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ABSTRACT

DEVELOPING MATHEMATICAL PRACTICES IN A SOCIAL CONTEXT:
A HYPOTHETICAL LEARNING TRAJECTORY TO SUPPORT
PRESERVICE
MIDDLE SCHOOL MATHEMATICS TEACHERS’ LEARNING OF
TRIANGLES

Uygun, Tugba
Ph.D., Department of Elementary Education
Supervisor  : Assist. Prof. Dr. Didem Akyiiz

January 2016, 361 pages

The purpose of the current study was to document preservice middle
school mathematics teachers” (PMSMT) classroom mathematical practices
emerged through six-week instructional sequence about triangles. In this
respect, the research question of “What are the classroom mathematical
practices that are developed within design research environment using
problem-based learning for teaching triangles to preservice middle school
mathematics teachers?” guided the present study. In order to answer this
research question and document the mathematical practices, a hypothetical
learning trajectory and instructional sequence lasting six weeks related to
triangles were formed. The hypothetical learning trajectory for the instructional
sequence was performed for PMSMT to document their classroom

mathematical practices about triangles.
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The classroom mathematical practices were analyzed benefiting from
collective learning activity of whole class discussions including individual
learning and social aspects of the environment by using emergent perspective.
Focusing on taken-as-shared knowledge identified by Toulmin’s argumentation
model, the classroom mathematical practices were extracted. The classroom
mathematical practices encouraging PMSMT’s learning of triangles in the
present study were: PMSMT’s reasoning on (a) the formation of a triangle, (b)
the elements of triangles and their properties, and (c) congruence and
similarity. Based on these mathematical practice, PMSMT improved their
understanding of the concept triangles benefiting from other geometry concepts
such as transformation geometry, geometric constructions and argumentations.
In this respect, they examined the properties and elements of triangles and
related properties by developing their conceptual understanding.

Keywords: Design-based research, Classroom mathematical practice,

Triangles, Preservice middle school mathematics teachers.
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SOSYAL BiR ORTAMDA MATEMATIKSEL UYGULAMALARIN
GELISTIRILMESI: ORTAOKUL MATEMATIK OGRETMENI
ADAYLARININ UCGENLERI OGRENMELERINI SAGLAYAN BiR
VARSAYIMA DAYALI OGRENME ROTASI

Uygun, Tugba
Doktora, IIkdgretim Boliimii

Tez Yoneticisi : Yrd. Dog. Dr. Didem Akyiiz

Ocak 2016, 361 sayfa

Bu calismanin amaci, geometrik kavramlardan biri olan iiggenler
konusuyla 1ilgili tasarlanmis olan alt1 haftalik 6gretim siirecinde olusan
matematiksel uygulamalar1 belirlemektir. Bu acgidan, g¢alismayr “Ortaokul
matematik Ogretmeni adaylarmmin iiggenleri O6grenmeleriyle ilgili problem
tabanli Ogrenme stratejisine gore hazirlanmis tasarim tabanli arastirma
ortaminda gelistirdikleri smif i¢i matematiksel uygulamalar1 nelerdir?”
arastrma  problemi  yOnlendirmektedir. Bu baglamda matematiksel
uygulamalar1 belirlemek icin {iggenler konusuyla ilgili varsayima dayali
O0grenme rotast olusturulmustur. Alt1 haftalik bir 6gretim dizisi siirecinde
kullanilmak ve bu siireci yiiriitmek amaciyla varsayima dayali 6grenme rotasi
olusturulmustur. Varsayima dayali grenme rotasi tasarlanmistir. Tasarlanan

varsayima dayali 6grenme rotasi tamamlanip gerekli diizenlemeler yapildiktan
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sonra 23 ortaokul matematik Ogretmeni adayindan olusan bir gruba
katilimcilarin matematiksel uygulamalarini belirlemek amaciyla uygulanmastir.

Bireysel 6grenmelerin ve sosyal 6grenme ortamlarinin igerildigi toplu
O0grenme ortaminda gergeklesen toplu sinif tartigmalart incelenerek smif igi
matematiksel uygulamalar belirlenmistir. Sinif i¢i matematiksel uygulamalar
Toulmin’in bilimsel tartisma modeli kullanilarak paylasilarak-alinan bilgilere
odaklanilmas1 sonucunda belirlenmistir. Bu calismada belirlenen ortaokul
matematik 6gretmeni adaylarinin tiggenleri 6grenmelerini destekleyen smif igi
matematiksel uygulamalar sunlardir; {i¢cgenlerin olusumunun, iiggenlerin
elemanlarinin ve bunlarin 6zelliklerinin ve eslik ve benzerligin diisiiniilmesidir.
Bu matematiksel uygulamalara gore, katilimcilarm tiggenler konusuyla ilgili
O0grenme ve anlamalarmi doniisim geometrisi gibi diger geometik
kavramlardan, geometrik sekillerin insasindan ve arglimantasyonlardan
faydalanarak gelistirdikleri belirtilebilir. Bu a¢idan, onlarm iiggenlerin
elemanlarin1 ve ozelliklerini inceleyerek kavramsal anlamalarini gelistirdikleri

belirtilebilir.

Anahtar Kelimeler: Tasarim tabanli arastirma, Smif i¢i matematiksel

uygulamalar, Uggenler, Ortaokul matematik dgretmeni adaylari.
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CHAPTER 1

1. INTRODUCTION

If geometry is not taught and learned effectively, the students and
teachers tend to memorize the concepts in geometry rather than to understand
them. Furthermore, teachers prefer teaching geometry topics by emphasizing
rote memorization rather than to developing conceptual understanding and
gradually moving students toward developing formal deductive reasoning
(Fuys, Geddes, & Tischler, 1988).

The mere memorization of a demonstration in geometry has
about the same education value as the memorization of a page from the
city directory. And yet it must be admitted that a very large number of

our pupils do study mathematics in just this way. There can be no doubt
that the fault lies with the teaching. (Young, 1925, pp. 4-5).

The students taking education in this way develop procedural
understanding and poor performance in geometry. This situation can result
from the teachers having little geometry knowledge since the teachers
especially middle grade teachers typically have very little experience and
knowledge of geometry (Clements, 2003; Fuys, Geddes, & Tischler, 1988;
Hershkowitz, Bruckheimer, & Vinner, 1987; Stipek, 1998). Also, it can be
stated that the desired learning environments can be provided only by
knowledgeable teachers (Putnam, Heaton, Prawat & Remillard, 1992; Van der
Sandt & Nieuwoudt, 2003). Also, the roles and importance of the
knowledgeable teachers can be described effectively by having content
knowledge of mathematics for teaching needed for the teachers to perform
their professions of teaching mathematics effectively. In that respect, the

knowledge needed for the design of this kind of environments can be explained



in the literature in different ways by different researchers such as Shulman
(1986), Ma (1999) and Ball, Hill and Bass (2005). First, Shulman suggested the
content knowledge is needed for teaching. Also, this knowledge forms the
foundation of the mathematical knowledge for teaching proposed by Ball,
Sleep, Boerst and Bass (2009). In addition, Ma (1999) proposed the profound
understanding of fundamental mathematics as a mathematical understanding of
a teacher which is “deep, broad, and thorough” (p. 120). Lastly, Ball, Hill and
Bass (2005) suggested the substantive knowledge of mathematics and
knowledge of mathematics as the foundations of mathematical knowledge for
teaching. The mathematical knowledge for teaching is the knowledge
necessitated to perform the responsibility and work of teaching mathematics
(Hill, Ball & Schilling, 2008). Substantive knowledge of mathematics is
comprised of knowledge of mathematical principles and their meanings and
applications, procedural and conceptual knowledge, and connections between
them. Also, knowledge of mathematics is connected with knowing
mathematics and doing mathematics, applying mathematical procedures and

possessing mathematical knowledge (Ball, Hill & Bass, 2005).

In this respect, it is necessary that the mathematics teachers have good
knowledge and understanding of geometry for the existence of effective
geometry instructions in the classrooms. The teachers are expected to teach
geometry in the secondary school classes when they have little knowledge of
geometry so they encounter difficulties in geometry lessons (Jones, 2000). This
problem can be solved if middle school teachers become well prepared to teach
geometry in preservice years (NCTM, 2006). Also, the reason of the situation
that the teachers are not equipped with necessary geometry knowledge is
related to teacher education. In this respect, it is essential to educate
mathematics teachers providing them opportunities in which they obtain rich
and deep geometry knowledge. Moreover, subject matter knowledge
representing necessary understanding of mathematical concepts have

connection with teachers’ teaching performances in their classes by relating to



other types of knowledge of Mathematical Knowledge for Teaching (MKT) of
Ball, Thames and Phelps (2008). The teachers having deep subject matter
knowledge can analyze their students’ thinking and organize instructional
sequence by making appropriate instructional decisions in their classroom (Hill
& Ball, 2004). The situations in which the mathematics teachers having deep
and rich subject matter knowledge perform teaching mathematics in their
classrooms can be provided in their teacher education programs. In other
words, they are supported by rich and deep subject matter knowledge through
their preservice stage in order to be effective mathematics teachers in the future
(Chapman, 2007).

Design based research is a useful way to provide the opportunities
facilitating the development of preservice mathematics teachers’ mathematical
knowledge for teaching including subject matter knowledge. In teacher
education programs, the instructors can help preservice mathematics teachers
by designing hypothetical learning trajectories and conducting them in
instructional sequences effectively. In this respect, it is crucial to identify the
geometrical concepts, the tasks and tools to teach the concepts. In this respect,
it is necessary to provide learners experiences and tasks to learn geometry by
improving their geometric thinking and broadening their views of geometry
content (Han, 2007; Henningsen & Stein, 1997). The geometrical tasks can be
designed based on the properties of van Hiele geometric thinking levels since
the geometric thinking levels of the PMSMT can be determined and their
potential about geometric reasoning can be mad. Also, necessary predictions
about thinking and actions of the PMSMT can be produced. Inservice and
preservice elementary school mathematics teachers were expected to at least
attain the first three van Hiele geometric thinking levels (Aydin & Halat, 2009;
Pandiscio & Knight, 2010). Based on this knowledge, the hypothetical learning
trajectory was prepared based on the properties of these levels and problem

situations in the activity sheets were formed.



In the study, the geometric constructions by compass and straight edge
were used since they are good at helping teachers attain good understanding of
geometry about the rules and theorems. They provide preservice teachers
opportunities to investigate the reasons of theorems, rules and topics in
geometry since they need not only comprehend that something is so; s/he must
further understand (Shulman, 1986). The geometric constructions provide a
non-typical way for the solution of geometry problems with two instruments:
the straight edge and compass. They are beneficial to investigate the work of
Greek mathematicians such as Euclid and Pythagoras taking important role in
mathematics curricula of all grade levels (Sanders, 1998). The geometric
constructions are effective since they do not only provide the opportunities
about constructing geometric shapes but also the skills of using the tools of the
compass and the ruler (Cherowitzo, 2006). In this respect, it can be said that
the geometric constructions improve physical and cognitive mathematical
skills. In the process of constructing geometric shapes by compass and straight
edge, the students examine how to construct the geometric shapes analyzing
and understanding their properties (Erduran & Yesildere, 2010; Napitupulu,
2001; Hoffer, 1981). Hence, it was necessary to incorporate geometric
constructions to the present study. These constructions taking place in the
hypothetical learning trajectory of the present study also supported the
understanding of geometry by using conceptual understanding, problem

solving, applications and communication of ideas.

The geometrical tasks taking place in the hypothetical learning
trajectories and helping teachers investigating reasons of the topics of geometry
may be more beneficial when they are used with the teachers’ mathematical
discourses such as argumentations illustrated in collective learning
environment. Argumentation can increase the communication which is
essential in attaining good understanding of geometry since the research show
that teachers have deficiency in their understanding of geometry as well as in

their skills to communicate geometry (Hershkowitz, 1989; Owens & Outhred,



2006; Sundberg & Goodman, 2005). Argumentation can provide these benefits
since it takes role in interactive dialogue of two or more people reasoning
together. It is also important to make scientific claims since the people
obtained the idea after evaluating alternatives and weighing evidences (Voss &
Van Dyke, 2001). Also, argumentations encourage conceptual understanding,
problem solving, criticizing and justifying the ideas (Abi-EI-Mona & Abd-El-
Khalick, 2011; Duschl & Osborne, 2002; Jim enez-Aleixandre et al., 2000;
Jonassen & Kim, 2010; Osborne, Erduran, & Simon, 2004; Zembal-Saul,
2005). In this respect, it is beneficial to use argumentation in geometry,
especially in mathematical tasks such as construction activities since the
teachers having good understanding of geometry tend to have qualified
scientific thinking, articulation of their ideas, and development of clearly
structured arguments. Furthermore, argumentation promotes conceptual
understanding and learning of the content effectively and deeply (Driver,
Newton & Osborne, 2000) with the skills of communication and critical
reasoning as two significant features of argumentation. Moreover, the
construction steps facilitate problem solving, geometrical justifications and
proofs. These steps necessitate the justifications and forming proofs for the
process of construction of the geometric shapes and convincing others about
the truth of them by examining the shape in a challenge situation (Erduran &
Yesildere, 2010; Smart, 1998).

The instructional sequences designed for particular geometrical
concepts help the students learn and make reasoning about the geometrical
concept effectively. When these instructions are supported by mathematical
discourses, they can improve learning and understanding of the concepts by
analyzing, discussing and convincing others about their ideas. In this respect,
argumentations can enhance their learning (Lampert, 1990). Also, by
discussing and transferring the obtained knowledge in different context,
mathematical practices can be used to represent their learning since classroom

mathematical practices represent taken-as-shared ways of reasoning and



arguing mathematically (Cobb, Gravemeijer, Yackel, McClain & Whitenack,
1997). In this respect, classroom mathematical practices formed by using
geometric constructions about a particular geometric concept of triangles were
determined in order to determine preservice mathematics teachers’ learning
and understanding in the present study. Triangles as a geometrical concept was
selected to help preservice middle school teachers attain deep and rich subject
matter knowledge about it. Triangle is an important geometric concept since it
is commonly used geometric shape for producing real life buildings and
constructing and examining the properties of other geometric shapes (Fey,
1982). However, triangles have importance in teaching geometry, and learners
from all grade levels have difficulty in learning triangles (Damarin, 1981;
Vinner & Hershkowitz, 1980). Therefore, it is necessary to examine and
develop the preservice middle school mathematics teachers’ understanding and
reasoning of the geometry concept of triangles. In other words, in spite of the
value of geometry in biological and physical world (Fey, 1982), some learners
do not achieve complete understanding of the concept of triangle (Vinner &
Hershkowitz, 1980). Moreover, it is fundamental concept as a prerequisite for
other geometrical shapes, higher levels of geometry concepts and other
mathematical learning areas such as algebra (Athanasopoulou, 2008; Kellogg,
2010). Therefore, it is important for teachers to acquire necessary knowledge
about triangles in teacher training programs. In this respect, it is crucial to
provide mathematics teachers opportunities to learn and understand triangles in

their preservice years.

Although there have been many research into preservice middle school
mathematics teachers’ development and understanding of geometry concepts,
there have been necessities to investigate preservice teachers’ development and
understanding of the specific geometry concepts, especially in an attempt to
increase their understanding of triangle concept. In light of the explanations
above, it seemed worthwhile to explore their argumentations in geometrical

tasks that might contribute to the development of their geometry knowledge,



understanding of triangles and classroom mathematical practices. In this
respect, the current study examined the communication formed in the
classroom including the process of argumentation and collective learning
environment related to designed mathematical tasks and tools and imagery.
This was provided by performing instructional sequence as well as examining
teaching and learning as it occurred in the classroom. In a collective learning
environment, preservice middle school mathematics teachers’ understanding
and reasoning of triangles were investigated. Moreover, their classroom
mathematical discourses were analyzed in order to illustrate their geometrical
understanding and reasoning of triangles through identifying the classroom
mathematical practices. PMSMT’s understanding and learning of triangles
were examined through mathematical practices since they provided
information about individual and social processes, since mathematical practices
are formed in a social learning environment including individual and social
aspects of learning; neither occurring without the other and nor dominating to
each other (Cobb et al, 2011). In this way, PMSMT’s learning was
investigated in a social environment designed by problem-based learning
including argumentations and geometric constructions by considering the
effects of individuals’ learning on and their contributions to the collective

learning environment.

With this design-based research, a lesson sequence was performed
based on a designed hypothetical learning trajectory on triangles. Moreover,
supposing this designed instructional sequence helped the participants develop
their geometric thinking and knowledge about triangles, pretest and posttest
were conducted before and after a six-week instructional sequence. Therefore,
the effect of hypothetical learning trajectory and instructional sequence
including the emergence of classroom mathematical practices about triangles
was examined. In this respect, the answer of the research question for “What
are the classroom mathematical practices emerging in design-based research

environment designed by problem-based learning for teaching triangles to



preservice middle school mathematics teachers?” was examined through the

present study.

1.1 Significance of the Study

It is important for the teachers to have in-depth knowledge about the
concepts of geometry. Also, it is claimed that both pre and inservice teachers
have inadequate geometry knowledge (Clements, 2003; Stipek, 1998).
Therefore, it is vital for preservice mathematics teachers to attain necessary
geometry knowledge to teach geometry in their classrooms in the future. When
the system of teacher education programs is thought, the preservice years of
teachers are important since they are the places for preparing future teachers
and dominating them with necessary knowledge needed for their professions.
These programs provide opportunities for future teachers to learn mathematical
knowledge needed for their profession. Many researchers suggest different
ideas to improve this situation. Some of them insist on increasing the number
of the courses emphasizing more mathematical content to use their teaching in
the future (Goldhaber & Brewer, 2000). On the other hand, Suzuka, Sleep,
Ball, Bass, Lewis and Thames (2009) explain that “teaching is mathematically
demanding work. The requisite knowledge and skills are not necessarily picked
up on the job nor are they typically learned in college courses or used in other
professions” (p. 7). Therefore, it can be useful to improve the quality of
teacher preparation programs in mathematics by providing ideas that they
construct through effective learning tasks to develop their mathematical
knowledge for teaching and especially subject matter knowledge (Ball, Hill &
Bass, 2005).

The preservice mathematics teachers need to be educated to obtain
necessary knowledge by understanding their reasons and constructing them

rather than memorizing them (Chapman, 2007). This can be achieved by



providing them opportunities in instructional sequences. When these sequences
include mathematical discourse, the learning can become more meaningful.
Research show that classroom discourse practices especially including
argumentations have effect on learning and conceptual understanding
(Jonassen & Kim, 2010; McNeal & Simon, 2000; Yackel & Cobb, 1996) since
classroom discourses include mathematical talks occurring in the classrooms
and the interactions among students, teachers about the subject matter. Also,
the student learning is affected by the classroom discourse, and negotiating the
norms based on argumentation (Cobb, 2002). Argumentation can be defined as
a social phenomenon observed while cooperating individuals are trying to
adjust their intentions and interpretations in presenting their actions verbally
(Krummbheuer, 1995). Mathematical argumentation improves the abilities of
the articulation of mathematical thinking, justification and explanation of the
reasoning (Yackel & Cobb, 1996), communication and critical reasoning
(Krummheuer, 1995).

In order to help the preservice middle school mathematics teachers
attain these skills, it is aimed to design lessons and produce instructional
sequences through ongoing analysis of classroom activity and using the results
of these analysis for instructional planning and decision making. Design
experiment research “can help create and extend knowledge about developing,
enacting, and sustaining innovative learning environments” (Cobb, et al., 2003,
p. 5), since it is constructed based on student cognition and instructional
materials. Design experiments are pragmatic and theoretical with the function
of the design and the resulting collective learning environment (Cobb, et al.,
2003). It is beneficial since it connects theory and practice so that it can solve
the problems that the theories have lack of practical implications (Roth, 2011).
In the process of design-based research, the design produced based on the
theories is dynamic and it tends to change with respect to practical issues on
the contexts. In other words, the instructions are based on theoretical and

practical considerations by being organized in a developmental process (Cobb



et al., 2003). In this respect, it can be said that this dynamic lesson design
process can provide beneficial learning environment for preservice
mathematics teachers to attain necessary knowledge and skills (Simon, 2000).
Also, they can attain necessary understanding and skills about how and when
to use the mathematical content knowledge when they are taught extracting
their ideas by using their learning and teacher preparation programs. Moreover,
they can learn this in a flexible way because of the dynamic nature of the
design experiment (Cobb et al., 2003; Wheeldon, 2008). Therefore, the design
experiment for this study was produced considering mathematical discourse.

The hypothetical learning trajectory was designed with respect to the
concept of triangles. The concept of triangles was chosen because it is one of
the fundamental concept for geometry (Fey, 1982). All of the students are
expected to attain deep knowledge about it since other concepts in the
geometry are learned by using it. Moreover, the concept of triangles is a
difficult concept and the students have difficulties about it (Fey, 1982). Also,
because of the nature of the mathematics education, the other concepts of
geometry are constructed by using the concepts of triangles. Therefore, the
instructional sequence was designed and performed about this critical concept
to provide preservice middle school mathematics teachers attain necessary

subject matter knowledge about it.

Although the instructions are made with an accurate understanding of
the goals of the lessons, it is possible to face with the problems such as
determining the specific practices used to implement the lessons (Hufferd-
Ackles, Fuson & Sherin, 2004). In this respect, this study aimed to provide
information to the literature on the problems by determining and analyzing the
planning and classroom practices designed with the concept of triangles in a
collective learning environment. Moreover, this study provided information
about the solution of the problem related to this geometrical concept for
preservice middle school mathematics teachers to attain necessary geometrical

knowledge through the mathematical practices by argumentations.
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1.2 Definition of Important Terms

Mathematical practices are taken-as-shared ways of reasoning and
arguing mathematically in in a social learning environment. Taken-as-shared
way illustrates an environment and process including the discussions about
mathematical problems and ideas by mathematical symbolization and notations
(Cobb, Gravemeijer, Yackel, McClain & Whitenack, 1997).

Argumentation is a kind of mathematical discourse referring to the ways
of mathematical justifications formed and interpreted by the students and used
in the communications (Lampert, 1990).

Geometrical Constructions are systematic steps used to produce
geometric entities by producing intended geometric shapes following particular
basic and complex steps of sequence by compass and straight edge (Demiray &
Capa-Aydin, 2015; Djoric & Janicic, 2004).

Design-based research refers to “a series of approaches, with the intent
of producing new theories, artifacts, and practices that account for and
potentially impact learning and teaching in naturalistic settings” (Barab &
Squire, 2004, p. 2).

Hypothetical Learning Trajectory represents the ways of reasoning in
learning context and includes teachers’ predictions about the progress in

teaching sequence (Smith et al., 2006).
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CHAPTER 2

2. THE LITERATURE REVIEW

In this chapter, the mathematical knowledge for teaching is explained in
order to understand the mathematical practices on the geometrical concept of
triangles as the main purpose of the study. Then, the philosophies;
constructivism and social constructivism that the lessons and the study have
been designed based on triangles are discussed. Also, the strategy of problem-
based learning and van Hiele geometric thinking theory are explained since
they have formed the basis of instructional sequence and Hypothetical
Learning Trajectory (HLT) of the current study. HLT as a beneficial concept
used to create instructional sequence is described. Then, geometrical
constructions and proof as the tools used in the instructional sequence are
explained. At the end, triangles as the subject of the lessons are stated. In this

way, theoretical framework of the study is formed.

2.1 Mathematical Knowledge for Teaching

In order to educate teachers effectively and to provide their
improvement, many research have been conducted. Some of them have focused
on types of knowledge needed for teachers to teach mathematics effectively
(Ball, Hill, & Bass, 2005; Ma, 1999; NCTM, 2000). Through these research,
Ball, Thames, and Phelps (2008) identified the concept of Mathematical
Knowledge for Teaching (MKT) focusing on teaching rather than teachers.

MKT can be defined as “the mathematical knowledge needed to perform the
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recurrent tasks of teaching mathematics to students” (p. 399). Through this
definition, MKT explains the nature of mathematics needed for teachers’
professions. In other words, it includes different types of knowledge essential
for the teachers while performing their responsibilities in their professions.
MKT focuses on the mathematical knowledge and the usage of it in teaching
(Ball, Bass & Hill, 2004; Ball, Hill & Bass, 2005).

In the literature, there have been different categorization systems for the
types of knowledge needed for teachers to teach students. Initially, Shulman
(1986) separated these knowledge domains into different groups. Then,
different categorization systems and modifications have been made on his
knowledge system. Hill, Ball & Schilling (2008) have changed and made
modifications on the Shulman’s (1986) categorization system. In their
categorization. MKT is composed of four categories under two main titles;
pedagogical content knowledge and subject matter knowledge.

Pedagogical content knowledge focuses on pedagogy and content based
on teaching and learning (Ball, Hill & Bass, 2005) with two subtitles;
knowledge of content and students and knowledge of content and teaching.
Knowledge of content and students examines subject matter knowledge based
on knowledge about teaching (Ball, Hill & Bass, 2005; Hill, Schilling & Ball,
2004). In this category, knowledge about mathematical concepts needed while
teaching on the perspectives of the students is focused on. In this respect, this
type of knowledge focuses on tasks or representations formed to understand
and model mathematical concepts, designing instructional sequence to teach
the concept and making guidance for the students to help them improve their
discussions and understanding (Ball, Hill & Bass, 2005). Moreover, knowledge
of content and students examines the subject matter knowledge of mathematics
through knowledge about the learners’ thinking (Ball, Bass & Hill, 2004; Ball,
Hill & Bass, 2005; Hill, Schilling & Ball, 2004). It provides teachers
opportunities to think about mathematical concepts from the learners’ views

and performing teaching in this way. It includes thinking of students about
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specific mathematical concepts, engaging with mathematical tasks, and being
motivated and challenging about mathematical concepts (Ball, Hill & Bass,
2005; Hill, Ball & Schilling, 2008).

The other title of MKT is subject matter knowledge as the main focus
point of the present study. Hill, Ball and Schilling (2008) have connected
Shulman’s pedagogical content knowledge (PCK) and content knowledge (CK)
domains under the title of subject matter knowledge. It involves mathematical
knowledge that the teachers are expected to have in order to perform their
responsibilities of teaching (Ball, Hill & Bass, 2005). This title is separated
into two categories which are specialized content knowledge and common
content knowledge. The category of specialized content knowledge focuses on
mathematical knowledge which is unique to the mathematics teachers since it
is knowing mathematics for mathematics curriculum in the schools (Hill, Ball
& Schilling, 2008; Ball, Hill & Bass, 2005; Hill & Ball, 2004; Hill et al.,
2004). In other words, it refers to the knowledge of mathematical concepts in a
way that it is placed in mathematics curriculum and in the lessons. It can be
exemplified by understanding, reasoning, illustrating and making connections
between mathematical topics and expressing, discussing and using them
through mathematical ideas (Hill & Ball, 2004) without the concerns of
teaching them. This type of MKT is beneficial in a way that teachers are using
their knowledge in the process of guiding their students to understand the
mathematical concepts and make connections between them and performing
their common teaching responsibility while students are constructing their
knowledge (Ball & Bass, 2000, 2003; Ball, Bass & Hill, 2004; Ball, Hill &
Bass, 2005; Hill & Ball, 2004). The other title of MKT is common content
knowledge. It represents the knowledge of mathematical concepts being
expected for the students to be known and taking place in mathematics
curriculum in the schools and general knowledge of mathematics (Ball, Hill &

Bass, 2005; Hill et al., 2004). It can be exemplified by procedural knowledge
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of mathematical operations, defining mathematical concepts and applying
mathematical facts to the problems.

Subject matter knowledge has effect on teachers’ teaching practices
with respect to the findings of many research since deep and rich knowledge
and understanding of the mathematical concepts develop teaching. Moreover,
subject matter knowledge has close relationship with other types of knowledge
since teachers attaining deep subject matter knowledge can successfully
understand students’ thinking to design and organize the instructional sequence
by making appropriate instructional decisions in their classroom (Hill & Ball,
2004). Hence, the teachers are expected to have deep and rich knowledge about
the mathematical concepts that they teach in their classrooms. This situation
can be provided for them in their teacher education programs since preservice
teachers attain and develop these types of knowledge through their preservice
stages in order to be effective mathematics teachers in the future (Chapman,
2007). Through this stage, they improve themselves by being encouraged by
the courses about their professions. In this respect, it can be claimed that
preservice teachers need opportunities to have experiences in the courses that
they take in teacher education programs with the aim of improving their MKT
(Philipp, 2007). However, it should be considered that participation of these
courses does not guarantee that preservice teachers become effective and
equipped with these types of knowledge. Therefore, it is needed to form
environments encouraging that preservice teachers attain mathematically rich
experiences, and improve other types of knowledge related to subject matter
knowledge that they possess (Turner et al.,, 2012). Through this kind of
environments, beneficial opportunities are provided for preservice teachers to
improve themselves and become effective as future teachers. In other words,
preservice stages are critical for them since they are encouraged to develop
their knowledge and skills with various opportunities to reach the resources
and to practice their knowledge (Bryan, 2003). These opportunities should be

selected and designed carefully based on the views of preservice mathematics
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teachers. Beneficial tasks help preservice teachers examine, practice and
analyze their conceptual learning and understanding improving their
mathematical content knowledge (Ball & Forzani, 2009).

The critical importance of subject matter knowledge is emphasized in a
way that mathematics teachers must have detailed knowledge of common
content knowledge and specialized content knowledge in order to perform their
professions effectively (Hill & Ball, 2004). Ma (1999) also insists on the
importance of subject matter knowledge by deep understanding of fundamental
mathematics needed for making connection between mathematical topics and
mathematical ideas in order to perform teaching in the classrooms effectively.
This knowledge includes connection between mathematical concepts, structure
of it and discussing it in their mathematics classrooms. Teachers may
underestimate the difficulty of teaching mathematics to the students by
overestimating their subject matter knowledge and considering only their own
conceptual and operational knowledge about subjects in the curriculum.
Teachers may claim that the elementary mathematics curriculum is not difficult
(Sowder, et al., 1998). This ignorance affects the behaviors of mathematics
teachers in classrooms and they think teaching mathematics in the classrooms
as teaching procedures to follow. However, it is needed to attain the view point
of deep conceptual part of this curriculum since they face with actual teaching
and realize the difficulty of mathematical concepts. This realization increases
the skills of teachers’ understanding of mathematical concepts (Sowder, et al.,
1998). This realization can be effectively provided by teacher education
programs and opportunities in these programs presented to preservice teachers.
Moreover, although there have been many research emphasizing the
importance of teacher subject matter knowledge in teaching, there exists
critical need to study preservice teachers’ subject matter knowledge in
preparing teachers. This need can be caused by the case that teachers begin
teaching in their novice years without having sufficient content knowledge of

mathematics (Ball, 1988). Therefore, it is critically needed to obtain detailed
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information about what preservice teachers have before becoming a real
teacher and how they learn teaching mathematics from the view of
mathematical content (National Mathematics Advisory Panel, 2008).
Therefore, the preservice stages should be designed to help preservice teachers
attain necessary subject matter knowledge effectively.

With all of the explained views, HLT are important since they provide
opportunities for the instructors to design mathematically rich environments to
help preservice mathematics teachers attain necessary knowledge and skills for
their professions. In this respect, HLT on the mathematical concept of triangles
was designed to help PMSMT attain various and rich experiences on this
concept to develop their skills of teaching and other types of knowledge that
they needed to teach in the present study. In other words, HLT used in the
present study was organized based on the aim of improving the subject matter
knowledge of the preservice middle school mathematics teachers in the
geometrical concept of triangles. Moreover, in this section, the current study
paid attention on preservice teachers’ subject matter knowledge paid attention
on in teacher education programs among other types of knowledge in MKT. In
this respect, the necessities of the opportunities providing deep knowledge and
understanding about the mathematical concepts were explained. These
necessities were provided in different ways in teacher education programs as
explained in many research in the literature. In the present study, the design of
the path that preservice middle school mathematics teachers’ (PMSMT)
understanding the concept of triangles were examined by mathematical
practices. Mathematical practices provided a beneficial way to investigate the
development of their knowledge and understanding about mathematical
concepts related to their subject matter knowledge. Also, the related theories
and philosophies used to design hypothetical learning trajectory of the current

study were examined in the following sections.
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2.2 Mathematical Practices

In the literature, there have been valuable research investigating
learning and teaching focusing on learning of communities from sociological
points of views by forming classroom practices (Ball & Bass, 2000; Cobb &
Bauersfeld, 1995). The researchers focus on social context of learning based on
the fact that mathematical learning takes place in the social context of the
classroom (Cobb & Bauersfeld, 1995; Cobb, Stephan, McClain, &
Gravemeijer, 2001). The social contexts in which learning takes place have
been examined based on different explanations and definitions of mathematical
practices. Various studies defining and examining the mathematical practices
in different ways exist in the literature (Cobb et al., 2011; Font, Godino &
Gallardo, 2013; Moschkovich, 2002). In their studies, they focus on the
different meanings of mathematical practices. For example, based on the
definition of mathematical practices made by Moschkovish (2002), the term is
explained by being separated into two groups; every day and academic
mathematical practices. Everyday mathematical practices is stated by the
students’ daily life experiences related to mathematics such as shopping,
classifying and ordering. Academic practices are the activities in which the
students perform their responsibilities such as forming and testing conjectures,
form mathematical arguments and discuss about them in a way that
mathematicians do. In another study, Font, Godino & Gallardo (2013) define
the mathematical practices in a different way by stating that the mathematical
practices consist of operative and discursive practices. Operative practices
include the activities of reading, forming and operating the mathematical ideas
and skills. On the other hand, discursive practice represents the reflection of the
students produced through the former practice. Godino and Batanero (1994)

defines the mathematical practice by stating;

We consider mathematical practice [sic] any action or manifestation

(linguistic or otherwise) carried out by somebody to solve mathematical
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problems, to communicate the solution to other people, so as to validate and
generalize that solution to other contexts and problems (Godino, Batanero, &
Font, 2007, p. 129).

In this definition, the researchers emphasize the role of mathematical activities
by the term of mathematical practices.

The definition and meaning of mathematical practices guiding the
present study has been produced by Cobb et al. (2011). They have produced
this definition based on the view of learning through individual and social
processes, neither occurring without the other and nor dominating to each
other. The definition and the formation of mathematical practice are made by
them based on the emergent approach considering the individual and the
community as reference points in learning process. Classroom mathematical
practices are defined as “it is feasible to view a conjectured learning trajectory
as consisting of an envisioned sequence of classroom mathematical practices
together with conjectures about the means of supporting their evolution from
prior practices” (Cobb et al., 2011, p. 125). The mathematical practices mean
taken-as-shared ways of reasoning and arguing mathematically in the emergent
perspective. Taken-as-shared way represents an environment in which the
discussions about mathematical problems and ideas by mathematical
symbolization and notations take place in the process of emergence of
mathematical practices (Cobb et al., 1997). Based on this definition, the
mathematical practices emerge in a classroom representing a social
environment. The social environment formed in the classroom encourages the
students to participate in the classroom mathematical tasks. Also, mathematical
tasks make contributions to their mathematical knowledge, participation and
skills while they reorganize their individual mathematical activities (Cobb &
Yackel, 1996). It is important to examine the ways in which the students
participate in the collective learning environment and make contributions to
this environment and the process of development of classroom mathematical

practices. However, the individual students’ interpretations, activities and
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understanding should not be ignored since they have effect on the process of
emergence of mathematical practices. Although the definition of mathematical
practices mainly focuses on collective learning, individual student learning has
critical importance based on mathematics in which they engage in. This
importance results from their contributions to the development of taken-as-
shared mathematical ideas and mathematical practices having connection with
the process of individual students’ learning and understanding. In this respect,
the examination and development of classroom mathematical practices focus
on both individual and collective learning of the students. Moreover, this view
is emphasized by Cobb and Yackel (1996) by stating that “students actively
contribute to the evolution of classroom mathematical practices as they
reorganize their individual mathematical activities, and conversely, that these
reorganizations are enabled and constrained by the students’ participation in
the mathematical practices” (p. 180). In other words, the students reorganize
their mathematical reasoning representing their individual learning in the
process of participating in collective learning. Also, the evolution of
mathematical practices occurs by their rearrangements of their individual
activities with respect to local social situations where they take place and to
whose emergence they make contribution (Cobb et al., 1997). In this respect,
the learning takes place in a way that learners improve their individual learning
by participating in the social context of learning including the views of all of
the learners. The process of development of mathematical practices including
mutual practices and students’ own reasoning represents the reflexive
connection of social and individual perspectives about mathematical tasks in
the instruction through their mathematical development (Cobb & Bowers,
1999).

The process of emergence of mathematical practices in a taken-as-
shared way is beneficial to develop mathematical practices and also
mathematical understanding and individuals’ reasoning. These practices

represent the ways of understanding, reasoning, explaining and convincing
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others by justifications in a way that mathematical classroom community make
them taken-as-shared for the particular mathematical content by specific
mathematical tasks or ideas (Cobb et al., 2011; Stephan, Bowers & Cobb,
2003). They are observed in a social environment in which the instructor and
the students take place in challenging situations since “classroom mathematical
practices are ... localized to the classroom and are established jointly by the
students and the teacher through discussion; they emerge from the classroom
rather than come in from the outside” (Stephan & Cobb, 2003, pp. 41-42).
Mathematical practices identified by taken-as-shared methods of reasoning are
ways or representations of the students’ knowledge based on their reflections.
The emergence of reflections takes place in classroom discussions rather than
their individual knowledge, thinking and strategies specific to a mathematical
concept or a problem situation (Stephan, Bowers, Cobb & Gravemeijer, 2003).
In other words, mathematical practices focus on social learning including the
reflections of learners’ individual learning. In this respect, the information
about classroom discourse, the ways of using tools, notations is attained
through collective and social part of mathematics learning in the development
of classroom mathematical practices (McClain & Cobb, 2001; Stephan &
Rasmussen, 2002).

While students participate in the discussions in which the mathematical
practices are formed, they develop their mathematical reasoning and
understanding at the same time (Cobb et al., 1997) in an environment. This
environment encourages the establishment of social and sociomathematical
norms providing the development of mathematical practices (Stephan &
Akyuz, 2012). These norms are necessary because of their support to the social
environment in which the mathematical practices emerge by taken-as-shared
strategy. These norms facilitating the emergence of mathematical practices
provide information about the participation structure of the clas-srooms about
the communication among learners and the instructor and the learners (Cobb et

al., 1997). Despite of these norms’ common positive effect of encouraging
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mathematical practices, they have different properties. The classroom
mathematical practices are more content-specific when compared with social
and sociomathematical norms since these norms are not specific to
mathematical ideas based on this definition (Stephan et al., 2003). In other
words, social and sociomathematical norms are important since the
mathematical practices emerge in a way specific to classroom community,
mathematical content, the path followed in the instructional sequence and the
problems that the students engage in. In this respect, the teacher and the
students develop the classroom mathematical practices collectively by
localized and formed in the classrooms. However, outside mathematical
practices have effect on this developmental process based on its connection
with local mathematical practices. The students make contributions to the local
mathematical practices by the ways of their participation and experiences in
outside mathematical practices (Whitenack, Knipping, & Novinger, 2001).

All of these explanations emphasize learning taking place in the
classroom environments by the combination of two extreme positions and
approaches of learning including individual and social aspects of learning
operating equally. This view can be stated based on the views of social
constructivism as emergent perspective. Based on this perspective, learning
occurs by relating the social and individual processes with strong relationship
in which the existence of one of them necessitates the other one by not
separating. In the emergent perspective, individuals’ mathematical
development and understanding are examined through their participation in the
social and cultural practices taking place in the classroom community (Cobb,
2000; Yackel & Cobb, 1996). This perspective illustrates a process including
two connecting parts; the individual students take roles in developing
communal practices and the community produces mathematical practices in
taken-as-shared ways through reasoning, symbolizing and producing
mathematical arguments (Cobb et al., 2001; Stephan, 2003). Therefore, the

properties and perspectives of social constructivism are examined and taken
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into consideration in the present study. Moreover, classroom mathematical
practices are generally examined through design-based research studies
connecting instructional design and teaching in the literature (Cobb et al.,
2011). There have been many research designed and conducted in this way. In
the literature, there exist research studies examining mathematical practices at
different grade levels and for different mathematical topics (Stephan & Akyuz,
2012; Stephan et al., 2003 Stephan & Rasmussen, 2002).

Stephan and Akyuz (2012) examined the classroom mathematical
practices emerged within design-based research using Realistic Mathematics
Education theory. With the teaching experiment taking place in a 7'" grade
classroom, the students’ classroom mathematical practices designed by the
concept of integer addition and subtraction were identified by testing and
revising a hypothetical learning trajectory as a potential instructional theory for
this concept with the tools such as financial contexts and vertical number lines.
The learning of the students participating in the instructional sequence with 19
class periods by hypothetical learning trajectory was examined through the
content and structure of the students’ arguments about the concept of integer
addition and subtraction. In the analysis process, Krummheuer’s (1995)
adaptation of Toulmin’s argumentation model was used. Then, the
argumentation logs determined in this way were used to identify the collective
classroom mathematical practices by a three-phase approach with two criteria
constructed and described in Rasmussen and Stephan (2008) and in Stephan
and Rasmussen (2002). These mathematical practices representing students’
construction of conceptual understandings of integers and their operations were
determined through taken-as-shared mathematical ideas. Based on the findings
of the study, there have been five mathematical practices with a limited number
of mathematical ideas in each mathematical practice. In order to determine the
effect of designed hypothetical learning trajectory on students’ achievement,
pretest and posttest designed by the researchers were conducted to the students.

The quantitative findings obtained through these tests showed that students
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improved their understanding on the concept of integer addition and
subtraction through this instructional sequence illustrating more achievement

on the subtraction operation than the other operation.

In the study of Akyuz (2014), the researcher examined the classroom
mathematical practices developed within design-based research using Realistic
Mathematics Education theory to ten preservice mathematics teachers
including eight junior and two senior grade students in a university. With the
teaching experiment taking place in an elective course in mathematics teacher
education program, the participants’ classroom mathematical practices
designed by the geometric concept of circle were identified by testing and
revising a hypothetical learning trajectory with the tool of GeoGebra in
dynamic geometry environment. The learning of them in the instructional
sequence including 5 weeks and 4 hours in each week by hypothetical learning
trajectory was conducted in inquiry-based and technology-supported teaching
environment. The content and the structure of the students’ arguments about
the concept of circles were examined by the Krummheuer’s (1995) adaptation
of Toulmin’s argumentation model. Emergent perspective and the scheme
designed and described in Rasmussen and Stephan (2008) and in Stephan and
Rasmussen (2002) were used to determine taken-as-shared mathematical ideas
representing mathematical practices. Through the analysis, three sequentially
emergent mathematical practices ordered based on complexity from lower
level to higher one have been formed in the study. Another research designed
and analyzed by the same methodology was conducted to preservice
mathematics teachers in order to establish their mathematical practices in a
dynamic geometry environment by Bowers and Nickerson (2001). In this
study, prospective secondary mathematics teachers participated in teaching
episodes designed by Geometer’s Sketchpad. Their social norms,
sociomathematical norms and mathematical practices in the undergraduate
course in which the design experiment study was performed. In this

environment, their learning was examined through their contributions to the
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whole class discussions. In a cyclic process including designing, testing,
modifying and retesting the learning trajectory, their individual and collective
learning were examined by establishing these norms and mathematical
practices. Also, four mathematical practices were determined in the study by
using Cobb et al.’s (1997) framework.

Stephan and Rasmussen (2002) examined the classroom mathematical
practices developed within 15-week classroom teaching experiment using
Realistic Mathematics Education theory to university students enrolled in a
beginning course about differential equations for engineers. The learning of the
students participating in the instructional sequence by a learning trajectory was
examined through the content and structure of the students’ arguments about
the concept of differential equations by the Toulmin’s argumentation model.
The mathematical practices provided a systematic system for the learning of
classroom community. Emergent perspective and the scheme including three
phases designed were used to determine taken-as-shared mathematical ideas as
mathematical practices. Through the analysis, there have been six
mathematical practices with a limited number of mathematical ideas in each
mathematical practice. Moreover, the researchers state that there are two
important cases for the emergence of mathematical practices, time and
structure. Based on these cases, the mathematical practices can emerge in a

non-sequential manner.

In the study of Roy (2008), a design-based research was made to
establish preservice teachers’ classroom mathematical practices in whole
number concepts and operations. In the study, a revised learning trajectory and
instructional tasks designed based on Realistic Mathematics Education theory
used in a previous classroom teaching experiment in the literature (Andreasan,
2006) was conducted in the study. Mathematical practices were determined by
the same analysis techniques used in previously explained ones, Toulmin’s
argumentation model and Rasmussen and Stephan’s three-phase methodology

(2008). Four classroom mathematical practices were documented. Moreover,
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Content Knowledge for Teaching Mathematics (CKT-M) database described
by Hill, Schilling, and Ball (2004) was conducted to the participants as pretest
and posttest for a ten-day instructional sequence. The quantitative findings
obtained through these tests showed that students improved their understanding
of the whole numbers concept. Also, Wheeldon (2008) made a research for
prospective elementary teachers, two classroom mathematical practices have
been established by a hypothetical learning trajectory designed by Realistic
Mathematics Education theory on the concept of fractions by the same analysis
techniques based on the same methodology, Toulmin’s argumentation model
and Rasmussen and Stephan’s three-phase methodology (2008). Furthermore,
Andreasan (2006) conducted a hypothetical learning trajectory designed by
Realistic Mathematics Education theory on the concept of whole numbers and
three classroom mathematical practices were established by the same
methodology and analysis techniques.

Argumentation takes place as the flow of the ideas by expressing,
challenging and validating them. In this process, it is important for the students
to understand others’ ideas clearly, examine them based on different
perspectives and communicate about them. In this process, when the students

use tools, they can effectively represent their ideas.

The research of Johnson (2013) differentiates from the other research
explained above. The other research focus on understanding and learning
through their discussions but Johnson (2013) examined them through notations
and symbols. The researcher examined student learning through mathematical
practices as local changes and made implications. They investigated teaching
experiment conducted by Realistic Mathematics Education for abstract algebra
started with the context of symmetries of an equilateral triangle. The students
also examined the notations and symbols. The researcher made analysis by
Toulmin’s argumentation model and Rasmussen and Stephan’s three-phase
methodology (2008). The researcher determined two local changes which were

emerging symbols and notations, and the way in which they were used.
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While all of the explained research focus on the improvements of
students learning and understanding, Martin and McCrone (2003) paid
attention on the development of a skill. They investigated the classroom
mathematical practices about proof-construction ability of the teachers and
their pedagogical choices contributing to these practices. They focused on
developing the students’ proof writing skills rather than their learning of a
particular mathematical concept. Two different high school geometry classes
instructed by these teachers were observed during four-month period with
proof-based geometry lessons. The researchers determined three taken-as-
shared classroom mathematical practices. They were the importance of details
in proof writing, the understanding that only certain methods are valid for
establishing the congruence of overlapping triangles and marking diagrams as
an essential part of the proof-writing process. This research is also beneficial
since it provided information about the effect of classroom micro culture and
teachers’ pedagogical choices on the learners’ proof constructions and the

emergence of mathematical practices.

Font and Planas (2008) focus on mathematical practices in a different
perspective; that is, they emphasize different meaning of mathematical
practices explained by Godino, Batanero and Font (2007) from the definition
by Cobb et al. (2011) used in the present study. It represents the efforts to solve
mathematical problems by discussing to validate and generalize the solution.
They examined the mathematical practices, socio-mathematical norms and
semiotic conflicts based on the onto-semiotic approach. Mathematical practices
were established focusing on the cognitive conflicts through discussing and
forming the solution to a problem. Learning happened through changes in
participants’ positioning. In this respect, semiotic conflicts were explored while
the learners were solving and removing these conflicts. In the study, the data
were collected through teaching episodes designed based on problem solving.
Learning occurred understanding the experiences and interpretations of others

for socio-mathematical norms and mathematical practices.
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As it has been observed, mathematical practices have been examined
for different mathematical topics (Stephan & Akyuz, 2012; Stephan et al., 2003
Stephan & Rasmussen, 2002). On the other hand, based on the learners’ failure
in geometry and the difficulties of the students in learning and understanding of
geometry, it has become crucial to identify which practices learners form
through learning geometry. Also, it is important to think that mathematical
practices are connected to social and socio-mathematical norms as other
dimensions of interpretative framework since they emerge in a social learning
environment. Studying mathematical practices for learning geometrical concept
of triangles for preservice middle school mathematics teachers was aimed by
the problem-based learning strategy, the problem solving method and van
Hiele geometric thinking theory through geometric constructions and
argumentations in the present study. In this respect, it was also necessary for
the study to design hypothetical learning trajectory to organize the tolls and
activities and make predictions about instructional sequence in order to meet

these aims.

2.3 Social Constructivism and Mathematical Practices

Social constructivism has importance on the current study for the
emergence of classroom mathematical practices since they are developed
through emergent perspective called as social constructivism. Social
constructivism as a kind of constructivism specifies the context in a social way,
culture and learning in a collaborative way (O'Donnell & King, 1998). It
proposes that learning should be thought with social interactions because of its
socio-cultural aspects. It is created with respect to Vygotsky’s ideas (Palmer,
2005) considering the impacts of other people, language used between the
learner and the other people, objects benefited from in this social interaction,
society and culture taking place in the process of forming knowledge actively
(Jones & Brader-Araje, 2002). Also, this philosophy is about the effects of
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communication, language and culture on the process of learning (Fosnot, 1996;
Jonassen et al., 1995). According to Vygotsky, the potential of an individual
about learning can be increased by making interactions with the people having
knowledge about the related issue. In other words, through the process of
interaction taking place between learners having some amount of knowledge,
they can improve their knowledge and understanding. The amount of
knowledge obtained by communicating is more than the one obtained by
spending effort and studying alone (Liang & Gabel, 2005). The social
interactions performed with the aim of obtaining knowledge can be encouraged
with the help of language and artifacts. These artifacts refer to the tools with
the aim of shaping and transferring mental processes. This approach provides
individuals opportunities to improve knowledge and skills such as problem
solving, synthesis, critical and creative thinking and deep understanding
(Terhart, 2003).

In the environments designed with respect to the theory of social
constructivism and interpretative framework, the responsibility of the teachers
is to organize environments with the aim of acquiring and helping the learners.
Therefore, they can obtain and improve skills such as analysis, synthesis,
critical and creative thinking and deep understanding (Trigwell, Prosser &
Waterhouse, 1999). Moreover, it can be claimed that the social constructivist
approach is important because of its positive effect on the learners. In this
respect, it is necessary to design experiment based on social constructivist
approach since it provides effective learning environments (Woo & Reeves,
2007). Design experiments were used in the current study since it included
arranging significant and different kinds of learning and then working on them
in a systematic way related to the context encouraging them. Also, it was
preferred since it provided deep and effective understanding for learning
ecology. In this way, a beneficial lesson could be prepared and tested to use in
the education of mathematics teachers by design experiment. There have been

research exemplifying these studies and situations in the literature. In a
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research of design experiment, sessions for teaching with teacher, experimenter
and student in order to form small-scale version for ecology of learning were
suggested (Steffe & Thompson, 2000).

In the design experiment study of Steffe and Thompson (2000), they
collected the data about the learning and reasoning of the students by the first
hand. In this way, powerful understanding about the students’ constructions of
the concepts was obtained. According to the findings of their study,
mathematics should be taught by using the mathematical realities belonged to
the students rather than mathematical realities of the teachers. They confirmed
the fact that the mathematics must be taught considering the students’
properties such as prior knowledge, history and achievement. In a different
design experiment study, it was conducted to identify classroom practices, a
teacher had the role of being member of the research team (Cobb, 2000).
Simon (2000) proposed design experiments in which the researchers made
organization and work about education to the preservice teachers. The
researcher conducted a different application of design experiment as Teacher
Development Experience. In this methodology, the researcher served as the

instructor of the classroom.

In an example of the design experiment study of Lehrer and Schauble
(2000), the researchers helped inservice teachers improve about their
professions. They used the design experiment in their study. They investigated
the learning of the students and the teachers with 45 teachers and the students
in their classes including mathematics and science instructions. The levels of
their classes included the range of grades 1-5. This study was conducted with
the aim of obtaining knowledge to develop the process of thinking and learning
of the students and the daily practices of the teachers through the processes of
forming, testing, evaluating and modifying the models. They investigated the
learning and thinking processes of the students and the teachers based on
longitudinal changes, while they progressed through this range of grade levels.

They explained different kinds of professional development and teacher
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practices that could enhance student learning and thinking. Social constructivist
theory has been also effective about educating preservice teachers as the
teacher candidates as it has been observed in previous research (Akar, 2003;
Holt-Reynolds, 2000; Jadallah, 1996; Kroll & Laboskey, 1996). In other
words, in the present study, the design experiment was conducted based on the
social constructivism since the environments designed in this way could
contribute to the construction of understanding from many perspectives. The
learning trajectories were organized based on the roles and responsibilities of
the teachers and the learners explained in this philosophy.

The environments including the communication and interaction
between the students and the teachers are important in mathematics education
(Kovalanien & Kumpulanien, 2007). If these communication processes take
places in meaningful manner, they become beneficial to mathematics
education. The environments including such communications can also be
created with the help of design experiments and hypothetical learning
trajectories explaining the teachers’ predictions based on the students’ learning
and geometric reasoning. Also, instructional sequence providing opportunities
for mathematical argumentation can be effectively organized with design
experiment by a research team. Therefore, mathematical discourse and
argumentation as kinds of communication happening in the classrooms are

explained in the following section.

The interpretative framework as the emergent perspective or social
constructivism was used in the present study. In other words, learning taking
place in the designed instructional sequence was examined by using the
interpretative framework explaining learning based on psychological (or
individual) perspective and social (or group) perspective (Cobb, 2000; Cobb &
Yackel, 1996). In the emergent perspective, learners evaluate and determine
their mathematical understanding while they make contributions to the
mathematical practices for the groups (Cobb & Yackel, 1996; Yackel & Cobb,

1996). In that respect, sense making processes of the individuals and the groups
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are taken into consideration simultaneously and equally to identify the
classroom dynamic (Cobb, 2000; Yackel, 2002). While analyzing classroom
environment with the emergent perspective proposed by Cobb and Yackel
(1996), the interpretive framework is used to examine learning in this
environment in a different way as illustrated in Table 1.

The social and psychological perspectives are separated into three
factors. The social part of the emergent perspective includes social norms,
sociomathematical norms, and classroom mathematical practices with closed
relationship with each other. In DBR, the theories are produced based on
particular learning processes related to the design by being named as local
instruction theories. Hence, the designed learning environments and collective
learning environment based on the actual HLT implemented with supports of
learning and the behaviors of the instructor and PMSMT participating in the
study. In this way, DBR is examined in light of the designed setting and the
participants rather than all environments with curricular goals. Mathematical
practices as the focus point of the current study can be effectively examined in
a social environment in DBR so the mathematical practices can be clearly
examined through social and sociomathematical norms (Roy, 2008). The social
perspective main focus of the data collection and analysis of the current study

can be illustrated in the Table 1.

Table 1 Interpretative Framework

Social Perspective Psychological Perspective

Social norms Beliefs about one’s role, others’
roles, and general nature of

mathematical activity in school

Sociomathematical norms Mathematical beliefs and values
Classroom practices Mathematical ~ conceptions  and
activity
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The first domain of interpretative framework, social norms, is examined
benefiting from regularities taking place in the activities in the classroom and
identified jointly by instructor and the learners as the members of the
classroom community. They extract the structure of participation taking place
in instructional sequence in the classroom (Stephan & Cobb, 2003). In that
process, the identity and role of each individual are determined from the
interpretations happening in the social interactions (Yackel, 2002). The second
domain, sociomathematical norms, include “a different mathematical solution,
a sophisticated mathematical solution, an efficient mathematical solution, and
an acceptable mathematical explanation” (Cobb & Yackel, 1996, p. 178). The
last domain, classroom mathematical practices, is the domain in which the
participants produce mathematical explanations while engaging in pedagogical

content tools.

Classroom mathematical practices emerge in a social environment
based on the connection of social and socio-mathematical norms. In this
respect, it is important to design hypothetical learning trajectory to encourage
their learning through communicating in the classroom and establishing these
norms. Therefore, the hypothetical learning trajectory was designed by
geometric constructions referring to problem situations and tools and

argumentations in the current study.

2.4 Hypothetical Learning Trajectories

Learning trajectories can be stated in a way that they are “successively
more sophisticated ways of reasoning within a content domain that follow one
another as students learn” (Smith et al., 2006, p. 1). It can also be added that “a
hypothesized description of successively more sophisticated ways student
thinking about an important domain of knowledge or practice develops as

children learn about and investigate that domain over an appropriate span of
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time” (Corcoran, Mosher, & Rogat, 2009, p. 37). By HLT, teachers can make
predictions on student learning and then testing them in practice. In this
respect, it becomes possible to talk about the hypothetical nature of the
learning trajectories as a bridge linking the theory of constructivism to practice
(Duncan, 2009; Simon, 1995). In other words, in the process of the teaching
period, the teachers have the opportunity to test the designed hypothetical
learning trajectories (HLT) and make modifications based on the experiences
obtained in this process. Also, it is possible to explain the HLT as a construct
for teaching since “actual learning trajectory is not knowable in advance”
(Simon, 1995, p. 135). HLT as a way of connecting constructivist theory to
practice can be defined as “. . . the teacher’s prediction as to the path by which
learning might proceed. It is hypothetical because the actual learning trajectory
is not knowable in advance and it characterizes an expected tendency” (Simon,
1995, p. 135). Hence, the nature of HLT related to not being resistant to change
increases its benefits for teaching and learning by making necessary revisions
on it. The construct of a HLT can be accepted as a cognitive tool improving
mental processes and mathematical learning actions constructed with respect to

the philosophy of constructivism (Clements & Sarama, 2004).

In the present study, HLT based on the constructivist philosophy was
used since it provided the teachers a framework for supporting an
understanding of students’ thinking and learning of specific mathematical
concepts. HLT includes the teachers’ predictions about the progress in teaching
sequence. In other words, HLT explains the usage of the teachers’ predictions
made with respect to the teachers’ knowledge and assessments about student
knowledge and their history about how the learning may happen or how the
learning process may happen. Learning trajectories make the link between
teachers’ knowledge and their students’ actions around three elements such as
learning goals, learning activities and hypothetical learning process (Simon,
1995). In other words, in HLT, there exist learning goals of teaching process,

learning activities and the ideas about how the process will go on in the
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classroom designed based on the predictions of the teachers. The teachers make
the predictions by examining the student’s learning and reasoning carefully
considering their actions in the classroom, the results of assessments about
them and their history. In this way, HLT helps the teachers understand their
students’ learning and thinking processes. Learning trajectories are identified
as a useful attempt for assessment (Battista, 2004) and teacher education
(Wilson, Mojica, & Confrey, 2013). Moreover, when the effects of the
argumentations are explored, they provide information about the classroom
environment designed with respect to social constructivist approach as the
emergent perspective needed for the development of classroom mathematical
practices to investigate the classroom environment effectively. Mathematical
argumentations help the researchers analyze how the students share their ideas
in a systematic and clear way support and refute the others’ ideas in a scientific
way using their ideas in a collective learning environment. This form of
discussion may encourage the students participate in the classroom discourse
effectively. Also, the students need to understand the concept carefully while

producing mathematical argumentations.

In light of the explanations, it was considered that it could be important
to design the lessons for the education of preservice mathematics teachers by
using mathematical argumentations in the present study. These lessons
designed with the help of HLT were expected to be beneficial through the
process of testing the classroom experiences in a hypothetical manner
(Andreasan, 2006; Wheeldon, 2008). Then, necessary modifications could be
made based on these experiences. Also, mathematical argumentations were
expected to be beneficial for the education of preservice mathematics teachers
since they could effectively think about the theorems or properties of the
concepts of triangle and how they were produced and which kind of properties
were connected in a collective learning environment. In other words,
mathematical argumentations could direct the students to make reasoning about

the concept of the triangles. They could examine how these properties were
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formed by examining the reasons of them and the ways of this formation. In
this respect, preservice mathematics teachers could effectively understand
triangles in an environment designed with respect to the social constructivist
theory and the lessons designed as HLT and tested regularly through the
classroom experiences. HLT was designed by geometric constructions applied
by following the way suggested by Simon (1995). Also, by examining the
characteristics of the mathematical argumentations formed by the participants
through these lessons, beneficial information could be obtained to make
implications for the process of their learning and reasoning (Smith, 2010). In
this respect, beneficial lessons about triangles for training preservice middle
school mathematics teachers could be provided to the literature. This could be
an alternative and designed through the process of assessing regularly based on
the real experiences in the classrooms in order to educate preservice middle

school mathematics teachers effectively.

