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ABSTRACT 

AN INTEGRATED OPTIMIZATION AND SIMULATION APPROACH FOR 

THE AMBULANCE LOCATION PROBLEM 

Şahin Macit, Medine 

M.S., Department of Industrial Engineering 

Supervisor:  Assoc. Prof. Dr. Sedef Meral 

December 2015, 159 Pages 

 

Management of smooth-functioning Emergency Medical Services (EMS) along with 

efficient and effective utilization of ambulances which are an essential part of this 

service is of vital importance. Selecting the suitable location of ambulance stations 

and the allocation of ambulances to their corresponding stations are important 

decisions which directly affect the quality of response to an emergency case. In this 

study, an integrated optimization and simulation approach is proposed so as to 

determine the size of the ambulance fleet, the location of stations and the allocation 

of the ambulances to these stations. This approach includes a covering model, 

namely Gradual Maximum Expected Covering Location Problem (G-MEXCLP), 

and a generic EMS system simulation model used in succession in the search for the 

best solution in an iterative manner. We use several test problems in the literature to 

validate the G-MEXCLP model. We then test the integrated approach using the data 

of the city of Adana, and demonstrate the advantages of the approach by comparing 

the results obtained to the current ambulance location plan for the City of Adana. 

 

Keywords: Emergency Medical Service, Ambulance, Location, Simulation, 

Maximum Expected Covering Location 
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ÖZ 

AMBULANS YERLEŞİMİ İÇİN BİR BİRLEŞİK OPTİMİZASYON VE 

BENZETİM YAKLAŞIMI 

Şahin Macit, Medine 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Sedef Meral 

Aralık 2015, 159 Sayfa 

 

Acil servis hizmetlerinin aksamadan yürütülebilmesi ve bu hizmetin çok önemli bir 

parçası olan ambulansların verimli ve etkili bir şekilde kullanılabilmesi hayati bir 

öneme sahiptir. Ambulansların yerleştirileceği uygun istasyonları seçmek ve eldeki 

ambulansların bu istasyonlara nasıl dağıtılacağını belirlemek, acil bir duruma cevap 

verme kalitesini doğrudan etkileyen önemli kararlardır. Bu çalışmada; ambulans 

filosunun büyüklüğünü, istasyonların konumlarını ve ambulansların istasyonlara 

atanmasını belirlemek amacıyla, yeni bir birleşik optimizasyon ve benzetim 

yaklaşımı önerilir. Bu yaklaşım; en iyi çözümü elde etmek için, yinelemeli bir 

biçimde ardarda kullanılan, kademeli maksimum tahmini kapsama yerleşim 

problemi adıyla yeni bir kapsama modeli (G-MEXCLP) ve kapsamlı bir acil servis 

sistemi benzetim modeli içerir. Bu kapsama modelinin doğrulanması için literatürde 

yer alan bir çok test problemi kullanılır. Daha sonra önerilen bu birleşik yaklaşım 

Adana Şehrine ait veri ile test edilir ve elde edilen sonuçlar Adana şehrinin mevcut 

ambulans yerleşimi ile karşılaştırarak yaklaşımın avantajları gösterilir. 

 

Anahtar Kelimeler: Acil Servis Sistemi, Ambulans, Yerleşim, Benzetim, Maksimum 

Tahmini Kapsama Yerleşimi 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

When an emergency medical incident occurs, Emergency Medical Service (EMS) is 

the public service that provides necessary medical care at the place of the incident 

and if needed, transports the patients suffering from the incident to an appropriate 

medical center. The most important goal of this service is to reach the scene of the 

emergency incident quickly, to save lives, and to prevent irreversible effects of the 

injuries by applying some acute medical treatment. The vital nature of EMS systems 

obligates strategic planning in order to overcome the difficulty of not having an 

infinite number of ambulances to respond to each and every incident or patient with 

a response time of almost zero.  

Ambulances and their crew are at the heart of the EMS system as they are the core 

resources of this system. While managing these resources, it is very important to 

consider the interest of all the population and make strategic plans accordingly. 

There are several factors affecting the course of these plans, namely the locations of 

the facilities where the ambulances are sited, how demand for this service is 

categorized and rules to allocate the ambulances to the chosen facilities, given the 

fact that a spatially distributed demand exists for EMS. 

The problem may seem to be an ordinary facility location problem; however, the 

ambulance location problem must be addressed with special attention, since one of 

the objectives is to handle the affairs of human life. Hence, using merely 

“minimizing cost” approach is not sufficient; the focus should be on reaching a 

greater percent of the population with a high service quality. Especially, minimizing 
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the response time to an emergency call, in other words, time between receiving a 

call and reaching the scene of the call, is of crucial importance. 

For the reasons stated above, the topic of EMS has attracted many researchers, and 

hence a large number of studies has been conducted that try to improve and enhance 

EMS systems. The studies mostly provide decision support systems and 

methodologies for the authorities in EMS, i.e., decision makers. The most important 

problem that they address is the efficient usage of EMS resources, especially 

ambulances and improving the quality of EMS. They aim to achieve substantial 

coverage, in other words, they aim to reach a portion of the emergency calls 

received by an EMS system within some predefined standards, by means of 

selecting better options among a pool of potential stations for the ambulances to 

reside, which is called as the ambulance location problem. For this purpose, 

mathematical models that are solved usually with heuristic approaches, both 

simulations and exact methods have been developed (Li et al., 2010).  

This problem has been investigated for over 40 years. Earlier static mathematical 

models fail to reflect the fact that the coverage is not as planned when the ambulance 

assumed to cover a demand point is busy elsewhere (Brotcorne et al., 2003). The 

latter models even provided “multiple coverage” (coverage by multiple ambulances 

or stations) of demand points to solve this problem; still they are not able to consider 

real busy fractions of ambulances. Recently developed dynamic models using 

repeated relocations can address this problem better than the static models. On the 

other hand, they have greater complexity with respect to the static models, require 

excessive processing power, and demand new optimization strategies.  

In this study, a new approach to the problem is proposed, which is mainly an 

integrated use of an optimization model and a simulation model in succession 

iteratively for the ambulance location and allocation to the stations. In this study, the 

mathematical model is a probabilistic one, and the simulation model is a generic 

model.  
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The mathematical model proposed is an extension to the Maximum Expected 

Covering Location Problem (MEXCLP) which is named as G-MEXCLP. G-

MEXCLP introduces gradual coverage option to MEXCLP, providing   options   for 

the more precise definition of goals. The gradual coverage option in this context 

means providing different time standards for each additional coverage of a call point 

(Daskin et al., 1988). 

The simulation model, on the other hand, is a generic simulation model that is built 

to test the behavior and analyze the results of the mathematical model, focusing on 

some critical performance measures evaluation. The purpose to build such a 

simulation model is to counterbalance the inability of the mathematical model in 

reflecting real world problems with probabilistic time distributions of events and 

overestimation of coverage, etc.  

In this study, the integrated approach, using both a mathematical model and a 

simulation model, combines the optimal exact solution of the mathematical model 

with the reliability provided by the simulation environment. The mathematical 

model helps finding the initial locations of the ambulances using some initial 

parameter settings. Then, ambulance locations are used as input to the simulation 

model to evaluate the performance of the system in a stochastic environment in 

which the arrival time of calls, travel times, service times are all random variables. If 

the performance of the system is not found to be satisfactory, the mathematical 

model is reconstructed by the updated parameters, and iteratively some initially 

assigned parameters in the mathematical model such as the busy fraction converge 

to a better approximation obtained from the simulation model to better overcome the 

pitfalls of other similar location covering models. 

The organization of remainder of this work is as follows: literature review of the 

related studies is given in Chapter 2. Starting with earlier and simpler model 

formulations, the studies are categorized according to their approaches to the EMS 

problems. They are presented with their methodologies, mathematical models along 

with their extensions. In Chapter 3, operation of the EMS system is described, and 
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the problem is defined with a broader perspective. Subjects emerging when dealing 

with EMS systems are investigated in detail. In Chapter 4, G-MEXCLP model that 

we develop to locate ambulances at suitable sites is presented with its mathematical 

formulation and validations. In Chapter 5, a generic simulation model is described in 

detail, and verification and validation results obtained with suitable techniques are 

discussed. In Chapter 6, our solution approach is presented, which is composed of 

the iterations between the mathematical model and the simulation model. In Chapter 

7, our solution approach is tested with the data from the city of Adana, and the 

results obtained at each iteration with the analysis of the simulation outputs are 

presented.  Finally, Chapter 8 concludes with the discussions on the proposed 

approach, and suggests some issues for future work.   
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CHAPTER 2 
 

 

LITERATURE REVIEW 
 

 

 

During the past decades, Emergency Medical Service (EMS) facility location 

problem has been widely investigated in the academic literature. Therefore, there are 

many survey studies about this topic. Before we review the literature in more detail, 

it seems appropriate to explain these review papers.  

Marianov and ReVelle (1995), make an overview about models related to the 

location of emergency services. They consider all types of emergency services in 

addition to emergency medical services. Brotcorne et al. (2003), on the other hand, 

present ambulance location and relocation models since 1970s by categorizing them 

into two classes as deterministic and stochastic models. Li et al. (2011) review 

covering models for emergency medical services location and planning, and 

optimization techniques as well to solve these models for the past few decades. 

Another study is conducted by Başar et al. (2012) in which they present a taxonomy 

for Emergency Service Station location problem by systematically classifying 

models in terms of objective function, constraints, model assumptions, modeling, 

and solution techniques. This study is valuable in providing some statistical 

information about the model characteristics in the literature such as the most 

frequently used constraint and objective function types in these models.  

We review the literature based on the major covering models and their extensions by 

ordering them from the basic to the complex ones.  
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2.1. Location Set Covering Problems (LSCP) 

One of the first studies about Emergency Medical Service (EMS) facility location 

problem is conducted by Toregas et al. (1971). Location Set Covering Problem 

(LSCP) is introduced for the first time which minimizes the total number of facilities 

activated by providing at least one facility for each demand point to be covered 

within a predefined distance standard. Mathematical formulation of the model is 

stated as follows: 

Minimize  ∑       

Subject to   ∑           
, i ϵ V 

              ,  j ϵ W 

where: 

   {
                                                 
                                                  

 

V : the set of demand points 

W : the set of potential facilities 

   : the set of the facilities covering the demand point i within a predefined distance. 

The objective of this model is to find the minimum number of ambulances covering 

all demand points in a required distance. However, the required number of 

ambulances could be high, since there is not any constraint on the number of 

ambulances. Thus, one of the main assumptions of this model is that the model 

allows for a total number of ambulances that is to be located as many as the number 

of potential facilities. Furthermore, according to this model, the facility covering its 

assigned demand points can respond to all emergency calls received within its 

service distance. However, if the ambulance is busy when another call is received, 

all demand points cannot be covered. Therefore, one main drawback of the LSCP is 

that there may be missing call that cannot be handled.  
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Aly and White (1978) extend this model by using probability distribution for travel 

times, and continuous region for the location of emergency call instead of using 

discrete points, so they formulate the probabilistic version of the LSCP model.  

Daskin and Stern (1981) extend the missing call assumption of LSCP by first 

introducing the multiple coverage idea. They consider inter-district responses and 

upgrade LSCP model to the hierarchical set covering problem, minimizing the 

number of vehicles deployed while also maximizing the multiple coverage. 

ReVelle and Hogan (1989b) propose a probabilistic version of the LSCP Model by 

minimizing the maximum response time of p ambulances with reliability level, α. In 

this model, response probability of an ambulance to a demand point in its coverage 

area is estimated by considering the deviation of the response times. 

The assumptions of the LSCP model, which are the unlimited ambulance usage, and 

shortage of ambulances, are studied by Ball and Lin (1993). They add a constraint to 

guarantee that the probability of failure to respond to a call is limited by a constant 

value, and set an upper bound on the number of ambulances that can be located. 

Marianov and Serra (2001) propose the hierarchical queuing location set covering 

problem (HiQ-LSCP) to minimize the number of ambulances to cover all demand. 

Marianov and Serra (2002) also propose an extension of the LSCP model with a 

probabilistic and queuing method called the Probabilistic Location Allocation Set 

Covering (PLASC) Model. This model locates the minimum number of ambulance 

stations and allocates the demand points to these ambulance stations so as to ensure 

that every user will be allocated to a center within a standard time or distance, and 

that every user will wait in a queue with no more than b other people, with a 

probability of at least α.  

Berman et al. (2010) develop the Cooperative Location Set Covering Model 

(CLSCP) as an extension of LSCP by adding a threshold value for demand coverage. 

They relax the assumption that only one facility determines whether a demand point 
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is covered or not. They propose a coverage mechanism in which each facility at site 

j releases a “signal” that declines over distance according to a function. A demand 

point, i, receives signals from all facilities and is covered only if the “signal” 

exceeds a threshold value. This model allows for the coverage to be determined by 

several facilities in the customer’s neighborhood.  

LSCP and its extensions discussed above are listed in Table 2.1. 

Table 2.1. LSCP Model and Extensions 

 Authors Year Model Authenticity 

Toregas et al.  1971 LSCP 
Minimizing total number of 

facilities 

Aly and White  1978 
Probabilistic Version of 

LSCP 
Continuous demand region 

Daskin and 

Stern  
1981 

Hierarchical Version of 

LSCP 
Multiple coverage 

ReVelle and 

Hogan  
1989b 

Probabilistic Version of 

LSCP 
α reliability level coverage 

Ball and Lin  1993 Modified LSCM (Rel-P) 
Upper bound for uncovered 

demand 

Marianov and 

Serra 
2001 

Hierarchical Queuing 

Location Set Covering 

Problem (HiQ-LSCP) 

Probabilistic approach by 

queuing theory 

Marianov and 

Serra  
2002 

Probabilistic Location 

Allocation Set Covering 

Model (PLASC) 

Waiting in a queue with no 

more than b other people, 

with a probability of at least 

α 

Berman et al.  2010 

Cooperative Location 

Set Covering Model 

(CLSCP) 

Threshold value for demand 

coverage 

2.2. Maximal Covering Location Problems (MCLP) 

Another initial model on the EMS facility location problem is the Maximal Covering 

Location Problem (MCLP) introduced by Church and ReVelle (1974). This model 

aims to cover as many demand points as possible within the desired distance. Unlike 



 
 

 9   
 

LSCP, the number of ambulances is not unlimited, so the model provides maximum 

coverage by using P ambulances. Mathematical description of the model is 

presented below. 

