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ABSTRACT

SPATIAL 3D LOCAL DESCRIPTORS FOR OBJECT RECOGNITION IN RGB-D
IMAGES

Logoglu, K. Berker
Ph.D., Department of Information Systems
Supervisor : Assoc. Prof. Dr. Alptekin Temizel

Co-Supervisor : Assist. Prof. Dr. Sinan Kalkan

January 2016, [103| pages

Introduction of the affordable but relatively high resolution color and depth synchro-
nized RGB-D sensors, along with the efforts on open-source point-cloud processing
tools boosted research in both computer vision and robotics. One of the key areas
which have drawn particular attention is object recognition since it is one of the cru-
cial steps for various applications. In this thesis, two spatially enhanced local 3D de-
scriptors are proposed for object recognition tasks: Histograms of Spatial Concentric
Surflet-Pairs (SPAIR) and Colored SPAIR (CoSPAIR). The proposed descriptors are
compared against the state-of-the-art local 3D descriptors that are available in Point
Cloud Library (PCL) and their object recognition performances are evaluated on sev-
eral publicly available datasets. The experiments demonstrate that the proposed Co-
SPAIR descriptor outperforms the state-of-the-art descriptors in both category-level
and instance-level recognition tasks. The performance gains are observed to be up to
9.9 percentage points for category-level recognition and 16.49 percentage points for
instance-level recognition over the second-best performing descriptor.

Keywords: Point Clouds, RGB-D, 3D Descriptors
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RGB-D IMGELERDE NESNE TANIMA ICIN UC BOYUTLU UZAMSAL
YEREL TANIMLAYICILAR

Logoglu, K. Berker
Doktora, Bilisim Sistemleri Bolimii
Tez YOneticisi : Dog. Dr. Alptekin Temizel
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Sinan Kalkan

Ocak 2016 ,[103]sayfa

Ucuz ve goreceli olarak yiiksek coziiniirliiklii sayilabilecek, renk ve derinlik bilgile-
rini es zamanl kaydedebilen RGB-D algilayicilarin yayginlagmasi ile birlikte, agik
kaynak kodlu nokta bulutu isleme yazilimlari iizerine ¢alismalarin da artmasi robotik
ve ii¢ boyutlu gorii alanlarindaki ¢aligsmalar1 6nemli 6l¢iide arttirmistir. Bu alanlardaki
bircok uygulamanin onemli adimlarindan biri olmasi nedeni ile, 6zellikle ilgi ¢ceken
konularin en baginda nesne tanima gelmektedir. Bu tezde, 6zellikle nesne tanima ala-
ninda kullanilmak iizere iki adet, {i¢ boyutlu, uzamsal nokta bulutu tanimlayic1 6neril-
mistir; Uzamsal Esmerkezli Yonlii Yiizey Nokta Ciftleri Histogrami (SPAIR) ve Renkli
Uzamsal Esmerkezli Yonlii Yiizey Nokta Ciftleri Histogrami (CoSPAIR). Onerilen ta-
nimlayicilar, birgok halka agik veri kiimesi iizerinde, acik kaynak kodlu "Nokta Bu-
lutu Isleme Kiitiiphanesi” (Point Cloud Library - PCL) iginde bulunan en geliskin
tekniklerle karsilastinlmistir. Gergeklestirilen bu deneyler gostermistir ki, Onerilen
CoSPAIR tamimlayicisi, en geliskin yontemlerden hem kategori hem de ornek sevi-
yesinde dnemli miktarda tistiindiir. Elde edilen bagarim artiginin kategori seviyesinde
9.9, ornek seviyesinde ise 16.49 yiizdelik puana kadar ¢ikabildigi gozlemlenmistir.

Anahtar Kelimeler: Nokta Bulutu, RGB-D, 3B Tanimlayicilar
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CHAPTER 1

INTRODUCTION

Object recognition is one of the major and crucial research areas in computer vision
with applications in surveillance, robotics, medical image analysis, remote sensing
and autonomous driving. It is a challenging task by its nature because of variations
in scale, pose, illumination, viewpoint, imaging conditions, visual clutter, occlusions

and deformation.

Research on object recognition can be analyzed in mainly two categories; 2D methods
which deal with 2D images and videos, and 3D methods which deal with 3D scans
(i.e. point clouds and meshes). 2D object recognition has been a more active research
area in the past few decades thus can be considered rather mature [9, [10]. However,
the trend is changing due to new technologies which make acquisition of 3D data

simpler and cheaper.

Recently, with the introduction of affordable but relatively high resolution color and
depth synchronized (RGB-D) cameras, such as Kinect, a new era has begun in robotics
and 3D computer vision. Correspondingly, efforts on point cloud processing in-
creased significantly. These advancements boosted research in 3D computer vision

thus 3D object recognition.

1.1 Kinect® and 3D Sensors

The game-changer 3D sensor, Kinect® was introduced in 2010. The first version

included an infrared (IR) projector and sensor along with a color camera with a VGA
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resolution. It used structured light technique to sense depth. In 2013, it has evolved
significantly and its core technology has changed to time-of-flight. The details about

the versions are given in Table[I.1]

Table 1.1: Specifications of the Kinect versions.

Kinect v1 Kinect v2
Technology Infrared Structured Light Infrared Time-of-Flight
Color Camera Resolution 640x480 1920x 1080
Depth Camera Resolution 320x240 512x424
Depth Range 0.8-4.0m 0.5-45m
Field of View 57°h. & 43° v. 70° h. & 60° v.

The images obtained by Kinect (and similar sensors) are called RGB-D where “RGB”
represents the three primary color (red, green and blue) channels captured by the RGB
camera and “D” for the depth data. The color camera captures images at 640x480
pixels with 8-bit per channel whereas the depth data is obtained by structured-light
technique that is shown in Figure [I.T| Kinect has an IR projector and an IR sensor.
The IR projector projects a unique IR pattern (the exact pattern used by Kinect is the
one used in Figure [I.T). The pattern is deformed by the shape of the object/scene
which is then captured by the IR camera. The depth information is extracted by

calculating the disparity from the original projected pattern.

The popularity of Kinect has led many companies to produce similar products such
as Intel’s RealSense embedded sensor [11] (Figure[I.2b)) that is targeted for mobile as
well as desktop computers. There is even ongoing work for embedding such sensors
on mobile devices such as smartphones and tablets, e.g., Google’s Project Tango [12]]

tablets which use Infineon’s embedded Real3 time-of-flight sensor (Figure [1.2d).

It is important to note that, besides these aforementioned relatively cheap 3D sensors,
there are (depth-only) ones that are targeted for more demanding applications such
as 360° field-of-view and very high data rate LIDARs (Figure that are used in
“self-driving” cars or laser scanners (Figure [I.2f]) for very high resolution scanning

applications.

The aforementioned advancements on sensor technology boosted the developments in

many computer vision and robotics research areas including object detection, object

2



Object / Scene

Deformed Reflected

Pattern Projected Pattern

IR Projector

Baseline

IR Camera

(IR) Structured Light Pattern

Figure 1.1: Structured light imaging system.

recognition, object tracking, human activity analysis, gesture analysis and ‘“‘simulta-
neous localization and mapping” (SLAM). Among these, object recognition is one of
the most important topics for robotics since it is indispensable for the proper interac-

tion of robots with their surrounding.



LED Vision camera
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(a) Microsoft Kinect v1 (b) Intel Realsense sensor [[11]]

(¢) Microsoft Kinect v2 (d) Infinion Real3 Sensor [[13]]

(e) Velodyne HDL-64¢ [[14] (f) Trimble TX5 laser scanner [[13]]

Figure 1.2: Various 3D sensors.



1.2 Problem Definition

Object recognition can be performed at two different levels: category-level or instance-
level. In category-level object recognition, an object is classified into pre-defined
categories such as cereal box or soda can, whereas in instance-level recognition, spe-
cific instances of the objects such as “Cheerios” or “Pepsi can” are recognized. While
promising results have been reported for category-level object recognition, instance-
level recognition remains a more challenging problem [, 116, [7]. The success of both
object recognition tasks is directly related to the descriptors used thus there have been
tremendous effort in developing 3D descriptors. Among these descriptors, only a few
utilize shape and texture/color information together to take advantage of the color
and depth synchronized data obtained from the aforementioned RGB-D sensors. It
has been shown that such hybrid descriptors perform especially well for instance-level

recognition [[16] although there is much room for improvement.

Object recognition has many challenges; scale, pose, illumination, viewpoint, imag-
ing conditions, visual clutter, occlusions and deformation. Although by using certain
type of 3D sensors (ones that use IR or laser technology) some of these challenges,
such as illumination, can be overcome, most of the challenges still persists. Addition-
ally, instance-level recognition adds further challenges due to similarities between

object instances.

Figure shows some of the challenging situations with captured images from the
datasets used in this thesis. One of the primary challenge in object recognition is
that there are infinite number of viewpoints where an object can be observed from.
Consequently, the observation changes significantly depending on the viewpoint. To
demonstrate, Figure and show how the location of the sensor, and how the
viewpoint around an object drastically affects the observations, respectively. While
for a certain type of object the challenges are many, it can also be challenging to
differentiate certain object types that are similar in shape as shown in Figure
Furthermore, as mentioned before instance-level recognition is even further challeng-

ing since the instances of a certain type of object can be extremely similar as shown

in Figure



bowl_1 -30° bowl_1 - 45°

bowl_1 - 60°

(a) Scans from different sensor locations / heights.

cereal box 1 1 cereal box 1 20 cereal box 1 60

(b) Scans from different viewpoints.
food box 1

(c) Similarity between different object categories.

nature_valley soft baked
_oatmeal_squares_peanut
_butter

nature_valley_granola_
thins_dark_chocolate

nature_valley sweet and nutrigrain_harvest
_salty nut_almond _blueberry_bliss

(d) Similarity between different instances.

Figure 1.3: Challenges of 3D object recognition.
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Additionally, there are challenges that are specific to certain type of sensors used
for capturing the object. Some type of sensors fail to capture depth from reflective
surfaces such as metals as shown in Figure[T.4a]and transparent surfaces as shown in

Figure [I.4b| which makes recognizing these objects extremely difficult due to lack of

data.

food can 3 food can_5 food cup 3 food cup 2

(a) Sensor fail to capture metallic surfaces.

coca_cola
food jar 5 water_bottle_2 softsoap_clear glass_bottle

(b) Sensor fail to capture transparent surfaces.

Figure 1.4: Challenges due to sensor incapability.

1.3 Contributions

In this thesis, we propose a novel 3D descriptor which utilizes shape and color infor-
mation simultaneously - particularly targeting the instance-level object recognition
problem. Along with this descriptor, a shape-only one that can be used with sensors

that lack color data is also proposed.

