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ABSTRACT 

 

 

DEVELOPING MATHEMATICAL PRACTICES IN A SOCIAL CONTEXT: 

A HYPOTHETICAL LEARNING TRAJECTORY TO SUPPORT 
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MIDDLE SCHOOL MATHEMATICS TEACHERS’ LEARNING OF 

TRIANGLES 
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Ph.D., Department of Elementary Education 

     Supervisor      : Assist. Prof. Dr. Didem Akyüz 

 

January 2016, 361 pages 

 

 

 

 

The purpose of the current study was to document preservice middle 

school mathematics teachers’ (PMSMT) classroom mathematical practices 

emerged through six-week instructional sequence about triangles. In this 

respect, the research question of “What are the classroom mathematical 

practices that are developed within design research environment using 

problem-based learning for teaching triangles to preservice middle school 

mathematics teachers?” guided the present study. In order to answer this 

research question and document the mathematical practices, a hypothetical 

learning trajectory and instructional sequence lasting six weeks related to 

triangles were formed. The hypothetical learning trajectory for the instructional 

sequence was performed for PMSMT to document their classroom 

mathematical practices about triangles.   
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The classroom mathematical practices were analyzed benefiting from 

collective learning activity of whole class discussions including individual 

learning and social aspects of the environment by using emergent perspective. 

Focusing on taken-as-shared knowledge identified by Toulmin’s argumentation 

model, the classroom mathematical practices were extracted. The classroom 

mathematical practices encouraging PMSMT’s learning of triangles in the 

present study were: PMSMT’s reasoning on (a) the formation of a triangle, (b) 

the elements of triangles and their properties, and (c) congruence and 

similarity. Based on these mathematical practice, PMSMT improved their 

understanding of the concept triangles benefiting from other geometry concepts 

such as transformation geometry, geometric constructions and argumentations. 

In this respect, they examined the properties and elements of triangles and 

related properties by developing their conceptual understanding.    

 

 

 

 

Keywords: Design-based research, Classroom mathematical practice, 

Triangles, Preservice middle school mathematics teachers. 
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GELİŞTİRİLMESİ: ORTAOKUL MATEMATİK ÖĞRETMENİ 
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VARSAYIMA DAYALI ÖĞRENME ROTASI 
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Bu çalışmanın amacı, geometrik kavramlardan biri olan üçgenler 

konusuyla ilgili tasarlanmış olan altı haftalık öğretim sürecinde oluşan 

matematiksel uygulamaları belirlemektir. Bu açıdan, çalışmayı “Ortaokul 

matematik öğretmeni adaylarının üçgenleri öğrenmeleriyle ilgili problem 

tabanlı öğrenme stratejisine göre hazırlanmış tasarım tabanlı araştırma 

ortamında geliştirdikleri sınıf içi matematiksel uygulamaları nelerdir?” 

araştırma problemi yönlendirmektedir. Bu bağlamda matematiksel 

uygulamaları belirlemek için üçgenler konusuyla ilgili varsayıma dayalı 

öğrenme rotası oluşturulmuştur. Altı haftalık bir öğretim dizisi sürecinde 

kullanılmak ve bu süreci yürütmek amacıyla varsayıma dayalı öğrenme rotası 

oluşturulmuştur. Varsayıma dayalı öğrenme rotası tasarlanmıştır. Tasarlanan 

varsayıma dayalı öğrenme rotası tamamlanıp gerekli düzenlemeler yapıldıktan 
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sonra 23 ortaokul matematik öğretmeni adayından oluşan bir gruba 

katılımcıların matematiksel uygulamalarını belirlemek amacıyla uygulanmıştır. 

Bireysel öğrenmelerin ve sosyal öğrenme ortamlarının içerildiği toplu 

öğrenme ortamında gerçekleşen toplu sınıf tartışmaları incelenerek sınıf içi 

matematiksel uygulamalar belirlenmiştir. Sınıf içi matematiksel uygulamalar 

Toulmin’ın bilimsel tartışma modeli kullanılarak paylaşılarak-alınan bilgilere 

odaklanılması sonucunda belirlenmiştir. Bu çalışmada belirlenen ortaokul 

matematik öğretmeni adaylarının üçgenleri öğrenmelerini destekleyen sınıf içi 

matematiksel uygulamalar şunlardır; üçgenlerin oluşumunun, üçgenlerin 

elemanlarının ve bunların özelliklerinin ve eşlik ve benzerliğin düşünülmesidir. 

Bu matematiksel uygulamalara göre, katılımcıların üçgenler konusuyla ilgili 

öğrenme ve anlamalarını dönüşüm geometrisi gibi diğer geometik 

kavramlardan, geometrik şekillerin inşasından ve argümantasyonlardan 

faydalanarak geliştirdikleri belirtilebilir. Bu açıdan, onların üçgenlerin 

elemanlarını ve özelliklerini inceleyerek kavramsal anlamalarını geliştirdikleri 

belirtilebilir.    

 

 

Anahtar Kelimeler: Tasarım tabanlı araştırma, Sınıf içi matematiksel 

uygulamalar, Üçgenler, Ortaokul matematik öğretmeni adayları. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

If geometry is not taught and learned effectively, the students and 

teachers tend to memorize the concepts in geometry rather than to understand 

them. Furthermore, teachers prefer teaching geometry topics by emphasizing 

rote memorization rather than to developing conceptual understanding and 

gradually moving students toward developing formal deductive reasoning 

(Fuys, Geddes, & Tischler, 1988). 

The mere memorization of a demonstration in geometry has 

about the same education value as the memorization of a page from the 

city directory. And yet it must be admitted that a very large number of 

our pupils do study mathematics in just this way. There can be no doubt 

that the fault lies with the teaching. (Young, 1925, pp. 4-5). 

The students taking education in this way develop procedural 

understanding and poor performance in geometry. This situation can result 

from the teachers having little geometry knowledge since the teachers 

especially middle grade teachers typically have very little experience and 

knowledge of geometry (Clements, 2003; Fuys, Geddes, & Tischler, 1988; 

Hershkowitz, Bruckheimer, & Vinner, 1987; Stipek, 1998). Also, it can be 

stated that the desired learning environments can be provided only by 

knowledgeable teachers (Putnam, Heaton, Prawat & Remillard, 1992; Van der 

Sandt & Nieuwoudt, 2003). Also, the roles and importance of the 

knowledgeable teachers can be described effectively by having content 

knowledge of mathematics for teaching needed for the teachers to perform 

their professions of teaching mathematics effectively. In that respect, the 

knowledge needed for the design of this kind of environments can be explained 
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in the literature in different ways by different researchers such as Shulman 

(1986), Ma (1999) and Ball, Hill and Bass (2005). First, Shulman suggested the 

content knowledge is needed for teaching. Also, this knowledge forms the 

foundation of the mathematical knowledge for teaching proposed by Ball, 

Sleep, Boerst and Bass (2009). In addition, Ma (1999) proposed the profound 

understanding of fundamental mathematics as a mathematical understanding of 

a teacher which is “deep, broad, and thorough” (p. 120). Lastly, Ball, Hill and 

Bass (2005) suggested the substantive knowledge of mathematics and 

knowledge of mathematics as the foundations of mathematical knowledge for 

teaching. The mathematical knowledge for teaching is the knowledge 

necessitated to perform the responsibility and work of teaching mathematics 

(Hill, Ball & Schilling, 2008). Substantive knowledge of mathematics is 

comprised of knowledge of mathematical principles and their meanings and 

applications, procedural and conceptual knowledge, and connections between 

them. Also, knowledge of mathematics is connected with knowing 

mathematics and doing mathematics, applying mathematical procedures and 

possessing mathematical knowledge (Ball, Hill & Bass, 2005). 

In this respect, it is necessary that the mathematics teachers have good 

knowledge and understanding of geometry for the existence of effective 

geometry instructions in the classrooms. The teachers are expected to teach 

geometry in the secondary school classes when they have little knowledge of 

geometry so they encounter difficulties in geometry lessons (Jones, 2000). This 

problem can be solved if middle school teachers become well prepared to teach 

geometry in preservice years (NCTM, 2006). Also, the reason of the situation 

that the teachers are not equipped with necessary geometry knowledge is 

related to teacher education. In this respect, it is essential to educate 

mathematics teachers providing them opportunities in which they obtain rich 

and deep geometry knowledge. Moreover, subject matter knowledge 

representing necessary understanding of mathematical concepts have 

connection with teachers’ teaching performances in their classes by relating to 
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other types of knowledge of Mathematical Knowledge for Teaching (MKT) of 

Ball, Thames and Phelps (2008). The teachers having deep subject matter 

knowledge can analyze their students’ thinking and organize instructional 

sequence by making appropriate instructional decisions in their classroom (Hill 

& Ball, 2004). The situations in which the mathematics teachers having deep 

and rich subject matter knowledge perform teaching mathematics in their 

classrooms can be provided in their teacher education programs. In other 

words, they are supported by rich and deep subject matter knowledge through 

their preservice stage in order to be effective mathematics teachers in the future 

(Chapman, 2007). 

Design based research is a useful way to provide the opportunities 

facilitating the development of preservice mathematics teachers’ mathematical 

knowledge for teaching including subject matter knowledge. In teacher 

education programs, the instructors can help preservice mathematics teachers 

by designing hypothetical learning trajectories and conducting them in 

instructional sequences effectively. In this respect, it is crucial to identify the 

geometrical concepts, the tasks and tools to teach the concepts. In this respect, 

it is necessary to provide learners experiences and tasks to learn geometry by 

improving their geometric thinking and broadening their views of geometry 

content (Han, 2007; Henningsen & Stein, 1997). The geometrical tasks can be 

designed based on the properties of van Hiele geometric thinking levels since 

the geometric thinking levels of the PMSMT can be determined and their 

potential about geometric reasoning can be mad. Also, necessary predictions 

about thinking and actions of the PMSMT can be produced. Inservice and 

preservice elementary school mathematics teachers were expected to at least 

attain the first three van Hiele geometric thinking levels (Aydin & Halat, 2009; 

Pandiscio & Knight, 2010). Based on this knowledge, the hypothetical learning 

trajectory was prepared based on the properties of these levels and problem 

situations in the activity sheets were formed. 
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In the study, the geometric constructions by compass and straight edge 

were used since they are good at helping teachers attain good understanding of 

geometry about the rules and theorems. They provide preservice teachers 

opportunities to investigate the reasons of theorems, rules and topics in 

geometry since they need not only comprehend that something is so; s/he must 

further understand (Shulman, 1986). The geometric constructions provide a 

non-typical way for the solution of geometry problems with two instruments: 

the straight edge and compass. They are beneficial to investigate the work of 

Greek mathematicians such as Euclid and Pythagoras taking important role in 

mathematics curricula of all grade levels (Sanders, 1998). The geometric 

constructions are effective since they do not only provide the opportunities 

about constructing geometric shapes but also the skills of using the tools of the 

compass and the ruler (Cherowitzo, 2006). In this respect, it can be said that 

the geometric constructions improve physical and cognitive mathematical 

skills. In the process of constructing geometric shapes by compass and straight 

edge, the students examine how to construct the geometric shapes analyzing 

and understanding their properties (Erduran & Yeşildere, 2010; Napitupulu, 

2001; Hoffer, 1981). Hence, it was necessary to incorporate geometric 

constructions to the present study. These constructions taking place in the 

hypothetical learning trajectory of the present study also supported the 

understanding of geometry by using conceptual understanding, problem 

solving, applications and communication of ideas.      

The geometrical tasks taking place in the hypothetical learning 

trajectories and helping teachers investigating reasons of the topics of geometry 

may be more beneficial when they are used with the teachers’ mathematical 

discourses such as argumentations illustrated in collective learning 

environment. Argumentation can increase the communication which is 

essential in attaining good understanding of geometry since the research show 

that teachers have deficiency in their understanding of geometry as well as in 

their skills to communicate geometry (Hershkowitz, 1989; Owens & Outhred, 
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2006; Sundberg & Goodman, 2005). Argumentation can provide these benefits 

since it takes role in interactive dialogue of two or more people reasoning 

together. It is also important to make scientific claims since the people 

obtained the idea after evaluating alternatives and weighing evidences (Voss & 

Van Dyke, 2001). Also, argumentations encourage conceptual understanding, 

problem solving, criticizing and justifying the ideas (Abi-El-Mona & Abd-El-

Khalick, 2011; Duschl & Osborne, 2002; Jim´enez-Aleixandre et al., 2000; 

Jonassen & Kim, 2010; Osborne, Erduran, & Simon, 2004; Zembal-Saul, 

2005). In this respect, it is beneficial to use argumentation in geometry, 

especially in mathematical tasks such as construction activities since the 

teachers having good understanding of geometry tend to have qualified 

scientific thinking, articulation of their ideas, and development of clearly 

structured arguments. Furthermore, argumentation promotes conceptual 

understanding and learning of the content effectively and deeply (Driver, 

Newton & Osborne, 2000) with the skills of communication and critical 

reasoning as two significant features of argumentation. Moreover, the 

construction steps facilitate problem solving, geometrical justifications and 

proofs. These steps necessitate the justifications and forming proofs for the 

process of construction of the geometric shapes and convincing others about 

the truth of them by examining the shape in a challenge situation (Erduran & 

Yeşildere, 2010; Smart, 1998).  

The instructional sequences designed for particular geometrical 

concepts help the students learn and make reasoning about the geometrical 

concept effectively. When these instructions are supported by mathematical 

discourses, they can improve learning and understanding of the concepts by 

analyzing, discussing and convincing others about their ideas. In this respect, 

argumentations can enhance their learning (Lampert, 1990). Also, by 

discussing and transferring the obtained knowledge in different context, 

mathematical practices can be used to represent their learning since classroom 

mathematical practices represent taken-as-shared ways of reasoning and 
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arguing mathematically (Cobb, Gravemeijer, Yackel, McClain & Whitenack, 

1997). In this respect, classroom mathematical practices formed by using 

geometric constructions about a particular geometric concept of triangles were 

determined in order to determine preservice mathematics teachers’ learning 

and understanding in the present study. Triangles as a geometrical concept was 

selected to help preservice middle school teachers attain deep and rich subject 

matter knowledge about it. Triangle is an important geometric concept since it 

is commonly used geometric shape for producing real life buildings and 

constructing and examining the properties of other geometric shapes (Fey, 

1982). However, triangles have importance in teaching geometry, and learners 

from all grade levels have difficulty in learning triangles (Damarin, 1981; 

Vinner & Hershkowitz, 1980). Therefore, it is necessary to examine and 

develop the preservice middle school mathematics teachers’ understanding and 

reasoning of the geometry concept of triangles. In other words, in spite of the 

value of geometry in biological and physical world (Fey, 1982), some learners 

do not achieve complete understanding of the concept of triangle (Vinner & 

Hershkowitz, 1980). Moreover, it is fundamental concept as a prerequisite for 

other geometrical shapes, higher levels of geometry concepts and other 

mathematical learning areas such as algebra (Athanasopoulou, 2008; Kellogg, 

2010). Therefore, it is important for teachers to acquire necessary knowledge 

about triangles in teacher training programs. In this respect, it is crucial to 

provide mathematics teachers opportunities to learn and understand triangles in 

their preservice years.  

Although there have been many research into preservice middle school 

mathematics teachers’ development and understanding of geometry concepts, 

there have been necessities to investigate preservice teachers’ development and 

understanding of the specific geometry concepts, especially in an attempt to 

increase their understanding of triangle concept. In light of the explanations 

above, it seemed worthwhile to explore their argumentations in geometrical 

tasks that might contribute to the development of their geometry knowledge, 
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understanding of triangles and classroom mathematical practices. In this 

respect, the current study examined the communication formed in the 

classroom including the process of argumentation and collective learning 

environment related to designed mathematical tasks and tools and imagery. 

This was provided by performing instructional sequence as well as examining 

teaching and learning as it occurred in the classroom. In a collective learning 

environment, preservice middle school mathematics teachers’ understanding 

and reasoning of triangles were investigated. Moreover, their classroom 

mathematical discourses were analyzed in order to illustrate their geometrical 

understanding and reasoning of triangles through identifying the classroom 

mathematical practices. PMSMT’s understanding and learning of triangles 

were examined through mathematical practices since they provided 

information about individual and social processes, since mathematical practices 

are formed in a social learning environment including individual and social 

aspects of learning; neither occurring without the other and nor dominating to 

each other (Cobb et al., 2011). In this way, PMSMT’s learning was 

investigated in a social environment designed by problem-based learning 

including argumentations and geometric constructions by considering the 

effects of individuals’ learning on and their contributions to the collective 

learning environment. 

With this design-based research, a lesson sequence was performed 

based on a designed hypothetical learning trajectory on triangles. Moreover, 

supposing this designed instructional sequence helped the participants develop 

their geometric thinking and knowledge about triangles, pretest and posttest 

were conducted before and after a six-week instructional sequence. Therefore, 

the effect of hypothetical learning trajectory and instructional sequence 

including the emergence of classroom mathematical practices about triangles 

was examined. In this respect, the answer of the research question for “What 

are the classroom mathematical practices emerging in design-based research 

environment designed by problem-based learning for teaching triangles to 
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preservice middle school mathematics teachers?” was examined through the 

present study. 

 

1.1 Significance of the Study 

 

It is important for the teachers to have in-depth knowledge about the 

concepts of geometry. Also, it is claimed that both pre and inservice teachers 

have inadequate geometry knowledge (Clements, 2003; Stipek, 1998). 

Therefore, it is vital for preservice mathematics teachers to attain necessary 

geometry knowledge to teach geometry in their classrooms in the future. When 

the system of teacher education programs is thought, the preservice years of 

teachers are important since they are the places for preparing future teachers 

and dominating them with necessary knowledge needed for their professions. 

These programs provide opportunities for future teachers to learn mathematical 

knowledge needed for their profession. Many researchers suggest different 

ideas to improve this situation. Some of them insist on increasing the number 

of the courses emphasizing more mathematical content to use their teaching in 

the future (Goldhaber & Brewer, 2000). On the other hand, Suzuka, Sleep, 

Ball, Bass, Lewis and Thames (2009) explain that “teaching is mathematically 

demanding work. The requisite knowledge and skills are not necessarily picked 

up on the job nor are they typically learned in college courses or used in other 

professions” (p. 7).  Therefore, it can be useful to improve the quality of 

teacher preparation programs in mathematics by providing ideas that they 

construct through effective learning tasks to develop their mathematical 

knowledge for teaching and especially subject matter knowledge (Ball, Hill & 

Bass, 2005). 

The preservice mathematics teachers need to be educated to obtain 

necessary knowledge by understanding their reasons and constructing them 

rather than memorizing them (Chapman, 2007). This can be achieved by 
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providing them opportunities in instructional sequences. When these sequences 

include mathematical discourse, the learning can become more meaningful. 

Research show that classroom discourse practices especially including 

argumentations have effect on  learning and conceptual understanding 

(Jonassen & Kim, 2010; McNeal & Simon, 2000; Yackel & Cobb, 1996) since 

classroom discourses include mathematical talks occurring in the classrooms 

and the interactions among students, teachers about the subject matter. Also, 

the student learning is affected by the classroom discourse, and negotiating the 

norms based on argumentation (Cobb, 2002). Argumentation can be defined as 

a social phenomenon observed while cooperating individuals are trying to 

adjust their intentions and interpretations in presenting their actions verbally 

(Krummheuer, 1995). Mathematical argumentation improves the abilities of 

the articulation of mathematical thinking, justification and explanation of the 

reasoning (Yackel & Cobb, 1996), communication and critical reasoning 

(Krummheuer, 1995).  

In order to help the preservice middle school mathematics teachers 

attain these skills, it is aimed to design lessons and produce instructional 

sequences through ongoing analysis of classroom activity and using the results 

of these analysis for instructional planning and decision making. Design 

experiment research “can help create and extend knowledge about developing, 

enacting, and sustaining innovative learning environments” (Cobb, et al., 2003, 

p. 5), since it is constructed based on student cognition and instructional 

materials. Design experiments are pragmatic and theoretical with the function 

of the design and the resulting collective learning environment (Cobb, et al., 

2003). It is beneficial since it connects theory and practice so that it can solve 

the problems that the theories have lack of practical implications (Roth, 2011). 

In the process of design-based research, the design produced based on the 

theories is dynamic and it tends to change with respect to practical issues on 

the contexts. In other words, the instructions are based on theoretical and 

practical considerations by being organized in a developmental process (Cobb 
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et al., 2003). In this respect, it can be said that this dynamic lesson design 

process can provide beneficial learning environment for preservice 

mathematics teachers to attain necessary knowledge and skills (Simon, 2000). 

Also, they can attain necessary understanding and skills about how and when 

to use the mathematical content knowledge when they are taught extracting 

their ideas by using their learning and teacher preparation programs. Moreover, 

they can learn this in a flexible way because of the dynamic nature of the 

design experiment (Cobb et al., 2003; Wheeldon, 2008). Therefore, the design 

experiment for this study was produced considering mathematical discourse.  

The hypothetical learning trajectory was designed with respect to the 

concept of triangles. The concept of triangles was chosen because it is one of 

the fundamental concept for geometry (Fey, 1982). All of the students are 

expected to attain deep knowledge about it since other concepts in the 

geometry are learned by using it. Moreover, the concept of triangles is a 

difficult concept and the students have difficulties about it (Fey, 1982). Also, 

because of the nature of the mathematics education, the other concepts of 

geometry are constructed by using the concepts of triangles. Therefore, the 

instructional sequence was designed and performed about this critical concept 

to provide preservice middle school mathematics teachers attain necessary 

subject matter knowledge about it.   

Although the instructions are made with an accurate understanding of 

the goals of the lessons, it is possible to face with the problems such as 

determining the specific practices used to implement the lessons (Hufferd-

Ackles, Fuson & Sherin, 2004). In this respect, this study aimed to provide 

information to the literature on the problems by determining and analyzing the 

planning and classroom practices designed with the concept of triangles in a 

collective learning environment. Moreover, this study provided information 

about the solution of the problem related to this geometrical concept for 

preservice middle school mathematics teachers to attain necessary geometrical 

knowledge through the mathematical practices by argumentations.  
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1.2 Definition of Important Terms 

 

Mathematical practices are taken-as-shared ways of reasoning and 

arguing mathematically in in a social learning environment. Taken-as-shared 

way illustrates an environment and process including the discussions about 

mathematical problems and ideas by mathematical symbolization and notations 

(Cobb, Gravemeijer, Yackel, McClain & Whitenack, 1997). 

Argumentation is a kind of mathematical discourse referring to the ways 

of mathematical justifications formed and interpreted by the students and used 

in the communications (Lampert, 1990). 

Geometrical Constructions are systematic steps used to produce 

geometric entities by producing intended geometric shapes following particular 

basic and complex steps of sequence by compass and straight edge (Demiray & 

Çapa-Aydın, 2015; Djoric & Janicic, 2004).  

Design-based research refers to “a series of approaches, with the intent 

of producing new theories, artifacts, and practices that account for and 

potentially impact learning and teaching in naturalistic settings” (Barab & 

Squire, 2004, p. 2). 

Hypothetical Learning Trajectory represents the ways of reasoning in 

learning context and includes teachers’ predictions about the progress in 

teaching sequence (Smith et al., 2006).  
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CHAPTER 2 

 

 

2. THE LITERATURE REVIEW 

  

 

In this chapter, the mathematical knowledge for teaching is explained in 

order to understand the mathematical practices on the geometrical concept of 

triangles as the main purpose of the study. Then, the philosophies; 

constructivism and social constructivism that the lessons and the study have 

been designed based on triangles are discussed. Also, the strategy of problem-

based learning and van Hiele geometric thinking theory are explained since 

they have formed the basis of instructional sequence and Hypothetical 

Learning Trajectory (HLT) of the current study. HLT as a beneficial concept 

used to create instructional sequence is described. Then, geometrical 

constructions and proof as the tools used in the instructional sequence are 

explained. At the end, triangles as the subject of the lessons are stated. In this 

way, theoretical framework of the study is formed.  

 

2.1 Mathematical Knowledge for Teaching 

 

 In order to educate teachers effectively and to provide their 

improvement, many research have been conducted. Some of them have focused 

on types of knowledge needed for teachers to teach mathematics effectively 

(Ball, Hill, & Bass, 2005; Ma, 1999; NCTM, 2000). Through these research, 

Ball, Thames, and Phelps (2008) identified the concept of Mathematical 

Knowledge for Teaching (MKT) focusing on teaching rather than teachers. 

MKT can be defined as “the mathematical knowledge needed to perform the 
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recurrent tasks of teaching mathematics to students” (p. 399).  Through this 

definition, MKT explains the nature of mathematics needed for teachers’ 

professions. In other words, it includes different types of knowledge essential 

for the teachers while performing their responsibilities in their professions. 

MKT focuses on the mathematical knowledge and the usage of it in teaching 

(Ball, Bass & Hill, 2004; Ball, Hill & Bass, 2005).   

In the literature, there have been different categorization systems for the 

types of knowledge needed for teachers to teach students. Initially, Shulman 

(1986) separated these knowledge domains into different groups. Then, 

different categorization systems and modifications have been made on his 

knowledge system. Hill, Ball & Schilling (2008) have changed and made 

modifications on the Shulman’s (1986) categorization system.  In their 

categorization. MKT is composed of four categories under two main titles; 

pedagogical content knowledge and subject matter knowledge. 

Pedagogical content knowledge focuses on pedagogy and content based 

on teaching and learning (Ball, Hill & Bass, 2005) with two subtitles; 

knowledge of content and students and knowledge of content and teaching. 

Knowledge of content and students examines subject matter knowledge based 

on knowledge about teaching (Ball, Hill & Bass, 2005; Hill, Schilling & Ball, 

2004). In this category, knowledge about mathematical concepts needed while 

teaching on the perspectives of the students is focused on. In this respect, this 

type of knowledge focuses on tasks or representations formed to understand 

and model mathematical concepts, designing instructional sequence to teach 

the concept and making guidance for the students to help them improve their 

discussions and understanding (Ball, Hill & Bass, 2005). Moreover, knowledge 

of content and students examines the subject matter knowledge of mathematics 

through knowledge about the learners’ thinking (Ball, Bass & Hill, 2004; Ball, 

Hill & Bass, 2005; Hill, Schilling & Ball, 2004). It provides teachers 

opportunities to think about mathematical concepts from the learners’ views 

and performing teaching in this way. It includes thinking of students about 
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specific mathematical concepts, engaging with mathematical tasks, and being 

motivated and challenging about mathematical concepts (Ball, Hill & Bass, 

2005; Hill, Ball & Schilling, 2008).  

The other title of MKT is subject matter knowledge as the main focus 

point of the present study. Hill, Ball and Schilling (2008) have connected 

Shulman’s pedagogical content knowledge (PCK) and content knowledge (CK) 

domains under the title of subject matter knowledge. It involves mathematical 

knowledge that the teachers are expected to have in order to perform their 

responsibilities of teaching (Ball, Hill & Bass, 2005). This title is separated 

into two categories which are specialized content knowledge and common 

content knowledge. The category of specialized content knowledge focuses on 

mathematical knowledge which is unique to the mathematics teachers since it 

is knowing mathematics for mathematics curriculum in the schools (Hill, Ball 

& Schilling, 2008; Ball, Hill & Bass, 2005; Hill & Ball, 2004; Hill et al., 

2004). In other words, it refers to the knowledge of mathematical concepts in a 

way that it is placed in mathematics curriculum and in the lessons. It can be 

exemplified by understanding, reasoning, illustrating and making connections 

between mathematical topics and expressing, discussing and using them 

through mathematical ideas (Hill & Ball, 2004) without the concerns of 

teaching them. This type of MKT is beneficial in a way that teachers are using 

their knowledge in the process of guiding their students to understand the 

mathematical concepts and make connections between them and performing 

their common teaching responsibility while students are constructing their 

knowledge (Ball & Bass, 2000, 2003; Ball, Bass & Hill, 2004; Ball, Hill & 

Bass, 2005; Hill & Ball, 2004). The other title of MKT is common content 

knowledge. It represents the knowledge of mathematical concepts being 

expected for the students to be known and taking place in mathematics 

curriculum in the schools and general knowledge of mathematics (Ball, Hill & 

Bass, 2005; Hill et al., 2004). It can be exemplified by procedural knowledge 



15 

 

of mathematical operations, defining mathematical concepts and applying 

mathematical facts to the problems.      

Subject matter knowledge has effect on teachers’ teaching practices 

with respect to the findings of many research since deep and rich knowledge 

and understanding of the mathematical concepts develop teaching. Moreover, 

subject matter knowledge has close relationship with other types of knowledge 

since teachers attaining deep subject matter knowledge can successfully 

understand students’ thinking to design and organize the instructional sequence 

by making appropriate instructional decisions in their classroom (Hill & Ball, 

2004). Hence, the teachers are expected to have deep and rich knowledge about 

the mathematical concepts that they teach in their classrooms. This situation 

can be provided for them in their teacher education programs since preservice 

teachers attain and develop these types of knowledge through their preservice 

stages in order to be effective mathematics teachers in the future (Chapman, 

2007). Through this stage, they improve themselves by being encouraged by 

the courses about their professions. In this respect, it can be claimed that 

preservice teachers need opportunities to have experiences in the courses that 

they take in teacher education programs with the aim of improving their MKT 

(Philipp, 2007). However, it should be considered that participation of these 

courses does not guarantee that preservice teachers become effective and 

equipped with these types of knowledge. Therefore, it is needed to form 

environments encouraging that preservice teachers attain mathematically rich 

experiences, and improve other types of knowledge related to subject matter 

knowledge that they possess (Turner et al., 2012). Through this kind of 

environments, beneficial opportunities are provided for preservice teachers to 

improve themselves and become effective as future teachers. In other words, 

preservice stages are critical for them since they are encouraged to develop 

their knowledge and skills with various opportunities to reach the resources 

and to practice their knowledge (Bryan, 2003). These opportunities should be 

selected and designed carefully based on the views of preservice mathematics 
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teachers. Beneficial tasks help preservice teachers examine, practice and 

analyze their conceptual learning and understanding improving their 

mathematical content knowledge (Ball & Forzani, 2009).  

The critical importance of subject matter knowledge is emphasized in a 

way that mathematics teachers must have detailed knowledge of common 

content knowledge and specialized content knowledge in order to perform their 

professions effectively (Hill & Ball, 2004). Ma (1999) also insists on the 

importance of subject matter knowledge by deep understanding of fundamental 

mathematics needed for making connection between mathematical topics and 

mathematical ideas in order to perform teaching in the classrooms effectively. 

This knowledge includes connection between mathematical concepts, structure 

of it and discussing it in their mathematics classrooms. Teachers may 

underestimate the difficulty of teaching mathematics to the students by 

overestimating their subject matter knowledge and considering only their own 

conceptual and operational knowledge about subjects in the curriculum. 

Teachers may claim that the elementary mathematics curriculum is not difficult 

(Sowder, et al., 1998). This ignorance affects the behaviors of mathematics 

teachers in classrooms and they think teaching mathematics in the classrooms 

as teaching procedures to follow. However, it is needed to attain the view point 

of deep conceptual part of this curriculum since they face with actual teaching 

and realize the difficulty of mathematical concepts. This realization increases 

the skills of teachers’ understanding of mathematical concepts (Sowder, et al., 

1998). This realization can be effectively provided by teacher education 

programs and opportunities in these programs presented to preservice teachers. 

Moreover, although there have been many research emphasizing the 

importance of teacher subject matter knowledge in teaching, there exists 

critical need to study preservice teachers’ subject matter knowledge in 

preparing teachers. This need can be caused by the case that teachers begin 

teaching in their novice years without having sufficient content knowledge of 

mathematics (Ball, 1988). Therefore, it is critically needed to obtain detailed 
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information about what preservice teachers have before becoming a real 

teacher and how they learn teaching mathematics from the view of 

mathematical content (National Mathematics Advisory Panel, 2008). 

Therefore, the preservice stages should be designed to help preservice teachers 

attain necessary subject matter knowledge effectively.  

With all of the explained views, HLT are important since they provide 

opportunities for the instructors to design mathematically rich environments to 

help preservice mathematics teachers attain necessary knowledge and skills for 

their professions. In this respect, HLT on the mathematical concept of triangles 

was designed to help PMSMT attain various and rich experiences on this 

concept to develop their skills of teaching and other types of knowledge that 

they needed to teach in the present study. In other words, HLT used in the 

present study was organized based on the aim of improving the subject matter 

knowledge of the preservice middle school mathematics teachers in the 

geometrical concept of triangles. Moreover, in this section, the current study 

paid attention on preservice teachers’ subject matter knowledge paid attention 

on in teacher education programs among other types of knowledge in MKT. In 

this respect, the necessities of the opportunities providing deep knowledge and 

understanding about the mathematical concepts were explained. These 

necessities were provided in different ways in teacher education programs as 

explained in many research in the literature. In the present study, the design of 

the path that preservice middle school mathematics teachers’ (PMSMT) 

understanding the concept of triangles were examined by mathematical 

practices. Mathematical practices provided a beneficial way to investigate the 

development of their knowledge and understanding about mathematical 

concepts related to their subject matter knowledge. Also, the related theories 

and philosophies used to design hypothetical learning trajectory of the current 

study were examined in the following sections.  
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2.2 Mathematical Practices 

 

In the literature, there have been valuable research investigating 

learning and teaching focusing on learning of communities from sociological 

points of  views by forming classroom practices (Ball & Bass, 2000; Cobb & 

Bauersfeld, 1995). The researchers focus on social context of learning based on 

the fact that mathematical learning takes place in the social context of the 

classroom (Cobb & Bauersfeld, 1995; Cobb, Stephan, McClain, & 

Gravemeijer, 2001). The social contexts in which learning takes place have 

been examined based on different explanations and definitions of mathematical 

practices. Various studies defining and examining the mathematical practices 

in different ways exist in the literature (Cobb et al., 2011; Font, Godino & 

Gallardo, 2013; Moschkovich, 2002). In their studies, they focus on the 

different meanings of mathematical practices. For example, based on the 

definition of mathematical practices made by Moschkovish (2002), the term is 

explained by being separated into two groups; every day and academic 

mathematical practices. Everyday mathematical practices is stated by the 

students’ daily life experiences related to mathematics such as shopping, 

classifying and ordering. Academic practices are the activities in which the 

students perform their responsibilities such as forming and testing conjectures, 

form mathematical arguments and discuss about them in a way that 

mathematicians do. In another study, Font, Godino & Gallardo (2013) define 

the mathematical practices in a different way by stating that the mathematical 

practices consist of operative and discursive practices. Operative practices 

include the activities of reading, forming and operating the mathematical ideas 

and skills. On the other hand, discursive practice represents the reflection of the 

students produced through the former practice. Godino and Batanero (1994) 

defines the mathematical practice by stating; 

We consider mathematical practice [sic] any action or manifestation 

(linguistic or otherwise) carried out by somebody to solve mathematical 
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problems, to communicate the solution to other people, so as to validate and 

generalize that solution to other contexts and problems (Godino, Batanero, & 

Font, 2007, p. 129).  

In this definition, the researchers emphasize the role of mathematical activities 

by the term of mathematical practices.  

The definition and meaning of mathematical practices guiding the 

present study has been produced by Cobb et al. (2011).  They have produced 

this definition based on the view of learning through individual and social 

processes, neither occurring without the other and nor dominating to each 

other. The definition and the formation of mathematical practice are made by 

them based on the emergent approach considering the individual and the 

community as reference points in learning process. Classroom mathematical 

practices are defined as “it is feasible to view a conjectured learning trajectory 

as consisting of an envisioned sequence of classroom mathematical practices 

together with conjectures about the means of supporting their evolution from 

prior practices” (Cobb et al., 2011, p. 125). The mathematical practices mean 

taken-as-shared ways of reasoning and arguing mathematically in the emergent 

perspective. Taken-as-shared way represents an environment in which the 

discussions about mathematical problems and ideas by mathematical 

symbolization and notations take place in the process of emergence of 

mathematical practices (Cobb et al., 1997). Based on this definition, the 

mathematical practices emerge in a classroom representing a social 

environment. The social environment formed in the classroom encourages the 

students to participate in the classroom mathematical tasks. Also, mathematical 

tasks make contributions to their mathematical knowledge, participation and 

skills while they reorganize their individual mathematical activities (Cobb & 

Yackel, 1996). It is important to examine the ways in which the students 

participate in the collective learning environment and make contributions to 

this environment and the process of development of classroom mathematical 

practices. However, the individual students’ interpretations, activities and 
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understanding should not be ignored since they have effect on the process of 

emergence of mathematical practices. Although the definition of mathematical 

practices mainly focuses on collective learning, individual student learning has 

critical importance based on mathematics in which they engage in. This 

importance results from their contributions to the development of taken-as-

shared mathematical ideas and mathematical practices having connection with 

the process of individual students’ learning and understanding. In this respect, 

the examination and development of classroom mathematical practices focus 

on both individual and collective learning of the students. Moreover, this view 

is emphasized by Cobb and Yackel (1996) by stating that “students actively 

contribute to the evolution of classroom mathematical practices as they 

reorganize their individual mathematical activities, and conversely, that these 

reorganizations are enabled and constrained by the students’ participation in 

the mathematical practices” (p. 180). In other words, the students reorganize 

their mathematical reasoning representing their individual learning in the 

process of participating in collective learning. Also, the evolution of 

mathematical practices occurs by their rearrangements of their individual 

activities with respect to local social situations where they take place and to 

whose emergence they make contribution (Cobb et al., 1997). In this respect, 

the learning takes place in a way that learners improve their individual learning 

by participating in the social context of learning including the views of all of 

the learners. The process of development of mathematical practices including 

mutual practices and students’ own reasoning represents the reflexive 

connection of social and individual perspectives about mathematical tasks in 

the instruction through their mathematical development (Cobb & Bowers, 

1999).   

The process of emergence of mathematical practices in a taken-as-

shared way is beneficial to develop mathematical practices and also 

mathematical understanding and individuals’ reasoning. These practices 

represent the ways of understanding, reasoning, explaining and convincing 
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others by justifications in a way that mathematical classroom community make 

them taken-as-shared for the particular mathematical content by specific 

mathematical tasks or ideas (Cobb et al., 2011; Stephan, Bowers & Cobb, 

2003). They are observed in a social environment in which the instructor and 

the students take place in challenging situations since “classroom mathematical 

practices are … localized to the classroom and are established jointly by the 

students and the teacher through discussion; they emerge from the classroom 

rather than come in from the outside” (Stephan & Cobb, 2003, pp. 41-42). 

Mathematical practices identified by taken-as-shared methods of reasoning are 

ways or representations of the students’ knowledge based on their reflections. 

The emergence of reflections takes place in classroom discussions rather than 

their individual knowledge, thinking and strategies specific to a mathematical 

concept or a problem situation (Stephan, Bowers, Cobb & Gravemeijer, 2003). 

In other words, mathematical practices focus on social learning including the 

reflections of learners’ individual learning. In this respect, the information 

about classroom discourse, the ways of using tools, notations is attained 

through collective and social part of mathematics learning in the development 

of classroom mathematical practices (McClain & Cobb, 2001; Stephan & 

Rasmussen, 2002).  

While students participate in the discussions in which the mathematical 

practices are formed, they develop their mathematical reasoning and 

understanding at the same time (Cobb et al., 1997) in an environment. This 

environment encourages the establishment of social and sociomathematical 

norms providing the development of mathematical practices (Stephan & 

Akyuz, 2012). These norms are necessary because of their support to the social 

environment in which the mathematical practices emerge by taken-as-shared 

strategy. These norms facilitating the emergence of mathematical practices 

provide information about the participation structure of the clas-srooms about 

the communication among learners and the instructor and the learners (Cobb et 

al., 1997). Despite of these norms’ common positive effect of encouraging 
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mathematical practices, they have different properties. The classroom 

mathematical practices are more content-specific when compared with social 

and sociomathematical norms since these norms are not specific to 

mathematical ideas based on this definition (Stephan et al., 2003). In other 

words, social and sociomathematical norms are important since the 

mathematical practices emerge in a way specific to classroom community, 

mathematical content, the path followed in the instructional sequence and the 

problems that the students engage in. In this respect, the teacher and the 

students develop the classroom mathematical practices collectively by 

localized and formed in the classrooms. However, outside mathematical 

practices have effect on this developmental process based on its connection 

with local mathematical practices. The students make contributions to the local 

mathematical practices by the ways of their participation and experiences in 

outside mathematical practices (Whitenack, Knipping, & Novinger, 2001).   

  All of these explanations emphasize learning taking place in the 

classroom environments by the combination of two extreme positions and 

approaches of learning including individual and social aspects of learning 

operating equally. This view can be stated based on the views of social 

constructivism as emergent perspective. Based on this perspective, learning 

occurs by relating the social and individual processes with strong relationship 

in which the existence of one of them necessitates the other one by not 

separating. In the emergent perspective, individuals’ mathematical 

development and understanding are examined through their participation in the 

social and cultural practices taking place in the classroom community (Cobb, 

2000; Yackel & Cobb, 1996). This perspective illustrates a process including 

two connecting parts; the individual students take roles in developing 

communal practices and the community produces mathematical practices in 

taken-as-shared ways through reasoning, symbolizing and producing 

mathematical arguments (Cobb et al., 2001; Stephan, 2003). Therefore, the 

properties and perspectives of social constructivism are examined and taken 
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into consideration in the present study. Moreover, classroom mathematical 

practices are generally examined through design-based research studies 

connecting instructional design and teaching in the literature (Cobb et al., 

2011). There have been many research designed and conducted in this way. In 

the literature, there exist research studies examining mathematical practices at 

different grade levels and for different mathematical topics (Stephan & Akyuz, 

2012; Stephan et al., 2003 Stephan & Rasmussen, 2002).    

Stephan and Akyuz (2012) examined the classroom mathematical 

practices emerged within design-based research using Realistic Mathematics 

Education theory. With the teaching experiment taking place in a 7th grade 

classroom, the students’ classroom mathematical practices designed by the 

concept of integer addition and subtraction were identified by testing and 

revising a hypothetical learning trajectory as a potential instructional theory for 

this concept with the tools such as financial contexts and vertical number lines. 

The learning of the students participating in the instructional sequence with 19 

class periods by hypothetical learning trajectory was examined through the 

content and structure of the students’ arguments about the concept of integer 

addition and subtraction. In the analysis process, Krummheuer’s (1995) 

adaptation of Toulmin’s argumentation model was used. Then, the 

argumentation logs determined in this way were used to identify the collective 

classroom mathematical practices by a three-phase approach with two criteria 

constructed and described in Rasmussen and Stephan (2008) and in Stephan 

and Rasmussen (2002). These mathematical practices representing students’ 

construction of conceptual understandings of integers and their operations were 

determined through taken-as-shared mathematical ideas. Based on the findings 

of the study, there have been five mathematical practices with a limited number 

of mathematical ideas in each mathematical practice. In order to determine the 

effect of designed hypothetical learning trajectory on students’ achievement, 

pretest and posttest designed by the researchers were conducted to the students. 

The quantitative findings obtained through these tests showed that students 
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improved their understanding on the concept of integer addition and 

subtraction through this instructional sequence illustrating more achievement 

on the subtraction operation than the other operation.  

In the study of Akyuz (2014), the researcher examined the classroom 

mathematical practices developed within design-based research using Realistic 

Mathematics Education theory to ten preservice mathematics teachers 

including eight junior and two senior grade students in a university. With the 

teaching experiment taking place in an elective course in mathematics teacher 

education program, the participants’ classroom mathematical practices 

designed by the geometric concept of circle were identified by testing and 

revising a hypothetical learning trajectory with the tool of GeoGebra in 

dynamic geometry environment. The learning of them in the instructional 

sequence including 5 weeks and 4 hours in each week by hypothetical learning 

trajectory was conducted in inquiry-based and technology-supported teaching 

environment. The content and the structure of the students’ arguments about 

the concept of circles were examined by the Krummheuer’s (1995) adaptation 

of Toulmin’s argumentation model. Emergent perspective and the scheme 

designed and described in Rasmussen and Stephan (2008) and in Stephan and 

Rasmussen (2002) were used to determine taken-as-shared mathematical ideas 

representing mathematical practices. Through the analysis, three sequentially 

emergent mathematical practices ordered based on complexity from lower 

level to higher one have been formed in the study. Another research designed 

and analyzed by the same methodology was conducted to preservice 

mathematics teachers in order to establish their mathematical practices in a 

dynamic geometry environment by Bowers and Nickerson (2001). In this 

study, prospective secondary mathematics teachers participated in teaching 

episodes designed by Geometer’s Sketchpad. Their social norms, 

sociomathematical norms and mathematical practices in the undergraduate 

course in which the design experiment study was performed. In this 

environment, their learning was examined through their contributions to the 
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whole class discussions. In a cyclic process including designing, testing, 

modifying and retesting the learning trajectory, their individual and collective 

learning were examined by establishing these norms and mathematical 

practices. Also, four mathematical practices were determined in the study by 

using Cobb et al.’s (1997) framework. 

Stephan and Rasmussen (2002) examined the classroom mathematical 

practices developed within 15-week classroom teaching experiment using 

Realistic Mathematics Education theory to university students enrolled in a 

beginning course about differential equations for engineers. The learning of the 

students participating in the instructional sequence by a learning trajectory was 

examined through the content and structure of the students’ arguments about 

the concept of differential equations by the Toulmin’s argumentation model. 

The mathematical practices provided a systematic system for the learning of 

classroom community. Emergent perspective and the scheme including three 

phases designed were used to determine taken-as-shared mathematical ideas as 

mathematical practices. Through the analysis, there have been six 

mathematical practices with a limited number of mathematical ideas in each 

mathematical practice. Moreover, the researchers state that there are two 

important cases for the emergence of mathematical practices, time and 

structure. Based on these cases, the mathematical practices can emerge in a 

non-sequential manner.  

In the study of Roy (2008), a design-based research was made to 

establish preservice teachers’ classroom mathematical practices in whole 

number concepts and operations. In the study, a revised learning trajectory and 

instructional tasks designed based on Realistic Mathematics Education theory 

used in a previous classroom teaching experiment in the literature (Andreasan, 

2006) was conducted in the study. Mathematical practices were determined by 

the same analysis techniques used in previously explained ones, Toulmin’s 

argumentation model and Rasmussen and Stephan’s three-phase methodology 

(2008). Four classroom mathematical practices were documented. Moreover, 
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Content Knowledge for Teaching Mathematics (CKT-M) database described 

by Hill, Schilling, and Ball (2004) was conducted to the participants as pretest 

and posttest for a ten-day instructional sequence. The quantitative findings 

obtained through these tests showed that students improved their understanding 

of the whole numbers concept. Also, Wheeldon (2008) made a research for 

prospective elementary teachers, two classroom mathematical practices have 

been established by a hypothetical learning trajectory designed by Realistic 

Mathematics Education theory on the concept of fractions by the same analysis 

techniques based on the same methodology, Toulmin’s argumentation model 

and Rasmussen and Stephan’s three-phase methodology (2008). Furthermore, 

Andreasan (2006) conducted a hypothetical learning trajectory designed by 

Realistic Mathematics Education theory on the concept of whole numbers and 

three classroom mathematical practices were established by the same 

methodology and analysis techniques.  

Argumentation takes place as the flow of the ideas by expressing, 

challenging and validating them. In this process, it is important for the students 

to understand others’ ideas clearly, examine them based on different 

perspectives and communicate about them. In this process, when the students 

use tools, they can effectively represent their ideas.  

The research of Johnson (2013) differentiates from the other research 

explained above. The other research focus on understanding and learning 

through their discussions but Johnson (2013) examined them through notations 

and symbols. The researcher examined student learning through mathematical 

practices as local changes and made implications. They investigated teaching 

experiment conducted by Realistic Mathematics Education for abstract algebra 

started with the context of symmetries of an equilateral triangle. The students 

also examined the notations and symbols. The researcher made analysis by 

Toulmin’s argumentation model and Rasmussen and Stephan’s three-phase 

methodology (2008). The researcher determined two local changes which were 

emerging symbols and notations, and the way in which they were used.  
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While all of the explained research focus on the improvements of 

students learning and understanding, Martin and McCrone (2003) paid 

attention on the development of a skill. They investigated the classroom 

mathematical practices about proof-construction ability of the teachers and 

their pedagogical choices contributing to these practices. They focused on 

developing the students’ proof writing skills rather than their learning of a 

particular mathematical concept. Two different high school geometry classes 

instructed by these teachers were observed during four-month period with 

proof-based geometry lessons. The researchers determined three taken-as-

shared classroom mathematical practices. They were the importance of details 

in proof writing, the understanding that only certain methods are valid for 

establishing the congruence of overlapping triangles and marking diagrams as 

an essential part of the proof-writing process. This research is also beneficial 

since it provided information about the effect of classroom micro culture and 

teachers’ pedagogical choices on the learners’ proof constructions and the 

emergence of mathematical practices. 

Font and Planas (2008) focus on mathematical practices in a different 

perspective; that is, they emphasize different meaning of mathematical 

practices explained by Godino, Batanero and Font (2007) from the definition 

by Cobb et al. (2011) used in the present study. It represents the efforts to solve 

mathematical problems by discussing to validate and generalize the solution. 

They examined the mathematical practices, socio-mathematical norms and 

semiotic conflicts based on the onto-semiotic approach. Mathematical practices 

were established focusing on the cognitive conflicts through discussing and 

forming the solution to a problem. Learning happened through changes in 

participants’ positioning. In this respect, semiotic conflicts were explored while 

the learners were solving and removing these conflicts. In the study, the data 

were collected through teaching episodes designed based on problem solving. 

Learning occurred understanding the experiences and interpretations of others 

for socio-mathematical norms and mathematical practices. 
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As it has been observed, mathematical practices have been examined 

for different mathematical topics (Stephan & Akyuz, 2012; Stephan et al., 2003 

Stephan & Rasmussen, 2002). On the other hand, based on the learners’ failure 

in geometry and the difficulties of the students in learning and understanding of 

geometry, it has become crucial to identify which practices learners form 

through learning geometry. Also, it is important to think that mathematical 

practices are connected to social and socio-mathematical norms as other 

dimensions of interpretative framework since they emerge in a social learning 

environment. Studying mathematical practices for learning geometrical concept 

of triangles for preservice middle school mathematics teachers was aimed by 

the problem-based learning strategy, the problem solving method and van 

Hiele geometric thinking theory through geometric constructions and 

argumentations in the present study. In this respect, it was also necessary for 

the study to design hypothetical learning trajectory to organize the tolls and 

activities and make predictions about instructional sequence in order to meet 

these aims.  

 

2.3 Social Constructivism and Mathematical Practices 

 

 Social constructivism has importance on the current study for the 

emergence of classroom mathematical practices since they are developed 

through emergent perspective called as social constructivism. Social 

constructivism as a kind of constructivism specifies the context in a social way, 

culture and learning in a collaborative way (O'Donnell & King, 1998). It 

proposes that learning should be thought with social interactions because of its 

socio-cultural aspects. It is created with respect to Vygotsky’s ideas (Palmer, 

2005) considering the impacts of other people, language used between the 

learner and the other people, objects benefited from in this social interaction, 

society and culture taking place in the process of forming knowledge actively 

(Jones & Brader-Araje, 2002). Also, this philosophy is about the effects of 



29 

 

communication, language and culture on the process of learning (Fosnot, 1996; 

Jonassen et al., 1995). According to Vygotsky, the potential of an individual 

about learning can be increased by making interactions with the people having 

knowledge about the related issue. In other words, through the process of 

interaction taking place between learners having some amount of knowledge, 

they can improve their knowledge and understanding. The amount of 

knowledge obtained by communicating is more than the one obtained by 

spending effort and studying alone (Liang & Gabel, 2005). The social 

interactions performed with the aim of obtaining knowledge can be encouraged 

with the help of language and artifacts. These artifacts refer to the tools with 

the aim of shaping and transferring mental processes. This approach provides 

individuals opportunities to improve knowledge and skills such as problem 

solving, synthesis, critical and creative thinking and deep understanding 

(Terhart, 2003).   

In the environments designed with respect to the theory of social 

constructivism and interpretative framework, the responsibility of the teachers 

is to organize environments with the aim of acquiring and helping the learners. 

Therefore, they can obtain and improve skills such as analysis, synthesis, 

critical and creative thinking and deep understanding (Trigwell, Prosser & 

Waterhouse, 1999). Moreover, it can be claimed that the social constructivist 

approach is important because of its positive effect on the learners. In this 

respect, it is necessary to design experiment based on social constructivist 

approach since it provides effective learning environments (Woo & Reeves, 

2007). Design experiments were used in the current study since it included 

arranging significant and different kinds of learning and then working on them 

in a systematic way related to the context encouraging them. Also, it was 

preferred since it provided deep and effective understanding for learning 

ecology. In this way, a beneficial lesson could be prepared and tested to use in 

the education of mathematics teachers by design experiment. There have been 

research exemplifying these studies and situations in the literature. In a 
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research of design experiment, sessions for teaching with teacher, experimenter 

and student in order to form small-scale version for ecology of learning were 

suggested (Steffe & Thompson, 2000).  

In the design experiment study of Steffe and Thompson (2000), they 

collected the data about the learning and reasoning of the students by the first 

hand. In this way, powerful understanding about the students’ constructions of 

the concepts was obtained. According to the findings of their study, 

mathematics should be taught by using the mathematical realities belonged to 

the students rather than mathematical realities of the teachers. They confirmed 

the fact that the mathematics must be taught considering the students’ 

properties such as prior knowledge, history and achievement. In a different 

design experiment study, it was conducted to identify classroom practices, a 

teacher had the role of being member of the research team (Cobb, 2000). 

Simon (2000) proposed design experiments in which the researchers made 

organization and work about education to the preservice teachers. The 

researcher conducted a different application of design experiment as Teacher 

Development Experience. In this methodology, the researcher served as the 

instructor of the classroom.  

In an example of the design experiment study of Lehrer and Schauble 

(2000), the researchers helped inservice teachers improve about their 

professions. They used the design experiment in their study. They investigated 

the learning of the students and the teachers with 45 teachers and the students 

in their classes including mathematics and science instructions. The levels of 

their classes included the range of grades 1-5. This study was conducted with 

the aim of obtaining knowledge to develop the process of thinking and learning 

of the students and the daily practices of the teachers through the processes of 

forming, testing, evaluating and modifying the models. They investigated the 

learning and thinking processes of the students and the teachers based on 

longitudinal changes, while they progressed through this range of grade levels. 

They explained different kinds of professional development and teacher 
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practices that could enhance student learning and thinking. Social constructivist 

theory has been also effective about educating preservice teachers as the 

teacher candidates as it has been observed in previous research (Akar, 2003; 

Holt-Reynolds, 2000; Jadallah, 1996; Kroll & Laboskey, 1996). In other 

words, in the present study, the design experiment was conducted based on the 

social constructivism since the environments designed in this way could 

contribute to the construction of understanding from many perspectives. The 

learning trajectories were organized based on the roles and responsibilities of 

the teachers and the learners explained in this philosophy.    

 The environments including the communication and interaction 

between the students and the teachers are important in mathematics education 

(Kovalanien & Kumpulanien, 2007). If these communication processes take 

places in meaningful manner, they become beneficial to mathematics 

education. The environments including such communications can also be 

created with the help of design experiments and hypothetical learning 

trajectories explaining the teachers’ predictions based on the students’ learning 

and geometric reasoning. Also, instructional sequence providing opportunities 

for mathematical argumentation can be effectively organized with design 

experiment by a research team. Therefore, mathematical discourse and 

argumentation as kinds of communication happening in the classrooms are 

explained in the following section. 

The interpretative framework as the emergent perspective or social 

constructivism was used in the present study. In other words, learning taking 

place in the designed instructional sequence was examined by using the 

interpretative framework explaining learning based on psychological (or 

individual) perspective and social (or group) perspective (Cobb, 2000; Cobb & 

Yackel, 1996). In the emergent perspective, learners evaluate and determine 

their mathematical understanding while they make contributions to the 

mathematical practices for the groups (Cobb & Yackel, 1996; Yackel & Cobb, 

1996). In that respect, sense making processes of the individuals and the groups 
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are taken into consideration simultaneously and equally to identify the 

classroom dynamic (Cobb, 2000; Yackel, 2002). While analyzing classroom 

environment with the emergent perspective proposed by Cobb and Yackel 

(1996), the interpretive framework is used to examine learning in this 

environment in a different way as illustrated in Table 1.  

The social and psychological perspectives are separated into three 

factors. The social part of the emergent perspective includes social norms, 

sociomathematical norms, and classroom mathematical practices with closed 

relationship with each other. In DBR, the theories are produced based on 

particular learning processes related to the design by being named as local 

instruction theories. Hence, the designed learning environments and collective 

learning environment based on the actual HLT implemented with supports of 

learning and the behaviors of the instructor and PMSMT participating in the 

study. In this way, DBR is examined in light of the designed setting and the 

participants rather than all environments with curricular goals. Mathematical 

practices as the focus point of the current study can be effectively examined in 

a social environment in DBR so the mathematical practices can be clearly 

examined through social and sociomathematical norms (Roy, 2008). The social 

perspective main focus of the data collection and analysis of the current study 

can be illustrated in the Table 1. 

Table 1 Interpretative Framework 

Social Perspective Psychological Perspective 

Social norms Beliefs about one’s role, others’ 

roles, and general nature of 

mathematical activity in school 

Sociomathematical norms Mathematical beliefs and values 

Classroom practices Mathematical conceptions and 

activity 
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The first domain of interpretative framework, social norms, is examined 

benefiting from regularities taking place in the activities in the classroom and 

identified jointly by instructor and the learners as the members of the 

classroom community. They extract the structure of participation taking place 

in instructional sequence in the classroom (Stephan & Cobb, 2003). In that 

process, the identity and role of each individual are determined from the 

interpretations happening in the social interactions (Yackel, 2002). The second 

domain, sociomathematical norms, include “a different mathematical solution, 

a sophisticated mathematical solution, an efficient mathematical solution, and 

an acceptable mathematical explanation” (Cobb & Yackel, 1996, p. 178). The 

last domain, classroom mathematical practices, is the domain in which the 

participants produce mathematical explanations while engaging in pedagogical 

content tools.  

 Classroom mathematical practices emerge in a social environment 

based on the connection of social and socio-mathematical norms. In this 

respect, it is important to design hypothetical learning trajectory to encourage 

their learning through communicating in the classroom and establishing these 

norms. Therefore, the hypothetical learning trajectory was designed by 

geometric constructions referring to problem situations and tools and 

argumentations in the current study.  

 

2.4 Hypothetical Learning Trajectories 

 

  Learning trajectories can be stated in a way that they are “successively 

more sophisticated ways of reasoning within a content domain that follow one 

another as students learn” (Smith et al., 2006, p. 1). It can also be added that “a 

hypothesized description of successively more sophisticated ways student 

thinking about an important domain of knowledge or practice develops as 

children learn about and investigate that domain over an appropriate span of 
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time” (Corcoran, Mosher, & Rogat, 2009, p. 37). By HLT, teachers can make 

predictions on student learning and then testing them in practice. In this 

respect, it becomes possible to talk about the hypothetical nature of the 

learning trajectories as a bridge linking the theory of constructivism to practice 

(Duncan, 2009; Simon, 1995). In other words, in the process of the teaching 

period, the teachers have the opportunity to test the designed hypothetical 

learning trajectories (HLT) and make modifications based on the experiences 

obtained in this process. Also, it is possible to explain the HLT as a construct 

for teaching since “actual learning trajectory is not knowable in advance” 

(Simon, 1995, p. 135). HLT as a way of connecting constructivist theory to 

practice can be defined as “. . . the teacher’s prediction as to the path by which 

learning might proceed. It is hypothetical because the actual learning trajectory 

is not knowable in advance and it characterizes an expected tendency” (Simon, 

1995, p. 135). Hence, the nature of HLT related to not being resistant to change 

increases its benefits for teaching and learning by making necessary revisions 

on it. The construct of a HLT can be accepted as a cognitive tool improving 

mental processes and mathematical learning actions constructed with respect to 

the philosophy of constructivism (Clements & Sarama, 2004).  

In the present study, HLT based on the constructivist philosophy was 

used since it provided the teachers a framework for supporting an 

understanding of students’ thinking and learning of specific mathematical 

concepts. HLT includes the teachers’ predictions about the progress in teaching 

sequence. In other words, HLT explains the usage of the teachers’ predictions 

made with respect to the teachers’ knowledge and assessments about student 

knowledge and their history about how the learning may happen or how the 

learning process may happen. Learning trajectories make the link between 

teachers’ knowledge and their students’ actions around three elements such as 

learning goals, learning activities and hypothetical learning process (Simon, 

1995). In other words, in HLT, there exist learning goals of teaching process, 

learning activities and the ideas about how the process will go on in the 
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classroom designed based on the predictions of the teachers. The teachers make 

the predictions by examining the student’s learning and reasoning carefully 

considering their actions in the classroom, the results of assessments about 

them and their history. In this way, HLT helps the teachers understand their 

students’ learning and thinking processes. Learning trajectories are identified 

as a useful attempt for assessment (Battista, 2004) and teacher education 

(Wilson, Mojica, & Confrey, 2013). Moreover, when the effects of the 

argumentations are explored, they provide information about the classroom 

environment designed with respect to social constructivist approach as the 

emergent perspective needed for the development of classroom mathematical 

practices to investigate the classroom environment effectively. Mathematical 

argumentations help the researchers analyze how the students share their ideas 

in a systematic and clear way support and refute the others’ ideas in a scientific 

way using their ideas in a collective learning environment. This form of 

discussion may encourage the students participate in the classroom discourse 

effectively. Also, the students need to understand the concept carefully while 

producing mathematical argumentations.   

In light of the explanations, it was considered that it could be important 

to design the lessons for the education of preservice mathematics teachers by 

using mathematical argumentations in the present study. These lessons 

designed with the help of HLT were expected to be beneficial through the 

process of testing the classroom experiences in a hypothetical manner 

(Andreasan, 2006; Wheeldon, 2008). Then, necessary modifications could be 

made based on these experiences. Also, mathematical argumentations were 

expected to be beneficial for the education of preservice mathematics teachers 

since they could effectively think about the theorems or properties of the 

concepts of triangle and how they were produced and which kind of properties 

were connected in a collective learning environment. In other words, 

mathematical argumentations could direct the students to make reasoning about 

the concept of the triangles. They could examine how these properties were 
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formed by examining the reasons of them and the ways of this formation. In 

this respect, preservice mathematics teachers could effectively understand 

triangles in an environment designed with respect to the social constructivist 

theory and the lessons designed as HLT and tested regularly through the 

classroom experiences. HLT was designed by geometric constructions applied 

by following the way suggested by Simon (1995). Also, by examining the 

characteristics of the mathematical argumentations formed by the participants 

through these lessons, beneficial information could be obtained to make 

implications for the process of their learning and reasoning (Smith, 2010). In 

this respect, beneficial lessons about triangles for training preservice middle 

school mathematics teachers could be provided to the literature. This could be 

an alternative and designed through the process of assessing regularly based on 

the real experiences in the classrooms in order to educate preservice middle 

school mathematics teachers effectively.   