Maximize  ∑         

Subject to   ∑            
, i ϵ V 

∑            

                 ,  j ϵ W, i ϵ V 

where: 

   {
                                                     
                                                                 

 

  = population to be served at demand point i 

P = number of facilities to be located 

   : the set of the facilities covering the demand point i within a predefined distance 

MCLP model is more realistic than LSCP model, since it makes use of the 

population as a weight for each demand point, and aims to maximize the coverage of 

the high population points. Still, the population is not sufficient to be used as a 

weight, because there are other important factors such as age, season, and likelihood 

of emergency incidence occurrence that affect the emergency call frequency. 

Nevertheless, the number of ambulances is limited in the model, thus representing 

better the fact that there is no unlimited resource in real life. 

There are many extensions of MCLP. Dessouky (2006) and Jia et al. (2007) extend 

MCLP to multiple quality levels for each demand point and a number of facilities 

that cover each demand point for each quality level. The model is presented below. 
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Maximize  ∑ ∑             

Subject to   ∑                 
,  i ϵ V, k=1,…,q 

∑             

                  ,  j ϵ W, i ϵ V, k=1,…,q 

where k represents the different quality levels and it could be equal to q at most.     

is a binary variable, equal to 1 if demand point i is covered at quality level k. Unlike 

MCLP model, this model utilizes a term denoted as     instead of population which 

represents the importance of demand points at each quality level. In addition,     

represents the minimum number of ambulances to be allocated to demand point i to 

achieve k quality level coverage. Thus, some of the demand points can be covered 

by multiple facilities.  When determining   , a combination of factors such as 

population of the demand point, age distribution of the population, significance of 

the demand point, etc. can be considered. However, since this term affects the model 

significantly, setting the weight of the term should be conducted delicately. 

Another extension of MCLP is studied by Schilling et al. (1979). They propose 

Tandem Equipment Allocation Model (TEAM) which includes different emergency 

vehicle types. This model is actually developed for fire station problems, but it is 

also used in ambulance allocation problems where two different types of ambulances, 

called Basic Life Support (BLS) Units and Advanced Life Support (ALS) Units, are 

available. Constraints of MCLP model are doubled, and rewritten in TEAM in terms 

of ambulance types A and B. Only one different constraint is added to create a 

hierarchy between the two types of vehicles. The mathematical formulation of 

TEAM is as follows:  

Maximize  ∑         

Subject to   ∑   
          

 , i ϵ V 

∑   
          

 , i ϵ V 
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∑   
     

   ,  

∑   
     

   ,  

  
      

 ,  j ϵ W 

     
    

              , j ϵ W, i ϵ V 

where   
 (  

 ) is a binary variable equal to 1 if a vehicle of type ALS (BLS) is 

located at demand point i, and the total number of vehicles of type A and B are 

limited by    and   .  

All in all, neither LSCP nor MCLP is sufficient to respond to an additional call when 

the ambulance is already busy dealing with a previous call from the same coverage 

area. As a remedy for this unlucky situation, increasing the number of ambulances 

deployed may not be the only choice; however, altering the coverage strategy may 

also yield a solution. Multiple coverage which is a strategy to handle and to lessen 

the missing calls is studied for the first time by Daskin and Stern (1981) as indicated 

in the extensions of the LSCP model. Likewise, Hogan and ReVelle (1986) propose 

two models, namely, Backup Coverage Model (BACOP1 and BACOP2). Brotcorne 

et al. (2003) and Daskin et al. (1988) describe BACOP1 and BACOP2 models in 

detail and present mathematical formulations in their paper as follows:  

BACOP1 

Maximize  ∑         

Subject to   ∑               
, i ϵ V 

∑            

           ,  i ϵ V 

     ,    j ϵ W 
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BACOP2 

Maximize   ∑              ∑         

Subject to   ∑                  
, i ϵ V 

        ,   i ϵ V 

∑            

           ,   i ϵ V 

        ,   i ϵ V 

     ,     j ϵ W 

The objective of these models is to maximize the coverage of demand points more 

than once. In BACOP1 model, twice coverage is maximized, while in BACOP2, 

both once and twice coverage are maximized using a weight   and (1-  ) 

respectively where 0 ≤   ≤ 1. In both models, all demand points are covered at least 

once.  

Maximal Covering Location-Allocation Problem (MCLAP) is developed by 

Marianov and Serra (1998) which is the queuing version of MCLP. In this model, 

waiting time in queue is used as a constraint.  

Marianov and Serra (2001) later set forth the hierarchical queuing maximum 

covering location problem (HiQ-MCLP), which proposes to maximize demand 

covered by a two-level service. However, in this model, a demand point needs to 

receive low-level and high-level services, and also it has to wait in the queue for no 

more than b other emergency call requests, in order to be considered as “covered”. 

Another extension of MCLP is introduced by Alsalloum and Rand (2003) who 

develop Goal Programing models. In their model, firstly location of the ambulance 

stations are determined to maximize the expected demand coverage, and then the 
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number of ambulances for each station is determined according to the minimum 

service requirements. 

Karasakal and Karasakal (2004) propose another extension of MCLP with partial 

coverage (MCLP-P). They use a sigmoid function to model the decrease in the 

coverage when the distance increases, instead of modeling as only “covered” or “not 

covered” for a demand point. Mathematical formulation of this model is presented 

below.  

MCLP-P 

Maximize  ∑ ∑               

Subject to  ∑       = P 

   ∑        
 ≤ 1 ,  i ϵ V 

       ≤    ,  i ϵ V ,      

      ϵ       ,  j ϵ W 

       ϵ       ,  i ϵ V ,      

where     is equal to 1 if demand point i is partially or fully covered by facility at j, 

and if        <        = f(          is equal to 1 if     <   .  

Drezner et al. (2010) propose the stochastic version of the partial coverage model by 

defining the distance standards (     ) as random variables.  

Erkut et al. (2007) suggest a new model by adding a survival function to the 

classical coverage model, MCLP. Survival function, which is the monotonic 

decreasing function of the response time, allows for the calculation of the expected 

number of survivors in the case of emergency.  
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Berman et al. (2010) develop the Cooperative Maximal Covering Location Problem 

(CMCLP) as an extension of MCLP by using the same approach as in the 

Cooperative Location Set Covering Problem (CLSCP). 

MCLP and its extensions discussed above are listed in Table 2.2. 

Table 2.2. MCLP Model and Extensions 

 Authors Year Model Authenticity 

Church and 

ReVelle  
1974 MCLP 

Maximizing demand 

coverage 

Dessouky and 

Jia et al.  

2006/ 

2007 
Modified MCLP 

Multiple quality levels for 

each demand point and 

multiple facilities at each 

quality level 

Schilling et al.  1979 
Tandem equipment 

allocation model (TEAM) 
Two types of ambulances 

Hogan and 

ReVelle  
1986 

Backup Coverage Model 

(BACOP) 
Twice coverage 

Marianov and 

Serra  
1998 

Maximal Covering 

Location-Allocation 

Problem (MCLAP) 

Waiting time in queue as a 

constraint 

Alsalloum and 

Rand  
2003 

Goal Programming 

Approach to MCLP 

Firstly deciding the number 

of ambulances, then 

allocation of them to the 

stations 

Karasakal and 

Karasakal  
2004 

Partial Coverage (MCLP-

P) 
Using sigmoid function 

Drezner et al.  2010 
Stochastic Version of 

MCLP-P 

Defining distance standards 

as random variables 

Erkut et al.  2007 

Maximum Survival 

Location Problem 

(MSLP) 

Using monotonic decreasing 

function of response rate as 

a survival function 

Berman et al.  2010 

Cooperative Maximal 

Covering Location 

Problem (CMCLP) 

Threshold distance for 

demand coverage 
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2.3. Double Standard Models (DSM) 

Double Standard Model (DSM) is the other main approach to EMS problems, 

developed by Gendreau el al. (1997). The objective and constraints are similar to the 

previous models, but it has a different structure in terms of using two coverage 

standards,    and    time units (     ). This idea of utilizing two different time 

units is especially useful for covering demand points twice. Instead of covering all 

with in the shorter time unit with the available ambulances, a percentage α of the 

population is covered within a shorter time unit, while guaranteeing the coverage of 

all within the longer time unit. Furthermore, by defining the objective function as 

maximizing the number of nodes covered by two ambulances within the shorter time 

unit, it is aimed that covering demand points twice within the shorter time unit is 

achieved as much as possible with the available ambulances. 

DSM  

Maximize  ∑          

Subject to   ∑            
,  i ϵ V 

∑          ≥  α ∑        

    ≤     ,   i ϵ V 

∑                  
, i ϵ V  

∑            

       ≤     ,    i ϵ V 

         ϵ {0, 1},  i ϵ V 

    integer,    j ϵ W 
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where     is equal to 1 if the demand at node i is covered k times (k=1 or 2) within 

shorter time unit, and     again represents the number of ambulances located at node 

j.  

Doerner et al. (2005) extend the DSM by using penalty terms in the objective 

function. The first term is the total number of demand points not covered within the 

large time unit. The second penalty term is defined as the deviation from covering 

all the demand with a probability determined by the shorter time unit. The last one is 

for every demand point; that is the deviation of work load per facility, which is 

assigned to that demand point to be covered in longer time unit, from a 

predetermined standard (w0). These penalty terms are formulated as follows:  

   = |{       ∑           
}| 

   = α – min (α,  
∑         

∑      
 ) 

   = ∑  
  

∑        

    
 

    

These functions are added to the objective of DSM model by assigning different 

values for    ,   , and   , that the decision makers can determine the relative 

importance of. 

Maximize  ∑          –      –      –        

They add these three functions as constraints to the model instead of the first two 

constraints of DSM. 

Another extension of DSM is the Dynamic Double Standard Model (DDSM) 

suggested by Gendreau et al. (2001) that will be explained in detail in section 2.6.  

DSM and its extensions discussed above are listed in Table 2.2. 
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Table 2.3. DSM and Extensions 

 Authors Year Model Authenticity 

Gendreau el al.  1997 DSM 
Introducing two different time 

units 

Doerner et al.  2005 Extended DSM 
Adding penalty terms to the 

objective of DSM 

Gendreau et al.  2001 DDSM 
Dynamic DSM by adding 

penalty terms for relocations 

  

2.4. Maximum Expected Covering Location Problems (MEXCLP) 

Until the development of MEXCLP, many models are deterministic with the 

exception of some extensions. Missing calls are assumed to be handled by multiple 

coverage strategies. However, probabilistic methods are strong tools to handle 

missing calls as they make it possible to use the busy probability of the ambulances.   

Maximum Expected Covering Location Problem (MEXCLP) is one of the first 

probabilistic models introduced by Daskin (1983). In spite of the fact that this is 

probabilistic, it can be considered as an extension to MCLP. In the model presented 

below, q represents the busy probability of the ambulances, and the objective is to 

maximize the expected demand coverage which is   =        . This expected 

value is involved in the objective as the marginal contribution of the     ambulance, 

which is                     . The model assumes that busy probability is 

independent among facility points, and that every ambulance has the exact same 

busy probability.   

Maximize  ∑ ∑                  
 
    

Subject to   ∑     ∑          
, i ϵ V 

∑             

               ,  i ϵ V,  k=1,…,p 
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   , integer,  j ϵ W 

where     is a binary variable, equal to 1, if demand point i is covered by at least k 

facilities. 

Moreover, Daskin et al. (1988) summarize the similarities and differences between 

the set covering and maximal covering models, and their extensions that consider 

the ambulances being busy. In their study, they also recommend using a different 

time standard for each number of times a node is covered. 

Adjusted MEXCLP (Batta et al. 1989) is a model that seeks to handle the 

assumptions of MEXCLP by combining the optimization technique with the 

hypercube queuing theory. Contrary to the MEXCLP, it does not assume 

independence between ambulances and facility locations, and every ambulance has 

its own busy probability. Utilization of this hypercube queuing theory, which treats 

ambulances as servers, provides useful data regarding ambulances and demand 

points. This model has an additional correction factor in the objective that corrects 

the independence argument developed by Larson (1975). If the correction factor 

equals 1, Adjusted MEXCLP exactly behaves like MEXCLP. 

Another extension of the MEXCLP, TIMEXCLP is developed by Repede and 

Bernardo (1994). As can be deduced from its name, this model is an enhanced 

version of MEXCLP for time periods. In this model all the parameters and the 

decision variables of the MEXCLP model are redefined for each period t.  

Maximize  ∑ ∑ ∑                
            

  
   

 
     

Subject to   ∑       ∑       
  
         

 , i ϵ V , t ≤ T 

∑               , t ≤ T   

               ,  i ϵ V,  k=1,…,   , t ≤ T 

     , integer,  j ϵ W ,  t ≤ T 
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On the other hand, Saydam and Aytuğ (2003) study the objective function of the 

MEXCLP in a nonlinear form. Mathematical formulation of this new model is 

presented below. 

Maximize  ∑              

Subject to   ∑            
, i ϵ V 

∑            

         , integer , j ϵ W, i ϵ V 

They use an approximation for the nonlinear objective function. It is incorporated 

into the following function as: 

   ∑   (  ∏   
    

)    

According to the paper, this new model performs better than MEXCLP in estimating 

the coverage rate. 

Iannoni and Morabito (2007) study a complex situation which handles different 

types of calls and different types of ambulances. Therefore, different types of calls 

are responded by different types and numbers of ambulances.  

MEXCLP2 (McLay, 2009) is a model which uses similar assumptions and solution 

strategies to the adjusted MEXCLP. However, this model uses two different types of 

ambulances and more than one type of patients (corresponding to call priorities).  

MEXCLP models, especially by taking into account incidences when ambulances 

are busy, reflect better sense of the real world when compared to the deterministic 

models. Nevertheless, it has its own complication of requiring estimation of data 

related to “busy probability” and “expected coverage”. Aside from reflecting the real 

world, an erroneous estimation of these parameters may even yield irrelevant and 

imprecise results. 
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In Table 2.4, we outline the MEXCLP models and its extensions.  

