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ABSTRACT

EVALUATING THE EFFECTS OF RESCALING PARAMETERS IN
LARGE-SCALE GENOMIC SIMULATIONS

Kıratlı, Ozan
M.S., Department of Biology

Supervisor : Assist. Prof. Dr. Ayşegül Ceren Birand Özsoy

February 2016, 40 pages

Computer simulations are widely used in many subdisciplines of biological sci-
ences, which evolutionary biology. Large-scale genomic simulations, where several
kb (kilo base) to several Mb (megabase) genomes are modeled, are being increas-
ingly used. These simulations require high computing power. There are some meth-
ods proposed in the literature to decrease the time and memory demand of these
simulations. This study is concentrated on one of those methods, where both the
number of generation, and the number of individuals are decreased, and mutation
rate is increased. This rescaling method is widely used in recent years. Even though
it has been criticized many times, since it could change the population dynamics,
there are not many studies that evaluates the effect of rescaling on population dy-
namics. This study demonstrates how the rescaling of the parameters could change
population dynamics with a simple model, and shows that the proportion of poly-
morphic loci in the simulated genomes could be significantly affected.
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Keywords: mutation accumulation, mutation rate, population size, proportion of
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ÖZ

BÜYÜK ÖLÇEKLİ GENOM SİMÜLASYONLARINDA PARAMETRE
YENİDEN ÖLÇEKLENDİRİLMESİNİN ETKİLERİNİN

DEĞERLENDİRİLMESİ

Kıratlı, Ozan
Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ayşegül Ceren Birand Özsoy

Şubat 2016, 40 sayfa

Bilgisayar simülasyonları biyolojik bilimlerin, bir tanesi de evrimsel biyoloji olan,
bir çok alt dalında yaygın olarak kullanılmaktadır. Birkaç bin bazdan birkaç milyon
baza kadar genomik bölgelerin modellendiği büyük ölçekli genom simülasyonla-
rının kullanımı yaygınlaşmaktadır. Bu simülasyonların hesaplama gücü ihtiyaçları
yüksektir. Literatürde bu simülasyonların bellek ve zamansal ihtiyaçlarını azaltmak
amacıyla sunulmuş çeşitli yöntemler bulunmaktadır. Bu çalışmada bu yöntemler-
den, nesil ve birey sayılarının azaltılarak, mutasyon oranının artırıldığı bir tanesi
incelenecektir. Bu yeniden ölçeklendirme yöntemi son yıllarda yaygın olarak kulla-
nılmaktadır. Popülasyon dinamiklerini değiştirebileceği için bir çok kez eleştirilmiş
olmasına rağmen, yeniden ölçeklendirme yönteminin popülasyon dinamikleri üze-
rindeki etkilerini değerlendiren çok fazla çalışma yapılmamıştır. Bu çalışma para-
metrelerin yeniden ölçeklendirilmesinin popülasyon dinamiklerini nasıl değiştirebi-
leceğini basit bir modelle açıklamakta ve simüle edilmiş genomlardaki polimorfik
lokus oranının kayda değer bir şekilde değiştiğini göstermektedir.
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CHAPTER 1

INTRODUCTION

Ecology and evolutionary biology has taken advantage of mathematics since the
beginning of 20th century (Servedio et al., 2014). In these mathematical research in
biological sciences, biologists come up with particular equations giving the result
of a scenario under specific conditions, and assumptions. These analytical models
are powerful; however, they can only be obtained under rather simple scenarios.
For more realistic conditions, simulations have become useful tools for biologists
to use (Bergstrom et al., 1999; Brown & Rothery, 1993; Hoban et al., 2012; Hudson,
2002; Keen & Spain, 1992). Computer simulations are being used more than ever as
high performance computers have become more available recently (García-Dorado
& Gallego, 2003; Hoggart et al., 2007; Hudson, 2002; Jiang et al., 2010; Keen &
Spain, 1992; Schaffner et al., 2005; Schwartz, 2008). Computer simulations are
similar to experiments, where one creates a controlled environment to test various
hypotheses (Servedio et al., 2014). Simulations also make it possible to generate
a null hypothesis dataset, which can be tested against the empirical data (Carvajal-
Rodríguez, 2008; Fusté, 2012; García-Dorado & Gallego, 2003; Hoban et al., 2012;
Killcoyne & del Sol, 2014; Kim & Wiehe, 2009; Sargolzaei & Schenkel, 2009).

1.1 Computer Simulations in Biological Research

In biological research, there are numerous types of computer simulations. They
can be investigated in terms of their types, time-wise approaches (forward-time or
backward-time), and purposes.
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1.1.1 Types of Computer Simulations

There are two main types of simulations in biological research: individual (agent)
based, and Monte Carlo (MC) simulations (Winsberg, 2015). Individual based sim-
ulations are used to simulate many individuals for many numbers of generations,
and make it possible to monitor the changes in the population in this long timescale.
Typically in individual based simulations, the populations are composed of finite
number individuals with certain traits that can mutate, evolve, and selected for or
against according to the question or the model itself (Carvajal-Rodríguez, 2008;
Hoban et al., 2012; Pickrell et al., 2009; Yuan et al., 2012). Individual based sim-
ulations are convenient ways to study populations, since in nature for many organ-
isms, the time-scale to observe the changes in the populations is very long, and also
very expensive in the lab, thus such observation is very hard to be achieved in the
lifetime of a human. Even with Escherichia coli, with such high reproduction rate
(i.e. 30 mins per division), it takes many years to observe evolutionary changes. In
the very long term evolution experiment by Lenski (2015), 50,000 generations in E.

coli was achieved in 2010, 22 years after the experiment has started (Lenski, 2011).