The proposed descriptors are compared against the state-of-the-art local 3D descrip-
tors that are available in Point Cloud Library (PCL) [18]] and their object recog-
nition performances are evaluated on several publicly available datasets. The ex-
periments demonstrate that the proposed shape+-color descriptor outperforms the

state-of-the-art descriptors in both category-level and instance-level object recogni-

7



tion tasks.

The proposed descriptors are planned to be shared with robot / computer vision com-

munity as open-source software through the Point Cloud Library.

Additionally, the work presented in this thesis has led to the following publication
in Robotics and Autonomous Systems Journal’s special issue on 3D robot perception

with the Point Cloud Library:

e K. Berker Logoglu, Sinan Kalkan, Alptekin Temizel, "CoSPAIR: Colored His-
tograms of Spatial Concentric Surflet-Pairs for 3D object recognition", Robotics

and Autonomous Systems, Volume 75, Part B, January 2016, Pages 558-570,
ISSN 0921-8890, http://dx.doi.org/10.1016/j.robot.2015.09.027.

1.4 Outline of the Thesis

The thesis is organized as follows; firstly, in Chapter[2] the taxonomy for 3D descrip-
tors is presented and the work on each category is discussed. The descriptors that are
popular in literature as well as the ones that are available in the highly popular Point

Cloud Library [19] are further detailed.

Next, the proposed descriptors Histograms of Spatial Concentric Surflet-Pairs and
Colored Histograms of Spatial Concentric Surflet-Pairs are detailed in Chapter 3] A
brief matching performance comparison (visual) with the state-of-the-art descriptors

is also provided.

In Chapter | the common steps in the extraction flow of the proposed and compared
descriptors are detailed. In Section {.1] spatial decomposition of 3D space with k-
d trees along with nearest neighbor search in k-d trees are detailed. In Section
estimation of surface normals which provides the basis for the extraction of proposed
features is explained. In Section [4.3|keypoint selection that are used in the evaluation

of the descriptors are detailed.

Next, in Chapter[5] the proposed descriptors are compared to the state-of-the-art 3D

descriptors and their both category-level and instance-level object recognition per-

8



formances are evaluated on publicly available RGB-D datasets. In Section [5.1] the
method and metrics that are used in evaluating the proposed and compared descrip-
tors are explained. In Section [5.2] the datasets that the experiments are conducted
on are detailed. In Section [5.3] the effects of some design parameters specific to our
proposed descriptors are investigated. In Section [5.4] the effects of various keypoint
selection methods on performance are investigated. In Sections [5.5] [5.6] [5.7|and [5.§]
the performance of the proposed descriptors on the chosen datasets is investigated
and compared to state-of-the-art. In Section[5.9] the extraction and matching times of
the descriptors are investigated. In Section [5.10] the effects of the size of the objects

on the recognition performance are investigated.

Finally, the conclusions and future work are stated in Chapter [6]
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CHAPTER 2

3D DESCRIPTORS

The performance of object recognition is directly related to the descriptors used, and
there have been tremendous effort in developing 3D descriptors. The descriptors can
be categorized mainly into three as point-wise, local and global, based on the size of
the support with respect to the point to be described. In the literature, the taxonomy is
further detailed by Akgul et al. [20] for global 3D descriptors, by Salti and Tombari
(3, 21]] for local 3D descriptors as given in Figure [2.1]and Table [2.1]

Size of the support

Point-wise Local Global

Transform Histogram 2D View Graph

Signatures Histograms Hybrids Based Based Based  Based

Figure 2.1: Taxonomy of 3D descriptors.

The point-wise descriptors are computed directly only on the point to be described
(keypoint). They are simple and efficient however they lack robustness and descrip-
tive power of local/global descriptors. The local descriptors embed characteristics of
the neighboring points of the keypoint within a support (usually a spherical region
with a support radius 7). As a result, local descriptors are more descriptive and robust
to clutter and occlusion. On the other hand, global descriptors are extracted from the
entire object and have the ability to characterize the global shape of the object with

a single vector, thus being compact and efficient. However, they fail to capture the

11



specific details and are not robust to occlusion and clutter.

In the following sections, local and global 3D descriptors are detailed with emphasis

on the ones that are used on experiments (PFH, PFHRGB, FPFH, SHOT, CSHOT)

detailed in Chapter[5]

Table 2.1: Taxonomy of 3D descriptors

Descriptor Category Color
SPIN [1, 22 Local - Histogram No
3DSC [2] Local - Histogram No
FPFH [23]] Local - Histogram No
PFH [24] Local - Histogram No
PFHRGB [[19]] Local - Histogram Yes
ISS [25] Local - Histogram No
KPQ [26] Local - Signature No
3D SUREF [27] Local - Signature No
MeshHoG [28]] Local - Hybrid Yes
SHOT [21]] Local - Hybrid No
CSHOT [29] Local - Hybrid Yes
VFH [4] Global - Histogram Based No
CVFH [30] Global - Histogram Based No
Shape Distributions [31]] Global - Histogram Based No
ESF [32] Global - Histogram Based No
Spherical Harmonics [33]]  Global - Transform Based No
3D Radon Transform [34] Global - Transform Based No
LightField Descriptor [35] Global - 2D View Based  No
Reeb Graphs [36] Global - Gaph Based No

2.1 Point-wise Descriptors

This category of descriptors are computed directly on a single point and based on one

or more characteristics. Examples include normals, triangles and shape indexes. They

are simple to compute and efficient, however they lack descriptiveness and robustness

to noise.
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2.2 Global Descriptors

By Akgul et al. the 3D global descriptors are classified into four; histogram based,
transform based, 2D view based and graph based [20]. Transform based methods uses
signal processing transforms such as Fourier and spherical harmonics. They have the
advantage of being compact. Some of the transform based global descriptors are 3D

Radon [34]] and Rotation Invariant Spherical Harmonics (RISH) [33]].

Histogram based methods share the methodology of accumulating a feature in bins
defined over the feature space thus discarding all the spatial information [20]]. They
are easy to implement as well. Some of the widely known histogram-based global
descriptors are Viewpoint Feature Histogram (VFH) [4], Clustered Viewpoint Feature
Histogram (CVFH) [30], Shape Distributions [31/] and Ensemble of Shape Functions
(ESF) [32].

VFH is basically the global extended version of FPFH that is detailed in Section
In VFH, the statistics of the relative angles between the surface normals at
each point to the surface normal at the centroid of the object (instead of query/key-
points) are used with an additional viewpoint component that is computed by collect-

ing a histogram of the angles that the viewpoint direction makes with each normal.

In [30], Aldoma et al. proposed an extension to VFH to obtain a more robust reference
coordinate frame. The proposed descriptor is called Clustered Viewpoint Feature
Histogram (CVFH). CVFH is in fact a semi-global descriptor; in order to obtain a
more robust reference coordinate frame, first, smooth and continuous regions (C;) are
identified on the surface S of the object and only the points within C; are used to
calculate the reference frame but all the points on S are used to calculate the angular

normal distribution histograms similar to VFH.

Shape Distributions is introduced for content based 3D model retrieval by Osada in
2002 [31]. The proposed descriptor is based on the distribution of distances between
two randomly chosen points on the surface of a 3D mesh, called D2. In the work, D2
is compared with additional shape functions which include; the angle enclosed by two
lines created from 3 randomly selected points (A3) and area of the triangle formed

by three randomly selected points (D3). Wohlkinger and Vincze use these proposed
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shape distributions (D2, D3 and A3) and combine with the idea of Ip et al. [37] i.e.
classifying each of the computed values into three categories based on the connect-
ing lines created by chosen points: ON the surface, OFF the surface and MIXED
[32]. Thus, ESF is composed of 10 concatenated histograms; ON/OFF/MIXED A3
histograms, ON/OFF/MIXED D3 histograms, ON/OFF/MIXED D2 histograms and

a final histogram which is the ratio of line distances D2 between OFF and ON parts.

In the third category, 2D view based, 3D surface is transformed into a set of 2D
projections. Among are Lightfield Descriptor [35] and Ohbuchi et al.’s work [38]. In
the last category, graph based, a graph is built out of the surface which is transformed
into a vector-based numerical description. These methods are complex and hard to

obtain. Reeb graphs [36] are among the 2D view based global descriptors.

2.3 Local Descriptors

While global descriptors are extracted from the entire object and have the ability to
characterize the global shape of the object with a single vector, thus being compact
and efficient, they fail to capture the specific details. On the other hand, local de-
scriptors are extracted from multiple (key)points on the image, therefore they are
more robust to occlusion and clutter. Recently, Salti and Tombari categorized local
3D descriptors into three as histograms, signatures and hybrid methods that can be

categorized as both [3, 21].

2.3.1 Signatures

The descriptors in this category require an invariant Local Reference Frame (LRF)
and encode the 3D neighborhood of the keypoint via geometric measurements com-
puted on the points within the neighborhood. Even though the methods in this cate-
gory are highly descriptive, they are sensitive to noise. KPQ [26] and 3D Surf [27]

are among the most known descriptors that can be categorized into signatures.
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2.3.2 Histograms

The descriptors in this category are accumulators of local topological features accord-
ing to a specific domain (e.g. normal angles, curvatures) [3]. They require a LRF as
signatures if the domain is based on coordinates, otherwise Repeatable Axis (RA).

Compared to signatures, they are (generally) more robust to noise but less descriptive

[3].

The spin images (SPIN) descriptor is one of the most well-known 3D descriptors in
this category that is shown to be useful for object recognition tasks [1]. It was intro-
duced by Johnson in 1997 [22]. It should be noted that, although it has been proposed

for surface polygonal meshes, the adaptation to point clouds is straightforward.

In spin images, an oriented point O = p,n is defined as a point p on the surface of
an object with the normal n of the tangent plane in p. A unique function that is called

spin map maps any oriented point x onto a 2D space («, 3):

Stofa) =+ (@,9) = [\l = ol = (0 e = p)fn- o= p)| . @)

By applying the spin map function to all the points on an object, a spin image is
produced. In Figure [2.2] the spin images calculated from various points on a duck

model is shown.

Another local histogram based 3D descriptor is the 3D Shape Context [2] (3DSC)
which is proposed by Frome et al. and is directly the 3D extension of 2D shape
contexts that is introduced by Belongie et al. [39]. In 3DSC, the support region is
chosen as a sphere centered on the query point. The sphere is oriented such that its
north pole is aligned with the surface normal of the query point. Additionally, the
support region is divided equally in the azimuth and elevation dimensions whereas it

is logarithmically divided along the radial dimension as shown in Figure[2.3]

3DSC lacks a repeatable local reference frame thus Tombari et al. proposed an im-
proved Shape Context method called Unique Shape Context that employs a unique,

unambiguous local reference frame which does not need to compute the descriptor
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Figure 2.2: Spin images (source: [1]]).

