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ABSTRACT

ESTIMATION OF GROUND REACTION FORCES USING FOREARM
CRUTCHES INSTRUMENTED WITH PRESSURE SENSORS AND

ACCELEROMETERS

Seylan, Çağlar

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Uluç Saranlı

February 2016, 82 pages

The use of crutches is critical for successful restoration of walking mobility through
lower-body robotic orthosis that externally support and replace the functions of knee
and hip joints. In this context, crutches can also provide useful sensory data, al-
lowing the estimation of system state, postural stability, controller performance as
well as user intention to regulate controller actions. In this thesis, we describe de-
sign and analysis of a crutch system instrumented with accelerometer and pressure
sensors to estimate ground reaction forces on their point of contact, providing a
well-defined sensory output for such applications. We propose an angle-dependent
quadratic model to map pressure data to force components, which we identify using
least-squares methods. First, we show performance of the model for specific crutch
angles. Then, we evaluate the model and show the results for crutch angles other than
those used for training. Finally, we present the evaluation and analysis of the model
under dynamic conditions in which the crutch angle is varied by time.

Keywords: Least Squares, Optimization, Smart Crutch
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ÖZ

BASINCA DUYARLI SENSÖRLER VE İVMEÖLÇERLER İLE DONATILMIŞ
KANEDYEN TİPİ KOLTUK DEĞNEKLERİYLE YERYÜZÜ TEPKİ KUVVETİ

TAHMİNİ

Seylan, Çağlar

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Uluç Saranlı

Şubat 2016 , 82 sayfa

Diz ve kalça eklemlerinin fonksiyonlarını harici olarak destekleyen ve onların yerini
alan robotik ortez sistemleri ile yürüme bozukluklarının tedavisinde koltuk değnek-
lerinin kullanılması oldukça önemlidir. Bu kapsamda, koltuk değneklerinden alınabi-
lecek uygun sensör verileri sistem durumunun, postüral dengenin ve kontrolcü perfor-
mansının kestirilmesine zemin hazırlayabileceği gibi kullanıcının hareket niyetinin
algılanarak kontrolcüye gerekli komutların yollanmasında da kullanılabilir. Bu tez
kapsamında, bu tip uygulamalarda kullanılabilecek, yere temas eden uç noktasındaki
yeryüzü tepki kuvvetini kestirebilen basınca duyarlı sensörler ve ivmeölçerler ile do-
natılmış kanedyen tipi bir koltuk değneğinin tasarımı ve analizi anlatılmıştır. Basınç
verilerinin tepki kuvvetlerine eşlenmesi için açıya bağlı karesel bir model önerilmiş
ve model parametreleri en küçük kareler yöntemi ile öğrenilmiştir. İlk olarak modelin
yalnızca parametreleri öğrenmek için veri toplanan açılardaki performansı değerlen-
dirilmiş ve ilgili sonuçlar gösterilmiştir. Daha sonra model diğer açılarda sınanmış ve
bu açılardaki performansı gösterilmiştir. Son olarak model değnek açısının zamana
bağlı olarak değiştiği dinamik koşullar altında sınanmış ve sonuçları sunulmulştur.

Anahtar Kelimeler: En Küçük Kareler, Optimizasyon, Akıllı Koltuk Değneği
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To you as a reader..
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Today, many spinal cord injury (SCI) and stroke patients are obliged to use wheelchair.

Sitting in such chairs for long hours without moving lower-limbs threatens healths of

SCI and stroke patients in many aspects such as increased coronary artery disease

risk [17], increased osteoporosis risk [10], and increased risk of malfunctions on hor-

monal and endocrine system [22]. Thanks to advances on sensory, actuating, and

microprocessing technologies, life quality of patients having such limb immobilities

have been increasing as usage of robotic exoskeletal orthosis systems has become

widespread [11].

In previous years, lower-limb robotic orthosis systems designed for SCI and stroke

patients were successfully controlled by teleoperation. Nonetheless, the state-of-the-

art has been shifting towards completely leaving control of such systems to the wearer.

Patients able to move their lower limbs enough to carry the exoskeleton system do not

need any crutch or cane while walking with the help of the system. However, patients

who cannot move their lower-limbs in any way, as in the case of a stroke, inevitably

need the use of a crutch or a cane to balance himself/herself because such systems

usually have only one degree of freedom (DoF) at the hip and knee joints. Our moti-

vation in this study is to design, analyse and evaluate an instrumented crutch system

to be used along with lower-limb exoskeleton systems that measures ground reaction

forces (GRF) at its contact point with the ground in real-time. We estimate that such

a system will not only help the wearer to keep his/her balance but also will extract

1



triggering moments of gait events and estimate the wearer’s motion intention, allow-

ing the wearer to walk in a much more natural way than in the case of teleoperation

control.

1.2 Contribution

Our first contribution in this work include the design of a new instrumented forearm

crutch platform using low-cost pressure sensors and accelerometers to support the

estimation of ground reaction forces. Secondly and more importantly, we propose a

simple yet accurate quadratic model with delay for the relation between sensor out-

puts and the GRF, whose gain parameters we carefully identify through systematic

experiments and ground-truth GRF measurements. Firstly, focusing on only sagittal

plane forces and motion, we use systematic, statistically valid fitting and validation

experiments to show that for a given crutch angle linear least-squares identification

methods can be used to learn a model that can predict GRF components with percent-

age errors less than 10%. We also show that models for specific training angles can be

generalized to a continuous range of crutch angles through interpolation, while still

keeping estimation errors below 10%. Then, we investigate the performance of our

model under dynamic conditions with time-varying crutch angle and GRF vectors.

Finally, we generalize our investigation in the sagittal plane to 3 dimensional GRF

estimation and give the results with brief analysis and discussion.

1.3 Organization of the Thesis

This thesis consists of 5 chapters. Chapter 1 states motivation of our study, our con-

tributions to the area and describes organization of this thesis. Chapter 2 briefly intro-

duces lower-limb robotic exoskeleton systems with examples of these systems which

we consider significant. Chapter 2 also introduces instrumented crutch systems with

possible sensors to measure ground reaction forces and tilt angle and describes some

of the instrumented crutch systems in the literature. Moreover, possible methods for

parameter estimation are given in this chapter. Chapter 3 briefly describes our in-

strumented crutch design in three subsections by firstly introducing the mechanical

2



structure, then electronic design and finally the communication infrastructure along

with the data acquisition system. Chapter 4 describes our method to map signals ob-

tained from the sensors to ground reaction forces, gives the experimental results of the

method, and evaluates the results obtained. Chapter 5 summarizes the study within

the scope of this thesis and states the work to be done in the future.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Instrumented Crutch Systems and Force Sensing

In rehabilitation and gait training, correct usage of crutches and canes by lower-limb

disabled patients is critical. While correct usage of canes and crutches lead to better

recovery [21], using them incorrectly may even worsen the situation [29]. Thus,

instrumented crutch systems are used for gait training to monitor and track their usage

whether they are used in the correct way or not. Although usage of the instrumented

crutch or cane systems has not become widespread to capture motion primitives of

patients and to control lower-limb robotic exoskeleton systems, investigating them in

terms of ground reaction forces and tilt angle estimation is important for our study.

This subsection is devoted to explaining designs of some instrumented crutch or cane

systems in the literature.

In [27] the design of an instrumented cane for gait analysis for rehabilitative purposes

was described. The design was quite simple, using only two kinds of sensors: strain

gages, and FSR sensors. Two strain gages were placed on the metal body of the cane

to measure the bending of the cane. Only one FSR sensor was placed at the tip of the

cane to measure axial forces. Signals obtained from these sensors were processed in

a Motorola 68HC11 microprocessor. Metrics used in the gait analysis were the peak

force, contact duration, and force-time integral. If the applied weight on the cane

surpassed 25% of the body weight, the user was informed with audio feedback.

Another instrumented cane designed for gait analysis was described in [23]. A six-

channel AMTI force transducer was placed on the body of the cane, a few centimeters
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above the tip to measure ground reaction forces at the ground contact point. Motion

of the cane was tracked using a Vicon 370 motion capture system, consisting of 6

cameras and three reflective markers placed on various points on the cane. With this

system, ground reaction forces at the tip of the cane were measured and the motion

of the cane was very accurately tracked. However, such systems are very expensive

and might be unsuitable to be used outside laboratory environments. In this case, they

were used to obtain ground-truth data rather than prototyping.

Another study [30] introduced a virtual environment locomotor system with an instru-

mented cane to be used for gait analysis and biofeedback for rehabilitative purposes.

The lower section of the cane had a ball joint, with an AMTI MC25-500 tri-axial

force transducer attached with which the ground reaction forces could be measured.

The cane could be attached to the left or the right side of the treadmill. The system

was used on 5 stroke patients and 5 healthy control subjects. It was observed that the

gait speed improved and gait variability decreased among stroke patients who trained

with the cane.

In [26], the authors describe an instrumented forearm crutch system that was devel-

oped in the University of Southampton in collaboration with physiotherapists in the

Southampton General Hospital. The system was intended to be used by physiother-

apists in a laboratory environment to investigate whether patients can correctly use

the cane. For this purpose, the system was expected to provide measurements and

feedback for weight applied on the cane, cane tilt angle, and hand position on the grip

to therapist and the user. The system consisted of two instrumented forearm crutches,

one of which was slave and the other one the master, as well as an external computer.

An FSR sensor was placed on the pole of each crutch to measure applied weight on

them. Tilt angles of the crutches were measured with STmicro LIS3LV02DL MEMS

tri-axial accelerometers. Hand position on the grip was measured with membrane

potentiometers embedded inside the grip. The slave crutch sent its measurements

to the master crutch through a wireless communication module. The master crutch

processed slave crutch measurements along with its own measurements and provided

audio feedback to the user on whether the crutches were used in the correct way or

not. Moreover, both the measurements of the slave crutch and the master crutch were

sent to an external computer via wireless communication modules for real-time moni-
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toring and storage for further analysis. Figure 2.1 shows the architecture of this crutch

platform with variables used in the system, and the functionalities of each component.

3 
 

clinicians and patients with a means of objectively measuring and receiving feedback on the weight being exerted 
through their affected limb. Such an instrumented crutch differs from those previously researched and developed for 
PWB by being less-invasive (no additional equipment is required to be attached to the patient or their footwear, as all 
electronics is contained within the crutch), and being used for both clinical training and long-term in-home monitoring. 

2.0 Concept and System Architecture 

Through consultation with clinicians at Southampton General Hospital, it was specified that the primary aim of an 
instrumented crutch would be to assist in both training and long-term monitoring of a patient’s PWB programme. The 
secondary aim was to infer information about how the patient is using the crutch. The system should augment a standard 
low-cost pair of forearm crutches, thus dictating the use of off-the-shelf components. The low-cost requirement also 
typically infers a low level of accuracy. However, in this application the required level of accuracy was identified to be 
<5%, a level which would provide a significant patient benefit over existing methods and systems. Any improvement in 
this accuracy is likely to be unnecessary, as alternative measurement errors are likely to become predominant as a result 
of the force distribution through the bones and soft tissues. It was also stressed however that the system needed to be easy 
to use and simple to configure in order for it to achieve acceptance by both patients and clinicians alike. Figure 1 shows 
the uses of the crutch, including real-time observation of data by the clinician (to train patients how to use the crutch) and 
to provide real-time biofeedback to the patient (encouraging them to consistently put the recommended weight through 
the limb). Clearly a wireless, low-power, small and lightweight system is essential for such an application. 

 

FIGURE 1: The instrumented crutch, showing the architecture (crutch-to-crutch, or crutch-to-host), functionality (real-
time observation and biofeedback), and also the forces, angles, and distances measured. 

To achieve the primary aims (monitoring PWB), it was realised that the crutch should monitor the magnitude of the force 
translated through the axis of the crutch (|ܨ௖| in Figure 1) thus allowing the weight-bearing of the affected limb to be 
estimated. The secondary aims of the system require the measurement of the crutch tilt (the angles between the crutch 
and the ground parallel and perpendicular to the walking direction, i.e. the pitch, ߠ, and roll, ߮, components of the unit 
vector ܨ௖෡ ), and an indicative measurement of the patient’s grip pattern – implemented through identifying the position (݀) 
at which the grip force (ܨ௛) is applied to the handle. 

 

Figure 2.1: The instrumented forearm crutch system with its architecture, variables

used, and functionalities of its components (Reproduced from [26]).

The iWA smart cane system was also developed for similar purposes [9]. With this

instrumented smart cane, monitoring usage of the cane and providing feedback to

the patient and the therapist were aimed. The system consisted of a smart cane instru-

mented with sensors and electronic equipment, a portable digital assistant (PDA) unit,

and an external computer. A two DoF IDG-500 model gyroscope from InvenSense

Inc. was placed on the body of the cane to measure angular velocity. In addition, a

three-axis MMA7260Q model accelerometer from Freescale Semiconductor Inc. was

placed on the body to measure linear acceleration. The orientation of the cane was

computed by giving measurements from both sensors as inputs to a Kalman filter.

Body weight exerted along the cane axis is measured by using 1-DoF SLC13/0250

model load cell from RDP Electronics Ltd. which was placed just above the tip of

the cane. Data obtained from the sensors were sent to the PDA unit via a Bluetooth

module. The PDA unit provides visual feedback about the usage of the cane and

shows statistics such as activity duration, and number of steps in the action to the

user. For further storage and analysis, data saved in the PDA could be transferred to

the external computer via a USB cable.
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Some of other instrumented crutch systems designed for monitoring gait training of

a patient by means of estimating GRF, load bearing and tilt angle are described in

[25, 33, 35].

In a related but different study, ground reaction forces at the contact points of feet with

the ground of legged robots moving in high speeds are computed in real time [7]. To

sense the ground reaction forces, 9 barometric pressure sensors arranged as a 3-by-3

matrix were embedded in a polyurethane rubber. Artificial neural networks approach

was used to map the 9 input signals obtained from the barometers to 3 output sig-

nals, namely Fx, Fy, Fz. Before using the footpads in the field, the neural networks

are trained by attaching the footpads to a CNC milling machine and generating var-

ious vertical and horizontal forces with the machine. According to the experimental

results, the method estimates vertical (Fz) and shear (Fx, Fy) forces quite accurately.