In the present study, the instructional sequence in which the classroom
mathematical practices emerged was performed by the hypothetical learning
trajectory. The hypothetical learning trajectory was designed based on
constructivism, social constructivism and problem-based learning. The social
learning environment helping the establishment of social norms, socio-
mathematical norms and mathematical practices was encouraged by
argumentations in which stating, analyzing, discussing and convincing the
geometrical ideas were made. Moreover, the tasks including the tools of
compass and straight edge in the hypothetical learning trajectory were designed
considering the properties of van Hiele geometry thinking levels and geometric
constructions. In other words, van Hiele geometric thinking levels were
considered to determine the preservice middle school mathematics teachers’
geometric reasoning to organize their activities referring to problem situations,
predicting their possible answers and reasoning in the study. Their van Hiele

geometric thinking levels were also provided to help them use the tools of
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straight edge and compass to examine the triangles, their properties and prove
them.

2.5 Argumentation in Mathematics Education

In design-based research, learning taking place in a social setting is an
important measure to be evaluated and social interaction is important in
providing mathematical learning (Cobb, 2000). In general perspective, by
participating in mathematical discourse which is convenient for learner-
centered classrooms, the students make reasoning aloud and explanations about
what they think and how they think about them (Hufferd-Ackles, Fuson, &
Sherin, 2004; Yackel & Cobb, 1996). In the environments including
mathematical discourse, the individuals can achieve learning and
understanding by thinking and interacting with other people. They can provide
this achievement by modifying their thinking schemes when the confusions in
their thinking in the process of the mathematical discourse are observed (Steffe
& Tzur, 1994). These environments illustrate “communication as a process of
mutual adaptation wherein individuals negotiate meanings by continually
modifying their interpretations” (Cobb & Bauersfeld, 1995, p. 8). Also, it is
clear that there exist positive impacts of communication through interactions of
teacher-student and students on learning (Lampert & Cobb, 2003).
Mathematical discourse is beneficial for the teachers since they can form an
environment including multiple ways of constructing mathematics and solving
the mathematical problems for the students (Fullerton, 1995). It is beneficial
since it provides opportunities for the students to challenge, make clear, judge
and justify their ideas related to mathematics (Andrews, 1997; Owen, 1995).

Argumentation as a kind of mathematical discourse explains how
students form mathematical justifications interpreted by them and use them in

the communications. It can be claimed that producing the mathematical
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arguments refers to the understanding of conceptual mathematics (Lampert,
1990). The students use the rules and theorems in a way that they are
memorized without questioning and knowing when, how and why to use them.
This problem can be removed by producing mathematical argumentations since
the learners can acquire the mathematical knowledge and skills necessary for
this knowledge about these theorems and rules by questioning and
understanding effectively. Also, they can improve reasoning skills necessary
for mathematical learning and understanding. Effective learning can be
provided by deep engagement of the ideas by problem solving and critical
thinking skill of argumentation so that conceptual change occurs through
argumentation practices considering their qualities (Abi-EI-Mona & Abd-El-
Khalick, 2011; Jonassen & Kim, 2010).

The term of the argumentation can be described as a “social
phenomenon, when cooperating individuals tried to adjust their intentions and
interpretations by verbally presenting the rationale of their actions”
(Krummheuer, 1995, p. 229). Argumentation can also be specified as a process
with try-outs of an individual with the aim of persuading others about a claim.
The learners can form a common shared understanding related to the concepts
by discussing and forming mathematical argumentations. While producing
argumentations and shared understandings through discussions, there exist
justifications, active negotiation of mathematical claims and modifications of
the concepts, statements and ideas used in mathematical discussions (Forman
et al., 1998). Through mathematical arguments, the importance of previous
knowledge cannot be ignored. In the process of producing arguments, the
previous knowledge is used actively with the aim of reaching a shared
understanding by discussing and producing statements about it (Cross,
Taasoobshirazi, Hendricks, & Hickey, 2008). In this respect, argumentations
are useful to examine the students’ understanding by determining mathematical
practices defined by Cobb et al. (2011). By the taken-as-shared way of

understanding, the students use the claim produced in previous argumentations
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in different parts of latter arguments. In other words, they use knowledge or
conclusion representing the claim of the previous argumentation as data,
warrant, backing or rebuttal of another argument produced in latter teaching
episodes. In this respect, there have been studies to examine the mathematical
practices of the students from different grade levels (Akyuz, 2014; Stephan &
Akyuz, 2012; Stephan & Rasmussen, 2002; Roy, 2008; Wheeldon, 2008). For
example, in the studies of Akyuz (2014), Roy (2008) and Bowers and
Nickerson (2001), the mathematical practices of preservice mathematics
teachers emerged in collective learning environment were examined. In order
to analyze their learning in social environments, Toulmin’s model of
argumentation was used. Based on mathematical argumentations, their learning

process was illustrated in taken-as-shared way.

The argumentations are useful for the learners to share and validate
their ideas about a particular concept. In this process, the elements of
Toulmin’s argumentation model represent the ways that the students express,
challenge and validate their ideas. They can be either supported by the more
than one warrant and backings or refuted by the rebuttals. Through validating
their true claims, the students can provide backings and warrants referring to
qualifications for the claims. Based on this view, Inglis, Mejia-Ramos and
Simpson (2007) conducted a research in order to examine the importance of
qualifications. They investigated modelling mathematical argumentation and
the role of qualification in the argumentations. Before conducting the study to
the participants, they considered that the more mathematically the students
think and discuss, the more qualifications they use. In this respect, in order to
emphasize that the full argumentation including warrant, backing and rebuttals
is needed to be used since they think about the concept in detail and different
perspectives. They examined the highly talented postgraduate mathematics
students’ arguments by Toulmin’s model of argumentation. It was found that
the restricted form of the model limited the learners’ thinking with absolute

conclusions and these talented mathematicians needed to use full version of the
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model to represent their ideas and reasoning effectively. This finding can result
from the case that the students validate and express their claims through
mathematically rich and connected expressions. By the study, their assumption
was confirmed and illustrated in this way. Moreover, when the students were
higher grade levels such as preservice teachers, they could use mathematical
proofs, theorems and properties in the argumentations.

Argumentations and proofs are related to each other since both of them
are composed of justifications and expressions made to convince others about
the truth of a statement (Chazan, 1993; Pedemonte, 2007). In the study of
Pedemonte (2007), the connection of argumentation with proof was examined
through the teaching experiment conducted to 12" and 13" grade students in
France and Italy. The researcher analyzed the data in order to test the
hypothesis about proof as a particular case of argumentation by Toulmin’s
model of argumentation. Also, the structures of an argumentation about a
conjecture (abduction, induction, etc.) and its proof were examined. Based on
the findings, it was observed that they had structural differences in spite of
their connection in different perspectives. This structural difference was
important while producing argumentations and proofs for the mathematical
ideas and conjectures. However, the argumentations and proofs have connected

skills encouraging each other.

In argumentations, the tools that the students use to learn the concepts
while they are engaging in their mathematical tasks facilitate their
understanding and learning. By using the tools, students can form
argumentations effectively by understanding others represented using tools.
Also, dynamic geometry software as tool enhances the students’ understanding
and learning of mathematical concepts (Athanasopoulou, 2008). In this respect,
there have been research to examine the effect of the environments enhanced
by technology on students’ argumentations (Hollebrands, Conner & Smith,
2010; Lavy, 2006; Maher et al., 2006). This effect has been examined for the
students from different grade levels. Hollebrands, Conner and Smith (2010)
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investigated the explanations of college students created in a dynamic
geometry environment based on the structure of the arguments. Their
arguments were separated into three groups with respect to the properties of the
warrants used in the classrooms considering the usage of technology. These
groups were explained by explicit warrants without technology, an explicit
warrant with technology and warrant with merely a diagram on the screen. In
the study, it was found that their argumentations and especially the properties
of the warrants changed based on the ways of using technology in the
classroom. The students produced well-qualified warrants including necessary
properties and theorems of the mathematical concepts in technological
environment when compared with non-technological environments. Also, the
effects of technological tools in argumentations for the students in lower grade
levels was examined in the studies of Lavy (2006) and Mabher et al. (2006). The
structure and content of the arguments formed by the students in a technology
enhanced classroom were analyzed by Toulmin’s model of argumentation. The
students produced arguments in an environment in which the technology was
used as mediator between students and means to collect data. These studies
found that technology had positive effects on understanding content and
explicitness of the warrants, structure of the arguments and challenging the
claims and warrants. Therefore, it can be stated that tools such as dynamic
geometry software has the facilitating role in forming argumentations. When
the tools are used effectively in the classrooms, implicit and clear warrants
understood by the students can be produced. Also, when the structure of the
arguments are compared, the ones formed by using technological tools are
better than the others.

Teachers have important responsibility in the process including
effective mathematical argumentations. They should direct the students to
participate in the discussions, to form particular claims, explain their ideas and
produce mathematical arguments including necessary terms and concepts.

There have been different research examining the effect of teachers’ roles and
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behaviors on the mathematical argumentations. Veerman, Andriessen and
Kanselaar (2002) examined collaborative argumentations of undergraduate
students formed in the eight-week course in Educational Technology and
Computer-based learning (CBL). They focused on the connection between
questioning and argumentation in different mathematical tasks. The role of the
tasks and the context were identified in the study. It was found that question
asking was related to argumentation based on the tasks, instruction, medium,
role of the participants and how to be represented in the learning situation.
Based on this study, it was found that it was important to select and design
appropriate instructional tasks and ask question accurately in order to form
argumentations. In this respect, the learning environment should be designed
including the tasks related to asking questions so that argumentations can be
formed effectively and learning can be encouraged. In this respect, the teachers

have important role of providing asking questions in the environment.

Yackel (2002) investigated the teacher roles in classrooms of the grade
levels from elementary school to college level including argumentations. It has
been found that the teachers should provide students’ mathematical activity
designed including argumentations, the negotiation about the classroom norms
in order to enhance the argumentation, opportunities for the students to make
interactions with other students with the aim of forming arguments, and
argumentative supports such as data, claim, warrants, and backing. In other
words, the teachers should support a good start point for mathematical
argumentations to the concepts and tools when they are newly produced.
Moreover, the teachers should provide instructional sequence including
beneficial argumentations by acquiring deep understanding of mathematical
concepts. The results of this study provide essential knowledge for the current
study about the role of the teacher and how to provide an environment
including mathematical argumentations. Based on the roles of teacher
explained in this study, the instructor benefited from this knowledge while

guiding and forming the discussions in the study.

42



In the study of Yackel and Cobb (1996), the roles of the teachers have
been investigated in the classrooms with argumentations. They explained that
the teachers were important since they were the formers of the mathematical
community including argumentations and they have crucial roles in this
process. With respect to the findings of the study, they proposed that social and
sociomathematical norms were important in forming argumentations since they
could affect student learning of mathematics. Furthermore, the more the
students partcipate in the process of negotiation of sociomathematical norms,
the more autonomous they became about learning. In this respect, it could be
thought that it was important to produce social and sociomathematical norms in
the classrooms to form the lessons including argumentations. Therefore,
necessary precautions were taken to provide opportunities for the students to
participate in the activities of forming them in the current study.

To conclude, there have been research about argumentations in the
literature. Through these research, it can be stated that argumentations are
effective to improve learners’ academic achievement, understanding,
conceptual learning, and reasoning in a way that they share and challenge their
ideas by problem solving and making communication with their class-mates. It
has still been necessitated to examine their argumentations through geometric
reasoning and conceptual knowledge about particular geometry concepts such
as triangles. Therefore, the present study was designed to improve preservice
middle school mathematics teachers’ learning and understanding of triangles
through argumentations. Also, geometric constructions were used since the

tools were necessary to encourage argumentations in the classrooms.

2.6 Problem-based Learning in Mathematics Education

John Dewey described problem-based learning (PBL) as a teaching

strategy in order to solve medical schools’ problems initially. Then, it has
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attained importance and functioned in all grade levels from primary to college
levels. Because it activates students to learn by using their prior knowledge and
interests and makes connections with the real world (Goodnough, 2006). In this
respect, PBL is identified as “focused, experiential learning organized around
the investigation, explanation, and resolution of meaningful problems”
(Hmelo-Silver, 2004, p. 236). PBL can be explained with the help of
constructivist approach because of their common principles. Both of them are
designed based on student-focused instructional approach. It should be
provided that the students understand and accept the purpose of learning
activities so that they can perform their main responsibility of learning
effectively. This can be encouraged by designing tasks that can be manipulated
by the learners so that they can construct their own learning and understanding
by manipulating and analyzing complex parts of the tasks and topics in order to
produce critical and creative means (van Tassel-Baska, 1998). In this process
by encouraging students to participate actively in their own learning and
learning of the others, tasks and environments challenging the students’

thinking skills should be designed based on the students.

The teachers attain the responsibility of supporting, encouraging and
facilitating the views, discussions, learning of the students and the
environment. Moreover, in PBL environment, the role of the teacher can be
explained as a facilitator or coach encouraging the learners to ask reflective
questions (Wang et al., 1998; Greenwald, 2000; Kolodner et al., 2003) that
“force them to justify their approach and explain their conclusions” (Kolodner
et al., 2003, p. 505) in a way that they continually test and revise their
hypotheses and ideas (Kolodner et al., 2003). In this process, the learners form
the solution reasoning and redesigning their thinking with the help of teacher.
The teacher asks the questions and provides the guidance for the students to
challenge their thinking and organize their own learning (Greeanwald, 2000)
by understanding and attaining the knowledge in detail and necessarily (Uyeda

et al,, 2002). In doing so, the instructor scaffolds students’ learning and
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provides clues with the help of encouraging learning and thinking as the
facilitator (Hmelo-Silver, 2004). In this case, the teacher can provide hints to
help learners solve the problem and learn it by facilitating the process. The
roles of the instructor in PBL are summarized by Torp and Linda (2002) in a
way that student learning can be provided encouraging their motivation on
problem solving by teachers’ actions about modeling and coaching strong
cognitive and metacognitive behaviors (Araz, 2007). In addition, PBL focuses
on the types of cooperative and independent learning. By cooperative learning,
the structure of the students’ works in small groups encouraging active
learning, participation, interaction and discussion is emphasized (Rivarola &
Garcia, 2000; Silberman, 1996). In this respect, it was considered that PBL was
appropriate for the current study by its explained properties. Also, it could
effectively produce an environment including the discussion and mathematical

argumentations.

The learners attain the responsibility of examination of necessary and
meaningful questions cooperatively by practicing the skills of decision making
and problem solving (Frank & Barzilai, 2004; Kolodner et al., 2003). PBL
describes a kind of learning process in which the learners have the
responsibility of learning through reasoning, decision making and problem
solving. Based on these properties of PBL, another definition of it is “a
cognitive apprenticeship approach that focuses on learning from problem-
solving experience and promotes learning of content and practices at the same
time” (Kolodner et al., 2003, p. 497) and inverting “the order of learning
procedures to make it reflect much more realistically the learning and problem
solving that occurs in professional practice” (Gallagher, Stepien, Sher, and
Workman, 1995, p. 137). In PBL, the instruction is performed by taking the
problem at the center of the learning. In this process, the instruction is the
strategy of giving students the problem and then providing the learning through
problem solving (Burgess, 2004). However, all of the questions representing

related mathematical concepts do not always refer to a problem. The problems
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providing learning in this way are ill-structured problems which are unclear
and open-ended problems used to learn new concept with prior knowledge
through finding the solution (Greenwald, 2000). In this environment, the
process of finding solution can happen with the help of others’ views and
experiences and instructor guidance (Greenwald, 2000). This way was the
critical one for the present study to produce whole class discussion in which
the learners formed mathematical argumentations. In addition to improving
problem solving skills, PBL also provides opportunities to make connection
between various topics and prior knowledge. In this respect, the instructional
sequence and hypothetical learning trajectory of the present study was designed
in light of these properties of PBL. For example, previous knowledge of
preservice middle school mathematics teachers about transformation geometry
was used to examine the congruence and similarity of triangles to learn more
complex properties of triangles in the present study. Furthermore, Frank and
Barzilai (2004) explain that there are four benefits of PBL in instructional
sequence; understanding and attaining the deep knowledge of content and
process, encouraging the independent learning and taking responsibility and
providing student learning by active engagement. Also, it can be stated that

problem solving skills are improved through problem-based learning strategy.

The common definitions of problem solving are “a situation where
something is to be found or shown and the way to find or show it is not
immediately obvious” (Grouws, 1996, p.72), “to have a problem means: to
search consciously for some action appropriate to attain a clearly conceived,
but not immediately attainable aim” (Polya, 1962, p.117) and “the situation is
unfamiliar in some sense to the individual and a clear path from the problem
conditions to the solution is not apparent” (Grouws, 1996, p.72) benefiting
from prior knowledge (Frensch & Funke, 1995) where a problem is defined as
“a situation for which one does not have a ready solution” (Henderson &

Pingry, 1953, p.248). Through these definitions, there are assumptions to be

provided for a situation to become a problem. In this respect, it can be stated
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that it is needed to determine whether a situation is problem since it changes
based on individuals and their experiences (Henderson & Pingry, 1953; Lester,
1980). Therefore, a situation is a problem in case of holding some criteria.
These criteria can be explained in a way that an individual must realize the
situation and be willing to remove it, and then he cannot directly move on the
solution process but he insists on to reach the solution (Lester, 1980).

Problems are beneficial to design “an environment for students to
reflect their conceptions about the nature of mathematics and develop a
relational understanding of mathematics” (Skemp, 1978, p.9) with the learning
opportunities. When the learners face with the problem, they have cognitive
conflict since the situation does not fit their existing knowledge. Then, they
start working on it. Through this studying process, they try to make some
modifications on their existing knowledge by learning additional ones since
“they confirm or redefine their conceptual knowledge, relearn mathematics
content and become more open to alternative ways of learning mathematics”
(Steele & Widman, 1997, p.190) since problem solving is not remembering the
memorized facts or using and following well-learned operations or procedures
(Lester, 1994). In other words, through problem solving, learners attain the
skills of organizing their mathematical ideas, participating in the discussions,
defending their ideas and convincing others on their ideas. Hence, the learners
realize the dynamic nature and structure of mathematics and attain deep insight
of mathematics (Manuel, 1998; NCTM, 2000). In this respect, the necessity of
problem solving in mathematics curriculum is understood. Hence, problem
solving is strongly proposed to be placed in school mathematics, used for

teachers and practices as much as possible for students (NCTM, 2000).

The problems are at the core of learning and doing mathematics since
problem solving provides teachers a good strategy and tool to teach
mathematical concepts (Manuel, 1998; Schroeder & Lester, 1989). Problem-
based learning including problem solving is used in classrooms as a teaching

strategy in a way that “the teaching of a mathematical topic begins with a
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problem situation that embodies key aspects of the topic, and mathematical
techniques are developed as reasonable responses to reasonable problems”
(Schroeder & Lester, 1989, p.33). Moreover, problem-based learning including
problem solving provides opportunities to present, share and discuss their
mathematical ideas and to find the solution through discussing and evaluating
(Manuel, 1998). These opportunities facilitates the formation of mathematical
argumentations and also emergence of mathematical practices. Therefore, the
HLT and instructional sequence were designed based on problem-based
learning strategy. Through engaging in problems, learners can learn and
improve their understanding of mathematical concepts (NCTM, 2000). Based
on this nature of problem-based learning, it was essential to make teaching via
problems in the instructional sequence, it was possible to identify the
classroom mathematical practices by the argumentation forming the
mathematical practices of the present study.

Problem-based learning has effect on achievement of the learners in all
grade levels with respect to the findings of many research. In the lessons
designed based on this strategy, the students are provided by the opportunities
and important practice forming useful learning environments for them. They
can attain problem-solving skills by engaging in the different contexts having
connection with real-life (Apagik, 2009; Dochy, Segers, Bossche & Gijbels,
2003; Efendioglu, 2015; Cantiirk-Giinhan & Baser, 2009). The problem-based
learning occurs in the learning environment by taking the problem at the heart
of the lessons. By using problems, the students face with the challenge
situations about particular concepts. Through understanding the problem and
designing the plan for the solution, they examined their previous knowledge in
detail. Then, when they do not form a solution plan for the problem, they try to
make connections between the related concepts they learned previously.
Hence, they understand and learn the particular concept explained in problem
situations deeply by making connections with other mathematical concepts.

Also, they illustrate success and achievement while solving the problems since
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they understand the concept effectively in problem-based learning environment
(Polya, 1962; Posamantier, 1998). These processes occur in the classrooms in
all grade levels from primary to college level. Moreover, the research in the
literature illustrate that problem-based learning improved the learners’
achievement of the students in elementary and high school grade levels
(Apagik, 2009; Boren, 2012; Cantiirk-Giinhan & Baser, 2009) and preservice
teachers (Banes, 2013; Efendioglu, 2015; Hodges, 2010).

Through engaging in problem situations in problem-based learning, the
students perform the activities and tasks cognitively. The students acquire new
knowledge benefiting from the prior knowledge. They use, elaborate and
restructure the previous knowledge (Schmidt, 1993). When the students face
with the problems for the first time, they benefit from their prior knowledge to
understand, analyze and develop a plan for solution. In this way, their prior
knowledge is strengthened. Then, they start to examine necessary knowledge to
solve the problem situation. Through problem solving, they acquire new
knowledge. In the process of acquiring the new knowledge structured by
previous one, they understand the mathematical concept deeply by sense-
making and their interests (Kahan & Wyberg, 2003). In the process of the
engagement in problem situations, understanding and comprehension of
mathematical concepts are provided (Apacik, 2009; Banes, 2013; Boren, 2012;
Cantiirk-Giinhan & Baser, 2009; McCarthy, 2001). Hence, through engaging in

the problems, they improve their understanding and learning the concept.

Through improving the conceptual understanding by problem-based
learning, the impact of this strategy on the learners’ psychological aspects such
as attitudes toward mathematics and mathematical concepts, self-efficacy,
motivation and decreasing mathematics anxiety (Banes, 2013; Boren, 2012,
Cantiirk-Glinhan & Baser, 2009). Problem-based learning provides an
environment to the students by taking the problems as the focus point of the
lessons. When the criteria of individuals’ awareness of the situation and

willingness to remove it for a situation for becoming a problem are considered,
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it can be stated that problems and also problem-based learning have
psychological effects (Lester, 1980). In this respect, it can be stated that a
situation refers to a problem because the students are willing to handle it so that
their motivation can be supported. This case encourages their motivation to
remove the challenge situation and provide solutions to the problems (Rotgans
& Schmidt, 2012). Also, the students understand and learn the mathematical
concepts through problem-based learning. Therefore, understanding and
learning are related to removing the challenge situation by providing the
solution to the problem. In this respect, it can be stated that being motivated to
solve the problem supports being motivated to learn the concept. Another
psychological aspect is self-efficacy. Self-efficacy beliefs are affected by
problem-based learning (Boren, 2012; Pajares & Graham, 1999). Because of
the definition of self-efficacy as the individuals’ judgment about their own
capabilities to perform the required tasks effectively, it affects the time and
effort needed for them to perform the tasks successfully by sustaining to
complete it (Bandura, 1997). The previous research also indicate that self-
efficacy is connected with mathematics problem solving and their performance
in solving the problems (Hoffman, 2010). Furthermore, problem-based
learning decreases the learners’ mathematics anxiety (Banes, 2013). Through
solving the problems, they actively engage in them and then they decrease their
anxiety. The previous research indicate that when the students and preservice
teachers’ mathematics anxiety was compared before and after problem-based
learning, it has been found that this strategy impacts their anxiety by
decreasing their anxiety levels. Also, problem-based learning affects the
attitudes of the students toward mathematics positively as it has been observed
in research (Banes, 2013; Cantiirk-Glinhan & Baser, 2009). Attitude is formed
through students’ past experiences as it happens in mathematics anxiety
(Allport, 1935). By problem-based learning, useful opportunities in which the
students perform the tasks effectively and represent success about

mathematical concepts can be provided to the students. Hence, problem-based

50



learning environment affects the attitudes toward mathematics positively
(Banes, 2013; Cantiirk-Giinhan & Baser, 2009).

To conclude, there have been research about problem-based learning in
the literature. Through these research, it can be stated that problem-based
learning is effective to improve learners’ academic achievement,
understanding, conceptual learning, motivation, self-efficacy and skills such as
critical thinking, sharing and challenging their ideas, problem solving and
making communication with their class-mates. However, it has been
necessitated to examine problem-based learning in social environments by
improving their argumentation skills through geometric constructions. In is
respect, the social learning environment and hypothetical learning trajectory
including argumentations and geometric constructions about triangles was

designed by problem-based learning in the present study.

2.7 Van Hiele Geometric Thinking Levels

The van Hiele theory examines the learners’ levels of reasoning about
geometric shapes in a way that learners move through various geometric
thinking levels ranging between recognizing geometric shapes and constructing
formal proof (van Hiele, 1986; van Hiele, 1999; Clements, 2004). By this
theory, understanding and learning of the students in geometry can be
examined with hierarchical levels. Instructional implications can also be made
based on their levels. Hence, this theory is beneficial for teachers. In other
words, through these levels and their properties, the theory proposes
opportunities to capture deep inside to learners’ difficulties in geometry and to
develop geometry instructions (van Hiele, 1986; Fuys, Geddes & Tischler,
1988; Pegg, 1995). The van Hiele theory focuses on five sequential and
hierarchical levels of geometric thinking (Hoffer, 1981; Usiskin, 1982; Senk,

1989). These levels can be explained as follows:
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Level O is named as visualization or recognition level. In this level,
students focus on clear physical attributes of geometric shapes so they can
determine them in this way without reasoning. They think the shape as a whole
and criticize on its visual form with standard orientation since they are not able
to analyze the shape using its elements and properties (Battista, 2007; Crowley,
1987). In this respect, the learners at this level are expected to determine,
name, compare and contrast the shapes based on their appearances ignoring the
properties of them (Fuys, Geddes & Tischler, 1988; Mayberry, 1983). In other
words, they “use of imprecise qualities to compare drawings and to identify,

characterize, and sort shapes” (Burger & Shaughnessy, 1986, p.43).

Level 1 is named as analysis or descriptive level. In this level, the
students consider about geometric shapes with their specific properties. They
can recognize and name collections of properties for geometric shapes ignoring
relationships between these properties and other geometric shapes. Moreover,
while describing and defining them, they are not able to make decisions on the
appropriateness and sufficiency of these properties (Mason, 1998). They are
not able to classify the shapes based on the relationship with other shapes and
common properties with other figures but they can form particular definitions

of geometric shapes and use them in clear and definite cases (Battista, 2007).

Level 2 is named as informal deduction, order or theoretical level. In
this level, the students can determine the “interrelationships of properties both
within figures and among figures” (p. 3), comprehend formal definitions of and
informal arguments about geometric shapes with the lack of understanding of
deduction process, axioms (Crowley, 1987) and make inferences in simple
form (Pegg, 1995). The students can form definitions of geometric shapes and
interpret class inclusions of them by forming diagrams or charts representing
the relationship between them based on their properties learned by ordering or
comparing these properties (Mayberry, 1983; van Hiele, 1999). The students

can make decisions about the appropriateness and sufficiency of the sets of
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properties to describe and define geometric shapes (Fuys, Geddes & Tischler,
1998).

Level 3 is named as deduction. In this level, the students are expected to
develop proofs about geometric shapes by reasoning logically and formally and
comprehend formal geometric statements and arguments such as axioms,
definitions and theorems (Clements & Battista, 1992). They can also form
proofs, the role of formal mathematical statements and arguments and criticize
the appropriateness and sufficiency of conditions referring to the geometric
shapes and their properties by reasoning (Pegg, 1995). Students can
comprehend formal proofs and then form their own proofs following different
ways and using different types of reasoning and strategies (Crowley, 1987). In
this respect, many high school students are expected to reach this geometric
thinking level (Shaughnessy & Burger, 1985).

Level 4 as the last van Hiele geometric thinking level and the matured
level of geometric thought is named as rigor. In this level, the students are
expected to make reasoning formally and logically about mathematical systems
and statements focusing on abstract deductions with the necessity of rigor
(Usiskin, 1982). They can also examine different deductive and axiomatic
systems by comparing them, understanding relationships between them and
constructing proofs. In this respect, they can comprehend, make reasoning and
compare in the geometries except for plane geometry (Mayberry, 1983; Feza &
Webb, 2005).

All of the levels of van Hiele geometric thinking follow a linear way in
a fixed hierarchy. They reach a level by completing the necessities of the
previous level(s) (Mason, 1998). Another property of them is adjacency. The
necessary behaviors of a level are observed in the behaviors of the students on
the latter level (Fuys, Geddes & Tischler, 1988). The students at a particular
level are expected to represent the behaviors of previous levels. These levels
are oriented in a process that these levels are separated with each other in a

qualitatively distinct level of thinking (Clements, 2004). Hence, the behaviors

53



of the students for each level can be observed and understood. Based on the
property of discontinuity referring to the lack of coherence among the levels,
the students can not represent the behaviors of any level unless if they become
matured in the previous levels (Pegg, 1995). The students at a particular level
attain and represent the properties of previous levels at the matured level.
Based on the property of retention, students can represent different van Hiele
geometric thinking levels on different geometric thinking levels (Pegg, 1995).
The students at a particular van Hiele geometric thinking level can represent
different levels. Moreover, with the property of ascendancy, the progression of
the students through these levels can be provided by instructional experiences
rather than age or biological maturation (Clements, 2004); that is, “the
transition from one level to the following is not a natural process; it takes place
under influence of a teaching — learning program” (van Hiele, 1986, p.50). The
students can represent lower van Hiele geometric thinking levels when

compared with younger students.

In order to examine the students from different grade levels, there have
been research conducted to examine their reasoning by van Hiele geometric
thinking levels. In order to train preservice mathematics teachers about
geometry knowledge and geometry teaching, the researchers focus on van
Hiele theory. Their geometry thinking was measured by van Hiele geometry
thinking levels (Aydin & Halat, 2009; Halat, 2008). For example, Halat (2008)
found that most of the preservice elementary teachers at or above level of
analysis and half of the secondary school teachers were at or above level of
ordering. Then, by comparing the properties of these levels and the required
skills and knowledge about geometry, he stated that these finding showed that
the participants at these levels had adequate content knowledge in geometry
(NCTM, 2000; Mayberry, 1983). In this respect, the preservice elementary
teachers should attain the properties of initial two levels while preservice
secondary school teachers should do initial three levels. Hence, van Hiele

geometric thinking levels can be used as predictor to make estimations about

54



preservice mathematics teachers’ academic achievement in college level
courses. Based on this view, Watson (2012) conducted a research to analyze
the relationship between van Hiele geometric thinking levels and their success
in a college level course. Then, the researcher found that the van Hiele
geometric thinking level was an important factor to predict their success in this
kind of class. In this respect, it can be stated that van Hiele geometry thinking
levels can be used to predict their existing geometric reasoning so that their

improvement in geometry courses can be provided in this way.

The instructions and activities can be designed based on the predictor
role of van Hiele geometric thinking levels since the students at the same level
can tend to have similar amount of geometry knowledge and behave similarly.
In other words, van Hiele geometric thinking levels are predictors for the
achievement of the students because the students at the same levels tend to
reason about the geometric concepts similarly (Hill, 2013; Wang, 2011. In this
respect, this case provides that Wang (2011) thought that the students at the
same van Hiele geometric thinking levels represent similar actions engaging in
the activities. The prospective elementary school teachers’ geometric thinking
through geometric discourses about the classification of quadrilaterals based on
van Hiele theory was examined. The study focused on the similarities and
differences between the discourses of the participants at the same van Hiele
geometric thinking level and the changes on the discourses based on the
improvement on their geometric thinking levels. The teaching episodes were
designed in order to help them reach the required van Hiele geometric thinking
level; that is, informal deduction level. Based on the results of the study, the
students reached this level and represent similar actions. The participants at the
ordering level named the geometrical shapes correctly and determined their
properties. Although they made correct logical expressions using their main
elements of angles and sides, they could not use all of the auxiliary elements
such as diagonals. Also, they could not effectively construct proofs by

deductive reasoning and abstract thinking. Viglieti (2011) also added that the
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learners at this same level provided incomplete and incorrect answers for the
geometric shapes except for triangle, isosceles triangle and quadrilaterals. In
this respect, the properties of van Hiele geometric thinking levels are useful to
design instructions since useful activities and pedagogical supports can be
provided by determining the students’ van Hiele geometric thinking levels and
separating them into groups. By determining the students at the same van Hiele
levels, the instruction can be designed effectively. Also, useful predictions
about the instructional sequence for the hypothetical learning trajectory can be

made in geometry lessons.

When a problem is defined as a challenge situation, beneficial problem
situations can be selected and designed using van Hiele geometric thinking
levels. Moreover, the students can learn their geometric reasoning while
providing the solutions to the problems. Based on this view, van Putten (2008)
examined the van Hiele geometric thinking levels of preservice mathematics
educators through using their content knowledge of plane geometry in
geometric problem solving situations and their progression of geometric
thinking levels. Their progress was investigated through mathematics teacher
education system. In this study, the relationship between problem solving and
geometric thinking was explored. They provided geometry problems to solve
and the students engaged in these problems and they attained and improved
geometry knowledge and understanding. It was found that by geometric
problem solving and attending the course, they improved their geometric
thinking. In this respect, geometric thinking and problem solving is connected.
Hence, problem situations can be formed by van Hiele geometric thinking

levels and geometric thinking can be improved by problem solving activities.

Van Hiele geometry thinking levels are also used in order to examine
their knowledge and skills about geometrical proof having critical importance
in geometry education. There have been research to explore their connection in
the literature (Aydm & Halat, 2009; Dimakos & Nikoloudakis, 2008; Wang &
Kinzel, 2014). Aydm and Halat (2009) and Dimakos and Nikoloudakis (2008)
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explored the relationship between the proof and geometric thinking. They
conducted the research to test this relationship by designing tasks about
geometrical proofs and then their geometric thinking improvement through
these tasks was explored. It was observed that the students in the course
including proof activities represented higher geometric reasoning stages and
proof activities improved geometric reasoning. In this respect, while improving
the students’ proof constructing skills and knowledge in geometry, it is

necessary to improve their geometric thinking.

These levels have relationship with pedagogy proposing suggestions for
the instruction in geometry. With this aim, van Hiele theory provides five-
phase instruction representing the students’ progress (van Hiele, 1986; Mason,
1998). The first phase is information in which the students attain deep
knowledge about the geometrical concept using their previous knowledge and
own language (Pegg, 1995). Then, in guided orientation phase, the students are
expected to participate in carefully structured geometrical tasks generally
permitting only one solution (Mason, 1998; van Hiele, 1986). After completing
these tasks, explication phase begins and the students are aware of what they
have learned and begin to use appropriate mathematical terms and symbols to
communicate. Afterwards, in the free orientation phase, students engage in the
geometrical tasks representing problem situations with more than one path
solution (van Hiele, 1986). In the last phase, integration, the students attain
necessary deep knowledge about the concepts in geometry and construct an
overview about them. These five phases are related to the descriptions of van
Hiele geometric thinking levels. Teachers can help student pass from one level

to the next level successfully following these phases (Pegg, 1995).

There have been research in the literature in order to illustrate the effect
of these phases on the students’ geometric thinking and geometry achievement
(Abdullah & Zakaria, 2012/2013; Meng & Idris, 2012). Meng and Idris (2012)
designed learning environment supported by Geometer’s Sketchpad and

implemented the activities about solid geometry based on van Hiele phases. By
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exploring the effect of van Hiele phase-based learning on the students’
geometric thinking and achievement about this concept, they realized that this
instructional sequence improved the participants’ geometric thinking and
achievement in solid geometry. Abdullah and Zakaria (2013) also studied
about the impact of van Hiele phase-based learning on students’ geometric
thinking. In this quasi-experimental study, 94 secondary school students were
divided into two groups and taught during six weeks. Based on the van Hiele’
Geometry Test result, the students taught by van Hiele phase-based learning
showed better level of geometric thinking in a way that all of the students
showed complete acquisition of initial two levels and most of the students
represented the high acquisition of the third level of van Hiele geometric
thinking. Moreover, Abdullah and Zakaria (2012) investigated the views of
experts and preservice teachers about the activities designed based on van
Hiele phases in order to obtain detail information about the effects of these
phases. In their study, they designed learning environment by Geometer’s
Sketchpad as a tool about the geometrical concept of quadrilaterals. Then,
these activities were examined by 10 experts and 24 final year preservice
teachers. They explained that these activities were beneficial about pedagogical
usability criteria and should be used in order to teach and learn geometry.
These studies illustrate that van Hiele phases are useful to be used in geometry
instructions in order to help students examine geometrical concepts effectively

and deeply based on their properties and connections between them.

Through these previous research in the literature, it can be stated that
the phases and descriptions of van Hiele geometric thinking levels support an
environment designed by problem-based learning. Moreover, it encourages
formation of a classroom including collective argumentation. In this respect, it
was necessary to examine and use them while designing the hypothetical
learning trajectory and applying it in an instructional sequence. In the current
study, the van Hiele geometric thinking levels and phases were benefited from

in order to design an effective hypothetical learning trajectory and to form
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instructional sequence in the classrooms about the concept of triangles for
preservice middle school mathematics teachers with the aim of determining
their mathematical practices. These levels was also used to design and organize
the activities of geometric constructions by compass and straight edge to help
them use these tools effectively. Furthermore, by examining van Hiele
geometry thinking levels, it was aimed to understand the effects of geometric
constructions effectively in the study.

2.8 Geometric Constructions in Mathematics Education

Geometric constructions are important in mathematics education to
teach Euclidean geometry focusing on constructing geometric shapes by
compass and straight edge (Stillwell, 2000; Janicic, 2010). Euclid examined the
geometric shapes, their properties and theorems through construction in his
book of “Elements” so that construction has taken place in geometry and
mathematics education (Karakus, 2014). Geometric constructions are
systematic steps in order to form geometric entities in the way of producing
intended geometric shapes following particular basic and complex steps of
sequence by compass and straight edge (Demiray & Capa-Aydm, 2015; Djoric
& Janicic, 2004). They also have pedagogical importance in geometry learning
and teaching. They are used to explore the work of Greek mathematicians such
as Euclid and Pythagoras taking important role in mathematics curricula of all
grade levels (Sanders, 1998). They are strongly related to proof, geometric
understanding, geometrical knowledge, problem solving, psycho-motor skills,
in-depth thinking and relational understanding (Ameis, 2005; Cheung, 2011,
Giiven, 2006; Karakus, 2014; Khoh, 1997; Kuzle, 2013; Napitupulu, 2001;
Posamentier, 2000; Tapan & Arslan, 2009).

Through geometric constructions, learners engage in the tasks using

compass and straight edge. By following the sequence of the steps, they
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improve their psycho-motor skills. However, by following these steps, they
encourage geometry achievement and conceptual knowledge when they are
used effectively as instructional tools in a planned way. In this respect, the
construction activities do not only develop psychomotor skills by using
compass and ruler and also improve cognitive skills, geometric understanding
and knowledge about forming geometric shapes (Cherowitzo, 2006).
Therefore, the construction activities improve physical and cognitive
mathematical skills of the learners. In the process of construction activities, the
learners do not only examine how to construct the shapes examining and they
also understand its properties (Erduran & Yesildere, 2010; Napitpulu, 2001;
Hoffer, 1981). They form the geometric shapes by discovering their critical
attributes and properties based on the relationship between them through
constructing them by compass and straight edge. In this way, they improve
their conceptual knowledge and relational understanding of the geometric
shapes and they think about the shapes in detail (Cheung, 2011; Hoffer, 1981;
Napitupulu, 2001). In this process, they examined the geometric shapes and
their properties benefiting from other shapes and their properties (Khoh, 1997).
For example, they can construct quadrilaterals by triangles, angle and
perpendicular bisectors by rhombus and isosceles triangles. Hence, relational
understanding can be provided by in-depth thinking and understanding of the
shapes by using the tools, compass and straight edge. By improving relational
understanding between geometric shapes, geometric constructions develop van

Hiele geometric understanding (De Villiers, 2003; Napitupulu, 2001).

Based on the views about the effects of geometric constructions on
relational understanding, there have been research in the literature (Erduran &
Yesildere, 2010; Karakus, 2014; Khoh, 1997; Kuzle, 2013). In this respect,
Khoh (1997) conducted a research about geometric constructions by compass
and straight edge in order to explore the students’ relational understanding and
higher order thinking skills. The students engaged in three-stage construction

and problem solving activities. They were designed about isosceles triangles,
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rhombuses, kites, angle and perpendicular bisectors. They constructed and
justified these geometric shapes benefiting from other geometric shapes and
their properties such as constructing angle bisector by isosceles triangle or
parallelogram. By constructing the angle bisector of an angle, some of them
used the knowledge that angle bisector of the angle having angle measure from
other interior angles of an isosceles triangle was coincident with altitude,
perpendicular bisector and median of the edge opposite of this angle. Also,
some participants used the knowledge that the diagonal of a parallelogram
separates the angles into two parts having equal angle measures. By doing so,
they made connection between these knowledge so that they improved their
relational understanding and their reasoning. It was found that these activities
improved making relationship between the geometrical concepts and thinking
skills. Also, Erduran and Yesildere (2010), Karakus (2014) and Kuzle (2013)
also supported the view that the relational understanding can be encouraged by
geometric constructions with compass and straight edge by their research. They
state that the constructions support relational understanding by constructing
geometric shapes by using other geometric shapes and their properties.
Therefore, geometric constructions should be used in geometry classrooms so
that the students use other geometric shapes and their properties by examining
and learning a particular a geometric shape. In this way, geometrical
constructions improve their achievement in geometrical concepts. By relational
understanding, they can obtain subject matter knowledge and understand the
concepts by increasing their achievement in geometry (Giliven, 2006;

Napitupulu, 2001; Tapan & Arslan, 2009).

Geometric constructions are not appropriate to use for the learners at
van Hiele level-0 since they focus on the appearance of the shapes rather than
their properties. However, the learners at other van Hiele levels can engage in
construction activities. Also, in transition from Level-1 to Level-ll, they are
beneficial and effective since they can analyze the shapes and their properties

based on the relationship between them in detail (De Villiers, 2003;
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Napitupulu, 2001; Posamentier, 2000). Therefore, geometric constructions can
improve learners’ van Hiele geometric thinking levels, critical thinking and
mathematical thinking (Cheung, 2011; Giiven, 2006; Kuzle, 2013; Napitupulu,
2001). Based on this view, there have been research to examine the effects of
geometric constructions on geometric thinking. In the study of Napitupulu
(2001), the effect of geometric constructions by compass and straight edge on
the preservice mathematics teachers’ van Hiele geometric thinking levels and
learning geometry was examined. The participants were selected from the
students of an undergraduate course. They engaged in basic and complex
construction activities about the geometric shapes such as quadrilaterals and
triangles. The researcher found that construction activities improved the
preservice mathematics teachers’ van Hiele geometric thinking levels
providing their geometry learning. It was also emphasized that construction
activities were beneficial in transition from van Hiele geometric thinking level
of Analytic to the level of Abstract. In another study (Giiven, 2006), the effect
of geometric constructions on van Hiele geometric thinking levels was
examined for the seventh and eighth grade students. In this quasi experimental
research design, the results showed that the participants improved their
activities of construction and drawing improved geometry achievement and

van Hiele geometric thinking.

Smart (1998) explains geometric constructions as a strategy of solving
geometry problems based on particular set of rules including basic and
complex steps. It is added that they include actions of providing theoretically
correct and satisfactory solutions to the problems rather than drawing figures
supporting particular conditions. The geometric constructions are accepted as
providing solution to a problem rather than drawing shapes based on applying
fixed particular rules or steps (Erduran & Yesildere, 2010). Posamentier (2000)
states the connection of geometric constructions with problem solving in a way
that they are “reinforcement of many different geometric concepts and

relationships and for the development of problem-solving skills” (p.1). In
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geometric constructions, the learners have difficulty in deciding how to
construct a geometric shape when they face with it at the beginning. Initially,
they have challenge how to construct the shape by compass and straight edge
and how and which steps to follow (Erduran & Yesildere, 2010). Another
challenge situation in constructions occurs in justifying that the solution is
accurate and satisfactory. Erduran and Yesildere (2010) conducted a research
in order to examine the relationship between problem solving and geometric
constructions. They examined the process of mathematics teachers’
constructing geometric shapes by compass and straight edge by collecting data
about their learning and ideas about constructing geometric structures. They
found that learning occurred effectively when the participants did not follow
construction steps in rote manner. By doing so, they engaged in geometric
constructions as problem situations, they improved their problem solving skills.
Also, it can be stated that a situation becomes a problem if the students are
willing to handle and remove it. These cases improve the students’ motivation.
In other words, problem situations encourage their motivation to remove the
challenge situation and provide solution to the problems (Rotgans & Schmidt,
2012). When the view that geometric constructions refer to problems, it can be
stated that geometric constructions can improve the learners’ motivation

toward geometry and geometrical concepts (Erduran & Yesildere, 2010).

The learners form hypothesis about the possibility and the way of
constructing geometric shapes, organize their ideas and solutions, test their
hypothesis, evaluate and analyze their solutions, geometric shapes and their
reasoning in geometric construction (Cherowitzo, 2006; Karakus, 2014; Lim-
Teo, 1997). Hence, it can be stated that these actions can encourage the
scientific skills and facilitate the social environment including argumentations.
In this respect, the construction activities could be beneficial to help the
learners form the argumentations by which the classroom mathematical
practices emerged. Also, the constructions provide opportunities in order to

examine postulates, rules, theorems and properties about geometric shapes
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since it proposes a different way with the straight edge and the compass to
justify them. They necessitate to justify the solution of the geometric
construction problem since providing accurate constructions means discovering
the appropriate knowledge and justifying it in a mathematically correct way
(Giiven, 2006; Ciftci & Tatar, 2014). When the justification of the shapes
constructed by compass and straight edge is considered, this process can
include proof construction and proof writing. Through constructing the
geometric shape, the solution of the construction problem necessitate to show
and prove that formed figure is the required shape in the problem (Chan, 2006;
Napitupulu, 2001). Therefore, geometric constructions improve the learners’
constructing and writing proofs (Napitupulu, 2001; Tapan & Arslan, 2009). In
order to examine the relationship between geometric constructions and proof,
Tapan and Arslan (2009) investigated preservice teachers’ drawings and
justifications about geometric constructions by asking the participants to solve
geometrical constructions by compass and straight edge and prove their
constructions. They found that although they had difficulty in transferring their
geometrical knowledge to constructing and justifying them previously, they
formed and developed arguments by geometrical reasoning and subject matter
knowledge while engaging in the geometric constructions. Also, the
participants formed different types of justifications through the process of
constructing geometric shapes. Moreover, in the study of Cheung (2011), the
effect of geometric constructions by compass and straight edge on justification
and constructing proofs was confirmed. It was found that construction
activities improved geometric knowledge, critical thinking and skills of
justification and proving. It was added that construction activities enhance
learning environment in which the students developed their communication
skills. Therefore, geometric constructions are useful tools to be used in
geometry lessons to help the students learn how to justify and prove the

expressions by communicating their ideas and strategies.
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When the literature is examined, it is observed that there exist limited
research about geometric constructions (Demiray & Capa-Aydm, 2015;
Erduran & Yesildere, 2010). Through these research, it can be stated that
geometric constructions are effective to improve learners’ geometry
achievement, understanding, conceptual learning, motivation, geometric
thinking, proving and skills such as critical thinking, sharing and challenging
their ideas and problem solving. However, it has been necessitated to examine
geometric constructions in social environments with their argumentation skills
about particular geometry concepts. In this respect, HLT in the present study
was designed using geometrical constructions to be used in an instructional
sequence including argumentations. Because of supportive effect of
argumentations on learning and reasoning, the level of van Hiele geometric
thinking levels of preservice mathematics teachers and geometric constructions

took important place in the present study.

2.9 Proof and Geometric Constructions

Geometric constructions explore the properties of the shapes by
representing them through drawings and then proving geometrical explanations
(Chan, 2006; Napitupulu, 2001). Furthermore, geometric constructions provide
opportunities about proofs by explaining that the students learn how to
determine whether a statement is conclusion or premise by their causal
relationship using the logical structure of if-part and then-part in the
expressions (De Villiers, 2003). When van Hiele geometric thinking levels of
the participants of the study were considered in the present study, they could be
expected to provide proofs for the geometric constructions. In this process,
proof is beneficial for constructions since it does not only indicate accuracy or
inaccuracy of a statement but also illustrate why it is correct (Hanna, 2000).
Even proving is commonly an effort for putting across the correctness or
incorrectness of a claim or a result with enough evidences (Garnier & Taylor,
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1997). The meaning of proving is removing or creating doubts related to the
accuracy of a statement. Proving includes two sub-processes: first process
focuses on understanding the truth in order to remove own doubts, the second
one concerns about convincing the others to remove their doubts about the
statement (Harel & Sowder, 1998).

In literature about proof, several definitions of it have been produced.
Traditionally, proof has been accepted as verification of correctness of the
statement and used mainly to remove personal and social doubts (Hanna,
2000). Hanna (2000) stated that proof is an argument that may assume several
different forms as long as it is justified. According to Bell (1978), proof
provides a way of individuals’ reaching conclusion by justifying, convicting
and communicating rather than producing formal arguments. Selden and
Selden (2003) refer to proof as “texts that establish the truth of theorems”
whereas Stylianides and Stylianides (2009) define it as an argument for the
truth of a statement that is “general, valid and accessible to the members of the
community”. Proof process consists of three different but interrelated stages:
investigation of the subject which will be proved, organization of proof and
explanation of it to the others. The individuals analyze the statement or
problem, investigate its correctness and design the proof by benefiting from the
theorems proved previously. This process ends with forming proof or showing

incorrectness of the statement (Lee, 2002).

There are two components of proof. One of them is reasoning as a
concept facilitating the generalization along with the processes of explanation,
exploring and organization (Mingus & Grassl, 1999). Proof process includes
both inductive and deductive reasoning. In deductive reasoning, implication
process initiates generally and ends specifically by providing necessary
evidence about the accurate of the final statements. In inductive reasoning,
inference process proceeds from particular to general and probable without
providing necessary evidence for conclusion. Another component of proof is

communication. Proof is a way used for sharing the results and arguments,
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constitution of the mathematical concepts, learning and presenting the
generalizations. However, students have difficulties in explaining their results
and expressing various ways followed in solution process. Yet, validating the
answers by evidences and proving have crucial part in development and
alteration of mathematical reasoning (Flores, 2002). Because, when students
try to clarify and defend their results, it provides using the mathematical
expressions more meaningfully (Forman, McCormick & Donato, 1998).
Thurston (1994) believes that proof leads to mathematical understanding and
helps learners think more clearly about mathematics. Therefore, proof has
important place in mathematics (Hanna, 2000).

In general, there are several functions of proof. The list of functions of
proof includes verification of the statement, reasoning about its correctness,
documenting the results systematically deductively by axioms and theorems,
inventing new conclusions, interacting by mathematical ideas, formation of a
theory empirically, investigation the roles of definitions or the conclusions of
an assumption and interacting with previous mathematical knowledge based on
a new framework (de Villiers, 1990; Hanna, 2000). In addition to these
functions, the most important contribution of proof is supporting mathematical
understanding (Hanna, 2000). According to Bernard (1989), learning proof is
necessary for holding a good awareness and appreciation of mathematics and
gaining interest in mathematics. The learners defend that the characteristics
such as mathematical curiosity, precision of thought and mathematical proof
are needed to be promoted in order to serve the aims of a good education and
training, to present a correct picture of mathematics and to provide interest in

the subject.

By considering the importance of proofs and proving, there have been
research with the aim of identifying the students’ proving skills in different
grade levels (Giiler, Ozdemir & Dikici, 2012; McCrone & Martin, 2009; Ozer
& Arikan, 2002; Selden & Selden, 2003). Selden and Selden (2003) conducted

a research about the concept of validity related to proof to university students.
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A range of mathematical expressions referring to correct and incorrect proofs
was designed and the students were asked to determine whether these
expressions were valid or invalid. They found that the students had difficulties
in distinguishing correct and incorrect justifications and their abilities of
defining the meaning of proof were poor. In another study about the proof
levels of the students, Giiler, Ozdemir and Dikici (2012) and Ozer and Arikan
(2002) found that the levels of the students were not at required level and they
could not prove by using material and examining the skills and levels of
proving of the students. It was also stated that the ability of using the methods
and techniques of proving were not at the required level. Also, the findings of
the study of McCrone and Martin (2009) illustrated that students were not
aware of what kind of formal proof was required and they might think that they
proved a judgement based on only one example. Stylianides, Stylianides and
Philippou (2007) stated that preservice teachers had difficulty in proving
because teacher training programs did not focus on the concepts related to
proof. Also, Jones (2000) explained that they did not have rich proof schemes.
The research show that the students’ skills and knowledge are poor and not at
the required level. However, their levels can be improved. In this respect, the
preservice teachers should be trained to improve preservice mathematics
teachers’ skills and knowledge of proof. Therefore, the present study was
conducted in order to improve preservice middle school mathematics teachers’

skills and knowledge of proofs necessitated to justify geometric constructions.

The skills and levels about proofs can be developed by providing
instructions including the tasks of proofs. The research have showed that
effective instructions impact the proof skills. There have been research to
examine the impact of instruction including proof activities on learning and
understanding of the students about proofs (Martin et al., 2005; Flores, 2006).
Martin et al. (2005) investigated the relationship between instruction of
proving and learning of it. Researchers focused on interaction between the

actions of both teacher and student, classroom discourse and their effects on
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students’ learning of proof through four-week instruction. It was observed that
the students began to construct formal proof participating in the teaching
episodes supported by communication and discussion. Also, the use of analytic
proof schemes showed that the students had good qualities in proving after
instruction on proving supported by interaction and communication among the
students and teacher. In the study of Flores (2006), the researcher wanted the
students to explain why the concepts which they learned were correct. The
students were asked to indicate what they learned like rule, assumption, and
procedure and to provide justifications about why they worked in engaging in
the tasks. It was found that most of the students’ shared limited ideas,
knowledge and proofs regarding how they thought and what they learned. In
addition, it was stated that the students tended to prove the mathematical
statements in a way that their teachers did or they saw in the textbooks.
Therefore, the instructions should be designed based on proofs and different
proving strategies for the students. Hence, the students can prove mathematical

expressions effectively by learning proving effectively.

In recent years, there have been tendency to examine the subjects such
as proving, reasoning and argumentation in educational research (Heinze &
Reis, 2003). This tendency results from different views based on the case that
the effective communications occurring in the classrooms among the students
and teachers in the classroom (Martin et al., 2005). One of the views is that
proof is seen as the one of the most essential topics taken at the hearth of
mathematics and mathematics education (Knuth, 2002; Lee, 2002). Many
researchers and curriculum developers defend that proof must become an
integral part of the students’ mathematical experiences from all grades
(NCTM, 2000). Another view is provided based on their understanding since
proof increases mathematical understanding, mathematical discover and
connections among mathematical ideas (Stylianides, 2007). It provides
conceptual understanding by exploring the reasons (Carpenter, Franke & Levi,

2003). Moreover, it is stated that proof and argumentations are related since
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both of them encourage the skills of critical reasoning and evaluating. For
example, Stylianides and Stylianides (2009) investigated preservice teachers’
skills of proving and evaluating their own proof. Researchers prepared and
implemented proving-evaluating activities. The findings showed that most of
the students constructed correct proof, some of them formed invalid proofs and
some of them represented empirical judgements. In this respect, preservice
teachers should be provided to evaluate their own proof so that they can

improve their skills of evaluating.

According to Hart (1994), there should be research focusing on
cognitive processes. For example, thinking processes of learners such as
preservice mathematics teachers should be made to explore their proving
processes with the mistakes by reasoning in these processes (Weber, 2001).
Besides, most of the students do not know how to prove and they must use
initial step for proving, the conceptual knowledge and definitions in proving
process (Weber, 2001; Sari, Altun, & Askar, 2007). There are many research
aiming to illustrate the opinions related to proof and the processes of proving
of the students, preservice teachers and teachers in literature (Jones, 2000;
Weber, 2001; Knuth, 2002; Stylianides, Stylianides & Philippou, 2007).

The previous research illustrate that the students in all grade levels have
difficulties in understanding, caring and constructing proof (Moore, 1994;
Jones, 2000). These difficulties are not appeared only in proving but also in
remembering what proof is (Chazan, 1993; Moore, 1994). In general, students
have difficulties in comprehending, appreciating, constructing, following the
steps of reasoning and formulating their proofs. In addition, most of the
students do not know how to prove, start and use the knowledge and definitions
of the necessary concepts (Weber, 2001). Weber (2001) evaluates the students’
difficulties related to proving in terms of two perspectives. The former is that
example(s) for accuracy are enough for proving and students have incorrect
considerations about how proof must be. The latter is that students

inadequately understand and apply a concept or theorem. Baker (1996)
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determines that students have difficulties in proof techniques in terms of both
conceptual and operational aspects. They give more importance operational
aspect of proof rather than conceptual aspect. It is believed that the deficiencies
of students in mathematical knowledge cause these difficulties (Tatar & Dikici,
2008). Through these research, it can be stated that proofs are important in
mathematics education especially training preservice mathematics teachers.
The research show that despite of the importance of proof, preservice
mathematics teachers do not have necessary knowledge and skills about proofs.
Therefore, they need to educate them to develop their proving skills. In this
way, their geometric reasoning and geometry knowledge can be encouraged.
Geometric constructions are useful to encourage their improvement in proving
and proofs are necessary to justify the truth of the geometric shapes constructed
by compass and straight edge. Hence, it has been necessitated to examine
geometric constructions in social environments with their argumentation skills
about particular geometry concepts in a way that their skill of proving was
developed. In this respect, HLT in the present study was designed using
geometrical constructions to be used in an instructional sequence including
argumentations. Because of the nature of geometric constructions and the level
of van Hiele geometric thinking levels of preservice mathematics teachers,
proofs were formed through geometric constructions and argumentations about

triangles in the present study.

2.10 Triangles and Mathematics Education

Triangles are one of the basic and common geometric shapes
developing the geometric world and being used in the design of buildings and
bridges in the real life. Moreover, it is important since it can be used to
construct other geometric shapes and make calculations on them such as
calculating area of a parallelogram and rectangle by a triangle (Fey, 1982). In
this respect, triangles are important to understand and learn other geometric
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shapes and their properties. However, triangles have importance in teaching
geometry, and learners from all grade levels have difficulty in learning
triangles (Damarin, 1981; Vinner & Hershkowitz, 1980). In other words,
although it has importance in geometry for learners, triangles are hard to learn
for them. One of the reasons of this situation is the fact that triangles are taught
as content-specific facts rather than triangles as a concept (Gillingham & Price,
1987). Moreover, the definition of triangles and applying these definitions on
new examples should be emphasized (Vinner & Hershkowitz, 1980). Also,
triangles can be learned effectively through the instruction dominated by
numerous examples and non-examples of triangles (Wilson, 1982). In addition
to the usage of examples and non-examples of triangles in instruction,
hierarchical relationships should be used in instructional designs for the
geometric objects such as triangles (Novak & Tyler, 1977).

Through the literature and historical development of geometric shapes,
triangles have critical importance. Through this developmental process, the
necessary properties of triangles needed to learn geometry are determined.
Euclid’s book of “Elements” (approximately 300 BC) was used as an effective
beginning for learning geometry for more than twenty centuries (Morrow,
1970). In this book, he defined geometric objects such as a point, a line, a
straight line, a surface, a plane surface, a plane angle and types of angles, a
circle, a semicircle, rectilinear figures, trilateral figures, quadrilateral figures,
and then the concept of parallel lines. By these definitions, he emphasized the
classification of triangles. In this classification, the main elements of triangles
were analyzed, the analysis was performed by them (Morrow, 1970). Then,
Proclus examined the types of triangles through their definitions and the
relationship between them. For example, it was stated that “From these
classifications you can understand that the species of triangle are seven in all,
neither more nor less. The equilateral triangle is one only and is acute-angled;
but each of the other two has three kinds. The isosceles is either right angled,

obtuse-angled, or acute-angled; and the scalene likewise has the same three
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forms” (Morrow, 1970, pp.132-133). The classification necessitates
generalization, abstraction and making connections about types of triangles by
attaining knowledge of triangles. Nowadays, these explanations are still used in
the classrooms while teaching triangles. In this respect, the classification of
triangles was placed in the hypothetical learning trajectory of the present study
through the PMSMT’s learning of triangles because of its importance on the

historical development of triangles.

