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ABSTRACT

DRIVER AGGRESSIVENESS ANALYSIS USING MULTISENSORY DATA
FUSION

Kumtepe, Ömürcan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozda§� Akar

January 2016, 77 pages

Every year a vast number of tra�c accidents occur globally. These tra�c acci-

dents cause fatalities, severe injuries and huge economical cost. Most of these

tra�c accidents occur due to aggressive driving behaviour. Therefore, detection

of driver aggressiveness could help reducing the number of tra�c accidents by

warning related authorities to take necessary precautions. Although aggressive-

ness is a psychological phenomenon, driver aggressiveness can be analysed by

monitoring certain driving behaviour such as abrupt lane changes, unsafe fol-

lowing distance and excess acceleration and deceleration. In this thesis work,

a method is introduced in order to detect aggressive driving behaviour using a

system on vehicle. The proposed method is based on fusion of visual and other

sensor information to characterize related driving session and to decide whether

the session involves aggressive driving behaviour. Visual information is used to

detect road lines and vehicle images; whereas CAN bus information provides

certain driving data such as vehicle speed and engine speed. Both information
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is used to obtain feature vectors which represent a driving session. These feature

vectors are obtained by modelling time series data by Gaussian distributions. An

SVM classi�er is utilized to classify the feature vectors in order for aggressive-

ness decision. The proposed system is tested by real tra�c data and it achieved

an aggressive driving detection rate of 94.0%.

Keywords: Driver behavior, driver aggressiveness, road safety, line detection,

vehicle detection, CAN bus
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ÖZ

ÇOKLU SENSÖR VER�S� KAYNA�TIRIMI KULLANARAK SÜRÜCÜ
AGRES�FL��� ANAL�Z�

Kumtepe, Ömürcan

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozda§� Akar

Ocak 2016 , 77 sayfa

Her y�l dünya çap�nda büyük say�da tra�k kazas� gerçekle³mektedir. Bu tra�k

kazalar� can kay�plar�na, ciddi sa§l�k problemlerine ve büyük ekonomik mali-

yete yol açmaktad�r. Bu tra�k kazalar�n�n büyük k�sm� agresif sürü³ davran�³�

kaynakl� olarak meydana gelmektedir. Bu nedenle, sürücü agresi�i§inin tespit

edilip ilgili kurumlar taraf�ndan önlem al�nmas�n�n sa§lanmas� tra�k kazalar�-

n�n say�s�n� önemli ölçüde azaltacakt�r. Agresi�i§in psikolojik bir olay olmas�na

kar³�n, ani ³erit de§i³ikilikleri, güvensiz takip mesafesi ve ani ivmelenme gibi

sürü³ davran�³lar�n�n gözlemlenmesi ile analiz edilmesi mümkündür. Bu tez ça-

l�³mas�nda, sürücü agresi�i§inin tespit edilmesi için araç üzerinde çal�³acak bir

sistem sunulmu³tur. Sunulan sistem, görsel veri ve sensör verisinin ilgili sürü³ü

tan�mlamak üzere kayna³t�r�lmas� ve ilgili sürü³ün agresif sürü³ davran�³� içe-

rip içermedi§ine karar verilmesine dayanmaktad�r. Kameradan al�nan veri yol

çizgilerinin ve yoldaki araçlar�n tespiti içn kullan�lmakta, denetleyici alan� a§
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veriyolundan ise araç ve motor h�z� bilgisi elde edilmektedir. Elde edilen bu bil-

giler, sürü³leri tan�mlayan öznitelik vektörlerini elde edilmek için kullan�lmakta-

d�r. Bu öznitelik vektörleri zaman serisi ³eklindeki verilerin Gaussian da§�l�mlar

olarak modellenmesi ile elde edilmektedir. Bir destek vektör makinesi (SVM) s�-

n��ay�c�s� öznitelik vektörlerinin agresi�ik içeri§i hakk�nda s�n��and�r�lmas� için

kullan�lmaktad�r. Sistem gerçek tra�k verisi ile test edilmi³ ve %94.0 oran�nda

do§ruluk pay� ile ba³ar� göstermi³tir.

Anahtar Kelimeler: Sürücü davran�³�, sürücü agresi�i§i, yol güvenli§i, çizgi tes-

piti, araç tespiti, CAN bus
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Tra�c accidents have become an important problem in the last few decades due

to increasing number of vehicles on the roads. Every year 1.24 Million fatalities

occur due to tra�c accidents globally [88]. Some of these tra�c accidents are

caused by physical reasons such as road and vehicle conditions. However, human

related factors are the main cause of tra�c accidents. Among human related

factors, aggressive driving behavior constitutes a huge portion of tra�c accident

reasons. According to a report of American Automobile Association Foundation

for Tra�c Safety, published in 2009, 56 percent of tra�c accidents occur due to

aggressive driving behavior [6].

Besides fatalities and injuries, tra�c accidents bring about billions of dollars of

economical cost for people, governments and companies [88]. Tra�c accidents

has a cost of USD $518 billion each year globally and the cost per country may

reach to 1 - 2% of their annual GDP of an individual country [1]. Losing 1 - 2%

portion of a country's GDP means that every year people devoid of a signi�cant

amount of governmental services.

Companies and institutions such as rental agencies, insurance companies and

public transportation authorities have great interest about driving analysis re-

garding vital and economical aspects. For instance, one of the biggest insurance

companies AXA, provides a discount in the car insurance fees for drivers in some

countries. The company rewards the drivers who perform smooth driving be-
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havior during the year with a discount for the next year. Company utilizes AXA

Drivesave mobile application which is designed to be used at smart phones. This

application collects driving data via the sensors of smartphones and rates the

driver according to her driving pro�le [2]. Di�erent pages of user interface of this

application can be seen in Figure 1.1. As can be seen in these �gures, di�erent

characteristics of driver such as smoothness, pace etc. is rated according to her

driving performance.

(a) (b) (c)

Figure 1.1: Snapshots from Axa Drivesave mobile application (a) score page of
driver (b) event details of a speci�c trip (c) list of saved trips

Regarding the presented reasons, reducing the number of tra�c accidents is a

signi�cant issue to be solved. Considering human related factors, detection of

aggressive driving behavior could help reducing the number of tra�c accidents

by giving necessary warnings to drivers and related authorities.

Aggressive driving behavior is de�ned as an action "when individuals commit a

combination of moving tra�c o�ences so as to endanger other persons or prop-

erty" by National Highway Tra�c Safety Administration (NHTSA). Driver ag-

gressivenss is a psychological concept that does not have a quantitative measure.

However, there exist some certain behaviors associated with aggressive driving

such as excess and dangerous speed, following the vehicle in front too closely,
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in other words tailgating, erratic or unsafe lane changes, improperly signalling

lane changes, failure to obey tra�c control devices (stop signs, yield signs, traf-

�c signals, etc.) [59]. Also, Toledo states that lane changing and acceleration

are the characteristic driving behaviors which can be utilized to make inferences

about the mood of the driver [82]. Therefore, detecting these behaviors and

interpreting related information can yield quantitative information about the

driving style of the driver.

Although these behaviors are indication of driver aggressiveness, detection of

these behaviors in real time is a challenging task. Existing methods in the lit-

erature mostly based on driving simulator data which do not work for real time

aggressive driving behavior detection and do not fully re�ect the real world con-

ditions. There also exist sensor platform based methods in literature, however,

these methods do not consider vehicle following distance and lane following pat-

tern which are very signi�cant for indicating driver aggressiveness. Hence, the

proposed system in this thesis work aimed to enable detection of driver aggres-

siveness in 80 second time periods by considering a wide range of aggressiveness

associated driving behaviors.

1.2 Scope of the Thesis

In this thesis work an aggressive driving behaviour analysis system that works

in real time is proposed. The system is aimed to perform robust operation with

simple and low complexity algorithm in order to be able to work e�ciently. The

proposed method uses multisensory information in order to extract features that

characterize the related driving session. This information is obtained via CAN

bus of the vehicle and an on board camera. Then the extracted features are

labelled as belonging to an aggressive or a smooth session and they are used to

train a classi�er which decides on whether the related session involves aggressive

driving. The classi�er is trained with annotated data so that aggressiveness deci-

sion can be modelled regarding the subjective point of view. That is, aggressive

driving behavior, which is a subjective and psychological phenomenon, can be

modelled quantitatively. The system collects and processes data and creates an
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aggressiveness decision at the end of a determined period. Length of the period

is a design parameter which is discussed in experimental results.

In order to give decision whether a driving session is aggressive or not, road line

detection, on road vehicle detection and CAN bus data acquisition are used to

extract required information. In the scope of this thesis, di�erent methods in the

literature regarding road line detection and on road vehicle detection are studied.

Proposed methods for these two modules are described step by step by explaining

their advantages over other methods in the literature. Performance results of

the proposed methods are presented with the comparison of benchmark methods

and datasets in the literature. Modelling and representation of the collected

driving information is also introduced with explanation of feature extraction

and classi�cation process in order to make aggressiveness classi�cation.

E�ectiveness of the overall system is tested with visual and sensor data which

is collected with a computer equipped automobile that has a forward camera

and CAN bus adapter. During these tests optimum session duration in order

to decide aggressiveness is investigated. The e�ect of accuracy of line detection

and vehicle detection modules are examined on aggressiveness decision with

conducted experiments. Finally, the proposed system is tested with a publicly

available naturalistic driving study data and its e�ectiveness is con�rmed in a

di�erent dataset.

1.3 Outline of the Thesis

The organization of this thesis is as follows: Chapter 2 describes the related work

about driving behaviour analysis. Di�erent approaches to this problem are stud-

ied and existing methods in the literature are presented with their advantages

and disadvantages. It is followed by the proposed method description which is

based on a multisensory approach. This chapter covers the used computer vision

techniques for line detection and vehicle detection modules and their alternatives

in literature. Modelling of obtained information and classi�cation process is also

presented in this chapter. The chapter ends with test results of the introduced
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system. Finally, in Chapter 4 concluding remarks on the presented problem and

proposed system; and future work are presented.
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CHAPTER 2

DRIVING BEHAVIOR ANALYSIS

Driving behaviour analysis has been examined via di�erent approaches in recent

years. The ultimate aim of driving behaviour analysis is to improve road safety

by assessing di�erent aspects of driving such as aggressiveness, drowsiness, risk

factor, driving style and driver performance. As a result of these assessments,

providing feedback to drivers or related authorities could provide road safety

and more quali�ed drivers on the road.