2.2 Lower-Limb Exoskeleton Systems

Robotic exoskeletons are wearable, electromechanical, mobile robotic systems de-

signed to help people move their limbs by replacing some or all of the joints of its

wearer with actuators. They are used both for power augmentation and rehabilitation

purposes. Exoskeletons are worn by healthy people for power augmentation pur-

poses such as carrying heavy loads, military applications, and fire fighting. On the

other hand, exoskeletons can also be worn in rehabilitation applications by people

who cannot move or only partially move at least one of their limbs. Such applica-

tions include diagnosis of gait disorder, gait training in physiotherapy, gait analysis,

restoring movement ability to a completely disabled limb.

Exoskeletons can be categorized based on the part of the body over which they are

worn as lower limb exoskeleton systems, upper-limb exoskeleton systems, and full-

body exoskeleton systems. The instrumented crutch in this work is intended to be

used to control lower-limb exoskeleton systems. Consequently, lower-limb exoskele-

ton platforms and control methods will be described in this section.
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2.2.1 Lower-limb Robotic Exoskeleton Systems for Power Augmentation

In the scope of this work, by lower-limb robotic exoskeleton systems for power aug-

mentation, we refer to lower-limb robotic orthosis systems intended to be used by

healthy people to enhance strength of their muscles, not to be used by people having

immobilities with their lower extremities. Power augmenting exoskeletons commonly

used for applications requiring carrying of heavy loads such as military applications,

firefighting, rescuing etc. [39]. We summarize two of such exoskeletons in terms of

their platforms and control approaches.

BLEEX

The first autonomous lower-limb robotic exoskeleton system designed for power aug-

mentation applications was BLEEX [6]. It was specifically designed to help the

wearer carry heavy loads such as weaponry, food, rescue equipment etc.. The primary

goal was to make the platform highly maneuverable, durable, robust, and lightweight.

The project started out in 2000 at UC Berkeley and was funded by the Defense Ad-

vanced Research Projects Agency (DARPA).

BLEEX consists of two legs, a backpack to carry the payload, and a power supply unit

mounted just below the backpack [40]. Each leg consists of three parts, the thigh, the

shank, and the foot, and has seven Degrees of Freedom (DoF), three at the hip (ab-

duction/adduction, extension/flexion, rotation), one at the knee (extension/flexion),

and three on the ankle (dorsiflexion/plantar flexion, abduction/adduction, rotation).

Although BLEEX has 7 DoFs, DoFs of extension/flexion at the ankle, knee, hip and

abduction/adduction at the hip are actuated for power saving purposes. Figure 2.2

shows BLEEX platform worn on the body.

The control methodology was designed to to minimize the forces between the ex-

oskeleton and the wearer when the wearer attempts to make a move [20]. For this

purpose, instead of measuring the forces on various contact points by using sensors,

the controller uses the total force exerted on the exoskeleton in a positive feedback

controller.
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Abstract— The exoskeleton is an autonomous robotic device
whose function is to increase the strength and endurance of
a human pilot. In order to achieve an exoskeleton controller
which reacts compliantly to external forces, an accurate model
of the dynamics of the system is required. In this report, a series
of system identification experiments are designed and carried
out for the Berkeley Lower Extremity Exoskeleton. As well as
determining the mass and inertia properties of the segments of
the legs, various non-ideal elements such as friction, stiffness
and damping forces are identified. The resulting dynamic model
is found to be significantly more accurate than the original model
predicted from the designs of the robot.

I. INTRODUCTION

The Berkeley Lower Extremity Exoskeleton (BLEEX) is a
robotic device to be worn by a human in order to augment
the strength and endurance of the wearer. The first generation
model, developed at U.C. Berkeley’s Human Engineering and
Robotics Laboratory, is shown in Fig. 1. The exoskeleton con-
troller is designed to allow a human to move around naturally
wearing the exoskeleton robot, and not feel significant forces
from the device [1]. In order to achieve such compliancy, the
model of the system dynamics needs to be very accurate [2].

The dynamics of the exoskeleton can be predicted theoret-
ically using the simplified model of the robot leg as a three
segment manipulator, with the mass and inertia properties of
the robot links predicted from design models [3]. However,
a large number of factors affecting the dynamics cannot be
predicted from this approach. Many parts of the robot cannot
be modelled accurately, for example, the dynamics of the
hosing and wiring, and the internal dynamics of the actuators.
Additionally, there are many unknown forces acting within
the robot, caused by friction, stiffness and damping of various
elements.

Therefore, the model of the robot must be obtained ex-
perimentally. This report discusses the identification of the
dynamics of a leg of the robot which is not in contact with
the ground. This is called the swing mode of the leg, as
opposed to the stance mode when the foot is touching the
ground. During walking, the motions of a leg while in swing
mode are generally faster and larger than those while in stance
mode. Therefore, it is more important to have compliancy in
the swing mode. For this reason, the system identification was
first performed only for swing mode. However, the system

Fig. 1. The Berkeley Lower Extremity Exoskeleton.

identification methods used for the swing mode dynamics
could be adapted to be used for the stance mode dynamics.

II. EXOSKELETON DYNAMICS

A. Three-Segment Model

The exoskeleton comprises two robotic legs attached to a
torso. For the purposes of this investigation, the two legs have
three degrees of freedom: a hip joint, a knee joint and an
ankle joint, each of which is actuated by a hydraulic piston
commanded by the controller. The leg is constrained to move
within the sagittal plane.

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 3477

Figure 2.2: BLEEX platform worn on the body (Reproduced from [15]).

ROBOKNEE

RoboKnee is another lower-limb exoskeleton system designed for power augmenta-

tion [31]. It enhances strength and endurance of knee muscles, enabling its wearer

to be able to carry heavy loads. Using it with only one knee, the wearer can do deep

knee bend movements multiple times without being exhausted while carrying a 60 kg

backpack.

RoboKnee consists of a knee brace, a series elastic actuator between the upper and

lower parts of the knee brace to actuate the knee joint, two load cells placed under

rigid-bottom shoes to measure vertical ground reaction force under the shoes, and

necessary electronic equipment. RoboKnee has only one DoF (extension/flextion) at

the knee joint.

High transparency was aimed in the design of RoboKnee, wherein, user intention

was estimated by using the knee joint angle and vertical ground reaction forces at the

contact points of the shoes with the ground. By using the ground reaction force vector
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and the knee joint angle, the torque required to bring the knee to a static situation was

estimated. The required torque was then generated through positive feedback force

amplification.

Other than these, studies on power augmenting lower-limb exoskeleton include [?,31,

38]. For the sake of not rambling the topic, we do not summarize these exoskeletons

in a detailed way.

2.2.2 Lower-Limb Robotic Exoskeleton Systems for Rehabilitation

In this subsection, lower-limb robotic exoskeleton systems designed for rehabilitation

purposes will be described and exemplified. We divide lower-limb robotic exoskele-

ton systems for rehabilitation purposes into two subcategory further as those designed

for patients having only partially disordered limbs, and those designed for patients

having completely disabled limbs. We have needed to do such a categorization be-

cause control approaches of the two type differs radically from each other.

2.2.2.1 Lower-limb Robotic Exoskeleton Systems for Patients Having only Par-

tially Disabled Limbs

Patients having only partially disabled limbs can still move their disabled limbs weakly.

Elderly people and some of the SCI patients can be considered in this category. Most

of the control approaches of robotic exoskeleton systems designed for such people

uses myoelectric signals and moments at the limb joints to estimate the user inten-

tion. We summarize two of such exoskeletons, one using myoelectric signals, and

one using joint moments to control the device in terms of their platform designs and

control approaches.

HAL

One of the most widely known and well developed robotic exoskeleton systems is

the Hybrid Assistive Limb (HAL) platform. It was jointly developed by Tsukaba

University of Japan and the Cyberdine robotics company to expand physical capa-

bilities of humans, particularly people with physical disabilities. Its first prototype
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was developed in late 1990’s, and was quite a bulky exoskeleton, being far from prac-

tical. Nevertheless, many improvements were done on it since then. Today, HAL

has two different versions in operation: HAL-3, which is a lower-limb exoskeleton

system [19], and HAL-5, which is a full-body exoskeleton system [36].

The HAL-3 platform consists of two legs, a backpack to carry the power supply unit

and electronic equipment, shoes instrumented with force sensors, encoders at the hip

and knee joints and electrodes placed on the thighs to measure myoelectric signals.

Each leg has three joints at the hip, knee, and ankle and both the hip and the knee

joints are actuated and have a singe DoF for extension and flexion. Figure 2.3 shows

the HAL-3 platform.

Control of the HAL-3 platform relies on estimating the intention of the wearer. My-

oelectric signals are processed in an online manner and along with the angles of the

hip and knee joints and the floor reaction forces, the motion intention of the wearer

is estimated and an associated motion trajectory is computed. After that, actuators

realize the motion, following the computed trajectory.

Figure 2.3: HAL-3 platform.
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LOKOMAT

Lokomat is an example of lower-limb robotic exoskeleton systems designed for reha-

bilitation purposes [8]. Treadmill walking improves the treatment process for Spinal

Cord Injury (SCI) and stroke patients. Originally, Lokomat was designed in late

1990s to automate the treadmill walking treatment process and was successfully used

in several rehabilitation centres successfully. After a few years, in early 2000s, it was

proposed to use Lokomat as a gait disorder diagnosis and gait research tool [18].

The overall Lokomat platform consists of an exoskeleton, a suspension system to

support the wearer, a treadmill to walk over, a computer to execute safety and control

tasks, and another computer for the supervisor physiotherapist. Each leg has two

DoFs, one at the hip (extension/flexion) and one at the knee (extension/flexion). Force

sensors are placed at the upper and lower limb segments to measure forces exerted

on these segments. Moreover, a potentiometer and a position controller are placed at

each joint.

Lokomat’s control algorithm of seeks to minimize interaction torques between the

exoskeleton and the wearer in two stages. In the first stage, forces acting on the

exoskeleton segments are measured with force sensors. In the next stage, gait patterns

to minimize these interaction forces are generated in an online fashion. The platform

then follows these gait patterns.

Other than these two lower-limb robotic exoskeleton systems, [12, 13] and [5, 28]

describe designs of systems with control methods based on myoelectric signals and

joint moments, respectively.

2.2.2.2 Lower-limb Robotic Exoskeleton Systems for Patients Having Com-

pletely Disabled Limbs

Control of lower-limb robotic exoskeleton systems for patients having completely

disabled limbs are more difficult than control of the systems in the other two category

because no myoelectric signal can be detected from disabled limbs of such people.

Also, as such people cannot move their disabled limbs in any way, no joint moment

at the disabled limbs can be detected. Note that, such people have to use crutches or
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canes to balance themselves as lower-limb exoskeleton systems do not have enough

DoFs at the hip and knee joints. In this case, motion intention should be recognized

by other means such as by using motion of the crutches or canes, by using the signals

obtained from the sensors on the crutches or canes if they are instrumented with

sensors, or by using the motion of healthy limbs. In this subsection, we provide two

well developed systems in the literature for the usage of patients having completely

disabled lower-limbs and summarize them in terms of their platform designs and

control methods.

eLEGS

eLEGS [34] is a lower-limb robotic exoskeleton system designed by Berkeley Bionics

to help patients who completely lost their ability not only to walk but also to realize

standing up and sitting down motions. It was unveiled in 2011, with the goal of being

used in rehabilitation centers under medical supervision.

eLEGS consists of a backpack to carry battery and computer units, two legs having

joints at the hip, knee, and ankle, braces on thighs, shins, sacrum, and feet to align

the exoskeleton with the lower-body properly, and two crutches to help the wearer

balance himself. Only hip and knee joints are actuated and they have one DoF for

extension and flexion. Potentiometers and encoders are placed at the hip and knee

joints to measure joint angles. Two inertial measurement units (IMU) consisting of

accelerometer and gyroscope units are placed on the arms to measure arm angles. In

addition, force sensors are embedded into the exoskeleton shoes to measure the GRF

vector under the shoes. Moreover, crutches are instrumented with force sensors to

measure the body weight falling on the crutches.

Motion of the eLEGS platform is based on four states, which are left swing, right

swing, right double stance, and left double stance. In any given moment, eLEGS can

be in one of these states. The Control component of eLEGS consists of three layers:

the top layer decides on the state that the exoskeleton should be in, the middle layer

decides on the trajectory that should be generated, and the bottom layer ensures that

the joints follow a particular trajectory through a PID controller. The intention of

the wearer is estimated with data obtained from all sensors and a high level control

decision is taken by the top layer. Subsequently, the required motion is realized by
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the bottom layer based on the trajectory generated by the middle layer. Figure 2.4

shows the eLEGS platform and identifies some of its components.

  

and by Cyberdyne is a mobile exoskeleton that strives to reduce 

the amount of energy used by a wearer.  This device uses bio-

electrical signals to trigger various motions of the robot for able-

bodied individuals [5-6].  It is designed to aid elderly and disabled 

patients; however, no publications or studies with spinal cord 

injury patients have been shown to date.   

Argo Medical Technologies developed ReWalk, a lower-limb 

exoskeleton which allows paraplegics to walk, stand, and climb 

stairs.  The machine’s functions are triggered by upper body 

motions and button presses [7-8].  Rex, another mobile 

exoskeleton for spinal cord injury patients, actively balances the 

person [9].  This, however, results in a very cumbersome machine 

and a very slow gait.   

eLEGS, a mobile, lower-extremity exoskeleton is specifically 

designed to allow spinal cord injury patients to walk with a natural 

gait.  Because the gait is natural and does not require additional 

torso action like an RGO, eLEGS can be used for extended 

periods of time without the user experiencing fatigue.   

 

SYSTEM DESCRIPTION 

eLEGS has a torso segment that is worn like a backpack 

(Figure 1).  This contains the main electronics and batteries.  The 

torso structure and straps are also used to support the user.  Braces 

on the thighs, shins, sacrum, and feet couple the exoskeleton to the 

user.  These hold the user’s joints aligned with the exoskeleton 

joints and allow the exoskeleton to move the user’s legs to the 

desired positions.   