Figure 2.3: 3D shape context support radius (source: [2]]).

over multiple rotations on different azimuth directions [40].

2.3.2.1 Point Feature Histograms (PFH)

Point Feature Histograms (PFH) was introduced by Rusu et al. in 2008 as a local de-
scriptor for searching correspondences in 3D point clouds [24]. It is a pose-invariant
feature based on geometrical relations of a point’s nearest k-neighbors. The geomet-
rical relations are computed from relative orientations of surface normals between

point pairs. The main steps for computing a PFH descriptor are:
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e For each point p at which a descriptor is to be extracted, the k-neighboring

points within a sphere of a radius r are selected.

e For every pair of points in the sphere, 3 surflet-pair-relation features [41] are
calculated (although there are 4 features defined in [41], the fourth feature, the

distance between the pairs, is not used since it changes with the viewpoint).

e Histograms of the relations are calculated. Each of the 3-relations is summa-
rized into a 5-bin histogram, and their joint-histogramming yields 5% bins in

total.

Since PFH considers surflet-pair-relations for every pair of points inside a sphere
with radius 7, the computational complexity is O(k?). In other words, for dense
point clouds, the time required for extracting PFH descriptors is prohibitively high
for practical applications [3} 16} 23]].

Figure 2.4: The influence region diagram for PFH.

2.3.2.2 Colored Point Feature Histogram (PFHRGB)

PFHRGB is an extension of the PFH. It includes three more histograms in addition to
those in PFH. These additional histograms represent the ratio between color channels

of point pairs, thus bringing the total size of the descriptor to 250 [19]. Adding color
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information has been shown to increase the performance of PFH [16] but PFHRGB

suffers from the same drawback as PFH, i.e., being computationally expensive.

2.3.2.3 Fast Point Feature Histograms (FPFH)

Fast Point Feature Histograms is an improvement over PFH in the sense that the com-
putational complexity is reduced down to O(k) from O(k?) [23]. This is achieved
by generating the histograms from the relations between only a point and its k-
neighboring points inside the support radius 7, instead of analyzing relations between
all pairs inside the spherical support. This is called Simplified Point Feature His-
togram (SPFH). To re-compensate for the missing connections (compared to PFH
where all the point-pairs contribute to the descriptor), the SPFHs that are extracted
at the neighbors of a point p are weighted and summed according to their spatial

distance:

k
1<~ 1
FPFH(p) = SPFH(p) + ¢ ;1 o SPFH(p), (2.2)

where the weight w; represents the distance between source/query point p and a
neighbor point p;. It should be noted that SPFH values should be calculated for all the
points on the surface to be described and the effective radius implicitly becomes 2r
since additional point pairs outside the r radius are included as well. Although being
significantly faster than PFH and PFHRGB [16], FPFH was shown to be an order of
magnitude slower than its alternatives, e.g., SHOT [3]. Moreover, FPFH lacks color

information.

2.3.3 Hybrids

SHOT [21]], CSHOT [29] and MeshHoG [28]] are among the local 3D descriptors that

encode a signature of histograms thus being hybrids.

2.3.3.1 Signature of Histograms of Orientations (SHOT)

Signature of Histograms of Orientations (SHOT) was introduced by Tombari et al. [3,

21]]. For extracting a SHOT descriptor, first, a robust, unique and repeatable 3D Local
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Figure 2.6: Influence region diagram for FPFH.
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Reference Frame (LRF) is calculated around the source/query point. Then, a spherical
grid that consists 32 volume segments (eight divisions along the azimuth, two along
the elevation, and two along the radius) is centered at the point. For each of these
volume segments, histogram of the angle between the normal of the source/query
point and the points inside the segment is calculated. Finally, all the 32 histograms
are concatenated to create the descriptor. SHOT descriptors have been shown to be

rotation invariant and robust to noise [3}, 21]].

Figure 2.7: SHOT support structure (source: [3]]).

2.3.3.2 Color-SHOT (CSHOT)

Color-SHOT (CSHOT) combines shape information extracted by SHOT with a tex-
ture signature [29] in order to incorporate the color information. To extract texture,
the L, — norm of the color triplets are binned into histograms. For this purpose,
CIELab color space was chosen over RGB since it is perceptually more uniform.
CSHOT has been reported to perform better than SHOT due to the supplementary

color information [3, 16].
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CHAPTER 3

PROPOSED DESCRIPTORS: SPAIR AND COSPAIR

Among the aforementioned 3D descriptors in Chapter [2] only a few utilize shape and
texture/color information jointly to take advantage of the data obtained from the RGB-
D sensors; the MeshHOG proposed by Zaharescu et al. [28]], the colored version of
the Point Feature Histograms (PFH), called PFHRGB [19, 24], and the color/texture
enhanced version of Signature of Histograms of Orientations (SHOT), called CSHOT,
proposed by Tombari et al. [29].

Additionally, recently, a comparative evaluation of 3D descriptors that are available in
Point Cloud Library (PCL) [19] has been presented by Alexandre [16]. According to
this analysis, CSHOT [29] and PFHRGB [19] which use color information in addition
to shape, are the best performing descriptors, followed by the shape-only SHOT [3,
211, PFH [24]] and FPFH [16]. It was also shown that PFHRGB and CSHOT are the
best performing descriptors for object recognition using RGB-D data [3]. Another
important point is that, in instance-level object recognition there is significant room

for improvement.

Thus, to further improve recognition performance in computer/robot vision tasks,
in this thesis, two new descriptors are proposed. The first one utilizes only shape
information and is called Histograms of Spatial Concentric Surflet-Pairs, whereas
the second one utilizes shape and color information jointly and is called Colored

Histograms of Spatial Concentric Surflet-Pairs.

21



3.1 Histograms of Spatial Concentric Surflet-Pairs (SPAIR)

Histograms of Spatial Concentric Surflet-Pairs (SPAIR) is based on surflet-pair-relations
similar to PFH and FPFH where a surflet is defined as an oriented surface point and

surflet-pair-relations as geometric relations between two surflets by Wahl et al. [41].

As described in Section [2.3.2.3] Rusu et al. used a method called Simplified Point
Feature Histogram (SPFH) that relies on the comparison of source/query point/surflet
with only the direct k-neighbors (not all the pairs) inside a spherical support. Further-
more, in order to add spatial information, a special weighting scheme was used in

FPFH as formulated in Equation [2.2]

With SPAIR, we aimed for a simpler thus faster method which requires fewer number
of point-pair comparisons while adding more spatial information by encoding the

geometrical properties of a point’s neighborhood according to distance from the point.

As shown in Figure in our approach, the support radius r is divided into N equal
size (ry, 19, ..., ) regions. The resulting 3D grid can be visualized as N concen-
tric spheres. For each distinct spherical shell (i.e., the region between two adjacent
spheres), which we name as a level (L1, Lo, ..., Ly), the surflet-pair-relations between
the points inside a level and the source/query point (see Figure are calculated as
follows [23,141]]:

e Let p, be the source/query point that SPAIR is to be extracted for, p, be one of

the target points inside a level and 7, 7i; the corresponding normals.

e A fixed reference coordinate uvw frame is defined as shown in Figure (3.3|

following [4]:

U = s, 3.1
U= (p: — Ps) X 1, (3.2)
W=1xT (3.3)

e Using the reference frame defined above, the angular relations between surflets
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Figure 3.1: Concentric spherical regions and stitching of the histograms to construct

SPAIR descriptor.
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Figure 3.2: Influence region diagram for SPAIR/CoSPAIR.
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are calculated as follows:

a =01, (3.4)

o= T PP, (3.5)
IP: — Pl

0 = arctan (W - 7, U - ) , (3.6)

where o € [—1, 1] represents 7i; as the cosine of a polar angle, ¢ € [—1,1] is
the direction of the translation from p; to p;, # € [—m, 7| corresponds to 77, as

an azimuthal angle.

v:(pt _ps)xl_j

W
Figure 3.3: The reference coordinate uvw frame and the angular relations between

surflets (adapted from [4]).

Then, the three values for the angles («, ¢, #) in Equations are binned

into separate histograms:

H.(b)=)6 ( _%a(pt,ps)BJ - b) , 3.7)
Hyb) =)0 < _%eb(pt, ps)BJ - b) : (3.8)
Hy(b) =) 6 ( _%Q(pt,ps)BJ - b> : (3.9)

where [ is the level for which the histogram is being computed, 6() is the Kronecker

delta function, b is the bin index of a histogram, and B is the total number of bins.
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When calculations are finalized for all the defined surflet-pairs, the histograms H, é,

H!, and H} are normalized using the number of distinct points in each level:

H.(b) = éH&(b), (3.10)
A 1
HL(b) = EHé(b), (3.11)
A 1
Hy(b) = &7 Ho(b), (3.12)

where C! is the number of points in level I.

The resulting SPAIR descriptor vspar is the concatenation of all the histograms in

an order based on their distances to the center point:

vsparr = Ho @ HY® HY © .. HY © HY @ 0, (3.13)

where & denotes concatenation. Figure [3.1|illustrates the levels inside the concentric

sphere borders and stitching of the corresponding histograms.

3.2 Colored Histograms of Spatial Concentric Surflet-Pairs (CoSPAIR)

It has been reported that adding color/texture information improves the performance
of various descriptors considerably [3} 5,16} 42]. With this motivation, we modified
SPAIR such that it encodes color as well as shape, and called it Colored Histograms

of Spatial Concentric Surflet-Pairs (CoOSPAIR).

In CoSPAIR, color/texture and shape information is encoded at each level of the
SPAIR descriptor as shown in Figure [3.4] In our experiments, three different color
spaces; RGB, HSV and CIELab have been tested. Additionally, for each color space,
two different algorithms have been evaluated: (i) Using simple color histogram of
each color channel. (ii) Using histogram of L.; — norm of point pairs for each color
channel. Our experiments (see Table [3.1]) indicated that the best results are obtained
by using simple color histograms in the CIELab color space for each channel at each

level. This resulted in a descriptor that has 3 sub-features for both shape and color for
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each level:

vcospAIR:HS@H@@I&Q@FIE@EIQ@PI&@... 3.14)
oYeHY e o) o Y o AY o HY. '

where & denotes concatenation and L, a, b denotes the CIELab color components.

L

L,

Ls

L
LLLL e . b L b,
Shape Component Color Component Shape Component Color Component

Ln

Figure 3.4: Concentric spherical regions and the stitching of shape and color his-

tograms for the extraction of CoSPAIR.

