 

 

As illustrated in Figures 5.1 and 5.2, each model contains 196 (14×14) weights 

determining the effective connectivity of the brain. These weights are used as features 
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to train SVM classifier. Principle Component analysis (PCA) and Statistical t-test are 

applied to reduce the dimension of features. Results indicate that in comparison to 

PCA, applying t-test to reduce features, gives rise to a more efficient classification.  

 

 

 

Figure 5.3. DBN of the 1st control subject in theta frequency band in “pre-reading” 

stage based on the data obtained from “a single non-word reading” experiment. 
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Figure 5.4. DBN of the 1st control subject in theta frequency band in “while reading” 

stage based on the data obtained from “a single non-word reading” experiment. 
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In each frequency band, dyslectics and controls are classified in three separate cases. 

In the first case, two groups are classified according to the weights obtained from 

models of pre-reading stage. It was aimed to check if two groups behave differently 

before the initiation of reading process in the brain. In the second case, we classified 

them based on the weights obtained from while reading stage. In the third case, we 

made the classification based on the weights obtained from both pre-reading stage and 

while reading stage. Each weight in the pre-reading stage is subtracted from its 

counterpart in adjacency matrix obtained for while reading stage. This gives us a 

measure of the required variation in each connection to fulfill the reading task.  Since 

parameters (weights) of the learned DBN are basically influenced by the background 

thoughts in each subject’s mind (each individual may have something different in 

her/his mind unconsciously or consciously), the subtraction task, eliminate the 

influence of the background effect and gives a measure of the effort (in terms of 

changes in the effective connectivity pattern) the brain takes to perform the reading 

task. In other words, in the third case, classification is done based on how different the 

brains of the two groups modify their connections to execute the act of reading. 

Classification rates reveal how well the group that each subject (control or dyslectic) 

belongs to, is identified. For each classification case, sensitivity and specificity were 

determined which are statistical measures of a binary classification performance. 

Specificity (or true negative rate) measures the proportion of normal subjects that are 

correctly identified. Sensitivity (or true positive rate) measures the proportion of 

dyslectic patients that are correctly identified. An efficient classification algorithm is 

characterized by not only high classification rate, but also high measures of specificity 

and sensitivity, which indicates identification of both groups by an acceptable rate. 

 

5.1 Classification Rates 

 

Tables 5.1 and 5.2 represent the classification rates for reading a word and a non-word 

experiments, respectively. These rates are obtained by applying SVM to classify two 

groups from each other, using all the weights obtained from DBN models as features. 

Tables 5.3 and 5.4 represent the SVM classification results, where the feature 

dimension was reduced by applying PCA algorithm in experiments that subjects were 

asked to read a word and a non-word, respectively. Classification rate is calculated for 
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all possible number of components and the obtained maximum classification rate is 

accepted and introduced in the table. Tables 5.5 and 5.6 represent the SVM 

classification results, where the features of the classifier were selected based on the 

results obtained from statistical t-test, when subjects were asked to read a word and a 

non-word, respectively. 

In each case, for all the frequency bands, classification rate (proportion of all subjects 

identified correctly by the classification algorithm), sensitivity (proportion of dyslectic 

subjects identified correctly by the classification algorithm), and specificity 

(proportion of normal subjects identified correctly by the classification algorithm), are 

identified. Classification rates were calculated based on the parameters of DBN 

obtained for individual subjects in separate experiments. If we wanted to classify the 

two groups based on the combined information from both experiments, the number of 

features that were supposed to be involved in classification task, even after applying 

statistical t-test to select the significantly different connections between two groups, 

would be more than the number of subjects in the study, which would result in the 

malfunction of the SVM classification algorithm and consequently misleading values.  
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Table 5.1. SVM Classification rates in word reading experiment – No feature 

reduction algorithm was applied. 

Reading a word 

 

Theta 

 

 

Case I: Pre-reading 51.72% 
Specificity 44.44% 

Sensitivity 58.06% 

Case II: While 

reading 
60.34% 

Specificity 59.26% 

Sensitivity 61.29% 

Case III: Variation 

between pre-reading 

and while reading 

48.28% 

Specificity 48.15% 

Sensitivity 
48.39% 

 

 

 

Alpha 

 

 

Case I: Pre-reading 50.00% 
Specificity 48.15% 

Sensitivity 51.61% 

Case II: While 

reading 
60.34% 

Specificity 59.26% 

Sensitivity 61.29% 

Case III: Variation 

between pre-reading 

and while reading 

62.07% 

Specificity 51.85% 

Sensitivity 
70.97% 

 

 

 

Beta 

 

 

Case I: Pre-reading 46.55% 
Specificity 48.15% 

Sensitivity 45.16% 

Case II: While 

reading 
43.10% 

Specificity 40.74% 

Sensitivity 45.16% 

Case III: Variation 

between pre-reading 

and while reading 

41.38% 

Specificity 48.15% 

Sensitivity 
     35.48% 
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Table 5.2. SVM Classification rates in non-word reading experiment – No feature 

reduction algorithm was applied. 