The exoskeleton is actuated at the hips and knees in the 

sagittal plane (Figure 1).  This range of motion is limited to the 

natural human range of motion and is limited both by software and 

mechanical hard stops for safety.  The hip rotation is highly sprung 

to allow for turning.  Hip abduction/adduction is locked for 

stability, but can be unlocked to allow the user to transfer into and 

don the exoskeleton easily.  The ankle is highly sprung in the 

sagittal plane and locked out in the other directions.   

eLEGS weighs approximately 50 lbs (23 kg) and is designed 

such that its weight is supported through the robot’s structure.  

Therefore, the user feels very little weight but must manage the 

inertia of the machine.  The exoskeleton has adjustable thigh and 

lower leg segments to accommodate users from 5’2” to 6’2” (157-

188cm) who weigh less than 220 lbs (100 kg).  The hip width is 

also adjustable to fit different users, allowing this machine to be 

used in a clinical setting with a wide variety of patients. 

The device sensors provide feedback from the mechanical 

system to the trajectory generation and controller.  The hip and 

knee angles are measured in the sagittal plane using 

potentiometers and encoders.  The ankle joint angles are not 

measured. 

eLEGS also has an additional suite of sensors that allows the 

user to control the desired motion by sensing the arm angles and 

crutch forces.  These sensors are used for feedback from the 

human to the state machine, as seen in Fig 2.  The arm angles are 

also sensed using an IMU, which consists of an accelerometer and 

gyroscope.  By combining the two sensors using a frequency 

based filter, static and dynamic measurements result in an accurate 

arm angle.  The IMU board is mounted in a custom case which is 

worn on the upper arm.  The crutch sensors are designed to fit into 

a standard crutch and indicate the amount of force the user is 

putting through the crutch.  The sensors have a range of 3-60 lbs 

(1.4-27.2 kg).  Likewise, the foot sensors measure the amount of 

force going through the toe or heel segment of the foot.  These 

sensors are embedded into the foot of the exoskeleton and 

measure the ground reaction force.  The foot sensors are used to 

determine when the user’s foot is on the ground and also if their 

weight is on the front or back of the foot.  

 

 

FIGURE 1.  ELEGS IS ACTUATED AT THE KNEES AND HIPS.  
THE ANKLES AND HIP ROTATION ARE PASSIVE. 

 

 

CONTROL SYSTEMS 

eLEGS is designed to be easy and intuitive to use and to 

mimic natural walking.  There are three levels of control of the 

exoskeleton (Figure 2).  The top level of the control determines 

what action the exoskeleton should make.  The allowable states 

and transitions are encoded in a finite state machine, which allows 

for safety checks as well as expandability to add in additional 

modes as they are developed, such as stair climbing.  The state 

machine controls the walking cycle, which consists of: right 

swing, right double stance (both feet on the ground with the right 

foot in front), left swing, and left double stance (Figure 3). The 

state machine also includes sitting down and standing up (not 

covered here). 

Trajectory generation is the middle level of the controller that 

determines how the joints behave within each state. In this level, 

the controller calculates the joint angles for a natural step or for a 

2 Copyright © 2011 by ASME
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Figure 2.4: eLEGS platform and with some of its parts indicated (Reproduced from

[34]).

Wearable Gait Measurement System

The wearable gait measurement system was developed in Tsukaba University of

Japan and was unveiled in 2014 [16]. It was designed to help patients who can move

only one of their legs normally but the other leg is completely disordered as in the

case of hemiplegia. Up to now, the system was tested only on healthy people.

The wearable gait measurement system consists of one leg of the robot suit HAL-

3, with IMUs on the thigh and shank, a smart forearm crutch instrumented with an

IMU and FSR sensors, and shoes instrumented with FSR sensors. The computation

is done on the smart cane so is has a wireless module to send necessary commands to

the robotic leg.

The control algorithm of the wearable gait measurement system is based on the algo-
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rithms described in [37]. In summary, the generation of the reference trajectory for the

robotic leg is based on principal component analysis (PCA) on inter-joint coupling of

upper and lower limbs. While motion of lower limbs is captured by the IMUs on the

robotic leg, the motion of upper limbs is captured by the IMU on the instrumented

crutch. In addition, FSR sensors under the tip of the crutch and the shoe provides

ground contact information to the controller.

2.3 Least-Squares Methods

Least-squares estimation refers to an approach in regression analysis seeking to find

approximate solutions to overdetermined systems, i.e., systems in which the number

of equations are greater than the number of unknowns. There are many different kinds

of least-squares procedures. The difference between these procedures originates from

the structure of the mathematical model and the criteria to be optimized [24]. In this

context, we will briefly introduce the linear least-squares method in which the output

of the mathematical model depends linearly on the unknown parameters and the data.

Consider an overdetermined linear system,

Fi =
n∑
j=1

Pijkj, (i = 1, 2, ...,m), (2.1)

having m linear equations each with n unknown coefficients k1, k2, ..., kn with the

assumption m > n.

The system can be rewritten compactly in the matrix form as

F = Mu, (2.2)

where

F :=
[
F1 F2 ... Fm

]T
,

M :=


P11 P12 ... P1n

P21 P22 ... P2n

... ... ... ...

Pm1 Pm2 ... Pmn

 ,
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u :=
[
k1 k2 ... kn

]T
.

Even though this system has no exact solution, we can try to find an optimal solution

by minimizing the difference between the true output and the estimated output. Let

us define the error between these outputs as a function of parameters as

E(u) := ||F−Mu||2 (2.3)

which can be further written as

E(u) = (F−Mu)T (F−Mu) = FTF− uTMTF− FTMu + uTMTMu.

The fact that uTMTF = FTMu leads us to

E(u) = FTF− 2uTMTF + uTMTMu. (2.4)

Taking the derivative of Equation 2.4 with respect to u gives us

∂E(u)

∂u
= −2MTF + 2MTMu. (2.5)

Equating Equation 2.5 to zero and solving it for u gives us the parameters that best

approximate the data F, and often denoted by û as

û = (MTM)−1MTF. (2.6)

If the output in the mathematical model linearly depends on the parameters, Equation

2.6 gives the optimal estimation of the parameters. Nevertheless, it should be noted

that if the data is too noisy and the noise is not cancelled properly prior to learning

the parameters, the model can be fit into the noise with the learned parameters.
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CHAPTER 3

DESIGN OF THE CRUTCH PLATFORM

In this section, the design of the crutch platform with the system used for data acqui-

sition will be briefly described. Firstly, sensor placement and manufacturing process

of the silicon shoe in which the FSRs are embedded will be described. Then, elec-

tronic components used in the smart crutch platform will be described. After that,

communication infrastructure, namely, small scale network protocol used to ensure

coordination of the components and provide communication between these compo-

nents in the smart crutch platform will be explained in a detailed way. Finally, data

acquisition system used to collect data for training and testing the GRF estimation

method will be described.

3.1 Mechanical Structure

We used ErgoTech forearm crutch model of FDI company, shown in Figure 3.1, as

the basis of our smart crutch design. Three main modifications have been made to the

forearm crutch: The addition of a silicon shoe at the bottom of the crutch, attachment

of a sensor board on the body of the crutch, and the development of a software to

establish communication between the crutch and the CPU. The smart crutch with

these modifications can be seen in Figure 3.2.

The first modification, the silicon tip (white shoe at the tip of the crutch in Figure

3.2) was introduced to prevent FSRs from being damaged during contact with the

ground, and to help distribution of reaction forces from the ground evenly over the

FSRs. Since the surface of rubber tip which contacts with the ground is not planar,
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Figure 3.1: ErgoTech model forearm crutch of FDI company on which our work is

based.

Figure 3.2: ErgoTech model forearm crutch after modifications, which is called as the

smart crutch.

a circular and planar piece was produced with a 3D printer and placed at the bottom

of the rubber tip. After that, double-sided sticky tape was placed at the bottom of

the rubber tip. This tape prevents the FSRs from being damaged under shear forces,

acting like a soft barrier between the hard surface of the printed circular piece and

fragile FSRs. When the RTV-2 type silicon touches the FSR directy, it can damage

the sensor. To prevent this, the FSRs were covered with cellulose tape to prevent

them from touching the silicon. Subsequently, the 4 FSRs were placed on the double-

sided tape. To ensure that the FSRs stay still and preserve their placements in the

presence of shear forces, single sided sticky tape was draped over them. Finally, the

tip assembly augmented with FSRs and tapes was placed in a cylindrical mould and

RTV-2 type silicon was poured into the mould. After the silicon is frozen, the final

assembly was affined at the tip of the crutch. The process is summarized in Figure

3.3. The cross-section of the final assembly can also be seen in Figure 3.4.

Inside the black box (visible on the body of the platform shown in Figure 3.2), there

is a sensor board performing initial processing of data coming from FSRs and ac-

celerometer (The design of this sensor board is presented in Section 3.2.). The pur-

pose of the black box is to protect the sensor board from potential physical damages.
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Figure 3.3: a) The rubber tip of the ErgoTech crutch equipped with printed circular

piece, b) Bottom view of the rubber tip covered with double-sided sticky tape, c) A

single FSR sensor covered with cellulose tape, d) Four FSRs placed on bottom side of

the double-sided sticky tape, e) Single-sided tape was placed to cover all four FSRs,

f) Final assembly was covered with RTV-2 type silicon and mounted on the tip of the

crutch.

3.2 Electronic Design

To sense the GRF at the contact point of the smart crutch with the ground, we used

the FlexiForce A-301 model pressure sensors. These sensors can sense forces up

to 445N, which meets our requirements. Its force-resistance and force-conductance

characteristics can be seen in Figure 3.5 which was reproduced from the FlexiForce

user manual [3].

To measure the orientation of the smart crutch, an ADIS16209 dual-axis accelerom-

eter manufactured by Analog Devices was used. Detailed descriptions for the func-

tionality of this sensor can be found in [1]. Acceleration readings from this sensor

were converted to degrees for inclination degrees of freedom afterwards.

A central CPU was used to processes data obtained from the four FSRs and the ac-
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CALIBRATION 
Calibration is the method by which the sensor’s electrical output is related to an actual 
engineering unit, such as pounds or Newtons. To calibrate, apply a known force to the sensor, 
and equate the sensor resistance output to this force. Repeat this step with a number of known 
forces that approximate the load range to be used in testing. Plot Force versus Conductance 
(1/R). A linear interpolation can then be done between zero load and the known calibration 
loads, to determine the actual force range that matches the sensor output range. 
 

Resistance Curve: Conductance Curve: 

   
 

CALIBRATION GUIDELINES 
The following guidelines should be considered when calibrating a sensor: 
 

• Apply a calibration load that approximates the load to be applied during system use, 
using dead weights or a testing device (such as an MTS or Instron). If you intend to use a 
"puck" during testing, also use it when calibrating the sensor. See Sensor Loading 
Considerations for more information on using a puck. 

 

• Avoid loading the sensor to near saturation when calibrating. If the sensor saturates at a 
lower load than desired, adjust the "Sensitivity." 

 

• Distribute the applied load evenly across the sensing area to ensure accurate force 
readings. Readings may vary slightly if the load distribution changes over the sensing 
area. 

 

• Sensors should be calibrated at the same temperature for which testing will occur. This is 
especially important for High-Temp Sensors, as these sensors have a wide operating 
temperature range. If multiple temperatures are used during testing, calibrate the sensors 
at those same multiple temperatures. 

Note: Read the Sensor Performance Characteristics section before performing a Calibration. 
 

Figure 3.3: Force-resistance characteristic of FlexiForce A-301 model pressure sensor.

force-resistance characteristic can be seen in figure 3.4 which is adopted from FlexiForce user manual

«referans».

To measure orientation of the smart crutch, ADIS16209 model dual axis accelerometer of Analog

Devices is used whose detailed description can be seen in «referans». Acceleration readings from the

accelerometer are converted into inclines in degrees afterwards.

3.3 Communication Infrastructure

• Protocol designed for communication will be explained here.

3.3.1 Overview of the Original URB Architecture

• Original URB architecture will be explained.

7

Figure 3.4: Cross-section of the silicon shoe indicating the places of rubber tip,

double-sided sticky tape, 4 FSRs, single-sided sticky tape, RTV-2 type silicon with

certain dimensions.

celerometer to estimate GRF at the contact point of the smart crutch and ground.

However, this CPU is not directly responsible for acquiring data from the FSRs and

the accelerometer. Instead, a sensor board of our design was used to collect data from

the FSRs and the accelerometer at a desired frequency and to send them to the CPU

upon a request. Responsibilities of this sensor board can be summarized as follows:

1. Obtaining data from the FSRs and performing analog to digital conversion.

2. Communicating with the accelerometer and obtaining its readings.

3. Sending acquired data to the CPU upon request. In other words, acting as a

node in the Universal Robot Bus (URB) architecture, which will be explained

briefly in Section 3.3.

There are 8 analog inputs on the sensor board four of which were used to interface

with the FSRs. The ADIS accelerometer connects to the sensor board through ded-

icated connectors. A MSP430F2274 model microcontroller from Texas Instruments

was used to convert analog data obtained from the FSRs to digital data, to obtain ac-

celeration data by communicating with the accelerometer, and to send these data to

the CPU on request via RS485 physical layer network protocol. This is a commonly

used microcontroller from Texas Instruments, featuring 16-bit architecture and a 16

MHz clock frequency [4]. Figure 3.6 shows a top view of the sensor board, indicating
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Calibration is the method by which the sensor’s electrical output is related to an actual 
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and equate the sensor resistance output to this force. Repeat this step with a number of known 
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CALIBRATION GUIDELINES 
The following guidelines should be considered when calibrating a sensor: 
 

• Apply a calibration load that approximates the load to be applied during system use, 
using dead weights or a testing device (such as an MTS or Instron). If you intend to use a 
"puck" during testing, also use it when calibrating the sensor. See Sensor Loading 
Considerations for more information on using a puck. 

 

• Avoid loading the sensor to near saturation when calibrating. If the sensor saturates at a 
lower load than desired, adjust the "Sensitivity." 

 

• Distribute the applied load evenly across the sensing area to ensure accurate force 
readings. Readings may vary slightly if the load distribution changes over the sensing 
area. 