After the definitions and postulates, Euclid examined criteria of
congruence of triangles in his book of the “Elements”. Also, he insisted on the
definitions of similar and congruent triangles. Euclid proposes similarity of two
triangles in the Book VI of the “Elements”. This process was started benefiting
from the definition of two similar rectilinear objects such as “similar rectilinear
figures are such as have their angles severally equal and the sides about the
equal angles proportional” (Heath, 1956, vol. 2, p. 188). Moreover, the criteria
of similar triangles were examined by Euclid. 4", 5" and 6™ propositions
taking place in Book VI of Euclid examined the proofs of the criteria of
similarity of triangles. Proposition 4 is “in equiangular triangles the sides about
the equal angles are proportional, and those are corresponding sides which
subtend the equal angles (Heath, 1956, vol. 2, p. 200). Proposition 5 is “if two
triangles have their sides proportional, the triangles will be equiangular and
will have those angles equal which the corresponding sides subtend” (Heath,
1956, vol. 2, p. 202). Lastly, proposition 6 is “if two triangles have one angle
equal to one angle and the sides about the equal angles proportional, the
triangles will be equiangular and will have those angles equal which the
corresponding sides subtend” (Heath, 1956, vol. 2, p. 204). Then, this process
continued with the similarity of triangles having the roots from the study of
Thales (624-547 B.C.) with the evidence of Heath (1921/1981, vol. 1) stating
the Hieronymus’s, a pupil of Aristotle, about it with the quotation of Diogenes
Laertius, “Hieronymus says that he even succeeded in measuring the pyramids

by observation of the length of their shadow at the moment when our shadows
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are equal to our own height” (p. 129). The way representing the root of Thales’
method is still used in much literature for the concept of triangles. Moreover,
there are real life problems taking place in the textbooks and representing it.
Through this developmental process of triangles in history, the similarity and
congruence of triangles have been important to be emphasized in the study.
Moreover, the criteria of similarity on triangles were explained by comparing
the main elements of triangles through examples and generalization.

When the literature is examined, it is observed that there are beneficial
studies examining learning of the students and teachers and teaching of
teachers about the concept of triangles. While working with kindergarten
children including 65 children aged 5-6 years-old, Tsamir, Tirosh and
Levenson (2008) examined intuitive non-examples and the features making
these non-examples intuitive for triangles. By using non-examples of triangles,
teachers help students reason by attaining knowledge about their thinking of
triangles benefiting from the previous research of Clements et al. (1999). In
this process, the researchers stated that the students were encouraged to form
concept images by concept definitions so that definitions were important to
criticize the visual of triangles and their attributes to understand triangles. Also,
the process of determining whether the geometric objects were triangles based
on their visual form was the beginning level for geometric thinking and
analytical judgment by attributes of geometric objects and their critical
attributes. Moreover, Tsamir, Tirosh, Levenson, Barkai and Tabach (2014)
examined the concept images and definitions of triangles, circles and cylinders.
The participants were composed of early-years teachers. They found that the
triangle definitions made by them were examined by considering necessary
attributes of the triangle. Also, they added that formation of correct definition
of triangle did not mean that they determined the triangle shapes correctly so
the definitions and concept images should be examined. Also, Ward (2004)
investigated the concept images and mathematical definitions of preservice

teachers that would teach mathematics in K-8 about polygons. In the study, the
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participants were asked to identify the triangles and different types of triangles

such as right triangles among a collection of shapes of triangles.

In the literature, there have been research to examine the effects of
argumentations in an environment including mathematical argumentations on
the students’ understanding of the concepts (Abi-El-Mona & Abd-El-Khalick,
2011; Alatorre, Flores & Mendilo, 2012; Smith, 2010). In the study of Smith
(2010), the researcher compared the middle school students’ mathematical
arguments in technological and non-technological environments about the
concept of triangles. With the teaching experiment taking place in two 8" grade
classrooms; one designed with Geometer’s Sketchpad and the other one
designed by non-technological tools, the content and the structure of the
students’ arguments about the concept of triangles were examined by the
Toulmin’s argumentation model. In this teaching experiment, hypothetical
learning trajectory was formed including the learning goals related to
classification of different types of triangles, examining common basic theorems
about triangles and right triangles and application of their knowledge and
understanding of triangles in problems representing real-world contexts. It was
stated that the instructional sequence including the tasks about types and
classification and sorting of triangles, triangle inequality and triangle interior
angle relationships provided middle school students’ learning environments in
which they formed mathematical arguments. It was also observed that the
students in technological environment produced more arguments than their
counterparts. Moreover, Alatorre, Flores and Mendilo (2012) investigated the
primary teachers’ geometric reasoning through argumentations about the
concept of triangle inequality. The data were collected from the primary
teachers participated in workshop lasting two hours focusing on their common
content knowledge and special content knowledge. They found that although
the participants had difficulty while producing argumentations satisfactorily
initially, they produced different types of argumentations such as authority-

based, symbolic, factual, empirical or incomplete analytical. In this respect, the
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learning and understanding of triangles should be encouraged by

argumentations.

The usage of tools helps the learners to learn the mathematical concepts
effectively and facilitates producing arguments (Smith, 2010). Hence, there
have been research conducted to investigate the effects of manipulatives on the
students’ understanding of triangles. Athanasopoulou (2008) conducted
teaching-experiment research in order to examine preservice and inservice
mathematics teachers’ skills of understanding, knowledge and proving the
properties of triangles. The study was designed about triangles and
quadrilaterals. They participated in an inquiry-based geometry course including
the tools supported by Geometer’s Sketchpad during 30 classroom teaching
episodes. The activities were composed of mostly definition and classification
of triangles, congruence and similarity of triangles and proving activities about
triangles. It was found that their geometric knowledge and geometric thinking
about triangles were improved through teaching episodes. Also, their skills
about writing geometric arguments and forming clear proofs were developed.
Furthermore, Kellogg (2010) organized a design experiment in order to
examine preservice elementary teachers’ pedagogical content knowledge about
the concept of area and perimeter in web-based learning environment. They
investigated the area and perimeter of triangles and other geometric shapes
such as quadrilaterals benefiting from triangles. Through these teaching
episodes, they had procedural knowledge by formulas, used representations
ineffectively and did not know the possible misconceptions about the concept
at the beginning of the study. They improved their learning and knowledge
about triangles by participating in instructional sequence. In addition, Dogan
and Igel (2011) investigated the effect of dynamic geometry software of
GeoGabra on eighth grade students’ learning about triangles. An experimental
design was used. It was found that construction activities encouraged by

GeoGabra improved their motivation positively.
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While working with 25 students with ages ranging from 12 to 15 year-
old, Kordaki and Balomenou (2006) examined the strategies used by them in
the activities about conservation of area in triangles and discrimination of area
and perimeter of equivalent triangles by Cabri-Geometry (educational
software). The participants took place in three-week learning experiment where
they engaged in learning activities such as construction of equivalent triangles
in many different ways and examining their area and perimeter with possible
tools. Through these activities, the Cabri facilitated the process by
opportunities such as means of construction, connecting and controlling them.
They stated that the students attained a broader view rather than the view that
they obtained through typical paper and pencil environment. In other words, in
order to help students attain deep knowledge about a geometrical concept,
various learning activities, tools and problems with solutions in as many ways
as possible should be designed and supported except for the typical activities
and environment in which they engaged in everyday classrooms. Through this
explanation, it was necessary for the learners to design non-typical learning
environments. Moreover, it can be stated that problems are beneficial to
enhance these environments since they are challenging situations not fitting the
situations that they have experienced. The findings of the research show that
using manipulatives and technological tools develop the students’
understanding and learning of triangles. In this respect, while teaching triangle
to the students from different grade levels, it is important to design learning

environments by the manipulatives.

In the study of Gutierrez and Jaime (1999), they stated that student
learning was related to the way in which their teachers understood mathematics
and they taught how to transfer their knowledge to the students. They formed
their hypothesis based on this explanation and investigated it through the
concept of altitude of a triangle. This concept was difficult to understand by
both of teacher and their students so it was necessary to make study about this

geometry concept. The effects of concept definitions, concept images,
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difficulties and errors about the altitude of a triangle on their performance were
examined by 190 preservice primary teachers. Through this process, they were
determined and explained under the categories of formal definitions and
classroom activities about this concept. Based on the findings of the study, the
teachers had difficulty and errors about the concept of triangles and grasping
this concept was difficult for the preservice teachers. Therefore, it is necessary
to help preservice teachers attain deep knowledge about the altitude of a
triangle and other auxiliary elements of triangles since some of the errors
determined in the study are related to other elements of triangles. Also, it is
necessary to examine preservice teachers understanding about auxiliary
elements of triangles in addition to the altitude. The altitude of triangles of
triangles was also examined by Alatorre and Saiz (2010). They conducted
research to inservice and preservice teachers in order to investigate their
mathematical content knowledge about triangles by considering the effects of
their gender and experiences. The tasks focused on triangle inequality, the
altitude and area of triangles. They found that male teachers, secondary school
teachers, inservice teachers and highly experienced teachers improved their
mathematical content knowledge of triangles better than their counterparts of
the participants. They stated that they had difficulty about the triangles and

also the application of Pythagorean Theorem.

Kemankasli (2010) conducted a quasi-experimental study about the
design of a geometry learning environment on triangles for 10" grade students.
The effects of this organized environment on academic achievement, cognitive
characteristics and their skills were investigated through cooperative learning
environment by constructivist learning approach. There were 60 tenth grade
students separated into experimental and control groups and participated in the
study lasting eight weeks. The activities were prepared about the formation of
triangles, the relationship between angles and the edges of a triangle, medians,
angle bisectors, similarity and congruence of triangles. It was stated that these

activities when applied in the classrooms by the constructivist learning
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approach, the students participating in this classroom become more successful
than the students in the control group taking education by traditional learning
method. In this respect, the concept of triangles can be taught effectively in an
environment where the group work and social environment are encouraged and

constructivist learning approach is benefited from.

While learning mathematical concepts, it is important to understand
them by making connections between other concepts and their properties.
Therefore, the research show that it is necessary to determine the mathematical
concepts related to triangles and to teach the triangles using them (Kellogg,
2010; Paquette, 1971). In the study of Paquette (1971), the tasks for the
congruence of triangles were designed through transformation geometry. The
study included the activities about forming abbreviations for the congruence of
triangles and their image triangles formed through types of transformation
geometry by explaining two variables; a transformational variable and a
positional variable. There were sheets including the triangles and their images
formed through one of the rigid motions in different positions then the
participants were asked to examine the congruence of triangles based on their
main elements producing abbreviations. In this respect, using representations
were beneficial in teaching congruence of triangles. Moreover, rigid motions of
transformation geometry provided a non-typical strategy to examine and
understand the concept of congruence of triangles. This strategy facilitated
learning of congruence and similarity of triangles. In addition, Gerretson
(1998) examined the similarity of triangles in dynamic geometry learning
environment by transformation geometry. The researchers conducted the study
to the preservice elementary teachers. They found that transformation geometry

was crucial to teach similarity of triangles.

Through the literature related to historical development of triangles and
previous studies about teaching and learning triangles, beneficial information
has been obtained for the current study. The hypothetical learning trajectory

was designed and instructional sequence was performed based on the
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information obtained through the examination process of the literature. The
learning environment was designed based on the implications produced
through this information in order to examine the preservice middle school
mathematics teachers’ understanding and learning of the geometric concept of

triangles with the classroom mathematical practices.

2.11 Summary

The main goal of mathematics education is to emphasize the importance
of doing mathematics. It can be provided by the knowledgable teachers that
can perform mathematical instructions effectively. In this respect, it is
important to educate mathematics teachers in their teacher training programs to
obtain mathematical knowledge for teaching. The preservice teachers can
improve their subject matter knowledge as the dimension of mathematical
knowledge for teaching by understanding, reasoning and connecting
mathematical topics. Also, they can improve their subject matter knowledge by
expressing, discussing and using them through mathematical ideas. In other
words, the preservice mathematics teachers can understand the mathematical
concepts through sharing, analyzing and discussing their ideas about the
concept and then transferring and applying them in different contexts. By doing
so, they learn the concepts in a taken-as-shared way by forming mathematical
practices. When the emergence of mathematical practices and the way of
supporting learning of the concepts are considered, the argumentations are
useful to provide this learning process. Emergence of mathematical practices
necessitates the social learning environment including social and socio-
mathematical norms as the dimension of the social aspect of interpretative
framework related to social constructivism. Moreover, it is necessary to design
an environment to help the preservice mathematics teachers learn in this way
effectively. In order to design this environment, design-based research is used
to organize instructional sequence. Hence, a hypothetical learning trajectory
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including the estimations of pathways of the actions in the classrooms can be
formed in order to perform instructional sequence. Also, this hypothetical
learning trajectory is organized by determining three elements; learning goals,
learning activities and hypothetical learning process. Hypothetical learning
progress can be organized based on problem-based learning as a strategy
encouraging scientific skills such problem solving, forming, analyzing, testing
and discussing their mathematical ideas and reasoning related to
argumentations. Geometric constructions by compass and straight edge for
learning activities as the second element of hypothetical learning trajectory can
provide learning and understanding of the concepts. These tools can encourage
the preservice middle school mathematics teachers’ reasoning and constructing
proof about the concepts while examining their constructions. Lastly, triangles
are critical geometrical concepts in order to provide their learning and
understanding. In this respect, learning objectives are determined about
triangles based on historical development and connection with other
mathematical concepts. Moreover, van Hiele geometric thinking levels can
provide information to the instructors about how to order and relate learning
goals and design learning activities including the tools based on their geometric

reasoning.

To sum up, this study maintains mathematical practices are important in
improving preservice middle school mathematics teachers’ learning and
understanding of triangles through geometric constructions, argumentations
and justifications in problem-based learning environment. There is a general
consensus about the positive effects of geometric constructions and
argumentations in mathematics learning environment, however, there have
been necessitated the research to examine their reasoning and understanding
about triangles through teaching episodes supporting proofs, argumentations
and constructions. The present study aims to provide contribution to the field in

this way.

81



CHAPTER 3

3. METHODOLOGY

In this study, design based research methodology was used since it
allowed to examine preservice middle school mathematics teachers’
understanding of triangles focusing on classroom mathematical practices
through collective learning environment in designed environment that
supported problem-based learning for the mathematical content of triangles. In
this chapter, firstly, properties and the rationale of the use of design based
research and case study are discussed. Secondly, the participants in the current
study are introduced. Thirdly, how to intervene in the research is explained.
Also, HLT and instructional sequence designed in the study are described.
Fourthly, data collection and data analysis processes are stated. Finally, how

the trustworthiness is provided in the current study is discussed.

3.1 Design-based Research

Design based research (DBR) or design experiments include arranging
significant and different kinds of learning. It provides a way to work on
learning in a systematic way related to the context encouraging them. They are
used with the aim of the development of the theories about the processes of
domain-specific learning. Theory constructed in this way illustrates the
successive patterns in learners’ reasoning with the help of the means
encouraging these patterns. Also, design experiments provide deep and

effective understanding for learning environment. In other words, design
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experiments illustrate an interacting system including multiple elements in a
complex way and the way in which these elements interact together to enhance
learning (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003).

Design experiments can be accepted as pragmatic and theoretic with
respect to the design and practice in learning environment. That is to say, the
design experiments are conducted with respect to theoretical considerations
and the validity studies about these constructs are tested in a pragmatics way. It
can be said that this explanation is valid for all design experiments (Cobb et al.,
2003). These different studies can be exemplified with studies such as design
experiments suggesting sessions for teaching with teacher, experimenter and
student in order to form small-scale version for learning environments (Steffe
& Thompson, 2000); classroom practices with a teacher as the member of the
research team (Cobb, 2000); experiments in which the researchers make
organization and work about education to the preservice teachers (Simon,
2000); the researchers help inservice teachers improve about their professions
(Lehrer & Schauble, 2000). In this respect, it can be explained that it becomes
possible to link the practice with the theory. In other words, the gap between
the theory and practice can be removed. The claims that the theories do not
have practical benefits and the practices of the teachers have missing aspect of
theoretical sides necessary for teaching practices. This can be achieved in a
way that the teachers and the theorists study collaboratively in all parts
including the design and the experiment in the research (Design-Based
Research Collective, 2003).

DBR as “a series of approaches, with the intent of producing new
theories, artifacts, and practices that account for and potentially impact learning
and teaching in naturalistic settings” (Barab & Squire, 2004, p. 2) have
important characteristics (Anderson & Shattuck, 2012). They can be explained
by taking place in real and actual educational contexts, designing and testing
how to intervene with the learning of the classroom in an iterative refinement,

using different methods by the cooperation of researchers and practitioners,
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relating the theory with the practice and producing domain-specific theory
based on the results of the study (Cobb et al., 2003; Wheeldon, 2008). In this
respect, through iterative process, collective learning environment and
development of social and individual mathematical thinking, revisions and
improvements on instructional designs are provided by DBR (Cobb et al.,
2001).

DBR have critical importance by taking place in the classrooms
(Gravemeijer, 2004). DBR are beneficial since it provides firsthand
information about how the individuals learn and reason in a learning context in
a way that “students’ mathematics is indicated by what they say and do as they
engage in mathematical activity, and a basic goal of the researchers in a DBR
is to construct models of students’ mathematics” (Steffe & Thompson, 2000, p.
269). In this respect, Steffe and Thompson (2000) explain that there are five
elements necessary to design and conduct DBR: (a) teaching episodes, (b) a
teacher or instructor, (c) one or more students/learners, (d) a witness observer,
and (e) recording method of happenings in the teaching episodes (Wheeldon,
2008). Therefore, DBR have a cyclical nature including repetition of the
process composed of development of instructional sequence including
instructional activities, testing it in classroom instruction, documenting and
analyzing the learning and social process and making revisions on the
instructional sequence and redesigning it (Gravemeijer, Bowers & Stephan,
2003). At the end of this iterative process, an instructional theory is developed
with the aim of improving the greatest progress of all of the learners in a social
environment. In this developmental process, an observer as the witness for the
instructional sequence and teaching episode takes place in all steps and whole
process such as teaching episodes and meetings by being a member of
community of learners formed in this process in order to understand and
analyze the learning of the students and reasoning of them effectively. They
also have the role of interpreter of the classroom environment and learners’

reasoning, planner of the instructional sequence and analyzer of the classroom

84



activity and modifications of learning goals and activities (Gravemeijer, 2004).
Hence, this iterative process is related to testing, revising and redesigning the
instructional sequence and activities on a weekly basis with the help of
retrospective analysis in order for redesigning the instructional sequence
(Gravemeijer, Bowers & Stephan, 2003; Steffe & Thompson, 2000).

The main purpose of design experiments is to develop theories. These
theories explain learning process and the means facilitating the learning
(Graveimejer & Cobb, 2006). This aim can be achieved as Graveimejer and
Cobb (2006) told by developing theories of instruction which are local and
theoretical frameworks illustrating more comprising issues. They also
suggested three phases to make design experiment research; preparing for the

experiment, conducting the design experiment and then retrospective analyses.

DBR is composed of progressive phases. In the phase of preparing for
the experiment, the important result is to formulate local instruction theory.
This theory is open to change, revision, elaboration in the process of
experimenting in the classroom (Graveimejer & Cobb, 2006). In this respect, it
is important to identify theoretical intent (Cobb et al., 2003). Then, the research
team makes the learning goals specific or the instructional endpoints and
instructional starting points. The first step is to identify learning goals.
Graveimejer & Cobb, (2006) suggested that these goals can be collected
through history, tradition and assessment. Also, it is necessary to identify the
core ideas in the domain. For example, in the present study, the lessons were
related to the constructions of triangles. When the history of the participants
were examined about the concept of triangles, the participants were preservice
middle school mathematics teachers so they were expected to have deep
understanding of the triangles concept since it is one of the main concepts in
geometry. It was also accepted that they attained knowledge about basic
theorems and properties of triangles in elementary and high schools. With this
aim, the previous lectures and courses were also examined. Previous lectures

and courses that the participants had taken were important in the present study
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since they could provide information about mathematical knowledge of them
and mathematical argumentations explaining claims, data and warrants in these
lessons could be predicted. They learned how to construct geometrical figures
and how to make argumentations about them. The preservice middle school
mathematics teachers could be ready to learn the concept of the constructions
of the triangles. The questions about constructing triangles necessitated
understanding of triangles and basic construction activities of triangles and the
properties of the triangles. Then, the data were collected through the classroom
sessions, interviews and the research team meetings. Also, the research team
held the meetings to discuss the results of the test and the students’ knowledge
and reasoning related to the previous instructions to obtain necessary

information for design experiment.

In the literature, the concept has been taught through the different kinds
of medium including some theorems in some research. The literature shows
that the concept of triangles, the properties and the theorems about it have been
taught with the help of proving strategy such as deductive or inductive
reasoning or proof by contradiction in the geometry lessons of PMT (Durmus,
Toluk and Olkun, 2002). Also, they have been examined with the help of
technological tools such as Geometry Sketchpad, GeoGebra by proving
strategies in the literature (Ceylan, 2012). With this motivation, it has become
possible for most beneficial and effective goals by examining the goals related
to the domain carefully and already defined in the curriculum in a disciplinary
way (Graveimejer & Cobb, 2006). So, useful goals which were heavily related
to the construction of triangles were able to be specified in the present study.
This phase also includes determining the starting points for instructions
(Graveimejer & Cobb, 2006). For this purpose, the previous instructions
related to constructions of angles and lines were examined. The current skills,
the knowledge of them and the results of the test conducted to the PMSMT
before the instructional sequence was started. After the endpoints and starting

points for instruction were determined, their task was to formulate the design
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experiment. The design experiment was formulated with the help of
hypothetical learning trajectory (HLT). An HLT was created about the concept
of construction of triangles. HLT comprised 6 weeks with three hours in each

week.

In the phase of conducting design experiment, after the first phase was
completed, conducting the design experiment began (Graveimejer & Cobb,
2006). That is, the learning process based on the concept of construction of
triangles started. The responsibility of the research team was to follow and
analyze the learning process and to make inferences for the design experiment
and the HLT. In this respect, it could be claimed that design experiments had
cyclical nature as a characteristic (Cobb et al., 2003). In the study of the design
experiment, there existed two research goals as investigation of learning of the
students and their cognition and developing the instructional theory and the
HLT beneficial for communication of learners and their conceptual
understanding. The data collected for the first research goal was analyzed for
the second research goal. The design was tested, changed and reorganized
based on the data. Moreover, while the learning process was in progress, the
understanding of the research about the phenomenon becomes deeper and more
meaningful. It was important to interpret the learning process and the learners’
reasoning and learning in this process and the means organized to encourage
learning. The issue of what was happening in the classroom was critic to
interpret and explain explicitly and clearly (Graveimejer & Cobb, 2006). In
other words, it was important to make connection between theory and practice
by interpreting the happenings in the classroom to make inferences for HLT
and the theory. In these respect, the actions, learning and reasoning process of
the PMSMT were examined by considering their mathematical argumentations
based on the concept of triangles to make inferences for the designed HLT.
Graveimejer and Cobb (2006) suggested using interpretative framework to help
researchers interpret complex and huge amount of data in the process of

retrospective data analysis and teaching episodes. In the process of teaching
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episodes, formal and informal meetings were made. In these meetings, the

problems in the instructional sequence and their solutions were discussed.

The last phase is conducting retrospective data analysis. It includes the
actions of analyzing the data in a comprehensive and systematic way and
recording the reasons for particular inferences (Graveimejer & Cobb, 2006). In
this way, the resulting claims become trustworthy (Cobb et al., 2003).

DBR used in the present study was conducted as the experiences of
PMSMT’s in a classroom focusing on the improvement of their geometrical
understanding and learning by testing and revising an instructional design on
the concept of triangles. With the help of the nature of DBR about the
development of domain specific theories, it aimed to systematically examine
the learning and means of support within a designed environment for specific
learning about a particular domain (Cobb et al, 2003) in mainly pilot study.
Also, the research team aimed to test a theory in order to design a beneficial
lesson plan related to the concept of triangles. According to the results of
retrospective analysis made through data obtained from the pilot study, actual
HLT was produced. Then, this HLT was used in order to extract classroom

mathematical practices in the main study.

3.2 Local Instruction Theory

In DBR, the learners are provided by a designed group of connected
supports in a designed environment, also named as design contexts, identified
as “interacting systems rather than as either a collection of activities of a list of
separate factors that influence learning” (Cobb et al, 2003, p. 9) by producing
instructional theories. In this respect, it has an exploratory nature by producing,
testing and revising the instructional theory since it focuses on why designs
work and which inferences can be made for other environments. Then, this

theory can be explained as local instruction theory by designing supports and
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environment and examining various types of learning in a specific content area.
In this respect, it can be stated that learning is performed by obtaining
knowledge through social practices (Cobb et al, 2003).

DBR mainly aims to develop a local instruction theory (Gravemeijer &
Cobb, 2006). In the process of the applying DBR methodology, a conjectured
local instructional theory is designed through empirical evidence such as
literature review and proposed learning theories considering specific
mathematical domain at the beginning. In the progression of DBR, a
conjectured local instruction theory is analyzed in ongoing process and
modified based on information obtained from implementation of instructional
interventions (Gravemeijer & van Eerde, 2009). Also, revisions can be made
on the instructional sequence and the subsequent instructional experiment
(Markworth, 2010). For example, in the present study, in the process of the
course of a six-week instructional cycle, there existed mini cycles occurring
almost six times in each week in the sequence of instruction as a DBR as

illustrated in Figure 1 adapted from Gravemeijer and Cobb (2006).
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Figure 1 Reflexive Relation between Theory and Experiments
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All of the micro cycles represent the long term macro cycle. In DBR, it
is important to examine what is happening paying attention on what has taken
place in the past and what is going to take place in the future (Fuentes, 2012).
Therefore, the HLT implemented in a macro cycle and the instructional
sequence was examined and revisions were made on the HLT based on this
macro cycle. Then, revised HLT was conducted to another group referring to
another macro cycle. For example, completed six-week instructional sequence
explained in the above example comprised a macro cycle as illustrated in
Figure 2 adapted from Gravemeijer and Cobb (2006). The second macro cycle
consisted of the implementation of the revised instructional sequences based on
the revisions to the conjectured local instruction theory. Therefore, in the
present study, there existed two macro cycles which were the pilot study and
implementation of the revised HLT.

EMERGING LOCAL INSTRUCTION THEORY

3

long term macro cycle

daily mini cycle

Figure 2 The Micro and Macro Cycles

When the cyclical iterative phases of conducting DBR are considered,

they are anticipation, enactment and evaluation whose iterations form the
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macro cycle related to conjectured local instruction theory (Gravemeijer & van
Eerde, 2009; Shavelson, Phillips, Towne, & Feuer, 2003; Simon, 1995).
Firstly, in anticipation phase, the sequence is designed. Secondly, the
enactment phase happens. The planned and designed instructional sequence
takes place through weekly mini cycles, i.e., the phase of DBR. The last phase
is evaluation. Retrospective analysis is made and necessary revisions are made
on HLT and instructional sequence. The findings obtained through these three

phases propose implications for the conjectured local instruction theory.

3.2.1 Anticipation of conjectured local instruction theory

The anticipation phase includes the planning process for the
hypothetical learning trajectory (HLT), designing learning activities and the
development of conjectured local instruction theory. A HLT was designed in
order to solve some of the perceived problems in traditional ways of teaching
triangles concept. The theoretical issues and the model of geometrical
reasoning and mathematical argumentation constituted the basis of the teaching
approach organized and tested in the current study. The main focus of the HLT
was the problem solving activities related to triangles designed by considering
the properties of van Hiele geometric thinking levels. Moreover, van Hiele
geometric thinking theory used to explain the instructor’s expectations about
the pathway of the instruction and the learners’ actions in the classroom since
the HLT included the expectations of the instructor about the learners’
behaviors related to learning activities and their understanding of the concept.
This HLT included imagery/tools such as drawing and constructing triangles
for the activities such as equilateral and isosceles triangles, examining the
possibility of formation of triangles by some elements, constructing and
examining the auxiliary elements of triangles and congruence and similarity of

them.
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The goal of the HLT used to determine the classroom mathematical
practices designed for the concept of triangles was to affect preservice middle
school mathematics teachers’ (PMSMT) subject matter content knowledge
related to triangle concept of geometry. While forming the HLT, means of
support was important taking place in this process. In order to design HLT, it

was important to determine means of support.

Cobb (2003) separates means of support in DBR into four interrelated
groups: the instructional tasks, the tools students use, the nature of the
classroom discourse and the classroom activity structure. Instructional tasks
refer the mathematical activities on which the learners make reasoning and
develop their understanding while dealing with. These activities become more
useful when they are designed based on the situations which are problematic to
improve their understanding and conception. These situations can be
exemplified as “(a) resolving obstacles or contradictions that arise when they
attempt to make sense of a situation in terms of their current concepts and
procedures, (b) accounting for a surprising outcome, (c) verbalizing their
mathematical thinking, (d) explaining or justifying a solution, (e) resolving
conflicting points of view, or (f) developing a framework that accommodates
alternative solution methods and formulating an explanation to clarify another
child’s solution attempt” (Wood, Cobb, & Yackel, 1995, p. 413). Therefore,
the researcher considered the ways in which the tasks developed conceptual
understanding relating problematic situations and facilitated whole class
discussions leading learning and understanding while planning the instructional
tasks taking place in the HLT on the concept of triangles. The tools as the
second means of support (Cobb, 2003) are useful in the process that the
learners reorganize their understanding and reasoning while dealing with the
problematic situations in the activities. Moreover, Stephan (2003) exemplifies
the tools as physical materials, tables, pictures and standard or nonstandard
symbols. Gravemeijer (2004) adds other examples for the tools invented by the

learners through solving problems in the activities. They are accepted as the
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basis on imagery with the explanation of Thompson (1996) about grounding
mathematical reasoning in imagery. In this respect, similar imagery can be
formed through the experiences of individuals participating in the same
instruction. Therefore, it is important to determine tools and imagery for the
HLT of the study in order to design an environment in which the learners
participating in the instructional sequence attain common experiences. In the
present study, the tools and imagery for the conception of triangles of PMSMT
were examined through literature review and previous research. The other
means of support identified by Cobb (2003) is the classroom discourse taking
basis from norms which are social and sociomathematical norms referring the
participation structure in the classroom (Cobb et al., 2001; Cobb & Yackel,
1996; Stephan & Cobb, 2003). These norms are vital to provide PMSMT
opportunities to express their understanding and reasoning on triangles leading
the emergence of classroom mathematical practices. The last mean of support
is the activity structure of the classroom composed of small group works and
whole class discussions taking place in the DBR. The activity structure has
strong impact on classroom discourse and emergence of mathematical practices
including various interpretations, expressions and solutions of the students
becoming taken-as-shared. All explained means of support were examined by
planning and designing the HLT on the concept of triangles for the present
study. Therefore, this planning process was separated into the titles of the
tasks, tools and imagery and possible discourse topics by making closed
relationship between them to form classroom activity structure (Cobb, 2003)
benefiting from problem solving method and van Hiele geometric thinking

levels in the environment of problem-based learning.

In light of the means of support identified by Cobb (2003) and with the
aim of accomplishing this goal, the HLT was designed with three phases
including the means of support. Also, literature review based on the concept of
triangles, van Hiele geometric thinking levels adapted for triangles, the

objectives about them in the middle school mathematics curriculum and many
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textbooks was used in the present study. Through these sources, the important
points, necessary knowledge and skills on the concept of triangles were
determined. Then, the problems and the activities were formed benefiting from
problem solving strategy and van Hiele geometric thinking levels. Hypothetical
Learning Trajectory (HLT) specified as theoretical construct explaining the
instructors’ predictions about the progress in instructional sequence (Simon,
1995). Also, it can be designed effectively in three categories as a learning
goal, learning activities, and a hypothetical learning process. In this respect, the
HLT was designed by considering them in three ways so learning goal,
learning activities, and a hypothetical learning process were explained by the
practices. These practices included the period of six weeks and three hours in
each week. The cycle of instructional sequence was organized based on the
HLT, PMSMT’s interactions including mathematical argumentations, and the
instructor’s knowledge in the current study. This organization process was
made and revised regularly by the research team. The ways in which the
PMSMT engaged in mental activities supporting them to form mathematical
argumentations and the activities reflected the learning goals. In the process of
instructional sequence, necessary modifications were made on the HLT by
considering experiences. In this process, the instructor was responsible for
providing opportunities for the PMSMT to transfer their geometric reasoning
about the concept of triangles to more knowledgeable one by the HLT. In order
to bring the HLT back to life, it was important to design instructional
sequences. There were three goals of the present study forming three phases.
The tasks focused on three types of activities in the instructional unit of the
first phase. They were definition and classification of types of triangles,
studying on exemplars, variants, and palpable (clear) and difficult distractors
for triangles and examination of the possibility of construction and drawing of
triangles based on some known elements. Phase 2 emphasized the critical
properties related to auxiliary elements of triangles such as median, altitude,

angle and perpendicular bisectors. Phase 3 as the last phase of the HLT focused

94



on formation of similarity and congruence of triangles and important properties

about congruent/similar triangles.

The first phase of the HLT was devoted to basic ideas necessary to
construct and develop the expected deep conceptual understanding on triangles.
Therefore, fundamental concepts having importance for understanding and
development of triangles were placed and emphasized in the HLT. By the end
of this phase, the goal was that the PMSMT would not only form triangles, but
also evaluate different contexts about the formation of triangles. With this aim,
the first phase of the HLT was composed of three activity sheets focusing on
different but related learning objectives as in Tale 2. The first activity sheet
was designed for the objective about the formation of triangles focusing on the
definitions of types of triangles and the classification of them. This knowledge
was focused on since the fifth grade students learn different types of triangles
based on the mathematics curriculum. Also, seventh grade students are taught
the definition and formation of triangles. Moreover, while designing this
activity sheet, the properties of the second and the third van Hiele geometric
thinking levels, analysis and informal deduction in order, were considered. In
other words, through this activity, the PMSMT were expected to attain
necessary skills on the concept of triangles based on these levels. This activity
sheet was prepared based on the history of the concept of triangles so the
definitions produced by Euclid and the study of Proclus in the Commentary on
the First Book of Euclid’s Elements analyzing the definition of types of
triangles for the basis of classification of them based “partly on their sides and
partly on their angles” (Morrow, 1970, p. 130). With the activity of
classification, the importance of the main elements of triangles was
emphasized. Moreover, as explained by Proclus, this activity enhanced
understanding the relationship between these types by stating “From these
classifications you can understand that the species of triangle are seven in all,
neither more nor less. The equilateral triangle is one only and is acute-angled;

but each of the other two has three kinds. The isosceles is either right-angled,
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obtuse-angled, or acute-angled; and the scalene likewise has the same three
forms” (Morrow, 1970, pp.132-133). With the help of this activity, the basic
knowledge on the formation of triangles was examined to help PMSMT attain

deep knowledge about it.

The second activity sheet was designed based on the properties of the
first and second geometric thinking levels, visualization and analysis in order.
The objective of the second activity sheet was to determine the shapes of
triangles and reasoning on this identification. It was designed based on the
explanation of Clements and Sarama (2009) about thinking and learning about
specific shapes adapted for PMSMT education. They claim that the learners
show tendency to seeing and discussing typical forms and appearance of the
geometric shapes which are exemplars and ignoring other forms of these
shapes which are variants. Also, they emphasize the importance of discussing
about non-examples separated into two groups; “palpable distractors if they
have little or no overall resemblance to the exemplars and difficult distractors
(for the children, we call them “foolers™) if they are highly visually similar to
exemplars but lack at least one defining attribute” (Clements & Sarma, 2009, p.
127). In this activity, twelve shapes were formed on the sheet as the
representations of exemplars, variants, palpable and distractors for triangles.
Then, the participants were asked to determine whether the shapes were

triangles or not and to explain the reasons of this identification.

The last activity sheet was designed for the objective about evaluation
of the formation of triangles using some of elements or attributes of triangles.
Moreover, while designing this activity sheet, the properties of the third and the
fourth van Hiele geometric thinking levels, informal deduction and deduction
in order, were considered. In this activity, the PMSMT were not expected to
represent the properties of the level of deduction completely. That is, through
this activity, the PMSMT were expected to attain necessary skills on the
concept of triangles based on these levels. In this activity sheet, there were

problems examining the possibility of formation of triangles based on some
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known elements which were main and auxiliary elements. This activity sheet
was designed since eigth grade students examine the possibility of formation of
triangles with the objective of drawing the triangle by knowing enough number
of elements. For these problems, various groups accepting some of these
elements as known were formed and then PMSMT were asked to investigate
the possibility of formation of triangles having these known elements
represented in these groups. The first problem was about making generalization
about the formation of triangles based on knowing some elements keeping the
number of these elements at the minimum level. These questions take place in
Sahin’s book (2013). Moreover, when literature review was made about
triangles, it was observed that construction steps could be beneficial tools for

the formation of triangles and reasoning on them.

Table 2 Phase 1 of the Hypothetical Learning Trajectory

Learning  Evaluating the formation of triangles

Goals

Concepts  Definition of types of triangles
Examples and Non-examples of triangles
Main and Auxiliary elements

Forming and drawing triangles based on known elements

Supporting Classification of triangles

Tasks Basic drawings of triangles

Tools and Diagrams

Imagery Compass and straight edge

Possible Definition of triangles based on main elements

Discourse  process of different construction and drawings of specified

triangles
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The second phase of the HLT was devoted to basic ideas necessary to
develop deep conceptual understanding on the auxiliary elements of triangles.
Auxiliary elements of triangles were placed in the study since eigth grade
students learn the construction and properties of these elements in the
mathematics curriculum. Therefore, fundamental concepts having importance
for understanding and development of them were placed and emphasized in the
HLT. By the end of this phase, the goal was that the PMSMT would not only
construct these auxiliary elements, but also attain deep knowledge about
properties of them and formation of critical points formed by them such as
centroid as the concurrence point of the medians, orthocenter as the
concurrence point of the altitudes. In order to examine these elements clearly
and effectively, the second phase of the HLT was composed of four activity
sheets focusing on each of these elements as in Table 3. They were
perpendicular bisectors, angle bisectors, altitudes and medians in respectively.
While designing these activity sheets, the properties of the third and the fourth
van Hiele geometric thinking levels, informal deduction and deduction in
order, were considered. Informal deduction of van Hiele geometric thinking
level was expected to be observed while the PMSMT were proving that their
construction steps were the construction of expected geometric shapes in the
problem situation. Also, deduction of van Hiele geometric thinking level was
expected to be observed while PMSMT were proving the concurrence of
auxiliary elements of triangles and naming these critical points benefiting from
proofs and justifications based on theorems that they knew and reasoning
“formally by logically interpreting geometric statements such as axioms,
definitions, and theorems” (Clements & Battista, 1992, p.428). The similar
problems which were constructions of these auxiliary elements, concurrence of
them, naming of them and the places of these concurrent points on different
types of triangles through construction and mathematical justification processes

were formed on the activity sheets for each auxiliary element.
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The tools and imagery used for these activities were construction steps
including compass and straight edge. Construction activities has been described
as the techniques used to solve problems based on previously determined rules
and conditions where the problems are performing drawings by only compass
and straight edge. These activities instead of drawings supporting necessary
conditions are beneficial with its historical grounds by Euclid (Axler & Ribet,
2005; Smart, 1998). In construction, the learners analyze the properties and
elements of geometric shapes to attain deep knowledge about them
(Cherowitzo, 2006).

Nowadays, the usage of compass and straight edge has been given
importance in the mathematics curriculums. This construction process it
provides opportunities to make connection between other geometric shapes
such as circles, arcs, lines and polygons. In this respect, this process proposes
challenge situation for the learners since they do not realize the construction of
the shapes by this tool (Erduran & Yesildere, 2010) but “doing compass and
straightedge construction early in the course helps students to understand
properties of figures” (Hoffer, 1981, p. 12). The construction activities help the
learners think about the properties of geometric shapes by making relationship
between them, reasoning on them to develop their geometric thinking and deep
conception about geometric shapes (Napitupulu, 2001; Hoffer, 1981). Also, the
process of construction does not mean proving since they refer to the
applications supporting expected conditions while proving refers to the
representation process of what extend the geometric shapes support expected
conditions (Hartshorne, 2000).

PMSMT should be equipped about construction activities. Moreover,
the nature of construction activities makes them appropriate for the present
study since the learners cannot realize how to begin and construct at first
glimpse so they are in challenge situation and a problem situation forms. These
problem situations were useful to be used in the present study since the

instructional sequence and the HLT of the present study was designed based on
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problem-based learning approach. Therefore, the activities by compass and
straight edge were emphasized in this phase. PMSMT were asked to construct
these auxiliary elements, justify the concurrence of them on triangles, name
these concurrent points formed by them and identify the places of these critical
points for different types of triangles by reasoning. They were also asked to
reason about these situations and provide mathematical justifications and
representations for them.

Table 3 Phase 2 of the Hypothetical Learning Trajectory

Learning  Reasoning on auxiliary elements of triangles and concurrence of

Goals them

Concepts  Medians
Angle bisector
Altitude

Perpendicular bisector

Supporting Definitions
Tasks Constructions

Concurrence on a triangle

Name and critical importance of concurrent points

Changing/unchanging places of these points for different types

of triangles

Tools and Drawings

Imagery Compass and straight edge

Possible Various ways of construction of these elements

Discourse  \/arious ways of justifying the concurrence of them

Various reasons of changing/unchanging places of these points

for different types of triangles
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The last phase of the HLT was devoted to basic ideas necessary to
develop deep conceptual understanding of congruence and similarity of
triangles having critical importance on the concept of triangles as in Table 4.
The congruence and similarity of triangles are taught in sixth, seventh and
eighth grade classroom as in mathematics curriculum. This concept has
historical importance beginning from the book of Euclid and Thales (624-547
B.C.) developed the concept of similarity of triangles. Through this historical
development and by the connection of this concept with real life problems such
as forming and representing the models in proportion before their real
construction process, this concept attains critical importance in curriculum and
mathematics teaching and learning from middle school to college level.
Therefore, these fundamental concepts having importance for understanding
and development of them were placed and emphasized in the HLT. By the end
of this phase, the goal was that the PMSMT would not only form these
congruent and similar triangles, but also attain deep knowledge about
properties of them, criteria of congruence and similarity and application of

them in different problem situations.

While designing these activity sheets, the properties of the third and the
fourth van Hiele geometric thinking levels, informal deduction and deduction
in order, were considered. Informal deduction of van Hiele geometric thinking
level was expected to be observed while the PMSMT were proving that the
triangles obtained through construction were the image triangles formed by
transformation geometry. They made connection between triangles and image
triangles concerning their shapes, elements and properties. Also, deduction of
van Hiele geometric thinking level was expected to be observed while PMSMT
were proving and justifying whether the triangles and their image triangles
were congruent/similar and criticizing the congruence and similarity of
triangles explained in different contexts with some specific known elements
based on theorems that they knew and reasoning (Clements & Battista, 1992).

In order to examine them clearly and effectively, this phase of the HLT was
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designed at two levels; congruence and similarity through transformation
geometry and similarity and congruence on triangles. The first level was
designed including four activity sheets about translation, rotation, reflection
and dilation transformations respectively. In the textbooks, the concept of
congruence to reproduce exactly the same object and similarity to form the
object in proportion with the prior geometric object is emphasized. When the
process of image formation through transformations was examined, the same
objects were formed through translation, rotation and reflection referring to
congruence and the proportional object is formed through dilation referring to
similarity. This explanation about motional aspect of congruence/similarity by
construction was also placed in some textbooks (Alexander & Koeberlein,
2011).

French (2004) explains the concept of construction and congruence of
triangles with rigid motions. These activity sheets were formed in this way.
French (2004) also states the importance of enlargement and similarity so an
activity sheet was designed about dilation in the similar way. Therefore, the
similarity and congruence of triangles through transformation geometry by
construction was used in the present study. The similar problems about
formation of the image triangles through transformation by construction on
geometric view and drawing benefiting from the coordinate system on
algebraic view were formed on the activity sheets for each type of
transformation. Moreover, the participants could use proofs in order to show
congruence and similarity of triangles and making inferences for the
similarity/congruence critaria. The tools and imagery used for these activities
were construction steps including compass and straight edge and the coordinate

system.

The other level of this phase was designed including two activity sheets
about congruence and similarity respectively. In almost all textbooks, the
criteria of congruence and similarity have been studied. Therefore, the

emergence and formation of these criteria was examined in these activity
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sheets. Moreover, the relationship between triangles and image triangles based
on congruence and similarity was formed at the beginning of these activity
sheets. Then, the emergence of congruence/similarity criteria and necessary
mathematical justifications or proving was examined. At the end of the second
activity sheet, there was a list of explanations representing particular triangles
with their some known elements. Then, PMSMT were asked to examine
whether they were congruent/similar triangles formed by transformation
geometry in specific contexts. Also, they were expected to make mathematical
justifications or proving about these contexts. These contexts were formed by
the researcher inspiring from the explanations and general statements about

triangles placed in various geometry textbooks.

Table 4 Phase 3 of the Hypothetical Learning Trajectory

Learning Reasoning on congruence and similarity of triangle

Goals

Concepts  Translation, Rotation, Reflection, Dilation

Congruence & Similarity

Supporting Formation of the image triangles with geometric and algebraic

Tasks views comparing triangles and their images

Tools and Dot paper

Imagery Compass and straight edge

Possible Various ways of construction of image triangles

DISCOUrSe  gimifarities and difference of triangles and their images

including main or auxiliary element, concurrent points,

orientation, position

Criteria of congruence/similarity of triangles by mathematical

justifications

Determining congruence/similarity of specified triangles
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3.2.2 Enactment of conjectured local instruction theory

The phase of the enactment of conjectured local instruction theory of
DBR was taken place by the application of the HLT and the instructional
sequence. In other words, it included the first macro cycle with weekly mini
cycles lasting six-week-period and three hours in each week. While
determining the means of support, the researcher examined the literature based
on the concept of triangles. They were formed in light of the necessities of van
Hiele geometric thinking levels and problem-based learning strategy. Once
they were formed, they were implemented to five PMSMT not participating in
the instructional sequence in neither pilot study nor main study. The activities
were examined by these PMSMT, the researcher and the academician as the
non-participant observer of the instructional sequence. After determining the
HLT with this team, the HLT was conducted to the pilot study group. In the
process of the present study, enactment of conjectured local instruction theory,
pilot study was conducted. The pilot study group included 23 PMSMT. The
designed HLT was conducted to them in order to attain a source of input for
the revisions of the HLT and then to apply the revised form of it in the main
study. In other words, the first macro cycle of the sequence was implemented
to obtain data for retrospective analysis and designing actual HLT for the
instructional sequence of the main study that the classroom mathematical

practices about triangles were examined.

The research team including the researcher, non-participant observer
and three PMSMT participating in the instructional sequence for the pilot study
took responsibility in the first macro cycle to collect data to form actual HLT
through retrospective analysis based on the explanations of Cobb (2000) and
Simon (2000) about the necessity of the research team. In the instructional
sequence, the PMSMT initially worked in small groups in which the
participants studied with their peers. While they were working on the activity

sheets with their peers in small group works, the instructor visited the small
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groups to attain knowledge about their knowledge and actions, to determine
different mathematical ideas about tasks and to extract whole class discussion
topics. After the completion of small group works, the whole class discussion
was started. Different interpretations, representations and mathematical ideas
were discussed about the tasks with their reasons. The small group works and
whole class discussions were mainly taken place in all stages and for all
mathematical tasks on the HLT in this way.

The first week of the instructional sequence began with phase one of the
HLT with the learning goal of evaluating formation of triangles. This was also
the initial phase where PMSMT became acquainted with the triangles. The goal
of this lesson was for PMSMT to define a triangle and its types and to evaluate
formation of triangles in various contexts in problem situations. In the
instructional sequence, the first week was important because of examining and
attaining deep knowledge about triangles and began to establish the social and
sociomathematical norms of the classroom. The instructional sequence started
with the activity having the title of Classification of Triangles as the first
activity sheet of the week, a task designed to classify the types of triangles
based on the relationship between them by defining them. In this activity, the
participants had difficulty in defining and classifying triangles by relating them
based on their critical attributes. Then, they were challenged to explain the
reasons and main ideas about the placement of them. At this problem, they
made explanations about main elements of triangles and their roles by relating
and classifying triangles. They had difficulty since they knew the names of
main elements but did not know how to apply them on relating and classifying

them. At the end, they were asked to find another way to classify triangles.

By this task, it was intended to lead into a discussion of different
classifications based on main elements of triangles. Moreover, PMSMT
produced different representations for the types of triangles and the
classification of them. They discussed the definitions of triangles and realized

that the classification of triangles could be made with respect to the main
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elements of triangles; angle and edge. In this way, they realized the role of
triangles’ main elements on definitions and classifications of them. Moreover,
they used different representations and diagrams. The purpose of the next task
for the class was to determine whether the figures on the activity sheet were
triangles or not and to explain the reasons of this identification. Therefore, they
were asked to determine whether the given shapes were triangles or not and to
explain the reasons of this identification. They were wanted to form these
explanations mathematically. In both small groups and whole class discussions,
it was realized that this task did not produce challenge situations for the
participants. They successfully formed the explanations for these shapes with a
minimum level of effort. In these initial two activity sheets, the PMSMT
focused on the formation of triangles based on their main elements and
relationships between them with the help of classification of them. The purpose
of the last task for the class was to evaluate the possibility of formation of
triangles based on some known elements which were main and auxiliary
elements. For these problems, various groups accepting some of these elements
as known were formed and then PMSMT were asked to investigate the
possibility of formation of triangles having these known elements represented
in these groups. In the small group works, they tended to solve these problems
based on related theorems and the properties of triangles. In the whole class
discussion, they learned the solution of these problems by drawings and
constructions of these problems and the importance and necessity of this
tools/imagery. In other words, they realized that their solutions were not
completed since they thought different types of triangles fitting the explained
situation and examining the number of types of triangles for that situation by
drawing and construction strategy. This last activity sheet provided
opportunities for PMSMT to examine the formation of triangles based on
auxiliary elements of triangles so that they realized the roles of them in the
formation process. These activities completed phase one of the hypothetical
learning trajectory whose learning goal was evaluating formation of triangles.

This phase was concluded as the tasks which were aimed directly at providing
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learning and understanding about formation of triangles based on their main
elements by defining, classifying and examining these processes.

The second and third weeks of the instructional sequence continued into
phase two of the hypothetical learning trajectory with the learning goal of
reasoning on auxiliary elements of triangles and their concurrence. The second
week included the tasks about the perpendicular and angle bisectors and the
third week focused on angle bisectors and medians. These tasks included
similar problems which were construction of one of these elements among
three elements for each triangle, the construction of three of them for a triangle
and representing the concurrence of them, naming these concurrence points
and identifying whether the position of these concurrence points changed or
not and the reason of this identification. These tasks were supported by the
imagery/tool of construction steps. The process of usage of construction
activities in the instructional sequence was performed by the steps explained by
Smart (1998). The first step is analysis. The learners perform the construction
of the shape assuming that the explained conditions occur and making
connections between necessary unknown conditions in the problem and
explained the conditions in the problem. The second step is construction. The
learners form the shape using compass and drawing straight edge through
construction. The third step is proving. It represents the process in which they
prove that the constructed shape is the shape wanted to be formed in the
problem. The last step is discussion. The possible alternative solutions and
situations for the construction and proving are discussed. These steps
facilitated the understanding of PMSMT about how they could use the compass
and straight edge with their prior geometry knowledge to construct the
auxiliary elements of triangles. In this respect, the actions and the ways that
they were constructed by geometrical thinking were discussed and learned
effectively. In order to help PMSMT attain familiarity with these steps, learn
effectively and establish one of the sociomathematical norms of the classroom,

a problem about copying a particular triangle through construction was formed
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in the first activity sheet of the second phase of the HLT. These activities
completed phase two of the hypothetical learning trajectory and two weeks of
the instructional sequence whose learning goal was examining the auxiliary
elements of triangles. This phase was concluded as the tasks which were aimed
directly to provide learning and understanding of these elements, concurrence
of them, examine their names, critical importance and places on different types

of triangles.

The fourth and fifth weeks of the instructional sequence continued into
phase three of the hypothetical learning trajectory with the learning goal of
reasoning on the congruence and similarity of triangles. These weeks included
different kinds of tasks and the learning goal was examined at two levels, one
for each week. The fourth week included the tasks about the congruence and
similarity of triangles through transformation geometry. These tasks included
similar problems which were definition of the types of transformation
geometry, construction of the images of triangles by compass and straight
edge, formation of images of triangles on the coordinate system, the
similarities and differences between triangles and their images obtained by one
transformation or composition of two same transformations. There were four
activity sheets including these problems adapted for translation, rotation,
reflection and dilation respectively in each of these activity sheets. These tasks
were supported by the imagery/tool of construction steps by compass and
straight edge and dot paper to illustrate the coordinate system. The process of
usage of construction activities in the instructional sequence was performed by
the steps explained by Smart (1998) and also these steps took place in the
sociomathematical norm through previous weeks of the instructional sequence.
They attained knowledge about similarity and congruence of triangles and
implications for the criteria for congruence and similarity in the whole class
discussion. For example, by these imagery/tools, PMSMT realized that the
lengths of the edges of triangles were preserved through translation, rotation

and reflection. In translation by construction, they focused on vectors and their
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properties so that they realized that the lengths of the edges were kept same
because the distance between two parallel lines was always same. The
activities on coordinate system strengthened this realization since they used the
formula of finding the length of the line segments whose start and end point
places on the coordinate system were known. They found the lengths of the
edges of triangles and their image triangles so that they clearly illustrated
congruence of triangles formed through translation. Then, they made
implications for the congruence criteria of S.S.S. The similar discussions were
made about other transformations, rotation and reflection by relating
congruence of triangles. The last activity sheet was designed including two
problems; one for enlargement of a triangle and the other for reduction of a
triangle, to form image triangles through construction. This activity sheet did
not include the problem about formation of image of triangle on coordinate
system. Through the discussion of these problems, they realized the similarity
of triangles and some of the criteria for similarity. These activities completed
the first level of phase three of the hypothetical learning trajectory and one
week of the last phase of the instructional sequence whose learning goal was
about examining the congruence and similarity of triangles. This week was
concluded as the task about changing and unchanging properties and elements
of triangles through transformation and explanations of reasoning about them
and at the end, attaining the deep knowledge about formation of congruent and
similar triangles, their properties and motional aspect of congruence and

similarity.

The other level representing the fifth week of the instructional sequence
related to last phase of the HLT included two activity sheets; one for
congruence of triangles and the other one for similarity of triangles. In the first
activity sheet including tasks for congruence of triangles, the PMSMT initially
discussed the differences and similarities between triangles and the image
triangles formed through rigid motions or composition of finite number of

these rigid motions. In another task, PMSMT were asked which rigid motions
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were performed on the triangle to obtain the other. By reasoning and discussing
on this activity, they realized the criteria of A.S.A. and then they continued to
discuss importance and roles of other criteria of congruence of triangles and to
make reasoning on them. The other activity sheet was designed for similarity
of triangles. They talked about the differences and similarities of triangles and
their images obtained through the dilation and continued to discuss the criteria
of similarity of triangles by reasoning. This week was concluded as the task
about identifying whether the triangles explained in problem situation and
having particular properties were congruent/similar or not and explaining the
reasons of this identification. All of the activities completed phase three of the
hypothetical learning trajectory and two weeks of the instructional sequence
whose learning goal was to understand the congruence and similarity of
triangles. This phase was concluded as the tasks which were aimed directly at
providing learning and understanding of congruence and similarity of triangles.
After all of the phases of the HLT were completed, PMSMT engaged in an
activity sheet including problems about triangles related to objectives of all

phases in the sixth week of the instructional sequence.

3.2.3 Evaluation of conjectured local instruction theory

The instructional sequence referring to the enactment of the designed
HLT and conduction of the pilot study was followed weekly by a research team
including five participants which were the researcher, an academician having
the Phd. degree in mathematics education and three PMSMT participating in
the pilot study. The data were collected weekly through the process of
instruction for the pilot study based on the concept of triangles by video
recordings of whole class discussions and classroom sessions, audio recordings
of small group works and research team discussions, field notes taken by the
instructor and artifact collection including worksheets. Through and at the end
of instructional sequence, rich and detailed data were collected in order to
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obtain information about the HLT and making necessary revisions on the HLT
and the conjectured local instruction theory. This instructional sequence
representing the pilot study formed the first macro cycle of the study. In other
words, throughout the implementation of this first cycle of the instructional
sequence referring to the pilot study and after the sequence was completed,
revisions were made on the sequence for implementation of the main study
(Cobb, 2000; Simon, 2000). The revised HLT was then implemented again as
the main study representing the second macro cycle by the instructor. The pilot
study was illustrated and summarized in Figure 3 where mini cycles
representing DBR referred to the weeks of instructional sequence. For the main
study, the same figure can be formed by being titled as Macro Cycle 2. Before
starting the main study which was the second macro cycle, retrospective
analysis was performed and necessary revisions were made on the HLT so that

actual HLT for the main study was formed.

Macro Cvycle 1

Instructional Rgtrospective
Design = » Analysis1

Teaching episodes.

Teaching Episodes and Mini Cycle Analysis

Data Collectipn Timeline

- Participant and non-participant observation Retrospective
-Whole-class video Analysis
-Small group observations
-Mini cycle reflection
-Artifact collection
-Researcher reflection journal

interview interview

Figure 3 Illustration of the analysis of data collection process of the pilot study
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After the completion of the instructional sequence, retrospective
analysis was conducted. The retrospective analysis was used for both analyzing
the data collected through various sources such as video and audio recordings
for the process of pilot study in DBR and forming new data synthesized for the
next part of DBR as main study. Whole data set gathered through the first
macro cycle was analyzed collectively to attain information about “patterns in
the data, framing assumed patterns as conjectures about the data, testing those
conjectures on the complete data set, and using the findings as data for a
subsequent round of analysis” (Gravemeijer & van Eerde, 2009, p. 517). The
data collected through the retrospective analysis based on the first macro cycle
were used for the next macro cycle of the study that the mathematical practices
emerging in the social learning environment were investigated for the research
question of the present study. In light of the findings of the retrospective
analysis, revisions were made on the HLT and the actual HLT using for the
main study was formed. In initial HLT, three learning goals, or big ideas, were
at the center of it. The research team decided not to change these phases and
kept them in the actual HLT. They were: (a) evaluating the formation of
triangles, (b) reasoning on auxiliary elements of triangles and concurrence of
them, and (c) reasoning on congruence and similarity of triangles. The lessons
designed based on these learning goals was supported by various tasks and
concepts about triangles and they were systematically prepared for the phases
of the HLT. The revisions were made on initial HLT based on these phases

separately.

In the first phase of the HLT, the research team decided to make two
revisions on the tasks. First revision was removing the second activity sheet
since this activity sheet did not provide challenge situations for the PMSMT
although the problem-based learning strategy was used in the present study. In
other words, the PMSMT determined whether or not twelve shapes were
triangles by explaining the reasons without having any difficulty. They made

identification by illustrating minimum level of effort when compared with
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other problems in the instructional sequence. Another revision was made on the
last activity sheet of the phase. The research team decided to change the place
of the first problem. This problem “Which and at least how many elements do
we need to know in order to show that it is possible to form a triangle? Explain
the groups including some of these elements.” was placed at the end of this
activity sheet since the solution of this problem was providing a general
statement about the formation of triangles knowing some main and auxiliary
elements by summarizing and considering other problems on the same activity
sheet. Moreover, suggestion about changing the explanation of this problem

was made and performed.