Table 2.4. MEXCLP Model and Extensions 

 Authors Year Model Authenticity 

Daskin  1983 MEXCLP 
Busy probability of the 

ambulances 

Batta et al.  1989 Adjusted MEXCLP 

Relaxing independence 

assumption between 

ambulances 

Repede and 

Bernardo  
1994 TIMEXCLP Multi period MEXCLP 

Saydam and 

Aytuğ  
2003 Nonlinear MEXCLP Nonlinear objective function 

Iannoni and 

Morabito  
2007 Modified MEXCLP 

Different types of calls, 

different types of ambulances 

McLay  2009 MEXCLP2 
Different types of calls, two 

types of ambulances 

 

2.5. Maximum Availability Location Problem Models (MALP) 

Maximum availability location problem (MALP) model, which is developed by 

ReVelle and Hogan (1989a), is another probabilistic approach in the EMS literature. 

In these models, it is aimed to maximize the coverage of the demand by a specific 

probability of α.  There are two types of this model; these are MALP-I and MALP-II. 

In the MALP-I, all ambulances have the same busy probability q, and these are 

independent of each other. The following function is constructed to determine the 

required number of facilities covering each demand point to provide α probability 

level; 

   
∑           and this is linearized as; 

∑       
 ≥ ⌈

         

     
⌉    
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So, the following model gives the solution whether the demand points are covered b 

times at α probability level and the opening decisions of facilities that serve these 

demand points.     is again defined as in the MEXCLP model, and equals 1 if 

demand point i is covered by at least k facilities.  

MALP-I 

Maximize  ∑          

Subject to   ∑         
∑    

 
    ,  i ϵ V 

          ≤     ,    i ϵ V , k=1,..., b-1 

∑            

                  ,  j ϵ W, i ϵ V, k=1,..., p 

In MALP-II, busy fraction    is used for each demand point although in the MALP-I, 

all ambulances have the same busy probability q. Since pre-determining busy 

probability for each of the demand points is a hard work, using iterative process for 

estimating these values may provide a more convenient way (ReVelle and Hogan, 

1989a).  

Queuing maximal availability problem (Q-MALP) is an extension of MALP model 

which is suggested by Marianov and ReVelle (1996). This model makes the same 

assumption as in the MALP model regarding the ambulances operating 

independently from each other. Instead of the b term in the MALP model, this model 

has the    term which is calculated separately for each demand point.  EMALP 

developed by Galvao et al. (2005), on the other hand, extends the assumption stating 

that the ambulances are identical in the MALP model by integrating a hypercube 

model into the MALP. Since the model necessitates defining each ambulance 

separately, assigned to each single facility, the     term evolves into     which is 

equal to 1 if facility k is located at j. Besides, a correction factor is added in the 

Adjusted MALP model like in the Adjusted MEXCLP model.  
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MALP model and its extensions are listed in Table 2.5.  

Table 2.5. MALP Model and Extensions 

 Authors Year Model Authenticity 

ReVelle and 

Hogan  
1989a MALP-I 

Covering b times with α probability 

level by using independent busy 

fraction of ambulances 

ReVelle and 

Hogan  
1989a MALP-II 

Covering    times with α 

probability level by using busy 

fraction of ambulances 

Marianov and 

ReVelle  
1996 Q-MALP 

Relaxing the independence 

assumption using queuing system 

Galvao et al.  2005 EMALP 

Relaxing the identical ambulances 

assumption by using hypercube 

theory 

2.6. Dynamic Allocation and Relocation Models 

Static models, in which numbers of ambulances and places where they reside are 

fixed at the first stage have some flaws at the operational level in terms of flexibility 

despite yielding good results from a strategic point of view. Determining the initial 

positions of the ambulances seems to be a critical problem; however, fixing them at 

certain positions at all times may not be as effective as expected in real life cases. 

Many models in the literature treat demand points as static assets, and arrange 

ambulance locations and allocations accordingly. On the other hand, population 

density may vary within a day or due to seasonal causes. For example, population is 

denser around business centers during daytime, and shifts to residential areas at 

night. Holiday destinations observe a huge increase in population during summers, 

but they are relatively deserted in winter.  In such cases, holding the ambulance 

distributions at their initial positions at all times may not prove to yield effective 

results. A need for shifting the ambulances from low demand points to higher 

demand points emerges then. In this case, how and according to what scheme places 
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and numbers of these ambulances will be modified is another problem to be 

modeled. 

Gendreau et al. (2001) suggest the first real time EMS facility relocation model by 

converting their previous work, DSM, to a dynamic version, which is called the 

Dynamic Double Standard Model (DDSM). They model the dynamic nature of the 

model by adding the penalty term for the relocations of the ambulances to the 

objective function using the parameter,    
   which is equal to the cost of 

repositioning for ambulance k from its current site to site j at time t. This term 

restricts the unnecessary movements of the ambulances. Other variables, parameters, 

and the constraints of this model can be interpreted as in the static model, DSM.  

DDSM 

Maximize  ∑           ∑ ∑    
    

 
       

Subject to  ∑ ∑    
 
        

 ≥ 1,   i ϵ V 

   ∑          ≥ α ∑       

    ≤     ,    i ϵ V 

∑ ∑    
 
                  

, i ϵ V  

∑            ,   k=1,...,p  

   ∑    
 
    ≤     ,  j ϵ W 

         ϵ {0,1} ,  i ϵ V 

    ϵ {0,1} ,   j ϵ W , k=1,...,p 

Schmid and Doerner (2010) suggest the multi period version of DDSM by using 

time dependent travel times, called mDSM. This model has the ability to provide 

coverage during the whole planning horizon and arrange the relocation of 

ambulances. 
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Gendreau et al. (2006) suggest a model, namely Maximal Expected Coverage 

Relocation Problem (MECRP). In this model, idle ambulances in low demand areas 

are relocated without exceeding a predefined value for the number of relocations.   

Dynamically Available Coverage Location (DACL) is another dynamic model in the 

EMS literature developed by Rajagopalan et al. (2008). The model is solved by 

incorporating hypercube theory using time-varying demands and independent busy 

probabilities. 

Schneeberger et al. (2014) build a two stage relocation model where ambulances are 

relocated in the presence of a crisis situation. In this paper, firstly, a location model 

based on an existing model, mDSM, is used to locate ambulances at potential 

facilities. Then a relocation model is introduced to relocate the remaining 

ambulances after necessary ambulances are occupied for the crisis case (such as 

traffic accidents).  

Maleki et al. (2014) propose two new models for redeployment of ambulances. In 

this paper, they use an existing model, MECRP, to locate ambulances initially, and 

they propose Generalized Ambulance Assignment Problem (GAAP) which 

minimizes the total travel time of the ambulances, and Generalized Ambulance 

Bottleneck Assignment Problem (GABAP) which minimizes the maximum travel 

time.  

Jastenberg et al. (2015) develop an algorithm, namely dynamic MEXLP heuristic, 

for dynamic ambulance redeployment by minimizing late arrivals. They demonstrate 

that the proposed heuristic algorithm reduces the expected fraction of late arrivals by 

16.8% and also reduces the general response time significantly.  

Table 2.6 summarizes dynamic allocation and relocation models. 
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Table 2.6. Dynamic Allocation and Relocation Models 

 Authors Year Model Authenticity 

Gendreau et al.  2001 

Dynamic Double 

Standard Model 

(DDSM) 

Penalty term to the objective 

for the relocations of the 

ambulances  

Schmid and 

Doerner  
2010 

Multi period version of 

DDSM (mDSM) 

Using time dependent travel 

times  

Genreau et al.  2006 

Maximal Expected 

Coverage Relocation 

Problem (MECRP) 

Relocation of the idle 

ambulances using an upper 

limit for the number of 

relocations 

Rajagopalan et 

al.  
2008 

Dynamically Available 

Coverage Location 

(DACL) 

Incorporating hypercube 

theory using time-varying 

demands 

Maleki et al.  2014 

Generalized Ambulance 

Assignment Problem 

(GAAP) 

Minimizing the total travel 

time of the ambulances in 

relocation (firstly use 

MERCP) 

Maleki et al.  2014 

Generalized Ambulance 

Bottleneck Assignment 

Problem (GABAP) 

Minimizing the maximum 

travel time in relocation 

(firstly use MERCP) 

Jastenberg et al.  2015 Dynamic MEXLP 

Dynamic ambulance 

redeployment by minimizing 

late arrivals 

2.7. Other Studies in the EMS Literature  

Beraldi et al. (2004) suggest an approach to design the robust emergency medical 

services by using stochastic programming. This model determines the ambulance 

locations and the number of them at each location to achieve a reliable service level, 

and the minimum cost as well by using probabilistic constraints.  

Another study by Coşkun (2007) includes an integer programming model that 

minimizes cost by determining the number of stations, ambulances, their locations to 

cover the demand in the system. Then this model is applied for the city of Adana 

emergency medical service system by solving it using a genetic algorithm.    
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Sorensen and Church (2010) introduce a new model, namely LR-MEXCLP model, 

to the literature which is a hybrid model combining the local busyness estimate of 

MALP model with the maximum coverage objective of MEXCLP model. They 

compare their model with MALP and MEXCLP models, and submit the results of 

these studies. 

2.8. Simulation Studies for the EMS 

Goldberg et al. (1990) develop a simulation model to compare two alternative sets of 

ambulance locations in Tucson. They mainly describe their simulation model 

development, data collection and model validation by checking some performance 

measures such as successful service rate to calls.  

Repede and Bernardo (1994) develop a decision support system that includes a 

mathematical model developed also in this paper (TIMEXCLP), and a simulation 

model. They apply the new approach to the Louisville (Kentucky) EMS System, and 

prove the 13% increase in demand coverage and 36% decrease in response time 

without any increase required in the resources.  

Another study related to using simulation in EMS operations is conducted by 

Christie and Levary (1998). They develop a simulation model using an illustrative 

example. In addition, they perform what-if analyses to predict the possible scenarios 

and demonstrate the results supporting the advantages of the simulation model in the 

EMS operations. 

Ingolfsson et al. (2003) develop a simulation model to test single start station system 

(SS system) in the city of Edmonton EMS department. Moreover, they use this 

model to observe other changes in the EMS operations, such as addition of station 

and ambulances, different shifts and relocations. The results on these studies are 

summarized in the paper. Their study also includes the development and the 

validation of the simulation model. 
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Another simulation study utilized in EMS operations is conducted by Kozan and 

Mesken (2005). Their aim is to develop and test a simulation model to analyze the 

effects of emergency calls, resources used, response times, and ambulance location 

and allocation method. An application is conducted using hypothetical data to test 

several scenarios in the Ambulance System. So, they propose that the model is used 

for many emergency centers by using realistic parameters with some changes in the 

model.  

Aringhieri et al. (2007) develop integer linear programming models to locate 

ambulance stations after analyzing the emergency system with real life data. They 

also test the behavior of their solution by using a simulation model, since such 

mathematical models use some simplifications with respect to real life situations. 

Furthermore, they use this approach in Milano city case in order to show the 

importance of the approach and make some suggestions for the EMS management.  

Another study is submitted by Sullivan (2008) that includes a discrete event 

simulation study for the rural emergency medical services during disasters.  

Wu and Hwang (2009) develop a discrete-event simulation to improve the 

ambulance response time by balancing ambulance availability. Their main objective 

is to estimate the threshold for the number of ambulances with respect to demand 

increases, and to find the optimal allocation strategies for the temporary decreases in 

ambulance availability. This simulation model is applied to the EMS system of 

Tainan City for the purpose of validation. They confirm that the model represents 

the actual Tainan EMS system by using statistical analysis, and suggest some 

dispatching strategies to minimize the response time. 

Zhen et al. (2014) propose a simulation optimization method that allows for 

assessing the performance of the ambulance distribution plan by using a simulation 

model. Simulation optimization algorithm is based on the use of a genetic algorithm 

and simulation model iteratively. An application example from the city of Shanghai 
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is given to show the usage of the proposed approach. In addition, validation of the 

proposed approach is conducted by using some numerical experiments.  

Pinto et al. (2015) conduct a general study on how to construct a simulation model 

of the EMS systems. They propose a method to build a generic simulation model to 

analyze EMS systems. In addition, they discuss the most important input data and 

performance measures in order to establish a reliable simulation model. Furthermore, 

they validate their proposed method by testing their simulation against real world 

data, and present the results.  

In addition, a review study on simulation models is conducted by Aboueljinane et al. 

(2013), in which they bring together the simulation models on the EMS literature. 

They compare and contrast the models with respect to many aspects and features.  

In most of the covering models, a demand point can be considered as covered when 

at least an EMS vehicle can reach an emergency call within a predefined distance. 

Earlier studies do not consider responding to an additional call when an ambulance 

is busy. Therefore, multiple coverage idea is introduced to overcome this drawback 

of the initial models. A larger number of demand points are backup covered with 

different time standards based on this idea. On the other hand, other models are 

introduced to handle this issue by utilizing busy probabilities of the ambulances and 

reliability of the facilities. These probabilistic models are better than the 

deterministic models in the determination of the number of ambulances needed, and 

estimation of the demand coverage. Moreover, dynamic models achieve better 

coverage by using time dependent parameters in a more realistic way (Li et al., 

2011). However, dynamic models require excessive processing power and some 

optimal searching techniques such as heuristics, and metaheuristics.    

According to this review, we use static mathematical models instead of dynamic 

models. On the other hand, since it is obvious that the nature of the EMS problems is 

stochastic, we also use a simulation model to reflect the real EMS system better. 

Moreover, MEXCLP model, one of the probabilistic static models in the literature, 
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which uses busy probabilities of the EMS vehicles, can be considered to be suitable 

for using together with a simulation model.  
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CHAPTER 3 
 

 

PROBLEM DEFINITION 

 

 

 

3.1. Definition of the Emergency Medical Service Environment 

In the Emergency Medical Service (EMS) problem environment, the elements of the 

system should be identified first. When an incident occurs, emergency medical 

service is requested by a phone call, whose number is set as 112 in Turkey. All calls 

are answered by one centralized department at each region or city, which is the 

control center (CC). The CC directs a suitable ambulance to the place of the incident 

from a close emergency medical service station, such as medical institutions or 

buildings serving this purpose, where ambulances wait ready for dispatch. After the 

ambulance arrives at the incident scene, the medical treatment is conducted there or 

on the way to the hospital by the ambulance medical technicians. Patients requiring 

advanced medical treatment are reported to the CC. At this point, if required, 

ambulance crew may make an inquiry about the nearest or most convenient medical 

institution (Resmi Gazete, 2000). Hence, arguably the most important component of 

the system is the CC.  