 

• Sensors should be calibrated at the same temperature for which testing will occur. This is 
especially important for High-Temp Sensors, as these sensors have a wide operating 
temperature range. If multiple temperatures are used during testing, calibrate the sensors 
at those same multiple temperatures. 

Note: Read the Sensor Performance Characteristics section before performing a Calibration. 
 

Figure 3.5: Force-resistance characteristic of the FlexiForce A-301 model pressure

sensor (Reproduced from [3]).

placements of the analog and accelerometer pins, power, RS485, and programming

interfaces, and the microcontroller.

Finally, we used a PC104 single-board computer as the main CPU. This CPU unit

was necessary for our data collection experiments, and will not be necessary for stan-

dalone operation of the smart crutch. The CPU unit is presented in Section 3.4.

3.3 The Communication Infrastructure

The communication infrastructure we use for the overall system, including the exper-

imental platform, is based on the URB architecture [32]. However, in this work, the

original URB architecture was modified in a few different ways. In this section, the

URB architecture will first be introduced. After that, our modifications on the URB

architecture and its implementation will be explained.

3.3.1 An Overview of the Original URB Architecture

URB is a small scale network architecture specifically designed to establish com-

munication and ensure coordination between a central, powerful CPU and different

types of sensors and actuators. URB assumes the presence of nodes to which several
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Figure 3.6: The sensor board that acts as a URB node.

sensors and/or actuators are attached, and that there is a single CPU to which all the

nodes in the system are attached. In such a system,

1. Different kinds of sensors and/or actuators can be used,

2. Nodes can collect data from several sensors at different frequencies. For exam-

ple, a node can collect data from an FSR at 500 Hz, while it can collect data

from another sensor at 300 Hz.

3. The physical layer network protocol between a node and the CPU can be dif-

ferent from the physical layer network protocol between another node and the

CPU. For example, while the protocol between a node and the CPU can be

RS485, the protocol between another node and the CPU can be RS232 at the

same time,

4. The URB framework provides real-time performance guarantee,

5. URB provides a uniform application programming interfaces (API) to develop

nodes and CPU applications more rapidly and modularly.

6. URB provides mechanism for automatic synchronization of different kinds of

sensors and/or actuators.
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Thanks to these features, URB is highly suitable for our system where there may be

several nodes collecting data from different kinds of sensors at different frequencies.

Figure 3.7 showns an example system for which usage of URB is highly suitable. In

this example system, si represent sensors, ai represent actuators and µCi represent

microcontrollers, corresponding to individual nodes in the URB. µC1 reads analog

signals from sensors s1 and s2 and samples the signals at 500Hz. µC2 reads analog

signals from sensors s3, s4, and s5 and samples the signal from s3 at 400Hz and the

signals from s4 and s5 at 200Hz. µC3 reads data from sensor s6 at 100Hz through

I2C protocol and sends data to actuator a1 at 300Hz through the SPI protocol. µC1,

µC2, and µC3 connect to the CPU with a shared bus. The CPU sends requests to

all of the microcontrollers at 500 Hz through the RS485 protocol. µC4 sends data to

actuators a2 and a3 at 100Hz through the I2C protocol. The CPU sends requests to

the microcontroller at 100Hz through the RS232 protocol. µC5 sends data to actuator

a4 at 200Hz through SPI protocol. The CPU sends requests to the microcontroller at

200 Hz. URB facilitates the implementation and deployment of such heterogeneous

systems.

The original URB is a two-tier network architecture where there are bridge compo-

nents between the CPU and a group of nodes sharing the same bus. In this two-tier

structure, the connection between the CPU and the bridge circuit is called as the up-

link and the connection between the bridge circuit and the group of nodes is called

as the downlink. Logically, however, the CPU directly sees all nodes consisting of

"message boxes".

URB supports up to 16 message boxes for each node. Each message box is double-

buffered and each buffer can be at most 32 bytes in length. 8 of the message boxes

are called "outboxes" and 8 of them are called "inboxes". Outboxes contain data to

be sent to the CPU, and inboxes contain data sent by the CPU. While data held in

message boxes are application specific, outbox 0 always holds node identification

information and inbox 0 always accepts protocol commands coming from the CPU.

The URB protocol, there are 4 types of bytes used in communication: flag and size

byte, address byte, data byte, and checksum byte. The most significant 3 bits of

the flag and size byte are reserved for flags and the remaining bits hold the size of
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Figure 3.7: An example system highly suitable for URB. si represents sensors, ai

represents actuators and µCi represents microcontrollers. Protocols used across each

channel with frequencies of read or write requests are also shown.

message to be sent in bytes. The most significant 4 bits of the address byte hold the

node address and the remaining bits hold the message box id to which the data will

be written. Node address 0 is used for broadcasting, so the number of nodes on a

data bus can at most be 15. Data bytes simply contain the message to be sent. The

checksum byte is used to verify the integrity of data. These byte types are illustrated

in Figure 3.8.

Even though all byte types are used in the uplink, downlink protocols can infer the

message size on their own. Consequently, flag and size byte are not used across the

downlink. Whether the message is a request or response the flag and size byte is first

sent so that the receiver can infer the size of the message. Then, the address byte

is sent so that the message will be considered only by its target node indicated by

the node address field. After that, data bytes are sent one by one, followed by the

checksum byte. Figure 3.8 summarizes these bytes and their content.
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Figure 3.8: Byte types used in the original URB protocol with their fields.

3.3.2 URB Extentions and Implementation

Although our communication infrastructure for the crutch platform is based on the

URB protocol, we use the following modifications for our systems:

1. Bridge circuits allow physical layer network protocols between nodes and the

CPU. However, our platform only uses the RS485 physical layer network pro-

tocol between the CPU and the nodes. Consequently, our platform does not use

bridge circuits.

2. In our implementation, only three types of bytes were used across the commu-

nication channel: address byte, data byte, and the checksum byte. The most

significant bit of the address byte is always 1, and most significant bits of data

bytes and the checksum byte are always 0. With this implementation, the ad-

dress byte is placed at the head of a packet can be easily differentiated from

other bytes in the packet, allowing easy detection of the header for the next

packet in case of a communication errors, such as bit flips or dropped bytes.

As stated above, only three types of bytes were used in our URB implementation.

The most significant bit of the address byte is always 1. 4th to 6th bits of the ad-

dress byte are reserved for the node address. The node address 0 is again reserved
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for broadcasting, so there can only be 7 nodes on the data, rather than the 15 in the

original URB. Similarly, the 1st to 3rd bits of the address byte are reserved for en-

coding the message box id to which data will be written or from which data will be

read. The least significant bit of address bytes holds a flag indicating whether the

request is a read request or a write request. The most significant bit of the data byte

is always 0. Consequently, we have 7 bits per byte to hold the message rather than 8

bits. Due to this fact, our URB implementation converts the 8-bit data stream into a

7-bit data stream. Conversely, after receiving the data payload, the 7-bit data stream

is converted back to the original 8-bit content. These conversions can be seen as the

addition of an extra layer to the original URB protocol. Similarly, the most significant

bit of the checksum byte is always 0. With these byte types, the receiver can infer the

size of the data payload. Hence, the flag and size byte is not used in our extended

URB protocol.

node addr. msg. box id 

data 

checksum 
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Data byte: 

Chekcsum byte: 

1 
bit 

7 bits 

3 bits 

1 
1 

bit 
3 bits 

r/w 

0 

0 
7 bits 

1 
bit 

1 
bit 

Figure 3.9: Byte types used in our extended URB protocol with their fields.

If the CPU selects write to a node operation, it prepares address byte by making

the least significant bit of the address byte 0 and by adjusting the bits indicating the

node on which the write operation will be performed and the bits indicating the inbox

on which the data will be written. After sending the address byte, it encodes 8-bit

classical bytes of which the data consist into 7-bit bytes. Then, it sends data bytes

to the channel. Finally it sends the checksum byte so that the node can understand

whether the data is corrupted or not. A diagram summarizing these operations is

shown in Figure 3.10.
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Figure 3.10: CPU side of the extended URB protocol for write operations.

If the CPU selects read from a node operation, it prepares address byte by making the

least significant bit of the address byte 1 and by adjusting the bits indicating the node

on which the read operation will be performed and the bits indicating the outbox from

which the data will be read. After sending the address byte, it starts to wait for the

packet. The data packet may come to the CPU in several chunks. The CPU checks

whether most significant bits of the data bytes are 0 or not. If most significant bit of

at least one of them is 1, the CPU discards whole data. After the CPU receives all of

the data bytes, it receives the checksum to investigate whether the data is corrupted

or not. If it is corrupted, the CPU discards all of the data. If it is not corrupted, 7-bit

bytes forming the data are encoded into 8-bit classical bytes and the operation is done.

A diagram summarizing these operations is shown in Figure 3.11.
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If a node receives a byte when it is idle, first of all, it checks the most significant

bit of the byte whether it is an address byte or not. If it is not an address byte, it

simply ignores the byte. If it is an address byte, it extracts node address field of the

address byte and checks whether it is equal to its own id or not. If not, the node again

simply discards the byte. If it is equal to its own id, it further extracts message box

id of the address byte to identify the message box on which the operation will be

performed. After that, it checks r/w field of the byte to find out whether the request

is a write operation or read operation. If r/w bit is 0, the request is a write operation.

In this case, the node waits for the data bytes. When it receives a byte, it checks

most significant bit of the byte to find out whether it is a data byte or not. If the most

significant bit is 1, it discards the received data and goes into idle state. If the most

significant bit is 0, it writes the byte to the appropriate inbox. Please note that the

incoming data are encoded into 7-bit bytes so the node decodes the data into classical

8-bit bytes as it writes them to the inbox. Finally, the node receives the checksum byte

and checks whether the received data are corrupted or not. If it is corrupted, it simply

discards the received data and goes into idle state. If r/w bit of the received address

byte is 1, the request is a read operation. In this case, the node sends the data in the

requested outbox one by one. Please note that data in the outbox consist of classical

8-bit bytes so prior to sending the data to the CPU, the data are encoded into 7-bit

bytes. Finally, the node sends the checksum byte to the CPU so that the CPU can find

out whether the data are corrupted or not. A diagram summarizing these procedure is

shown in Figure 3.12.

3.4 The Data Acquisition System

The data acquisition system we use to collect data from all sources consists of four

components: The smart crutch platform which collects FSR and accelerometer data,

AMTI HE6X6 force platform system to collect ground truth measurements of GRF

at the tip of the smart crutch, RTD CME137686LX model single board PC to request

data from the smart crutch and force platform, and an external PC to permanently

store data for analysis and learning purposes.

Analog voltage signals coming from the four FSRs are sampled and digitized by the
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MSP430F2274 microcontroller at 400 Hz. The microcontroller communicates with

the accelerometer through an I2C connector and reads lateral and foreaft acceleration

data at 100 Hz. There are two outboxes in the microcontroller, one to hold pressure

data from the four FSRs, and one to hold acceleration data along both axes.

Ground-truth GRF measurements are collected using an AMTI HE6X6 6-axis force

platform [2]. The force platform measures forces along three dimensions (Fx, Fy, Fz)

and moments along three dimensions (Mx, My, Mz) with a very high accuracy.

As our main CPU for the URB architecture, we used a RTD CME137686LX model

single-board PC with a 500 MHz AMD Geode processor and a 32-bit architecture.

Figure 3.13 shows a picture of this board which communicates with the smart crutch

through an RS485 protocol and sends read requests to the microcontroller at 500 Hz

to read relevant outboxes. Similarly, it communicates with the force measurement

sensor through an RS232 connector, reading force values at 200 Hz. Since all these

operations need to be realized in real-time, the QNX Neutrino real-time operating

system was used on the RTD board. For storage and further analysis, the CPU sends

the data to an external PC through a TCP/IP link. A diagram depicting the overall

structure of our data acquisition system is shown in Figure 3.14.

For storage and further analysis, the CPU sends the data to an external PC with

TCP/IP protocol. A diagram depicting overall picture of the data acquisition system

is shown in Figure 3.14.
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Figure 3.11: CPU side of the extended URB protocol for read operations.
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Figure 3.12: Node side of the extended URB protocol.
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Figure 3.8: .

byte. The node sends the data in the outbox with the number found by extracting the related field of

the address byte to the CPU. Lastly, it sends the checksum byte so that the CPU can find out whether

the data it receives is corrupted or not.

3.4 Data Acquisition System

• General overview of the whole data acquisition of exoskeleton system (Types and placements of all

the sensors with corresponding sensor boards.).

12

Figure 3.13: The RTD CME137686LX PC104 model single-board PC which hosts

the main CPU in our data acquisition system.

4 x FLX-A301 
force resistive 

sensors 

ADIS16209 
accelerometer 

MSP430F2274 
microcontroller 

RTD CME137686LX 
Main CPU 

AMTI HE6X6 6-axis 
force sensor 

External PC 

A/D, 400Hz 

I2C, 100Hz 
RS485, 500Hz 

RS232, 200Hz 

TCP/IP 

Smart Crutch System 

Experimental Platform 

Figure 3.14: The overall structure of our data acquisition system. Protocols used

across each channel with frequencies of read or write requests are also shown.

34



CHAPTER 4

ESTIMATION OF GROUND REACTION FORCES FROM

SENSOR DATA

In this chapter, the method we propose to map pressure sensor data to GRF vectors

with corresponding results will be briefly explained. Instead of directly describing

estimation of GRF in 3D (3-dimensions), we first constraint ourselves to GRF esti-

mation only in the sagittal plane then extent it to 3D. The reason of this is two-fold.

Firstly, data acquisition procedure was exhausting so instead of blindly collecting data

for 3D, we first tested the method in 2D (2-dimensions) to get an idea about the angle

gaps between the tilt angles at which data were collected for better training. Secondly,

testing methods in 2D is less time consuming both in terms of their implementation

and computation time. Thus, when we ensure that the methods work well in 2D, then

we extend them to 3D.

4.1 GRF Estimation in 2-Dimensions

Figure 4.1 shows our experimental platform to estimate ground reaction forces (GRF)

with coordinate frames of both the force platform and the accelerometer along with

the placements of FSRs relative to the coordinate frames. In this section, we will

describe our method for mapping pressure sensor and accelerometer data to GRF

vectors in 2D. More specifically, the method for estimation of Fy, and Fz from P1,

P2, P3, P4, ay will be presented in this section. Subsequently, Section 4.2 will present

the estimation performance.
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Figure 4.1: Experimental platform for estimating GRF vectors showing the coordi-

nate frames of both our force platform and the accelerometer along with the place-

ments of FSRs relative to these coordinate frames. The two pictures from different

views of the same platform is shown to clearly indicate crutch tilt angles α and β.