Although the performance of the proposed descriptors will be detailed in Chapter [5]
the matching success of the descriptors can be seen and compared to some of the

compared descriptors (FPFH, SHOT and CSHOT) in Figure [3.5|and Figure [3.6
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(a) CSHOT

(b) CoSPAIR

Figure 3.5: Descriptor matching results - detergent
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(c) SHOT

(d) SPAIR

Figure 3.5: Descriptor matching results - detergent (cont.)
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Table 3.1: Average accuracy results for different color components. The tests were
conducted in Dataset 1 (see Section @)

Category Level Instance Level

RGB 93.63 81.76
RGB-1, 91.74 82.64
HSV 91.40 76.31
HSV-L, 86.46 64.61
CIELab 94.34 83.10
CIELab-L, 86.25 64.23

(e) FPFH

Figure 3.5: Descriptor matching results - detergent (cont.)
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(a) CSHOT

(b) CoSPAIR

Figure 3.6: Descriptor matching results - kong duck dog toy
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(c) SHOT

(d) SPAIR

Figure 3.6: Descriptor matching results- kong duck dog toy (cont.)
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(e) FPFH

Figure 3.6: Descriptor matching results - kong duck dog toy (cont.)
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CHAPTER 4

DESCRIPTOR EXTRACTION FLOW

The steps for extraction the SPAIR and CoSPAIR descriptors are same and given in
Figure The first three steps also apply to the descriptors that are compared in
Chapter 5] therefore detailed below.

RGB-D
Image
Y
K-d Tree Keypoint Calculation of .
; > ; > Surface Descriptor
Generation Selection
Normals
A
For each Concatenate
keypoint in order
A For each Caloulat
Define a search | level acuiate
. . surflet-pair-
radius and split .
. relation
into levels .
histogram

Figure 4.1: Extraction flow of SPAIR / CoSPAIR.

4.1 Spatial decomposition with K-d trees

The proposed as well as compared local 3D descriptors need to access a number of
neighboring points P* to understand and represent the geometry around a query point
py- Thus, one needs algorithms to search P* as fast as possible, without re-computing

distances between each point every time. Spatial decomposition techniques such as
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k-d tree (k-dimensional tree) [43]] or octree [44]] are solution to such problems. These
techniques partition the point cloud data P into piles, such that searching and indexing

of the points in P can be accomplished quickly and efficiently.
In general, there are two use cases for the determination of P* for a query point p,
[45]]:

1. Query the closest k neighbors of p, (k search)

2. Query the k neighbors of the p, within a radius r (radius search)

For these tasks, within the context of this thesis, k-d tree method is used for spatial

decomposition of the point clouds.

The k-d tree method is introduced by Jon Bentley in 1975 [43]. Although it is a
fairly old algorithm and there exist many more spatial decomposition algorithms in
literature, k-d tree and its variants remain probably the most popular. It is in gen-
eral a binary search tree (BST) that stores points in k-dimensional space. K-d trees
recursively and hierarchically decompose a region of space, creating a binary space

partition at each level of the tree.
As an example, Figure [#.2] shows a 3D space partitioned by a 3D k-d tree.

The most known method to construct a k-d tree is as follow:

e The point is represented by the set of nodes in the k-d tree.

e Divide the points in two in half. All the points in the “right” subspace are
represented by the right subtree and the points in the “left” subspace by the left

subtree.
e Recursively construct k-d trees for the two sets of points (cycle through the axes
used to select the splitting planes in round-robin fashion).
In Figure 4.3|a set of points in 2D space and the related constructed k-d tree is shown.

Note that, k-d trees are known to be inefficient as the number of dimensions increase

above three [46]].
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(a) 3D k-d tree (image from Wikimedia (b) 3D k-d tree on a mug (image source: [17])

Commons)

Figure 4.2: Partioning of 3D space with 3D k-d trees.

10

Figure 4.3: Example construction of a 2D k-d tree (image from Wikimedia Com-

mons).
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4.1.1 Nearest Neighbor Search in K-d Trees

To find the k points in the tree that are nearest to a given input point ¢, the nearest
neighbor search (NN) algorithm is used. The NN search can eliminate significant
chunks of the search space via the hierarchical subdivision structure of the tree yield-
ing an efficient search. The NN search on k-d trees is performed in two stages via a

backtracking, branch-and-bound search:

e In the first stage, the tree is traversed from top to bottom to find the bin (d
dimensional) that contains the query point ¢q. Then, the distances between ¢ and
the points in the bin are calculated for an initial approximation of the nearest

neighbor.

o In the backtracking stage, the tree is traversed from bottom to top searching for

potential points that are closer to ¢ than current best.

For low-dimensional spaces, this process can be effective since small-number of leaf
visits is usually enough. However, for higher dimensions the performance can de-
grade significantly. In order to reduce memory usage and increase speed in high-
dimensional cases, approximate nearest neighbor (ANN) algorithms are used in prac-
tice. However, this type of algorithms don’t ensure to access the exact nearest neigh-

bor every time.

4.2 Normal Estimation

Estimating surface normals is one of the most crucial steps of many object recognition
tasks as well as many computer graphics applications. There exists many methods
for estimating surface normals. The existing methods are analyzed and compared by
Klasing et al. for 3D point clouds [47/]. In the work, the existing methods are divided
into two as optimization-based and averaging. After a detailed analysis and compar-
ison, the method that is dubbed as PlanePCA is stated to be superior in performance

in terms of both quality and speed.

In this thesis, the surface estimation method that is implemented in the PCL library
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is used. The method is developed by Rusu and is detailed in [45]. It is one of the
simplest methods and is based on the first order 3D plane fitting where determining
the normal to a point on the surface is approximated by estimating the normal of a
plane tangent to the surface, thus leading to a least-square plane fitting estimation
problem. Therefore, the solution for estimating the surface normal is reduced to anal-
ysis of the eigenvectors and eigenvalues of a covariance matrix created from the %
neighborhood (P*) of the query point pq- For each point p;e P, the covariance matrix

C is assembled as follows:

k
C= 2 =P -m) (“.1)
C -0, =\ -05,7e{0,1,2}, (4.2)

where k is the number of point neighbors considered in the neighborhood of p;, p
represents the 3D centroid of the nearest neighbors, A; is the j-th eigenvalue of the

covariance matrix, and v; the j-th eigenvector [45].

In general, the orientation of the normal 77 computed with the above method is am-
biguous since there is no mathematical way to solve the sign of it. This may lead
non-consistent orientation of normals over an entire point cloud dataset. However,
the solution to this problem is trivial if the viewpoint V), is known; which is the case
for Kinect like 2.5D cameras that are used in this thesis. To orient all normals 77,

consistently towards the viewpoint V},, they should satisfy the equation [43]:
n; - (V, —pi) > 0. 4.3)

The outcome of the explained normal estimation method is given in Figure 4.4 where

the estimated normals are shown as black lines.

4.3 Keypoint Selection

Due to the computational complexity to extract 3D features, to prevent excessive
amount of time that is required to extract them from each point in a cloud, they should
be extracted from a smaller set of points. To achieve this, algorithms which detect

keypoints 1.e. interest points that stand out are used. A proper 3D keypoint detection

39



_"’/’ ’f’rf/ »

i
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Figure 4.4: Estimated normals for various objects (support radius = 1 cm).

method should extract repeatable keypoints under viewpoint changes, missing parts,

point density or topology variations, clutter and sensor noise [48]].

Although there are many 3D keypoint detection methods exist in literature, Intrinsic
Shape Signatures (ISS3D) has been reported to stand out for its performance, repeata-
bility and efficiency [48], 49, 50]. Therefore, in this thesis, it is used as the primary
keypoint detection method in our experiments. Additionally, to observe the effect
of keypoint detectors on the performance of descriptors (Section [5.4), Harris3D and

uniform sampling methods are used, hence explained further below.

4.3.1 Intrinsic Shape Signatures

Intrinsic Shape Signatures (ISS) is introduced by Zhong in 2009 [25]]. ISS, S; = F;, f;
at a point p; consists of two components; the intrinsic reference frame (F;) and the

3D shape feature vector (f;).

ISS is based on Eigenvalue Decomposition (EVD) of the weighted scatter matrix

(cov(p,)) of the points within a point p’s support. It possesses two significant traits:
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e To include only points with large variations along each principal direction, it

uses the magnitude of the smallest eigenvalue.

e To avoid detecting keypoints at points that show a similar dissemination along

the principal directions, it uses the ratio between two consecutive eigenvalues.

The scatter matrix within a distance ryrame is computed as:

covlp) = Y wilp—p)p—p)'/ Y, w44

ijfpi|<7'f7‘ame |pj7pi|<rf7‘ame
where
W; = l/Hpj : ’pj _pi’ < Tfmme”- (45)

Then, the scatter matrix’s eigenvalues A}, A\?, \? are computed in the order of decreas-

(2

1.2 .3
i1€is €.

ing magnitude together with their eigenvectors e

During the elimination stage, points whose ratio between two consecutive eigenvalues

is below a threshold are kept:

Aa2(p) _ As(p)

—— < Thig N —=% < Thag, 4.6
Mp) < The A3y < Thes (*0)

to avoid detecting keypoints at points that show a similar dissemination along the

principal directions.

And lastly, to include only points with large variations along each principal direction,
among remaining points, the saliency is determined by the magnitude of the smallest

eigenvalue:

pi = A, 4.7)

(3

4.3.2 Harris3D

The original Harris method that is introduced by Harris and Stephens in 1988 is a
corner and edge based method [S1]. The algorithm uses pixel gradients and their

changes in the horizontal and vertical directions.
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For 3D domain, in PCL [[19]], the algorithm is adjusted to work with surface normals.
It replaces the pixel intensity gradients in the covariance matrix (C'ov) by surface
normals but uses the same response function. The keypoints response () measured

at each point is then defined by [49, 50]:

r(z,y,z) = det (Cov (z,y,2)) — k (trace (Cov (z,y, 2)))* 4.8)

where k is a positive real valued parameter that works as a lower bound for the ratio
between the magnitude of the weaker edge and the stronger edge. In addition, to
prevent detecting too many keypoints that pile closely, a non-maximal suppression
on the keypoints response is (usually) carried out to suppress weak keypoints around

the stronger ones [S0].

4.3.3 Uniform Sampling

Uniform sampling is in fact not a keypoint detection method, but rather used for
selecting a subset of points of a point cloud. This method is used for observing the

effect of keypoint selection algorithms on the performance of descriptors in Section

5.4

In this thesis, the uniform sampling algorithm that is implemented in PCL is used.
The algorithm creates a 3D voxel grid over the input point cloud data and then, in
each voxel all the points present are approximated (i.e., down-sampled) with their

centroid.