Drivers behaviour in tra�c is dependent on psychological state of the driver,

environmental factors and vehicle capabilities [49]. These characteristics are

hard to measure and de�ne quantitatively. Therefore, analysing driver behaviour

is more feasible via collecting observable driving signals which are:

• Driving behavioural signals (e.g. pedal pressure, steering angle)

• Vehicle status signals (e.g. velocity, acceleration, engine speed)

• Vehicle position signals (e.g. following distance, lane position)

as presented in [54]. This idea has obtained a big contribution by the develop-

ment of Advance Driver Assistance Systems (ADAS). These systems are very

popular in recent years in order to provide assistance to the driver about the

current driving conditions [67]. ADASes are used for collecting data about ob-

servable conditions and signals and warning the driver by giving feedback about

the individual driving conditions like exceeding the speed limit, departure from

road lane or unsafe following distance. However, ADASes do not interpret the
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driving data to analyse reach a conclusion about driving behaviour.

Over the years di�erent methods to analyse driving behaviour are proposed.

These methods varies in terms of cost, practical applicability. In Figure 2.1 cost

vs. practical applicability of these methods are presented [34].

Figure 2.1: Existing assesment methods

The simplest method is to conduct questionnaires about the driving experience

[26] or psychological mood which is a subjective and non-e�ective way regarding

contribution to road safety. Conducting questionnaires generally seek to make

inferences about relation between psychological variables, behaviours in tra�c

and accident risk. However, these methods are depends on the past experiences

of drivers; therefore, does not contain objective observations.

One other method that highly depends on human interference is instructor/expert

evaluation based methods. Similar to conducting questionnaires, the driving

experts assesses drivers in terms of performance and other criteria [57]. The

e�ectiveness of this method to correctly evaluate drivers is high since it de-

pends on the expert opinion. However, these method is costly since it requires

employment of too much experts.

Following two sub-sections presents the simulator based approaches and in-
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vehicle systems in a more detailed way since they are in the scope of this thesis

study.

2.1 Simulator Based Approaches

For driver behaviour analysis, observing the behaviours of subjects in the sim-

ulator environment is a common approach. For this purpose, simulator set-ups

are used. An example driving simulator can be seen in Figure 2.2. Simulator

environment enables the researchers to collect data about di�erent driving be-

haviours more easily. Moreover, simulator environment empowers to implement

di�erent road scenarios and observe the reaction of drivers in these scenarios.

Figure 2.2: An example of a driving simulator [3]

Simulator based approaches mainly consist of two phases to realize the driving

behaviour analysis. In the �rst phase, driving data to be analysed is obtained

through simulator which collected data form di�erent subjects. In the next

phase this collected data is analysed using di�erent methods. The methods

presented in literature di�er from each other in terms of examined data and

data analysis [19,55,64]. The work presented in [65] is based on collecting data

about vehicle position signals such as relative lane position and vehicle status

signals such as velocity and acceleration. [19] and [65] uses gas and break pressure

signals as a feature to analyse driving behaviour. In [58] eye and head position

is detected with a camera and used as a feature.
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Di�erent pattern recognition and signal processing techniques are used to anal-

yse simulator data. These methods to decide on aggressiveness, driver style

or driving skills can be exempli�ed as arti�cial neural networks (ANN) [64],

support vector machines (SVM) and k-nearest neighbour (kNN) [19] and hid-

den markov models (HMM) [24,31,65]. Due to the subjective nature of driving

analysis, these studies hardly makes any comparison between other studies. The

main drawback of these works are that they are using a synthetic environment

to measure the driving behaviour. Therefore, they do not fully re�ect the real

world conditions and reactions that a driver would give in real tra�c.

2.2 In Vehicle Multisensory Approaches

In vehicle multisensory approaches are the most recent methods for driving

behaviour analysis. The most important advantage of this approach in terms of

road safety is that the collected data re�ects the real world conditions and in

real time applications it enables the creation of necessary warnings to reduce the

accident risk. The data acquisition can be done via external sensing devices that

are placed on a vehicle [30] or required data can be taken from the controller area

network (CAN) bus of a vehicle [71]. Research activities in this �eld has been

boosted with the contribution in computer vision since it enables the extraction

of information about vehicle status and environment and provides large amount

of information with a simple hardware [73]. In the following sections, studies

that performs driving data acquisition from sensors and usage of computer vision

in driving behaviour analysis are presented.

2.2.1 Driving Data Acquisition from Sensors

Conducted studies that depend on sensor data acquisition about driving be-

haviour analysis in literature di�er from each other in three aspects. Driving

data source, analysed data type and pattern recognition methods to classify the

driving or driver are the main di�erences among existing studies. Although used

techniques are similar with simulator based approaches, sensor data acquisition
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based methods are more e�cient in terms of road safety since re�ection of real

world conditions.

Some of the presented studies in literature performs data collection via external

sensors and hardware. With the help of simple sensors such as GPS module

to measure velocity and accelerometer that measures lateral and longitudinal

acceleration, required data is collected [30,33,45]. The main drawback of usage

of external sensors is increasing cost and hardware complexity.

One innovative approach to this issue is taking advantage of smart phones.

Smart phones are equipped with GPS module, accelerometer working in di�erent

dimensions and gyroscope. Data collection is possible using internal sensors of

smart phones [34, 36, 53]. As stated in [36] using of smart phones' sensors give

noisy measurements due to internal vibration of the vehicle.

A better method which decreases the hardware complexity and gives more clean

measurements for data acquisition is to extract data from the CAN bus. CAN

bus is a recent technology that the most modern vehicles possess. Since the

internal electrical signals of a vehicle pass through CAN bus, it is possible to

reach to the vehicle status signals via this interface. Therefore, [17, 44, 68, 71]

used CAN bus to obtain these signals for driving behaviour analysis.

Presented methods in the literature shows di�erences regarding collected data

types. Most of the methods in the literature are interested in speed, lateral

acceleration and longitudinal acceleration [28,30] which are the most e�ectively

characterizing indicators of a driving. In [71, 74] gas and break pedal pressure

and steering angle is measured an used as a features. In [53] engine speed

which is a correlated signal with gas pedal pressure is measured and used for

assessment. Other than these driving signals tra�c density [73], physical noise

in the vehicle [44] and turn signals [33] are exploited as parameters for driving

behaviour evaluation.

In all conducted studies in order to give a decision about the driving behaviour,

pattern recognition techniques are used. Once the signals are collected via dif-

ferent devices, they either passes through a modelling process(e.g. gaussian
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mixture model (GMM) [7,30], expressing signals with distribution [73], spectral

coe�cients [54]) or directly used for classi�cation. For classi�cation purposes,

hidden markov model [68, 89], neural network [53], fuzzy logic [89], maximum

likelihood classi�cation [55], k-nearest neighbour (kNN) [19] and support vec-

tor machine (SVM) [19] are used in existing studies. Since these studies either

analyses a di�erent driving behaviour (e.g. aggressiveness or performance) and

use di�erent data types or modelling it is not possible to make a qualitative

comparison between them.

2.2.2 Exploitation of Computer Vision

Exploitation of computer vision in driver behaviour analysis opened a new di-

mension in research activities. Because previously mentioned sensors are mostly

vital to characterize driving; however, they are limited regarding the data type.

In other words, the variety of information to represent driving is constrained with

simple sensors. Therefore, using cameras and computer vision techniques, di�er-

ent types of driving information can be obtained and better characterization is

possible. Despite this advantage of computer vision methods, the performance

of computer vision algorithms is creates a bottleneck for the performance of

driver behaviour analysis. Because noisy feature extraction by computer vision

tools e�ects the e�ciency of the analysis. Therefore, this situation brings about

a trade o�.

One important feature that can be obtained by computer vision tools is road

lane following behaviour. Discrepancies in lane following could be an indicator

of a risky and unsafe driving [70]. In [71, 73, 89] position in the road lane is

used. Car following behaviour can also be obtained by camera images as a

features that depends on the following distance between the host vehicle and

other vehicles. This feature requires the detection of vehicles on the road and

distance measurement [7, 92]. Other than these two important features head

pose and eye gaze [62] can also be examined through camera images for analysis

purposes.
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CHAPTER 3

MULTISENSORY DATA FUSION FOR

AGGRESSIVENESS ANALYSIS

3.1 Proposed Method

As indicated in section 2, di�erent driving behaviours can be analysed by observ-

able driving signals. By this idea, it is possible to comment on aggressiveness,

driving skills or driving style of the driver. In this thesis, driver aggressiveness

is analysed using driving signals. Proposed method in order to assess driver

aggressiveness follows a multisensory approach since it utilizes di�erent sensing

devices to collect real world data on vehicle. In order to characterize the driving

in an e�cient way, computer vision techniques are also utilized.

As indicated in [59] and [82] aggressive driving is associated with sudden lane

changes, tailgating behaviour, excessive speed and abrupt acceleration basically.

According to [54], gas and brake pedal pressure are also characterizing features

for aggressiveness. Gas pedal pressure is directly correlated with engine speed

and brake pedal pressure is directly related with vehicle speed. With the illumi-

nation of these information, four di�erent feature types are chosen to represent

the related driving session. These features are determined as:

• lane deviation

• collision time

• vehicle speed
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• engine speed

Proposed method, extracts lane deviation and forward car distance information

from the visual information provided by a camera that is directed to road. For

this task computer vision techniques are used which contains road line and vehi-

cle detection. Engine and vehicle speed information is obtained from CAN-bus

of the vehicle. These collected information is processed to constitute feature

vectors. Obtained feature vectors are classi�ed to detect aggressive driving be-

haviour. The following sections explains all processes in a detailed way. The

overall system �ow can be seen in Fig. 3.1.

Figure 3.1: Flowchart of the system

3.1.1 Road Line Detection

In order to �nd the position of the host vehicle, which is the equipped and

examined vehicle, inside the road lane, road line detection is required. Drivers

who change lanes suddenly and continuously and do not follow the lane properly

may involve in aggressive driving attitude. Therefore, detecting the position of

the host vehicle inside the lane by detecting the road lines is an important

information. For road line detection problem, non-uniformity of road lines is

the major challenge [61]. In order to accomplish road line detection task with a
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robust operation to non-uniformities in road lines, temporal �ltering and inverse

perspective mapping are used which is a robust, simple and low cost method

and proper for the fast operation of the overall system.

3.1.1.1 Related Work

For road line detection, di�erent modalities such as monocular vision, stereo

vision, Light Detection and Ranging (lidar), Global Positioning System (GPS)

or radar has been used. However, among these modalities monocular vision

is the commonly used one since it is the cheapest, most robust and the most

compatible method with human visual option. Therefore, most of the work

presented in literature use monocular vision. Methods based on monocular

vision consist mainly �ve stages. Not all of the existing methods in the literature

passes through these �ve stages; nevertheless, all algorithms can be mapped to

these stages. The basic �ow diagram of the road line detection can be seen in

Figure 3.2 [11].