4.1.1 Angle-Dependent Force Transfer Model

Our estimation method is based on the assumption that, given a crutch angle β with

the vertical (shown in Figure 4.1), the GRF vector in 2D depends quadratically on

pressure readings from four FSRs symmetrically placed into the silicon shoe at the

bottom end of the crutch (can be seen in Figure 4.1). It should be noted that, the

relationship can be different for different values of β. Moreover, we also propose that

the delay in the transfer of the actual GRF under the silicon shoe to the FSR sensors

due to the soft structure of the silicon should also be considered. According to these
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assumptions and observations, the proposed model takes the form

F̂(t− td(β)) :=

 F̂y(t− td(β))

F̂z(t− td(β))

 = KL(β)


P1(t)

P2(t)

P3(t)

P4(t)

+ KQ(β)


P 2

1 (t)

P 2
2 (t)

P 2
3 (t)

P 2
4 (t)

 .(4.1)

In this model,

1. β is the angle of the crutch with the vertical and is computed from accelerome-

ter measurements along the y-axis using

β = − sin−1(
ay
g

), (4.2)

2. Pi(t) are pressure readings from the FSR sensors,

3. td(β) is the angle-dependent sensor delay in the transfer of the GRF vector to

the FSR sensors due to the soft structure of the silicon shoe,

4. KL(β) is an angle-dependent linear gain matrix defined as

KL(β) :=

kL,y1(β) kL,y2(β) kL,y3(β) kL,y4(β)

kL,z1(β) kL,z2(β) kL,z3(β) kL,z4(β)

 , (4.3)

5. KQ(β) is an angle-dependent quadratic gain matrix defined as

KQ(β) :=

kQ,y1(β) kQ,y2(β) kQ,y3(β) kQ,y4(β)

kQ,z1(β) kQ,z2(β) kQ,z3(β) kQ,z4(β)

 . (4.4)

It should be noted that, as the force-resistance characteristics of the FSR sensors

are nonlinear, using only linear terms does not accurately capture the relation-

ship between Pi(t) and [Fy(t), Fz(t)]
T . Adding quadratic terms leads to better

estimation results by capturing the nonlinear force-resistance characteristics of

the FSR sensors in the system.

Under the assumption that delay and gain matrices are constant for a particular β,

we identified delay and gain matrices through systematic experiments. The method

we used to identify these gain matrices will be described in Sections 4.1.2 and 4.1.3,

respectively.
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4.1.2 Data-Driven Identification of the Force Transfer Model

Identification of gain matrices and the delay in our force transfer model introduced

in Section 4.1.1 requires the collection of sufficient amount of synchronized ground

truth force (Fy, Fz), angle (β), and pressure (P1, P2, P3, P4) data. In this section, our

choice of identification method for the gain matrices associated with a particular β

will be described, under the assumption that the sensor delay characteristic is known

beforehand.

Suppose that we have a collection of data for a particular β consisting of N samples

of ground truth force (Fy, Fz), and pressure data (P1, P2, P3, P4), recorded in a

synchronized fashion to yield pressure and force vectors, Pj and Fj , with j = 1, .., N .

Additionally, let us suppose that the delay Td of the particular choice of β is known.

With this information and the proposed force transfer model, it is possible to identify

the gain matrices KL(β) and KQ(β) by using standard linear least squares methods.

To this end, we define an error metric for the difference between estimated forces and

ground truth forces, which is

E(β, Td) :=
N∑

j=Nd

||F̂(Pj)− F(j−Nd)||2. (4.5)

In this equation, F̂(Pj) denotes the estimation from the model introduced in Section

4.1.1, using the measured pressure data Pj , and F(j−Nd) denotes the measured and

recorded ground truth force data delayed in time by Nd samples representing the

delay Td in Equation 4.1.

To identify the linear and the quadratic gain matrices using linear least-squares, we

rearrange the gain parameters defined in Equations 4.3 and 4.4 into the two vectors

uy :=
[
kL,y1 ... kL,y4 kQ,y1 ... kQ,y4

]T
, (4.6)

uz :=
[
kL,z1 ... kL,z4 kQ,z1 ... kQ,z4

]T
. (4.7)

Similarly, ground truth force recordings for each axis are collected into the two vec-
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tors

Fy :=
[
Fy,1 ... Fy,(N−Nd)

]T
, (4.8)

Fz :=
[
Fz,1 ... Fz,(N−Nd)

]T
. (4.9)

Finally, pressure sensor readings are assembled into a single matrix as

M :=


P1,Nd

... P4,Nd
P 2

1,Nd
... P 2

4,Nd

...

P1,N ... P4,N P 2
1,N ... P 2

4,N

 . (4.10)

To take the delay into account, the first Nd samples were left out of definition in

Equation 4.10. Also, to make the lengths of vectors Fy and Fz compatible with the

matrix M, the last Nd samples were left out of the vectors Fy and Fz in Equations

4.8 and 4.9. Substituting these definitions into the error metric in Equation 4.5 yields

simpler form of the error metric

E(β, Td,uy,uz) = ||Muy − Fy||2 + ||Muz − Fz||2 . (4.11)

Based on this error metric, we estimate the gain parameters by independently using

standard linear least-squares on first and second terms of Equation 4.11 resulting in

ûy = (MTM)−1MTFy, (4.12)

ûz = (MTM)−1MTFz . (4.13)

The experimental procedure for assessing the estimation performance of this method

with corresponding detailed results are presented in Section 4.2.4.

4.1.3 Identification of Angle-Dependent Sensor Delay

As mentioned in Section 4.1.1, the soft structure of the silicon shoe covering the

FSR sensors at the tip of the crutch results in the GRF under the silicon shoe being

transferred to the FSR sensors in a delayed manner. In this section, we present a

method to experimentally identify this delay.

39



It should first be noted that the relationship between the delay and β is nonlinear,

which eliminates the possibility of using linear optimization methods for its identifi-

cation. However, we can still compute Td that minimizes the error in Equation4.11 for

a particular angle β constructed around the least-squares estimates of gain parameters

ûy and ûz. In other words, for a particular β, we define Td(β) as the sensor delay that

minimizes the error when we estimate gain parameters through linear least-squares.

More formally, we can estimate the sensor delay for a particular β angle by solving

the optimization problem,

t̂d(β) = argmin
td

E(β, td, ûy, ûz) , (4.14)

based on the error metric given in Equation 4.11, and the gain vectors estimated by

using Equations 4.12 and 4.13. To solve this one-dimensional optimization problem,

fminbnd function of MATLAB was used. Details of the experimental procedure

with associated results are presented in Section 4.2.3.

4.1.4 Estimation of GRF Vectors for Arbitrary Crutch Angles

We have described methods to identify the gain matrices and the sensor delay in the

model given in Equation 4.1 only for particular β angles for which data were col-

lected. In order to estimate gain matrices and the sensor delay at angles for which

no data were collected, we propose to linearly interpolate the matrices and sensor

delay. More formally, suppose that the gain matrices and the sensor delay are iden-

tified at two different crutch angles β1 and β2. For an arbitrary β angle, as long as

β1 < β < β2, we propose to estimate the gain matrices as

KL(β) = KL(β1)
β2 − β
β2 − β1

+ KL(β2)
β − β1

β2 − β1

, (4.15)

KQ(β) = KQ(β1)
β2 − β
β2 − β1

+ KQ(β2)
β − β1

β2 − β1

. (4.16)

Similary, we can estimate the angle-dependent sensor delay as

Td(β) = Td(β1)
β2 − β
β2 − β1

+ Td(β2)
β − β1

β2 − β1

(4.17)

under the assumption that the dependence of gains and the delay on β is locally ap-

proximately linear. Details of the experimental procedure with associated results in
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estimating gain matrices and the sensor delay for arbitrary angles are presented in

Section 4.2.5.

4.2 Experimental Results for 2-Dimensions

4.2.1 The Experimental Procedure

Two kinds of experiments have been conducted to test the proposed system identifi-

cation method and evaluate its performance. First, stationary experiments were con-

ducted, in which the crutch angle β was kept constant. Second, dynamic experiments

were done, wherein the crutch angle β was varied slowly.

Stationary experiments were used to evaluate the performance and accuracy of the

least-squares method used to identify the gain matrices and the one-dimensional op-

timization method used to identify the sensor delay, both at training angles and inter-

mediate angles. In these experiments, we focused on systematically collecting data at

different crutch angles to be used both in training and later evaluation of the model.

More precisely, we collected data in the interval β ∈ [−14◦, 14◦], which is roughly the

interval of crutch angles swept during walking with robotic orthoses, with increments

of 2◦. At each angle, data were collected using the platform in Figure 4.1, recording

• pressure data (P1, P2, P3, P4),

• acceleration data (ay) which is later converted to β by using Equation 4.2,

• ground-truth values of GRF data (Fy, Fz),

while external forces were manually applied to the crutch, keeping β as constant as

possible. A trial of 11 experiments were conducted for each angle, and associated

data was filtered and recorded to be used in training the model and evaluation of its

performance. Data collected for β = 4◦ is illustrated in Figure 4.2.

Dynamic experiments focused on evaluating the performance of the model under re-

alistic conditions. A total of 20 experiments were conducted to measure the perfor-

mance of the model under dynamic conditions, wherein the position of the tip of the
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Figure 4.2: Scatter plot of ground reaction force samples collected during all of the

11 experiments for β = 4◦.

crutch was preserved, while moving the crutch back and forth such that β was varied

in the interval [−14◦, 14◦] with a reasonably slow angular velocity. Data collected for

dynamic experiments were not used for training purposes, but were only used to eval-

uate model performance. Moreover, we conducted 5 more dynamic experiments in

which β was varied fast to state the accuracy of the model under high speed dynamic

conditions.

4.2.2 Error Metrics

To measure the accuracy of the proposed system identification method, RMS errors

in both axes were computed for each leave-one-out run by using the error functions

Erms,y :=
100

max
j
||Fj||

√√√√ 1

N

N∑
j=1

(F̂j,y − Fj−Nd,y)
2, (4.18)

Erms,z :=
100

max
j
||Fj||

√√√√ 1

N

N∑
j=1

(F̂j,z − Fj−Nd,z)
2 . (4.19)

The normalization factors in these error definitions correspond to the norm of the

maximum GRF observed during the experiment from which data were obtained.

Equations 4.18 and 4.19 give us an idea about the estimation error along each axis but

42



it is hard to get an idea about the angle between the ground truth GRF vector and the

estimated GRF vector, and ratio of the norm of the ground truth GRF vector and the

estimated GRF vector, in other words, errors in polar coordinates. Thus, in addition

to these error metrics, we define error metrics

EΘ :=
1

N

N∑
j=1

cos−1(
F̂j · Fj

||F̂j||||Fj||
), (4.20)

EL :=
1

N

N∑
j=1

| ||F̂j||
||Fj||

− 1| . (4.21)

Equation 4.20 is the average of the angle between the estimated GRF vector and

ground-truth GRF vector for a data set. Equation 4.21 gives us an idea about the

ratio of the estimated GRF vector to ground-truth GRF vector. We used the ratio by

subtracting 1 from it instead of leaving it as it is. If we do not subtract 1 from the

ratio, the result is always around 1 due to unbiased error.

As mentioned earlier, 11 experiments were conducted for each β during stationary

experiments. To measure the average estimation errors in cartesian coordinates and

polar coordinates for a particular crutch angle β, arithmetic means of errors for all

experiments at that angle were computed as

Ērms,y :=
1

11

11∑
i=1

Erms,y,i, (4.22)

Ērms,z :=
1

11

11∑
i=1

Erms,z,i, (4.23)

ĒΘ :=
1

11

11∑
i=1

EΘ,i, (4.24)

ĒL :=
1

11

11∑
i=1

EL,i. (4.25)

In the sequel, these error metrics will be used to evaluate model performance.

4.2.3 Angle-Dependent Sensor Delay Characteristic

In the first phase of the experiments, we identified the sensor delay Td(β) for crutch

angles at which data were collected by using the method described in Section 4.1.3.
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To do this, we used leave-one-out cross validation method [14]. In summary, from

among 11 sets of data for each β angle, 10 were used for training while the remaining

1 data set was used for testing. This was repeated with 11 different data sets. To be

more specific, at a particular β, the training set was used to compute ûy and ûz in

Equation 4.14 and Td(β). For each β, the arithmetic mean of sensor delays estimated

in each leave-one-out run at a particular β angle was computed to estimate the sensor

delay at that particular β angle. The identified sensor delay characteristic is shown in

Figure 4.3.
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Figure 4.3: The graph of the estimated sensor delay (in milliseconds) vs. β (in de-

grees). For each β, estimations from 11 experiments were averaged. The shaded

region shows the standard deviation range.

As seen from Figure 4.3, the delay gets larger as magnitude of the crutch angle gets

smaller. This is expected because the compaction volume of the soft silicon caused by

pressure is large for small |β| which leads to higher delay values with higher standard

deviations.

4.2.4 Model Accuracy for Crutch Angles Used for Training

Before assessing the performance of the force transfer model for arbitrary crutch an-

gles, we first focus on assessing validity of the estimated gain parameters and the

sensor delay at crutch angles at which the data were collected. Please note that, sen-
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sor delay characteristics as a function of β were already identified up to this point, and

associated results presented in Section 4.2.3. In this phase of the experiments, only

gain parameters were estimated and the validity of these parameters along with the

estimated sensor delay characteristics are assessed. To do this, leave-one-out cross

validation method was used again. In each of the 11 runs for each β angle, 10 out of

11 data sets were used for training, while the remaining data set was used for testing.