The results of the explained keypoint selection methods, ISS3D, Harris3D and uni-
form sampling for leaf size of 1 cm and 2 cm are given in Figures 4.5 .6/ and
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(a) Harris3D

(b) ISS

(d) Uniform sampling - 2 cm

Figure 4.5: Results of various keypoint detection methods for scissors 1.
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(a) Harris3D (b) ISS

(c¢) Uniform sampling - 1 cm (d) Uniform sampling - 2 cm

Figure 4.6: Results of various keypoint detection methods for haagen dazs

cookie dough.
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(a) Harris3D

(b) ISS

(d) Uniform sampling - 2 cm

Figure 4.7: Results of various keypoint detection methods for f1ashlight
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter the proposed descriptors are evaluated and compared with the state-of-
the-art 3D descriptors. Both category-level and instance-level object recognition per-
formances are evaluated on publicly available RGB-D datasets. First, in Section 5.1}
the evaluation method and metrics are explained. Then, in Section @ the datasets
are detailed. In Section[5.3] the effect of design parameters of SPAIR and CoSPAIR
is investigated. In Section [5.4] the effect of various keypoint selection methods on
performance is investigated. In Sections[5.5] [5.6] [5.7and [5.§] the performance of the
proposed descriptors on the chosen datasets are investigated and compared to state-
of-the-art. In Section [5.9] the extraction and matching times of the descriptors are
investigated. And lastly in Section [5.10} the effects of the size of the objects on

recognition performance are investigated.

5.1 Evaluation Method and Metrics

We have compared the proposed descriptors against the state-of-the-art local 3D de-
scriptors that are publicly available in the Point Cloud Library (PCL) [19]: PFH [24]],
PFHRGB [19], FPFH (23], SHOT [3, 21] and CSHOT [29]. The same testing proce-

dure, which is summarized in Figure[5.1] is used for evaluating the descriptors.

For all the conducted tests/experiments, the surface normals are estimated with a
search radius of 1 cm as in [16]. Then, the datasets used in the tests are split into
a query set and a reference set depending on the test scenario. In this thesis, two

different scenarios that are proposed in [3] are used:
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Reference Keypoint Descriptor Refergnce
. . Descriptor
Scans Extraction Extraction
Database
4
Query Keypoint Descriptor Matching and
Scan Extraction Extraction Voting

Figure 5.1: The standard procedure for evaluation of the descriptors.

1. Leave-sequence-out: Test and train sets are chosen to be from scans with dif-

ferent camera heights.

2. Alternating contiguous frames: The video sequences from different heights are
divided into three contiguous sequences of equal length. Since there are three
heights (videos) for each object in the datasets used, this gives nine video se-
quences for each object. Seven of these are randomly selected for training and

the remaining two for test. Ten trials are performed and the results are averaged.

At the matching phase, the query descriptors are brute-force matched to the nearest
descriptor in the reference descriptor database (see Figure using Euclidean norm

(L* — norm) and the final decision is made via a majority rule [52] as follows:

K
D(X) = argénaxz I(fi(X)=C), (5.1)
=1

where C' is the class label, X is the object to be classified, f is a keypoint, K is
the total number of keypoints on the query object and D is the final decision. For the
Matching and Voting stage, OpenCV library [33]] is used whereas for all the remaining
stages, Point Cloud Library [19] is used. The performance of the descriptors are

calculated as average accuracy, i.e., the average per-class effectiveness [54]:

(5.2)

1i TP, + TN,
L “=TP,+FP,+ FN; + TN,

where L is the total number of class labels and T'P, T'N, F P, F'N are true positives,
true negatives, false positives and false negatives, respectively. For extracting/de-

tecting the keypoints, we have chosen the Intrinsic Shape Signatures 3D (ISS3D)
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method [25], which is available in the PCL library. ISS3D has recently been shown
to be among the top performing methods and it was reported to stand out for its per-
formance, repeatability and efficiency [48, 50]. Our experiments also confirm these

findings as detailed in Section[5.4]

5.2 The Datasets

The experiments were conducted on three different object recognition datasets in four
configurations. The first dataset is the well-known RGB-D Object Dataset introduced
by Lai et al. in 2011 [5]]. This dataset was used in two different configurations. The
first configuration is a subset that had been used by Luis A. Alexandre [[16]. This sub-
set is used for optimization and comprehensive analysis. The second configuration of
this dataset consists of all the objects and is used for complementary analysis. The
second dataset is the recently introduced BigBIRD ((Big) Berkeley Instance Recog-
nition Dataset) by Singh et al. [7]]. Lastly, the third dataset is the object scans used in
the Amazon Picking Challenge at ICRA 2015 [8].

5.2.1 Dataset 1: Subset of the RGB-D Object Dataset

The RGB-D Object Dataset [3] consists of 300 common household objects in 51 cat-
egories. The objects were scanned with an RGB-D camera with 640 x 480 resolution

from different angles and the total number of RGB-D images is around 250, 000.

As a first step in our experiments, a subset of this large dataset which contains 48
objects in 10 categories is chosen. The chosen subset was used by Luis A. Alexandre
in a comprehensive evaluation of various descriptors that are available in PCL [16]
and it contains the following categories: apple, ball, banana, bell pepper, binder,
bowl, calculator, camera, cap and cell phone. Examples of segmented scans for each

category are given in Figure [5.12]

In this subset, a total of 1421 point clouds are chosen as in [[16]. The leave-sequence-
out and alternating contiguous frames scenarios are applied for both category and

instance-level recognition experiments. As in [S] and [16]], for leave-sequence-out,
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in the query set, the camera is mounted 45° above the horizontal axis relative to the

turntable whereas in the reference set it is mounted 30° and 60° above. We refer to

[55] for more details on the setup and query scans.

Figure 5.2: Examples of point clouds from the chosen 10 category subset of the RGB-
D Object Dataset [5]].

5.2.2 Dataset 2: RGB-D Object Dataset - All Objects

As our second dataset, the RGB-D Object Dataset with all 300 objects in 51 categories
is used. Since the total number of images in the dataset as well as the number of scans
per object is high, the scans in azimuth are sub-sampled by taking every twentieth
sample. This yielded an average of 10 scans for each object for each video sequence
(whole rotation on the turntable) from different camera heights; which produced a

total of 9944 point clouds for test and training in total.

As in Dataset 1, for the leave-sequence-out scenario, the camera positions are chosen
as 45° for the query set and 30° and 60° above the horizontal axis of the turntable for

the reference set.
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Figure 5.3: Sample scans from each 51 category of RGB-D Object Dataset [3] in

alphabetical order from top left to bottom right.
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5.2.3 Dataset 3: BigBIRD Dataset

BigBIRD is a recently introduced instance-level object recognition dataset introduced
by Singh et al. [7]] which is publicly available [6]. The RGB-D data was collected
using a Carmine 1.09 sensor. The resolution of the RGB-D scans is the same as in
Dataset 1, i.e., 640 x 480. The initial version of the dataset contains 100 objects and
the dataset is being updated. At the time the tests were being performed, the dataset

included a total of 123 objects. Some of the objects used in the experiments are shown

in Figure

However, in our tests, we excluded the transparent objectsﬂ due to their poor quality
point clouds, as also stated in [7]. Two example scans can be seen in Figure[5.5] With
the removal of the transparent objects, the resulting dataset contains 105 different

objects.

BigBIRD is a very challenging dataset due to the extreme similarity between object
instances. Not only many objects are similar in shape and size, but also product
varieties of the same brand are labeled as different object instances - see Figure [5.6]

for some samples.

In the BigBIRD dataset, the objects were scanned from 5 different polar angles and
120 azimuthal angles with a total of 600 images and point clouds per instance. As
seen in Figure[5.7] the polar angles are named as NP1, NP2,...,.NP5 where NP1 cor-
responds to a position where the sensors are located 0° with respect to the horizontal
axis of the turntable, NP5 corresponds to 90° and NP2, NP 3, NP4 located on a quar-
ter circular arc in between [8]. In our experiments, for both test scenarios, we have
used the poses similar to the experiments in the previous datasets. We have cho-
sen the data obtained from positions NP2, NP3 and NP4 and for leave-sequence-out
scenario, we have used NP 3 for the query and NP2 and NP4 for the reference sets.
Additionally, not all azimuthal scans are used. The scans are sub-sampled by taking
every tenth, resulting in approximately 12 scans per object. With the chosen views

and sub-sampling of scans, a total of 3746 point clouds are used in experiments.

1 The transparent objects are: aunt jemima original syrup, bai5 sumatra dragonfruit,
coca cola glass bottle,listerine, palmolive (two instances), softsoap (five instances), vo5
(three instances), whiterain (three instances) and windex.
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Figure 5.4: Some of the objects in the BigBIRD dataset [6, [7].
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() (b) (© (d)

Figure 5.5: Example scans for transparent objects from the BigBIRD dataset [6, 7]

Figure 5.6: Sample RGB images (taken by the Carmine sensors) from the BigBIRD
dataset [6, 7], each from another object.
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Figure 5.7: The sensor setup in the BigBIRD dataset [[6] (image is used with author

permission).

5.2.4 Dataset 3: Amazon Picking Challenge Dataset

The dataset was collected for the first Amazon Picking Challenge at ICRA 2015 using
the same system setup (see Figure[5.7) as in the BigBIRD Dataset [[7]], [56]] and is pub-
licly available [8]. The dataset is composed of 26 different objects. Although some
of the objects such as safety works safety glasses,munchkin white
hot duck bath toy and first years take and toss straw cups
have significantly below-average quality models, they are not excluded from the tests
since they are not high in number. Some of the objects from the dataset including
the challenging ones that have transparent parts are given in Figure [5.8] The same
procedure used for the BigBIRD dataset (Section [5.2.3) is followed for choosing the
scans for the experiments. This yielded a total of 949 point clouds to be used in the

experiments.

55



Figure 5.8: Some of the objects in the Amazon Picking Challenge dataset [8]].
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5.3 Tuning SPAIR/CoSPAIR: Choosing Number of Bins and Concentric Levels

There are two parameters in our descriptors: the number of concentric levels and
the number of bins used for each sub-feature (angular relations given in Equations
B.4] 3.5 B.6] for SPAIR; both angular relations and additional color histograms for
CoSPAIR). To set these parameters, various experiments were conducted on Dataset

1: Subset of the RGB-D Object Dataset.

As the first step, we tested the performance of the SPAIR and CoSPAIR descriptor for
various bin numbers. For 7 levels and a support radius of 10 cm, accuracy results are
given in Figure[5.10] We see that 9 bins for each sub-feature provide the best accuracy
considering instance-level recognition and second best with a minimal margin for
category-level recognition. A similar analysis for CoSPAIR also yields similar results.
Therefore, the number of bins is set to 9 for both SPAIR and CoSPAIR.
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Category Level Instance Level
mb=3 mpb=6 mb=9 mb=12 mb=15 mb=18 =b=36

Figure 5.9: Leave-sequence-out average accuracy of SPAIR versus number of bins
used in each level for each sub-feature where support radius is 10 cm and the number
of levels is 7.