CC staff, namely CC doctors or call center people, carry out some very critical 

duties. Their most important duty is to answer and assess the incoming calls, and to 

dispatch ambulances to the place of the incident as needed, after deciding for the 

appropriate medical service as a result of the assessment. This assessment process 

includes determining the severity and degree of the case, called triage, the quantity 

and type of the ambulances, as well as the stations from which the ambulances are to 

be dispatched. The number of patients or wounded people is also among the 

information obtained during triage. Moreover, the CC doctor decides whether 
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emergency medical treatment is necessary; and if it is not, CC doctor informs the 

caller about how the request will be resolved (Resmi Gazete, 2000). Consequently, 

many studies on EMS system focus mainly on the processes, call arrivals, 

assessment of the calls, and dispatching of the ambulances to the incident scene.  

As expected, ambulance dispatch is affected by the location of the emergency 

medical service stations. Thus, the location of emergency service stations and the 

number of ambulances at the stations are determined in a way to reach the incident 

place within the necessary time standard. This time is called the response time, 

which is determined by the international standards as 10 minutes for urban areas, 

and 20 minutes for rural areas (Acil Sağlık Hizmetleri, 2011)  

Ambulance types can differ according to the characteristics of the incident such as 

ambulances with doctors, and ambulances with other medical personnel (Resmi 

Gazete, 2000). Although in many of the incidents, one ambulance turns out to be 

sufficient, severity level of an incident or some crisis situation may necessitate more 

than one ambulance.  

Ambulance service, most important part of the EMS systems, has some similarities 

with fire and police services, but there are some differences from the operational 

perspective. It is not an obligation for ambulances to have a station such as buildings; 

they wait for an emergency case parking in an ordinary place, because parking site 

does not directly affect their service quality. After all, their primary goal is to reach 

the incident site they serve in the required time as quickly as possible.  In addition, 

the locations and the number of ambulances at the stations can be rearranged over 

time. One example to this is the redeployment of ambulances at the cities and towns 

which have seasonal population over the year, or at the regions with varying 

population between day and night time.  

Occasionally, ambulances are assigned for a new emergency call while en route to 

the station from a previous emergency service. However, it is very difficult to reflect 
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this situation theoretically in our solution approaches which requires usage of 

advanced technologies such as geographic information systems.  

3.2. Issues in Ambulance Service Systems 

Before studying the location of EMS vehicles and handle the problem in detail, 

some important considerations should be made. Firstly, the number of ambulances 

and the locations of stations where the ambulances reside should be determined. The 

locations of stations are selected among several alternative facilities. Some 

considerations in this context are: whether the facilities must be selected from 

among the already existing locations, or if some new locations are needed, or even if 

some existing facilities need to be closed as they are no longer suitable. These 

considerations and resulting actions may be hard to implement, or may not be 

feasible due to various reasons such as economic or political ones; and hence one 

must always take these constraints into account when making assumptions and 

deriving results.  

After making the decision regarding facility location alternatives, the next decision 

is how the ambulances are distributed among the facilities. Ambulance allocation 

problems such as how many ambulances and which type of ambulances are to be 

placed at each facility, their service responsibility areas and response times in 

providing services need to be addressed.  

Yet another matter of discussion is on the maximum allowable response time. 

Although it is set by the international standards, as stated before, due to the 

constraints on the number of the ambulances or the occasional shortage of available 

ambulances as they are on duty dealing with other incidents, keeping up with the 

international standards may turn out to be very difficult, and sometimes even 

impossible. Under these circumstances, putting a margin of deviation from the 

international standards should be considered. Also how much deviation can be 

tolerated, for what type of calls, and in what regions are the other questions yet to be 

addressed.  
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As stated before, calls are processed by the CC. However, quality of how these calls 

are resolved need to be assessed, and the information obtained during triage about 

the patients and the emergency incident need to be questioned regarding reliability. 

Patient’s relatives or reporting people can misguide the CC unintentionally, as they 

lose composure or may intentionally exaggerate the situation to get better or faster 

service. Hence, these and similar types of events must be elaborated, as the 

information obtained during the triage is a major factor both in ambulance 

deployment and the resulting maximum response time. 

One of the most important problems is the situation when the ambulance that may 

respond to an emergency in time is busy dealing with another incident. Precautions 

and strategies need to be developed and have to be put into action against this.  

Finally, a point to mention is that when making decisions, difficulties of the 

practical real world should be taken into account such as ownership of the 

ambulances (either government or private sector), the difficulties of data acquisition, 

not only for triage but also for issues such as tracking the number and region of the 

calls, and the difficulty of managing to accomplish many conflicting objectives such 

as trying to respond to emergencies as fast as possible, while deploying  that many 

ambulances becomes very costly.   
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CHAPTER 4 
 

 

MATHEMATICAL MODEL FOR THE LOCATION-ALLOCATION OF 

AMBULANCES 
 

 

 

In this chapter, we address the problem of the location-allocation of ambulances 

which we call ‘Gradual Maximum Expected Covering Location Problem’. We 

formulate this problem as an integer programming model. Then we provide the 

validation and implementation phases of this integer program.  

4.1. Gradual Maximum Expected Covering Location Problem 

The mathematical model developed in this study can be considered an extension of 

the Maximum Expected Covering Location Problem (MEXCLP) model proposed by 

Daskin (1983), combined with a feature of the Double Standard Model developed by 

Gendreau et al. (1997), also including the multiple coverage idea with different time 

standards that was first discussed by Daskin et al. (1988). The idea in this model is 

to cover a node multiple times by using different time standards, and to make some 

proportion of demand covered for each or desired coverage times.   

By using this idea, the model first maximizes the primary coverage in the most 

desirable time standard, then maximizes the twice and other extra coverage times up 

to total number of ambulances in more relaxed time standards. Coverage times are 

represented by the k term which may get at most the value P (total number of 

ambulances), thus, a demand point can theoretically be covered P times at most. A 

time interval is defined for each level k. A more detailed explanation is provided as 

follows: 

For k=1, a demand point should be covered by at least one ambulance in time      

  =0 < t ≤   , 
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For k=2, a demand point should be covered by at least two ambulances in time          

t ≤   , 

For k=3, a demand point should be covered by at least three ambulances in time        

t ≤   , … 

For k=P, a demand point should be covered by P ambulances in time t ≤   . 

Geographical representation of coverage levels for demand point i is depicted in 

Figure 4.1. 

 

Figure 4.1. Graphical Representations of the Coverage Levels 

One of the main features of this model is that it tries to cover a demand point within 

the minimum time; however, if this cannot be achieved with the resources at hand, it 

offers the opportunity to stretch out the response time on the condition that the 

number of coverages of the demand point is increased as well. In this manner, it is 

ensured that the disadvantages of demand points that cannot be covered in shorter 
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time units are compensated for by covering them with multiple ambulances but in 

longer time units.  

The other powerful features of the model can be described as follows: it tries to 

cover all demand points as many times as possible in harmony with the equity 

feature feature. This means that the model does not exclude the low demand points, 

while it favors to cover high demand points. Nevertheless, demand points which 

have higher demands are covered with more ambulances due to the characteristics of 

the objective of the model on the condition that all demand points should be covered 

at least at one of the many coverage levels.  

In addition, we try to cover the desired proportion of demand (for each coverage 

level, k), so then it is possible to set a coverage lower limit for coverage times that 

are appreciated the most. Minimum coverage percentage for each level (percentage 

covered at least once in time less than time,   , covered at least twice for    , etc.) 

can be set by the decision maker, if required.  

The mathematical model is constructed as an integer programming model. Detailed 

definition of the model can be seen in the following sections. 

4.1.1. Assumptions and Notation 

Assumptions 

 Demand points correspond to an aggregated population area such as 

district, neighborhood, etc. 

 Total ambulance demand is directly used, if there exists the number of 

call information for each demand point, or determined based on the 

population of each demand point.    

 Busy fraction of each ambulance (q) is calculated based on the average 

duration of a single call, total demand, and number of ambulances.  

 One type of call is assumed; triage is not made and each call has the 

same weight. 
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 Travel times between nodes are calculated by directly using distance 

measures; traffic density or other obstacles affecting travel times are 

not considered in travel time estimation.  

 The average travel time between demand points and facilities is 

assumed to be known or to be determined based on the distances 

between nodes. 

 Demand points can also be an ambulance facility location site. 

 One type of ambulance is used. 

 More than one ambulance can be placed at any facility location site. 

Sets 

V  set of demand points    i = 1,...,n 

W  set of ambulance facility locations  j = 1,...,n 

Parameters 

   total ambulance demand at demand point i 

     {

                                                                             

                                      ]                              
                                                                                                                  

 

    minimum coverage requirement of total demand for each coverage level k 

P total number of available ambulances 

q busy fraction of each ambulance 

Decision variables 

   number of ambulances located at facility j 

    {
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4.1.2. Formulation of the G-MEXCLP Model 

Maximize   ∑ ∑                  
 
   

 
       (1)  

Subject to 

∑        
 
                ϵ V and k =1,…, P    (2) 

∑   
 
           ∑   

 
          =1,…, P    (3) 

∑    
  

               ϵ V    (4) 

∑   
 
                 (5) 

   ≥ 0 and integer         ϵ W    (6) 

    ϵ {0,1}          ϵ V and  =1,…, P  (7) 

(1) The objective is to maximize the expected coverage of the demand points. This 

difference is defined previously. In the MEXCLP model, there is only a single 

time standard and every additional ambulance covers the demand point in that 

time standard. On the other hand, for each additional ambulance a new coverage 

level is determined with a different time standard. In the objective function, 

[             ] the term can be considered as the coefficient of each     term. 

Since the demand    of a point i does not change, this coefficient differs only 

with [         ] which decreases when k increases. However, for large q, the 

difference between the coefficients will tend to decrease, as a result, forcing the 

model to give values to     for large k. In this case, the model then prefers 

multiple coverage of the points with large demand, rather than covering other 

points with relatively low demand even once. This interpretation proves the 

importance of constraints (3) and (4) that will be described below. 

In addition, if the time interval between    and   ,    and   , and so on gets 

smaller, this model resembles the MEXCLP model except the constraints (3) and 

(4).  
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(2) This constraint requires that the total number of ambulances located at facilities 

covering a demand point i must be greater than or equal to k if the demand point 

is covered in the     coverage level with the     time standard. This constraint 

ensures to have a total of k ambulances at least at the     level or below. The 

rationale behind this relation of the levels and the number of ambulances is 

described below in detail.  

 Figure 4.2 illustrates this rationale for three levels only. The first curve 

represents k = 1 and t=  , the second curve represents k=2 and t=   and the third 

one represents k = 3 and t=  . In this example,     gets a value since there is one 

ambulance at or under level 1. Similarly,     and     are also getting values as 

they have 2 and 3 ambulances at or under levels 2 and 3, respectively.  

          k=1          k=2         k=3 

i                 

 

Figure 4.2. Ambulance Locations for      = 1,     = 1,     = 1 

 In this model, unlike MEXCLP, there is no such constraint as      cannot have a 

value when     does not have. Therefore, although     does not get a value,     

may get a value, and occurrence of the case in Figure 4.3 is quite possible in our 

model.  

              k=1           k=2       k=3 

  i                           

 

Figure 4.3. Ambulance Locations for      = 0,     = 1,     = 1 
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 Similarly, the case below is also probable as there is no hierarchical constraint 

preventing this case from occurring. And respectively, the first case (Figure 4.2) 

causes the objective to get the maximum value, whereas the last case in Figure 

4.4 makes it the minimum among the three cases considered here. It should be 

that noted there are 3 ambulances located at different levels for the demand point 

i in the three cases.  

                   k=1     k=2             k=3 

 i                  

          

Figure 4.4. Ambulance Locations for      = 0,     = 0,     = 1 

Consequently, not having the hierarchical constraint for the levels provides an 

opportunity where even though a demand point i does not have any ambulances 

to be covered at or under time   , it may yet have at least 2 ambulances at or 

under time   , or 3 ambulances at or under time   .  

(3) This constraint satisfies that α percent of the total demand should be covered for 

each or some coverage level k, and thus provides to cover the desired percent of 

the total demand for the preferred coverage level or levels. As an example, if 95% 

of the demand is desired to be covered at level 1,    may be set as 0.95. As 

discussed before, this constraint is a means of precaution at times when the busy 

fraction is high, and the model prefers to cover high demand points for multiple 

times rather than covering each node for once. On the other hand, it may be used 

as an option where the decision maker favors to cover a demand point with 

multiple ambulances in larger time units over covering it with at least one 

ambulance in shorter time units. At that time, decision maker could adjust    as 

needed for large k; therefore, this constraint is an optional one.  

(4) This constraint ensures that all demand points, no matter at which coverage level, 

is covered for at least one k (mandatory coverage). However, since implementing 
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this for all k is not possible theoretically (a demand point cannot be covered by 

all ambulances), a highest coverage limit such as    may be determined, and     

must be nonzero for at least one of the k=1,2,…,    levels. When determining   , 

the maximum allowable response time for a demand point set by the decision 

maker is also of importance. Hence, if the decision maker wants to have a 

demand point to be covered by time unit     at most, then    in this constraint 

can be set accordingly. Still, the minimum number of ambulances to realize this 

constraint is critical.  

It may be necessary to exclude this constraint if the model does not give a 

feasible solution with the number of available ambulances, and the number of 

ambulances cannot be increased. As stated above, the reason to add this 

constraint to the model is to ensure that there is not any demand point left 

uncovered with any one of the levels. Hence, this model does not ignore the low 

demand points such as the rural areas with less population while giving 

importance to high demand points.  

(5) This constraint implies that total number of the ambulances in the system should 

be equal to P. 

(6) This constraint provides that    is an integer. 

(7) Finally,     is defined as a binary variable in the last constraint. 