Errors computed for the testing data set in each run were arithmetically averaged by

using Equations 4.22 and 4.23. Graphs presenting average percentage RMS errors in

the estimation of Fz and Fy are shown in Figure 4.4.
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Figure 4.4: Percentage RMS errors in the estimates of Fz (top graph) and Fy (bottom

graph) vs. β graph. For each β, resulting errors for 11 experiments are averaged

arithmetically. Shaded regions indicate standard deviation.
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Moreover, errors in polar coordinates were computed using (4.20) and (4.21). Result-

ing errors were averaged by using (4.24) and (4.25), respectively. Graphs presenting

average errors in polar coordinates are shown in Figure 4.5.
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Figure 4.5: Errors in terms of the angle between the estimated GRF vector and

ground-truth GRF vector (top graph) and the ratio of the norm of the estimated GRF

vector to the ground-truth GRF vector (bottom graph) vs. β graph. For each β, re-

sulting errors for 11 experiments are averaged arithmetically. Shaded regions indicate

standard deviation.

As seen from Figure 4.4, estimation errors in the z-axis are below 8% for all β angles

and estimation errors in the y-axis are below 6% for all β angles. Also, as seen from

Figure 4.5, average angle between the estimated GRF vector and ground-truth GRF

vector is around 5 degrees and error in the norm of estimated GRF vector is around
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0.1. Even though these results only present errors for a very limited scenario in which

the crutch angle is kept constant and evaluation done only for training angles, they still

show the accuracy of estimated gain parameters and the sensor delay and confirm that

the proposed force transfer model performs well enough in mapping pressure sensor

data to 2D GRF vector data at least in controlled settings.

4.2.5 Model Accuracy for Arbitrary Crutch Angles

The interpolation method proposed in Section 4.1.4 enables us to to use the model in

Section 4.1.1 for crutch angles other than those at which the data were collected as

long as β ∈ [−14◦, 14◦]. To assess the performance of this interpolation method, we

take all possible (β1, β2) pairs such that β2− β1 = ∆β and measure estimation errors

at β = (β1 + β2)/2 by using a model interpolated from β1 and β2. With this way, we

choose the testing angle such that it will be farthest from the boundary angles used for

the interpolation, giving us the worst case performance for the chosen (β1, β2) pair.

We first focus on ∆β = 4◦. As stated in Section 4.2.1, 11 experiments have been

conducted for each β, and errors in Fy and Fz are found for each experiment by using

error functions given in Equations 4.18, 4.19, 4.20, and 4.21. Errors found in the

11 experiments are arithmetically averaged by using Equations 4.22, 4.23, 4.24, and

4.25, respectively. Graphs presenting average percentage RMS errors estimating Fy

and Fz are shown in Figure 4.6. Moreover, Graphs presenting average errors in polar

coordinates are shown in Figure 4.7.

As seen from Figures 4.6 and 4.7, estimation of 2D GRF vectors at intermediate

crutch angles by linearly interpolating gain parameters and sensor delays with ∆β =

4◦ does not considerably increase the error in the z-axis, staying below 9% for all

β. However, errors in the y-axis for large |β| are increased, but the results are still

promising for the intended usage domain of the smart crutch.

Error graphs for ∆β = 8◦ in cartesian coordinates and in polar coordinates are shown

in Figure 4.8 and in Figure 4.9, respectively. Errors are computed exactly in the same

way when ∆β = 4◦. These figures show that estimation error in both axis increases

considerably, which in turn suggests that choosing ∆β = 8◦ is not suitable for neither
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at stationary arbitrary angles nor under dynamic conditions.

The similarity between the error graphs of Ērms,z and ĒL is a consequence of the fact

that norm of the GRF vector heavily depends on Fz. Likewise, the similarity between

the error graphs of Ērms,y and Ēθ is a consequence of the fact that angle between the

GRF vector and the vertical is a result of shear forces.
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Figure 4.6: Errors in the estimates of Fz (top graph, in percentage), and Fy (bottom

graph, in percentage) vs. β (in degrees) in cartesian coordinates graph at interpolated

angles for ∆β = 4◦. For each β = (β1 + β2)/2, percentage errors for 11 experiments

are averaged arithmetically. Shaded regions indicate standard deviation.
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Figure 4.7: Errors in terms of the angle between the estimated GRF vector and

ground-truth GRF vector (top graph) and the ratio of the norm of the estimated GRF

vector to the ground-truth GRF vector (bottom graph) vs. β graph at interpolated an-

gles for ∆β = 4◦. For each β = (β1 + β2)/2, percentage errors for 11 experiments

are averaged arithmetically. Shaded regions indicate standard deviation.
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Figure 4.8: Percentage errors in the estimates of Fz (top graph), and Fy (bottom

graph) vs. β (in degrees) in cartesian coordinates at interpolated angles for ∆β = 8◦.

For each β = (β1 +β2)/2, percentage errors for 11 experiments are averaged. Shaded

regions indicate standard deviation.
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Figure 4.9: Errors in terms of the angle between the estimated GRF vector and

ground-truth GRF vector (top graph) and the ratio of the norm of the estimated GRF

vector to the ground-truth GRF vector (bottom graph) vs. β graph at interpolated an-

gles for ∆β = 8◦. For each β = (β1 + β2)/2, percentage errors for 11 experiments

are averaged arithmetically. Shaded regions indicate standard deviation.

4.2.6 Accuracy Under Dynamic Conditions

Up to now, performance results of the proposed model in Equation 4.1 were presented

only for constant β. However, in potential applications of the smart crutch system

such as the control of a robotic orthosis systems, the crutch will exhibit dynamic,

quasi-periodic behaviour, rather than staying still. This makes the crutch angle to be

a function of time. In this last phase of experiments, the accuracy of the model under
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such dynamic conditions are evaluated.

It should first be noted that under dynamic conditions, the model in Equation 4.1

cannot be directly used since it needs the knowledge of pressure sensor values ahead

of time as a result of the sensor delay. To make the model causal, the estimation of

the GRF vector needs to be delayed. In this regard, let us call maximum value of the

sensor delay among all β angles as

tmaxd := max t̂d(β). (4.26)

If we delay pressure signals to be processed by tmaxd , we may be able to estimate GRF

vectors in real-time, only delayed by tmaxd . When we incorporate maximum sensor

delay, tmaxd and the time varying β(t) into the model, Equation 4.1 becomes,

F̂(t− tmaxd ) = KL(β(t)) P(t+ td(β(t))− tmaxd )

+KQ(β(t)) P2(t+ td(β(t))− tmaxd ) . (4.27)

According to Figure 4.3, tmaxd = 58ms for our crutch platform. Consequently, when

we buffer pressure sensor readings such that the signals will be processed with a 58ms

delay, we can estimate the GRF vector in real-time only with this slight delay. One

potential flaw with this approach is the fact that the sensor delay corresponding to the

current β is used (This may lead inaccurate results because β may have been changed

relative to the β corresponding to delayed pressure sensor readings). As mentioned in

Section 4.2.1, 20 experiments were conducted to measure performance of the model

under dynamic conditions. Graphs presenting estimation results in cartesian coordi-

nates in one of these experiments are shown in Figure 4.10, and graphs presenting

estimation results in polar coordinates of the same experiment are shown in Figure

4.11. Moreover, average, maximum, and minimum errors in both axes for 20 dynamic

experiments are shown in Table 4.1.
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Figure 4.10: Graphs showing estimation results in cartesian coordinates for one of

the dynamic experiments. The graph at the top shows β as a function of time. Black

trajectories in the second from top and the second from bottom graphs show Fy and

Fz, respectively. Blue trajectories in the second from top and the second from bot-

tom graphs show F̂y and F̂z, respectively. The middle and bottom graphs show the

difference between the ground-truth and estimated forces in y and z axis, respectively.

53



t (s)
0 1 2 3 4 5 6 7 8

E
L

0

0.2

0.4

E
3

(d
eg

)

0

10

20

-
(d

eg
)

-10

0

10

Figure 4.11: Graphs showing estimation results in polar coordinates for one of the

dynamic experiments. Top graphs shows β as a function of time. Middle graphs

shows the angle between the estimated GRF vector and ground-truth GRF vector.

Bottom graph shows ratio of the norm of the estimated GRF vector to ground-truth

GRF vector.

Table 4.1: Average, minimum and maximum errors across 20 dynamic experiments
in 2D.

Avg. Min Max
Erms,y (%) 12.4± 3.17 11.54 19.11

Erms,z (%) 9.12± 2.71 6.54 15.77

Eθ (deg) 7.59± 1.73 5.46 11.77

EL 0.12± 0.03 0.08 0.19

As seen from Table 4.1, average error in z-axis is below 10% and average error in

y-axis is below 13%. Moreover, angle between the estimated and ground-truth GRF

vectors is around 7.5 degrees and norms of estimated and ground-truth GRF vectors

are different from each other 12% indicating the proposed model along with identifi-
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cation methods are promising to be used for 3D GRF estimation.

It should be noted dramatic changes in acceleration leads to erroneous inclination an-

gle estimations if the inclination angle estimation is based on accelerometer readings.

Consequently, if the crutch is moved in a fast manner, the error under dynamic condi-

tions increases drastically. To verify this, we conducted 5 more experiments in which

the crutch angle β changed in a fast manner. Average, maximum, and minimum errors

in both axes for these experiments are shown in Table 4.2.

Table 4.2: Average, minimum and maximum errors across 5 fast dynamic experi-
ments in 2D.

Avg. Min Max
Erms,y (%) 25.85± 3.17 17.78 38.01

Erms,z (%) 10.25± 2.71 8.16 42.26

Eθ (deg) 14.26± 2.93 11.87 19.38

EL 0.14± 0.03 0.11 0.19

As seen from Table 4.2, fast move of the crutch leads high errors in the GRF vector

estimation. Thus, the system should be moved at a reasonable velocity while being

used under dynamic conditions.

4.3 GRF Estimation in 3-Dimensions

We used the same experimental platform in the 2D case which is shown in Figure

4.1. In this section, we will describe our method for mapping pressure sensor and

accelerometer data to GRF vectors in 3D. More specifically, the method for estimation

of Fx, Fy, and Fz from P1, P2, P3, P4, ax, and ay will be presented in this section.

Subsequently, Section 4.4 will present the estimation performance.

4.3.1 Angle-Dependent Force Transfer Model

Similar to Section 4.1.1, our estimation method is again based on the assumption that

the GRF vector in 3D depends quadratically on the pressure readings from the FSRs

embedded in the silicon shoe. However, this time we have two crutch angles, namely
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α and β which can be clearly seen from Figure 4.1. This means, the relationship can

be different for different values of α and β. Furthermore, this time the delay caused

by the soft silicon structure of the shoe will not only depend on α, but also will depend

on β. According to these assumptions, the model in Equation 4.1 takes the form

F̂(t− td(α, β)) :=


F̂x(t− td(α, β))

F̂y(t− td(α, β))

F̂z(t− td(α, β))



= KL(α, β)


P1(t)

P2(t)

P3(t)

P4(t)

+ KQ(α, β)


P 2

1 (t)

P 2
2 (t)

P 2
3 (t)

P 2
4 (t)

 . (4.28)

In this model,

1. α is the angle of the crutch with the vertical along x-axis and is computed from

accelerometer measurements along the x-axis using

α = sin−1(
ax
g

), (4.29)

β has the same definition in Equation 4.1 which is the angle of the crutch with

the vertical along y-axis and is computed by using Equation 4.2,

2. Pi(t) are pressure readings from the FSR sensors,

3. td(α, β) is the angle-dependent sensor delay in the transfer of the GRF vector

to the FSR sensors due to the soft structure of the silicon shoe,

4. KL(β) is an angle-dependent linear gain matrix defined as

KL(α, β) :=


kL,x1(α, β) kL,x2(α, β) kL,x3(α, β) kL,x4(α, β)

kL,y1(α, β) kL,y2(α, β) kL,y3(α, β) kL,y4(α, β)

kL,z1(α, β) kL,z2(α, β) kL,z3(α, β) kL,z4(α, β)

 , (4.30)

5. KQ(β) is an angle-dependent quadratic gain matrix defined as

KQ(α, β) :=


kQ,x1(α, β) kQ,x2(α, β) kQ,x3(α, β) kQ,x4(α, β)

kQ,y1(α, β) kQ,y2(α, β) kQ,y3(α, β) kQ,y4(α, β)

kQ,z1(α, β) kQ,z2(α, β) kQ,z3(α, β) kQ,z4(α, β)

 . (4.31)
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4.3.2 Data-Driven Identification of the Force-Transfer Model

We used the same method described in Section 4.1.2 to identify gain matrices in 3D.

This time, the method requires the collection of sufficient amount of synchronized 3D

GRF (Fx, Fy, Fz), angle (α, β), and pressure (P1, P2, P3, P4) data. Similar to Section

4.1.2, we assume that the sensor delay characteristic is known for a particular (α, β)

crutch angle pair.

As in Section 4.1.2, suppose that we have a collection of data for a particular (α,

β) pair consisting of N samples of ground truth force (Fz, Fy, Fz), and pressure

data (P1, P2, P3, P4), recorded in a synchronized fashion to yield pressure and force

vectors, Pj and Fj , with j = 1, .., N . Additionally, let us suppose that the delay Td

of the particular choice of (α, β) is known. With this information and the proposed

force transfer model, we identify the gain matrices KL(α, β) and KQ(α, β) by using

standard linear least squares methods. This time, our error metric is

E(α, β, Td) :=
N∑

j=Nd

||F̂(Pj)− F(j−Nd)||2. (4.32)

In this equation, F̂(Pj) denotes the estimation from the model introduced in Section

4.3.1, using the measured pressure data Pj , and F(j−Nd) denotes the measured and

recorded ground truth force data delayed in time by Nd samples representing the

delay Td in Equation 4.28.

To be able to use linear least-squares, we rearrange the gain parameters in Equations

4.30 and 4.31 into three vectors ux, uy, and uz. ux is defined as

ux :=
[
kL,x1 ... kL,x4 kQ,x1 ... kQ,x4

]T
. (4.33)

Definitions of uy and uz are given in Equations 4.6 and 4.7, respectively.

In 3D, ground truth force recordings for each axis are collected into three vectors Fx,

Fy, and Fz. Fx is defined as

Fx :=
[
Fx,1 ... Fx,(N−Nd)

]T
. (4.34)

Definitions of Fy and Fz are given in Equations 4.8 and 4.9, respectively.
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As in Section 4.1.2, pressure sensor readings are assembled in to matrix M which is

defined in Equation 4.10.