Figure 3.2: Generic �owchart of road line detection [11]

Pre-processing

The main task in pre-processing stage is to reduce the noise in the image and

eliminate irrelevant parts that makes the road line detection hard. Illumination

e�ects, shadows on the road, obstacles inside the taken frame and unseen or

hardly seen road lines creates noise for the detection process. Colour space
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transformations can be used to eliminate noise caused by illumination. In [39,

77] uses transformation from RGB colour space to HSV colour space. These

transformations are based on the assumption that hue information exist even

in the low light conditions. Image �ltering techniques are also useful for noise

elimination. In [63] gaussian smoothing is used for noise elimination. However,

in order to handle di�erent condition more complicated �ltering techniques are

required. In [61] temporal �ltering and intensity based �ltering and is used to

make the process more robust. In order to eliminate obstacles and unnecessary

regions, these regions can be detected and tracked. The main drawback of this

approach is unreliability due to high false positive rates [10]. An alternative

approach to eliminate unnecessary regions is to de�ne region of interest (ROI)

by hand [93] or by segmentation of road inside the image [12].

Feature Extraction

In the feature extraction stage, features that carry information about the road

lines are obtained. The main characteristics to be used for feature extraction

are that road lines have more intensity and their narrow shape is di�erent than

its surroundings. In order to utilize this information gradient based approaches

used [61] which is a simple and robust method. In [52] steerable �ltering is used

which is based on �ltering in the prede�ned directions that is along the road

lines. The �ltering can be followed by a thresholding operation so as to obtain a

binary image and do further operations on this binary image [90]. In [91] image

pixels are segmented as blobs and classi�ed as belonging to a road line.

Model Fitting

The objective of this stage is to obtain a high level representation of the road lines

by a model using the extracted features. The model �tting can be classi�ed into

three methods as parametric, semi-parametric and non-parametric methods [11].

Among the parametric models, the simplest geometric model is straight line. In

most of the studies road lines are approximated as straight line which gives a

good performance for short range and in highway scenarios [11, 13]. To model

16



curved roads with a long range modelling parabolic curves and generic arcs are

preferred [52]. In order to �t the geometric model to the road lines RANSAC [20],

hough transform [29,83] and least squares algorithm [42] are among the existing

methods. As semi-parametric methods road lines are modelled with splines and

poly-lines. For instance, in [86] road lines are described with b-splines which

is a part of active contours depending on the energy optimization. For the

non-parametric methods continuous, yet non-smooth boundaries appears [16].

Temporal Integration

Due to the fact that visual information from the camera is taken as image

sequences, road line detection output for each image frame is correlated with

the preceding or following ones. Therefore, in order to increase the reliability of

the detection results most of the existing methods exploit temporal information.

Most generally used techniques for temporal integration are kalman �lter and

particle �lter. According to [40] kalman �ltering and particle �ltering can be

used for road line tracking which give the similar performance. However, particle

�ltering performs slightly better than kalman �ltering when the vibration on

the vehicle is high which decreases the smoothness of road line positions. Active

contours [86] also can be used for temporal integration; however, it brings about

a high computational cost compared to kalman or partcile �ltering.

Image to World Correspondence

Since the camera is mounted on the car to see the front part, road lines are seen

as intersecting lines at a vanishing point in the horizon level. In most of the

works in the literature [13, 61,73], the perspective of the camera is transformed

to birds-eye view which allows the road lines to be seen as parallel lines. This

operation reduces the resolution in most of the cases; however, provides a practi-

cality and easing to detect road lines. Inverse perspective mapping is performed

with a perspective transformation which requires the transformation relation

between road plane and camera plane. In [61] this mapping is performed via

vanishing point detection while in [38] manually by selecting four destination
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and four source point and calculating the perspective relation between them

since automatic transformation is prone to noisy estimations.

3.1.1.2 Proposed Road Line Detection Method

As presented in Section 3.1.1.1 there exist a huge number of di�erent methods

for road line detection in the literature. Quantitatively comparison of these

methods is hardly possible since existing studies proposes di�erent combinations

of aforementioned road line detection stages in varying complex road scenarios

[72]. In [72] some line detection metrics are proposed; however, since this is

a recent study existing methods do not report the performance according to

these metrics. Therefore, most of the studies presents qualitative results with

annotated visuals.

For this study the main concern is to use a robust, simple and low complexity

algorithm to detect road lines correctly and fast enough to work in real time.

Presented methods in the literature claims to give e�cient results qualitatively;

however, considering the simplicity and feasibility to work in real time in this

study it is decided to use a technique inspired by [61]. Presented technique uses

temporal �ltering as pre-processing step, gradient based �ltering for feature

extraction, straight line assumption and horizontal projection for line modelling

with the help of inverse perspective mapping and kalman �ltering for temporal

integration. A �owchart of the line detection module can be seen in Figure 3.3.

One of the most important problems regarding the robustness of the system is

non uniformity of road conditions. In order to overcome the problems that are

caused by shadows on the road, di�erent light conditions and discontinuities on

the road line, a method based on temporal �ltering is used [13], [61] which gives

robust, fast and simple results.

First, captured image is temporally �ltered in order to eliminate dashed lines

and discontinuities according to

I
′

k(x, y) = max{Ik(x, y), ..., Ik−K(x, y)} (3.1)
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Figure 3.3: Flowchart of proposed road line detection method

where Ik represents the current frame, Ik−K represents the Kth previous frame

and (x, y) are pixel coordinates. K is chosen according to the frame rate and

dashed line length so that all road lines can be seen continuous as in Figure

3.4. K is chosen as 10 for the video sequences which contain highway and urban

roads and which are captured as 10 frames per second. This operation may
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result in wrong detections during sudden lane change events; however, tracking

detected lines with Kalman �lter corrects the possible wrong detections which

will be explained at the end of this chapter.

Figure 3.4: Raw image and temporal �ltered image

Then the gradient image of I
′

k(x, y) is calculated and the high gradient pixels are

cleared from I
′

k(x, y) to obtain I
′′

k (x, y). This operation gives the low gradient

pixels which represent the road part. Then the mean µ and standard deviation

σ values of I
′′

k (x, y) are calculated so that the mean intensity value of pixels that

belong to road part can be found. Once these values are obtained, the pixels that

are representing road is eliminated from the image I
′

k(x, y) by clearing the pixels

that have intensity values less than µ + σ. This operation helps to eliminate

noise and indicate road lines better. A simple derivative �lter F where

F =
[
−1 0 1

]
(3.2)

to calculate the gradient is used for indicating the lines. After this operation,

binary image is obtained using an adaptive threshold according to Otsu's method

[66]. The application results of these steps can be seen in Figure 3.5.

Inverse perspective mapping is an e�cient method for road line detection. Cam-

era placed in the front of a vehicle gives the road lines as straight lines inter-

secting at the horizon level. However, inverse perspective mapping enables the

road lines to be seen as parallel lines. Moreover, since monocular vision system

is used, inverse perspective mapping will be exploited to measure the distance

between vehicles. In order to achieve inverse perspective matching four points
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(a)

(b)

(c)

(d)

Figure 3.5: Operations to obtain binary image (a) temporal �ltered (b) road
pixels cleaned (c) gradient calculated (d)binary

are chosen in the �ltered image and they are mapped to four other points in

the birds-eye perspective [38] assuming the surfaces are planar. This mapping
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procedure results in a 3× 3 H matrix that contains the transformation param-

eters. This matrix is calculated before the aggressiveness detection operation

and hardcoded to the system. Then during the operation inverse perspective

mapping is done by transforming each ith point of the binary image using H

matrix as

pik = HP i
k (3.3)

At the end of this transformation road lines can be seen as parallel lines from

the birds-eye view in the binary image.

Figure 3.6: Perspective transformation from camera plane to road plane

Since the aim is to �nd the lateral position of the vehicle inside the road lane,

short range line detection is enough for this application. Therefore, road lines

are modelled as straight lines. One assumption at this point is that curved roads

are seen as straight in the short range. The procedures that are applied in the

pre-processing and feature extraction stages perform well enough to indicate

the line positions; therefore, a simple procedure is done to locate road lines.

Horizontal projection of the image is taken in a limited region so that the line

locations appear as peaks in the horizontal projection vector. The region whose

horizontal projection taken is chosen to minimize the noise in peak detection

as shown as a red box in Figure 3.7. In Figure 3.8 two sample projections are

presented. The �gures on th left belongs to an image frame during driving in

a straight road lane while the �gures on the right belongs to an image frame

during a lane change event. As can be seen in these �gures, horizontal projection
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vector is distorted due to utilizing last K images in the temporal �lter. However,

this distortion is so small that certain peaks can still be seen in the projection

vector.

Once the horizontal projection of a binary image is obtained, peak locations

and their values in this horizontal projection vector is determined according to

Algorithm 1.

Figure 3.7: Line position detection by horizontal projection The �gure on the left
top represents the processed and transformed image. The red box represents the
limited interest region. The �gure on right top is the masked version according
to interest region. The graph on right bottom is the horizontal projection of the
image

Figure 3.8: Sample binary images and their horizontal projections; �gures on
the left belong to driving in a straight lane, �gures on the right belong to a
driving during a lane change

As a result of this process in noisy cases, unnecessary peaks may occur in the
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Algorithm 1 Peak Detection Algorithm

trend← increasing

for i← 1, n do

if trend = increasing & projection(i− 1) ≤ projection(i) then

continue

else if trend = increasing & projection(i− 1) > projection(i) then

trend← decreasing

peaks.append← projection(i− 1)

peakLocations.append← (i− 1)

continue

else if trend = deccreasing & projection(i− 1) ≥ projection(i) then

continue

else if trend = decreasing & projection(i− 1) < projection(i) then

trend← increasing

continue

end if

end for
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horizontal projection. However, the peaks that indicate a line position generally

appears to be the highest ones. In order to eliminate the unnecessary peaks

and select the correct ones, a peak selection algorithm is used. The pseudo code

of this algorithm is provided as Algorithm 2. As the result of this algorithm

example of peak detection can be seen in 3.7.

In Algorithm 2, minimumPeakDistance is a value that represents the mini-

mum lane width in pixel values. This value is de�ned by measuring the lane

width in birds-eye view image. However, in order not to miss any proper peaks

in projection vector, this value is de�ned experimentally as 30% less than an

average lane width.