Reading a non-word 

 

Theta 

 

 

Case I: Pre-reading 50.00% 
Specificity 44.44% 

Sensitivity 54.84% 

Case II: While 

reading 
39.66% 

Specificity 33.33% 

Sensitivity 45.16% 

Case III: Variation 

between pre-reading 

and while reading 

53.45% 

Specificity 44.44% 

Sensitivity 
61.29% 

 

 

 

Alpha 

 

 

Case I: Pre-reading 36.21% 
Specificity 29.63% 

Sensitivity 41.94% 

Case II: While 

reading 
58.62% 

Specificity 55.56% 

Sensitivity 61.29% 

Case III: Variation 

between pre-reading 

and while reading 

46.55% 

Specificity 40.74% 

Sensitivity 
51.61% 

 

 

 

Beta 

 

 

Case I: Pre-reading 48.28% 
Specificity 44.44% 

Sensitivity 51.61% 

Case II: While 

reading 
43.10% 

Specificity 40.74% 

Sensitivity 45.16% 

Case III: Variation 

between pre-reading 

and while reading 

48.28% 

Specificity 37.04% 

Sensitivity 
58.06% 
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Table 5.3. SVM Classification rates in word reading experiment - PCA was used for 

feature reduction. 

Reading a word 

 

Theta 

 

 

Case I: Pre-reading 79.31% 
Specificity 77.78% 

Sensitivity 80.65% 

Case II: While 

reading 
75.86% 

Specificity 68.52% 

Sensitivity 82.26% 

Case III: Variation 

between pre-reading 

and while reading 

63.79% 

Specificity 62.96% 

Sensitivity 
64.52% 

 

 

 

Alpha 

 

 

Case I: pre-reading 65.52% 
Specificity 59.26% 

Sensitivity 70.97% 

Case II: While 

reading 
72.41% 

Specificity 66.67% 

Sensitivity 77.42% 

Case III: Variation 

between pre-reading 

and while reading 

68.97% 

Specificity 62.96% 

Sensitivity 
74.19% 

 

 

 

Beta 

 

 

Case I: Pre-reading 68.97% 
Specificity 44.44% 

Sensitivity 90.32% 

Case II: While 

reading 
65.52% 

Specificity 80.65% 

Sensitivity 48.15% 

Case III: Variation 

between pre-reading 

and while reading 

65.52% 

Specificity 55.56% 

Sensitivity 
74.19% 
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Table 5.4. SVM Classification rates in non-word reading experiment - PCA was used 

for feature reduction. 

Reading a non-word 

 

Theta 

 

 

Case I: Pre-reading 67.24% 
Specificity 62.96% 

Sensitivity 70.97% 

Case II: While reading 67.24% 
Specificity 70.37% 

Sensitivity 64.52% 

Case III: Variation 

between pre-reading 

and while reading 

63.79% 

Specificity 62.96% 

Sensitivity 
64.52% 

 

 

 

Alpha 

 

 

Case I: pre-reading 62.07% 
Specificity 62.96% 

Sensitivity 61.29% 

Case II: While reading 63.79% 
Specificity 62.96% 

Sensitivity 64.51% 

Case III: Variation 

between pre-reading 

and while reading 

70.69% 

Specificity 70.37% 

Sensitivity 
70.97% 

 

 

 

Beta 

 

 

Case I: Pre-reading 67.24% 
Specificity 59.26% 

Sensitivity 74.19% 

Case II: While 

reading 
68.97% 

Specificity 55.56% 

Sensitivity 80.65% 

Case III: Variation 

between pre-reading 

and while reading 

65.52% 

Specificity 53.10% 

Sensitivity 
76.34% 
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Table 5.5. SVM Classification rates in word reading experiment – statistical t-test was 

used for feature reduction. 

Reading a word 

 

Theta 

 

 

Case I: Pre-reading 86.21% 
Specificity 92.59% 

Sensitivity 80.65% 

Case II: While 

reading 
74.14% 

Specificity 59.26% 

Sensitivity 87.10% 

Case III: Variation 

between pre-reading 

and while reading 

84.48% 

Specificity 81.48% 

Sensitivity 
87.10% 

 

 

 

Alpha 

 

 

Case I: pre-reading 70.69% 
Specificity 44.44% 

Sensitivity 93.55% 

Case II: While reading 75.86% 
Specificity 55.56% 

Sensitivity 93.55% 

Case III: Variation 

between pre-reading 

and while reading 

86.21% 

Specificity 81.48% 

Sensitivity 
90.32% 

 

 

 

Beta 

 

 

Case I: Pre-reading 75.86% 
Specificity 62.96% 

Sensitivity 87.10% 

Case II: While 

reading 
68.97% 

Specificity 40.74% 

Sensitivity 93.55% 

Case III: Variation 

between pre-reading 

and while reading 

67.24% 

Specificity 55.56% 

Sensitivity 
77.42% 
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Table 5.6. SVM Classification rates in non-word reading experiment – statistical t-test 

was used for feature reduction. 