In the present study, the instructional sequence in which the classroom 

mathematical practices emerged was performed by the hypothetical learning 

trajectory. The hypothetical learning trajectory was designed based on 

constructivism, social constructivism and problem-based learning. The social 

learning environment helping the establishment of social norms, socio-

mathematical norms and mathematical practices was encouraged by 

argumentations in which stating, analyzing, discussing and convincing the 

geometrical ideas were made. Moreover, the tasks including the tools of 

compass and straight edge in the hypothetical learning trajectory were designed 

considering the properties of van Hiele geometry thinking levels and geometric 

constructions. In other words, van Hiele geometric thinking levels were 

considered to determine the preservice middle school mathematics teachers’ 

geometric reasoning to organize their activities referring to problem situations, 

predicting their possible answers and reasoning in the study. Their van Hiele 

geometric thinking levels were also provided to help them use the tools of 
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straight edge and compass to examine the triangles, their properties and prove 

them.  

 

2.5 Argumentation in Mathematics Education 

 

In design-based research, learning taking place in a social setting is an 

important measure to be evaluated and social interaction is important in 

providing mathematical learning (Cobb, 2000). In general perspective, by 

participating in mathematical discourse which is convenient for learner-

centered classrooms, the students make reasoning aloud and explanations about 

what they think and how they think about them (Hufferd-Ackles, Fuson, & 

Sherin, 2004; Yackel & Cobb, 1996). In the environments including 

mathematical discourse, the individuals can achieve learning and 

understanding by thinking and interacting with other people. They can provide 

this achievement by modifying their thinking schemes when the confusions in 

their thinking in the process of the mathematical discourse are observed (Steffe 

& Tzur, 1994). These environments illustrate “communication as a process of 

mutual adaptation wherein individuals negotiate meanings by continually 

modifying their interpretations” (Cobb & Bauersfeld, 1995, p. 8). Also, it is 

clear that there exist positive impacts of communication through interactions of 

teacher-student and students on learning (Lampert & Cobb, 2003). 

Mathematical discourse is beneficial for the teachers since they can form an 

environment including multiple ways of constructing mathematics and solving 

the mathematical problems for the students (Fullerton, 1995). It is beneficial 

since it provides opportunities for the students to challenge, make clear, judge 

and justify their ideas related to mathematics (Andrews, 1997; Owen, 1995).  

Argumentation as a kind of mathematical discourse explains how 

students form mathematical justifications interpreted by them and use them in 

the communications. It can be claimed that producing the mathematical 
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arguments refers to the understanding of conceptual mathematics (Lampert, 

1990). The students use the rules and theorems in a way that they are 

memorized without questioning and knowing when, how and why to use them. 

This problem can be removed by producing mathematical argumentations since 

the learners can acquire the mathematical knowledge and skills necessary for 

this knowledge about these theorems and rules by questioning and 

understanding effectively. Also, they can improve reasoning skills necessary 

for mathematical learning and understanding. Effective learning can be 

provided by deep engagement of the ideas by problem solving and critical 

thinking skill of argumentation so that conceptual change occurs through 

argumentation practices considering their qualities (Abi-El-Mona & Abd-El-

Khalick, 2011; Jonassen & Kim, 2010). 

The term of the argumentation can be described as a “social 

phenomenon, when cooperating individuals tried to adjust their intentions and 

interpretations by verbally presenting the rationale of their actions” 

(Krummheuer, 1995, p. 229). Argumentation can also be specified as a process 

with try-outs of an individual with the aim of persuading others about a claim. 

The learners can form a common shared understanding related to the concepts 

by discussing and forming mathematical argumentations. While producing 

argumentations and shared understandings through discussions, there exist 

justifications, active negotiation of mathematical claims and modifications of 

the concepts, statements and ideas used in mathematical discussions (Forman 

et al., 1998). Through mathematical arguments, the importance of previous 

knowledge cannot be ignored. In the process of producing arguments, the 

previous knowledge is used actively with the aim of reaching a shared 

understanding by discussing and producing statements about it (Cross, 

Taasoobshirazi, Hendricks, & Hickey, 2008). In this respect, argumentations 

are useful to examine the students’ understanding by determining mathematical 

practices defined by Cobb et al. (2011). By the taken-as-shared way of 

understanding, the students use the claim produced in previous argumentations 
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in different parts of latter arguments. In other words, they use knowledge or 

conclusion representing the claim of the previous argumentation as data, 

warrant, backing or rebuttal of another argument produced in latter teaching 

episodes. In this respect, there have been studies to examine the mathematical 

practices of the students from different grade levels (Akyuz, 2014; Stephan & 

Akyuz, 2012; Stephan & Rasmussen, 2002; Roy, 2008; Wheeldon, 2008). For 

example, in the studies of Akyuz (2014), Roy (2008) and Bowers and 

Nickerson (2001), the mathematical practices of preservice mathematics 

teachers emerged in collective learning environment were examined. In order 

to analyze their learning in social environments, Toulmin’s model of 

argumentation was used. Based on mathematical argumentations, their learning 

process was illustrated in taken-as-shared way. 

The argumentations are useful for the learners to share and validate 

their ideas about a particular concept. In this process, the elements of 

Toulmin’s argumentation model represent the ways that the students express, 

challenge and validate their ideas. They can be either supported by the more 

than one warrant and backings or refuted by the rebuttals. Through validating 

their true claims, the students can provide backings and warrants referring to 

qualifications for the claims. Based on this view, Inglis, Mejia-Ramos and 

Simpson (2007) conducted a research in order to examine the importance of 

qualifications. They investigated modelling mathematical argumentation and 

the role of qualification in the argumentations. Before conducting the study to 

the participants, they considered that the more mathematically the students 

think and discuss, the more qualifications they use. In this respect, in order to 

emphasize that the full argumentation including warrant, backing and rebuttals 

is needed to be used since they think about the concept in detail and different 

perspectives. They examined the highly talented postgraduate mathematics 

students’ arguments by Toulmin’s model of argumentation. It was found that 

the restricted form of the model limited the learners’ thinking with absolute 

conclusions and these talented mathematicians needed to use full version of the 
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model to represent their ideas and reasoning effectively. This finding can result 

from the case that the students validate and express their claims through 

mathematically rich and connected expressions. By the study, their assumption 

was confirmed and illustrated in this way. Moreover, when the students were 

higher grade levels such as preservice teachers, they could use mathematical 

proofs, theorems and properties in the argumentations. 

Argumentations and proofs are related to each other since both of them 

are composed of justifications and expressions made to convince others about 

the truth of a statement (Chazan, 1993; Pedemonte, 2007). In the study of 

Pedemonte (2007), the connection of argumentation with proof was examined 

through the teaching experiment conducted to 12th and 13th grade students in 

France and Italy. The researcher analyzed the data in order to test the 

hypothesis about proof as a particular case of argumentation by Toulmin’s 

model of argumentation. Also, the structures of an argumentation about a 

conjecture (abduction, induction, etc.) and its proof were examined. Based on 

the findings, it was observed that they had structural differences in spite of 

their connection in different perspectives. This structural difference was 

important while producing argumentations and proofs for the mathematical 

ideas and conjectures. However, the argumentations and proofs have connected 

skills encouraging each other. 

In argumentations, the tools that the students use to learn the concepts 

while they are engaging in their mathematical tasks facilitate their 

understanding and learning. By using the tools, students can form 

argumentations effectively by understanding others represented using tools. 

Also, dynamic geometry software as tool enhances the students’ understanding 

and learning of mathematical concepts (Athanasopoulou, 2008). In this respect, 

there have been research to examine the effect of the environments enhanced 

by technology on students’ argumentations (Hollebrands, Conner & Smith, 

2010; Lavy, 2006; Maher et al., 2006). This effect has been examined for the 

students from different grade levels. Hollebrands, Conner and Smith (2010) 
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investigated the explanations of college students created in a dynamic 

geometry environment based on the structure of the arguments.  Their 

arguments were separated into three groups with respect to the properties of the 

warrants used in the classrooms considering the usage of technology. These 

groups were explained by explicit warrants without technology, an explicit 

warrant with technology and warrant with merely a diagram on the screen. In 

the study, it was found that their argumentations and especially the properties 

of the warrants changed based on the ways of using technology in the 

classroom. The students produced well-qualified warrants including necessary 

properties and theorems of the mathematical concepts in technological 

environment when compared with non-technological environments. Also, the 

effects of technological tools in argumentations for the students in lower grade 

levels was examined in the studies of Lavy (2006) and Maher et al. (2006). The 

structure and content of the arguments formed by the students in a technology 

enhanced classroom were analyzed by Toulmin’s model of argumentation. The 

students produced arguments in an environment in which the technology was 

used as mediator between students and means to collect data. These studies 

found that technology had positive effects on understanding content and 

explicitness of the warrants, structure of the arguments and challenging the 

claims and warrants. Therefore, it can be stated that tools such as dynamic 

geometry software has the facilitating role in forming argumentations. When 

the tools are used effectively in the classrooms, implicit and clear warrants 

understood by the students can be produced. Also, when the structure of the 

arguments are compared, the ones formed by using technological tools are 

better than the others.  

Teachers have important responsibility in the process including 

effective mathematical argumentations. They should direct the students to 

participate in the discussions, to form particular claims, explain their ideas and 

produce mathematical arguments including necessary terms and concepts. 

There have been different research examining the effect of teachers’ roles and 
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behaviors on the mathematical argumentations. Veerman, Andriessen and 

Kanselaar (2002) examined collaborative argumentations of undergraduate 

students formed in the eight-week course in Educational Technology and 

Computer-based learning (CBL). They focused on the connection between 

questioning and argumentation in different mathematical tasks. The role of the 

tasks and the context were identified in the study. It was found that question 

asking was related to argumentation based on the tasks, instruction, medium, 

role of the participants and how to be represented in the learning situation. 

Based on this study, it was found that it was important to select and design 

appropriate instructional tasks and ask question accurately in order to form 

argumentations. In this respect, the learning environment should be designed 

including the tasks related to asking questions so that argumentations can be 

formed effectively and learning can be encouraged. In this respect, the teachers 

have important role of providing asking questions in the environment.  

Yackel (2002) investigated the teacher roles in classrooms of the grade 

levels from elementary school to college level including argumentations. It has 

been found that the teachers should provide students’ mathematical activity 

designed including argumentations, the negotiation about the classroom norms 

in order to enhance the argumentation, opportunities for the students to make 

interactions with other students with the aim of forming arguments, and 

argumentative supports such as data, claim, warrants, and backing. In other 

words, the teachers should support a good start point for mathematical 

argumentations to the concepts and tools when they are newly produced. 

Moreover, the teachers should provide instructional sequence including 

beneficial argumentations by acquiring deep understanding of mathematical 

concepts. The results of this study provide essential knowledge for the current 

study about the role of the teacher and how to provide an environment 

including mathematical argumentations. Based on the roles of teacher 

explained in this study, the instructor benefited from this knowledge while 

guiding and forming the discussions in the study. 
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In the study of Yackel and Cobb (1996), the roles of the teachers have 

been investigated in the classrooms with argumentations. They explained that 

the teachers were important since they were the formers of the mathematical 

community including argumentations and they have crucial roles in this 

process. With respect to the findings of the study, they proposed that social and 

sociomathematical norms were important in forming argumentations since they 

could affect student learning of mathematics. Furthermore, the more the 

students partcipate in the process of negotiation of sociomathematical norms, 

the more autonomous they became about learning. In this respect, it could be 

thought that it was important to produce social and sociomathematical norms in 

the classrooms to form the lessons including argumentations. Therefore, 

necessary precautions were taken to provide opportunities for the students to 

participate in the activities of forming them in the current study.  

To conclude, there have been research about argumentations in the 

literature. Through these research, it can be stated that argumentations are 

effective to improve learners’ academic achievement, understanding, 

conceptual learning, and reasoning in a way that they share and challenge their 

ideas by problem solving and making communication with their class-mates. It 

has still been necessitated to examine their argumentations through geometric 

reasoning and conceptual knowledge about particular geometry concepts such 

as triangles. Therefore, the present study was designed to improve preservice 

middle school mathematics teachers’ learning and understanding of triangles 

through argumentations. Also, geometric constructions were used since the 

tools were necessary to encourage argumentations in the classrooms. 

 

2.6 Problem-based Learning in Mathematics Education 

 

John Dewey described problem-based learning (PBL) as a teaching 

strategy in order to solve medical schools’ problems initially. Then, it has 
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attained importance and functioned in all grade levels from primary to college 

levels. Because it activates students to learn by using their prior knowledge and 

interests and makes connections with the real world (Goodnough, 2006). In this 

respect, PBL is identified as “focused, experiential learning organized around 

the investigation, explanation, and resolution of meaningful problems” 

(Hmelo-Silver, 2004, p. 236). PBL can be explained with the help of 

constructivist approach because of their common principles. Both of them are 

designed based on student-focused instructional approach. It should be 

provided that the students understand and accept the purpose of learning 

activities so that they can perform their main responsibility of learning 

effectively. This can be encouraged by designing tasks that can be manipulated 

by the learners so that they can construct their own learning and understanding 

by manipulating and analyzing complex parts of the tasks and topics in order to 

produce critical and creative means (van Tassel-Baska, 1998). In this process 

by encouraging students to participate actively in their own learning and 

learning of the others, tasks and environments challenging the students’ 

thinking skills should be designed based on the students.  

The teachers attain the responsibility of supporting, encouraging and 

facilitating the views, discussions, learning of the students and the 

environment. Moreover, in PBL environment, the role of the teacher can be 

explained as a facilitator or coach encouraging the learners to ask reflective 

questions (Wang et al., 1998; Greenwald, 2000; Kolodner et al., 2003) that 

“force them to justify their approach and explain their conclusions” (Kolodner 

et al., 2003, p. 505) in a way that they continually test and revise their 

hypotheses and ideas (Kolodner et al., 2003). In this process, the learners form 

the solution reasoning and redesigning their thinking with the help of teacher. 

The teacher asks the questions and provides the guidance for the students to 

challenge their thinking and organize their own learning (Greeanwald, 2000) 

by understanding and attaining the knowledge in detail and necessarily (Uyeda 

et al., 2002). In doing so, the instructor scaffolds students’ learning and 
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provides clues with the help of encouraging learning and thinking as the 

facilitator (Hmelo-Silver, 2004). In this case, the teacher can provide hints to 

help learners solve the problem and learn it by facilitating the process. The 

roles of the instructor in PBL are summarized by Torp and Linda (2002) in a 

way that student learning can be provided encouraging their motivation on 

problem solving by teachers’ actions about modeling and coaching strong 

cognitive and metacognitive behaviors (Araz, 2007). In addition, PBL focuses 

on the types of cooperative and independent learning. By cooperative learning, 

the structure of the students’ works in small groups encouraging active 

learning, participation, interaction and discussion is emphasized (Rivarola & 

Garcia, 2000; Silberman, 1996). In this respect, it was considered that PBL was 

appropriate for the current study by its explained properties. Also, it could 

effectively produce an environment including the discussion and mathematical 

argumentations.   

The learners attain the responsibility of examination of necessary and 

meaningful questions cooperatively by practicing the skills of decision making 

and problem solving (Frank & Barzilai, 2004; Kolodner et al., 2003). PBL 

describes a kind of learning process in which the learners have the 

responsibility of learning through reasoning, decision making and problem 

solving. Based on these properties of PBL, another definition of it is “a 

cognitive apprenticeship approach that focuses on learning from problem-

solving experience and promotes learning of content and practices at the same 

time” (Kolodner et al., 2003, p. 497) and inverting “the order of learning 

procedures to make it reflect much more realistically the learning and problem 

solving that occurs in professional practice” (Gallagher, Stepien, Sher, and 

Workman, 1995, p. 137). In PBL, the instruction is performed by taking the 

problem at the center of the learning. In this process, the instruction is the 

strategy of giving students the problem and then providing the learning through 

problem solving (Burgess, 2004). However, all of the questions representing 

related mathematical concepts do not always refer to a problem. The problems 
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providing learning in this way are ill-structured problems which are unclear 

and open-ended problems used to learn new concept with prior knowledge 

through finding the solution (Greenwald, 2000). In this environment, the 

process of finding solution can happen with the help of others’ views and 

experiences and instructor guidance (Greenwald, 2000). This way was the 

critical one for the present study to produce whole class discussion in which 

the learners formed mathematical argumentations. In addition to improving 

problem solving skills, PBL also provides opportunities to make connection 

between various topics and prior knowledge. In this respect, the instructional 

sequence and hypothetical learning trajectory of the present study was designed 

in light of these properties of PBL. For example, previous knowledge of 

preservice middle school mathematics teachers about transformation geometry 

was used to examine the congruence and similarity of triangles to learn more 

complex properties of triangles in the present study. Furthermore, Frank and 

Barzilai (2004) explain that there are four benefits of PBL in instructional 

sequence; understanding and attaining the deep knowledge of content and 

process, encouraging the independent learning and taking responsibility and 

providing student learning by active engagement. Also, it can be stated that 

problem solving skills are improved through problem-based learning strategy. 

   The common definitions of problem solving are “a situation where 

something is to be found or shown and the way to find or show it is not 

immediately obvious” (Grouws, 1996, p.72), “to have a problem means: to 

search consciously for some action appropriate to attain a clearly conceived, 

but not immediately attainable aim” (Polya, 1962, p.117) and  “the situation is 

unfamiliar in some sense to the individual and a clear path from the problem 

conditions to the solution is not apparent” (Grouws, 1996, p.72) benefiting 

from prior knowledge (Frensch & Funke, 1995) where a problem is defined as 

“a situation for which one does not have a ready solution” (Henderson & 

Pingry, 1953, p.248). Through these definitions, there are assumptions to be 

provided for a situation to become a problem. In this respect, it can be stated 
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that it is needed to determine whether a situation is problem since it changes 

based on individuals and their experiences (Henderson & Pingry, 1953; Lester, 

1980). Therefore, a situation is a problem in case of holding some criteria. 

These criteria can be explained in a way that an individual must realize the 

situation and be willing to remove it, and then he cannot directly move on the 

solution process but he insists on to reach the solution (Lester, 1980). 

Problems are beneficial to design “an environment for students to 

reflect their conceptions about the nature of mathematics and develop a 

relational understanding of mathematics” (Skemp, 1978, p.9) with the learning 

opportunities. When the learners face with the problem, they have cognitive 

conflict since the situation does not fit their existing knowledge. Then, they 

start working on it. Through this studying process, they try to make some 

modifications on their existing knowledge by learning additional ones since 

“they confirm or redefine their conceptual knowledge, relearn mathematics 

content and become more open to alternative ways of learning mathematics” 

(Steele & Widman, 1997, p.190) since problem solving is not remembering the 

memorized facts or using and following well-learned operations or procedures 

(Lester, 1994). In other words, through problem solving, learners attain the 

skills of organizing their mathematical ideas, participating in the discussions, 

defending their ideas and convincing others on their ideas. Hence, the learners 

realize the dynamic nature and structure of mathematics and attain deep insight 

of mathematics (Manuel, 1998; NCTM, 2000). In this respect, the necessity of 

problem solving in mathematics curriculum is understood. Hence, problem 

solving is strongly proposed to be placed in school mathematics, used for 

teachers and practices as much as possible for students (NCTM, 2000).   

 The problems are at the core of learning and doing mathematics since 

problem solving provides teachers a good strategy and tool to teach 

mathematical concepts (Manuel, 1998; Schroeder & Lester, 1989). Problem-

based learning including problem solving is used in classrooms as a teaching 

strategy in a way that “the teaching of a mathematical topic begins with a 
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problem situation that embodies key aspects of the topic, and mathematical 

techniques are developed as reasonable responses to reasonable problems” 

(Schroeder & Lester, 1989, p.33). Moreover, problem-based learning including 

problem solving provides opportunities to present, share and discuss their 

mathematical ideas and to find the solution through discussing and evaluating 

(Manuel, 1998). These opportunities facilitates the formation of mathematical 

argumentations and also emergence of mathematical practices. Therefore, the 

HLT and instructional sequence were designed based on problem-based 

learning strategy. Through engaging in problems, learners can learn and 

improve their understanding of mathematical concepts (NCTM, 2000). Based 

on this nature of problem-based learning, it was essential to make teaching via 

problems in the instructional sequence, it was possible to identify the 

classroom mathematical practices by the argumentation forming the 

mathematical practices of the present study.  

 Problem-based learning has effect on achievement of the learners in all 

grade levels with respect to the findings of many research. In the lessons 

designed based on this strategy, the students are provided by the opportunities 

and important practice forming useful learning environments for them. They 

can attain problem-solving skills by engaging in the different contexts having 

connection with real-life (Apaçık, 2009; Dochy, Segers, Bossche & Gijbels, 

2003; Efendioğlu, 2015; Cantürk-Günhan & Başer, 2009). The problem-based 

learning occurs in the learning environment by taking the problem at the heart 

of the lessons. By using problems, the students face with the challenge 

situations about particular concepts. Through understanding the problem and 

designing the plan for the solution, they examined their previous knowledge in 

detail. Then, when they do not form a solution plan for the problem, they try to 

make connections between the related concepts they learned previously. 

Hence, they understand and learn the particular concept explained in problem 

situations deeply by making connections with other mathematical concepts. 

Also, they illustrate success and achievement while solving the problems since 
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they understand the concept effectively in problem-based learning environment 

(Polya, 1962; Posamantier, 1998). These processes occur in the classrooms in 

all grade levels from primary to college level. Moreover, the research in the 

literature illustrate that problem-based learning improved the learners’ 

achievement of the students in elementary and high school grade levels 

(Apaçık, 2009; Boren, 2012; Cantürk-Günhan & Başer, 2009) and preservice 

teachers (Banes, 2013; Efendioğlu, 2015; Hodges, 2010).    

Through engaging in problem situations in problem-based learning, the 

students perform the activities and tasks cognitively. The students acquire new 

knowledge benefiting from the prior knowledge. They use, elaborate and 

restructure the previous knowledge (Schmidt, 1993). When the students face 

with the problems for the first time, they benefit from their prior knowledge to 

understand, analyze and develop a plan for solution. In this way, their prior 

knowledge is strengthened. Then, they start to examine necessary knowledge to 

solve the problem situation. Through problem solving, they acquire new 

knowledge. In the process of acquiring the new knowledge structured by 

previous one, they understand the mathematical concept deeply by sense-

making and their interests (Kahan & Wyberg, 2003). In the process of the 

engagement in problem situations, understanding and comprehension of 

mathematical concepts are provided (Apaçık, 2009; Banes, 2013; Boren, 2012; 

Cantürk-Günhan & Başer, 2009; McCarthy, 2001). Hence, through engaging in 

the problems, they improve their understanding and learning the concept. 

Through improving the conceptual understanding by problem-based 

learning, the impact of this strategy on the learners’ psychological aspects such 

as attitudes toward mathematics and mathematical concepts, self-efficacy, 

motivation and decreasing mathematics anxiety (Banes, 2013; Boren, 2012, 

Cantürk-Günhan & Başer, 2009). Problem-based learning provides an 

environment to the students by taking the problems as the focus point of the 

lessons. When the criteria of individuals’ awareness of the situation and 

willingness to remove it for a situation for becoming a problem are considered, 
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it can be stated that problems and also problem-based learning have 

psychological effects (Lester, 1980). In this respect, it can be stated that a 

situation refers to a problem because the students are willing to handle it so that 

their motivation can be supported. This case encourages their motivation to 

remove the challenge situation and provide solutions to the problems (Rotgans 

& Schmidt, 2012). Also, the students understand and learn the mathematical 

concepts through problem-based learning. Therefore, understanding and 

learning are related to removing the challenge situation by providing the 

solution to the problem. In this respect, it can be stated that being motivated to 

solve the problem supports being motivated to learn the concept. Another 

psychological aspect is self-efficacy. Self-efficacy beliefs are affected by 

problem-based learning (Boren, 2012; Pajares & Graham, 1999). Because of 

the definition of self-efficacy as the individuals’ judgment about their own 

capabilities to perform the required tasks effectively, it affects the time and 

effort needed for them to perform the tasks successfully by sustaining to 

complete it (Bandura, 1997). The previous research also indicate that self-

efficacy is connected with mathematics problem solving and their performance 

in solving the problems (Hoffman, 2010). Furthermore, problem-based 

learning decreases the learners’ mathematics anxiety (Banes, 2013). Through 

solving the problems, they actively engage in them and then they decrease their 

anxiety. The previous research indicate that when the students and preservice 

teachers’ mathematics anxiety was compared before and after problem-based 

learning, it has been found that this strategy impacts their anxiety by 

decreasing their anxiety levels. Also, problem-based learning affects the 

attitudes of the students toward mathematics positively as it has been observed 

in research (Banes, 2013; Cantürk-Günhan & Başer, 2009). Attitude is formed 

through students’ past experiences as it happens in mathematics anxiety 

(Allport, 1935). By problem-based learning, useful opportunities in which the 

students perform the tasks effectively and represent success about 

mathematical concepts can be provided to the students. Hence, problem-based 
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learning environment affects the attitudes toward mathematics positively 

(Banes, 2013; Cantürk-Günhan & Başer, 2009).    

To conclude, there have been research about problem-based learning in 

the literature. Through these research, it can be stated that problem-based 

learning is effective to improve learners’ academic achievement, 

understanding, conceptual learning, motivation, self-efficacy and skills such as 

critical thinking, sharing and challenging their ideas, problem solving and 

making communication with their class-mates. However, it has been 

necessitated to examine problem-based learning in social environments by 

improving their argumentation skills through geometric constructions. In is 

respect, the social learning environment and hypothetical learning trajectory 

including argumentations and geometric constructions about triangles was 

designed by problem-based learning in the present study. 

 

2.7 Van Hiele Geometric Thinking Levels 

 

The van Hiele theory examines the learners’ levels of reasoning about 

geometric shapes in a way that learners move through various geometric 

thinking levels ranging between recognizing geometric shapes and constructing 

formal proof (van Hiele, 1986; van Hiele, 1999; Clements, 2004). By this 

theory, understanding and learning of the students in geometry can be 

examined with hierarchical levels. Instructional implications can also be made 

based on their levels. Hence, this theory is beneficial for teachers. In other 

words, through these levels and their properties, the theory proposes 

opportunities to capture deep inside to learners’ difficulties in geometry and to 

develop geometry instructions (van Hiele, 1986; Fuys, Geddes & Tischler, 

1988; Pegg, 1995). The van Hiele theory focuses on five sequential and 

hierarchical levels of geometric thinking (Hoffer, 1981; Usiskin, 1982; Senk, 

1989). These levels can be explained as follows:  
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 Level 0 is named as visualization or recognition level. In this level, 

students focus on clear physical attributes of geometric shapes so they can 

determine them in this way without reasoning. They think the shape as a whole 

and criticize on its visual form with standard orientation since they are not able 

to analyze the shape using its elements and properties (Battista, 2007; Crowley, 

1987). In this respect, the learners at this level are expected to determine, 

name, compare and contrast the shapes based on their appearances ignoring the 

properties of them (Fuys, Geddes & Tischler, 1988; Mayberry, 1983). In other 

words, they “use of imprecise qualities to compare drawings and to identify, 

characterize, and sort shapes” (Burger & Shaughnessy, 1986, p.43).  

 Level 1 is named as analysis or descriptive level. In this level, the 

students consider about geometric shapes with their specific properties. They 

can recognize and name collections of properties for geometric shapes ignoring 

relationships between these properties and other geometric shapes. Moreover, 

while describing and defining them, they are not able to make decisions on the 

appropriateness and sufficiency of these properties (Mason, 1998). They are 

not able to classify the shapes based on the relationship with other shapes and 

common properties with other figures but they can form particular definitions 

of geometric shapes and use them in clear and definite cases (Battista, 2007).   

Level 2 is named as informal deduction, order or theoretical level. In 

this level, the students can determine the “interrelationships of properties both 

within figures and among figures” (p. 3), comprehend formal definitions of and 

informal arguments about geometric shapes with the lack of understanding of 

deduction process, axioms (Crowley, 1987) and make inferences in simple 

form (Pegg, 1995). The students can form definitions of geometric shapes and 

interpret class inclusions of them by forming diagrams or charts representing 

the relationship between them based on their properties learned by ordering or 

comparing these properties (Mayberry, 1983; van Hiele, 1999). The students 

can make decisions about the appropriateness and sufficiency of the sets of 
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properties to describe and define geometric shapes (Fuys, Geddes & Tischler, 

1998).   

Level 3 is named as deduction. In this level, the students are expected to 

develop proofs about geometric shapes by reasoning logically and formally and 

comprehend formal geometric statements and arguments such as axioms, 

definitions and theorems (Clements & Battista, 1992). They can also form 

proofs, the role of formal mathematical statements and arguments and criticize 

the appropriateness and sufficiency of conditions referring to the geometric 

shapes and their properties by reasoning (Pegg, 1995). Students can 

comprehend formal proofs and then form their own proofs following different 

ways and using different types of reasoning and strategies (Crowley, 1987). In 

this respect, many high school students are expected to reach this geometric 

thinking level (Shaughnessy & Burger, 1985).  

Level 4 as the last van Hiele geometric thinking level and the matured 

level of geometric thought is named as rigor. In this level, the students are 

expected to make reasoning formally and logically about mathematical systems 

and statements focusing on abstract deductions with the necessity of rigor 

(Usiskin, 1982). They can also examine different deductive and axiomatic 

systems by comparing them, understanding relationships between them and 

constructing proofs. In this respect, they can comprehend, make reasoning and 

compare in the geometries except for plane geometry (Mayberry, 1983; Feza & 

Webb, 2005).  

All of the levels of van Hiele geometric thinking follow a linear way in 

a fixed hierarchy. They reach a level by completing the necessities of the 

previous level(s) (Mason, 1998). Another property of them is adjacency. The 

necessary behaviors of a level are observed in the behaviors of the students on 

the latter level (Fuys, Geddes & Tischler, 1988). The students at a particular 

level are expected to represent the behaviors of previous levels. These levels 

are oriented in a process that these levels are separated with each other in a 

qualitatively distinct level of thinking (Clements, 2004). Hence, the behaviors 
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of the students for each level can be observed and understood. Based on the 

property of discontinuity referring to the lack of coherence among the levels, 

the students can not represent the behaviors of any level unless if they become 

matured in the previous levels (Pegg, 1995). The students at a particular level 

attain and represent the properties of previous levels at the matured level. 

Based on the property of retention, students can represent different van Hiele 

geometric thinking levels on different geometric thinking levels (Pegg, 1995). 

The students at a particular van Hiele geometric thinking level can represent 

different levels. Moreover, with the property of ascendancy, the progression of 

the students through these levels can be provided by instructional experiences 

rather than age or biological maturation (Clements, 2004); that is, “the 

transition from one level to the following is not a natural process; it takes place 

under influence of a teaching – learning program” (van Hiele, 1986, p.50). The 

students can represent lower van Hiele geometric thinking levels when 

compared with younger students. 

In order to examine the students from different grade levels, there have 

been research conducted to examine their reasoning by van Hiele geometric 

thinking levels. In order to train preservice mathematics teachers about 

geometry knowledge and geometry teaching, the researchers focus on van 

Hiele theory. Their geometry thinking was measured by van Hiele geometry 

thinking levels (Aydın & Halat, 2009; Halat, 2008). For example, Halat (2008) 

found that most of the preservice elementary teachers at or above level of 

analysis and half of the secondary school teachers were at or above level of 

ordering. Then, by comparing the properties of these levels and the required 

skills and knowledge about geometry, he stated that these finding showed that 

the participants at these levels had adequate content knowledge in geometry 

(NCTM, 2000; Mayberry, 1983). In this respect, the preservice elementary 

teachers should attain the properties of initial two levels while preservice 

secondary school teachers should do initial three levels. Hence, van Hiele 

geometric thinking levels can be used as predictor to make estimations about 
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preservice mathematics teachers’ academic achievement in college level 

courses. Based on this view, Watson (2012) conducted a research to analyze 

the relationship between van Hiele geometric thinking levels and their success 

in a college level course. Then, the researcher found that the van Hiele 

geometric thinking level was an important factor to predict their success in this 

kind of class. In this respect, it can be stated that van Hiele geometry thinking 

levels can be used to predict their existing geometric reasoning so that their 

improvement in geometry courses can be provided in this way.  

The instructions and activities can be designed based on the predictor 

role of van Hiele geometric thinking levels since the students at the same level 

can tend to have similar amount of geometry knowledge and behave similarly. 

In other words, van Hiele geometric thinking levels are predictors for the 

achievement of the students because the students at the same levels tend to 

reason about the geometric concepts similarly (Hill, 2013; Wang, 2011. In this 

respect, this case provides that Wang (2011) thought that the students at the 

same van Hiele geometric thinking levels represent similar actions engaging in 

the activities. The prospective elementary school teachers’ geometric thinking 

through geometric discourses about the classification of quadrilaterals based on 

van Hiele theory was examined. The study focused on the similarities and 

differences between the discourses of the participants at the same van Hiele 

geometric thinking level and the changes on the discourses based on the 

improvement on their geometric thinking levels. The teaching episodes were 

designed in order to help them reach the required van Hiele geometric thinking 

level; that is, informal deduction level. Based on the results of the study, the 

students reached this level and represent similar actions. The participants at the 

ordering level named the geometrical shapes correctly and determined their 

properties. Although they made correct logical expressions using their main 

elements of angles and sides, they could not use all of the auxiliary elements 

such as diagonals. Also, they could not effectively construct proofs by 

deductive reasoning and abstract thinking. Viglieti (2011) also added that the 
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learners at this same level provided incomplete and incorrect answers for the 

geometric shapes except for triangle, isosceles triangle and quadrilaterals. In 

this respect, the properties of van Hiele geometric thinking levels are useful to 

design instructions since useful activities and pedagogical supports can be 

provided by determining the students’ van Hiele geometric thinking levels and 

separating them into groups. By determining the students at the same van Hiele 

levels, the instruction can be designed effectively. Also, useful predictions 

about the instructional sequence for the hypothetical learning trajectory can be 

made in geometry lessons. 

When a problem is defined as a challenge situation, beneficial problem 

situations can be selected and designed using van Hiele geometric thinking 

levels. Moreover, the students can learn their geometric reasoning while 

providing the solutions to the problems. Based on this view, van Putten (2008) 

examined the van Hiele geometric thinking levels of preservice mathematics 

educators through using their content knowledge of plane geometry in 

geometric problem solving situations and their progression of geometric 

thinking levels. Their progress was investigated through mathematics teacher 

education system. In this study, the relationship between problem solving and 

geometric thinking was explored. They provided geometry problems to solve 

and the students engaged in these problems and they attained and improved 

geometry knowledge and understanding. It was found that by geometric 

problem solving and attending the course, they improved their geometric 

thinking. In this respect, geometric thinking and problem solving is connected. 

Hence, problem situations can be formed by van Hiele geometric thinking 

levels and geometric thinking can be improved by problem solving activities.  

Van Hiele geometry thinking levels are also used in order to examine 

their knowledge and skills about geometrical proof having critical importance 

in geometry education. There have been research to explore their connection in 

the literature (Aydın & Halat, 2009; Dimakos & Nikoloudakis, 2008; Wang & 

Kinzel, 2014). Aydın and Halat (2009) and Dimakos and Nikoloudakis (2008) 
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explored the relationship between the proof and geometric thinking. They 

conducted the research to test this relationship by designing tasks about 

geometrical proofs and then their geometric thinking improvement through 

these tasks was explored.  It was observed that the students in the course 

including proof activities represented higher geometric reasoning stages and 

proof activities improved geometric reasoning. In this respect, while improving 

the students’ proof constructing skills and knowledge in geometry, it is 

necessary to improve their geometric thinking.  

These levels have relationship with pedagogy proposing suggestions for 

the instruction in geometry. With this aim, van Hiele theory provides five-

phase instruction representing the students’ progress (van Hiele, 1986; Mason, 

1998). The first phase is information in which the students attain deep 

knowledge about the geometrical concept using their previous knowledge and 

own language (Pegg, 1995). Then, in guided orientation phase, the students are 

expected to participate in carefully structured geometrical tasks generally 

permitting only one solution (Mason, 1998; van Hiele, 1986). After completing 

these tasks, explication phase begins and the students are aware of what they 

have learned and begin to use appropriate mathematical terms and symbols to 

communicate. Afterwards, in the free orientation phase, students engage in the 

geometrical tasks representing problem situations with more than one path 

solution (van Hiele, 1986). In the last phase, integration, the students attain 

necessary deep knowledge about the concepts in geometry and construct an 

overview about them. These five phases are related to the descriptions of van 

Hiele geometric thinking levels. Teachers can help student pass from one level 

to the next level successfully following these phases (Pegg, 1995).  

There have been research in the literature in order to illustrate the effect 

of these phases on the students’ geometric thinking and geometry achievement 

(Abdullah & Zakaria, 2012/2013; Meng & Idris, 2012). Meng and Idris (2012) 

designed learning environment supported by Geometer’s Sketchpad and 

implemented the activities about solid geometry based on van Hiele phases. By 
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exploring the effect of van Hiele phase-based learning on the students’ 

geometric thinking and achievement about this concept, they realized that this 

instructional sequence improved the participants’ geometric thinking and 

achievement in solid geometry. Abdullah and Zakaria (2013) also studied 

about the impact of van Hiele phase-based learning on students’ geometric 

thinking. In this quasi-experimental study, 94 secondary school students were 

divided into two groups and taught during six weeks. Based on the van Hiele’ 

Geometry Test result, the students taught by van Hiele phase-based learning 

showed better level of geometric thinking in a way that all of the students 

showed complete acquisition of initial two levels and most of the students 

represented the high acquisition of the third level of van Hiele geometric 

thinking. Moreover, Abdullah and Zakaria (2012) investigated the views of 

experts and preservice teachers about the activities designed based on van 

Hiele phases in order to obtain detail information about the effects of these 

phases. In their study, they designed learning environment by Geometer’s 

Sketchpad as a tool about the geometrical concept of quadrilaterals. Then, 

these activities were examined by 10 experts and 24 final year preservice 

teachers. They explained that these activities were beneficial about pedagogical 

usability criteria and should be used in order to teach and learn geometry. 

These studies illustrate that van Hiele phases are useful to be used in geometry 

instructions in order to help students examine geometrical concepts effectively 

and deeply based on their properties and connections between them.  

Through these previous research in the literature, it can be stated that 

the phases and descriptions of van Hiele geometric thinking levels support an 

environment designed by problem-based learning. Moreover, it encourages 

formation of a classroom including collective argumentation. In this respect, it 

was necessary to examine and use them while designing the hypothetical 

learning trajectory and applying it in an instructional sequence. In the current 

study, the van Hiele geometric thinking levels and phases were benefited from 

in order to design an effective hypothetical learning trajectory and to form 
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instructional sequence in the classrooms about the concept of triangles for 

preservice middle school mathematics teachers with the aim of determining 

their mathematical practices. These levels was also used to design and organize 

the activities of geometric constructions by compass and straight edge to help 

them use these tools effectively. Furthermore, by examining van Hiele 

geometry thinking levels, it was aimed to understand the effects of geometric 

constructions effectively in the study. 

 

2.8 Geometric Constructions in Mathematics Education 

 

Geometric constructions are important in mathematics education to 

teach Euclidean geometry focusing on constructing geometric shapes by 

compass and straight edge (Stillwell, 2000; Janicic, 2010). Euclid examined the 

geometric shapes, their properties and theorems through construction in his 

book of “Elements” so that construction has taken place in geometry and 

mathematics education (Karakuş, 2014). Geometric constructions are 

systematic steps in order to form geometric entities in the way of producing 

intended geometric shapes following particular basic and complex steps of 

sequence by compass and straight edge (Demiray & Çapa-Aydın, 2015; Djoric 

& Janicic, 2004). They also have pedagogical importance in geometry learning 

and teaching. They are used to explore the work of Greek mathematicians such 

as Euclid and Pythagoras taking important role in mathematics curricula of all 

grade levels (Sanders, 1998). They are strongly related to proof, geometric 

understanding, geometrical knowledge, problem solving, psycho-motor skills, 

in-depth thinking and relational understanding (Ameis, 2005; Cheung, 2011; 

Güven, 2006; Karakuş, 2014; Khoh, 1997; Kuzle, 2013; Napitupulu, 2001; 

Posamentier, 2000; Tapan & Arslan, 2009).  

Through geometric constructions, learners engage in the tasks using 

compass and straight edge. By following the sequence of the steps, they 
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improve their psycho-motor skills. However, by following these steps, they 

encourage geometry achievement and conceptual knowledge when they are 

used effectively as instructional tools in a planned way. In this respect, the 

construction activities do not only develop psychomotor skills by using 

compass and ruler and also improve cognitive skills, geometric understanding 

and knowledge about forming geometric shapes (Cherowitzo, 2006). 

Therefore, the construction activities improve physical and cognitive 

mathematical skills of the learners. In the process of construction activities, the 

learners do not only examine how to construct the shapes examining and they 

also understand its properties (Erduran & Yeşildere, 2010; Napitpulu, 2001; 

Hoffer, 1981). They form the geometric shapes by discovering their critical 

attributes and properties based on the relationship between them through 

constructing them by compass and straight edge. In this way, they improve 

their conceptual knowledge and relational understanding of the geometric 

shapes and they think about the shapes in detail (Cheung, 2011; Hoffer, 1981; 

Napitupulu, 2001). In this process, they examined the geometric shapes and 

their properties benefiting from other shapes and their properties (Khoh, 1997). 

For example, they can construct quadrilaterals by triangles, angle and 

perpendicular bisectors by rhombus and isosceles triangles. Hence, relational 

understanding can be provided by in-depth thinking and understanding of the 

shapes by using the tools, compass and straight edge. By improving relational 

understanding between geometric shapes, geometric constructions develop van 

Hiele geometric understanding (De Villiers, 2003; Napitupulu, 2001).  

Based on the views about the effects of geometric constructions on 

relational understanding, there have been research in the literature (Erduran & 

Yeşildere, 2010; Karakuş, 2014; Khoh, 1997; Kuzle, 2013). In this respect, 

Khoh (1997) conducted a research about geometric constructions by compass 

and straight edge in order to explore the students’ relational understanding and 

higher order thinking skills. The students engaged in three-stage construction 

and problem solving activities. They were designed about isosceles triangles, 
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rhombuses, kites, angle and perpendicular bisectors. They constructed and 

justified these geometric shapes benefiting from other geometric shapes and 

their properties such as constructing angle bisector by isosceles triangle or 

parallelogram. By constructing the angle bisector of an angle, some of them 

used the knowledge that angle bisector of the angle having angle measure from 

other interior angles of an isosceles triangle was coincident with altitude, 

perpendicular bisector and median of the edge opposite of this angle. Also, 

some participants used the knowledge that the diagonal of a parallelogram 

separates the angles into two parts having equal angle measures. By doing so, 

they made connection between these knowledge so that they improved their 

relational understanding and their reasoning. It was found that these activities 

improved making relationship between the geometrical concepts and thinking 

skills. Also, Erduran and Yeşildere (2010), Karakuş (2014) and Kuzle (2013) 

also supported the view that the relational understanding can be encouraged by 

geometric constructions with compass and straight edge by their research. They 

state that the constructions support relational understanding by constructing 

geometric shapes by using other geometric shapes and their properties. 

Therefore, geometric constructions should be used in geometry classrooms so 

that the students use other geometric shapes and their properties by examining 

and learning a particular a geometric shape. In this way, geometrical 

constructions improve their achievement in geometrical concepts. By relational 

understanding, they can obtain subject matter knowledge and understand the 

concepts by increasing their achievement in geometry (Güven, 2006; 

Napitupulu, 2001; Tapan & Arslan, 2009). 

Geometric constructions are not appropriate to use for the learners at 

van Hiele level-0 since they focus on the appearance of the shapes rather than 

their properties. However, the learners at other van Hiele levels can engage in 

construction activities. Also, in transition from Level-I to Level-II, they are 

beneficial and effective since they can analyze the shapes and their properties 

based on the relationship between them in detail (De Villiers, 2003; 
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Napitupulu, 2001; Posamentier, 2000). Therefore, geometric constructions can 

improve learners’ van Hiele geometric thinking levels, critical thinking and 

mathematical thinking (Cheung, 2011; Güven, 2006; Kuzle, 2013; Napitupulu, 

2001). Based on this view, there have been research to examine the effects of 

geometric constructions on geometric thinking. In the study of Napitupulu 

(2001), the effect of geometric constructions by compass and straight edge on 

the preservice mathematics teachers’ van Hiele geometric thinking levels and 

learning geometry was examined. The participants were selected from the 

students of an undergraduate course. They engaged in basic and complex 

construction activities about the geometric shapes such as quadrilaterals and 

triangles. The researcher found that construction activities improved the 

preservice mathematics teachers’ van Hiele geometric thinking levels 

providing their geometry learning. It was also emphasized that construction 

activities were beneficial in transition from van Hiele geometric thinking level 

of Analytic to the level of Abstract. In another study (Güven, 2006), the effect 

of geometric constructions on van Hiele geometric thinking levels was 

examined for the seventh and eighth grade students. In this quasi experimental 

research design, the results showed that the participants improved their 

activities of construction and drawing improved geometry achievement and 

van Hiele geometric thinking.  

Smart (1998) explains geometric constructions as a strategy of solving 

geometry problems based on particular set of rules including basic and 

complex steps. It is added that they include actions of providing theoretically 

correct and satisfactory solutions to the problems rather than drawing figures 

supporting particular conditions. The geometric constructions are accepted as 

providing solution to a problem rather than drawing shapes based on applying 

fixed particular rules or steps (Erduran & Yeşildere, 2010). Posamentier (2000) 

states the connection of geometric constructions with problem solving in a way 

that they are “reinforcement of many different geometric concepts and 

relationships and for the development of problem-solving skills” (p.1). In 
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geometric constructions, the learners have difficulty in deciding how to 

construct a geometric shape when they face with it at the beginning. Initially, 

they have challenge how to construct the shape by compass and straight edge 

and how and which steps to follow (Erduran & Yeşildere, 2010). Another 

challenge situation in constructions occurs in justifying that the solution is 

accurate and satisfactory. Erduran and Yeşildere (2010) conducted a research 

in order to examine the relationship between problem solving and geometric 

constructions. They examined the process of mathematics teachers’ 

constructing geometric shapes by compass and straight edge by collecting data 

about their learning and ideas about constructing geometric structures. They 

found that learning occurred effectively when the participants did not follow 

construction steps in rote manner. By doing so, they engaged in geometric 

constructions as problem situations, they improved their problem solving skills. 

Also, it can be stated that a situation becomes a problem if the students are 

willing to handle and remove it. These cases improve the students’ motivation. 

In other words, problem situations encourage their motivation to remove the 

challenge situation and provide solution to the problems (Rotgans & Schmidt, 

2012). When the view that geometric constructions refer to problems, it can be 

stated that geometric constructions can improve the learners’ motivation 

toward geometry and geometrical concepts (Erduran & Yeşildere, 2010).  

The learners form hypothesis about the possibility and the way of 

constructing geometric shapes, organize their ideas and solutions, test their 

hypothesis, evaluate and analyze their solutions, geometric shapes and their 

reasoning in geometric construction (Cherowitzo, 2006; Karakuş, 2014; Lim-

Teo, 1997). Hence, it can be stated that these actions can encourage the 

scientific skills and facilitate the social environment including argumentations. 

In this respect, the construction activities could be beneficial to help the 

learners form the argumentations by which the classroom mathematical 

practices emerged. Also, the constructions provide opportunities in order to 

examine postulates, rules, theorems and properties about geometric shapes 
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since it proposes a different way with the straight edge and the compass to 

justify them. They necessitate to justify the solution of the geometric 

construction problem since providing accurate constructions means discovering 

the appropriate knowledge and justifying it in a mathematically correct way 

(Güven, 2006; Çiftçi & Tatar, 2014). When the justification of the shapes 

constructed by compass and straight edge is considered, this process can 

include proof construction and proof writing. Through constructing the 

geometric shape, the solution of the construction problem necessitate to show 

and prove that formed figure is the required shape in the problem (Chan, 2006; 

Napitupulu, 2001). Therefore, geometric constructions improve the learners’ 

constructing and writing proofs (Napitupulu, 2001; Tapan & Arslan, 2009). In 

order to examine the relationship between geometric constructions and proof, 

Tapan and Arslan (2009) investigated preservice teachers’ drawings and 

justifications about geometric constructions by asking the participants to solve 

geometrical constructions by compass and straight edge and prove their 

constructions. They found that although they had difficulty in transferring their 

geometrical knowledge to constructing and justifying them previously, they 

formed and developed arguments by geometrical reasoning and subject matter 

knowledge while engaging in the geometric constructions. Also, the 

participants formed different types of justifications through the process of 

constructing geometric shapes. Moreover, in the study of Cheung (2011), the 

effect of geometric constructions by compass and straight edge on justification 

and constructing proofs was confirmed. It was found that construction 

activities improved geometric knowledge, critical thinking and skills of 

justification and proving. It was added that construction activities enhance 

learning environment in which the students developed their communication 

skills. Therefore, geometric constructions are useful tools to be used in 

geometry lessons to help the students learn how to justify and prove the 

expressions by communicating their ideas and strategies. 
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When the literature is examined, it is observed that there exist limited 

research about geometric constructions (Demiray & Çapa-Aydın, 2015; 

Erduran & Yeşildere, 2010). Through these research, it can be stated that 

geometric constructions are effective to improve learners’ geometry 

achievement, understanding, conceptual learning, motivation, geometric 

thinking, proving and skills such as critical thinking, sharing and challenging 

their ideas and problem solving. However, it has been necessitated to examine 

geometric constructions in social environments with their argumentation skills 

about particular geometry concepts. In this respect, HLT in the present study 

was designed using geometrical constructions to be used in an instructional 

sequence including argumentations. Because of supportive effect of 

argumentations on learning and reasoning, the level of van Hiele geometric 

thinking levels of preservice mathematics teachers and geometric constructions 

took important place in the present study. 

 

2.9 Proof and Geometric Constructions 

 

  Geometric constructions explore the properties of the shapes by 

representing them through drawings and then proving geometrical explanations 

(Chan, 2006; Napitupulu, 2001). Furthermore, geometric constructions provide 

opportunities about proofs by explaining that the students learn how to 

determine whether a statement is conclusion or premise by their causal 

relationship using the logical structure of if-part and then-part in the 

expressions (De Villiers, 2003). When van Hiele geometric thinking levels of 

the participants of the study were considered in the present study, they could be 

expected to provide proofs for the geometric constructions. In this process, 

proof is beneficial for constructions since it does not only indicate accuracy or 

inaccuracy of a statement but also illustrate why it is correct (Hanna, 2000). 

Even proving is commonly an effort for putting across the correctness or 

incorrectness of a claim or a result with enough evidences (Garnier & Taylor, 
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1997). The meaning of proving is removing or creating doubts related to the 

accuracy of a statement. Proving includes two sub-processes: first process 

focuses on understanding the truth in order to remove own doubts, the second 

one concerns about convincing the others to remove their doubts about the 

statement (Harel & Sowder, 1998). 

In literature about proof, several definitions of it have been produced. 

Traditionally, proof has been accepted as verification of correctness of the 

statement and used mainly to remove personal and social doubts (Hanna, 

2000). Hanna (2000) stated that proof is an argument that may assume several 

different forms as long as it is justified. According to Bell (1978), proof 

provides a way of individuals’ reaching conclusion by justifying, convicting 

and communicating rather than producing formal arguments. Selden and 

Selden (2003) refer to proof as “texts that establish the truth of theorems” 

whereas Stylianides and Stylianides (2009) define it as an argument for the 

truth of a statement that is “general, valid and accessible to the members of the 

community”. Proof process consists of three different but interrelated stages: 

investigation of the subject which will be proved, organization of proof and 

explanation of it to the others. The individuals analyze the statement or 

problem, investigate its correctness and design the proof by benefiting from the 

theorems proved previously. This process ends with forming proof or showing 

incorrectness of the statement (Lee, 2002).  

There are two components of proof. One of them is reasoning as a 

concept facilitating the generalization along with the processes of explanation, 

exploring and organization (Mingus & Grassl, 1999). Proof process includes 

both inductive and deductive reasoning. In deductive reasoning, implication 

process initiates generally and ends specifically by providing necessary 

evidence about the accurate of the final statements. In inductive reasoning, 

inference process proceeds from particular to general and probable without 

providing necessary evidence for conclusion. Another component of proof is 

communication. Proof is a way used for sharing the results and arguments, 
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constitution of the mathematical concepts, learning and presenting the 

generalizations. However, students have difficulties in explaining their results 

and expressing various ways followed in solution process. Yet, validating the 

answers by evidences and proving have crucial part in development and 

alteration of mathematical reasoning (Flores, 2002). Because, when students 

try to clarify and defend their results, it provides using the mathematical 

expressions more meaningfully (Forman, McCormick & Donato, 1998). 

Thurston (1994) believes that proof leads to mathematical understanding and 

helps learners think more clearly about mathematics. Therefore, proof has 

important place in mathematics (Hanna, 2000). 

In general, there are several functions of proof. The list of functions of 

proof includes verification of the statement, reasoning about its correctness, 

documenting the results systematically deductively by axioms and theorems, 

inventing new conclusions, interacting by mathematical ideas, formation of a 

theory empirically, investigation the roles of definitions or the conclusions of 

an assumption and interacting with previous mathematical knowledge based on 

a new framework (de Villiers, 1990; Hanna, 2000).  In addition to these 

functions, the most important contribution of proof is supporting mathematical 

understanding (Hanna, 2000). According to Bernard (1989), learning proof is 

necessary for holding a good awareness and appreciation of mathematics and 

gaining interest in mathematics. The learners defend that the characteristics 

such as mathematical curiosity, precision of thought and mathematical proof 

are needed to be promoted in order to serve the aims of a good education and 

training, to present a correct picture of mathematics and to provide interest in 

the subject.  

By considering the importance of proofs and proving, there have been 

research with the aim of identifying the students’ proving skills in different 

grade levels (Güler, Özdemir & Dikici, 2012; McCrone & Martin, 2009; Özer 

& Arıkan, 2002; Selden & Selden, 2003). Selden and Selden (2003) conducted 

a research about the concept of validity related to proof to university students. 
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A range of mathematical expressions referring to correct and incorrect proofs 

was designed and the students were asked to determine whether these 

expressions were valid or invalid. They found that the students had difficulties 

in distinguishing correct and incorrect justifications and their abilities of 

defining the meaning of proof were poor.  In another study about the proof 

levels of the students, Güler, Özdemir and Dikici (2012) and Özer and Arıkan 

(2002) found that the levels of the students were not at required level and they 

could not prove by using material and examining the skills and levels of 

proving of the students.  It was also stated that the ability of using the methods 

and techniques of proving were not at the required level. Also, the findings of 

the study of McCrone and Martin (2009) illustrated that students were not 

aware of what kind of formal proof was required and they might think that they 

proved a judgement based on only one example. Stylianides, Stylianides and 

Philippou (2007) stated that preservice teachers had difficulty in proving 

because teacher training programs did not focus on the concepts related to 

proof. Also, Jones (2000) explained that they did not have rich proof schemes. 

The research show that the students’ skills and knowledge are poor and not at 

the required level. However, their levels can be improved. In this respect, the 

preservice teachers should be trained to improve preservice mathematics 

teachers’ skills and knowledge of proof. Therefore, the present study was 

conducted in order to improve preservice middle school mathematics teachers’ 

skills and knowledge of proofs necessitated to justify geometric constructions. 

The skills and levels about proofs can be developed by providing 

instructions including the tasks of proofs. The research have showed that 

effective instructions impact the proof skills. There have been research to 

examine the impact of instruction including proof activities on learning and 

understanding of the students about proofs (Martin et al., 2005; Flores, 2006). 

Martin et al. (2005) investigated the relationship between instruction of 

proving and learning of it. Researchers focused on interaction between the 

actions of both teacher and student, classroom discourse and their effects on 
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students’ learning of proof through four-week instruction. It was observed that 

the students began to construct formal proof participating in the teaching 

episodes supported by communication and discussion. Also, the use of analytic 

proof schemes showed that the students had good qualities in proving after 

instruction on proving supported by interaction and communication among the 

students and teacher. In the study of Flores (2006), the researcher wanted the 

students to explain why the concepts which they learned were correct. The 

students were asked to indicate what they learned like rule, assumption, and 

procedure and to provide justifications about why they worked in engaging in 

the tasks. It was found that most of the students’ shared limited ideas, 

knowledge and proofs regarding how they thought and what they learned. In 

addition, it was stated that the students tended to prove the mathematical 

statements in a way that their teachers did or they saw in the textbooks. 

Therefore, the instructions should be designed based on proofs and different 

proving strategies for the students. Hence, the students can prove mathematical 

expressions effectively by learning proving effectively. 

In recent years, there have been tendency to examine the subjects such 

as proving, reasoning and argumentation in educational research (Heinze & 

Reis, 2003). This tendency results from different views based on the case that 

the effective communications occurring in the classrooms among the students 

and teachers in the classroom (Martin et al., 2005). One of the views is that 

proof is seen as the one of the most essential topics taken at the hearth of 

mathematics and mathematics education (Knuth, 2002; Lee, 2002). Many 

researchers and curriculum developers defend that proof must become an 

integral part of the students’ mathematical experiences from all grades 

(NCTM, 2000). Another view is provided based on their understanding since 

proof increases mathematical understanding, mathematical discover and 

connections among mathematical ideas (Stylianides, 2007). It provides 

conceptual understanding by exploring the reasons (Carpenter, Franke & Levi, 

2003). Moreover, it is stated that proof and argumentations are related since 
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both of them encourage the skills of critical reasoning and evaluating. For 

example, Stylianides and Stylianides (2009) investigated preservice teachers’ 

skills of proving and evaluating their own proof. Researchers prepared and 

implemented proving-evaluating activities. The findings showed that most of 

the students constructed correct proof, some of them formed invalid proofs and 

some of them represented empirical judgements. In this respect, preservice 

teachers should be provided to evaluate their own proof so that they can 

improve their skills of evaluating.  

According to Hart (1994), there should be research focusing on 

cognitive processes. For example, thinking processes of learners such as 

preservice mathematics teachers should be made to explore their proving 

processes with the mistakes by reasoning in these processes (Weber, 2001). 

Besides, most of the students do not know how to prove and they must use 

initial step for proving, the conceptual knowledge and definitions in proving 

process (Weber, 2001; Sarı, Altun, & Aşkar, 2007). There are many research 

aiming to illustrate the opinions related to proof and the processes of proving 

of the students, preservice teachers and teachers in literature (Jones, 2000; 

Weber, 2001; Knuth, 2002; Stylianides, Stylianides & Philippou, 2007).  

The previous research illustrate that the students in all grade levels have 

difficulties in understanding, caring and constructing proof (Moore, 1994; 

Jones, 2000). These difficulties are not appeared only in proving but also in 

remembering what proof is (Chazan, 1993; Moore, 1994). In general, students 

have difficulties in comprehending, appreciating, constructing, following the 

steps of reasoning and formulating their proofs. In addition, most of the 

students do not know how to prove, start and use the knowledge and definitions 

of the necessary concepts (Weber, 2001). Weber (2001) evaluates the students’ 

difficulties related to proving in terms of two perspectives. The former is that 

example(s) for accuracy are enough for proving and students have incorrect 

considerations about how proof must be. The latter is that students 

inadequately understand and apply a concept or theorem. Baker (1996) 
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determines that students have difficulties in proof techniques in terms of both 

conceptual and operational aspects. They give more importance operational 

aspect of proof rather than conceptual aspect. It is believed that the deficiencies 

of students in mathematical knowledge cause these difficulties (Tatar & Dikici, 

2008). Through these research, it can be stated that proofs are important in 

mathematics education especially training preservice mathematics teachers. 

The research show that despite of the importance of proof, preservice 

mathematics teachers do not have necessary knowledge and skills about proofs. 

Therefore, they need to educate them to develop their proving skills. In this 

way, their geometric reasoning and geometry knowledge can be encouraged. 

Geometric constructions are useful to encourage their improvement in proving 

and proofs are necessary to justify the truth of the geometric shapes constructed 

by compass and straight edge. Hence, it has been necessitated to examine 

geometric constructions in social environments with their argumentation skills 

about particular geometry concepts in a way that their skill of proving was 

developed. In this respect, HLT in the present study was designed using 

geometrical constructions to be used in an instructional sequence including 

argumentations. Because of the nature of geometric constructions and the level 

of van Hiele geometric thinking levels of preservice mathematics teachers, 

proofs were formed through geometric constructions and argumentations about 

triangles in the present study. 

 

2.10 Triangles and Mathematics Education 

 

Triangles are one of the basic and common geometric shapes 

developing the geometric world and being used in the design of buildings and 

bridges in the real life. Moreover, it is important since it can be used to 

construct other geometric shapes and make calculations on them such as 

calculating area of a parallelogram and rectangle by a triangle (Fey, 1982). In 

this respect, triangles are important to understand and learn other geometric 
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shapes and their properties. However, triangles have importance in teaching 

geometry, and learners from all grade levels have difficulty in learning 

triangles (Damarin, 1981; Vinner & Hershkowitz, 1980). In other words, 

although it has importance in geometry for learners, triangles are hard to learn 

for them. One of the reasons of this situation is the fact that triangles are taught 

as content-specific facts rather than triangles as a concept (Gillingham & Price, 

1987). Moreover, the definition of triangles and applying these definitions on 

new examples should be emphasized (Vinner & Hershkowitz, 1980). Also, 

triangles can be learned effectively through the instruction dominated by 

numerous examples and non-examples of triangles (Wilson, 1982). In addition 

to the usage of examples and non-examples of triangles in instruction, 

hierarchical relationships should be used in instructional designs for the 

geometric objects such as triangles (Novak & Tyler, 1977).  

Through the literature and historical development of geometric shapes, 

triangles have critical importance. Through this developmental process, the 

necessary properties of triangles needed to learn geometry are determined. 