 

4.2. Model Validation 

 

4.2.1. Computational Results Using Test Problems 

 

4.2.1.1. Data  

G-MEXCLP model is tested using the maximal covering test problems data 

available on http://www.lac.inpe.br/~lorena/instancias.html. They represent real data 

collected at the central area of the Sao Jose dos Campos city (Brazil) for the problem 

to find locations for antennas. Test data include the coordinates of the 323 demand 

points and total demand of each point. This total demand is considered as monthly 

demand in this study. Coordinates of points and demand of each point are submitted 
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in Table B.1. in Appendix B. Euclidian distance is used to calculate the average 

distance between each pair of demand points as many of the studies in the literature 

frequently use (Fujiwara et al.,1987), (Aringhieri et al., 2007), and (Silva and Pinto, 

2010). Then these distances are scaled to be used for our ambulance location 

problem. In order to find the average travel time between demand points, average 

velocity of the ambulance is assumed as 60 km/h similar to previous studies (Felder 

and Brinkmann, 2002). So, the travel times between demand points are obtained 

using distances between nodes and average velocity of the ambulance. The 

distribution of these points on the X-Y plane is illustrated in Figure 4.5 (unit in 

meters).  

 

Figure 4.5. Spatial Distribution of Demand Points 

4.2.1.2. Initial Values of the Parameters 

When solving the test problems, k values are limited as k=1,2,3,4,5  of its theoretical 

span k=1,2,…,P.    values are set considering characteristics of average travel time 
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matrix, namely, as   =6 min,   =9 min,   =12 min,   =15 min, and   =18 min and 

the parameters,      are used in the model based on the    values for each k. On the 

other hand,    value is set as 3, meaning that maximum response time of a demand 

point is set to be 12 min. Demand of every point is already included in the data set 

and used as is. This data can be viewed in Table B.1 in Appendix B.     

   values are assumed to be zero initially, and the model is run to see the percentage 

of covered demand at each level. Afterwards, some values are assigned to    as 

needed.       

As stated before, there is a minimum number for ambulance fleet size that satisfies 

the constraints of the model. However, it is difficult to decide since there are more 

than one time standard in our G-MEXCLP model. For example, if there is one time 

standard, and if all demand points are required to be covered at least once, the 

minimum number of ambulances can be decided by solving the LSCP model 

(Toregas et al., 1971). But, in our case, it is difficult to determine the minimum 

number of ambulances. Nevertheless, the solutions of the LSCP model with 

different time standards are given in the model implementation section. Therefore, 

different P values, number of available ambulances, are used in the computational 

studies. 

As expected, there is a strong relationship between the number of ambulances (P) 

and busy fraction (q). We can calculate the busy fraction (q) value according to the 

following formula below after determining the initial value for P (Marianov and 

ReVelle, 1996): 

   
 ̅  ∑    

   
 

where, 

 ̅ = Average duration of a single call, in hours, 

   = Total demand of demand point i per day,  
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P = Number of available ambulances. 

It is assumed that  ̅ value is calculated as defined below: 

 ̅ = Average ambulance setup time + Average travel time from station to the incident 

scene + Time spent at the scene + Probability of delivery to hospital * (Average 

travel time from scene to hospital + Average time spent at hospital + Average travel 

time from hospital to station) + Probability of no delivery to hospital * Average 

travel time from scene back to station.  

These average values are set as follows: 

 ̅  = 2 + 7 + 10 + 0.34 * (7 + 5 + 7) + 0.66 * 7 = 30.08 min 

∑    = 12,152 calls /month,  ∑    = 405.0667 calls /day 

   
                                   

              
 

According to this formula, q values are calculated for different P values. These 

values are shown in Table 4.1. 

Table 4.1. Busy Fraction Values for Several Values of P for the Test Data 

P (total number 

of ambulances) 

q (busy fraction 

of ambulances) 

P (total number 

of ambulances) 

q (busy fraction 

of ambulances) 

10 0.85 21 0.40 

11 0.77 22 0.38 

12 0.71 23 0.37 

13 0.65 24 0.35 

14 0.60 25 0.34 

15 0.56 26 0.33 

16 0.53 27 0.31 

17 0.50 28 0.30 

18 0.47 29 0.29 

19 0.45 30 0.28 

20 0.42   
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4.2.1.3. Model Implementation 

Computational studies are implemented using Optimization Software, and Excel is 

used to obtain the parameters of the mathematical model. The model is coded in 

The General Algebraic Modeling System (GAMS) that utilizes CPLEX solver. This 

code is presented in Appendix A. It is run on ASUS Intel Core i7-4500U CPU @ 1.8 

GHz 2.4 GHz.  

The first results of the model for the stated parameters are listed in Table 4.2. 

According to these results, 10 and 11 ambulances cannot satisfy the constraints of 

the model, and the minimum number of ambulances satisfying the constraints of the 

model is 12. Thus, this result with 12 ambulances shows that 90.77% of total 

demand can be covered once in 6 min, 69.39% of total demand can be covered twice 

in 9 min, and 63.50% of total demand can be covered three times in 12 min. 

Moreover, all of the demand is covered at least once under these conditions, with the 

minimum feasible number of ambulances.  

As stated in the previous section, if all demand points are required to be covered at 

least once in a specific time standard, the minimum feasible number of ambulances 

can be decided by solving the LSCP model (Toregas et al., 1971). Otherwise, a 

feasible solution for the number of ambulances cannot be obtained. However, it is 

difficult to determine the minimum number of ambulances that satisfy constraint (4), 

since this constraint forces to cover all of the demand points at least at one of these 

coverage levels each of which has a different time standard. Therefore, LSCP model 

is solved for each of these time standards with the test data, and the following results 

are obtained: 

The minimum number of ambulances to cover all demand nodes at least once in 6 

minutes is 16. 

The minimum number of ambulances to cover all demand nodes at least two times 

in 9 minutes is 17. 
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The minimum number of ambulances to cover all demand nodes at least three times 

in 12 minutes is 19. 

G-MEXCLP model is able to cover all demand at least in one of these coverage 

levels by using only 12 ambulances. This shows that G-MEXCLP model saves at 

least 3 ambulances; moreover, 7 ambulances in the third case. Therefore, it is very 

advantageous to use the gradual coverage model with more than one level instead of 

using a model covering with a single level coverage only in terms of the number of 

ambulances.  

The results of the model are highly sensitive to    values. For example, the reason of 

increasing coverage for k=4 is that    value is determined as high with respect to the 

data structure. These results show that lots of demand nodes can easily be covered 

for this coverage level. Therefore, G-MEXCLP model might not give such a result 

for another data set (see Table 4.4).  

Moreover, G-MEXCLP model favors the nodes with higher demand by utilizing the 

demand of each node (  ) used as a weight in the objective function. G-MEXCLP 

model tries to cover these in as many as possible levels starting with the first level 

by locating available ambulances in suitable places. Nevertheless, the nodes with 

lower demands are not discarded due to the mandatory coverage constraint (4). As 

an example, the ambulance allocation plan of scenario 1.3 is given in Figure 4.6 

(Ambulances are represented with triangular shapes).  

The list of demand in descending order is given in Table B.1 in Appendix B. 

According to the results of scenario 1.3, the nodes that have high demand such as 51, 

14, 54, 27, 72, 75 are covered in 5 different levels, while the nodes with lower 

demand such as 237, 238, 240, 241, 242, 319 are covered only in one of the levels. 

In addition, all     values for this scenario are given in Table C.1. in Appendix C. 
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Figure 4.6. Ambulance Allocation of Scenario 1.3 

It is expected that the percent of demand coverage is improved as the total number 

of available ambulances is increased. There is an increase in the percent of demand 

coverage monotonically as the number of ambulances for each level is increased. As 

it can be seen in Figure 4.7, the percent coverage increases when total number of 

ambulances is increased. This is an indicator for the validity of G-MEXCLP.    

The demand of each node 139 and 236 is increased to 10,000 in order to test the 

behavior of the model under various conditions; and scenario 1.4 is resolved with 

this new demand. Ambulance location of the original scenario 1.4 is seen on the map 

in Figure 4.8. 

On the other hand, ambulance location of the scenario 1.4 after the demand of node 

139 and 236 (black rectangles in Figure 4.9) is increased to 10,000 is seen in Figure 

4.9.  

 

411000410500410000409500409000408500408000

437000

436500

436000

435500

435000

434500

X

Y

323

322

321

320

319

318

317
316

315

314

313

312

311

310

309

308

307

306

305

304

303

302

301

300

299

298

297

296

295

294

293

292

291

290

289

288

287

286

285

284

283

282

281

280

279

278

277

276

275

274

273

272

271

270

269

268

267

266

265

264

263

262

261

260

259

258

257 256

255

254

253

252

251

250

249

248

247

246

245
244

243

242

241

240

239

238

237

236

235

234

233

232

231
230

229

228

227226

225

224223

222

221

220

219

218

217

216

215

214

213

212

211

210

209

208

207

206

205

204

203

202

201

200

199

198

197

196
195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163
162161

160
159

158 157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113112

111

110

109

108

107106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84
83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48
47

46

45

44
43

42

41 40

39

38

37

36

3534

33

32

31

3029

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Ambulance Locations of Scenario 1.3



 
 

 50   
 

 

Figure 4.7. Number of Ambulances vs. Demand Coverage 

 

 Figure 4.8. Ambulance Locations of Scenario 1.4 
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Figure 4.9. Ambulance Locations of G-MEXCLP Model with Extreme Demand 

According to these two maps, G-MEXCLP model places 5 ambulances around the 

nodes that have higher demand to try to cover at all levels. So, the decision variable, 

    takes value for all k for these nodes. Due to the specified    values, 5 

ambulances are located around the nodes 139 and 236 from the shorter diameter to 

the larger one.  Thus, the other demand points are not neglected. This shows that it is 

important to determine these    values according to the decision maker’s 

requirements.  

For example, if    values are determined as 6, 8, 10, 12, 14 or as shorter interval 

such as 6, 7, 8, 9, 10, respectively for k=1,2,3,4,5, these 5 ambulances are located 

close to these demand points (139 and 236). However, G-MEXCLP model gives 

importance to other demands points more than the other modeling approaches that 

have one time standard only. For example, MEXCLP model is solved with 6 

minutes time standard, and it is observed that it covers the nodes with high demand 

disregarding almost all the other demand points (see Figure 4.10).  
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Figure 4.10. Ambulance Locations of MEXCLP Model with Extreme Demand 

4.2.2. Computational Results for the City of Adana 

 

4.2.2.1. Data 

G-MEXCLP model is also tested with the data for the city of Adana obtained from 

the master thesis study by Coşkun (2007). Data includes 65 aggregated demand 

points, the average travel times between demand points, and the population of each 

demand point (see Table B.2 in Appendix B). Travel time information is directly 

used in the studies, and the average demand information of each point is inferred 

from the population. The monthly demand of each node is presented in Table B.3 in 

Appendix B.  

4.2.2.2. Initial Values of the Parameters 

When G-MEXCLP model is solved using the data for the city of Adana, coverage 

levels, k, are set as k=1,2,…5 as in the test data, and    values are determined as 

  =6 min,   =7 min,   =8 min,   =9 min, and   =10 min for this problem. The 
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parameter,       is used in the model according to these    values for each k.    

value is again set as 3 for this problem. Demand data obtained from the population 

information are directly used as the demands of nodes.   

   values are assumed to be zero initially and the model is run to see the percentage 

of covered demand at each level. Afterwards, some values are assigned to    as 

needed.       

The computational studies are conducted for different numbers of ambulances (P) 

with the data for the city of Adana as well.  

The busy fraction value for this data is estimated by using the same formula 

(Marianov and ReVelle, 1996) as in the test data.  

All the values in the formula are the same as in the test problems except the demand 

per day. The demand is calculated from the population information of the original 

data as stated at the beginning of this section:  

 ̅ = 30.08 min 

∑    = 12,262 calls /month,  ∑    = 408.7333 calls /day 

   
                                  

              
 

According to this formula, q values are calculated for different P values for this data. 

These values are shown in Table 4.3. 

4.1.1.1. Model Implementation 

The first results of the model for the stated parameters are listed in Table 4.4. 

According to these results, a feasible solution cannot be obtained by 10 ambulances, 

and the minimum feasible number of ambulances turns out to be 11. It means that, 

80%  of  total demand  can  be covered  once  in 6 min, 75%  of  total demand can be 
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Table 4.3. Busy Fraction Values for Different Values of P for the City of Adana 

P (total number 

of ambulances) 

q (busy fraction 

of ambulances) 

P (total number 

of ambulances) 

q (busy fraction 

of ambulances) 

10 0.85 20 0.43 

11 0.77 21 0.41 

12 0.71 22 0.39 

13 0.66 23 0.37 

14 0.61 24 0.36 

15 0.57 25 0.34 

16 0.53 26 0.33 

17 0.50 27 0.32 

18 0.47 28 0.30 

19 0.45 29 0.29 

20 0.43 30 0.28 

covered twice in 7 min, and 72% of total demand can be covered three times in 8 

min. Moreover, all of the demand is covered at least once under these conditions. 

LSCP (Toregas et al., 1971) model is solved for each of these time standards (for 

each of these levels) for Adana as well, and the following results are obtained. 

The minimum number of ambulances to cover all demand nodes at least once in 6 

minutes is 15. 

The minimum number of ambulances to cover all demand nodes at least two times 

in 9 minutes is 17. 

The minimum number of ambulances to cover all demand nodes at least three times 

in 12 minutes is 15. 

G-MEXCLP model is able to cover all demand at least one of these coverage levels 

by using only 11 ambulances. This shows that G-MEXCLP model saves at least 4 

ambulances; moreover, 6 ambulances in the second case. Therefore, it is very 

advantageous to use the gradual coverage model with more than one level instead of 

using a model covering with a single level coverage only in terms of the number of 

ambulances.  
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Scenario 2.2 is solved again with the parameter,   =0.90, to show how constraint (3) 

of the model works, and why it is used. The reason of adding this parameter as 0.90 

is that the total covered demand at the first level is 80%, and it is considered as 

unsatisfactory. So, the model is restricted to cover more demand at level k=1, and 

the results are obtained as in Table 4.5.  

According to these results, it is observed that percent of covered demand at higher 

levels decreases in order to increase the percent of covered demand at the first level 

(k=1). This feature of G-MEXCLP model provides flexibility to the decision maker 

in order to cover the demand points at the desired level. However, total number of 

ambulances may not be sufficient to meet the desired coverage. For example, if    is 

set to 0.95 instead of 0.90 in scenario 2.8, the model gives an infeasible result. One 

of the reasons of this situation is that there is a minimum number of ambulances to 

meet some conditions, and the other reason is constraint (4), i.e., a demand point 

should be covered at least once at the first three levels. This constraint is added to 

the model to consider all the demand points. If a decision maker gives importance to 

the coverage of a specific level, the model can be solved by adding the 

corresponding    to the model; if the available number of ambulances does not meet 

this request, the model might be solved by omitting constraint (4). As an example, 

scenario 2.8 is solved by using the parameter,   , as 0.95, and omitting constraint 

(4). The results are obtained as in the scenario 2.9 in Table 4.6.  