The second parameter is the number of the concentric levels. As our aim was to have
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Table 5.1: Average accuracy of SPAIR versus number of bins used in each level for
each sub-feature (L=7).

b=3 b=6 b=9 b=12 b=15 b=18 b=36

Category Level 88.05 87.00 89.73 90.15 8847 87.42 87.84
Instance Level 60.38 62.05 70.44 67.09 70.23 66.88 66.88
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Figure 5.10: Average accuracy of SPAIR versus number of bins used in each level for

each sub-feature (L=10).

Table 5.2: Average accuracy of SPAIR versus number of bins used in each level for
each sub-feature (L=10).

b=3 b=6 b=9 b=12 b=15 b=18 b=36

Category Level 8574 84.87 87.40 8532 86.58 85.71 80.88
Instance Level 5828 59.87 66.60 6541 65.62 6492 59.45
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a fixed the number of levels regardless of the chosen support radius, experiments were
conducted for various support radius sizes. The results are given in Figure for
category-level recognition and in Figure [5.11b]for instance-level recognition. As can
be observed from these figures, there is not a single particular number of levels where
the accuracy is the highest for all support radius sizes. The performance is fairly stable
after 4 levels with peak performances at around 7 and 8 levels. A similar analysis for
CoSPAIR also reveals the same results. Therefore, the number of concentric levels

was chosen to be 7 for all support radius sizes for both SPAIR and CoSPAIR.

Based on these choices, the size of the SPAIR descriptor becomes 189 due to 7 levels
where each level consists of 3 histograms with 9 bins each. On the other hand, the
size of the CoSPAIR descriptor is 378, i.e., double the size of the SPAIR descriptor
due to the color histograms. In the remainder of the paper, the parameters of SPAIR
and CoSPAIR are fixed and no further optimization is performed for Datasets 2, 3 and
4.

It should be noted that the parameters of the other compared descriptors are fixed in
the Point Cloud Library at their best values and cannot be directly modified. There-

fore, we used them as they are provided in the Point Cloud Library.

Table 5.3: Average accuracy of SPAIR vs number of concentric levels used to extract
the descriptor: Category-level in leave-sequence-out scenario.

# of Levels sr=5cm sr=10cm sr=12cm

L=1 68.97 74.42 75.26
L=2 73.79 83.86 82.81
L=3 74.42 83.86 86.79
L=4 73.17 87.42 86.58
L=5 72.90 88.26 89.31
L=6 74.00 88.89 88.26
L=7 74.42 88.89 89.31
L=8 72.33 89.10 89.10
L=9 72.75 88.26 89.52
L=10 71.07 87.40 89.10
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Figure 5.11: Average accuracy of SPAIR vs number of concentric levels used to

extract the descriptor in leave-sequence-out scenario: a) Category-level, b) Instance-

level.
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Table 5.4: Average accuracy of SPAIR vs number of concentric levels used to extract
the descriptor: Instance-level in leave-sequence-out scenario.

# of Levels sr=5cm sr=10cm sr=12cm
L=1 38.78 42.56 44.23
L=2 46.12 59.12 55.77
L=3 48.01 60.80 63.31
L=4 48.01 64.78 61.84
L=5 48.32 68.34 65.83
L=6 49.48 67.30 67.92
L=7 50.73 69.39 69.18
L=8 48.22 70.44 65.62
L=9 46.96 67.30 68.76
L=10 44.86 66.60 68.76

5.4 Effect of Keypoint Detection Methods

The performances of all the descriptors were also evaluated for various keypoint de-

tection methods; ISS3D [25]], Harris3D [19] and uniform sampling using a 3D voxel

grid with a leaf size of 1 cm. The average accuracy results are given in Table[5.5] It

can be observed that the keypoint detection methods affect all the tested descriptors

similarly. Therefore, it is possible to choose a single extractor for all the descriptors.

According to our evaluation, ISS3D performs better than Harris3D and its perfor-

mance is very close to uniform sampling. Since ISS3D has been reported to stand out

for its performance, repeatability and efficiency [48], 50] we used it as the keypoint

detection method in our experiments.

Table 5.5: Average accuracy results of descriptors for different keypoint extraction
methods where support radius is 10 cm in leave-sequence-out scenario.

Category Level Instance Level
ISS3D H3D Uni. | ISS3D H3D  Uni.
SPAIR 89.73 68.76 89.94 | 70.44 38.99 68.55
FPFH 80.29 66.88 8193 | 51.36 37.53 51.05
SHOT 90.15 80.92 90.97 | 61.84 50.31 65.55
CoSPAIR 95.39 87.00 96.23 | 8491 7275 86.16
CSHOT 92.03 8595 9454 | 79.66 68.76 82.35
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5.5 Results on Dataset 1: RGB-D Subset

The average accuracy, average per class recall and precision results are given in Table
[5.6] for category-level recognition and Table for instance-level recognition. In
addition, leave-sequence-out average accuracies are shown in Figure[5.12]to visualize

the performance trend with respect to the support radius size.

Results show that, in this small dataset, CoSPAIR slightly outperforms the second
best performer CSHOT in category-level recognition, except for the Alternating con-
tiguous frames methodology for low support radius sizes. CoSPAIR outperforms
CSHOT with a higher margin in instance-level recognition using both methodologies
(leave-sequence-out and alternating-contiguous-frames). In the leave-sequence-out
methodology, CoSPAIR achieves 85.53% average accuracy at 12 cm whereas CSHOT
achieves 79.66% at 10 cm; in the alternating-contiguous-frames methodology, Co-
SPAIR achieves 91.96% average accuracy at 10 cm compared to CSHOT’s 87.20%

at 8 cm.

Among the shape-only descriptors, SPAIR performs slightly better for larger support

radius sizes whereas SHOT performs better for smaller support radius sizes.
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Figure 5.12: Average accuracy results for 10 category subset of RGB-D Object

Dataset in leave-sequence-out scenario: a) Category-level, b) Instance-level.

63



Table 5.6: Category-level average accuracy, average recall and average precision re-

sults for the 10 category subset of RGB-D Object Dataset.

sr = 5cm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 76.52 74.85 7895 8595 8458 84.12 89.73 88.90 88.87 90.99 90.26 90.72

FPFH 7899 7815 7631 80.29 7990 77.08 80.29 8035 77.13 79.66 80.00 76.99
SHOT 8323 81.07 8217 8994 88.63 87.53 90.15 88.66 8792 89.73 88.63 88.18
PFH 7437 7431 7133 7736 77.08 7489 73.79 74.18 7328 69.60 70.48 73.07

CoSPAIR 9245 92.01 9273 9329 9290 92.01 9539 9530 9496 9581 95.68 9544

CSHOT 90.57 89.89 90.89 90.57 89.15 89.77 92.03 91.48 9229 9140 9095 9145

PFHRGB 85.08 84.72 84.60 86.58 85.98 8599 82.18 82.00 83.36 84.28 83.37 82.72
Alternating contiguous frames

SPAIR 78.54 75.67 7820 88.25 86.17 86.76 90.27 8857 88.79 9126 89.66 90.29

FPFH 8125 7946 7848 8292 8139 8092 81.34 80.31 79.60 8038 79.52 79.17
SHOT 87.890 8574 8697 9252 91.01 91.11 9339 91.78 9213 9336 9221 92.68
PFH 78.58 7692 76.81 7857 7710 7797 7478 7447 7748 7276 7259 76.57

CoSPAIR  96.45 9546 9623 97.09 96.29 96.84 9798 9742 97.61 97.82 97.14 9743
CSHOT 97.02 96.48 96.85 97.76 9738 97.75 9744 97.07 9722 97.14 96.69 96.89
PFHRGB 9298 91.72 9235 9396 92.88 9345 O91.15 8999 90.62 9237 91.01 91.62
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Table 5.7: Instance-level average accuracy, average recall and average precision re-

sults for the 10 category subset of RGB-D Object Dataset.

sr = 5cm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out

Acc. Rec.  Prec.  Acc. Rec.  Prec.  Acc. Rec.  Prec.  Acc. Rec.  Prec.
SPAIR 5241 5255 51.10 6436 64.62 66.09 7044 7054 7275 6897 69.25 70.81
FPFH 5252 52.62 48.89 4948 49.76 48.00 5136 51.71 4858 50.10 50.44 4546
SHOT 5744 5758 59.81 63.10 63.66 63.01 61.84 6236 6216 6143 61.89 64.18
PFH 47.69 47.85 4551 4423 4451 4416 41.09 4139 40.65 3899 39.26 40.13
CoSPAIR 7841 78.59 7688 80.92 81.16 79.29 8491 8528 86.64 85.53 8590 86.06
CSHOT 7547 76.02 7420 7631 7688 7624 79.66 80.17 77.85 7820 7875 75.99
PFHRGB 7143 71.64 6995 6855 68.80 6691 6289 63.06 6329 6583 6604 64.84

Alternating contiguous frames

SPAIR 5545 55.07 5598 65.11 6498 6585 6687 6676 67.56 66.76 66.69 67.42

FPFH 56.21 5595 5564 57.14 5699 56.00 56.73 56.63 5501 56.51 5638 55.36
SHOT 62.62 6254 6472 6571 6578 6775 66.12 66.18 68.62 6585 6587 68.09
PFH 52.18 52.02 5094 49.69 49.60 4832 4750 4745 4846 46.68 46.72 48.90

CoSPAIR  90.82 90.63 91.07 91.64 91.52 9215 9196 9185 9242 91.64 9151 91.98
CSHOT 87.16 87.08 88.11 87.20 87.19 8873 86.15 86.12 87.71 85.87 8584 87.26
PFHRGB 81.86 81.69 83.29 8291 82.77 8376 77.73 77.55 79.78 81.19 8120 82.73
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5.6 Results on Dataset 2: RGB-D All Objects

Next, we have evaluated the methods on the whole RGB-D Object Dataset (with all
the available 300 objects in 51 categories), which is much more challenging than
Dataset 1. The average accuracy, average per class recall and precision results are
given in Table [5.§] for category-level recognition and Table [5.9] for instance-level
recognition. Additionally, leave-sequence-out average accuracies are shown in Fig-
ure [5.13]to visualize the performance trend with respect to the support radius size. It
should be noted that PFH and PFHRGB are excluded from this experiment because

of these descriptors’ prohibitively long extraction times on such a big dataset (see

Section [5.9).