Euclid’s book of “Elements” (approximately 300 BC) was used as an effective 

beginning for learning geometry for more than twenty centuries (Morrow, 

1970). In this book, he defined geometric objects such as a point, a line, a 

straight line, a surface, a plane surface, a plane angle and types of angles, a 

circle, a semicircle, rectilinear figures, trilateral figures, quadrilateral figures, 

and then the concept of parallel lines. By these definitions, he emphasized the 

classification of triangles. In this classification, the main elements of triangles 

were analyzed, the analysis was performed by them (Morrow, 1970). Then, 

Proclus examined the types of triangles through their definitions and the 

relationship between them. For example, it was stated that “From these 

classifications you can understand that the species of triangle are seven in all, 

neither more nor less. The equilateral triangle is one only and is acute-angled; 

but each of the other two has three kinds. The isosceles is either right angled, 

obtuse-angled, or acute-angled; and the scalene likewise has the same three 
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forms” (Morrow, 1970, pp.132-133). The classification necessitates 

generalization, abstraction and making connections about types of triangles by 

attaining knowledge of triangles. Nowadays, these explanations are still used in 

the classrooms while teaching triangles. In this respect, the classification of 

triangles was placed in the hypothetical learning trajectory of the present study 

through the PMSMT’s learning of triangles because of its importance on the 

historical development of triangles.  

After the definitions and postulates, Euclid examined criteria of 

congruence of triangles in his book of the “Elements”. Also, he insisted on the 

definitions of similar and congruent triangles. Euclid proposes similarity of two 

triangles in the Book VI of the “Elements”. This process was started benefiting 

from the definition of two similar rectilinear objects such as “similar rectilinear 

figures are such as have their angles severally equal and the sides about the 

equal angles proportional” (Heath, 1956, vol. 2, p. 188). Moreover, the criteria 

of similar triangles were examined by Euclid. 4th, 5th and 6th propositions 

taking place in Book VI of Euclid examined the proofs of the criteria of 

similarity of triangles. Proposition 4 is “in equiangular triangles the sides about 

the equal angles are proportional, and those are corresponding sides which 

subtend the equal angles (Heath, 1956, vol. 2, p. 200). Proposition 5 is “if two 

triangles have their sides proportional, the triangles will be equiangular and 

will have those angles equal which the corresponding sides subtend” (Heath, 

1956, vol. 2, p. 202). Lastly, proposition 6 is “if two triangles have one angle 

equal to one angle and the sides about the equal angles proportional, the 

triangles will be equiangular and will have those angles equal which the 

corresponding sides subtend” (Heath, 1956, vol. 2, p. 204). Then, this process 

continued with the similarity of triangles having the roots from the study of 

Thales (624-547 B.C.) with the evidence of Heath (1921/1981, vol. 1) stating 

the Hieronymus’s, a pupil of Aristotle, about it with the quotation of Diogenes 

Laertius, “Hieronymus says that he even succeeded in measuring the pyramids 

by observation of the length of their shadow at the moment when our shadows 
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are equal to our own height” (p. 129). The way representing the root of Thales’ 

method is still used in much literature for the concept of triangles. Moreover, 

there are real life problems taking place in the textbooks and representing it. 

Through this developmental process of triangles in history, the similarity and 

congruence of triangles have been important to be emphasized in the study. 

Moreover, the criteria of similarity on triangles were explained by comparing 

the main elements of triangles through examples and generalization.  

When the literature is examined, it is observed that there are beneficial 

studies examining learning of the students and teachers and teaching of 

teachers about the concept of triangles. While working with kindergarten 

children including 65 children aged 5-6 years-old, Tsamir, Tirosh and 

Levenson (2008) examined intuitive non-examples and the features making 

these non-examples intuitive for triangles. By using non-examples of triangles, 

teachers help students reason by attaining knowledge about their thinking of 

triangles benefiting from the previous research of Clements et al. (1999). In 

this process, the researchers stated that the students were encouraged to form 

concept images by concept definitions so that definitions were important to 

criticize the visual of triangles and their attributes to understand triangles. Also, 

the process of determining whether the geometric objects were triangles based 

on their visual form was the beginning level for geometric thinking and 

analytical judgment by attributes of geometric objects and their critical 

attributes. Moreover, Tsamir, Tirosh, Levenson, Barkai and Tabach (2014) 

examined the concept images and definitions of triangles, circles and cylinders. 

The participants were composed of early-years teachers. They found that the 

triangle definitions made by them were examined by considering necessary 

attributes of the triangle. Also, they added that formation of correct definition 

of triangle did not mean that they determined the triangle shapes correctly so 

the definitions and concept images should be examined. Also, Ward (2004) 

investigated the concept images and mathematical definitions of preservice 

teachers that would teach mathematics in K-8 about polygons. In the study, the 
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participants were asked to identify the triangles and different types of triangles 

such as right triangles among a collection of shapes of triangles.   

In the literature, there have been research to examine the effects of 

argumentations in an environment including mathematical argumentations on 

the students’ understanding of the concepts (Abi-El-Mona & Abd-El-Khalick, 

2011; Alatorre, Flores & Mendilo, 2012; Smith, 2010). In the study of Smith 

(2010), the researcher compared the middle school students’ mathematical 

arguments in technological and non-technological environments about the 

concept of triangles. With the teaching experiment taking place in two 8th grade 

classrooms; one designed with Geometer’s Sketchpad and the other one 

designed by non-technological tools, the content and the structure of the 

students’ arguments about the concept of triangles were examined by the 

Toulmin’s argumentation model. In this teaching experiment, hypothetical 

learning trajectory was formed including the learning goals related to 

classification of different types of triangles, examining common basic theorems 

about triangles and right triangles and application of their knowledge and 

understanding of triangles in problems representing real-world contexts. It was 

stated that the instructional sequence including the tasks about types and 

classification and sorting of triangles, triangle inequality and triangle interior 

angle relationships provided middle school students’ learning environments in 

which they formed mathematical arguments. It was also observed that the 

students in technological environment produced more arguments than their 

counterparts. Moreover, Alatorre, Flores and Mendilo (2012) investigated the 

primary teachers’ geometric reasoning through argumentations about the 

concept of triangle inequality. The data were collected from the primary 

teachers participated in workshop lasting two hours focusing on their common 

content knowledge and special content knowledge. They found that although 

the participants had difficulty while producing argumentations satisfactorily 

initially, they produced different types of argumentations such as authority-

based, symbolic, factual, empirical or incomplete analytical. In this respect, the 



76 

 

learning and understanding of triangles should be encouraged by 

argumentations.  

The usage of tools helps the learners to learn the mathematical concepts 

effectively and facilitates producing arguments (Smith, 2010). Hence, there 

have been research conducted to investigate the effects of manipulatives on the 

students’ understanding of triangles. Athanasopoulou (2008) conducted 

teaching-experiment research in order to examine preservice and inservice 

mathematics teachers’ skills of understanding, knowledge and proving the 

properties of triangles. The study was designed about triangles and 

quadrilaterals. They participated in an inquiry-based geometry course including 

the tools supported by Geometer’s Sketchpad during 30 classroom teaching 

episodes. The activities were composed of mostly definition and classification 

of triangles, congruence and similarity of triangles and proving activities about 

triangles. It was found that their geometric knowledge and geometric thinking 

about triangles were improved through teaching episodes. Also, their skills 

about writing geometric arguments and forming clear proofs were developed. 

Furthermore, Kellogg (2010) organized a design experiment in order to 

examine preservice elementary teachers’ pedagogical content knowledge about 

the concept of area and perimeter in web-based learning environment. They 

investigated the area and perimeter of triangles and other geometric shapes 

such as quadrilaterals benefiting from triangles. Through these teaching 

episodes, they had procedural knowledge by formulas, used representations 

ineffectively and did not know the possible misconceptions about the concept 

at the beginning of the study. They improved their learning and knowledge 

about triangles by participating in instructional sequence. In addition, Doğan 

and İçel (2011) investigated the effect of dynamic geometry software of 

GeoGabra on eighth grade students’ learning about triangles. An experimental 

design was used. It was found that construction activities encouraged by 

GeoGabra improved their motivation positively.  
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While working with 25 students with ages ranging from 12 to 15 year-

old, Kordaki and Balomenou (2006) examined the strategies used by them in 

the activities about conservation of area in triangles and discrimination of area 

and perimeter of equivalent triangles by Cabri-Geometry (educational 

software). The participants took place in three-week learning experiment where 

they engaged in learning activities such as construction of equivalent triangles 

in many different ways and examining their area and perimeter with possible 

tools. Through these activities, the Cabri facilitated the process by 

opportunities such as means of construction, connecting and controlling them. 

They stated that the students attained a broader view rather than the view that 

they obtained through typical paper and pencil environment. In other words, in 

order to help students attain deep knowledge about a geometrical concept, 

various learning activities, tools and problems with solutions in as many ways 

as possible should be designed and supported except for the typical activities 

and environment in which they engaged in everyday classrooms. Through this 

explanation, it was necessary for the learners to design non-typical learning 

environments. Moreover, it can be stated that problems are beneficial to 

enhance these environments since they are challenging situations not fitting the 

situations that they have experienced. The findings of the research show that 

using manipulatives and technological tools develop the students’ 

understanding and learning of triangles. In this respect, while teaching triangle 

to the students from different grade levels, it is important to design learning 

environments by the manipulatives.      

In the study of Gutierrez and Jaime (1999), they stated that student 

learning was related to the way in which their teachers understood mathematics 

and they taught how to transfer their knowledge to the students. They formed 

their hypothesis based on this explanation and investigated it through the 

concept of altitude of a triangle. This concept was difficult to understand by 

both of teacher and their students so it was necessary to make study about this 

geometry concept. The effects of concept definitions, concept images, 
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difficulties and errors about the altitude of a triangle on their performance were 

examined by 190 preservice primary teachers. Through this process, they were 

determined and explained under the categories of formal definitions and 

classroom activities about this concept. Based on the findings of the study, the 

teachers had difficulty and errors about the concept of triangles and grasping 

this concept was difficult for the preservice teachers. Therefore, it is necessary 

to help preservice teachers attain deep knowledge about the altitude of a 

triangle and other auxiliary elements of triangles since some of the errors 

determined in the study are related to other elements of triangles. Also, it is 

necessary to examine preservice teachers understanding about auxiliary 

elements of triangles in addition to the altitude. The altitude of triangles of 

triangles was also examined by Alatorre and Saiz (2010). They conducted 

research to inservice and preservice teachers in order to investigate their 

mathematical content knowledge about triangles by considering the effects of 

their gender and experiences. The tasks focused on triangle inequality, the 

altitude and area of triangles. They found that male teachers, secondary school 

teachers, inservice teachers and highly experienced teachers improved their 

mathematical content knowledge of triangles better than their counterparts of 

the participants.  They stated that they had difficulty about the triangles and 

also the application of Pythagorean Theorem.  

 Kemankaşlı (2010) conducted a quasi-experimental study about the 

design of a geometry learning environment on triangles for 10th grade students. 

The effects of this organized environment on academic achievement, cognitive 

characteristics and their skills were investigated through cooperative learning 

environment by constructivist learning approach. There were 60 tenth grade 

students separated into experimental and control groups and participated in the 

study lasting eight weeks. The activities were prepared about the formation of 

triangles, the relationship between angles and the edges of a triangle, medians, 

angle bisectors, similarity and congruence of triangles. It was stated that these 

activities when applied in the classrooms by the constructivist learning 
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approach, the students participating in this classroom become more successful 

than the students in the control group taking education by traditional learning 

method. In this respect, the concept of triangles can be taught effectively in an 

environment where the group work and social environment are encouraged and 

constructivist learning approach is benefited from.  

 While learning mathematical concepts, it is important to understand 

them by making connections between other concepts and their properties. 

Therefore, the research show that it is necessary to determine the mathematical 

concepts related to triangles and to teach the triangles using them (Kellogg, 

2010; Paquette, 1971). In the study of Paquette (1971), the tasks for the 

congruence of triangles were designed through transformation geometry. The 

study included the activities about forming abbreviations for the congruence of 

triangles and their image triangles formed through types of transformation 

geometry by explaining two variables; a transformational variable and a 

positional variable. There were sheets including the triangles and their images 

formed through one of the rigid motions in different positions then the 

participants were asked to examine the congruence of triangles based on their 

main elements producing abbreviations. In this respect, using representations 

were beneficial in teaching congruence of triangles. Moreover, rigid motions of 

transformation geometry provided a non-typical strategy to examine and 

understand the concept of congruence of triangles. This strategy facilitated 

learning of congruence and similarity of triangles. In addition, Gerretson 

(1998) examined the similarity of triangles in dynamic geometry learning 

environment by transformation geometry. The researchers conducted the study 

to the preservice elementary teachers. They found that transformation geometry 

was crucial to teach similarity of triangles.  

 Through the literature related to historical development of triangles and 

previous studies about teaching and learning triangles, beneficial information 

has been obtained for the current study. The hypothetical learning trajectory 

was designed and instructional sequence was performed based on the 
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information obtained through the examination process of the literature. The 

learning environment was designed based on the implications produced 

through this information in order to examine the preservice middle school 

mathematics teachers’ understanding and learning of the geometric concept of 

triangles with the classroom mathematical practices.  

 

2.11 Summary 

 

The main goal of mathematics education is to emphasize the importance 

of doing mathematics. It can be provided by the knowledgable teachers that 

can perform mathematical instructions effectively. In this respect, it is 

important to educate mathematics teachers in their teacher training programs to 

obtain mathematical knowledge for teaching. The preservice teachers can 

improve their subject matter knowledge as the dimension of mathematical 

knowledge for teaching by understanding, reasoning and connecting 

mathematical topics. Also, they can improve their subject matter knowledge by 

expressing, discussing and using them through mathematical ideas. In other 

words, the preservice mathematics teachers can understand the mathematical 

concepts through sharing, analyzing and discussing their ideas about the 

concept and then transferring and applying them in different contexts. By doing 

so, they learn the concepts in a taken-as-shared way by forming mathematical 

practices. When the emergence of mathematical practices and the way of 

supporting learning of the concepts are considered, the argumentations are 

useful to provide this learning process. Emergence of mathematical practices 

necessitates the social learning environment including social and socio-

mathematical norms as the dimension of the social aspect of interpretative 

framework related to social constructivism. Moreover, it is necessary to design 

an environment to help the preservice mathematics teachers learn in this way 

effectively. In order to design this environment, design-based research is used 

to organize instructional sequence. Hence, a hypothetical learning trajectory 
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including the estimations of pathways of the actions in the classrooms can be 

formed in order to perform instructional sequence. Also, this hypothetical 

learning trajectory is organized by determining three elements; learning goals, 

learning activities and hypothetical learning process. Hypothetical learning 

progress can be organized based on problem-based learning as a strategy 

encouraging scientific skills such problem solving, forming, analyzing, testing 

and discussing their mathematical ideas and reasoning related to 

argumentations.  Geometric constructions by compass and straight edge for 

learning activities as the second element of hypothetical learning trajectory can 

provide learning and understanding of the concepts. These tools can encourage 

the preservice middle school mathematics teachers’ reasoning and constructing 

proof about the concepts while examining their constructions. Lastly, triangles 

are critical geometrical concepts in order to provide their learning and 

understanding. In this respect, learning objectives are determined about 

triangles based on historical development and connection with other 

mathematical concepts. Moreover, van Hiele geometric thinking levels can 

provide information to the instructors about how to order and relate learning 

goals and design learning activities including the tools based on their geometric 

reasoning. 

 To sum up, this study maintains mathematical practices are important in 

improving preservice middle school mathematics teachers’ learning and 

understanding of triangles through geometric constructions, argumentations 

and justifications in problem-based learning environment. There is a general 

consensus about the positive effects of geometric constructions and 

argumentations in mathematics learning environment, however, there have 

been necessitated the research to examine their reasoning and understanding 

about triangles through teaching episodes supporting proofs, argumentations 

and constructions. The present study aims to provide contribution to the field in 

this way.   
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CHAPTER 3 

 

 

3. METHODOLOGY 

 

 

In this study, design based research methodology was used since it 

allowed to examine preservice middle school mathematics teachers’ 

understanding of triangles focusing on classroom mathematical practices 

through collective learning environment in designed environment that 

supported problem-based learning for the mathematical content of triangles. In 

this chapter, firstly, properties and the rationale of the use of design based 

research and case study are discussed. Secondly, the participants in the current 

study are introduced. Thirdly, how to intervene in the research is explained. 

Also, HLT and instructional sequence designed in the study are described. 

Fourthly, data collection and data analysis processes are stated. Finally, how 

the trustworthiness is provided in the current study is discussed.   

 

3.1 Design-based Research 

 

Design based research (DBR) or design experiments include arranging 

significant and different kinds of learning. It provides a way to work on 

learning in a systematic way related to the context encouraging them. They are 

used with the aim of the development of the theories about the processes of 

domain-specific learning. Theory constructed in this way illustrates the 

successive patterns in learners’ reasoning with the help of the means 

encouraging these patterns. Also, design experiments provide deep and 

effective understanding for learning environment. In other words, design 
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experiments illustrate an interacting system including multiple elements in a 

complex way and the way in which these elements interact together to enhance 

learning (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003). 

Design experiments can be accepted as pragmatic and theoretic with 

respect to the design and practice in learning environment. That is to say, the 

design experiments are conducted with respect to theoretical considerations 

and the validity studies about these constructs are tested in a pragmatics way. It 

can be said that this explanation is valid for all design experiments (Cobb et al., 

2003). These different studies can be exemplified with studies such as design 

experiments suggesting sessions for teaching with teacher, experimenter and 

student in order to form small-scale version for learning environments (Steffe 

& Thompson, 2000); classroom practices with a teacher as the member of the 

research team (Cobb, 2000); experiments in which the researchers make 

organization and work about education to the preservice teachers (Simon, 

2000); the researchers help inservice teachers improve about their professions 

(Lehrer & Schauble, 2000). In this respect, it can be explained that it becomes 

possible to link the practice with the theory. In other words, the gap between 

the theory and practice can be removed. The claims that the theories do not 

have practical benefits and the practices of the teachers have missing aspect of 

theoretical sides necessary for teaching practices. This can be achieved in a 

way that the teachers and the theorists study collaboratively in all parts 

including the design and the experiment in the research (Design-Based 

Research Collective, 2003).  

DBR as “a series of approaches, with the intent of producing new 

theories, artifacts, and practices that account for and potentially impact learning 

and teaching in naturalistic settings” (Barab & Squire, 2004, p. 2) have 

important characteristics (Anderson & Shattuck, 2012). They can be explained 

by taking place in real and actual educational contexts, designing and testing 

how to intervene with the learning of the classroom in an iterative refinement, 

using different methods by the cooperation of researchers and practitioners, 
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relating the theory with the practice and producing domain-specific theory 

based on the results of the study (Cobb et al., 2003; Wheeldon, 2008). In this 

respect, through iterative process, collective learning environment and 

development of social and individual mathematical thinking, revisions and 

improvements on instructional designs are provided by DBR (Cobb et al., 

2001). 

DBR have critical importance by taking place in the classrooms 

(Gravemeijer, 2004). DBR are beneficial since it provides firsthand 

information about how the individuals learn and reason in a learning context in 

a way that “students’ mathematics is indicated by what they say and do as they 

engage in mathematical activity, and a basic goal of the researchers in a DBR 

is to construct models of students’ mathematics” (Steffe & Thompson, 2000, p. 

269). In this respect, Steffe and Thompson (2000) explain that there are five 

elements necessary to design and conduct DBR: (a) teaching episodes, (b) a 

teacher or instructor, (c) one or more students/learners, (d) a witness observer, 

and (e) recording method of happenings in the teaching episodes (Wheeldon, 

2008). Therefore, DBR have a cyclical nature including repetition of the 

process composed of development of instructional sequence including 

instructional activities, testing it in classroom instruction, documenting and 

analyzing the learning and social process and making revisions on the 

instructional sequence and redesigning it (Gravemeijer, Bowers & Stephan, 

2003). At the end of this iterative process, an instructional theory is developed 

with the aim of improving the greatest progress of all of the learners in a social 

environment. In this developmental process, an observer as the witness for the 

instructional sequence and teaching episode takes place in all steps and whole 

process such as teaching episodes and meetings by being a member of 

community of learners formed in this process in order to understand and 

analyze the learning of the students and reasoning of them effectively. They 

also have the role of interpreter of the classroom environment and learners’ 

reasoning, planner of the instructional sequence and analyzer of the classroom 
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activity and modifications of learning goals and activities (Gravemeijer, 2004). 

Hence, this iterative process is related to testing, revising and redesigning the 

instructional sequence and activities on a weekly basis with the help of 

retrospective analysis in order for redesigning the instructional sequence 

(Gravemeijer, Bowers & Stephan, 2003; Steffe & Thompson, 2000).  

The main purpose of design experiments is to develop theories. These 

theories explain learning process and the means facilitating the learning 

(Graveimejer & Cobb, 2006). This aim can be achieved as Graveimejer and 

Cobb (2006) told by developing theories of instruction which are local and 

theoretical frameworks illustrating more comprising issues. They also 

suggested three phases to make design experiment research; preparing for the 

experiment, conducting the design experiment and then retrospective analyses. 

DBR is composed of progressive phases. In the phase of preparing for 

the experiment, the important result is to formulate local instruction theory. 

This theory is open to change, revision, elaboration in the process of 

experimenting in the classroom (Graveimejer & Cobb, 2006).  In this respect, it 

is important to identify theoretical intent (Cobb et al., 2003). Then, the research 

team makes the learning goals specific or the instructional endpoints and 

instructional starting points. The first step is to identify learning goals. 

Graveimejer & Cobb, (2006) suggested that these goals can be collected 

through history, tradition and assessment. Also, it is necessary to identify the 

core ideas in the domain. For example, in the present study, the lessons were 

related to the constructions of triangles. When the history of the participants 

were examined about the concept of triangles, the participants were preservice 

middle school mathematics teachers so they were expected to have deep 

understanding of the triangles concept since it is one of the main concepts in 

geometry. It was also accepted that they attained knowledge about basic 

theorems and properties of triangles in elementary and high schools. With this 

aim, the previous lectures and courses were also examined. Previous lectures 

and courses that the participants had taken were important in the present study 
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since they could provide information about mathematical knowledge of them 

and mathematical argumentations explaining claims, data and warrants in these 

lessons could be predicted. They learned how to construct geometrical figures 

and how to make argumentations about them. The preservice middle school 

mathematics teachers could be ready to learn the concept of the constructions 

of the triangles. The questions about constructing triangles necessitated 

understanding of triangles and basic construction activities of triangles and the 

properties of the triangles. Then, the data were collected through the classroom 

sessions, interviews and the research team meetings. Also, the research team 

held the meetings to discuss the results of the test and the students’ knowledge 

and reasoning related to the previous instructions to obtain necessary 

information for design experiment.  

In the literature, the concept has been taught through the different kinds 

of medium including some theorems in some research. The literature shows 

that the concept of triangles, the properties and the theorems about it have been 

taught with the help of proving strategy such as deductive or inductive 

reasoning or proof by contradiction in the geometry lessons of PMT (Durmus, 

Toluk and Olkun, 2002). Also, they have been examined with the help of 

technological tools such as Geometry Sketchpad, GeoGebra by proving 

strategies in the literature (Ceylan, 2012). With this motivation, it has become 

possible for most beneficial and effective goals by examining the goals related 

to the domain carefully and already defined in the curriculum in a disciplinary 

way (Graveimejer & Cobb, 2006). So, useful goals which were heavily related 

to the construction of triangles were able to be specified in the present study. 

This phase also includes determining the starting points for instructions 

(Graveimejer & Cobb, 2006). For this purpose, the previous instructions 

related to constructions of angles and lines were examined. The current skills, 

the knowledge of them and the results of the test conducted to the PMSMT 

before the instructional sequence was started. After the endpoints and starting 

points for instruction were determined, their task was to formulate the design 
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experiment. The design experiment was formulated with the help of 

hypothetical learning trajectory (HLT). An HLT was created about the concept 

of construction of triangles. HLT comprised 6 weeks with three hours in each 

week.  

In the phase of conducting design experiment, after the first phase was 

completed, conducting the design experiment began (Graveimejer & Cobb, 

2006). That is, the learning process based on the concept of construction of 

triangles started. The responsibility of the research team was to follow and 

analyze the learning process and to make inferences for the design experiment 

and the HLT. In this respect, it could be claimed that design experiments had 

cyclical nature as a characteristic (Cobb et al., 2003). In the study of the design 

experiment, there existed two research goals as investigation of learning of the 

students and their cognition and developing the instructional theory and the 

HLT beneficial for communication of learners and their conceptual 

understanding. The data collected for the first research goal was analyzed for 

the second research goal. The design was tested, changed and reorganized 

based on the data. Moreover, while the learning process was in progress, the 

understanding of the research about the phenomenon becomes deeper and more 

meaningful. It was important to interpret the learning process and the learners’ 

reasoning and learning in this process and the means organized to encourage 

learning. The issue of what was happening in the classroom was critic to 

interpret and explain explicitly and clearly (Graveimejer & Cobb, 2006). In 

other words, it was important to make connection between theory and practice 

by interpreting the happenings in the classroom to make inferences for HLT 

and the theory. In these respect, the actions, learning and reasoning process of 

the PMSMT were examined by considering their mathematical argumentations 

based on the concept of triangles to make inferences for the designed HLT. 

Graveimejer and Cobb (2006) suggested using interpretative framework to help 

researchers interpret complex and huge amount of data in the process of 

retrospective data analysis and teaching episodes. In the process of teaching 
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episodes, formal and informal meetings were made. In these meetings, the 

problems in the instructional sequence and their solutions were discussed.     

The last phase is conducting retrospective data analysis. It includes the 

actions of analyzing the data in a comprehensive and systematic way and 

recording the reasons for particular inferences (Graveimejer & Cobb, 2006). In 

this way, the resulting claims become trustworthy (Cobb et al., 2003). 

DBR used in the present study was conducted as the experiences of 

PMSMT’s in a classroom focusing on the improvement of their geometrical 

understanding and learning by testing and revising an instructional design on 

the concept of triangles. With the help of the nature of DBR about the 

development of domain specific theories, it aimed to systematically examine 

the learning and means of support within a designed environment for specific 

learning about a particular domain (Cobb et al, 2003) in mainly pilot study. 

Also, the research team aimed to test a theory in order to design a beneficial 

lesson plan related to the concept of triangles. According to the results of 

retrospective analysis made through data obtained from the pilot study, actual 

HLT was produced. Then, this HLT was used in order to extract classroom 

mathematical practices in the main study.  

 

3.2 Local Instruction Theory 

 

In DBR, the learners are provided by a designed group of connected 

supports in a designed environment, also named as design contexts, identified 

as “interacting systems rather than as either a collection of activities of a list of 

separate factors that influence learning” (Cobb et al, 2003, p. 9) by producing 

instructional theories. In this respect, it has an exploratory nature by producing, 

testing and revising the instructional theory since it focuses on why designs 

work and which inferences can be made for other environments. Then, this 

theory can be explained as local instruction theory by designing supports and 
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environment and examining various types of learning in a specific content area. 

In this respect, it can be stated that learning is performed by obtaining 

knowledge through social practices (Cobb et al, 2003).  

DBR mainly aims to develop a local instruction theory (Gravemeijer & 

Cobb, 2006). In the process of the applying DBR methodology, a conjectured 

local instructional theory is designed through empirical evidence such as 

literature review and proposed learning theories considering specific 

mathematical domain at the beginning. In the progression of DBR, a 

conjectured local instruction theory is analyzed in ongoing process and 

modified based on information obtained from implementation of instructional 

interventions (Gravemeijer & van Eerde, 2009). Also, revisions can be made 

on the instructional sequence and the subsequent instructional experiment 

(Markworth, 2010). For example, in the present study, in the process of the 

course of a six-week instructional cycle, there existed mini cycles occurring 

almost six times in each week in the sequence of instruction as a DBR as 

illustrated in Figure 1 adapted from Gravemeijer and Cobb (2006).   

 

Figure 1 Reflexive Relation between Theory and Experiments 
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All of the micro cycles represent the long term macro cycle. In DBR, it 

is important to examine what is happening paying attention on what has taken 

place in the past and what is going to take place in the future (Fuentes, 2012). 

Therefore, the HLT implemented in a macro cycle and the instructional 

sequence was examined and revisions were made on the HLT based on this 

macro cycle. Then, revised HLT was conducted to another group referring to 

another macro cycle. For example, completed six-week instructional sequence 

explained in the above example comprised a macro cycle as illustrated in 

Figure 2 adapted from Gravemeijer and Cobb (2006). The second macro cycle 

consisted of the implementation of the revised instructional sequences based on 

the revisions to the conjectured local instruction theory. Therefore, in the 

present study, there existed two macro cycles which were the pilot study and 

implementation of the revised HLT. 

 

 

Figure 2 The Micro and Macro Cycles 

 

When the cyclical iterative phases of conducting DBR are considered, 

they are anticipation, enactment and evaluation whose iterations form the 
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macro cycle related to conjectured local instruction theory (Gravemeijer & van 

Eerde, 2009; Shavelson, Phillips, Towne, & Feuer, 2003; Simon, 1995). 

Firstly, in anticipation phase, the sequence is designed. Secondly, the 

enactment phase happens. The planned and designed instructional sequence 

takes place through weekly mini cycles, i.e., the phase of DBR. The last phase 

is evaluation. Retrospective analysis is made and necessary revisions are made 

on HLT and instructional sequence. The findings obtained through these three 

phases propose implications for the conjectured local instruction theory. 

 

3.2.1 Anticipation of conjectured local instruction theory 

 

The anticipation phase includes the planning process for the 

hypothetical learning trajectory (HLT), designing learning activities and the 

development of conjectured local instruction theory. A HLT was designed in 

order to solve some of the perceived problems in traditional ways of teaching 

triangles concept. The theoretical issues and the model of geometrical 

reasoning and mathematical argumentation constituted the basis of the teaching 

approach organized and tested in the current study. The main focus of the HLT 

was the problem solving activities related to triangles designed by considering 

the properties of van Hiele geometric thinking levels. Moreover, van Hiele 

geometric thinking theory used to explain the instructor’s expectations about 

the pathway of the instruction and the learners’ actions in the classroom since 

the HLT included the expectations of the instructor about the learners’ 

behaviors related to learning activities and their understanding of the concept. 

This HLT included imagery/tools such as drawing and constructing triangles 

for the activities such as equilateral and isosceles triangles, examining the 

possibility of formation of triangles by some elements, constructing and 

examining the auxiliary elements of triangles and congruence and similarity of 

them. 
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 The goal of the HLT used to determine the classroom mathematical 

practices designed for the concept of triangles was to affect preservice middle 

school mathematics teachers’ (PMSMT) subject matter content knowledge 

related to triangle concept of geometry. While forming the HLT, means of 

support was important taking place in this process. In order to design HLT, it 

was important to determine means of support.  

Cobb (2003) separates means of support in DBR into four interrelated 

groups: the instructional tasks, the tools students use, the nature of the 

classroom discourse and the classroom activity structure. Instructional tasks 

refer the mathematical activities on which the learners make reasoning and 

develop their understanding while dealing with. These activities become more 

useful when they are designed based on the situations which are problematic to 

improve their understanding and conception. These situations can be 

exemplified as “(a) resolving obstacles or contradictions that arise when they 

attempt to make sense of a situation in terms of their current concepts and 

procedures, (b) accounting for a surprising outcome, (c) verbalizing their 

mathematical thinking, (d) explaining or justifying a solution, (e) resolving 

conflicting points of view, or (f) developing a framework that accommodates 

alternative solution methods and formulating an explanation to clarify another 

child’s solution attempt” (Wood, Cobb, & Yackel, 1995, p. 413). Therefore, 

the researcher considered the ways in which the tasks developed conceptual 

understanding relating problematic situations and facilitated whole class 

discussions leading learning and understanding while planning the instructional 

tasks taking place in the HLT on the concept of triangles. The tools as the 

second means of support (Cobb, 2003) are useful in the process that the 

learners reorganize their understanding and reasoning while dealing with the 

problematic situations in the activities. Moreover, Stephan (2003) exemplifies 

the tools as physical materials, tables, pictures and standard or nonstandard 

symbols. Gravemeijer (2004) adds other examples for the tools invented by the 

learners through solving problems in the activities. They are accepted as the 
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basis on imagery with the explanation of Thompson (1996) about grounding 

mathematical reasoning in imagery. In this respect, similar imagery can be 

formed through the experiences of individuals participating in the same 

instruction. Therefore, it is important to determine tools and imagery for the 

HLT of the study in order to design an environment in which the learners 

participating in the instructional sequence attain common experiences. In the 

present study, the tools and imagery for the conception of triangles of PMSMT 

were examined through literature review and previous research. The other 

means of support identified by Cobb (2003) is the classroom discourse taking 

basis from norms which are social and sociomathematical norms referring the 

participation structure in the classroom (Cobb et al., 2001; Cobb & Yackel, 

1996; Stephan & Cobb, 2003). These norms are vital to provide PMSMT 

opportunities to express their understanding and reasoning on triangles leading 

the emergence of classroom mathematical practices. The last mean of support 

is the activity structure of the classroom composed of small group works and 

whole class discussions taking place in the DBR. The activity structure has 

strong impact on classroom discourse and emergence of mathematical practices 

including various interpretations, expressions and solutions of the students 

becoming taken-as-shared. All explained means of support were examined by 

planning and designing the HLT on the concept of triangles for the present 

study. Therefore, this planning process was separated into the titles of the 

tasks, tools and imagery and possible discourse topics by making closed 

relationship between them to form classroom activity structure (Cobb, 2003) 

benefiting from problem solving method and van Hiele geometric thinking 

levels in the environment of problem-based learning.  

 In light of the means of support identified by Cobb (2003) and with the 

aim of accomplishing this goal, the HLT was designed with three phases 

including the means of support. Also, literature review based on the concept of 

triangles, van Hiele geometric thinking levels adapted for triangles, the 

objectives about them in the middle school mathematics curriculum and many 
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textbooks was used in the present study. Through these sources, the important 

points, necessary knowledge and skills on the concept of triangles were 

determined. Then, the problems and the activities were formed benefiting from 

problem solving strategy and van Hiele geometric thinking levels. Hypothetical 

Learning Trajectory (HLT) specified as theoretical construct explaining the 

instructors’ predictions about the progress in instructional sequence (Simon, 

1995). Also, it can be designed effectively in three categories as a learning 

goal, learning activities, and a hypothetical learning process. In this respect, the 

HLT was designed by considering them in three ways so learning goal, 

learning activities, and a hypothetical learning process were explained by the 

practices. These practices included the period of six weeks and three hours in 

each week. The cycle of instructional sequence was organized based on the 

HLT, PMSMT’s interactions including mathematical argumentations, and the 

instructor’s knowledge in the current study. This organization process was 

made and revised regularly by the research team. The ways in which the 

PMSMT engaged in mental activities supporting them to form mathematical 

argumentations and the activities reflected the learning goals. In the process of 

instructional sequence, necessary modifications were made on the HLT by 

considering experiences. In this process, the instructor was responsible for 

providing opportunities for the PMSMT to transfer their geometric reasoning 

about the concept of triangles to more knowledgeable one by the HLT. In order 

to bring the HLT back to life, it was important to design instructional 

sequences. There were three goals of the present study forming three phases. 

The tasks focused on three types of activities in the instructional unit of the 

first phase. They were definition and classification of types of triangles, 

studying on exemplars, variants, and palpable (clear) and difficult distractors 

for triangles and examination of the possibility of construction and drawing of 

triangles based on some known elements. Phase 2 emphasized the critical 

properties related to auxiliary elements of triangles such as median, altitude, 

angle and perpendicular bisectors. Phase 3 as the last phase of the HLT focused 
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on formation of similarity and congruence of triangles and important properties 

about congruent/similar triangles.    

The first phase of the HLT was devoted to basic ideas necessary to 

construct and develop the expected deep conceptual understanding on triangles. 

Therefore, fundamental concepts having importance for understanding and 

development of triangles were placed and emphasized in the HLT. By the end 

of this phase, the goal was that the PMSMT would not only form triangles, but 

also evaluate different contexts about the formation of triangles. With this aim, 

the first phase of the HLT was composed of three activity sheets focusing on 

different but related learning objectives as in Tale 2. The first activity sheet 

was designed for the objective about the formation of triangles focusing on the 

definitions of types of triangles and the classification of them. This knowledge 

was focused on since the fifth grade students learn different types of triangles 

based on the mathematics curriculum. Also, seventh grade students are taught 

the definition and formation of triangles. Moreover, while designing this 

activity sheet, the properties of the second and the third van Hiele geometric 

thinking levels, analysis and informal deduction in order, were considered. In 

other words, through this activity, the PMSMT were expected to attain 

necessary skills on the concept of triangles based on these levels. This activity 

sheet was prepared based on the history of the concept of triangles so the 

definitions produced by Euclid and the study of Proclus in the Commentary on 

the First Book of Euclid’s Elements analyzing the definition of types of 

triangles for the basis of classification of them based “partly on their sides and 

partly on their angles” (Morrow, 1970, p. 130). With the activity of 

classification, the importance of the main elements of triangles was 

emphasized. Moreover, as explained by Proclus, this activity enhanced 

understanding the relationship between these types by stating “From these 

classifications you can understand that the species of triangle are seven in all, 

neither more nor less. The equilateral triangle is one only and is acute-angled; 

but each of the other two has three kinds. The isosceles is either right-angled, 
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obtuse-angled, or acute-angled; and the scalene likewise has the same three 

forms” (Morrow, 1970, pp.132-133). With the help of this activity, the basic 

knowledge on the formation of triangles was examined to help PMSMT attain 

deep knowledge about it.  

The second activity sheet was designed based on the properties of the 

first and second geometric thinking levels, visualization and analysis in order. 

The objective of the second activity sheet was to determine the shapes of 

triangles and reasoning on this identification. It was designed based on the 

explanation of Clements and Sarama (2009) about thinking and learning about 

specific shapes adapted for PMSMT education. They claim that the learners 

show tendency to seeing and discussing typical forms and appearance of the 

geometric shapes which are exemplars and ignoring other forms of these 

shapes which are variants. Also, they emphasize the importance of discussing 

about non-examples separated into two groups; “palpable distractors if they 

have little or no overall resemblance to the exemplars and difficult distractors 

(for the children, we call them “foolers”) if they are highly visually similar to 

exemplars but lack at least one defining attribute” (Clements & Sarma, 2009, p. 

127). In this activity, twelve shapes were formed on the sheet as the 

representations of exemplars, variants, palpable and distractors for triangles. 

Then, the participants were asked to determine whether the shapes were 

triangles or not and to explain the reasons of this identification.  

The last activity sheet was designed for the objective about evaluation 

of the formation of triangles using some of elements or attributes of triangles. 

Moreover, while designing this activity sheet, the properties of the third and the 

fourth van Hiele geometric thinking levels, informal deduction and deduction 

in order, were considered. In this activity, the PMSMT were not expected to 

represent the properties of the level of deduction completely. That is, through 

this activity, the PMSMT were expected to attain necessary skills on the 

concept of triangles based on these levels. In this activity sheet, there were 

problems examining the possibility of formation of triangles based on some 
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known elements which were main and auxiliary elements. This activity sheet 

was designed since eigth grade students examine the possibility of formation of 

triangles with the objective of drawing the triangle by knowing enough number 

of elements. For these problems, various groups accepting some of these 

elements as known were formed and then PMSMT were asked to investigate 

the possibility of formation of triangles having these known elements 

represented in these groups. The first problem was about making generalization 

about the formation of triangles based on knowing some elements keeping the 

number of these elements at the minimum level. These questions take place in 

Şahin’s book (2013). Moreover, when literature review was made about 

triangles, it was observed that construction steps could be beneficial tools for 

the formation of triangles and reasoning on them.  

Table 2 Phase 1 of the Hypothetical Learning Trajectory 

Learning 

Goals 

Evaluating the formation of triangles 

Concepts Definition of types of triangles 

Examples and Non-examples of triangles 

Main and Auxiliary elements  

Forming and drawing triangles based on known elements 

Supporting 

Tasks 

Classification of triangles 

 Basic drawings of triangles 

Tools and 

Imagery 

Diagrams  

Compass and straight edge 

Possible 

Discourse 

Definition of triangles based on main elements 

Process of different construction and drawings of specified 

triangles 
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The second phase of the HLT was devoted to basic ideas necessary to 

develop deep conceptual understanding on the auxiliary elements of triangles. 

Auxiliary elements of triangles were placed in the study since eigth grade 

students learn the construction and properties of these elements in the 

mathematics curriculum. Therefore, fundamental concepts having importance 

for understanding and development of them were placed and emphasized in the 

HLT. By the end of this phase, the goal was that the PMSMT would not only 

construct these auxiliary elements, but also attain deep knowledge about 

properties of them and formation of critical points formed by them such as 

centroid as the concurrence point of the medians, orthocenter as the 

concurrence point of the altitudes. In order to examine these elements clearly 

and effectively, the second phase of the HLT was composed of four activity 

sheets focusing on each of these elements as in Table 3. They were 

perpendicular bisectors, angle bisectors, altitudes and medians in respectively.  

While designing these activity sheets, the properties of the third and the fourth 

van Hiele geometric thinking levels, informal deduction and deduction in 

order, were considered. Informal deduction of van Hiele geometric thinking 

level was expected to be observed while the PMSMT were proving that their 

construction steps were the construction of expected geometric shapes in the 

problem situation. Also, deduction of van Hiele geometric thinking level was 

expected to be observed while PMSMT were proving the concurrence of 

auxiliary elements of triangles and naming these critical points benefiting from 

proofs and justifications based on theorems that they knew and reasoning 

“formally by logically interpreting geometric statements such as axioms, 

definitions, and theorems” (Clements & Battista, 1992, p.428). The similar 

problems which were constructions of these auxiliary elements, concurrence of 

them, naming of them and the places of these concurrent points on different 

types of triangles through construction and mathematical justification processes 

were formed on the activity sheets for each auxiliary element.  
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The tools and imagery used for these activities were construction steps 

including compass and straight edge. Construction activities has been described 

as the techniques used to solve problems based on previously determined rules 

and conditions where the problems are performing drawings by only compass 

and straight edge. These activities instead of drawings supporting necessary 

conditions are beneficial with its historical grounds by Euclid (Axler & Ribet, 

2005; Smart, 1998). In construction, the learners analyze the properties and 

elements of geometric shapes to attain deep knowledge about them 

(Cherowitzo, 2006).  

Nowadays, the usage of compass and straight edge has been given 

importance in the mathematics curriculums. This construction process it 

provides opportunities to make connection between other geometric shapes 

such as circles, arcs, lines and polygons. In this respect, this process proposes 

challenge situation for the learners since they do not realize the construction of 

the shapes by this tool (Erduran & Yeşildere, 2010) but “doing compass and 

straightedge construction early in the course helps students to understand 

properties of figures” (Hoffer, 1981, p. 12). The construction activities help the 

learners think about the properties of geometric shapes by making relationship 

between them, reasoning on them to develop their geometric thinking and deep 

conception about geometric shapes (Napitupulu, 2001; Hoffer, 1981). Also, the 

process of construction does not mean proving since they refer to the 

applications supporting expected conditions while proving refers to the 

representation process of what extend the geometric shapes support expected 

conditions (Hartshorne, 2000).  

PMSMT should be equipped about construction activities. Moreover, 

the nature of construction activities makes them appropriate for the present 

study since the learners cannot realize how to begin and construct at first 

glimpse so they are in challenge situation and a problem situation forms. These 

problem situations were useful to be used in the present study since the 

instructional sequence and the HLT of the present study was designed based on 
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problem-based learning approach. Therefore, the activities by compass and 

straight edge were emphasized in this phase. PMSMT were asked to construct 

these auxiliary elements, justify the concurrence of them on triangles, name 

these concurrent points formed by them and identify the places of these critical 

points for different types of triangles by reasoning. They were also asked to 

reason about these situations and provide mathematical justifications and 

representations for them.    

Table 3 Phase 2 of the Hypothetical Learning Trajectory 

Learning 

Goals 

Reasoning on auxiliary elements of triangles and concurrence of 

them 

Concepts Medians 

Angle bisector 

Altitude 

Perpendicular bisector 

Supporting 

Tasks 

Definitions 

Constructions 

Concurrence on a triangle 

Name and critical importance of concurrent points 

Changing/unchanging places of these points for different types 

of triangles 

Tools and 

Imagery 

Drawings 

Compass and straight edge 

Possible 

Discourse 

Various ways of construction of these elements 

 Various ways of justifying the concurrence of them 

 Various reasons of changing/unchanging places of these points 

for different types of triangles 
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The last phase of the HLT was devoted to basic ideas necessary to 

develop deep conceptual understanding of congruence and similarity of 

triangles having critical importance on the concept of triangles as in Table 4. 

The congruence and similarity of triangles are taught in sixth, seventh and 

eighth grade classroom as in mathematics curriculum. This concept has 

historical importance beginning from the book of Euclid and Thales (624-547 

B.C.) developed the concept of similarity of triangles. Through this historical 

development and by the connection of this concept with real life problems such 

as forming and representing the models in proportion before their real 

construction process, this concept attains critical importance in curriculum and 

mathematics teaching and learning from middle school to college level. 

Therefore, these fundamental concepts having importance for understanding 

and development of them were placed and emphasized in the HLT. By the end 

of this phase, the goal was that the PMSMT would not only form these 

congruent and similar triangles, but also attain deep knowledge about 

properties of them, criteria of congruence and similarity and application of 

them in different problem situations. 

While designing these activity sheets, the properties of the third and the 

fourth van Hiele geometric thinking levels, informal deduction and deduction 

in order, were considered. Informal deduction of van Hiele geometric thinking 

level was expected to be observed while the PMSMT were proving that the 

triangles obtained through construction were the image triangles formed by 

transformation geometry. They made connection between triangles and image 

triangles concerning their shapes, elements and properties. Also, deduction of 

van Hiele geometric thinking level was expected to be observed while PMSMT 

were proving and justifying whether the triangles and their image triangles 

were congruent/similar and criticizing the congruence and similarity of 

triangles explained in different contexts with some specific known elements 

based on theorems that they knew and reasoning (Clements & Battista, 1992). 

In order to examine them clearly and effectively, this phase of the HLT was 
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designed at two levels; congruence and similarity through transformation 

geometry and similarity and congruence on triangles. The first level was 

designed including four activity sheets about translation, rotation, reflection 

and dilation transformations respectively. In the textbooks, the concept of 

congruence to reproduce exactly the same object and similarity to form the 

object in proportion with the prior geometric object is emphasized. When the 

process of image formation through transformations was examined, the same 

objects were formed through translation, rotation and reflection referring to 

congruence and the proportional object is formed through dilation referring to 

similarity. This explanation about motional aspect of congruence/similarity by 

construction was also placed in some textbooks (Alexander & Koeberlein, 

2011).   

French (2004) explains the concept of construction and congruence of 

triangles with rigid motions. These activity sheets were formed in this way. 

French (2004) also states the importance of enlargement and similarity so an 

activity sheet was designed about dilation in the similar way. Therefore, the 

similarity and congruence of triangles through transformation geometry by 

construction was used in the present study. The similar problems about 

formation of the image triangles through transformation by construction on 

geometric view and drawing benefiting from the coordinate system on 

algebraic view were formed on the activity sheets for each type of 

transformation. Moreover, the participants could use proofs in order to show 

congruence and similarity of triangles and making inferences for the 

similarity/congruence critaria. The tools and imagery used for these activities 

were construction steps including compass and straight edge and the coordinate 

system.  

The other level of this phase was designed including two activity sheets 

about congruence and similarity respectively. In almost all textbooks, the 

criteria of congruence and similarity have been studied. Therefore, the 

emergence and formation of these criteria was examined in these activity 
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sheets. Moreover, the relationship between triangles and image triangles based 

on congruence and similarity was formed at the beginning of these activity 

sheets. Then, the emergence of congruence/similarity criteria and necessary 

mathematical justifications or proving was examined. At the end of the second 

activity sheet, there was a list of explanations representing particular triangles 

with their some known elements. Then, PMSMT were asked to examine 

whether they were congruent/similar triangles formed by transformation 

geometry in specific contexts. Also, they were expected to make mathematical 

justifications or proving about these contexts. These contexts were formed by 

the researcher inspiring from the explanations and general statements about 

triangles placed in various geometry textbooks.   

Table 4 Phase 3 of the Hypothetical Learning Trajectory 

Learning 

Goals 

Reasoning on congruence and similarity of triangle 

Concepts Translation,  Rotation,  Reflection,  Dilation 

 Congruence &  Similarity 

Supporting 

Tasks 

Formation of the image triangles with geometric and algebraic 

views comparing triangles and their images 

Tools and 

Imagery 

Dot paper 

Compass and straight edge 

Possible 

Discourse 

Various ways of construction of image triangles 

 Similarities and difference of triangles and their images 

including main or auxiliary element, concurrent points, 

orientation, position 

 Criteria of congruence/similarity of triangles by mathematical 

justifications 

 Determining congruence/similarity of specified triangles 
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3.2.2 Enactment of conjectured local instruction theory 

 

The phase of the enactment of conjectured local instruction theory of 

DBR was taken place by the application of the HLT and the instructional 

sequence. In other words, it included the first macro cycle with weekly mini 

cycles lasting six-week-period and three hours in each week. While 

determining the means of support, the researcher examined the literature based 

on the concept of triangles. They were formed in light of the necessities of van 

Hiele geometric thinking levels and problem-based learning strategy. Once 

they were formed, they were implemented to five PMSMT not participating in 

the instructional sequence in neither pilot study nor main study. The activities 

were examined by these PMSMT, the researcher and the academician as the 

non-participant observer of the instructional sequence. After determining the 

HLT with this team, the HLT was conducted to the pilot study group. In the 

process of the present study, enactment of conjectured local instruction theory, 

pilot study was conducted. The pilot study group included 23 PMSMT. The 

designed HLT was conducted to them in order to attain a source of input for 

the revisions of the HLT and then to apply the revised form of it in the main 

study. In other words, the first macro cycle of the sequence was implemented 

to obtain data for retrospective analysis and designing actual HLT for the 

instructional sequence of the main study that the classroom mathematical 

practices about triangles were examined.  

The research team including the researcher, non-participant observer 

and three PMSMT participating in the instructional sequence for the pilot study 

took responsibility in the first macro cycle to collect data to form actual HLT 

through retrospective analysis based on the explanations of Cobb (2000) and 

Simon (2000) about the necessity of the research team. In the instructional 

sequence, the PMSMT initially worked in small groups in which the 

participants studied with their peers. While they were working on the activity 

sheets with their peers in small group works, the instructor visited the small 
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groups to attain knowledge about their knowledge and actions, to determine 

different mathematical ideas about tasks and to extract whole class discussion 

topics. After the completion of small group works, the whole class discussion 

was started. Different interpretations, representations and mathematical ideas 

were discussed about the tasks with their reasons. The small group works and 

whole class discussions were mainly taken place in all stages and for all 

mathematical tasks on the HLT in this way.    

The first week of the instructional sequence began with phase one of the 

HLT with the learning goal of evaluating formation of triangles. This was also 

the initial phase where PMSMT became acquainted with the triangles. The goal 

of this lesson was for PMSMT to define a triangle and its types and to evaluate 

formation of triangles in various contexts in problem situations. In the 

instructional sequence, the first week was important because of examining and 

attaining deep knowledge about triangles and began to establish the social and 

sociomathematical norms of the classroom. The instructional sequence started 

with the activity having the title of Classification of Triangles as the first 

activity sheet of the week, a task designed to classify the types of triangles 

based on the relationship between them by defining them. In this activity, the 

participants had difficulty in defining and classifying triangles by relating them 

based on their critical attributes. Then, they were challenged to explain the 

reasons and main ideas about the placement of them. At this problem, they 

made explanations about main elements of triangles and their roles by relating 

and classifying triangles. They had difficulty since they knew the names of 

main elements but did not know how to apply them on relating and classifying 

them. At the end, they were asked to find another way to classify triangles.  

By this task, it was intended to lead into a discussion of different 

classifications based on main elements of triangles. Moreover, PMSMT 

produced different representations for the types of triangles and the 

classification of them. They discussed the definitions of triangles and realized 

that the classification of triangles could be made with respect to the main 
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elements of triangles; angle and edge. In this way, they realized the role of 

triangles’ main elements on definitions and classifications of them. Moreover, 

they used different representations and diagrams. The purpose of the next task 

for the class was to determine whether the figures on the activity sheet were 

triangles or not and to explain the reasons of this identification. Therefore, they 

were asked to determine whether the given shapes were triangles or not and to 

explain the reasons of this identification. They were wanted to form these 

explanations mathematically. In both small groups and whole class discussions, 

it was realized that this task did not produce challenge situations for the 

participants. They successfully formed the explanations for these shapes with a 

minimum level of effort. In these initial two activity sheets, the PMSMT 

focused on the formation of triangles based on their main elements and 

relationships between them with the help of classification of them. The purpose 

of the last task for the class was to evaluate the possibility of formation of 

triangles based on some known elements which were main and auxiliary 

elements. For these problems, various groups accepting some of these elements 

as known were formed and then PMSMT were asked to investigate the 

possibility of formation of triangles having these known elements represented 

in these groups. In the small group works, they tended to solve these problems 

based on related theorems and the properties of triangles. In the whole class 

discussion, they learned the solution of these problems by drawings and 

constructions of these problems and the importance and necessity of this 

tools/imagery. In other words, they realized that their solutions were not 

completed since they thought different types of triangles fitting the explained 

situation and examining the number of types of triangles for that situation by 

drawing and construction strategy. This last activity sheet provided 

opportunities for PMSMT to examine the formation of triangles based on 

auxiliary elements of triangles so that they realized the roles of them in the 

formation process. These activities completed phase one of the hypothetical 

learning trajectory whose learning goal was evaluating formation of triangles. 

This phase was concluded as the tasks which were aimed directly at providing 
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learning and understanding about formation of triangles based on their main 

elements by defining, classifying and examining these processes.  

The second and third weeks of the instructional sequence continued into 

phase two of the hypothetical learning trajectory with the learning goal of 

reasoning on auxiliary elements of triangles and their concurrence. The second 

week included the tasks about the perpendicular and angle bisectors and the 

third week focused on angle bisectors and medians. These tasks included 

similar problems which were construction of one of these elements among 

three elements for each triangle, the construction of three of them for a triangle 

and representing the concurrence of them, naming these concurrence points 

and identifying whether the position of these concurrence points changed or 

not and the reason of this identification. These tasks were supported by the 

imagery/tool of construction steps. The process of usage of construction 

activities in the instructional sequence was performed by the steps explained by 

Smart (1998). The first step is analysis. The learners perform the construction 

of the shape assuming that the explained conditions occur and making 

connections between necessary unknown conditions in the problem and 

explained the conditions in the problem. The second step is construction. The 

learners form the shape using compass and drawing straight edge through 

construction. The third step is proving. It represents the process in which they 

prove that the constructed shape is the shape wanted to be formed in the 

problem. The last step is discussion. The possible alternative solutions and 

situations for the construction and proving are discussed. These steps 

facilitated the understanding of PMSMT about how they could use the compass 

and straight edge with their prior geometry knowledge to construct the 

auxiliary elements of triangles. In this respect, the actions and the ways that 

they were constructed by geometrical thinking were discussed and learned 

effectively. In order to help PMSMT attain familiarity with these steps, learn 

effectively and establish one of the sociomathematical norms of the classroom, 

a problem about copying a particular triangle through construction was formed 
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in the first activity sheet of the second phase of the HLT. These activities 

completed phase two of the hypothetical learning trajectory and two weeks of 

the instructional sequence whose learning goal was examining the auxiliary 

elements of triangles. This phase was concluded as the tasks which were aimed 

directly to provide learning and understanding of these elements, concurrence 

of them, examine their names, critical importance and places on different types 

of triangles.        

 The fourth and fifth weeks of the instructional sequence continued into 

phase three of the hypothetical learning trajectory with the learning goal of 

reasoning on the congruence and similarity of triangles. These weeks included 

different kinds of tasks and the learning goal was examined at two levels, one 

for each week. The fourth week included the tasks about the congruence and 

similarity of triangles through transformation geometry. These tasks included 

similar problems which were definition of the types of transformation 

geometry, construction of the images of triangles by compass and straight 

edge, formation of images of triangles on the coordinate system, the 

similarities and differences between triangles and their images obtained by one 

transformation or composition of two same transformations. There were four 

activity sheets including these problems adapted for translation, rotation, 

reflection and dilation respectively in each of these activity sheets. These tasks 

were supported by the imagery/tool of construction steps by compass and 

straight edge and dot paper to illustrate the coordinate system. The process of 

usage of construction activities in the instructional sequence was performed by 

the steps explained by Smart (1998) and also these steps took place in the 

sociomathematical norm through previous weeks of the instructional sequence. 

They attained knowledge about similarity and congruence of triangles and 

implications for the criteria for congruence and similarity in the whole class 

discussion. For example, by these imagery/tools, PMSMT realized that the 

lengths of the edges of triangles were preserved through translation, rotation 

and reflection. In translation by construction, they focused on vectors and their 
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properties so that they realized that the lengths of the edges were kept same 

because the distance between two parallel lines was always same. The 

activities on coordinate system strengthened this realization since they used the 

formula of finding the length of the line segments whose start and end point 

places on the coordinate system were known. They found the lengths of the 

edges of triangles and their image triangles so that they clearly illustrated 

congruence of triangles formed through translation. Then, they made 

implications for the congruence criteria of S.S.S. The similar discussions were 

made about other transformations, rotation and reflection by relating 

congruence of triangles. The last activity sheet was designed including two 

problems; one for enlargement of a triangle and the other for reduction of a 

triangle, to form image triangles through construction. This activity sheet did 

not include the problem about formation of image of triangle on coordinate 

system. Through the discussion of these problems, they realized the similarity 

of triangles and some of the criteria for similarity. These activities completed 

the first level of phase three of the hypothetical learning trajectory and one 

week of the last phase of the instructional sequence whose learning goal was 

about examining the congruence and similarity of triangles. This week was 

concluded as the task about changing and unchanging properties and elements 

of triangles through transformation and explanations of reasoning about them 

and at the end, attaining the deep knowledge about formation of congruent and 

similar triangles, their properties and motional aspect of congruence and 

similarity. 

The other level representing the fifth week of the instructional sequence 

related to last phase of the HLT included two activity sheets; one for 

congruence of triangles and the other one for similarity of triangles. In the first 

activity sheet including tasks for congruence of triangles, the PMSMT initially 

discussed the differences and similarities between triangles and the image 

triangles formed through rigid motions or composition of finite number of 

these rigid motions. In another task, PMSMT were asked which rigid motions 
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were performed on the triangle to obtain the other. By reasoning and discussing 

on this activity, they realized the criteria of A.S.A. and then they continued to 

discuss importance and roles of other criteria of congruence of triangles and to 

make reasoning on them. The other activity sheet was designed for similarity 

of triangles. They talked about the differences and similarities of triangles and 

their images obtained through the dilation and continued to discuss the criteria 

of similarity of triangles by reasoning. This week was concluded as the task 

about identifying whether the triangles explained in problem situation and 

having particular properties were congruent/similar or not and explaining the 

reasons of this identification. All of the activities completed phase three of the 

hypothetical learning trajectory and two weeks of the instructional sequence 

whose learning goal was to understand the congruence and similarity of 

triangles. This phase was concluded as the tasks which were aimed directly at 

providing learning and understanding of congruence and similarity of triangles. 

After all of the phases of the HLT were completed, PMSMT engaged in an 

activity sheet including problems about triangles related to objectives of all 

phases in the sixth week of the instructional sequence.  

 

3.2.3 Evaluation of conjectured local instruction theory 

 

The instructional sequence referring to the enactment of the designed 

HLT and conduction of the pilot study was followed weekly by a research team 

including five participants which were the researcher, an academician having 

the Phd. degree in mathematics education and three PMSMT participating in 

the pilot study. The data were collected weekly through the process of 

instruction for the pilot study based on the concept of triangles by video 

recordings of whole class discussions and classroom sessions, audio recordings 

of small group works and research team discussions, field notes taken by the 

instructor and artifact collection including worksheets. Through and at the end 

of instructional sequence, rich and detailed data were collected in order to 
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obtain information about the HLT and making necessary revisions on the HLT 

and the conjectured local instruction theory. This instructional sequence 

representing the pilot study formed the first macro cycle of the study. In other 

words, throughout the implementation of this first cycle of the instructional 

sequence referring to the pilot study and after the sequence was completed, 

revisions were made on the sequence for implementation of the main study 

(Cobb, 2000; Simon, 2000). The revised HLT was then implemented again as 

the main study representing the second macro cycle by the instructor. The pilot 

study was illustrated and summarized in Figure 3 where mini cycles 

representing DBR referred to the weeks of instructional sequence. For the main 

study, the same figure can be formed by being titled as Macro Cycle 2. Before 

starting the main study which was the second macro cycle, retrospective 

analysis was performed and necessary revisions were made on the HLT so that 

actual HLT for the main study was formed.  

 

Figure 3 Illustration of the analysis of data collection process of the pilot study 
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After the completion of the instructional sequence, retrospective 

analysis was conducted. The retrospective analysis was used for both analyzing 

the data collected through various sources such as video and audio recordings 

for the process of pilot study in DBR and forming new data synthesized for the 

next part of DBR as main study. Whole data set gathered through the first 

macro cycle was analyzed collectively to attain information about “patterns in 

the data, framing assumed patterns as conjectures about the data, testing those 

conjectures on the complete data set, and using the findings as data for a 

subsequent round of analysis” (Gravemeijer & van Eerde, 2009, p. 517). The 

data collected through the retrospective analysis based on the first macro cycle 

were used for the next macro cycle of the study that the mathematical practices 

emerging in the social learning environment were investigated for the research 

question of the present study. In light of the findings of the retrospective 

analysis, revisions were made on the HLT and the actual HLT using for the 

main study was formed. In initial HLT, three learning goals, or big ideas, were 

at the center of it. The research team decided not to change these phases and 

kept them in the actual HLT. They were: (a) evaluating the formation of 

triangles, (b) reasoning on auxiliary elements of triangles and concurrence of 

them, and (c) reasoning on congruence and similarity of triangles. The lessons 

designed based on these learning goals was supported by various tasks and 

concepts about triangles and they were systematically prepared for the phases 

of the HLT. The revisions were made on initial HLT based on these phases 

separately.  

In the first phase of the HLT, the research team decided to make two 

revisions on the tasks. First revision was removing the second activity sheet 

since this activity sheet did not provide challenge situations for the PMSMT 

although the problem-based learning strategy was used in the present study. In 

other words, the PMSMT determined whether or not twelve shapes were 

triangles by explaining the reasons without having any difficulty. They made 

identification by illustrating minimum level of effort when compared with 
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other problems in the instructional sequence. Another revision was made on the 

last activity sheet of the phase. The research team decided to change the place 

of the first problem. This problem “Which and at least how many elements do 

we need to know in order to show that it is possible to form a triangle? Explain 

the groups including some of these elements.” was placed at the end of this 

activity sheet since the solution of this problem was providing a general 

statement about the formation of triangles knowing some main and auxiliary 

elements by summarizing and considering other problems on the same activity 

sheet. Moreover, suggestion about changing the explanation of this problem 

was made and performed.   