Reading a non-word 

 

Theta 

 

 

Case I: Pre-reading 86.21% 
Specificity 81.48% 

Sensitivity 90.32% 

Case II: While reading 51.72% 
Specificity 70.37% 

Sensitivity 35.48% 

Case III: Variation 

between pre-reading and 

while reading 

72.41% 

Specificity 62.96% 

Sensitivity 
80.65% 

 

 

 

Alpha 

 

 

Case I: Pre-reading 65.52% 
Specificity 55.56% 

Sensitivity 74.19% 

Case II: While reading 77.59% 
Specificity 92.59% 

Sensitivity 64.52% 

Case III: Variation 

between pre-reading and 

while reading 

81.03% 

Specificity 85.19% 

Sensitivity 
77.42% 

 

 

 

Beta 

 

 

Case I: Pre-reading 79.31% 
Specificity 62.96% 

Sensitivity 93.55% 

Case II: While reading 51.72% 
Specificity 29.63% 

Sensitivity 70.97% 

Case III: Variation 

between pre-reading and 

while reading 

62.07% 

Specificity 51.85% 

Sensitivity 
70.97% 
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5.2 Feature Reduction Increases Classification Rates 

 

Figures 5.5 and 5.6 represents the classification rate obtained by applying SVM 

without feature reduction (blue), applying SVM accompanying PCA, as the feature 

reduction algorithm (orange) and applying SVM accompanying t-test to select features 

(gray). All the results obtained for all the cases, in all the frequency bands are 

illustrated in these figures. In all cases and all frequency bands, SVM accompanying 

each of feature reduction algorithms, result in a better classification job. Thus, feature 

reduction is an important step in classifying two groups. Between the two applied 

methods, to reduce the dimension of the data, namely, PCA and t-test, although in 

some cases PCA separates the data more efficiently, in most of them, t-test is a better 

choice to lower the dimension of the data. 

 

 

Figure 5.5. Comparison of the feature reduction methods in word reading 

experiment. 
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Figure 5.6. Comparison of the feature reduction methods in non-word reading 

experiment. 

 

 

5.3 Classification Results after Feature Reduction by Statistical t-test 

 

Now that we have introduced statistical t-test feature reduction as the more reliable 

feature reduction method, in this section we will discuss obtained results based on this 

method in more details.  

  

 Discussion over Pre-reading Classification Rates 

 

Figures 5.7 and 5.8 visualize the classification rates obtained from three different cases 

in different frequency bands represented in Tables 5.5 and 5.6, for word and non-word 

experiments, respectively. Case I, represented in blue, is the classification based on 

parameters from the models of “pre-reading” stage. As illustrated, in this case, 
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classification rate is higher in theta band in comparison to alpha and beta bands in both 

experiments. Thus, differences in the casual interactions in the networks of the two 

groups before reading initiation are more distinguishable in theta band. In other words, 

theta band is the most informative frequency band to study the disturbance in the 

dyslectic brains before starting to read.  

In 2012, Babiloni, C., et al. suggested that dyslexia may be characterized by some 

cortical neuronal synchronization involved in the resting state condition [124]. In a 

recent study, Schiavone, G., et al. reported abnormalities in open-eyes resting state 

EEG of dyslexics in 6-8 Hz frequency band. Here, theta band (3-7.5Hz) is suggested 

to reveal the abnormalities in dyslexic subjects before reading initiation [134]. 

Although before starting to read period of our experiment and the open-eyes resting 

state of Schiavone’s are not the same, this is the closest condition to our case. Both 

claim the common 6-7.5 Hz frequency band range to be abnormal in dyslectics in the 

absence of any stimulation. 

 

  

Figure 5.7. Classification rates of different cases in different frequency bands 

in word reading experiment. 
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Figure 5.8. Classification rates of different cases in different frequency bands 

in non-word reading experiment. 

  

 Differences in the Reading Mechanism of the Two Groups 

 

Once a visual stimulus (word or non-word) appears, pre-stimulus network modifies to 

make an appropriate response. Pre-stimulus differences between two groups, discussed 

in the previous section, interfere with subsequent required activation and deactivation 

of related sub-networks to fulfill the reading task. As a result, to study the underlying 

differences in the reading mechanism of two groups, we used a combination of the 

obtained weights for “pre-reading” models and “while reading” models (Case III). For 

each subject, changes of the weights before and while reading were calculated. Such 

that, the weight assigned to each connection from “before reading” model is subtracted 

from “while reading” model. The resultant values are the established changes in causal 

influences between ROIs to perform the reading task for each subject. These values 

were used as features of case III classification. 

While performing the reading task (a word or a non-word), Case II and Case III 

classification rates, are higher in alpha frequency band. Thus, alpha frequency waves 

are the most disrupted ones in dyslectics while reading. 

Making a comparison between the classification rates of case II and III, which involve 

the task of reading, for word and non-word experiments, in alpha and beta bands, 
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reveals that the classification rates are higher for reading a word than reading a non-

word.  