MC simulations depend on repeated random samplings and convergence principle,
where many samples are generated using random variables, converging to a proba-
bility distribution. MC simulations are used when a set of scenarios are expected to
happen but the real outcome is not known, or when the outcome is known but the
related probabilistic scenario is unknown. They are widely used in Bayesian infer-
ence of phylogenies (Duchêne et al., 2015; Gruijter et al., 2011), protein (Jónsson
et al., 2012; Paquet & Viktor, 2015; Zhang & Chou, 1992), and membrane stud-
ies (Hitsov et al., 2015; Morriss-Andrews & Shea, 2015). In Bayesian inference of
phylogenies, a special type of MC methods, Markov chain Monte Carlo (MCMC)
simulations are used to generate many phylogenies to decide on the most likely
phylogeny (Lanier & Knowles, 2015; Larson-Johnson, 2016; Oaks, 2015). This
method, where the similarity scores among many phylogenies are calculated and
used with a likelihood function to find the best scenario, is known as the maximum
likelihood principle. For protein and membrane studies again the purpose is to gen-
erate many possible protein and membrane structures under given thermodynamical
conditions (Paquet & Viktor, 2015).
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1.1.2 Time-wise Approaches in Computer Simulations

In terms of time, simulations have two main approaches: i.e. forward-time and
backward-time simulations (Carvajal-Rodríguez, 2008; Kim & Wiehe, 2009; To-
fanelli et al., 2011; Varadarajan et al., 2008; Yuan et al., 2012). Forward-time sim-
ulations typically start from an initial state, and go through generations, allowing
biologists to monitor the dynamics of interest in the model. Simulations used for
speciation research can be given as an example for forward-time simulations (Bar-
raclough & Vogler, 2000; Birand et al., 2012; Gavrilets, 2014). In the simulations
used in speciation research, the aim is to understand by which mechanism species
originate. These simulations, in this sense, help scientists to generate speciation
models that are testable with the empirical data. Backward-time simulations, how-
ever, start from a final state (e.g with a population at present), and try to converge
to a point back in time (Carvajal-Rodríguez, 2008; Kim & Wiehe, 2009; Yuan et
al., 2012). One of the best known backward-time simulations are the coalescent
simulations, where the simulation finds the most recent common ancestor (MRCA)
of the starting genomes (Carvajal-Rodríguez, 2008; Yuan et al., 2012).

1.1.3 Purposes of Computer Simulations

Biologists could take the advantage of the computer simulations for various pur-
poses (Carvajal-Rodríguez, 2008; Hoban et al., 2012; Tofanelli et al., 2011; Varadara-
jan et al., 2008). First, biologists may use the computer simulations for predictive
purposes, where they test the results from the preexisting mathematical models with
simulations (Bergstrom et al., 1999; Brown & Rothery, 1993; Hoban et al., 2012;
Hudson, 2002). Speciation research could be grouped under this (Gavrilets et al.,
2007; Hoban et al., 2012; Kirkpatrick & Ravigne, 2002). Predictive simulations are
also widely used in epidemiology to predict the disease dynamics, and their expan-
sion patterns (Dwyer et al., 1990; Nsoesie et al., 2013).

Alternatively, biologists could use computer simulations to make statistical infer-
ences (Hoban et al., 2012), where biologists generate a distribution of data with
simulations, and compare this data against the empirical data to make inferences
about the question (White et al., 2014; Winsberg, 2015). For example, evolutionary
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histories, and demographic changes can be inferred using these type of simulations,
which are used to make statistical inferences (Coop et al., 2009; Enard et al., 2010;
Pickrell et al., 2009). MCMC method, which is discussed before, is an example for
this type of simulations.

Simulations may also be used for validation of statistical methods, where scientists
change the parameters, and try to discover, how the statistical test performs (Enard
et al., 2010; Peter et al., 2010). Lastly, simulations may be used for determining
the power of the samplings, where simulations are used to understand what kind
of sampling is better when designing the research (Meuwissen & Goddard, 2010;
Ryman et al., 2006; Spencer et al., 2009).

1.2 Large-scale Genomic Simulations

With the recent advances in computation, the scale of the simulations have reached
to a new level, where biologists started to simulate large-scale genomic regions
(Carvajal-Rodríguez, 2008). Large-scale genome simulations (Hoggart et al.,
2007; Hudson, 2002; Killcoyne & del Sol, 2014; Pickrell et al., 2009; Sargolzaei
& Schenkel, 2009; Uricchio & Hernandez, 2014; Varadarajan et al., 2008), which
will be covered in detail throughout this chapter, are widely used for generating ge-
nomic samples to compare with empirical data. In large-scale genome simulations,
typically a genomic region from several thousands (kb) to several million (Mb)
base pairs is modeled in an evolutionary time scale (i.e. thousands of generations).

Large-scale genome simulations may adopt forward or backward approaches
or even both (Pickrell et al., 2009; Tofanelli et al., 2011; Uricchio & Hernandez,
2014; Varadarajan et al., 2008; Yuan et al., 2012). In this study, we will concen-
trate on a specific type of large-scale genome simulations, namely forward-time
individual based large-scale genomic simulations. These simulations, typically
assume finite sized genomes since each locus is modeled one by one. In population
genetics, however the assumption of infinite genome size is not rare (Griffiths,
1982; Hudson, 1991; Kimura & Crow, 1964; Kimura & Ohta, 1969; Kimura, Ohta,
& MacArthur, 1971; Ma et al., 2008; Tajima, 1996; Watterson, 1975). Since, the
genome size of many organisms are relatively high, infinite size genome assumes
infinitely many loci, where every mutation causes a new allele in the population
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and the probability of back mutation is negligibly low. This assumption simplifies
the calculations of the expectation values of homozygosity and the number of
alleles present in the population.