In the second phase of the HLT, the research team decided to make two 

revisions on the tasks. The research team decided to change the explanation of 

the problem about showing the concurrence of three auxiliary elements on a 

triangle. This problem was written by showing the concurrence of them 

through construction. The research team decided that the usage of construction 

limited the thoughts of the PMSMT about solution of this problem since they 

could have provided different solutions for this problem. Therefore, the 

statement of the construction on the problem was removed. The second 

revision was made about the order of these activity sheets. The research team 

decided to engage in the activity sheet about medians initially since the 

PMSMT had more knowledge about it than others. The researcher and the non-

participant observer made the same decision to form sociomathematical norms 

related to the construction steps of Smart (1998) based on the same reason. 

Moreover, the activity sheet about perpendicular bisectors was placed as the 

last one in this phase since PMSMT had least knowledge about it when 

compared with the others. The researcher and the non-participant observer 

(witness of the study) made the same decision to provide PMSMT 

opportunities about realizing that the perpendicular bisector was different from 

other auxiliary elements since it was not a cevian while the others were the 

examples of cevian.  
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In the last phase of the HLT, the research team decided to make two 

revisions on the tasks. The research team decided to remove the problems 

about the formation of image triangles through composition of transformations. 

They decided that these problems could be discussed briefly while discussing 

the formation of the image triangle. For example, one of the PMSMT in the 

research team stated,  

We found that congruent triangles are formed through translation and the result 

does not change if we conduct two translations consecutively. We again obtain 

congruent triangles. Therefore, it is unnecessary to deal with this situation as 

another problem since we always form congruent triangles no matter how 

many times we apply translation.   

This explanation was valid for all rigid motions. Therefore, the research 

team decided to remove this problem on the activity sheets for all rigid motions 

but suggested to discuss it in the problem about formation of image triangle. 

Another revision was suggested for the last problem on the activity sheet about 

similarity of triangles. This problem was about identifying whether the 

triangles explained in problem situation and having particular properties were 

congruent/similar or not and explaining the reasons of this identification. The 

research team decided to increase the number of these problem situations and 

forming different and harder examples. Therefore, the number of these 

examples was increased by adding more difficult statements related to all 

learning goals of the HLT.   

According to these revisions based on the findings obtained through 

retrospective analysis, the actual HLT was formed in order to conduct in the 

main study. The actual HLT was represented in the following table. This table 

illustrated the concepts, supporting tasks, tools and imagery and possible 

discourses for each phase of the HLT. This actual HLT was used in the main 

study to identify the classroom mathematical practices emerging in 

instructional sequence representing the second macro cycle. 
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3.3 Case Study 

 

Case study is probably most widely used approach in education 

research aiming to investigate a specific phenomenon in a bounded system 

(Creswell, 2009; Merriam, 2009). It can be described as examination of one or 

more instances of a phenomenon in its real life context externalizing the 

participants’ perspectives in a detailed way carefully. A good case study makes 

the phenomenon alive and real and provides understandable meanings for the 

reader (Gall, Gall & Borg, 2007). The case study approach is used when the 

research focus is finding and stating the holistic and meaningful characteristics 

of real-life phenomena (Yin, 2003). In the particularistic or intrinsic case 

studies as a kind of case study research, the case is selected with respect to the 

researchers’ interest and willingness to understand the phenomena (Merriam, 

2009; Stake, 1995) with the aim of in-depth investigation of the case.  

In this respect, the present study was a particularistic case study because it was 

aimed to examine the PMSMT’s mathematical argumentations to understand 

their learning understanding and reasoning about the geometrical concept of 

triangles.  

 

3.4 Participants  

 

The participants in the present study were enrolled in the program of 

elementary mathematics education at a university in the northern part of 

Turkey. Fourty-siz Preservice middle school mathematics teachers (PMSMT) 

participated in the study. The classrooms included preservice middle school 

mathematics teachers who were junior and registered in the program of 

elementary mathematics education. The junior PMSMT were selected since 

participants were expected to have necessary knowledge about the concept of 

triangles and main theorems related to it. Also, they could make connections 
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between triangles and other concepts in geometry of Geometry and Analytic 

Geometry courses in previous semesters. Moreover, because of the prior 

knowledge of PMSMT for the activities and problems in the instructional 

sequence, they were expected to have knowledge about the course of Analytic 

Geometry. Therefore, they were selected since they had enrolled in these 

courses. Twenty-six of fourty-six junior PMSMT were female and twenty were 

male students.  

Fourty-six PMSMT were separated into two groups and half of them 

took place in the pilot study and other half of them participated in the main 

study. In other words, there existed two groups of PMSMT; one for the pilot 

study as the first macro cycle and the other one for the main study as the 

second macro cycle, and two research teams wereproduced by selecting three 

PMSMT from these classrooms in the present study. In pilot study, twelve of 

twenty-three junior PMSMT were female and eleven were male students. Also, 

in the main study, fourteen of twenty-three junior PMSMT were female and 9 

were male students.  

There were two research teams; one for the pilot study and the other 

one for the main study. These research teams included two academicians; one 

was the doctoral student in the department of mathematics education as the 

instructor of the lessons and the researcher of the present study, and other 

academician was assistant professor in the program of mathematics education 

as the non-particicpant observer (witness observer), and three PMSMT 

participating in the lessons in the classroom. Three of the PMSMT in the 

research teams were randomly selected from the classrooms. The research 

teams came together after the teaching episodes for each week was completed. 

The researcher instructed the designed lessons by providing opportunities for 

PMSMT to form mathematical argumentations in the instructional sequence. 

The study was conducted in six-week instructional sequence and three hours in 

each week for both of the classes. The classes of weekly cycles composed of 

160-minute sessions once per week during the 2015 summer. The PMSMT 
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learned in a social environment designed by problem-based learning strategy in 

which they engaged in geometrical problems with their peers in small groups 

and then participating in whole-class discussions.  

 

3.5 Data Collection   

 

The data were collected through the process of instruction based on the 

concept of triangles by video recordings of classroom sessions, audio 

recordings of small group works and research team discussions, field notes 

taken by the instructor and learners’ works such as worksheets. The research 

team constituted learning community. This community shared their ideas and 

experiences in the instructional sequence about what was happening in the 

instructional sequences, what were the problems and potential misconceptions 

in them, what could be done to solve and remove them and what the 

implications were for the design research. These discussions were beneficial on 

documenting changes on instructional sequence with their rationales. The 

instructor was the researcher and member of the research team of the study. All 

of the participants in the study were referred to by pseudonyms.        

Data collection period started approximately three months before the 

instructional sequence about triangles in the main study. The activities were 

conducted to five PMSMT, and then pilot study took place. Also, one week 

before the application of the main study, the first meeting of the research team 

happened. Firstly, the designed activities and supports were conducted to five 

PMSMT who were attending in neither pilot study nor main study group. They 

discussed about the activity sheets and provided feedback for them. Then, 

necessary revisions were made in light of their suggestions and discussions. 

Secondly, when all of the activities and HLT were designed and applied to five 

group members, the pilot study was conducted.  
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A research team was formed in the pilot study group. Instructional 

sequence was conducted similarly to the main study group. Based on the 

discussions in the classroom and the research team, retrospective analysis was 

made. At the end, retrospective analysis was performed and the actual HLT 

was produced. Afterwards, the actual HLT was implemented in the main study 

group. One week before performing the instructional sequence in the main 

study group, the data collection process was started for this group and the 

pretests were conducted to them. Also, after the tests were finished, the 

research team came together and discussed about the tests and the part of actual 

HLT (Phase 1 of HLT) including the activities and supports of Week 1. In the 

study, in order to examine and identify PMSMT’s mathematical practices in 

the instructional sequence designed for the concept of triangles, the data were 

collected through classroom sessions, formal and informal meetings and 

interviews.  

Because of the dynamic nature of DBR and the closed connection of 

mathematical practices with social and sociomathematical norms, the 

researcher obtained information and detailed understanding about the 

phenomenon both while the research was continued and when it was finished. 

In this respect, it was vital to collect and document various and detailed data 

about the entire process of the research by examining each step and action of 

the research (Cobb et al., 2003). Therefore, several data sources were 

employed in the current study. The sources for the research question of the 

study used in pilot study and main group study could be illustrated in Table 5 

for the relationship between data and the research question for pilot study and 

main study and the points of usage of these data. For the weekly mini cycle 

analysis, the teaching episode conducted was discussed and inferences were 

made for following teaching episodes in pilot study and main study. For the 

macro cycle analysis, whole instructional process was analyzed. In pilot study, 

retrospective analysis was completed. In the main study, the mathematical 

practices emerging in the instructional sequence were extracted. 
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Table 5 Data sources and the places of usage of them in the analysis  

 Weekly Mini Cycle 

Analysis 

Macro Cycle 

Analysis 

Pre-instruction Interview     

Post-instruction Interview     

Classroom Observation     

Whole-class Discussion     

Peer Discussion     

Weekly Mini Cycle 

Reflection 

    

Artifact Collection     

Researcher Reflection 

Journal 

    

Pre- and post-tests     

 

 In the classroom session, the data were collected through six weeks 

through participant and non-participant classroom observations, whole-class 

discussions by recording video cameras, peer discussions by audio recordings, 

field notes and artifact collection. Participant and non-participant classroom 

observation was made by the other academician, member of the research team 

and the members of the research team. She acted as complete observer by not 

participating in the instruction process. She observed the classroom and took 

notes about what was happening in the classroom, the roles of the instructor 

and the behaviors of the participants, environment, supports, and tasks and 

these notes were examined and discussed twice, once by the research team and 

also by the researcher and witness. Also, other members of the research team 

were the participant observers of the instructional sequence. They participated 
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in the instructional sequence by engaging in mathematical tasks and observed 

the classroom. The video recordings of whole class discussions were the most 

important part of the data collection process. Each teaching episode was 

recorded with the help of two video cameras in order to capture the instruction 

and the behaviors of the instructor, and the activities of the participants and the 

instructor, collective learning environment and whole class discussions. With 

this aim, two video cameras were used by placing one of them in front of the 

classroom and the other at the back of the classroom. In addition to whole class 

video recordings, audio recordings were used in order to collect data about peer 

discussions about how to solve the problems on the activity sheets while the 

participants were engaging in activities with their peers.  

These data were beneficial in order to understand clearly the social and 

sociomathematical norms emerging mathematical practices and to examine 

their individual learning. In the process of peer group discussions, the 

instructor interacted with these small groups so these data provided information 

about how the instructor interacted with these small groups and the connection 

of these interactions with the whole class discussions through social norms. All 

audio and video recordings were transcribed. Furthermore, artifact collection 

was performed and the activity sheets on which the participants worked with 

their peers and whole group discussions were collected at the end of each 

teaching episode. These activity sheets were examined in order to clearly 

represent how the participants interacted with their peers and how they solved 

the problems discussing and how these processes were transferred to and 

attracted on the whole class discussion. In addition to artifact collection at the 

end of the teaching episodes, researcher reflection journals were formed once a 

week, during each mini cycle, by field notes taken by the researcher and the 

other academician, witness of the research, through classroom sessions. These 

journals as reflective tools provided the researcher opportunities to record 

feelings, thoughts and impressions stepping back from the experienced 

teaching episode (Holly, 2002) and plans and thoughts about following 
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teaching episodes. These journals were used in data analysis process and 

formal meetings.  

In the main study group, these journals were beneficial in making 

necessary changes and inferences for instructional sequence. These journals 

and other data sources explained were also used in the pilot study in order to 

make changes in instructional sequence and to apply in retrospective analysis. 

Moreover, the data sources obtained through classroom sessions were watched 

and examined by the researcher in each week to extract the issues to focus on, 

to discuss with the members of the research team in formal meetings and to 

make inferences for following teaching episode. For example, in the whole 

class discussion of Week 1, it was determined that the participants had 

difficulty on main and auxiliary elements of triangles and then, the activities of 

Week 2 and Week 3 about auxiliary elements were conducted in the light of 

this identification.    

In formal and informal meetings, necessary information and inferences 

were made in order to clearly examine, understand and develop instructional 

sequence. Through formal meetings, the instructor, who was the researcher of 

the study, the non-participant observer of the instructional sequence and three 

PMSMT participating in the instructional sequence met every week to discuss 

the week’s experiences and make inferences, plans and revisions for the 

following weeks. Through this process, a small learning community was 

formed where the members of the research team shared their ideas and 

suggestions for the HLT and the instructional sequence. Moreover, the 

progression taking place in the instructional sequence for each teaching episode 

and all prior weeks were evaluated and suggestions were formed in order to 

remove challenges and difficulties and to provide improvement. In this respect, 

these meetings were useful in order to make weekly mini cycle reflections. 

They provided opportunities in identifying evolving conjectures and making 

reflections on them benefiting from other data sources collected through 
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classroom sessions with the aim of examining these conjectures (Cobb et al., 

2003).  

The formal meetings of the research team were recorded by video 

cameras. Moreover, informal meetings were held when critical problems were 

observed in the instruction and needed to be solved immediately. Also, when 

the suggestions were needed for the immediate moment, the meetings were 

held informally. Two academicians discussed about these situations and 

questions about instructional sequence when they occurred. In this respect, the 

research team met formally once a week in the process following the 

instruction and then informal meetings were held throughout the week if 

necessary. The formal meetings were recorded by video camera and the 

informal meetings were audio taped. These meetings were held in both pilot 

study and main study. The instructor as the researcher of the study watched the 

recordings to determine the issues which were discussed, important issues 

which were not discussed in necessary time span or completely and issues to 

discuss in following meetings. Moreover, the necessary immediate issues were 

determined in order to use in following teaching episodes. In the pilot study, 

these meetings were also used in retrospective analysis.  

The interviews were another data collection tool used in the present 

study. The participants who were members of the research team at the same 

time were met individually in order to make pre and post-instruction 

interviews. These interviews were conducted as semi-structured interviews. 

They were asked questions about their tasks of the particular week. These 

interviews were about their experiences and reflections on the teaching 

episodes. Pre-instruction interviews were made in order to attain information 

about their initial understanding and prior knowledge about triangles and the 

concept of triangles of the week. The post-instruction interviews were made 

based on their tasks of the week. They were asked about their experiences, 

feelings and thoughts about the problems on the activity sheets so that their 

improvement through instructional sequence was examined.  
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For the pilot study, these interviews provided detailed information to be 

used in retrospective analysis. In the main study, they were beneficial to extract 

mathematical practices and social and sociomathematical norms in which 

mathematical practices emerged. They provided opportunities to be flexible in 

following comments by the participants (Ginsburg, 1981) and to obtain various 

and rich information to identify and document nature of their thinking and 

understanding in mathematics (Clement, 2000).    

 

3.6 Data Analysis   

 

The classroom mathematical practices were extracted by analyzing 

collective activity representing how mathematical ideas became established in 

a classroom through interactions and accepting the classroom as a whole in the 

main study since the community as a whole was paid attention on. Therefore, 

taken-as-shared knowledge and practices were the focus point of the study 

examining collective activity and implications for individual participants 

learning taking place in the whole class discussion. Despite accepting 

individual PMSMT’s learning as the providers for the development of taken-

as-shared mathematical ideas and classroom mathematical practices emerged in 

the designed instructional sequence, the focus point was on whole class 

discussions because of the nature of classroom mathematical practices 

extracted by taken-as-shared view. Two methods were used with the aim of the 

analysis of the qualitative data gathered through the DBR. Because of the 

nature of the design experiment providing the development of the theories 

(Cobb et al., 2003), data were examined by constant comparative data analysis 

method of grounded theory. The data were collected through observations, 

field notes and documents. Glaser and Strauss (1967) explained that the 

constant comparative method was an inductive procedure since it included the 

actions of generating and linking categories by making comparisons between 

different incidents, incidents and categories and different categories with the 
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aim of grounding categories in the data. Also, while the data analysis process 

was in progress, comparisons were made between different indicators, different 

codes and different categories constantly. In the broad perspective, the 

comparison between emerging scheme and raw data with the aim of grounding 

categories in the information collected in the current study was made 

(Creswell, 2009). Moreover, the data collection and analysis processes provide 

opportunities to discover the patterns in the data effectively since conducting 

the designed lessons took six weeks and eighteen hours in total. Also, the 

constant comparative method can be used effectively by comparing the data 

itself collected in the same day and the data gathered across different days. The 

meanings of the obtained categories and themes are interpreted by reflecting 

personally on the impact of the findings and on the literature. Moreover, the 

second method used to analyze the data gathered through whole-class 

discussion and classroom mathematical practices becoming taken-as-shared on 

the concept of triangles designed for PMSMT was the methodology of 

Rasmussen and Stephan (2008) and based on Toulmin’s argumentation model 

(1969). 

Rasmussen and Stephan (2008) formed a methodology in order to 

examine taken-as-shared collective learning by documenting classroom 

collective learning activities leading classroom mathematical practices and 

whole class discussions (Stephan & Cobb, 2003). This methodology includes 

three phases performed with Toulmin’s (1969) model of argumentation. This 

methodology is beneficial to analyze classroom discourse and to document 

reasoning of the participants during instructional sequence. Moreover, 

classroom mathematical practices are determined by identifying what has 

become taken-as-shared knowledge. These phases are composed of different 

actions, objectives and ideas. These differences produce different products 

based on the ideas, solutions, strategies and procedures. The formation of 

mathematical practices by these phases is illustrated in Table 6 formed by 

Rasmussen and Stephan (2008, pp. 83-84). 



125 

 

Table 6 Phases in documenting collective  

Phases of Research Activity Product 

Phase One •Transcribe every whole class 

discussion  

• Notate claims made by students or 

instructor  

• Identify data and conclusions, as well 

as  

  warrants and/or backings if present  

• Compare argumentation schemes and 

come     to agreement 

Argumentation 

Log 

Phase Two • Use Argumentation Log as data  

• Identify taken-as-shared mathematical 

ideas 

Mathematical 

Ideas Chart 

Phase Three • Use Mathematical Ideas Charts to 

identify  

common mathematical activities 

associated  

with taken-as-shared mathematical 

ideas 

Classroom 

Mathematical 

Practices 

 

 The first phase begins by transcribing videotape recordings of each 

teaching episode so that transcripts for all whole-class discussions from the 

class periods are formed. Then, these transcripts are examined to note claims 

produced by either learners or the instructor, i.e., each time that a claim is 

formed is identified. This is followed by analyzing transcripts to determine 

data, warrants, backings and rebuttals produced for each claim so that 
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Toulmin’s model of argumentation is used to produce an argumentation 

scheme for each claim. This process ends with the product of an argumentation 

log.  

The process of extraction and identification of the elements of 

Toulmin’s model from the transcripts obtained was carried out by more than 

one researcher independently by making meetings. The other researcher taking 

place in this identification process was the witness and non-participant 

observer of the teaching episodes. Both of them produced their argumentation 

logs representing claims, data, warrants and backings for each claim 

independently. In other words, after identifying claims, related data, warrants, 

backings and rebuttals as the elements of Toulmin’s model were determined 

specifically in the contexts in which they emerged. 

Afterwards, both of the researchers as producers of argumentation logs 

came together to discuss about their analysis and argumentation logs. They also 

accepted or refuted each other’s opinions on the elements identified by 

Toulmin’s model until they reached an agreement about them. If they did not 

come to an agreement, they discussed about it until they come to an agreement. 

The processes including the discussions about coming to an agreement on the 

argumentation logs and the elements on it strengthened the analysis. Toulmin’s 

(1969) model of argumentation was used to illustrate the structure of 

arguments. This model is composed of four parts: the claim, data, warrant and 

backing. The first part, the claim, is the opinions proposed as true by the 

learners. They are also conclusions of the discussions and the easiest parts of 

this model since they may be an answer of a problem or a mathematical 

statement to be questioned. The second part, the data are the expressions 

encouraging claims. They provide evidences for the claims in a way that the 

learners participating in the argumentations show the truth of the claims. 

Moreover, they can be mathematical procedures or methods, mathematical 

relationships, facts, theorem or definitions leading to the claims. The third part, 

the warrant, makes the connection between the data and the claim. They 
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provide this connection benefiting from implications of the data. It explains 

how the data encourages the claim by justifying the reasons that the data lead 

to the claim. The last part of the model is backing. A backing expresses the 

reasons of acceptance of an argument by increasing the validity of the claim.  

   The second phase of analysis focuses on identification of taken-as-

shared mathematical ideas by using produced argumentation logs. Hence, these 

argumentation logs are examined in order to extract evidences for the ideas 

becoming taken-as-shared focusing on data across all class sessions and 

teaching episodes. This phase of analysis is about extraction of mathematical 

ideas taking place in the argumentation logs and classroom’s normative ways 

of reasoning. For this aim, Rasmussen and Stephan (2008) developed two 

criteria for how mathematical ideas become taken-as-shared. The first criterion 

explains that the backings and/or warrants of the argumentation disappear in 

the whole class discussion. In other words, the participants no longer challenge 

the argumentation since all of them understand the mathematical idea 

represented in the core of the argument. The other criterion states that the 

mathematical idea formed and becoming self-evident in an argument is used in 

future arguments for justifications with the functions of the data, warrant, or 

backing (Rasmussen & Stephan, 2008). Moreover, Rasmussen and Stephan 

(2008) propose the researchers a mathematical ideas chart for each class 

session in order to identify classroom mathematical practices effectively. This 

mathematical ideas chart includes three columns: “(a) a column for the ideas 

that now function as if shared, (b) a column of the mathematical ideas that 

were discussed and that we want to keep an eye on to see if they function 

subsequently as if they were shared, (c) a third column of additional 

comments” (p. 200). There is an example represented on Table 7 produced for 

the current study on Week 1 for the second activity sheet. In other words, this 

chart helps the researcher to identify mathematical ideas discussed, needed to 

be investigated in the following process, becoming taken-as-shared and 

additional interpretations with theoretical or practical links. This chart is 
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produced by making comparisons between lessons so that emerging of taken-

as-shared ideas can be made in a progressive process and transfer of the 

mathematical ideas from “keep an eye on” to “taken-as-shared” with additional 

comments.  

Table 7 Mathematical Ideas Chart for the Second Activity Sheet on Week 1   

Ideas that function as-if-

shared 

Ideas to keep-an-eye-

on 

Additional comments 

Identification of main 

and auxiliary elements of 

triangles 

The possibility of 

formation of triangles by 

knowing some of 

elements of triangles 

Construction of 

triangles 

By some of known 

elements (main or 

auxiliary elements), how 

to construct these 

triangles was examined. 

The number of types of 

these triangles was 

investigated by knowing 

some elements. 

 

 Third phase of the methodology is the stage of the analysis process that 

the classroom mathematical practices are identified based on determining 

taken-as-shared mathematical ideas with Toulmin’s model of argumentation 

(Cobb & Yackel, 1996; Rasmussen & Stephan, 2008; Yackel & Cobb, 1996). 

After the process of identification of taken-as-shared mathematical ideas, they 

are examined and organized based on the contexts and mathematical ideas in 

which they become established and turn into taken-as-shared and then they are 

organized under a common title representing common mathematical activities 

in which the participants deal with. The general mathematical activities 

produced in this way are named as classroom mathematical practices 

(Rasmussen & Stephan, 2008). This organization process for producing 

classroom mathematical practices based on general mathematical activities has 
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close relationship with Cobb’s (2003) criteria that “the analysis should permit 

documentation of the developing mathematical reasoning of individual students 

as they participate in communal classroom processes” (p. 11). In this respect, 

three classroom mathematical practices were produced in the current study; 

PMSMT’s reasoning on (a) the formation of a triangle, (b) the auxiliary 

elements of triangles and their properties, and (c) congruence and similarity.  

 

3.7 Interpretative Framework 

 

The social part of the emergent perspective includes three domains as 

social norms, sociomathematical norms, and classroom mathematical practices 

with closed relationship with each other. The first domain, social norms, 

focuses on the structure of participation taking place in instructional sequence 

in the classroom (Stephan & Cobb, 2003). In DBR, two types of participation 

took place. The first type was small group works where the PMSMT studied on 

the activity sheets with their peers by discussing and sharing their ideas and 

reasoning, usage of construction steps by recording their solutions and 

expressions on the activity sheets to present in whole class discussions. Other 

type of presentation was observed as whole class discussion. The participants 

explained their solutions and representations with the reasons. Then, the others 

investigated further clarification and explanation for them, alternative solutions 

and mathematical expressions. The interpretations of social interactions 

included the examination of the participants’ (a) providing explanations and 

justifications for the problems, (b) understanding others’ explanations, (c) 

approving or disapproving the solutions of others, and (d) asking questions 

when a conflict happens in the process (Cobb & Yackel, 1996). These social 

norms were also observed in the current study. When these social norms were 

considered based on Toulmin’s argumentation model, they were produced 

providing data and warrant for the claims in the process that the participants 

dealt with classroom discussions about the concept of triangles. Therefore, 
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these social norms encouraged the formation of the parts of Toulmin’s model 

so that social norms were vital to provide PMSMT’s understanding and 

learning of triangles and identification of classroom mathematical practices.   

The second domain, sociomathematical norm, was extracted from 

whole class discussions engaging in mathematical activities and about the 

concept of triangles for the present study. The process of formation of 

sociomathematical norms was critical in DBR since they provided the 

formation of mathematical practices by focusing on mathematical solutions. 

The participants shared their solution of the problems and reasoning with the 

others by justifying and explaining procedures benefiting from the words, 

drawings, constructions, models, symbols and representations. They helped the 

participants in expressing their reasoning while participating in the whole class 

discussion. Some of the sociomathematical norms emerging in the study were 

formation of specific triangles through construction, examination of the 

elements of triangles through construction and examination of critical points 

for different types of triangles. 

Mathematical practices as the last domain were examined by the 

Toulmin’s model in the current study by paying attention on mathematical 

explanations formed through the tasks. These practices produced a nice way to 

illustrate the collective mathematical learning but it was not possible to claim 

that the participants learned the related concept effectively in the classroom 

setting (Cobb, 1998). Cobb et al. (2001) explains mathematical practices as 

“taken-as-shared ways of reasoning, arguing, and symbolizing established 

while discussing particular mathematical ideas” (p. 126) by not requiring 

further justification and explanation. The mathematical practices were 

produced by the participants’ engagement of the classroom activities. In order 

to answer the research question of the study, an analysis of classroom 

mathematical practices were made to illustrate how the designed activities in 

the HLT provided PMSMT’s learning of the concept of triangles. They were 
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extracted by the way of taken-as-shared based on Toulmin’s argumentation 

model.  

 

3.8 Trustworthiness  

  

 Through the six-week instructional sequence, the learning and 

understanding of PMSMT about triangles were examined by collecting data 

from different sources. With the aim of providing trustworthiness, the data 

were collected through multiple methods such as observations, interviews, field 

notes, documents and meetings of the research team in the present study. 

Making triangulations between the data obtained from these multiple methods 

provided trustworthiness by decreasing the limitations of the present study 

(Mathison, 1988). Trustworthiness by triangulation with different data sources 

could be made by obtaining information investigating evidences from these 

sources. Using the information in this way supported building coherent 

justifications for the themes (Creswell, 2009). Also, member checking strategy 

was used for trustworthiness. It could be explained as taking the data, 

descriptions, themes or interpretations made based on the data back to the 

people who participated in the study during the analysis and specifying 

whether they thought that they were true (Creswell, 2009; Guba & Lincoln, 

1981). By using the member checking strategy, the follow-up interviews as a 

suggested way by Creswell (2009) were made with the PMSMT participating 

in the current study and wanted to make comments about the results. The 

findings and interpretations based on them were discussed with the participants 

of the present study. In addition, rich and thick descriptions were used to 

communicate the findings. These descriptions gave the readers necessary 

information about setting and opportunities to share their experiences so that 

the results became realistic and richer.   
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3.9 Limitations of the Study   

 

The present study have some limitations especially because of its design 

of qualitative research and methodology of design based research. The first 

limitation is that the findings of the study can be less generalized to the 

population because of its research design. On the other hand, the 

generalizability can be provided by studying with different groups of PMSMT 

in other macro cycles benefiting from its cyclical nature. Secondly, another 

limitation is that the findings of the study has focused on the collective learning 

of the participants. Hence, this study is limited to social aspects of the 

emergent perspective without paying attention on the participants’ individual 

learning. The third limitation is about the instructor. The mathematical 

practices emerged in the study in an environment in which the PMSMT 

thought about the geometrical ideas in the classroom under the guidance of the 

instructor. In other words, the instructor guided the whole class discussion and 

the mathematical ideas emerged in this way. Therefore, the instructor had 

effect on the process of the emergence of them. The last limitation is about the 

willingness of the participants since the mathematical practices emerged in 

whole class discussion and their motivation to participate in this discussion 

limited the formation of mathematical practices. 

 

3.10 Summary 

 

In this design-based research as a qualitative research, the HLT to be 

used in six-week instructional sequence was formed and tested based on the 

findings of the pilot study. Then, conjectured local instruction theory was 

formed and tested in the study. The process of designing, testing and evaluating 

this theory by the HLT was explained through the pilot study. Then, revised 

HLT was conducted to the main study group. The data were collected in 
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different ways such as observations, interviews and tests. In this process, the 

classroom mathematical practices were identified by analyzing the data 

through the Toulmin’ model of argumentation and Rasmussen and Stephan’s 

(2008) three-phase method. Moreover, the trustworthiness was provided in 

different ways.  
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CHAPTER 4 

 

 

4. RESULTS 

 

 

 The answer is provided to the research question of “what are the 

classroom mathematical practices emerging in design-based research 

environment designed by problem-based learning for teaching triangles to 

preservice middle school mathematics teachers?” in this chapter of the study. 

Qualitative and quantitative findings of the study is explained. Qualitative 

findings represent classroom mathematical practices formed by the Toulmin’s 

model of argumentation. Quantitative findings illustrate the pre and post-test 

scores obtained by van Hiele geometry test and the triangles tests produced by 

the researcher to analyze the preservice middle school mathematics teachers’ 

thinking and learning about triangles. 

Classroom mathematical practices are the mathematical ideas that have 

become taken-as-shared through the process in which the learners do not need 

mathematical justification in order to show its truth (Cobb & Yackel, 1996). 

Moreover, the way of taken-as-shared happens by using a conclusion produced 

in an argument to produce a different conclusion for another argument (Cobb, 

& Yackel, 1996; Rasmussen & Stephan, 2008; Yackel, 2001). In this respect, 

the present study with the aim of identifying the mathematical practices in a 

classroom teaching experiment designed about the concept of triangles, the 

following classroom mathematical practices of preservice middle school 

mathematics teachers (PMSMT) emerged: PMSMT’s reasoning on (a) the 

formation of a triangle, (b) the elements of triangles and their properties, and 

(c) congruence and similarity with limited number of mathematical ideas in 

these practices as in Table 6. 
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Table 8 Three Classroom Mathematical Practices 

Classroom Mathematical Practices 

Mathematical practice 1: Reasoning on the formation of a triangle 

Reasoning on the definition of triangles and classification of them 

Reasoning on the construction of triangles 

Mathematical practice 2: Reasoning on the elements of triangles and their 

properties 

Reasoning on construction of auxiliary elements of triangles 

Reasoning on the concurrence of auxiliary elements of triangles 

Reasoning on the names of concurrent points of auxiliary elements of 

triangles and their places 

Mathematical practice 3: Reasoning on congruence and similarity 

Reasoning on the formation of congruent or similar triangles through 

transformation geometry 

A.S.S. is not a congruence/similarity criterion 

  

4.1 Mathematical practice 1: Reasoning on the formation of a triangle 

 

The first mathematical practice emerging through the instructional 

sequence conducted in light of the designed HLT on triangles was reasoning on 

the formation of a triangle. The mathematical ideas included in this 

mathematical practice were related to definition of a triangle and types of 

triangles and construction of triangles based on their some known elements. 

These practices mainly emerged from the activities in which the participants 

engaged on Week 1. In that week, the participants examined the classification 

of triangles based on their definitions and the possibility of constructing them 
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by knowing the measures of some of their main or auxiliary elements. For 

these activities, they initially worked with their peers and then participated in 

the whole class discussion. While engaging in these problems, they used the 

strategy of construction and related mathematical theorems, and the definition 

of triangles.  

 

4.1.1 Mathematical idea 1: Reasoning on the definition of triangles and 

classification of them 

 

The first mathematical idea included in the first mathematical practice 

was observed on the first week of the instructional sequence while the 

participants were engaging in the activities about defining and classifying the 

triangles. In this activity on Week 1, there were problems about placing 

different types of triangles on a diagram by relating them for the classification 

of them as illustrated in the Figure 4. 

 

CLASSIFICATION OF TRIANGLES 

Place the following words on the diagram by making their definitions. 

Triangle, isosceles triangle, equilateral triangle, scalene triangle, right 

triangle, acute-angled triangle, obtuse-angled triangle. 

Figure 4 The first problem about placing the types of triangles in the diagram 

by using the definition of them in the first activity sheet on the first week  

 

Then, they were asked to determine the places of the types of triangles on the 

diagram by defining and relating them. While they were working on the 

problems in the activity sheet with their peers in small group works, the 

instructor visited the small groups to determine different mathematical ideas 

and use them in whole class discussion. Through observing the studies of the 
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participants with their peers in the small groups, the instructor realized that 

they were not able to define triangles accurately and necessarily. Also, they 

were not able to successfully benefit from the main elements of triangles in 

formation and classification of triangles. Therefore, the instructor initiated the 

discussion by asking a question in order to help the participants understand 

their errors and accumulate them. So, a discussion was initiated by the 

instructor in order to reach the definition of a triangle based on its main 

elements as follows: 

Instructor: How can you form a triangle? Or, which elements are used to 

construct and define a triangle? 

Selim: When we think about triangles, we can say that there are two kinds of 

main elements which are corners and edges. Therefore, we can define 

and classify triangles based on these elements.  

In the explanation of Selim, it was observed that he stated accurate main 

elements of triangles to construct and define them but it was not made in a 

sufficient way since all of the polygons included these elements. He did not tell 

the formation of triangles by these elements. Hence, his explanation was a 

general statement valid for all polygons. The instructor asked them whether 

these elements were sufficient to construct a triangle in order to make the 

participants realize this case but they were not able to answer it. At that point, 

the instructor made the suggestion of thinking about the definition of a triangle 

to guide the whole class discussion about understanding the definition and 

formation of a triangle by these elements. Then, the participants began to make 

the definition of a triangle.  

Ayşe: Triangles are geometrical figures formed by three points where two line 

segments intersect at a point.   

Mehmet: This explanation does not refer to the definition of a triangle. We 

have three points and line segments intersecting on these points in the 
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case of two line segments for each point. According to your definition, 

this figure is also a triangle but it is not actually.  

 

 

 

 

Figure 5 The counter example by Mehmet for the definition of Ayşe. 

 

In the explanation of Ayşe, she told the main elements in a way different from 

Selim’s explanation.  She stated the corners as the intersection points of the 

line segments so her explanation was necessary but not sufficient. She might 

benefit from the idea of the corner as the intersection point of two line 

segments or two edges on a polygon but she ignored the non-linearity of three 

points and the necessity of closeness of a triangle. In order to help the 

participants realize these missing points, the instructor wanted them to criticize 

the appropriateness of her explanation. At that point, Mehmet provided an 

appropriate example for her explanation but not a triangle. Then, the instructor 

asked the definition of a triangle to continue the discussion.  

Instructor: Ok. What is the definition of a triangle? 

Halit: Triangles are geometrical figures formed by intersecting three non-

parallel line segments in the plane. 
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Selim: In the figure, there are intersecting three non-parallel lines but the figure 

formed in this way is not a triangle. According to the definition of Halil, 

it must be a triangle and we can talk about coincident line segments as 

it is seen in the figure. 

 

 

 

 

Figure 6 The counter example by Selim for the definition made by Halit. 

 

By asking the definition of a triangle again, the instructor expected that they 

realized the non-linearity of three points and the necessity of closeness of a 

triangle but they focused on a different point which was the intersecting three 

non-parallel line segments. His explanation was not sufficient and Selim 

showed its insufficiency by providing an example appropriate for Halit’s 

definition but not a triangle. Also, Halit provided a nice point for the definition 

of a triangle by stating the necessity of placing the line segments and the 

intersection points as the vertices on the same plane. Then, the instructor 

confirmed the appropriateness of Selim’s explanation and encouraged the 

participants to make the right definition.  
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Özlem: In that respect, we say that the geometrical figures formed by 

combining three non-linear line segments are triangles.  

Merve: The edges which are the main element of the triangles refer the line 

segments. These line segments are linear.  

Instructor: Let’s summarize the right points that we discussed. What are they? 

Mine: … three non-linear points on the plane, three line segments combining 

these points…the edges and the corners… the angles of the triangles are 

formed at these corners. 

Instructor: Well. Can you define the triangle using them? 

Mine: … triangles are closed convex geometrical figures formed in a way that 

three non-linear points are combined by three line segments on the 

same plane.  

In the light of the explanations and definitions made by the participants, the 

necessary points of three non-linear points, placing on the same plane and 

closeness were realized and then they formed the appropriate and sufficient 

definition of a triangle. To sum up, by stating “triangles are closed convex 

geometrical figures formed in a way that three non-linear points are combined 

by three line segments on the same plane”, the discussion finished and they 

understood the definition of a triangle based on the main elements of it. 

In this debate, Selim first attempted to explain how to define a triangle. 

In other words, he made a claim that it was important to think about the 

triangles’ edges and corners which were main elements in order to define the 

triangles. However, Ayşe used data benefiting from the appearance of a 

triangle by explaining three points and line segments. However, she provided 

warrant for the same claim in a wrong way where two line segments 

intersected at a point. Then, Mehmet stated rebuttal for the argument by 

providing counterexample for her warrant to refute her explanation. 

Afterwards, another data for the definition of triangles and warrants for this 

emerging argument were constructed by Halit and Özlem based on the claim in 
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order to emphasize three non-parallel line segments. Their explanations were 

followed by rebuttals provided by Selim and Merve, respectively. They refuted 

the explanations referring the definition of a triangle incorrectly by providing 

counterexample. At the end of the debate, Mine explained data and warrant by 

defining triangles truly emphasizing the main elements of triangles under the 

guidance of the instructor. Through the discussion process, the participants 

formed the mathematical idea about the definition of a triangle based on its 

main elements under the guidance of the instructor. At the end of her 

explanation, nobody in the classroom challenged this argument. According to 

Toulmin’s model of argumentation, the structure of the discussion about the 

definition and classification of triangles considering the main elements can be 

summarized as shown in Figure 7. 

 

 

  

 

 

 

 

 

 

 

 

Figure 7 Toulmin’s model of argumentation for reasoning on the definition of a 

triangle based on main elements 

 

DATA 

Mine: …triangles are closed 

convex geometrical figures 

formed in a way that three non-

linear points are combined by 

three line segments on the same 

plane 

CLAIM 

Selim: When we think 

about triangles, we can say 

that there are two kinds of 

main elements which are 

corners and edges…  

 

WARRANT 

Mine: We can define and classify the triangles based on their three line 

segments and three corners. Two line segments intersect at each point. 

Moreover, the angles of the triangles are formed at these corners. 
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In the first week on the advancing hours and the third week of the 

instructional sequence, it was illustrated that the mathematical arguments 

produced by the participants, and knowledge and skills about reasoning on the 

definition and classification of triangles attained during this debate in the first 

week became taken-as-shared. They used this one as data and warrant in their 

arguments on Week 1 and Week 3 without necessitating backings, and by 

confirming that it became taken-as-shared. At Activity Sheet 1 on Week 1, also 

in the same problem as illustrated in Figure 4, the participants were asked to 

define different types of triangles and place them on the diagram by connecting 

them. In this process, they used the knowledge about the definition of a triangle 

formed in this mathematical idea in order to define other types of triangles and 

determine their places on the diagram. In other words, while producing the 

definitions for other types of triangles, they used the definition of a triangle and 

particular properties of the main elements of triangles; edges and vertices. For 

example, an equilateral triangle is a triangle whose measure of all angles and 

the length of the edges are equal. Also, they benefited from the knowledge 

about the definition of a triangle in the definition of a right triangle as 

illustrated in the following part of this mathematical idea. 

At Activity Sheet 2 on Week 1 as in Figure 11 represented in the 

following mathematical idea in this mathematical practice, there were problems 

examining the possibility of the formation of a triangle such as “When the 

values of ha and b and m(BAC) = 900 in the triangle of ABC were known, is it 

possible to draw/construct this triangle? How?”. The participants benefited 

from the knowledge related to the definition of a triangle about combining 

three non-linear points representing the vertices of the triangle with line 

segments to examine the possibility of the formation of a triangle as it was 

examined in Mathematical Idea 2 in the Mathematical Practice 1. In addition, 

the mathematical idea about the definition of a triangle based on its main 

elements was used in order to construct a triangle which was the image of a 

triangle formed through transformation geometry as it was illustrated and 
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discussed in Mathematical Practice 3. Through the formation of the image of a 

triangle by transformation geometry, the participants focused on the formation 

of a triangle through its definition and main elements in a way that it was 

discussed previously. For example, through translation, the participants 

focused on the identification of the vertices of the image triangle formed by 

moving the vertices of the former triangle by a particular vector. Then, by 

combining these moved points by line segments, the image triangle was formed 

as it happened in the definition of a triangle. To conclude based on these 

discussions taking place at different time points in the instructional sequence, 

the mathematical idea about reasoning on the definition and classification of 

triangles based on their main elements became taken-as-shared.   

 The participants criticized the regions on a plane formed by a triangle in 

the same problem represented in Figure 4 while discussing the formation and 

definition of triangles with the property of the placement of their main 

elements on the same plane. Through the argumentation about the definition of 

a triangle, they also made the definition of a triangle based on the regions 

formed on a plane. In this way, the participants produced another discussion 

period about this mathematical idea based on the regions on the plane formed 

by a triangle and its main elements as follows: 

Büşra: Triangles are geometrical figures including three line segments 

intersecting three non-linear points. When this formation process is 

thought, triangles are geometrical figures separating the plane into three 

regions.  

Ayşe: Two regions are formed not three ones. 

In this definition, Büşra formed a different definition of a triangle based on the 

regions formed on a plane. Then, Ayşe did not accept the truth of this 

definition although it was right. The instructor realized that the 

participants had problem in understanding the regions formed by a 

triangle on a plane. Hence, the instructor guided the discussion in order 

to them focus on the process of formation of these regions as follows:     
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Instructor:  How are these regions formed? Think about the elements of 

triangles and the formation of these elements. 

Selim: Three line segments formed by infinitely many points with respect to 

the definition of line segment intersect each other at three corner points 

of a triangle...  

Instructor: How many regions are formed by these critical elements? What are 

they? 

Ayşe:  The points on the edges and inside the edges of a triangle form the 

interior region and the remained points on the plane form the exterior 

region. The edges are the borders of the interior region so that two 

regions are separated apart.  

Instructor: Is it correct? What do you think? 

Nuray: There are two regions but they are interior one and the other one 

including the points of exterior and edges. 

Özge: There are two regions. For example, think about the circles. Circle is the 

set of specific points and its interior part is empty. When we think about 

the interior points, we begin to talk about the sphere. We can compute 

the area of a triangle or we do not have different names for triangles 

with/without interior points. Therefore, we accept interior points with 

the points forming the edges as interior region and examine based on 

two regions… 

At this episode of the argument, the instructor tried to have the participants 

realized that the lines segments took up place on a plane so that the edges of a 

triangles could take place on the plane. Therefore, she guided the discussion 

about the definition of line segments. After the instructor provided the 

participants focus on the definition of a line segment as the set of points 

equidistant to two particular points, they talked about this process but they 

were not able to reach a consensus about the regions were formed on a plane 

by a triangle. Then, Özge provided an explanation by claiming that two regions 
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were formed by making connection with circle and sphere and the possibility 

of computing the area of it. She stated that the interior regions was connected 

with the line segments because it was possible to compute the area of a triangle 

since they considered that if the area of it were not be able to be computed, it 

would attain a different name as it happened in the circle and sphere. In other 

words, she claimed that the interior region was composed of the points on the 

interior region limited by the edges of the triangle and the line segments 

forming the triangle since it was possible to compute the area of triangle. The 

idea that if it were not possible to compute the area of a triangle, it would have 

attained a different name as it happened for circle and sphere was produced. In 

order to help the participants realize the point that they confused with the area 

of a triangle in this way, the instructor focused on the perimeter and area of 

triangles by using representations. 

Instructor: Ok. Let’s model this. Think about a real life example by the area 

and perimeter of a triangle. Think about the difference between a 

triangle plate and a triangle frame. 

Yücel: Both of them represent a triangle but the interior part of the frame is 

empty while the other’s is not. 

Instructor: It is a good point. So…  

Mehmet: Let’s form a triangle, by combining three pens for the edges. This is a 

triangle and its interior part is empty. We cannot say that it is not a 

triangle for this reason.  

Instructor: Yes. In this example, although we have a triangle, we are not able to 

engage in the area of a triangle since it does not exist. So, what can you 

say about the regions formed on a plane?  

Yücel: Therefore, the interior region is not connected with the region of the 

line segments. Also, we have stated that triangles are formed by line 

segments. These segments occupy places in the plane. Moreover, line 
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segments are formed by points and the points occupy places in the 

plane. Therefore, the edges can form a region alone. 

Instructor: Well, it is a good point. 

Büşra: In this respect, we can state that triangles separate the plane into three 

regions which are the set of interior points and the set of exterior points 

and the set of the points on the edges.   

In the discussion, they criticized the idea of the possibility of computing the 

area of a triangle. They realized that although a triangle’s interior region was 

empty and there was a case without the possibility of computing its area, it was 

still a triangle. By benefiting from the cases related to the possibility of 

computing the area of triangles and connecting the formation process of main 

elements of triangles, they reached the accurate and sufficient explanation 

related to the regions formed by a triangle on a plane.  

In this debate, Büşra first extended the discussion about the definition 

and classification of triangles based on their main elements by adding a 

different definition including the regions formed by a triangle on a plane. In 

other words, she extended the claim, data and warrant by adding the idea that 

these main elements separated the plane into three regions in the discussion 

challenged by the other participants. However, Ayşe and Özge provided 

rebuttals for this debate by stating that there were two regions and the edges of 

the triangle was belonged to the interior region. It was observed that some of 

the participants had confusion about the regions formed by a triangle on a 

plane so the instructor guided the discussion in order to help them reason about 

three regions accurately. Then, Mehmet, Selim and Yücel showed that the 

rebuttals provided by Ayşe and Özge did not represent the expected true 

explanation for the claim. Selim provided the definition of a line segment. 

Also, Mehmet and Yücel stated that both of the cases of a triangular frame 

with/without its interior region represented the geometrical shape of triangle. 

Through this part of the discussion process, they examined two of three parts of 

the region formed on a plane by a triangle which were interior region and the 
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region formed by the points of the edges of triangle. At the end, Büşra added 

true claim, data and warrant by separating these regions appropriately under the 

guidance of the instructor and the ideas explained by the others. By doing so, 

through the discussion process, the participants formed the accurate and 

necessary mathematical idea under the guidance of the instructor. The 

Toulmin’s model of argumentation for some parts of this debate is shown in 

Figure 8. 

 

 

 

  

 

 

 

 

 

Figure 8 Toulmin’s model of argumentation for reasoning the definition and 

classification of a triangle adding the regions on the plane formed by triangles. 

 

 The evidence that the idea about three regions formed by a triangle on a 

plane used as if shared was observed. This evidence came from analyzing the 

argumentation structures constructed on the second and third weeks of the 

instructional sequence. They used this one as data and warrant in their 

arguments on Week 2 and Week 3 without necessitating backings, providing 

that it became taken-as-shared. The activity sheets designed for the auxiliary 

elements of triangles in these weeks included the problems about the 

concurrence points of auxiliary elements of triangles as critical center points at 

DATA 

Büşra: Triangles are 

geometrical figures including 

three line segments 

intersecting three non-linear 

points. 

CLAIM 

Büşra: Triangles are 

geometrical figures separating 

the plane into three regions.  

 

WARRANT 

Yücel: We have stated that triangles are formed by line segments. These 

segments occupy places in the plane… 
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different places for different types of triangles. For example, in one of the 

activity sheets, this problem was stated “Does/Do the place of the intersection 

point(s) of the all perpendicular bisectors of a triangle change based on the 

types of triangles? Why? If it/they change(s), predict the place(s) of it/them for 

different types of triangles by showing its truth.” Then, they explained that this 

concurrence point was circumcenter and its place changed based on the types 

of triangles at the end of the discussion. The place of it was told by stating that 

it was in the interior region for acute triangles, in the region of the points 

forming the hypotenuse of the triangle for right triangles and in exterior region 

for obtuse triangles. Hence, the mathematical idea about the regions formed on 

a plane was used as data and warrant in the argument about discussing this 

problem. Hence, the notion of the regions formed by triangles on a plane was 

used in order to predict the places of these center points for different types of 

triangles as it was explained in the third mathematical idea for the second 

mathematical practice. In other words, the idea about the regions formed by 

triangles on the plane re-emerged on the second and third weeks of the 

instructional sequence. The participants used this notion in the argumentation 

about the concurrence points of auxiliary elements of triangles as critical center 

points at different places on triangles. 

In Activity Sheet 1 on Week 1, at the same problem represented in the 

Figure 4, while the participants were engaging in this problem with their peers, 

the instructor realized that they had difficulty in defining a right triangle and 

they were not able to produce an accurate and sufficient definition for a right 

triangle. Hence, the participants were asked to define the types of triangles by 

the instructor in order to produce the accurate definition for a right triangle. 

The instructor initiated the discussion by asking a question in order to discuss 

this issue: 

Instructor: How can you define a right triangle? 
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Mine: We know that a triangle is composed of three non-linear points. For 

three non-linear points, two equidistant points to a specific point refer 

to right triangles when they are combined with line segments.    

When the explanation of Mine was examined, it was observed that she 

benefited from the mathematical idea about the definition of a triangle 

based on its main elements. When her definition of a right triangle was 

examined, her definition was unnecessary and insufficient since the 

idea about two points equidistant to another point was not necessary for 

right triangles. Also, she did not emphasize the perpendicularity. Hence, 

the instructor asked the following question to everybody in the class 

with the aim of helping them realize the unnecessary parts in the 

definition of Mine. 

Instructor: Is equal distance necessary in defining and forming right triangles? 

Mine: While finding the shortest distance between a point and a line, we 

behave based on this idea since this distance is perpendicular to the line. 

At that point, it was observed that although Mine realized the unnecessary parts 

of her definition, she insisted on the necessity of them and continued making 

unnecessary explanations for defining a right triangle. Therefore, the instructor 

thought that more guidance and clues needed to remove them. In order to help 

Mine reason her explanation’s unnecessary parts, the instructor asked the 

following question: 

Instructor: What is the relationship between equal distance and 

perpendicularity? 

Mine: Between two parallel lines, equal distances form perpendicular lines.  

Nuray: As you said, this perpendicular distance is between two lines but you 

talked about the distance between two points in your definition. We 

cannot determine the perpendicular distance between two points.  

Instructor: Right. It is a good point. 
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Halit: Let’s think about a circle or an arc. For example, we have three points; 

two of them are equidistant to the remaining one so we talk about them 

in this definition as in the figure. 

 

 

Figure 9 Two equidistant points to the one and an arc by Halit. 

 

Merve: When we combine the points of B and C with a line segment, we have 

an isosceles triangle based on this definition.  

Instructor: It is a good explanation. By the same distance, we can only reach 

the idea of equal length.  

Mine: Yes, you are right. We need to emphasize the perpendicularity. 

In this episode of the discussion, Nuray, Halit and Merve made the 

explanations in order to refute the idea stated by Mine. They told their ideas 

with the aim of helping Mine reason accurately. While Nuray was explaining 

the impossibility of forming a perpendicular line segment between two points, 

Halit emphasized that two line segments equal in length did not intersect 

perpendicularly in Figure 9. Also, by extending his explanation, Merve claimed 

that an isosceles triangle could be produced in the case of having two line 

segments equal in length. At that point, the instructor guided them to think 

about the definition of a triangle that they produced previously and the main 
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properties of a right triangle and then composing the necessary definition in 

this way.  

Halit:  We can define right triangles based on angles and edges which are main 

elements of triangles ... Moreover, we must emphasize three non-linear 

points necessary for the formation of a triangle. Right triangles are 

triangles whose two of the edges intersect perpendicularly at a corner.  

Yücel: We can say that right triangles are triangles whose angle measure of one 

of interior angles is 900. 

Through the whole class discussion guided by the instructor, Mine realized that 

the property of having equal length of edges was not necessary and related with 

perpendicularity needed for right triangles. To conclude, the participants 

produced the necessary and sufficient definition for a right triangle based on 

the evidences of the definitions of Halit and Yücel at the end of the discussion. 

In this debate, Mine first attempted to explain how to define a right 

triangle based on the definition of triangles. She used the definition of triangle 

as data for this argumentation. It was observed that a prior argument about the 

definition of triangles served as data for the argument about the definition of 

right triangles. In other words, she produced a claim that it was important to 

think about the definition of triangles while defining the types of triangles. 

However, she used warrant for the claim in an incorrect way.  While making 

the connection between data and claim, she could not reason effectively for the 

warrant. She considered about his data by emphasizing the perpendicular 

distance between points but she dismissed the idea that perpendicular distance 

could not be formed between two points. Then, Halit, Merve and Nuray 

provided rebuttals for her explanation. Nuray refuted her explanation by 

emphasizing this dismissed point. Halit made explanation based on the equal 

distances between points by the radius of a circle.  Then, Merve ended the 

refutation period with the formation of an isosceles triangle. At the end of the 

debate, Halit and Yücel provided correct data and warrant by defining right 

triangles accurately. They benefited from angles and edges which were main 
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elements of triangles as in the definition of triangles. In this way, the evidence 

that the notion of the definition of a triangle was provided by being used as 

data in the discussion. Therefore, this discussion period included the second 

instance that the notion of the definition of triangles was used. Through the 

discussion process, the participants formed the mathematical idea under the 

guidance of the instructor.  Hence, the mathematical idea about the definition 

of right triangles as represented in the core of the argument in the Figure 9 was 

produced appropriately through whole class discussion. At the end of the 

discussion, all of the participants agreed with the claim and reasoning about it 

using the data by Mine and warrant by Halit so that the claim was taken for 

granted being unchallenged no longer. The Toulmin’s model of argumentation 

for some parts of this debate is shown in Figure 10. 

 

 

  

 

 

 

 

 

 

 

 

Figure 10 Toulmin’s model of argumentation for reasoning on the definition of 

a right triangle.  

 

DATA 

Mine: We know that a 

triangle is composed of three 

non-linear points… 

We need to emphasize the 

perpendicularity. 

CLAIM 

Halit: Right triangles are 

triangles whose two of the 

edges intersects 

perpendicularly at a corner. 

 

Yücel: We can say that right 

triangles are triangles whose 

angle measure of one of 

interior angles is 900. 

 

WARRANT 

Halit: We can define right triangles based on angles and edges which are 

main elements of triangles as we have done to define triangles. Moreover, 

we must emphasize three non-linear points necessary for the formation of a 

triangle. 
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 In the first week on the advancing hours, third, fifth and sixth weeks of 

the instructional sequence, it was illustrated that the mathematical arguments 

produced and the knowledge and skills about reasoning with the definition of 

right triangles attained by the participants during this debate in the first week 

became taken-as-shared. They used this one as data and warrant in their 

arguments in these weeks without necessitating backings, confirming that it 

became taken-as-shared. Firstly, at Activity Sheet 2 on Week 1 illustrated in 

Figure 11, the participants used this knowledge in order to examine the 

possibility of the formation of triangles when the measures of some of their 

elements were known. Moreover, while the participants were engaging in this 

kind of activities, they used some theorems related to right triangles such as 

Euclidean or Pythagorean theorems. In right triangles, they investigated the 

possibility of determination of known elements by using these theorems. In this 

activity, they benefited from the definition of right triangles as it was illustrated 

from the whole class discussion placed in the second mathematical idea for the 

same mathematical practice.  

 Secondly, on Week 3, one of the activity sheets was about the altitude 

of triangles. In this activity, they engaged in the problem about how to 

construct the altitude of a triangle and produced the claim about the definition 

and construction of the altitudes. In this argumentation, they used the definition 

of right triangle as data for that claim and also it was benefited from in the 

process of stating warrant. While constructing the altitudes of a triangle, they 

used the notion of the definition of a right triangle since an altitude separated a 

triangle into two right triangles. When the altitude of the edge of BC was 

drawn at the point of H on ABC triangle, it could be claimed that AHC was a 

right triangle based on the definition of right triangle. The notion of the 

definition of right triangles was used as data and warrant in the argumentation 

about the reasoning on the altitude as an auxiliary element of triangles. This 

discussion taking place in the third week by providing evidence of its 
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functioning as if shared as it was observed in the argumentation in the related 

first mathematical idea in the second mathematical practice.  

 Thirdly, in Activity Sheet 2 on Week 5 as in Figure 16, the last problem 

was composed of the statements about triangles and the participants were asked 

to determine their appropriateness and to explain their reasons. In this problem, 

there was three-column table. The first column included the statements related 

to triangles such as “Right triangles are sometimes similar”. The second 

column was the place that the participant stated as true or right for the 

statement in the first column and the last column was the one where they wrote 

the reason of the truth or error of the statement. Therefore, on the similarity and 

congruence content, this idea was used in order to determine whether the 

triangles were similar explained in the statement of “Two right triangles are 

always similar when the measure of one of their interior acute angles are 

same”. The teacher initiated the discussion by reading this problem on Activity 

Sheet. With respect to interior angle measures of right triangles, the claim of 

these right triangles were similar was explained with the definition of right 

triangles. In other words, they explained appropriately the reason of their 

similarity with the definition of a right triangle since one of the interior angles’ 

measures were 900 by the definition of a right triangle and the measures of one 

of the interior angles were also same as explained in the statement. Therefore, 

the idea that the remaining acute angle measures were same based on the fact 

that the sum of interior angle measures of a triangle was always 1800 was 

reasoned accurately and necessarily. In this discussion, they provided it as data 

that all of opposing angles’ measures were same for these right triangles. Then, 

Merve used this data in the warrant by the similarity criterion of A.A. Through 

this discussion, they showed the truth of this statement by the A.A. similarity 

criterion under the instructor’s guidance so that they successfully showed the 

truth of the statement using the mathematical idea related to the definition of a 

right triangle. This case provided evidence for the notion of the definition of 

right triangles in a way that it became taken-as-shared. Moreover, the 



155 

 

statements of “Isosceles right triangles are always similar.”, “When the length 

of the hypotenuse and the altitude of the hypotenuse are same for two triangles, 

they are always similar.”, “When the length of the radius of incircle and the 

altitude of the hypotenuse are same for two triangles, they are sometimes 

similar.” and “Some right triangles are similar.” were discussed in the same 

way based on the reasons of “Right triangles are triangles whose two of the 

edges intersects perpendicularly at a corner” and “right triangles are triangles 

whose angle measure of one of interior angles is 900” and data for the 

argumentation. Lastly, in the last week, the participants were given the 

problems that could be solved benefiting from the properties about right 

triangles and theorems related to them. Some of these problems were also 

solved benefiting from the definition of right triangles as explained in detail 

under the title of following mathematical idea. Based on this definition, they 

determined whether they were right triangles and then they used related 

theorems about them. The discussions occurring in this period provided 

evidence for the notion taking the function as if shared by using as data and 

warrants. In this respect, further evidences were provided for the process of 

becoming taken-as-shared for the notion of definition of right triangles. To 

conclude based on these discussions, the mathematical idea about reasoning on 

the definition of right triangles became taken-as-shared.   

 

4.1.2 Mathematical idea 2: Reasoning on the construction of triangles 

 

 The second mathematical idea was observed on the first week of the 

instructional sequence while the participants were engaging in the activities 

related to basic constructions of triangles. In this activity, different groups 

including the known values of some main and auxiliary elements of a triangle 

were provided as illustrated in Figure 11. 
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When we know the measures of ha and Va and m(BAC) = 900 in the triangle 

of ABC, is it possible to draw/construct this triangle? How? 

 

When we know the measures of ha and a and m(BAC) = 900 in the triangle of 

ABC, is it possible to draw/construct this triangle? How? 

Figure 11 The problems asking the possibility of the construction of particular 

triangles by knowing the values of the explained main and auxiliary elements 

of triangles on Activity Sheet 2 on Week 1. 

 

Then, they were asked to investigate if it was possible to form or construct the 

triangle by using their known values of some of its elements provided in the 

problem. In these problems, they investigated whether they were able to form a 

triangle by reasoning differently. Also, they examined the types of triangles 

that could be formed with known/given measures of elements. For this activity, 

they worked with their peers and participated the whole class discussion. While 

engaging in these problems, they used the strategy of computation of the 

measures of specific unknown elements based on the known/given ones with 

related theorems such as Pythagorean, definition of these elements and right 

triangles and construction activities. During the whole class discussion, they 

debated how they used these mathematical ideas in the solution of the problem. 

The instructor initiated the discussion by reading one of the problems on 

Activity Sheet of the Week 1: 

Instructor: When we know the measures of ha and b and m(BAC) = 900 in the 

triangle of ABC, is it possible to draw/construct this triangle? How? 

Selim: Yes, we can construct this triangle. We have the measures of two main 

elements and one auxiliary one. Also, we can construct a triangle when 

we know its two of the lengths of the edges and the angle measure of 

one of its angles. Moreover, when we know the lengths of two edges of 
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the triangle, we can make predictions about the length of the third edge 

and the possibility of the formation of the triangle benefiting from 

triangle inequality. They are enough to construct it… 

In this explanation, Selim made good reasoning but it had inaccurate parts. His 

reasoning was different from the other participants’ reasoning since he focused 

on the construction steps even if the way that he followed was not appropriate 

while the others engaged in the main theorems about triangles. He assumed 

that a right triangle of AHC illustrated in Figure 12.a was formed by known 

elements explained in the problem. Then, he claimed that it was possible to 

compute the value of α which was the measure of the angle of HAC by using 

the known values of the explained elements. His reasoning about computing 

the value of the angle measure of α was not possible but he was not aware of it. 

Then, he continued by constructing a right angle which was the angle measure 

of BAC. He constructed this angle in a way that one of the rays of this angle 

was the edge of AC. Hence, the other ray formed the edge of AB of the triangle 

of ABC so that the triangle asked in the problem was formed as in Figure 12.b. 

Selim ended his explanation by constructing the triangle finding the places of 

all vertices of the triangles as main elements of the triangle. Although Selim 

benefited from the construction steps of a particular angle, he could not use 

these steps appropriately. The critical point for his explanation was that he 

assumed that it was possible to compute and construct the angle of α. In order 

to help the participants realize this inappropriate part, the instructor guided 

discussion to focus on this point. After they realized this unrelated part, they 

started to discuss the problem again. 
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a. The triangle of AHC 

  

 

b. The triangle of ABC 

Figure 12 The triangles formed through the explanations of Selim 

 

Mehmet: …By the definition of an altitude, ha starts on the vertex of A and 

ends on the edge of BC by intersecting it perpendicularly. Here, we do 

not have the edge of BC so we cannot construct the specific ha. 