One last step that is used to increase the stability and accuracy of line detection

is tracking the detected lines which will satisfy the temporal integration of the

frames. At this stage, tracking by Kalman �ltering is used. As mentioned in

Section 3.1.1.1 the two mostly used method for temporal integration of road line

detection is Kalman �ltering and particle �ltering. In literature it is stated that

particle �ltering performs better than Kalman �ltering when the smoothness is

low due to high vibration. However, in our case the vibration e�ect is low since

most of the road data is obtained from highways which provides a smooth drive.

Therefore, Kalman �ltering is used [81] which has a simpler formulation as:

x̂k = Ax̂k−1 +Buk

Pk = APk−1A
T +Q

Kk = PkH
T (HPkH

T +R)

x̂k = x̂k +Kk(zk −Hx̂k)

Pk = (I −KkH)Pk

(3.4)

In this formulation xk is the state of the process and zk is the measure of the

process. Pk represents the covariance matrix, Q represents the process noise

covariance, R represents the measurement noise covariance while A, B and H

are the coe�cient matrices that are relates the current and previous state; state

and measurement. States and measurements that are used in these equations
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Algorithm 2 Peak Selection Algorithm

m← minimumPeakDistance

for i← 1, length(peaks) do

maxPeakV alue← max(peaks)

h← location(maxPeakV alue)

maxLocation← peakLocations(h)

LinePosition.append← maxLocation

peaks.remove(h)

peakLocations.remove(h)

for j ← 1, length(peaks) do

if abs(maxLocations− peakLocations(j) < m) then

peaks.remove(j)

peakLocations.remove(j)

end if

end for

end for
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are the 4 dimension vectors that contains x coordinate of both tips of left and

right line.

This kalman �lter scheme includes smoothing the line detection with kalman

�lter as well as keeping the visibility counts of lines and recovering missing

detections for a speci�c frame. In other words, detected lines for a speci�c frame

is indicated as lines only if they are consistent and if a line is not consistent for

a number of frames it is discarded. Flowchart of this mechanism can be seen in

Figure 3.9.

Figure 3.9: Flowchart of Tracking Mechanism with Kalman Filter

According to this algorithm �rst the found detections are matched with current

tracks. The matching process is done by searching each detection among the

existing tracks. The track that gives the least error for a detection is chosen as

matched track. If the detection is not close to a track less than a speci�c distance,

it is not matched with any tracks. For the matched tracks and detections location

parameters of the tracks are updated according to Kalman �lter equations and
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matched detections. For the unmatched tracks, age and visibility counts are

updated; tracks that are non-visible for a certain time are cleared and new tracks

are de�ned for the unmatched detections. The visibility and age thresholds are

found experimentally and this scheme signi�cantly improves the e�ciency of the

overall process.

In order to determine the position of the vehicle inside the lane, two closest

detected lines from the mid-point, which is de�ned beforehand as a pixel value

according to horizontal positioning of the camera, are chosen as own lane bound-

aries. Then the horizontal position of the vehicle inside the lane is determined

as parameter between −50 and 50 for each frame Ik.

3.1.1.3 Line Detection Results

The presented method is tested with real tra�c data which include di�erent

environment conditions such as occlusion, shadows, road curve and discontinu-

ities. As can be qualitatively seen in the sample �gures (Fig. 3.10) line detection

method show robustness to di�erent environment conditions.

In order to test the accuracy and reliability, the presented method is tested

with Borkar's dataset [14]. As presented in [14] the available public datasets

and benchmark results for line detection is not easy to �nd. However, Borkar's

work is a recent work and in its dataset there exist video sequences contain-

ing driving sessions at urban road, metropolitan highway and isolated highway

whose ground truth road line positions are provided. Some sample images from

Borkar's dataset can be seen in Figure 3.11.

Since the main aim of road line detection module is to extract the position

information of the host vehicle inside the lane, these ground truth values are

used to determine the ground truth values of lane position. For this task, pixel

value of camera center is required since it determines the center of the vehicle

inside the lane. In order to �nd this value, sample video sequences are examined

and one frame in which the host vehicle passes on a road line is considered. Due

to perspective distortion, all straight road lines in the frames are seen with a
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Figure 3.10: Correctly detected lines in di�erent frames

slope di�erent than∞, that is not vertical, except the ones that the host vehicle

is passing on. As can be seen in Figure 3.12 the frame in which the road line

is seen as vertical can be used to determine the location of camera center. In

Figure 3.12 x-coordinate of the vertical line indicates the camera center value
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(a) (b)

(c)

Figure 3.11: Sample images from Borkar's Dataset, (a) urban area, low tra�c
(b) metro highway, dense tra�c (c) isolated highway, moderate tra�c

and this is shown with a red line. For this process camera is assumed to be

placed in the middle of vehicle.

Figure 3.12: Determining camera center by observing the horizontal road line

In Figure 3.13 it can be seen that for di�erent video sequences lane position

information is determined accurately. When these �gures are examined it can

be said that proposed method works better for datasets that contain highway
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images than datasets that contain urban road images. The main reason of this

situation is that in urban roads road lines are not as clear as in highways which

makes them di�cult to detect. Tra�c density also e�ects the performance of

the system since the increasing number of vehicles on road create occlusions

and shadows on the road and reduces accuracy. When the metro highway and

isolated highway datasets are compared, the e�ect of tra�c density can be seen

in the related �gures. Another point to mention about the results is that lane

change events may create error as can be seen in Figure 3.13 (b). The peaky

behaviour of the signal around frame number 350 indicates a very sharp lane

change and proposed system fails to detect the lane position correctly at that

instant. Due to temporal �lter that is used to indicate road lines, very sharp

lane changes may create distortion in the �ltered image which can be seen as

lateral shifts in the road lines. This situation disturbs horizontal projection and

creates errors for very sharp lane changes. Adjusting kalman �lter parameters

for giving more con�dence to measurements, that is reducing the covariance of

measurements, may work for overcoming this problem. However, the proposed

system works well and detects the lane position in lane change events if the lane

change does not occur at extreme sharpness. A smooth horizontal movement

pattern can be seen in Figure 3.13 (a) between 750th and 900th frames.

In order to quantify the accuracy of the position information over a video se-

quence, mean absolute error MAE values are calculated. As indicated in [25]

MAE can be used for measuring estimation accuracy of driving signals such as

speed, orientation etc. Hence for each presented sequence in Figure 3.13 a mean

absolute error (MAE) value is calculated as

MAE =
N∑
i=1

|LaneDeviationGT (i)− LaneDeviationmeasured(i)|
N

(3.5)

where N represents the total number of frames in a sequence. These values are

presented in Table 3.1. MAE values in this table represent the average deviation

of measured lane position information from the ground truth value. Among the

three di�erent datasets the one which has highest MAE value is urban dataset.

The reason of this relatively high value is that in urban region road lines are not
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(a)

(b)

(c)

Figure 3.13: Comparison of lane position detection with ground truth values in
Borkar's dataset (a) urban area, low tra�c (b) metro highway, dense tra�c (c)
isolated highway, moderate tra�c
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as obvious as in the highways or main roads. Nevertheless, MAE value of 2.47

in {−50 : 50} scale is very low which does not have a signi�cant deteriorating

e�ect on aggressiveness decision. Moreover, the feature extraction method with

histogram modelling further eliminates the current error rate by representing

time series signal as distribution functions. Regarding the mean absolute error

values of the sequences it can be said that for di�erent conditions the presented

method performs lane position detection with a reasonable error rate.

Table3.1: Mean absolute error values for di�erent road and tra�c conditions

Road Condition Mean Absolute Error
Urban Area, Low Tra�c 2.47

Metro Highway, Dense Tra�c 1.96

Isolated Highway, Moderate Tra�c 1.51

Proposed lane deviation detection method results is compared with other meth-

ods in the literature which is tested for Borkar's dataset. As presented in [37],

Jung et. al. stated that lane detection rate for their method and Borkar's

method are as in Table 3.2. Proposed method is also tested with video se-

quences from Borkar's dataset containing di�erent conditions and the results

are presented in Table 3.2. For this comparison, the measured lane position in-

formation is counted as correct if the measured value deviates from the ground

truth values less than 4 in {−50 : 50} scale. This threshold is determined as

4 since in the Borkar et. al.'s work [14] it is stated that the error is accepted

as negligible if it is less than 6 inches. Assuming that the width of a standard

road is 3.5 meters, in {−50 : 50} discretized scale 6 inches correspond to 4 and

correction rate determined according to this threshold.

Proposed method provides similar results with existing methods, performing

better for urban dataset which is more critical in terms of aggressiveness de-

tection. Moreover, the lane deviation values over frames will be represented as

distributions which is explained in Feature Extraction section. This process will

further compensate the deteriorating e�ect of errors regarding aggressiveness

detection.
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Table3.2: Correct detection rate of di�erent methods of Borkar's dataset

Category Borkar Jung Proposed
Isolated Highway 98.24% 98.31% 93.92%

Metro Highway 98.12% 98.33% 95.04%

Urban 87.12% 90.52% 93.31%

3.1.2 Vehicle Detection

Vehicle detection process is required in order to �nd the distances between host

vehicle and other vehicles that can be seen from the camera. This distance will

be used to build up a feature which characterizes tailgating or unsafe following

distance behaviour. Therefore, the process consist of mainly two parts. In the

�rst part, vehicles should be detected in the images and in the second part

the distance between the host vehicle and detected vehicles should be found.

For vehicle detection task a simple and robust approach is used for the sake of

real time operation and HOG features are employed with a cascade classi�er.

Algorithmic e�ciency and accuracy of vehicle detections are also improved by

exploiting lane detection results since only the vehicles which are in the same

lane with host vehicle are important. This condition enabled running vehicle

detection process in a speci�c region of interest. For the distance estimation part

inverse perspective mapping is used since the operation depends on monocular

vision.

3.1.2.1 Related Work

Di�erent approaches has been proposed in previous studies about on-road ve-

hicle detection. In most of these studies vehicle detection is associated with

forward collision warning systems (FCWS) which is a part of advanced driving

assistance systems (ADAS). Existing modalities for on-road vehicle detection

mainly include radar, lidar and vision based sensing [76]. RADAR technology

uses emission of millimeter wave radio signals to detect vehicles on the road. By

analysis of re�ecting signals the existence and distance of target vehicles can be

determined [50]. Although radar based systems work quite well for narrow �eld-
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of-view applications, they provide noisy measurements needing further �ltering

and de-noising operations. And they fail to discriminate vehicles and di�erent

obstacles.

A better alternative to radar sensing is utilization of lidars. Popularity of lidars

has rised recently that they are broadly used in autonomous vehicles for obstacle

detection [43]. Lidars emit laser beam at invisible wavelengths by scanning the

scene and receive the re�ected energy to perform object detection. Therefore,

lidars provide information about depth and shape of the detected objects. In

spite of its e�ciency in terms of detection, the main drawback of lidars is the

economical cost. The price of the lidar sensors has decreased in the recent years;

however, today the cost of lidar systems is the major drawback [76].