1.2.1 Limitations of Large-scale Genomic Simulations

Biological simulations are limited by the ultimate problems of computing; running
time, and memory demand (Hoggart et al., 2007; Keen & Spain, 1992; Schaffner
et al., 2005). Large-scale genomic simulations in particular have high time and
memory demands (Carvajal-Rodríguez, 2008; Hoggart et al., 2007; Schaffner et al.,
2005; Thornton, 2014). Mainly, there are two obstacles causing this demand. First,
the computational power of any computer is limited (Branke, Kaussler, Smidt, &
Schmeck, 2000). That is to say, if one wants to simulate whole human genome,
which is almost 2900Mb (International Human Genome Sequencing Consortium,
2004), it is still unlikely to run a simulation for this size of genome, even with a
very few individuals (e.g. 5), and for a few generations (i.e. 10), because of the
very high random-access memory (RAM) and central processing unit (CPU) need.
Today, the simulations of 20Mb genomic regions are considered as large-scale ge-
nomic simulations.

Second limitation arises since each coding language and/or algorithm have their
own limitations (Gen & Cheng, 2000). Each algorithm’s CPU and RAM need will
determine the limits of that algorithm, that some of them will run faster and/or use
less memory than the others. In addition to the algorithms, the coding language also
changes the memory and time need dramatically. In a lower level coding language,
with less built-in functions, and user interfaces, the CPU and RAM demands are
not going to be high, however coding with such language will be challenging for
the developer (García-Dorado & Gallego, 2003; Hoban et al., 2012).

1.3 Efforts to Increase Time and Memory Efficiency

There are numerous efforts to make the simulations less time and memory con-
suming (Chadeau-Hyam et al., 2008; Hoggart et al., 2007; Pickrell et al., 2009;
Ruths & Nakhleh, 2013; Sargolzaei & Schenkel, 2009; Thornton, 2014). One of the
approaches is to change the algorithm, where a more efficient solution to a prob-
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lem is adopted and applied to code a new simulation (Killcoyne & del Sol, 2014;
Ruths & Nakhleh, 2013; Thornton, 2014). For example, Ruths and Nakhleh (2013)
suggested an algorithmic method in their simulation, where only the mutant loci in
the genome are processed instead of all loci to increase time and memory efficiency.

The second approach is to change the parameters in the simulation, with the as-
sumption that the results will be unchanged (Hoggart et al., 2007; Kim & Wiehe,
2009; Yuan et al., 2012). Since there are a finite number of individuals and genera-
tions in an individual based simulation, if one decreases the number of individuals
and/or generations in the simulation, the total time of the simulation will decrease.
Decreasing number of individuals will also decrease the memory demand. Decreas-
ing the generation time will similarly decrease the number of total iterations, and
eventually the processing time. In the next section, we will describe this rescaling
approach by Hoggart et al. (2007), which is the topic we investigate in this thesis.

1.3.1 Hoggart’s Rescaling Approach in Large-scale Genomic Simulations

Hoggart et al. (2007), and Chadeau-Hyam et al. (2008) proposed a rescaling method,
in which they rescaled the population size (N ), mutation rate (µ), and number of
generations (t) to increase the time and the memory efficiency. In this rescaling ap-
proach, t and N were decreased by a rescaling factor (λ), whereas µ was increased
by the same factor. Consequently, the running time was decreased by λ2, and mem-
ory consumption was decreased by λ. In their study, Hoggart et al. (2007) used
λ = 10 (see Table 1 in Hoggart et al., 2007), and claimed that the average value of
number of mutations and heterozygosity did not change after rescaling (see Equa-
tion 2 and Fig. 2 in Hoggart et al., 2007). The average number of mutations is often
referred as the rate of mutation accumulation (Pickrell et al., 2009), which is the
ratio of number of mutations to the size of the genetic material. We will later refer
to this method as “Hoggart’s rescaling method” (2007).

He et al. (2012) claimed that this approach might keep the values "mutation rate
per locus per generation" (2Nµ, where µ is mutation rate per locus per gamete per
generation), and "selection coefficient per locus per generation" (4Ns, where s is
selection coefficient per locus per gamete per generation) unchanged after rescaling,
since these values are not for a particular locus for one individual but for all pop-
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ulation in one generation. According to these results (He et al., 2012; Hoggart et
al., 2007), a rescaling of these parameters seems to be plausible for decreasing time
and memory demand, while keeping genetic makeup of the population unchanged.

1.3.2 Applications of Rescaling Approach

Hoggart et al. (2007), and Chadeau-Hyam et al. (2008)’s software FREGENE, and
their rescaling approach are widely used in the literature. Numerous researchers
used FREGENE to generate Single Nucleotide Polymorphism (SNP) data for dif-
ferent purposes with a very wide range of parameters, where N ranges between 500

and 20, 000, and genome length (l) between 70 kb and 20 Mb (Table 1.1).

Many other scientists adopted the rescaling method by Hoggart et al. (2007), while
running their own simulations (Coop et al., 2009; Duque et al., 2014; Duque &
Sinha, 2015; Gruijter et al., 2011; He et al., 2012; Lohmueller, 2014; Lohmueller et
al., 2011; MacLeod et al., 2009; Peng & Amos, 2010; Pickrell et al., 2009; Wu et
al., 2009). Coop et al. (2009), and Pickrell et al. (2009) used rescaling method by
Hoggart et al. (2007), while running their simulations in “cosi” (Schaffner et al.,
2005), where they generate SNP data for human populations, and compare it with
HapMap (The International HapMap Consortium, 2005, 2007) data to account for
recent adaptations in human populations. MacLeod et al. (2009) used the rescaling
method in their simulations to generate SNP data to develop a linkage disequilib-
rium estimator for quantitative trait loci mapping studies. Wu et al. (2009) used the
rescaling method in their simulations to detect deletions.