Moreover, if we are able to construct a triangle with two edges and an 

angle, this angle places between these two edges.  

Yücel: We can solve this problem in a different way. We know the values of ha 

and b and m(BAC) = 900 for this problem. This is a right triangle as we 

know from the definition of right triangles. It makes possible to use 

Pythagorean and Euclidean theorems. By using related theorems with 

known elements, we can find the necessary unknown elements to draw 

the triangle…  

In his explanation, Yücel drew a triangle of ABC similar to the triangle drawn 

by Selim as in Figure 12.b. For this triangle, he made computations for the 

length of the edge of HC by Pythagorean Theorem, |HC|2 + ha
2 = b2, the length 

of the edge of BH by Euclidean theorem, ha
2 = |BH|.|HC| (by knowing the 

lengths of ha and the edge of HC) and |BC| = |BH| + |HC|. Then, he determined 

the length of the edge of BC by Pythagorean Theorem, |BC|2 = |AB|2 + |AC|2. 
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He assumed that the triangle was formed by these known elements. Then, he 

thought that he used these values to find the unknown measures of necessary 

elements of triangles such as the edges. He claimed that the edges were the 

main elements so by knowing the measures of all edges, the formation of a 

triangle could be determined. In his explanation, he made good reasoning about 

the problem and then he gave the correct answer that the triangle could be 

constructed by these known elements. All of the participants except for Selim 

in the classroom solved this problem by reasoning similarly in the same way. 

This explanation was appropriate since it provided the correct answer that the 

triangle could be constructed by these known elements. However, it had 

missing part since the answer was related to just the possibility of the 

formation of this triangle but it did not examine the types of triangles formed 

by these known measures of particular elements. Therefore, the instructor 

guided them to examine the types of triangles formed by the measures of these 

known specific elements. The instructor emphasized the correctness of the 

possibility of the formation of the triangle and then asked different solutions 

for this problem to provide them examine alternative triangles formed by these 

known elements. Hence, the instructor continued the discussion as follows: 

Instructor: Ok. Let’s solve the problem by using another solution strategy? 

How can we solve? 

Nuray: We can solve it by using construction. 

Instructor: How can you do this? …Focus on the construction of the known 

elements. 

Nuray: ... Firstly, we construct an angle with the measure of 900 as the measure 

of the angle of BAC… Secondly, we construct an arc belongs to the 

circle with the center of A and the radius in the length of b. This arc 

intersects the rays and then we name one of these intersection points as 

the vertex of C. Lastly, we repeat the steps that we made to find the 

vertex B for ha to find the point of H…  
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The instructor guided them to examine the formation of the triangle through the 

construction of given elements in the problem. In the explanation of Nuray, she 

found a good point for the problem by reasoning through the construction. She 

produced the construction based on the definition of a triangle by emphasizing 

that it was formed through three non-linear points. It was a nice starting point 

since she explained the necessity of determining the vertices of the triangle. 

She constructed a right angle referring the right angle of the triangle by using 

compass and straight edge. She drew a line segment and two circles having the 

equal length of radius but different from each other based on their center 

points; end and starting points of the line segment. Then, by combining the 

intersection points of these circles with a line segment, the perpendicular 

bisector of the line segment was constructed. This perpendicular bisector 

represented a right angle. Afterwards, the place of the vertex of C determined 

using the length of b as illustrated in Figure 13.a. Until this point, she produced 

the known elements by construction accurately. However, she was not able to 

maintain her success about constructing the triangle. At the second part of her 

explanation, she repeated this process on the line segment of AC and drew the 

perpendicular bisector of this line segment as illustrated in Figure 13.b. Then, 

she determined the place of the point of H using the length of ha. At the end, 

she formed the triangle by connecting the points of H and C and extending this 

line segment to intersect other ray of the right angle constructed initially. She 

constructed a triangle different from the triangle asked in the problem because 

she followed inaccurate steps for constructing the altitude. In order to help her 

realize the missing and inappropriate parts of her explanation and construction, 

the instructor asked questions to help her and the others in the class articulate 

her ideas and steps. The instructor asked “Why did you draw the perpendicular 

bisector of the edge of AC?” and “How does this perpendicular bisector help to 

construct the altitude?”. By these questions, the participants reasoned on the 

construction steps and then they realized the unrelated parts of the solution. 

They claimed that the second perpendicular bisector was unnecessary and the 

altitude was not constructed appropriately. They produced different 
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explanations refuting the ideas and steps explained by Nuray in the second part 

of her explanation. Then, the discussion was continued by the last idea refuting 

Nuray’s explained by Kader as follows: 

 

a. Construction of right angle 

and the edge of AC 

 

b. Construction of the triangle of 

ABC 

Figure 13 The triangles formed based on the explanations of Nuray. 

 

Kader: It is clear that these two arcs formed by using the lengths of ha and b do 

not intersect since when we think about the triangle of HAC, the edge 

of AC in the length of b is the hypotenuse and ha is belonged to the 

right edge of this triangle. Hence, we form bigger circle by using the 

length of b than the one by the length of ha. 

Instructor: Can you say that the strategy of construction cannot be used for the 

solution of this problem? 

Ali:  No, we cannot say. We followed wrong construction steps.  

Instructor: How can you articulate these steps? 

After this question, the participants focused on identification of true parts of 

the explanation of Nuray and they decided to determine the place of the 

points of A, C and H. Then, with the help of the clues about the 

construction process, they constructed triangle appropriately as follows: 



162 

 

Ali: … the edge of AC in the length of b becomes the hypotenuse of the 

triangle of AHC. Firstly, we find the midpoint of the edge of AC and 

construct a semi-circle with the center of this midpoint and the radius in 

the length of the half of the length of this edge. Secondly, we construct 

an arc belonged to the circle with the center of A and the radius in the 

length of ha… 

Ali initially constructed the right triangle of AHC as in Figure 14.a with the 

hypotenuse having the length of b benefiting from the property that the 

inscribed angle opposing of the diameter had the angle measure of 900. Then, 

he constructed a right angle whose one of the rays was the edge of AC as in 

Figure 14.b. Afterwards, he extended the line segment passing through the 

points of H and C by providing that it intersected the other ray of the right 

angle on the vertex of A. This intersection point was stated as the vertex of B 

so that the triangle of ABC was constructed. This explanation was a clear way 

of constructing the triangle with the measures of known particular elements 

stated in the problem. By following these steps, other participants and the 

instructor asked questions about them and mathematical explanations and 

justifications for them. Through explaining them in a way that the steps were 

challenged, they constructed the triangle. After completing the construction 

steps, another solution and answer was provided about the possibility of the 

formation of the triangle explained in the problem. Then, the instructor guided 

the discussion to examine the types of triangles formed by these known 

elements. The reasoning was made for these questions as follows:  
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a. Construction of the triangle of 

AHC formed by Ali 

 

 

b. Construction of the triangle 

of ABC formed by Ali 

 

 

c. Construction of a whole circle and two right triangles by the length of 

h formed by Büşra 

Figure 14 The triangles formed based on the explanations of Ali and Büşra. 

 

Büşra: In the first step, if we construct a whole circle instead of a semi-circle, 

we have two triangles at both sides of the diameter of the circle in the 

second step so that we form two triangles of AHC. Then, we can have 

more than one type of triangle of ABC by following construction steps 

(Figure 14.c). 

Ali:  You are right but the number of the types of triangles does not change 

since these triangles are congruent…  
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Büşra explained that two types of triangles could be formed when the 

construction was made by using a whole circle and then repeating the steps for 

other part of the semi-circle illustrated in Figure 14.a. She focused on the 

number of triangles considering their places. However, the idea that changing 

the position and the orientation of triangles did not provide different types of 

triangles was dismissed by Büşra. However, her explanation was refuted by Ali 

since he stated that two triangles formed based on her explanation were 

congruent. He benefited from the idea that when the triangle was constructed 

on the other part of the whole circle, the other part was the image of the 

previous triangle obtained through reflection with the symmetry line referred 

by the diameter of this circle. Then, the instructor guided the participants to 

focus on the types of triangles formed by the known elements stated in the 

problem as follows: 

Instructor: Ok. This way did not form a different type of triangle. What does it 

mean? You cannot construct another type of triangle with these known 

elements, can you? 

… 

Selim: Let’s think about the semi-circle formed in the first step. It is possible to 

draw more than one triangle in this problem. The place of the point of H 

changes with respect to the length of the altitude of ha by the steps of 

construction. There are many possible places for the point of H on the 

circle since it is determined by the intersection point of the arc with the 

circle. This point can be any of the points forming the circle.  

Instructor: Well. It is a good point. How do these possible places help you 

construct different types of triangles? 

At this episode of the argumentation, Selim made good and necessary 

explanation for the problem. He made explanation based on the idea that the 

length of ha was assumed as known but not in a way that it’s length was 

explained by comparing the lengths of other elements in the problem. By 
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constructing the triangle of AHC as in Figure 14.a, a semi-circle was drawn 

with the radius in the length of ha so the place of H could be any point forming 

this semi-circle. This mathematical idea was important since the participants 

might state that various triangles were constructed based on all of the points 

forming this semi-circle. Therefore, the instructor asked the question by 

emphasizing the types of triangles constructed in this problem. In the previous 

example, Büşra explained that congruent triangles could be formed through 

reflection by preserving all of the properties although its position changed. 

Then, the instructor reminded that the congruent triangles were not different 

types of triangles by referring Büşra’s this explanation. At the end of the 

discussion, Selim provided accurate and necessary explanation related to the 

types of triangles that could be constructed with known elements. He stated 

that two types of triangles which were scalene and isosceles right triangles 

could be constructed considering the necessity of b > ha. While the isosceles 

right triangle was formed in the case of b = 2ha, the scalene right triangle was 

formed in the case of b ≠ 2ha. At the end of the discussion, the participants 

successfully stated that it was possible to construct the triangle by knowing the 

values of ha, b and m(BAC) = 900 and the possible types of triangles that might 

be constructed by the known elements in the problem. Moreover, the 

participants used the mathematical knowledge that a line segment had three 

positions for a circle; not intersecting, intersecting as a tangent line and 

intersecting at two points although they did not realize. This was an appropriate 

and necessary part of the solution. In this problem, the positions of the 

intersection and tangent points on the circle were considered and the case of 

not intersecting was ignored since the triangle was formed. Hence, scalene 

right triangle was formed in the case intersecting at two points and isosceles 

right triangle was done in the case of intersecting at a tangent point. Then, at 

the end of the discussion, the instructor emphasized this mathematical 

knowledge about the formation of a triangle by knowing some of its elements 

and their reasoning about it using construction effectively.    
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 In this debate, Selim first attempted to explain how to construct a 

specific triangle by the measures of known particular elements but he used 

wrong data and also warrants for his claim. In other words, he made a claim 

that it was possible to draw a triangle with these given elements. He focused on 

finding the measures of the angles between the edges of the triangle and the 

altitude. Mehmet provided rebuttal for his conversation by talking about the 

points that Selim did not reason correctly. He stated that it was not possible to 

compute the measures of these angles. Then, Yücel provided another data that 

related theorems could be used for this right triangle and warrant about finding 

the values of the unknown elements by using known ones for the claim as a 

solution strategy for the problem. He showed the possibility of finding the 

measures of necessary unknown elements to form the triangle by using the 

related theorems such as Pythagorean Theorem. He confirmed the claim and 

Ali provided backing for his debate by explaining the construction strategy 

under the guidance of the instructor. The instructor guided them about the 

construction since they showed the possibility of the formation of the triangle 

by measures of known particular elements. However, the answer had missing 

part about identification of the types of triangles formed in this process. So the 

instructor helped them determine the types of triangles formed by the elements 

stated in the problem. However, they were unsure about the types of triangles. 

Ali made a claim that there existed more than one triangle formed with these 

known elements and then provided data that the point of H was placed with 

respect to the length of the altitude and warrant by the steps of construction 

with the help of the instructor. By making these explanations about the 

possibility of the construction of triangles and types of triangles, the argument 

was finished because of providing no backing or rebuttal and agreeing with the 

discussed notion. The Toulmin’s model of argumentation for some parts of this 

debate is shown in Figure 15.  
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Figure 15 Toulmin’s model of argumentation for reasoning on the construction 

of a triangle when the measures of some of its elements are known. 

 

 In the first week, on the activity sheet as in Figure 11, triangles 

knowing different groups of main and auxiliary elements and their measures 

were explained and the participants were asked if these triangles were able to 

be constructed. On the fifth week of the instructional sequence, it was 

illustrated that the mathematical arguments formed by the participants and 

knowledge and skills obtained by them about reasoning with the formation of a 

triangle by using some of its elements during this debate in the first week 

DATA 

Yücel: We know the values of ha and b 

and m(BAC) = 900 for this problem. This 

right triangle with two right angles on it 

makes possible to use Pythagorean and 

Euclidean theorems. 

CLAIM 

Selim: We can 

construct a triangle 

with these known 

elements. 

WARRANT 

Yücel: By using related theorems with known elements, we can find the 

necessary unknown elements to draw the triangle. For this triangle, we can 

compute the length of the edge of HC by Pythagorean Theorem… 

BACKING 

Ali: By constructing known elements with reasoning related properties of 

geometrical objects such as angle on the circle and intersection of a line or 

arc of the circle, we can find critical intersection points representing the 

corners and critical points on the triangle… 
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became taken-as-shared. The second instance that the notion about the 

reasoning on the possibility of the construction of triangles based on some 

known elements was observed in the fifth week. In terms of Toulmin’s model, 

we saw that this notion as a prior argument taking place on the first week 

served as the data in the arguments on Week 5 without necessitating backings 

by confirming that it became taken-as-shared. This problem was about the 

statements about triangles and the participants were asked to determine their 

truth and the reasons. In this problem, there was three-column table. The first 

column included the statements related to triangle such as “Right triangles are 

sometimes similar”. The second column was the place that the participant 

stated as true or right for the statement in the first column and the last column 

was the one where they wrote the reason of the truth or error of the statement. 

Therefore, on the similarity and congruence content, this idea was used in order 

to determine whether the triangles were similar explained in this statement as 

illustrated in Figure 16. The teacher initiated the discussion by reading this 

problem on the Activity Sheet. 

 

Figure 16 The figure of the last on Activity Sheet 2 on Week 5. 
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On the similarity and congruence content, the idea discussed above 

related to the possibility of formation of triangles and types of them by 

knowing the measures of its some elements was used in order to determine 

whether they were congruent/similar. The instructor initiated the discussion by 

reading the problems on this activity sheet as follows: 

Instructor: When the lengths of the hypotenuses and the altitudes of the 

hypotenuses are equal for two right triangles, are they always 

congruent? 

İlkay: We can think about this question in a way that we engaged in the 

activities based on determining the possibility of forming triangles 

when we know the values of some of its elements.  

Instructor: That is a different point. How can we benefit from the idea that 

we learned in this activity. 

Halit: By constructing a triangle with these known elements, we can 

determine the types of triangles that we can form. Then, it becomes 

possible to identify whether they are congruent based on the types of 

triangles.   

Through the discussion, the participants produced a connection between the 

construction of triangles and determined the congruence of them considering 

some known elements successively. At this episode of the discussion, the 

instructor reminded the previous mathematical idea that they discussed by 

stating “…we examined the possibility of the formation of the triangle by some 

known measures of the particular elements and types of triangles” and then 

asked how to use this idea to determine whether the triangles were congruent 

by knowing the measures of some known elements. Through the discussion 

under the guidance of the instructor’s questions, the participants reached the 

consensus that the congruent triangles had same properties but their positions 

and orientations changed. Moreover, they produced the idea that by 

determining the types of triangles that could be constructed by the given 
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elements, it became possible to determine whether they were congruent. Then, 

the instructor asked the participants to show the solution by construction. In 

this process, the instructor realized that the participants had difficulty in the 

construction process so she asked the question and directed the discussion as 

follows: 

Instructor:  In the activity that we remember, we constructed the triangles 

based on the measures of some known particular elements. So, which 

elements do you know in this problem? 

İlkay: We know that measure of the one of the interior angles is 900, the 

lengths of the hypotenuse and its altitude.  

Instructor: Well. Let’s construct the triangle.  

Halit claimed that constructing two perpendicular line segments far away in the 

distance of the length of the altitude was necessary to construct a parallel line 

to the hypotenuse. In other words, he explained that a line parallel to the 

hypotenuse and far away in the distance of the length of the altitude was 

constructed as in Figure 17.a. The end points of these perpendicular lines were 

combined by a line so that a parallel line far away in the distance of the altitude 

to the hypotenuse was constructed. Then, they constructed a semi-circle having 

the radius in half of the length of the hypotenuse. Then, they explained with the 

help of the instructor that when the constructed parallel line intersected the 

circle at a point, an isosceles triangle was formed. With the same values of the 

explained elements, only one isosceles right triangle could be constructed in 

different orientations and positions so they were always congruent. The case of 

isosceles right triangles was explained successfully by Halit. Also, he stated 

that when the constructed parallel line intersected the circle at two points, two 

scalene right triangles were formed as in Figure 17.b. Then, the instructor 

asked how these two scalene right triangles were congruent and Halit answered 

as follows:  
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Halit: … since when we determine the measures of the interior angles of these 

triangles are equal since the measures of the arcs opposite of the angles 

which are α and β are equal. These angles having equal measures are 

opposite of the arcs having the equal measure on the circle. Hence, they 

are congruent by A. A… 

 

 

a. Construction of the line in the 

distance of h with the edge of BC 

  

 

b.Construction of the triangles of 

ABC and DBC 

Figure 17 The triangles formed through the explanations of Halit. 

 

In this explanation, Halit successfully explained that the triangles explained in 

the problem were congruent by using the mathematical idea produced through 

the discussion related to the possibility of formation of triangles with some 

known elements. 

 This argumentation provided evidence that the mathematical idea about 

reasoning on the formation of triangles based on the measures of some known 

elements functioned as if shared in a discussion under the guidance of the 

instructor. This evidence came from the explanation made by İlkay as seen in 

the argumentation core. In this conversation, İlkay used the claim produced in 

the discussion of Week 1 as the data that the number and types of triangles 

formed with some known elements could be benefited from determining the 

congruence without necessitating backings or warrants. This connection was 
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made with the help of the instructor and understood by the participants by 

challenging the construction steps and discussion process. In this respect, it 

was provided that reasoning with the formation of a triangle by using some of 

its elements became taken-as-shared. The claim produced on Week 1 was used 

as the data in the argumentation made in Week 5.  

 On the same activity sheet, there was a problem similar to the previous 

one in Figure 16. In this problem, the measures of different elements were 

explained as known ones and it was asked whether it was possible to construct 

the triangle.  In this activity, the problem was “When the measures of ha and Va 

and m(BAC) = 900 in the triangle of ABC were known, is it possible to 

draw/construct this triangle? How?” The discussion about this one flowed 

through the same way as it happened for the previous problem. The 

participants made an appropriate claim which was “It is possible to form the 

triangle”. They provided an appropriate data about the measures of these 

known elements and their places on the triangle and their connections with the 

triangle and other elements of the triangle in a similar way happened for the 

previous discussion. Then, they provided warrant by using some theorems such 

as Euclidean and Pythagorean theorems in order to determine the possibility of 

the formation of this triangle. In this episode of the argumentation, although 

they provided accurate and necessary claim, data and warrant, there was a 

missing part in the discussion since they ignored the types of triangles that 

could be formed by measures of these known elements.  In order to help the 

participants realize this insufficiency, the instructor asked questions how to 

construct this triangle by compass and straight edge. They constructed a 

triangle similar to the triangle constructed in Figure 14. In this representation 

belonged to the previous problem, a right triangle whose hypotenuse’s length 

was known was constructed. The hypotenuse and right angle were known parts 

of the triangle asked in this problem. The instructor asked how they knew the 

length of the hypotenuse and they answered that the length of the hypotenuse 

was equal to the double of the length of the median of the hypotenuse in a right 
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triangle necessarily and accurately. Then, they were constructed the altitude of 

the triangle by following the similar steps represented in Figure 17. Through 

this process, they explained the steps of construction of this triangle under the 

guidance of the instructor. As this discussion process was examined, the 

argumentation modeled in Figure 15 was used as data in this construction 

process while producing this claim. Moreover, in the construction process, they 

realized that there were two types of triangles as it happened in the previous 

problem with the help of the instructor’s questions. Furthermore, they provided 

two different construction processes in addition to the previous construction 

process.  

 In these construction processes, the instructor helped them to complete 

these construction steps and made explanations by emphasizing necessary and 

important parts of these processes. Hence, it could be stated that the 

participants provided three backings as different construction processes for the 

claim. In the advancing hours on the first week and on the fifth week of the 

instructional sequence, it was illustrated that the mathematical arguments 

formed by the participants and knowledge and skills obtained by them about 

reasoning with the formation of a triangle by using some of its elements during 

this debate in the first week similar to the previous one became taken-as-

shared. They used this one as data and warrant in their arguments on Week 1 

and 5 without necessitating backings, confirming that it became taken-as-

shared. In advancing hours on the first week, the activity about the formation 

of other triangles was followed. The next problem on the same activity sheet 

was “When the values of ha and a and m(BAC) = 900 in the triangle of ABC 

were known, is it possible to draw/construct this triangle? How?”. The 

participants made the accurate claim that “it is possible to construct this 

triangle”. Then, they used the mathematical idea as the data and the warrant for 

this question based on the knowledge that the length of the hypotenuse was 

equal to the double of the length of the median of the hypotenuse in a right 

triangle accurately. By this knowledge, the instructor provided that the 
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participants realized that the problem was changed in a way for the problem of 

“When the values of ha and Va and m(BAC) = 900 in the triangle of ABC were 

known, is it possible to draw/construct this triangle?”.  The discussion process 

happened sufficiently in a way similar to the previous one explained above. 

Therefore, this mathematical idea became taken-as-shared necessarily and 

accurately by providing data which was the conclusion of the previous 

discussion.  

On the similarity and congruence content, this idea was used 

appropriately in order to determine whether they were congruent/similar in the 

second activity sheet illustrated in Figure 16 on the fifth week. The problem 

causing the debate in the fifth week was “When the values of the lengths of the 

altitude and the median of the hypotenuse are equal for two right triangles, are 

they always congruent?”. They discussed in order to determine whether this 

statement was mathematically true in an environment directed by the 

instructor’s questions. In the discussion process, they determined the 

connection between the mathematical ideas about the possibility of formation 

of triangles and determining whether they were congruent/similar with some 

known elements. They reasoned in a way that the congruent triangles had 

similar properties but their positions and orientations changed and by 

determining the types of triangles that could be constructed by the known 

elements, it became possible to determine whether they were congruent 

necessarily and appropriately.  In this process, with the help of the previous 

discussions taking place for similar problems explained above, the discussion 

process was guided with less help provided by the instructor. With the help of 

the previous similar discussions and the construction steps performed for the 

previous problems, they made the connection more easily than the ones 

happening for the previous similar problems. In this conversation, they used 

the mathematical idea produced in the discussion of Week 1 as the data that the 

possibility of the formation of the triangle and the types of the triangles formed 

with the measures of some known particular elements could be benefited from 
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determining the congruence of triangles having the equal measure of the same 

elements of the opposing edges and vertices of the triangles. In this respect, it 

was provided that reasoning with the formation of a triangle by using some of 

its elements became taken-as-shared by challenging the ideas of the others and 

questions of the instructor to guide the discussion. The claim that it was 

possible to construct a triangle by knowing the lengths of ha and Va and the 

angle measure of BAC equal to 900 produced in the problem of “When we 

know the measures of ha and Va and m(BAC) = 900 in the triangle of ABC, is it 

possible to draw/construct this triangle? How?” in Week 1 was used as data in 

the argumentation made in Week 5 as it happened in the mathematical idea 

exemplified in the previous claim necessarily and sufficiently. In this problem, 

they remembered that there were two types of triangles which were right and 

scalene triangles that could be formed by these known elements. In both cases, 

the triangles formed by these known elements were congruent triangles. For 

example, in the case of right triangles, by using these known elements, the 

length of the other right edge could be determined. Then, by the congruence 

criterion of S.A.S., it was identified that these right triangles were congruent. 

Also, similar reasoning and explanations could be made for the other case 

about scalene triangles. 

 

4.2 Mathematical practice 2: Reasoning on the elements of triangles and 

their properties 

 

 The second mathematical practice was reasoning on the elements of 

triangles and their properties. The mathematical ideas included in this 

mathematical practice were about the formation of these auxiliary elements, 

concurrence of them and the importance of these points. They were mainly 

emerged from the activities that the participants engaged on Week 2 and 3. In 

this week, they examined auxiliary elements which were medians, angle and 

perpendicular bisectors and the altitudes. They engaged in the formation and 
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the definition of them, concurrence of them and changing or unchanging 

positions of these points based on the types of triangles and finding the name of 

them and their critical importance. For these activities, they worked with their 

peers and participated in the whole class discussion. While engaging in these 

problems, they used the strategy of construction and related mathematical 

theorems, definitions of these elements and right triangles.  

 

4.2.1 Mathematical idea 1: Reasoning on construction of auxiliary 

elements of triangles 

  

The first mathematical idea which was reasoning on construction of 

auxiliary elements of triangles emerged on Week 2 and Week 3. They 

investigated the construction of the angle bisector and the altitude of a triangle. 

For this activity, they studied by using compass and ruler with their peers and 

participated in the whole class discussion by explaining their construction 

strategies and steps and mathematical expressions for them. These processes 

were followed in the construction of auxiliary elements of medians, altitudes, 

angle bisectors and perpendicular bisectors of triangles and they became taken-

as-shared by being used in similar whole class discussions in the similar ways. 

The following discussion processes illustrated the argumentations about two of 

these auxiliary elements. During the whole class discussion, they debated how 

they used formation of altitude and angle bisector and showing that the formed 

line segment was the altitude or angle bisector. The discussion as the first 

instance of the argument explaining the construction of altitude of triangle was 

initiated by the definition of them and their reflection on construction steps on 

Week 3: 

Instructor: Can you construct the altitude of the edge of BC on the triangle? 

How? 
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Selim: ... An altitude is a line segment passing through a vertex of a triangle, 

and intersecting the opposite side perpendicularly. In this respect, we 

need to construct a perpendicular line segment from the vertex of A to 

the edge of BC. Firstly, place the compass on the vertex of A and set 

the compass width as exceeding the distance between the vertex and the 

edge…  

In this construction process, Selim constructed the triangle drawing an arc 

intersecting the edge belonged to a circle with the center on the vertex A as in 

Figure 18. Then, these intersection points were named as the points of D and E. 

By following the construction steps of perpendicular bisector, the 

perpendicular bisector of the line segment starting and ending with the points 

of D and E was constructed. The midpoint of this line segment was determined. 

Then, the altitude of the triangle was constructed by combining the vertex of A 

with this midpoint as in Figure 18. By following these construction steps, 

Selim appropriately and necessarily constructed the altitude of this triangle for 

the edge of BC as in Figure 18. At the end of the discussion, the instructor and 

the other participants challenged the truth of the result of this construction 

process. Then, Selim provided a necessary and appropriate mathematical 

justification for this process. He claimed that when the arc of DE intersecting 

the edge of BC and belonged to the circle with the center point of A was 

drawn, the line segment of DE became the chord of this circle. Then, the line 

segment of AH intersected this chord perpendicularly based on the 

mathematical idea that the perpendicular bisector of a chord passed through the 

center of a circle represented by the vertex of A as the center of the circle in 

Figure 18. He successfully and mathematically justified the process of the 

construction of the altitude. Afterwards, the instructor asked another strategy 

and way to construct any altitude of a triangle. Then, Merve explained another 

construction process and different mathematical justification for construction 

of an altitude.    
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Figure 18 The construction of the altitude of a triangle with respect to the 

explanation of Selim. 

 

Merve: … initially, we find the midpoint of the edge of AC and we draw a 

circle with the center as this midpoint and having the diameter in the 

length of half of the length of this edge. The intersection point of the 

circle with the edge of BC is the point of H. When we combine the 

vertex of A with the point of H by a line… 

In this construction process, in order to construct the altitude of the edge of 

AB, the midpoint of the edge of BC was determined by construction. Then, a 

semi-circle was drawn with the center of this midpoint and the diameter in the 

length of half of the length of the edge of BC. Then, the intersection point of 

this semi-circle on the edge of AB was determined and this intersection point 

was combined with a line segment as in Figure 19. Merve appropriately 

reasoned the construction process and formed the altitude. Afterwards, the 

instructor asked the mathematical justification for this construction process. 

She explained that it was the altitude because of the definition of a right 

triangle and the knowledge that inscribed angle opposing the radius of the 
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circle had the angle measure of 900. She made reasoning necessarily and 

successfully. Moreover, the instructor asked “what happens when you combine 

the vertex of B with the intersection point of semi-circle on the edge of AC on 

the triangle?”. They answered that the altitude of the edge of AC was also 

constructed. By this answer, the strategy in which two altitudes of the triangle 

was constructed at the same time was emphasized.   

 

 

 

 

Figure 19 The construction of the altitude of a triangle with respect to the 

explanation of Merve. 

 

In this debate, Selim first made a claim that it was possible to construct an 

altitude of a triangle. However, Betül and the instructor challenged the truth of 

the claim explaining the strategy of construction. Then, Selim provided data 

and warrant for his explanation about the construction process for the altitude 

of a triangle. Afterwards, Merve provided another data for the definition of 

triangles and backing representing another construction strategy of an altitude 

of a triangle. Merve explained a different way for the construction of an 

altitude of a triangle benefiting from the definition of the right triangles. 
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Through the construction processes, the participants and the instructor wanted 

them to make mathematical justifications for the processes and the truth of the 

result. According to the Toulmin’s model of argumentation, the structure of the 

argument about the construction of an altitude of a triangle can be summarized 

as in Figure 20. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Toulmin’s model of argumentation for reasoning the construction of 

the altitude of a triangle. 

 On the second week, there was a problem similar to the previous one. In 

this problem, the participants engaged in how to construct an angle bisector of 

a triangle. The discussion about this one flowed through the same way as it 

happened for the discussion of previous mathematical idea about the altitude. 

DATA 

Selim: An altitude is a line segment 

passing through a vertex of a 

triangle... 

Merve: …we have an interior angle 

measure of 900. Since, when 

we assume ... 

CLAIM 

Selim: We can 

construct the altitude 

of a triangle.  

 

 WARRANT 

Selim: … we need to construct a perpendicular line segment from the vertex 

of A to the edge of BC. Firstly, place the compass on the vertex of 

A and set the compass width as exceeding… 

BACKING 

Merve: …when we assume that the altitude intersects the edge at the point 

of H, the triangles of AHC and AHB are the right triangles based 

on the definition of right triangles. In this construction process, 

initially, we find the midpoint of the edge of AC… 
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The discussion including the first instance about the construction of angle 

bisector of a triangle was initiated by the definition of them and their reflection 

on construction steps on Week 3: 

Instructor: Can you construct the angle bisector of the angle of BAC on the 

triangle? How? 

Büşra: It is possible to construct the angle bisector of a triangle. 

This was the conclusion of the argumentation produced by Büşra. All of the 

participants used the definition of angle bisector of a triangle in order to 

construct under the guidance of the instructor.  

Büşra: Initially, I form an isosceles triangle. By drawing an arc passing 

through the vertex of B, the intersection point of this arc on the other 

edge is identified. When this intersection point is combined with the 

vertex of B with a line segment, we form the isosceles triangle of 

ABD… (Figure 21.a) 

Then, two different ways of steps representing the construction steps of angle 

bisector was produced through the discussion. One of them was provided as 

warrant and the other way was stated as backing. In the way told as warrant, 

they constructed the angle bisector by forming an isosceles triangle since angle 

bisector of it was the median of the opposing edge as in Figure 21.a. In other 

words, the warrant was produced by Büşra benefiting from the property of 

angle bisector of an isosceles triangle since the angle bisector of an isosceles 

triangle was coincident with the median of the edge not having the same length 

with the other edges. Hence, she formed an isosceles triangle and then 

constructed the angle bisector of it benefiting from the construction process of 

median. An arc was drawn with the center of the vertex of A and the 

intersection point of this arc on the edge of AC was combined by a line 

segment with the vertex of B in order to form the isosceles triangle of ABD. 

Then, the median of the edge of BD was constructed by the construction steps 

of the perpendicular bisector of this edge as it was used in previous 
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discussions. This median was at the same time the angle bisector of the angle 

on the vertex of A because of the nature of the isosceles triangles. In this 

construction process, the angle bisector was constructed accurately by making 

good reasoning and providing necessary mathematical justification about the 

property of isosceles triangles. In this construction process, the instructor asked 

the question about the process and its mathematical justification to help them 

reason on the process effectively and appropriately.  

 

  

 

a. Based on median of isosceles 

triangle 

 

 

b. Based on the diagonal of a 

parallelogram 

Figure 21 Construction of angle bisector of a triangle in two different ways 

 

Also, in the construction way represented as the backing in Figure 21.b, 

Mehmet formed a parallelogram with its diagonals as the angle bisectors of the 

interior angles of it. In these construction processes, the possibility of 

construction of an angle bisector of a triangle was discussed.  

Selim: I form the angle bisector of this angle by forming a parallelogram. I 

adjust compass width with the length of the edge of BC and I draw an 

arc without changing this width by placing compass on the point as the 

vertex of A. Then, I adjust compass width with the length of the edge of 
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AB and I draw an arc placing the compass on the vertex of C. I identify 

the intersection point of these arcs and I combine this intersection point 

with the vertices of the triangle by using line segments… 

In this process, two arcs with the center of A and the radius in the length of the 

edge of BC, and with the center of C and the radius in the length of the edge of 

AB were constructed as in Figure 21.b. This intersection point was combined 

with all vertices of the triangle so that a parallelogram was constructed. Then, 

the line segment combining this intersection point with the vertex of B formed 

the diagonal of the parallelogram and also the angle bisector of the triangle of 

ABC. All of the participants knew that the diagonal of the parallelogram 

bisected the angle on the vertices of it. Based on this knowledge, the 

participants made a good reasoning for the construction process and the claim 

of the discussion by providing accurate mathematical justification for this 

construction process. In this construction and justification process, the 

instructor asked the questions to emphasize and make them reason the process 

accurately and successfully.   

 On the advancing hours on the second week, the third week and the 

fourth week of the instructional sequence, it was illustrated that the 

mathematical arguments formed by the participants, knowledge and skills 

obtained by them about reasoning with the construction of the altitude and the 

angle bisector of triangles during this debate in the second and third weeks 

became taken-as-shared. In other words, the construction of the altitude and 

angle bisector of triangles became taken-as-shared in similar ways through 

similar discussions. They used this one as data and warrant in their arguments 

on Week 2 and 3 without necessitating backings, confirming that it became 

taken-as-shared. Firstly, on advancing hours on the second and third weeks, the 

participants used this knowledge in order to determine whether all of 

altitudes/angle bisectors were concurrent at a point when all of them were 

constructed. The construction processes of the elements explained and 

represented above for an altitude and an angle bisector were repeated for all of 
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the altitudes or angle bisectors of a triangle to examine the concurrence of all 

of these auxiliary elements. Moreover, the names of these concurrent points 

were determined benefiting from this mathematical idea. Furthermore, they 

used this idea while examining whether these points changed based on the 

types of triangles. In this way, this mathematical idea became taken-as-shared 

by being used as warrant. The discussion process in which this mathematical 

idea became taken-as-shared was guided by the instructor so that the 

participants made good and appropriate reasoning by producing an accurate 

claim. Secondly, on Week 4, the participants examined the image of the 

triangles after applying the transformation geometry and the relationship 

between triangles and their images. They investigated the concurrence of these 

auxiliary elements and the name of these points for their images. While the 

distances between these points and the edges of the triangles did not change for 

congruent triangles (for triangles formed through rigid motions), they changed 

with respect to the scale factor for similar triangles (for triangles formed 

through dilation). They discussed these knowledge benefiting from this 

mathematical idea. The last problem on the last activity sheet on the fourth 

week was about changing and unchanging elements and the properties of 

triangles after applying transformation geometry. They were also asked the 

reasons of the cases of changing and unchanging properties. For example, Ali 

claimed and provided data that “the length of the altitude of the edge of BC 

does not change after applying translation because they are congruent 

triangles”. He also stated warrant that “when we construct the altitude of the 

image triangle and we put two triangles on end providing the vertices are on 

mutual vertices as we have done by constructing the altitude, they remain same 

and on end”. Hence, this mathematical idea being used as data and warrant by 

reasoning appropriately and effectively became taken-as-shared by being used 

as warrant. To conclude based on these discussions, the mathematical idea 

about construction of auxiliary elements of triangles became taken-as-shared in 

two ways. All of these arguments were the other instances that the notion of 
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construction of auxiliary elements were observed serving as data and warrant 

to conclude new claims and functioned as if shared.    

 

4.2.2 Mathematical idea 2: Reasoning on the concurrence of auxiliary 

elements of triangles 

 

The second mathematical idea which was the reasoning on the 

concurrence of auxiliary elements of triangles emerged on Week 2 and 3. They 

investigated these points for median, angle bisector, altitude and perpendicular 

bisector respectively. For these activities, they thought about the relationship 

between these elements, related theorems and properties about triangles with 

their peers and participated in the whole class discussion by explaining their 

thoughts and mathematical expressions for them. During the whole class 

discussion, they debated how they illustrated that these elements concurred at a 

point on triangles and explained the reason of this case. The discussion was 

initiated by asking at how many points these elements concurred for a triangle 

on Week 2 and 3. These four elements were investigated separately at the 

second mathematical idea. Through the extension of the first mathematical idea 

about constructing all of these auxiliary elements of a triangle, the second 

mathematical idea of the second mathematical practice was emerged. Firstly, 

the concurrence of the medians was examined on Week 2. Initially, the 

participants were asked to construct all of the medians of a triangle in order to 

determine at how many point(s) these medians concurred. Through the process 

of peer discussions, the instructor realized that some of them constructed three 

medians of the triangle in a way that they concurred at a point and the others 

did it in a way that they intersected at more than one point. The instructor 

asked the question of “How many points do the medians of a triangle intersect 

each other at?”. The participants answered accurately by explaining that they 

were concurrent. Then, the instructor showed some of the participants’ 

constructions that all of the medians intersected at more than one point. They 
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repeated their answer by being sure and explaining that it was possible to make 

errors in construction and drawing so they did not concur at a point on the 

figures they constructed. Afterwards, the instructor wanted them to justify their 

answer mathematically since although they gave correct answer, they could not 

provide necessary mathematical expression and justification. Hence, they 

formed their explanations about their reasoning in the discussion taking place 

as follows:    

Merve: When we form two of the medians, they concur at a point since non-

parallel two lines intersect at a point. Then, we see that we can apply 

Ceva Theorem.  Then, we assume that the third median passes through 

this point. When we apply this theorem, we can confirm our idea as it is 

seen.  

 

 

 

 

Figure 22 Ceva theorem for medians 
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At this explanation, Merve justified the concurrence of medians of a triangle by 

Ceva Theorem appropriately. Initially, she assumed that the medians were 

concurrent. Then, she applied the Ceva Theorem by using the ratios between 

the lengths of the parts of the edges formed through medians. When the result 

was equal to 1, it could be stated that the theorem met the formed ratios and the 

medians became concurrent. By this way, she showed that the medians were 

concurrent in a correct way. In this process, although they used this theorem, 

they were not aware of the knowledge that the median was a type of cevian. 

Hence, they used the correct answer and showed the concurrence of them by 

applying this theorem on the problem and reasoning unnecessarily. After 

Merve completed her explanation, Ali immediately explained that the 

concurrence of them could be showed by Menelaous Theorem. The instructor 

did not focus on the missing part of their knowledge about the median as 

cevian since the angle bisectors and altitudes as the topic of the following 

activity sheets in the instructional sequence were different types of cevian and 

the perpendicular bisector was not cevian. The instructor considered that the 

participants could understand what the cevian was when they examined 

examples and non-examples of cevian together so that they could define a 

cevian as any line segment drawn in a triangle whose end points were placed 

on a vertex of the triangle and on the opposite side of this vertex. Hence, the 

instructor postponed to discuss about the cevian until they examined examples 

and non-examples of it. In this respect, the instructor continued to talk about 

the medians which was the topic of the activity sheet they engaged in. Then, 

she guided the discussion by asking another strategy or solution that the 

medians were concurrent on a triangle.     

Sevim:  Let’s form the line segment of KL. Then, KL // BC and |KL| / |BC| = ½ 

since |AK| / |AB| = |AL| / |AC| = ½. Find the places of the points of D 

and E as the midpoints of the lines of BL and KC. Hence, we find that 

DK//AC and EL//AB. Also, |DK| / |AL| = |EL| / |AK| = ½ and |KM| / 

|AC| = |LM| / |AB| = ½ and KM // AC and LM // AB since |DK| = |DM| 
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and |EM| = |EL|. Therefore, the triangles of BKM and ABC are 

congruent (the criterion of A. A.). Then, the point of M is the midpoint 

of the edge of BC based on the scale factor of ½. Also, when we 

combine the points of A and M, we form the median of the edge of BC 

which is the line segment of AM. This line segment passes through the 

point of intersection of other two medians. In other words, all medians 

are concurrent at a point.     

In the explanation of Sevim, she assumed that the midpoints of the edges of the 

triangle were accepted as determined and the medians were formed. The points 

of K, L and M were combined by the line segments as in Figure 23. Based on 

the similarity of triangles, the triangles of AKL, BKM and LMC were similar 

to the triangle of ABC with the scale factor of ½. Then, the relationships of 

2|KF| = 2|FL| = |BM| = |MC|, 2|KD| = 2|DM| = |AL| = |LC| and 2|EL| = 2|EM| = 

|AK| = |KB| were determined. Therefore, the scale factor and similarity of them 

appropriately and necessarily showed that all of the medians were concurrent. 

By making good reasoning in an appropriate way, the concurrence of them 

were justified sufficiently. After reaching a consensus about its truth, the 

instructor asked another solution to show the concurrence of them. 

 

 

 

Figure 23 The figure of the concurrence of the medians on a triangle. 
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In this debate, Kader first explained the claim about the concurrence of the 

medians of a triangle by providing the data of the construction of a median. 

She added the warrant that when all of the medians were constructed, they all 

intersected at a point through construction. Moreover, Merve provided the 

backing about the concurrence of the medians based on the theorems of Ceva 

and Menelaous since when all of the medians were explained, it was observed 

that they concurred at a point. Then, Sevim provided backing for the claim by 

the guidance of the instructor. Sevim stated her explanation based on the 

content of similarity by the medians with their scale factors. The structure of 

the argument taking place in this discussion can be illustrated as shown in 

Figure 24. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 24 Toulmin’s model of argumentation for reasoning on the concurrence 

of the medians of a triangle. 

 

DATA 

Kader: …we examined the 

construction of a median as 

we did previously. 

CLAIM 

Kader: We need to know at 

least two of the medians since 

they concur at a point. 

WARRANT 

Kübra: … repeat the steps of the construction for all medians of a triangle… 

BACKING 

Merve: … they concur at a point since non-parallel two lines intersect at a 

point. Then, we see that we can apply the theorem of Ceva… 

BACKING 

Sevim: …KL // BC and |KL| / |BC| = ½ since |AK| / |AB| = |AL| / |AC| = 

½… 
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 On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical arguments produced by the participants 

and knowledge and skills attained about the concurrence of the medians at a 

point on triangles during this debate in the second week became taken-as-

shared. They used this one as data and warrant in their arguments on Week 2 

without necessitating backings, confirming that it became taken-as-shared. The 

participants used this knowledge in the debates made in order to determine the 

name of this concurrence point as centroid and whether this point changed 

based on the types of triangles. The data was produced based on this 

mathematical idea since the centroid was formed basically by the concurrent 

point of the medians. Then, this mathematical idea was also used as the warrant 

of the discussion. The processes of showing separation of the medians into 

ratio 2;1 and the regions with equal areas were provided benefiting from the 

process of the concurrence of the medians. Moreover, the change of the place 

of the concurrent point of the medians was examined based on the 

mathematical idea about the concurrence of the medians of a triangle in the 

similar way. 

In the second week, the second activity sheet was about angle bisectors. 

Initially, the participants constructed all of the angle bisectors of a triangle in 

order to determine at how many point these medians concurred. While the 

participants were talking about the problem with their peers in the small 

groups, the instructor realized that there were different construction examples 

representing that the angle bisectors of the triangle concurred at a point and at 

more than one point. Then, in order to examine the participants’ thoughts about 

that examples, the instructor asked the question of “How many points do the 

angle bisectors of a triangle intersect each other at?”. Through answering this 

question, it was identified that the participants were aware of the fact that they 

were concurrent appropriately. Then, the instructor showed some of the 

participants’ constructions that all of the angle bisectors intersected at more 

than one point and wanted them to provide explanations for these 
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constructions. They insisted on their answer by being sure and explaining that 

they did not concur at a point because of drawing errors through construction. 

In this activity sheet, the participants discussed how to show that angle 

bisectors concurred at a point. Afterwards, the instructor wanted them to justify 

their answer mathematically and they explained their reasoning in the 

discussion taking place as follows: 

Fulya: We need to know at least two of the angle bisectors of a triangle 

because of the concurrence of them at a point. …we constructed the 

angle bisector of a triangle. When we repeat the steps of the 

construction for all angle bisectors of a triangle, we see that they concur 

at a point…   

Ali:  When we see the figure of a triangle with all angle bisectors on it, we 

realize that we can apply the theorems of Ceva and Menelaous. We can 

show the concurrence of angle bisectors of a triangle…  

Fulya claimed the concurrence of angle bisectors of a triangle benefiting from 

the construction steps as it was discussed in the previous mathematical idea 

about the formation of angle bisector. She stated that when all of the angle 

bisectors were constructed, they concurred at a point by emphasizing the 

existence of drawing and construction errors. Then, Ali provided explanations 

for the concurrence of angle bisectors benefiting from the theorems of Ceva 

and Menelaous. In other words, they stated that when the theorems of Ceva and 

Menelaous applied, the necessary results were obtained by applying them and 

the concurrence of them was justified in this way. As it happened for applying 

this theorem for the concurrence of the medians, although they used these 

theorems, they were not aware of the fact that the angle bisector was cevian. 

He assumed that they were concurrent then by showing the applicability of the 

theorems for the concurrent angle bisectors, the concurrence of them was 

showed and justified mathematically in a correct way. Then, the instructor 

asked the others in the classroom whether the theorems could be used to show 

the concurrence of them and they agreed with Ali’s explanation. Then, the 
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instructor asked another solution or strategy about showing and justifying the 

concurrence of them.     

İlkay: Let the lines of AF and BE are the angle bisectors of the angles of A 

and B. The angle of A is opposite of the arc of DGE with two equal 

parts of this arc. Then, it becomes that the measures of angles of DOG 

and GOE are equal to α…  

  

 

a. Intersection of two angle 

bisectors 

  

 

b. Concurrence of all angle 

bisectors 

Figure 25 The figure of the concurrence of angle bisectors on a triangle 

benefiting from arcs based on angles. 

 

In this solution, İlkay assumed that two angle bisectors of the angles of A and 

B intersected each other at the point of O and the incircle of it was constructed 

by combining the incenter with the tangent points by line segments of OD, OE 

and OF as in Figure 25.a. In this circle, the arcs of DG and GE had the equal 

measures because they were opposite of two equal parts of the angle of A 

separated into two equal parts by its angle bisector as in the same figure. The 

angle measure of KOF was equal to the angle measure of GOE (equal to α) 

since they were alternate interior angles. Then, the angle measure of DOK 

became equal to this angle measure since they were opposite of the arcs of DK 
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and KF separated into two equal parts by the angle bisector of the angle of B as 

in Figure 25.a. Then, she added that when the line segment of OD was 

extended to intersect the vertex of C, the angle bisector of the angle of C was 

constructed as in Figure 25.b. Because of the same reasoning made for the 

other angle bisectors, the line segment of OM separated the arc of EMF into 

two equal parts having the same angle measure of α. Therefore, two parts of 

the angle of C were equal in angle measure since they were opposing the arcs 

having same measure. In his explanation, he made reasoning successfully but 

he ignored some important points so his explanations could not appropriately 

justify the concurrence of angle bisectors. He thought that the angle bisectors 

passed through the points of the incenter. He knew that the angle bisectors 

were concurrent and this point was named as incenter but it was observed that 

he memorized this knowledge. In order to help the participants realize this 

unrelated part of the explanation, the instructor asked questions to challenge 

the validity of this justification.     

Özge: The explanations of İlkay are valid for equilateral triangles. Here, all of 

the angles at the center of the circle are equal to α having the angle 

measure of 600 since full angle at the incenter was separated into six 

equal parts. Then, the measures of the angles at the vertices are equal to 

600 and the triangle becomes an equilateral triangle. 

Instructor: Assume that the triangle is a scalene triangle. What can we say 

about the position of these angle bisectors? 

Özge: Also, the angle bisectors do not pass through the tangent points of 

incircle.  

Instructor: That is a good point. So, how can you show that the angle bisectors 

concur at a point? Focus on a scalene triangle. 

Esra: Assume that we have the angle bisectors of the angles of A and B. We 

form the perpendicular lines from the intersection point of them to the 

edges of the triangle… When we draw the perpendicular lines from the 
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intersection point of angle bisectors to the edges, |BG| = |BK| and |GO| 

= |OK| for the angle bisector of the angle of B and |AG| = |AH| and |GO| 

= |OH| for the angle bisector of the angle of A. Then, |OK| = |OH|. If we 

draw the line from the point of H to the point of K, we get isosceles 

triangle of OHK…(in Figure 26) 

In her explanation, Esra benefited from the knowledge about angle bisector 

theorem stating that when a point was placed on an angle bisector, then it was 

far away in equal distance from the rays forming the angle. She formed 

perpendicular lines to the edges of the triangle as in Figure 26 so that she 

determined the line segments in equal length. This point that she reached 

encouraged important and necessary reasoning for the justification. In order to 

show that the third angle bisector belonged to the angle of C passed through the 

intersection point of other two angle bisectors, she showed |CK| = |CH| and 

|OK| = |OH|. Through the process, she drew the line segments to combine the 

point of K with H, and C with O so that a deltoid was formed with its 

diagonals. Based on the property that one of the diagonal of the deltoid 

separated it into two isosceles triangles (isosceles triangle of OHK and CHK) 

and the other diagonal divided it into two congruent triangles (congruent 

triangles of OHC and OHK). Therefore, these diagonals were also angle 

bisectors of the interior angles. The diagonal passing through the points of O 

and C was the angle bisector of the angle on the vertex of C so that the 

concurrence of angle bisectors of the triangle of ABC was showed accurately 

and necessarily. At the end of her explanation, the instructor summarized the 

reasoning process and emphasized the important parts. Then, the discussion 

continued with the instructor’s question as follows: 
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Figure 26 The figure of the concurrence of the angle bisectors on a triangle 

based on the theorem of angle bisector. 

Instructor: Is there anybody else who adds something or explains different 

solution. 

Efsa:  ... In the explanation of Esra, we extend it by drawing the line segments 

of DE, DF and EF and we obtain three deltoids composed of isosceles 

triangles. However, we continue our explanation based on the angles at 

all points by drawing arcs as it is illustrated in the figure on the board. 

Then, we draw the line segment from the vertex of C to the edge of AB, 

this line segment bisects the arc of EF as the similar cases happened for 

other angle bisector lines. This line segment becomes the angle bisector 

of the angle on the vertex of C.  

Efsa continued the explanations of Esra to state another justification for the 

concurrence of angle bisectors. She stated that the perpendicular line segments 

passing through the concurrence point of them to intersect the edges were the 

tangent points of the incircle. Also, she formed three deltoids of ADOE, BDOF 

and ECFO. She determined the line segment in equal length and angles with 
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equal angle measure. The angles of ODE and DOE had the angle measure of ϴ, 

the angles of ODF and DFO with the measure of β and the angles OEF and 

OFE with the angle measures of α. Then, she found the angle measures of 

angles of DOE as 2(α+β), DOF as 2(α+ϴ) and EOF as 2(ϴ+β). She stated that 

the arcs opposite of these angles had the same measures as in Figure 27. Then, 

the measures of the angles on the vertices of the triangle were determined 

benefiting from these measures of the arcs, it was showed that the line 

segments passing through the incircle and the vertices became the angle 

bisectors of this triangle. Hence, Efsa showed the concurrence of angle 

bisectors based on Esra’s idea. This was a good and different justification. 

Moreover, Efsa used the idea of İlkay by accumulating it and using correctly. 

At the end of her explanation, the instructor finished discussion by 

summarizing the reasoning process and emphasized the important parts and the 

discussion about the concurrence of angle bisectors.  

 

 

 

 

Figure 27 The figure of the concurrence of the angle bisectors on a triangle 

based on the angle measures. 
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In this debate, Fulya first explained the claim about the concurrence of angle 

bisectors of a triangle. In other words, she made a claim that it was important 

to think that triangles’ angle bisectors concurred at a point on a triangle by 

providing the data by the construction of an angle bisector as it was discussed 

in the first mathematical idea in the same mathematical practice, reasoning on 

the elements of triangles and their properties. She added the warrant that when 

all of the angle bisectors were constructed, it was observed that they all 

intersected at a point through construction. Moreover, Ali provided the backing 

about the concurrence of angle bisectors based on the theorems of Ceva and 

Menelaous since when all of them were formed and it was observed that they 

concurred at a point. Then, İlker provided a backing but his explanation had 

missing parts since he talked about the concurrence of angle bisectors of 

equilateral triangles. Özge confirmed him by stating this truth. Afterwards, 

Efsa and Esra provided backings for the claim. They explained their backings 

by forming deltoid composed of two isosceles triangles. In addition, Esra stated 

her explanation based on the theorem of angle bisectors. Efsa explained the 

concurrence of angle bisectors using the content of angles on the vertices of 

deltoids based on arcs.  

 On the same week on the advancing hours of the instructional sequence 

and a problem on Week 6, it was illustrated that the mathematical arguments 

formed by the participants and knowledge and skills obtained by them about 

the concurrence of the angle bisectors at a point of triangles during this debate 

in the second week became taken-as-shared. They used this one as data and 

warrant in their arguments on Week 2 without necessitating backings, 

confirming that it became taken-as-shared. The participants used this 

knowledge in the debates made in order to determine the name of this point as 

incenter and whether this point changed based on the types of triangles 

discussed and represented in the third mathematical practice about reasoning 

on the names of concurrent points of auxiliary elements of triangles and their 

places. This way was similar to the way happened for the medians. Also, it 
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became taken-as-shared in the discussion process of the concurrence of 

perpendicular bisectors. They stated that there were three deltoids including 

isosceles triangles as it happened previously. When the horizontal diagonals of 

them were formed since vertical diagonals were angle bisectors of the triangle, 

a triangle was formed and the parts of angle bisector referred to line segments 

became the perpendicular bisectors of this formed triangle. Therefore, the 

concurrence point of angle bisectors of a triangle became the concurrence point 

of perpendicular bisectors of another interior triangle. Moreover, this 

knowledge became taken-as-shared by using in the solution of a problem on 

Week 6. The teacher initiated the discussion by reading the problem on 

Activity Sheet of the Week 6 as in Figure 28: 

PROBLEMS 

In the triangle of ABC, the angle bisectors of the angles on the vertices of A 

and B intersect the edges of BC and CA at the points of D and E. If |AE| + 

|BD| = |AB|, find the angle measure of the angle on the vertex of C. 

Figure 28 The problem on the activity sheet of the last of instructional 

sequence. 

Instructor: In the triangle of ABC, the angle bisectors of the angles on the 

vertices of A and B intersect the edges of BC and CA at the points of D 

and E. If |AE| + |BD| = |AB|, find the angle measure of the angle on the 

vertex of C.  

Ahmet: We know that we need at least two angle bisectors in order to 

determine the point of concurrence of angle bisectors since all of them 

are concurrent. Let these angle bisectors in the problem intersect at the 

point of I. This is an equilateral triangle since we know |AE| + |BD| = 

|AB|.  

Instructor: How do you find this solution? 

After this question, Ahmet stated that the point of I was the concurrence point 

of angle bisectors. He made reasoning in order to explain necessary part of the 
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solution benefiting from the theorem of the point on angle bisector theorem 

stating that when a point was placed on an angle bisector, then it was far away 

in equal distance from the rays forming the angle. He explained that when the 

perpendicular line segments passing through the intersection point of angle 

bisectors and intersecting the edges were constructed, the intersection points on 

the edges were equidistant to the vertices of the triangle for each angle bisector 

as in Figure 29. After stating the result, the participants used İlkay’s idea about 

tangent points of incircle on the triangle were also the intersection points of the 

angle bisectors on the edges of the triangle for equilateral triangles with the 

help of the instructor’s questions.  

 

 

 

 

Figure 29 The figure of the concurrence of the angle bisectors on an equilateral 

triangle  

 

In this conversation, Ahmet used the claim produced in the discussion of Week 

2 as the data that angle bisectors of a triangle were concurrent and two of them 
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were enough to determine this point. Moreover, he used the warrant produced 

in the same discussion on the same week as the warrant for that claim. He also 

benefited from the expression of İlkay made in the second week using 

equilateral triangle. Although it was not appropriate in the previous discussion, 

it was used by making accurate reasoning in this episode of the argumentation. 

In this respect, it was provided that reasoning with the concurrence of angle 

bisectors of a triangle became taken-as-shared. The claim produced on Week 2 

was used as data and warrant in the argumentation made in Week 6. Therefore, 

there were two instances that the mathematical idea, reasoning on the 

concurrence of auxiliary elements about angle bisectors was observed and 

became taken-as-shared through the process of argumentation. 

In the third week, the first activity sheet was about perpendicular 

bisectors. In this activity sheet, the participants discussed how to show the 

concurrence of perpendicular bisectors. Although all of the participants 

explained that they concurred at a point, there were constructions representing 

that they concurred at more than one point. Then, the reason of the case of 

concurrence at more than one point was explained by possible mistakes 

occurred in drawing and construction process. In this activity sheet, the 

participants discussed how to show and reason that perpendicular bisectors 

concurred at a point. Afterwards, the instructor wanted them to justify their 

answer mathematically and they explained their reasoning in the discussion 

taking place as follows: 

Ahmet: Perpendicular bisectors of a triangle intersect at just a point since they 

are concurrent. When we construct all of the perpendicular bisectors of 

a triangle as we did previously, we see that they concur at a point.   

After Ahmet’s explanation, the instructor asked how they concurred at a point 

and they suggested applying Ceva Theorem. They tried to apply it and then 

they observed that it was not valid for perpendicular bisectors. Then, the 

discussion about the definition of cevian was made as follows. The 

mathematical idea which was reasoning on cevian emerged on Week 3. They 
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investigated what the cevian was through the construction and concurrence of 

medians, angle bisectors, perpendicular bisectors and altitudes respectively. 

The discussion about cevian was emerged in the discussion about the 

concurrence of perpendicular bisectors. The episode of the discussion about the 

concurrence of perpendicular bisectors about the cevian was examined at this 

part of the study. The discussion about cevian was initiated and guided by 

asking how perpendicular bisectors concurred at a point on the plane on Week 

3. This mathematical idea was observed while discussing the concurrence of 

perpendicular bisectors through the investigations of auxiliary elements on 

Week 3: 

Merve: While examination of this, we applied the theorems of Ceva and 

Menalous but they were not valid. 

Instructor: Why did not it happen? What is the different point for perpendicular 

bisectors? 

Merve: While trying to apply the Ceva Theorem, the line segment representing 

medians and angle bisectors for the theorem begin from the vertices of 

the triangle and end on the opposing edge of it. However, it is not 

appropriate for the perpendicular bisector except for the equilateral 

triangles. Therefore, we cannot apply this theorem for perpendicular 

bisectors.  

Instructor: So. What does this difference mean? This difference can make the 

other auxiliary elements cevian while the perpendicular bisector is not, 

cannot it? 

Halit:  In this respect, this difference tells what the cevian is so a cevian is the 

line segments drawn from the vertices to the edges of a triangle. Hence, 

the perpendicular bisector is not cevian based on this definition of 

perpendicular bisectors. In other words, the perpendicular bisectors are 

the line segment bisecting the edges perpendicularly.   
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While the participants were discussing the construction and the concurrence of 

perpendicular bisectors, they realized that these elements were different from 

the others accurately benefiting from the non-applicability of Ceva Theorem. 

In this debate, Halit made a claim about the definition of a cevian. Then, Merve 

provided the data and warrant based on the applicability of Ceva Theorem. The 

structure of the argument including some parts of this debate can be illustrated 

as shown in Figure 30. 

 

 

 

 

 

  

 

 

Figure 30 Toulmin’s model of argumentation for reasoning on cevian. 

On the same week on the advancing hours of the instructional sequence 

and the problems on Week 6, it was illustrated that the mathematical 

discussions produced by the participants and knowledge and skills attained by 

them about cevian during this debate in the second week became taken-as-

shared. The participants made the claim that the altitudes concurred at a point. 

Then, they provided the data that the altitudes were cevian based on the 

definition of it accurately. Moreover, they explained the warrant about the 

applicability of the theorems of Ceva and Menalous necessarily. They used this 

one as data and warrant in their arguments on Week 3. Moreover, this 

knowledge was used as data and warrant about the discussions of the solutions 

of the problems on Week 6 accurately since there were problems could be 

DATA 

Halit:…the perpendicular 

bisectors are the lines 

bisecting the edges 

perpendicularly.   

CLAIM 

Halit: … this theorem is about 

the cevians and cevian can be 

defined as the lines drawn from 

the vertices to the edges of a 

triangle. 

 
WARRANT 

Merve: While examination of this, we applied the theorems of Ceva and 

Menalous but they were not valid. 
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solved through the line segments as cevian and Ceva Theorem. Therefore, it 

became taken-as-shared in two ways.  

After the discussion about the explanation of cevian, they continued to discuss 

about the concurrence of perpendicular bisectors as follows:  

Merve: Let three perpendicular bisectors intersect at a point. We know that a + 

b + c = 2u. When we find the sum of the length of the edges on the 

figure, we obtain this formula. In this respect, we confirm this formula. 

Then, we show that perpendicular bisectors are concurrent.  

 

 

 

 

Figure 31 The figure of the concurrence of the perpendicular bisectors of a 

triangle 

 

Esra:  Here, it does not show that they are concurrent. Any value that we use 

the length of the edges of a triangle, we obtain this formula since we 

make operations on a triangle. 