In the second phase of the HLT, the research team decided to make two
revisions on the tasks. The research team decided to change the explanation of
the problem about showing the concurrence of three auxiliary elements on a
triangle. This problem was written by showing the concurrence of them
through construction. The research team decided that the usage of construction
limited the thoughts of the PMSMT about solution of this problem since they
could have provided different solutions for this problem. Therefore, the
statement of the construction on the problem was removed. The second
revision was made about the order of these activity sheets. The research team
decided to engage in the activity sheet about medians initially since the
PMSMT had more knowledge about it than others. The researcher and the non-
participant observer made the same decision to form sociomathematical norms
related to the construction steps of Smart (1998) based on the same reason.
Moreover, the activity sheet about perpendicular bisectors was placed as the
last one in this phase since PMSMT had least knowledge about it when
compared with the others. The researcher and the non-participant observer
(witness of the study) made the same decision to provide PMSMT
opportunities about realizing that the perpendicular bisector was different from
other auxiliary elements since it was not a cevian while the others were the

examples of cevian.
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In the last phase of the HLT, the research team decided to make two
revisions on the tasks. The research team decided to remove the problems
about the formation of image triangles through composition of transformations.
They decided that these problems could be discussed briefly while discussing
the formation of the image triangle. For example, one of the PMSMT in the
research team stated,

We found that congruent triangles are formed through translation and the result
does not change if we conduct two translations consecutively. We again obtain
congruent triangles. Therefore, it is unnecessary to deal with this situation as
another problem since we always form congruent triangles no matter how

many times we apply translation.

This explanation was valid for all rigid motions. Therefore, the research
team decided to remove this problem on the activity sheets for all rigid motions
but suggested to discuss it in the problem about formation of image triangle.
Another revision was suggested for the last problem on the activity sheet about
similarity of triangles. This problem was about identifying whether the
triangles explained in problem situation and having particular properties were
congruent/similar or not and explaining the reasons of this identification. The
research team decided to increase the number of these problem situations and
forming different and harder examples. Therefore, the number of these
examples was increased by adding more difficult statements related to all

learning goals of the HLT.

According to these revisions based on the findings obtained through
retrospective analysis, the actual HLT was formed in order to conduct in the
main study. The actual HLT was represented in the following table. This table
illustrated the concepts, supporting tasks, tools and imagery and possible
discourses for each phase of the HLT. This actual HLT was used in the main
study to identify the classroom mathematical practices emerging in

instructional sequence representing the second macro cycle.
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3.3 Case Study

Case study is probably most widely used approach in education
research aiming to investigate a specific phenomenon in a bounded system
(Creswell, 2009; Merriam, 2009). It can be described as examination of one or
more instances of a phenomenon in its real life context externalizing the
participants’ perspectives in a detailed way carefully. A good case study makes
the phenomenon alive and real and provides understandable meanings for the
reader (Gall, Gall & Borg, 2007). The case study approach is used when the
research focus is finding and stating the holistic and meaningful characteristics
of real-life phenomena (Yin, 2003). In the particularistic or intrinsic case
studies as a kind of case study research, the case is selected with respect to the
researchers’ interest and willingness to understand the phenomena (Merriam,

2009; Stake, 1995) with the aim of in-depth investigation of the case.

In this respect, the present study was a particularistic case study because it was
aimed to examine the PMSMT’s mathematical argumentations to understand
their learning understanding and reasoning about the geometrical concept of

triangles.

3.4 Participants

The participants in the present study were enrolled in the program of
elementary mathematics education at a university in the northern part of
Turkey. Fourty-siz Preservice middle school mathematics teachers (PMSMT)
participated in the study. The classrooms included preservice middle school
mathematics teachers who were junior and registered in the program of
elementary mathematics education. The junior PMSMT were selected since
participants were expected to have necessary knowledge about the concept of

triangles and main theorems related to it. Also, they could make connections
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between triangles and other concepts in geometry of Geometry and Analytic
Geometry courses in previous semesters. Moreover, because of the prior
knowledge of PMSMT for the activities and problems in the instructional
sequence, they were expected to have knowledge about the course of Analytic
Geometry. Therefore, they were selected since they had enrolled in these
courses. Twenty-six of fourty-six junior PMSMT were female and twenty were

male students.

Fourty-six PMSMT were separated into two groups and half of them
took place in the pilot study and other half of them participated in the main
study. In other words, there existed two groups of PMSMT; one for the pilot
study as the first macro cycle and the other one for the main study as the
second macro cycle, and two research teams wereproduced by selecting three
PMSMT from these classrooms in the present study. In pilot study, twelve of
twenty-three junior PMSMT were female and eleven were male students. Also,
in the main study, fourteen of twenty-three junior PMSMT were female and 9

were male students.

There were two research teams; one for the pilot study and the other
one for the main study. These research teams included two academicians; one
was the doctoral student in the department of mathematics education as the
instructor of the lessons and the researcher of the present study, and other
academician was assistant professor in the program of mathematics education
as the non-particicpant observer (witness observer), and three PMSMT
participating in the lessons in the classroom. Three of the PMSMT in the
research teams were randomly selected from the classrooms. The research
teams came together after the teaching episodes for each week was completed.
The researcher instructed the designed lessons by providing opportunities for
PMSMT to form mathematical argumentations in the instructional sequence.
The study was conducted in six-week instructional sequence and three hours in
each week for both of the classes. The classes of weekly cycles composed of

160-minute sessions once per week during the 2015 summer. The PMSMT
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learned in a social environment designed by problem-based learning strategy in
which they engaged in geometrical problems with their peers in small groups
and then participating in whole-class discussions.

3.5 Data Collection

The data were collected through the process of instruction based on the
concept of triangles by video recordings of classroom sessions, audio
recordings of small group works and research team discussions, field notes
taken by the instructor and learners’ works such as worksheets. The research
team constituted learning community. This community shared their ideas and
experiences in the instructional sequence about what was happening in the
instructional sequences, what were the problems and potential misconceptions
in them, what could be done to solve and remove them and what the
implications were for the design research. These discussions were beneficial on
documenting changes on instructional sequence with their rationales. The
instructor was the researcher and member of the research team of the study. All

of the participants in the study were referred to by pseudonyms.

Data collection period started approximately three months before the
instructional sequence about triangles in the main study. The activities were
conducted to five PMSMT, and then pilot study took place. Also, one week
before the application of the main study, the first meeting of the research team
happened. Firstly, the designed activities and supports were conducted to five
PMSMT who were attending in neither pilot study nor main study group. They
discussed about the activity sheets and provided feedback for them. Then,
necessary revisions were made in light of their suggestions and discussions.
Secondly, when all of the activities and HLT were designed and applied to five

group members, the pilot study was conducted.
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A research team was formed in the pilot study group. Instructional
sequence was conducted similarly to the main study group. Based on the
discussions in the classroom and the research team, retrospective analysis was
made. At the end, retrospective analysis was performed and the actual HLT
was produced. Afterwards, the actual HLT was implemented in the main study
group. One week before performing the instructional sequence in the main
study group, the data collection process was started for this group and the
pretests were conducted to them. Also, after the tests were finished, the
research team came together and discussed about the tests and the part of actual
HLT (Phase 1 of HLT) including the activities and supports of Week 1. In the
study, in order to examine and identify PMSMT’s mathematical practices in
the instructional sequence designed for the concept of triangles, the data were
collected through classroom sessions, formal and informal meetings and

interviews.

Because of the dynamic nature of DBR and the closed connection of
mathematical practices with social and sociomathematical norms, the
researcher obtained information and detailed understanding about the
phenomenon both while the research was continued and when it was finished.
In this respect, it was vital to collect and document various and detailed data
about the entire process of the research by examining each step and action of
the research (Cobb et al., 2003). Therefore, several data sources were
employed in the current study. The sources for the research question of the
study used in pilot study and main group study could be illustrated in Table 5
for the relationship between data and the research question for pilot study and
main study and the points of usage of these data. For the weekly mini cycle
analysis, the teaching episode conducted was discussed and inferences were
made for following teaching episodes in pilot study and main study. For the
macro cycle analysis, whole instructional process was analyzed. In pilot study,
retrospective analysis was completed. In the main study, the mathematical

practices emerging in the instructional sequence were extracted.
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Table 5 Data sources and the places of usage of them in the analysis

Weekly Mini Cycle Macro Cycle
Analysis Analysis

Pre-instruction Interview v v
Post-instruction Interview v v
Classroom Observation v v
Whole-class Discussion v v
Peer Discussion v v
Weekly Mini Cycle v v
Reflection

Artifact Collection v v
Researcher Reflection v v
Journal

Pre- and post-tests v v

In the classroom session, the data were collected through six weeks
through participant and non-participant classroom observations, whole-class
discussions by recording video cameras, peer discussions by audio recordings,
field notes and artifact collection. Participant and non-participant classroom
observation was made by the other academician, member of the research team
and the members of the research team. She acted as complete observer by not
participating in the instruction process. She observed the classroom and took
notes about what was happening in the classroom, the roles of the instructor
and the behaviors of the participants, environment, supports, and tasks and
these notes were examined and discussed twice, once by the research team and
also by the researcher and witness. Also, other members of the research team

were the participant observers of the instructional sequence. They participated
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in the instructional sequence by engaging in mathematical tasks and observed
the classroom. The video recordings of whole class discussions were the most
important part of the data collection process. Each teaching episode was
recorded with the help of two video cameras in order to capture the instruction
and the behaviors of the instructor, and the activities of the participants and the
instructor, collective learning environment and whole class discussions. With
this aim, two video cameras were used by placing one of them in front of the
classroom and the other at the back of the classroom. In addition to whole class
video recordings, audio recordings were used in order to collect data about peer
discussions about how to solve the problems on the activity sheets while the

participants were engaging in activities with their peers.

These data were beneficial in order to understand clearly the social and
sociomathematical norms emerging mathematical practices and to examine
their individual learning. In the process of peer group discussions, the
instructor interacted with these small groups so these data provided information
about how the instructor interacted with these small groups and the connection
of these interactions with the whole class discussions through social norms. All
audio and video recordings were transcribed. Furthermore, artifact collection
was performed and the activity sheets on which the participants worked with
their peers and whole group discussions were collected at the end of each
teaching episode. These activity sheets were examined in order to clearly
represent how the participants interacted with their peers and how they solved
the problems discussing and how these processes were transferred to and
attracted on the whole class discussion. In addition to artifact collection at the
end of the teaching episodes, researcher reflection journals were formed once a
week, during each mini cycle, by field notes taken by the researcher and the
other academician, witness of the research, through classroom sessions. These
journals as reflective tools provided the researcher opportunities to record
feelings, thoughts and impressions stepping back from the experienced

teaching episode (Holly, 2002) and plans and thoughts about following
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teaching episodes. These journals were used in data analysis process and

formal meetings.

In the main study group, these journals were beneficial in making
necessary changes and inferences for instructional sequence. These journals
and other data sources explained were also used in the pilot study in order to
make changes in instructional sequence and to apply in retrospective analysis.
Moreover, the data sources obtained through classroom sessions were watched
and examined by the researcher in each week to extract the issues to focus on,
to discuss with the members of the research team in formal meetings and to
make inferences for following teaching episode. For example, in the whole
class discussion of Week 1, it was determined that the participants had
difficulty on main and auxiliary elements of triangles and then, the activities of
Week 2 and Week 3 about auxiliary elements were conducted in the light of
this identification.

In formal and informal meetings, necessary information and inferences
were made in order to clearly examine, understand and develop instructional
sequence. Through formal meetings, the instructor, who was the researcher of
the study, the non-participant observer of the instructional sequence and three
PMSMT participating in the instructional sequence met every week to discuss
the week’s experiences and make inferences, plans and revisions for the
following weeks. Through this process, a small learning community was
formed where the members of the research team shared their ideas and
suggestions for the HLT and the instructional sequence. Moreover, the
progression taking place in the instructional sequence for each teaching episode
and all prior weeks were evaluated and suggestions were formed in order to
remove challenges and difficulties and to provide improvement. In this respect,
these meetings were useful in order to make weekly mini cycle reflections.
They provided opportunities in identifying evolving conjectures and making

reflections on them benefiting from other data sources collected through
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classroom sessions with the aim of examining these conjectures (Cobb et al.,
2003).

The formal meetings of the research team were recorded by video
cameras. Moreover, informal meetings were held when critical problems were
observed in the instruction and needed to be solved immediately. Also, when
the suggestions were needed for the immediate moment, the meetings were
held informally. Two academicians discussed about these situations and
questions about instructional sequence when they occurred. In this respect, the
research team met formally once a week in the process following the
instruction and then informal meetings were held throughout the week if
necessary. The formal meetings were recorded by video camera and the
informal meetings were audio taped. These meetings were held in both pilot
study and main study. The instructor as the researcher of the study watched the
recordings to determine the issues which were discussed, important issues
which were not discussed in necessary time span or completely and issues to
discuss in following meetings. Moreover, the necessary immediate issues were
determined in order to use in following teaching episodes. In the pilot study,

these meetings were also used in retrospective analysis.

The interviews were another data collection tool used in the present
study. The participants who were members of the research team at the same
time were met individually in order to make pre and post-instruction
interviews. These interviews were conducted as semi-structured interviews.
They were asked questions about their tasks of the particular week. These
interviews were about their experiences and reflections on the teaching
episodes. Pre-instruction interviews were made in order to attain information
about their initial understanding and prior knowledge about triangles and the
concept of triangles of the week. The post-instruction interviews were made
based on their tasks of the week. They were asked about their experiences,
feelings and thoughts about the problems on the activity sheets so that their

improvement through instructional sequence was examined.
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For the pilot study, these interviews provided detailed information to be
used in retrospective analysis. In the main study, they were beneficial to extract
mathematical practices and social and sociomathematical norms in which
mathematical practices emerged. They provided opportunities to be flexible in
following comments by the participants (Ginsburg, 1981) and to obtain various
and rich information to identify and document nature of their thinking and

understanding in mathematics (Clement, 2000).

3.6 Data Analysis

The classroom mathematical practices were extracted by analyzing
collective activity representing how mathematical ideas became established in
a classroom through interactions and accepting the classroom as a whole in the
main study since the community as a whole was paid attention on. Therefore,
taken-as-shared knowledge and practices were the focus point of the study
examining collective activity and implications for individual participants
learning taking place in the whole class discussion. Despite accepting
individual PMSMT’s learning as the providers for the development of taken-
as-shared mathematical ideas and classroom mathematical practices emerged in
the designed instructional sequence, the focus point was on whole class
discussions because of the nature of classroom mathematical practices
extracted by taken-as-shared view. Two methods were used with the aim of the
analysis of the qualitative data gathered through the DBR. Because of the
nature of the design experiment providing the development of the theories
(Cobb et al., 2003), data were examined by constant comparative data analysis
method of grounded theory. The data were collected through observations,
field notes and documents. Glaser and Strauss (1967) explained that the
constant comparative method was an inductive procedure since it included the
actions of generating and linking categories by making comparisons between
different incidents, incidents and categories and different categories with the
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aim of grounding categories in the data. Also, while the data analysis process
was in progress, comparisons were made between different indicators, different
codes and different categories constantly. In the broad perspective, the
comparison between emerging scheme and raw data with the aim of grounding
categories in the information collected in the current study was made
(Creswell, 2009). Moreover, the data collection and analysis processes provide
opportunities to discover the patterns in the data effectively since conducting
the designed lessons took six weeks and eighteen hours in total. Also, the
constant comparative method can be used effectively by comparing the data
itself collected in the same day and the data gathered across different days. The
meanings of the obtained categories and themes are interpreted by reflecting
personally on the impact of the findings and on the literature. Moreover, the
second method used to analyze the data gathered through whole-class
discussion and classroom mathematical practices becoming taken-as-shared on
the concept of triangles designed for PMSMT was the methodology of
Rasmussen and Stephan (2008) and based on Toulmin’s argumentation model
(1969).

Rasmussen and Stephan (2008) formed a methodology in order to
examine taken-as-shared collective learning by documenting classroom
collective learning activities leading classroom mathematical practices and
whole class discussions (Stephan & Cobb, 2003). This methodology includes
three phases performed with Toulmin’s (1969) model of argumentation. This
methodology is beneficial to analyze classroom discourse and to document
reasoning of the participants during instructional sequence. Moreover,
classroom mathematical practices are determined by identifying what has
become taken-as-shared knowledge. These phases are composed of different
actions, objectives and ideas. These differences produce different products
based on the ideas, solutions, strategies and procedures. The formation of
mathematical practices by these phases is illustrated in Table 6 formed by
Rasmussen and Stephan (2008, pp. 83-84).
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Table 6 Phases in documenting collective

Phases of Research  Activity

Product

Phase One *Transcribe  every

discussion

* Notate claims made by students or

instructor

* Identify data and conclusions, as well

as

warrants and/or backings if present

* Compare argumentation schemes and

come to agreement

Argumentation

Log

Phase Two * Use Argumentation Log as data Mathematical
« Identify taken-as-shared mathematical Ideas Chart
ideas

Phase Three * Use Mathematical Ideas Charts to Classroom
identify Mathematical

common mathematical

associated

with  taken-as-shared

ideas

mathematical

Practices

The first phase begins by transcribing videotape recordings of each

teaching episode so that transcripts for all whole-class discussions from the

class periods are formed. Then, these transcripts are examined to note claims

produced by either learners or the instructor, i.e., each time that a claim is

formed is identified. This is followed by analyzing transcripts to determine

data, warrants, backings and rebuttals produced for each claim so that
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Toulmin’s model of argumentation is used to produce an argumentation
scheme for each claim. This process ends with the product of an argumentation
log.

The process of extraction and identification of the elements of
Toulmin’s model from the transcripts obtained was carried out by more than
one researcher independently by making meetings. The other researcher taking
place in this identification process was the witness and non-participant
observer of the teaching episodes. Both of them produced their argumentation
logs representing claims, data, warrants and backings for each claim
independently. In other words, after identifying claims, related data, warrants,
backings and rebuttals as the elements of Toulmin’s model were determined

specifically in the contexts in which they emerged.

Afterwards, both of the researchers as producers of argumentation logs
came together to discuss about their analysis and argumentation logs. They also
accepted or refuted each other’s opinions on the elements identified by
Toulmin’s model until they reached an agreement about them. If they did not
come to an agreement, they discussed about it until they come to an agreement.
The processes including the discussions about coming to an agreement on the
argumentation logs and the elements on it strengthened the analysis. Toulmin’s
(1969) model of argumentation was used to illustrate the structure of
arguments. This model is composed of four parts: the claim, data, warrant and
backing. The first part, the claim, is the opinions proposed as true by the
learners. They are also conclusions of the discussions and the easiest parts of
this model since they may be an answer of a problem or a mathematical
statement to be questioned. The second part, the data are the expressions
encouraging claims. They provide evidences for the claims in a way that the
learners participating in the argumentations show the truth of the claims.
Moreover, they can be mathematical procedures or methods, mathematical
relationships, facts, theorem or definitions leading to the claims. The third part,

the warrant, makes the connection between the data and the claim. They
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provide this connection benefiting from implications of the data. It explains
how the data encourages the claim by justifying the reasons that the data lead
to the claim. The last part of the model is backing. A backing expresses the

reasons of acceptance of an argument by increasing the validity of the claim.

The second phase of analysis focuses on identification of taken-as-
shared mathematical ideas by using produced argumentation logs. Hence, these
argumentation logs are examined in order to extract evidences for the ideas
becoming taken-as-shared focusing on data across all class sessions and
teaching episodes. This phase of analysis is about extraction of mathematical
ideas taking place in the argumentation logs and classroom’s normative ways
of reasoning. For this aim, Rasmussen and Stephan (2008) developed two
criteria for how mathematical ideas become taken-as-shared. The first criterion
explains that the backings and/or warrants of the argumentation disappear in
the whole class discussion. In other words, the participants no longer challenge
the argumentation since all of them understand the mathematical idea
represented in the core of the argument. The other criterion states that the
mathematical idea formed and becoming self-evident in an argument is used in
future arguments for justifications with the functions of the data, warrant, or
backing (Rasmussen & Stephan, 2008). Moreover, Rasmussen and Stephan
(2008) propose the researchers a mathematical ideas chart for each class
session in order to identify classroom mathematical practices effectively. This
mathematical ideas chart includes three columns: “(a) a column for the ideas
that now function as if shared, (b) a column of the mathematical ideas that
were discussed and that we want to keep an eye on to see if they function
subsequently as if they were shared, (c) a third column of additional
comments” (p. 200). There is an example represented on Table 7 produced for
the current study on Week 1 for the second activity sheet. In other words, this
chart helps the researcher to identify mathematical ideas discussed, needed to
be investigated in the following process, becoming taken-as-shared and

additional interpretations with theoretical or practical links. This chart is
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produced by making comparisons between lessons so that emerging of taken-
as-shared ideas can be made in a progressive process and transfer of the
mathematical ideas from “keep an eye on” to “taken-as-shared” with additional

comments.

Table 7 Mathematical Ideas Chart for the Second Activity Sheet on Week 1

Ideas that function as-if-  Ideas to keep-an-eye- Additional comments
shared on

Identification of main Construction of By some of known

and auxiliary elements of triangles elements (main or

triangles auxiliary elements), how

The possibility of to construct these

formation of triangles by triangles was examined.
knowing some of The number of types of
elements of triangles these triangles was
investigated by knowing

some elements.

Third phase of the methodology is the stage of the analysis process that
the classroom mathematical practices are identified based on determining
taken-as-shared mathematical ideas with Toulmin’s model of argumentation
(Cobb & Yackel, 1996; Rasmussen & Stephan, 2008; Yackel & Cobb, 1996).
After the process of identification of taken-as-shared mathematical ideas, they
are examined and organized based on the contexts and mathematical ideas in
which they become established and turn into taken-as-shared and then they are
organized under a common title representing common mathematical activities
in which the participants deal with. The general mathematical activities
produced in this way are named as classroom mathematical practices
(Rasmussen & Stephan, 2008). This organization process for producing

classroom mathematical practices based on general mathematical activities has
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close relationship with Cobb’s (2003) criteria that “the analysis should permit
documentation of the developing mathematical reasoning of individual students
as they participate in communal classroom processes” (p. 11). In this respect,
three classroom mathematical practices were produced in the current study;
PMSMT’s reasoning on (a) the formation of a triangle, (b) the auxiliary

elements of triangles and their properties, and (c) congruence and similarity.

3.7 Interpretative Framework

The social part of the emergent perspective includes three domains as
social norms, sociomathematical norms, and classroom mathematical practices
with closed relationship with each other. The first domain, social norms,
focuses on the structure of participation taking place in instructional sequence
in the classroom (Stephan & Cobb, 2003). In DBR, two types of participation
took place. The first type was small group works where the PMSMT studied on
the activity sheets with their peers by discussing and sharing their ideas and
reasoning, usage of construction steps by recording their solutions and
expressions on the activity sheets to present in whole class discussions. Other
type of presentation was observed as whole class discussion. The participants
explained their solutions and representations with the reasons. Then, the others
investigated further clarification and explanation for them, alternative solutions
and mathematical expressions. The interpretations of social interactions
included the examination of the participants’ (a) providing explanations and
justifications for the problems, (b) understanding others’ explanations, (c)
approving or disapproving the solutions of others, and (d) asking questions
when a conflict happens in the process (Cobb & Yackel, 1996). These social
norms were also observed in the current study. When these social norms were
considered based on Toulmin’s argumentation model, they were produced
providing data and warrant for the claims in the process that the participants
dealt with classroom discussions about the concept of triangles. Therefore,
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these social norms encouraged the formation of the parts of Toulmin’s model
so that social norms were vital to providle PMSMT’s understanding and

learning of triangles and identification of classroom mathematical practices.

The second domain, sociomathematical norm, was extracted from
whole class discussions engaging in mathematical activities and about the
concept of triangles for the present study. The process of formation of
sociomathematical norms was critical in DBR since they provided the
formation of mathematical practices by focusing on mathematical solutions.
The participants shared their solution of the problems and reasoning with the
others by justifying and explaining procedures benefiting from the words,
drawings, constructions, models, symbols and representations. They helped the
participants in expressing their reasoning while participating in the whole class
discussion. Some of the sociomathematical norms emerging in the study were
formation of specific triangles through construction, examination of the
elements of triangles through construction and examination of critical points

for different types of triangles.

Mathematical practices as the last domain were examined by the
Toulmin’s model in the current study by paying attention on mathematical
explanations formed through the tasks. These practices produced a nice way to
illustrate the collective mathematical learning but it was not possible to claim
that the participants learned the related concept effectively in the classroom
setting (Cobb, 1998). Cobb et al. (2001) explains mathematical practices as
“taken-as-shared ways of reasoning, arguing, and symbolizing established
while discussing particular mathematical ideas” (p. 126) by not requiring
further justification and explanation. The mathematical practices were
produced by the participants’ engagement of the classroom activities. In order
to answer the research question of the study, an analysis of classroom
mathematical practices were made to illustrate how the designed activities in

the HLT provided PMSMT’s learning of the concept of triangles. They were
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extracted by the way of taken-as-shared based on Toulmin’s argumentation

model.

3.8 Trustworthiness

Through the six-week instructional sequence, the learning and
understanding of PMSMT about triangles were examined by collecting data
from different sources. With the aim of providing trustworthiness, the data
were collected through multiple methods such as observations, interviews, field
notes, documents and meetings of the research team in the present study.
Making triangulations between the data obtained from these multiple methods
provided trustworthiness by decreasing the limitations of the present study
(Mathison, 1988). Trustworthiness by triangulation with different data sources
could be made by obtaining information investigating evidences from these
sources. Using the information in this way supported building coherent
justifications for the themes (Creswell, 2009). Also, member checking strategy
was used for trustworthiness. It could be explained as taking the data,
descriptions, themes or interpretations made based on the data back to the
people who participated in the study during the analysis and specifying
whether they thought that they were true (Creswell, 2009; Guba & Lincoln,
1981). By using the member checking strategy, the follow-up interviews as a
suggested way by Creswell (2009) were made with the PMSMT participating
in the current study and wanted to make comments about the results. The
findings and interpretations based on them were discussed with the participants
of the present study. In addition, rich and thick descriptions were used to
communicate the findings. These descriptions gave the readers necessary
information about setting and opportunities to share their experiences so that

the results became realistic and richer.
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3.9 Limitations of the Study

The present study have some limitations especially because of its design
of qualitative research and methodology of design based research. The first
limitation is that the findings of the study can be less generalized to the
population because of its research design. On the other hand, the
generalizability can be provided by studying with different groups of PMSMT
in other macro cycles benefiting from its cyclical nature. Secondly, another
limitation is that the findings of the study has focused on the collective learning
of the participants. Hence, this study is limited to social aspects of the
emergent perspective without paying attention on the participants’ individual
learning. The third limitation is about the instructor. The mathematical
practices emerged in the study in an environment in which the PMSMT
thought about the geometrical ideas in the classroom under the guidance of the
instructor. In other words, the instructor guided the whole class discussion and
the mathematical ideas emerged in this way. Therefore, the instructor had
effect on the process of the emergence of them. The last limitation is about the
willingness of the participants since the mathematical practices emerged in
whole class discussion and their motivation to participate in this discussion

limited the formation of mathematical practices.

3.10 Summary

In this design-based research as a qualitative research, the HLT to be
used in six-week instructional sequence was formed and tested based on the
findings of the pilot study. Then, conjectured local instruction theory was
formed and tested in the study. The process of designing, testing and evaluating
this theory by the HLT was explained through the pilot study. Then, revised

HLT was conducted to the main study group. The data were collected in
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different ways such as observations, interviews and tests. In this process, the
classroom mathematical practices were identified by analyzing the data
through the Toulmin’ model of argumentation and Rasmussen and Stephan’s
(2008) three-phase method. Moreover, the trustworthiness was provided in

different ways.
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CHAPTER 4

4. RESULTS

The answer is provided to the research question of “what are the
classroom mathematical practices emerging in design-based research
environment designed by problem-based learning for teaching triangles to
preservice middle school mathematics teachers?” in this chapter of the study.
Qualitative and quantitative findings of the study is explained. Qualitative
findings represent classroom mathematical practices formed by the Toulmin’s
model of argumentation. Quantitative findings illustrate the pre and post-test
scores obtained by van Hiele geometry test and the triangles tests produced by
the researcher to analyze the preservice middle school mathematics teachers’

thinking and learning about triangles.

Classroom mathematical practices are the mathematical ideas that have
become taken-as-shared through the process in which the learners do not need
mathematical justification in order to show its truth (Cobb & Yackel, 1996).
Moreover, the way of taken-as-shared happens by using a conclusion produced
in an argument to produce a different conclusion for another argument (Cobb,
& Yackel, 1996; Rasmussen & Stephan, 2008; Yackel, 2001). In this respect,
the present study with the aim of identifying the mathematical practices in a
classroom teaching experiment designed about the concept of triangles, the
following classroom mathematical practices of preservice middle school
mathematics teachers (PMSMT) emerged: PMSMT’s reasoning on (a) the
formation of a triangle, (b) the elements of triangles and their properties, and
(c) congruence and similarity with limited number of mathematical ideas in

these practices as in Table 6.
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Table 8 Three Classroom Mathematical Practices

Classroom Mathematical Practices

Mathematical practice 1: Reasoning on the formation of a triangle
Reasoning on the definition of triangles and classification of them

Reasoning on the construction of triangles

Mathematical practice 2: Reasoning on the elements of triangles and their

properties
Reasoning on construction of auxiliary elements of triangles
Reasoning on the concurrence of auxiliary elements of triangles

Reasoning on the names of concurrent points of auxiliary elements of

triangles and their places

Mathematical practice 3: Reasoning on congruence and similarity

Reasoning on the formation of congruent or similar triangles through

transformation geometry

A.S.S. is not a congruence/similarity criterion

4.1 Mathematical practice 1: Reasoning on the formation of a triangle

The first mathematical practice emerging through the instructional
sequence conducted in light of the designed HLT on triangles was reasoning on
the formation of a triangle. The mathematical ideas included in this
mathematical practice were related to definition of a triangle and types of
triangles and construction of triangles based on their some known elements.
These practices mainly emerged from the activities in which the participants
engaged on Week 1. In that week, the participants examined the classification

of triangles based on their definitions and the possibility of constructing them
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by knowing the measures of some of their main or auxiliary elements. For
these activities, they initially worked with their peers and then participated in
the whole class discussion. While engaging in these problems, they used the
strategy of construction and related mathematical theorems, and the definition
of triangles.

4.1.1 Mathematical idea 1: Reasoning on the definition of triangles and
classification of them

The first mathematical idea included in the first mathematical practice
was observed on the first week of the instructional sequence while the
participants were engaging in the activities about defining and classifying the
triangles. In this activity on Week 1, there were problems about placing
different types of triangles on a diagram by relating them for the classification

of them as illustrated in the Figure 4.

CLASSIFICATION OF TRIANGLES
Place the following words on the diagram by making their definitions.

Triangle, isosceles triangle, equilateral triangle, scalene triangle, right

triangle, acute-angled triangle, obtuse-angled triangle.

Figure 4 The first problem about placing the types of triangles in the diagram

by using the definition of them in the first activity sheet on the first week

Then, they were asked to determine the places of the types of triangles on the
diagram by defining and relating them. While they were working on the
problems in the activity sheet with their peers in small group works, the
instructor visited the small groups to determine different mathematical ideas

and use them in whole class discussion. Through observing the studies of the
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participants with their peers in the small groups, the instructor realized that
they were not able to define triangles accurately and necessarily. Also, they
were not able to successfully benefit from the main elements of triangles in
formation and classification of triangles. Therefore, the instructor initiated the
discussion by asking a question in order to help the participants understand
their errors and accumulate them. So, a discussion was initiated by the
instructor in order to reach the definition of a triangle based on its main

elements as follows:

Instructor: How can you form a triangle? Or, which elements are used to

construct and define a triangle?

Selim: When we think about triangles, we can say that there are two kinds of
main elements which are corners and edges. Therefore, we can define

and classify triangles based on these elements.

In the explanation of Selim, it was observed that he stated accurate main
elements of triangles to construct and define them but it was not made in a
sufficient way since all of the polygons included these elements. He did not tell
the formation of triangles by these elements. Hence, his explanation was a
general statement valid for all polygons. The instructor asked them whether
these elements were sufficient to construct a triangle in order to make the
participants realize this case but they were not able to answer it. At that point,
the instructor made the suggestion of thinking about the definition of a triangle
to guide the whole class discussion about understanding the definition and
formation of a triangle by these elements. Then, the participants began to make

the definition of a triangle.

Ayse: Triangles are geometrical figures formed by three points where two line

segments intersect at a point.

Mehmet: This explanation does not refer to the definition of a triangle. We

have three points and line segments intersecting on these points in the
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case of two line segments for each point. According to your definition,

this figure is also a triangle but it is not actually.

Figure 5 The counter example by Mehmet for the definition of Ayse.

In the explanation of Ayse, she told the main elements in a way different from
Selim’s explanation. She stated the corners as the intersection points of the
line segments so her explanation was necessary but not sufficient. She might
benefit from the idea of the corner as the intersection point of two line
segments or two edges on a polygon but she ignored the non-linearity of three
points and the necessity of closeness of a triangle. In order to help the
participants realize these missing points, the instructor wanted them to criticize
the appropriateness of her explanation. At that point, Mehmet provided an
appropriate example for her explanation but not a triangle. Then, the instructor

asked the definition of a triangle to continue the discussion.
Instructor: Ok. What is the definition of a triangle?

Halit: Triangles are geometrical figures formed by intersecting three non-
parallel line segments in the plane.
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Selim: In the figure, there are intersecting three non-parallel lines but the figure
formed in this way is not a triangle. According to the definition of Halil,
it must be a triangle and we can talk about coincident line segments as

it is seen in the figure.

Figure 6 The counter example by Selim for the definition made by Halit.

By asking the definition of a triangle again, the instructor expected that they
realized the non-linearity of three points and the necessity of closeness of a
triangle but they focused on a different point which was the intersecting three
non-parallel line segments. His explanation was not sufficient and Selim
showed its insufficiency by providing an example appropriate for Halit’s
definition but not a triangle. Also, Halit provided a nice point for the definition
of a triangle by stating the necessity of placing the line segments and the
intersection points as the vertices on the same plane. Then, the instructor
confirmed the appropriateness of Selim’s explanation and encouraged the

participants to make the right definition.
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Ozlem: In that respect, we say that the geometrical figures formed by

combining three non-linear line segments are triangles.

Merve: The edges which are the main element of the triangles refer the line

segments. These line segments are linear.
Instructor: Let’s summarize the right points that we discussed. What are they?

Mine: ... three non-linear points on the plane, three line segments combining
these points...the edges and the corners... the angles of the triangles are

formed at these corners.
Instructor: Well. Can you define the triangle using them?

Mine: ... triangles are closed convex geometrical figures formed in a way that
three non-linear points are combined by three line segments on the

same plane.

In the light of the explanations and definitions made by the participants, the
necessary points of three non-linear points, placing on the same plane and
closeness were realized and then they formed the appropriate and sufficient
definition of a triangle. To sum up, by stating “triangles are closed convex
geometrical figures formed in a way that three non-linear points are combined
by three line segments on the same plane”, the discussion finished and they

understood the definition of a triangle based on the main elements of it.

In this debate, Selim first attempted to explain how to define a triangle.
In other words, he made a claim that it was important to think about the
triangles’ edges and corners which were main elements in order to define the
triangles. However, Ayse used data benefiting from the appearance of a
triangle by explaining three points and line segments. However, she provided
warrant for the same claim in a wrong way where two line segments
intersected at a point. Then, Mehmet stated rebuttal for the argument by
providing counterexample for her warrant to refute her explanation.
Afterwards, another data for the definition of triangles and warrants for this

emerging argument were constructed by Halit and Ozlem based on the claim in
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order to emphasize three non-parallel line segments. Their explanations were
followed by rebuttals provided by Selim and Merve, respectively. They refuted
the explanations referring the definition of a triangle incorrectly by providing
counterexample. At the end of the debate, Mine explained data and warrant by
defining triangles truly emphasizing the main elements of triangles under the
guidance of the instructor. Through the discussion process, the participants
formed the mathematical idea about the definition of a triangle based on its
main elements under the guidance of the instructor. At the end of her
explanation, nobody in the classroom challenged this argument. According to
Toulmin’s model of argumentation, the structure of the discussion about the
definition and classification of triangles considering the main elements can be

summarized as shown in Figure 7.

DATA
CLAIM

Mine: ...triangles are closed . .
Selim: When we think

convex geometrical  figures )
— | about triangles, we can say
formed in a way that three non- .
that there are two kinds of
linear points are combined by ) .
main elements which are

three line segments on the same
corners and edges...

plane

WARRANT

Mine: We can define and classify the triangles based on their three line
segments and three corners. Two line segments intersect at each point.

Moreover, the angles of the triangles are formed at these corners.

Figure 7 Toulmin’s model of argumentation for reasoning on the definition of a

triangle based on main elements
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In the first week on the advancing hours and the third week of the
instructional sequence, it was illustrated that the mathematical arguments
produced by the participants, and knowledge and skills about reasoning on the
definition and classification of triangles attained during this debate in the first
week became taken-as-shared. They used this one as data and warrant in their
arguments on Week 1 and Week 3 without necessitating backings, and by
confirming that it became taken-as-shared. At Activity Sheet 1 on Week 1, also
in the same problem as illustrated in Figure 4, the participants were asked to
define different types of triangles and place them on the diagram by connecting
them. In this process, they used the knowledge about the definition of a triangle
formed in this mathematical idea in order to define other types of triangles and
determine their places on the diagram. In other words, while producing the
definitions for other types of triangles, they used the definition of a triangle and
particular properties of the main elements of triangles; edges and vertices. For
example, an equilateral triangle is a triangle whose measure of all angles and
the length of the edges are equal. Also, they benefited from the knowledge
about the definition of a triangle in the definition of a right triangle as

illustrated in the following part of this mathematical idea.

At Activity Sheet 2 on Week 1 as in Figure 11 represented in the
following mathematical idea in this mathematical practice, there were problems
examining the possibility of the formation of a triangle such as “When the
values of h, and b and m(BAC) = 90° in the triangle of ABC were known, is it
possible to draw/construct this triangle? How?”. The participants benefited
from the knowledge related to the definition of a triangle about combining
three non-linear points representing the vertices of the triangle with line
segments to examine the possibility of the formation of a triangle as it was
examined in Mathematical Idea 2 in the Mathematical Practice 1. In addition,
the mathematical idea about the definition of a triangle based on its main
elements was used in order to construct a triangle which was the image of a

triangle formed through transformation geometry as it was illustrated and
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discussed in Mathematical Practice 3. Through the formation of the image of a
triangle by transformation geometry, the participants focused on the formation
of a triangle through its definition and main elements in a way that it was
discussed previously. For example, through translation, the participants
focused on the identification of the vertices of the image triangle formed by
moving the vertices of the former triangle by a particular vector. Then, by
combining these moved points by line segments, the image triangle was formed
as it happened in the definition of a triangle. To conclude based on these
discussions taking place at different time points in the instructional sequence,
the mathematical idea about reasoning on the definition and classification of

triangles based on their main elements became taken-as-shared.

The participants criticized the regions on a plane formed by a triangle in
the same problem represented in Figure 4 while discussing the formation and
definition of triangles with the property of the placement of their main
elements on the same plane. Through the argumentation about the definition of
a triangle, they also made the definition of a triangle based on the regions
formed on a plane. In this way, the participants produced another discussion
period about this mathematical idea based on the regions on the plane formed

by a triangle and its main elements as follows:

Biigra: Triangles are geometrical figures including three line segments
intersecting three non-linear points. When this formation process is
thought, triangles are geometrical figures separating the plane into three

regions.
Ayse: Two regions are formed not three ones.

In this definition, Biisra formed a different definition of a triangle based on the
regions formed on a plane. Then, Ayse did not accept the truth of this
definition although it was right. The instructor realized that the
participants had problem in understanding the regions formed by a
triangle on a plane. Hence, the instructor guided the discussion in order
to them focus on the process of formation of these regions as follows:
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Instructor: How are these regions formed? Think about the elements of
triangles and the formation of these elements.

Selim: Three line segments formed by infinitely many points with respect to
the definition of line segment intersect each other at three corner points
of a triangle...

Instructor: How many regions are formed by these critical elements? What are
they?

Ayse: The points on the edges and inside the edges of a triangle form the
interior region and the remained points on the plane form the exterior
region. The edges are the borders of the interior region so that two

regions are separated apart.
Instructor: Is it correct? What do you think?

Nuray: There are two regions but they are interior one and the other one

including the points of exterior and edges.

Ozge: There are two regions. For example, think about the circles. Circle is the
set of specific points and its interior part is empty. When we think about
the interior points, we begin to talk about the sphere. We can compute
the area of a triangle or we do not have different names for triangles
with/without interior points. Therefore, we accept interior points with
the points forming the edges as interior region and examine based on

two regions...

At this episode of the argument, the instructor tried to have the participants
realized that the lines segments took up place on a plane so that the edges of a
triangles could take place on the plane. Therefore, she guided the discussion
about the definition of line segments. After the instructor provided the
participants focus on the definition of a line segment as the set of points
equidistant to two particular points, they talked about this process but they
were not able to reach a consensus about the regions were formed on a plane

by a triangle. Then, Ozge provided an explanation by claiming that two regions
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were formed by making connection with circle and sphere and the possibility
of computing the area of it. She stated that the interior regions was connected
with the line segments because it was possible to compute the area of a triangle
since they considered that if the area of it were not be able to be computed, it
would attain a different name as it happened in the circle and sphere. In other
words, she claimed that the interior region was composed of the points on the
interior region limited by the edges of the triangle and the line segments
forming the triangle since it was possible to compute the area of triangle. The
idea that if it were not possible to compute the area of a triangle, it would have
attained a different name as it happened for circle and sphere was produced. In
order to help the participants realize the point that they confused with the area
of a triangle in this way, the instructor focused on the perimeter and area of

triangles by using representations.

Instructor: Ok. Let’s model this. Think about a real life example by the area
and perimeter of a triangle. Think about the difference between a

triangle plate and a triangle frame.

Yiicel: Both of them represent a triangle but the interior part of the frame is

empty while the other’s is not.
Instructor: It is a good point. So...

Mehmet: Let’s form a triangle, by combining three pens for the edges. This is a
triangle and its interior part is empty. We cannot say that it is not a

triangle for this reason.

Instructor: Yes. In this example, although we have a triangle, we are not able to
engage in the area of a triangle since it does not exist. So, what can you

say about the regions formed on a plane?

Yiicel: Therefore, the interior region is not connected with the region of the
line segments. Also, we have stated that triangles are formed by line

segments. These segments occupy places in the plane. Moreover, line
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segments are formed by points and the points occupy places in the
plane. Therefore, the edges can form a region alone.

Instructor: Well, it is a good point.

Biisra: In this respect, we can state that triangles separate the plane into three
regions which are the set of interior points and the set of exterior points
and the set of the points on the edges.

In the discussion, they criticized the idea of the possibility of computing the
area of a triangle. They realized that although a triangle’s interior region was
empty and there was a case without the possibility of computing its area, it was
still a triangle. By benefiting from the cases related to the possibility of
computing the area of triangles and connecting the formation process of main
elements of triangles, they reached the accurate and sufficient explanation
related to the regions formed by a triangle on a plane.

In this debate, Biisra first extended the discussion about the definition
and classification of triangles based on their main elements by adding a
different definition including the regions formed by a triangle on a plane. In
other words, she extended the claim, data and warrant by adding the idea that
these main elements separated the plane into three regions in the discussion
challenged by the other participants. However, Ayse and Ozge provided
rebuttals for this debate by stating that there were two regions and the edges of
the triangle was belonged to the interior region. It was observed that some of
the participants had confusion about the regions formed by a triangle on a
plane so the instructor guided the discussion in order to help them reason about
three regions accurately. Then, Mehmet, Selim and Yiicel showed that the
rebuttals provided by Ayse and Ozge did not represent the expected true
explanation for the claim. Selim provided the definition of a line segment.
Also, Mehmet and Yiicel stated that both of the cases of a triangular frame
with/without its interior region represented the geometrical shape of triangle.
Through this part of the discussion process, they examined two of three parts of
the region formed on a plane by a triangle which were interior region and the
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region formed by the points of the edges of triangle. At the end, Biisra added
true claim, data and warrant by separating these regions appropriately under the
guidance of the instructor and the ideas explained by the others. By doing so,
through the discussion process, the participants formed the accurate and
necessary mathematical idea under the guidance of the instructor. The

Toulmin’s model of argumentation for some parts of this debate is shown in

Figure 8.
DATA CLAIM
Biisra: Triangles are | ——— | Biigra: Triangles are
geometrical figures including geometrical figures separating
three line segments the plane into three regions.
intersecting three non-linear
points.

WARRANT

Yiicel: We have stated that triangles are formed by line segments. These

segments occupy places in the plane...

Figure 8 Toulmin’s model of argumentation for reasoning the definition and

classification of a triangle adding the regions on the plane formed by triangles.

The evidence that the idea about three regions formed by a triangle on a
plane used as if shared was observed. This evidence came from analyzing the
argumentation structures constructed on the second and third weeks of the
instructional sequence. They used this one as data and warrant in their
arguments on Week 2 and Week 3 without necessitating backings, providing
that it became taken-as-shared. The activity sheets designed for the auxiliary
elements of triangles in these weeks included the problems about the

concurrence points of auxiliary elements of triangles as critical center points at
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different places for different types of triangles. For example, in one of the
activity sheets, this problem was stated “Does/Do the place of the intersection
point(s) of the all perpendicular bisectors of a triangle change based on the
types of triangles? Why? If it/they change(s), predict the place(s) of it/them for
different types of triangles by showing its truth.” Then, they explained that this
concurrence point was circumcenter and its place changed based on the types
of triangles at the end of the discussion. The place of it was told by stating that
it was in the interior region for acute triangles, in the region of the points
forming the hypotenuse of the triangle for right triangles and in exterior region
for obtuse triangles. Hence, the mathematical idea about the regions formed on
a plane was used as data and warrant in the argument about discussing this
problem. Hence, the notion of the regions formed by triangles on a plane was
used in order to predict the places of these center points for different types of
triangles as it was explained in the third mathematical idea for the second
mathematical practice. In other words, the idea about the regions formed by
triangles on the plane re-emerged on the second and third weeks of the
instructional sequence. The participants used this notion in the argumentation
about the concurrence points of auxiliary elements of triangles as critical center

points at different places on triangles.

In Activity Sheet 1 on Week 1, at the same problem represented in the
Figure 4, while the participants were engaging in this problem with their peers,
the instructor realized that they had difficulty in defining a right triangle and
they were not able to produce an accurate and sufficient definition for a right
triangle. Hence, the participants were asked to define the types of triangles by
the instructor in order to produce the accurate definition for a right triangle.
The instructor initiated the discussion by asking a question in order to discuss

this issue:

Instructor: How can you define a right triangle?
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Mine: We know that a triangle is composed of three non-linear points. For
three non-linear points, two equidistant points to a specific point refer
to right triangles when they are combined with line segments.

When the explanation of Mine was examined, it was observed that she
benefited from the mathematical idea about the definition of a triangle
based on its main elements. When her definition of a right triangle was
examined, her definition was unnecessary and insufficient since the
idea about two points equidistant to another point was not necessary for
right triangles. Also, she did not emphasize the perpendicularity. Hence,
the instructor asked the following question to everybody in the class
with the aim of helping them realize the unnecessary parts in the

definition of Mine.
Instructor: Is equal distance necessary in defining and forming right triangles?

Mine: While finding the shortest distance between a point and a line, we

behave based on this idea since this distance is perpendicular to the line.

At that point, it was observed that although Mine realized the unnecessary parts
of her definition, she insisted on the necessity of them and continued making
unnecessary explanations for defining a right triangle. Therefore, the instructor
thought that more guidance and clues needed to remove them. In order to help
Mine reason her explanation’s unnecessary parts, the instructor asked the

following question:

Instructor: What is the relationship between equal distance and

perpendicularity?
Mine: Between two parallel lines, equal distances form perpendicular lines.

Nuray: As you said, this perpendicular distance is between two lines but you
talked about the distance between two points in your definition. We

cannot determine the perpendicular distance between two points.

Instructor: Right. It is a good point.
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Halit: Let’s think about a circle or an arc. For example, we have three points;
two of them are equidistant to the remaining one so we talk about them

in this definition as in the figure.

Figure 9 Two equidistant points to the one and an arc by Halit.

Merve: When we combine the points of B and C with a line segment, we have

an isosceles triangle based on this definition.

Instructor: It is a good explanation. By the same distance, we can only reach

the idea of equal length.
Mine: Yes, you are right. We need to emphasize the perpendicularity.

In this episode of the discussion, Nuray, Halit and Merve made the
explanations in order to refute the idea stated by Mine. They told their ideas
with the aim of helping Mine reason accurately. While Nuray was explaining
the impossibility of forming a perpendicular line segment between two points,
Halit emphasized that two line segments equal in length did not intersect
perpendicularly in Figure 9. Also, by extending his explanation, Merve claimed
that an isosceles triangle could be produced in the case of having two line
segments equal in length. At that point, the instructor guided them to think

about the definition of a triangle that they produced previously and the main
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properties of a right triangle and then composing the necessary definition in

this way.

Halit: We can define right triangles based on angles and edges which are main
elements of triangles ... Moreover, we must emphasize three non-linear
points necessary for the formation of a triangle. Right triangles are
triangles whose two of the edges intersect perpendicularly at a corner.

Yiicel: We can say that right triangles are triangles whose angle measure of one

of interior angles is 90°.

Through the whole class discussion guided by the instructor, Mine realized that
the property of having equal length of edges was not necessary and related with
perpendicularity needed for right triangles. To conclude, the participants
produced the necessary and sufficient definition for a right triangle based on

the evidences of the definitions of Halit and Yicel at the end of the discussion.

In this debate, Mine first attempted to explain how to define a right
triangle based on the definition of triangles. She used the definition of triangle
as data for this argumentation. It was observed that a prior argument about the
definition of triangles served as data for the argument about the definition of
right triangles. In other words, she produced a claim that it was important to
think about the definition of triangles while defining the types of triangles.
However, she used warrant for the claim in an incorrect way. While making
the connection between data and claim, she could not reason effectively for the
warrant. She considered about his data by emphasizing the perpendicular
distance between points but she dismissed the idea that perpendicular distance
could not be formed between two points. Then, Halit, Merve and Nuray
provided rebuttals for her explanation. Nuray refuted her explanation by
emphasizing this dismissed point. Halit made explanation based on the equal
distances between points by the radius of a circle. Then, Merve ended the
refutation period with the formation of an isosceles triangle. At the end of the
debate, Halit and Yiicel provided correct data and warrant by defining right
triangles accurately. They benefited from angles and edges which were main
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elements of triangles as in the definition of triangles. In this way, the evidence
that the notion of the definition of a triangle was provided by being used as
data in the discussion. Therefore, this discussion period included the second
instance that the notion of the definition of triangles was used. Through the
discussion process, the participants formed the mathematical idea under the
guidance of the instructor. Hence, the mathematical idea about the definition
of right triangles as represented in the core of the argument in the Figure 9 was
produced appropriately through whole class discussion. At the end of the
discussion, all of the participants agreed with the claim and reasoning about it
using the data by Mine and warrant by Halit so that the claim was taken for
granted being unchallenged no longer. The Toulmin’s model of argumentation

for some parts of this debate is shown in Figure 10.

CLAIM
DATA

Halit: Right triangles are

Mine: We know that a _
triangles whose two of the

triangle is composed of three )
edges intersects

non-linear points... .
perpendicularly at a corner.

We need to emphasize the

perpendicularity.

WARRANT

Halit: We can define right triangles based on angles and edges which are
main elements of triangles as we have done to define triangles. Moreover,
we must emphasize three non-linear points necessary for the formation of a

triangle.

Figure 10 Toulmin’s model of argumentation for reasoning on the definition of

a right triangle.
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In the first week on the advancing hours, third, fifth and sixth weeks of
the instructional sequence, it was illustrated that the mathematical arguments
produced and the knowledge and skills about reasoning with the definition of
right triangles attained by the participants during this debate in the first week
became taken-as-shared. They used this one as data and warrant in their
arguments in these weeks without necessitating backings, confirming that it
became taken-as-shared. Firstly, at Activity Sheet 2 on Week 1 illustrated in
Figure 11, the participants used this knowledge in order to examine the
possibility of the formation of triangles when the measures of some of their
elements were known. Moreover, while the participants were engaging in this
kind of activities, they used some theorems related to right triangles such as
Euclidean or Pythagorean theorems. In right triangles, they investigated the
possibility of determination of known elements by using these theorems. In this
activity, they benefited from the definition of right triangles as it was illustrated
from the whole class discussion placed in the second mathematical idea for the

same mathematical practice.

Secondly, on Week 3, one of the activity sheets was about the altitude
of triangles. In this activity, they engaged in the problem about how to
construct the altitude of a triangle and produced the claim about the definition
and construction of the altitudes. In this argumentation, they used the definition
of right triangle as data for that claim and also it was benefited from in the
process of stating warrant. While constructing the altitudes of a triangle, they
used the notion of the definition of a right triangle since an altitude separated a
triangle into two right triangles. When the altitude of the edge of BC was
drawn at the point of H on ABC triangle, it could be claimed that AHC was a
right triangle based on the definition of right triangle. The notion of the
definition of right triangles was used as data and warrant in the argumentation
about the reasoning on the altitude as an auxiliary element of triangles. This

discussion taking place in the third week by providing evidence of its
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functioning as if shared as it was observed in the argumentation in the related
first mathematical idea in the second mathematical practice.

Thirdly, in Activity Sheet 2 on Week 5 as in Figure 16, the last problem
was composed of the statements about triangles and the participants were asked
to determine their appropriateness and to explain their reasons. In this problem,
there was three-column table. The first column included the statements related
to triangles such as “Right triangles are sometimes similar”. The second
column was the place that the participant stated as true or right for the
statement in the first column and the last column was the one where they wrote
the reason of the truth or error of the statement. Therefore, on the similarity and
congruence content, this idea was used in order to determine whether the
triangles were similar explained in the statement of “Two right triangles are
always similar when the measure of one of their interior acute angles are
same”. The teacher initiated the discussion by reading this problem on Activity
Sheet. With respect to interior angle measures of right triangles, the claim of
these right triangles were similar was explained with the definition of right
triangles. In other words, they explained appropriately the reason of their
similarity with the definition of a right triangle since one of the interior angles’
measures were 90° by the definition of a right triangle and the measures of one
of the interior angles were also same as explained in the statement. Therefore,
the idea that the remaining acute angle measures were same based on the fact
that the sum of interior angle measures of a triangle was always 180° was
reasoned accurately and necessarily. In this discussion, they provided it as data
that all of opposing angles’ measures were same for these right triangles. Then,
Merve used this data in the warrant by the similarity criterion of A.A. Through
this discussion, they showed the truth of this statement by the A.A. similarity
criterion under the instructor’s guidance so that they successfully showed the
truth of the statement using the mathematical idea related to the definition of a
right triangle. This case provided evidence for the notion of the definition of

right triangles in a way that it became taken-as-shared. Moreover, the
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statements of “Isosceles right triangles are always similar.”, “When the length
of the hypotenuse and the altitude of the hypotenuse are same for two triangles,
they are always similar.”, “When the length of the radius of incircle and the
altitude of the hypotenuse are same for two triangles, they are sometimes
similar.” and “Some right triangles are similar.” were discussed in the same
way based on the reasons of “Right triangles are triangles whose two of the
edges intersects perpendicularly at a corner” and “right triangles are triangles
whose angle measure of one of interior angles is 90°” and data for the
argumentation. Lastly, in the last week, the participants were given the
problems that could be solved benefiting from the properties about right
triangles and theorems related to them. Some of these problems were also
solved benefiting from the definition of right triangles as explained in detail
under the title of following mathematical idea. Based on this definition, they
determined whether they were right triangles and then they used related
theorems about them. The discussions occurring in this period provided
evidence for the notion taking the function as if shared by using as data and
warrants. In this respect, further evidences were provided for the process of
becoming taken-as-shared for the notion of definition of right triangles. To
conclude based on these discussions, the mathematical idea about reasoning on

the definition of right triangles became taken-as-shared.

4.1.2 Mathematical idea 2: Reasoning on the construction of triangles

The second mathematical idea was observed on the first week of the
instructional sequence while the participants were engaging in the activities
related to basic constructions of triangles. In this activity, different groups
including the known values of some main and auxiliary elements of a triangle

were provided as illustrated in Figure 11.
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When we know the measures of h, and V, and m(BAC) = 90° in the triangle
of ABC, is it possible to draw/construct this triangle? How?

When we know the measures of h, and a and m(BAC) = 90° in the triangle of
ABC, is it possible to draw/construct this triangle? How?

Figure 11 The problems asking the possibility of the construction of particular
triangles by knowing the values of the explained main and auxiliary elements
of triangles on Activity Sheet 2 on Week 1.

Then, they were asked to investigate if it was possible to form or construct the
triangle by using their known values of some of its elements provided in the
problem. In these problems, they investigated whether they were able to form a
triangle by reasoning differently. Also, they examined the types of triangles
that could be formed with known/given measures of elements. For this activity,
they worked with their peers and participated the whole class discussion. While
engaging in these problems, they used the strategy of computation of the
measures of specific unknown elements based on the known/given ones with
related theorems such as Pythagorean, definition of these elements and right
triangles and construction activities. During the whole class discussion, they
debated how they used these mathematical ideas in the solution of the problem.
The instructor initiated the discussion by reading one of the problems on
Activity Sheet of the Week 1:

Instructor: When we know the measures of h, and b and m(BAC) = 90° in the

triangle of ABC, is it possible to draw/construct this triangle? How?

Selim: Yes, we can construct this triangle. We have the measures of two main
elements and one auxiliary one. Also, we can construct a triangle when
we know its two of the lengths of the edges and the angle measure of

one of its angles. Moreover, when we know the lengths of two edges of
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the triangle, we can make predictions about the length of the third edge
and the possibility of the formation of the triangle benefiting from

triangle inequality. They are enough to construct it...

In this explanation, Selim made good reasoning but it had inaccurate parts. His
reasoning was different from the other participants’ reasoning since he focused
on the construction steps even if the way that he followed was not appropriate
while the others engaged in the main theorems about triangles. He assumed
that a right triangle of AHC illustrated in Figure 12.a was formed by known
elements explained in the problem. Then, he claimed that it was possible to
compute the value of o which was the measure of the angle of HAC by using
the known values of the explained elements. His reasoning about computing
the value of the angle measure of a was not possible but he was not aware of it.
Then, he continued by constructing a right angle which was the angle measure
of BAC. He constructed this angle in a way that one of the rays of this angle
was the edge of AC. Hence, the other ray formed the edge of AB of the triangle
of ABC so that the triangle asked in the problem was formed as in Figure 12.b.
Selim ended his explanation by constructing the triangle finding the places of
all vertices of the triangles as main elements of the triangle. Although Selim
benefited from the construction steps of a particular angle, he could not use
these steps appropriately. The critical point for his explanation was that he
assumed that it was possible to compute and construct the angle of a. In order
to help the participants realize this inappropriate part, the instructor guided
discussion to focus on this point. After they realized this unrelated part, they

started to discuss the problem again.

157



a. The triangle of AHC b. The triangle of ABC

Figure 12 The triangles formed through the explanations of Selim

Mehmet: ...By the definition of an altitude, h, starts on the vertex of A and
ends on the edge of BC by intersecting it perpendicularly. Here, we do
not have the edge of BC so we cannot construct the specific ha.
Moreover, if we are able to construct a triangle with two edges and an
angle, this angle places between these two edges.

Yiicel: We can solve this problem in a different way. We know the values of ha
and b and m(BAC) = 90° for this problem. This is a right triangle as we
know from the definition of right triangles. It makes possible to use
Pythagorean and Euclidean theorems. By using related theorems with
known elements, we can find the necessary unknown elements to draw

the triangle. ..