Peng and Amos (2010) designed their own simulation for generating human genome
like samples using the rescaling method developed by Hoggart et al. (2007). Grui-
jter et al. (2011), and He et al. (2012) used the same method in their simulations
to generate SNP data to use in positive selection studies. Moreover, rescaling was
used by Lohmueller et al. (2011), and Lohmueller (2014) with another simulation,
SFS_CODE, to generate SNP data to use in directional selection studies. Finally,
Duque et al. (2014), and Duque and Sinha (2015) used it with another simulation
PEBCRES, to test the power of the molecular clock models. As a final remark,
He et al. (2012), and Duque and Sinha (2015) applied rescaling with a very high
rescaling parameter, λ = 1000, while the general practice is to use λ = 2, 5, or 10.
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Table 1.1: Parameters used in the studies that adopted FREGENE (Chadeau-Hyam
et al., 2008; Hoggart et al., 2007)

Publication N t l Purpose
Ding et al. (2008) 500 20, 000 50-200 kb Building phylogenies
López Herráez et al.
(2009)

NA NA 2 Mb Analysis for recent
positive selection in
human populations

Tachmazidou et al.
(2008)

20, 000 NA ≥ 1 Mb Analysis of SNPs
with a MCMC
method for
comparison of
different clustering
methods

Powell et al. (2010) 1000 100, 000 50 Mb To calculate identity
by descent

Ayers and Cordell
(2010)

10, 000 NA 20 Mb To test the
performance of
different logistic
regression models

Vounou et al. (2010) 10, 000 200, 000 20 Mb To generate data to
compare with
empirical data in a
neuro-imaging study

Enard et al. (2010) 25, 000 150, 000 6 Gb * To determine the loci
subjected to positive
selection among
primates

Tachmazidou et al.
(2010)

10, 000 NA 1 Mb To test validity of the
statistical tests

Tachmazidou et al.
(2011)

20, 000 NA 5 Mb To test the power of
statistical tests

Cule and De Iorio
(2012) and Cule and
De Iorio (2013)

21, 000 NA 10, 000 To test a statistical
method to choose
ridge parameter

Yan et al. (2014) 1000 20, 000 10, 000 To suggest a method
to increase speed of
neuro-imaging
genetics analysis

* Total genomic size of population.
NA: data not available
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1.3.3 Criticism of Rescaling Approach

Although the rescaling method has been used by many researchers, it has also been
criticized by many since it might underestimate some “unrecognized” population
genetic effects that depend on the absolute values of the population size, number
of generations, and the mutation rate (Kim & Wiehe, 2009; Peng & Amos, 2010;
Ruths & Nakhleh, 2013; Sargolzaei & Schenkel, 2009; Tofanelli et al., 2011). Hog-
gart et al. (2007) acknowledged that back mutations, when become more frequent,
may affect estimation of recombination rates, and suggested that removing some of
the double hit loci would solve the problem.

Ruths and Nakhleh (2013), and Sargolzaei and Schenkel (2009) argued that this
rescaling method did not completely solve the time and memory efficiency prob-
lems, instead they proposed algorithmic solutions, where they did not process all
the genomic region as explained above. Kim and Wiehe (2009), in their review,
claimed that the number of individuals may change Tajima’s D, which is highly
dependent on the population size. Tofanelli et al. (2011) pointed out the “de facto”
sampling error introduced by rescaling the population size may in turn increase the
effect of random genetic drift. Peng and Amos (2010) stated that this rescaling
method cannot be used when non additive effects are present, since this approach
uses the assumptions of diffusion approximation, which hold only under weak ge-
netic effects. Gavrilets (2005) also addressed the problem of using high mutation
rates in simulations, which could erase the effect of random genetic drift.

1.4 Objectives

Hoggart et al. (2007)’s rescaling method is widely used for large-scale genome sim-
ulations, however, an important but overlooked effect of this rescaling approach
could be on the random genetic drift as addressed by Gavrilets (2005), and/or on
the proportion of polymorphic loci, which is the rate of the loci having more than
one allele to the total number. To the best of my knowledge, these have not yet
been evaluated. The problem with the proportion of polymorphic loci might arise
since the model used in the large-scale genomic simulations is a finite site model,
yet making infinite site model assumptions; the problem with genetic drift might
arise from the mutation-drift balance.
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We hypothesize that the reason for the proportion of polymorphic loci to be a prob-
lem could be because the rate of mutation accumulation, and the proportion of poly-
morphic loci correspond to different dynamics in populations. Let’s consider two
populations, each with 5 individuals each having a genome consisting 5 loci, and
let ancestral state be “0”, and mutated state be “1”. Figure 1.1a shows a case, where
the total numbers of mutations are the same for two populations whereas the num-
bers of polymorphic loci are different. Figure 1.1b shows a case where the numbers
polymorphic loci are equal, and the total numbers of mutations are different. It is
clear that the populations 1, and 2 in the figure have different genetic makeups.

The rate of mutation accumulation in a population is important since it is the source
of the variation, and it might be related to other dynamics; such as extinction (Hig-
gins & Lynch, 2001; Lynch et al., 1995), parasitism (Howard & Lively, 1994), and
the evolution of sexual reproduction (Muller, 1932, 1964). Number of polymorphic
loci, on the other hand, is different than mutation accumulations, since it changes
the mutational variation in the population by adding alleles to ancestral loci. This
may seem unimportant when all loci are neutral; however, the problem could be-
come significant when the loci are not neutral.

My aim is to understand the dynamics of the populations when the parameters
are rescaled. To understand the dynamics of mutation accumulation, proportion of
polymorphic loci, and random genetic drift, we developed an individual based sim-
ulation model to answer three main questions: 1) Can we use the rescaling method
proposed by Hoggart et al. (2007) without changing the expected genetic makeup
of the population? 2) Is proportion of polymorphic loci affected from rescaling of
the parameters? 3) Can we develop an analytical solution that explains the behavior
of mutation accumulation, and proportion of polymorphic loci?
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Figure 1.1: Hypothetical scenario demonstrating how the dynamics of rate of muta-
tion accumulation and proportion of polymorphic loci could be different. Each row
represents an individual, and each column a locus, where the state 0 represents an-
cestral state and the state 1 represents mutated state. a) Both populations on the left
and right have the 5 mutations, yet the number of polymorphic loci in population 1
is 5, and in the population 2, it is 2. b) Both populations 1 and 2 have 3 polymorphic
loci, yet the number of mutations in the population 1 is 3, and in population 2, it is
12.
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CHAPTER 2

THEORETICAL CALCULATIONS

In this chapter, we will demonstrate how rate of mutation accumulation, and the
proportion of polymorphic loci would be affected by rescaling of parameters.