Instructor: Well. It is the correct point. So, how do they concur at a point? 
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Yücel: Let two of the perpendicular bisectors for the edges of AB and BC are 

formed and they intersect on the point of K. For the triangle of AKB, 

|AK| = |KB|, since the altitude of an isosceles triangle separates the edge 

into two equal parts. Based on the same reason, for the triangle of KBC, 

|KB| = |KC|. Then, |AK| = |KB| = |KC|. Therefore, the triangle of AKC 

is an isosceles triangle. When we form the altitude of the edge of AC 

for this triangle, it bisects this edge perpendicularly. We form the 

perpendicular bisector of the edge of AC passing through the point of K 

which is the intersection point of other two one. Hence, we show that 

perpendicular bisectors are concurrent.  

 

 

 

 

Figure 32 The figure of the concurrence of the perpendicular bisectors of a 

triangle by isosceles triangles. 

 

In his explanation which was valid for isosceles triangles, Yücel made the 

correct and necessary explanation to justify the concurrence of perpendicular 

bisectors. Also, his explanation was understood and accepted by the others 

since nobody challenged its truth or asked any question about the process. 



205 

 

Hence, the instructor continued discussion by wanting them to explain another 

solution and justification for the concurrence of them. 

Efsa:   We stated that we obtain three deltoids including isosceles triangles 

while showing the concurrence of angle bisectors. When the horizontal 

diagonals of them are formed since vertical diagonals are angle 

bisectors of the triangle, a triangle is formed and the parts of angle 

bisector lines become the perpendicular bisectors of this formed 

triangle…  

In her explanation, she initially assumed that all of the perpendicular bisectors 

were formed and they concurred at the point of O as in Figure 33. Then, the 

midpoints of the edges were combined by the line segments of GH, GK and 

HK. In this way, three deltoids of AGOH, BGOK and CKOH were formed by 

their diagonals. She added that the point of O became the concurrent point of 

angle bisectors since the line segments of AO, BO and CO became the angle 

bisectors of the angles on the vertices of the triangle as in Figure 33. While 

saying this, she benefited from the property that one of the diagonal of the 

deltoid separated it into two isosceles triangles (isosceles triangle of OHK and 

CHK) and the other diagonal divided it into two congruent triangles (congruent 

triangles of OHC and OHK). Then, by using the mathematical idea about the 

concurrence of angle bisectors discussed in the previous week, she stated that 

the line segments of AO, BO and CO concurred at the point of O. Therefore, 

these deltoids’ edges of GO, OK and OH (which were also perpendicular 

bisectors of the triangle of ABC) intersected at the point of O as the vertex of 

these deltoids. Therefore, this point became the concurrence point of 

perpendicular bisectors. The points that the some of the edges of the deltoids 

were the perpendicular bisectors and the concurrence of perpendicular 

bisectors were critical to understand the justification process so the instructor 

asked questions and made explanations in order to emphasize them and help 

the participants realize and understand them. After the process was completed, 

the instructor summarized the solution process and the discussion ended.  
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Figure 33 The figure of the concurrence of the perpendicular bisectors of a 

triangle by the concurrence of angle bisectors 

 

In this debate, Ahmet initially explained the claim about the concurrence of 

perpendicular bisectors of a triangle. In other words, he made a claim that it 

was important to think that the triangles’ perpendicular bisectors concurred at a 

point on triangles by providing the data about the construction of a 

perpendicular bisector. She added the warrant that when all of the 

perpendicular bisectors were constructed, they all intersected at a point through 

construction. Moreover, Merve provided a wrong rebuttal about the 

concurrence of them based on the formula of circumference and area of a 

triangle. Then, Esra stated that this explanation was not valid. Afterwards, 

Yücel provided backing for the concurrence of perpendicular bisectors on a 

triangle. He showed it benefiting from the knowledge of Va = ha for isosceles 

triangles. Three isosceles triangles were formed and then perpendicular 

bisectors of the main triangle became the altitudes and medians of these 

isosceles triangles. In happening so, the mathematical idea about the 

concurrence of perpendicular bisectors expressed in the core of the argument 

was understood by the participants. 
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On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical arguments produced by the participants, 

knowledge and skills about the concurrence of the perpendicular bisectors at a 

point of triangles attained during this debate in the third week became taken-as-

shared. They used this one as data and warrant in their arguments on Week 3 

without necessitating backings, confirming that it became taken-as-shared. The 

way of taken-as-shared happened in emergence of third mathematical idea in 

this mathematical practice. The participants used the knowledge about the 

concurrence of perpendicular bisectors on a triangle in order to determine the 

name of this concurrence point as circumcenter and whether this point changed 

based on the types of triangles. This way was similar to the way happened for 

the medians and the angle bisectors. Moreover, this knowledge was used in 

order to show the concurrence of the altitudes of a triangle and became taken-

as-shared. In this way, the altitudes of a triangle were transformed into 

perpendicular bisectors of another triangle. While examining the concurrence 

of the altitudes, a triangle was formed by making the former triangle as the 

orthic triangle of the latter one in a way that the altitudes of the former triangle 

became the perpendicular bisectors of the latter triangle as in Figure 34. By the 

way, the orthic triangle is the triangle formed combining the feet of any 

triangle by line segments. Therefore, it could be stated that the altitudes were 

concurrent since the perpendicular bisectors were concurrent on a triangle. In 

this respect, this mathematical idea served as data and warrant for other parts of 

the same activity sheet and other activity sheets in the same week. 

In the third week, the last activity sheet was about the altitudes. In this 

activity sheet, the participants discussed how to show that altitudes concurred 

at a point. The discussion was started benefiting from the construction with 

drawing errors and representing that the altitudes did not concur at a point as it 

happened about the similar problems for other auxiliary elements in previous 

activity sheets. The discussion about the concurrence of the altitudes of a 

triangle was stated on Week 3 as follows: 
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Nuray: ... when we repeat the steps of the construction for all altitudes for the 

edges of a triangle, we show that they concur at a point … 

Instructor: How can you show that they are concurrent mathematically? 

Ahmet: We can apply the theorems of Ceva and Menelaous since the altitudes 

of a triangle are cevian… We can show the concurrence of the altitudes 

of a triangle based on them as we did for medians and angle bisectors. 

At that point, they used the mathematical idea about what the cevian was 

taking place in the previous activity sheet on the perpendicular 

bisectors. This mathematical idea was used as data in this explanation. 

Instructor: Well. An altitude is a cevian. Then, how can you show their 

concurrence differently? 

Özge: We know the equation of a.ha = b.hb = c.hc from the area formula. When 

we know the values of the length of the edges and one of the altitudes, 

we can determine the lengths of other two altitudes. For example, let 

the length of the altitude of the edge of BC is known… 

Özge explained that by using the area formula, she could find the lengths of all 

edges and the altitudes. Then, by knowing these measures, she could construct 

the triangle and its altitudes by using compass and straight edge. She made the 

correct explanation but this was not the necessary and sufficient one for 

justifying the concurrence of the altitudes of a triangle. Then, by asking 

questions, the instructor got the participants realized this unrelated part of the 

explanation and continued the discussion by focusing on the problem. 

Esra:  But by knowing the measure of one of the altitudes, we cannot 

determine the place of concurrence point of them. For the intersection 

point, we have at least two line segments so we need to know the 

measures of at least two altitudes of a triangle...  



209 

 

Instructor: It is a good point. Let’s turn back our problem. How can you show 

that the remaining altitude passes through this intersection point that 

Esra said? 

… 

Buse: We can show the concurrence of the altitudes by using Carnot theorem. 

When we form the altitudes of the triangle, they intersect the edges at 

the points of A׀, B׀ and C׀.  

 |CC2|׀ + |AC2|׀ = |AC|2   

-|CC2|׀ - |BC2|׀ = -|BC|2   

|AA2|׀ + |BA2|׀ = |AB|2  

-|AA2|׀ - |CA2|׀ = -|AC|2   

|BB2|׀ + |CB2|׀ = |BC|2   

-|BB2|׀ - |AB2|׀ = -|AB|2   

When we add all of these equations, we get |AC2|׀ - |BC2|׀ + |BA2|׀ - |CA2|׀ + 

|CB2|׀ - |AB0 = 2|׀. Then, we end the showing the concurrence of the 

altitudes of a triangle.  

Instructor: Well. It is a good point. Is there another different explanation? 

Halit: We can form a different triangle having the perpendicular bisectors 

which are the altitudes of the triangle of ABC as it is in the figure since 

the edges of this triangle are parallel to the edges of the main triangle so 

that the altitudes are perpendicular to the edges of the formed triangle. 

We know that all perpendicular bisectors concur at a point. In this 

respect, when we show that the perpendicular bisectors of the formed 

triangle are concurrent, we show that altitudes of the main triangle are 

concurrent since the line segments representing the perpendicular 

bisectors are also the altitudes so they are concurrent.  
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Buse and Halit provided accurate and necessary explanations in order to justify 

the concurrence of the altitudes of a triangle by reasoning successfully. Buse 

applied the Carnot Theorem appropriately using the lengths of the edges and 

necessary line segments formed by the altitudes on the triangle as it was stated. 

This theorem was a theorem formed by applying the Pythagoras Theorem. 

Buse used Carnot Theorem for the concurrence of the altitudes of triangles 

benefiting from the right triangles formed by the altitudes of the triangle. Then, 

Halit explained different justification by reasoning accurately. Halit formed a 

bigger triangle by making this former triangle as the orthic triangle of the latter 

one. In the latter triangles, the line segments referring to the altitudes of the 

former triangle became the perpendicular bisectors of the bigger and latter 

triangle as in Figure 34. Moreover, he used the mathematical idea about the 

concurrence of perpendicular bisectors was used as data in this part of the 

argumentation. The line segments of AD, BE and FC referring to the 

perpendicular bisectors of bigger triangle and also the altitudes of the smaller 

triangles concurred at a point because of the concurrence of perpendicular 

bisectors. In other words, the line segments referring to different auxiliary 

elements for different triangles concurred at a point common for these triangles 

as in Figure 34. Based on concurrence of perpendicular bisectors, Halit formed 

orthic triangle whose perpendicular bisectors of AD, FC and BE were at the 

same time the altitudes of the smaller triangle; i.e., the triangle of ABC. Based 

on the notion of concurrence of perpendicular bisectors, it could be stated that 

the line segments of AD, FC and BE concurred at a point. Hence, it was 

showed and justified that the altitudes of the triangle of ABC which were AD, 

FC and BE concurred at a point accurately. At the end of the discussion, the 

instructor emphasized the important points of different justifications produced 

by the participants. 
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Figure 34 The figure of the concurrence of the altitudes of a triangle by 

perpendicular bisectors 

In this debate, Nuray initially explained the claim about the concurrence of the 

altitudes of a triangle. In other words, she made a claim that it was important to 

think that triangles’ altitudes concurred at a point on a triangle by providing the 

data about the construction of an altitude. She added the warrant that when all 

of the altitudes were constructed, they all intersected at a point through 

construction. Moreover, Ahmet provided a backing about the concurrence of 

them based on the theorems of Ceva and Menalous since the altitudes of a 

triangle were cevian. Then, Özge supported the backing by the area formula 

with the altitude and Buse supported another explanation done by the Carnot 

Theorem. Lastly, Halit made an explanation as a backing benefiting from the 

concurrence of the perpendicular bisectors through the orthic triangle. At this 

point, this argument was understood by them since none of the participants in 

the classroom challenged the elements of this argument. 

On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical arguments produced by the participants, 
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knowledge and skills about the concurrence of altitudes at a point on triangles 

attained during this debate in the second week became taken-as-shared. They 

used this one as data and warrant in their arguments on Week 3 without 

necessitating backings, confirming that it became taken-as-shared. The 

participants used this knowledge in the debates made in order to determine the 

name of this point as the orthocenter and whether this point changed based on 

the types of triangles. This way was similar to the way happened for the 

medians, angle bisectors and perpendicular bisectors. The discussion about this 

case happened on Week 3 as follows: 

Instructor: Ok. What can you say about the place of orthocenter based on the 

types of triangles such as obtuse and right triangles? 

Nuray: All of the altitudes of a triangle are concurrent at a point named as 

orthocenter. When we think about the process of the concurrence of the 

altitudes and the definition of a right triangle and the altitude, each 

altitude forms a right triangle in the main triangle. Therefore, the place 

of the orthocenter changes since the place of each of the altitudes of 

these triangles changes. For a right triangle, the place of orthocenter is 

the vertex including right angle on the region of the set of points 

forming the triangle since the altitudes of the perpendicular edges on a 

right triangle themselves. Also, the altitude of the hypotenuse passes 

through this vertex because of the definition of the altitude and the 

concurrence of them.  

Nuray made accurate and necessary explanation about the place of the 

orthocenter on right triangles by reasoning correctly and effectively. Because 

nobody challenged her explanation and reasoning and it was correct, the 

instructor confirmed its truth and continued the discussion by asking about 

obtuse triangles. 

Instructor: Right. What about on obtuse triangles? 
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Buse: When we form all of the altitudes of an obtuse triangle, the orthocenter 

is on the figure and it takes place on the region of the set of exterior 

points on the plane. 

 

 

 

 

Figure 35 The point of concurrence of the altitudes as orthocenter of an obtuse 

triangle  

 

Instructor: What do you think about Buse’s explanation and drawing? 

Selim:  In this explanation, we do not form the altitudes. We made a right 

triangle but not correct. The place of the orthocenter of an obtuse 

triangle is on the region including the set of exterior points. Based on 

the definition of the altitude, it begins from the vertex and ends on the 

opposite edge by intersecting it perpendicularly and forming a right 

triangle. Therefore, the altitudes of two edges opposite of the acute 

angles take places outside the triangle since they need to form right 

angles. When we think that the rays of the obtuse angle are these edges. 
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Therefore, the altitudes are on the outside region in order to form right 

angles by 900 + α = β as it is on the figure.   

Buse made an explanation about the altitudes of obtuse triangle but it was not 

the expected one. Selim accumulated her explanation by providing the accurate 

and necessary one. He formed the altitudes and its truth benefiting from the 

property of angle measures of interior and exterior angles of a triangle as in 

Figure 36. Moreover, his drawing was the necessary one representing the 

formation of the orthocenter for an obtuse triangle.  

 

 

 

 

Figure 36 The point of concurrence of the altitudes as orthocenter of an obtuse 

triangle.  

In this debate, as it was observed, the participants used the knowledge of the 

point of the concurrent point of the altitudes as orthocenter as data and warrant 

in these debates made in order to determine whether the place of this 

concurrent point representing the orthocenter changed for obtuse and right 

triangles as it was observed in this discussion. In other words, by thinking 



215 

 

about the concurrence point of the altitudes as orthocenter and this point’s 

formation process, they talked about the place of orthocenter for these kinds of 

triangles. Nuray provided claim, data and warrant for a right triangle benefiting 

from these knowledge as data that there was a point that altitudes concurred at 

a point and warrant about the formation and concurrence of altitudes of 

triangles. Also, the participants benefited from the definition and construction 

of this element. Moreover, Buse provided the claim for obtuse triangle and then 

provided the data with the concurrence of them but he used wrong warrant. In 

other words, she explained the concurrence of the altitudes and its place for 

obtuse triangles correctly but she could not provide expected representation for 

it correctly. She could not form the altitudes of this obtuse triangle for the 

edges forming the obtuse interior angle of the triangle correctly. Then, Selim 

provided rebuttal and true data and warrant for this discussion. He benefited 

from drawing of the altitudes and the knowledge as data and warrant. He used 

the property that the sum of the measures of two interior angles was equal to 

the measure of the exterior angle belonged to the remaining interior angle. This 

discussion period was the second instance that the mathematical idea about the 

concurrence of the altitudes of triangles was observed since it was used in 

order to determine whether the place of this concurrent point changed or not 

for different types of triangles.  

 

4.2.3 Mathematical idea 3: Reasoning on the names of concurrent points of 

auxiliary elements of triangles and their places  

 

The third mathematical idea which was the reasoning on the names of 

concurrent points of auxiliary elements of triangles and their places on 

different types of triangles emerged on Week 2 and 3. The participants 

investigated these points as centroid for medians, incenter for angle bisectors, 

circumcenter for perpendicular bisectors and orthocenter for altitudes 

respectively. Moreover, they continued the discussion whether the place of 
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these points changed based on the types of triangles. For these activities, they 

thought about the relationship between these elements, related theorems and 

properties about triangles with their peers and participated in the whole class 

discussion by explaining their thoughts and mathematical expressions for them. 

During the whole class discussion, they debated how these concurrent points 

became critical points and changing/unchanging critical places. The discussion 

was initiated by asking how these concurrent elements attained critical 

importance on the plane on Week 2. These four elements are investigated 

separately and grouped as the third mathematical idea.  

In the second week, the first activity sheet was about the medians. In 

this activity sheet, the participants discussed how to name the concurrent point 

of the medians and to attain critical importance in geometry. It was important 

since a point was formed through the concurrence of the medians and this point 

with the name of centroid had some properties such as separation of the 

medians through the ratio of 2;1 based on it and the separation of triangle into 

equal areas by the medians and centroid. The discussion about the centroid as 

concurrence point of medians and its importance was examined through the 

explanations of the participants for the instructor’s question of “What is/are the 

name(s) of the intersection points of the medians on a triangle?” on Week 2 as 

follows: 

Büşra: When we think about the concurrence of the medians, we can state that 

all of the medians of a triangle are concurrent on a point. This point is 

the centroid of the triangle because this point is the center of gravity on 

the triangle.   

Instructor: How can you identify this point as the centroid? 

Merve: When we think about the process of the concurrence of the medians, 

we see that these line segments separate the edges of the triangle into 

equal parts and then we observe that the medians of a triangle divide 

one another in the ratio 2; 1 ... For example, on the triangle, the 

triangles of KFG and GMC; AKF and ABM are similar triangles. |FG| 
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= |GM| = ½ and |AF| = |FM| = ½ based on the scale factors of these 

similar triangles. Therefore, the relationship between these lengths can 

be described as |AG| = 2|GM| = 4|FG|. When we repeat this process for 

the other medians, we find the same ratio.    

 

 

 

Figure 37 The separation of the medians through the ratio of 2;1 based on the 

concurrence of the medians 

 

Instructor: Is this ratio enough to name the concurrent point of the medians as 

the centroid? 

Halit: It is not enough since we need to show that a triangle is dissected by its 

medians into six smaller triangles having equal area. The triangles of 

BXP and CXP; BPZ and APZ; CPY and APY have equal area. Then, 

the areas of the triangles of ABX and ACX; ACZ and BCZ are equal in 

measure so that we find y = z and z = x and then x = y = z. Therefore, 

we show that the medians separate the triangle into regions having the 

equal area. 
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Figure 38 Dissection of a triangle into regions having equal areas with medians 

 

In this discussion, Büşra initially made a claim about the name of the 

concurrence point of the medians as centroid based on its nature of the gravity 

center of the triangle. Then, Merve provided data by emphasizing the 

concurrence of the medians of the triangle benefiting from the mathematical 

idea about the concurrence of them so that the evidence that the mathematical 

idea about the concurrence of auxiliary elements functioned as if shared was 

obtained. In her explanation, Merve found the ratio between the lengths of the 

edges of the triangle in Figure 37 benefiting from similar triangles. She made 

good reasoning and her explanation might be useful for determining the 

concurrence point of the medians as centroid. However, she realized that her 

explanation was not sufficient for this identification Then, Halit provided a 

different explanation and justification for this identification since he stated that 

Merve’s explanation was not sufficient to identify the concurrence point as 

centroid since she found the ratios between the line segments formed through 

the intersection points of the line segments formed through the medians. 

Although her explanation represented the ratios between the line segments 



219 

 

formed by the medians, her explanation had missing parts for justifying that the 

concurrent point of the medians was centroid. Halil made accurate and 

necessary explanation at this episode of the argumentation to complete the 

warrant of the argumentation. In other words, another part of the warrant for 

that claim was provided benefiting from the same mathematical idea by Halil. 

The name of the concurrence point of the medians as centroid was identified 

based on the discussion about the separation of the medians into ratio of 2;1 

with respect to this concurrence point into regions and the triangle into regions 

having equal area. Based on the area formula which was a.ha, the triangles 

having the equal area were determined benefiting from the idea that the lengths 

of the edges and the altitude of these edges having the common vertex were 

same. They were examined based on the process and the mathematical idea of 

the concurrence of the medians. Then, by showing them, the concurrence point 

was determined as the centroid of the triangle accurately and necessarily so that 

it was named as the centroid. The structure of the argument including some 

parts of this debate can be illustrated as shown in Figure 39. 

 

 

 

 

 

 

 

 

Figure 39 Toulmin’s model of argumentation for reasoning on the formation of 

the centroid. 

 

DATA 

Büşra: When we think about the 

concurrence of the medians… 

CLAIM 

Büşra: This point is the centroid 

of the triangle because this...   

 

 
WARRANT 

Merve: When we think about the process of the concurrence of the 

medians, we see that these lines separate the edges of the triangle … 

Halit: It is not enough since we need the show that a triangle is dissected 

by its medians into six smaller triangles of equal area… 
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 On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical discussions produced by the 

participants, knowledge and skills about the point of concurrence of the 

medians attained was the centroid in the second week became taken-as-shared. 

They used this one as data in their arguments on Week 2 without necessitating 

backings, confirming that it became taken-as-shared. They made the claim 

explaining the centroid of the triangles took place in the region of interior 

points formed by the triangle on a plane for all types of triangles. They 

produced this claim for the problem of “Estimate the place(s) of the 

intersection point(s) of the medians on right, obtuse and acute triangles. Do(es) 

the place(s) of this/these intersection point(s) change for these triangles? 

Why?”. The instructor directed the participants to answer this problem using 

the mathematical ideas about the concurrence of the medians and this point as 

centroid. Then, they provided data that the centroid was the centroid of the 

triangle by dissecting the triangle into six regions with equal area in a similar 

way made in Figure 38. Therefore, they explained the warrant “when the 

medians are formed for all these types of triangles, it is seen that they exist on 

the same region including interior points as one of three regions formed by a 

triangle on a plane” (the mathematical idea about regions formed on a plane by 

a triangle as discussed in the first mathematical practice) and “six regions with 

equal area always exist in the same region so the centroid always take place in 

the same region for all types of triangles” as in Figure 38. By making this 

explanation, they stated that the centroid always existed in the interior region 

of all triangles by separating the medians into ratio 2;1 accurately and 

appropriately. By the way, it could be stated that the mathematical idea about 

the regions formed by the triangle by separating the plane into three parts was 

also became taken-as-shared. This was the other instance that the notion of the 

regions formed by triangles on a plane were observed in an argumentation 

functioned as if shared. The concurrence of the medians and the name of this 

concurrence point as the centroid used as data and it became taken-as-shared. 

Moreover, the mathematical idea about the centroid as the concurrence point of 
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the medians became taken-as-shared by being used in the discussion taking 

place on Week 6 about the question related to two rotating and coinciding 

equilateral triangles on the point of the centroid and examining the area of the 

overlapping region. In other words, the concurrence of the medians and the 

name of this concurrent point as the centroid used as data and warrant and it 

became taken-as-shared as it happened in the following discussion: 

Instructor: Two congruent equilateral triangles (n units) overlap as shown in 

the figure. Vertex of C of one triangle is at the centroid of the other 

triangle. If the triangle with the vertex of C is allowed to rotate about 

the centroid, C, of the other triangle, what is the largest possible value 

of the overlapping area? 

 

Two congruent equilateral triangles (n units) overlap as shown in the 

figure. Vertex of C of one triangle is at the centroid of the other triangle. If 

the triangle with vertex C is allowed to rotate about the centroid, C, of the 

other triangle, what is the largest possible value of the overlapping area? 

 

Figure 40 Figure of the problem about two rotating and overlapping equilateral 

triangles. 

 

The instructor read the problem on the activity sheet represented in Figure 40. 

Then, the instructor asked some participants to solve the problem. Through the 

process of peer discussion, the instructor saw that there were two different 
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answers for this problem so she selected two participants to represent typical 

examples of these different answers.  

Merve: The area of the overlapping region is 2,6a2 as a maximum area for the 

overlapping region and the area of whole triangle is 15,6a2. In the 

problem, it is explained that the centroid of triangle is coincident with 

the vertex of the other triangle. The centroid is the concurrent point of 

the medians of a triangle by separating the triangle into six regions 

having equal areas and the edges with the ratio 2;1… 

In her explanation, Merve placed the front triangle in a way that the edge of the 

front triangle was coincident with the median of the back triangle as in Figure 

41 benefiting from the ratio of 2:1 formed on the parts of medians. She thought 

that the largest overlapping area that could be determined by forming a right 

triangle whose median was coincident with the median of the back triangle. 

 

 

 

Figure 41 Figure of the two overlapping equilateral triangles by Merve. 

 

Instructor: Ok. İlkay, Could you please explain your solution? 

İlkay:  I found bigger value than this one. The maximum area that we can 

compute is 4a2 in the case of the area of whole triangle is 15,6a2. When 
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the place of the front triangle is determined as the medians of these 

triangles are coincident because they are connected each other on the 

centroid of the back triangle, the centroid of the front triangle becomes 

coincident with the vertex of the back triangle as it is in the figure by 

Merve’s explanation… Then, we obtain two isosceles obtuse triangles 

with the angle measure of 1200… 

 

 

 

Figure 42 Figure of the two overlapping equilateral triangles by İlkay. 

 

In this discussion, the mathematical idea about reasoning on naming the 

concurrence point of auxiliary elements for medians became taken-as-shared. 

Merve made claim about the calculation of the largest area for overlapping 

region as 2,6a2. For this claim, she provided the data “In the problem, it is 

explained that the centroid of triangle is coincident with the vertex of the other 

triangle. The centroid was the concurrent point of the medians of a triangle by 

separating the triangle into six regions having equal areas” benefiting from the 

mathematical idea of the centroid as the concurrence point of the medians and 

this idea functioned as if shared. Then, she provided warrant by explaining the 
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position of the front triangle and the process of determination of it through the 

medians. She provided her answer by positioning the triangle with vertex C in 

a way that one of its edges passed through the vertex of the other one in Figure 

41. She made reasoning accurately and positioned the triangle appropriately 

benefiting from the medians and the position of the centroid on the medians 

based on the idea that the medians of a triangle divided the other in the ratio of 

2; 1. However, although the reasoning way was correct, this was not the largest 

possible value of area for overlapping region since there was another position 

to produce the largest overlapping area. Then, İlkay provided correct answer by 

explaining largest value for the area of overlapping region. He used the same 

data provided by Merve. Then, he stated the warrant based on the place of the 

front triangle in a way that the medians were coincident by obtaining two 

obtuse isosceles triangles as in Figure 42. He placed the front triangle by 

benefiting from the ratio of 2:1 formed by the parts of the medians of a 

triangle. Different from Merve’s representation, he placed the front triangle 

whose median was coincident with the vertex of the back triangle. The largest 

area was determined in a way that the median of one of the triangles was 

coincident with the edges or median of the other triangle. In this respect, İlkay 

reasoned that when the medians of both triangles were coincident, the largest 

lengths of the parts of the edges of the triangle were formed. He assumed that n 

= 6a representing the length of the edges of these triangles. Then, he found that 

the overlapping parts of the edges had the lengths of 2a. Hence, he obtained a 

larger value for overlapping region than the value found by Merve. Merve 

found smaller value since the overlapping triangle’s edges had smaller lengths. 

As it was observed in the discussion, the mathematical idea was used as data 

and warrant for the discussion of the problem in order to examine the 

maximum value of the overlapping region of two coincident equilateral 

triangles. With this motivation, the mathematical idea about the centroid as the 

concurrence point of the medians became taken-as-shared since this 

mathematical idea previously emerged took place by functioning in other parts 

of new argument analyzed by Toulmin’s model of argumentation. 
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In the second week, the next activity sheet was about angle bisectors. In 

this activity sheet, the participants discussed how to name the concurrence 

point of angle bisectors and to attain critical importance in geometry. The 

discussion about the incenter as concurrence point of angle bisectors and its 

importance was examined and stated on Week 2 as follows: 

Instructor: What can we say about the concurrent point of angle bisectors and 

the process of concurrence of them. 

… 

Merve: The concurrence point of angle bisectors has critical importance since 

any two of them are enough to determine this point. When we examine 

the process of showing the concurrence of them, we can name this point 

as incenter.  

Instructor: How do you show that this point is incenter? 

Halit: … we have four points that three of them are equidistant to the specific 

one. The circle is the set of points equidistant to a point which is the 

center of it. When we combine three points which are equidistant to the 

concurrent point of angle bisectors on the triangle by arcs, we obtain 

incircle of this triangle whose center is the concurrent point of angle 

bisectors… Also, this concurrent point becomes the incenter… 

 

a. Tangent points and the point 

equidistant to these points 

 

b. Incenter with its radius on 

incircle 

Figure 43 The formation of incenter by angle bisectors 
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In this debate, Merve first made a claim that the name of the concurrence point 

of angle bisectors was incenter. Then, Halit provided data and warrant for that 

claim. The data was about the concurrence of the angle bisectors and the 

definition of circle. The warrant was about the formation of a circle benefiting 

from the points through the concurrence of them. Halit remembered the process 

of the concurrence of angle bisectors and its justification as in Figure 43.a. In 

this figure, there was the concurrence point and three points which were D, E 

and F equidistant to this concurrence point. Then, he made the connection 

between this mathematical idea and the formation and definition of a circle. In 

this figure, when these three points were combined by arcs, the combination of 

these arcs formed a circle with the center point as the concurrence point of the 

angle bisectors as in Figure 43.b. The distances of these three points to the 

center represented the radius of this circle. Also, this circle became the incircle 

of the triangle since these three points were the tangent points on the triangle. 

In this way, the concurrent point became the incenter. Through this process, 

Halit made necessary and accurate explanation for the problem by reasoning 

correctly. The structure of the argument can be illustrated by including some 

parts of this debate as shown in Figure 44. 

 

 

  

 

 

 

 

Figure 44 Toulmin’s model of argumentation for reasoning on the formation of 

the incenter. 

 

DATA 

Halit: When we think about the 

process of showing the 

concurrence of them… 

CLAIM 

Merve: …we can name 

this point as incenter.  

 

 
WARRANT 

Halit: …Therefore, when we combine three points which are equidistant to 

the concurrent point of angle bisectors on the triangle by arcs… 
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 On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical discussions produced by the 

participants, knowledge and skills attained by them about the point of 

concurrence of angle bisectors was the incenter in the second week became 

taken-as-shared. They used this one as data and warrant in their arguments on 

Week 2 without necessitating backings, confirming that it became taken-as-

shared. The concurrence of angle bisectors and the name of this concurrent 

point as the incenter used as data and warrant in other mathematical arguments 

and it became taken-as-shared as it happened in the following discussion: 

Instructor: Ok. Does the place of the incenter change based on the types of 

triangles? How? 

Selim: The place of it does not change. … the place of incenter for all types of 

triangles is always in the set of interior points which is one of the 

regions formed by triangles on the plane. The concurrent point of angle 

bisectors is the incenter of the triangle, therefore incircle is always 

formed in the triangle and also the incenter is made. Moreover, three 

tangent points of the incircle on the triangle is on the region of the set of 

points forming the triangle.  

In this debate, as it was observed, the participants used the knowledge of the 

concurrence point of angle bisectors as the incenter as data and warrant in the 

debates made in order to determine whether the place of the point representing 

the incenter changed based on the types of triangles. This reasoning was 

necessary and sufficient for the problem. Therefore, it became taken-as-shared 

as functioning in other parts of the argumentation model of the discussion. 

Moreover, the knowledge about the formation of the incenter point was used as 

data and warrant in another two discussions made in the content of 

similarity/congruence on Week 5. In other words, there were other instances 

that this mathematical notion functioned as if shared in a way that they 

produced evidences for becoming taken-as-shared. In the first debate, the topic 

that the radius of incircle of congruent triangles had always same length was 
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discussed. Esra made the claim that they were same accurately. Then, she 

provided the data that the point of the concurrence of angle bisectors was 

incenter and congruent triangles’ edges had the equal length and the measures 

of angles of them were equal. She explained the warrant that the congruent 

triangles’ angle bisectors separated the angles into two angles having equal 

angle measures and the distance between the incenter and tangent points were 

equal. By doing so, this mathematical idea became taken-as-shared in an 

argumentation reasoned correctly under the guidance of the instructor. In 

another discussion, this idea became taken-as-shared again. The teacher 

initiated the discussion by reading the problem on Activity Sheet 2 represented 

in Figure 16 about the content of congruence/similarity on Week 5: 

Instructor:  When the lengths of the radius of incircle and the altitude of the 

hypotenuse are equal for two right triangles, they are sometimes 

congruent, are not they? 

Mehmet: They were always congruent. By construction, I can show that they 

are congruent. 

Instructor: How can you do that? 

Mehmet: By identifying the possibility and types of triangles constructed by 

known elements, I can do it. Initially, the incenter is the point of 

concurrence of angle bisectors. Therefore, we know the distances 

between the incenter and the tangent points.  

Instructor: Well. It is a good point. So. 

Mehmet: Also, we know the angle measure of one of the angles as 900 and the 

length of the altitude of the hypotenuse. ... We construct a right angle, a 

circle having the radius in the length of the altitude and incircle. At the 

end, we draw a line tangent to the incircle since the hypotenuse is 

tangent to incircle. The intersection points of this line on the lines of 

AX and AY are vertices of the triangle and the hypotenuse and the 

triangle were formed…  
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Figure 45 Construction of the problem by Mehmet. 

 

In his explanation, he provided accurate and necessary explanation for the 

problem by reasoning successfully. He constructed the right angle and the 

circle with the radius in the length of the altitude as in Figure 45. Then, the 

incircle was constructed by being tangent to the rays of the right angle. Then, 

by constructing the tangent line for the incircle to intersect the rays of right 

angle, the triangle was constructed. Through his explanation, he did not state 

the place of the altitude on the hypotenuse. Then, the instructor asked question 

about its place to fulfill this gap. Then, nobody answered so the instructor 

answered by stating that there were two cases that the tangent line of the 

incircle intersected the circle with the radius equal to the length of the altitude; 

it intersected at two points or one point which was also the tangent point of the 

incircle. Therefore, two cases for the place of the altitude were formed based 

on the idea that when the position of a line to a circle was examined there were 

three cases; not intersecting, intersecting at two points and tangent. Because the 

triangle was formed, the case of not intersecting was eliminated. In order to 

help the participants understand the idea and use it to determine their 
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congruence, she asked “What do these cases mean?” and they answered that 

there were two types of triangles constructed by these elements. In the case of 

intersecting at two points, one was the tangent point of incircle and the other 

one was the intersection point of the circle constructed for the altitude. In this 

case, a scalene triangle was formed. The other case was the hypotenuse was 

tangent to the circle formed for the altitude. This tangent point was also the 

tangent point of the incircle with the hypotenuse so that an isosceles triangle 

was formed. Then, the instructor asked to reach the complete answer about 

congruency “By these knowledge, what can you say about the congruence of 

triangles?”. Then, they answered that the scalene triangles were congruent 

since by following construction steps, all of the scalene and isosceles right 

triangles formed by these known elements had the main and auxiliary elements 

having the same properties and measures so they were always congruent. 

Through the discussion, sufficient and accurate solution and justification was 

provided for the problem. After the discussion was completed, Halit provided 

another formation steps for this triangle as follows: 

Halit:  … We construct the right angle and its angle bisector. Then, we draw a 

circle having the center point of the intersection point of rays and with 

the radius of the altitude. Then, we can determine the place of incenter 

by the point which is  far away from the point of A and construct 

incircle in the figure. The point of E is the tangent point of incircle to 

the hypotenuse and the point of D is the intersection point of the 

hypotenuse and right angle’s angle bisector. When we draw a line 

passing through these points, the intersection points of this line on the 

rays are the vertices of the triangle… 
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Figure 46 Figure for construction of the problem by Halit. 

 

The construction steps of Halit were similar to the steps followed by Mehmet. 

However, the differences came from the construction of incircle. While 

Mehmet was constructing incircle, he reasoned on the construction steps of a 

tangent circle to the particular lines representing the rays of the right angle. In 

other words, Mehmet constructed a right angle and he formed a circle on the 

center as the point of the vertex of this right angle in the length of the altitude. 

Then, he constructed an incircle tangent to two rays forming the right angle on 

the vertex of A as in Figure 45. On the other hand, Halit determined the place 

of the incenter based on the angle bisector theorem stating that when a point 

was placed on an angle bisector, then it was far away in equal distance from the 

rays forming the angle. He formed the angle bisector of the right angle and 

determined the place of the incenter by Pythagorean Theorem as in Figure 46 

since the incenter was far away in the distance of  to the point of A. 

Afterwards, there were two cases in order to form the triangle having the 
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values explained in the problem; isosceles and scalene triangle. In the case of 

isosceles triangle, the point of D representing the altitude foot on the 

hypotenuse and the point of E representing the perpendicular bisector starting 

on the incenter and ending on the hypotenuse were coincident. Then, the 

hypotenuse was constructed passing through this coincident point and 

intersecting the rays with the equal distance to the vertex of A. All of the 

isosceles triangles formed by these known measures of the elements were 

congruent since the lengths of the opposing edges were equal by the criteria of 

S.S.S. On the other hand, in the case of scalene triangles, the points of D and E 

were not coincident. The scalene triangle was formed passing through these 

points intersecting the rays of the right angle. All of the scalene triangles 

formed by these known measures of the elements were congruent since the 

lengths of the opposing edges were equal by the criteria of S.S.S. Then, the 

congruence of the triangles was showed and justified by using the idea formed 

through the discussion taking place in Mehmet’s explanation process guided by 

the instructor.  

 In this discussion, Mehmet used the claim produced in the discussion of 

Week 2. The data that the point of concurrence of angle bisectors as incenter 

was used in order to determine the congruence and warrant was provided 

benefiting from the steps of construction. Moreover, Halit provided backing 

explaining the steps of construction in a different way. In this respect, it was 

provided that reasoning with the names of concurrence points of auxiliary 

elements of triangles and their places for angle bisectors in order to determine 

the place of incenter became taken-as-shared. The claim produced on Week 2 

was used as data in the argumentation made on Week 5.  

Lastly, the critical importance of concurrence point of perpendicular 

bisectors was examined on Week 3. The discussion about reasoning on the 

names of concurrence points of auxiliary elements of triangles and their places 

for perpendicular bisectors was made in similar way made for the incenter as 

the concurrence point of the angle bisectors. In this debate, İlkay first made a 
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claim that the name of the concurrence point of perpendicular bisectors was 

circumcenter. Then, the instructor challenged him to explain how this 

concurrence point became circumcenter. He provided data that three 

perpendicular bisectors of a triangle concurred at a point appropriately. He also 

added the warrant that there were three isosceles triangles of AOB, BOC and 

AOC where two of their edges’ lengths were equal as in Figure 47. Also, the 

vertices of the triangle were equidistant from the concurrence point of 

perpendicular bisectors so that a circle could be formed based on the definition 

of a circle by combining these vertices with the arcs based on the center of this 

concurrence point. Then, the perpendicular bisectors represented the case that 

the perpendicular line segments passing through the center bisected the chords 

in a circle as in Figure 47. As it was observed, the concurrence of 

perpendicular bisectors and the process of showing their concurrence were 

used while forming the warrant accurately and necessarily.    

 

 

 

Figure 47 The circumcenter as the concurrent point of perpendicular bisectors. 

 

On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical discussions produced by the participants 
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and knowledge and skills attained by them about the point of concurrence of 

the perpendicular bisectors was the circumcenter in the third week became 

taken-as-shared. They used this one as data and warrant in their arguments on 

Week 3 without necessitating backings, confirming that it became taken-as-

shared. The concurrence of perpendicular bisectors and the name of this 

concurrence point as the circumcenter used as data and warrant and it became 

taken-as-shared as it happened in the following discussion: 

Instructor: Ok. Does the place of the circumcenter change based on the types of 

triangles? How? 

Mehmet: The place of it changes based on the types of triangles. … The 

concurrence point of perpendicular bisectors is the circumcenter of the 

triangle; therefore circumcircle is always formed on the outside 

region...  

Mehmet made an explanation about the place of the concurrence point of 

perpendicular bisectors but his explanation had unnecessary and incorrect 

parts. He made reasoning about the placement of a right triangle in a circle 

incorrectly. He ignored the fact that the hypotenuse of the right triangle was 

coincident with the diameter of the circle. At this point, the instructor wanted 

Mehmet to represent his explanation. He drew Figure 48. In order to help him 

realize the incorrect part of his explanation, the instructor wanted him to 

estimate the measures of the arcs formed by the vertices of the triangle on 

circumcircle. By estimating these measures, he correctly stated that the 

hypotenuse must be on the diameter of circumcircle. Then, the necessary and 

appropriate explanation about the place of the circumcenter for a right triangle 

was made by Nuray as follows:  

 



235 

 

 

Figure 48 The circumcircle of a right triangle by Mehmet 

 

Nuray: The place of the circumcenter of a right triangle is the midpoint of the 

hypotenuse. The diameter of circumcircle is the hypotenuse and the 

inscribed angle of a circle opposite of the diameter has the measure of 

900. When we follow the concurrence of perpendicular bisectors and the 

formation of the circumcenter, this case becomes valid for right triangle 

(in Figure 49.a). 

Instructor: What can you say about an obtuse triangle? 

Halit: We know that the inscribed angle of a circle opposite of the diameter has 

the measure of 900 so the arc opposite of the obtuse angle of the triangle 

must exceed the diameter of the circumcenter. Also, the concurrence 

point of perpendicular bisectors is the center of circumcenter. 

Therefore, this center point takes place on the region including the set 

of exterior points near the largest edge (in Figure 49.b).   
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a. Construction of circumcircle 

for right triangle by Nuray 

 

b. Construction of circumcircle 

for obtuse triangle by Halit 

Figure 49 The circumcircle of right and obtuse triangles 

 

In this episode of the discussion, Halit provided necessary and accurate 

explanation and justification about the place of circumcenter for an obtuse 

triangle. In this debate, the participants used the knowledge about the 

concurrence point of perpendicular bisectors as the circumcenter as data and 

warrant in the debates made in order to determine whether the place of the 

point representing the circumcenter changed for obtuse and right triangles as it 

was observed in this discussion. In other words, by thinking the concurrence 

point of perpendicular bisectors as circumcenter and the process of formation 

of this center point, they discussed the place of circumcenter for these kinds of 

triangles. Hence, reasoning on the names of concurrent points of auxiliary 

elements of triangles and their places for perpendicular bisectors in order to 

determine the place of circumcenter became taken-as-shared. Moreover, the 

knowledge about the formation of the point of circumcenter was used in 

another discussion made in the content of congruence/similarity on Week 5. In 

this debate, the topic was that the radius of circumcircles of congruent triangles 

had sometimes equal length and the distances of circumcenter to the edges 

were sometimes equal. Efsa made the claim that they were always equal by 
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stating that the explanation was wrong. Then, she provided the data that the 

point of the concurrence of perpendicular bisectors was circumcenter and 

congruent triangles’ edges had the equal length and the measures of angles of 

them were equal under the guidance of the instructor. She explained the 

warrant that the congruent triangles’ perpendicular bisectors had equal length. 

In order to show the truth of their claim, the instructor wanted them to draw 

and they formed a triangle as in Figure 47. Then, they constructed another 

triangle having equal length of radius of circumcirle with the previous one and 

equal length of distances for the opposing edges of the triangle with the 

previous one. When they found the length and angle measure necessary for 

these triangles by using these measures, they became congruent triangles since 

all of these measures were equal for these triangles. In this way, they showed 

the congruence of these triangles accurately and sufficiently. In doing so, this 

knowledge which was the reasoning with the names of concurrence points of 

auxiliary elements of triangles and their places for perpendicular bisectors 

became taken-as-shared. Moreover, similar discussions made for angle and 

perpendicular bisectors were observed for the altitudes. Then, the mathematical 

idea about the reasoning on the concurrence point of the altitudes as the 

orthocenter became taken-as-shared in similar way as it happened for angle and 

perpendicular bisectors.  

 

4.3 Mathematical practice 3: Reasoning on congruence and similarity 

 

The last mathematical practice was reasoning on congruence and 

similarity of triangles. The mathematical ideas included in this mathematical 

practice were about the formation of congruent and similar triangles through 

transformation geometry and Angle-Side-Side (A.S.S.) was not a criterion for 

congruence or similarity. They had been mainly emerged from the activities 

that the participants engaged in the fourth and fifth weeks. On the fourth week, 

they examined the construction of images of triangles through the types of 
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transformation geometry and the relationship between triangles and image 

triangles by using the compass and ruler, and coordinate system. On the fifth 

week, they engaged in the activities about congruence and similarity of 

triangles and the criteria for them. While they were talking about criteria, they 

proposed a congruence/similarity criterion of A.S.S. and discussed its 

incorrectness. For these activities, they worked with their peers and 

participated in the whole class discussion.  

 

4.3.1 Mathematical idea 1: Reasoning on the formation of congruent or 

similar triangles through transformation geometry 

 

The last mathematical practice was observed on the fourth week of the 

instructional sequence while the participants were engaging in the activities 

about forming congruent and similar triangles through transformation 

geometry. In this activity, the participants were asked to find the image of the 

triangles by following the steps of construction through transformation 

geometry. After forming triangles which were the images, they determined the 

congruent or similar triangles. While they were engaging in this activity, they 

benefited from the definition of types of transformation geometry and a 

triangle. For this activity, they worked with their peers and participated in the 

whole class discussion. The instructor initiated the discussion by asking a 

question in order to discuss the activities on the first activity sheet of the Week 

4: 

Instructor: What is the relationship between the triangle and its image formed 

through the translation? 

Selim: We attain a triangle through translation. The triangle and its image 

triangle are congruent triangles.  

Instructor: How do they become congruent triangles? 
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Selim: Translation is moving a shape. A triangle is moved through specific 

way, direction and distance through translation so the image triangle 

and the triangle are congruent.  

Instructor: How can you form the image of a triangle through translation? 

Nuray: A triangle is composed of three non-linear points. While forming the 

image of triangle, we find the places of three non-linear points as the 

vertices by preserving the distances and the directions between them. In 

other words, we move the vertices through the same vector, find the 

vertices of the image triangle and combine these vertices by the line 

segments. At the end, we form the image triangle composed of three 

non-linear points moved by the same vector. In this respect, we have 

congruent triangles since they have the equal length of edges.  

Nuray explained the process of construction of the image of the triangle 

through translation. In her explanation, Nuray benefited from the knowledge 

that the distance between parallel lines were preserved and the vectors 

represented the line segments having magnitude and direction. In this respect, 

the edges of the triangle were moved by using parallel lines preserving the 

angles between the edges and the lengths of them. Hence, the lengths of the 

edges and the measures of the interior angles of the image triangle were equal 

to the previous triangle. 

Instructor: Ok. Is knowing that the triangles have equal length of edges enough 

to say that they are congruent? 

Büşra: Let’s think about the triangles of ABC and DEF. We know the lengths 

of the edges and then we try to compute the measures of the angles of 

the triangle. In this respect, the known values are written on the cosine 

formula in order to show the equality of the angle measures opposite of 

the edges having equal lengths. When the process is repeated for all 

opposing angles of triangles, the equalities of the measures of 

corresponding angles are shown. Therefore, it can be claimed that when 
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the lengths of the corresponding edges of the triangles are equal, these 

triangles are congruent.  

 

 

 

 

 Figure 50 Figure of the congruence and similarity citeria of S.S.S. 

 

In this debate, Selim initially made a claim that the triangle and its image 

triangle were congruent triangles correctly. Then, he provided data by the 

definition of translation considering the formation of image triangle preserving 

the properties of the triangle. He also provided warrant by the process of 

translation applied on triangle necessarily and appropriately. He constructed 
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the triangle by following geometric construction steps using compass and 

straight edge. Nuray and Büşra provided sufficient and appropriate backings 

for this mathematical idea under the guidance of the instructor and the help of 

their ideas and discussion process. With the help of the instructor’s question 

and guidance, Nuray provided backing benefiting from the definition of 

translation from a different perspective. She examined the formation of image 

triangle by using a vector from algebraic view. She insisted on moving the dots 

forming the triangle by the same vector necessarily. In her explanation, she 

benefited from the definition of triangles appropriately since by forming the 

image of the triangle, the vertices were critical since a triangle could be formed 

accurately by identifying the places of them and combining them with line 

segments. This process was produced based on the critical attributes of 

triangles necessitated to form and define them. By the way, this was the other 

instance that the notion of definition of triangles was observed in a way that it 

functioned as if shared. In other words, this was another case in which the fisrt 

mathematical idea in the first mathematical practice became taken-as-shared. 

Moreover, she benefited from the knowledge that the distance between parallel 

lines were preserved and the vectors represented the line segments having the 

same magnitude and direction. Based on the knowledge that the vectors were 

parallel and any opposing points on parallel lines are equidistant. Then, the 

instructor directed the discussion to talk about the congruence criteria 

necessarily since they needed the criteria in order to represent and justify the 

congruence of the triangles. Afterwards, Büşra made backing by explaining 

that two triangles were congruent with equal lengths of corresponding edges by 

the cosine formula since the measures of the corresponding angles were equal 

by reasoning necessarily and sufficiently. The Toulmin’s model of 

argumentation for some parts of this debate can be represented as shown in 

Figure 51. 
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Figure 51 Toulmin’s model of argumentation for reasoning on congruent 

triangles by translation. 

 

 On the same week on the advancing hours of the instructional sequence, 

it was illustrated that the mathematical discussions produced by the 

participants, knowledge and skills got by them about the formation of 

congruent triangles during this debate in the fourth week became taken-as-

WARRANT 

Selim: … A triangle is moved through specific way, direction and distance 

through translation so the image triangle and the triangle are 

congruent.  

 

BACKING 

Nuray: A triangle is composed of three non-linear points. While forming the 

image of triangle, we find the places of three non-linear points as 

the vertexes by preserving the distances and the directions between 

them… 

BACKING 

Büşra: Let’s think about the triangles of ABC and DEF. We know the 

lengths of the edges and then we try to compute the angle measures 

of the angles of the triangle… 

DATA 

Selim: Translation is 

moving a shape… 

CLAIM 

Selim: We attain a triangle through 

translation. The triangle and the 

image triangle are congruent 

triangles.  
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shared. They used this one as data and warrant correctly in their arguments on 

Week 4 without necessitating backings, confirming that it became taken-as-

shared. The participants used this knowledge in the debates in order to decide 

whether the triangles and their image triangles formed through reflection were 

congruent. The process followed through the translation was similar to the 

steps made for reflection appropriately. The similar claim, data, warrant and 

backings were provided. The claim that the triangles and their image triangles 

formed through reflection were congruent triangles as a true mathematical 

explanation. Then, the data was explained by the definition of it. At the end, 

they provided warrant and backing benefiting from the process of the 

formation and construction of the images through reflection. Moreover, the 

mathematical idea that triangles whose lengths of corresponding edges were 

equal, were congruent triangles was used as data and warrant accurately. 

Hence, the mathematical idea about the congruence by the equal lengths of 

corresponding edges became taken-as-shared. The process of formation of 

congruent and similar triangles through transformation geometry happened 

effectively under the guidance of the instructor. Moreover, on Week 5, the 

activities were about congruence and similarity of triangles. The participants 

discussed the criteria of congruence and similarity. Then, by explaining the 

criteria of S.S.S., they used this mathematical idea as data and warrant. In other 

words, they claimed that S.S.S. was a congruence and similarity criterion. They 

also produced the data about the definition of congruence and similarity 

correctly. Then, they used the warrant that two triangles were congruent since 

when the corresponding edges had equal lengths, the measures of the 

corresponding angles were equal benefiting from this mathematical idea 

reasoning accurately. In this way, these two triangles fit the definition of 

congruent triangles. Hence, it became taken-as-shared. Moreover, the activity 

sheet on Week 6 was composed of the problems on the content of congruent 

and similar triangles. Therefore, this mathematical idea was used as data and 

warrant in the solution of these problems. Therefore, this mathematical idea 

became taken-as-shared again.  
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The instructor initiated the discussion by asking a question in order to 

discuss the activities on the second activity sheet of the Week 4 about the 

rotation as a type of transformation geometry. In this activity sheet, they were 

asked to construct the image of the triangle through rotating by 450 based on 

the reference point of O using compass and straight edge as in Figure 52 

representing the activity sheet on rotation. For this problem, after the 

participants completed the construction process, the instructor asked them a 

question to emphasize the congruence of triangles and the discussion was 

flowed as follows: 

 

ROTATION 

Define the rotation. 

Construct the image of the triangle ABC by rotating with the angle measure of 

450 and the reference point and justify this construction mathematically. 

Figure 52 The figure of the activity sheet about rotation 

 

Instructor: What is the relationship between the triangle and its image formed 

through the rotation? 

Merve: The geometrical object obtained through rotation is a triangle as the 

image of a triangle. These triangles are congruent triangles.  

Instructor: How do you show that they are congruent triangles? 

Merve: Rotation is also moving a shape. Every point composing the triangle 

rotates about a reference point by a given particular angle so that the 

image triangle and the triangle are congruent. In other words, a triangle 

is moved on a circular way with respect to the angle so they are 

congruent.  

Instructor: Selim. How did you construct the image triangle? 
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Selim: We know that a triangle is composed of three non-linear points and also 

it includes three interior angles. For example, when the angle measure 

of rotation is 450, we form an angle whose rays pass through the vertex 

of C and the image of this vertex is formed. Then, we repeat this step 

for the vertex of B and we form the image of the edge of CB. 

Afterwards, by copying the angle of ABC and determining the place of 

the image of the vertex of C through construction, we draw the image 

of the triangle by rotation. 

Through the discussion process of formation of congruent triangles by rotation, 

all of the participants constructed the image triangle by determining the 

vertices of the triangle after rotating by 450 on the reference point and the 

image triangle was formed by combining these points with line segments. 

Merve provided claim that congruent triangles were formed through rotation. 

She also provided data and warrant by using the definition of rotation. She 

stated that the image triangle was formed moving it through circular way based 

on the angle measure of 450. Selim provided backing for the argumentation 

benefiting from the construction steps. He determined the places of the vertices 

by rotating them with this angle measure following construction steps. Then, 

by combining these vertices using line segments, the triangle congruent to the 

previous triangle was formed as in Figure 53. In order to determine the image 

of the vertex, a line was constructed beginning on vertex of C and exceeding 

the rotation reference point. A line perpendicular to this line passing through 

the point of reference point was constructed. Then, an isosceles right triangle 

was constructed as in Figure 53.a. The median of the hypotenuse was 

constructed and this median was extended. The compass was placed on the 

reference point and an arc was constructed passing through this vertex and 

intersecting the median. Hence, the image of the vertex of C was determined. 

When the similar construction steps were repeated for the vertex of B, the 

image of this vertex was identified as in Figure 53.b. Then, by combining these 

image vertices with a line segment, the image of the edge of BC was formed. 
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Then, the angle of ABC was copied by construction using the edge of BC as 

one of the rays forming this angle. By using the width of the compass, the 

length of the edge of AB and the place of the vertex of A were determined. At 

the end, by combining the images of the vertices of A and C with a line 

segment, the image triangle was formed.    

 

 

a. Rotating the vertex of C 

 

b. Rotating the vertex of B and 

forming the edge of BC 

Figure 53 Constructing the image of the edge of BC through rotation 

 

As happened in the translation, the congruence of the triangle and its image 

triangle could be justified by the congruence criterion of S.S.S. Because this 

criterion was discussed in translation, different construction strategies that 

could represent different congruence criteria were examined. With this aim, the 

instructor wanted Selim to explain his construction process. In this process, he 

determined the place of the vertex of C through construction as in Figure 53.a. 

Then, by repeating the similar construction steps, he identified the place of the 

vertex of B as in Figure 3.1.4.b. By combining these points with a line 

segment, he formed the edge of BC by reasoning appropriately and 

sufficiently. Afterwards, by construction, he copied the angle of A having the 

rays represented by the edges of AB and AC. Through this construction 

process, the image triangle was constructed accurately and the way to show 
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their congruence could be happened by the congruence criterion of S.A.S. In 

order to represent and justify this congruence criterion, the instructor directed 

the discussion to focus on this idea.   

Instructor: By following these steps, how can you claim that these triangles are 

congruent?  

Nuray: Let’s think about two triangles of ABC and DEF as the image of the 

prior triangle. When we think about the formation of its image through 

the steps explained by Selim, we know the lengths of two of the edges 

and the measure of the angle between these edges since we copy it. If 

we write these known values on the cosine formula in order to find the 

length of the remaining edge, we find that the values of these edges for 

both triangles are same. Therefore, it can be claimed that when the 

lengths of the corresponding two of the edges of the triangles and the 

measure of the corresponding angles are equal, these triangles are 

congruent.  

In this debate, Merve initially provided an accurate claim stating that the 

triangle and its image triangle formed through rotation were congruent 

triangles accurately. Then, she provided data by the definition of rotation. The 

warrant was also explained by Selim stating the process of rotation applied on 

the triangle. One of the edges of triangle was moved through rotation, i.e., 

moving on a circular way based on a reference point and by particular angle 

measure. Then, the angle was copied through construction since one of the rays 

of the angle was drawn and the place of the remaining vertex was determined. 

Through this process, Selim provided a different construction process and 

reasoning process for justifying their congruence by a different congruence 

criterion successfully and necessarily. By completing the formation of the 

image triangle, the instructor directed the discussion about congruence of the 

triangle and its image triangle. Nuray explained that the lengths of two of the 

edges and the measure of the opposing angles between these edges were equal. 

Then, by using the cosine formula, she showed that the lengths of the opposing 
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remaining edges were equal so the triangles were congruent. Afterwards, under 

guidance of the instructor, Nuray provided an accurate backing by stating that 

knowing that the lengths of two edges and the angle measure between these 

edges were equal was enough to justify the congruence of these triangles. 

Benefiting from the cosine formula, she showed the equivalence of the lengths 

of the remaining edges of the triangles sufficiently. In this way, the image was 

formed by drawing a congruent triangle. The Toulmin’s model of 

argumentation was used in order to represent the structure of the argument 

including some parts of this debate as shown in Figure 54. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 54 Toulmin’s model of argumentation for reasoning on congruent 

triangles by rotation. 

WARRANT 

Selim: We know that a triangle is composed of three non-linear points and 

also it includes three interior angles. For example, when the angle measure 

of rotation is 450, we form an angle… 

BACKING 

Nuray: Let’s think about the triangles of ABC and DEF as the image of the 

prior triangle. When we think about the formation of its image 

through the steps explained by Selçuk, … 

CLAIM 

Merve: The geometricl object 

obtained through rotation is a 

triangle as the image of a 

triangle. These triangles are 

congruent triangles. 

DATA 

Merve: Rotation is also 

moving a shape. Every 

point composing the 

triangle rotates about… 
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 On Week 4, it was illustrated that the mathematical arguments produced 

by the participants, knowledge and skills attained by them about the formation 

of congruent triangles through rotation during this debate became taken-as-

shared. They used this one as data and warrant in their arguments on Week 4 

without necessitating backings, confirming that it became taken-as-shared. The 

participants used the knowledge about the congruence of two triangles when 

one of them was the image of the other formed by rotation following the steps 

represented in Figure 53 in the discussions about the congruence criterion of 

S.A.S. They talked about congruence of these two triangles in order to decide 

whether knowing that the lengths of two corresponding edges of the triangle 

and the measures of angle between these edges were equal was enough to 

claim that they were congruent triangles, i.e., congruence criterion of S.A.S. In 

the activity on Week 4, there was a problem asking the congruence and 

similarity criteria. It was claimed that S.A.S. was congruence/similarity 

criterion and the data was provided by explaining that there were two triangles 

having the property of the lengths of the corresponding two edges and the 

measures of the corresponding angles were same. Then, by explaining the 

criterion of S.A.S., they used this mathematical idea as warrant in a way that it 

was explained for the formation of congruent triangles through rotation. In 

other words, they claimed that S.A.S. was a congruence/similarity criterion and 

produced the data about the definition of congruence/similarity. Then, they 

used the warrant that two triangles were congruent/similar since when the 

corresponding known values were equal in measure, the measures of the 

corresponding elements were equal benefiting from this mathematical idea. In 

this way, these two triangles fit the definition of congruent triangles. Hence, it 

became taken-as-shared. Moreover, the activity sheet on Week 5 was 

composed of the problems on the content of congruent and similar triangles. 

The criteria of congruence formed through this discussion period was 

considered in order to solve these problems. Therefore, this mathematical idea 

was used as data and warrant in the solution of these problems. Therefore, this 

mathematical idea became taken-as-shared again. 
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 The last activity on Week 4 was about the dilation on triangles. The 

teacher initiated the discussion about how to produce a bigger or a smaller 

form of a triangle based on a scale factor through dilation with respect to a 

reference point. In this discussion, the participants claimed that the triangle and 

its image triangle formed through dilation were similar triangles. Then, they 

provided necessary data sufficiently benefiting from the definition of dilation 

which was resizing the triangle or enlarging or reducing the triangle based on a 

scale factor focusing on a particular center point. They also used the definition 

of a triangle as data accurately since they stated that identifying the places of 

three nonlinear points representing the vertices of the triangle were used to 

form a triangle by combining them with line segments. As warrant, they 

explained the process of formation of the image triangle through dilation 

appropriately. For example, in the process of reducing a triangle with a scale 

factor of 1/2, three lines were drawn beginning from the reference point and 

passing through the vertices of the triangle. Through this process, the instructor 

asked the questions to help them construct its image and understand the process 

accurately related to the possible position of the triangle and place of it. With 

the help of this guidance, they stated that because of reducing, the image 

triangle was formed on the place between the triangle and the reference point. 

The places of the image of the vertices were the midpoints of these lines 

passing through the vertices and the reference point. In order to produce this 

mathematical idea, the instructor helped the participants remember Thales 

theorem. When the vertices of the triangle were combined with the reference 

point using line segments, the applicability of this theorem was appeared. As in 

this theorem, when the triangle of OBC was considered, the image of the edge 

of BC could be constructed through dilation with the scale factor of ½ as in 

Figure 55. For the line segment of OB, the compass was placed on the point of 

O, its width was set to exceed the approximate midpoint of it and an arc was 

constructed. Then, by preserving the width of the compass, the compass was 

placed on the point of B and an arc was constructed. The intersection point of 

these arcs was combined by a line segment passing through the line segment of 
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OB. The intersection of this constructed line segment on the edge of OB was 

the midpoint of the line segment of OB. After, repeating the same construction 

steps for the other vertices of the triangle of ABC and the edges of OA and OC, 

the image points of A and C were identified. Then, by compounding these 

midpoints by the line segments, the image triangle similar to the triangle was 

formed as in Figure 55. As backing, they stated that the corresponding line 

segments representing the edges of the triangles were parallel necessarily and 

accurately. Therefore, they found that the measures of the corresponding angles 

were equal. Also, they stated that the measures of the opposing angles were 

equal by Thales Theorem.  