The best classification rate based on the parameters of “pre-reading” stage (Case I) is 

86.21% in theta band. (It was common for both of the experiments). The best 

classification rate involving parameters of “while reading” stage is 81.03% for reading 

a non-word and 86.21% for reading a word experiments, both of which were obtained 

from alpha band parameters. Accordingly, theta and alpha bands are introduce as the 

most informative frequency bands about the connectivity disturbance in dyslectic brain 

in “pre-reading” and “ while reading” stages, respectively. 

 

5.4 Effective Connectivity Differences between the Two Groups 

 

As mentioned, in the transition procedure from “pre-reading” state to “while-reading” 

state, weights of the connections in the brain network alter. In this section, the 

connections that alter significantly different between two groups to perform reading 

task is discussed in neurobiological sense. Initially, the significantly different 

connections in each frequency band are reported, which were used in the Case III 

classification. Then, the anatomical projections of EEG electrodes are identified on the 

left hemisphere of the brain, which is the dominant hemisphere for language related 

tasks. Finally, the compatibility of the obtained results is checked with previously 

findings based on fMR studies. 

 

 Significantly Different Connections between Two Groups  

 

Significantly different connections between dyslectics and normal readers are 

identified and used as features for Case III classification, in each frequency band, in 

each experiment. Table 5.7 and 5.8 contain these connections in each frequency band, 

for “reading a single word” and “reading a single non-word” experiments, 

respectively. 
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Table 5.7. Significantly different connections between two groups - word reading 

eaxperiment 

Theta 

Band 

(F4F3), (F4F8), (T7F4), (P7F7), (O1O1), (O1C4) 

Alpha 

Band  

(F4C4), (C4F8), (O2F3), (F7O1), (F3F7), (C3F7), 

(F7F3), (C3F3) 

Beta 

Band 

(F4F3), (P7F3), (F4O1), (P4P8), (P8T8), (P8P8), 

(O1O1), (F7O1), (C3O1) 

 

 

Table 5.8. Significantly different connections between two groups - non-word reading 

eaxperiment. 

Theta 

Band 

(F3P4), (F3T7), (F4F7), (F4C4), (C3F3), (C3P8), 

(P3F4), (T8T7), (O2O1) 

Alpha 

Band 

(F3F8), (F4C4), (F8P8), (C3F4), (P3P8), (O2O1), 

(T7F3), (T8F3) 

Beta 

Band 

(P7F3), (T7C3), (C3F7), (C4T7), (P8T7), (T7O2), 

(T8F7), (P8F7), (F4F8), (P8T8), (O2F7), (P3F4) 

 

 

 

 Electrode Mapping 

 

EEG signal was recorded via 16 electrodes positioned on the scalp based on a subset 

of 10-20 system, earlier shown in Figure 4.1. Recorded signal from Fp1 and Fp2 is the 

electrical activity associated with eye movement which were not incorporated in our 

model. Figure 5.9 represents the positions of the electrodes on the left sagittal plane. 
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Figure 5.9. position of the electrodes on the left sagittal plane [135]. 

 

In 2010, Richlan, F., et al., in a meta-analysis over the previous studies from 

neuroimaging data, identified the brain regions with consistent under- or over 

activation in dyslectics. These regions are considered as regions of interest (ROIs) in 

our study. These areas, all located in left hemisphere, are inferior parietal regions, 

fusiform area, inferior frontal region, primary motor cortex and temporal cortex 

(superior, middle and inferior) [51,136]. Figure 5.10 represents the anatomical position 

of Broddman areas on the left hemisphere. Table 5.9 represents the ROIs, their related 

cytoarchitectonic areas and the closest EEG electrodes to each ROI. This provides us 

with the opportunity to check the compatibility of our results with previously reported 

abnormalities in dyslectic brains. 

 

Figure 5.10. Anatomical position of Broddman areas on left hemisphere of the scalp 

[137]. 
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The electrical activity of each ROI is approximated by the recorded signal from a 

specific electrode. The term approximation is used due to three reasons. Firstly, the 

recorded signal by each electrode is representative of a summation over all the 

activities in the nearby areas. Besides, the experiment was not provided with a high 

density EEG equipment which leads to a less accurate source localization. Finally, the 

electrical fields transmit through biological tissue (volume conduction phenomenon) 

and this makes confusion in regional measurements. 

 

Table 5.9. ROIs and the correspondent electrodes on the scalp. 

ROI Related Broddman 

area 

Correspondent 

electrodes 

Role 

 

Inferior 

parietal 

region 

39,40 P3,C3 Encompass super 

marginal gyrus and 

angular gyrus, language 

processing areas 

Fusiform 

area 

37 P7 Visual word form area 

Inferior 

frontal 

region 

44,45,47 F3,F7 Encompass Broca’s 

area, responsible for 

motor images  

Primary 

motor 

cortex 

4 C3 Responsible for 

articulation 

Temporal 

cortex 

20,21,22 T7 Encompass Wernicke’s 

area, phonology center, 

information about 

sounds of speech 

component 

 

 

Inferior parietal region (BA 39 and 40) is considered to include supermarginal gyrus 

and angular gyrus, which takes role as a conductor which makes the communication 

between the orthography (visual word form area) and phonology (Wernicke’s area), 
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possible. Fusiform area, also known as occipito-temporal gyrus, (BA 37) is the 

hypothetical word form area and inferior frontal region (BA 44, 45 and 47) 

encompasses the Broca’s area, which contains the information for motor images. 