2.1 Rescaling Method for Keeping Rate of Mutation Accumulation Unchanged

Let the ratio of mutation accumulation be ζ , which is the ratio of total number of
mutated loci in the population (m) to the total number of loci in the population
consisting of N individuals with l number of loci:

ζ =
m

Nl
(2.1)

If in this population, the mutation rate is equal to µ, and there are t generations,
the probability of one locus to be mutated at the end of t generations is µt. If the
population is haploid, there will be Nl loci in the population, then m will be µtNl,
and equation 2.1 becomes;

ζ =
µtNl

Nl
= µt . (2.2)

The above equation shows that mutation accumulation (ζ) does not seem to have a
dependency on N , it is only related to µ and t. It also does not matter whether the
population is haploid or diploid (instead of N , 2N will be both in the numerator
and denominator, and will cancel out).

Therefore, to keep the ζ constant, a rescaling on µ and t can be applied. Let, µ′
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be rescaled mutation rate by a rescaling parameter, λ, that is µ′ = µλ. Similarly, let
t′ be the rescaled number of generations by the same factor λ, which is t′ = t/λ.
Then, ζ will still remain constant, since;

µ′t′ = µλ
t

λ
= µt = ζ . (2.3)

We will refer to this method as “rescaling for mutation accumulation”, where only
µt are rescaled, andN is not. It is different from Hoggart’s rescaling method (2007)
in which N is also rescaled by λ.

2.2 Rescaling Method for Keeping Proportion of Polymorphic Loci Unchanged

Hoggart et al. (2007) assume that the mutations are rare, and there are many loci.
Keeping these assumptions in mind, we will concentrate on the proportion of poly-
morphic loci. Let the proportion of polymorphic loci (ρ) be the ratio of total number
of polymorphic loci (r) to the size of the genome:

ρ =
r

l
. (2.4)

Here, calculating r is not as straight-forward as calculating m. Again, as mentioned
above, the probability of a mutation in one particular locus in a single generation is
µ, but this time, we are interested in the probability of finding at least one different
allele on one locus among all the individuals in the population. If there were infi-
nite number of loci in the genome, in a single generation, and if mutations are very
rare, then the probability of a mutation to occur in the exact same locus in different
individuals and/or in the same individual (i.e. back mutations) would be very low.

Making the above-mentioned assumptions, in a single generation, it is expected
that there would be Nµl mutations. Let the expected proportion of polymorphic
loci to be added in a single generation be ρj , where j represents a single generation
(i.e. j ∈ {1, . . . , t}). Then:

ρj =
Nµl

l
= Nµ , (2.5)
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since there are l number of loci. This suggests that Nµ amount of all loci will
become polymorphic at each generation. Note that, this can only be true where
Nµ � 1, since as this ratio will get closer to 1, the probability that two or more
mutations to occur at the same locus increases, which will eventually decrease ρj ,
and make it, ρj < Nµ. Also, the equation 2.5 is only applicable for models with
infinite loci because no matter how much mutation occurs in each generation, this
will not cause an accumulation of polymorphic loci in the genome. Mutations will
continue to appear in different loci, so in each generationNµ proportion of new loci
will continue to add. In equation 2.5, it is shown that the proportion of polymorphic
loci to be added in each generation is ρj = Nµ, and since there are t number of
generations:

ρ = ρjt = Nµt . (2.6)

From this equation it is clear that a rescaling as mentioned by Hoggart et al. (2008)
cannot be done since;

N ′µ′t′ =
N

λ
µλ

t

λ
=
Nµt

λ
, (2.7)

therefore,
Nµt 6= N ′µ′t′ . (2.8)

If all above mentioned assumptions were true, according to the equation 2.6, we
would expect a linear increase of number of polymorphic loci by time. With the pre-
viously stated criticisms in mind, we want to remind that these large-scale genome
simulations, while making infinite site assumptions, use finite site models. This sug-
gests that in these large-scale genome simulations with increasing values ofNµ, and
as the generation number increases in a single simulation, the probability of having
new mutations at the same locus of different individuals increase. This will make
ρj less than Nµ for a single generation, making ρ less than Nµt, which would com-
plicate this dynamic further. Since, the expectation for ρ cannot exceed 1, it can be
roughly summarized as;

Nµ ≤ ρ ≤ min(1, Nµt) . (2.9)

From the above solutions, for ρ, it can be said that it is primarily related with Nµ
(Equation 2.5), and it also accumulates with time. Hence, when t is rescaled, a
rescaling of N and µ is not enough to solve the problems that will arise from the
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proportion of polymorphic loci. However, a rescaling for keeping only the pro-
portion of polymorphic loci unchanged, would be possible between N and µ, only
when keeping t constant (Equations 2.5 and 2.6). We will refer to this type of
rescaling as “rescaling for polymorphic loci”.
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CHAPTER 3

MODEL AND SIMULATIONS

In this chapter, we lay out the details of the individual based simulation model that
we developed, to test the effects of Hoggart’s rescaling method (2007) on rate of
mutation accumulation, and proportion of polymorphic loci.

3.1 Assumptions

We assume that the population is haploid, the generations are non-overlapping, the
population size is constant, and the reproduction is asexual. All loci are biallelic,
and all mutations are only point mutations, and back mutations are allowed. There
are no insertions, deletions, or inversions. We also assume that there are no selec-
tion, no migration, and no recombination.

3.2 Population

The population is composed of individuals, which have binary sequences that repre-
sent their genomes with l number of loci. In these sequences, 0 represents ancestral
state, and 1 represents mutated state. Initially, a matrix of N individuals with l

loci, is produced, where each row represents a genome of an individual, and each
column represents a particular loci. The simulation starts with identical individuals
having all zeros (ancestral state). As there are N individuals, and population size is
constant, the population matrix size does not change throughout the simulation.
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3.3 Life Cycle

Individuals go through a simple life cycle where they produce offspring, and they
die. Some of the offspring produced become adults in the next generation, and the
life cycle is repeated again.