The percent of covered demand at the first level (k=1) increases by omitting 

constraint (4). According to these results, different values might be given to the 

parameters,   , by taking the decision maker’s request, and the available number of 

ambulances into consideration.  

As in the test data, G-MEXCLP model tries to cover the higher demand points in as 

many levels as possible starting with the first level while covering the lower demand 

points in at least one of the first three levels. For example, according to the results of 

scenario 2.2, the nodes that have high demand, such as 42, 41, 43, 9, 22, are covered 

in 4 or 5 different levels, while the nodes with lower demand, such as 18, 10, 65, 64, 

15, 49, are covered only in one of the levels. A list of the demand in descending 
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order is given in Table B.3 in Appendix B, and all     values obtained from this 

scenario are given in the Table C.2 in Appendix C.  

As it can be seen in Figure 4.11, the percent of coverage increases as the total 

number of ambulances increases for this data set, too.  

  

Figure 4.11. Number of Ambulances vs. Demand Coverage for Adana Case 

As it can be seen in Table 4.7, the coverage for larger k values increases when the 

busy fraction is increased.  

As a result of the solutions obtained with G-MEXCLP model, we can be confident 

that G-MEXCLP model coded in GAMS is valid in terms of finding suitable 

locations for the ambulances.  

The following chapter presents the simulation model that we develop to observe the 

results of the G-MEXCLP model in a stochastic environment.  
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CHAPTER 5 

 

 

SIMULATION MODELLING 
 

 

 

5.1. Motivation for Simulation Modeling 

Using computer simulation for optimization is a favorable practice for its 

convenience and economic advantages when compared to empirical research or real 

world testing. Simulation provides a means to model the real world systems and 

perform experiments as needed on this once modeled media.  

In EMS services, as suggested before, quality of the medical service as well as quick 

responses to emergency calls are of vital importance (Sanchez-Mangas et. al, 2010). 

On the other hand, expenditure for healthcare is increasing worldwide as the studies 

show (Aboueljinane et al, 2013), meaning that resource management in healthcare 

will become even more important in the future. For these reasons, computer 

simulation is a useful tool for both improving the quality of the emergency medical 

service and optimization of utilization of resources, providing testing of models, 

planning and strategic decision making at low cost with high flexibility. 

Even a basic simulation model can reveal many interesting points about a real world 

problem that may not be found otherwise without experiencing the real phenomena, 

and the outcome in the realm of EMS may be to find out the performance and 

bottlenecks of different EMS management systems, models and strategies. This 

valuable information may otherwise come from practical experience that may result 

in inefficient usage of resources or even loss of human lives in EMS systems. 
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Moreover, the natural flow of the EMS service routine fits well into simulation 

environment, and can be modeled with relative ease. Statistical information that can 

be gained in such simulation experiments such as average response times to an 

emergency call is of great importance for making strategic decisions and building 

mathematical models for location and relocation of ambulances, and systematic 

improvement of EMS systems. Moreover, statistics that can only be estimated in the 

mathematical models can be obtained by using the simulation models besides the 

statistics whose real values cannot be obtained by using mathematical models such 

as response time and average waiting time in queue of the emergency calls. 

For these reasons, a simulation model is built to be able to test the results of the 

mathematical model, G-MEXCLP, against the simulation environment to observe 

the behavior and performance of the G-MEXCLP model. The result of this 

investigation will be utilized to improve G-MEXCLP model systematically as 

presented in our solution approach in the following chapter. 

This chapter continues with the details of the simulation model.   

5.2. Overview of the Simulation Model 

In this part, a general overview of the simulation model we have developed is 

presented along with the rationale regarding considerations made during the 

development of the simulation model.  

Simulation model is built on Rockwell Automation’s Arena® (Version 14.7) 

discrete-event simulation and automation software. Arena uses SIMAN processor 

and simulation language. In Arena, flow of events can be modeled through modules 

(boxes for different functionalities, logic or processes) connected to other modules.  

Entities flowing along these modules according to the defined logic, processes, and 

timings constitute the simulation. User can get statistical data, placing specific 

modules providing recording abilities and also get detailed reports of desired 

information from the simulation. The working principles of the simulation are 

presented in detail in the following sections. 
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Simulation model is developed, and tested; and run is made at a computer with Intel 

Core i7-4770S CPU @ 3.10 GHz with 16 GB RAM. 

5.2.1. Basic EMS Process  

In order to establish a valid simulation model, it is important to build upon real EMS 

service process. A flowchart of EMS service is shown in Figure 5.1 summarizing the 

basic EMS process. The simulation model is built upon this flowchart integrating 

necessary details, mechanisms, and metrics.  

 

Figure 5.1. Basic EMS Process 

5.2.2. Terms and Definitions of the Simulation Model 

A list of definitions and terms are described below before we go into details of the 

simulation model.  
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 Modules are boxes for different functionalities, logic or processes in Arena. 

The simulation model consists of interconnected modules.  

 The emergency call is accepted as the main entity, and the system is built 

upon the journey of the call throughout the simulation system. In other 

words, the call is processed through the modules of the simulation model and 

all the logic and processes are performed on this entity named call. 

 Locations are defined as the different districts of the area that the emergency 

service authority serves, and where the ambulances are placed. 

 Ambulances are distributed among stations (locations where ambulances 

reside) according to the results provided by G-MEXCLP model, which is an 

input to the simulation model, prior to simulation start.  

 A dispatch is defined as the departure of an ambulance from a station to go 

to an emergency event scene (location of the call).  

5.2.3. Assumptions 

A number of assumptions are made in order to deal with the complexity of the EMS 

environment. These are as follows: 

 An incoming emergency call is assumed to come from a distinct location 

which is identified by the CC based on the information from the caller by 

triage or by any other means. 

 The distance from each station to each location is known which is the travel 

time of an ambulance from each station to each location. This information is 

an input to simulation prior to simulation start.   

 The average travel time in the same location are assumed to be 1 minute. If 

calls are taken from the location of the ambulance, travel time is taken as 1 

minute.  
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 Geographical information system usage is not considered in the model; 

therefore, an ambulance is assumed to be available only after it returns to its 

station from a dispatch.  

 Also missed dispatches are not modeled. Missed dispatch is a false alarm 

when an ambulance dispatches from its station, but the request for an 

ambulance is cancelled before the ambulance arrives at the scene. 

 The incoming calls are interpreted to have two degrees of emergency type 

that is set by the call center personnel (triage), in other words severity of the 

case is categorized into two degrees by means of triage, which are severe and 

not severe.    

 If the patient is found to be in need of a treatment at a hospital by the 

ambulance crew, it is assumed that the patient is taken to the nearest hospital.  

5.2.4. Inputs of the Simulation Model 

It is intended that the data processed by the simulation model reflect real world cases 

as much as possible, and hence, some of the assumptions regarding duration of 

certain events and probability distributions of some of random variables are based 

on the most common assumptions and real cases in the literature. 

Call Arrival Rate 

Call arrival rate is the most probabilistic part of the EMS problems. Various 

techniques can be used to predict this rate such as historical data analysis. Most of 

the studies using simulation in EMS problems uses Poisson distribution for call 

arrivals (Goldberg et al., 1990; Borras and Pastor, 2002; Silva and Pinto, 2010, Zhen 

et al., 2014) or uses exponential distribution for interarrival time between calls 

(Christie and Levary, 1998; Kozan and Mesken, 2005; Mason et al., 2013). In this 

study, it is assumed that the interarrival time between calls is exponentially 

distributed. Calls are created by using the expression, EXPO (µ). Mean value is 
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calculated using the number of total demand (calls) in an hour from the data 

available. Nevertheless, different mean values can be used in different scenarios.  

Spatial Distribution of Calls 

Total demand of ambulances from each region is used as an input to the simulation 

model. Each region has its own demand and therefore there is a total demand for all 

regions combined. Total demand for each region divided by the total demand of all 

regions gives the demand for ambulances for each region as a percentage. Discrete 

distribution is used to utilize this percentage in assigning the call location for an 

incoming call in the system. The related calculations and expressions are presented 

in Table 5.1. 

Table 5.1. Discrete Distribution for Call Creation 

Call Location % of Demand 
Cumulative 

Probability 

Region 1 a a 

Region 2 b a+b 

Region 3 c a+b+c 

… … … 

Region n x 1.0* 

             *(a+b+c+…+x = 1.0) 

This region demand probability is given to the simulation model as an attribute of 

the call using the following expression: 

DISC(a, 1, a+b, 2, a+b+c, 3,…, 1.0 , n) 

Control Center Processing Time  

After receiving an emergency call, control center processes the call in a time 

duration which is referred to as control center processing time. In the previous 

studies, this time duration is represented by a multinomial distribution (Mason, 2015) 
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and lognormal distribution (Kozan and Pastor, 2005). Similarly, in this study, 

lognormal distribution is used for the time that passes during the assessment of the 

CC to get information about the location and the emergency level of the call. The 

expression LOGN (Mean, Variance) is used in the simulation by setting the values 

of the parameters as (2, 0.5) similar to the studies conducted before (Aringhieri et al., 

2007). 

Call Type 

In this study, it is decided that a differentiation between calls in terms of call type 

would be unnecessary. This is because of the fact that the G-MEXCLP model does 

not make this distinction; therefore, it would be inconsistent to do so in the 

simulation model. Also another fact is that in Turkey, differentiating call type during 

triage is only made to consider if an ambulance is needed or not, since the triage is 

not considered to be fully reliable. All calls that need an ambulance are considered 

to be equally important. Therefore, call type parameter (although actually modeled 

in the simulation) is not used and all calls are assumed to be of the same type.  

Ambulance Need 

Ambulance need is one of the information decided upon assessment by the call 

center during call processing case in which a call does not need an ambulance will 

be dissolved by the call center and would not be processed any further. Since the 

demand data we utilize to run our mathematical model, G-MEXCLP, consists of 

only the cases where an ambulance is sent, it is decided that in the simulation study 

all calls are ambulance needing calls. Nevertheless, in order to make it possible for 

further work to simulate such cases, the ambulance need is modeled in the 

simulation, with a probability of 1 (100%), represented by an attribute which can be 

adjustable to other percentages if needed. 
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Ambulances and Their Location 

Number of ambulances and their locations are the most important part of the 

simulation study. The number of available ambulances is also used in the 

mathematical model as the parameter, P. The same value is used in the simulation. 

On the other hand, the assignment of ambulances among nodes (stations) is a direct 

result of the mathematical model, and inputted to the simulation model in matrix 

form that is read from an excel file. Therefore, it is assumed that the total number of 

ambulances and their assignment to stations are known prior to the simulation run 

and are inputs to the simulation.  

Ambulance Dispatching 

The mathematical model aims to cover demand points at the least possible response 

time, and while striving for this, as many ambulances as possible are located at the 

nearest possible location of the demand points. Therefore, in the simulation model, a 

demand point should be served by as many ambulances as in the mathematical 

model solution. For this reason, in the simulation model, no region constraint is 

imposed and a nearest possible available ambulance is assigned for an incoming call. 

Besides, many existing works in the literature utilizes the nearest available 

ambulance algorithms in EMS simulations (Aboueljinane et al., 2013). 

Ambulance Setup Time 

After processing of the call by the control center, a suitable ambulance is directed to 

the emergency scene according to the dispatching rule defined in the previous 

section. However, before the ambulance and crew leave their station, some time is 

needed to load the ambulance with the equipment that may be needed for the case 

and for the preparation of the crew. Actually, this time is obviously dependent on the 

emergency call type, because there may be equipment and materials specific to the 

case although there are some default equipment and materials in the ambulance. 

However, since the call type is considered to be the same for all calls in this study, 

so are the distributions for all calls. In the previous studies, it is assumed that 
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lognormal distribution (Kozan and Pastor, 2005), gamma distribution (Repede and 

Bernardo, 1994) and negative exponential distribution (Zhen et al., 2014) are all 

suitable for the ambulance setup or pre-trip delay. In this study, lognormal 

distribution is used to fit for this input. The expression LOGN (Mean, Variance) is 

used in the simulation by setting the values of the parameters as LOGN(2,0.5), 

similar to the previous studies in the literature (Ingolfsson et al., 2003).  

Travel Time between a Station and a Scene 

After ambulance pre-trip preparations, ambulance leaves the station en route to the 

scene of the event. The duration of this trip is not absolutely fixed as the density 

situation of the traffic, accidents and similar other factors affect the trip duration 

substantially. Still, as mentioned in the mathematical model, G-MEXCLP, the 

distance metric can certainly be used to deduce travel times in the simulation model. 

However, in order to reflect the randomness of the traffic factors, etc., a better 

approach may be to use this distance metric as an input variable to some distribution 

rather than utilizing them as constant values. In the literature, lognormal distribution 

(Wu and Hwang, 2009; Christie and Levory, 1998) and Gamma distribution 

(Repede and Bernardo, 1994) are used for the travel time between a station and the 

incident scene. In this study, lognormal distribution is chosen for this parameter. The 

expression LOGN (Mean, Variance) is used in the simulation. For the parameter, µ, 

average time between any two nodes is used as in the mathematical model.  

Time Spent at Scene 

Once the ambulance arrives at the emergency incident scene, the first aid and other 

treatment, if required, are conducted on the patient by the ambulance crew which 

obviously take some time, and this time can be determined by analyzing historical 

data. However, we prefer to use assumptions commonly made in the studies in the 

literature.  Gamma distribution (Repede and Bernardo, 1994; Lin et al., 2015), 

Lognormal distribution (Wu and Hwang, 2009), Negative exponential distribution 

(Zhen et al., 2014), and a constant value (Ingolfsson et al., 2003) are used for the 
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time spent at an emergency scene in the previous studies. It is assumed that Gamma 

distribution is suitable for on-scene time in our simulation study, and the expression 

1+GAMM (α,β) is used.  