In his explanation, Yiicel drew a triangle of ABC similar to the triangle drawn
by Selim as in Figure 12.b. For this triangle, he made computations for the
length of the edge of HC by Pythagorean Theorem, |HC|? + h.? = b?, the length
of the edge of BH by Euclidean theorem, h,?> = |BH|.HC| (by knowing the
lengths of ha and the edge of HC) and |BC| = |BH| + |HC|. Then, he determined
the length of the edge of BC by Pythagorean Theorem, |[BC|? = |ABJ? + |ACJ.
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He assumed that the triangle was formed by these known elements. Then, he
thought that he used these values to find the unknown measures of necessary
elements of triangles such as the edges. He claimed that the edges were the
main elements so by knowing the measures of all edges, the formation of a
triangle could be determined. In his explanation, he made good reasoning about
the problem and then he gave the correct answer that the triangle could be
constructed by these known elements. All of the participants except for Selim
in the classroom solved this problem by reasoning similarly in the same way.
This explanation was appropriate since it provided the correct answer that the
triangle could be constructed by these known elements. However, it had
missing part since the answer was related to just the possibility of the
formation of this triangle but it did not examine the types of triangles formed
by these known measures of particular elements. Therefore, the instructor
guided them to examine the types of triangles formed by the measures of these
known specific elements. The instructor emphasized the correctness of the
possibility of the formation of the triangle and then asked different solutions
for this problem to provide them examine alternative triangles formed by these

known elements. Hence, the instructor continued the discussion as follows:

Instructor: Ok. Let’s solve the problem by using another solution strategy?

How can we solve?
Nuray: We can solve it by using construction.

Instructor: How can you do this? ...Focus on the construction of the known

elements.

Nuray: ... Firstly, we construct an angle with the measure of 90° as the measure
of the angle of BAC... Secondly, we construct an arc belongs to the
circle with the center of A and the radius in the length of b. This arc
intersects the rays and then we name one of these intersection points as
the vertex of C. Lastly, we repeat the steps that we made to find the

vertex B for h, to find the point of H...
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The instructor guided them to examine the formation of the triangle through the
construction of given elements in the problem. In the explanation of Nuray, she
found a good point for the problem by reasoning through the construction. She
produced the construction based on the definition of a triangle by emphasizing
that it was formed through three non-linear points. It was a nice starting point
since she explained the necessity of determining the vertices of the triangle.
She constructed a right angle referring the right angle of the triangle by using
compass and straight edge. She drew a line segment and two circles having the
equal length of radius but different from each other based on their center
points; end and starting points of the line segment. Then, by combining the
intersection points of these circles with a line segment, the perpendicular
bisector of the line segment was constructed. This perpendicular bisector
represented a right angle. Afterwards, the place of the vertex of C determined
using the length of b as illustrated in Figure 13.a. Until this point, she produced
the known elements by construction accurately. However, she was not able to
maintain her success about constructing the triangle. At the second part of her
explanation, she repeated this process on the line segment of AC and drew the
perpendicular bisector of this line segment as illustrated in Figure 13.b. Then,
she determined the place of the point of H using the length of ha. At the end,
she formed the triangle by connecting the points of H and C and extending this
line segment to intersect other ray of the right angle constructed initially. She
constructed a triangle different from the triangle asked in the problem because
she followed inaccurate steps for constructing the altitude. In order to help her
realize the missing and inappropriate parts of her explanation and construction,
the instructor asked questions to help her and the others in the class articulate
her ideas and steps. The instructor asked “Why did you draw the perpendicular
bisector of the edge of AC?” and “How does this perpendicular bisector help to
construct the altitude?”. By these questions, the participants reasoned on the
construction steps and then they realized the unrelated parts of the solution.
They claimed that the second perpendicular bisector was unnecessary and the

altitude was not constructed appropriately. They produced different
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explanations refuting the ideas and steps explained by Nuray in the second part
of her explanation. Then, the discussion was continued by the last idea refuting

Nuray’s explained by Kader as follows:

a. Construction of right angle b. Construction of the triangle of
and the edge of AC ABC

Figure 13 The triangles formed based on the explanations of Nuray.

Kader: It is clear that these two arcs formed by using the lengths of ha and b do
not intersect since when we think about the triangle of HAC, the edge
of AC in the length of b is the hypotenuse and ha is belonged to the
right edge of this triangle. Hence, we form bigger circle by using the
length of b than the one by the length of ha.

Instructor: Can you say that the strategy of construction cannot be used for the

solution of this problem?
Ali:  No, we cannot say. We followed wrong construction steps.
Instructor: How can you articulate these steps?

After this question, the participants focused on identification of true parts of
the explanation of Nuray and they decided to determine the place of the
points of A, C and H. Then, with the help of the clues about the

construction process, they constructed triangle appropriately as follows:
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Ali: ... the edge of AC in the length of b becomes the hypotenuse of the
triangle of AHC. Firstly, we find the midpoint of the edge of AC and
construct a semi-circle with the center of this midpoint and the radius in
the length of the half of the length of this edge. Secondly, we construct
an arc belonged to the circle with the center of A and the radius in the
length of ha...

Ali initially constructed the right triangle of AHC as in Figure 14.a with the
hypotenuse having the length of b benefiting from the property that the
inscribed angle opposing of the diameter had the angle measure of 90°. Then,
he constructed a right angle whose one of the rays was the edge of AC as in
Figure 14.b. Afterwards, he extended the line segment passing through the
points of H and C by providing that it intersected the other ray of the right
angle on the vertex of A. This intersection point was stated as the vertex of B
so that the triangle of ABC was constructed. This explanation was a clear way
of constructing the triangle with the measures of known particular elements
stated in the problem. By following these steps, other participants and the
instructor asked questions about them and mathematical explanations and
justifications for them. Through explaining them in a way that the steps were
challenged, they constructed the triangle. After completing the construction
steps, another solution and answer was provided about the possibility of the
formation of the triangle explained in the problem. Then, the instructor guided
the discussion to examine the types of triangles formed by these known

elements. The reasoning was made for these questions as follows:
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b. Construction of the triangle
of ABC formed by Ali

a. Construction of the triangle of
AHC formed by Ali

c. Construction of a whole circle and two right triangles by the length of

h formed by Biisra

Figure 14 The triangles formed based on the explanations of Ali and Biisra.

Biu

Ali:

sra: In the first step, if we construct a whole circle instead of a semi-circle,
we have two triangles at both sides of the diameter of the circle in the
second step so that we form two triangles of AHC. Then, we can have
more than one type of triangle of ABC by following construction steps
(Figure 14.c).

You are right but the number of the types of triangles does not change

since these triangles are congruent...
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Biisra explained that two types of triangles could be formed when the
construction was made by using a whole circle and then repeating the steps for
other part of the semi-circle illustrated in Figure 14.a. She focused on the
number of triangles considering their places. However, the idea that changing
the position and the orientation of triangles did not provide different types of
triangles was dismissed by Biisra. However, her explanation was refuted by Ali
since he stated that two triangles formed based on her explanation were
congruent. He benefited from the idea that when the triangle was constructed
on the other part of the whole circle, the other part was the image of the
previous triangle obtained through reflection with the symmetry line referred
by the diameter of this circle. Then, the instructor guided the participants to
focus on the types of triangles formed by the known elements stated in the

problem as follows:

Instructor: Ok. This way did not form a different type of triangle. What does it
mean? You cannot construct another type of triangle with these known

elements, can you?

Selim: Let’s think about the semi-circle formed in the first step. It is possible to
draw more than one triangle in this problem. The place of the point of H
changes with respect to the length of the altitude of ha by the steps of
construction. There are many possible places for the point of H on the
circle since it is determined by the intersection point of the arc with the

circle. This point can be any of the points forming the circle.

Instructor: Well. It is a good point. How do these possible places help you

construct different types of triangles?

At this episode of the argumentation, Selim made good and necessary
explanation for the problem. He made explanation based on the idea that the
length of ha was assumed as known but not in a way that it’s length was

explained by comparing the lengths of other elements in the problem. By
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constructing the triangle of AHC as in Figure 14.a, a semi-circle was drawn
with the radius in the length of h, so the place of H could be any point forming
this semi-circle. This mathematical idea was important since the participants
might state that various triangles were constructed based on all of the points
forming this semi-circle. Therefore, the instructor asked the question by
emphasizing the types of triangles constructed in this problem. In the previous
example, Biisra explained that congruent triangles could be formed through
reflection by preserving all of the properties although its position changed.
Then, the instructor reminded that the congruent triangles were not different
types of triangles by referring Biisra’s this explanation. At the end of the
discussion, Selim provided accurate and necessary explanation related to the
types of triangles that could be constructed with known elements. He stated
that two types of triangles which were scalene and isosceles right triangles
could be constructed considering the necessity of b > ha. While the isosceles
right triangle was formed in the case of b = 2h,, the scalene right triangle was
formed in the case of b # 2ha. At the end of the discussion, the participants
successfully stated that it was possible to construct the triangle by knowing the
values of hs, b and m(BAC) = 90° and the possible types of triangles that might
be constructed by the known elements in the problem. Moreover, the
participants used the mathematical knowledge that a line segment had three
positions for a circle; not intersecting, intersecting as a tangent line and
intersecting at two points although they did not realize. This was an appropriate
and necessary part of the solution. In this problem, the positions of the
intersection and tangent points on the circle were considered and the case of
not intersecting was ignored since the triangle was formed. Hence, scalene
right triangle was formed in the case intersecting at two points and isosceles
right triangle was done in the case of intersecting at a tangent point. Then, at
the end of the discussion, the instructor emphasized this mathematical
knowledge about the formation of a triangle by knowing some of its elements

and their reasoning about it using construction effectively.
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In this debate, Selim first attempted to explain how to construct a
specific triangle by the measures of known particular elements but he used
wrong data and also warrants for his claim. In other words, he made a claim
that it was possible to draw a triangle with these given elements. He focused on
finding the measures of the angles between the edges of the triangle and the
altitude. Mehmet provided rebuttal for his conversation by talking about the
points that Selim did not reason correctly. He stated that it was not possible to
compute the measures of these angles. Then, Yiicel provided another data that
related theorems could be used for this right triangle and warrant about finding
the values of the unknown elements by using known ones for the claim as a
solution strategy for the problem. He showed the possibility of finding the
measures of necessary unknown elements to form the triangle by using the
related theorems such as Pythagorean Theorem. He confirmed the claim and
Ali provided backing for his debate by explaining the construction strategy
under the guidance of the instructor. The instructor guided them about the
construction since they showed the possibility of the formation of the triangle
by measures of known particular elements. However, the answer had missing
part about identification of the types of triangles formed in this process. So the
instructor helped them determine the types of triangles formed by the elements
stated in the problem. However, they were unsure about the types of triangles.
Ali made a claim that there existed more than one triangle formed with these
known elements and then provided data that the point of H was placed with
respect to the length of the altitude and warrant by the steps of construction
with the help of the instructor. By making these explanations about the
possibility of the construction of triangles and types of triangles, the argument
was finished because of providing no backing or rebuttal and agreeing with the
discussed notion. The Toulmin’s model of argumentation for some parts of this

debate is shown in Figure 15.
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DATA — CLAIM

Yiicel: We know the values of ha and b Selim: We can
and m(BAC) = 90° for this problem. This construct a triangle
right triangle with two right angles on it with these known
makes possible to use Pythagorean and elements.

Euclidean theoremes.

WARRANT

Yiicel: By using related theorems with known elements, we can find the
necessary unknown elements to draw the triangle. For this triangle, we can

compute the length of the edge of HC by Pythagorean Theorem...

BACKING

Ali: By constructing known elements with reasoning related properties of
geometrical objects such as angle on the circle and intersection of a line or
arc of the circle, we can find critical intersection points representing the

corners and critical points on the triangle...

Figure 15 Toulmin’s model of argumentation for reasoning on the construction

of a triangle when the measures of some of its elements are known.

In the first week, on the activity sheet as in Figure 11, triangles
knowing different groups of main and auxiliary elements and their measures
were explained and the participants were asked if these triangles were able to
be constructed. On the fifth week of the instructional sequence, it was
illustrated that the mathematical arguments formed by the participants and
knowledge and skills obtained by them about reasoning with the formation of a
triangle by using some of its elements during this debate in the first week

167



became taken-as-shared. The second instance that the notion about the
reasoning on the possibility of the construction of triangles based on some
known elements was observed in the fifth week. In terms of Toulmin’s model,
we saw that this notion as a prior argument taking place on the first week
served as the data in the arguments on Week 5 without necessitating backings
by confirming that it became taken-as-shared. This problem was about the
statements about triangles and the participants were asked to determine their
truth and the reasons. In this problem, there was three-column table. The first
column included the statements related to triangle such as “Right triangles are
sometimes similar”. The second column was the place that the participant
stated as true or right for the statement in the first column and the last column
was the one where they wrote the reason of the truth or error of the statement.
Therefore, on the similarity and congruence content, this idea was used in order
to determine whether the triangles were similar explained in this statement as
illustrated in Figure 16. The teacher initiated the discussion by reading this

problem on the Activity Sheet.

4. Determine whether the explanations in table below are true or false by making
mathematical explanations.

True(T) | False(F) Explanation

Two triangles are similar only if one of
them is the image of the other triangle
formed by dilation.

Some triangles having the interior angle
measures of (30°-60°-907) are similar.
All triangles having the interior angle
measures of (452-459-907) are similar.
When triangles with the edges in the
length of (3k-4k-5k, kER) are sometimes
similar.

When triangles with the edges in the
length of (7k-24k-25k, kER) are always
similar.

Figure 16 The figure of the last on Activity Sheet 2 on Week 5.
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On the similarity and congruence content, the idea discussed above
related to the possibility of formation of triangles and types of them by
knowing the measures of its some elements was used in order to determine
whether they were congruent/similar. The instructor initiated the discussion by

reading the problems on this activity sheet as follows:

Instructor: When the lengths of the hypotenuses and the altitudes of the
hypotenuses are equal for two right triangles, are they always

congruent?

Ilkay: We can think about this question in a way that we engaged in the
activities based on determining the possibility of forming triangles

when we know the values of some of its elements.

Instructor:  That is a different point. How can we benefit from the idea that

we learned in this activity.

Halit: By constructing a triangle with these known elements, we can
determine the types of triangles that we can form. Then, it becomes
possible to identify whether they are congruent based on the types of

triangles.

Through the discussion, the participants produced a connection between the
construction of triangles and determined the congruence of them considering
some known elements successively. At this episode of the discussion, the
instructor reminded the previous mathematical idea that they discussed by
stating “...we examined the possibility of the formation of the triangle by some
known measures of the particular elements and types of triangles” and then
asked how to use this idea to determine whether the triangles were congruent
by knowing the measures of some known elements. Through the discussion
under the guidance of the instructor’s questions, the participants reached the
consensus that the congruent triangles had same properties but their positions
and orientations changed. Moreover, they produced the idea that by

determining the types of triangles that could be constructed by the given
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elements, it became possible to determine whether they were congruent. Then,
the instructor asked the participants to show the solution by construction. In
this process, the instructor realized that the participants had difficulty in the
construction process so she asked the question and directed the discussion as

follows:

Instructor: In the activity that we remember, we constructed the triangles
based on the measures of some known particular elements. So, which

elements do you know in this problem?

Ilkay: We know that measure of the one of the interior angles is 90°, the

lengths of the hypotenuse and its altitude.
Instructor: Well. Let’s construct the triangle.

Halit claimed that constructing two perpendicular line segments far away in the
distance of the length of the altitude was necessary to construct a parallel line
to the hypotenuse. In other words, he explained that a line parallel to the
hypotenuse and far away in the distance of the length of the altitude was
constructed as in Figure 17.a. The end points of these perpendicular lines were
combined by a line so that a parallel line far away in the distance of the altitude
to the hypotenuse was constructed. Then, they constructed a semi-circle having
the radius in half of the length of the hypotenuse. Then, they explained with the
help of the instructor that when the constructed parallel line intersected the
circle at a point, an isosceles triangle was formed. With the same values of the
explained elements, only one isosceles right triangle could be constructed in
different orientations and positions so they were always congruent. The case of
isosceles right triangles was explained successfully by Halit. Also, he stated
that when the constructed parallel line intersected the circle at two points, two
scalene right triangles were formed as in Figure 17.b. Then, the instructor
asked how these two scalene right triangles were congruent and Halit answered

as follows:
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Halit: ... since when we determine the measures of the interior angles of these
triangles are equal since the measures of the arcs opposite of the angles
which are o and B are equal. These angles having equal measures are
opposite of the arcs having the equal measure on the circle. Hence, they

are congruent by A. A...

a. Construction of the line in the
distance of h with the edge of BC

b.Construction of the triangles of
ABC and DBC

Figure 17 The triangles formed through the explanations of Halit.

In this explanation, Halit successfully explained that the triangles explained in
the problem were congruent by using the mathematical idea produced through
the discussion related to the possibility of formation of triangles with some

known elements.

This argumentation provided evidence that the mathematical idea about
reasoning on the formation of triangles based on the measures of some known
elements functioned as if shared in a discussion under the guidance of the
instructor. This evidence came from the explanation made by Ilkay as seen in
the argumentation core. In this conversation, Ilkay used the claim produced in
the discussion of Week 1 as the data that the number and types of triangles
formed with some known elements could be benefited from determining the

congruence without necessitating backings or warrants. This connection was
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made with the help of the instructor and understood by the participants by
challenging the construction steps and discussion process. In this respect, it
was provided that reasoning with the formation of a triangle by using some of
its elements became taken-as-shared. The claim produced on Week 1 was used
as the data in the argumentation made in Week 5.

On the same activity sheet, there was a problem similar to the previous
one in Figure 16. In this problem, the measures of different elements were
explained as known ones and it was asked whether it was possible to construct
the triangle. In this activity, the problem was “When the measures of ha and Va
and m(BAC) = 90° in the triangle of ABC were known, is it possible to
draw/construct this triangle? How?” The discussion about this one flowed
through the same way as it happened for the previous problem. The
participants made an appropriate claim which was “It is possible to form the
triangle”. They provided an appropriate data about the measures of these
known elements and their places on the triangle and their connections with the
triangle and other elements of the triangle in a similar way happened for the
previous discussion. Then, they provided warrant by using some theorems such
as Euclidean and Pythagorean theorems in order to determine the possibility of
the formation of this triangle. In this episode of the argumentation, although
they provided accurate and necessary claim, data and warrant, there was a
missing part in the discussion since they ignored the types of triangles that
could be formed by measures of these known elements. In order to help the
participants realize this insufficiency, the instructor asked questions how to
construct this triangle by compass and straight edge. They constructed a
triangle similar to the triangle constructed in Figure 14. In this representation
belonged to the previous problem, a right triangle whose hypotenuse’s length
was known was constructed. The hypotenuse and right angle were known parts
of the triangle asked in this problem. The instructor asked how they knew the
length of the hypotenuse and they answered that the length of the hypotenuse

was equal to the double of the length of the median of the hypotenuse in a right
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triangle necessarily and accurately. Then, they were constructed the altitude of
the triangle by following the similar steps represented in Figure 17. Through
this process, they explained the steps of construction of this triangle under the
guidance of the instructor. As this discussion process was examined, the
argumentation modeled in Figure 15 was used as data in this construction
process while producing this claim. Moreover, in the construction process, they
realized that there were two types of triangles as it happened in the previous
problem with the help of the instructor’s questions. Furthermore, they provided
two different construction processes in addition to the previous construction

process.

In these construction processes, the instructor helped them to complete
these construction steps and made explanations by emphasizing necessary and
important parts of these processes. Hence, it could be stated that the
participants provided three backings as different construction processes for the
claim. In the advancing hours on the first week and on the fifth week of the
instructional sequence, it was illustrated that the mathematical arguments
formed by the participants and knowledge and skills obtained by them about
reasoning with the formation of a triangle by using some of its elements during
this debate in the first week similar to the previous one became taken-as-
shared. They used this one as data and warrant in their arguments on Week 1
and 5 without necessitating backings, confirming that it became taken-as-
shared. In advancing hours on the first week, the activity about the formation
of other triangles was followed. The next problem on the same activity sheet
was “When the values of hy and a and m(BAC) = 90° in the triangle of ABC
were known, is it possible to draw/construct this triangle? How?”. The
participants made the accurate claim that “it is possible to construct this
triangle”. Then, they used the mathematical idea as the data and the warrant for
this question based on the knowledge that the length of the hypotenuse was
equal to the double of the length of the median of the hypotenuse in a right

triangle accurately. By this knowledge, the instructor provided that the
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participants realized that the problem was changed in a way for the problem of
“When the values of hy and Va and m(BAC) = 90° in the triangle of ABC were
known, is it possible to draw/construct this triangle?”. The discussion process
happened sufficiently in a way similar to the previous one explained above.
Therefore, this mathematical idea became taken-as-shared necessarily and
accurately by providing data which was the conclusion of the previous

discussion.

On the similarity and congruence content, this idea was used
appropriately in order to determine whether they were congruent/similar in the
second activity sheet illustrated in Figure 16 on the fifth week. The problem
causing the debate in the fifth week was “When the values of the lengths of the
altitude and the median of the hypotenuse are equal for two right triangles, are
they always congruent?”. They discussed in order to determine whether this
statement was mathematically true in an environment directed by the
instructor’s questions. In the discussion process, they determined the
connection between the mathematical ideas about the possibility of formation
of triangles and determining whether they were congruent/similar with some
known elements. They reasoned in a way that the congruent triangles had
similar properties but their positions and orientations changed and by
determining the types of triangles that could be constructed by the known
elements, it became possible to determine whether they were congruent
necessarily and appropriately. In this process, with the help of the previous
discussions taking place for similar problems explained above, the discussion
process was guided with less help provided by the instructor. With the help of
the previous similar discussions and the construction steps performed for the
previous problems, they made the connection more easily than the ones
happening for the previous similar problems. In this conversation, they used
the mathematical idea produced in the discussion of Week 1 as the data that the
possibility of the formation of the triangle and the types of the triangles formed

with the measures of some known particular elements could be benefited from
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determining the congruence of triangles having the equal measure of the same
elements of the opposing edges and vertices of the triangles. In this respect, it
was provided that reasoning with the formation of a triangle by using some of
its elements became taken-as-shared by challenging the ideas of the others and
questions of the instructor to guide the discussion. The claim that it was
possible to construct a triangle by knowing the lengths of ha and Va and the
angle measure of BAC equal to 90° produced in the problem of “When we
know the measures of h, and V, and m(BAC) = 90° in the triangle of ABC, is it
possible to draw/construct this triangle? How?” in Week 1 was used as data in
the argumentation made in Week 5 as it happened in the mathematical idea
exemplified in the previous claim necessarily and sufficiently. In this problem,
they remembered that there were two types of triangles which were right and
scalene triangles that could be formed by these known elements. In both cases,
the triangles formed by these known elements were congruent triangles. For
example, in the case of right triangles, by using these known elements, the
length of the other right edge could be determined. Then, by the congruence
criterion of S.A.S., it was identified that these right triangles were congruent.
Also, similar reasoning and explanations could be made for the other case

about scalene triangles.

4.2 Mathematical practice 2: Reasoning on the elements of triangles and

their properties

The second mathematical practice was reasoning on the elements of
triangles and their properties. The mathematical ideas included in this
mathematical practice were about the formation of these auxiliary elements,
concurrence of them and the importance of these points. They were mainly
emerged from the activities that the participants engaged on Week 2 and 3. In
this week, they examined auxiliary elements which were medians, angle and
perpendicular bisectors and the altitudes. They engaged in the formation and
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the definition of them, concurrence of them and changing or unchanging
positions of these points based on the types of triangles and finding the name of
them and their critical importance. For these activities, they worked with their
peers and participated in the whole class discussion. While engaging in these
problems, they used the strategy of construction and related mathematical
theorems, definitions of these elements and right triangles.

4.2.1 Mathematical idea 1: Reasoning on construction of auxiliary

elements of triangles

The first mathematical idea which was reasoning on construction of
auxiliary elements of triangles emerged on Week 2 and Week 3. They
investigated the construction of the angle bisector and the altitude of a triangle.
For this activity, they studied by using compass and ruler with their peers and
participated in the whole class discussion by explaining their construction
strategies and steps and mathematical expressions for them. These processes
were followed in the construction of auxiliary elements of medians, altitudes,
angle bisectors and perpendicular bisectors of triangles and they became taken-
as-shared by being used in similar whole class discussions in the similar ways.
The following discussion processes illustrated the argumentations about two of
these auxiliary elements. During the whole class discussion, they debated how
they used formation of altitude and angle bisector and showing that the formed
line segment was the altitude or angle bisector. The discussion as the first
instance of the argument explaining the construction of altitude of triangle was
initiated by the definition of them and their reflection on construction steps on
Week 3:

Instructor: Can you construct the altitude of the edge of BC on the triangle?

How?
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Selim: ... An altitude is a line segment passing through a vertex of a triangle,
and intersecting the opposite side perpendicularly. In this respect, we
need to construct a perpendicular line segment from the vertex of A to
the edge of BC. Firstly, place the compass on the vertex of A and set
the compass width as exceeding the distance between the vertex and the

edge...

In this construction process, Selim constructed the triangle drawing an arc
intersecting the edge belonged to a circle with the center on the vertex A as in
Figure 18. Then, these intersection points were named as the points of D and E.
By following the construction steps of perpendicular bisector, the
perpendicular bisector of the line segment starting and ending with the points
of D and E was constructed. The midpoint of this line segment was determined.
Then, the altitude of the triangle was constructed by combining the vertex of A
with this midpoint as in Figure 18. By following these construction steps,
Selim appropriately and necessarily constructed the altitude of this triangle for
the edge of BC as in Figure 18. At the end of the discussion, the instructor and
the other participants challenged the truth of the result of this construction
process. Then, Selim provided a necessary and appropriate mathematical
justification for this process. He claimed that when the arc of DE intersecting
the edge of BC and belonged to the circle with the center point of A was
drawn, the line segment of DE became the chord of this circle. Then, the line
segment of AH intersected this chord perpendicularly based on the
mathematical idea that the perpendicular bisector of a chord passed through the
center of a circle represented by the vertex of A as the center of the circle in
Figure 18. He successfully and mathematically justified the process of the
construction of the altitude. Afterwards, the instructor asked another strategy
and way to construct any altitude of a triangle. Then, Merve explained another
construction process and different mathematical justification for construction

of an altitude.
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Figure 18 The construction of the altitude of a triangle with respect to the

explanation of Selim.

Merve: ... initially, we find the midpoint of the edge of AC and we draw a
circle with the center as this midpoint and having the diameter in the
length of half of the length of this edge. The intersection point of the
circle with the edge of BC is the point of H. When we combine the

vertex of A with the point of H by a line...

In this construction process, in order to construct the altitude of the edge of
AB, the midpoint of the edge of BC was determined by construction. Then, a
semi-circle was drawn with the center of this midpoint and the diameter in the
length of half of the length of the edge of BC. Then, the intersection point of
this semi-circle on the edge of AB was determined and this intersection point
was combined with a line segment as in Figure 19. Merve appropriately
reasoned the construction process and formed the altitude. Afterwards, the
instructor asked the mathematical justification for this construction process.
She explained that it was the altitude because of the definition of a right

triangle and the knowledge that inscribed angle opposing the radius of the
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circle had the angle measure of 90°. She made reasoning necessarily and
successfully. Moreover, the instructor asked “what happens when you combine
the vertex of B with the intersection point of semi-circle on the edge of AC on
the triangle?”. They answered that the altitude of the edge of AC was also
constructed. By this answer, the strategy in which two altitudes of the triangle

was constructed at the same time was emphasized.

Figure 19 The construction of the altitude of a triangle with respect to the

explanation of Merve.

In this debate, Selim first made a claim that it was possible to construct an
altitude of a triangle. However, Betiil and the instructor challenged the truth of
the claim explaining the strategy of construction. Then, Selim provided data
and warrant for his explanation about the construction process for the altitude
of a triangle. Afterwards, Merve provided another data for the definition of
triangles and backing representing another construction strategy of an altitude
of a triangle. Merve explained a different way for the construction of an

altitude of a triangle benefiting from the definition of the right triangles.
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Through the construction processes, the participants and the instructor wanted
them to make mathematical justifications for the processes and the truth of the
result. According to the Toulmin’s model of argumentation, the structure of the
argument about the construction of an altitude of a triangle can be summarized

as in Figure 20.

DATA CLAIM
Selim: An altitude is a line segment Selim: We can
passing through a vertex of a construct the altitude
triangle... of a triangle.
WARRANT

Selim: ... we need to construct a perpendicular line segment from the vertex
of A to the edge of BC. Firstly, place the compass on the vertex of

A and set the compass width as exceeding...

BACKING

Merve: ...when we assume that the altitude intersects the edge at the point
of H, the triangles of AHC and AHB are the right triangles based
on the definition of right triangles. In this construction process,

initially, we find the midpoint of the edge of AC...

Figure 20 Toulmin’s model of argumentation for reasoning the construction of

the altitude of a triangle.

On the second week, there was a problem similar to the previous one. In
this problem, the participants engaged in how to construct an angle bisector of
a triangle. The discussion about this one flowed through the same way as it

happened for the discussion of previous mathematical idea about the altitude.
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The discussion including the first instance about the construction of angle
bisector of a triangle was initiated by the definition of them and their reflection
on construction steps on Week 3:

Instructor: Can you construct the angle bisector of the angle of BAC on the

triangle? How?
Biisra: It is possible to construct the angle bisector of a triangle.

This was the conclusion of the argumentation produced by Biisra. All of the
participants used the definition of angle bisector of a triangle in order to
construct under the guidance of the instructor.

Biigra: Initially, 1 form an isosceles triangle. By drawing an arc passing
through the vertex of B, the intersection point of this arc on the other
edge is identified. When this intersection point is combined with the
vertex of B with a line segment, we form the isosceles triangle of
ABD... (Figure 21.a)

Then, two different ways of steps representing the construction steps of angle
bisector was produced through the discussion. One of them was provided as
warrant and the other way was stated as backing. In the way told as warrant,
they constructed the angle bisector by forming an isosceles triangle since angle
bisector of it was the median of the opposing edge as in Figure 21.a. In other
words, the warrant was produced by Biisra benefiting from the property of
angle bisector of an isosceles triangle since the angle bisector of an isosceles
triangle was coincident with the median of the edge not having the same length
with the other edges. Hence, she formed an isosceles triangle and then
constructed the angle bisector of it benefiting from the construction process of
median. An arc was drawn with the center of the vertex of A and the
intersection point of this arc on the edge of AC was combined by a line
segment with the vertex of B in order to form the isosceles triangle of ABD.
Then, the median of the edge of BD was constructed by the construction steps

of the perpendicular bisector of this edge as it was used in previous
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discussions. This median was at the same time the angle bisector of the angle
on the vertex of A because of the nature of the isosceles triangles. In this
construction process, the angle bisector was constructed accurately by making
good reasoning and providing necessary mathematical justification about the
property of isosceles triangles. In this construction process, the instructor asked
the question about the process and its mathematical justification to help them
reason on the process effectively and appropriately.

b. Based on the diagonal of a

a. Based on median of isosceles

. arallelogram
triangle P g

Figure 21 Construction of angle bisector of a triangle in two different ways

Also, in the construction way represented as the backing in Figure 21.b,
Mehmet formed a parallelogram with its diagonals as the angle bisectors of the
interior angles of it. In these construction processes, the possibility of

construction of an angle bisector of a triangle was discussed.

Selim: | form the angle bisector of this angle by forming a parallelogram. I
adjust compass width with the length of the edge of BC and I draw an
arc without changing this width by placing compass on the point as the

vertex of A. Then, | adjust compass width with the length of the edge of
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AB and | draw an arc placing the compass on the vertex of C. | identify
the intersection point of these arcs and | combine this intersection point

with the vertices of the triangle by using line segments...

In this process, two arcs with the center of A and the radius in the length of the
edge of BC, and with the center of C and the radius in the length of the edge of
AB were constructed as in Figure 21.b. This intersection point was combined
with all vertices of the triangle so that a parallelogram was constructed. Then,
the line segment combining this intersection point with the vertex of B formed
the diagonal of the parallelogram and also the angle bisector of the triangle of
ABC. All of the participants knew that the diagonal of the parallelogram
bisected the angle on the vertices of it. Based on this knowledge, the
participants made a good reasoning for the construction process and the claim
of the discussion by providing accurate mathematical justification for this
construction process. In this construction and justification process, the
instructor asked the questions to emphasize and make them reason the process

accurately and successfully.

On the advancing hours on the second week, the third week and the
fourth week of the instructional sequence, it was illustrated that the
mathematical arguments formed by the participants, knowledge and skills
obtained by them about reasoning with the construction of the altitude and the
angle bisector of triangles during this debate in the second and third weeks
became taken-as-shared. In other words, the construction of the altitude and
angle bisector of triangles became taken-as-shared in similar ways through
similar discussions. They used this one as data and warrant in their arguments
on Week 2 and 3 without necessitating backings, confirming that it became
taken-as-shared. Firstly, on advancing hours on the second and third weeks, the
participants used this knowledge in order to determine whether all of
altitudes/angle bisectors were concurrent at a point when all of them were
constructed. The construction processes of the elements explained and

represented above for an altitude and an angle bisector were repeated for all of
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the altitudes or angle bisectors of a triangle to examine the concurrence of all
of these auxiliary elements. Moreover, the names of these concurrent points
were determined benefiting from this mathematical idea. Furthermore, they
used this idea while examining whether these points changed based on the
types of triangles. In this way, this mathematical idea became taken-as-shared
by being used as warrant. The discussion process in which this mathematical
idea became taken-as-shared was guided by the instructor so that the
participants made good and appropriate reasoning by producing an accurate
claim. Secondly, on Week 4, the participants examined the image of the
triangles after applying the transformation geometry and the relationship
between triangles and their images. They investigated the concurrence of these
auxiliary elements and the name of these points for their images. While the
distances between these points and the edges of the triangles did not change for
congruent triangles (for triangles formed through rigid motions), they changed
with respect to the scale factor for similar triangles (for triangles formed
through dilation). They discussed these knowledge benefiting from this
mathematical idea. The last problem on the last activity sheet on the fourth
week was about changing and unchanging elements and the properties of
triangles after applying transformation geometry. They were also asked the
reasons of the cases of changing and unchanging properties. For example, Ali
claimed and provided data that “the length of the altitude of the edge of BC
does not change after applying translation because they are congruent
triangles”. He also stated warrant that “when we construct the altitude of the
image triangle and we put two triangles on end providing the vertices are on
mutual vertices as we have done by constructing the altitude, they remain same
and on end”. Hence, this mathematical idea being used as data and warrant by
reasoning appropriately and effectively became taken-as-shared by being used
as warrant. To conclude based on these discussions, the mathematical idea
about construction of auxiliary elements of triangles became taken-as-shared in

two ways. All of these arguments were the other instances that the notion of
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construction of auxiliary elements were observed serving as data and warrant

to conclude new claims and functioned as if shared.

4.2.2 Mathematical idea 2: Reasoning on the concurrence of auxiliary
elements of triangles

The second mathematical idea which was the reasoning on the
concurrence of auxiliary elements of triangles emerged on Week 2 and 3. They
investigated these points for median, angle bisector, altitude and perpendicular
bisector respectively. For these activities, they thought about the relationship
between these elements, related theorems and properties about triangles with
their peers and participated in the whole class discussion by explaining their
thoughts and mathematical expressions for them. During the whole class
discussion, they debated how they illustrated that these elements concurred at a
point on triangles and explained the reason of this case. The discussion was
initiated by asking at how many points these elements concurred for a triangle
on Week 2 and 3. These four elements were investigated separately at the
second mathematical idea. Through the extension of the first mathematical idea
about constructing all of these auxiliary elements of a triangle, the second
mathematical idea of the second mathematical practice was emerged. Firstly,
the concurrence of the medians was examined on Week 2. Initially, the
participants were asked to construct all of the medians of a triangle in order to
determine at how many point(s) these medians concurred. Through the process
of peer discussions, the instructor realized that some of them constructed three
medians of the triangle in a way that they concurred at a point and the others
did it in a way that they intersected at more than one point. The instructor
asked the question of “How many points do the medians of a triangle intersect
each other at?”. The participants answered accurately by explaining that they
were concurrent. Then, the instructor showed some of the participants’
constructions that all of the medians intersected at more than one point. They
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repeated their answer by being sure and explaining that it was possible to make
errors in construction and drawing so they did not concur at a point on the
figures they constructed. Afterwards, the instructor wanted them to justify their
answer mathematically since although they gave correct answer, they could not
provide necessary mathematical expression and justification. Hence, they
formed their explanations about their reasoning in the discussion taking place

as follows:

Merve: When we form two of the medians, they concur at a point since non-
parallel two lines intersect at a point. Then, we see that we can apply
Ceva Theorem. Then, we assume that the third median passes through
this point. When we apply this theorem, we can confirm our idea as it is

seen.

Figure 22 Ceva theorem for medians
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At this explanation, Merve justified the concurrence of medians of a triangle by
Ceva Theorem appropriately. Initially, she assumed that the medians were
concurrent. Then, she applied the Ceva Theorem by using the ratios between
the lengths of the parts of the edges formed through medians. When the result
was equal to 1, it could be stated that the theorem met the formed ratios and the
medians became concurrent. By this way, she showed that the medians were
concurrent in a correct way. In this process, although they used this theorem,
they were not aware of the knowledge that the median was a type of cevian.
Hence, they used the correct answer and showed the concurrence of them by
applying this theorem on the problem and reasoning unnecessarily. After
Merve completed her explanation, Ali immediately explained that the
concurrence of them could be showed by Menelaous Theorem. The instructor
did not focus on the missing part of their knowledge about the median as
cevian since the angle bisectors and altitudes as the topic of the following
activity sheets in the instructional sequence were different types of cevian and
the perpendicular bisector was not cevian. The instructor considered that the
participants could understand what the cevian was when they examined
examples and non-examples of cevian together so that they could define a
cevian as any line segment drawn in a triangle whose end points were placed
on a vertex of the triangle and on the opposite side of this vertex. Hence, the
instructor postponed to discuss about the cevian until they examined examples
and non-examples of it. In this respect, the instructor continued to talk about
the medians which was the topic of the activity sheet they engaged in. Then,
she guided the discussion by asking another strategy or solution that the

medians were concurrent on a triangle.

Sevim: Let’s form the line segment of KL. Then, KL // BC and |[KL|/ [BC| =Y,
since |AK]| / |AB| = |AL| / |AC| = %. Find the places of the points of D
and E as the midpoints of the lines of BL and KC. Hence, we find that
DK//AC and EL//AB. Also, [DK| / |AL| = |EL| / |JAK| = % and |KM]| /
|AC| = |LM| / |AB| = %2 and KM // AC and LM // AB since |DK| = [DM]

187



and |[EM| = |EL|. Therefore, the triangles of BKM and ABC are
congruent (the criterion of A. A.). Then, the point of M is the midpoint
of the edge of BC based on the scale factor of . Also, when we
combine the points of A and M, we form the median of the edge of BC
which is the line segment of AM. This line segment passes through the
point of intersection of other two medians. In other words, all medians

are concurrent at a point.

In the explanation of Sevim, she assumed that the midpoints of the edges of the
triangle were accepted as determined and the medians were formed. The points
of K, L and M were combined by the line segments as in Figure 23. Based on
the similarity of triangles, the triangles of AKL, BKM and LMC were similar
to the triangle of ABC with the scale factor of 2. Then, the relationships of
2|KF| = 2|FL| = |BM| = [MC|, 2|KD| = 2|DM| = |AL| = |LC| and 2|EL| = 2|EM| =
|AK| = |KB| were determined. Therefore, the scale factor and similarity of them
appropriately and necessarily showed that all of the medians were concurrent.
By making good reasoning in an appropriate way, the concurrence of them
were justified sufficiently. After reaching a consensus about its truth, the
instructor asked another solution to show the concurrence of them.

Figure 23 The figure of the concurrence of the medians on a triangle.
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In this debate, Kader first explained the claim about the concurrence of the
medians of a triangle by providing the data of the construction of a median.
She added the warrant that when all of the medians were constructed, they all
intersected at a point through construction. Moreover, Merve provided the
backing about the concurrence of the medians based on the theorems of Ceva
and Menelaous since when all of the medians were explained, it was observed
that they concurred at a point. Then, Sevim provided backing for the claim by
the guidance of the instructor. Sevim stated her explanation based on the
content of similarity by the medians with their scale factors. The structure of
the argument taking place in this discussion can be illustrated as shown in

Figure 24,

DATA CLAIM

Kader: ...we examined the Kader: We need to know at

construction of a median as least two of the medians since

they concur at a point.

we did previously.

WARRANT

Kiibra: ... repeat the steps of the construction for all medians of a triangle...

|
BACKING

Merve: ... they concur at a point since non-parallel two lines intersect at a

point. Then, we see that we can apply the theorem of Ceva...

BACKING

Sevim: ...KL // BC and [KL| / |BC| = % since |AK| / |AB| = |AL| / |AC| =

Figure 24 Toulmin’s model of argumentation for reasoning on the concurrence

of the medians of a triangle.
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On the same week on the advancing hours of the instructional sequence,
it was illustrated that the mathematical arguments produced by the participants
and knowledge and skills attained about the concurrence of the medians at a
point on triangles during this debate in the second week became taken-as-
shared. They used this one as data and warrant in their arguments on Week 2
without necessitating backings, confirming that it became taken-as-shared. The
participants used this knowledge in the debates made in order to determine the
name of this concurrence point as centroid and whether this point changed
based on the types of triangles. The data was produced based on this
mathematical idea since the centroid was formed basically by the concurrent
point of the medians. Then, this mathematical idea was also used as the warrant
of the discussion. The processes of showing separation of the medians into
ratio 2;1 and the regions with equal areas were provided benefiting from the
process of the concurrence of the medians. Moreover, the change of the place
of the concurrent point of the medians was examined based on the
mathematical idea about the concurrence of the medians of a triangle in the

similar way.

In the second week, the second activity sheet was about angle bisectors.
Initially, the participants constructed all of the angle bisectors of a triangle in
order to determine at how many point these medians concurred. While the
participants were talking about the problem with their peers in the small
groups, the instructor realized that there were different construction examples
representing that the angle bisectors of the triangle concurred at a point and at
more than one point. Then, in order to examine the participants’ thoughts about
that examples, the instructor asked the question of “How many points do the
angle bisectors of a triangle intersect each other at?”. Through answering this
question, it was identified that the participants were aware of the fact that they
were concurrent appropriately. Then, the instructor showed some of the
participants’ constructions that all of the angle bisectors intersected at more

than one point and wanted them to provide explanations for these
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constructions. They insisted on their answer by being sure and explaining that
they did not concur at a point because of drawing errors through construction.
In this activity sheet, the participants discussed how to show that angle
bisectors concurred at a point. Afterwards, the instructor wanted them to justify
their answer mathematically and they explained their reasoning in the
discussion taking place as follows:

Fulya: We need to know at least two of the angle bisectors of a triangle
because of the concurrence of them at a point. ...we constructed the
angle bisector of a triangle. When we repeat the steps of the
construction for all angle bisectors of a triangle, we see that they concur

at a point...

Ali:  When we see the figure of a triangle with all angle bisectors on it, we
realize that we can apply the theorems of Ceva and Menelaous. We can

show the concurrence of angle bisectors of a triangle. ..

Fulya claimed the concurrence of angle bisectors of a triangle benefiting from
the construction steps as it was discussed in the previous mathematical idea
about the formation of angle bisector. She stated that when all of the angle
bisectors were constructed, they concurred at a point by emphasizing the
existence of drawing and construction errors. Then, Ali provided explanations
for the concurrence of angle bisectors benefiting from the theorems of Ceva
and Menelaous. In other words, they stated that when the theorems of Ceva and
Menelaous applied, the necessary results were obtained by applying them and
the concurrence of them was justified in this way. As it happened for applying
this theorem for the concurrence of the medians, although they used these
theorems, they were not aware of the fact that the angle bisector was cevian.
He assumed that they were concurrent then by showing the applicability of the
theorems for the concurrent angle bisectors, the concurrence of them was
showed and justified mathematically in a correct way. Then, the instructor
asked the others in the classroom whether the theorems could be used to show

the concurrence of them and they agreed with Ali’s explanation. Then, the
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instructor asked another solution or strategy about showing and justifying the
concurrence of them.

Ilkay: Let the lines of AF and BE are the angle bisectors of the angles of A
and B. The angle of A is opposite of the arc of DGE with two equal
parts of this arc. Then, it becomes that the measures of angles of DOG

and GOE are equal to a...

a. Intersection of two angle b. Concurrence of all angle

bisectors bisectors

Figure 25 The figure of the concurrence of angle bisectors on a triangle
benefiting from arcs based on angles.

In this solution, ilkay assumed that two angle bisectors of the angles of A and
B intersected each other at the point of O and the incircle of it was constructed
by combining the incenter with the tangent points by line segments of OD, OE
and OF as in Figure 25.a. In this circle, the arcs of DG and GE had the equal
measures because they were opposite of two equal parts of the angle of A
separated into two equal parts by its angle bisector as in the same figure. The
angle measure of KOF was equal to the angle measure of GOE (equal to a)
since they were alternate interior angles. Then, the angle measure of DOK

became equal to this angle measure since they were opposite of the arcs of DK
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and KF separated into two equal parts by the angle bisector of the angle of B as
in Figure 25.a. Then, she added that when the line segment of OD was
extended to intersect the vertex of C, the angle bisector of the angle of C was
constructed as in Figure 25.b. Because of the same reasoning made for the
other angle bisectors, the line segment of OM separated the arc of EMF into
two equal parts having the same angle measure of a. Therefore, two parts of
the angle of C were equal in angle measure since they were opposing the arcs
having same measure. In his explanation, he made reasoning successfully but
he ignored some important points so his explanations could not appropriately
justify the concurrence of angle bisectors. He thought that the angle bisectors
passed through the points of the incenter. He knew that the angle bisectors
were concurrent and this point was named as incenter but it was observed that
he memorized this knowledge. In order to help the participants realize this
unrelated part of the explanation, the instructor asked questions to challenge

the validity of this justification.

Ozge: The explanations of Ilkay are valid for equilateral triangles. Here, all of
the angles at the center of the circle are equal to a having the angle
measure of 60° since full angle at the incenter was separated into six
equal parts. Then, the measures of the angles at the vertices are equal to

60° and the triangle becomes an equilateral triangle.

Instructor: Assume that the triangle is a scalene triangle. What can we say

about the position of these angle bisectors?

Ozge: Also, the angle bisectors do not pass through the tangent points of

incircle.

Instructor: That is a good point. So, how can you show that the angle bisectors

concur at a point? Focus on a scalene triangle.

Esra: Assume that we have the angle bisectors of the angles of A and B. We
form the perpendicular lines from the intersection point of them to the

edges of the triangle... When we draw the perpendicular lines from the

193



intersection point of angle bisectors to the edges, |BG| = |BK| and |GO|
= |OK] for the angle bisector of the angle of B and |AG| = |AH| and |GO|
= |OH]| for the angle bisector of the angle of A. Then, |OK| = |OH]|. If we
draw the line from the point of H to the point of K, we get isosceles
triangle of OHK...(in Figure 26)

In her explanation, Esra benefited from the knowledge about angle bisector
theorem stating that when a point was placed on an angle bisector, then it was
far away in equal distance from the rays forming the angle. She formed
perpendicular lines to the edges of the triangle as in Figure 26 so that she
determined the line segments in equal length. This point that she reached
encouraged important and necessary reasoning for the justification. In order to
show that the third angle bisector belonged to the angle of C passed through the
intersection point of other two angle bisectors, she showed |CK| = |CH| and
|OK| = |OH|. Through the process, she drew the line segments to combine the
point of K with H, and C with O so that a deltoid was formed with its
diagonals. Based on the property that one of the diagonal of the deltoid
separated it into two isosceles triangles (isosceles triangle of OHK and CHK)
and the other diagonal divided it into two congruent triangles (congruent
triangles of OHC and OHK). Therefore, these diagonals were also angle
bisectors of the interior angles. The diagonal passing through the points of O
and C was the angle bisector of the angle on the vertex of C so that the
concurrence of angle bisectors of the triangle of ABC was showed accurately
and necessarily. At the end of her explanation, the instructor summarized the
reasoning process and emphasized the important parts. Then, the discussion

continued with the instructor’s question as follows:
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Figure 26 The figure of the concurrence of the angle bisectors on a triangle

based on the theorem of angle bisector.

Instructor: Is there anybody else who adds something or explains different

solution.

Efsa: ... Inthe explanation of Esra, we extend it by drawing the line segments
of DE, DF and EF and we obtain three deltoids composed of isosceles
triangles. However, we continue our explanation based on the angles at
all points by drawing arcs as it is illustrated in the figure on the board.
Then, we draw the line segment from the vertex of C to the edge of AB,
this line segment bisects the arc of EF as the similar cases happened for
other angle bisector lines. This line segment becomes the angle bisector

of the angle on the vertex of C.

Efsa continued the explanations of Esra to state another justification for the
concurrence of angle bisectors. She stated that the perpendicular line segments
passing through the concurrence point of them to intersect the edges were the
tangent points of the incircle. Also, she formed three deltoids of ADOE, BDOF

and ECFO. She determined the line segment in equal length and angles with
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equal angle measure. The angles of ODE and DOE had the angle measure of ©,
the angles of ODF and DFO with the measure of B and the angles OEF and
OFE with the angle measures of a. Then, she found the angle measures of
angles of DOE as 2(a+f), DOF as 2(0+0) and EOF as 2(©+f). She stated that
the arcs opposite of these angles had the same measures as in Figure 27. Then,
the measures of the angles on the vertices of the triangle were determined
benefiting from these measures of the arcs, it was showed that the line
segments passing through the incircle and the vertices became the angle
bisectors of this triangle. Hence, Efsa showed the concurrence of angle
bisectors based on Esra’s idea. This was a good and different justification.
Moreover, Efsa used the idea of ilkay by accumulating it and using correctly.
At the end of her explanation, the instructor finished discussion by
summarizing the reasoning process and emphasized the important parts and the
discussion about the concurrence of angle bisectors.

Figure 27 The figure of the concurrence of the angle bisectors on a triangle

based on the angle measures.
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In this debate, Fulya first explained the claim about the concurrence of angle
bisectors of a triangle. In other words, she made a claim that it was important
to think that triangles’ angle bisectors concurred at a point on a triangle by
providing the data by the construction of an angle bisector as it was discussed
in the first mathematical idea in the same mathematical practice, reasoning on
the elements of triangles and their properties. She added the warrant that when
all of the angle bisectors were constructed, it was observed that they all
intersected at a point through construction. Moreover, Ali provided the backing
about the concurrence of angle bisectors based on the theorems of Ceva and
Menelaous since when all of them were formed and it was observed that they
concurred at a point. Then, Ilker provided a backing but his explanation had
missing parts since he talked about the concurrence of angle bisectors of
equilateral triangles. Ozge confirmed him by stating this truth. Afterwards,
Efsa and Esra provided backings for the claim. They explained their backings
by forming deltoid composed of two isosceles triangles. In addition, Esra stated
her explanation based on the theorem of angle bisectors. Efsa explained the
concurrence of angle bisectors using the content of angles on the vertices of

deltoids based on arcs.

On the same week on the advancing hours of the instructional sequence
and a problem on Week 6, it was illustrated that the mathematical arguments
formed by the participants and knowledge and skills obtained by them about
the concurrence of the angle bisectors at a point of triangles during this debate
in the second week became taken-as-shared. They used this one as data and
warrant in their arguments on Week 2 without necessitating backings,
confirming that it became taken-as-shared. The participants used this
knowledge in the debates made in order to determine the name of this point as
incenter and whether this point changed based on the types of triangles
discussed and represented in the third mathematical practice about reasoning
on the names of concurrent points of auxiliary elements of triangles and their

places. This way was similar to the way happened for the medians. Also, it
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became taken-as-shared in the discussion process of the concurrence of
perpendicular bisectors. They stated that there were three deltoids including
isosceles triangles as it happened previously. When the horizontal diagonals of
them were formed since vertical diagonals were angle bisectors of the triangle,
a triangle was formed and the parts of angle bisector referred to line segments
became the perpendicular bisectors of this formed triangle. Therefore, the
concurrence point of angle bisectors of a triangle became the concurrence point
of perpendicular bisectors of another interior triangle. Moreover, this
knowledge became taken-as-shared by using in the solution of a problem on
Week 6. The teacher initiated the discussion by reading the problem on
Activity Sheet of the Week 6 as in Figure 28:

PROBLEMS

In the triangle of ABC, the angle bisectors of the angles on the vertices of A
and B intersect the edges of BC and CA at the points of D and E. If |AE| +

|BD| = |AB|, find the angle measure of the angle on the vertex of C.

Figure 28 The problem on the activity sheet of the last of instructional

sequence.

Instructor: In the triangle of ABC, the angle bisectors of the angles on the
vertices of A and B intersect the edges of BC and CA at the points of D
and E. If |AE| + |BD| = |AB|, find the angle measure of the angle on the

vertex of C.

Ahmet: We know that we need at least two angle bisectors in order to
determine the point of concurrence of angle bisectors since all of them
are concurrent. Let these angle bisectors in the problem intersect at the
point of I. This is an equilateral triangle since we know |AE| + |BD| =
|AB|.

Instructor: How do you find this solution?

After this question, Ahmet stated that the point of | was the concurrence point

of angle bisectors. He made reasoning in order to explain necessary part of the
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solution benefiting from the theorem of the point on angle bisector theorem
stating that when a point was placed on an angle bisector, then it was far away
in equal distance from the rays forming the angle. He explained that when the
perpendicular line segments passing through the intersection point of angle
bisectors and intersecting the edges were constructed, the intersection points on
the edges were equidistant to the vertices of the triangle for each angle bisector
as in Figure 29. After stating the result, the participants used Ilkay’s idea about
tangent points of incircle on the triangle were also the intersection points of the
angle bisectors on the edges of the triangle for equilateral triangles with the

help of the instructor’s questions.

Figure 29 The figure of the concurrence of the angle bisectors on an equilateral

triangle

In this conversation, Ahmet used the claim produced in the discussion of Week

2 as the data that angle bisectors of a triangle were concurrent and two of them
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were enough to determine this point. Moreover, he used the warrant produced
in the same discussion on the same week as the warrant for that claim. He also
benefited from the expression of Ilkay made in the second week using
equilateral triangle. Although it was not appropriate in the previous discussion,
it was used by making accurate reasoning in this episode of the argumentation.
In this respect, it was provided that reasoning with the concurrence of angle
bisectors of a triangle became taken-as-shared. The claim produced on Week 2
was used as data and warrant in the argumentation made in Week 6. Therefore,
there were two instances that the mathematical idea, reasoning on the
concurrence of auxiliary elements about angle bisectors was observed and

became taken-as-shared through the process of argumentation.

In the third week, the first activity sheet was about perpendicular
bisectors. In this activity sheet, the participants discussed how to show the
concurrence of perpendicular bisectors. Although all of the participants
explained that they concurred at a point, there were constructions representing
that they concurred at more than one point. Then, the reason of the case of
concurrence at more than one point was explained by possible mistakes
occurred in drawing and construction process. In this activity sheet, the
participants discussed how to show and reason that perpendicular bisectors
concurred at a point. Afterwards, the instructor wanted them to justify their
answer mathematically and they explained their reasoning in the discussion

taking place as follows:

Ahmet: Perpendicular bisectors of a triangle intersect at just a point since they
are concurrent. When we construct all of the perpendicular bisectors of

a triangle as we did previously, we see that they concur at a point.

After Ahmet’s explanation, the instructor asked how they concurred at a point
and they suggested applying Ceva Theorem. They tried to apply it and then
they observed that it was not valid for perpendicular bisectors. Then, the
discussion about the definition of cevian was made as follows. The

mathematical idea which was reasoning on cevian emerged on Week 3. They
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investigated what the cevian was through the construction and concurrence of
medians, angle bisectors, perpendicular bisectors and altitudes respectively.
The discussion about cevian was emerged in the discussion about the
concurrence of perpendicular bisectors. The episode of the discussion about the
concurrence of perpendicular bisectors about the cevian was examined at this
part of the study. The discussion about cevian was initiated and guided by
asking how perpendicular bisectors concurred at a point on the plane on Week
3. This mathematical idea was observed while discussing the concurrence of
perpendicular bisectors through the investigations of auxiliary elements on
Week 3:

Merve: While examination of this, we applied the theorems of Ceva and

Menalous but they were not valid.

Instructor: Why did not it happen? What is the different point for perpendicular

bisectors?

Merve: While trying to apply the Ceva Theorem, the line segment representing
medians and angle bisectors for the theorem begin from the vertices of
the triangle and end on the opposing edge of it. However, it is not
appropriate for the perpendicular bisector except for the equilateral
triangles. Therefore, we cannot apply this theorem for perpendicular

bisectors.

Instructor: So. What does this difference mean? This difference can make the
other auxiliary elements cevian while the perpendicular bisector is not,

cannot it?

Halit: In this respect, this difference tells what the cevian is so a cevian is the
line segments drawn from the vertices to the edges of a triangle. Hence,
the perpendicular bisector is not cevian based on this definition of
perpendicular bisectors. In other words, the perpendicular bisectors are

the line segment bisecting the edges perpendicularly.
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While the participants were discussing the construction and the concurrence of
perpendicular bisectors, they realized that these elements were different from
the others accurately benefiting from the non-applicability of Ceva Theorem.
In this debate, Halit made a claim about the definition of a cevian. Then, Merve
provided the data and warrant based on the applicability of Ceva Theorem. The
structure of the argument including some parts of this debate can be illustrated
as shown in Figure 30.

DATA CLAIM

Halit:...the perpendicular Halit: ... this theorem is about

bisectors are the lines the cevians and cevian can be

bisecting the edges defined as the lines drawn from

perpendicularly. the vertices to the edges of a

triangle.

WARRANT

Merve: While examination of this, we applied the theorems of Ceva and

Menalous but they were not valid.

Figure 30 Toulmin’s model of argumentation for reasoning on cevian.

On the same week on the advancing hours of the instructional sequence
and the problems on Week 6, it was illustrated that the mathematical
discussions produced by the participants and knowledge and skills attained by
them about cevian during this debate in the second week became taken-as-
shared. The participants made the claim that the altitudes concurred at a point.
Then, they provided the data that the altitudes were cevian based on the
definition of it accurately. Moreover, they explained the warrant about the
applicability of the theorems of Ceva and Menalous necessarily. They used this
one as data and warrant in their arguments on Week 3. Moreover, this
knowledge was used as data and warrant about the discussions of the solutions

of the problems on Week 6 accurately since there were problems could be
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solved through the line segments as cevian and Ceva Theorem. Therefore, it
became taken-as-shared in two ways.

After the discussion about the explanation of cevian, they continued to discuss

about the concurrence of perpendicular bisectors as follows:

Merve: Let three perpendicular bisectors intersect at a point. We know that a +
b + ¢ = 2u. When we find the sum of the length of the edges on the
figure, we obtain this formula. In this respect, we confirm this formula.

Then, we show that perpendicular bisectors are concurrent.

Figure 31 The figure of the concurrence of the perpendicular bisectors of a
triangle

Esra: Here, it does not show that they are concurrent. Any value that we use
the length of the edges of a triangle, we obtain this formula since we

make operations on a triangle.

Instructor: Well. It is the correct point. So, how do they concur at a point?
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Yiicel: Let two of the perpendicular bisectors for the edges of AB and BC are
formed and they intersect on the point of K. For the triangle of AKB,
|AK| = |[KB|, since the altitude of an isosceles triangle separates the edge
into two equal parts. Based on the same reason, for the triangle of KBC,
|KB| = |KCJ|. Then, |AK]| = |KB| = |KC|. Therefore, the triangle of AKC
is an isosceles triangle. When we form the altitude of the edge of AC
for this triangle, it bisects this edge perpendicularly. We form the
perpendicular bisector of the edge of AC passing through the point of K
which is the intersection point of other two one. Hence, we show that

perpendicular bisectors are concurrent.

Figure 32 The figure of the concurrence of the perpendicular bisectors of a

triangle by isosceles triangles.

In his explanation which was valid for isosceles triangles, Yiicel made the
correct and necessary explanation to justify the concurrence of perpendicular
bisectors. Also, his explanation was understood and accepted by the others

since nobody challenged its truth or asked any question about the process.
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Hence, the instructor continued discussion by wanting them to explain another

solution and justification for the concurrence of them.