3.3.1 Offspring Generation

The number of offspring for each individual is assigned randomly with a Poisson
distribution around a mean b (Gillespie, 1975). In each generation an array of Pois-
son distributed random numbers is generated, representing their number of offspring
(bi, i = 1, .., N ). First number, b1, is applied to first individual (the first row of popu-
lation matrix). So, the first row of the population matrix is copied to a new offspring
matrix, b1 times. Second individual is copied b2 times, and same procedure applied
for all N individuals in population matrix. Total number of offspring (bT ) changes
every generation.

3.3.2 Mutations

Mutation rate (µ) is the probability of mutations per locus per gamete per gener-
ation. In order to introduce this stochastic nature of mutations in the simulations,
we draw a random value for the actual mutation rate from a normal distribution
of mutation rates with a mean µ and a standard deviation of 0.1µ. Actual muta-
tion rates for each generation are generated at the beginning of the simulation (µj ,
j = 1, ..., t). With this rate, for each generation a mutator matrix with same size as
offspring matrix (bT × l) is generated. The mutation values (i.e. 1s) are randomly
distributed to matrix with a µj ratio.

3.3.3 Choosing New Parents

Since the population size is assumed to be constant, onlyN number of the offspring
survives. In each generation, N number of random and non-repeating integers be-
tween 1 and bT are generated. The rows in the offspring matrix corresponding to
the generated numbers are copied and replaced in the population matrix. This is
done for each generation, and the population is replaced with surviving offspring at
the end of each generation. Note that, since the population size is assumed to be
constant, the simulations where bT < N are aborted.
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3.4 Parameters

The parameters we change during the simulations are N , µ, and t, which are given
below (see Table 3.1). The range of parameter values are chosen mostly similar to
those used in literature (see Table 1.1) with λ = 10. The parameters, which were
not changed during the simulations were, l = 10000 and b = 2. Results presented
in the next chapter are based 10 runs for each parameter set.

Table 3.1: The parameters used in simulations

N µ t

Set 1 1000 10−5 1000

Set 2 10000 10−6 10000

Set 3 1000 10−5 10000

Set 4 1000 10−6 10000

Set 5 10000 10−5 1000

Set 6 10000 10−6 1000

To evaluate Hoggart’s rescaling method (2007), we will compare sets 1 and 2 (com-
parison A, Table 3.2). To evaluate whether rate of mutation accumulation change
according to calculations we demonstrated in chapter 2, we will compare sets 1 vs
4, and sets 2 vs 5 (comparisons B and C respectively, Table 3.2). Similarly, to eval-
uate the calculations on rescaling for polymorphic loci, we will compare sets 1 vs 6
and sets 2 vs 3 (comparisons D and E respectively, Table 3.2).

3.5 Theoretical Expectations

Based on the calculations discussed in chapter 2, we have four main expectations.
First, in comparison A, despite Hoggart et al. (2007)’s claim that the genetic make
up of the population will not be altered with “Hoggart’s rescaling method”, we ex-
pect to find significant difference for proportion of polymorphic loci, but no signifi-
cant difference for mutation accumulation. The latter was only the tested dynamics
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Table 3.2: List of comparisons with the parameters used

Comparison Sets N µ t Method Rescaled
Parameters

Comparison A
Set 1* 1000 10−5 1000 Hoggart’s

rescaling N , µ, t
Set 2 10000 10−6 10000

Comparison B
Set 1* 1000 10−5 1000 Rescaling

for mutation
accumulation

µ, t
Set 4 1000 10−6 10000

Comparison C
Set 2 10000 10−6 10000 Rescaling

for mutation
accumulation

µ, t
Set 5* 10000 10−5 1000

Comparison D
Set 1* 1000 10−5 1000 Rescaling for

polymorphic
loci

N , µ
Set 6 10000 10−6 1000

Comparison E
Set 2 10000 10−6 10000 Rescaling for

polymorphic
loci

N , µ
Set 3* 1000 10−5 10000

* The marked sets are the rescaled sets.

in Hoggart et al. (2007). Second, similarly for comparisons B and C, where we
evaluate the “rescaling for mutation accumulation” method, we expect no signifi-
cant difference for mutation accumulation, since µt = 10−2 in all the sets, and sig-
nificant difference for the proportion of polymorphic loci, since at least one of Nµ
or t is different in these comparisons. Third, the proportion of polymorphic loci will
show no significant difference for the comparisons D and E, where we evaluate the
“rescaling for polymorphic loci” method, since both Nµ and t values are the same
in those sets (Nµ = 10−1, t = 1000 for comparison D, and Nµ = 10−1, t = 100

for comparison E); however, the rate of mutation accumulation will be significantly
different, since µt values of pairs are different. Forth, based on my calculations in
section 2.1, we expect that the rates of mutation accumulation for all four sets 1,
2, 4, and 5 to show no significant difference, since mutation accumulation depends
only on µt but not N .
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CHAPTER 4

RESULTS

All statistical tests are done using R (R Core Team, 2015). We compared pairs
of sets, in terms of rate of mutation accumulation and proportion of polymorphic
loci, and since we have a few samples for each group, we applied Mann-Whitney-
Wilcoxon (MWW) test to test if their medians are equal or not. The results of the
simulations based on 10 runs for each parameter set are presented in figure 4.1 .