Hospital Need 

The processes mentioned above until a hospital need arises are carried out for each 

call; however, hospital need exists for only a proportion of the calls. Some of the 

patients require special or further treatment that may only be conducted at a hospital. 

On the other hand, some patients get the required treatment by the ambulance 

personnel; thus, the service terminates at the place of the incident. Hence, the 

proportion of the cases with a hospital need is of interest for the simulation model.  

According to Aarytun and Leknes (2014), 43% of the calls end at a hospital, and 

according to Ingolfsson et al. (2003), 25% of the calls end at a hospital. In this study, 

it is assumed that 34% of the calls are transported to the hospital. This information is 

given to the simulation using a discrete distribution, and the expression is DISC 

(0.34, 1, 1.0, 0). Therefore, “1” represents the calls being transported to a hospital, 

while “0” means the other calls ending at the incident scene.  

Hospital Location 

Number of hospitals and their locations are also an input to the simulation. However, 

this part of the problem is not modeled in the mathematical model, since they are 

known. Neither the locations of the hospitals nor the locations of the emergency 

incidents could be changed. Therefore, ambulance service is only responsible for 

this part of the problem in transporting patients from their location to a hospital if 

needed. Therefore, in this study, number of hospitals and their locations fulfill a 

function to ensure integrity and completeness for the simulation study. In order to 

direct some calls to the hospital, it is assumed that a few hospitals are located at 

some of the demand nodes. As an example, for the Adana case, hospitals are located 

in the nodes, 8, 22, 38 and 55 randomly. 
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Travel Times between Scene and Hospital, and Hospital and Station 

For the calls which need to go to a hospital, after some time spent on-scene, 

ambulance transports the patient to a hospital. The duration of this trip, similar to the 

case between ambulance station and emergency scene, can be obtained from the 

distances of nodes as described before. Therefore a similar LOGN (Mean, Variance) 

distribution is used in the simulation by using the same parameters.    

Time Spent at Hospital 

At the hospital, carrying the patient to the hospital, transfer of information about the 

patient and the incident, paperwork, etc. take some time, that can also be obtained by 

analyzing historical data. Still, in this study, it is chosen to get an idea from the 

works in the literature in order to determine the time spent at a hospital. Lognormal 

distribution (Wu and Hwang, 2009), Negative exponential distribution (Zhen et al., 

2014), Triangular distribution (Christie and Levory, 1998) and Gamma distribution 

(Repede and Bernardo, 1994) are used for the time spent at a hospital. It is assumed 

that triangular distribution is suitable for the time spent at a hospital.  The expression 

1+GAMM(α, β) is used in the simulation. 

5.3. Model Design 

Based on the basic flowchart of EMS systems proposed in Figure 5.1 in section 

5.2.1, and in the light of the assumptions listed above, a simulation model is built in 

Arena Ver. 14.7 of Rockwell Automation. In addition to the processes defined in the 

basic flowchart in Figure 5.1, the simulation model is built such that the statistical 

properties can be obtained by the simulation (i.e., the performance criteria), and time 

distributions of events in the process can be included. Simulation model is also 

intended to be flexible enough, meaning that it can be easily initiated for different 

ambulance allocations, various time distributions and changing probabilities such as 

ambulance need, hospital need, etc.   
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The detailed description of the simulation subsystems are provided in the following 

sections, and the figures of these subsystems are given.  In addition, all attributes 

and variables that are used in the simulation model are given with their properties 

and initial values in Appendix F.  

5.3.1. Simulation Model Subsystem Descriptions 

The structure of the simulation model consisting of a number of subsystems not only 

simplified the testing and verification of the model, but also made it more 

comprehensible. Thus, the simulation model consists of five subsystems that are 

described one by one in the following parts. 

Subsystem 1: Call Reception and CC Process  

The flow of the modules in Subsystem 1 can be seen in Figure 5.2. The first module 

of the simulation model is a CREATE block which generates the entities of our 

simulation model, i.e., the calls. The expression for this is EXPO(InterArrivalTime) 

as described in above. After that, an attribute called the StartTime is assigned at the 

ASSIGN block. StartTime holds the simulation time when a call is received, and for 

this purpose TNOW keyword of SIMAN is utilized.  

The fifth block is again an ASSIGN block where the CallType attribute is set. As 

mentioned before, all the calls are assumed to be of the ambulance needing type, 

therefore, the expression DISC(pAmbNeeded,1,1.0,0 ) ensures that all calls are of 

Type 1 (ambulance needing).  However, if desired, another type of distribution 

might be selected. Therefore, the DECIDE block labeled IfAmbNotNeeded never 

chooses the upper path, but always chooses the lower part where an ambulance is 

needed according to the assumptions made.  

Continuing on the lower path, the number of calls that need an ambulance is 

computed at a RECORD block, and after that, there is a PROCESS block labeled 

CC Process Delay which simulates the time that passes during triage of the control
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center. The expression for this block  is LOGN(CCPerformingTimeMean, 

CCPerformingTimeVariance) and the rationale is described at the related Simulation 

Inputs part above. The next block in the simulation is labeled as CC Processing 

Time and this RECORD block gets statistics of the realized CC Processing Time, i.e., 

the duration of the triage. According to this triage, the severity of the call is assigned 

at the next block, however, once again we do not differentiate any severity between 

calls and we assign to each call the same severity value. Therefore, this block again 

is used only to provide means to do so if one desires to take severity into 

consideration. It is also important to mention here that the CallQueue that will be 

described in Subsystem 2 actually takes severity into account when selecting which 

call to serve first. However, since we assign always the same severity, it works 

effectively in a first in first out (FIFO) manner. In this subsystem, the final block is 

the ASSIGN block that assigns a TimeToEnterQueue attribute to each call which is 

utilized to compute the average waiting time in the queue for a call in the end.  

Subsystem 2: Queuing and Dispatch of Ambulance 

The flow of the modules in Subsystem 2 can be seen in Figure 5.3. At the end of 

Subsystem 1, the calls are assigned TimeToEnterQueue attributes and all of the 

incoming calls arrive at a HOLD block labeled Calls Queue whose details are shown 

in Figure 5.4. Therefore, the calls are on hold until there is an available ambulance.  

 

Figure 5.4. Details of HOLD Block-Calls Queue 
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Inside the HOLD block, the calls are put in a queue named CallsQueue which 

releases the highest Severity call. Since, in our setting, it is assumed that all calls 

have the same severity, this QUEUE operates in a FIFO manner (Figure 5.5).   

 

 

Figure 5.5. Features of Calls Queue 

In short, a call waits for an ambulance if there is not any ambulance available to 

dispacth, and if there are some ambulance available, the calls are released in a FIFO 

manner. The second block of Subsystem 2 is a RECORD block labelled Time Spent 

At Queue where this value is calculated by the expression TNOW-

TimeToEnterQueue. The third block is an ASSIGN block to reduce the number of 

available ambulances by one, since an ambulance is assigned to the current call 

entity. 

The part shown in Figure 5.6, consisting of 6 blocks, is actually a loop to select the 

nearest possible ambulance among the available ambulances.  

 

 

Figure 5.6. Representation of the Simulation Loop to Select an Available Ambulance 

At the end of this loop, an attribute named AssignedStation holds the index of the 

station of the ambulance (actually the index of the AmbMatrix where the assigned 

ambulance resides).  
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Back to Figure 5.3, Subsystem 2 continues with an ASSIGN block where the 

ambulance count at the AmbMatrix(AssignedStation,1) is decreased by one, as it is 

allocated to the current call(active entity). Then a PROCESS block named Amb 

Setup Time Delay simulates the preparation time required for the dispatch of the 

ambulance. The expression utilized for this purpose is LOGN(AmbSetupTimeMean, 

AmbSetupTimeVariance). The last two blocks of Subsystem 2 calculates (assigns) 

and records AmbDispatchTime, a statistic to hold the time that passes between 

receipt of a call and an ambulance being ready for dispatch.  

Subsystem 3: Ambulance En Route to Scene 

At the very start of Subsystem 3, the ambulance is assigned to the call; it is ready for 

dispatch and begins its trip at Subsystem 3 (Figure 5.7). The first block is a 

PROCESS block that simulates ambulance travel time from the station of the 

ambulance to the scene of the emergency. The expression used in the block for this 

time is set as logn(TravelTimesMatrix(AssignedStation,CallLocation),0.25*Travel 

TimesMatrix(AssignedStation,CallLocation)). After that, since ambulance reaches 

the scene, in an ASSIGN block, ResponseTime is assigned to the value TNOW-

TimeToEnterQueue. The next block is a RECORD block to get statistical data about 

ResponseTime. The fourth block in the subsystem is an ASSIGN block to populate a 

CallCountMatrix which holds the number of calls from each location. This 

information is used in the next block for recording average response times calculated 

for each location separately in a matrix called ResponseTimeMatrix, and then for 

writing to an Excel file in the following READWRITE block. The subsystem 

continues with a DECIDE block labeled ResponseTimeCheck in which the 

ResponseTime of the current entity is checked against a TargetResponseTime 

variable, and if it is less than or equal to the target response time, in the next block a 

variable named CoveredDemand is incremented by one. After that, the Subsystem 

continues to assign a Coverage variable that holds the percentage of 

CoveredDemand over TotalNoOfCalls. Along with ResponseTime and BusyFraction, 

Coverage is one of the most important performance measures in the simulation 

model. 
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Then the simulation continues at the scene. A PROCESS block simulates the time 

that passes at the scene during medical treatment by the EMS personnel. The 

expression for this time is: 

TimeAtSceneThreshold + GAMM(TimeAtSceneBeta,TimeAtSceneAlpha). 

The DECIDE block labeled Hospital Needed? directs the flow to either Subsystem 4 

if delivery of the patient to a hospital is needed, or directly to Subsystem 5 if it is not 

(the upper path). If delivery to a hospital is not needed, this means that the 

ambulance returns back to the station after departure from the scene. The last two 

blocks count the cases that do not need delivery to a hospital, and also simulates the 

time that passes during the trip from the scene back to the station with the 

expression below:  

Logn(TravelTimesMatrix(CallLocation,AssignedStation),0.25*TravelTimesMatrix 

(CallLocation,AssignedStation)) 

Subsystem 4: Ambulance En Route to Hospital 

Subsystem 4 is only run for the cases that need hospital delivery, otherwise the flow 

continues with Subsystem 5. The flow of Subsystem 4 in seen in Figure 5.8. The 

first block of Subsystem 4 is an ASSIGN block to set Index attribute back to zero. 

The Index attribute is used only for finding the nearest ambulances and hospitals to a 

call location. After that, the six blocks form a loop very similar, almost identical, to 

the one in Subsystem 2. At the end of this loop, the call is assigned to the nearest 

hospital location, meaning that AssignedHospital attribute is given the index of the 

nearest hospital. The next block is labeled as TT Scene To Hospital delay, a 

PROCESS block to simulate the time that passes in the trip while the patient is  

taken to the hospital. The expression for this is as follows:  

logn(TravelTimesMatrix(CallLocation,AssignedHospital), 0.25*TravelTimesMatrix 

(CallLocation,AssignedHospital)). Time At Hospital delay follows it simulating the 

time  that  passes  at  the  hospital for  paperwork  or  information  exchange,  etc.  as 
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described in the simulation inputs part. The expression is:  

TimeAtHospitalThreshold + GAMM(TimeAtHospitalBeta,TimeAtHospitalAlpha). 

The final block in this subsystem is the Time Back To Station; again a PROCESS 

block is used to simulate the travel time from the hospital, back to the station with 

the expression: TravelTimesMatrix(AssignedHospital,AssignedStation). 

Subsystem 5: Disposal of  a Call 

Flow of the Subsystem 5 is described in Figure 5.9 below.  

 

Figure 5.9. Simulation Flow of Subsystem 5 

Subsystem 5 is a series of ASSIGN blocks for the final calculations of some 

parameters, and a DISPOSE block for the disposal of a call. This subsystem is run in  

either case: a hospital is needed or not, therefore, both Subsystems 3 and 4 are 

connected to the start of Subsystem 5. Subsystem 5 starts with an ASSIGN block, 

where the ambulance is released. This is done by incrementing AmbMatrix by one at 

the index of AssignedStation, and also NoOfAvailableAmbulances variable holding 

the number of available ambulances is incremented by one. The second block 

assigns an attribute named ResolveTime that is used to hold the duration of a Call in 

the simulation. Then another attribute AmbUsageTime is assigned. This is the total 

ambulance usage of a call, calculated by the expression TNOW-DispatchTime-

StartTime. This value is added to the TotalAmbUsage variable at the next block. In 

the block labelled as Update Busy Fraction, the busy fraction is calculated with the 

expression: TotalAmbUsage/(TNOW*TotalNoOfAmbs). This means that the busy 

fraction is updated before each call is disposed at the final block labelled Dispose 

Calls. 
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5.4. Verification and Validation of the Simulation Model 

In order to see whether the simulation model is accurately built and whether it is an 

accurate representation of the real emergency medical system, verification/validation 

of the simulation model is conducted by using some techniques. Since we do not 

have any real system parameters and statistics, we use a small data set and the data 

from the city of Adana for these purposes.  

5.4.1. Subsystem Techniques 

While building the simulation, to be able to test the subsystems individually, 

DECIDE blocks labeled TestInterrupt ? are placed in between subsystems as shown 

in Figure 5.10. The figure shows the transition between subsystems 1 and 2. If the 

TestInterrupt variable is set as “0”, then the entity flows through the second 

subsystem. However, if the variable is set a value “1”, entity does not continue and 

upon arriving at the DECIDE block, it is directed to and ends at the DISPOSE block.  

 

Figure 5.10. Visual Representation of Test Interrupt 

The TestInterrupt is set to “1” to DISPOSE the entities between Subsystem 1 and 

Subsystem 2, and set to “2” to DISPOSE the entities between Subsystem 2 and 

Subsystem 3, and goes on like this. Therefore, the TestInterrupt’s value allows 

entities to flow up to that Subsystem and no more.  

The subsystems are run one by one by means of this technique and tested one by one. 
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Data Set Used in Subsystem Technique 

Simulation verification process is implemented by using a small data set to be able 

to track the entities easily, and to observe whether the blocks perform their tasks 

accurately. Therefore, we use 4 ambulances, 6 locations, and 2 hospitals in this data 

set.  

Other data including average travel time between nodes, ambulance location matrix, 

hospital location matrix, and call probabilities of each location used in simulation 

verification are given in Appendix E.  