Inferior and middle temporal regions (BA 20 and 21) are considered to provide access 

for semantic-lexical presentations [136]. Superior temporal region (BA 22) involve 

Wernicke’s area which serves as phonological processing unit. Primary motor cortex 

(BA 4) is expected to be involved in articulation procedure. Figure 5.11 represents 

these functional units of the brain that are involved in language processing task. 

 

 

Figure 5.11.  Language specific areas of the brain [138]. 

 

 

 

 Different Connections between Dyslectics and Controls 

 

Significantly different connections between two groups obtained from our study, are 

reported in Tables 5.7 and 5.8. The compatibility of these findings with previously 

reported abnormal connectivity patterns in dyslectic brains were checked. Figures 5.12 

and 5.13 illustrate the findings from our study and the connections in red, are the ones 

that has been attenuated by previous studies. Table 5.10 contains previous study and 

shows which connections are attenuated by which study. 
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Table 5.10. Comparison of the found abnormalities with previous studies.  

Authors Results Compare the results with the findings from 

our study 
 

Pugh, K. 

R., et al. 

[23] 

Functional connectivity disturbance 

is revealed in dyslectic subjects 

while performing tasks requiring 

phonological assembly between 

angular gyrus and left-hemisphere 

language-related regions. 

(Not Detected) 

 

Quaglino, 

V., et al. 

[65] 

disturbed effective connectivity 

between supermarginal cortex and 

inferior frontal cortex in dyslectic 

group 

-The activity of “Inferior frontal cortex” is 

measured by electrodes “F3 and F7”. 

-The activity of “Supermarginal cortex” is 

measured by electrodes “C3 and P3”. 

- In word reading experiment, connections 

(C3F3- in alpha band) (C3F7- in alpha 

band) are found to be siginifcantly different 

between dyslectics and controls, which are 

compatible with the findings of this study. 

-In non-word redaing experiment, 

connection (C3F7-theta, beta) is found to 

be siginifcantly different between dyslectics 

and controls, which is compatible with the 

findings of this study. 

Cao, F., et 

al. [66] 

Dyslectics have deficits in 

integrating orthography and 

phonology utilizing left inferior 

parietal lobule, and in engaging 

phonological segmentation via the 

left inferior frontal gyrus. 

 

-The activity of “Left inferior parietal” region is 

measured by electrodes “C3 and P3”. 

-The activity of “Left Inferior Frontal” 

region is measured by electrides “F3 and 

F7”. 

- In word reading experiment, connections 

(C3F3-alpha) (C3F7-alpha) are found 

to be siginifcantly different between 

dyslectics and controls, which are 

compatible with the findings of this study. 

-In non-word redaing experiment, 

connection (C3F7-theta, beta) is found to 

be siginifcantly different between dyslectics 

and controls, which is compatible with the 

findings of this study. 

Ligges, C., 

et al. [67] 

right hemisphere language areas to 

participate in compensatory 

mechanism of dyslectic brains for 

phonological deficits 

Disruption in connections between right 

hemisphere regions is observed. 

- In word reading experiment, connections 

(P4P8 - beta) (P8T8 - beta) (T8P8-

alpha) are found to be siginifcantly 

different between dyslectics and controls. 

- In non-word redaing experiment, 

connection (P8T8- beta) is found to be 

siginifcantly different between dyslectics 

and controls. 
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Table 5.11. Continued. 

Finn, E. 

S., et al. 

[69] 

anomalies in the 

connection between visual 

regions and prefrontal 

areas 

- The activity of “Visual regions” is measured by 

electrodes “O1 and O2”. 

-The activity of “Pre-frontal areas” is measured by electrodes 

electrodes “F3 and F7”. 

- In word reading experiment, connections 

(O2F3-alpha) (F7O1- alpha, beta) are found to 

be siginifcantly different between dyslectics and 

controls, which is compatible with the findings of 

this study. 

-In non-word redaing experiment, connection 

(O2F7-beta) is found to be siginifcantly different 

between dyslectics and controls, which is 

compatible with the findings of this study. 

Stanberry, 

L. I., et al. 

[8] 

Disturbed connectivity 

between left inferior 

frontal gyrus and frontal, 

occipital and cerebellar 

regions in the right 

hemisphere in dyslectic 

subjects 

-The activity of “Left Inferior Frontal” region is 

measured by electrodes “F3 and F7”. 

-The activity of “Right Frontal” region is 

 measured by electrodes “F4 and F8”. 