Efsa: We stated that we obtain three deltoids including isosceles triangles
while showing the concurrence of angle bisectors. When the horizontal
diagonals of them are formed since vertical diagonals are angle
bisectors of the triangle, a triangle is formed and the parts of angle
bisector lines become the perpendicular bisectors of this formed

triangle...

In her explanation, she initially assumed that all of the perpendicular bisectors
were formed and they concurred at the point of O as in Figure 33. Then, the
midpoints of the edges were combined by the line segments of GH, GK and
HK. In this way, three deltoids of AGOH, BGOK and CKOH were formed by
their diagonals. She added that the point of O became the concurrent point of
angle bisectors since the line segments of AO, BO and CO became the angle
bisectors of the angles on the vertices of the triangle as in Figure 33. While
saying this, she benefited from the property that one of the diagonal of the
deltoid separated it into two isosceles triangles (isosceles triangle of OHK and
CHK) and the other diagonal divided it into two congruent triangles (congruent
triangles of OHC and OHK). Then, by using the mathematical idea about the
concurrence of angle bisectors discussed in the previous week, she stated that
the line segments of AO, BO and CO concurred at the point of O. Therefore,
these deltoids’ edges of GO, OK and OH (which were also perpendicular
bisectors of the triangle of ABC) intersected at the point of O as the vertex of
these deltoids. Therefore, this point became the concurrence point of
perpendicular bisectors. The points that the some of the edges of the deltoids
were the perpendicular bisectors and the concurrence of perpendicular
bisectors were critical to understand the justification process so the instructor
asked questions and made explanations in order to emphasize them and help
the participants realize and understand them. After the process was completed,

the instructor summarized the solution process and the discussion ended.
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Figure 33 The figure of the concurrence of the perpendicular bisectors of a

triangle by the concurrence of angle bisectors

In this debate, Ahmet initially explained the claim about the concurrence of
perpendicular bisectors of a triangle. In other words, he made a claim that it
was important to think that the triangles’ perpendicular bisectors concurred at a
point on triangles by providing the data about the construction of a
perpendicular bisector. She added the warrant that when all of the
perpendicular bisectors were constructed, they all intersected at a point through
construction. Moreover, Merve provided a wrong rebuttal about the
concurrence of them based on the formula of circumference and area of a
triangle. Then, Esra stated that this explanation was not valid. Afterwards,
Yiicel provided backing for the concurrence of perpendicular bisectors on a
triangle. He showed it benefiting from the knowledge of Va = h, for isosceles
triangles. Three isosceles triangles were formed and then perpendicular
bisectors of the main triangle became the altitudes and medians of these
isosceles triangles. In happening so, the mathematical idea about the
concurrence of perpendicular bisectors expressed in the core of the argument

was understood by the participants.
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On the same week on the advancing hours of the instructional sequence,
it was illustrated that the mathematical arguments produced by the participants,
knowledge and skills about the concurrence of the perpendicular bisectors at a
point of triangles attained during this debate in the third week became taken-as-
shared. They used this one as data and warrant in their arguments on Week 3
without necessitating backings, confirming that it became taken-as-shared. The
way of taken-as-shared happened in emergence of third mathematical idea in
this mathematical practice. The participants used the knowledge about the
concurrence of perpendicular bisectors on a triangle in order to determine the
name of this concurrence point as circumcenter and whether this point changed
based on the types of triangles. This way was similar to the way happened for
the medians and the angle bisectors. Moreover, this knowledge was used in
order to show the concurrence of the altitudes of a triangle and became taken-
as-shared. In this way, the altitudes of a triangle were transformed into
perpendicular bisectors of another triangle. While examining the concurrence
of the altitudes, a triangle was formed by making the former triangle as the
orthic triangle of the latter one in a way that the altitudes of the former triangle
became the perpendicular bisectors of the latter triangle as in Figure 34. By the
way, the orthic triangle is the triangle formed combining the feet of any
triangle by line segments. Therefore, it could be stated that the altitudes were
concurrent since the perpendicular bisectors were concurrent on a triangle. In
this respect, this mathematical idea served as data and warrant for other parts of

the same activity sheet and other activity sheets in the same week.

In the third week, the last activity sheet was about the altitudes. In this
activity sheet, the participants discussed how to show that altitudes concurred
at a point. The discussion was started benefiting from the construction with
drawing errors and representing that the altitudes did not concur at a point as it
happened about the similar problems for other auxiliary elements in previous
activity sheets. The discussion about the concurrence of the altitudes of a

triangle was stated on Week 3 as follows:
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Nuray: ... when we repeat the steps of the construction for all altitudes for the

edges of a triangle, we show that they concur at a point ...
Instructor: How can you show that they are concurrent mathematically?

Ahmet: We can apply the theorems of Ceva and Menelaous since the altitudes
of a triangle are cevian... We can show the concurrence of the altitudes

of a triangle based on them as we did for medians and angle bisectors.

At that point, they used the mathematical idea about what the cevian was
taking place in the previous activity sheet on the perpendicular
bisectors. This mathematical idea was used as data in this explanation.

Instructor: Well. An altitude is a cevian. Then, how can you show their

concurrence differently?

Ozge: We know the equation of a.ha = b.hy = c.hc from the area formula. When
we know the values of the length of the edges and one of the altitudes,
we can determine the lengths of other two altitudes. For example, let

the length of the altitude of the edge of BC is known...

Ozge explained that by using the area formula, she could find the lengths of all
edges and the altitudes. Then, by knowing these measures, she could construct
the triangle and its altitudes by using compass and straight edge. She made the
correct explanation but this was not the necessary and sufficient one for
justifying the concurrence of the altitudes of a triangle. Then, by asking
questions, the instructor got the participants realized this unrelated part of the

explanation and continued the discussion by focusing on the problem.

Esra: But by knowing the measure of one of the altitudes, we cannot
determine the place of concurrence point of them. For the intersection
point, we have at least two line segments so we need to know the

measures of at least two altitudes of a triangle...
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Instructor: It is a good point. Let’s turn back our problem. How can you show
that the remaining altitude passes through this intersection point that
Esra said?

Buse: We can show the concurrence of the altitudes by using Carnot theorem.
When we form the altitudes of the triangle, they intersect the edges at
the points of A, B'and C'.

ICC'* +|AC'}? = |ACI”
-|CC' - |BC'* = -IBCJ*
IAAP +[BA? = |AB*
|AAT - |CA? = -|ACI?
BB'* +|CB'* = |BC[*
-[BB'” - |AB'[* = -|ABJ?

When we add all of these equations, we get |AC'|? - [BC'|* + |BA']? - |CA']? +
ICB'? - |AB'|? = 0. Then, we end the showing the concurrence of the

altitudes of a triangle.
Instructor: Well. It is a good point. Is there another different explanation?

Halit: We can form a different triangle having the perpendicular bisectors
which are the altitudes of the triangle of ABC as it is in the figure since
the edges of this triangle are parallel to the edges of the main triangle so
that the altitudes are perpendicular to the edges of the formed triangle.
We know that all perpendicular bisectors concur at a point. In this
respect, when we show that the perpendicular bisectors of the formed
triangle are concurrent, we show that altitudes of the main triangle are
concurrent since the line segments representing the perpendicular

bisectors are also the altitudes so they are concurrent.
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Buse and Halit provided accurate and necessary explanations in order to justify
the concurrence of the altitudes of a triangle by reasoning successfully. Buse
applied the Carnot Theorem appropriately using the lengths of the edges and
necessary line segments formed by the altitudes on the triangle as it was stated.
This theorem was a theorem formed by applying the Pythagoras Theorem.
Buse used Carnot Theorem for the concurrence of the altitudes of triangles
benefiting from the right triangles formed by the altitudes of the triangle. Then,
Halit explained different justification by reasoning accurately. Halit formed a
bigger triangle by making this former triangle as the orthic triangle of the latter
one. In the latter triangles, the line segments referring to the altitudes of the
former triangle became the perpendicular bisectors of the bigger and latter
triangle as in Figure 34. Moreover, he used the mathematical idea about the
concurrence of perpendicular bisectors was used as data in this part of the
argumentation. The line segments of AD, BE and FC referring to the
perpendicular bisectors of bigger triangle and also the altitudes of the smaller
triangles concurred at a point because of the concurrence of perpendicular
bisectors. In other words, the line segments referring to different auxiliary
elements for different triangles concurred at a point common for these triangles
as in Figure 34. Based on concurrence of perpendicular bisectors, Halit formed
orthic triangle whose perpendicular bisectors of AD, FC and BE were at the
same time the altitudes of the smaller triangle; i.e., the triangle of ABC. Based
on the notion of concurrence of perpendicular bisectors, it could be stated that
the line segments of AD, FC and BE concurred at a point. Hence, it was
showed and justified that the altitudes of the triangle of ABC which were AD,
FC and BE concurred at a point accurately. At the end of the discussion, the
instructor emphasized the important points of different justifications produced

by the participants.
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Figure 34 The figure of the concurrence of the altitudes of a triangle by

perpendicular bisectors

In this debate, Nuray initially explained the claim about the concurrence of the
altitudes of a triangle. In other words, she made a claim that it was important to
think that triangles’ altitudes concurred at a point on a triangle by providing the
data about the construction of an altitude. She added the warrant that when all
of the altitudes were constructed, they all intersected at a point through
construction. Moreover, Ahmet provided a backing about the concurrence of
them based on the theorems of Ceva and Menalous since the altitudes of a
triangle were cevian. Then, Ozge supported the backing by the area formula
with the altitude and Buse supported another explanation done by the Carnot
Theorem. Lastly, Halit made an explanation as a backing benefiting from the
concurrence of the perpendicular bisectors through the orthic triangle. At this
point, this argument was understood by them since none of the participants in

the classroom challenged the elements of this argument.

On the same week on the advancing hours of the instructional sequence,

it was illustrated that the mathematical arguments produced by the participants,
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knowledge and skills about the concurrence of altitudes at a point on triangles
attained during this debate in the second week became taken-as-shared. They
used this one as data and warrant in their arguments on Week 3 without
necessitating backings, confirming that it became taken-as-shared. The
participants used this knowledge in the debates made in order to determine the
name of this point as the orthocenter and whether this point changed based on
the types of triangles. This way was similar to the way happened for the
medians, angle bisectors and perpendicular bisectors. The discussion about this
case happened on Week 3 as follows:

Instructor: Ok. What can you say about the place of orthocenter based on the

types of triangles such as obtuse and right triangles?

Nuray: All of the altitudes of a triangle are concurrent at a point named as
orthocenter. When we think about the process of the concurrence of the
altitudes and the definition of a right triangle and the altitude, each
altitude forms a right triangle in the main triangle. Therefore, the place
of the orthocenter changes since the place of each of the altitudes of
these triangles changes. For a right triangle, the place of orthocenter is
the vertex including right angle on the region of the set of points
forming the triangle since the altitudes of the perpendicular edges on a
right triangle themselves. Also, the altitude of the hypotenuse passes
through this vertex because of the definition of the altitude and the

concurrence of them.

Nuray made accurate and necessary explanation about the place of the
orthocenter on right triangles by reasoning correctly and effectively. Because
nobody challenged her explanation and reasoning and it was correct, the
instructor confirmed its truth and continued the discussion by asking about

obtuse triangles.

Instructor: Right. What about on obtuse triangles?
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Buse: When we form all of the altitudes of an obtuse triangle, the orthocenter
is on the figure and it takes place on the region of the set of exterior
points on the plane.

Figure 35 The point of concurrence of the altitudes as orthocenter of an obtuse
triangle

Instructor: What do you think about Buse’s explanation and drawing?

Selim: In this explanation, we do not form the altitudes. We made a right
triangle but not correct. The place of the orthocenter of an obtuse
triangle is on the region including the set of exterior points. Based on
the definition of the altitude, it begins from the vertex and ends on the
opposite edge by intersecting it perpendicularly and forming a right
triangle. Therefore, the altitudes of two edges opposite of the acute
angles take places outside the triangle since they need to form right
angles. When we think that the rays of the obtuse angle are these edges.
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Therefore, the altitudes are on the outside region in order to form right

angles by 90° + o = B as it is on the figure.

Buse made an explanation about the altitudes of obtuse triangle but it was not
the expected one. Selim accumulated her explanation by providing the accurate
and necessary one. He formed the altitudes and its truth benefiting from the
property of angle measures of interior and exterior angles of a triangle as in
Figure 36. Moreover, his drawing was the necessary one representing the

formation of the orthocenter for an obtuse triangle.

Figure 36 The point of concurrence of the altitudes as orthocenter of an obtuse

triangle.

In this debate, as it was observed, the participants used the knowledge of the
point of the concurrent point of the altitudes as orthocenter as data and warrant
in these debates made in order to determine whether the place of this
concurrent point representing the orthocenter changed for obtuse and right
triangles as it was observed in this discussion. In other words, by thinking
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about the concurrence point of the altitudes as orthocenter and this point’s
formation process, they talked about the place of orthocenter for these kinds of
triangles. Nuray provided claim, data and warrant for a right triangle benefiting
from these knowledge as data that there was a point that altitudes concurred at
a point and warrant about the formation and concurrence of altitudes of
triangles. Also, the participants benefited from the definition and construction
of this element. Moreover, Buse provided the claim for obtuse triangle and then
provided the data with the concurrence of them but he used wrong warrant. In
other words, she explained the concurrence of the altitudes and its place for
obtuse triangles correctly but she could not provide expected representation for
it correctly. She could not form the altitudes of this obtuse triangle for the
edges forming the obtuse interior angle of the triangle correctly. Then, Selim
provided rebuttal and true data and warrant for this discussion. He benefited
from drawing of the altitudes and the knowledge as data and warrant. He used
the property that the sum of the measures of two interior angles was equal to
the measure of the exterior angle belonged to the remaining interior angle. This
discussion period was the second instance that the mathematical idea about the
concurrence of the altitudes of triangles was observed since it was used in
order to determine whether the place of this concurrent point changed or not

for different types of triangles.

4.2.3 Mathematical idea 3: Reasoning on the names of concurrent points of

auxiliary elements of triangles and their places

The third mathematical idea which was the reasoning on the names of
concurrent points of auxiliary elements of triangles and their places on
different types of triangles emerged on Week 2 and 3. The participants
investigated these points as centroid for medians, incenter for angle bisectors,
circumcenter for perpendicular bisectors and orthocenter for altitudes
respectively. Moreover, they continued the discussion whether the place of
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these points changed based on the types of triangles. For these activities, they
thought about the relationship between these elements, related theorems and
properties about triangles with their peers and participated in the whole class
discussion by explaining their thoughts and mathematical expressions for them.
During the whole class discussion, they debated how these concurrent points
became critical points and changing/unchanging critical places. The discussion
was initiated by asking how these concurrent elements attained critical
importance on the plane on Week 2. These four elements are investigated
separately and grouped as the third mathematical idea.

In the second week, the first activity sheet was about the medians. In
this activity sheet, the participants discussed how to name the concurrent point
of the medians and to attain critical importance in geometry. It was important
since a point was formed through the concurrence of the medians and this point
with the name of centroid had some properties such as separation of the
medians through the ratio of 2;1 based on it and the separation of triangle into
equal areas by the medians and centroid. The discussion about the centroid as
concurrence point of medians and its importance was examined through the
explanations of the participants for the instructor’s question of “What is/are the
name(s) of the intersection points of the medians on a triangle?” on Week 2 as

follows:

Biisra: When we think about the concurrence of the medians, we can state that
all of the medians of a triangle are concurrent on a point. This point is
the centroid of the triangle because this point is the center of gravity on

the triangle.
Instructor: How can you identify this point as the centroid?

Merve: When we think about the process of the concurrence of the medians,
we see that these line segments separate the edges of the triangle into
equal parts and then we observe that the medians of a triangle divide
one another in the ratio 2; 1 ... For example, on the triangle, the
triangles of KFG and GMC; AKF and ABM are similar triangles. |FG|
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= |GM| = % and |AF| = [FM| = % based on the scale factors of these
similar triangles. Therefore, the relationship between these lengths can
be described as |AG| = 2|GM| = 4|FG|. When we repeat this process for
the other medians, we find the same ratio.

Figure 37 The separation of the medians through the ratio of 2;1 based on the

concurrence of the medians

Instructor: Is this ratio enough to name the concurrent point of the medians as
the centroid?

Halit: It is not enough since we need to show that a triangle is dissected by its
medians into six smaller triangles having equal area. The triangles of
BXP and CXP; BPZ and APZ; CPY and APY have equal area. Then,
the areas of the triangles of ABX and ACX; ACZ and BCZ are equal in
measure so that we find y = z and z = x and then x = y = z. Therefore,
we show that the medians separate the triangle into regions having the
equal area.
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Figure 38 Dissection of a triangle into regions having equal areas with medians

In this discussion, Biisra initially made a claim about the name of the
concurrence point of the medians as centroid based on its nature of the gravity
center of the triangle. Then, Merve provided data by emphasizing the
concurrence of the medians of the triangle benefiting from the mathematical
idea about the concurrence of them so that the evidence that the mathematical
idea about the concurrence of auxiliary elements functioned as if shared was
obtained. In her explanation, Merve found the ratio between the lengths of the
edges of the triangle in Figure 37 benefiting from similar triangles. She made
good reasoning and her explanation might be useful for determining the
concurrence point of the medians as centroid. However, she realized that her
explanation was not sufficient for this identification Then, Halit provided a
different explanation and justification for this identification since he stated that
Merve’s explanation was not sufficient to identify the concurrence point as
centroid since she found the ratios between the line segments formed through
the intersection points of the line segments formed through the medians.

Although her explanation represented the ratios between the line segments
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formed by the medians, her explanation had missing parts for justifying that the
concurrent point of the medians was centroid. Halil made accurate and
necessary explanation at this episode of the argumentation to complete the
warrant of the argumentation. In other words, another part of the warrant for
that claim was provided benefiting from the same mathematical idea by Halil.
The name of the concurrence point of the medians as centroid was identified
based on the discussion about the separation of the medians into ratio of 2;1
with respect to this concurrence point into regions and the triangle into regions
having equal area. Based on the area formula which was a.h,, the triangles
having the equal area were determined benefiting from the idea that the lengths
of the edges and the altitude of these edges having the common vertex were
same. They were examined based on the process and the mathematical idea of
the concurrence of the medians. Then, by showing them, the concurrence point
was determined as the centroid of the triangle accurately and necessarily so that
it was named as the centroid. The structure of the argument including some

parts of this debate can be illustrated as shown in Figure 39.

DATA CLAIM

Biisra: When we think about the T Biisra: This point is the centroid

concurrence of the medians. .. of the triangle because this...

WARRANT

Merve: When we think about the process of the concurrence of the

medians, we see that these lines separate the edges of the triangle ...

Halit: It is not enough since we need the show that a triangle is dissected

by its medians into six smaller triangles of equal area...

Figure 39 Toulmin’s model of argumentation for reasoning on the formation of

the centroid.
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On the same week on the advancing hours of the instructional sequence,
it was illustrated that the mathematical discussions produced by the
participants, knowledge and skills about the point of concurrence of the
medians attained was the centroid in the second week became taken-as-shared.
They used this one as data in their arguments on Week 2 without necessitating
backings, confirming that it became taken-as-shared. They made the claim
explaining the centroid of the triangles took place in the region of interior
points formed by the triangle on a plane for all types of triangles. They
produced this claim for the problem of “Estimate the place(s) of the
intersection point(s) of the medians on right, obtuse and acute triangles. Do(es)
the place(s) of this/these intersection point(s) change for these triangles?
Why?”. The instructor directed the participants to answer this problem using
the mathematical ideas about the concurrence of the medians and this point as
centroid. Then, they provided data that the centroid was the centroid of the
triangle by dissecting the triangle into six regions with equal area in a similar
way made in Figure 38. Therefore, they explained the warrant “when the
medians are formed for all these types of triangles, it is seen that they exist on
the same region including interior points as one of three regions formed by a
triangle on a plane” (the mathematical idea about regions formed on a plane by
a triangle as discussed in the first mathematical practice) and “six regions with
equal area always exist in the same region so the centroid always take place in
the same region for all types of triangles” as in Figure 38. By making this
explanation, they stated that the centroid always existed in the interior region
of all triangles by separating the medians into ratio 2;1 accurately and
appropriately. By the way, it could be stated that the mathematical idea about
the regions formed by the triangle by separating the plane into three parts was
also became taken-as-shared. This was the other instance that the notion of the
regions formed by triangles on a plane were observed in an argumentation
functioned as if shared. The concurrence of the medians and the name of this
concurrence point as the centroid used as data and it became taken-as-shared.

Moreover, the mathematical idea about the centroid as the concurrence point of
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the medians became taken-as-shared by being used in the discussion taking
place on Week 6 about the question related to two rotating and coinciding
equilateral triangles on the point of the centroid and examining the area of the
overlapping region. In other words, the concurrence of the medians and the
name of this concurrent point as the centroid used as data and warrant and it
became taken-as-shared as it happened in the following discussion:

Instructor: Two congruent equilateral triangles (n units) overlap as shown in
the figure. Vertex of C of one triangle is at the centroid of the other
triangle. If the triangle with the vertex of C is allowed to rotate about
the centroid, C, of the other triangle, what is the largest possible value
of the overlapping area?

Two congruent equilateral triangles (n units) overlap as shown in the
figure. Vertex of C of one triangle is at the centroid of the other triangle. If
the triangle with vertex C is allowed to rotate about the centroid, C, of the

other triangle, what is the largest possible value of the overlapping area?

i

AN
N\

Figure 40 Figure of the problem about two rotating and overlapping equilateral

triangles.

The instructor read the problem on the activity sheet represented in Figure 40.
Then, the instructor asked some participants to solve the problem. Through the

process of peer discussion, the instructor saw that there were two different
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answers for this problem so she selected two participants to represent typical

examples of these different answers.

Merve: The area of the overlapping region is 2,6a% as a maximum area for the
overlapping region and the area of whole triangle is 15,6a% In the
problem, it is explained that the centroid of triangle is coincident with
the vertex of the other triangle. The centroid is the concurrent point of
the medians of a triangle by separating the triangle into six regions

having equal areas and the edges with the ratio 2;1...

In her explanation, Merve placed the front triangle in a way that the edge of the
front triangle was coincident with the median of the back triangle as in Figure
41 benefiting from the ratio of 2:1 formed on the parts of medians. She thought
that the largest overlapping area that could be determined by forming a right

triangle whose median was coincident with the median of the back triangle.

Figure 41 Figure of the two overlapping equilateral triangles by Merve.

Instructor: Ok. ilkay, Could you please explain your solution?

Ilkay: | found bigger value than this one. The maximum area that we can

compute is 4a? in the case of the area of whole triangle is 15,6a%. When
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the place of the front triangle is determined as the medians of these
triangles are coincident because they are connected each other on the
centroid of the back triangle, the centroid of the front triangle becomes
coincident with the vertex of the back triangle as it is in the figure by
Merve’s explanation... Then, we obtain two isosceles obtuse triangles

with the angle measure of 120°...

Figure 42 Figure of the two overlapping equilateral triangles by Ilkay.

In this discussion, the mathematical idea about reasoning on naming the
concurrence point of auxiliary elements for medians became taken-as-shared.
Merve made claim about the calculation of the largest area for overlapping
region as 2,6a®. For this claim, she provided the data “In the problem, it is
explained that the centroid of triangle is coincident with the vertex of the other
triangle. The centroid was the concurrent point of the medians of a triangle by
separating the triangle into six regions having equal areas” benefiting from the
mathematical idea of the centroid as the concurrence point of the medians and
this idea functioned as if shared. Then, she provided warrant by explaining the
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position of the front triangle and the process of determination of it through the
medians. She provided her answer by positioning the triangle with vertex C in
a way that one of its edges passed through the vertex of the other one in Figure
41. She made reasoning accurately and positioned the triangle appropriately
benefiting from the medians and the position of the centroid on the medians
based on the idea that the medians of a triangle divided the other in the ratio of
2; 1. However, although the reasoning way was correct, this was not the largest
possible value of area for overlapping region since there was another position
to produce the largest overlapping area. Then, ilkay provided correct answer by
explaining largest value for the area of overlapping region. He used the same
data provided by Merve. Then, he stated the warrant based on the place of the
front triangle in a way that the medians were coincident by obtaining two
obtuse isosceles triangles as in Figure 42. He placed the front triangle by
benefiting from the ratio of 2:1 formed by the parts of the medians of a
triangle. Different from Merve’s representation, he placed the front triangle
whose median was coincident with the vertex of the back triangle. The largest
area was determined in a way that the median of one of the triangles was
coincident with the edges or median of the other triangle. In this respect, Ilkay
reasoned that when the medians of both triangles were coincident, the largest
lengths of the parts of the edges of the triangle were formed. He assumed that n
= 6a representing the length of the edges of these triangles. Then, he found that
the overlapping parts of the edges had the lengths of 2a. Hence, he obtained a
larger value for overlapping region than the value found by Merve. Merve
found smaller value since the overlapping triangle’s edges had smaller lengths.
As it was observed in the discussion, the mathematical idea was used as data
and warrant for the discussion of the problem in order to examine the
maximum value of the overlapping region of two coincident equilateral
triangles. With this motivation, the mathematical idea about the centroid as the
concurrence point of the medians became taken-as-shared since this
mathematical idea previously emerged took place by functioning in other parts

of new argument analyzed by Toulmin’s model of argumentation.
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In the second week, the next activity sheet was about angle bisectors. In
this activity sheet, the participants discussed how to name the concurrence
point of angle bisectors and to attain critical importance in geometry. The
discussion about the incenter as concurrence point of angle bisectors and its
importance was examined and stated on Week 2 as follows:

Instructor: What can we say about the concurrent point of angle bisectors and
the process of concurrence of them.

Merve: The concurrence point of angle bisectors has critical importance since
any two of them are enough to determine this point. When we examine
the process of showing the concurrence of them, we can name this point
as incenter.

Instructor: How do you show that this point is incenter?

Halit: ... we have four points that three of them are equidistant to the specific
one. The circle is the set of points equidistant to a point which is the
center of it. When we combine three points which are equidistant to the
concurrent point of angle bisectors on the triangle by arcs, we obtain
incircle of this triangle whose center is the concurrent point of angle

bisectors... Also, this concurrent point becomes the incenter...

a. Tangent points and the point b. Incenter with its radius on

equidistant to these points incircle

Figure 43 The formation of incenter by angle bisectors
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In this debate, Merve first made a claim that the name of the concurrence point
of angle bisectors was incenter. Then, Halit provided data and warrant for that
claim. The data was about the concurrence of the angle bisectors and the
definition of circle. The warrant was about the formation of a circle benefiting
from the points through the concurrence of them. Halit remembered the process
of the concurrence of angle bisectors and its justification as in Figure 43.a. In
this figure, there was the concurrence point and three points which were D, E
and F equidistant to this concurrence point. Then, he made the connection
between this mathematical idea and the formation and definition of a circle. In
this figure, when these three points were combined by arcs, the combination of
these arcs formed a circle with the center point as the concurrence point of the
angle bisectors as in Figure 43.b. The distances of these three points to the
center represented the radius of this circle. Also, this circle became the incircle
of the triangle since these three points were the tangent points on the triangle.
In this way, the concurrent point became the incenter. Through this process,
Halit made necessary and accurate explanation for the problem by reasoning
correctly. The structure of the argument can be illustrated by including some

parts of this debate as shown in Figure 44.

DATA CLAIM
Halit: When we think about the Merve: ...we can name
process of showing the this point as incenter.
concurrence of them...

WARRANT

Halit: ...Therefore, when we combine three points which are equidistant to

the concurrent point of angle bisectors on the triangle by arcs...

Figure 44 Toulmin’s model of argumentation for reasoning on the formation of

the incenter.
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On the same week on the advancing hours of the instructional sequence,
it was illustrated that the mathematical discussions produced by the
participants, knowledge and skills attained by them about the point of
concurrence of angle bisectors was the incenter in the second week became
taken-as-shared. They used this one as data and warrant in their arguments on
Week 2 without necessitating backings, confirming that it became taken-as-
shared. The concurrence of angle bisectors and the name of this concurrent
point as the incenter used as data and warrant in other mathematical arguments

and it became taken-as-shared as it happened in the following discussion:

Instructor: Ok. Does the place of the incenter change based on the types of

triangles? How?

Selim: The place of it does not change. ... the place of incenter for all types of
triangles is always in the set of interior points which is one of the
regions formed by triangles on the plane. The concurrent point of angle
bisectors is the incenter of the triangle, therefore incircle is always
formed in the triangle and also the incenter is made. Moreover, three
tangent points of the incircle on the triangle is on the region of the set of

points forming the triangle.

In this debate, as it was observed, the participants used the knowledge of the
concurrence point of angle bisectors as the incenter as data and warrant in the
debates made in order to determine whether the place of the point representing
the incenter changed based on the types of triangles. This reasoning was
necessary and sufficient for the problem. Therefore, it became taken-as-shared
as functioning in other parts of the argumentation model of the discussion.
Moreover, the knowledge about the formation of the incenter point was used as
data and warrant in another two discussions made in the content of
similarity/congruence on Week 5. In other words, there were other instances
that this mathematical notion functioned as if shared in a way that they
produced evidences for becoming taken-as-shared. In the first debate, the topic

that the radius of incircle of congruent triangles had always same length was
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discussed. Esra made the claim that they were same accurately. Then, she
provided the data that the point of the concurrence of angle bisectors was
incenter and congruent triangles’ edges had the equal length and the measures
of angles of them were equal. She explained the warrant that the congruent
triangles’ angle bisectors separated the angles into two angles having equal
angle measures and the distance between the incenter and tangent points were
equal. By doing so, this mathematical idea became taken-as-shared in an
argumentation reasoned correctly under the guidance of the instructor. In
another discussion, this idea became taken-as-shared again. The teacher
initiated the discussion by reading the problem on Activity Sheet 2 represented
in Figure 16 about the content of congruence/similarity on Week 5:

Instructor:  When the lengths of the radius of incircle and the altitude of the
hypotenuse are equal for two right triangles, they are sometimes
congruent, are not they?

Mehmet: They were always congruent. By construction, I can show that they

are congruent.
Instructor: How can you do that?

Mehmet: By identifying the possibility and types of triangles constructed by
known elements, | can do it. Initially, the incenter is the point of
concurrence of angle bisectors. Therefore, we know the distances

between the incenter and the tangent points.
Instructor: Well. It is a good point. So.

Mehmet: Also, we know the angle measure of one of the angles as 90° and the
length of the altitude of the hypotenuse. ... We construct a right angle, a
circle having the radius in the length of the altitude and incircle. At the
end, we draw a line tangent to the incircle since the hypotenuse is
tangent to incircle. The intersection points of this line on the lines of
AX and AY are vertices of the triangle and the hypotenuse and the

triangle were formed...
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Figure 45 Construction of the problem by Mehmet.

In his explanation, he provided accurate and necessary explanation for the
problem by reasoning successfully. He constructed the right angle and the
circle with the radius in the length of the altitude as in Figure 45. Then, the
incircle was constructed by being tangent to the rays of the right angle. Then,
by constructing the tangent line for the incircle to intersect the rays of right
angle, the triangle was constructed. Through his explanation, he did not state
the place of the altitude on the hypotenuse. Then, the instructor asked question
about its place to fulfill this gap. Then, nobody answered so the instructor
answered by stating that there were two cases that the tangent line of the
incircle intersected the circle with the radius equal to the length of the altitude;
it intersected at two points or one point which was also the tangent point of the
incircle. Therefore, two cases for the place of the altitude were formed based
on the idea that when the position of a line to a circle was examined there were
three cases; not intersecting, intersecting at two points and tangent. Because the
triangle was formed, the case of not intersecting was eliminated. In order to

help the participants understand the idea and use it to determine their
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congruence, she asked “What do these cases mean?” and they answered that
there were two types of triangles constructed by these elements. In the case of
intersecting at two points, one was the tangent point of incircle and the other
one was the intersection point of the circle constructed for the altitude. In this
case, a scalene triangle was formed. The other case was the hypotenuse was
tangent to the circle formed for the altitude. This tangent point was also the
tangent point of the incircle with the hypotenuse so that an isosceles triangle
was formed. Then, the instructor asked to reach the complete answer about
congruency “By these knowledge, what can you say about the congruence of
triangles?”. Then, they answered that the scalene triangles were congruent
since by following construction steps, all of the scalene and isosceles right
triangles formed by these known elements had the main and auxiliary elements
having the same properties and measures so they were always congruent.
Through the discussion, sufficient and accurate solution and justification was
provided for the problem. After the discussion was completed, Halit provided

another formation steps for this triangle as follows:

Halit: ... We construct the right angle and its angle bisector. Then, we draw a
circle having the center point of the intersection point of rays and with

the radius of the altitude. Then, we can determine the place of incenter
by the point which is +/2 # far away from the point of A and construct

incircle in the figure. The point of E is the tangent point of incircle to
the hypotenuse and the point of D is the intersection point of the
hypotenuse and right angle’s angle bisector. When we draw a line
passing through these points, the intersection points of this line on the

rays are the vertices of the triangle...
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Figure 46 Figure for construction of the problem by Halit.

The construction steps of Halit were similar to the steps followed by Mehmet.
However, the differences came from the construction of incircle. While
Mehmet was constructing incircle, he reasoned on the construction steps of a
tangent circle to the particular lines representing the rays of the right angle. In
other words, Mehmet constructed a right angle and he formed a circle on the
center as the point of the vertex of this right angle in the length of the altitude.
Then, he constructed an incircle tangent to two rays forming the right angle on
the vertex of A as in Figure 45. On the other hand, Halit determined the place
of the incenter based on the angle bisector theorem stating that when a point
was placed on an angle bisector, then it was far away in equal distance from the
rays forming the angle. He formed the angle bisector of the right angle and

determined the place of the incenter by Pythagorean Theorem as in Figure 46

since the incenter was far away in the distance of .z, to the point of A.
Afterwards, there were two cases in order to form the triangle having the
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values explained in the problem; isosceles and scalene triangle. In the case of
isosceles triangle, the point of D representing the altitude foot on the
hypotenuse and the point of E representing the perpendicular bisector starting
on the incenter and ending on the hypotenuse were coincident. Then, the
hypotenuse was constructed passing through this coincident point and
intersecting the rays with the equal distance to the vertex of A. All of the
isosceles triangles formed by these known measures of the elements were
congruent since the lengths of the opposing edges were equal by the criteria of
S.S.S. On the other hand, in the case of scalene triangles, the points of D and E
were not coincident. The scalene triangle was formed passing through these
points intersecting the rays of the right angle. All of the scalene triangles
formed by these known measures of the elements were congruent since the
lengths of the opposing edges were equal by the criteria of S.S.S. Then, the
congruence of the triangles was showed and justified by using the idea formed
through the discussion taking place in Mehmet’s explanation process guided by

the instructor.

In this discussion, Mehmet used the claim produced in the discussion of
Week 2. The data that the point of concurrence of angle bisectors as incenter
was used in order to determine the congruence and warrant was provided
benefiting from the steps of construction. Moreover, Halit provided backing
explaining the steps of construction in a different way. In this respect, it was
provided that reasoning with the names of concurrence points of auxiliary
elements of triangles and their places for angle bisectors in order to determine
the place of incenter became taken-as-shared. The claim produced on Week 2

was used as data in the argumentation made on Week 5.

Lastly, the critical importance of concurrence point of perpendicular
bisectors was examined on Week 3. The discussion about reasoning on the
names of concurrence points of auxiliary elements of triangles and their places
for perpendicular bisectors was made in similar way made for the incenter as

the concurrence point of the angle bisectors. In this debate, Ilkay first made a
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claim that the name of the concurrence point of perpendicular bisectors was
circumcenter. Then, the instructor challenged him to explain how this
concurrence point became circumcenter. He provided data that three
perpendicular bisectors of a triangle concurred at a point appropriately. He also
added the warrant that there were three isosceles triangles of AOB, BOC and
AOC where two of their edges’ lengths were equal as in Figure 47. Also, the
vertices of the triangle were equidistant from the concurrence point of
perpendicular bisectors so that a circle could be formed based on the definition
of a circle by combining these vertices with the arcs based on the center of this
concurrence point. Then, the perpendicular bisectors represented the case that
the perpendicular line segments passing through the center bisected the chords
in a circle as in Figure 47. As it was observed, the concurrence of
perpendicular bisectors and the process of showing their concurrence were
used while forming the warrant accurately and necessarily.

Figure 47 The circumcenter as the concurrent point of perpendicular bisectors.

On the same week on the advancing hours of the instructional sequence,

it was illustrated that the mathematical discussions produced by the participants
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and knowledge and skills attained by them about the point of concurrence of
the perpendicular bisectors was the circumcenter in the third week became
taken-as-shared. They used this one as data and warrant in their arguments on
Week 3 without necessitating backings, confirming that it became taken-as-
shared. The concurrence of perpendicular bisectors and the name of this
concurrence point as the circumcenter used as data and warrant and it became

taken-as-shared as it happened in the following discussion:

Instructor: Ok. Does the place of the circumcenter change based on the types of

triangles? How?

Mehmet: The place of it changes based on the types of triangles. ... The
concurrence point of perpendicular bisectors is the circumcenter of the
triangle; therefore circumcircle is always formed on the outside

region...

Mehmet made an explanation about the place of the concurrence point of
perpendicular bisectors but his explanation had unnecessary and incorrect
parts. He made reasoning about the placement of a right triangle in a circle
incorrectly. He ignored the fact that the hypotenuse of the right triangle was
coincident with the diameter of the circle. At this point, the instructor wanted
Mehmet to represent his explanation. He drew Figure 48. In order to help him
realize the incorrect part of his explanation, the instructor wanted him to
estimate the measures of the arcs formed by the vertices of the triangle on
circumcircle. By estimating these measures, he correctly stated that the
hypotenuse must be on the diameter of circumcircle. Then, the necessary and
appropriate explanation about the place of the circumcenter for a right triangle

was made by Nuray as follows:
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Figure 48 The circumcircle of a right triangle by Mehmet

Nuray: The place of the circumcenter of a right triangle is the midpoint of the
hypotenuse. The diameter of circumcircle is the hypotenuse and the
inscribed angle of a circle opposite of the diameter has the measure of
90°. When we follow the concurrence of perpendicular bisectors and the
formation of the circumcenter, this case becomes valid for right triangle
(in Figure 49.a).

Instructor: What can you say about an obtuse triangle?

Halit: We know that the inscribed angle of a circle opposite of the diameter has
the measure of 90° so the arc opposite of the obtuse angle of the triangle
must exceed the diameter of the circumcenter. Also, the concurrence
point of perpendicular bisectors is the center of circumcenter.
Therefore, this center point takes place on the region including the set

of exterior points near the largest edge (in Figure 49.b).
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a. Construction of circumcircle b. Construction of circumcircle

for right triangle by Nuray for obtuse triangle by Halit

Figure 49 The circumcircle of right and obtuse triangles

In this episode of the discussion, Halit provided necessary and accurate
explanation and justification about the place of circumcenter for an obtuse
triangle. In this debate, the participants used the knowledge about the
concurrence point of perpendicular bisectors as the circumcenter as data and
warrant in the debates made in order to determine whether the place of the
point representing the circumcenter changed for obtuse and right triangles as it
was observed in this discussion. In other words, by thinking the concurrence
point of perpendicular bisectors as circumcenter and the process of formation
of this center point, they discussed the place of circumcenter for these kinds of
triangles. Hence, reasoning on the names of concurrent points of auxiliary
elements of triangles and their places for perpendicular bisectors in order to
determine the place of circumcenter became taken-as-shared. Moreover, the
knowledge about the formation of the point of circumcenter was used in
another discussion made in the content of congruence/similarity on Week 5. In
this debate, the topic was that the radius of circumcircles of congruent triangles
had sometimes equal length and the distances of circumcenter to the edges
were sometimes equal. Efsa made the claim that they were always equal by
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stating that the explanation was wrong. Then, she provided the data that the
point of the concurrence of perpendicular bisectors was circumcenter and
congruent triangles’ edges had the equal length and the measures of angles of
them were equal under the guidance of the instructor. She explained the
warrant that the congruent triangles’ perpendicular bisectors had equal length.
In order to show the truth of their claim, the instructor wanted them to draw
and they formed a triangle as in Figure 47. Then, they constructed another
triangle having equal length of radius of circumcirle with the previous one and
equal length of distances for the opposing edges of the triangle with the
previous one. When they found the length and angle measure necessary for
these triangles by using these measures, they became congruent triangles since
all of these measures were equal for these triangles. In this way, they showed
the congruence of these triangles accurately and sufficiently. In doing so, this
knowledge which was the reasoning with the names of concurrence points of
auxiliary elements of triangles and their places for perpendicular bisectors
became taken-as-shared. Moreover, similar discussions made for angle and
perpendicular bisectors were observed for the altitudes. Then, the mathematical
idea about the reasoning on the concurrence point of the altitudes as the
orthocenter became taken-as-shared in similar way as it happened for angle and

perpendicular bisectors.

4.3 Mathematical practice 3: Reasoning on congruence and similarity

The last mathematical practice was reasoning on congruence and
similarity of triangles. The mathematical ideas included in this mathematical
practice were about the formation of congruent and similar triangles through
transformation geometry and Angle-Side-Side (A.S.S.) was not a criterion for
congruence or similarity. They had been mainly emerged from the activities
that the participants engaged in the fourth and fifth weeks. On the fourth week,
they examined the construction of images of triangles through the types of
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transformation geometry and the relationship between triangles and image
triangles by using the compass and ruler, and coordinate system. On the fifth
week, they engaged in the activities about congruence and similarity of
triangles and the criteria for them. While they were talking about criteria, they
proposed a congruence/similarity criterion of A.S.S. and discussed its
incorrectness. For these activities, they worked with their peers and
participated in the whole class discussion.

4.3.1 Mathematical idea 1: Reasoning on the formation of congruent or

similar triangles through transformation geometry

The last mathematical practice was observed on the fourth week of the
instructional sequence while the participants were engaging in the activities
about forming congruent and similar triangles through transformation
geometry. In this activity, the participants were asked to find the image of the
triangles by following the steps of construction through transformation
geometry. After forming triangles which were the images, they determined the
congruent or similar triangles. While they were engaging in this activity, they
benefited from the definition of types of transformation geometry and a
triangle. For this activity, they worked with their peers and participated in the
whole class discussion. The instructor initiated the discussion by asking a
question in order to discuss the activities on the first activity sheet of the Week
4:

Instructor: What is the relationship between the triangle and its image formed

through the translation?

Selim: We attain a triangle through translation. The triangle and its image

triangle are congruent triangles.

Instructor: How do they become congruent triangles?
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Selim: Translation is moving a shape. A triangle is moved through specific
way, direction and distance through translation so the image triangle
and the triangle are congruent.

Instructor: How can you form the image of a triangle through translation?

Nuray: A triangle is composed of three non-linear points. While forming the
image of triangle, we find the places of three non-linear points as the
vertices by preserving the distances and the directions between them. In
other words, we move the vertices through the same vector, find the
vertices of the image triangle and combine these vertices by the line
segments. At the end, we form the image triangle composed of three
non-linear points moved by the same vector. In this respect, we have

congruent triangles since they have the equal length of edges.

Nuray explained the process of construction of the image of the triangle
through translation. In her explanation, Nuray benefited from the knowledge
that the distance between parallel lines were preserved and the vectors
represented the line segments having magnitude and direction. In this respect,
the edges of the triangle were moved by using parallel lines preserving the
angles between the edges and the lengths of them. Hence, the lengths of the
edges and the measures of the interior angles of the image triangle were equal

to the previous triangle.

Instructor: OK. Is knowing that the triangles have equal length of edges enough

to say that they are congruent?

Biisra: Let’s think about the triangles of ABC and DEF. We know the lengths
of the edges and then we try to compute the measures of the angles of
the triangle. In this respect, the known values are written on the cosine
formula in order to show the equality of the angle measures opposite of
the edges having equal lengths. When the process is repeated for all
opposing angles of triangles, the equalities of the measures of

corresponding angles are shown. Therefore, it can be claimed that when
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the lengths of the corresponding edges of the triangles are equal, these

triangles are congruent.

Figure 50 Figure of the congruence and similarity citeria of S.S.S.

In this debate, Selim initially made a claim that the triangle and its image
triangle were congruent triangles correctly. Then, he provided data by the
definition of translation considering the formation of image triangle preserving
the properties of the triangle. He also provided warrant by the process of

translation applied on triangle necessarily and appropriately. He constructed
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the triangle by following geometric construction steps using compass and
straight edge. Nuray and Biisra provided sufficient and appropriate backings
for this mathematical idea under the guidance of the instructor and the help of
their ideas and discussion process. With the help of the instructor’s question
and guidance, Nuray provided backing benefiting from the definition of
translation from a different perspective. She examined the formation of image
triangle by using a vector from algebraic view. She insisted on moving the dots
forming the triangle by the same vector necessarily. In her explanation, she
benefited from the definition of triangles appropriately since by forming the
image of the triangle, the vertices were critical since a triangle could be formed
accurately by identifying the places of them and combining them with line
segments. This process was produced based on the critical attributes of
triangles necessitated to form and define them. By the way, this was the other
instance that the notion of definition of triangles was observed in a way that it
functioned as if shared. In other words, this was another case in which the fisrt
mathematical idea in the first mathematical practice became taken-as-shared.
Moreover, she benefited from the knowledge that the distance between parallel
lines were preserved and the vectors represented the line segments having the
same magnitude and direction. Based on the knowledge that the vectors were
parallel and any opposing points on parallel lines are equidistant. Then, the
instructor directed the discussion to talk about the congruence criteria
necessarily since they needed the criteria in order to represent and justify the
congruence of the triangles. Afterwards, Biisra made backing by explaining
that two triangles were congruent with equal lengths of corresponding edges by
the cosine formula since the measures of the corresponding angles were equal
by reasoning necessarily and sufficiently. The Toulmin’s model of
argumentation for some parts of this debate can be represented as shown in

Figure 51.
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DATA CLAIM

Selim:  Translation is Selim: We attain a triangle through

moving a shape... translation. The triangle and the

image triangle are congruent

triangles.

WARRANT

Selim: ... A triangle is moved through specific way, direction and distance

through translation so the image triangle and the triangle are

BACKING

Nuray: A triangle is composed of three non-linear points. While forming the
image of triangle, we find the places of three non-linear points as

the vertexes by preserving the distances and the directions between

BACKING

Biisra: Let’s think about the triangles of ABC and DEF. We know the
lengths of the edges and then we try to compute the angle measures

of the angles of the triangle...

Figure 51 Toulmin’s model of argumentation for reasoning on congruent

triangles by translation.

On the same week on the advancing hours of the instructional sequence,
it was illustrated that the mathematical discussions produced by the
participants, knowledge and skills got by them about the formation of

congruent triangles during this debate in the fourth week became taken-as-
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shared. They used this one as data and warrant correctly in their arguments on
Week 4 without necessitating backings, confirming that it became taken-as-
shared. The participants used this knowledge in the debates in order to decide
whether the triangles and their image triangles formed through reflection were
congruent. The process followed through the translation was similar to the
steps made for reflection appropriately. The similar claim, data, warrant and
backings were provided. The claim that the triangles and their image triangles
formed through reflection were congruent triangles as a true mathematical
explanation. Then, the data was explained by the definition of it. At the end,
they provided warrant and backing benefiting from the process of the
formation and construction of the images through reflection. Moreover, the
mathematical idea that triangles whose lengths of corresponding edges were
equal, were congruent triangles was used as data and warrant accurately.
Hence, the mathematical idea about the congruence by the equal lengths of
corresponding edges became taken-as-shared. The process of formation of
congruent and similar triangles through transformation geometry happened
effectively under the guidance of the instructor. Moreover, on Week 5, the
activities were about congruence and similarity of triangles. The participants
discussed the criteria of congruence and similarity. Then, by explaining the
criteria of S.S.S., they used this mathematical idea as data and warrant. In other
words, they claimed that S.S.S. was a congruence and similarity criterion. They
also produced the data about the definition of congruence and similarity
correctly. Then, they used the warrant that two triangles were congruent since
when the corresponding edges had equal lengths, the measures of the
corresponding angles were equal benefiting from this mathematical idea
reasoning accurately. In this way, these two triangles fit the definition of
congruent triangles. Hence, it became taken-as-shared. Moreover, the activity
sheet on Week 6 was composed of the problems on the content of congruent
and similar triangles. Therefore, this mathematical idea was used as data and
warrant in the solution of these problems. Therefore, this mathematical idea

became taken-as-shared again.
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The instructor initiated the discussion by asking a question in order to
discuss the activities on the second activity sheet of the Week 4 about the
rotation as a type of transformation geometry. In this activity sheet, they were
asked to construct the image of the triangle through rotating by 45° based on
the reference point of O using compass and straight edge as in Figure 52
representing the activity sheet on rotation. For this problem, after the
participants completed the construction process, the instructor asked them a
question to emphasize the congruence of triangles and the discussion was
flowed as follows:

ROTATION
Define the rotation.

Construct the image of the triangle ABC by rotating with the angle measure of

45° and the reference point and justify this construction mathematically.

Figure 52 The figure of the activity sheet about rotation

Instructor: What is the relationship between the triangle and its image formed

through the rotation?

Merve: The geometrical object obtained through rotation is a triangle as the

image of a triangle. These triangles are congruent triangles.
Instructor: How do you show that they are congruent triangles?

Merve: Rotation is also moving a shape. Every point composing the triangle
rotates about a reference point by a given particular angle so that the
image triangle and the triangle are congruent. In other words, a triangle
is moved on a circular way with respect to the angle so they are

congruent.

Instructor: Selim. How did you construct the image triangle?
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Selim: We know that a triangle is composed of three non-linear points and also
it includes three interior angles. For example, when the angle measure
of rotation is 45° we form an angle whose rays pass through the vertex
of C and the image of this vertex is formed. Then, we repeat this step
for the vertex of B and we form the image of the edge of CB.
Afterwards, by copying the angle of ABC and determining the place of
the image of the vertex of C through construction, we draw the image

of the triangle by rotation.

Through the discussion process of formation of congruent triangles by rotation,
all of the participants constructed the image triangle by determining the
vertices of the triangle after rotating by 45° on the reference point and the
image triangle was formed by combining these points with line segments.
Merve provided claim that congruent triangles were formed through rotation.
She also provided data and warrant by using the definition of rotation. She
stated that the image triangle was formed moving it through circular way based
on the angle measure of 45° Selim provided backing for the argumentation
benefiting from the construction steps. He determined the places of the vertices
by rotating them with this angle measure following construction steps. Then,
by combining these vertices using line segments, the triangle congruent to the
previous triangle was formed as in Figure 53. In order to determine the image
of the vertex, a line was constructed beginning on vertex of C and exceeding
the rotation reference point. A line perpendicular to this line passing through
the point of reference point was constructed. Then, an isosceles right triangle
was constructed as in Figure 53.a. The median of the hypotenuse was
constructed and this median was extended. The compass was placed on the
reference point and an arc was constructed passing through this vertex and
intersecting the median. Hence, the image of the vertex of C was determined.
When the similar construction steps were repeated for the vertex of B, the
image of this vertex was identified as in Figure 53.b. Then, by combining these

image vertices with a line segment, the image of the edge of BC was formed.
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Then, the angle of ABC was copied by construction using the edge of BC as
one of the rays forming this angle. By using the width of the compass, the
length of the edge of AB and the place of the vertex of A were determined. At
the end, by combining the images of the vertices of A and C with a line
segment, the image triangle was formed.

a. Rotating the vertex of C b. Rotating the vertex of B and
forming the edge of BC

Figure 53 Constructing the image of the edge of BC through rotation

As happened in the translation, the congruence of the triangle and its image
triangle could be justified by the congruence criterion of S.S.S. Because this
criterion was discussed in translation, different construction strategies that
could represent different congruence criteria were examined. With this aim, the
instructor wanted Selim to explain his construction process. In this process, he
determined the place of the vertex of C through construction as in Figure 53.a.
Then, by repeating the similar construction steps, he identified the place of the
vertex of B as in Figure 3.1.4.b. By combining these points with a line
segment, he formed the edge of BC by reasoning appropriately and
sufficiently. Afterwards, by construction, he copied the angle of A having the
rays represented by the edges of AB and AC. Through this construction

process, the image triangle was constructed accurately and the way to show
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their congruence could be happened by the congruence criterion of S.A.S. In
order to represent and justify this congruence criterion, the instructor directed
the discussion to focus on this idea.

Instructor: By following these steps, how can you claim that these triangles are

congruent?

Nuray: Let’s think about two triangles of ABC and DEF as the image of the
prior triangle. When we think about the formation of its image through
the steps explained by Selim, we know the lengths of two of the edges
and the measure of the angle between these edges since we copy it. If
we write these known values on the cosine formula in order to find the
length of the remaining edge, we find that the values of these edges for
both triangles are same. Therefore, it can be claimed that when the
lengths of the corresponding two of the edges of the triangles and the
measure of the corresponding angles are equal, these triangles are

congruent.

In this debate, Merve initially provided an accurate claim stating that the
triangle and its image triangle formed through rotation were congruent
triangles accurately. Then, she provided data by the definition of rotation. The
warrant was also explained by Selim stating the process of rotation applied on
the triangle. One of the edges of triangle was moved through rotation, i.e.,
moving on a circular way based on a reference point and by particular angle
measure. Then, the angle was copied through construction since one of the rays
of the angle was drawn and the place of the remaining vertex was determined.
Through this process, Selim provided a different construction process and
reasoning process for justifying their congruence by a different congruence
criterion successfully and necessarily. By completing the formation of the
image triangle, the instructor directed the discussion about congruence of the
triangle and its image triangle. Nuray explained that the lengths of two of the
edges and the measure of the opposing angles between these edges were equal.

Then, by using the cosine formula, she showed that the lengths of the opposing
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remaining edges were equal so the triangles were congruent. Afterwards, under
guidance of the instructor, Nuray provided an accurate backing by stating that
knowing that the lengths of two edges and the angle measure between these
edges were equal was enough to justify the congruence of these triangles.
Benefiting from the cosine formula, she showed the equivalence of the lengths
of the remaining edges of the triangles sufficiently. In this way, the image was
formed by drawing a congruent triangle. The Toulmin’s model of
argumentation was used in order to represent the structure of the argument

including some parts of this debate as shown in Figure 54.

DATA CLAIM
Merve: Rotation is also Merve: The geometricl object
moving a shape. Every obtained through rotation is a
point ~ composing  the triangle as the image of a
triangle rotates about... triangle. These triangles are
congruent triangles.

WARRANT

Selim: We know that a triangle is composed of three non-linear points and
also it includes three interior angles. For example, when the angle measure

of rotation is 45°, we form an angle...

BACKING

Nuray: Let’s think about the triangles of ABC and DEF as the image of the
prior triangle. When we think about the formation of its image

through the steps explained by Selguk, ...

Figure 54 Toulmin’s model of argumentation for reasoning on congruent

triangles by rotation.
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On Week 4, it was illustrated that the mathematical arguments produced
by the participants, knowledge and skills attained by them about the formation
of congruent triangles through rotation during this debate became taken-as-
shared. They used this one as data and warrant in their arguments on Week 4
without necessitating backings, confirming that it became taken-as-shared. The
participants used the knowledge about the congruence of two triangles when
one of them was the image of the other formed by rotation following the steps
represented in Figure 53 in the discussions about the congruence criterion of
S.A.S. They talked about congruence of these two triangles in order to decide
whether knowing that the lengths of two corresponding edges of the triangle
and the measures of angle between these edges were equal was enough to
claim that they were congruent triangles, i.e., congruence criterion of S.A.S. In
the activity on Week 4, there was a problem asking the congruence and
similarity criteria. It was claimed that S.A.S. was congruence/similarity
criterion and the data was provided by explaining that there were two triangles
having the property of the lengths of the corresponding two edges and the
measures of the corresponding angles were same. Then, by explaining the
criterion of S.A.S., they used this mathematical idea as warrant in a way that it
was explained for the formation of congruent triangles through rotation. In
other words, they claimed that S.A.S. was a congruence/similarity criterion and
produced the data about the definition of congruence/similarity. Then, they
used the warrant that two triangles were congruent/similar since when the
corresponding known values were equal in measure, the measures of the
corresponding elements were equal benefiting from this mathematical idea. In
this way, these two triangles fit the definition of congruent triangles. Hence, it
became taken-as-shared. Moreover, the activity sheet on Week 5 was
composed of the problems on the content of congruent and similar triangles.
The criteria of congruence formed through this discussion period was
considered in order to solve these problems. Therefore, this mathematical idea
was used as data and warrant in the solution of these problems. Therefore, this

mathematical idea became taken-as-shared again.
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The last activity on Week 4 was about the dilation on triangles. The
teacher initiated the discussion about how to produce a bigger or a smaller
form of a triangle based on a scale factor through dilation with respect to a
reference point. In this discussion, the participants claimed that the triangle and
its image triangle formed through dilation were similar triangles. Then, they
provided necessary data sufficiently benefiting from the definition of dilation
which was resizing the triangle or enlarging or reducing the triangle based on a
scale factor focusing on a particular center point. They also used the definition
of a triangle as data accurately since they stated that identifying the places of
three nonlinear points representing the vertices of the triangle were used to
form a triangle by combining them with line segments. As warrant, they
explained the process of formation of the image triangle through dilation
appropriately. For example, in the process of reducing a triangle with a scale
factor of 1/2, three lines were drawn beginning from the reference point and
passing through the vertices of the triangle. Through this process, the instructor
asked the questions to help them construct its image and understand the process
accurately related to the possible position of the triangle and place of it. With
the help of this guidance, they stated that because of reducing, the image
triangle was formed on the place between the triangle and the reference point.
The places of the image of the vertices were the midpoints of these lines
passing through the vertices and the reference point. In order to produce this
mathematical idea, the instructor helped the participants remember Thales
theorem. When the vertices of the triangle were combined with the reference
point using line segments, the applicability of this theorem was appeared. As in
this theorem, when the triangle of OBC was considered, the image of the edge
of BC could be constructed through dilation with the scale factor of 'z as in
Figure 55. For the line segment of OB, the compass was placed on the point of
O, its width was set to exceed the approximate midpoint of it and an arc was
constructed. Then, by preserving the width of the compass, the compass was
placed on the point of B and an arc was constructed. The intersection point of

these arcs was combined by a line segment passing through the line segment of
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OB. The intersection of this constructed line segment on the edge of OB was
the midpoint of the line segment of OB. After, repeating the same construction
steps for the other vertices of the triangle of ABC and the edges of OA and OC,
the image points of A and C were identified. Then, by compounding these
midpoints by the line segments, the image triangle similar to the triangle was
formed as in Figure 55. As backing, they stated that the corresponding line
segments representing the edges of the triangles were parallel necessarily and
accurately. Therefore, they found that the measures of the corresponding angles
were equal. Also, they stated that the measures of the opposing angles were
equal by Thales Theorem.

Figure 55 Construction of the image triangle through dilation by reducing.

This mathematical idea became taken-as-shared in the discussion made
on Week 4 by reasoning appropriately under the guidance of the instructor. In
the problem on the activity sheet on Week 4 about similarity criteria, they
claimed that A.A. was a similarity criterion. They used the necessary and
accurate information that the corresponding edges of the triangle were parallel
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as data for the argumentation. Then, they provided the appropriate warrant
benefiting from the mathematical idea about formation of similar triangles
through dilation. They stated that when the corresponding edges of triangles
enlarged and reduced had the scale factor and always had equal angle
measures, they were similar triangles. Because of parallel edges, the angle
measures were preserved and the lengths of the edges were changed with the
same ratio by the Thales theorem. In this respect, it was illustrated that the
mathematical arguments formed by the participants and knowledge and skills
obtained by them about the formation of similar triangles through rotation
during this debate in the third week became taken-as-shared. Moreover, the
activity sheet on Week 5 was composed of the problems on the content of
congruent and similar triangles. Therefore, this mathematical idea was used as
data and warrant in the solution of these problems. Therefore, this
mathematical idea became taken-as-shared again. In this way, different
instances took place in the instructional process in a way that this mathematical

idea became taken-as-shared.