 

 

 

 

Figure 55 Construction of the image triangle through dilation by reducing.  

 

This mathematical idea became taken-as-shared in the discussion made 

on Week 4 by reasoning appropriately under the guidance of the instructor. In 

the problem on the activity sheet on Week 4 about similarity criteria, they 

claimed that A.A. was a similarity criterion. They used the necessary and 

accurate information that the corresponding edges of the triangle were parallel 
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as data for the argumentation. Then, they provided the appropriate warrant 

benefiting from the mathematical idea about formation of similar triangles 

through dilation. They stated that when the corresponding edges of triangles 

enlarged and reduced had the scale factor and always had equal angle 

measures, they were similar triangles. Because of parallel edges, the angle 

measures were preserved and the lengths of the edges were changed with the 

same ratio by the Thales theorem. In this respect, it was illustrated that the 

mathematical arguments formed by the participants and knowledge and skills 

obtained by them about the formation of similar triangles through rotation 

during this debate in the third week became taken-as-shared. Moreover, the 

activity sheet on Week 5 was composed of the problems on the content of 

congruent and similar triangles. Therefore, this mathematical idea was used as 

data and warrant in the solution of these problems. Therefore, this 

mathematical idea became taken-as-shared again. In this way, different 

instances took place in the instructional process in a way that this mathematical 

idea became taken-as-shared. 

 

4.3.2 Mathematical idea 2: A.S.S. is not a criterion  

 

The last mathematical idea in the last mathematical practice was 

observed on the fifth week of the instructional sequence while the participants 

were engaging in the activities about congruent and similar triangles and 

congruence and similarity criteria. In this activity, the participants were asked 

to define the similar and congruent triangles and criteria and the properties 

about them. While they were engaging in this activity, they made discussions 

about congruence and similarity criteria. For this activity, they worked with 

their peers and participated in the whole class discussion. The instructor and 

the participants made the discussion by asking a question of “A.S.S. is a 

similarity criterion” in order to discuss the criteria and their reasons on the 

activity sheets of the Week 5: 
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Merve: A.S.S. is not a similarity criterion. 

Ayşe: Why not! In the rotation, we know when the lengths of two edges and 

the measure of the angle between them are equal... A.S.S. can be a 

criterion. 

Instructor: What do you think about this explanation? 

Kader: When we think about the right triangles and the angle is not the angle 

measure in the criterion, this is a criterion. Also, this is valid for 

isosceles triangles. 

Ayşe made reasoning based on the lengths of two edges and the angle measure 

of one of the interior angles were equal but she dismissed the point that the 

order of these elements having equal measures was important and necessary for 

using as criterion of A.S.S. The instructor asked the question to help the 

participants determine this missing point. Then, Kader explained the cases that 

A.S.S. was used to identify congruence or similarity. This explanation was 

good but the similarity of right or isosceles triangles since by knowing two 

sides’ lengths and the angle measure of one of interior angles, the other 

elements of these triangles could be determined so that their 

congruence/similarity could be determined by other related criteria 

appropriately.    

Buse: This is special situations so we cannot generalize this for all triangles.  

Instructor: Well. Think about scalene triangles. 

İlkay: We have information about two edges and the angle which is not 

between these edges. This case is very different from the criterion of 

S.A.S. When we determine corresponding edges and angles, there is 

uncertainty about corresponding ones. We cannot be certain about 

which edge is near to which triangle.   

Instructor: That is a good point.  
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Ayşe: However, when we put the known values for the lengths of two edges 

and the angle measure on the cosine formula, we can provide 

equivalence of the edges and the angle measures.  

Selim: We cannot use this formula effectively since we do not know which 

edge is opposite of which angle and we have two unknown angle 

measures... Firstly, we construct the angle. Then, we place one of the 

edges on one of the rays. Afterwards, we form a circle having the radius 

in the length of the other edge. This circle can intersect the other ray on 

two points or one point or no point. In this process, the edges are placed 

on the rays randomly and there are alternative situations for the vertices 

of the triangle. Hence, we do not have a particular triangle and we do 

not claim that A.S.S. is not similarity criterion.   

At this episode of the discussion, Buse made an explanation about the non-

applicability of A.S.S. for all situations. Then, by agreeing with the explanation 

of Buse, İlkay stated that this case could not be accepted as similar to the 

criterion of S.A.S. In his explanation, Selim focused on the construction 

process of types of triangles by knowing the lengths of two edges and angle 

measure of one of interior angles which was not between these edges. In this 

process, he constructed the angle of A. Then, he constructed an arc with the 

center of A and the radius having the equal length of the edge of AB. 

Afterwards, in order to construct the other edge, he constructed an arc with 

center of the point of B and the radius having the equal length of this edge. 

This reasoning way provided successful explanation for the problem. He 

focused on two cases which were the tangent and intersecting the arc at two 

points when the arc represented one of the known edges as in Figure 56. Based 

on this knowledge, he examined these cases. In the case of tangent, it was 

possible that the triangle was formed and the criterion of A.S.S. could be used 

as in Figure 56.a. In this case, a right triangle was formed. In a right triangle, 

A.S.S. could be used since the measures of all interior angles could be 

computed. An angle measure was 900 and the measure of one of the acute 
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angle was known so that the remaining angle measure could be computed. 

Moreover, when the lengths of two edges were known, it was possible to 

compute the length of the remaining edge by Pythagorean Theorem. Hence, it 

could be stated that A.S.S. was valid for right triangles since the unknown 

measures of some elements in these triangles could be computed by some 

properties and theorems about these triangles. This was not sufficient to extend 

the applicability of A.S.S. for all triangles. On the other hand, in the case of 

intersecting at two points, two triangles of ABD and ABC were formed by 

having the equal measures for the elements of this criterion and the A.S.S. 

could be used as in Figure 56.b. It could be stated that although it was appeared 

that A.S.S. could be applied for right triangles, the actual reason was the 

explained properties and theorems of right triangles. In this case, obtuse and 

acute triangles were formed. We could obtain different triangles by having this 

property so we could not use A.S.S. for acute and obtuse triangles. Therefore, 

the idea that A.S.S. was not congruence/similarity criterion was justified 

necessarily and accurately since there were different triangles having the equal 

measures stated in this criterion.   

 

 

 

a. Triangle with tangent point 

 

 

Triangle with intersection points 

Figure 56 The formation of a triangle by knowing the lengths of two edges and 

one angle measure.  
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In this debate, Merve initially made a claim that A.S.S. was not similarity 

criterion. Then, Ayşe refuted the claim by explaining the opposite idea of this 

explanation. Kader also exemplified her refutation with the help of the 

isosceles and right triangles and Ayşe tried to use the cosine formula for the 

truth of her explanation. Afterwards, İlkay stated that there were uncertain 

elements and their orders in this criterion as warrant. Selim encouraged him by 

telling formation of a triangle based on the elements on this criterion. Because, 

the uncertainty about the placement of the elements and their intersection of the 

edges and formation of the vertices so that he provided backing. The Toulmin’s 

model of argumentation for some parts of this debate can be represented as 

shown in Figure 57. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 Toulmin’s model of argumentation for reasoning on A.S.S. 

DATA 

İlkay: We have information about two 

edges and the angle which is not 

between these edges. This case is very 

different from the criterion of S.A.S.  

CLAIM 

Merve: A.S.S. is not a 

similarity criterion. 

 

 

WARRANT 

İlkay: …When we determine corresponding edges and angles, there is 

uncertainty about corresponding ones. We cannot be certain about 

which edge is near to which triangle.   

 

BACKING 

Selim: We cannot use this formula effectively since we do not know which 

edge is opposite of which angle and we have two unknown angle 

measures… 
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 On Week 5, it was illustrated that the mathematical arguments formed 

by the participants and knowledge and skills obtained by them about the 

similarity criterion of A.S.S. during this debate became taken-as-shared. They 

used this one as data in their arguments on Week 5 without necessitating 

backings, confirming that it became taken-as-shared. There was a problem 

“when the lengths of one of the right edges and the hypotenuse of a right 

triangle are equal, they are always similar triangles”. They made the claim that 

these right triangles were always similar. While discussing this problem, they 

benefited from the mathematical idea that A.S.S. was not a similarity criterion 

as data and the discussion process about this mathematical idea was established 

for the first time. Also, the data were explained in a way that the lengths of two 

edges which were one of right edges and the hypotenuse, and right angle were 

known. Therefore, the lengths of two edges and the measure of an angle which 

was not between these edges were known was explained. However, it was 

possible to compute the measure of remaining angle by the property that the 

sum of the interior angle measures of a triangle was equal to 1800 and the 

length of remaining edge by Pythagorean Theorem. As a warrant, they stated 

that this problem fit the idea of A.S.S. but it was not similarity criterion. 

Therefore, the statement in the problem could not be justified by it. By 

computing the values of the unknown elements of the triangle, their similarity 

could be explained by other similarity criterion. For example, Halit explained 

that A.A.A. criterion could be used by showing that the measures of the 

remaining interior angles were equal. Also, Selim added that S.S.S. criterion 

could be used by showing that the lengths of the remaining edges were equal 

by using Pythagorean Theorem. Therefore, the claim was verified successfully 

and appropriately. In this respect, the mathematical idea about A.S.S. became 

taken-as-shared by using it as data in the discussion under the guidance of the 

instructor.  
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4.4 Summary of the Findings 

 

With the design experiment research, a beneficial lesson sequence by 

the hypothetical learning trajectory designed about triangles based on problem-

based learning for preservice middle school mathematics teachers was 

performed. Through the analysis of PMSMT’s classroom mathematical 

discourses taking place in this instructional sequence in order to illustrate their 

geometrical understanding and reasoning of triangles, the classroom 

mathematical practices were identified by taken-as-shared ways of reasoning 

and arguing mathematically. By using Toulmin’s (1969) model of 

argumentation and two-criterion methodology of Rasmussen and Stephan 

(2008), classroom mathematical practices were emerged by examining 

classroom collective learning activities leading whole class discussions. 

Through the whole class discussions, three mathematical practices were 

identified in the instructional sequence about triangles. The first mathematical 

practice was reasoning about the formation of a triangle. There existed two 

mathematical ideas contributed to this mathematical practice; (a) reasoning on 

the definition of triangles and classification of them, and (b) reasoning on 

construction of them. The second mathematical practice was established as the 

reasoning about the elements of triangles and their properties. Mathematical 

ideas contributed to this practice were: (a) reasoning on construction of 

auxiliary elements, (b) reasoning on concurrence of them and (c) reasoning on 

the names of these concurrence points and their places. The last mathematical 

practice established in the sequence was reasoning about congruence and 

similarity. The mathematical ideas included in this practice were (a) reasoning 

on the formation of congruent or similar triangles through transformation 

geometry, and (b) A.S.S. is not a congruence/similarity criterion. Moreover, the 

instructional sequence including construction activities with compass and 

straight edge improved the PMSMT’s van Hiele geometric thinking levels and 

conceptual knowledge of triangles. 
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CHAPTER 5 

 

 

5. DISCUSSION AND CONCLUSION 

 

 

The overall purpose of the current study was to document the learning 

of triangle formed in a classroom community and shared development of 

triangle concepts in an elementary education mathematics classroom. In other 

words, the goal was to determine the mathematical practices emerging in the 

collective discourses and documenting the situations in which they developed 

and became taken-as-shared. By doing so, the study has represented a window 

into the classroom designed based on the van Hiele geometric thinking and 

problem solving skills in problem-based learning in order to enhance learning 

and understanding of the content of triangles. In the study, with the aim of 

examination of the emergence of mathematical practices, a classroom teaching 

experiment was conducted letting the participants of the classroom community 

to study mathematics learning in a classroom setting designed by problem-

based learning (Cobb, 2000).  

 

5.1 Discussion of Hypothetical Learning Trajectory 

 

The preservice middle school mathematics teachers’ (PMSMT) 

understanding and development of subject matter knowledge about triangles 

through argumentations were examined in the problem-based learning 

environment including geometric constructions in the present study. The 

argumentations improved their conceptual knowledge of triangles. For 

example, while defining triangles, they produced triangle definitions without 
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all necessary critical attributes and properties. However, through 

argumentation, they challenged the definitions formed by them, determined the 

missing and unrelated parts and then they produced correct definition including 

critical attributes and properties necessarily and sufficiently. When the 

PMSMT’s learning of triangles through mathematical practices was 

considered, it was observed that discussion period including argumentations 

improved their geometric thinking and knowledge of triangles in the study. The 

previous research validated this finding as in the study of Olkun and Toluk 

(2004) who found that in-class discussions improved the learners’ geometric 

thinking. Also, research in the literature illustrated that discussions including 

argumentations taking place in problem solving activities facilitated and 

improved problem solving abilities, scientific thinking by criticizing and 

justifying claims, knowledge production and conceptual understanding (Abi-

El-Mona & Abd-El-Khalick, 2011; Duschl & Osborne, 2002; Jim´enez-

Aleixandre et al., 2000; Jonassen & Kim, 2010; Osborne, Erduran, & Simon, 

2004; Zembaul-Saul, 2005). In this respect, argumentations facilitates doing 

mathematics and discussing claims in a social environment in which the 

learners communicate and make reasoning to form the discourse, 

imagery/tools, and classroom culture (Abi-El-Mona & Abd-El-Khalick, 2011). 

In this respect, the argumentations in problem solving activities also 

encouraged the role of instructor, instructional sequence and HLT.  

In order to provide a social learning environment for PMSMT to 

develop their subject matter knowledge of triangles though argumentations, 

problem-based learning was used to design this environment and instructional 

sequence. In this respect, geometric constructions were used in the study since 

they represented useful problem situations in the study. The geometric 

constructions are solutions of a problem because the learners do not decide 

easily how to start constructing the shapes at first glance and then they have 

challenge to complete the constructions (Erduran & Yeşildere, 2010). In this 

respect, geometric constructions represented problems for PMSMT in the 



261 

 

problem and they had challenge to solve these problems. These activities 

applied in problem-based learning environment improved the participants’ 

geometric thinking and knowledge. The previous research in the literature has 

confirmed that by stating that problem-based learning increases geometric 

thinking and knowledge (Cantürk-Günhan & Başer, 2009; Dochy et al., 2003; 

Hodges, 2010). Also, these problems were followed by argumentations in order 

to help the PMSMT understand the triangles effectively in the study. Through 

following four construction steps of Smart (1998), PMSMT analyzed, 

constructed, proved and discussed their thoughts and knowledge about the 

problem. By following these steps, geometric constructions facilitated thinking 

skills of analyzing, evaluation, forming hypothesis, organizing, testing the 

hypothesis and proving the solutions benefiting from the previous knowledge 

(Lim-Teo, 1997). These scientific skills were encouraged by argumentations 

and justifications in whole class discussions to learn triangles effectively since 

geometric constructions were beneficial in argumentations and proofs related 

to scientific thinking skills. Hence, geometry concepts could be learned 

through geometric constructions  with argumentation and justification (Wiley 

& Voss, 1999) so that the skills of critiquing the ideas and claims, evaluating 

evidences and justifications, explaining and evaluating counter 

positions/examples could be improved (Asterhan & Schwarz, 2007; Sadler & 

Fowler, 2006; von Aufschnaiter, Erduran, Osborne, & Simon, 2008). 

Moreover, Erduran and Yeşildere (2010) stated that the learners can follow the 

construction steps in a rote manner. In order to prevent this case in the study, 

argumentations and proofs were used since they reasoned and discussed each 

steps through argumentations in the study. Hence, the tools of constructions 

were placed in the instructional sequence in the planned way under the 

guidance of the instructor appropriately. The tools of compass and straight 

edge were used to teach triangles by supporting the claim about the 

construction of triangles and justifying its truth to encourage learning 

effectively. For example, while defining the triangles, they examined the 

critical attributes and the relationship between them by compass and straight 
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edge. They made explanations about definition of triangles, they tested their 

explanations through constructions and argumentations and then produced 

correct definition by making revisions, refuting and convincing their ideas. In 

this process, geometric constructions facilitated argumentations, learning and 

justification of the PMSMT. In this respect, it can be stated that geometric 

constructions should be used, discussed and argued in order to learn geometric 

concepts consciously by improving scientific thinking skills (Spear-Swerling, 

2006).  

The connections of geometric constructions and argumentations with 

proving geometrical explanations were observed in the study. Through 

following construction steps and discussing their solutions in the classroom, 

they provided explanations in order to verify their reasoning and solutions. 

They made these explanations in order to remove others’ doubts about the 

process and examine its correctness. In this respect, it can be stated that this 

skill is related to proving based on its definition (Hanna, 1989). In this study, 

the PMSMT were expected to attain the properties of initial three van Hiele 

geometric thinking levels and obtain previous knowledge about geometry. In 

this respect, while validating their ideas, they could be expected to provide 

proofs for the geometric constructions and then they were able to provide 

geometrical proofs. For example, after showing the concurrence of auxiliary 

elements of triangles by geometric construction, they proved their concurrence 

using related theorems and properties and how these concurrence points were 

named. In this process, they used geometric constructions to represent the 

concurrence of the auxiliary elements and prove their concurrency. By doing 

so, they understood this concept by reasoning, proving and constructing. In this 

process, proof is beneficial for constructions since it does not only indicate 

accuracy or inaccuracy of a statement but also illustrate why it is correct 

(Hanna, 2000). Moreover, conceptual understanding and geometric reasoning 

of the PMSMT could be improved by geometrical proofs and constructions 

(Cheung, 2011; Napitupulu, 200; Tapan & Arslan, 2009). Geometrical 
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constructions are beneficial to teach geometrical concepts such as triangles and 

facilitate constructing and writing proofs. 

The development of PMSMT’s understanding and reasoning of 

triangles was explored in the present study. It was observed that the 

participants had missing knowledge about triangles although they were 

expected to know in order to become a mathematics teacher. For example, the 

participants did not have sufficient knowledge about definitions of triangles, 

justifying the concurrence of auxiliary elements, proving congruence and 

similarity of triangles and their criteria. Also, their learning about these missing 

knowledge was provided through geometric constructions and argumentations. 

The period of acquiring the subject matter knowledge about triangles was 

represented by the classroom mathematical practices. Their development of 

subject matter knowledge about triangles was encouraged by geometric 

constructions with compass and straight edge. There have been research in the 

literature explaining that geometric constructions improve the learners’ 

conceptual knowledge and understanding (Cheung, 2011; Çiftçi and Tatar, 

2014; Doğan & İçel, 2011; Karakuş, 2014; Napitupulu, 2001). In the process of 

learning triangles, they examined triangles based on their elements, properties 

and theorems about them in problem-based learning environment in the study. 

For example, they examined the definition of triangles. In this process, they 

used geometric constructions and other geometric shapes such as circles and 

quadrilaterals in order to determine the critical properties of triangles and the 

connection between them. Through following construction steps, the necessity 

and importance of the properties were understood. The critical properties of 

triangles for definitions of triangles were examined as identified in previous 

research in the literature (Tsamir, Tirosh & Levenson, 2008; Tsamir et al., 

2014). By participating in whole class discussions and argumentations, they 

acquired necessary knowledge and modified their errors about triangles. Then, 

in different contexts in other activities in the following phases of HLT, they 

used what they previously learned in later parts of the instructional sequence. 
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Therefore, geometric constructions are useful to learn triangles by examining 

the elements, properties and theorems about them and proving the theorems 

related to them. By following construction steps, the learners can analyze them 

and make connection between them by reasoning. Hence, it can be concluded 

that learning triangles can be performed effectively by geometric constructions. 

In order to examine the process of the understanding of PMSMT on 

triangles, HLT was designed. The resulting HLT included instructional tasks, 

tools, and possible discourse as the support of the classroom formed by the 

research team. In order to form an effective mathematical discourse including 

the argumentation, the instructor focused on and initiated this process by 

misconceptions, errors and different strategies in instructional sequence. When 

the instructor realized the emergence of them, she asked questions and 

provided necessary clues to help the participants become aware of them and 

make accumulations on their ideas and expressions. By doing so, they formed 

new mathematical knowledge correctly by accumulating their previous 

knowledge with the help of the others’ ideas expressed in the discussion under 

the guidance of the instructor. Through instruction, the instructor focused on 

the knowledge of the students. Based on the knowledge, errors and 

misconceptions of them about the concept, the discussion flowed. For example, 

the mathematical practice about the definition of triangles was produced in this 

way. While the PMSMT were classifying the triangles, the instructor realized 

that they had difficulty in defining the triangles. Then, the instructor initiate the 

discussion about definition of triangles and forming them by geometric 

constructions. In this respect, it is important for the instructors to determine the 

errors of the students to form an effective social learning environment 

(Gökkurt, Şahin, Soylu & Doğan, 2013; Gökkurt, 2014). By benefiting from 

their errors, their errors can be removed by reasoning and accurate knowledge 

can be formed. Moreover, explaining and representing different solution 

strategies for the problems can improve their understanding and learning. Also, 

they can examine the concepts from different points of views. 
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By determining the knowledge and errors of the PMSMT, it was 

important for the instructor to have through understanding about “their 

students’ current mathematical conceptual possibilities and constraint and the 

relevant underlying mathematical concepts” (Yackel, 2002, p. 439). Therefore, 

the instructor did not only identify the misconceptions, errors and different 

strategies but also examined how and why they were formed in the present 

study. In this respect, she carefully focused on them by using her conceptual 

knowledge and the knowledge about the participants on triangles. In this way, 

she directed the argumentations while reaching accurate conclusion and 

improving sufficient understanding through the emergence of mathematical 

practices. It was observed that identification of knowledge of content and 

students was important to provide their learning and geometric understanding. 

One of the dimensions of MKT, knowledge of content and students focuses on 

the subject matter knowledge of mathematics through knowledge about the 

learners’ thinking (Ball, Bass & Hill, 2004; Ball, Hill & Bass, 2005; Hill, 

Schilling & Ball, 2004). This dimension is critical for teachers to be possessed 

and teach effectively.       

Through the instructional sequence directed based on the hypothetical 

learning trajectory, the PMSMT improved their knowledge and understanding 

about triangles through geometric constructions. When the participation 

structure and flow of the discussions in the classrooms were considered, their 

knowledge and errors about the concepts were determined and they obtained 

correct knowledge through instructional sequence. This process was also 

encouraged by geometric constructions with compass and straight edge. 

Through constructions, they also improved their knowledge and understanding 

benefiting from other geometrical concepts. In this respect, it could be stated 

that they improved their relational understanding. For example, in the 

construction steps, a geometric shape was constructed by using simple 

structures such as constructing the perpendicular bisector of a line, parallel line 

to a line and benefiting from other geometric shapes and their properties such 
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as arcs, circles, quadrilaterals. The emergence of the mathematical practices 

illustrated this process in detail. In this respect, the quantitative findings 

showed that PMSMT improved their subject matter knowledge about triangles 

through instructional sequence providing useful opportunities to teach triangles 

in the future (Ball & Forzani, 2009; Chapman, 2007; Turner et al., 2012). Also, 

it can be stated that geometric constructions improved PMSMT’s 

understanding of triangles as it was suggested by previous research 

(Cherowitzo, 2006; Cheung, 2011; Çiftçi and Tatar, 2014; Erduran & 

Yeşildere, 2010; Karakuş, 2014; Khoh, 1997; Napitpulu, 2001; Hoffer, 1981). 

Based on the previous research, inservice and preservice elementary 

school mathematics teachers are expected to at least attain the first three van 

Hiele geometric thinking levels (Aydin & Halat, 2009; Pandiscio & Knight, 

2010). Based on this view, the hypothetical learning trajectory and 

mathematical tasks were designed in the present study. It was aimed to help 

PMSMT attain the properties of initial three van Hiele geometric thinking 

levels completely and begin to acquire the properties of remaining levels. It 

was observed that their geometric thinking was improved by geometric 

constructions with compass and straight edge since they engaged in the tasks 

successfully and solved the problems appropriately. The related research in the 

literature have validated that the geometric constructions improve the learners’ 

van Hiele geometric thinking levels (De Villiers, 2003; Güven, 2006; 

Napitupulu, 2001). In this respect, it could be stated that the PMSMT acquired 

the properties of initial three levels of van Hiele geometric thinking through 

engaging in these tasks. By examining the constructions of the geometric 

shapes and reasoning about proving that the constructed shapes was the shape 

asked to be solved in the problem, they improved their geometric thinking 

levels. That is, they reasoned about the geometric shapes in the problems and 

their properties effectively to construct and prove their truth so they improved 

their geometric thinking levels. By constructing the geometric shapes by 

compass and ruler, the learners progressed step by step. In each step, they made 
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geometric reasoning by using simple and complex geometrical structures such 

as finding the midpoint of a line segment, constructing perpendicular lines 

(Djoric & Janicic, 2004). In this respect, the geometric constructions are useful 

to be used in teaching geometry concepts effectively so that their geometric 

thinking levels can be improved.  

According to the findings of the study and the flow of the ideas in the 

classroom, the PMSMT improved their conceptual understanding and 

knowledge about triangles. The tasks and instructional sequence encouraged 

their subject matter knowledge about the particular concept of triangles. Also, 

argumentations and geometric constructions facilitated this process and 

understanding of them. A solution can be provided for the problem that the 

preservice mathematics have little knowledge and experience of geometry 

about the particular concept of triangles by the present study. 

 

5.2 Discussion of Mathematical Practices 

 

With the aim of describing PMSMT’s understanding and development 

about the concept of triangles, both qualitative and quantitative analysis were 

conducted in the study. The qualitative part of it was closely linked with 

constant-comparative method (Glaser & Strauss, 1967), Toulmin’s (1969) 

method of argumentation and three-phase and two-criterion methodology of 

Rasmussen and Stephan (2008) in order to document taken-as-shared 

classroom mathematical practices emerged through collective discourses in six-

week instruction sequence by HLT on the concept of triangles. In other words, 

Toulmin’s (1969) model of argumentation was crucial as a methodological tool 

to identify the instances that the mathematical practices emerged becoming 

self-evident and then re-emerged in way of functioning if-shared based on the 

methodology of Rasmussen and Stephan (2008). All of them can be provided 

by the analysis of the six-week instructional sequence by the technique of 



268 

 

Glaser and Strauss (1967). The methodology and analysis techniques were 

useful to examine the preservice mathematics teachers’ understanding, 

reasoning and knowledge as suggested in some previous research (Akyuz, 

2014; Roy, 2008; Stephan & Rasmussen, 2002; Wheeldon, 2008). Through the 

qualitative analysis, classroom mathematical practices becoming taken-as-

shared were PMSMT’s reasoning on: (a) the formation of a triangle, (b) the 

auxiliary elements of triangles and their properties, and (c) congruence and 

similarity.  

The first mathematical practice, PMSMT’s reasoning on the formation 

of a triangle addresses the underlying concepts about the critical elements of 

triangles as main elements and the process in which these elements produce a 

triangle. The mathematical ideas related to this practice are reasoning on: (a) 

the definition of triangles and classification of them, and (b) construction of 

them. The learning goal for Stage One of the HLT was classifying triangles 

based on the definitions and main elements of them and the examining the 

possibility of construction of triangles about the situations including the groups 

of some of the elements of triangles. This stage was intended to provide 

background to the participants about triangles through a general perspective. 

The first mathematical idea about the definition and the classification of 

triangles were examined through the definition of triangles and right triangles 

by main elements of them and the regions formed by them in a plane. While 

this idea emerged on the first week of the instructional sequence, it became 

taken-as-shared by being used in the activities on all weeks including the first 

week since this idea was the main knowledge about this concept. By the 

emergence of mathematical idea, the process of PMSMT’s understanding about 

the definitions of triangles was observed. In this phase, PMSMT examined the 

critical attributes of triangles and the relationship between them. Through 

construction, this examination was performed effectively by compass and 

straight edge. For example, they determined the main elements of edges and 

angles by providing other critical attributes such as closeness. They identified 
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the places of three non-linear points in a plane and combined them by line 

segments through geometric construction. Moreover, this definition formation 

process became more effective when they were encouraged by argumentations. 

By discussing their ideas and construction strategies, they talked about the 

related and unrelated properties of triangles in order to form the correct 

definition of triangles. An important knowledge and skill of formation of 

definitions was attained by geometric constructions and argumentations 

focusing on the attributes of triangles as suggested in previous research in the 

literature (Leiken & Zazkis, 2010; de Villiers, Govender, & Patterson, 2009; 

Tsamir, Tirosh, Levenson, Barkai & Tabach, 2014). In this respect, geometric 

constructions are useful to examine the necessity and sufficiency of the critical 

properties of triangles. They facilitate formation of definitions by 

understanding through mathematical argumentations. In other words, 

mathematical argumentations improved their knowledge about the definitions 

of triangles. The other mathematical idea in this practice is about the 

construction of triangles by some of their elements. For this idea, the 

construction steps and processes as the main tools and also the main theorems 

such as Pythagorean were important. While this idea emerged on the first 

week, it did not become taken-as-shared until the advancing hours of the first 

week and the fifth week of the instructional sequence. These mathematical 

ideas were used by the participants in order to support their reasoning and 

explanations in different situations and activities such as congruence and 

similarity, auxiliary elements of triangles by using constructions, geometrical 

justifications and proofs. Moreover, the possibility of formation of triangles by 

knowing some of their elements was examined by geometric constructions. For 

example, they examined the possibility of construction of particular triangles 

by making connections between main and auxiliary elements of triangles by 

geometric constructions. Also, in the process of construction and justifications, 

they benefited from other theorems and rules about triangles and other 

geometric shapes. In other words, they focused on the relationship between the 

elements of triangles and other geometric shapes so that the relational 
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understanding was provided by geometric constructions. This case can be 

confirmed by the previous research (Erduran & Yeşildere, 2010; Karakuş, 

2014; Khoh, 1997; Kuzle, 2013). Therefore, the critical attributes of triangles 

and the relationship between the critical attributes, main and auxiliary elements 

and other geometric shapes of triangles are useful to obtain basic knowledge 

about triangles such definition of triangles. In this respect, these knowledge are 

necessary to learn other knowledge about triangles. Hence, they can be learned 

through geometric constructions and argumentations. In this way, relational 

understanding about triangles can be supported.           

The second mathematical practice, PMSMT’s reasoning on the 

elements of triangles is important for the formation of auxiliary elements and 

their critical importance of them for triangles. The mathematical ideas related 

to this practice are reasoning on: (a) construction of auxiliary elements, (b) 

concurrence of them and (c) the names of these concurrent points and their 

places. The learning goal for Stage Two of the HLT was examining the 

auxiliary elements of triangles. This stage provided background to the 

participants about how to form them and what happened in case of the 

formation of all elements. Through the second phase of HLT, they obtained 

beneficial knowledge about these mathematical ideas. These knowledge are 

necessary for other geometric concepts needed for preservice mathematics 

teachers. For example, they were fundamental for understanding main 

theorems related to the concurrence points of auxiliary elements and other 

important geometry concepts such Euler line and nine-point circle. Euler line is 

a line on the triangle including the orthocenter, the circumcenter, the centroid 

and the center of the nine-point circle of a triangle. These concepts are 

important to prove important theorems in geometry and in the courses of 

advanced geometry and to obtain deep understanding about it. In this way, 

geometric constructions were useful to explore the auxiliary elements and their 

properties and prove related theorems benefiting from argumentations. They 

provided opportunities to examine the geometric knowledge and prove them as 
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it has been suggested in previous research (Chan, 2006; Napitupulu, 2001; 

Tapan & Arslan, 2009). Also, through PMSMT’s understanding about these 

three mathematical ideas in the second mathematical practice, they benefited 

from the geometric constructions by compass and straight edge, justifications 

and geometrical proofs as stated in previous research so that they could form 

the expected subject matter knowledge about auxiliary elements of triangles 

effectively (Axler & Ribet, 2005; Cherowitzo, 2006; Clements & Battista, 

1992; Doğan & İçel, 2011; Erduran & Yeşildere, 2010; Martin & McCrone, 

2003; Smart, 1998). In this respect, necessary knowledge about the auxiliary 

elements of triangles can be learned by geometric constructions and 

argumentations.  

It was observed that PMSMT had difficulty in constructing the altitudes 

of different types of triangles and determining and justifying the concurrence 

of the altitudes on the triangles as orthocenter in the study. In the study, in 

order to provide them to construct the altitudes, the perpendicularity of right 

triangles and the knowledge that the altitude separated a triangle into two right 

triangles were used. When they made connection with right triangles, they 

could easily constructed and defined the altitude of triangles. Moreover, while 

determining the altitudes and the places concurrence points of the altitudes as 

orthocenter for right and obtuse triangles, they had difficulty. Benefiting from 

definition of right triangles and altitudes, PMSMT was provided to determine 

the altitudes and orthocenter of a right triangles. Through argumentations and 

justifications, they found and understood their places. Moreover, through 

geometric constructions benefiting from right triangles, constructing 

perpendicular bisectors and definition of altitudes, they were supported to 

construct the altitudes for obtuse triangles. They constructed and justified their 

places by argumentations. In this respect, although altitudes are crucial to learn 

because of its critical connection between other concepts such as trigonometry 

and other theorems such as Pythagorean Theorem, it is difficult to understand 

and learn (Alatorre & Saiz, 2010; Gutierrez & Jaime, 1999; Kellogg, 2010). In 
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this respect, altitudes can be taught through geometric constructions by 

examining the places of altitudes and orthocenter points for different types of 

triangles by producing argumentations and proofs. Through geometric 

constructions, they can analyze the properties and definitions of altitudes and 

orthocenter and understand them in a way that they argue, analyze, represent 

and refute/justifying their explanations to reach the correct and necessary 

explanation. In this respect, it can be stated that the difficulty of the students 

from different grade levels about the altitudes of triangles can be removed by 

geometric constructions and argumentations.  

In the second and third weeks of the instructional sequence, it was 

observed that geometric constructions were useful to convince others by 

justifying their explanations and producing the proofs. The PMSMT examined 

the concurrence of medians and naming them as centroid, angle bisectors 

naming as incenter, perpendicular bisectors as circumcenter and altitudes as 

orthocenter and the places of the concurrence points of them for different types 

of triangles. In order to show that all of these auxiliary elements concurred at a 

point, they constructed all of these elements and then proved their concurrence. 

When they were asked whether all of these elements concurred at a point or 

not, they were answered correctly but they were not able to explain why they 

were concurrent. However, in the process of representing and examining their 

concurrence by geometric constructions, they understood how they were 

concurrent. Also, they provided proofs about concurrence of auxiliary elements 

of triangles. Then, they were asked whether the places of these concurrence 

points change for different types of triangles or not and why they changed or 

did not change, they sometimes provided incorrect answers except for medians. 

In order to determine whether these concurrence points changed for different 

types of triangles, they constructed these elements for obtuse, right and acute 

angled triangles. By doing so, they determined their places correctly and 

proved their explanations and strategies. In this respect, geometric 

constructions are useful to justify the truth of geometrical explanations and 
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providing proof for them. In this respect, proof and geometric constructions are 

related and improved similar skills needed for learning geometry (Chan, 2006; 

De Villiers, 2003; Napitupulu, 2001).  

In the second phase of the HLT in the study, it was observed that the 

usage of examples and non-examples together was useful to teach the concept. 

The participants learned the cevian by examining examples and non-examples 

in the problem about proving the concurrence of auxiliary elements of 

triangles. Except for the perpendicular bisector, concurrence of other auxiliary 

elements could be proved through the theorems of Ceva and Menelaous. This 

exception produced an environment including the discussion of this exception 

leading the understanding of cevian. The participants were engaged in 

examples and non-examples of cevian in the instructional sequence. By 

determining the related and unrelated properties of the cevian, they formed the 

accurate and sufficient definition of the cevian. The examples representing the 

attributes used for defining the concept were medians, angle bisectors and 

altitudes while the non-example referring to attributes unrelated to the 

definition of the concept was perpendicular bisector. Özyürek (1984) and 

Senemoğlu (1997) suggest that the examples and non-examples should be used 

together while teaching the concept. Learning in this way encourages that the 

students identify the particular attributes and critical properties of the concept 

and then form a generalization about examples. This process is important and 

useful since the students can understand the particular properties of the concept 

represented by the examples and determine the difference between examples 

and non-examples based on critical properties. By doing so, the students can 

form correct definition of the concept which is accurate and sufficient.   

The last mathematical practice, PMSMT’s reasoning on congruence and 

similarity of triangles as one of the concept about triangles has critical 

importance. The mathematical ideas related to this practice are: (a) reasoning 

on the formation of congruent or similar triangles through transformation 

geometry, and (b) A.S.S. is not a congruence/similarity criterion. The learning 
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goal for Stage Three of the HLT was examining the triangles through 

transformation geometry. This stage was intended to provide background to the 

participants about how to form the image triangle through the types of 

transformation geometry and the relationship between the triangles and their 

images as in a way suggested by French (2004). Through the examination of 

them, the beginning for the understanding the concept of congruence and 

similarity of triangles was aimed and performed. While these ideas emerged on 

the fourth week of the instructional sequence, they became taken-as-shared by 

being used in the activities on following weeks. Moreover, the first 

mathematical practice about the definition and formation of triangles was used 

by the participants to support their reasoning on the similarity and congruence 

of triangles and the congruence/similarity criteria for them. The other 

mathematical idea in this practice was proposed and discussed by the 

participants under the guidance of the instructor using the first mathematical 

idea and the related congruence/similarity criteria. The participants attained 

knowledge about congruence and similarity of triangles by geometric 

constructions and transformation geometry. By geometric constructions, 

PMSMT determined the places of the vertices of the image triangles and these 

vertices were combined by line segment. Then, they compared the triangles 

and image triangles based on main and auxiliary elements of triangles. Also, 

benefiting from the definitions of transformation geometry and geometric 

constructions, they proved their congruence/similarity. For example, in 

translation, they moved the vertices of the triangle by the same vector by 

geometric constructions. Then, they claimed that by combining these vertices 

by line segments, a congruent triangle was formed since the distance between 

parallel lines were preserved and the vectors represented the line segments 

having the same magnitude and direction. Moreover, they justified this 

conclusion by geometric constructions. Through conducting transformation 

geometry by geometric constructions, they formed congruent and similar 

triangles. In addition to geometric constructions, transformation geometry 

facilitated understanding and learning congruency and similarity of triangles 
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(French, 2004; Gerretson, 1998; Paquette, 1971; Park City Math Institute 

[PCMI], 2010). They also proved this process with the help of geometric 

constructions. Through the emergence of this mathematical practice about 

PMSMT’s understanding of similarity and congruence of triangles, they 

benefited from geometric constructions, transformation geometry by motion-

based reasoning, justifications and proofs. The research in the literature 

emphasizes the effects of transformation geometry and geometric constructions 

about congruence and similarity of triangles (Finzer & Bennet, 1995; PCMI, 

2010; Yanık, 2013). The students can learn congruent triangles based on the 

knowledge that rigid motions preserve all of their properties except for their 

orientation. Also, dilation is useful to form similar triangles and understand 

them since their image triangles are formed proportionally. 

The current study aims the examination of mathematical practices in 

collective learning environment designed by problem-based learning for a 

classroom community with the help of HLT formed about triangles and 

documents these mathematical practices. It can also be stated that the PMSMT 

could think and reason effectively through the instructional sequence and the 

tasks in the HLT on the concept of triangles. The findings of qualitative and 

quantitative data analysis processes showed that the reasoning of the 

participants on geometry about the concept of triangles could be improved by 

geometric constructions. Three mathematical practices emerged in the present 

study through collective learning environment can be beneficial for other 

researchers studying about teaching triangles or related topics in a similar 

setting.      

 

5.3 Implications and Recommendations 

 

 The present study was designed in order to make contribution to the 

research base about preservice middle school mathematics teachers’ (PMSMT) 



276 

 

development of profound understanding of triangles. In the study, the learning 

of PMSMT encouraged by the HLT was documented in the study. This process 

can be used in teacher education programs to teach triangles. Their thinking 

and errors identified in the study can be considered while making instructions 

about triangles for preservice mathematics teachers. Also, the difficulty and the 

ways of removing this difficulty documented in the study can be considered in 

the instructions about triangles.  

Their understanding was examined in a collective learning environment 

designed by a hypothetical learning trajectory (HLT) and then applied in a six-

week instructional sequence about the concept of triangles. With the help of 

design-based research methodology used in this classroom teaching 

experiment, the main purpose was to identify PMSMT’s understanding of 

triangles encouraged by geometric constructions from a social perspective. 

This identification process was performed by determining classroom 

mathematical practices. The effects of particular instructional activities, actual 

HLT obtained through making necessary revisions by the pilot study and the 

instructor’s guidance were explained in the process of emergence of 

mathematical practices. By generalizing the HLT, the understanding of 

PMSMT in different environments and cultures can be improved on the 

concept of triangles. By benefiting from them and making necessary revisions 

on the HLT, instructors and researchers interested in PMSMT’s understanding 

of triangles can design their classroom environments and improve their 

participants’ understanding of it. 

 Geometric constructions are useful to improve students’ geometrical 

thinking and form geometrical justifications and proofs (Chan, 2006; Cheung, 

2011; De Villiers, 2003; Napitupulu, 2001). Learning in this way can be 

encouraged effectively by argumentations. By following construction steps, the 

students can examine the geometrical objects, their properties and their 

connections with other geometrical shapes providing relational understanding 

(Erduran & Yeşildere, 2010; Karakuş, 2014; Khoh, 1997; Kuzle, 2013). In the 
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present study, the students understood and learned the triangles by making 

connections with other geometrical concepts such as quadrilaterals and circles 

through geometrical constructions, proofs and argumentations. In this respect, 

the process of learning other geometric shapes such as quadrilaterals and 

circles can be provided by geometric constructions, argumentations and proofs. 

When the positive effects of geometric constructions on understanding and 

learning of PMSMT are considered, these tools are useful to be used in 

geometry lessons in mathematics teacher education programs. Hence, the 

geometry courses can include the opportunities for preservice mathematics 

teachers to explore the geometric concepts by geometric constructions. 

 When the argumentations formed in the whole class discussion and the 

tasks encouraging the emergence of the mathematical ideas are examined, the 

instructor have important role. The instructor visited the small groups, 

determined the mathematical misconceptions, errors and different solution 

strategies for the problem and then guided the discussion using them in the 

study. In this respect, the knowledge of the instructor and the participants are 

important in understanding and learning of the concepts (Gökkurt, Şahin, Soylu 

& Doğan, 2013; Gökkurt, 2014; Yackel, 2002). Moreover, errors and 

difficulties of PMSMT about triangles such as concurrence of auxiliary 

elements, definitions of triangles and altitudes of triangles determined in the 

study can be used in different research about triangles. Moreover, these errors 

and misconceptions about triangles should be considered while teaching 

triangles by removing them. Also, the PMSMT had more difficulty in altitudes 

when compared with other auxiliary elements (Alatorre & Saiz, 2010; 

Gutierrez & Jaime, 1999). Moreover, altitudes can be examined in detail by 

considering the errors and misconceptions about it identified in the study. Also, 

whole class discussion was initiated and flowed under the guidance of the 

instructor based on the ideas of PMSMT in the classroom. Therefore, the study 

can be repeated by a different instructor and different group of PMSMT. By 

making comparisons between the mathematical practices formed by different 
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group of classroom community and the instructor, generalized and detailed 

knowledge can be obtained about learning and understanding of PMSMT about 

triangles in an environment designed by problem-based learning.  

 Analysis of the present study was performed by using mathematical 

practice dimension of social perspective of the interpretative framework. The 

other dimensions of this perspective which are social and sociomathematical 

norms should also be examined in a similar study (Andreasan, 2006; Roy, 

2008; Wheeldon, 2008). In this way, the nature and structure of the collective 

learning environment providing the emergence of mathematical practices can 

be explained and analyzed to have a complete picture of the PMSMT’s 

learning and understanding of triangles in the instructional sequence. The 

research in the literature examining social dimension of the framework 

established the social and sociomathematical norms generally in an 

environment designed by Realistic Mathematics Education (RME). By the 

present study, different norms can be established for a problem-based learning 

environment different from the most of design-based research in the literature. 

Moreover, interpretative framework also has psychological perspective and 

there have been research to examine this dimension of the framework (Stephan, 

Bowers, Cobb, & Gravemeijer, 2003). This perspective should be investigated 

in a study similar to the present one. Generally, this dimension was explored in 

a RME learning environment. Differently, this dimension can be explored in a 

problem-based learning environment as it has been used in the present study. 

Moreover, also by connecting this perspective with the social one in a different 

study, individual PMSMT’s understanding and learning of triangles can be 

examined encouraged by instructional sequence and the HLT. By conducting 

this kind of study including all perspectives and dimensions of interpretative 

framework, the suggestion of “the results from the analyses should feedback to 

improve the instructional designs” (p. 11) made by Cobb (2003) can be 

performed. Moreover, making comparisons between the findings of the 
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research obtained from different learning environments designed by different 

strategies, detail information and the effects of the strategies can be acquired. 

 In the study, PMSMT engaged in the activities about geometric 

constructions by compass and straight edge. They examined the triangles 

through constructing them as explained in the problem situation. While 

constructing the shapes, they made drawing errors. Although they followed 

true construction steps, they made drawing errors such as not fixing the 

compass truly and strictly on a point. Hence, some of the participants could not 

form clear drawings for the shapes. For example, some of them could not show 

the auxiliary elements concurred at a point on their drawings because of this 

kind of drawing errors. Furthermore, the participants spent much time and 

effort of the participants in complex geometric constructions. For example, 

while examining the possibility of formation of triangles by knowing the 

measures of some of their main and auxiliary elements, they made 

constructions including many steps and formed complex drawings. The 

technological tools can be more useful while constructing complex drawings in 

short time period by spending less effort. Moreover, drawing errors made by 

following true construction steps by compass and straight edge can be removed 

by technological tools so that completely true drawing can be produced 

effectively. Çiftçi and Tatar (2014) state that there is not statistically significant 

difference in geometry achievement of the groups taught by compass and 

straight edge and technological tools. However, dynamic geometry 

environment facilitates complex constructions in short time period while the 

compass and straight edge could provide learning permanently. In this respect, 

basic geometric constructions can be used to teach the geometrical concepts 

such as line, angle, different kinds of triangles by compass and straight edge 

but the concepts necessitating complex constructions such as triangles with 

their auxiliary elements can be taught in technological learning environments. 

The future research about understanding and learning geometrical concepts 

through constructions can be designed in this way. 
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APPENDICES 

 

 

Appendix A: Activities 

1. ÜÇGENLERİN SINIFLANDIRILMASI 

 

1. Aşağıdaki kavramları tanımlayarak bu kavramlardan uygun olanları 

diyagramdaki uygun yerlere yerleştiriniz. 

Üçgen, ikizkenar üçgen, eşkenar üçgen, çeşitkenar üçgen, dik üçgen, 

dar açılı üçgen, geniş açılı üçgen. 

 

 

2. Soruda üçgen çeşitlerini kullanarak yaptığınız sınıflandırmayı 

açıklayınız. Bu sınıflandırmayı yaparken üçgenlerin hangi özellik ve 

elemanlarını göz önünde bulundurduğunuzu ve bunların 

sınıflandırmada nasıl kullanıldığını belirtiniz. 

 

 

 

3. Üçgen çeşitlerini sınıflayabileceğiniz farklı bir yol varsa çizerek 

gösteriniz. Bu sınıflamada göz önünde bulundurduğunuz üçgenlerin 

hangi özellik veya elemanlardır? Bunlar nasıl kullanılmıştır? 

Açıklayınız. 
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2. ÜÇGENLERİN OLUŞTURULMASI 

 

1. Üçgenlerin temel ve yan elemanları nelerdir? Açıklayınız. 

 

 

2. Bir ABC üçgeninin m(BAC) = 900, ha ve b elemanları bilindiğine göre 

bu üçgenin çiziminin mümkün olup olmadığını belirtiniz. Bu durumu 

açıklayınız (şahin, 2013).  

 

3. ABC dik üçgeninde m(BAC)= 900, ha ve Va elemanları bilindiğine göre 

bu üçgenin çiziminin mümkün olup olmadığını belirtiniz. Bu durumu 

açıklayınız (Şahin, 2013). 

 

 

4.  Bir ABC üçgeninin m(BAC) = 900, ha ve a elemanları bilindiğine göre 

bu üçgenin çiziminin mümkün olup olmadığını belirtiniz. Bu durumu 

açıklayınız (Şahin, 2013). 

 

 

 

 

5. Üçgenlerin sahip olduğu elemanlardan en az hangileri bilindiğinde bir 

üçgenin çiziminin mümkün olduğu veya belirli bir üçgenin 

oluşturulabildiği söylenebilir? Bu elemanlarla oluşturulabilecek 

grupların üçgen çizimini nasıl mümkün kıldığını açıklayınız.  
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3. ÜÇGENLERDE KENARORTAY 

1. Kenarortay nedir? Tanımlayınız. 

 

 

2. Aşağıda verilen ABC üçgeninin BC kenarına ait olan kenarortayı pergel 

ve ölçüsüz cetvel kullanarak çiziniz ve doğruluğunu gösteriniz. 

 

 

 

 

3. Bir ABC üçgeninin bütün kenarlarına ait kenarortayların kaç noktada 

kesiştiğini gösteriniz. Bu kesişim noktasının/noktalarının genel adı 

nedir?  

 

 

 

 

 

4. Dik, dar veya geniş açılı üçgenlerin kenarortaylarının kesim 

noktasının/noktalarının yerini tahmin ediniz. Bu noktanın/noktaların 

yerinin bu üçgen çeşitleri için değişip değişmediğini gösteriniz. 
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4. ÜÇGENLERDE AÇIORTAY 

1. Açıortay nedir? Tanımlayınız. 

 

 

 

2. Aşağıda verilen ABC üçgeninin ABC açısının açıortayını pergel ve 

ölçüsüz cetvel kullanarak çiziniz ve doğruluğunu gösteriniz. 

 

 

 

 

 

 

3. Bir ABC üçgeninin bütün açılarına ait açıortayların kaç noktada 

kesiştiğini gösteriniz. Bu kesişim noktasının/noktalarının genel adı 

nedir?  

 

 

 

 

4. Dik, dar veya geniş açılı üçgenlerde açıların açıortaylarının kesim 

noktasının/noktalarının yerini tahmin ediniz. Bu noktanın/noktaların 

yerinin bu üçgen çeşitleri için değişip değişmediğini gösteriniz.  
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5. ÜÇGENLERDE ORTA DİKME 

1. Pergel ve üzerinde ölçüm işaretleri olmayan cetvel kullanarak aşağıda 

verilen ABC üçgenini A noktası AI noktasına gelecek şekilde 

kopyalayarak çiziniz. Kopyalanan üçgeni AıBıCı üçgeni olarak ifade 

ettiğimizde, bu üçgenin ABC üçgeninin kopyası olduğunu gösteriniz. 

                                                           

 

                                                                                                           ∙ 

 

 

 

2. Orta dikme nedir? Tanımlayınız. 1. Soruda verilen ABC üçgeninin BC 

kenarının orta dikmesini pergel ve ölçüsüz cetvel kullanarak çiziniz ve 

doğruluğunu gösteriniz. 

 

 

 

3. Bir ABC üçgeninin bütün kenarlara ait orta dikmelerinin kaç noktada 

kesiştiğini gösteriniz. Bu kesişim noktasının/noktalarının genel adı 

nedir? 

 

 

 

 

4. Dik üçgende, dar açılı üçgende ve geniş açılı üçgende kenarlara ait orta 

dikmelerin kesişim noktasının/noktalarının yerini tahmin ediniz.  Bu 

noktanın/noktaların yerlerinin bu üçgen çeşitleri için değişip 

değişmediğini gösteriniz.  

 

AI 
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6. ÜÇGENLERDE YÜKSEKLİK 

1. Yükseklik nedir? Tanımlayınız.  

 

 

2. Aşağıda verilen ABC üçgeninde A noktasından BC kenarına indirilen 

yüksekliği pergel ve ölçüsüz cetvel kullanarak çiziniz ve doğruluğunu 

gösteriniz. 

 

 

 

 

 

3. Bir ABC üçgeninin bütün kenarlarına ait yüksekliklerin kaç noktada 

kesiştiğini gösteriniz. Bu kesişim noktasının/noktalarının genel adı 

nedir?  

 

 

 

 

4. Dik, dar veya geniş açılı üçgenlerde yüksekliklerin kesim 

noktasının/noktalarının yerini tahmin ediniz. Bu noktanın / noktaların 

yerlerinin bu üçgen çeşitleri için değişip değişmediğini gösteriniz.  
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7. ÖTELEME 

1. Öteleme nedir? Tanımlayınız. 

 

 

 

2. Aşağıda verilen ABC üçgeninin verilen u vektörünü kullanarak 

öteledikten sonra oluşan görüntüsünü pergel ve ölçüsüz cetvel 

kullanarak çiziniz ve doğruluğunu gösteriniz. 

 

 

 

 

3. Analitik düzlemde köşeleri A(0, 3), B(2, 5) ve C(2, -3) olan ABC 

üçgeninin 2  cm sola ve 1 cm yukarıya ötelendikten sonraki 

görüntüsünü çiziniz.  
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8. DÖNDÜRME 

1. Döndürme nedir? Tanımlayınız. 

 

 

 

 

2. Aşağıda verilen ABC üçgeninin belirtilen O noktası etrafında 450 

döndürülmesiyle elde edilen görüntüsünü pergel ve ölçüsüz cetvel 

kullanarak çiziniz ve doğruluğunu gösteriniz. 

 

 

 

 

 

 

 

3. Analitik düzlemde köşeleri A(0, 3), B(2, 5) ve C(2, -3) olan ABC 

üçgeninin orjin etrafında 600 döndürülmesiyle elde edilen görüntüsünü 

çiziniz.  
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9. YANSITMA 

1. Yansıtma nedir? Tanımlayınız. 

 

 

 

2. Aşağıda verilen ABC üçgeninin l doğrusunda yansımasının yapıldıktan 

sonra elde edilen görüntüsünü pergel ve ölçüsüz cetvel kullanarak 

çiziniz ve doğruluğunu gösteriniz. 

 

 

 

 

 

3. Analitik düzlemde köşeleri A(0, 3), B(2, 5) ve C(4, 2) olan ABC 

üçgeninin x + y = 0 denklemli doğrusu kullanılarak yansıması 

yapıldıktan sonra elde edilen görüntüsünü çiziniz.  
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10. BÜYÜTME/KÜÇÜLTME 

1. Büyütme/küçültme nedir? Tanımlayınız. 

 

 

 

 

 

2. Aşağıda verilen ABC üçgeninin O noktası kullanılarak 2 oranında 

büyütülmüş modelini pergel ve ölçüsüz cetvel kullanarak çiziniz ve 

doğruluğunu gösteriniz. 

 

 

 

 

 

 

 

 

 

3.  2. Soruda verilen ABC üçgenini ve O noktasını kullanarak, bu şeklin O 

noktasına göre  ½ oranında küçültülmüş modelini pergel ve ölçüsüz 

cetvel kullanarak çiziniz ve doğruluğunu gösteriniz. 
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4. Aşağıda verilen tabloyu, bir ABC üçgeninin ve onun tabloda belirtilen 

dönüşüm çeşidini kullanarak elde edilen görüntüsü arasındaki ilişkiyi, 

değişen ve değişmeyen özellik ve elemanlarını göz önünde 

bulundurarak nedenleriyle açıklayınız. 

Dönüşüm Çeşidi Değişmeyen 

özellik 

Değişen 

özellik 

Geometrisel 

bağlam 

Öteleme 

 

   

Döndürme 

 

   

Yansıtma 

 

   

Büyütme/Küçültme    
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11. ÜÇGENLERDE EŞLİK 

1. Bir üçgene art arda öteleme, döndürme ve yansıtma yaptığımızda veya 

bunlardan birinin yapılma sayısı sınırlı sayıda arttırıldığında üçgen ile 

bu üçgenin görüntüsü arasında nasıl bir ilişki vardır? 

 

 

 

 

2. Aşağıdaki şekilde ABC üçgenine birtakım dönüşüm işlemleri 

uygulanarak A0B0C0 üçgeni elde edilmiştir. Hangi dönüşüm 

işlemlerinin yapıldığını açıklayarak çizimlerle gösteriniz. 

 

 

 

3. 3. soruda verilen ABC ve A0B0C0 üçgenlerinin eş olduğunu gösterirken, 

üçgenin hangi elemanları kullanılmıştır? Bu elemanların eş olması 

üçgenlerin eş olduğu sonucuna varmak için yeterli midir? Eğer 

yeterliyse, bu eşlik çeşidi nasıl adlandırılabilir? 

 

 

4. Bildiğiniz eşlik şartlarını açıklayarak yazınız. 
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12. ÜÇGENLERDE BENZERLİK 

1. Bir üçgen ve onun büyütme/küçültme sonucu oluşan modelleri arasında 

nasıl bir ilişki vardır? Açıklayınız. 

 

 

 

 

2. Aşağıdaki şekilde belirtilen ABC üçgenini kullanarak, bu üçgenle yeni 

oluşturulan üçgenin benzerlik oranını 3 olacak şekilde oluşturulan 

A0B0C0 üçgenini pergel ve ölçüsüz cetvel kullanarak çiziniz ve 

doğruluğunu gösteriniz. 

 

 

 

 

3. Herhangi iki üçgenin benzer olduğunu nasıl gösterirsiniz? Açıklayınız. 
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4. Aşağıda yer alan ifadelerin doğru veya yanlış olduklarını belirterek 

nedenlerini açıklayınız. 

 Doğru 

(D) 

Yanlış 

(Y) 

Açıklama 

İki üçgen ancak ve ancak biri 

diğerinin büyütme/küçültme 

sonucu oluşturulan modeli 

olduğunda benzerdir. 

   

İç açılarının ölçüleri (300-600-

900) olan üçgenler bazen 

benzerdir. 

   

İç açılarının ölçüleri (450-450-

900) olan üçgenler her zaman 

benzerdir. 

   

Kenar uzunlukları (7k-24k-25k, 

k€R) olacak şekilde oluşturulan 

üçgenler her zaman benzerdir. 

   

AKK bir eşlik/benzerlik şartıdır.    

AA benzerlik şartında üçüncü 

açının kullanılması gereksizdir. 

   

4 cm ve 6 cm kenar 

uzunluklarına sahip ve bu 

kenarlar arasında kalan açının 

450 olduğu üçgenle; 2cm ve 3 cm 

kenar uzunluklarına sahip ve bu 

kenarlar arasında kalan açının 

450 olduğu üçgen benzerdir. 

   

Eş üçgenler aynı zamanda benzer    
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üçgenlerdir.  

Eşkenar üçgenler her zaman 

benzerdir. 

   

İkizkenar üçgenler her zaman 

benzerdir. 

   

Dik üçgenler bazen benzerdir.    

İkizkenar dik üçgenler her zaman 

benzerdir. 

   

Benzerlik oranı 4 olan benzer iki 

üçgenin, yükseklikleri oranı da 

4’tür. 

   

Bir üçgenin ağırlık merkezi sabit 

kalacak şekilde 

büyütüldüğünde/küçültüldüğünd

e diklik merkezi, iç teğet ve dış 

teğet çemberlerinin merkezleri 

asla değişmez. 

   

Eş üçgenlerin iç teğet 

çemberlerinin yarıçaplarının 

uzunluklarının ölçüsü her zaman 

aynıdır. 

   

Eş üçgenlerin dış teğet 

çemberlerinin yarıçaplarının 

uzunluklarının ölçüsü ve bu 

merkez noktalarının kenarlara 

olan uzaklıkları bazen aynıdır. 

   

Bir üçgen onun yansıma işlemi 

sonucu oluşan görüntüsü bazen 
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benzerdir. 

İki dik üçgenin hipotenüs ve 

hipotenüse indirilen 

yüksekliklerinin uzunlukları aynı 

olduğunda, bu üçgenler her 

zaman benzerdir.  

   

İki dik üçgenin, iç teğet 

çemberlerinin yarıçap 

uzunlukları ve hipotenüse 

indirilen yüksekliklerin 

uzunluklarının ölçüleri aynı 

olduğunda, bu üçgenler bazen 

eştir. 

   

İki ikiz kenar üçgenin eşit 

uzunluktaki kenarları arasındaki 

açıların ölçüleri eş olduğunda, bu 

üçgenler her zaman benzerdir.  

   

İki dik üçgenin dar açılarından 

birin açısının ölçüsü eş 

olduğunda, bu üçgenler her 

zaman benzerdir. 

   

Benzer üçgenlerin, 

açıortaylarının ve 

kenarortaylarının uzunluklarının 

oranı her zaman benzerlik 

oranına eşittir. 

   

İki dik üçgenin dik kenarlarından 

birinin ve hipotenüslerinin 
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uzunlukları eşit olduğunda, her 

zaman eş üçgenler olurlar. 

İki ikizkenar üçgenin, eş 

açılarından birinin olduğu 

köşede kesişen iki kenarının 

uzunlukları eşit olduğunda, bu 

üçgenler benzerdir.  
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13. PROBLEMLER 

1. Bir ABC üçgeninde, AD uzunluğu A açısının açıortayı ve D noktası BC 

kenarı üzerinde olsun. D noktasından AB kenarına paralel olan ve AC 

kenarını E noktasında kesen DE doğru parçası oluşturulsun. E 

noktasından da BC kenarına paralel olan ve AB kenarını F noktasında 

kesen EF doğru parçası oluşturulsun. Bu durumda, AE ve BF 

kenarlarının eş olduğunu gösteriniz (Şahin, 2013). 

 

 

 

 

 

 

2. RST üçgeninde, XY doğrusu ile RT doğru parçası ve YZ doğrusuyla 

RS doğru parçası paralel olduğuna göre; (RX/XS) = (ZT/RZ) olduğunu 

gösteriniz. 
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3. Aşağıda verilen ABC üçgeninde, doğru parçaları arasındaki oranlar 

çarpımının 1 e eşit olduğunu gösteriniz.  

 

 

  

 

4. 3. soruda verilen eşitliğin, herhangi bir üçgenin açı ortaylarının, kenar 

ortaylarının ve yüksekliklerinin kesişim noktaları için de doğru olup 

olmadığını gösteriniz. 

 

 

 

 

 

 

 

5. Aşağıdaki şekilde verilen DEFGH kare piramidin tabanın bir kenarı 

23 m dir ve güneşli bir günün belirli bir saatindeki gölgesi de 

gösterildiği gibidir. Gölgenin tepe noktasının piramide olan uzaklığı 

yani BC doğru parçasının uzunluğu 10,5 m’dir. Ayrıca, 6cm boyunda 

olan bir kibrit de yere dikey olacak şekilde yerleştirildiğinde 9cm’lik 

gölge oluşturduğu gözlemlenmiştir. Bu bilgilere göre, piramidin tepe 

noktasından tabanın merkez noktasına indirilen dik yüksekliğin 

uzunluğunu bulunuz.  
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6. Aşağıdaki ABC dik üçgeninde, IBCI = 3cm, ICAI = 4 cm ve IABI = 

5 cm’dir.  ICC1I + IC1C2I + IC2C3I +…= ? 