Considering e�ciency and cost factors together, vision based platforms that ex-

ploits image processing techniques are on the top of the list for on-road vehicle

detection systems. Vision based systems provide rich data about the environ-

ment with low cost. With the help of computer vision and image processing tools

this data is analysed and vehicle detection is performed. The main drawback of

vision based systems is sensitivity to weather and light conditions compared to

previously mentioned methods. Among the proposed systems in the literature,

there exist monocular and stereo vehicle detection systems. Both systems use

similar methods and algorithms regarding computer vision and image process-

ing techniques; however, as the di�erence, stereo systems utilize the correlation

between the images that are taken by two cameras and extracts depth informa-

tion. Depth information provides better estimation for distance measurement

and better results for occlusion handling [41, 56]. Although stereo based sys-

tems provides better results than monocular systems they need more complex

hardware and computation power compared to monocular systems.

Monocular vision based on-road vehicle detection systems can be classi�ed into

two main categories as motion based or appearance based methods. Appearance

based methods detects vehicles inside one image while motion based methods use

motion information in image sequences [76]. Although there does not exist a cer-

tain performance distinction between appearance and motion based approaches,
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appearance based methods are more dominant in literature. Appearance based

methods provides more direct solution for vehicle detection task while motion

based methods �rst require appearance based cues about objects then extract

motion information. Therefore, appearance based methods are more commonly

used for vehicle detection [79].

Considering motion based methods for vehicle detection in the literature, optical

�ow calculation and background subtraction are used as the common tools [76].

Optical �ow occur due to the relative motion between camera and scene and

can be obtained by calculating the vector �eld that represent this relative mo-

tion [48]. In other words, the location change of a pixel (x, y) between two time

instants, represents the optical �ow. The vehicles in the scene produce di�erent

optical �ows according to their velocity and they are also distinguished from the

stationary objects [79]. Most of the motion based vehicle detection methods in

the literature exploit this idea to detect vehicles on road [8,51,69]. Background

modelling for vehicle detection is used to model scene which has stable points

and to di�erentiate the moving vehicles in next frame [15]. As explained be-

fore, motion based vehicle detection methods do not directly provide solution

to vehicle detection problem and need further processes or appearance based

information in most of the cases. Therefore, appearance based methods are seen

more frequently in the literature.

Appearance based methods basically exploit the distinguishing features of ve-

hicles on road and use techniques to identify regions/pixels that contain these

features. For the appearance based methods in the literature, vehicle detection

process mainly consist of three steps as:

• Feature extraction

• Feature Classi�cation

• Object tracking

In order to realize an e�ective description of images a feature extraction pro-

cedure is applied. In earlier works, symmtery and edge information is used
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while in recent works more complex and robust features are used in order to

detect vehicles in the scene [79]. Therefore, among the existing di�erent meth-

ods in the literature for feature extraction, mostly used ones can be exempli�ed

as HOG [80], Haar-like features [21], SIFT [94], SURF [46] and Gabor fea-

tures [95]. These features are more e�cient for handling challenges illumination

changes, pose changes and partical occlusions [79]. According to [76] among

these presented features, HOG and Haar-like features constitute the large por-

tion regarding recent vehicle detection works since they provides robust and fast

operation.

For feature classi�cation the dominant methods are presented in the literature

as arti�cial neural networks [78], support vector machines [80], cascade classi�er

[75] and AdaBoost [87]. The common point of these classi�cation methods is

that they apply a training process to obtain a decision boundary and classify

the samples according to this decision boundary. The presented works in the

literature propose the usage of di�erent combination of these classi�ers and

feature descriptors that are explained in the previous paragraph. For instance

in [47] SVM classi�cation is used to classify feature vectors obtained by Haar-like

features while in [80] HOG features of images are classi�ed by SVM. Among the

classi�cation techniques for vehicle detection, Adaboost and SVM are widely

used in recent works since their training process conceive a global optimum over

the given training set [76].

Since vehicle detection task is also done over consecutive frames, the utilization

of temporal information is done via object tracking. Tracking helps estimation

of the vehicle position in the following frame and reduction of false positives.

For this task, principal methods in the literature are seen as kalman �ltering [32]

and particle �ltering [18].

One other task to accomplish after vehicle detection is to estimate the distance

between the host vehicle and detected target vehicles. With a monocular vision

system, distance estimation can be achieved with assumption that the road

surface is planar. One approach that is presented in the literature for monocular

distance estimation is to utilize the width of the bounding boxes around the
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detected vehicles. That is the larger width means the closer distance [9].

3.1.2.2 Proposed Vehicle Detection Method

For aggressive driving behaviour analysis application in vehicle detection stage

HOG feature extraction is employed. Since HOG is widely used and stated to

be a robust approach to identify rear view of vehicles [76]. A cascade classi�er

detection technique is used in order to detect vehicles inside the images, because

cascade classi�er is a robust and fast method which can easily be used in real

time object detection applications [84]. In order to determine the distances of

detected vehicles inverse perspective mapping applied and distances are found

from the birds-eye view perspective.

Histogram of Oriented Gradients

In order to describe the vehicle images inside the taken frames, HOG features

provides a description based on edge directions since it uses gradients. This

corresponds to an e�ective description because rear view of the vehicles can easily

be identi�ed by their characteristic shape. HOG features [23] are calculated

according to the �owchart given in Figure 3.14.

As the �rst step to calculate HOG features x and y derivatives, i.e gradients,

(Ix, Iy) are found in order to calculate magnitude G and orientation θ according

to:

|G| =
√
Ix

2 + Iy
2 and θ = tan−1(

Iy
Ix
) (3.6)

Then the image is divided into N × N cells and a weighted vote is calculated

for edge orientation according gradient magnitudes for each pixel in these cells.

These votes are utilized to build up a histogram which is quantized into a speci�c

number of bins. In order to increase the e�ect of gradients which is close to cell

center, a Gaussian weighting function is used.

In order to provide a robustness to illumination changes, the cells are normalized.
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Figure 3.14: Steps to Calculate HOG Features

This process is done over blocks that are constituted by combination of cells

3.15. The normalization process provides the stretching of low contrast regions.

Finally the histograms vectors are concatenated to obtain the global feature

vector to describe the shape of the image.

For this study number of bins is selected as 9, cell size is chosen as 8 × 8 and

number of cells in a block is chosen as 2× 2 as presented in [23]. The presented

study in [23] covers an application towards detection of pedestrians; however,

the mentioned parameter values provided good results also for vehicle detection

task.

Cascade of Classi�ers

The HOG features are calculated over a rectangular search window inside the

image. For the presented application the smallest search window is determined
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Figure 3.15: Visualization of HOG cells and blocks [27]

as 24 × 20 in order to represent the shape of vehicle which are very far. And

the window size is increased up to 120× 100 by keeping the aspect ratio. Once

these windows are represented by HOG features as explained in the previous

paragraph, classi�cation of these features results in the decision whether there

exist a vehicle or not inside the examined search window. For this classi�cation

task a cascade of classi�ers are used since it increases the detection performance

and decreases the computation time [84]. Cascade of classi�ers consist of weak

classi�ers that are combined with di�erent weights to construct a strong classi-

�er. As explained in [76] cascade of classi�ers which are trained using AdaBoost

performs well for vehicle detection task.

A weak classi�er hj(x) is de�ned as:

hj(x) =

1, pjfj(x) < pjθj

0, otherwise
(3.7)

where x is a sub window of the image, fj is a single feature, θj is threshold

and pj is the parity indicating the direction of the inequality sign. Each of

these weak classi�ers represents a feature. In order to increase the classi�cation

performance, a process that is called boosting is applied to these classi�ers.

Boosting means combining weak classi�ers to obtain a strong classi�er. As

mentioned in [76] vehicle detection studies have moved toward algorithms which
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converge to a global optimum over training set such as AdaBoost. Therefore, in

this work AdaBoost algorithm [5] is used to train weak classi�ers which is given

in Algorithm 3.

Algorithm 3 AdaBoost Algorithm

Given(x1..i..N , y1..i..N); xi a sub− window and yi ∈ 0, 1

Initialize weights w1,i =
1
m

for t← 1, T do

Normalize the weights, wt,i ← wt,i
n∑

j=1
wt,j

Evaluate error w.r.t wt εj =
∑

iwi|hj(xi)− yi|
Choose ht with minimum error εt

Choose αt =
1
2
ln
(
1−εt
εt

)
Update the weights wt+1,i = wt,iexp(−αtyiht(xi))

end for

As a result of the AdaBoost algorithm a strong classi�er H(x) is obtained as

shown in Eqn. 3.8.

H(x) =


1,

1∑
t=1

αtht(x) ≥
1∑
t=1

αt

0, otherwise

(3.8)

Cascade of classi�ers is based on an approach that uses a decision tree where

each stage is a classi�er. This cascade structure enables immediate rejection of

negative samples in early stages thus increases the detection rate and decreases

the computational complexity. Each stage of the cascade classi�er is consti-

tuted by a boosted classi�er which is responsible for any number of features.

This structure takes all sub-windows as input, eliminates a portion of negative

samples in each stage and passes the positives to the next stage. A schematic

description of the cascade of classi�ers structure can be seen in Figure 3.16.

For this study a cascade of classi�ers is trained using road scene and vehicle

rear view images. 1700 empty road scene images are labeled as negative and

820 vehice images are labeled as positive and fed to the classi�er for training

purpose.
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Figure 3.16: Schematic description of the cascade of classi�ers structure

Tracking Detected Vehicles with Kalman Filter

Since the vehicle detection task is done over consecutive frames, temporal inte-

gration of detection results in di�erent frames increases the detection rate similar

to line detection as explained in Section 3.1.1.2. Since the problem is similar

to the temporal integration task done for line detection method, the same for-

mulation is applied for this problem too. Therefore, detected vehicle images

are tracked by Kalman �lter according to Kalman �lter equations presented in

Equation 3.4 and �owchart presented in Figure 3.9. For this task a constant

velocity model is assumed.

Distance Estimation

One last task to be done after the detection of the vehicles is to determine their

distances to the host vehicle. In a monocular approach the distance estima-

tion is di�cult than the stereo approach since depth information does not exist.

However, based on the assumption that the road surface is piecewise planar, per-

spective transformation of the image to the birds-eye view provides information

about the distance of the detected vehicles. On each frame detected vehicles are

represented with a bounding box and the midpoint of the bottom edge of this

bounding box is used to determine the distance. In other words, the bottom edge

is taken as the line where the vehicle touches the road surface and the distance

of this edge to the camera is taken as the distance of the vehicle in pixel units
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as in Figure 3.17. Distance values for the vehicles are determined according to

their vertical distance due to this process. However, since the vehicles which

are on the same lane are important for the aggressiveness detection, this process

provides satisfying results.