After throwing first Nd samples out of Equation 4.10 and also making lengths of

vectors Fx, Fy, Fz compatible with the matrix M, we substitute these definitions into

the error metric in Equation 4.32 yielding

E(α, β, Td,ux,uy,uz) = ||Mux−Fx||2 + ||Muy−Fy||2 + ||Muz−Fz||2 . (4.35)

Based on this error metric, we estimate the gain parameters by independently using

standard linear least-squares on first, second, and third terms of Equation 4.35. With

this method we find estimated gain parameters ûx, ûy, and ûz. While ûx results in

ûx = (MTM)−1MTFx, (4.36)

ûy and ûz are given in Equations 4.12 and 4.13, respectively.

The experimental procedure for assessing estimation performance of this method with

corresponding detailed results are presented in Section 4.4.4.

4.3.3 Identification of Angle-Dependent Sensor Delay

Sensor delay caused by the soft structure of the silicon shoe is identified in 3D almost

exactly the same way in Section 4.3.3. This time, we define the sensor delay for a

particular (α, β) pair as Td(α, β) and estimate t by solving the optimization problem,

t̂d(α, β) = argmin
td

E(α, β, td, ûx, ûy, ûz) , (4.37)

based on the error metric given in Equation 4.35, and the gain vectors estimated by

using Equations 4.36, 4.12, 4.13. As in the case of Section 4.3.3, we solve the opti-

mization problem by using fminbnd function of MATLAB. The details of the ex-

perimental procedure with associated results are presented in Section 4.4.3.

4.3.4 Estimation of GRF Vectors for Arbitrary Crutch Angles

We extend the interpolation method presented in section 4.1.4 to 3D in order to es-

timate 3D gain matrices and the 3D sensor delay at angles for which no data were
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collected. The analogue of the linear interpolation method used in Section 4.1.4 in

3D is called as barycentric interpolation. To better understand this method, suppose

gain matrices and the sensor delay are identified at three different crutch angle pairs

(α1, β1), and (α2, β2), (α3, β3). We want to approximate gain matrices and the sensor

delay at an arbitrary angle pair (α, β) inside of the triangle formed by (α1, β1), (α2,

β2), and (α3, β3). Figure 4.12 depicts the situation.

𝛽 

𝛼 
0 

(𝛼1, 𝛽1) (𝛼2, 𝛽2) 

(𝛼3, 𝛽3) 

(𝛼, 𝛽) 𝐴1 
𝐴2 

𝐴3 

Figure 4.12: Three different crutch angle pairs (α1, β1), and (α2, β2), (α3, β3) at which

gain matrices and the sensor delay are identified. (α, β) is the angle pair at which we

want to approximate gain matrices and the sensor delay. A1, A2, and A3 represents

the areas of the small triangles on which they are written.

In Figure 4.12, A1, A2, and A3 represents the areas of the small triangles on which
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they are written and can be computed as,

A1 := |1
2

∣∣∣∣∣∣∣∣
α1 β1 1

α β 1

α3 β3 1

∣∣∣∣∣∣∣∣ |, (4.38)

A2 := |1
2

∣∣∣∣∣∣∣∣
α2 β2 1

α β 1

α3 β3 1

∣∣∣∣∣∣∣∣ |, (4.39)

A3 := |1
2

∣∣∣∣∣∣∣∣
α1 β1 1

α2 β2 1

α β 1

∣∣∣∣∣∣∣∣ |, (4.40)

respectively.

Moreover,

AT := A1 + A2 + A3 (4.41)

represents the area of the large triangle formed by (α1, β1), (α2, β2), (α3, β3). For the

arbitrary (α, β) pair, we propose to estimate the gain matrices as,

KL(α, β) = KL(α1, β1)
A1

AT
+ KL(α2, β2)

A2

AT
,+KL(α3, β3)

A3

AT
, (4.42)

KQ(α, β) = KQ(α1, β1)
A1

AT
+ KQ(α2, β2)

A2

AT
,+KQ(α3, β3)

A3

AT
. (4.43)

Similary, we can estimate the angle-dependent sensor delay as

Td(α, β) = Td(α1, β1)
A1

AT
+ Td(α2, β2)

A2

AT
,+Td(α3, β3)

A3

AT
(4.44)

under the assumption that the dependence of gains and the delay on β is locally ap-

proximately linear.

Given a set of (α, β) pairs in the α-β plane with associated gain matrices and sensor

delays at these points, the method requires the triangulation of the plane so that the

arbitrary angle pair resides in one of the triangles. Any triangulation method is suit-

able for this interpolation method as long as the edges of the triangles do not cross

each other.

Details of the experimental procedure with associated results in estimating gain ma-

trices and the sensor delay for arbitrary angle pairs are presented in Section 4.4.5.
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4.4 Experimental Results for 3-Dimensions

4.4.1 The Experimental Procedure

The strategy described in 4.2.1 is followed to assess validity of the arguments pro-

posed for 3D GRF estimation. First, stationary experiments were conducted, in which

the crutch angle pair (α, β) was kept constant. Second, dynamic experiments were

conducted, in which the crutch angle pair (α, β) was varied reasonably slowly.

As the data acquisition procedure and experiments are much more tedious in 3D than

the case of 2D, we collected data only in the first quadrant in the α-β plane in the

intervals α ∈ [0◦, 14◦], β ∈ [0◦, 14◦]. To be able to better evaluate the performance

of the method on the axes, we also collected data in the intervals α ∈ [−2◦, 6◦], β ∈
[−2◦, 6◦] also. Data collected in these intervals are used to evaluate the performance

of the method described in Section 4.3.4. Figure 4.13 shows exact pairs of (α, β) at

which data are collected in the α-β plane. At each angle pair, data were collected

using the platform shown in 4.1, recording

• pressure data (P1, P2, P3, P4),

• acceleration data (ax, ay) which is later converted to α and β by using Equation

4.29 and 4.2, respectively,

• ground truth values of GRF data (Fx, Fy, Fz),

while external forces were applied to the crutch, keeping α and β as constant as

possible exactly in the same way described in Section 4.2.1. We conducted more

experiments in 3D than in 2D, a trial of 17 experiments for each angle pair which was

11 in 2D, because we need more data points to learn the gain parameters and sensor

delay characteristic in 3D than in the case of 2D. The associated data for each angle

pair was again filtered and recorded to be used in training the model and evaluation

of its performance. Data collected for (α = 2◦, β = 2◦) are illustrated in Figure 4.14.
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Figure 4.13: (α, β) angle pairs at which data were collected. Points with ‘x’represent

data used for training the model for dynamic experiments. Points with ‘o’represent

data used for testing the method to extend to model to arbitrary crutch angles. Points

with both ‘x’and ‘o’represent data used for both purposes.

Dynamic experiments were conducted almost exactly in the way described in 4.2.1,

conducting 20 experiments to measure the performance of the model under dynamic

conditions, this time in 3D only in the first quadrant as we identified the gain matrices

and the sensor delay characteristic only for the first quadrant. In these 20 experiments,

α and β varied with a reasonably slow angular velocity in the intervals α ∈ [0◦, 14◦],

β ∈ [0◦, 14◦]. Moreover, as in the case of 2D, we conducted 5 more dynamic experi-

ments in which α and β were varied fast to state the accuracy of the model under high

speed dynamic conditions.
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Figure 4.14: Scatter plot of ground reaction force samples collected during all of the

17 experiments for (α = 2◦, β = 2◦).
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4.4.2 Error Metrics

To evaluate the performance of the proposed system identification method, RMS er-

rors in three axes were computed. To find RMS errors in y and z axes, Equations 4.18

and 4.19 are used, respectively. In 3D, we add

Erms,x :=
100

max
j
||Fj||

√√√√ 1

N

N∑
j=1

(F̂j,x − Fj−Nd,x)
2 (4.45)

to Equations 4.18 and 4.19 to compute the RMS error in x axis.

As mentioned earlier, 17 experiments were conducted for each (α, β) angle pair dur-

ing stationary experiments. To measure the average estimation errors in each of the

three axis for a particular crutch angle pair (α, β), arithmetic means of errors for all

experiments at that angle pair were computed as

Ērms,x :=
1

17

17∑
i=1

Erms,x,i, (4.46)

Ērms,y :=
1

17

17∑
i=1

Erms,y,i, (4.47)

Ērms,z :=
1

17

17∑
i=1

Erms,z,i, (4.48)

ĒΘ :=
1

17

17∑
i=1

EΘ,i, (4.49)

ĒL :=
1

17

17∑
i=1

EL,i, . (4.50)

In the sequel, these error metrics will be used to evaluate the model performance.

4.4.3 Angle-Dependent Sensor Delay Characteristic

In the first phase of the experiments, we identified the sensor delay Td(α, β) for crutch

angle pairs at which data were collected by using the method described in 4.3.3.

Similar to the case in 2D, we used leave-one-out cross validation method, that is,

from among 17 sets of each data for each (α, β) angle pair, 16 were used for training

while the remaining 1 data set was used for testing. This was repeated with 17 data
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sets. At a particular (α,β), the training set was used to compute ûx, ûy, and ûz in

Equation 4.37 and Td(α, β). For each (α,β), the arithmetic mean of sensor delays

estimated in each leave-one-out run at a particular (α, β) angle pair was computed

to estimate the sensor delay at that particular (α, β) angle pair. The identified sensor

delay characteristic in the first quadrant is shown in Figure 4.15.
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Figure 4.15: The graph of the estimated sensor delay (in milliseconds) vs. (α, β) (in

degrees) for the first quadrant. For each (α, β), estimations from 17 experiments were

averaged.

We expect that the sensor delay would be greatest around (α = 0◦, β = 0◦) and gets

lower to the edge angles as the compaction volume of the soft silicon structure of

the tip is largest at vertical angles and gets lower towards edge tilt angles. However,

Figure 4.15 does not confirm this claim. One cause of this might be the fact that

the forces applied to train the model were not distributed homogeneous enough in

the Fx-Fy-Fz space as it can be seen from Figure 4.14. Another cause might be the

possibility of nonhomogeneous stiffness of the soft silicon structure. To say more

clearly, a sub-volume of the silicon tip near edge can be softer than a sub-volume

around center which causes unexpected sensor delay characteristic in Figure 4.15.
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4.4.4 Model Accuracy for Crutch Angles Used for Training

Sensor delay characteristic as a function of (α, β) were identified up to this point and

associated results were presented in Section 4.4.3. In this phase of the experiments,

we assess validity of gain parameters and this estimated sensor delay characteristic at

the crutch angles used for training the model. We follow the same strategy with the

counterpart of this phase of experiments in 2D which was presented in Section 4.2.4.

That is, leave-one-out cross validation is used. In each of the 17 runs for each (α,

β) angle pair, 16 out of 17 data sets were used for training, while the remaining data

set was used for testing. Errors computed for the testing data set in each run were

arithmetically averaged by using Equations 4.46, 4.47, 4.48, 4.49, and 4.50. Graphs

presenting average errors in the estimation of Fx, Fy, and Fz are shown in Figure

4.16. Graphs presenting errors between the ground-truth GRF vectors and estimated

GRF vectors in terms of degrees and in terms of ratios of their norms are shown in

Figure 4.17. As exact positions of the angle pairs and associated error values cannot

be seen clearly, and standard deviations of the errors are not represented in Figures

4.16 and 4.17, exact positions of the angle pairs with associated error values and

standard deviations are presented in Table 4.3.

As seen from Figure 4.16, errors in all of the x, y, and z axis are below 8% for al-

most all (α, β) angle pairs in the first quadrant. Moreover, as seen from Figure 4.17,

angle between the ground-truth and estimated GRF vector is below 10 degrees, and

difference between the norms of the estimated and ground-truth GRF vectors are be-

low 10% for almost all angle pairs. From the figures, we observe that error increases

around (α = 6◦, β = 6◦). One reason of this increase might be the possibility of

deflections arising inside the silicon tip when (α = 6◦, β = 6◦) which may cause low

quality pressure sensor data. The deflection might be observed also from the high

sensor delay values in Figure 4.15. Furthermore, it can be observed from the figures

that the error tends to increase to the edge angles. This is expected because quality

of the pressure signals decreases as tilt angle of the crutch increases. Nevertheless,

the results still show that identified gain parameters and sensor delays at the train-

ing angles are valid enough to train the model to be used for GRF estimation under

time-varying conditions.
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Figure 4.16: Percentage errors in the estimates of Fz (top graph), Fy (middle graph),

and Fx (bottom graph) vs. (α, β). For each (α, β), resulting errors for 17 experiments

are averaged arithmetically.
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the estimated GRF vector (bottom graph, in degrees) and ratio of norm of the ground-

truth vector and the estimated GRF vector (bottom graph) vs. (α, β). For each (α, β),

resulting errors for 17 experiments are averaged arithmetically.
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Table 4.3: Exact values of errors with corresponding standard deviation for each data
pair at which data collected. ĒL values are written after divided by 100.