In order to evaluate the effects of Hoggart’s rescaling method (Hoggart et al., 2007),
and compare that with my expectations based on the calculations laid out in chapter
2, we will present the results as laid out in table 3.2. The rate of mutation accumu-
lation is not significantly different in comparison A (Hoggart’s rescaling method),
however, the medians of the proportion of polymorphic loci are significantly dif-
ferent (Table 4.1 & Fig. 4.2), which is in agreement with the first expectation we
laid out in section 3.5. Similarly for comparisons B and C (rescaling for mutation
accumulation), there is no significant difference between the medians for mutation
accumulation, however, the medians for proportion of polymorphic loci are signif-
icantly different (Table 4.1 & Fig. 4.2), which is consistent with the second expec-
tation. The difference between the medians of rate of mutation accumulation are
significant for comparisons D and E (rescaling for polymorphic loci), however, the
difference between the medians for number of polymorphic loci are not significant
(Table 4.1 & Fig. 4.3), which are also consistent with the third expectation.

21



a)

b)

Figure 4.1: a) Rates of mutation accumulation, b) proportions of polymorphic sites
of the sets given in Table 3.1
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Table 4.1: p values for comparisons from MWW tests for the rate of mutation ac-
cumulation and the proportion of polymorphic loci in the simulations. Bold values
represents significant difference in 95% confidence interval

Comparison Sets N µ t Rate of
Mutation

Accumula-
tion

Proportion of
Polymorphic

Loci

Comparison A
Set 1* 1000 10−5 1000

3.53× 10−1 1.08× 10−5

Set 2 10000 10−6 10000

Comparison B
Set 1* 1000 10−5 1000

4.36× 10−1 1.08× 10−5

Set 4 1000 10−6 10000

Comparison C
Set 2 10000 10−6 10000

5.79× 10−1 1.08× 10−5

Set 5* 10000 10−5 1000

Comparison D
Set 1* 1000 10−5 1000

1.08× 10−5 5.96× 10−1

Set 6 10000 10−6 1000

Comparison E
Set 2 10000 10−6 10000

1.08× 10−5 1.43× 10−1

Set 3* 1000 10−5 10000

In the fourth expectation, the values of rates of mutation accumulation of sets 1, 2,
4, and 5 are expected to show no significant difference, since we expect it to have
no dependency on N . The results are as expected, since p values of pairwise com-
parisons between sets 1 vs 5 (p = 0.31), sets 2 vs 4 (p = 0.07), and sets 4 vs 5
(p = 0.19) showed that the difference between these sets are non-significant. We
also applied Kruskal Wallis test for multi group comparisons, and the difference be-
tween these four sets is not significant (p = 0.27). Thus, both pairwise comparisons
using MWW tests, and Kruskal Wallis showed that the theoretical expectations are
consistent with the results.
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The rate of mutation accumulation is the highest in set 3 (Fig. 4.1), and the pro-
portion of polymorphic loci is the highest for set 5 (Fig. 4.1), which are expected
results according to the calculations. Mutation accumulation is directly related to µt
value (see equation 2.2), and it is the highest for set 3 (i.e. µt = 0.1). Proportion of
polymorphic loci is related toNµ and t, set 5 has the highestNµ value (Nµ = 0.1).

One other unevaluated expectation that was mentioned in the literature was related
to the dynamics of random genetic drift when the parameters are rescaled. Figure
4.4 presents the proportion of fixed loci in the sets simulated, and it can be seen
that only in the simulations with 10, 000 generations (i.e. sets 2, 3, and 4; see Table
3.1) there were some fixations (with the exception of 1 run of set 1, which is seen
as a single dot in Fig. 4.4). Set 3 had the highest proportion of fixed loci (Fig.
4.4), again due to the highest µt value used, but not due to actual mutation rates that
were assigned randomly in the simulations (Fig. 4.5). Finally, set 3 had the highest
variance among all sets for all values (Figs. 4.1 and 4.4), which is again not due to
the actual mutation rate (Figs. 4.5).
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Figure 4.2: Boxplots of comparisons A, B, and C for rate of mutation accumulation
(left) and the proportion of polymorphic loci (right). In all boxplots, rescaled sets
are on the right of each boxplot. The rates of mutation accumulation are not signif-
icantly different in comparisons A, B, and C, but, the proportions of polymorphic
sites are.
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Figure 4.3: Boxplots of comparisons D and E for rate of mutation accumulation
(left) and the proportion of polymorphic loci (right). In all boxplots, rescaled sets
are on the right of each boxplot. The proportions of polymorphic sites are not sig-
nificantly different in comparisons D and E, but, the rates of mutation accumulation
are.
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Figure 4.4: Proportion of fixed loci of the sets given in Table 3.1

Figure 4.5: Actual mutation rates of the sets given in Table 3.1 that were used in the
simulations (see Sec. 3.3.2)
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CHAPTER 5

DISCUSSION

In this study, we adopted a mathematical calculation approach, and developed an in-
dividual based model to evaluate whether changing parameters as used by Hoggart
et al. (2007) could change the genetic makeup of a population. The model is based
on a population composed of haploid individuals with their own genetic material.
In the simulations, these individuals have a simple life cycle, where they produce
offspring which become adults in the next generation. They are simulated in a neu-
tral system, which means that individuals are not under natural or sexual selection.
We also assumed that there are no chromosomal mutations, and no recombination.
This study is concentrated on two dynamics: the rate of mutation accumulation, and
the proportion of polymorphic loci. The former is claimed to be kept unchanged by
Hoggart et al. (2007), the latter, we hypothesized as a potentially changing dynamic.

In the calculations we laid out in chapter 2, we showed that the rate of mutation
accumulation is only related to µt but not to N , whereas proportion of polymorphic
loci is primarily related to Nµ, and accumulates with time, but this accumulation
is not strictly linear, since the polymorphic loci, increasing by time, decreases the
proportion to be added in a single generation. As predicted by the calculations,
the results of the simulations were in agreement with Hoggart’s rescaling method
(2007), the rate of mutation accumulation did not change when parameters N , µ,
and t are rescaled; however, the proportion of polymorphic loci have changed (Ta-
ble 4.1 & Fig. 4.2). It is clear that the Hoggart’s rescaling method (2007) changes
the genetic makeup of the population, at least, in terms of the proportion of poly-
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morphic loci. What is interesting is that the rate of mutation accumulation for sets
1, 2, 4, and 5 were also equal, since their values of µt are equal. So, with or without
changing N , one can rescale µ and t, only keeping the rate of mutation accumula-
tion unchanged (comparisons A, B and C in Table 4.1 and Fig 4.2). However, in
none of these comparisons (i.e. A, B, and C), the proportion of polymorphic loci
could be kept unchanged, which is also an expected result from the equation 2.9,
since at least Nµ and/or t values are different between the pairs.