Figure 3.17: Estimation of distance of detected vehicles

As the result of this operation distance of vehicles to host vehicle is determined

in pixel units. In order to convert pixel units to metric unit the pixel distance

is multiplied by a constant C. This C constant is calculated experimentally

according to the experiment set-up before the whole operation starts. This

task is achieved by measuring a known distance in pixel values in the same

perspective. For instance, the length of a road line in Figure 3.17 is 6 meters and

with the given perspective transformation, it corresponds to 20 pixels. Therefore,

the constant C is de�ned as:

C =
Distance in metric units

distance in pixel units
(3.9)

3.1.2.3 Vehicle Detection Results

Some examples of vehicle detection are presented in Figure 3.18. In these �gures

it can be seen that di�erent types of vehicles such as auto mobiles, vans and

trucks are detected correctly. These results also shows that proposed system

works well for detection of both dark and light coloured vehicles. The vehicles

which are at a very far distance from the host vehicle are not detected since

they do not have the proper HOG features due to their size. However, this is
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not a big problem for the overall system since these vehicles which are far from

host vehicle do not have signi�cance about driver aggressiveness. When the

distance value results are considered qualitatively, it can be concluded that they

are re�ecting true and coherent results.

Figure 3.18: Correctly detected vehicles and their distances to the host vehicle
in di�erent frames

The presented vehicle detection method is a well known and simple scheme

and it gives satisfying results regarding our problem de�nition. So as to assess

the performance of the method we utilized LISA-Q Front FOV Dataset [75]

which contains 3 di�erent annotated video sequences. Sample snapshots of these

datasets can be seen in Figure 3.19. In [75] presented method is tested with LISA

dataset and the results are given according to several performance metrics. The

details of these metrics can be found in [75].

Since ultimate aim of the method is to �nd the distance between host vehicle

and target vehicle, region of interest in the front view image is reduced according

to the results of lane detection. In other words, it is aimed to detect the vehicles
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(a) (b)

(c)

Figure 3.19: Sample images from LISA-Q Front FOV Dataset, (a) Dense (b)
Sunny (c) Urban dataset

which are in the same lane with the host vehicle. To accomplish this, other

detections which are in di�erent lanes are eliminated but host vehicle's. This

approach improved the results signi�cantly for each dataset. In Table 3.3, 3.4

and 3.5 performance results of proposed method with region of interest selection

and comparison with Sivaraman's method which is given in [75] can be seen for

dense, urban and sunny datasets respectively. For performance comparison pur-

pose, metrics that are given in the work of [75] are utilized. These metrics can be

seen in Eqn. 3.10. With TPR, true positive metric, recall and localization of the

vehicle detections are measured while FDR, false detection rate, measures the

robustness and precision of the system to false positives. Similarly, FP/Frame

measures localization using per frame number of false positives while TP/Frame

indicates the robustness by per frame number of true positives.
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TPR =
detected vehicles

total # of vehicles

FDR =
false positives

detected vehicles + false positives

FP/Frame =
false positives

total # of frames processed

TP/Frame =
true positives

total # of frames processed

(3.10)

Table3.3: Performance Evaluation of Di�erent Methods for Dense Dataset

Method TPR FDR FP/Fr. TP/Fr.
Sivaraman's Method [75] 95.0% 6.4% 0.29 4.20

Our Method w/o Lane Selection 78.4% 43.0% 2.44 3.23
Our Method w/ Lane Selection 89.9% 9.8% 0.09 0.85

Table3.4: Performance Evaluation of Di�erent Methods for Urban Dataset

Method TPR FDR FP/Fr. TP/Fr.
Sivaraman's Method [75] 91.7% 25.5% 0.39 1.14

Our Method w/o Lane Selection 99.0% 36.5% 0.57 0.99
Our Method w/ Lane Selection 99.0% 20.6% 0.25 0.99

Table3.5: Performance Evaluation of Di�erent Methods for Sunny Dataset

Method TPR FDR FP/Fr. TP/Fr.
Sivaraman's Method [75] 99.8% 8.5% 0.28 3.17

Our Method w/o Lane Selection 98.7% 25.9% 1.04 2.97
Our Method w/ Lane Selection 98.7% 4.8% 0.05 0.99

As can be seen in these tables proposed method performs an average accuracy

over 95% for di�erent conditions. Combining lane detection results with vehi-

cle detection results signi�cantly improved the performance by increasing true

positive rate in dense dataset which includes dense tra�c images. Furthermore,

it decreased the false positive rate in all cases by outperforming the benchmark

results in two datasets.

For the dense dataset due to dense tra�c conditions and huge number of vehi-

cles in the scene performance of the proposed system is a little lower than the

benchmark method as in Table 3.3. As indicated in [75], active learning pro-

cess of the benchmark method provides a high detection rate since it constructs
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a better classi�er by training it in an adaptive way. The main reason of this

small performance di�erence is that during lane change events target vehicle is

changing and system adapts to new target vehicle after a few frames. Therefore,

some false positives and missing detections occur during lane changes. The sec-

ond reason of the performance di�erence is that the proposed system is trained

using vehicle images taken by a better resolution camera. Hence, the training

set contains better image features while the test data does not. This situation

also decreases the e�ciency of the proposed system.

For Urban and Sunny dataset proposed method provides true positive rate at

level of 99% by outperforming the benchmark method at Sunny dataset as pre-

sented in Table 3.4 and 3.5. The outperforming result in Urban dataset is due

to the fast adaptability of tracking mechanism of the proposed system. For in-

stance, in the Urban dataset when the vehicle is passing on a speed bump, the

position of detected vehicle is changing vertically and proposed system can track

the vehicle without missing it.

According to main purpose of the overall system which is to detect aggressive

driving behaviour, lane selection for vehicle detection increases the performance

signi�cantly. This e�ect can be seen in all types of datasets by high true positive

rate and low false positive rate. Lane selection also decreases the computation

cost by limiting the search region which is a critical aspect for this application.

3.1.3 CANBUS Data Acquisition

Most of the new cars are equipped with a controller area network (CAN) bus

which is enables the communication between di�erent microchips and sensors

inside the vehicles. It is one of the protocols of On-Board Diagnostics (OBD)

which refers to the self diagnostics and reporting capability of a vehicle. OBD

became mandatory in US for the cars that are produced after year 1996 and in

Europe after year 2001 [4]. CAN bus has a standardized physical connector and

a protocol so that the vehicle data can be obtained using the CAN bus port for

analysis and diagnosing purposes.
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For the presented system, vehicle status signals such as vehicle speed and en-

gine speed is used as the sensor based information since these information is

associated with driving behaviour. As indicated in [59] abrupt acceleration and

deceleration can be an indication of aggressive driving. Moreover, the gas pedal

pressure is also a characteristic signal regarding aggressiveness [74] which results

in the change of engine speed. Therefore, vehicle and engine speed values are

used as features. In order to collect these data external sensors can be used [30].

However, instead of using external sensors, CAN bus system of the host vehicle

can provide this information with a proper adapter as shown in Fig.3.20. This

adapter converts CAN bus signals to be readable through a universal serial bus

(USB). As used in [44, 73] collecting the vehicle status signals from CAN bus

reduces the hardware complexity.

Figure 3.20: CAN bus adapter

In order to read vehicle and engine speed data from the CAN bus of the vehicle,

a proper adapter is used and related data is obtained with timestamps during

driving in order to synchronize the CAN bus data with visual data. Vehicle and

engine speed data are collected with a period of one second. Therefore, in order

to use this data combined with a higher frequency visual data (i.e 10fps frame

rate), it is up-sampled by a factor of 10.

Engine speed is a characteristic that depends on the engine and transmission

type of the vehicle. Therefore, for the reliable operation of the system the
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engine speed values that are collected for aggressiveness decision should either

be normalized or the same type of vehicle be used for data collection. During the

experiments of this study, which is described in Section 3.2, the data collection

is done by the same car which does not allow the problems that may occur due

to di�erent vehicle types.

3.1.4 Data Fusion

Aforementioned stages are performed to collect information about the behaviour

of the driver in the tra�c. These collected information is utilized by a feature

extraction and classi�cation stage in order to determine whether the related driv-

ing session is aggressive or not. For the characterization of the driving session,

four di�erent features are chosen considering the aggressive driving indicating

behaviours as explained in Section 3.1. These features are as follows:

• Lane Deviation

• Collision Time

• Vehicle Speed

• Engine Speed

The line detection results and lane position determination is used to construct

lane deviation feature which characterizes the abrupt lane changing and not fol-

lowing the lane properly. The information obtained from the CAN bus, vehicle

and engine speed, is directly used as the features since drivers who show ag-

gressive driving behaviour tend to drive with high and varying speed; therefore,

changing engine speed abruptly. The last feature which characterizes the tail-

gating and unsafe following distance behaviours is the collision time. Collision

time feature de�nes the duration to collision if the vehicle in front would stop

suddenly. Therefore, this feature utilizes both speed and target vehicle distance

information. Collision time is calculated with a unit of seconds according to

3.11 where dk is the distance of the target vehicle in meters and v′k is the vehicle

speed in m/s at that instant.
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CollisionT ime(k) =
dk
v′k

(3.11)

Histogram Modelling of Features

Considering all features that characterize the driving session, their variation

pattern in a certain amount of time is more informative for us rather than

the time series signal itself in terms of driver aggressiveness. For instance, the

frequency that a driver changes lanes is a more important information than the

lane position value at a speci�c time frame. Therefore, we represented time

series signals as density functions and modelled them using Gaussian mixture

model (GMM) which is a powerful technique for density representation [85].

Since we are handling the collected data by batch process, Gaussian modelling

provides an e�ective representation of driving data. The works presented in [30]

and [85] use Gaussian modelling of driving signals for making inferences about

driving pro�les and present e�ective results in terms of accuracy.