  

 

 

  

 

D 

E 

F 
G 

H 
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7. Aşağıdaki ABC üçgeninde, SP, TQ UR doğru parçaları F noktasından 

geçmektedir. AB // SP, AC // TQ ve BC // UR olduğuna göre, 

 ifadesinin doğru olduğunu gösteriniz.  

 

 

 

 

 

 

 

8. Aşağıdaki şekilde gösterildiği gibi iki eşkenar üçgen bulunmaktadır. Bu 

iki üçgen birbiri üzerine çakışık durumdadır v kenar uzunlukları n 

birimdir. C noktası üçgenlerden birinin tepe noktasıyken diğerinin 

ağırlık merkezidir. Tepe noktası C olan eşkenar üçgen diğerinin 

üzerinde döndürülebilmektedir. Bu durumda üst üste gelen taralı alanın 

alabileceği en büyük değer nedir? 
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Appendix B: Turkish Summary 

SOSYAL BİR ORTAMDA MATEMATİKSEL UYGULAMALARIN 

GELİŞTİRİLMESİ: ORTAOKUL MATEMATİK ÖĞRETMENİ 

ADAYLARININ ÜÇGENLERİ ÖĞRENMELERİNİ SAĞLAYAN BİR 

ÖĞRETİM DİZİSİ 

 

 

Giriş 

 

Geometriyi öğrenmek çok önemli olmasına rağmen öğrencilerin 

geometri bilgi ve başarılarının istenilen seviyede olmadığı görülmektedir. 

Bunun nedenlerinin başında öğrencilere geometrinin kavramsal 

öğretilmesinden ziyade ezberleyerek ve işlemsel bilgi odaklı öğretilmesidir 

(Fuys, Geddes, & Tischler, 1988; NCTM, 2000; Young, 1925). Öğretmenlerin 

özellikle de ortaokul matematik öğretmenlerinin geometriyi bu şekilde 

öğretmelerinin nedeni geometrisel kavramlarla ilgili bilgi ve tecrübelerinin 

yetersiz olmasıdır (Clements, 2003; Fuys, Geddes, & Tischler, 1988; 

Hershkowitz, Bruckheimer, & Vinner, 1987; Stipek, 1998). Ayrıca, etkili 

matematik öğretiminin gerçekleştirilebilmesi için gerekli öğrenme ortamları da 

bilgili öğretmenler tarafından hazırlanabilir (Putnam, Heaton, Prawat & 

Remillard, 1992; Van der Sandt & Nieuwoudt, 2003). Bu açıdan, bilgili 

öğretmenlerin sahip olması gereken bilgiler literatürde araştırmacılar tarafından 

farklı şekilde açıklanmıştır (Ball, Sleep, Boerst, & Bass, 2009; Ma, 1999; 

Shulman, 1986). Bunlardan en yaygın kullanılanlarından biri de öğretim için 

matematiksel bilgi adı altında önemli matematiksel bilgi ve temel matematik 

öğretimi bilgilerinin açıklandığı yöntemdir (Hill, Ball & Schilling, 2008). Bu 

sınıflama yönteminde araştırmacılar, matematiği bilmenin ve öğretmenin ancak 

gerekli matematiksel bilgiye sahip olarak gerçekleştirilebileceğini 

belirtmişlerdir. Bu nedenle, etkili geometri öğretiminin geometri bilgisi iyi olan 

öğretmenler tarafından yapılabileceği söylenebilir çünkü öğretmenlerin konu 
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alan bilgileri onların sınıflarında yaptıkları seçimleri ve sergiledikleri 

performansları etkilemektedir (Ball, Thames & Phelps, 2008). Bu yüzden, 

sınıflarda etkili geometri öğretiminin gerçekleşebilmesi için, öğretmen 

adaylarına eğitim gördükleri süreçte gerekli geometrik bilgiyi edinmelerini 

sağlayacak olanak sunulmalıdır (NCTM, 2006; Chapman, 2007).   

Tasarım-tabanlı araştırma öğretmen adaylarının matematik öğretimi 

için gerekli bilgi çeşitlerinden biri olan konu alan bilgilerini geliştirmek için 

çeşitli olanakların sunulduğu faydalı bir yöntem olabilir. Bu yolla, öğretmen 

yetiştirme programlarında, eğitmenler öğretmen adayları için öğretim süreçleri 

planlayıp sınıflarında uygulayarak onların gelişimlerini sağlayabilirler. Bu 

açıdan, öğretim sürecinde kullanılacak geometrik kavramların, etkinliklerin ve 

materyallerin öğretmen adaylarının geometrik anlama ve düşünmelerini 

geliştirecek şekilde seçilip uygulanması gerekmektedir (Han, 2007; 

Henningsen & Stein, 1997). Geometrik şekillerin pergel ve çizgeç kullanılarak 

inşa edilmesi öğretmen adaylarının gerekli geometrik bilgiyi kazanmaları ve 

geometrik düşünmelerinin gelişimini sağlayabilir. Öğretmen adayları pergel ve 

çizgeç kullanarak geometrik teoremleri, kuralları ve konuları inceleyebilir ve 

anlayabilirler (Erduran & Yeşildere, 2010; Napitupulu, 2001; Hoffer, 1981). 

Ayrıca, şekillerin geometrik inşası pergel ve çizgeç kullanarak geometrik 

problemlerin çözümü için standart olmayan bir çözüm yolu sunmaktadır. 

Öğretmen adayları bu materyallerle geometrik konuların öğrenilmesine ek 

olarak gerekli fiziksel becerilerin kazanılmasını da sağlamaktadır (Cherowitzo, 

2006). Bu açıdan, bu geometrik şekillerin inşa edildiği etkinliklerine çalışmada 

yer verilerek ortaokul matematik öğretmeni adaylarının kavramsal öğrenme, 

problem çözme, uygulama ve iletişim kurma gibi becerilerini geliştirerek 

gerekli konu alan bilgilerini edinmelerini sağlamak amaçlanmıştır.  

Geometrik etkinlikler ve materyaller öğretim sürecinde matematiksel 

söylemler ve tartışmalarla birlikte kullanıldığında daha etkili olabilirler. 

Argümantasyon geometrik bilginin etkili bir şekilde kazanılması için gerekli 

olan iletişimi sağlayacak etkili bir yöntem sunabilir çünkü öğretmenlerin 
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bilgilerinin öneminin yanında geometrik bilgileri aktarabildikleri bir iletişim 

süreci oluşturmada da yeterli değillerdir ve bunu geliştirmelidirler 

(Hershkowitz, 1989; Owens & Outhred, 2006; Sundberg & Goodman, 2005). 

Argümantasyon öğretmenlerin ve öğretmen adaylarının bu konuda 

gelişimlerini sağlayabilir. Ayrıca, bilimsel bilginin üretilebilmesi için de 

gereklidir çünkü insanlar alternatifleri ve kanıtları değerlendirerek fikirler 

üretirler (Voss & Van Dyke, 2001). Ayrıca, argümantasyon kavramsal anlama, 

problem çözme, eleştirel bakış açısı, doğrulama ve kanıtlama gibi becerilerin 

kazanılmasında da etkilidir (Abi-El-Mona & Abd-El-Khalick, 2011; Duschl & 

Osborne, 2002; Jim´enez-Aleixandre ve ark., 2000; Jonassen & Kim, 2010; 

Osborne, Erduran, & Simon, 2004; Zembal-Saul, 2005). Bu yüzden, 

argümantasyon özellikle de geometrik şekillerin inşasında kullanılarak 

öğretmen adaylarının geometri bilgilerini ve bilimsel düşünme becerilerini 

gerekli ön bilgilerini düzenleyerek yeni bilgileri yapılandırarak geliştirebilir. 

Böylelikle, argümantasyon iletişim kurma ve kritik düşünme becerileriyle 

kavramsal anlamayı ve derinlemesine kavramsal öğrenmeyi sağlayabilir 

(Driver, Newton & Osborne, 2000). Ayrıca, argümantasyon ve geometrik 

şekillerin inşası öğrencilerin problem çözme ve geometrik ispat yazma 

becerilerini geliştirmektedir. Geometrik şekillerin inşası sürecinde öğretmen 

adayları şekil oluşturma süreçlerini anlatmak ve diğerlerine bu sürecin 

doğruluğunu göstermek için diğer geometrik şekillerle ilgili özelliklerden ve 

geometrik ispatlardan faydalanmaktadır (Erduran & Yeşildere, 2010; Smart, 

1998).  

Belirli geometrik kavramlara odaklanılarak hazırlanan öğretim süreci, 

öğretmen adaylarının bu kavramları anlamaları ve öğrenmelerini sağlayacak 

şekilde tasarlanmalıdır. Ayrıca bu süreç matematiksel söylemler ve 

tartışmalarla desteklendiğinde, öğretmen adaylarının birbirlerinin fikirlerini 

analiz ederek, tartışarak ve birbirlerini kanıtlarla ikna ederek öğrenmelerini ve 

anlamalarını geliştirir. Böylelikle, argümantasyon, onların öğrenmelerini 

sağlamaktadır (Lampert, 1990). Ek olarak, öğrenenler tartışarak ve bilgilerini 
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başka durumlara transfer ederek ürettikleri bilgilerini belirten matematiksel 

uygulamalarla da öğrenmeleri incelenebilir. Matematiksel uygulamalar 

matematiksel tartışma ve düşünmelerle elde edilen paylaşılan bilgileri 

belirtmektedir (Cobb, Gravemeijer, Yackel, McClain & Whitenack, 1997). Bu 

açıdan, bu çalışmada ortaokul matematik öğretmeni adaylarının üçgenlerle 

ilgili geometrik inşalar kullanarak oluşturdukları sınıf içi matematiksel 

uygulamaları sayesinde bu konuyla ilgili öğrenme ve anlamalarını incelemek 

amaçlanmıştır. Bu çalışmada, ortaokul matematik öğretmeni adaylarının 

üçgenler konusuyla ilgili konu alan bilgilerini geliştirmek amaçlanmıştır. 

Üçgenler günlük yaşamda kullanılan en yaygın şekillerden biridir. Ayrıca, 

diğer disiplinler, diğer matematiksel kavramlar ve geometrik şekillerle de 

yakından ilgilidir (Athanasopoulou, 2008; Kellogg, 2010). Üçgenler bu 

önemine rağmen, öğrenenler üçgenler konusuyla ilgili yeterli bilgiye sahip 

olma konusunda zorluk yaşamaktadırlar (Vinner & Hershkowitz, 1980). 

Ayrıca, üçgenler çeşitli yaş gruplarında yer alan birçok öğrenci açısından da 

önemlidir (Damarin, 1981; Vinner & Hershkowitz, 1980). Bu yüzden, ortaokul 

matematik öğretmeni adaylarının üçgenler konusuyla ilgili anlama ve 

öğrenmelerini sağlamak gerekmektedir.       

Tasarım tabanlı araştırmayla, bu çalışmada etkili bir öğretim süreci 

oluşturmak için varsayıma dayalı öğrenme rotası tasarlanmış. Hazırlanan bu 

varsayıma dayalı öğrenme rotası altı haftalık bir öğretim sürecinde 

uygulanmıştır. Pilot çalışmada bu rota üzerinde gerekli bulunan düzeltmeler 

yapılmıştır. Bu açıdan, bu öğrenme rotasının etkisini değerlendirmek ve sınıf 

içi matematiksel uygulamaları belirlemek amacıyla bu çalışma tasarlanmıştır. 

Diğer bir ifadeyle çalışmada “Ortaokul matematik öğretmeni adaylarının 

üçgenleri öğrenmeleriyle ilgili problem tabanlı öğrenme stratejisine göre 

hazırlanmış tasarım tabanlı araştırma ortamında geliştirdikleri sınıf içi 

matematiksel uygulamaları nelerdir?” araştırma probleminin cevabı 

araştırılmıştır.  
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Kaynak Bildirişleri 

 

 Çalışmanın odak noktası olan matematiksel uygulamalar bireysel ve 

sosyal öğrenme ortamlarının etkisini birlikte düşünerek oluşturulmuştur. 

Matematiksel uygulamalar oluşturularak sağlanan öğrenmelerde bireysel ve 

sosyal öğrenme birbirini destekleyecek ve biri diğerine hakim olamayacak 

şekilde gerçekleşmektedir (Cobb ve ark., 2011). Bu açıdan, matematiksel 

uygulamalar sosyal öğrenme ortamını yansıtan sınıf ortamlarında 

gerçekleşmektedir. Bu sosyal öğrenme ortamında öğrenciler sınıf içi 

matematiksel etkinlere etkin bir şekilde katılırlar. Ayrıca, öğrencilerin etkin 

katılım sürecinde matematiksel bilgilerini ve becerilerini yeniden düzenleyerek 

öğrenirler (Cobb & Yackel, 1996). Diğer bir ifadeyle öğrenciler tartışma 

sürecine aktif katılım göstererek bireysel bilgilerini düzenleyerek konuları 

öğrenmektedir. Bu açıdan, öğrenmeler ve sosyal etkileşim yakından ilgilidir. 

Böyle sosyal bir sınıf ortamı içerisinde ortaya çıkan sınıf içi matematiksel 

uygulamalar ancak bu ortamda ortaya çıkan sosyal ve sosyomatematiksel 

normlar yardımıyla oluşabilir. Sosyal normlar sınıf içerisinde oluşan genel 

davranışları belirtmektedir (Cobb, Yackel, & Wood, 1992). Bunlar sınıf 

içerisinde öğrencilerden sergilemeleri beklenen davranışlar, cevap ve 

çözümlerin açıklaması, diğerleriyle paylaşılması ve tartışılması olarak 

örneklendirilebilir (Yackel & Cobb, 1996). Bu açıdan bakıldığında, her sınıfın 

kendine özgü normları vardır ve matematiksel uygulamaların ortaya çıkması 

için katılımcıların fikirlerini nedenleriyle birlikte paylaştığı ve birbirlerinin 

fikirlerini değerlendirdiği sınıf içi normlar oluşturulmalıdır. Bu normlardan da 

matematik sınıflarına özgü olan sosyomatematiksel normlar oluşmalıdır. Bu 

normlar sınıf içerisinde oluşan matematiksel tartışmaları belirtmektedir 

(Yackel & Cobb, 1996). Sosyomatematiksel normlar farklı çözüm yolları, 

detaylı ve önemli çözümler olarak örneklendirilebilir (Yackel, 2002). Bu 

yüzden bu çalışmada toplu öğrenme ortamı tasarlamak, bu ortama öğrencilerin 
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nasıl katıldığı ve katkıda bulunduğunu ve sınıf içi matematiksel uygulamaların 

oluşum sürecini araştırma amaçlanmıştır.  

Matematiksel uygulamaların etkili bir şekilde ortaya çıkması ve 

bahsedilen normların oluşması için sınıf içerisinde etkili tartışmaların oluşması 

sağlanmalıdır. Bu tartışmalar, öğrencileri hedeflenen bilgi ve beceriyi 

kazandıracak şekilde oluşturulmalıdır. Argümantasyonlar kullanılarak 

öğretmen adayları üçgenleri öğrenebilir, birbirlerinin üçgen inşa süreçlerini 

irdeleyerek denetleyebilir ve geometrik düşünme ve ispat becerilerini 

geliştirebilir. Bir çeşit matematiksel söylem olarak ifade edilebilen 

argümantasyon öğrencilerin fikirlerini nasıl doğruladıklarını ve bu 

matematiksel doğrulamaları iletişimlerinde nasıl kullandıklarını 

göstermektedir. Bu açıdan, matematiksel argümanlar üretmek aynı zamanda 

matematiksel kavramları anlamakla da ilişkilidir (Lampert, 1990). Öğrenciler 

genellikle teorem ve kuralları nerede, nasıl ve niye oluştuklarını bilmeden ve 

sorgulamadan ezberleyerek öğrenme eğilimindedirler. Bu problem, ancak 

matematiksel argümanlar üreterek giderilebilir çünkü öğrenciler argüman 

üretirken bunları sorgulamaya başlar ve sonunda da soru işaretlerini gidererek 

konuyu anlamayı amaçlar. Etkili bir yönlendirme yapıldığında anlamlı ve 

doğru öğrenme gerçekleşebilir. Ayrıca, sorgulama becerisiyle matematiksel 

anlama ve öğrenme sağlanabilir. Bu açıdan, argümantasyon yardımıyla 

öğrenciler problem ve fikirleri derinlemesine inceleyerek ve anlayarak etkili 

öğrenmeyi gerçekleştirebilirler (Abi-El-Mona & Abd-El-Khalick, 2011; 

Jonassen & Kim, 2010). Argümantasyonun bu süreci düşünüldüğünde 

öğrenciler fikirlerini rahatlıkla ifade ederek, savunarak, gerekçe ve deliller 

sunarak tartışmaya katılırlar. Ayrıca, diğerleri de bunlar üzerinde destekleyici 

ya da çürütücü kanıtlar ve düşünceler sunarak fikirlerin doğruluğunu ve 

geçerliğini sınarlar. Böylelikle, doğru ve anlamlı bilgi oluşturulmaya çalışılır. 

Bu süreç, öğretmen adaylarıyla gerçekleştirildiğinde ve katılımcıların düşünme 

düzeyleri göz önünde bulundurulduğunda matematiksel veya geometrik 
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ispatlara ihtiyaç duyulabilir. Bu açıdan, argümantasyon ispatla yakından 

ilgilidir (Chazan, 1993; Pedemonte, 2007).  

Çalışmada ortaokul matematik öğretmeni adaylarının üçgenlerle ilgili 

anlama ve öğrenmelerini matematiksel uygulamalar kullanarak incelemek için 

varsayıma dayalı öğrenme rotası oluşturulmuştur. Eğitmen öğrenme süreciyle 

ilgili tahminlerini van Hiele geometri düzeylerinin, geometrik şekillerin 

inşasının ve argümantasyonun özelliklerini düşünerek oluşturmuştur. Yapılan 

çalışmalar, ortaokul matematik öğretmen ve adaylarının van Hiele geometrik 

düşünme düzeylerinden ilk üçünün özelliklerini kazanmış olmalarının 

gerektiğini önermektedir (Aydın & Halat, 2009; Halat, 2008). Buna göre 

ortaokul matematik öğretmeni adaylarının geometrik düşünme becerileri 

açısından geometrik şekiller ve özellikleri arasında bağlantı kurabilmeleri, 

formal ve formal olmayan tanımları, argümanları ve açıklamaları 

anlayabilmeleri beklenmektedir. Ayrıca, geometrik şekillerle ilgili özelliklerin 

doğruluğu ve yeterliliği konusunda karar verebilmeleri ve açıklamalar 

üretebilmeleri beklenmektedir (Crowley, 1987; Fuys, Geddes & Tischler, 

1998; van Hiele, 1999; Pegg, 1995).  

Öğretim süreci ve öğretim sürecinde kullanılacak materyal ve 

etkinlikler, problem tabanlı öğrenme stratejisi kullanılarak tasarlanmıştır. Bu 

süreçte öğretmen adaylarına çeşitli problem durumları sunulmuş ve bunlara 

çözüm oluşturarak öğrenmeleri sağlanmıştır. Probleme dayalı öğrenme 

argümantasyon oluşturulması açısından da önemlidir çünkü probleme dayalı 

öğrenme düşünme, karar verme, sorgulama ve problem çözme gibi 

argümantasyon sürecinde de gerekli becerileri geliştirmektedir (Frank & 

Barzilai, 2004; Kolodner ve ark., 2003). Probleme dayalı öğrenme, öğrencilerin 

kavramla ilgili derinlemesine bilgi edinmelerini, bireysel öğrenmelerinin 

desteklenmesi, sorumluluk alınması ve aktif öğrenmeyle öğrenmelerin 

gerçekleştirilmesi sağlanmaktadır (Frank & Barzilai, 2004). Ek olarak 

probleme dayalı öğrenme öğrencilere matematiğin doğasıyla ilgili kavramsal 

düşünmelerini yansıttıkları ve bağlantısal öğrenmelerini geliştirdikleri 
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olanaklar sunmaktadır (Skemp, 1978). Problem çözerek, öğrencilerin 

matematiksel fikirlerini organize ettikleri, tartışmalara katıldıkları, fikirlerini 

savundukları ve diğerlerini bu fikirler konusunda ikna etmeye çalıştıkları 

olanaklarla sunulmaktadır (Manuel, 1998; NCTM, 2000). Bu açıdan, probleme 

dayalı öğrenme argümantasyonların kullanılmasını desteklemektedir.  

Varsayıma dayalı öğrenme rotasının oluşturulmasında pergel ve çizgeç 

kullanılarak yapılan geometrik şekillerin inşasından faydalanılmıştır. Öğretmen 

adaylarının üçgenler konusundaki öğrenme ve anlamalarını sağlamak amacıyla 

geometrik şekillerin inşası kullanılarak etkinlikler oluşturulmuştur. Pergel ve 

çizgeç kullanılarak geometrik şekillerin inşa edilmesi Öklid geometrisinin 

öğrenilmesi açısından önemlidir (Stillwell, 2000; Janicic, 2010). Öklid, 

“Elements” adlı kitabında geometrik şekilleri, özelliklerini ve teoremleri 

geometrik şekilleri inşa ederek incelemiş ve böylece geometrik şekillerin inşası 

geometri ve matematik eğitimde yer edinmiştir (Karakuş, 2014). Geometrik 

şekillerin inşasında oluşturulmak istenilen geometrik şeklin belirli temel ve 

karmaşık adımları takip ederek pergel ve çizgeç kullanılarak çizilmesi olarak 

belirtilmektedir (Demiray & Çapa-Aydın, 2015; Djoric & Janicic, 2004). 

Öğrenciler geometrik şekilleri inşa ederken ve çizilen şeklin belirtildiği şekilde 

oluşturulduğunu gösterirken ispattan yararlanmışlardır. Pergel ve çizgeç 

kullanılarak yapılan geometrik şekillerin inşası geometrik anlama, geometrik 

düşünme, problem çözme, psiko-motor, derinlemesine düşünme ve bağlantısal 

düşünme gibi becerileri geliştirmektedir (Ameis, 2005; Cheung, 2011; Güven, 

2006; Karakuş, 2014; Khoh, 1997; Kuzle, 2013; Napitupulu, 2001; 

Posamentier, 2000; Tapan & Arslan, 2009).  

Geometrik şekillerin inşasında, öğrenciler pergel ve çizgeç kullanarak 

öğrenme sürecine katılırlar. Geometrik şekillerin inşası sürecinde takip edilen 

adımlar planlı ve farkında olunarak etkili bir şekilde yerine getirilerek 

öğrencilerin geometri başarıları ve kavramsal öğrenmeleri sağlanmaktadır 

(Cherowitzo, 2006). Geometrik şekillerin inşasında öğrenciler sadece şeklin 

oluşturulmasını değil aynı zamanda onun özelliklerini ve diğer geometrik şekil 
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ve özellikleriyle bağlantısını da incelemektedir (Erduran & Yeşildere, 2010; 

Napitpulu, 2001; Hoffer, 1981). Pergel ve çizgeç kullanılarak, geometrik 

şekillerin kritik özellikleri ve bunlar arasındaki bağlantı şekil inşa edilerek 

incelenip öğrenilebilir. Bu açıdan, öğrenciler geometrik şekillerin kavramsal ve 

bağlantısal öğrenmelerini geliştirebilir ve onlar hakkında ayrıntılı ve etkili 

şekilde düşünerek geometrik düşünme düzeylerini ilerletebilirler (Cheung, 

2011; Hoffer, 1981; Napitupulu, 2001). Böylelikle yapılan çalışmalar pergel ve 

çizgeç kullanılarak oluşturulan geometrik şekillerin inşası öğrencilerin van 

Hiele geometrik düşünme düzeylerini geliştirdiği görülmüştür (De Villiers, 

2003; Napitupulu, 2001).  

Pergel ve çizgeç kullanılarak yapılan geometrik şekillerin inşası 

etkinliklerinde, öğrencilerin şekillerin özelliklerinin incelenmesi ve geometrik 

açıklamaları doğrulaması ve ispatlaması gerekmektedir (Chan, 2006; 

Napitupulu, 2001). Diğer bir ifadeyle, geometrik şekillerin inşası bir ifadenin 

sonucu veya doğruluğu ile ilgili sebep sonuç ilişkisiyle kanıtlar sunularak 

belirtildiği ve ispatlama becerisinin geliştirildiği olanaklar sunmaktadır (de 

Villiers, 2003) çünkü bu süreçte olduğu gibi ispatlarda ifadelerin doğruluğunun 

yanında niye doğru olduğunu belirtmek de faydalıdır (Hanna, 2000). Ayrıca, 

geometrik şekil inşa edildikten sonra oluşturulan şeklin belirtildiği şekilde 

çizildiğini doğrulamak amacıyla ortaokul matematik öğretmeni adaylarının 

ispatlardan faydalandığı belirtilebilir çünkü onların van Hiele geometrik 

düşünme düzeylerinde ilk üçünün özelliklerini elde etmeleri gerekmektedir. Bu 

açıdan, bu doğrulama sürecinde ispat oluşturmaları beklenebilir veya bu 

süreçte geliştirilebilir.   

Bu çalışmada ortaokul matematik öğretmeni adaylarının üçgenler 

konusuyla ilgili anlama ve öğrenmeleri incelenmiştir. Çalışmada üçgenler 

konusu temel alınmıştır çünkü günlük yaşamda kullanılan birçok yapının 

oluşturulmasında ve tasarlanmasında faydalanılan geometrik şekillerin başında 

gelir. Ayrıca, diğer geometrik şekillerin inşasında, onların belirli özelliklerinin 

incelenmesinde ve alan gibi bazı hesaplamaların yapılmasında kullanılmaktadır 
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(Fey, 1982). Örneğin, paralelkenarın ve dikdörtgenlerin alanlarının 

hesaplanmasında üçgenlerden faydalanılabilir. Fakat üçgenlerin bu önemine 

rağmen çeşitli yaş seviyesinde olan öğrenciler üçgenler konusunda zorluk 

yaşamaktadır (Damarin, 1981; Vinner & Hershkowitz, 1980).   

   

Yöntem 

 

Nitel araştırma desenlerinden biri olan durum çalışmasına göre 

tasarlanan bu çalışma ortaokul matematik öğretmeni adaylarının altı haftalık 

süreçten oluşan sınıf içi matematiksel uygulamalarının belirlendiği tasarı-

tabanlı araştırma modeli kullanılarak yürütülmüştür. Tasarı tabanlı araştırma 

modeli alana özgü öğrenme süreciyle ilgili teorilerin gelişiminde 

kullanılmaktadır. Bu yolla oluşan öğrenme teorileri öğrencilerin 

öğrenmelerinde gerçekleşen ve birbirini takip eden örüntüleri resmetmektedir. 

Ayrıca, bu modelle etkili ve derinlemesine anlamanın gerçekleştiği öğrenme 

ortamı sağlanmaktadır. Diğer bir ifadeyle, tasarı tabanlı araştırma modeli 

birbiriyle ilişkili karmaşık elemanların ve onların birlikte nasıl öğrenmeyi 

sağladıklarının gösterildiği bir süreçtir (Cobb, Confrey, diSessa, Lehrer & 

Schauble, 2003). Bu açıdan bu model teori ve uygulamayı birbirine bağlayan 

etkili bir yol sunmaktadır. Tasarı tabanlı araştırma modelinin öğrenme 

ortamındaki tasarı ve uygulamaya göre eğitici ve teorik yapısının olduğu kabul 

edilebilir. Diğer bir ifadeyle, bu modelde teorik düşünceler uygulanır ve 

geçerliliği eğitici bir yolla test edilir (Cobb ve ark., 2003). Birbirini tekrarlayan 

bir süreçte, sosyal öğrenme ortamında, sosyal ve bireysel matematiksel 

düşünme, öğretimsel tasarının geliştirilmesi ve düzenlenmesi tasarı tabanlı 

araştırma modeliyle sağlanabilir (Cobb ve ark., 2001).  

Tasarı tabanlı araştırma modeli sınıfta uygulama olanakları sunarak 

eğitimde de önem kazanmıştır (Gravemeijer, 2004). Sınıfta uygulanan bu 

model öğretim modeli, öğretmen/eğitmen, bir veya daha fazla öğrenci, şahit 
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gözlemci ve neler olduğunun kaydedilmesi olmak üzere beş bileşenden 

oluşmaktadır (Wheeldon, 2008). Bu yüzden, tasarı tabanlı araştırma modeli 

öğretim etkinliklerini içeren öğretim dizisinin tasarlanması, sınıf içi ortamda 

test edilmesi, kaydedilmesi, analiz edilmesi ve gerekli düzenlemelerin 

yapılması gibi süreç ve adımların yer aldığı döngüsel bir süreçten oluşmaktadır 

(Gravemeijer, Bowers & Stephan, 2003). Bu birbirini tekrarlayan süreçte, 

sosyal bir ortamda en iyi gelişimin amaçlandığı bir öğretim teorisi geliştirilir. 

Bu gelişimsel süreçte, şahit gözlemci varsayıma dayalı öğrenme rotasının 

planlanması, uygulanması, analiz edilmesi ve yorumlanması gibi süreçlerde yer 

almıştır (Gravemeijer, 2004).  

Tasarı tabanlı araştırma modelinin temel amacı teori geliştirmektir. Bu 

teoriler öğrenme sürecini ve öğrenmeyi sağlayan araçları açıklamaktadır 

(Gravemeijer & Cobb, 2006). Bu teorilerin geliştirilmesi süreci üç aşamada 

gerçekleştirilebilir; deneyin tasarlanması, uygulanması ve geçmişe yönelik 

analiz. Deneyin tasarlanması sürecinde, önemli sonuç değişime ve 

düzenlemeye açık sınırlı öğretim teorisinin oluşturulmasıdır (Gravemeijer & 

Cobb, 2006). Bu açıdan, teorik niyetin belirlenmesi önemlidir (Cobb ve ark., 

2003). Sonrasında, araştırma takımı öğrenme amaçlarını, öğretimin için 

başlama ve bitiş noktalarını belirler. Bu süreçte ilk adım öğrenme amacını 

belirlemektir ve bu amaçlar tarih, gelenek ve değerlendirmeyle sağlanabilir. 

Örneğin, öğrencilerin geçmişi, sahip olduğu bilgiler, konunun tarihsel gelişimi 

düşünülebilir. Bu çalışmada, ortaokul matematik öğretmeni adaylarının 

üçgenler konusuyla ilgili temel bilgilere sahip olması beklenmektedir. 

Literatürde, üçgenler konusunun çeşitli araçlar kullanılarak öğretildiği 

görülmektedir. Bu çalışmanın amacı, geometrik kavramlardan biri olan 

üçgenler konusuyla ilgili tasarlanmış olan bu altı haftalık öğretim sürecinde 

oluşan matematiksel uygulamaları belirlemektir. Bu açıdan, çalışmayı 

“Ortaokul matematik öğretmeni adaylarının üçgenleri öğrenmeleriyle ilgili 

problem tabanlı öğrenme stratejisine göre hazırlanmış tasarım tabanlı araştırma 

ortamında geliştirdikleri sınıf içi matematiksel uygulamaları nelerdir?” 



346 

 

araştırma problemi yönlendirmektedir. Bu bağlamda matematiksel 

uygulamaları belirlemek için geometrik kavramlardan biri olan üçgenler 

konusuyla ilgili varsayıma dayalı öğrenme rotası oluşturulmuştur. Her bir 

haftada üç saatlik uygulamaların olduğu altı haftalık bir öğretim dizisi 

oluşturulup pilot çalışma süresince uygulanarak elde edilen deneyimler 

neticesinde öğrenme rotası yeniden düzenlenmiştir. Öğretim dizisi sürecinde 

uygulanan varsayıma dayalı öğrenme rotası üç aşamadan oluşmaktadır; 

üçgenlerin oluşturulmasının sorgulanması, yardımcı elemanlar ve bunların bir 

noktada çakışmasının düşünülmesi ve eşlik ve benzerliğin düşünülmesidir. Bu 

aşamalar üçgenlerin tarihsel gelişiminden, temel ve yardımcı elemanlar ve ilgili 

özelliklerden ve dönüşüm geometrisinden faydalanarak üçgenlerin eşlik ve 

benzerliğinden oluşturulmuştur. Öğretim dizisinde kullanılan etkinliklerin 

büyük bir çoğunluğu pergel ve çizgeç kullanılarak yapılan üçgenlerin inşası 

etkinliklerinden oluşmaktadır. Bütün aşamalar bu materyaller kullanılarak ilgili 

özellikler ve teoremlerin de yardımıyla incelenmiştir. Böylelikle ortaokul 

matematik öğretmeni adaylarının üçgenler konusuyla ilgili matematiksel 

uygulamaları belirlenmiş ve bu konuyla ilgili kavramsal öğrenmeleri ve 

anlamaları da geliştirilmiş ve araştırılmıştır. 

 Tasarı tabanlı araştırma modelinin ikinci aşamasında oluşturulan sınırlı 

öğrenme teorisi ve tasarlanan öğretim dizisinin uygulanma süreci gerçekleşir 

(Gravemeijer & Cobb, 2006). Pergel ve çizgeç kullanılarak yapılan üçgenlerin 

inşası yardımıyla öğrenme süreci gerçekleştirilir. Üçgenlerin inşası etkinlikleri 

Smart (1998) tarafından tavsiye edilen dört aşama kullanılarak uygulanmıştır. 

Birinci aşama analizdir. Problem içerisinde belirtilen geometrik şekille ilgili 

bilinen, bilinmeyen ve gerekli durumlar belirlenir. İkincisi inşa aşamasıdır. 

Problem durumunda belirtilen geometrik şekil pergel ve çizgeç kullanılarak 

oluşturulur. Üçüncüsü ispat aşamasıdır. Öğrenciler oluşturdukları şeklin 

problem durumunda belirtilen şekil olduğunu ispatlarlar. Sonuncusu tartışma 

aşamasıdır. Olası çözümler, durumlar, inşa adımları ve ispat süreçleri araştırılır 
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ve tartışılır. Bu süreç araştırma takımı tarafından takip edilmiş, incelenmiş ve 

araştırma için çıkarımlar yapılmıştır.  

Son aşamada geçmişe yönelik analiz yapılır. Bu aşamada iki temel 

amaç vardır; öğrencilerin öğrenmelerinin araştırılması ve sınırlı öğrenme 

teorisinin ve varsayıma dayalı öğrenme rotasının test edilerek geliştirilmesidir. 

Tasarlanan öğrenme ortamı toplanan veriye göre test edilir, değiştirilir ve 

yeniden düzenlenir. Pilot çalışma tamamlandıktan sonra geçmişe yönelik analiz 

tekniği yardımıyla gerekli düzenlemeler yapılarak ana uygulamada 

kullanılacak olan varsayıma dayalı öğrenme rotası oluşturulmuş ve sonrasında 

23 ortaokul matematik öğretmeni adayından oluşan bir gruba katılımcıların 

matematiksel uygulamalarını belirlemek amacıyla uygulanmıştır. 

Katılımcılar 

Araştırmaya toplamda ilköğretim matematik öğretmenliği programına 

kayıtlı kırk altı üçüncü sınıf öğrenciden oluşmaktadır. Bu öğrenciler pilot ve 

ana çalışma gruplarını oluşturmak üzere iki gruba ayrılmıştır. Pilot ve ana 

çalışma gruplarında yer alan yirmi üç öğrenciden üç tanesi araştırma takımını 

oluşturmak amacıyla rasgele seçilmiştir. Ayrıca, araştırmacı (aynı zamanda 

sınıfın eğitmeni) ve şahit gözlemci de araştırma takımlarında bulunmuştur. 

Veri Toplama 

Araştırma verileri pilot çalışma ve ana uygulama olmak üzere iki makro 

döngüde uygulanan öğretim dizisinin uygulanması sürecinde araştırma grubu 

ve toplu sınıf tartışmalarının video kayıtları, katılımcı ve katılımcı olmayan 

gözlemci kayıtları, küçük grup çalışmalarının ses kayıtları, araştırmacı notları, 

yazılı dokümanlar ve ön ve son görüşme kayıtları gibi birçok kaynaktan 

faydalanarak toplanmıştır. 

Veri Analizi 

Sınıf içi matematiksel uygulamaların belirlenmesi için veriler gömülü 

teorinin analiz tekniği olan sürekli karşılaştırmalı analiz tekniği kullanılarak 

incelenmiştir. Ayrıca, matematiksel fikirleri belirlemek için Toulmin’ın 
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argümantasyon modeli de kullanılmıştır. Sınıf içi matematiksel uygulamalara 

dönüşen matematiksel fikirleri belirlemek amacıyla Rasmussen ve Stephan 

(2008) tarafından geliştirilen üç aşamalı iki kriterli analiz modeli kullanılmıştır. 

Bu modele göre ilk tartışma sürecinde üretilen sonuç cümlesi ilerleyen süreçte 

Toulmin’in modelinin diğer kısımlarda yer alarak matematiksel uygulama 

haline gelmektedir.  

 Araştırma verileri kullanılarak yapılan analizlerin geçerliği ve 

güvenirliğini sağlamak amacıyla çeşitli yöntemler kullanılmıştır. Veri 

çeşitlemesi kullanılarak ortaokul matematik öğretmeni adaylarının üçgenler 

konusuyla ilgili öğrenmeleri incelenmiştir. Gözlem, mülakat, doküman ve 

buluşmalarla çeşitli yöntemlerle veriler toplanmıştır. Ayrıca, üye kontrolü 

kullanılarak verilerin analizi neticesinde yapılan yorumlar tartışılmış ve 

sorgulanmıştır. Ayrıca, analiz sonuçları ayrıntılı ve zengin açıklamalar 

kullanılarak bulgular tartışılmış ve sunulmuştur. 

 

Sonuç ve Tartışma 

 

Bireysel öğrenmelerin ve sosyal öğrenme ortamlarının içerildiği toplu 

öğrenme ortamında gerçekleşen toplu sınıf tartışmaları incelenerek sınıf içi 

matematiksel uygulamalar belirlenmiştir. Diğer bir ifadeyle, amaç toplu 

tartışma ortamlarındaki matematiksel uygulamaların belirlenmesi ve nasıl 

geliştirilip paylaşılarak-alınan haline geldiğinin belirtilmesidir. Bu yolla, 

çalışma ortaokul matematik öğretmeni adaylarının van Hiele geometrik 

düşünme ve problem tabanlı öğrenme stratejine göre hazırlanan derslerde 

üçgenler konusundaki öğrenmelerinin nasıl gerçekleştiğinin incelenmesidir.  

Bu çalışmada ortaokul matematik öğretmeni adaylarının probleme 

dayalı öğrenme strateji kullanılarak ve geometrik inşa etkinlikleriyle 

desteklenerek hazırlanan öğrenme ortamlarında üçgenler konusuyla ilgili konu 

alan bilgilerini nasıl geliştirdikleri incelenmiştir. Toplu sınıf tartışması 
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sürecinde gerçekleşen argümantasyonlar katılımcıların üçgenlerle ilgili 

kavramsal bilgilerini geliştirmiştir. Örneğin, katılımcılar başlangıçta üçgeni 

tanımlarken üçgenin gerekli kritik yön ve özelliklerini tam ve doğru bir şekilde 

içerildiği tanımlar oluşturamamışlardır. Fakat argümantasyon sürecinde, 

katılımcılar birbirlerinin tanımlarını inceleyerek eksik ve ilgisiz kısımlarını 

belirlemişlerdir ve sonrasında kritik özelliklerin doğru ve beklenen şekilde 

ilişkilendirilerek kullanıldığı doğru ve tam üçgen tanımına ulaşmışlardır. 

Ortaokul matematik öğretmeni adaylarının üçgenlerle ilgili oluşturdukları 

matematiksel uygulamalar incelendiğinde, argümantasyonlardan oluşan bu 

tartışma sürecinin onların geometrik düşünme düzeylerini ve üçgenlerle ilgili 

bilgilerini geliştirdiği görülmüştür. Önceki çalışmalarda elde edilen bulgular bu 

sonucu desteklemektedir çünkü Olkun ve Toluk (2004) sınıf içi tartışmaların 

öğrencilerin geometrik düşünmelerini geliştirdiklerini belirtmiştir. Ayrıca, 

literatürde yer alan geçmiş çalışmalar, argümantasyon içeren sınıf içi 

tartışmalar kritik düşünerek ve iddiaları doğrulayarak oluşturulan bilimsel 

düşünme, problem çözme, bilgi üretme ve kavramsal anlama gibi becerileri 

geliştirdiğini göstermişlerdir (Abi-El-Mona & Abd-El-Khalick, 2011; Duschl 

& Osborne, 2002; Jim´enez-Aleixandre ve ark., 2000; Jonassen & Kim, 2010; 

Osborne, Erduran, & Simon, 2004; Zembaul-Saul, 2005). Bu açıdan, 

argümantasyon öğrencilerin söylemleri, materyalleri ve sınıf ortamını 

oluşturmak için iletişim kurdukları ve nedensel düşündükleri sosyal bir 

öğrenme ortamı içerisinde öğrencilerin matematik yapmalarını ve iddialarını 

tartışmalarını sağlamaktadır (Abi-El-Mona & Abd-El-Khalick, 2011). Ayrıca, 

problem çözme etkinliklerindeki argümantasyonlar eğitmenin rollerini, öğretim 

dizisini ve varsayıma dayalı öğrenme rotasının geliştirilmesini 

desteklemektedir. 

Ortaokul matematik öğretmeni adaylarının üçgenler konusuyla ilgili 

konu alan bilgilerini geliştirmek amacıyla hazırlanan argümantasyon içeren 

sosyal öğrenme ortamları probleme-dayalı öğrenme stratejisi kullanılarak 

tasarlanmıştır. Bu açıdan, pergel ve çizgeç kullanılarak yapılan geometrik 
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şekillerin inşası etkinlikleri kullanılmıştır çünkü bu etkinlikler ortaokul 

matematik öğretmeni adayları için faydalı problem durumları oluşturmaktadır. 

Öğrencilerin bu etkinliklerle ilk karşılaştıklarında şekli nasıl oluşturacaklarına 

karar verememeleri ve zorlanmaları onlar için problem durumu teşkil 

etmektedir (Erduran & Yeşildere, 2010). Probleme dayalı öğrenme stratejisiyle 

kullanılan bu etkinliklerin katılımcıların geometrik düşünmelerini ve bilgilerini 

geliştirdiği görülmüştür. Literatürde yer alan önceki çalışmalar da probleme 

dayalı öğrenme stratejisinin öğrencilerin geometrik düşünme ve bilgilerini 

geliştirdiği düşüncesini desteklemektedir (Dochy ve ark., 2003; Cantürk-

Günhan & Başer, 2009; Hodges, 2010). Ayrıca, geometrik şekillerin inşası 

etkinlikleriyle oluşturulan problem durumları argümantasyonlarla 

desteklenerek ortaokul matematik öğretmeni adaylarının üçgenleri etkili bir 

şekilde anlamalarını sağlamıştır. Bu etkinlikler Smart’ın (1998) dört adımlı 

çözüm aşamaları kullanılarak gerçekleştirilmiştir. Bu aşamalarda, katılımcılar 

problemi analiz etmiş, şekli inşa etmiş, doğruluğunu ispat edip tartışmışlardır. 

Ayrıca, bu aşamalar takip edildiğinde, geometrik inşa etkinliklerinin analiz 

etme, değerlendirme, hipotez kurma, organize etme, hipotezi test etme ve 

sonuçları ispatlama gibi düşünme becerilerini geliştirdiği belirtilmiştir (Lim-

Teo, 1997). Bu bilimsel düşünme becerileri tartışma sürecinde 

argümantasyonlar ve ispatlarla desteklendiğinde geometrik inşa etkinliklerinin 

argümantasyon ve ispat becerilerini geliştirdiği ve üçgenlerin öğrenilmesini 

sağladığı görülmüştür. Bu yüzden, geometrik kavramlar argümantasyon ve 

ispatlarla desteklenen geometrik inşa etkinlikleri kullanılarak öğretilebilir 

(Wiley & Voss, 1999). Böylece, fikir ve iddiaların kritik edilmesi, kanıt ve 

doğrulamaların değerlendirilmesi ve örnek olmayan durumların incelenmesi 

gibi beceriler geliştirilebilir (Dochy ve ark., 2003; Cantürk-Günhan & Başer, 

2009; Hodges, 2010). Ayrıca, Erduran ve Yeşildere (2010) öğrencilerin 

geometrik inşa adımlarını bazen ezbere ve farkında olmayarak yaptıklarını 

belirtmiştir. Bu durumu önlemek için, argümantasyonlar ve ispatlar 

kullanılmıştır çünkü her adımı tartışarak sorgulamışlardır. Bu yüzden, pergel 

ve çizgeç kullanılarak yapılan geometrik inşa etkinlikleri planlı bir şekilde 
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tasarlanıp eğitmen kontrolünde yapılmış ve tartışılmıştır. Pergel ve çizgeç 

araçları üçgenleri öğrenmek için faydalı bir şekilde kullanılmıştır. Örneğin, 

üçgenleri tanımlarken, üçgenlerin kritik yönü, özellikleri ve onların arasındaki 

ilişki pergel ve çizgeç kullanılarak incelenmiştir. Üçgenin tanımı olabilecek 

açıklamalar yapmışlar ve bu açıklamaların doğruluğunu, üçgen tanımı olup 

olmadığını geometrik inşa ve argümantasyonlarla incelemişlerdir. Sonrasında, 

katılımcılar gerekli düzenlemeler yaparak ve birbirlerini ikna ederek doğru 

üçgen tanımını oluşturmuşlardır. Bu süreçte, geometrik inşa etkinliklerinin 

argümantasyonları, öğrenmeyi ve ispatları desteklediği görülmüştür. Bu 

sebeple, Geometrik inşa etkinliklerinin geometrik kavramları öğretirken 

bilimsel düşünme becerilerini de geliştirdiği söylenebilir (Spear- Swerling, 

2006).  

Pilot uygulama sonrasında gerekli düzenlemeler yapılarak oluşturulan 

altı haftalık bir öğretim sürecini gösteren varsayıma dayalı öğrenme rotası ana 

gruba uygulanmıştır. Bu gruba uygulamadaki amaç sınıf içi matematiksel 

uygulamaları belirlemektir. Bu belirleme sürecinde çeşitli kaynaklardan elde 

edilen verilerden faydalanılmıştır. Böylelikle süreçte oluşan matematiksel 

uygulamalar daha anlaşılır hale gelmiş ve altı haftalık öğretim süreci daha 

derinlemesine olanağı sağlamıştır. Ayrıca, katılımcıların öğrenme süreci ve 

anlamaları daha iyi bir şekilde araştırılabilmiştir. Sınıf içi matematiksel 

uygulamalar Toulmin’ın bilimsel tartışma modeli kullanılarak paylaşılarak-

alınan bilgilere odaklanılması sonucunda belirlenmiştir. Altı haftalık öğretim 

dizisinde oluşan argümantasyonlar Rasmussen ve Stephan (2008) tarafından 

geliştirilen yöntem ve Glaser ve Strauss (1967) tarafından önerilen sürekli 

karşılaştırmalı analiz tekniği kullanılarak incelenmiştir. Bu çalışmada 

belirlenen ortaokul matematik öğretmeni adaylarının üçgenleri öğrenmelerini 

destekleyen sınıf içi matematiksel uygulamalar şunlardır; üçgenlerin 

oluşumunun, üçgenlerin elemanlarının ve bunların özelliklerinin ve eşlik ve 

benzerliğin düşünülmesidir.  
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Tablo 1. Sınıf İçi Matematiksel Uygulamalar 

Matematiksel Uygulamalar 

Matematiksel uygulama 1: Üçgenlerin oluşumunun sorgulanması 

 Üçgenlerin tanımlarının ve sınıflandırılmalarının sorgulanması 

 Üçgenlerin inşasının sorgulanması 

Matematiksel uygulama 2: Üçgenlerin elemanlarının ve özelliklerinin 

sorgulanması 

 Üçgenlerin yardımcı elemanlarının inşa edilmesinin sorgulanması 

 Üçgenlerin yardımcı elemanlarının bir noktada kesişmesinin 

sorgulanması 

 Yardımcı elemanların noktadaşlığının ve bu noktaların yerlerinin 

sorgulanması 

Matematiksel uygulama 3: Eşlik ve benzerliğin sorgulanması 

 Dönüşüm geometrisiyle eş ve benzer üçgen oluşumlarının 

sorgulanması 

 Açı-Kenar-Kenar eşlik/benzerlik kriteri değildir 

 

İlk matematiksel uygulama, ortaokul matematik öğretmeni adaylarının 

üçgenlerin oluşumunu sorgulamasıdır. Bu süreçte üçgenleri tanımlamak için 

gerekli olan temel elemanlar ve kritik özellikler belirlenip üçgenlerin 

oluşumları incelenmiştir. Bu matematiksel uygulama ile ilgili iki matematiksel 

fikir oluşmuştur; üçgenlerin tanımlamalarının ve sınıflamalarının sorgulanması 

ve üçgenlerin oluşturulması. Varsayıma dayalı öğrenme rotasının ilk 

aşamasının amacı üçgenleri temel elemanlarını ve tanımlarını kullanarak 

sınıflamak ve temel ve yan elemanlarından bazılarının değerleri bilinen 

üçgenlerin oluşumunun incelenmesidir. Bu aşamada katılımcılara üçgenler ve 

üçgenlerin oluşumuyla ilgili genel bir bakış açısı ve bilgi kazandırmaktır. 

Araştırmada belirlenen ilk matematiksel uygulamadaki matematiksel 

fikirlerden birincisi üçgenlerin tanımlarının ve sınıflandırmalarının 
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sorgulanması, üçgenlerin tanımı, dik üçgenlerin tanımı ve üçgenlerin düzlemde 

ayırdığı bölgelere ilişkin bilgiler tartışılarak incelenmiştir. Bu matematiksel 

fikir ilerleyen haftalarda yer alan etkinlik ve argümantasyonlarda kullanılarak 

paylaşılarak-alınan bilgi haline gelir. Üçgenlerin tanımlarının ve 

sınıflandırmalarının sorgulanması ile ilgili matematiksel fikir katılımcıların 

doğru üçgen tanımı oluşturmaları sürecinde oluşmuştur. Burada, katılımcılar 

üçgenlerin kritik özellikleri ve bunlar arasındaki ilişkiye odaklanarak üçgen 

tanımıyla ilgili yapılan açıklamaları tartışmışlardır. Bu tartışma ve inceleme 

süreci geometrik şekillerin inşasıyla desteklenerek katılımcıların birbirlerinin 

açıklamalarını ve kritik özellikler arasındaki ilişkiyi incelemeleri daha etkili 

hale getirilmeye çalışılmıştır. Örneğin, katılımcılar pergel ve çizgeçle 

geometrik şekillerin inşası etkinlikleriyle üçgenlerin temel elemanları olan köşe 

ve kenarları incelemiş bunların paralel olmama ve kapalılık özelliklerini 

belirlemişlerdir. Daha sonra, aynı düzlemde doğrusal olmayan üç noktanın 

doğru parçaları kullanılarak oluşturulmasını geometrik şekillerin inşasıyla 

incelemişlerdir. Ayrıca, bu inceleme sürecinin argümantasyonlarla 

desteklendiğinde daha etkili olduğu görülmüştür. Katılımcılar birbirlerinin 

fikirlerini ve çözüm stratejilerini tartışarak üçgenlerin tanımlaması için gerekli 

ve yeterli özellikleri belirlemiş ve doğru ve tam üçgen tanımını 

oluşturmuşlardır. Önceki çalışmalarda da yer alan doğru ve tam üçgen 

tanımıyla ilgili matematiksel bilgi bu çalışmada da geometrik şekillerin inşası 

ve argümantasyonlar yardımıyla kazanılmıştır (Leiken & Zazkis, 2010; de 

Villiers, Govender, & Patterson, 2009; Tsamir, Tirosh, Levenson, Barkai & 

Tabach, 2014). Bu açıdan, geometrik şekillerin inşasının üçgenlerin tanımıyla 

ilgili gerekli ve yeterli kritik özelliklerin incelenmesinde faydalı olduğu 

görülmüştür. Bu matematiksel uygulamada yer alan ikinci matematiksel fikir 

üçgenlerin temel ve yardımcı elemanlarının bazılarının bilinmesi ile 

oluşturulmasının sorgulanmasıdır. Burada, katılımcılar üçgenlerin temel ve yan 

elemanlarından bazılarının değerlerini bilerek pergel ve çizgeç kullanarak 

geometrik inşa yardımıyla bu üçgenlerin çiziminin mümkün olup olmadığını 

araştırmışlardır. Ayrıca, bu süreçte üçgenlerle ilgili bazı teorem ve kurallardan 
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faydalanmışlardır. Diğer bir ifadeyle, üçgenlerin elemanlarından ve diğer 

geometrik şekiller ve bunlar arasındaki ilişkilerden bu üçgenlerin inşası 

sürecinde faydalanılmıştır. Bu süreç ve bulgu literatürde yer alan önceki 

çalışmaların sonuçlarıyla da paralellik göstermektedir (Erduran & Yeşildere, 

2010; Karakuş, 2014; Khoh, 1997; Kuzle, 2013). Bu yüzden, üçgenlerin kritik 

özellikleri, bunlar arasındaki ilişki, temel ve yan elemanlar ve üçgen oluşumu 

sürecinde bunlar arasındaki ilişki üçgenlerle ilgili temel bilgi edinmede 

faydalıdır. Böylelikle, üçgenlerle ilgili bağlantısal öğrenme sağlanmış olur.  

Araştırmada belirlenen ikinci matematiksel uygulama yardımcı 

elemanların ve öneminin sorgulanmasıdır. Bu matematiksel uygulama ile ilgili 

matematiksel fikirler şunlardır; yardımcı elemanların inşası, bir noktada 

kesişmesi ve bu kesişim noktalarının ismi ve yeri. Varsayıma dayalı öğrenme 

rotasının ikinci aşamasının amacı üçgenin yardımcı elemanlarının 

incelenmesidir. Bu aşama sürecinde, bu matematiksel fikirler ile ilgili gerekli 

bilgi ve beceri pergel ve çizgeç kullanılarak yapılan geometrik şekillerin 

inşasıyla incelenmiş ve kazanılmıştır. Varsayıma dayalı öğrenme rotasının 

ikinci aşamasının uygulandığı öğretim dizisinin ikinci ve üçüncü haftalarında 

gerçekleşen öğretim etkinliklerinde katılımcılar üçgenlerin yardımcı 

elemanlarını incelemişlerdir. Öncelikle bu elemanların pergel ve çizgeç 

kullanılarak nasıl inşa edildiği araştırılmıştır. Bu inşa sürecinde bu yardımcı 

elemanların oluşumu diğer geometrik şekillerle olan ilişkisi göz önünde 

bulundurularak öğrenilmiştir. Daha sonra, bu elemanların bir noktada 

kesişmesi geometrik şekillerin inşasıyla araştırılmıştır. Bu süreçte ortaokul 

matematik öğretmeni adayları üçgenlerin yardımcı elemanları, özellikleri ve 

ilgili teoremleri ispatlarıyla gerekli bilgi ve beceriler geometrik şekillerin inşası 

ve argümantasyonlar kullanılarak geliştiği görülmüştür. Burada, katılımcılar 

kenarortayların kesişim noktasının ağırlık merkezini, açıortayların kesişim 

noktasının içteğet çemberin merkezini, orta dikmelerin kesişim noktasının 

çevrel çemberin merkezi ve yüksekliklerin kesişim noktasının diklik merkezi 

olduğunu geometrik şekillerin inşasıyla incelemiş ve ispatlamışlardır. Ayrıca, 
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bu kesişim noktalarının yerinin üçgen çeşitlerine göre değişip değişmediğini 

geometrik şekillerin inşasıyla araştırmış ve ispatlamıştır. Burada, üçgenin 

düzlemi üç bölgeye ayırdığı düşünülerek bu noktaların üçgen çeşitlerine göre 

hangi bölgelerde yer aldığı araştırılmış ve ispatlanmıştır. Örneğin, diklik 

merkezinin geniş açılı üçgenlerde dış bölgede, dik üçgenlerde dik açının 

olduğu köşede ve dar açılı üçgenlerde üçgenin iç bölgesinde yer aldığını 

geometrik şekillerin inşasıyla gösterip matematiksel açıklamalarla 

ispatlamışlardır. Çalışmada elde edilen bu bulgu önceki çalışmalardaki 

geometrik bilgi ve ispat becerilerinin gelişimiyle ilgili sonuçlarla 

desteklenmektedir (Chan, 2006; Napitupulu, 2001; Tapan & Arslan, 2009). Bu 

matematiksel uygulamanın oluşumu sürecinde ortaokul matematik öğretmeni 

adayları üçgenin yan elemanları geometrik şekillerin inşası ve ispatlar 

yardımıyla araştırılmıştır. Katılımcıların yan elemanlarla ilgili geometrik 

bilgilerinin ve düşüncelerinin geliştiği görülmüştür. Bu bulgu önceki 

çalışmaların sonuçlarıyla da desteklenmektedir (Axler & Ribet, 2005; 

Cherowitzo, 2006; Clements & Battista, 1992; Doğan & İçel, 2011; Erduran & 

Yeşildere, 2010; Martin & McCrone, 2003; Smart, 1998).  

Çalışmada elde edilen son matematiksel uygulama üçgenlerin eşliğinin 

ve benzerliğinin sorgulanmasıdır. Bu uygulama ile ilgili matematiksel fikirler 

şunlardır; dönüşüm geometrisiyle eş ve benzer üçgen oluşumunun 

sorgulanması ve Açı-Kenar-Kenar eşlik/benzerlik kriteri değildir. Varsayıma 

dayalı öğrenme rotasının son aşaması ile ilgili öğretim dizisinin uygulanması 

sürecinde, ortaokul matematik öğretmeni adayları dönüşüm geometrisiyle eş ve 

benzer üçgenlerin nasıl oluştuğu geometrik şekillerin inşası etkinlikleriyle nasıl 

oluştuğu araştırılmış ve gerekli ispatlar yapılmıştır. Ayrıca, üçgen ve bu 

üçgenlerin dönüşüm geometrisiyle oluşturulan görüntüleri arasındaki ilişki 

tartışılmıştır. Katılımcılar, pergel ve çizgeçle geometrik inşası etkinlikleri, 

argümantasyon, dönüşüm geometri ve üçgen tanımı ve kritik özelliklerini 

kullanarak eş ve benzer üçgenler oluşturmuştur. Üçgen ve görüntü üçgen 

arasındaki ilişki tartışılarak üçgenlerin eşliği, benzerliği ve bunlarla ilgili 
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kriterler öğrenilmiştir. Örneğin, ötelemeyle üçgenler belirli bir vektör 

yardımıyla taşınmıştır. Görüntü üçgenin köşeleri diğer üçgenin köşelerinden 

vektörler inşa edilerek belirlenmiştir. Daha sonra, bu köşeler doğru parçaları 

yardımıyla birleştirilerek görüntü üçgen oluşturulmuştur. Katılımcılar, 

vektörlerin boy, yön ve doğrultularının aynı olduğunu belirterek görüntü üçgen 

oluştururken başlangıçtaki üçgenin konumu dışındaki bütün özelliklerinin 

korunduğunu belirtmişlerdir. Geometrik şekillerin inşası desteklenerek 

üçgenlerin eşliği ve benzerliği konularının öğrenildiği görülmüştür. Eşlik ve 

benzerliğin dönüşüm geometrisiyle öğretilmesinin faydasıyla ilgili benzer 

bulgular önceki çalışmalarda da görülmektedir (French, 2004; Gerretson, 1998; 

Paquette, 1971; Park City Math Institute [PCMI], 2010).  

Geometrik şekillerin inşası ve probleme dayalı öğrenme stratejisi 

kullanılarak oluşturulan varsayıma dayalı öğrenme rotası ve uygulanan altı 

haftalık öğretim dizisinin ortaokul matematik öğretmeni adaylarının üçgenlerle 

ilgili konu alan bilgilerinin ve geometrik düşünme düzeyleri üzerindeki etkisini 

araştırılmıştır. Bu amaçla, ortaokul matematik öğretmeni adaylarının 

üçgenlerle ilgili etkinliklere katılımları, paylaştıkları fikirler, fikirler ve 

çözümlerindeki değişimler incelenmiştir. Çalışmadaki etkinlikler van Hiele 

geometri düşünme düzeyleri düşünülerek tasarlanmıştır. Yapılan çalışmalar 

ortaokul matematik öğretmenlerinin ilk üç seviyenin özelliklerini kazanmaları 

gerektiğini göstermektedir. Bu açıdan, katılımcılar bu özellikler düşünülerek 

hazırlanan etkinliklere katılmışlar ve etkinliklerle kazandırılması amaçlanan 

bilgiyi argümantasyonlar yardımıyla öğrenmişlerdir. Bu açıdan geometrik 

şekillerin inşası etkinliklerinin ve argümantasyonların öğretmen adaylarının 

geometrisel düşünme düzeylerini geliştirdiği belirtilebilir. Ayrıca, 

katılımcılarda gerçekleşen bilgi değişimleri ve bu edinilen bilgileri farklı 

problem durumlarına uyarlama ve kullanmaları incelendiğinde altı haftalık 

uygulamanın katılımcıların üçgenlerle ilgili bilgilerini geliştirdiği ifade 

edilebilir. Böylelikle, geometrik şekillerin inşası etkinliklerinin ve 
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argümantasyonların öğrencilerin geometrik anlama, geometrik düşünme ve 

anlamalarını geliştirdiği belirtilebilir. 

Van Hiele geometri testinde elde edilen sonuçlara göre ortaokul 

matematik öğretmeni adayların geometrik düşünme düzeylerinden ilk üçünün 

özelliklerini kazandığı ve öğretim dizisi sürecinde bu geometrik düşünme 

düzeylerini geliştirdikleri görülmüştür. Önceki çalışmalarda da ortaokul 

matematik öğretmeni adaylarının geometrik düşünme düzeylerinin ilk üçünü 

kazanmasının beklendiği belirtilmiştir (Aydin & Halat, 2009; Hoffer, 1988; 

Pandiscio & Knight, 2010; Spear, 1993). Bu açıdan, katılımcıların geometrik 

düşünme düzeylerinin beklenen seviyede olduğu ve geometrik inşa etkinlikleri 

ve probleme dayalı öğrenme stratejisiyle de bu seviyelerini geliştirdikleri 

görülmektedir (De Villiers, 2003; Güven, 2006; Napitupulu, 2001). Ayrıca, 

bunlarla tasarlanan sosyal öğrenme ortamının katılımcıların üçgenlerle ilgili 

konu alan bilgilerini geliştirdiği de belirtilebilir.  
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