Table 5.8: Category-level average accuracy, average recall and average precision re-

sults for the RGB-D Object Dataset

sr = 5cm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out

Acc. Rec.  Prec.  Acc. Rec.  Prec.  Acc. Rec.  Prec.  Acc. Rec.
SPAIR 46.16 48.61 51.63 63.77 6431 6693 67.84 67.11 6929 6893 67.85
FPFH 4494 4621 4551 51.66 51.16 5129 5211 51.66 52.18 51.66 51.01
SHOT 61.28 63.06 6492 7285 7286 73.13 7449 7390 7425 73770 73.03
CoSPAIR 7759 7740 7856 83.75 8342 83.72 8597 8543 84.79 86.21 85.44
CSHOT 73.55 72774 7459 7595 74771 77.03 7631 7486 77.54 7555 74.14

Alternating contiguous frames

SPAIR 55.52 5419 5557 7026 6822 68.69 7344 T71.17 71.83 7497 7255
FPFH 5597 5345 5245 61.60 5847 58.82 6240 59.10 5896 6248 59.12
SHOT 7449 7289 7293 7897 7698 77.12 80.78 7898 7899 79.99 78.01
CoSPAIR  92.88 9198 92.84 9498 9430 9443 95.68 95.03 9520 96.15 95.49
CSHOT 90.53 8945 89.75 90.36 89.42 89.81 91.15 90.21 9044 90.57 89.44

Prec.
69.83
50.97
73.08
84.97
76.10

73.09
59.03
78.02
95.63
89.88

In this dataset, for all support radius sizes and for both test scenarios, CoSPAIR out-
performs all other descriptors in both category and instance-level recognition. For
the leave-sequence-out scenario, CoSPAIR achieves an average accuracy of 86.21%
for a support radius of 12 cm in category-level recognition and 74.46% in instance-
level recognition for a support radius of 10 cm whereas the second top performer

CSHOT achieves 76.31% in category-level recognition for a support radius of 10 cm
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Figure 5.13: Average accuracy results for the whole RGB-D Object Dataset in leave-

sequence-out scenario: a) Category-level, b) Instance-level.
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(a) SPAIR (sr = 10cm)

(b) SHOT (sr = 10cm)

Figure 5.14: Confusion matrices for the RGB-D Object Dataset - instance level in

leave—sequence—out scenario.
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(c) CoSPAIR (sr = 10cm)

(d) CSHOT (sr = 10cm)

Figure 5.14: Confusion matrices for the RGB-D Object Dataset - instance level in

leave-sequence-out scenario. (cont.)
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(a) SPAIR (sr = 10cm)
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Figure 5.15: Confusion matrices for the RGB-D Object Dataset - category level in

leave-sequence-out scenario.
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(c) CoSPAIR (sr = 10cm)
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(d) CSHOT (sr = 10cm)

Figure 5.15: Confusion matrices for the RGB-D Object Dataset - category level in

leave-sequence-out scenario (cont.)
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Table 5.9: Instance-level average accuracy, average recall and average precision re-

sults for the RGB-D Object Dataset.

sr = Scm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec.
SPAIR 27.88 2846 27.81 4136 4190 4200 42.82 4344 4442 43.67 4428
FPFH 2642 2722 2510 2691 2734 2629 2639 2699 2549 2578 26.44

SHOT 39.57 3992 4151 46.01 46.13 4726 4540 4544 4643 4346 4353
CoSPAIR  65.56 64.26 64.54 71.79 7042 69.23 7446 7322 7246 7401 72.79
CSHOT 57.85 56.65 55.67 5797 5671 5644 57.15 5596 55.89 56.60 5548
Alternating contiguous frames
SPAIR 36.88 36.87 36.10 4945 49.10 4858 51.83 5144 5128 5218 51.74
FPFH 37.13 3697 3455 41.56 4121 3940 4171 4137 39.17 41.66 41.29
SHOT 50.89 50.67 51.74 53.69 5331 5477 5509 5480 55.84 5429 53.95
CoSPAIR 87.52 86.41 88.01 89.26 88.21 89.30 89.89 88.90 90.14 90.09 89.10
CSHOT 81.17 80.28 81.76 7857 77.73 7992 7995 79.15 81.08 79.12 78.24

Prec.
45.19
25.12
45.39
71.66
55.31

51.27
39.28
54.76
90.29
80.03

and 57.97% in instance-level recognition for a support radius of 8 cm, leading to 16.49
percentage points (pp) performance difference. It is even higher if the same support
radius is considered for all the descriptors; resulting up to 17.41 pp difference at 12
cm. For the alternating-contiguous-frames scenario, COSPAIR outperforms competi-
tors as well but with a slightly lower margin. CoSPAIR achieves an average accuracy
of 96.15% for a support radius of 12 cm in category-level recognition and 90.09% in
instance-level recognition for a support radius of 12 cm whereas the second top per-
former CSHOT achieves 91.15% in category-level recognition for a support radius of

10 cm and 81.17% in instance-level recognition for a support radius of 5 cm.

Among the shape-only descriptors, in both category-level and instance-level recog-
nition, SHOT performs slightly better than SPAIR, where the performance margin
is larger for lower support radii and smaller for larger support radii. Among the
tested descriptors, FPFH has the least performance for all support radius sizes in both

category-level and instance-level recognition.

In addition to performance results, the confusion matrices for SHOT, SPAIR, CSHOT
and CoSPAIR are given in Figure and When the matrices for the top two
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performing descriptors, CSHOT and CoSPAIR are investigated in detail, it is observed
that, in category level, even though it used color information, CSHOT tends to confuse
similarly shaped categories even though the color of the categories are different, i.e.,
lime with peach and potato, tomato with garlic and potato. CoSPAIR
is observed to make similar mistakes but with less percentage. In instance level,
CoSPAIR shows significant strength on differentiating instances of the same category

compared to CSHOT.

5.7 Results on Dataset 3: The BigBIRD Dataset

Since the BigBIRD dataset is an instance-level dataset and no category information
is specified, only the instance-level recognition results are reported for this dataset.
The average accuracy, average per class recall and precision results are given in Table
5.10] In addition, leave-sequence-out average accuracies are shown in Figure[5.16]to

visualize the performance trend with respect to the support radius.
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Figure 5.16: Instance-level average accuracy results for the BigBIRD dataset in leave-

sequence-out scenario.
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Table 5.10: Instance-level average accuracy, average recall and average precision

results for the BigBIRD dataset.

sr = 5cm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

SPAIR 13.27 13.14 1234 1791 17.75 18.61 2238 22.17 2224 21.66 2145 20.86
FPFH 9.59 9.51 8.78 9.67 9.58 8.21 8.39 8.32 7.89 8.23 8.15 6.43
SHOT 2094 20.77 24.18 2046 2029 2211 1879 1863 1993 17.19 17.05 16.16
PFH 8.31 8.21 6.43 8.87 8.79 7.35 7.99 7.91 8.46 7.59 7.52 5.46

CoSPAIR 64.11 63.58 67.08 68.51 67.96 73.00 68.75 6857 7239 68.19 68.02 70.13

CSHOT 6299 6248 64.85 4636 46.00 50.07 4125 4131 4679 37.89 3759 40.39

PFHRGB 50.36 4995 50.63 4628 4593 46.60 42.69 4234 4292 3925 3893 3736
Alternating contiguous frames

SPAIR 2431 2414 2743 33.61 3343 3572 36.79 36770 38.82 3796 37.86 40.13

FPFH 2436 2416 2636 3041 30.19 33.13 3135 31.14 3331 31.79 3157 33.75
SHOT 35.88 35.65 3835 4227 4219 4325 4352 4339 4456 4388 4377 45.00
PFH 21.85 21.71 24.67 2341 2322 2598 24.14 2394 2792 2346 2327 2743

CoSPAIR  81.29 80.83 83.36 81.46 81.20 8332 81.18 80.94 8346 79.86 79.51 82.08
CSHOT 6493 6454 6780 6244 62.12 6588 6196 61.67 6530 61.55 6121 64.71
PFHRGB 7542 7478 7690 71.44 70.88 73.84 6920 68.64 7218 6797 6745 71.49
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Figure 5.17: Confusion matrices for the BigBIRD Dataset in leave-sequence-out sce-

nario.
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(d) CSHOT (sr = 5cm)

Figure 5.17: Confusion matrices for the BigBIRD Dataset in leave-sequence-out sce-

nario (cont.)
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Since this dataset is instance-level, and the difference between many instances are in
texture/color (see Figure [5.6) shape-only descriptors perform extremely poor. How-
ever, the shape + texture/color descriptors perform fairly well considering the chal-
lenging nature of this dataset. The best performing descriptor is CoSPAIR for both
test scenarios. For the leave-sequence-out case, CoOSPAIR achieves 68.75% average
accuracy for support radius of 10 cm whereas the second best performer CSHOT
achieves 62.99% for support radius of 5 cm. For the alternating-contiguous-frames
scenario, CoSPAIR outperforms competitors. It achieves 81.46% average accuracy
at 8 cm whereas the second top performer PFHRGB achieves 75.42% for 5cm. Al-
though the best achieved scores can be considered close, the performance gap in-
creases with the increasing support radii. For the leave-sequence-out case, although
the performance gap between CoSPAIR and CSHOT is 1.12 pp at 5 cm, the gap in-
creases up to 30.3 pp at 12 cm. Lastly, for the alternating-contiguous-frames scenario,

the performance gap is lowest, 16.36 pp at 5 cm and highest, 19.22 pp at 10 cm.

In addition to results, the confusion matrices for SHOT, SPAIR, CSHOT and Co-
SPAIR are given in Figure When the matrices for the top two performing de-
scriptors, CSHOT and CoSPAIR are investigated in detail, it is observed that Co-
SPAIR show particular strength generally on differentiating extremely similar objects
(eating right for healthy living,nature valleyandnutrigrain

varieties). Such objects are shown in Figure [5.6]

5.8 Results on Dataset 4: The Amazon Picking Challenge Dataset

Like the BigBIRD, this dataset is an instance-level dataset and no category infor-
mation is specified. Thus, only the instance-level recognition results are reported.
For both scenarios, CoSPAIR performs better than the competitors for all the tested
support radii. For leave-sequence-out, CoOSPAIR achieves 90.71% average accuracy
for support radius of 12 cm whereas the second best performer CSHOT achieves
85.90% for the same support radius. For alternating contiguous frames scenario, Co-
SPAIR achieves 91.63% average accuracy at 12 cm whereas the second top performer

CSHOT achieves 87.36% for 10 cm.