For our application, each feature is transformed into density functions (i.e his-

tograms). These histograms are �ltered with a median �lter in order to eliminate

noisy data. Then they are normalized so that all histograms represent the fre-

quency of the data in the same base. A sample representation of an aggressive

and smooth data can be seen in Fig. 3.21. As can be seen in Fig. 3.21 (a) and

(b), for a smooth driving vehicle speed and engine speed histograms are seen as

closer to impulse shape which shows that the variation is low during the driving

session. Another observation about vehicle and engine speed is that for aggres-

sive session their mean values are more than the smooth session. Similarly, for

the lane deviation histogram in Fig. 3.21 (c) smooth driving session is seen

to have less variance than the aggressive one which means that in aggressive

session the vehicle did more lateral movements compared to smooth session. In

Fig. 3.21 (d) collision time comparison of smooth and aggressive sessions are

presented and for aggressive session, mean of collision time is clearly less than

the mean of smooth session which shows that the aggressive vehicle followed the

vehicles in front with a closer distance.
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An aggressive or a smooth session does not necessarily contain all of the men-

tioned driving behaviours. For instance, lane deviation, vehicle and engine speed

features of a driving session may indicate the aggressive behaviour of the related

session while the car following pattern of the same session does not indicate

any clue for aggressiveness. Hence, fusion of di�erent driving data provides a

better representation of the aggressiveness of a driving session since it considers

di�erent indicators.

(a) (b)

(c) (d)

Figure 3.21: Examples of histogram comparison of aggressive and smooth driving
sessions for di�erent features; Red solid lines represent an aggressive driving
session while green dashed lines represent a smooth driving session in each graph.
Figure at (a) presents the vehicle speed distributions, �gure at (b) presents
the engine speed distributions, �gure at (c) presents the lane deviation value
distributions and (d) presents the collision time distributions

In order to model the obtained data e�ectively, the number of GMM components

are critical. In order to determine the optimal number of GMM components,

sample driving data is modelled using di�erent number of GMM components.

In Figure 3.22 GMM modelling of a sample data can be seen which is modelled

with 2 components and 4 components. 4 component GMM models vehicle speed
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data more accurately; however, 2 component GMM data provides a better rep-

resentation since it gives the general characteristics of the density function with

less number of Gaussians. Other obtained driving data also presents similar

characteristics as presented in Figure 3.22.

During the experiments it is also observed that density functions of driving sig-

nals have one dominant Gaussian component. Hence, histograms are modelled

using one GMM component which is denoted by a mean µ and a standard devi-

ation σ value which are enough for representing a Gaussian distribution. GMM

components of density function are estimated using expectation maximization

algorithm. Each driving feature provided one µ and one σ value. Then these

four mean and four standard deviation values are utilized to construct a feature

vector consisting eight dimensions. An SVM classi�er is employed [22] in order

to classify the feature vectors to determine whether a driving session involves

aggressive driving behaviour.

Support Vector Machines

Support Vector Machines [22] are one of the supervised classi�cation tools that

separate data points into two classes by a decision boundary. The objective

of SVM is to maximize the margin between samples of di�erent classes. The

general form of the decision boundary, which is a hyperplane, has the equation:

f(x) = wTx+ b = 0 (3.12)

In this equation x represents the training set of points, in other words vectors

which have a dimension of d; while w is a d dimension weight vector and b is a

real number. Each vector xi has a class category denoted by yi = ±1. Training
procedure of a support vector machine is to �nd the weight vector w and b that

are minimizing ||w|| subject to the constraint:

yif(xi) = 1 (3.13)
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(a)

(b)

Figure 3.22: Histogram modelling of sample vehicle speed data; The �gure pre-
sented in (a) represents modelling with 2 Gaussian components, and the �gure
presented in (b) represents modelling with 4 Gaussian components; The red lines
belong to the original data and green lines belong to the aggregation of Gaussian
components while blue lines represent the individual Gaussian components

This problem is valid for the case when the data is linearly separable. If the

dataset is not linearly separable the optimization process becomes:

min(||w||2 + C
∑
i

ξi) (3.14)

subject to the constraint:

yif(xi) ≥ 1− ξi (3.15)

where ξi is used to compensate the e�ect of misclassi�ed samples due to being
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linearly non-separable.

In some binary classi�cation problems a hyperplane may not be a proper sepa-

rating plane. These problems can be overcome by the help of a transformation

process which projects the feature vectors to a higher dimensional feature space.

By the help of this procedure non-linear classi�cation problems can be handled

by support vector machines.

For the driver aggressiveness classi�cation of feature vectors, an SVM classi�er

with a radial basis function kernel is employed. The reason why radial basis

function kernel is chosen is that there exist a non-linear relation between the

aggressiveness and related features. For instance, following a vehicle with a

close distance is expected to be an indication of driver aggressiveness. However,

a driver does not necessarily follow a vehicle in a very close distance in order

to be classi�ed as aggressive. Only speed and lane following performance of

a driver can indicate its aggressiveness independent from its vehicle following

performance. Therefore, the problem shows a non-linear nature. According to

Hsu et al. [35], although there does not exist a certain scheme about kernel

selection, radial basis function kernel works when the problem is non-linear and

the number of features are small.

SVM classi�cation for aggressiveness decision performed well in terms of appli-

cation reliability and quantitative results of the obtained features for di�erent

test cases are presented in Section 3.2.

3.2 Experimental Results

For the test purposes, a mobile set up is constructed in order to collect visual

and CAN bus data by vehicle. For visual data collection a 1.2 Ghz portable

mini computer (Figure 3.24) and a CCD camera (Figure 3.23) is used. By

this platform, video frames are captured at 10 fps with a resolution of 800x600

pixels. For CAN bus data collection the adapter in Figure 3.20 connected to

CAN bus port of the vehicle and data acquired through the serial port of the

mini computer. The data collected from CAN bus is obtained at each second.

54



Therefore, data is interpolated so that the sensor data exist for each frame. So

as to synchronize the visual and CAN bus data, all of the data is timestamped.

Figure 3.23: Camera to capture visual information

Figure 3.24: Mini computer used in data collection

Utilizing this set up, real tra�c data is collected in di�erent time of the day so

that di�erent tra�c conditions and environment conditions are included in the

dataset. The data set also includes di�erent road conditions with occlusions,

shadows and di�erent illumination. Whole dataset contains driving sessions of 6

di�erent drivers. During driving, 3 di�erent observers annotated the last 40 sec-

onds as aggressive or smooth. The majority voting of the observers are recorded
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as the ground truth of the related driving session. These three observers was cho-

sen from a pool of 15 people for di�erent so that a homogeneous aggressiveness

annotation can be obtained for the whole dataset.

Test 1: Detection Rate for Di�erent Driving Session Durations

One important parameter that e�ects the performance of the proposed method

is the duration of the driving session. In other words, how long multisensory

data is required in order to determine e�ciently whether that driving session is

aggressive? In order to answer this question the collected data is tested with

driving sessions with lengths 40, 80 and 120 seconds. In the work of Gonzalez

et al. [30], the driving sessions to evaluate the aggressiveness are determined

according to the route length. In other words, driving data of completion of

a speci�c route is utilized for the experiments. The route was 2.5 km's which

contains 5 × 500 meters. Since the speed limit at that route is 50 km/h data

duration of a segment corresponds to 36 seconds. Therefore, in this thesis study

the aggressiveness annotation is done for each 40 seconds and experiments are

conducted for 40, 80 and 120 seconds. From the whole collected data set, total 83

driving sessions including 41 aggressive and 42 smooth sessions having a duration

of 40 seconds; 51 driving sessions including 22 aggressive 29 smooth sessions

having a duration of 80 seconds; 22 driving sessions including 11 aggressive

11 smooth sessions having a duration of 120 seconds are tested according to

proposed algorithm.

Due to limited amount of data, k-fold cross validation technique is used for

performance assessment. According to this technique test samples are chosen

randomly among the samples, remaining samples are used for training the SVM

classi�er. This process is performed 10 times and at each run the classi�er

results are compared with the ground truth. For the 40 seconds long samples,

20 of them; for 80 seconds long samples, 15 of them and for 120 seconds long

samples, 9 of them are chosen randomly as test samples. In Table 3.7, 3.8 and

3.9 the related confusion matrices of the test results are given for 40, 80 and 120

seconds long samples respectively.
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According to the test results it is observed that the proposed method achieved

91.0% , 94.0% and 82.2% detection rate for 40, 80 and 120 seconds long samples

which are presented in Table 3.6. As can be inferred from these results 80 seconds

long driving sessions are more e�ciently represent the driving characteristics

while 40 seconds samples may not allocate enough data or 120 seconds samples

may contain confusing data. Although there does not exist so many driving

aggressiveness focused study in the literature, the 94.0% detection rate is a

successful rate when compared to the result presented in [30] as 92.0%.

In order to train and test the aggressiveness classi�er, the driving data is col-

lected and annotated for a speci�c duration. In other words, during driving

data collection, aggressiveness of related samples are determined after a speci�c

number of driving data is obtained. For training and test purposes this peri-

odic operation is utilized; however, for practical operation, once the classi�er is

trained, the collected samples can be utilized like a sliding window process by

utilizing and updating the used driving data. Therefore, a continuous aggres-

siveness detection can also be possible by this system.

Table3.6: Driver aggressiveness detection rate for di�erent driving session dura-
tions

Session Duration Detection Rate
40 seconds 91.0%
80 seconds 94.0%
120 seconds 82.2%

Table3.7: Confusion matrix of aggressiveness classi�cation for 40 seconds long
data

Predicted Class
Aggressive Smooth

Real Class
Aggressive 90 3
Smooth 15 92
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Table3.8: Confusion matrix of aggressiveness classi�cation for 80 seconds long
data

Predicted Class
Aggressive Smooth

Real Class
Aggressive 67 5
Smooth 4 74

Table3.9: Confusion matrix of aggressiveness classi�cation for 120 seconds long
data

Predicted Class
Aggressive Smooth

Real Class
Aggressive 33 7
Smooth 9 41

Test 2: Data Fusion by Dimension Reduction

In this test procedure, aggressiveness classi�cation of driving sessions is done

using the time series data. In other words, driving data is directly used for clas-

si�cation without applying histogram modelling. For this operation, 80 seconds

long driving data is chosen since it presents the best results in the �rst test

procedure. 4 di�erent driving data is concatenated to build up a 3200 dimen-

sion feature vector for each of the driving sessions. Since these vectors have a

big dimension, principle component analysis (PCA) is applied to these feature

vectors before classi�cation. Similar to the procedure in Test 1, 15 samples are

chosen randomly among 51 di�erent driving data in order to apply k-fold cross

validation technique. Since the reduced dimension after PCA is an important

parameter, test is conducted for di�erent feature vector dimensions. These re-

sults can be seen in Table 3.10. As can be seen in these results, the system

can reach to an aggressiveness detection rate up to 88.2% for feature vectors

which have dimension of 15. However, when these results are compared to the

results of histogram modelling, histogram modelling of time series data provides

a better detection rate.