-The activity of “Right Occipital” region 

 is measured by electrode “O2”. 

- In word reading experiment, connections (F4f3, 

theta, beta) (O2F3-alpha) are found to be 

siginifcantly different between dyslectics and 

controls, which is compatible with the findings of 

this study. 

-In non-word redaing experiment, connections 

(F3F8.alpha) (F4F7-theta) (O2F7-beta) are 

found to be siginifcantly different between 

dyslectics and controls, which is compatible with 

the findings of this study. 

Richards, 

T. L., et 

al. [64] 

Disrupted connectivity 

between left inferior 

frontal gyrus  and multiple 

regions ( right and left 

middle frontal gyrus, right 

and left supplemental 

motor area, left precentral 

gyrus, right superior 

frontal gyrus) before 

treatment and no 

difference were reported 

between two groups after 

treatment 

-The activity of “Left Inferior Frontal” region is measured by 

electrodes “F3 and F7”. 

-the activity of “Right and left middle frontal gyrus” 

is measured by electrodes “F3 and F4”. 

-The activity of “Right and left motor area” is 

measured by electrodes “C3 and C4”. 

- In word reading experiment, connections (F4F3, 

theta, beta) (C3F3-alpha) (F3F7-alpha) 

(C3F7-alpha) are found to be siginifcantly 

different between dyslectics and controls, which is 

compatible with the findings of this study. 

-In non-word redaing experiment, connections 

 (F4F7-theta) (C3F7-theta, beta) are found to 

be siginifcantly different between dyslectics and 

controls, which is compatible with the findings of 

this study. 

Horwitz, 

B., et al. 

[12] 

Disconnection of left 

angular gyrus from visual 

areas, from Wernicke’s 

area and from inferior 

frontal cortex in dyslectic 

brains. 

(Partially Detected) 

-The activity of “Angular gyrus” is measured by 

electrode “P3”. 

- The activity of “Inferior frontal cortex” is 

measured by electrodes “F3, F4, F7 and F8”. 

-In non-word reading experiment, connection 

 (P3F4, theta, beta) is found to be siginifcantly 

different between dyslectics and controls, which is 

compatible with the findings of this study. 
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Table 5.12. Continued. 

van der 

Mark, S., 

et al. [68] 

 

Significant disruption of functional 

connectivity between the VWFA 

and left inferior frontal and left 

inferior parietal language areas in 

dyslectic children. 

-The activity of “Visual Word From Area” is measured 

by 

electrodes “P7”. 

-The activity of “Left Inferior Frontal” region 

is measured by electrides “F3 and F7”. 

-The activity of “Left inferior parietal” region is 

measured by 

electrodes “C3 and P3”. 

- In word reading experiment, connections 

(P7T7-theta) (P7F3-beta) are found to 

be siginifcantly different between dyslectics 

and controls, which are compatible with the 

findings of this study. 

-In non-word redaing experiment, connection 

(P7F3-beta) is found to be siginifcantly 

different between dyslectics and controls, 

which is compatible with the findings of this 

study. 
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Figure 5.12. Presentation of significantly different connections between two groups 

– word reading experiment. 

 

 

 

Figure 5.13. Presentation of significantly different connections between two groups 

– non-word reading experiment. 

 

 

Increased activity in frontal areas (associated to F3 and F7 electrodes) and also in right 

hemisphere is reported in dyslectic brains which is associated to take role in 

compensatory mechanism for poor phonological processing [9]. Disturbed 

connections not reported directly from previous studies are supposed to participate in 
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the compensatory mechanism of dyslectic brains involving mostly electrodes 

measuring the activity of frontal areas and right hemisphere regions. 

Based on the interactive reading model of the brain, represented in figure 2.5, subjects 

take use two pathways in the brain to acquire the phonological knowledge of the word. 

To read a non-word, the route from letters to phonemes (ventral pathway) is more 

activated. However, to read a word, the lexicon/semantic route (dorsal pathway) is 

more activated to transfer the information from graphemes to phonemes. There are 

multiple connections found to be disrupted in dyslectic brains which are part of each 

of these pathways. The ventral pathway transfer the visual information percepted in 

occipital region and visual word form area to frontal region. The dorsal pathway, 

information is transferred initially to angular gyrus and supermarginal regions (P3,C3) 

and then goes to Wernicke’s area (T7) and Broca’s area (F3,F7). Table 5.11 represent 

these connections. 

 

Table 5.13. Disrupted connections in dyslectics which take role in dorsal or ventral 

pathways. 

 Ventral Pathway Dorsal Pathway 

Word reading Experiment (O2F3-alpha) 

(F7O1-alpha f beta) 

(P7T7-theta) 

Non-word Reading 

Experiment 

(O2F7-beta), 

(P7F3-beta) 

(T7C3-beta) 

(T7F3-beta) 

(F3T7-beta) 

 

 

As seen in Table 5.11, in both experiments, the disrupted connections include the ones 

from both dorsal and ventral pathways. 
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CHAPTER 6 

 

 

6CONCLUSION  

 

 

 

The main objective of this study is to classify dyslexic and normal readers based on 

the differences in causal interactions that exist in the network of their brains. Effective 

connectivity model, as a measure of causal interactions, was extracted by Dynamic 

Bayesian Network. Then, the 196 weights of the DBN structure, representing the 

causal influence between all possible pairs of electrodes, was used as features in the 

SVM classifier.  