4.3.2 Mathematical idea 2: A.S.S. is not a criterion

The last mathematical idea in the last mathematical practice was
observed on the fifth week of the instructional sequence while the participants
were engaging in the activities about congruent and similar triangles and
congruence and similarity criteria. In this activity, the participants were asked
to define the similar and congruent triangles and criteria and the properties
about them. While they were engaging in this activity, they made discussions
about congruence and similarity criteria. For this activity, they worked with
their peers and participated in the whole class discussion. The instructor and
the participants made the discussion by asking a question of “A.S.S. is a
similarity criterion” in order to discuss the criteria and their reasons on the
activity sheets of the Week 5:
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Merve: A.S.S. is not a similarity criterion.

Ayse: Why not! In the rotation, we know when the lengths of two edges and
the measure of the angle between them are equal... A.S.S. can be a

criterion.
Instructor: What do you think about this explanation?

Kader: When we think about the right triangles and the angle is not the angle
measure in the criterion, this is a criterion. Also, this is valid for

isosceles triangles.

Ayse made reasoning based on the lengths of two edges and the angle measure
of one of the interior angles were equal but she dismissed the point that the
order of these elements having equal measures was important and necessary for
using as criterion of A.S.S. The instructor asked the question to help the
participants determine this missing point. Then, Kader explained the cases that
A.S.S. was used to identify congruence or similarity. This explanation was
good but the similarity of right or isosceles triangles since by knowing two
sides’ lengths and the angle measure of one of interior angles, the other
elements of these triangles could be determined so that their
congruence/similarity could be determined by other related criteria

appropriately.
Buse: This is special situations so we cannot generalize this for all triangles.
Instructor: Well. Think about scalene triangles.

[lkay: We have information about two edges and the angle which is not
between these edges. This case is very different from the criterion of
S.A.S. When we determine corresponding edges and angles, there is
uncertainty about corresponding ones. We cannot be certain about

which edge is near to which triangle.

Instructor: That is a good point.
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Ayse: However, when we put the known values for the lengths of two edges
and the angle measure on the cosine formula, we can provide

equivalence of the edges and the angle measures.

Selim: We cannot use this formula effectively since we do not know which
edge is opposite of which angle and we have two unknown angle
measures... Firstly, we construct the angle. Then, we place one of the
edges on one of the rays. Afterwards, we form a circle having the radius
in the length of the other edge. This circle can intersect the other ray on
two points or one point or no point. In this process, the edges are placed
on the rays randomly and there are alternative situations for the vertices
of the triangle. Hence, we do not have a particular triangle and we do

not claim that A.S.S. is not similarity criterion.

At this episode of the discussion, Buse made an explanation about the non-
applicability of A.S.S. for all situations. Then, by agreeing with the explanation
of Buse, ilkay stated that this case could not be accepted as similar to the
criterion of S.A.S. In his explanation, Selim focused on the construction
process of types of triangles by knowing the lengths of two edges and angle
measure of one of interior angles which was not between these edges. In this
process, he constructed the angle of A. Then, he constructed an arc with the
center of A and the radius having the equal length of the edge of AB.
Afterwards, in order to construct the other edge, he constructed an arc with
center of the point of B and the radius having the equal length of this edge.
This reasoning way provided successful explanation for the problem. He
focused on two cases which were the tangent and intersecting the arc at two
points when the arc represented one of the known edges as in Figure 56. Based
on this knowledge, he examined these cases. In the case of tangent, it was
possible that the triangle was formed and the criterion of A.S.S. could be used
as in Figure 56.a. In this case, a right triangle was formed. In a right triangle,
A.S.S. could be used since the measures of all interior angles could be

computed. An angle measure was 90° and the measure of one of the acute
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angle was known so that the remaining angle measure could be computed.
Moreover, when the lengths of two edges were known, it was possible to
compute the length of the remaining edge by Pythagorean Theorem. Hence, it
could be stated that A.S.S. was valid for right triangles since the unknown
measures of some elements in these triangles could be computed by some
properties and theorems about these triangles. This was not sufficient to extend
the applicability of A.S.S. for all triangles. On the other hand, in the case of
intersecting at two points, two triangles of ABD and ABC were formed by
having the equal measures for the elements of this criterion and the A.S.S.
could be used as in Figure 56.b. It could be stated that although it was appeared
that A.S.S. could be applied for right triangles, the actual reason was the
explained properties and theorems of right triangles. In this case, obtuse and
acute triangles were formed. We could obtain different triangles by having this
property so we could not use A.S.S. for acute and obtuse triangles. Therefore,
the idea that A.S.S. was not congruence/similarity criterion was justified
necessarily and accurately since there were different triangles having the equal
measures stated in this criterion.

a. Triangle with tangent point Triangle with intersection points

Figure 56 The formation of a triangle by knowing the lengths of two edges and

one ang le measure.
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In this debate, Merve initially made a claim that A.S.S. was not similarity
criterion. Then, Ayse refuted the claim by explaining the opposite idea of this
explanation. Kader also exemplified her refutation with the help of the
isosceles and right triangles and Ayse tried to use the cosine formula for the
truth of her explanation. Afterwards, ilkay stated that there were uncertain
elements and their orders in this criterion as warrant. Selim encouraged him by
telling formation of a triangle based on the elements on this criterion. Because,
the uncertainty about the placement of the elements and their intersection of the
edges and formation of the vertices so that he provided backing. The Toulmin’s
model of argumentation for some parts of this debate can be represented as

shown in Figure 57.

DATA CLAIM
[Ikay: We have information about two |——— | Merve: A.S.S. is not a
edges and the angle which is not similarity criterion.

between these edges. This case is very

different from the criterion of S.A.S.

WARRANT

Ilkay: ...When we determine corresponding edges and angles, there is
uncertainty about corresponding ones. We cannot be certain about

which edge is near to which triangle.

BACKING

Selim: We cannot use this formula effectively since we do not know which
edge is opposite of which angle and we have two unknown angle

measurcs...

Figure 57 Toulmin’s model of argumentation for reasoning on A.S.S.
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On Week 5, it was illustrated that the mathematical arguments formed
by the participants and knowledge and skills obtained by them about the
similarity criterion of A.S.S. during this debate became taken-as-shared. They
used this one as data in their arguments on Week 5 without necessitating
backings, confirming that it became taken-as-shared. There was a problem
“when the lengths of one of the right edges and the hypotenuse of a right
triangle are equal, they are always similar triangles”. They made the claim that
these right triangles were always similar. While discussing this problem, they
benefited from the mathematical idea that A.S.S. was not a similarity criterion
as data and the discussion process about this mathematical idea was established
for the first time. Also, the data were explained in a way that the lengths of two
edges which were one of right edges and the hypotenuse, and right angle were
known. Therefore, the lengths of two edges and the measure of an angle which
was not between these edges were known was explained. However, it was
possible to compute the measure of remaining angle by the property that the
sum of the interior angle measures of a triangle was equal to 180° and the
length of remaining edge by Pythagorean Theorem. As a warrant, they stated
that this problem fit the idea of A.S.S. but it was not similarity criterion.
Therefore, the statement in the problem could not be justified by it. By
computing the values of the unknown elements of the triangle, their similarity
could be explained by other similarity criterion. For example, Halit explained
that A.A.A. criterion could be used by showing that the measures of the
remaining interior angles were equal. Also, Selim added that S.S.S. criterion
could be used by showing that the lengths of the remaining edges were equal
by using Pythagorean Theorem. Therefore, the claim was verified successfully
and appropriately. In this respect, the mathematical idea about A.S.S. became
taken-as-shared by using it as data in the discussion under the guidance of the

instructor.
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4.4 Summary of the Findings

With the design experiment research, a beneficial lesson sequence by
the hypothetical learning trajectory designed about triangles based on problem-
based learning for preservice middle school mathematics teachers was
performed. Through the analysis of PMSMT’s classroom mathematical
discourses taking place in this instructional sequence in order to illustrate their
geometrical understanding and reasoning of triangles, the classroom
mathematical practices were identified by taken-as-shared ways of reasoning
and arguing mathematically. By wusing Toulmin’s (1969) model of
argumentation and two-criterion methodology of Rasmussen and Stephan
(2008), classroom mathematical practices were emerged by examining
classroom collective learning activities leading whole class discussions.
Through the whole class discussions, three mathematical practices were
identified in the instructional sequence about triangles. The first mathematical
practice was reasoning about the formation of a triangle. There existed two
mathematical ideas contributed to this mathematical practice; (a) reasoning on
the definition of triangles and classification of them, and (b) reasoning on
construction of them. The second mathematical practice was established as the
reasoning about the elements of triangles and their properties. Mathematical
ideas contributed to this practice were: (a) reasoning on construction of
auxiliary elements, (b) reasoning on concurrence of them and (c) reasoning on
the names of these concurrence points and their places. The last mathematical
practice established in the sequence was reasoning about congruence and
similarity. The mathematical ideas included in this practice were (a) reasoning
on the formation of congruent or similar triangles through transformation
geometry, and (b) A.S.S. is not a congruence/similarity criterion. Moreover, the
instructional sequence including construction activities with compass and
straight edge improved the PMSMT’s van Hiele geometric thinking levels and

conceptual knowledge of triangles.
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CHAPTER 5

5. DISCUSSION AND CONCLUSION

The overall purpose of the current study was to document the learning
of triangle formed in a classroom community and shared development of
triangle concepts in an elementary education mathematics classroom. In other
words, the goal was to determine the mathematical practices emerging in the
collective discourses and documenting the situations in which they developed
and became taken-as-shared. By doing so, the study has represented a window
into the classroom designed based on the van Hiele geometric thinking and
problem solving skills in problem-based learning in order to enhance learning
and understanding of the content of triangles. In the study, with the aim of
examination of the emergence of mathematical practices, a classroom teaching
experiment was conducted letting the participants of the classroom community
to study mathematics learning in a classroom setting designed by problem-
based learning (Cobb, 2000).

5.1 Discussion of Hypothetical Learning Trajectory

The preservice middle school mathematics teachers’ (PMSMT)
understanding and development of subject matter knowledge about triangles
through argumentations were examined in the problem-based learning
environment including geometric constructions in the present study. The
argumentations improved their conceptual knowledge of triangles. For

example, while defining triangles, they produced triangle definitions without
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all necessary critical attributes and properties. However, through
argumentation, they challenged the definitions formed by them, determined the
missing and unrelated parts and then they produced correct definition including
critical attributes and properties necessarily and sufficiently. When the
PMSMT’s learning of triangles through mathematical practices was
considered, it was observed that discussion period including argumentations
improved their geometric thinking and knowledge of triangles in the study. The
previous research validated this finding as in the study of Olkun and Toluk
(2004) who found that in-class discussions improved the learners’ geometric
thinking. Also, research in the literature illustrated that discussions including
argumentations taking place in problem solving activities facilitated and
improved problem solving abilities, scientific thinking by criticizing and
justifying claims, knowledge production and conceptual understanding (Abi-
El-Mona & Abd-El-Khalick, 2011; Duschl & Osborne, 2002; Jim’enez-
Aleixandre et al., 2000; Jonassen & Kim, 2010; Osborne, Erduran, & Simon,
2004; Zembaul-Saul, 2005). In this respect, argumentations facilitates doing
mathematics and discussing claims in a social environment in which the
learners communicate and make reasoning to form the discourse,
imagery/tools, and classroom culture (Abi-EI-Mona & Abd-El-Khalick, 2011).
In this respect, the argumentations in problem solving activities also

encouraged the role of instructor, instructional sequence and HLT.

In order to provide a social learning environment for PMSMT to
develop their subject matter knowledge of triangles though argumentations,
problem-based learning was used to design this environment and instructional
sequence. In this respect, geometric constructions were used in the study since
they represented useful problem situations in the study. The geometric
constructions are solutions of a problem because the learners do not decide
easily how to start constructing the shapes at first glance and then they have
challenge to complete the constructions (Erduran & Yesildere, 2010). In this

respect, geometric constructions represented problems for PMSMT in the
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problem and they had challenge to solve these problems. These activities
applied in problem-based learning environment improved the participants’
geometric thinking and knowledge. The previous research in the literature has
confirmed that by stating that problem-based learning increases geometric
thinking and knowledge (Cantiirk-Giinhan & Baser, 2009; Dochy et al., 2003;
Hodges, 2010). Also, these problems were followed by argumentations in order
to help the PMSMT understand the triangles effectively in the study. Through
following four construction steps of Smart (1998), PMSMT analyzed,
constructed, proved and discussed their thoughts and knowledge about the
problem. By following these steps, geometric constructions facilitated thinking
skills of analyzing, evaluation, forming hypothesis, organizing, testing the
hypothesis and proving the solutions benefiting from the previous knowledge
(Lim-Teo, 1997). These scientific skills were encouraged by argumentations
and justifications in whole class discussions to learn triangles effectively since
geometric constructions were beneficial in argumentations and proofs related
to scientific thinking skills. Hence, geometry concepts could be learned
through geometric constructions with argumentation and justification (Wiley
& Voss, 1999) so that the skills of critiquing the ideas and claims, evaluating
evidences and justifications, explaining and evaluating counter
positions/examples could be improved (Asterhan & Schwarz, 2007; Sadler &
Fowler, 2006; von Aufschnaiter, Erduran, Osborne, & Simon, 2008).
Moreover, Erduran and Yesildere (2010) stated that the learners can follow the
construction steps in a rote manner. In order to prevent this case in the study,
argumentations and proofs were used since they reasoned and discussed each
steps through argumentations in the study. Hence, the tools of constructions
were placed in the instructional sequence in the planned way under the
guidance of the instructor appropriately. The tools of compass and straight
edge were used to teach triangles by supporting the claim about the
construction of triangles and justifying its truth to encourage learning
effectively. For example, while defining the triangles, they examined the

critical attributes and the relationship between them by compass and straight
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edge. They made explanations about definition of triangles, they tested their
explanations through constructions and argumentations and then produced
correct definition by making revisions, refuting and convincing their ideas. In
this process, geometric constructions facilitated argumentations, learning and
justification of the PMSMT. In this respect, it can be stated that geometric
constructions should be used, discussed and argued in order to learn geometric
concepts consciously by improving scientific thinking skills (Spear-Swerling,
2006).

The connections of geometric constructions and argumentations with
proving geometrical explanations were observed in the study. Through
following construction steps and discussing their solutions in the classroom,
they provided explanations in order to verify their reasoning and solutions.
They made these explanations in order to remove others’ doubts about the
process and examine its correctness. In this respect, it can be stated that this
skill is related to proving based on its definition (Hanna, 1989). In this study,
the PMSMT were expected to attain the properties of initial three van Hiele
geometric thinking levels and obtain previous knowledge about geometry. In
this respect, while validating their ideas, they could be expected to provide
proofs for the geometric constructions and then they were able to provide
geometrical proofs. For example, after showing the concurrence of auxiliary
elements of triangles by geometric construction, they proved their concurrence
using related theorems and properties and how these concurrence points were
named. In this process, they used geometric constructions to represent the
concurrence of the auxiliary elements and prove their concurrency. By doing
so, they understood this concept by reasoning, proving and constructing. In this
process, proof is beneficial for constructions since it does not only indicate
accuracy or inaccuracy of a statement but also illustrate why it is correct
(Hanna, 2000). Moreover, conceptual understanding and geometric reasoning
of the PMSMT could be improved by geometrical proofs and constructions
(Cheung, 2011; Napitupulu, 200; Tapan & Arslan, 2009). Geometrical
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constructions are beneficial to teach geometrical concepts such as triangles and
facilitate constructing and writing proofs.

The development of PMSMT’s understanding and reasoning of
triangles was explored in the present study. It was observed that the
participants had missing knowledge about triangles although they were
expected to know in order to become a mathematics teacher. For example, the
participants did not have sufficient knowledge about definitions of triangles,
justifying the concurrence of auxiliary elements, proving congruence and
similarity of triangles and their criteria. Also, their learning about these missing
knowledge was provided through geometric constructions and argumentations.
The period of acquiring the subject matter knowledge about triangles was
represented by the classroom mathematical practices. Their development of
subject matter knowledge about triangles was encouraged by geometric
constructions with compass and straight edge. There have been research in the
literature explaining that geometric constructions improve the learners’
conceptual knowledge and understanding (Cheung, 2011; Cifici and Tatar,
2014; Dogan & Icel, 2011; Karakus, 2014; Napitupulu, 2001). In the process of
learning triangles, they examined triangles based on their elements, properties
and theorems about them in problem-based learning environment in the study.
For example, they examined the definition of triangles. In this process, they
used geometric constructions and other geometric shapes such as circles and
quadrilaterals in order to determine the critical properties of triangles and the
connection between them. Through following construction steps, the necessity
and importance of the properties were understood. The critical properties of
triangles for definitions of triangles were examined as identified in previous
research in the literature (Tsamir, Tirosh & Levenson, 2008; Tsamir et al.,
2014). By participating in whole class discussions and argumentations, they
acquired necessary knowledge and modified their errors about triangles. Then,
in different contexts in other activities in the following phases of HLT, they

used what they previously learned in later parts of the instructional sequence.
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Therefore, geometric constructions are useful to learn triangles by examining
the elements, properties and theorems about them and proving the theorems
related to them. By following construction steps, the learners can analyze them
and make connection between them by reasoning. Hence, it can be concluded
that learning triangles can be performed effectively by geometric constructions.

In order to examine the process of the understanding of PMSMT on
triangles, HLT was designed. The resulting HLT included instructional tasks,
tools, and possible discourse as the support of the classroom formed by the
research team. In order to form an effective mathematical discourse including
the argumentation, the instructor focused on and initiated this process by
misconceptions, errors and different strategies in instructional sequence. When
the instructor realized the emergence of them, she asked questions and
provided necessary clues to help the participants become aware of them and
make accumulations on their ideas and expressions. By doing so, they formed
new mathematical knowledge correctly by accumulating their previous
knowledge with the help of the others’ ideas expressed in the discussion under
the guidance of the instructor. Through instruction, the instructor focused on
the knowledge of the students. Based on the knowledge, errors and
misconceptions of them about the concept, the discussion flowed. For example,
the mathematical practice about the definition of triangles was produced in this
way. While the PMSMT were classifying the triangles, the instructor realized
that they had difficulty in defining the triangles. Then, the instructor initiate the
discussion about definition of triangles and forming them by geometric
constructions. In this respect, it is important for the instructors to determine the
errors of the students to form an effective social learning environment
(Gokkurt, Sahin, Soylu & Dogan, 2013; Gokkurt, 2014). By benefiting from
their errors, their errors can be removed by reasoning and accurate knowledge
can be formed. Moreover, explaining and representing different solution
strategies for the problems can improve their understanding and learning. Also,

they can examine the concepts from different points of views.
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By determining the knowledge and errors of the PMSMT, it was
important for the instructor to have through understanding about “their
students’ current mathematical conceptual possibilities and constraint and the
relevant underlying mathematical concepts” (Yackel, 2002, p. 439). Therefore,
the instructor did not only identify the misconceptions, errors and different
strategies but also examined how and why they were formed in the present
study. In this respect, she carefully focused on them by using her conceptual
knowledge and the knowledge about the participants on triangles. In this way,
she directed the argumentations while reaching accurate conclusion and
improving sufficient understanding through the emergence of mathematical
practices. It was observed that identification of knowledge of content and
students was important to provide their learning and geometric understanding.
One of the dimensions of MKT, knowledge of content and students focuses on
the subject matter knowledge of mathematics through knowledge about the
learners’ thinking (Ball, Bass & Hill, 2004; Ball, Hill & Bass, 2005; Hill,
Schilling & Ball, 2004). This dimension is critical for teachers to be possessed

and teach effectively.

Through the instructional sequence directed based on the hypothetical
learning trajectory, the PMSMT improved their knowledge and understanding
about triangles through geometric constructions. When the participation
structure and flow of the discussions in the classrooms were considered, their
knowledge and errors about the concepts were determined and they obtained
correct knowledge through instructional sequence. This process was also
encouraged by geometric constructions with compass and straight edge.
Through constructions, they also improved their knowledge and understanding
benefiting from other geometrical concepts. In this respect, it could be stated
that they improved their relational understanding. For example, in the
construction steps, a geometric shape was constructed by using simple
structures such as constructing the perpendicular bisector of a line, parallel line

to a line and benefiting from other geometric shapes and their properties such
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as arcs, circles, quadrilaterals. The emergence of the mathematical practices
illustrated this process in detail. In this respect, the quantitative findings
showed that PMSMT improved their subject matter knowledge about triangles
through instructional sequence providing useful opportunities to teach triangles
in the future (Ball & Forzani, 2009; Chapman, 2007; Turner et al., 2012). Also,
it can be stated that geometric constructions improved PMSMT’s
understanding of triangles as it was suggested by previous research
(Cherowitzo, 2006; Cheung, 2011; Cift¢i and Tatar, 2014; Erduran &
Yesildere, 2010; Karakus, 2014; Khoh, 1997; Napitpulu, 2001; Hoffer, 1981).

Based on the previous research, inservice and preservice elementary
school mathematics teachers are expected to at least attain the first three van
Hiele geometric thinking levels (Aydin & Halat, 2009; Pandiscio & Knight,
2010). Based on this view, the hypothetical learning trajectory and
mathematical tasks were designed in the present study. It was aimed to help
PMSMT attain the properties of initial three van Hiele geometric thinking
levels completely and begin to acquire the properties of remaining levels. It
was observed that their geometric thinking was improved by geometric
constructions with compass and straight edge since they engaged in the tasks
successfully and solved the problems appropriately. The related research in the
literature have validated that the geometric constructions improve the learners’
van Hiele geometric thinking levels (De Villiers, 2003; Giiven, 2006;
Napitupulu, 2001). In this respect, it could be stated that the PMSMT acquired
the properties of initial three levels of van Hiele geometric thinking through
engaging in these tasks. By examining the constructions of the geometric
shapes and reasoning about proving that the constructed shapes was the shape
asked to be solved in the problem, they improved their geometric thinking
levels. That is, they reasoned about the geometric shapes in the problems and
their properties effectively to construct and prove their truth so they improved
their geometric thinking levels. By constructing the geometric shapes by

compass and ruler, the learners progressed step by step. In each step, they made
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geometric reasoning by using simple and complex geometrical structures such
as finding the midpoint of a line segment, constructing perpendicular lines
(Djoric & Janicic, 2004). In this respect, the geometric constructions are useful
to be used in teaching geometry concepts effectively so that their geometric
thinking levels can be improved.

According to the findings of the study and the flow of the ideas in the
classroom, the PMSMT improved their conceptual understanding and
knowledge about triangles. The tasks and instructional sequence encouraged
their subject matter knowledge about the particular concept of triangles. Also,
argumentations and geometric constructions facilitated this process and
understanding of them. A solution can be provided for the problem that the
preservice mathematics have little knowledge and experience of geometry
about the particular concept of triangles by the present study.

5.2 Discussion of Mathematical Practices

With the aim of describing PMSMT’s understanding and development
about the concept of triangles, both qualitative and quantitative analysis were
conducted in the study. The qualitative part of it was closely linked with
constant-comparative method (Glaser & Strauss, 1967), Toulmin’s (1969)
method of argumentation and three-phase and two-criterion methodology of
Rasmussen and Stephan (2008) in order to document taken-as-shared
classroom mathematical practices emerged through collective discourses in six-
week instruction sequence by HLT on the concept of triangles. In other words,
Toulmin’s (1969) model of argumentation was crucial as a methodological tool
to identify the instances that the mathematical practices emerged becoming
self-evident and then re-emerged in way of functioning if-shared based on the
methodology of Rasmussen and Stephan (2008). All of them can be provided

by the analysis of the six-week instructional sequence by the technique of
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Glaser and Strauss (1967). The methodology and analysis techniques were
useful to examine the preservice mathematics teachers’ understanding,
reasoning and knowledge as suggested in some previous research (Akyuz,
2014; Roy, 2008; Stephan & Rasmussen, 2002; Wheeldon, 2008). Through the
qualitative analysis, classroom mathematical practices becoming taken-as-
shared were PMSMT’s reasoning on: (a) the formation of a triangle, (b) the
auxiliary elements of triangles and their properties, and (c) congruence and

similarity.

The first mathematical practice, PMSMT’s reasoning on the formation
of a triangle addresses the underlying concepts about the critical elements of
triangles as main elements and the process in which these elements produce a
triangle. The mathematical ideas related to this practice are reasoning on: (a)
the definition of triangles and classification of them, and (b) construction of
them. The learning goal for Stage One of the HLT was classifying triangles
based on the definitions and main elements of them and the examining the
possibility of construction of triangles about the situations including the groups
of some of the elements of triangles. This stage was intended to provide
background to the participants about triangles through a general perspective.
The first mathematical idea about the definition and the classification of
triangles were examined through the definition of triangles and right triangles
by main elements of them and the regions formed by them in a plane. While
this idea emerged on the first week of the instructional sequence, it became
taken-as-shared by being used in the activities on all weeks including the first
week since this idea was the main knowledge about this concept. By the
emergence of mathematical idea, the process of PMSMT’s understanding about
the definitions of triangles was observed. In this phase, PMSMT examined the
critical attributes of triangles and the relationship between them. Through
construction, this examination was performed effectively by compass and
straight edge. For example, they determined the main elements of edges and

angles by providing other critical attributes such as closeness. They identified
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the places of three non-linear points in a plane and combined them by line
segments through geometric construction. Moreover, this definition formation
process became more effective when they were encouraged by argumentations.
By discussing their ideas and construction strategies, they talked about the
related and unrelated properties of triangles in order to form the correct
definition of triangles. An important knowledge and skill of formation of
definitions was attained by geometric constructions and argumentations
focusing on the attributes of triangles as suggested in previous research in the
literature (Leiken & Zazkis, 2010; de Villiers, Govender, & Patterson, 2009;
Tsamir, Tirosh, Levenson, Barkai & Tabach, 2014). In this respect, geometric
constructions are useful to examine the necessity and sufficiency of the critical
properties of triangles. They facilitate formation of definitions by
understanding through mathematical argumentations. In other words,
mathematical argumentations improved their knowledge about the definitions
of triangles. The other mathematical idea in this practice is about the
construction of triangles by some of their elements. For this idea, the
construction steps and processes as the main tools and also the main theorems
such as Pythagorean were important. While this idea emerged on the first
week, it did not become taken-as-shared until the advancing hours of the first
week and the fifth week of the instructional sequence. These mathematical
ideas were used by the participants in order to support their reasoning and
explanations in different situations and activities such as congruence and
similarity, auxiliary elements of triangles by using constructions, geometrical
justifications and proofs. Moreover, the possibility of formation of triangles by
knowing some of their elements was examined by geometric constructions. For
example, they examined the possibility of construction of particular triangles
by making connections between main and auxiliary elements of triangles by
geometric constructions. Also, in the process of construction and justifications,
they benefited from other theorems and rules about triangles and other
geometric shapes. In other words, they focused on the relationship between the

elements of triangles and other geometric shapes so that the relational
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understanding was provided by geometric constructions. This case can be
confirmed by the previous research (Erduran & Yesildere, 2010; Karakus,
2014; Khoh, 1997; Kuzle, 2013). Therefore, the critical attributes of triangles
and the relationship between the critical attributes, main and auxiliary elements
and other geometric shapes of triangles are useful to obtain basic knowledge
about triangles such definition of triangles. In this respect, these knowledge are
necessary to learn other knowledge about triangles. Hence, they can be learned
through geometric constructions and argumentations. In this way, relational

understanding about triangles can be supported.

The second mathematical practice, PMSMT’s reasoning on the
elements of triangles is important for the formation of auxiliary elements and
their critical importance of them for triangles. The mathematical ideas related
to this practice are reasoning on: (a) construction of auxiliary elements, (b)
concurrence of them and (c) the names of these concurrent points and their
places. The learning goal for Stage Two of the HLT was examining the
auxiliary elements of triangles. This stage provided background to the
participants about how to form them and what happened in case of the
formation of all elements. Through the second phase of HLT, they obtained
beneficial knowledge about these mathematical ideas. These knowledge are
necessary for other geometric concepts needed for preservice mathematics
teachers. For example, they were fundamental for understanding main
theorems related to the concurrence points of auxiliary elements and other
important geometry concepts such Euler line and nine-point circle. Euler line is
a line on the triangle including the orthocenter, the circumcenter, the centroid
and the center of the nine-point circle of a triangle. These concepts are
important to prove important theorems in geometry and in the courses of
advanced geometry and to obtain deep understanding about it. In this way,
geometric constructions were useful to explore the auxiliary elements and their
properties and prove related theorems benefiting from argumentations. They

provided opportunities to examine the geometric knowledge and prove them as
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it has been suggested in previous research (Chan, 2006; Napitupulu, 2001,
Tapan & Arslan, 2009). Also, through PMSMT’s understanding about these
three mathematical ideas in the second mathematical practice, they benefited
from the geometric constructions by compass and straight edge, justifications
and geometrical proofs as stated in previous research so that they could form
the expected subject matter knowledge about auxiliary elements of triangles
effectively (Axler & Ribet, 2005; Cherowitzo, 2006; Clements & Battista,
1992; Dogan & Icel, 2011; Erduran & Yesildere, 2010; Martin & McCrone,
2003; Smart, 1998). In this respect, necessary knowledge about the auxiliary
elements of triangles can be learned by geometric constructions and

argumentations.

It was observed that PMSMT had difficulty in constructing the altitudes
of different types of triangles and determining and justifying the concurrence
of the altitudes on the triangles as orthocenter in the study. In the study, in
order to provide them to construct the altitudes, the perpendicularity of right
triangles and the knowledge that the altitude separated a triangle into two right
triangles were used. When they made connection with right triangles, they
could easily constructed and defined the altitude of triangles. Moreover, while
determining the altitudes and the places concurrence points of the altitudes as
orthocenter for right and obtuse triangles, they had difficulty. Benefiting from
definition of right triangles and altitudes, PMSMT was provided to determine
the altitudes and orthocenter of a right triangles. Through argumentations and
justifications, they found and understood their places. Moreover, through
geometric constructions benefiting from right triangles, constructing
perpendicular bisectors and definition of altitudes, they were supported to
construct the altitudes for obtuse triangles. They constructed and justified their
places by argumentations. In this respect, although altitudes are crucial to learn
because of its critical connection between other concepts such as trigonometry
and other theorems such as Pythagorean Theorem, it is difficult to understand
and learn (Alatorre & Saiz, 2010; Gutierrez & Jaime, 1999; Kellogg, 2010). In
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this respect, altitudes can be taught through geometric constructions by
examining the places of altitudes and orthocenter points for different types of
triangles by producing argumentations and proofs. Through geometric
constructions, they can analyze the properties and definitions of altitudes and
orthocenter and understand them in a way that they argue, analyze, represent
and refute/justifying their explanations to reach the correct and necessary
explanation. In this respect, it can be stated that the difficulty of the students
from different grade levels about the altitudes of triangles can be removed by

geometric constructions and argumentations.

In the second and third weeks of the instructional sequence, it was
observed that geometric constructions were useful to convince others by
justifying their explanations and producing the proofs. The PMSMT examined
the concurrence of medians and naming them as centroid, angle bisectors
naming as incenter, perpendicular bisectors as circumcenter and altitudes as
orthocenter and the places of the concurrence points of them for different types
of triangles. In order to show that all of these auxiliary elements concurred at a
point, they constructed all of these elements and then proved their concurrence.
When they were asked whether all of these elements concurred at a point or
not, they were answered correctly but they were not able to explain why they
were concurrent. However, in the process of representing and examining their
concurrence by geometric constructions, they understood how they were
concurrent. Also, they provided proofs about concurrence of auxiliary elements
of triangles. Then, they were asked whether the places of these concurrence
points change for different types of triangles or not and why they changed or
did not change, they sometimes provided incorrect answers except for medians.
In order to determine whether these concurrence points changed for different
types of triangles, they constructed these elements for obtuse, right and acute
angled triangles. By doing so, they determined their places correctly and
proved their explanations and strategies. In this respect, geometric

constructions are useful to justify the truth of geometrical explanations and
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providing proof for them. In this respect, proof and geometric constructions are
related and improved similar skills needed for learning geometry (Chan, 2006;
De Villiers, 2003; Napitupulu, 2001).

In the second phase of the HLT in the study, it was observed that the
usage of examples and non-examples together was useful to teach the concept.
The participants learned the cevian by examining examples and non-examples
in the problem about proving the concurrence of auxiliary elements of
triangles. Except for the perpendicular bisector, concurrence of other auxiliary
elements could be proved through the theorems of Ceva and Menelaous. This
exception produced an environment including the discussion of this exception
leading the understanding of cevian. The participants were engaged in
examples and non-examples of cevian in the instructional sequence. By
determining the related and unrelated properties of the cevian, they formed the
accurate and sufficient definition of the cevian. The examples representing the
attributes used for defining the concept were medians, angle bisectors and
altitudes while the non-example referring to attributes unrelated to the
definition of the concept was perpendicular bisector. Ozyiirek (1984) and
Senemoglu (1997) suggest that the examples and non-examples should be used
together while teaching the concept. Learning in this way encourages that the
students identify the particular attributes and critical properties of the concept
and then form a generalization about examples. This process is important and
useful since the students can understand the particular properties of the concept
represented by the examples and determine the difference between examples
and non-examples based on critical properties. By doing so, the students can

form correct definition of the concept which is accurate and sufficient.

The last mathematical practice, PMSMT’s reasoning on congruence and
similarity of triangles as one of the concept about triangles has critical
importance. The mathematical ideas related to this practice are: (a) reasoning
on the formation of congruent or similar triangles through transformation

geometry, and (b) A.S.S. is not a congruence/similarity criterion. The learning
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goal for Stage Three of the HLT was examining the triangles through
transformation geometry. This stage was intended to provide background to the
participants about how to form the image triangle through the types of
transformation geometry and the relationship between the triangles and their
images as in a way suggested by French (2004). Through the examination of
them, the beginning for the understanding the concept of congruence and
similarity of triangles was aimed and performed. While these ideas emerged on
the fourth week of the instructional sequence, they became taken-as-shared by
being used in the activities on following weeks. Moreover, the first
mathematical practice about the definition and formation of triangles was used
by the participants to support their reasoning on the similarity and congruence
of triangles and the congruence/similarity criteria for them. The other
mathematical idea in this practice was proposed and discussed by the
participants under the guidance of the instructor using the first mathematical
idea and the related congruence/similarity criteria. The participants attained
knowledge about congruence and similarity of triangles by geometric
constructions and transformation geometry. By geometric constructions,
PMSMT determined the places of the vertices of the image triangles and these
vertices were combined by line segment. Then, they compared the triangles
and image triangles based on main and auxiliary elements of triangles. Also,
benefiting from the definitions of transformation geometry and geometric
constructions, they proved their congruence/similarity. For example, in
translation, they moved the vertices of the triangle by the same vector by
geometric constructions. Then, they claimed that by combining these vertices
by line segments, a congruent triangle was formed since the distance between
parallel lines were preserved and the vectors represented the line segments
having the same magnitude and direction. Moreover, they justified this
conclusion by geometric constructions. Through conducting transformation
geometry by geometric constructions, they formed congruent and similar
triangles. In addition to geometric constructions, transformation geometry

facilitated understanding and learning congruency and similarity of triangles
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(French, 2004; Gerretson, 1998; Paquette, 1971; Park City Math Institute
[PCMI], 2010). They also proved this process with the help of geometric
constructions. Through the emergence of this mathematical practice about
PMSMT’s understanding of similarity and congruence of triangles, they
benefited from geometric constructions, transformation geometry by motion-
based reasoning, justifications and proofs. The research in the literature
emphasizes the effects of transformation geometry and geometric constructions
about congruence and similarity of triangles (Finzer & Bennet, 1995; PCMI,
2010; Yanik, 2013). The students can learn congruent triangles based on the
knowledge that rigid motions preserve all of their properties except for their
orientation. Also, dilation is useful to form similar triangles and understand

them since their image triangles are formed proportionally.

The current study aims the examination of mathematical practices in
collective learning environment designed by problem-based learning for a
classroom community with the help of HLT formed about triangles and
documents these mathematical practices. It can also be stated that the PMSMT
could think and reason effectively through the instructional sequence and the
tasks in the HLT on the concept of triangles. The findings of qualitative and
quantitative data analysis processes showed that the reasoning of the
participants on geometry about the concept of triangles could be improved by
geometric constructions. Three mathematical practices emerged in the present
study through collective learning environment can be beneficial for other
researchers studying about teaching triangles or related topics in a similar

setting.

5.3 Implications and Recommendations

The present study was designed in order to make contribution to the

research base about preservice middle school mathematics teachers’ (PMSMT)
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development of profound understanding of triangles. In the study, the learning
of PMSMT encouraged by the HLT was documented in the study. This process
can be used in teacher education programs to teach triangles. Their thinking
and errors identified in the study can be considered while making instructions
about triangles for preservice mathematics teachers. Also, the difficulty and the
ways of removing this difficulty documented in the study can be considered in
the instructions about triangles.

Their understanding was examined in a collective learning environment
designed by a hypothetical learning trajectory (HLT) and then applied in a six-
week instructional sequence about the concept of triangles. With the help of
design-based research methodology used in this classroom teaching
experiment, the main purpose was to identify PMSMT’s understanding of
triangles encouraged by geometric constructions from a social perspective.
This identification process was performed by determining classroom
mathematical practices. The effects of particular instructional activities, actual
HLT obtained through making necessary revisions by the pilot study and the
instructor’s guidance were explained in the process of emergence of
mathematical practices. By generalizing the HLT, the understanding of
PMSMT in different environments and cultures can be improved on the
concept of triangles. By benefiting from them and making necessary revisions
on the HLT, instructors and researchers interested in PMSMT’s understanding
of triangles can design their classroom environments and improve their

participants’ understanding of it.

Geometric constructions are useful to improve students’ geometrical
thinking and form geometrical justifications and proofs (Chan, 2006; Cheung,
2011; De Villiers, 2003; Napitupulu, 2001). Learning in this way can be
encouraged effectively by argumentations. By following construction steps, the
students can examine the geometrical objects, their properties and their
connections with other geometrical shapes providing relational understanding
(Erduran & Yesildere, 2010; Karakus, 2014; Khoh, 1997; Kuzle, 2013). In the
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present study, the students understood and learned the triangles by making
connections with other geometrical concepts such as quadrilaterals and circles
through geometrical constructions, proofs and argumentations. In this respect,
the process of learning other geometric shapes such as quadrilaterals and
circles can be provided by geometric constructions, argumentations and proofs.
When the positive effects of geometric constructions on understanding and
learning of PMSMT are considered, these tools are useful to be used in
geometry lessons in mathematics teacher education programs. Hence, the
geometry courses can include the opportunities for preservice mathematics
teachers to explore the geometric concepts by geometric constructions.

When the argumentations formed in the whole class discussion and the
tasks encouraging the emergence of the mathematical ideas are examined, the
instructor have important role. The instructor visited the small groups,
determined the mathematical misconceptions, errors and different solution
strategies for the problem and then guided the discussion using them in the
study. In this respect, the knowledge of the instructor and the participants are
important in understanding and learning of the concepts (Gokkurt, Sahin, Soylu
& Dogan, 2013; Gokkurt, 2014; Yackel, 2002). Moreover, errors and
difficulties of PMSMT about triangles such as concurrence of auxiliary
elements, definitions of triangles and altitudes of triangles determined in the
study can be used in different research about triangles. Moreover, these errors
and misconceptions about triangles should be considered while teaching
triangles by removing them. Also, the PMSMT had more difficulty in altitudes
when compared with other auxiliary elements (Alatorre & Saiz, 2010;
Gutierrez & Jaime, 1999). Moreover, altitudes can be examined in detail by
considering the errors and misconceptions about it identified in the study. Also,
whole class discussion was initiated and flowed under the guidance of the
instructor based on the ideas of PMSMT in the classroom. Therefore, the study
can be repeated by a different instructor and different group of PMSMT. By

making comparisons between the mathematical practices formed by different
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group of classroom community and the instructor, generalized and detailed
knowledge can be obtained about learning and understanding of PMSMT about

triangles in an environment designed by problem-based learning.

Analysis of the present study was performed by using mathematical
practice dimension of social perspective of the interpretative framework. The
other dimensions of this perspective which are social and sociomathematical
norms should also be examined in a similar study (Andreasan, 2006; Roy,
2008; Wheeldon, 2008). In this way, the nature and structure of the collective
learning environment providing the emergence of mathematical practices can
be explained and analyzed to have a complete picture of the PMSMT’s
learning and understanding of triangles in the instructional sequence. The
research in the literature examining social dimension of the framework
established the social and sociomathematical norms generally in an
environment designed by Realistic Mathematics Education (RME). By the
present study, different norms can be established for a problem-based learning
environment different from the most of design-based research in the literature.
Moreover, interpretative framework also has psychological perspective and
there have been research to examine this dimension of the framework (Stephan,
Bowers, Cobb, & Gravemeijer, 2003). This perspective should be investigated
in a study similar to the present one. Generally, this dimension was explored in
a RME learning environment. Differently, this dimension can be explored in a
problem-based learning environment as it has been used in the present study.
Moreover, also by connecting this perspective with the social one in a different
study, individual PMSMT’s understanding and learning of triangles can be
examined encouraged by instructional sequence and the HLT. By conducting
this kind of study including all perspectives and dimensions of interpretative
framework, the suggestion of “the results from the analyses should feedback to
improve the instructional designs” (p. 11) made by Cobb (2003) can be

performed. Moreover, making comparisons between the findings of the
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research obtained from different learning environments designed by different
strategies, detail information and the effects of the strategies can be acquired.

In the study, PMSMT engaged in the activities about geometric
constructions by compass and straight edge. They examined the triangles
through constructing them as explained in the problem situation. While
constructing the shapes, they made drawing errors. Although they followed
true construction steps, they made drawing errors such as not fixing the
compass truly and strictly on a point. Hence, some of the participants could not
form clear drawings for the shapes. For example, some of them could not show
the auxiliary elements concurred at a point on their drawings because of this
kind of drawing errors. Furthermore, the participants spent much time and
effort of the participants in complex geometric constructions. For example,
while examining the possibility of formation of triangles by knowing the
measures of some of their main and auxiliary elements, they made
constructions including many steps and formed complex drawings. The
technological tools can be more useful while constructing complex drawings in
short time period by spending less effort. Moreover, drawing errors made by
following true construction steps by compass and straight edge can be removed
by technological tools so that completely true drawing can be produced
effectively. Cift¢i and Tatar (2014) state that there is not statistically significant
difference in geometry achievement of the groups taught by compass and
straight edge and technological tools. However, dynamic geometry
environment facilitates complex constructions in short time period while the
compass and straight edge could provide learning permanently. In this respect,
basic geometric constructions can be used to teach the geometrical concepts
such as line, angle, different kinds of triangles by compass and straight edge
but the concepts necessitating complex constructions such as triangles with
their auxiliary elements can be taught in technological learning environments.
The future research about understanding and learning geometrical concepts

through constructions can be designed in this way.
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APPENDICES

Appendix A: Activities
1. UCGENLERIN SINIFLANDIRILMASI

1. Asagidaki kavramlar1 tanimlayarak bu kavramlardan uygun olanlar1
diyagramdaki uygun yerlere yerlestiriniz.
Uggen, ikizkenar iicgen, eskenar iiggen, cesitkenar iicgen, dik iicgen,

dar agili tiggen, genis acil iggen.

2. Soruda iiggen ¢esitlerini kullanarak yaptiginiz siniflandirmay1
aciklayiniz. Bu simiflandirmay1 yaparken iiggenlerin hangi 6zellik ve
elemanlarini g6z 6niinde bulundurdugunuzu ve bunlarin
smiflandirmada nasil kullanildigini belirtiniz.

3. Uggen cesitlerini siniflayabileceginiz farkli bir yol varsa ¢izerek
gosteriniz. Bu smiflamada g6z oniinde bulundurdugunuz tiggenlerin
hangi 6zellik veya elemanlardir? Bunlar nasil kullanilmigtir?
Aciklaymiz.
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. UCGENLERIN OLUSTURULMASI

. Uggenlerin temel ve yan elemanlar1 nelerdir? A¢iklayiniz.

. Bir ABC ii¢ggeninin m(BAC) = 90°, ha ve b elemanlar1 bilindigine gére
bu liggenin ¢iziminin miimkiin olup olmadigini belirtiniz. Bu durumu

aciklaymiz (sahin, 2013).

. ABC dik iiggeninde m(BAC)= 90°, h, ve V, elemanlar1 bilindigine gore
bu licgenin ¢iziminin miimkiin olup olmadigini belirtiniz. Bu durumu

aciklaymiz (Sahin, 2013).

Bir ABC iiggeninin m(BAC) = 90°, h, Ve a elemanlari bilindigine gore
bu iiggenin ¢iziminin miimkiin olup olmadigini belirtiniz. Bu durumu

aciklayiniz (Sahin, 2013).

. Uggenlerin sahip oldugu elemanlardan en az hangileri bilindiginde bir
icgenin ¢iziminin miimkiin oldugu veya belirli bir tiggenin
olusturulabildigi soylenebilir? Bu elemanlarla olusturulabilecek

gruplarm tiggen ¢izimini nasil miimkiin kildigin1 a¢iklaymiz.
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3. UCGENLERDE KENARORTAY

1. Kenarortay nedir? Tanimlayiniz.

2. Asagida verilen ABC liggeninin BC kenarina ait olan kenarortay1 pergel

ve Olciisiiz cetvel kullanarak ¢iziniz ve dogrulugunu gdsteriniz.

3. Bir ABC iiggeninin biitiin kenarlarina ait kenarortaylarin ka¢ noktada

kesistigini gosteriniz. Bu kesisim noktasiin/noktalarinin genel ad1
nedir?

4. Dik, dar veya genis acil1 liggenlerin kenarortaylarinin kesim
noktasmin/noktalarinin yerini tahmin ediniz. Bu noktanm/noktalarin
yerinin bu tiggen ¢esitleri i¢in degisip degigsmedigini gosteriniz.
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4. UCGENLERDE ACIORTAY

1. Agiortay nedir? Tanimlayimiz.

2. Asagida verilen ABC iiggeninin ABC agisinin agiortayini pergel ve

Olgiisiiz cetvel kullanarak ¢iziniz ve dogrulugunu gosteriniz.

3. Bir ABC iiggeninin biitiin agilarina ait agiortaylarm kag¢ noktada
kesistigini gosteriniz. Bu kesisim noktasmin/noktalarinin genel ad1
nedir?

4. Dik, dar veya genis agili tiggenlerde agilarin agiortaylarinin kesim
noktasinin/noktalarmin yerini tahmin ediniz. Bu noktanin/noktalarin
yerinin bu tiggen ¢esitleri i¢in degisip degigsmediZini gosteriniz.
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5. UCGENLERDE ORTA DIKME

1. Pergel ve lizerinde 6l¢iim igaretleri olmayan cetvel kullanarak asagida
verilen ABC iicgenini A noktas1 A' noktasina gelecek sekilde
kopyalayarak ¢iziniz. Kopyalanan iiggeni A'B'C'liggeni olarak ifade
ettigimizde, bu tiggenin ABC tiggeninin kopyas1 oldugunu gosteriniz.

2. Orta dikme nedir? Tanimlaymiz. 1. Soruda verilen ABC tiggeninin BC

kenarmin orta dikmesini pergel ve 6l¢iisiiz cetvel kullanarak ¢iziniz ve
dogrulugunu gosteriniz.

3. Bir ABC iiggeninin biitiin kenarlara ait orta dikmelerinin ka¢ noktada

kesistigini gosteriniz. Bu kesisim noktasiin/noktalarinin genel ad1
nedir?

4. Dik tiggende, dar agili liggende ve genis agili iggende kenarlara ait orta
dikmelerin kesigim noktasinin/noktalarinin yerini tahmin ediniz. Bu
noktanin/noktalarin yerlerinin bu iiggen c¢esitleri i¢in degisip
degismedigini gosteriniz.
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6. UCGENLERDE YUKSEKLIK

1. Yiikseklik nedir? Tanimlayimiz.

2. Asagida verilen ABC tiggeninde A noktasindan BC kenarina indirilen
yiiksekligi pergel ve 6l¢iisiiz cetvel kullanarak ¢iziniz ve dogrulugunu

gosteriniz.

3. Bir ABC iiggeninin biitiin kenarlarina ait yiliksekliklerin ka¢ noktada

kesistigini gosteriniz. Bu kesisim noktasiin/noktalarinin genel ad1
nedir?

4. Dik, dar veya genis acil1 liggenlerde yiiksekliklerin kesim
noktasmin/noktalarmnin yerini tahmin ediniz. Bu noktanin / noktalarin
yerlerinin bu {iggen ¢esitleri i¢in degisip degismedigini gosteriniz.
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. OTELEME

. Oteleme nedir? Tanimlayimniz.

. Asagida verilen ABC {i¢geninin verilen u vektoriinii kullanarak
oteledikten sonra olusan goriintiisiinii pergel ve dl¢iisiiz cetvel

kullanarak ¢iziniz ve dogrulugunu gosteriniz.

—
u

. Analitik diizlemde koseleri A(0, 3), B(2, 5) ve C(2, -3) olan ABC
licgeninin 2 cm sola ve 1 cm yukariya 6telendikten sonraki

goriintiisiinii ¢iziniz.
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8. DONDURME

1. Dondiirme nedir? Tanimlayiniz.

2. Asagida verilen ABC iiggeninin belirtilen O noktas1 etrafinda 45°
dondiiriilmesiyle elde edilen goriintiisiinii pergel ve 6l¢iisiiz cetvel

kullanarak ¢iziniz ve dogrulugunu gosteriniz.

18]

3. Analitik diizlemde koseleri A(0, 3), B(2, 5) ve C(2, -3) olan ABC
{icgeninin orjin etrafinda 60° déndiiriilmesiyle elde edilen goriintiisiinii

¢iziniz.
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9. YANSITMA

1. Yansitma nedir? Tanimlayiniz.

2. Asagida verilen ABC liggeninin | dogrusunda yansimasinin yapildiktan
sonra elde edilen goriintiislinii pergel ve Olciisiiz cetvel kullanarak

¢iziniz ve dogrulugunu gosteriniz.

3. Analitik diizlemde koseleri A(0, 3), B(2, 5) ve C(4, 2) olan ABC
licgeninin X + y = 0 denklemli dogrusu kullanilarak yansimasi

yapildiktan sonra elde edilen goriintiisiinii ¢iziniz.
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10. BUYUTME/KUCULTME

1. Biiyilitme/kiigiiltme nedir? Tanimlayiniz.

2. Asagida verilen ABC iiggeninin O noktasi kullanilarak 2 oraninda
biiyiitiilmiis modelini pergel ve 6lciisiiz cetvel kullanarak ¢iziniz ve

dogrulugunu gosteriniz.

(18]

3. 2. Soruda verilen ABC iiggenini ve O noktasini kullanarak, bu seklin O
noktasma gore Y% oraninda kii¢iiltiilmiis modelini pergel ve 6l¢iisiiz

cetvel kullanarak ¢iziniz ve dogrulugunu gosteriniz.
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. Asagida verilen tabloyu, bir ABC {iggeninin ve onun tabloda belirtilen
doniisiim ¢esidini kullanarak elde edilen goriintiisii arasindaki iliskiyi,
degisen ve degismeyen Ozellik ve elemanlarmi g6z Oniinde

bulundurarak nedenleriyle agiklaymniz.

Doniisiim Cesidi Degismeyen Degisen Geometrisel
ozellik ozellik baglam

Oteleme

Dondiirme

Yansitma

Biiyiitme/Kiigiiltme
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11. UCGENLERDE ESLIK
1. Bir iiggene art arda 6teleme, dondiirme ve yansitma yaptigimizda veya

bunlardan birinin yapilma sayis1 siirlt sayida arttirildiginda tiggen ile
bu ticgenin goriintiisii arasinda nasil bir iligki vardir?

2. Asagidaki sekilde ABC iiggenine birtakim doniisiim islemleri
uygulanarak AoBoCo tiggeni elde edilmistir. Hangi doniisiim
islemlerinin yapildigini agiklayarak ¢izimlerle gosteriniz.

B

3. 3. soruda verilen ABC ve AgBoCoii¢cgenlerinin es oldugunu gosterirken,
licgenin hangi elemanlar1 kullanilmistir? Bu elemanlarin es olmasi
icgenlerin es oldugu sonucuna varmak i¢in yeterli midir? Eger
yeterliyse, bu eslik ¢esidi nasil adlandirilabilir?

4. Bildiginiz eslik sartlarini agiklayarak yaziniz.
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12. UCGENLERDE BENZERLIK
1. Bir liggen ve onun biiyiitme/kii¢liltme sonucu olugsan modelleri arasinda
nasil bir iligki vardir? A¢iklaymiz.

2. Asagidaki sekilde belirtilen ABC ii¢genini kullanarak, bu tiggenle yeni
olusturulan tiggenin benzerlik oranini 3 olacak sekilde olusturulan

AoBoColiggenini pergel ve olciisiiz cetvel kullanarak ¢iziniz ve
dogrulugunu gosteriniz.

3. Herhangi iki liggenin benzer oldugunu nasil gosterirsiniz? A¢iklayiniz.

326



4. Asagida yer alan ifadelerin dogru veya yanlis olduklarini belirterek
nedenlerini agiklaymiz.

Dogru | Yanhs | Agiklama
(D) (Y)

Iki iicgen ancak ve ancak biri
digerinin bliyiitme/kiigiiltme
sonucu  olusturulan  modeli

oldugunda benzerdir.

I¢ acilarmmn olgiileri (30°-60°-
90% olan iiggenler bazen

benzerdir.

¢ acilarmin olgiileri (45°-45°-
90% olan iicgenler her zaman

benzerdir.

Kenar uzunluklar1 (7k-24k-25k,
k€R) olacak sekilde olusturulan

iicgenler her zaman benzerdir.

AKK bir eslik/benzerlik sartidir.

AA benzerlik sartinda tigiincii

acmin kullanilmasi gereksizdir.

4 cm ve 6 cm kenar
uzunluklarma sahip ve bu
kenarlar arasinda kalan ac¢min
45° oldugu iicgenle; 2cm ve 3 cm
kenar uzunluklarina sahip ve bu
kenarlar arasinda kalan aginin

45° oldugu iiggen benzerdir.

Es liggenler ayn1 zamanda benzer
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iicgenlerdir.

Eskenar ii¢cgenler her zaman

benzerdir.

Ikizkenar iicgenler her zaman

benzerdir.

Dik iicgenler bazen benzerdir.

Ikizkenar dik iiggenler her zaman

benzerdir.

Benzerlik orani 4 olan benzer iki
licgenin, yiikseklikleri orani da

4’tur.

Bir liggenin agirlik merkezi sabit
kalacak sekilde
biiyiitiildiglinde/kiiciiltiildiigiind
e diklik merkezi, i¢ teget ve dis
teget cemberlerinin merkezleri

asla degismez.

Es licgenlerin ic teget
¢cemberlerinin yarigaplarinin
uzunluklarmn 6lgiisii her zaman

aynidir.

Es  dcgenlerin  dis  teget
¢emberlerinin yarigaplarinin
uzunluklarmin olgiisi  ve bu
merkez noktalarmin kenarlara

olan uzakliklar1 bazen aynidir.

Bir iiggen onun yansima islemi

sonucu olusan goriintiisii bazen
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benzerdir.

Iki dik {icgenin hipoteniis ve
hipoteniise indirilen
yiiksekliklerinin uzunluklar1 ayn1
oldugunda, bu iicgenler her

zaman benzerdir.

Iki dik iiggenin, i¢ teget
cemberlerinin yarigap
uzunluklart  ve hipotentise
indirilen yiiksekliklerin
uzunluklarnin  Olgiileri  ayni
oldugunda, bu figgenler bazen

estir.

Iki ikiz kenar {icgenin esit
uzunluktaki kenarlar1 arasindaki
acilarm 6Slgiileri es oldugunda, bu

iicgenler her zaman benzerdir.

Iki dik iicgenin dar agilarindan
birin  agismmm  Olglisii es
oldugunda, bu tggenler her

zaman benzerdir.

Benzer iicgenlerin,
aclortaylarinin ve
kenarortaylarinin uzunluklarinin
orant her zaman benzerlik

oranina esittir.

Iki dik iiggenin dik kenarlarmdan

birinin ve hipoteniislerinin
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uzunluklar1 esit oldugunda, her

zaman es lggenler olurlar.

Iki  ikizkenar ii¢genin, es
acilarindan  birinin  oldugu
kosede kesisen iki kenarinin
uzunluklar1 esit oldugunda, bu

iicgenler benzerdir.
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13. PROBLEMLER

1. Bir ABC iiggeninde, AD uzunlugu A agisinin agiortay1 ve D noktasi BC
kenar1 iizerinde olsun. D noktasindan AB kenarina paralel olan ve AC
kenarini E noktasinda kesen DE dogru pargasi olusturulsun. E
noktasindan da BC kenarina paralel olan ve AB kenarin1 F noktasinda
kesen EF dogru parcasi olusturulsun. Bu durumda, AE ve BF

kenarlarinin es oldugunu gosteriniz (Sahin, 2013).

2. RST tiggeninde, XY dogrusu ile RT dogru parcasi ve YZ dogrusuyla
RS dogru parcasi paralel olduguna gore; (RX/XS) = (ZT/RZ) oldugunu

gosteriniz.

AN
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4.

5.

Asagida verilen ABC ii¢geninde, dogru parcalar1 arasindaki oranlar

carpiminin 1 e esit oldugunu gdsteriniz.

AG BF CE _AE CF BG _ CF BG AE _

GB FC EA EC FB GA  FB GA EC

3. soruda verilen esitligin, herhangi bir iggenin ac¢1 ortaylarmin, kenar
ortaylarinin ve yliksekliklerinin kesigim noktalar1 i¢in de dogru olup
olmadigmi gosteriniz.

Asagidaki sekilde verilen DEFGH kare piramidin tabanin bir kenar1
23 m dir ve giinesli bir giliniin belirli bir saatindeki golgesi de
gosterildigi gibidir. Golgenin tepe noktasinin piramide olan uzakligi
yani BC dogru parcasinin uzunlugu 10,5 m’dir. Ayrica, 6cm boyunda
olan bir kibrit de yere dikey olacak sekilde yerlestirildiginde 9cm’lik
golge olusturdugu gdzlemlenmistir. Bu bilgilere gore, piramidin tepe
noktasindan tabanin merkez noktasmna indirilen dik ytiksekligin
uzunlugunu bulunuz.
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6.

Asagidaki ABC dik tiggeninde, IBCI = 3cm, ICAIl =4 cm ve |ABI =

5 cm’dir. ICCul + IC1Col +1CC3l +...=?

B
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7.  Asagidaki ABC iiggeninde, SP, TQ UR dogru parcalar1 F noktasindan

gegmektedir. AB // SP, AC // TQ ve BC // UR olduguna gore,
g + g + g = 1 ifadesinin dogru oldugunu gosteriniz.

A

8. Asagidaki sekilde gosterildigi gibi iki eskenar liggen bulunmaktadir. Bu
iki liggen birbiri lizerine ¢akisik durumdadir v kenar uzunluklari n
birimdir. C noktas1 tiggenlerden birinin tepe noktasiyken digerinin
agirlik merkezidir. Tepe noktasi C olan eskenar licgen digerinin
iizerinde dondiiriilebilmektedir. Bu durumda tist liste gelen tarali alanin

alabilecegi en biiyiik deger nedir?