(α, β) Ērms,x (%) Ērms,y (%) Ērms,z (%) Ēθ (deg) ĒL/100

−1.39,−1.64 4.03± 0.54 3.42± 0.53 6.1± 2.77 5.78± 0.86 5± 5

0.34,−1.83 4.23± 0.29 3.97± 0.54 4.98± 0.94 7.42± 0.72 6± 1

2.45,−1.76 4.67± 0.39 3.86± 1.1 4.38± 1.23 7.07± 0.9 6± 1

4.36,−1.75 4.24± 0.67 4.17± 0.49 6.73± 2.62 6.28± 0.8 5± 1

−1.57,0.45 4.08± 0.32 3.43± 0.37 4.65± 1.1 5.47± 0.45 5± 1

0.17,0.27 6.08± 1.33 4.68± 1.34 5.62± 1.52 7.81± 1.45 10± 3

2.2,−0.04 4.8± 0.87 4.18± 0.93 3.37± 0.44 6.32± 1.44 6± 3

4.35,0.09 4.22± 0.49 4.24± 0.99 4.28± 0.66 6.42± 1.11 6± 1

6.11,−0.37 5.27± 1.4 4.67± 0.81 5.99± 2.6 7.32± 1.36 6± 1

10.32,−0.44 5.51± 0.52 5.08± 0.69 8.23± 1.98 8.35± 0.79 9± 3

14.47,−0.86 5.8± 0.47 4.77± 0.64 9.94± 2.98 7.29± 0.73 7± 1

−1.47,2.44 3.93± 0.75 2.97± 0.53 5.03± 1.82 5.16± 0.79 9± 5

0.18,2.05 4.96± 0.56 3.67± 0.73 3.89± 0.54 6.48± 0.92 7± 2

2.33,2.06 4.7± 0.65 4.66± 0.63 4.21± 0.68 7.52± 1.59 8± 2

4.48,2.21 3.81± 0.8 3.52± 0.49 5.25± 1.94 5.17± 0.96 5± 1

6.27,1.75 4.73± 0.82 4.56± 0.64 5.76± 2.65 7.63± 1.19 8± 2

10.35,1.3 5.24± 0.87 5.05± 0.9 6.24± 2.37 7.69± 1.21 8± 1

14.67,1.21 5.38± 0.75 4.34± 0.39 7.35± 1.88 7.3± 0.77 7± 2

−1.62,4.24 3.86± 0.44 3.16± 0.49 5.37± 1.83 5± 0.63 5± 1

0.4,4.33 4.35± 0.55 3.82± 0.42 4.72± 1.04 6.7± 1.18 6± 1

2.5,4.21 4.58± 0.83 3.92± 0.68 5.51± 1.08 6.15± 0.85 6± 1

4.59,3.73 3.91± 1.03 3.14± 0.73 4.99± 0.95 4.63± 0.94 5± 1

6.77,3.6 3.68± 1.32 3.88± 1.44 6.31± 3.36 5.04± 1.78 7± 3

0.93,6.21 6.1± 0.6 7.44± 0.67 7.47± 3.19 10.24± 1.11 10± 2

2.69,5.94 5.36± 0.46 5.45± 0.7 6.12± 1.38 8.29± 0.76 10± 2

4.68,5.76 3.79± 0.67 3.43± 0.75 5.07± 1.28 4.16± 0.74 5± 1

6.61,5.68 7.4± 0.69 7.16± 0.81 9.55± 2.57 8.86± 0.87 1± 3

10.91,4.63 5.36± 0.62 4.95± 0.69 6.38± 1.49 6.82± 0.6 8± 1

14.82,5.14 5.65± 0.59 5.42± 0.6 8.3± 2.09 7.96± 0.93 7± 1

1.36,10.09 6.25± 0.61 6.09± 1.15 5.21± 1.12 10.02± 1.3 8± 1

3.09,10.03 4.96± 0.68 4.51± 0.72 5.74± 1.47 8.12± 1.4 8± 3

7.18,9.62 6.47± 0.78 6.04± 1.22 7.49± 3.86 8.22± 1.62 8± 7

11.12,8.86 5.14± 0.6 4.8± 0.64 4.55± 1.24 7.18± 0.8 6± 1

15.21,8.26 6.09± 0.7 6.9± 1.13 6.64± 2.27 8.29± 0.96 7± 2

1.68,14.02 5.05± 0.87 4.23± 0.86 6.27± 1.99 7.47± 1.29 8± 1

3.07,13.78 4.14± 0.63 3.73± 0.53 5.79± 1.56 1.6± 1 5± 1

6.77,12.97 4.13± 0.46 4.06± 0.83 7.2± 2.86 5.58± 0.8 5± 1

11.38,12.56 3.39± 0.67 3.35± 0.72 6.85± 1.62 4.93± 1.03 5± 1

14.52,11.9 3.57± 0.79 3.51± 0.93 7.88± 3.04 5.68± 1.35 6± 4
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4.4.5 Model Accuracy for Arbitrary Crutch Angles

To assess the performance of the interpolation method proposed in Section 4.3.4 we

used data collected at the points represented with ‘o’and the points represented with

both ‘o’and ‘x’in Figure 4.13 are used. Exact positions of the points with associated

labels used to test the interpolation method are shown in Figure 4.18.
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Figure 4.18: Exact positions of (α, β) pairs with associated labels used to test the

proposed interpolation method.

To approximate gain parameters and the sensor delay at a data point, we used closest

three points on which it resides almost at the middle of the triangle formed by them. 9

experiments were conducted to test the proposed interpolation method. Points used in

the approximation and point to be approximated with associated errors and standard

deviations are shown in Table 4.4.
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Table 4.4: Resulting errors with corresponding standard deviations using the pro-
posed interpolation method. Pointa represents point at which gain parameters and
the sensor delay wanted to be approximated. Pointi represents the edges of the trian-
gle used in the interpolation. Exact positions of the points with associated labels are
shown in 4.18.
Experiment# 1 2 3 4 5 6 7 8 9

Pointa Q22 Q23 Q24 Q32 Q33 Q34 Q42 Q43 Q44

Point1 Q11 Q12 Q33 Q42 Q22 Q23 Q41 Q32 Q33

Point2 Q13 Q14 Q13 Q21 Q24 Q44 Q33 Q34 Q35

Point3 Q32 Q33 Q25 Q23 Q43 Q25 Q53 Q53 Q54

Ērms,x

9.36

±
2.15

5.76

±
0.61

4.41

±
0.8

6.73

±
0.85

6.18

±
0.83

5.79

±
2.21

5.97

±
0.84

6.05

±
0.91

3.93

±
1.4

Ērms,y

14.47

±
5.06

5.81

±
0.86

5.75

±
1.53

5.39

±
0.85

5.93

±
0.95

4.04

±
0.83

5.02

±
1.28

5.24

±
1.67

4.89

±
1.23

Ērms,z

6.94

±
2.37

4.02

±
0.54

4.25

±
0.69

5.32

±
0.81

4.63

±
0.56

5.94

±
1.88

4.99

±
1.03

7.57

±
1.07

5.08

±
0.9

ĒΘ

11.89

±
2.2

6.97

±
0.9

7.66

±
0.98

8.41

±
1.07

8.82

±
1.65

6.96

±
2.29

8.22

±
1.69

8.13

±
1.06

6.04

±
1.27

ĒL

0.12

±
0.04

0.08

±
0.01

0.07

±
0.02

0.09

±
0.02

0.08

±
0.01

0.06

±
0.01

0.08

±
0.02

0.13

±
0.02

0.06

±
0.01

4th and 7th experiments test the performance of the method in the transition between

the first and second quadrants as the point to be approximated lies on the positive

side of y-axis. As seen from Table 4.4, errors in all axis are below 6%, angle and

difference of the norms between the estimated and ground-truth GRF vectors are

below 9 degrees and 9%, respectively. These low errors states that transition between

first and second quadrants does not increase error.

2nd and 3rd experiments test the performance of the method in the transition between

the first and fourth quadrants as the point to be approximated lies on the positive

side of x-axis. As seen from Table 4.4, errors in all axis are below 6%, angle and

difference of the norms between the estimated and ground-truth GRF vectors are

below 8 degrees and 8%, respectively. These low errors states that transition between
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first and fourth quadrants does not increase error.

1st experiment tests the performance of the method in the transition between the first

and third quadrants as the point to be approximated lies on the origin. As seen from

Table 4.4, errors in all axes increase considerably which is further approved by the

increase in the errors in polar coordinates. These increases are due to the fact that

while we are approximating gain parameters and sensor delay at origin, we use points

from different quadrants.

5th, 6th, 8th, and 9th experiments test performance of the method only in the first

quadrant without quadrant transition. As seen from Table 4.4, errors in all axis are

below 8%, angle and difference of the norms between the estimated and ground-truth

GRF vectors are below 9 degrees and 8%, respectively. These low errors states that if

the method is only used in the first quadrant, the errors do not increase considerably.

4.4.6 Accuracy Under Dynamic Conditions

Similar to Section 4.2.6, to test the performance of the model under dynamic condi-

tions, we cannot directly use the model in Equation 4.28 as it requires the knowledge

of pressure sensor values ahead of time due to sensor delay. Thus, we have to delay

the GRF vector estimation. Let us call the maximum value of the sensor delay among

all (α, β) angle pairs as

tmaxd := max t̂d(α, β). (4.51)

As in 2D case, if we delay pressure sensor signals to be processed by tmaxd , we may

be able to estimate GRF vectors in real-time. The model in Equation 4.28 becomes

F̂(t− tmaxd ) = KL(α(t), β(t)) P(t+ td(α(t), β(t))− tmaxd )

+KQ(α(t), β(t)) P2(t+ td(α(t), β(t))− tmaxd ) . (4.52)

Points represented with ‘x’and both ‘x’and ‘o’in Figure 4.13 are used to train the

model. To triangulate the points in order to be able to use the interpolation model

proposed in Section 4.3.4 we used Delaunay triangulation. Please note that any tri-

angulation method is suitable as long as the edges of the triangles do not cross each

other. Resulting triangulation is shown in Figure 4.19.

72



, (deg)
0 2 4 6 8 10 12 14 16

-
(d

eg
)

-2

0

2

4

6

8

10

12

14

16

Figure 4.19: Resulting Delaunay triangulation of the points used in the learning pro-

cess to use the proposed interpolation method.

Very similar to 2D case, tmaxd = 58ms according to Figure 4.15. The potential flaw

originating from the fact that the sensor delay corresponding to current (α, β) is used.

As mentioned in Section 4.4.1, 20 experiments were conducted to measure perfor-

mance of the model under dynamic conditions in which tip of the crutch is kept still

while touching the ground and body of the crutch is moved such that (α, β) will be

in the first quadrant in α-β plane. Graphs presenting estimation results in cartesian

coordinates in one of these experiments are shown in Figure 4.20, and graphs pre-

senting estimation results in polar coordinates of the same experiment are shown in

Figure 4.21. Moreover, average, maximum, and minimum errors in both axes for 20

dynamic experiments are shown in Table 4.5.

To test the performance of the method with high crutch velocity, we conducted 5 more

experiments. Average, maximum, and minimum errors in terms of all the five error

metrics for 5 fast dynamic experiments are shown in 4.6.

As seen from Table 4.5, average percentage RMS error is below 6% in z-axis and are

around 8% in shear axes. Moreover, angle between the estimated and ground-truth

GRF vectors is around 10 degrees and norms of the estimated and ground-truth GRF
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vectors are different from each other 9%.
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Figure 4.20: Graphs showing estimation results in cartesian coordinates for one of the

dynamic experiments. The two topmost graphs show α and β as a function of time,

respectively. Black trajectories in the third, fifth, and seventh from top graphs show

Fx, Fy, and Fz, respectively. Blue trajectories in the same graphs show F̂x, F̂y, and

F̂z, respectively. The fourth, sixth, and eighth graphs show the difference between

the ground-truth and estimated forces in x, y, and z axis, respectively.
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Figure 4.21: Graphs showing estimation results in polar coordinates for one of the

dynamic experiments.
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As in the 2D case, dramatic changes in acceleration leads to erroneous inclination

angle estimations which can be confirmed from the high error values in Table 4.6.

Table 4.5: Average, minimum and maximum errors across 20 dynamic experiments
in 3D.

Avg. Min Max
Erms,x (%) 8.17± 1.72 5.8 12.93

Erms,y (%) 7.62± 1.33 6.08 10.93

Erms,z (%) 5.82± 1.18 3.13 7.66

Eθ (deg) 9.8± 1.48 7.31 12.49

EL 0.09± 0.02 0.06 0.12

Table 4.6: Average, minimum and maximum errors across 5 fast dynamic experi-
ments in 3D.

Avg. Min Max
Erms,x (%) 49.11± 23.08 24.27 76.01

Erms,y (%) 42.19± 29.25 17.60 90.67

Erms,z (%) 18.53± 10.10 7.16 34.77

Eθ (deg) 22.78± 3.32 7.31 12.49

EL 0.29± 0.12 0.12 0.44
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, we have introduced a low-cost crutch system instrumented with pressure

sensors and an inclinometer to estimate ground reaction forces, towards the long-term

goal of using GRF information to estimate user intention for controlling lower-body

robotic orthosis.

The work consists of two major parts. We first designed of smart crutch platform with

its mechanical structure, electronic design, communication infrastructure, and data

acquisition platform. Then, we proposed quadratic model including sensory delays

for how the GRF can be computed from pressure sensor measurements, whose gain

matrices were computed using least-squares methods from systematically collected

sensor and ground-truth force data. We cross validated our system identification re-

sults using the leave-one-out method, establishing that the resulting model can predict

GRF vectors with less than 10% errors in all axes in 3D. We have also shown that the

model successfully generalizes its predictions to crutch angles for which no data was

collected, maintaining errors below 10% when training angles are separated by less

than 4 degrees. Finally, we have also shown that the model performs well under dy-

namically changing crutch angles and external forces, maintaining average estimation

errors below 10% in 3D.

The most important source of error in this system is the soft silicon structure of the

manufactured tip which introduces high noise to the pressure sensors due to high vi-

bration under high shear forces. To come over this issue, soft silicon of the tip should

be replaced with a high quality rubber. Second most important source of error is us-

ing an accelerometer to measure tilt angle of the crutch. As mentioned, accelerometer
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gives erroneous results under dynamic conditions which increases as the velocity in-

creases. To overcome this problem, accelerometers will be replaced instead of gyro

sensors which will not be affected by high acceleration changes. Another source of

error is the fact that we computed only one sensor delay characteristic for all four

pressure sensors. As compaction volume of the silicon tip under each sensor are dif-

ferent, computing delay characteristic of each pressure sensor separately is the most

suitable approach. However, as this will require high computational power, we are

not planning to do such a sensor delay identification in the future.

In the near future, we intend to use these GRF estimates from crutches to estimate user

intention and commands, including the initiation of individual steps and the determi-

nation of step height and length, for our lower-body robotic orthosis platform. Finally,

we hope to iterate on the SCP platform, improving estimation accuracy through more

accurate sensing of crutch orientation by using gyro sensors, improved modelling of

force transmission and better integration of pressure sensors by using a high quality

rubber at the tip of the crutch.

In the far future, methods to map pressure sensor and orientation data obtained from

the crutch to actuators at the hip and knee joints in the robotic orthosis system in

real-time will be investigated. With this final system, patients who cannot move their

lower extremities in any way will be able to walk completely independently.
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