Since the number of cases in the training set was limited (57 subjects) in comparison 

to number of features, to avoid over fitting, feature reduction was proposed to increase 

the efficiency of the classification. Principle component analysis and statistical t-test 

were used to reduce the dimension of the features. Application of the both feature 

reduction algorithms result in a more efficient classification than no feature reduction 

case. From the comparison of the methods, applying statistical t-test gives rise to a 

better classification results. 

Theta frequency band is found to be the most informative band about the disturbance 

of the casual interactions in dyslectic brains in the “pre-reading” stage. From the 

parameters of this period in theta band, we classified two groups by 86.21% in both 

experiments (reading a non-word and reading a word). This provides evidence for the 

perturbed effective connectivity in the networks of dyslectic brains regardless of the 

reading task.  

In case III, the parameters from “pre-reading” period and “while reading” period were 

combined. New parameters are a measure of established changes in causal influences 

in the network to perform the reading task. The best classification rate based on the 

new parameters was obtained 86.21% for word reading experiment in alpha band and 

81.03% in the same band for non-word reading experiment.  



80 

 

The significantly different connections between two groups, which were used as input 

features to train SVM classifiers, involve connections from both ventral (takes 

significant role in non-word reading) and dorsal (takes significant role in word reading) 

pathway.  

The significantly different connections between two groups suggest a mainly disturbed 

network among brain regions. Most of these connections were previously reported 

form other studies. The remaining perturbed connections are the ones involving frontal 

and right hemisphere regions which are suggested to take role in compensatory 

pathways that dyslectic brains take.  

Finally, Dynamic Bayesian network is used to reveal the effective connectivity and the 

causal interactions in the brain network. Successful classification based on the 

parameters of model indicates the efficiency of the DBN to reveal the differences of 

the interconnections in the networks of the two groups. 

 

6.1 Future Work 

 

Following are multiple methods proposed that may be applied to improve our results. 

Although EEG signals have high temporal resolution, which makes them suitable to 

study the temporal characteristics of the underlying system, their spatial resolution of 

these signals is low. One reason lies on the fact that EEG electrodes record the ongoing 

electrical activity in the brain from the scalp. Besides, events like volume 

conduction, defined as the transmission of electric fields from an electric primary 

current source through biological tissue, make EEG recordings less reliable in terms 

of the location of the signal. There are multiple algorithms (e.g. ICA) that can be 

applied to localize the source of the EEG data. EEG source localization make up for 

the low spatial resolution of EEG and may result in a more accurate model.  

One other method to improve our results is to incorporate hidden nodes in the structure 

of our dynamic Bayesian network. These hidden nodes may be representative of the 

ROIs placed in the deeper regions of the brain which EEG electrodes are not capable 

to record. The value of these nodes, that their activities are not recorded by EEG 

electrode, are estimated by expectation maximization algorithms. 

In this study, the temporal characteristics of the network were studied based on a 1 

millisecond time unit. Effective connectivity analysis with different time units (e.g., 
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2ms) may result in DBN models that are more informative in terms of the differences 

between dyslectics and controls. Le Song et al, introduced a time-varying DBN for 

modeling the structurally varying directed dependency structures underlying non-

stationary neural time series. Time Varying Dynamic Bayesian Network (TV-DBN) is 

capable of determining the time-evolving network structures underlying non-

stationary biological signals. Though, it probably is an efficient algorithm to model a 

multi-stage process like reading [139]. 
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APPENDIX A 

 

 

SUPPORT VECTOR MACHINE 

 

 

 

The basic idea of a support vector machine is to introduce a hyper plane as the decision 

boundary between samples such that the margin between the samples of the classes is 

maximized [127]. Therefore, the goal is to find the hyper plane passing as far as 

possible from all sample points. So, the selected hyper plane by SVM algorithm gives 

the largest minimum distance to the samples used in training procedure. Twice this 

distance is called margin within SVM’s theory. Figure A.1 illustrates the optimal 

separating hyper plane maximizes the margin of the training data with two features. 

One might employ linear or non-linear SVM classifier to separate two groups in a 

dataset. Linear SVM classifiers separate data with a straight line (1 dimension), flat 

plane (2 dimensions) or an N-dimensional hyper plane, due to the number of feature 

dimension. However, in some cases a non-linear region classifies the data in a more 

efficient way. Non-linear SVM classifiers deal with these cases, by the so-called 

“kernel trick”, where the data is transformed into a feature space with a higher 

dimension via a kernel function and then the best separating hyper plane is found to 

classify the data. In the datasets with large number of features, there is no need to 

transform the data into a higher dimension space. So, non-linear mapping does not 

improve our results and linear SVM classifiers are good enough to classify the two 

groups [128]. 
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Figure A.1. SVM classification boundary and margin [129]. 