C

/\
[\
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Appendix B: Turkish Summary

SOSYAL BiR ORTAMDA MATEMATIKSEL UYGULAMALARIN
GELISTIiRILMESi: ORTAOKUL MATEMATIK OGRETMENI
ADAYLARININ UCGENLERiI OGRENMELERINi SAGLAYAN BiR
OGRETIM Dizisi

Giris

Geometriyi Ogrenmek ¢ok Onemli olmasma ragmen Ogrencilerin
geometri bilgi ve basarilarinin istenilen seviyede olmadigi goriilmektedir.
Bunun nedenlerinin  basinda  Ogrencilere  geometrinin  kavramsal
ogretilmesinden ziyade ezberleyerek ve islemsel bilgi odakli 6gretilmesidir
(Fuys, Geddes, & Tischler, 1988; NCTM, 2000; Young, 1925). Ogretmenlerin
ozellikle de ortaokul matematik Ogretmenlerinin geometriyi bu sekilde
Ogretmelerinin nedeni geometrisel kavramlarla ilgili bilgi ve tecriibelerinin
yetersiz olmasidir (Clements, 2003; Fuys, Geddes, & Tischler, 1988;
Hershkowitz, Bruckheimer, & Vinner, 1987; Stipek, 1998). Ayrica, etkili
matematik 6gretiminin gergeklestirilebilmesi i¢cin gerekli 6grenme ortamlar1 da
bilgili Ogretmenler tarafindan hazirlanabilir (Putnam, Heaton, Prawat &
Remillard, 1992; Van der Sandt & Nieuwoudt, 2003). Bu acidan, bilgili
O0gretmenlerin sahip olmas1 gereken bilgiler literatiirde arastirmacilar tarafindan
farkli sekilde aciklanmistir (Ball, Sleep, Boerst, & Bass, 2009; Ma, 1999;
Shulman, 1986). Bunlardan en yaygin kullanilanlarindan biri de 6gretim igin
matematiksel bilgi adi altinda 6nemli matematiksel bilgi ve temel matematik
ogretimi bilgilerinin agiklandigi yontemdir (Hill, Ball & Schilling, 2008). Bu
smiflama yonteminde arastirmacilar, matematigi bilmenin ve 6gretmenin ancak
gerekli  matematiksel bilgiye sahip olarak  gerceklestirilebilecegini
belirtmislerdir. Bu nedenle, etkili geometri dgretiminin geometri bilgisi iyi olan
Ogretmenler tarafindan yapilabilecegi sOylenebilir ¢linkii 6gretmenlerin konu
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alan bilgileri onlarin smiflarinda yaptiklar1 se¢imleri ve sergiledikleri
performanslar1 etkilemektedir (Ball, Thames & Phelps, 2008). Bu yiizden,
smiflarda etkili geometri Ogretiminin gerceklesebilmesi icin, O6gretmen
adaylarma egitim gordiikleri siirecte gerekli geometrik bilgiyi edinmelerini
saglayacak olanak sunulmalidir (NCTM, 2006; Chapman, 2007).

Tasarim-tabanli aragtrma Ogretmen adaylarmin matematik Ogretimi
icin gerekli bilgi ¢esitlerinden biri olan konu alan bilgilerini gelistirmek i¢in
cesitli olanaklarin sunuldugu faydali bir yontem olabilir. Bu yolla, 6gretmen
yetistirme programlarinda, egitmenler 6gretmen adaylar1 i¢in 6gretim siiregleri
planlayrp smiflarinda uygulayarak onlarin gelisimlerini saglayabilirler. Bu
acidan, 6gretim stirecinde kullanilacak geometrik kavramlarm, etkinliklerin ve
materyallerin 6gretmen adaylarinin geometrik anlama ve diisiinmelerini
gelistirecek  sekilde segilip uygulanmasit gerekmektedir (Han, 2007,
Henningsen & Stein, 1997). Geometrik sekillerin pergel ve ¢izgec kullanilarak
insa edilmesi 6gretmen adaylarmnin gerekli geometrik bilgiyi kazanmalar1 ve
geometrik diisiinmelerinin gelisimini saglayabilir. Ogretmen adaylar1 pergel ve
cizgec kullanarak geometrik teoremleri, kurallar1 ve konular1 inceleyebilir ve
anlayabilirler (Erduran & Yesildere, 2010; Napitupulu, 2001; Hoffer, 1981).
Ayrica, sekillerin geometrik insas1 pergel ve ¢izge¢ kullanarak geometrik
problemlerin ¢0ziimii i¢in standart olmayan bir ¢6ziim yolu sunmaktadir.
Ogretmen adaylar1 bu materyallerle geometrik konularm 6grenilmesine ek
olarak gerekli fiziksel becerilerin kazanilmasini da saglamaktadir (Cherowitzo,
2006). Bu agidan, bu geometrik sekillerin insa edildigi etkinliklerine ¢alismada
yer verilerek ortaokul matematik 6gretmeni adaylarinin kavramsal 6grenme,
problem ¢6zme, uygulama ve iletisim kurma gibi becerilerini gelistirerek

gerekli konu alan bilgilerini edinmelerini saglamak amaglanmistir.

Geometrik etkinlikler ve materyaller 6gretim siirecinde matematiksel
soylemler ve tartigmalarla birlikte kullanildiginda daha etkili olabilirler.
Arglimantasyon geometrik bilginin etkili bir sekilde kazanilmasi i¢in gerekli

olan iletisimi saglayacak etkili bir yontem sunabilir ¢linkii &gretmenlerin
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bilgilerinin dneminin yaninda geometrik bilgileri aktarabildikleri bir iletisim
stireci olusturmada da yeterli degillerdir ve bunu gelistirmelidirler
(Hershkowitz, 1989; Owens & Outhred, 2006; Sundberg & Goodman, 2005).
Arglimantasyon Ogretmenlerin  ve Ogretmen adaylarmin  bu konuda
gelisimlerini saglayabilir. Ayrica, bilimsel bilginin iiretilebilmesi i¢cin de
gereklidir ¢linkii insanlar alternatifleri ve kanitlar1 degerlendirerek fikirler
iiretirler (Voss & Van Dyke, 2001). Ayrica, arglimantasyon kavramsal anlama,
problem ¢ozme, elestirel bakis agisi, dogrulama ve kanitlama gibi becerilerin
kazanilmasmda da etkilidir (Abi-EI-Mona & Abd-EI-Khalick, 2011; Duschl &
Osborne, 2002; Jim’enez-Aleixandre ve ark., 2000; Jonassen & Kim, 2010;
Osborne, Erduran, & Simon, 2004; Zembal-Saul, 2005). Bu yiizden,
argiimantasyon Ozellikle de geometrik sekillerin insasinda kullanilarak
O0gretmen adaylarinin geometri bilgilerini ve bilimsel diisiinme becerilerini
gerekli On bilgilerini diizenleyerek yeni bilgileri yapilandirarak gelistirebilir.
Boylelikle, argiimantasyon iletisim kurma ve kritik diisiinme becerileriyle
kavramsal anlamayir ve derinlemesine kavramsal Ogrenmeyi saglayabilir
(Driver, Newton & Osborne, 2000). Ayrica, argiimantasyon ve geometrik
sekillerin insas1 Ogrencilerin problem ¢6zme ve geometrik ispat yazma
becerilerini gelistirmektedir. Geometrik sekillerin insas1 slirecinde dgretmen
adaylar1 sekil olusturma siireclerini anlatmak ve digerlerine bu slirecin
dogrulugunu gostermek i¢in diger geometrik sekillerle ilgili 6zelliklerden ve
geometrik ispatlardan faydalanmaktadir (Erduran & Yesildere, 2010; Smart,
1998).

Belirli geometrik kavramlara odaklanilarak hazirlanan 6gretim siireci,
Ogretmen adaylarmin bu kavramlar1 anlamalar1 ve 6grenmelerini saglayacak
sekilde tasarlanmalidir. Ayrica bu silire¢ matematiksel sOylemler ve
tartigmalarla desteklendiginde, 6gretmen adaylarinin birbirlerinin fikirlerini
analiz ederek, tartigarak ve birbirlerini kanitlarla ikna ederek 6grenmelerini ve
anlamalarmi gelistirir. Boylelikle, arglimantasyon, onlarin 6grenmelerini

saglamaktadir (Lampert, 1990). Ek olarak, 6grenenler tartigarak ve bilgilerini
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baska durumlara transfer ederek iirettikleri bilgilerini belirten matematiksel
uygulamalarla da Ogrenmeleri incelenebilir. Matematiksel uygulamalar
matematiksel tartigma ve disiinmelerle elde edilen paylasilan bilgileri
belirtmektedir (Cobb, Gravemeijer, Yackel, McClain & Whitenack, 1997). Bu
acidan, bu caligmada ortaokul matematik 6gretmeni adaylarinin tiggenlerle
ilgili geometrik insalar kullanarak olusturduklari sinif i¢ci matematiksel
uygulamalar1 sayesinde bu konuyla ilgili 6grenme ve anlamalarini incelemek
amac¢lanmistir. Bu calismada, ortaokul matematik Ogretmeni adaylarinin
iicgenler konusuyla ilgili konu alan bilgilerini gelistirmek amaglanmistir.
Uggenler giinliik yasamda kullanilan en yaygin sekillerden biridir. Ayrica,
diger disiplinler, diger matematiksel kavramlar ve geometrik sekillerle de
yakindan ilgilidir (Athanasopoulou, 2008; Kellogg, 2010). Uggenler bu
Oonemine ragmen, ogrenenler ii¢cgenler konusuyla ilgili yeterli bilgiye sahip
olma konusunda zorluk yasamaktadirlar (Vinner & Hershkowitz, 1980).
Ayrica, lUggenler cesitli yas gruplarinda yer alan birgok 6grenci agisindan da
onemlidir (Damarin, 1981; Vinner & Hershkowitz, 1980). Bu yiizden, ortaokul
matematik ogretmeni adaylarinin {icgenler konusuyla ilgili anlama ve

ogrenmelerini saglamak gerekmektedir.

Tasarim tabanli arastirmayla, bu ¢alismada etkili bir 6gretim siireci
olusturmak i¢in varsayima dayali 6§renme rotasi tasarlanmis. Hazirlanan bu
varsayima dayali Ogrenme rotasi alt1 haftalilk bir Ogretim siirecinde
uygulanmistir. Pilot ¢calismada bu rota {izerinde gerekli bulunan diizeltmeler
yapilmistir. Bu agidan, bu 6grenme rotasmin etkisini degerlendirmek ve smnif
ici matematiksel uygulamalar1 belirlemek amaciyla bu ¢alisma tasarlanmustur.
Diger bir ifadeyle c¢alismada ‘“Ortaokul matematik Ogretmeni adaylarmin
iicgenleri 0grenmeleriyle ilgili problem tabanli 6grenme stratejisine gore
hazirlanmis tasarim tabanli arastrma ortaminda gelistirdikleri sinif igi
matematiksel uygulamalar1 nelerdir?” arastirma probleminin cevabi

arastirilmustir.
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Kaynak Bildirisleri

Calismanin odak noktas: olan matematiksel uygulamalar bireysel ve
sosyal Ogrenme ortamlarinin etkisini birlikte diistinerek olusturulmustur.
Matematiksel uygulamalar olusturularak saglanan 6grenmelerde bireysel ve
sosyal 6grenme birbirini destekleyecek ve biri digerine hakim olamayacak
sekilde gerceklesmektedir (Cobb ve ark., 2011). Bu acidan, matematiksel
uygulamalar sosyal Ogrenme ortammi yansitan smif ortamlarinda
gerceklesmektedir. Bu sosyal O8renme ortaminda oOgrenciler smif igi
matematiksel etkinlere etkin bir sekilde katilirlar. Ayrica, dgrencilerin etkin
katilim siirecinde matematiksel bilgilerini ve becerilerini yeniden diizenleyerek
ogrenirler (Cobb & Yackel, 1996). Diger bir ifadeyle 6grenciler tartisma
stirecine aktif katilim gostererek bireysel bilgilerini diizenleyerek konular1
ogrenmektedir. Bu ac¢idan, 6grenmeler ve sosyal etkilesim yakindan ilgilidir.
Boyle sosyal bir smif ortami igerisinde ortaya ¢ikan simnif i¢ci matematiksel
uygulamalar ancak bu ortamda ortaya c¢ikan sosyal ve sosyomatematiksel
normlar yardimiyla olusabilir. Sosyal normlar smif igerisinde olusan genel
davraniglar1 belirtmektedir (Cobb, Yackel, & Wood, 1992). Bunlar smif
icerisinde 6grencilerden sergilemeleri beklenen davranislar, cevap ve
cOzlimlerin aciklamasi, digerleriyle paylasilmasi ve tartisilmasi olarak
orneklendirilebilir (Yackel & Cobb, 1996). Bu agidan bakildiginda, her smifin
kendine 6zgli normlar1 vardir ve matematiksel uygulamalarin ortaya ¢ikmasi
icin katilimcilarin fikirlerini nedenleriyle birlikte paylastigi ve birbirlerinin
fikirlerini degerlendirdigi smnif i¢i normlar olusturulmalidir. Bu normlardan da
matematik smiflarina 6zgii olan sosyomatematiksel normlar olusmalidir. Bu
normlar simif igerisinde olusan matematiksel tartismalar1 belirtmektedir
(Yackel & Cobb, 1996). Sosyomatematiksel normlar farkli ¢6ziim yollari,
detayli ve Onemli ¢oziimler olarak Orneklendirilebilir (Yackel, 2002). Bu

yiizden bu calismada toplu 6grenme ortami tasarlamak, bu ortama dgrencilerin
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nasil katildig1 ve katkida bulundugunu ve sinif i¢ci matematiksel uygulamalarin

olusum siirecini arastirma amaglanmaistir.

Matematiksel uygulamalarin etkili bir sekilde ortaya c¢ikmasi ve
bahsedilen normlarin olugmasi i¢in sinif igerisinde etkili tartigmalarin olugmasi
saglanmalidir. Bu tartigmalar, Ogrencileri hedeflenen bilgi ve beceriyi
kazandiracak sekilde olusturulmalidir.  Argilimantasyonlar kullanilarak
o0gretmen adaylar1 licgenleri 6grenebilir, birbirlerinin {iggen insa siire¢lerini
irdeleyerek denetleyebilir ve geometrik diisinme ve ispat becerilerini
gelistirebilir. Bir ¢esit matematiksel sOylem olarak ifade edilebilen
arglimantasyon Ogrencilerin  fikirlerini nasil dogruladiklarint ve bu
matematiksel dogrulamalar1 iletisimlerinde nasil kullandiklarmi
gostermektedir. Bu agidan, matematiksel argiimanlar iiretmek ayni zamanda
matematiksel kavramlar1 anlamakla da iligkilidir (Lampert, 1990). Ogrenciler
genellikle teorem ve kurallar1 nerede, nasil ve niye olustuklarini bilmeden ve
sorgulamadan ezberleyerek 6grenme egilimindedirler. Bu problem, ancak
matematiksel argiimanlar {ireterek giderilebilir ¢ilinkii Ogrenciler argiiman
iiretirken bunlar1 sorgulamaya baslar ve sonunda da soru isaretlerini gidererek
konuyu anlamayi1 amaglar. Etkili bir yonlendirme yapildiginda anlamli ve
dogru 6grenme gerceklesebilir. Ayrica, sorgulama becerisiyle matematiksel
anlama ve Ogrenme saglanabilir. Bu agidan, argiimantasyon yardimiyla
ogrenciler problem ve fikirleri derinlemesine inceleyerek ve anlayarak etkili
ogrenmeyi gerceklestirebilirler (Abi-EI-Mona & Abd-El-Khalick, 2011,
Jonassen & Kim, 2010). Argiimantasyonun bu siireci diisiintildiigiinde
Ogrenciler fikirlerini rahatlikla ifade ederek, savunarak, gerekge ve deliller
sunarak tartigmaya katilirlar. Ayrica, digerleri de bunlar iizerinde destekleyici
ya da ciriitiici kanitlar ve diisiinceler sunarak fikirlerin dogrulugunu ve
gecerligini sinarlar. Boylelikle, dogru ve anlaml bilgi olusturulmaya calisilir.
Bu siireg, 6gretmen adaylariyla gergeklestirildiginde ve katilimcilarin diistinme

diizeyleri g6z Oniinde bulunduruldugunda matematiksel veya geometrik
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ispatlara ihtiyag duyulabilir. Bu agidan, argliimantasyon ispatla yakindan
ilgilidir (Chazan, 1993; Pedemonte, 2007).

Calismada ortaokul matematik 6gretmeni adaylarmin iicgenlerle ilgili
anlama ve 6grenmelerini matematiksel uygulamalar kullanarak incelemek icin
varsayima dayali 6grenme rotasi olusturulmustur. Egitmen 6grenme siireciyle
ilgili tahminlerini van Hiele geometri diizeylerinin, geometrik sekillerin
ingasinin ve argiimantasyonun 6zelliklerini diisiinerek olusturmustur. Yapilan
calismalar, ortaokul matematik 6gretmen ve adaylarinin van Hiele geometrik
diginme diizeylerinden ilk {iciliniin 06zelliklerini kazanmigs olmalarinin
gerektigini Onermektedir (Aydin & Halat, 2009; Halat, 2008). Buna gore
ortaokul matematik Ogretmeni adaylarinin geometrik diisiinme becerileri
acisindan geometrik sekiller ve ozellikleri arasinda baglant1 kurabilmeleri,
formal ve formal olmayan tanimlari, argiimanlar1 ve agiklamalar
anlayabilmeleri beklenmektedir. Ayrica, geometrik sekillerle ilgili 6zelliklerin
dogrulugu ve vyeterliligi konusunda karar verebilmeleri ve aciklamalar
iiretebilmeleri beklenmektedir (Crowley, 1987; Fuys, Geddes & Tischler,
1998; van Hiele, 1999; Pegg, 1995).

Ogretim siireci ve ogretim siirecinde kullanilacak materyal ve
etkinlikler, problem tabanli 6grenme stratejisi kullanilarak tasarlanmistir. Bu
stirecte Ogretmen adaylarma cesitli problem durumlar1 sunulmus ve bunlara
¢Oziim olusturarak oOgrenmeleri saglanmistir. Probleme dayali 6grenme
argiimantasyon olusturulmasi agisindan da 6nemlidir ¢iinkii probleme dayali
O0grenme dilislinme, karar verme, sorgulama ve problem ¢6zme gibi
argiimantasyon siirecinde de gerekli becerileri gelistirmektedir (Frank &
Barzilai, 2004; Kolodner ve ark., 2003). Probleme dayali 6grenme, 6grencilerin
kavramla ilgili derinlemesine bilgi edinmelerini, bireysel 6grenmelerinin
desteklenmesi, sorumluluk alinmasi1 ve aktif O6grenmeyle 6grenmelerin
gergeklestirilmesi saglanmaktadir (Frank & Barzilai, 2004). EK olarak
probleme dayali 6grenme Ogrencilere matematigin dogasiyla ilgili kavramsal

diistinmelerini  yansittiklar1  ve baglantisal 6grenmelerini  gelistirdikleri
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olanaklar sunmaktadir (Skemp, 1978). Problem ¢ozerek, Ogrencilerin
matematiksel fikirlerini organize ettikleri, tartigmalara katildiklari, fikirlerini
savunduklar1 ve digerlerini bu fikirler konusunda ikna etmeye c¢alistiklar:
olanaklarla sunulmaktadir (Manuel, 1998; NCTM, 2000). Bu agidan, probleme

dayali 6grenme argiimantasyonlarin kullanilmasimi desteklemektedir.

Varsayima dayal1 6grenme rotasmnin olusturulmasinda pergel ve cizgeg
kullanilarak yapilan geometrik sekillerin insasindan faydalanilmistir. Ogretmen
adaylarmin tiggenler konusundaki 6grenme ve anlamalarini saglamak amaciyla
geometrik sekillerin insas1 kullanilarak etkinlikler olusturulmustur. Pergel ve
cizge¢ kullanilarak geometrik sekillerin insa edilmesi Oklid geometrisinin
ogrenilmesi agisindan Snemlidir (Stillwell, 2000; Janicic, 2010). Oklid,
“Elements” adli kitabinda geometrik sekilleri, 6zelliklerini ve teoremleri
geometrik sekilleri insa ederek incelemis ve boylece geometrik sekillerin ingas1
geometri ve matematik egitimde yer edinmistir (Karakus, 2014). Geometrik
sekillerin ingasinda olusturulmak istenilen geometrik seklin belirli temel ve
karmasik adimlar1 takip ederek pergel ve ¢izgec¢ kullanilarak ¢izilmesi olarak
belirtilmektedir (Demiray & Capa-Aydin, 2015; Djoric & Janicic, 2004).
Ogrenciler geometrik sekilleri insa ederken ve cizilen seklin belirtildigi sekilde
olusturuldugunu gosterirken ispattan yararlanmislardir. Pergel ve c¢izgeg
kullanilarak yapilan geometrik sekillerin insasi geometrik anlama, geometrik
diisiinme, problem ¢6zme, psiko-motor, derinlemesine diisiinme ve baglantisal
diisiinme gibi becerileri gelistirmektedir (Ameis, 2005; Cheung, 2011; Giiven,
2006; Karakus, 2014; Khoh, 1997; Kuzle, 2013; Napitupulu, 2001;
Posamentier, 2000; Tapan & Arslan, 2009).

Geometrik sekillerin insasinda, 6grenciler pergel ve ¢izgec kullanarak
Ogrenme siirecine katilirlar. Geometrik sekillerin insast siirecinde takip edilen
admmlar planli ve farkinda olunarak etkili bir sekilde yerine getirilerek
ogrencilerin geometri basarilar1 ve kavramsal 6grenmeleri saglanmaktadir
(Cherowitzo, 2006). Geometrik sekillerin insasinda 6grenciler sadece seklin

olusturulmasini degil ayn1 zamanda onun 6zelliklerini ve diger geometrik sekil
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ve Ozellikleriyle baglantisin1 da incelemektedir (Erduran & Yesildere, 2010;
Napitpulu, 2001; Hoffer, 1981). Pergel ve ¢izge¢ kullanilarak, geometrik
sekillerin kritik 6zellikleri ve bunlar arasindaki baglanti sekil insa edilerek
incelenip 6grenilebilir. Bu agidan, 6grenciler geometrik sekillerin kavramsal ve
baglantisal 6grenmelerini gelistirebilir ve onlar hakkinda ayrintili ve etkili
sekilde disiinerek geometrik diisiinme diizeylerini ilerletebilirler (Cheung,
2011; Hoffer, 1981; Napitupulu, 2001). Béylelikle yapilan ¢alismalar pergel ve
cizgec¢ kullanilarak olusturulan geometrik sekillerin ingasi 6grencilerin van
Hiele geometrik diisiinme diizeylerini gelistirdigi gorilmiistir (De Villiers,
2003; Napitupulu, 2001).

Pergel ve c¢izge¢ kullanilarak yapilan geometrik sekillerin ingasi
etkinliklerinde, dgrencilerin sekillerin dzelliklerinin incelenmesi ve geometrik
aciklamalar1 dogrulamasi ve ispatlamasi gerekmektedir (Chan, 2006,
Napitupulu, 2001). Diger bir ifadeyle, geometrik sekillerin ingas1 bir ifadenin
sonucu veya dogrulugu ile ilgili sebep sonug iliskisiyle kanitlar sunularak
belirtildigi ve ispatlama becerisinin gelistirildigi olanaklar sunmaktadir (de
Villiers, 2003) ¢iinkii bu siirecte oldugu gibi ispatlarda ifadelerin dogrulugunun
yaninda niye dogru oldugunu belirtmek de faydalidir (Hanna, 2000). Ayrica,
geometrik sekil insa edildikten sonra olusturulan seklin belirtildigi sekilde
¢izildigini dogrulamak amaciyla ortaokul matematik 6gretmeni adaylarimin
ispatlardan faydalandigi belirtilebilir ¢linkii onlarin van Hiele geometrik
diistinme diizeylerinde ilk tigliniin 6zelliklerini elde etmeleri gerekmektedir. Bu
acidan, bu dogrulama siirecinde ispat olusturmalar1 beklenebilir veya bu

stirecte gelistirilebilir.

Bu calismada ortaokul matematik O6gretmeni adaylarinin {iggenler
konusuyla ilgili anlama ve Ogrenmeleri incelenmistir. Calismada {iggenler
konusu temel almmistir ¢iinkii gilinliik yasamda kullanilan bir¢ok yapinin
olusturulmasinda ve tasarlanmasinda faydalanilan geometrik sekillerin baginda
gelir. Ayrica, diger geometrik sekillerin insasinda, onlarin belirli 6zelliklerinin

incelenmesinde ve alan gibi bazi hesaplamalarin yapilmasinda kullanilmaktadir
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(Fey, 1982). Ornegin, paralelkenarm ve dikdortgenlerin alanlarinin
hesaplanmasinda iicgenlerden faydalanilabilir. Fakat {icgenlerin bu 6nemine
ragmen ¢esitli yas seviyesinde olan Ogrenciler iiggenler konusunda zorluk

yasamaktadir (Damarin, 1981; Vinner & Hershkowitz, 1980).

Yontem

Nitel arastirma desenlerinden bir1i olan durum c¢alismasina gore
tasarlanan bu ¢aligma ortaokul matematik 6gretmeni adaylarinin alt1 haftalik
stirecten olusan smif i¢ci matematiksel uygulamalarinin belirlendigi tasari-
tabanli arastirma modeli kullanilarak yiirtitilmiistiir. Tasar1 tabanli arastirma
modeli alana 0zgli Ogrenme siireciyle ilgili teorilerin gelisiminde
kullanilmaktadir. Bu yolla olusan 0Ogrenme teorileri  dgrencilerin
ogrenmelerinde gerceklesen ve birbirini takip eden Oriintiileri resmetmektedir.
Ayrica, bu modelle etkili ve derinlemesine anlamanin gerceklestigi 6grenme
ortami saglanmaktadir. Diger bir ifadeyle, tasari tabanli arastirma modeli
birbiriyle iliskili karmasik elemanlarin ve onlarin birlikte nasil 6grenmeyi
sagladiklarinin gosterildigi bir siirectir (Cobb, Confrey, diSessa, Lehrer &
Schauble, 2003). Bu a¢idan bu model teori ve uygulamay1 birbirine baglayan
etkili bir yol sunmaktadir. Tasar1 tabanli arastirma modelinin 6grenme
ortamindaki tasar1 ve uygulamaya gore egitici ve teorik yapisinin oldugu kabul
edilebilir. Diger bir ifadeyle, bu modelde teorik diisiinceler uygulanir ve
gecerliligi egitici bir yolla test edilir (Cobb ve ark., 2003). Birbirini tekrarlayan
bir siiregte, sosyal Ogrenme ortaminda, sosyal ve bireysel matematiksel
diistiinme, 6gretimsel tasarinin gelistirilmesi ve diizenlenmesi tasari tabanl

arastirma modeliyle saglanabilir (Cobb ve ark., 2001).

Tasar1 tabanli arastrma modeli sinifta uygulama olanaklar1 sunarak
egitimde de onem kazanmistir (Gravemeijer, 2004). Sinifta uygulanan bu

model 6gretim modeli, 6gretmen/egitmen, bir veya daha fazla 6grenci, sahit
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gozlemeci ve neler oldugunun kaydedilmesi olmak iizere bes bilesenden
olusmaktadir (Wheeldon, 2008). Bu yiizden, tasari tabanli arastirma modeli
Ogretim etkinliklerini igceren dgretim dizisinin tasarlanmasi, smnif i¢i ortamda
test edilmesi, kaydedilmesi, analiz edilmesi ve gerekli diizenlemelerin
yapilmasi gibi siire¢ ve adimlarin yer aldigi dongiisel bir siirecten olugsmaktadir
(Gravemeijer, Bowers & Stephan, 2003). Bu birbirini tekrarlayan siirecte,
sosyal bir ortamda en iyi gelisimin amaglandig1 bir 68retim teorisi gelistirilir.
Bu gelisimsel siirecte, sahit gdzlemci varsayima dayali 6grenme rotasinin
planlanmasi, uygulanmasi, analiz edilmesi ve yorumlanmasi gibi siireclerde yer

almistir (Gravemeijer, 2004).

Tasar1 tabanli arastirma modelinin temel amaci teori gelistirmektir. Bu
teoriler Ogrenme siirecini ve Ogrenmeyi saglayan araclar1 agiklamaktadir
(Gravemeijer & Cobb, 2006). Bu teorilerin gelistirilmesi siireci li¢ asamada
gerceklestirilebilir; deneyin tasarlanmasi, uygulanmasi ve gecmise yonelik
analiz. Deneyin tasarlanmasi siirecinde, Onemli sonu¢ degisime ve
diizenlemeye agik smnirli 6gretim teorisinin olusturulmasidir (Gravemeijer &
Cobb, 2006). Bu agidan, teorik niyetin belirlenmesi énemlidir (Cobb ve ark.,
2003). Sonrasinda, arastrma takimi 6grenme amaglarmi, Ogretimin igin
baslama ve bitis noktalarini belirler. Bu siiregte ilk adim 6grenme amacini
belirlemektir ve bu amagclar tarih, gelenek ve degerlendirmeyle saglanabilir.
Ornegin, dgrencilerin ge¢misi, sahip oldugu bilgiler, konunun tarihsel gelisimi
digiiniilebilir. Bu c¢alismada, ortaokul matematik 6gretmeni adaylarmin
iicgenler konusuyla ilgili temel bilgilere sahip olmasi1 beklenmektedir.
Literatlirde, iicgenler konusunun g¢esitli araglar kullanilarak 6gretildigi
goriilmektedir. Bu calismanin amaci, geometrik kavramlardan biri olan
iicgenler konusuyla ilgili tasarlanmis olan bu alt1 haftalik 6gretim siirecinde
olusan matematiksel uygulamalar1 belirlemektir. Bu agidan, calismay1
“Ortaokul matematik Ogretmeni adaylarinin tiggenleri 6grenmeleriyle ilgili
problem tabanli 6grenme stratejisine gore hazirlanmig tasarim tabanli aragtirma

ortaminda gelistirdikleri sinif i¢i matematiksel uygulamalari nelerdir?”
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aragtirma  problemi  yOnlendirmektedir. Bu baglamda matematiksel
uygulamalar1 belirlemek igin geometrik kavramlardan biri olan {iggenler
konusuyla ilgili varsayima dayali 6grenme rotasi olusturulmustur. Her bir
haftada ii¢ saatlik uygulamalarin oldugu alt1 haftalik bir 6gretim dizisi
olusturulup pilot calisma siiresince uygulanarak elde edilen deneyimler
neticesinde dgrenme rotasi yeniden diizenlenmistir. Ogretim dizisi siirecinde
uygulanan varsayima dayali Ogrenme rotast ii¢ asamadan olusmaktadir;
iicgenlerin olusturulmasinin sorgulanmasi, yardimci elemanlar ve bunlarin bir
noktada cakigmasmin diistiniilmesi ve eslik ve benzerligin diisiiniilmesidir. Bu
asamalar tiggenlerin tarihsel gelisiminden, temel ve yardimci elemanlar ve ilgili
ozelliklerden ve doniisim geometrisinden faydalanarak ti¢genlerin eslik ve
benzerliginden olusturulmustur. Ogretim dizisinde kullanilan etkinliklerin
biiyiik bir ¢cogunlugu pergel ve ¢izge¢ kullanilarak yapilan {iggenlerin insasi
etkinliklerinden olusmaktadir. Biitiin asamalar bu materyaller kullanilarak ilgili
Ozellikler ve teoremlerin de yardimiyla incelenmistir. Boylelikle ortaokul
matematik Ogretmeni adaylarinin {i¢genler konusuyla ilgili matematiksel
uygulamalar1 belirlenmis ve bu konuyla ilgili kavramsal 6grenmeleri ve

anlamalar1 da gelistirilmis ve arastirilmistir.

Tasar1 tabanli arastirma modelinin ikinci asamasinda olusturulan sinirli
O0grenme teorisi ve tasarlanan 6gretim dizisinin uygulanma siireci gergeklesir
(Gravemeijer & Cobb, 2006). Pergel ve ¢izgeg kullanilarak yapilan tiggenlerin
insas1 yardimiyla 6grenme siireci gerceklestirilir. Uggenlerin insas1 etkinlikleri
Smart (1998) tarafindan tavsiye edilen dort asama kullanilarak uygulanmistir.
Birinci asama analizdir. Problem icerisinde belirtilen geometrik sekille ilgili
bilinen, bilinmeyen ve gerekli durumlar belirlenir. ikincisi insa asamasidir.
Problem durumunda belirtilen geometrik sekil pergel ve ¢izgec kullanilarak
olusturulur. Ugiinciisii ispat asamasidir. Ogrenciler olusturduklar1 seklin
problem durumunda belirtilen sekil oldugunu ispatlarlar. Sonuncusu tartisma

asamasidir. Olas1 ¢éziimler, durumlar, insa adimlar1 ve ispat siiregleri arastirilir
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ve tartigilir. Bu siire¢ arastirma takimi tarafindan takip edilmis, incelenmis ve

aragtirma i¢in ¢ikarimlar yapilmustir.

Son asamada ge¢cmise yonelik analiz yapilir. Bu asamada iki temel
ama¢ vardir; Ogrencilerin 0grenmelerinin arastirilmasi ve smirli 6grenme
teorisinin ve varsayima dayali 6grenme rotasinin test edilerek gelistirilmesidir.
Tasarlanan 6grenme ortami toplanan veriye gore test edilir, degistirilir ve
yeniden diizenlenir. Pilot calisma tamamlandiktan sonra ge¢mise yonelik analiz
teknigi yardimiyla gerekli diizenlemeler yapilarak ana uygulamada
kullanilacak olan varsayima dayali 6grenme rotasi olusturulmus ve sonrasinda
23 ortaokul matematik Ogretmeni adayindan olusan bir gruba katilimcilarin

matematiksel uygulamalarini belirlemek amaciyla uygulanmastir.
Katilimcilar

Arastirmaya toplamda ilkdgretim matematik 6gretmenligi programina
kayith kirk alt1 tiglincii smif 68renciden olugsmaktadir. Bu 6grenciler pilot ve
ana caligma gruplarmni olusturmak iizere iki gruba ayrilmistir. Pilot ve ana
calisma gruplarinda yer alan yirmi ii¢ 6grenciden {i¢ tanesi arastirma takimini
olusturmak amaciyla rasgele secilmistir. Ayrica, arastirmaci (ayni zamanda

smifin egitmeni) ve sahit gézlemci de arastirma takimlarinda bulunmustur.
Veri Toplama

Aragtirma verileri pilot ¢calisma ve ana uygulama olmak tizere iki makro
dongilide uygulanan 6gretim dizisinin uygulanmasi siirecinde arastirma grubu
ve toplu sinif tartismalarinin video kayitlari, katilimer ve katilimci olmayan
gbzlemci kayitlari, kiigiik grup calismalarinin ses kayitlari, arastirmaci notlari,
yazili dokiimanlar ve 6n ve son goriisme kayitlar1 gibi bircok kaynaktan

faydalanarak toplanmustir.
Veri Analizi

Smif i¢i matematiksel uygulamalarin belirlenmesi i¢in veriler gomiilii
teorinin analiz teknigi olan siirekli karsilastrmali analiz teknigi kullanilarak

incelenmistir. Ayrica, matematiksel fikirleri belirlemek icin Toulmin’in
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argiimantasyon modeli de kullanilmigtir. Smif i¢i matematiksel uygulamalara
doniisen matematiksel fikirleri belirlemek amaciyla Rasmussen ve Stephan
(2008) tarafindan gelistirilen tic asamali iki kriterli analiz modeli kullanilmistir.
Bu modele gore ilk tartigma siirecinde iiretilen sonug ciimlesi ilerleyen siirecte
Toulmin’in modelinin diger kisimlarda yer alarak matematiksel uygulama

haline gelmektedir.

Arastrma verileri kullanilarak yapilan analizlerin gecerligi ve
giivenirligini saglamak amaciyla c¢esitli yontemler kullanilmistir. Veri
cesitlemesi kullanilarak ortaokul matematik 6gretmeni adaylarinin ti¢ggenler
konusuyla ilgili 6grenmeleri incelenmistir. Gozlem, miilakat, dokiiman ve
bulugmalarla cesitli yontemlerle veriler toplanmistir. Ayrica, liye kontrolii
kullanilarak verilerin analizi neticesinde yapilan yorumlar tartisilmig ve
sorgulanmistir. Ayrica, analiz sonucglar1 ayrmtili ve zengin agiklamalar

kullanilarak bulgular tartisilmis ve sunulmustur.

Sonuc¢ ve Tartisma

Bireysel 6grenmelerin ve sosyal 6grenme ortamlarinin igerildigi toplu
o0grenme ortaminda gerceklesen toplu smif tartismalar1 incelenerek smif igi
matematiksel uygulamalar belirlenmistir. Diger bir ifadeyle, amag¢ toplu
tartigma ortamlarindaki matematiksel uygulamalarin belirlenmesi ve nasil
gelistirilip paylasilarak-alinan haline geldiginin belirtilmesidir. Bu yolla,
calisma ortaokul matematik G6gretmeni adaylarinin van Hiele geometrik
diisiinme ve problem tabanli 6grenme stratejine gore hazirlanan derslerde

iicgenler konusundaki 6grenmelerinin nasil gergeklestiginin incelenmesidir.

Bu calismada ortaokul matematik Ogretmeni adaylarmnin probleme
dayal1 oOgrenme strateji kullanilarak ve geometrik insa etkinlikleriyle
desteklenerek hazirlanan 6grenme ortamlarinda ticgenler konusuyla ilgili konu

alan bilgilerini nasil gelistirdikleri incelenmistir. Toplu smif tartigmasi
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siirecinde gergeklesen argiimantasyonlar katilimeilarin  iicgenlerle ilgili
kavramsal bilgilerini gelistirmistir. Ornegin, katilimcilar baslangigta iicgeni
tanimlarken tiggenin gerekli kritik yon ve 6zelliklerini tam ve dogru bir sekilde
icerildigi tanimlar olusturamamiglardir. Fakat argiimantasyon siirecinde,
katilimcilar birbirlerinin tanimlarint inceleyerek eksik ve ilgisiz kisimlarmi
belirlemiglerdir ve sonrasinda kritik Ozelliklerin dogru ve beklenen sekilde
iligkilendirilerek kullanildigi dogru ve tam iiggen tanimina ulagmislardir.
Ortaokul matematik 6gretmeni adaylarmin tggenlerle ilgili olusturduklar
matematiksel uygulamalar incelendiginde, argiimantasyonlardan olusan bu
tartigma siirecinin onlarin geometrik diistinme diizeylerini ve tiggenlerle ilgili
bilgilerini gelistirdigi gdriilmiistiir. Onceki ¢aligmalarda elde edilen bulgular bu
sonucu desteklemektedir ¢iinkii Olkun ve Toluk (2004) smif i¢i tartigmalarin
ogrencilerin geometrik diisiinmelerini gelistirdiklerini belirtmistir. Ayrica,
literatiirde yer alan ge¢cmis calismalar, arglimantasyon igeren smnif igi
tartigmalar kritik diislinerek ve iddialar1 dogrulayarak olusturulan bilimsel
diisiinme, problem ¢6zme, bilgi liretme ve kavramsal anlama gibi becerileri
gelistirdigini gostermislerdir (Abi-EI-Mona & Abd-EI-Khalick, 2011; Duschl
& Osborne, 2002; Jim enez-Aleixandre ve ark., 2000; Jonassen & Kim, 2010;
Osborne, Erduran, & Simon, 2004; Zembaul-Saul, 2005). Bu acidan,
argiimantasyon Ogrencilerin sdylemleri, materyalleri ve smif ortammi
olusturmak i¢in iletisim kurduklar1 ve nedensel diisiindiikleri sosyal bir
O0grenme ortami icerisinde 0grencilerin matematik yapmalarini ve iddialarini
tartigmalarini saglamaktadir (Abi-EI-Mona & Abd-EI-Khalick, 2011). Ayrica,
problem ¢6zme etkinliklerindeki argliimantasyonlar egitmenin rollerini, 6gretim
dizisini ve varsayima dayali Ogrenme rotasmmin  gelistirilmesini

desteklemektedir.

Ortaokul matematik 6gretmeni adaylarmin tiggenler konusuyla ilgili
konu alan bilgilerini gelistirmek amaciyla hazirlanan arglimantasyon iceren
sosyal Ogrenme ortamlar1 probleme-dayali 6grenme stratejisi kullanilarak

tasarlanmigtir. Bu agidan, pergel ve ¢izge¢ kullanilarak yapilan geometrik
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sekillerin ingast etkinlikleri kullanilmistir ¢linkii bu etkinlikler ortaokul
matematik 0gretmeni adaylar1 i¢in faydali problem durumlar1 olusturmaktadir.
Ogrencilerin bu etkinliklerle ilk karsilastiklarida sekli nasil olusturacaklarma
karar verememeleri ve zorlanmalar1 onlar i¢in problem durumu teskil
etmektedir (Erduran & Yesildere, 2010). Probleme dayali 6grenme stratejisiyle
kullanilan bu etkinliklerin katilimcilarin geometrik diistinmelerini ve bilgilerini
gelistirdigi goriilmiistlir. Literatiirde yer alan dnceki ¢aligsmalar da probleme
dayali 6grenme stratejisinin 6grencilerin geometrik diisiinme ve bilgilerini
gelistirdigi diisiincesini desteklemektedir (Dochy ve ark., 2003; Cantiirk-
Gilinhan & Baser, 2009; Hodges, 2010). Ayrica, geometrik sekillerin insasi
etkinlikleriyle  olusturulan ~ problem  durumlar1  argiimantasyonlarla
desteklenerek ortaokul matematik dgretmeni adaylarinin {liggenleri etkili bir
sekilde anlamalarmi saglamistir. Bu etkinlikler Smart’in (1998) dort adiml
¢Ozlim agamalar1 kullanilarak gerceklestirilmistir. Bu asamalarda, katilimcilar
problemi analiz etmis, sekli insa etmis, dogrulugunu ispat edip tartismiglardir.
Ayrica, bu asamalar takip edildiginde, geometrik insa etkinliklerinin analiz
etme, degerlendirme, hipotez kurma, organize etme, hipotezi test etme ve
sonuglar1 ispatlama gibi diistinme becerilerini gelistirdigi belirtilmistir (Lim-
Teo, 1997). Bu bilimsel diisinme becerileri tartisma siirecinde
argiimantasyonlar ve ispatlarla desteklendiginde geometrik insa etkinliklerinin
argiimantasyon ve ispat becerilerini gelistirdigi ve {iggenlerin 6grenilmesini
sagladig1 goriilmistiir. Bu ylizden, geometrik kavramlar argliimantasyon ve
ispatlarla desteklenen geometrik insa etkinlikleri kullanilarak ogretilebilir
(Wiley & Voss, 1999). Boylece, fikir ve iddialarn kritik edilmesi, kanit ve
dogrulamalarm degerlendirilmesi ve ornek olmayan durumlarin incelenmesi
gibi beceriler gelistirilebilir (Dochy ve ark., 2003; Cantiirk-Gilinhan & Bagser,
2009; Hodges, 2010). Ayrica, Erduran ve Yesildere (2010) Ogrencilerin
geometrik insa adimlarin1 bazen ezbere ve farkinda olmayarak yaptiklarini
belirtmistir. Bu durumu Onlemek i¢in, argiimantasyonlar ve ispatlar
kullanilmistir ¢linkii her adimi tartisarak sorgulamislardir. Bu yiizden, pergel

ve ¢izge¢ kullanilarak yapilan geometrik insa etkinlikleri planl bir sekilde
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tasarlanip egitmen kontroliinde yapilmis ve tartistlmistir. Pergel ve ¢izgeg
araglar1 iiggenleri dgrenmek igin faydali bir sekilde kullanilmistir. Ornegin,
iicgenleri tanimlarken, tiggenlerin kritik yonii, 6zellikleri ve onlarin arasindaki
iliski pergel ve ¢izge¢ kullanilarak incelenmistir. Uggenin tanimi olabilecek
aciklamalar yapmislar ve bu aciklamalarin dogrulugunu, iiggen tanimi olup
olmadigin1 geometrik insa ve argiimantasyonlarla incelemislerdir. Sonrasinda,
katilimeilar gerekli diizenlemeler yaparak ve birbirlerini ikna ederek dogru
licgen tanimini olusturmuslardir. Bu siirecte, geometrik insa etkinliklerinin
argiimantasyonlari, 6grenmeyi ve ispatlar1 destekledigi goriilmiistiir. Bu
sebeple, Geometrik insa etkinliklerinin geometrik kavramlar1 Ogretirken
bilimsel diistinme becerilerini de gelistirdigi soylenebilir (Spear- Swerling,
2006).

Pilot uygulama sonrasinda gerekli diizenlemeler yapilarak olusturulan
alt1 haftalik bir 6gretim siirecini gdsteren varsayima dayali 6grenme rotasi ana
gruba uygulanmistir. Bu gruba uygulamadaki amag¢ sinif i¢i matematiksel
uygulamalar1 belirlemektir. Bu belirleme siirecinde ¢esitli kaynaklardan elde
edilen verilerden faydalanilmistir. Boylelikle siirecte olusan matematiksel
uygulamalar daha anlasilir hale gelmis ve alti1 haftalik 6gretim siireci daha
derinlemesine olanagi saglamistir. Ayrica, katilimcilarin 6grenme siireci ve
anlamalar1 daha iyi bir sekilde arastirilabilmistir. Sinif i¢i matematiksel
uygulamalar Toulmin’in bilimsel tartisma modeli kullanilarak paylasilarak-
alman bilgilere odaklanilmas1 sonucunda belirlenmistir. Alt1 haftalik 6gretim
dizisinde olusan argiimantasyonlar Rasmussen ve Stephan (2008) tarafindan
gelistirilen yontem ve Glaser ve Strauss (1967) tarafindan Onerilen siirekli
karsilastirmali  analiz teknigi kullanilarak incelenmistir. Bu c¢alismada
belirlenen ortaokul matematik 6gretmeni adaylarinin iiggenleri 6grenmelerini
destekleyen smif i¢i matematiksel uygulamalar sunlardir; {iggenlerin
olusumunun, iicgenlerin elemanlarmin ve bunlarm 6zelliklerinin ve eslik ve

benzerligin diisiiniilmesidir.
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Tablo 1. Sinif i¢i Matematiksel Uygulamalar

Matematiksel Uygulamalar

Matematiksel uygulama 1: Uggenlerin olusumunun sorgulanmas1
e Uggenlerin tanimlarmnin ve siniflandiriimalarmin sorgulanmasi

e Ucgenlerin insasinin sorgulanmasi

Matematiksel uygulama 2: Uggenlerin elemanlarinin ve &zelliklerinin
sorgulanmasi
e Ucgenlerin yardimci elemanlarmin insa edilmesinin sorgulanmasi
e Ucgenlerin yardimci elemanlarinin  bir noktada kesismesinin
sorgulanmasi
e Yardimci elemanlarin noktadashigmin ve bu noktalarin yerlerinin

sorgulanmasi

Matematiksel uygulama 3: Eslik ve benzerligin sorgulanmasi
e Doniisiim geometrisiyle es ve benzer iiggen olusumlarmin
sorgulanmasi

e Aci-Kenar-Kenar eslik/benzerlik kriteri degildir

[Ik matematiksel uygulama, ortaokul matematik dgretmeni adaylarmim
licgenlerin olusumunu sorgulamasidir. Bu siiregte iiggenleri tanimlamak igin
gerekli olan temel elemanlar ve kritik Ozellikler belirlenip ti¢genlerin
olusumlar1 incelenmistir. Bu matematiksel uygulama ile ilgili iki matematiksel
fikir olugsmustur; liggenlerin tanimlamalarinin ve siniflamalarinin sorgulanmasi
ve Tlcgenlerin olusturulmasi. Varsayima dayali Ogrenme rotasinmn ilk
asamasinin amact Uggenleri temel elemanlarini ve tanimlarmi kullanarak
smiflamak ve temel ve yan elemanlarmdan bazilarinin degerleri bilinen
iicgenlerin olusumunun incelenmesidir. Bu asamada katilimcilara iicgenler ve
iicgenlerin olusumuyla ilgili genel bir bakis agis1 ve bilgi kazandirmaktir.
Aragtrmada  belirlenen ilk matematiksel uygulamadaki matematiksel
fikirlerden  birincisi  liggenlerin  tanimlarinin = ve  smiflandirmalarinin
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sorgulanmasi, tiggenlerin tanimi, dik tiggenlerin tanimi ve tiggenlerin diizlemde
ayirdigr bolgelere iliskin bilgiler tartisilarak incelenmistir. Bu matematiksel
fikir ilerleyen haftalarda yer alan etkinlik ve arglimantasyonlarda kullanilarak
paylasilarak-alman  bilgi  haline gelir. Uggenlerin  tanimlarmnm  ve
siniflandirmalarinin sorgulanmasi ile ilgili matematiksel fikir katilimcilarin
dogru iiggen tanimi olusturmalar: siirecinde olugsmustur. Burada, katilimcilar
ticgenlerin kritik 6zellikleri ve bunlar arasindaki iliskiye odaklanarak licgen
tanimiyla ilgili yapilan agiklamalar: tartismislardir. Bu tartisma ve inceleme
stireci geometrik sekillerin insasiyla desteklenerek katilimcilarm birbirlerinin
aciklamalarini ve kritik ozellikler arasindaki iliskiyi incelemeleri daha etkili
hale getirilmeye c¢alisilmistir. Ornegin, katilimcilar pergel ve ¢izgegle
geometrik sekillerin ingas1 etkinlikleriyle ticgenlerin temel elemanlar1 olan kdse
ve kenarlart incelemis bunlarin paralel olmama ve kapalilik 6zelliklerini
belirlemiglerdir. Daha sonra, aym diizlemde dogrusal olmayan ii¢ noktanin
dogru parcalar1 kullanilarak olusturulmasini geometrik sekillerin insasiyla
incelemislerdir.  Ayrica, bu inceleme siirecinin  argiimantasyonlarla
desteklendiginde daha etkili oldugu goriilmiistiir. Katilimcilar birbirlerinin
fikirlerini ve ¢oziim stratejilerini tartisarak iiggenlerin tanimlamasi i¢in gerekli
ve yeterli Ozellikleri belirlemis ve dogru ve tam iiggen tanimini
olusturmuslardir. Onceki ¢alismalarda da yer alan dogru ve tam iiggen
tanimiyla ilgili matematiksel bilgi bu ¢alismada da geometrik sekillerin insasi
ve arglimantasyonlar yardimiyla kazanilmistir (Leiken & Zazkis, 2010; de
Villiers, Govender, & Patterson, 2009; Tsamir, Tirosh, Levenson, Barkai &
Tabach, 2014). Bu agidan, geometrik sekillerin insasinin {iggenlerin tanimiyla
ilgili gerekli ve yeterli kritik ozelliklerin incelenmesinde faydali oldugu
goriilmiistiir. Bu matematiksel uygulamada yer alan ikinci matematiksel fikir
iicgenlerin temel ve yardimci elemanlarinin  bazilarmin  bilinmesi ile
olusturulmasmin sorgulanmasidir. Burada, katilimcilar tiggenlerin temel ve yan
elemanlarindan bazilarmin degerlerini bilerek pergel ve c¢izge¢ kullanarak
geometrik insa yardimiyla bu tliggenlerin ¢iziminin miimkiin olup olmadigni

arastrmiglardir. Ayrica, bu siirecte ticgenlerle ilgili bazi1 teorem ve kurallardan
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faydalanmislardir. Diger bir ifadeyle, liggenlerin elemanlarindan ve diger
geometrik sekiller ve bunlar arasindaki iliskilerden bu {i¢genlerin ingas1
stirecinde faydalanilmistir. Bu silireg ve bulgu literatiirde yer alan Onceki
calismalarin sonuglariyla da paralellik gostermektedir (Erduran & Yesildere,
2010; Karakus, 2014; Khoh, 1997; Kuzle, 2013). Bu yiizden, liggenlerin kritik
ozellikleri, bunlar arasindaki iligki, temel ve yan elemanlar ve tiggen olusumu
siirecinde bunlar arasindaki iliski tiggenlerle ilgili temel bilgi edinmede

faydalidir. Boylelikle, ticgenlerle ilgili baglantisal 6grenme saglanmis olur.

Arastirmada  belirlenen 1ikinci matematiksel uygulama yardimei
elemanlarin ve 6neminin sorgulanmasidir. Bu matematiksel uygulama ile ilgili
matematiksel fikirler sunlardir; yardimci elemanlarin insasi, bir noktada
kesismesi ve bu kesisim noktalarinin ismi ve yeri. Varsayima dayali 6grenme
rotasmnin  ikinci asamasinmn  amact Ug¢genin yardimci elemanlarmin
incelenmesidir. Bu agama siirecinde, bu matematiksel fikirler ile ilgili gerekli
bilgi ve beceri pergel ve cizge¢ kullanilarak yapilan geometrik sekillerin
insasiyla incelenmis ve kazanmilmistir. Varsayima dayali 6§renme rotasinin
ikinci asamasinin uygulandigi 6gretim dizisinin ikinci ve tiglincii haftalarinda
gergeklesen Ogretim  etkinliklerinde katilimcilar  iiggenlerin  yardimci
elemanlarmi incelemislerdir. Oncelikle bu elemanlarm pergel ve c¢izgeg
kullanilarak nasil insa edildigi arastirilmistir. Bu insa siirecinde bu yardimei
elemanlarin olusumu diger geometrik sekillerle olan iliskisi g6z Oniinde
bulundurularak o6grenilmistir. Daha sonra, bu elemanlarn bir noktada
kesismesi geometrik sekillerin insasiyla arastirilmistir. Bu siirecte ortaokul
matematik Ogretmeni adaylar1 liggenlerin yardimci elemanlari, 6zellikleri ve
ilgili teoremleri ispatlariyla gerekli bilgi ve beceriler geometrik sekillerin insast
ve arglimantasyonlar kullanilarak gelistigi goriilmiistiir. Burada, katilimcilar
kenarortaylarin kesisim noktasmin agirlik merkezini, agiortaylarin kesisim
noktasmin icteget cemberin merkezini, orta dikmelerin kesisim noktasinin
cevrel cemberin merkezi ve yliksekliklerin kesisim noktasinin diklik merkezi

oldugunu geometrik sekillerin insasiyla incelemis ve ispatlamislardir. Ayrica,
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bu kesisim noktalarinin yerinin liggen c¢esitlerine gore degisip degismedigini
geometrik sekillerin insasiyla arastirmigs ve ispatlamistir. Burada, iiggenin
diizlemi ii¢ bolgeye ayirdig: diisliniilerek bu noktalarin {iggen gesitlerine gore
hangi bolgelerde yer aldigi arastirilmis ve ispatlanmustir. Ornegin, diklik
merkezinin genis acili tiggenlerde dis bolgede, dik tiggenlerde dik agmin
oldugu kosede ve dar acili liggenlerde iiggenin i¢ bdlgesinde yer aldigini
geometrik  sekillerin  insasiyla  goOsterip matematiksel acgiklamalarla
ispatlamiglardir. Calismada elde edilen bu bulgu onceki caligmalardaki
geometrik bilgi ve ispat becerilerinin gelisimiyle ilgili sonuglarla
desteklenmektedir (Chan, 2006; Napitupulu, 2001; Tapan & Arslan, 2009). Bu
matematiksel uygulamanin olusumu siirecinde ortaokul matematik 6gretmeni
adaylar1 tiiggenin yan elemanlar1 geometrik sekillerin insas1 ve ispatlar
yardimiyla arastirilmistir. Katilimeilarin yan elemanlarla ilgili geometrik
bilgilerinin ve diislincelerinin gelistigi goriilmiistiir. Bu bulgu Onceki
caligmalarin sonuglariyla da desteklenmektedir (Axler & Ribet, 2005;
Cherowitzo, 2006; Clements & Battista, 1992; Dogan & Icel, 2011; Erduran &
Yesildere, 2010; Martin & McCrone, 2003; Smart, 1998).

Calismada elde edilen son matematiksel uygulama {iggenlerin esliginin
ve benzerliginin sorgulanmasidir. Bu uygulama ile ilgili matematiksel fikirler
sunlardir; doniisim geometrisiyle es ve benzer {iggen olusumunun
sorgulanmas1 ve Agi-Kenar-Kenar eslik/benzerlik kriteri degildir. Varsayima
dayali 6grenme rotasinin son asamasi ile ilgili 6gretim dizisinin uygulanmasi
stirecinde, ortaokul matematik 6gretmeni adaylar1 doniisiim geometrisiyle es ve
benzer tiggenlerin nasil olustugu geometrik sekillerin insasi1 etkinlikleriyle nasil
olustugu arastirilmig ve gerekli ispatlar yapilmistir. Ayrica, iicgen ve bu
licgenlerin doniisiim geometrisiyle olusturulan goriintiileri arasindaki iligki
tartisilmistir. Katilimeilar, pergel ve cizgecle geometrik insast etkinlikleri,
arglimantasyon, doniisim geometri ve ii¢cgen tanimi ve kritik Ozelliklerini
kullanarak es ve benzer iicgenler olusturmustur. Uggen ve goriintii iicgen

arasindaki iliski tartigilarak ticgenlerin esligi, benzerligi ve bunlarla ilgili
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kriterler &grenilmistir. Ornegin, Otelemeyle {icgenler belirli bir vektdr
yardimiyla taginmistir. Goriintii iggenin koseleri diger iiggenin koselerinden
vektorler inga edilerek belirlenmistir. Daha sonra, bu kdseler dogru parcalari
yardimiyla birlestirilerek  goriintii  {iggen olusturulmustur. Katilimcilar,
vektorlerin boy, yon ve dogrultularmin ayni oldugunu belirterek goriintii tiggen
olustururken baslangictaki iiggenin konumu digindaki biitiin 6zelliklerinin
korundugunu belirtmislerdir. Geometrik sekillerin insas1 desteklenerek
iicgenlerin esligi ve benzerligi konularmin 6grenildigi goriilmiistiir. Eslik ve
benzerligin donilisiim geometrisiyle O6gretilmesinin faydasiyla 1ilgili benzer
bulgular 6nceki ¢alismalarda da goriilmektedir (French, 2004; Gerretson, 1998;
Paquette, 1971; Park City Math Institute [PCMI], 2010).

Geometrik sekillerin insasi ve probleme dayali 6grenme stratejisi
kullanilarak olusturulan varsayima dayali 6grenme rotasi ve uygulanan alti
haftalik 6gretim dizisinin ortaokul matematik 6gretmeni adaylarmin iiggenlerle
ilgili konu alan bilgilerinin ve geometrik diisiinme diizeyleri iizerindeki etkisini
arastirilmistir.  Bu amagla, ortaokul matematik Ogretmeni adaylarmin
iicgenlerle ilgili etkinliklere katilimlari, paylastiklar1 fikirler, fikirler ve
¢Ozlimlerindeki degisimler incelenmistir. Calismadaki etkinlikler van Hiele
geometri diisiinme diizeyleri diisiiniilerek tasarlanmistir. Yapilan caligmalar
ortaokul matematik 6gretmenlerinin ilk {i¢ seviyenin 6zelliklerini kazanmalar1
gerektigini gostermektedir. Bu agidan, katilimcilar bu 6zellikler diistiniilerek
hazirlanan etkinliklere katilmislar ve etkinliklerle kazandirilmasi amacglanan
bilgiyi argiimantasyonlar yardimiyla o6grenmislerdir. Bu acidan geometrik
sekillerin ingas1 etkinliklerinin ve argiimantasyonlarin 6gretmen adaylarinin
geometrisel  diistinme  diizeylerini  gelistirdigi  belirtilebilir.  Ayrica,
katilimcilarda gergeklesen bilgi degisimleri ve bu edinilen bilgileri farkl
problem durumlarina uyarlama ve kullanmalar1 incelendiginde alti1 haftalik
uygulamanin katilimcilarin tiggenlerle ilgili bilgilerini gelistirdigi ifade

edilebilir.  Boylelikle, geometrik sekillerin ingas1 etkinliklerinin  ve
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arglimantasyonlarin Ogrencilerin geometrik anlama, geometrik diislinme ve

anlamalarini gelistirdigi belirtilebilir.

Van Hiele geometri testinde elde edilen sonuglara gore ortaokul
matematik 6gretmeni adaylarin geometrik diisiinme diizeylerinden ilk {i¢iiniin
Ozelliklerini kazandig1 ve O6gretim dizisi siirecinde bu geometrik diisiinme
diizeylerini gelistirdikleri goriilmiistiir. Onceki c¢alismalarda da ortaokul
matematik 6gretmeni adaylarinin geometrik diistinme diizeylerinin ilk {i¢iinii
kazanmasinin beklendigi belirtilmistir (Aydin & Halat, 2009; Hoffer, 1988;
Pandiscio & Knight, 2010; Spear, 1993). Bu agidan, katilimcilarin geometrik
diisiinme diizeylerinin beklenen seviyede oldugu ve geometrik insa etkinlikleri
ve probleme dayali 6grenme stratejisiyle de bu seviyelerini gelistirdikleri
goriilmektedir (De Villiers, 2003; Giiven, 2006; Napitupulu, 2001). Ayrica,
bunlarla tasarlanan sosyal 6§renme ortaminin katilimcilarin tiggenlerle ilgili

konu alan bilgilerini gelistirdigi de belirtilebilir.
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