Test 3: Aggressiveness Detection by Less Number of Features
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Table3.10: Aggressiveness detection rate for time series data representation of
driving sessions for feature vectors of di�erent dimensions

Dimensions after PCA Detection Rate
5 83.5%
10 85.8%
15 88.2%
20 82.9%
25 78.8%
30 78.2%
35 57.6%
40 52.3%
45 47.0%
50 45.3%

Table3.11: Aggressiveness detection rate for absence of one feature

Absent Feature Detection Rate
Lane Deviation 88.8%
Collision Time 92.3%
Vehicle Speed 84.2%
Engine Speed 91.1%

By this test the importance and weight of the di�erent features are investigated

in terms of aggressiveness detection. For this purpose, feature vectors of 80

seconds long driving data is utilized by choosing 3 of the di�erent features. In

other words, 6 dimension feature vectors are used by eliminating each feature

for each run. The k-fold cross validation procedure is applied as described in

Test 1. According to this test, aggressiveness detection results in the absence of

any feature are presented in Table 3.11.

As can be seen in Table 3.11, absence of vehicle speed feature signi�cantly de-

creases the detection rate. Similarly, lane deviation feature also has more e�ect

on aggressiveness decision compared to other features. Engine speed has a little

e�ect on driver aggressiveness decision while slightly decreasing the detection

rate by the overall result. Th least e�ective feature is seen as collision time

according to these results. Although in the literature vehicle following pattern

is presented to be a good indicator of aggressiveness, during practical implemen-

tation it is not as e�ective as other features. The main reason of this situation
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Table3.12: Aggressiveness detection by selected two features

Utilized Features Detection Rate
Lane Deviation &
Vehicle Speed

92.1%

Collision Time &
Engine Speed

83.5%

is that the collision time parameter depends on the vehicle detection. When

there does not exist a vehicle in the scene, e�ciency of collision time parameter

decreases. Since the used dataset has some video sequences which contain the

absence of vehicles, collision time parameter provides the less e�ective results.

The classi�er is run by choosing two most e�ective and two least e�ective features

in order to observe the e�ect of fusing di�erent features. Therefore, only 4

dimension feature vectors are used for test purposes. For the �rst run only lane

deviation and vehicle speed is used while for the second run collision time and

engine speed is used. The results can be seen in Table 3.12.

For the run that vehicle speed and lane deviation is used, detection performance

is found as 92.1% which is almost same as the case where only collision time is

discarded. This shows that all the features does not have a cumulative e�ect.

The positive e�ect of less important features saturates when the number of

features are increased. For the case where only engine speed and collision time

is used the system achieves a detection rate of 83.5% which means that they

are e�ective for indicating aggressiveness but they are not enough for an good

representation.

Test 4: Data Fusion Results on Ground Truth Features

Although the presented feature extraction methods are proven to be reliable and

comparable with the methods in the literature, the performance of lane devia-

tion detection and collision time estimation modules will e�ect the result of the

aggressiveness classi�cation. Nevertheless, the histogram representation of the

features provides robustness to the process and reduces the deteriorating e�ect

of missing detections in line detection and vehicle detection stages. In Figure
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3.25 histogram representation of lane deviation and collision time values of an

aggressive and a smooth driving session. Mean and standard deviation values of

these histograms are presented in Table 3.13 and 3.14 with mean absolute error

values between ground truth and measured time series signals. The data pre-

sented in Table 3.13 belong to the sample aggressive session whose histogram is

given in Figure 3.25 while the data presented in Table 3.14 belong to the smooth

session. As can be seen in these tables the e�ect of errors in the detection stage

can be eliminated signi�cantly utilizing the histogram representation.

(a) (b)

(c) (d)

Figure 3.25: Comparison of histograms obtained by ground truth values and
measured values, The �gure (a) belongs to lane deviation values of an aggressive
session, the �gure (b) presents the histograms of lane deviation of a smooth driv-
ing session; the �gure (c) belongs to collision time distribution of an aggressive
driving session and the �gure (d) presents the histograms of collision time of a
smooth driving
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Table3.13: Comparison of ground truth and measured features of the sample
aggressive driving session

µlane σlane µcollision σcollision MAElane MAEcollision
Measured 14.88 7.57 2.01 0.81

3.23 0.58
Ground Truth 14.07 8.01 1.93 0.89

Table3.14: Comparison of ground truth and measured features of the sample
smooth driving session

µlane σlane µcollision σcollision MAElane MAEcollision
Measured 9.64 10.73 1.47 0.52

6.78 0.46
Ground Truth 6.70 14.38 1.41 0.48

Test 5: Aggressiveness detection on 100Car [60] Dataset Proposed

aggressiveness detection method also tested with real world data from 100 Car

dataset [60]. This dataset is the output of a naturalistic driving study and

collected via instrumented vehicles in a large scale. In the publicly available part

of this dataset, some driving sessions which are approximately 30 seconds long

an they are given with narratives which explain the driving events during this

driving session. We investigated these narratives and selected the ones which

can be interpreted as an aggressiveness involvement and which can not. For

instance, some driving samples are chosen as aggressive which contains events

such as sharp lane changes, sudden brakes etc. According to narratives, the

ones which include aggressive and sharp actions are annotated as "aggressive"

and the ones which includes stable actions as "smooth". We selected total 76

driving sessions according to narratives, tagged 40 of them as aggressive and 53

of them as smooth. In Table 3.16 some sample narratives of 100car data and

their interpretation is presented.

Table3.15: Confusion matrix of aggressiveness classi�cation for 100 Car data

Predicted Class
Aggressive Smooth

Real Class
Aggressive 118 12
Smooth 8 152
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Table3.16: Sample driving sessions with their narratives and aggressiveness in-
terpretation

Sample
Num-
ber

Narrative of the Session Aggressiveness

8354 Subject vehicle is driving relatively fast in
the left lane as tra�c is merging into right
lane. Lead vehicle is decelerating withright
turn signal on, preparing to merge into right
lane, and subject vehicle must brake to avoid
hitting lead vehicle in the rear. Subject vehi-
cle is trying to get ahead of right lane tra�c
before merging.

Aggressive

8392 Subject vehicle is travelling in the rain and
almost misses the intended exit. Subject ve-
hicle enters the exit ramp at the last minute,
nearly side swiping a vehicle already on
the ramp beside it. Subject driver steered
slightly left to avoid the crash and other ve-
hicle went ahead on the exit ramp.

Aggressive

8420 Subject vehicle is preparing to merge onto
an exit ramp and a vehicle from the adjacent
left lane realizes that they need to get onto
the exit ramp also and the lead vehicle sud-
denly crosses the subject vehicle's left lane
line into the subject vehicle's lane.Subject
brakes hard to avoid hitting the lead vehi-
cle in the rear.

Aggressive

8374 Subject driver is talking/singing to herself
and stops behind a line of cars at a light.
A following vehicle approaches rapidly and
almost hits subject vehicle in the rear.

Smooth

8471 There are two left turn lanes with the subject
driver in the far left lane. Vehicle 2 in the left
turn lane to the right of the subject's vehicle
starts to turn left and cuts the subject driver
o�.

Smooth

9059 Both the subject driver and lead vehicle are
decelerating when the subject driver glances
out his right side window. When the subject
driver glances, the lead vehicle comes to a
stop in front of him.

Smooth

63



The vehicle speed, lane deviation and collision time data is directly present

at 100 Car dataset. However, instead of engine speed gas pedal position data

is used due to the direct correlation between them. Using these information,

aforementioned feature extraction procedure is applied to the data. In order to

validate the reliability of the 100 Car data k-fold cross validation technique is

utilized. In each run 29 of the 93 driving session samples are chosen randomly

to train an SVM classi�er and this procedure is repeated 10 times. Classi�er

achieved a correct detection at an average rate of 93.1%. Confusion matrix of

this process can be seen in Table 3.15.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Summary

In this thesis work a driver aggressiveness detection system which is creating

decision in short time quanta is presented. The proposed system utilizes multi-

sensory information to conceive feature vectors and using these feature vectors

classi�es the driving session as aggressive or smooth. In order to collect driving

information, visual and sensor data are obtained and these data are processed

using certain computer vision techniques in order to detect road lines an vehicles.

Before aggressiveness classi�cation, processed data is modelled and converted to

feature vectors in order to represent the aggressiveness of the related driving

session. The aggressiveness classi�er is trained utilizing the feature vectors and

trained classi�er decides new driving session whether involves aggressive driving

or not.

Available methods in the literature for aggressive driving detection is presented

in this thesis work as well as the alternative methods for road line detection

and vehicle detection. Modelling of the driving data is also presented as a sub

section. For all sub modules and overall system some experiments are conducted

to verify the reliability of the modules individually and the system as a whole.

According to the overall system experiments, the proposed system achieved a

high rate of driver aggressiveness detection.
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4.2 Conclusion

The overall system tests showed that the presented multisensory approach is

an e�ective solution for aggressive driving behaviour detection. The presented

method satis�es the real time working capability criteria with all its modules

by performing 94.0% driver aggressiveness detection rate for 80 seconds driving

data. The system takes di�erent driving behaviours, which are associated with

aggressiveness, into account utilizing both visual and sensor data while other

presented methods depend on a few modalities as presented in Section 2. Using

various features and modalities results in high rate of detection performance.

Duration of the driving sessions are examined during the experiments. When

the duration of the driving session is less than the optimum, enough number

of samples may not be accumulated to build up histograms. Similarly, when

the duration of the driving session is too long, driving session may contain both

aggressive and smooth patterns in the same time. Therefore, a longer driving

session may also be ine�ective for determining aggressiveness. According to the

experimental results, it is observed that 80 second samples performed better for

aggressiveness detection compared to 40 and 120 second samples.

During the experiments each module is tested and their reliability is veri�ed

for this application. They are designed and utilized to provide robust and fast

solutions. The individual modules performed good results compared to bench-

mark methods in the literature. The little amount of error in di�erent modules

are compensated by histogram representation and Gaussian modelling since the

e�ect of few erroneous samples is low for the overall modelling. This e�ect is

veri�ed by testing the system with ground truth measurements and comparing

the error rate of histograms. As the result of these tests histogram characteris-

tics do not change signi�cantly which shows that the error during the detection

modules is compensated.
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4.3 Future Work

As future work, the proposed system will be tested with more data to observe

its performance with di�erent classi�ers. The system will be improved in or-

der to provide a rate for driver aggressiveness in a granular approach. In other

words, the measurement of aggressiveness level will be provided quantitatively.

Another future work that will be considered is that di�erent data modelling ap-

proaches will be questioned. For instance, GMM weights of dominant Gaussians

in the data modelling stage will be utilized to obtain the aggressiveness result.

Moreover, the system will be improved with exploiting a wider range of di�erent

features. Combining available features with features from sensor platforms and

some data such as session duration, may improve the modelling of the driver

behaviour more accurately.
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