 

Like most of the other machine learning algorithms, scaling of the data is an important 

step before staring the classification algorithm. Scaling prevents the dominance of the 

features with greater numeric ranges on the influence of the other features. It involves 

mean centering and dividing by the standard deviation for all the features in the dataset 

[128]. 
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11APPENDIX B 

 

 

12FEATURE RECUTION ALGORITHMS 

 

 

 

B.1      Principle Component Analysis 

 

Many sources of data are demonstrated as large matrices. The data in many of these 

matrices may be summarized into smaller matrices which in some sense are close to 

the original matrix. These matrices have fewer number of columns or rows, which 

makes them more suitable for data processing algorithms. The process of detecting the 

smaller matrix from an original matrix is dimension reduction and Principle 

Component Analysis (PCA) is one of the popular techniques to reduce the dimension 

of the data under study. It was initially introduced by Pearson in 1901, and later in 

1963, it was generalized by Loève [131].  

Given a data set with n dimensions, PCA aims to detect a linear subspace with 

dimension d (d < n), that the data points lie mainly on. d orthogonal vectors 

characterizing the new subspace, are called the “principal components”. The principal 

components are linear transformations of the original data points [132]. In practice, 

PCA combines related variables, and focus on uncorrelated or independent ones to 

reduce the number of variables in the data without losing important information.  

To perform an efficient PCA, the mean is subtracted from each of the data dimensions. 

This process, called “mean subtraction” or “mean centering”, makes certain that the 

calculated first principle component characterizes the direction of the maximum 

variation. After mean subtraction, covariance matrix and the associated eigenvalues 

and eigenvectors are derived from the data. The eigenvector with the highest 

eigenvalue is the principle component of the data, which is the linear combination of 

the variables in data that has maximum variance. Though, subsequent components 

clarify less variations among variables. Relative amount of the variation each 
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component accounts for is the ratio of the value of the corresponding eigenvalue to the 

total eigenvalues of the covariance matrix.  To generate a new feature vector, the 

eigenvectors associated to the high eigenvalues are kept and the rest are ignored. The 

new feature vector contains most of the information in the data, since it involves the 

eigenvectors associated to the eigenvalues with high values. Finally, new data with 

reduced dimension is generated by multiplying the transpose of new feature vector by 

the transpose of mean-adjusted data matrix [133]. 

Each dynamic Bayesian network obtained for each subject, has 196 parameters. Since 

number of subjects is limited (58) in the data set, to perform an efficient classification 

task, it is required to reduce the dimension of the feature vector. For machine learning 

problems, the sample size should mostly be around six times the feature size. Here, we 

used the first ten principle component to generate the new data set. After applying 

PCA, each subject has ten parameters and dyslectics and controls are classified based 

on these parameters. 

 

B.2   Statistical t-test 

 

Other than PCA, which were applied to reduce the dimension of input features for the 

classification task, t-test was also applied to select significantly different variables 

(connections) between two groups, which were later employed to train the classifier. 

The t-test determines whether the means of two groups are statistically different from 

each other. Suppose there exists two distribution, T and C, which we aim to compare 

their group means. t-value is the quantity which is calculated in t-test analysis by the 

formula represented below, where �̅�𝑇 and �̅�𝐶 indicate the average, 𝑛𝑇  and 𝑛𝐶 are the 

number of samples and 𝑣𝑎𝑟𝑇 and 𝑣𝑎𝑟𝑇 are the variances of the two groups under 

investigation. 

 

  t = 
�̅�𝑻−�̅�𝑪

√
𝒗𝒂𝒓𝑻
𝒏𝑻

+
𝒗𝒂𝒓𝑪
𝒏𝑪

 .                                                                                                         (12.1) 

An essential part of any statistical test is the concept of “null hypothesis”. Consider 

two sets of data with sample means μ1 and μ2. One of the datasets contains the weights 

of the DBNs for dyslectic and the other contains the same for control group. Here, the 
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null hypothesis indicates that the samples from both data sets are part of the same 

population such that their population means μ1 and μ2 are equal (μ1 = μ2). 

In t-test analysis, p value is a measure of certainty that the obtained results represent a 

genuine effect present over the whole population. It actually is the probability that the 

observed result was obtained by chance or in other words, the null hypothesis is true. 

p-value can be determined based on the values of two parameters, t-value and the 

degree of freedom, from a standard table of significance. Degree of freedom (df) is 

equal to the sum of the number of samples in both group minus 2. After the p-value is 

identified, to test the significance level, a risk level of 0.05 is applied on the results. 

This means that if p < 0.05, then the null hypothesis is rejected and the distributions 

which the two groups were sampled from are significantly different from each other. 

Here, in this study, MATLAB built-in functions were used to apply t-test to detect the 

significantly different weights (obtained from DBN models) among two dyslectic and 

control groups. 

 

 

 

 

 

 

  

 

 