In chapter 2, we hypothesized that the proportion of polymorphic loci can only
be kept unchanged, with rescaling N and µ, but by keeping t unchanged. In the
table 4.1, the results for the proportion of polymorphic loci for comparisons D and
E, show that this hypothesis is also supported. Still in this case, consistent with
the predictions, rate of mutation accumulation showed significant difference. In the
figure 4.2, it can be seen that Hoggart’s rescaling method (2007) (comparison A)
decreases the number of polymorphic loci in the rescaled set (i.e. set 1). The rel-
ative values of Nµ are equal for these two sets in comparison A, so the expected
polymorphism to arise in one generation is the same for both of the simulations,
however, the simulation is longer in set 2, therefore more polymorphic loci is ex-
pected to accumulate (see Equation 2.9, Table 3.2, and Fig. 4.2).

Similarly, even though, statistically it is concluded that the proportion of polymor-
phic loci in set 3 is significantly different than that in set 1 (p= 2.88×10−2), as well
as set 6 (p= 1.15 × 10−2), note that, the p values are slightly below the threshold
that, with a 99% confidence interval, we would reject the null hypothesis. There is a
strong possibility of type II error in this sense. The point is that set 3 has the highest
variance for both the rate of mutation accumulation and the proportion of polymor-
phic loci (Fig. 4.1). However, it is clear in the figure 4.5 that there is no deviation or
high variance in the actual mutation rates used in set 3, so high variance is not due
to a mutational bias. This supports the probability that these results could be due to
the effect of genetic drift. The effect of drift becomes significant as the number of
individuals decreases, due to a “de facto” sampling error as Tofanelli et al. (2011)
pointed out, and the generation time increases (see Table 3.1). Thus, set 3, having
less number of individuals than set 6 and having more number of generations than
sets 1 and 6, is subjected to the effect of genetic drift more than these two other sets
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and may show a higher variance. This result is consistent with Gavrilets (2005)’s
criticism on mutation drift balance.

To understand the effect of drift, a comparison between sets 2, 3, and 4 in terms
of the proportion of fixed loci will also be informative (see Fig. 4.4). A pairwise
comparison between set 3 and 4, where only µ values are different, it can be seen
that increasing mutation rate increases the proportion of fixed loci, which increases
the variance of the results as well. If sets 2 and 4, where only N is different, are
to be considered, it can be seen that decreased number of individuals increases the
probability of fixation, which is consistent with the theory of drift. If the sets 2 and
3, where bothN and µ are different, are to be compared, the difference is even more
significant. If these conclusions are considered with these results in the figure 4.1,
it can be concluded that this high variance is due to disrupted mutation drift bal-
ance as pointed out by Gavrilets (2005), since drift acts as a “force” decreasing the
variation in the population. The high mutation rate in the set 3 keeps adding more
mutations increasing the variation, and obscuring the effect of drift, and resulting
in more variation than expected. Here, it is also important that set 3 has also more
fixations than other sets, which may be counted as a signal of more drift. Also,
note that the main comparison (A), which is Hoggart’s rescaling (2007), does not
provide enough information on genetic drift. So, it remains as an open question for
further work and analysis.

One future direction for this study would be to check how Tajima’s D could be
affected from a rescaling, in these kind of finite site models. As pointed out by Kim
and Wiehe (2009), it is highly dependent on N and it may change due to rescaling.
To test this, adding selection to the model would be helpful, since in neutral popu-
lations, Tajima’s D is expected to fluctuate around zero.

A caveat of this study would be that simulation model developed here is much
more simplistic than that of Hoggart et al. (2007)’s. First, the model in this study is
haploid, while Hoggart et al. (2007)’s model is diploid and this model lacks recom-
bination and selection, which are present in Hoggart et al. (2007)’s model. However,
recombination would affect neither the rate of mutation accumulation nor the pro-
portion of polymorphic loci, since it will neither add a new mutation, nor change
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the loci of a present mutation. We also assumed that the loci are neutral. Selection
would change the allele frequencies. However, it would only contribute to the al-
ready existing bias due to the unequal proportion of polymorphic loci predicted by
the neutral model presented here.

Also, the mathematical model did not include the effect of genetic drift. A refine-
ment in the calculations with the effects of genetic drift would solve the problems
that might arise from the variation lost due to the effect of drift. Here, one should
also note that the generation times of the simulations in this study were not long
enough that the populations never come to an equilibrium, and the proportion of
fixed loci was very low even for longer simulations. As a possible direction for
this study, the equilibrium states can be investigated running longer simulations
and refining the mathematical model by adding the effect of genetic drift into these
equations. Also to understand the dynamics of mutation drift balance better, the
simulations could be monitored across generations instead of recording only the fi-
nal state.

In conclusion, this study demonstrates that in individual based large-scale genome
simulations, the rescaling method proposed by Hoggart et al. (2007) and used by
many others (see Subsection 1.1.1) can change proportion of polymorphic loci. The
results of this study are consistent with previously mentioned criticisms on this
rescaling method (Kim & Wiehe, 2009; Peng & Amos, 2010; Ruths & Nakhleh,
2013; Sargolzaei & Schenkel, 2009; Tofanelli et al., 2011). Adopting algorith-
mic solutions (as in Ruths and Nakhleh, 2013; Sargolzaei and Schenkel, 2009; and
Thornton, 2014) to solve the time and memory problem instead of rescaling method
would be a safer approach in large-scale genomic simulations.
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