77



In addition to results, the confusion matrices are given in Figure [5.19]as well. When
the matrices for the top two performing descriptors, CSHOT and CoSPAIR are inves-
tigated in detail, it is observed that both CSHOT and CoSPAIR fails on rollodex
mesh collection jumbo pencil cup mostprobably due to objects meshed
surface that causes lack of data. CSHOT shows particular weakness on small boxy
shaped dove beauty bar and confuses the object with similarly shaped genuine
joe plastic stir sticks and highland 6539 self stick notes
whereas CoSPAIR recognized this object with high accuracy. For the remaining ob-

jects, both CSHOT and CoSPAIR performs similarly.
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Figure 5.18: Instance-level average accuracy results for the Amazon Picking Chal-

lenge dataset in leave-sequence-out scenario.
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Table 5.11: Instance-level average accuracy, average recall and average precision

results for the Amazon Picking Challenge Dataset.

sr = 5cm sr = 8cm sr = 10cm sr=12cm

Leave-sequence-out
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 4455 42.66 39.14 5641 54.15 54.09 5897 56.73 5561 62.18 59.81 59.80

FPFH 41.67 40.14 42.83 4327 41.62 4327 41.67 40.10 3836 39.74 3831 36.21
SHOT 53.53 51.61 5132 67.63 6519 6843 67.63 6525 67.71 6635 64.01 68.46
PFH 4391 4225 4507 3750 36.06 3197 3622 3483 3326 34.62 3333 31.39

CoSPAIR  82.69 79.88 83.50 87.50 84.38 88.04 90.38 87.22 88.97 90.71 87.65 88.42

CSHOT 81.73 7895 81.16 8397 81.05 8220 8429 8136 82.13 8590 8290 83.72

PFHRGB 66.35 63.81 70.58 63.14 60.92 5941 6346 6133 61.84 6346 6133 6324
Alternating contiguous frames

SPAIR 46.18 4529 49.17 6049 5945 62.80 64.89 63.80 6557 67.10 66.05 68.07

FPFH 40.86 40.03 4241 4536 4442 4639 4724 4633 4822 4570 4477 46.60
SHOT 62.51 6159 6356 75.00 74.02 7622 7582 74773 76.63 76.06 7503 76.40
PFH 4245 41.67 4144 4283 4215 44.07 42.07 4135 4333 4044 3995 41.65

CoSPAIR  89.47 88.30 89.32 9197 90.83 91.61 9139 90.22 91.05 91.63 90.44 91.08
CSHOT 84.06 8299 84.45 86.88 85.79 86.68 87.36 86.26 87.58 87.02 8592 87.12
PFHRGB 80.57 79.50 81.49 79.76 78.70 8153 79.42 7841 8130 81.10 80.06 82.42
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Figure 5.19: Confusion matrices for the Amazon Picking Challenge dataset in leave-

sequence-out scenario.
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Figure 5.19: Confusion matrices for the Amazon Picking Challenge dataset in leave-

sequence-out scenario (cont.)
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5.9 Analysis of Extraction and Matching Times

For evaluating the extraction times, only a single scan for each category in the Dataset
1 with 1 cm uniform sampling is used. As a result, the query set for extraction times

consists of 10 clouds with 3023 keypoints.

The average extraction times for a single keypoint/query point for 3 different support
radius sizes are given in Table[5.12] As can be observed from the results, SHOT and
CSHOT are very fast to extract whereas PFH and PFHRGB are prohibitively slow
to use in practical applications. Moreover, while SPAIR and CoSPAIR are slower
than SHOT, they are significantly faster than FPFH, PFH and PFHRGB. The main
reason behind the speed of SHOT and CSHOT despite being longer is to use a single
reference frame for each descriptor whereas SPAIR, CoSPAIR, PFH and RGBPFH fit

a reference axis for each pair of points between which angular relations are computed.

Table 5.12: Average extraction times (ms) of the descriptors for a single keypoint/-
query point. (Platform: 15 4670 CPU using a single core)

sr=5cm sr=10cm sr=12cm

SPAIR 4.37 11.98 15.23
FPFH 16.83 49.22 63.53
SHOT 1.27 2.55 3.10
PFH 506.50  5456.31  9409.57
CoSPAIR 5.37 14.27 18.22
CSHOT 1.45 3.96 5.04

PFHRGB 918.67 10049.05 17304.95

And lastly, the brute-force matching times together with the size of the descriptors
are given in Table In this test, the full reference and query sets in the Dataset
1 were used where the query set contains 78,442 keypoints from 475 objects and
the reference set contains 143,234 keypoints from 946 objects, thus the total number
of comparisons were over 11 billion. Since the same matching method is used for
all descriptors, the matching time is mainly related to the type and the length of the
descriptors. As all the descriptors are of type float, descriptor length is the only factor
affecting the matching performance. This can be directly seen from the results that

FPFH, being the shortest descriptor, is the fastest to match and CSHOT, being the

82



largest, is the slowest to match.

Table 5.13: Lengths and matching times (seconds) of the descriptors. (Platform: 15

4670 CPU utilizing all 4 cores)

Descriptor Length  Matching Time (s)

SPAIR 189 119
FPFH 33 34

SHOT 392 170
PFH 125 88

CoSPAIR 378 197
CSHOT 1344 581
PFHRGB 250 136

5.10 Performance vs. Size

The performance of the descriptors is further investigated to analyze the effect of size

of objects. For this purpose, the objects are categorized into 5 depending on their

sizes; 0-10 cm, 10-15 cm, 25-20 cm, 20-25 cm and 25+ cm. The distribution of

objects onto these categories are given in Table

Table 5.14: Object sizes in datasets

Object Count
Object Size RGB-D BigBIRD Amazon
0-10 cm 83 4 4
10-15 cm 98 28 10
15-20 cm 42 28 7
20-25 cm 41 39 3
25+ cm 36 6 3
Total 300 105 27

The box-and-whisker plots for SHOT, SPAIR, CSHOT and CoSPAIR descriptors for
the RGB-D dataset is given in Figure [5.20] and for the BigBIRD dataset in Figure

The used metric F-Score is directly calculated from the previously given recall
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and precision values:

precision X recall
F — Score =2 x

. 53
precision + recall (5-3)

It can be observed from results that the proposed SPAIR and CoSPAIR descriptors
behave very similar to SHOT and CSHOT. In RGB-D dataset, the tested descrip-
tors perform best for medium sized (15-20 cm) objects without showing any signif-
icant weakness for particular object size whereas in BigBIRD dataset, they perform
marginally for large objects (25+ cm), once again without showing any significant

weakness in any object size.

84



1.00

0.90

0.80

0.70

= Q3-Median
= Median-Q1
+ Mean

0-10 cm 10-15cm

15-20 cm
Object Size

0.30
0.20 -
0.00

20-25cm

(a) SPAIR (sr=5cm)

25+ cm

1.00

0.90

0.80

= Q3-Median
m Median-Q1
+ Mean

0.20 -

0.10

0.00 T T

0-10cm 10-15cm

Object Size

15-20 cm

20-25cm

(b) SHOT (sr=5cm)

Figure 5.20: RGBD F-Score vs Size
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CHAPTER 6

CONCLUSION

In recent years, research on 3D robot/computer vision, consequently 3D object recog-
nition have been boosted due to advancements on 3D sensor technology especially the
ones that simultaneously capture RGB and depth information. Although significant
amount of 3D descriptors exist, not many of them (please refer to Table [2.1) take ad-
vantage of this technology (i.e., they lack color information). In this thesis, two novel
local 3D descriptors are proposed; one that utilizes only shape information - His-
tograms of Spatial Concentric Surflet-Pairs (SPAIR) and a complimentary one that
jointly utilizes shape and color information - Colored Histograms of Spatial Concen-
tric Surflet-Pairs (CoSPAIR) that takes advantage of the RGB-D sensors. In these de-
scriptors, the support radius is divided into concentric spherical shells and histograms
of angular relations between surface normals are utilized. It has been demonstrated
that such partitioning of space allows encoding enhanced spatial information more
effectively. Ultimately, we have shown that the object recognition performance, espe-
cially in instance-level, can be significantly improved using the proposed descriptor

CoSPAIR.

In Chapter [5] the proposed descriptors have been compared with the state-of-the-art
local 3D descriptors that are available in the Point Cloud Library on three differ-
ent publicly available object recognition datasets. The shape-only descriptor, SPAIR
is shown to be one of the best in its class (shape-only) while CoSPAIR is shown to
outperform the tested state-of-the-art descriptors both for category-level and instance-
level object recognition. Up to 9.9 percentage points gain in category-level recogni-

tion and 16.49 percentage points gain in instance-level recognition over the second-
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best performing descriptor in the RGB-D dataset have been observed. Additionally,
it has been demonstrated that CoSPAIR, compared to the second best performer
CSHOT, can differentiate very similar objects (same shape, different texture) more

effectively.

6.1 Future Work

The descriptors proposed in this thesis can be improved in a number of ways in the
future. The first of these improvements is regarding the spatial information that is
integrated into the descriptors. In the proposed descriptors, the support radius is di-
vided into equally-sized shells. Since the contribution of the central shells and the
outer shells may be different, one may consider shells having varying thickness and
learning the optimal division of the support radius into the shells. Another similar line
of work to extend the system might be to use weighted combination of the histograms

coming from different shells.

Secondly, the information extracted in each shell can be extended by other 3D or 2D
information, such as, local 3D curvature, local 3D shape category via the method of
shape index, 2D textural features. These can enrich the representation in each shell,

and hence, effect the overall performance.

Thirdly, in this thesis, performance is evaluated for various “support radii” which
corresponds to “scale’ in 2D. It should be noted that the definition of a proper scale in
3D data differs from the scale-invariance concept of 2D features because of the metric
data provided by 3D sensors [48]]. Since the performance of the proposed descriptors
depend on the chosen “support radius”, to overcome such a limitation, multi-scale

feature extraction techniques [28, 57, 58] might be applied.

Additionally, as stated in Chapter [} the descriptors are extracted from all the de-
tected keypoints. Instead of this approach, extracting the features from “salient re-
gions/points” [39, 160] can be considered. Although there are many work on “saliency
detection”, recently Schtrom et al. extended this approach to 3D surfaces and point
sets [61]. Their proposed method is highly efficient and competitive thus applying

this method to detect salient regions might improve recognition performance consid-
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erably.

Similarly, another possible research direction would be first detecting meaningful
regions on the point cloud and applying “region covariance” technique proposed by
Tuzel et al. [62]. This technique would provide fusion of multiple features which
might be correlated and filter out the noise, resulting much more compact feature

vectors with possibly better recognition performance.

Furthermore, the performance of the descriptors can be evaluated via training them
with “Support Vector Machines” (SVM), instead of brute-force matching to the near-
est descriptor in the reference descriptor database as explained in Section[5.1] Using
SVM for training and matching would provide faster recognition times which is cru-

cial in many real world applications.

Last but not least, we will share our descriptors with the robot / computer vision
community through the Point Cloud Library (PCL) [[17]] to enable further research on
this field.
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