For the verification tests, the simulation model is run for a single replication for 

10,000 minutes. 

Subsystem 1 Verification 

Subsystem 1 is verified with the data set described in section 5.4.1 using the 

technique described in Section 5.4.2, setting TestInterrupt as “1” and the following 

related data are obtained and listed in Table 5.2.  

Table 5.2. Results of Test Interrupt for Subsystem 1 

Identifier 
Average Half Width Minimum Maximum Observations 

CC Process Delay 2.0044 0.03947 0.94665 4.2486 1240 

CC Performing Time 2.0044 0.03947 0.94665 4.2486 1240 

Identifier Count Limit       

Count 

NoOfAmbNotNeededCalls 0 Infinite       

Count Total No Of Calls 1240 Infinite       

Count 

NoOfAmbNeededCalls 1240 Infinite       

The Subsystem is verified to work correctly as CC Performing Time is very close to 

the mean set (which is “2”) and since TotalNoOfCalls equals NoOfAmbNeededCalls, 

meaning that all of the calls need ambulances, as we set the probability of this 

through the variable pAmbNeeded as “1”.  
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Subsystem 2 Verification 

Subsystem 2 is verified with the data set described in section 5.4.1 using the 

technique described in Section 5.4.2, setting TestInterrupt as “2”. The difference 

between this and the previous one is that two additional blocks are added before the 

TestInterrupt’s DISPOSE block to delay the ambulances for a constant time of 20 

minutes (so that we see some accumulation at the queue), and release the ambulance 

back to the system before disposal of the call. Significant statistics obtained from the 

run are given in Table 5.3.   

Table 5.3. Results of Test Interrupt for Subsystem 2 

Identifier Average Half Width Minimum Maximum Observations 

CC Performing  Time 2.0053 0.02979 0.80904 3.9324 1295 

Amb Setup Time Delay 2.0105 0.03024 0.94906 4.4631 1294 

Time Spent At Queue 4.5 1.4898 0 41.946 1295 

Dispatch Time 8.5191 1.4866 2.3246 46.922 1294 

The data semantically verify our timing variables. Mean values are consistent with 

the values entered, and also we expect that average Dispatch Time is the summation 

of averages of CC Performing Time, Amb Setup Time Delay and Time Spent At 

Queue, and, in fact, omitting the small errors, this is the case. The small errors can 

be explained by the fact that some of the calls are waiting at the queue when the run 

is terminated. This means that they are taken into account while calculating CC 

Performing Time, but not taken into account in the calculation of Time Spent At 

Queue and not Dispatch Time, etc. Still, the error induced by this fact is very small 

(The difference between 8.5158 and 8.5191), and can be omitted to conclude that 

Dispatch Time is the sum of the other three time metrics, hence, calculations are 

verified.  

The most important facility of the Subsystem 2, however, is the loop, the algorithm 

that selects the nearest possible ambulance to the CallLocation. The verification of 

this algorithm is done using Run Interaction feature of Arena.  
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In Figure 5.11, the blocks with rectangle around (Decrement Total Available 

Ambulances and Ambulance Setup Time Delay) indicate blocks where breakpoints 

are placed. The simulation run is stopped at these blocks, and some selected 

parameters can be viewed at those instances.  

These two blocks are selected, as at the first one, the situation of available 

ambulances can be viewed, and the second one indicates the selected ambulance 

among available ones so that the result of the algorithm can be traced. An example 

trace is shown Figure 5.12. 

                   Stop at the first block                   Stop at the second block 

 

Figure 5.12.Watch List of Different Blocks 

This example trace shows that at the first block (upper left corner) all 4 ambulances 

are available and call comes from Location index 3; the places of the ambulances are 

shown in the Watch 3 window on the lower left corner. Then the simulation 

continues and stops at the second block breakpoint. Now from the Watch 1 on the 

upper right corner, it is understood that the call is assigned to the second station. The 

AmbMatrix(2,1) is decremented by one as can be seen on the lower right corner. 

This verifies the virtue of the algorithm that the nearest possible ambulance is 

assigned to the call according to its station. The verification of the algorithm is done 

using this method described here for a series of different cases and replications.  
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Subsystem 3 Verification 

Subsystem 3 is verified with the data set described in section 5.4.1 using the 

technique described in Section 5.4.2. Since Subsystem 3 is related to mainly the 

ambulance travel times and ‘at-scene’ times, the focus will be on parameters related 

to these concepts. A test run yields the results in Table 5.4.  

Table 5.4. Results of Test Interrupt for Subsystem 3 

Identifier Average Half Width Minimum Maximum Observations 

TT Station to Scene Delay 5.0423 0.31555 0.66851 24.504 1215 

Time At Scene Delay 10.056 0.41836 1.0382 50.982 1214 

TT Scene To Station Delay 5.0291 0.44744 0.71918 20.793 778 

Response Time 16.185 (Corr) 2.1155 74.121 1215 

The results obtained are found to be consistent with the time distributions given. At 

the end of the run, an entity (call) is seen to be still in ambulance at scene state, since 

there is one observation difference between TT Station to Scene Delay and Time At 

Scene Delay. Also TT Scene To Station Delay is observed 778 times. This is also 

expected since some of the calls are of hospital needing type, their flow continues in 

Subsystem 4 before returning back to the station. 

In this subsystem, some important variables such as response times, coverage and 

covered demand are calculated and assigned. The statistics are shown in Table 5.4 

and 5.5. The calculation logic is verified using  Arena Run Interaction toolbar with 

breakpoints and watches as described in the previous sections.  

 

Table 5.5. Statistics of Test Interrupt for Subsystem 3 

 

Identifier Average 
Half 

Width 
Minimum Maximum Final Value 

Coverage Value 0.44807 (Corr) 0 1 0.48026 

Covered Demand Value 286.09 (Corr) 0 584 584 
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Subsystem 4 Verification 

Subsystem 4 is also verified with the data set described in section 5.4.1 using the 

technique described in Section 5.4.2. Subsystem 4 deals with the interactions related 

to hospital and the focus is on the statistics related (Table 5.6).  

 

Table 5.6. Results of Test Interrupt for Subsystem 4 

 

Identifier Average 
Half 

Width 
Minimum Maximum Observations 

TT Scene To Hospital Delay 2.1931 0.10011 0.5217 4.9026 436 

Time at Hospital Delay 6.7392 0.46132 1.0655 21.725 436 

Time Back To Station 4.6724 0.45269 1.5 12 435 

The time averages obtained are consistent with the time distributions of the variables. 

Time Back To Station is found to be slightly smaller than TT Scene To Station delay 

for example, this is because of the fact that, for the verification data set, the hospitals 

are located to be at two focal points of the location matrix (namely at 2
nd

 and 5
th

 

indices). The observation numbers are also consistent.  

The nearest ambulance selection algorithm is nearly identical to the nearest 

ambulance selection algorithm in Subsystem 2, and therefore verified using the same 

techniques described in Subsystem 2 verification, using breakpoints and watch lists 

of the Arena Run Control.  

Subsystem 5 Verification 

Subsystem 5 is also verified with the data set described in section 5.4.1 using the 

technique described in Section 5.4.2. Subsystem 5 is a small subsystem only dealing 

with the assignments of final variables and then the disposal of the call.  

Attribute AmbUsageTime, variable TotalAmbUsageTime and most importantly 

BusyFraction variable is assigned in this subsystem. The variable calculation logic is 

verified by using Arena's Run Control, stopping at breakpoints and checking for 

each call entity as described in the previous sections.  
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5.4.2. Other Techniques 

Data Set 

Other techniques are implemented by using the data for the City of Adana. Some 

information is given about this data in the previous chapters, so we present here only 

the distributions and constants input to the simulation model.  

Initial values of the variables used in the simulation model for this data are given in 

Appendix F. Other data including ambulance location matrix, and hospital location 

matrix used in one of the models in this section are given in Appendix G. Average 

travel time matrix is already given in Table B.2 in Appendix B. This matrix is also 

used in the simulation models as is.  

Input Distributions Control 

Various analyses related to input distributions and their parameters used in the 

simulation model are conducted in Minitab to control whether they represent the 

randomness in the system correctly. Thus, we can detect how appropriate the usage 

of the input distributions and parameters are.      

Call arrival distribution is determined as exponential distribution as stated in  5.2.4, 

and the arrival rate is determined as 3.523 according to the demand data of Adana 

case. We generate random data distributed exponentially in Minitab and plot 

histogram of this data. This can be seen in Figure 5.13. 

Control center processing time distribution and ambulance setup time are 

determined as Lognormal, and we use LOGN (2, 0.5) as an input to the simulation 

model. We generate this data and plot its histogram in Minitab to see the behavior of 

these values in simulation (Figure 5.14).     
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Figure 5.13. Histogram of Expo (3.523) 

 

Figure 5.14. Histogram of LOGN (2, 0.5) 

These values are consistent with the nature of these tasks. Control center processing 

time may be short in the well-defined cases (during triage), but may be long in the 

complicated cases. Ambulance setup time may also be short in the cases that do not 

need new equipment or material, but very long in the cases that need some extra 
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equipment or material to load into the ambulance. So this time range makes sense 

for both control center processing time and ambulance setup time.  

We use Gamma distribution for time at the scene and time at the hospital. 

1+GAMM(1.2,7.5) for time at the scene and 1+GAMM(1,4) for time at the hospital 

are used in the simulation. The reason of using these values is to obtain mean values 

as 10 (1+1.2*7.5) and 5 (1+1*4) that are used in the busy fraction estimation in the 

mathematical model, G-MEXCLP; so, they are compatible to the values used there 

in. We create random data which have Gamma distribution with these parameters 

and plot their histograms (in Figures 5.15 and 5.16). 

 

Figure 5.15. Histogram of 1+GAMM (1.2, 7.5) 

The reason of using these mean values is that these tasks usually result in these 

mean times; however, these values may sometimes be shorter or occasionally very 

high. These histograms seem to be very consistent with this purpose.  
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Figure 5.16. Histogram of 1+GAMM (1, 4) 

Moreover, lognormal distribution is used for all travel times. Mean of this 

distribution is taken from the “average travel time between nodes” matrix, and 

variance is used as 0.25 times of the mean. Therefore, we create and plot histogram 

of some potential travel times. These can be seen in Figures 5.17 and 5.18.  

 

 Figure 5.17. Histogram of LOGN (10, 2.5) 
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Figure 5.18. Histogram of LOGN (6, 1.5) 

Increasing Arrival Rate 

We compare multiple systems in the simulation model to see how simulation results 

change with changing arrival rates of emergency calls. In actual EMS systems, 

arrival rate is a very important input of the system, and the system reacts quickly to 

the variation in the interarrival time between calls. For example, if interarrival time 

between calls is increased, and thus frequency is decreased, response time should 

decrease and busy fraction should increase.  

Before making simulation runs, steady state behavior of the system is investigated. 

One year simulation run for the most congested system whose interarrival rate is 

3.523 is conducted. Moving average graphs are plotted for all of the three 

performance measures, and they are presented in Figure 5.19, 5.20 and 5.21.  

According to these graphs, truncation points and replication length are determined as 

80,000 minutes and 100,000 respectively. So simulation is run with 10 replications 

for the time interval [80,000; 100,000]. 
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Figure 5.19. Mean Response Time by Simulation Length 

 

Figure 5.20. Mean Busy Fraction by Simulation Length 

 

Figure 5.21. Mean Coverage by Simulation Length 
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Three different interarrival rates of exponential distribution are used as λ=3.523, λ=7 

and λ=10. Then replication averages of the three performance measure are compared 

with respect to these interarrival times. According to the following box plot of 

replication averages for response time, busy fraction and coverage (Figure 5.22, 5.23, 

5.24),  it seems that simulation model accurately reflects the real EMS system. 

 

Figure 5.22. Boxplot of Response Time for Different Interarrival Times 

 

Figure 5.23. Boxplot of Busy Fraction for Different Interarrival Times 
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Figure 5.24. Boxplot of Coverage for Different Interarrival Times 

As expected, when interarrival times between calls are increased, response time and 

busy fraction decrease significantly while coverage increases. 

All Resources at One Location 

All ambulances are located at one location, as an example, at node 63, to see the 

behavior of the simulation model in such an extreme case. We run the simulation for 

300,000 minutes and investigate the steady state behavior. Moving average graph 

for response time is plotted in Figure 5.25. 

 

Figure 5.25. Response Time by Simulation Length 
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As it can be seen in Figure 5.25, response time values are very high when all 

ambulances are located at one location, and the system does not reach the steady 

state. 

Force Starvation 

We can see the starving behavior of the simulation model with the decreasing arrival 

rate and increasing number of ambulances. For this purpose, the number of 

ambulances  is doubled at each location, and arrival rate is set as λ=10. Simulation 

model is run for 10 replications for the interval [80,000; 100,000]. Replication 

averages of the performance measures are obtained as in Table 5.7. 

Table 5.7. Average Values of Performance Measures in Starvation Case 

 Mean StDev 95%CI 

Response Time 6.8447 0.0442 [6.8130, 6.8764] 

Busy Fraction 0.063502 0.000715 [0.062990, 0.064014] 

Coverage 0. 927570 0. 002215 [0.925985, 0.929155] 

According to these results, average busy fraction of the ambulances is very small. 

All ambulances wait at their station for most of the time. Therefore, when there are 

many ambulances, and call arrival rate is low, the system faces starving condition. 

Degenerate Test 

The degeneracy of the model’s behaviour can be tested by taking the interarrival 

time between calls as λ=1 while not increasing the number of ambulances which is 

already taken as 13. Thus, the arrival rate of the system can be made larger than the 

service rate. Simulation model is run for 40,000 minutes by using this input 

parameter, and the following results are obtained for each performance measure as 

shown in Table 5.8. 
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Table 5.8. Outputs of the Case for λ=1, P=13  

Performance Measure Average Value 

Response Time 13211 Min 

Time in Queue 13,202 

Busy Fraction 94.19% 

Coverage 0.16% 

Number In Queue 13215 

As it can be seen in Table 5.8, if arrival rate is larger than the service rate, average 

number in the queue continues to increase over time, and response rate and busy 

fraction are extremely high than the acceptable values, as expected. So this 

technique provides satisfactory results.       
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CHAPTER 6 
 

 

THE PROPOSED SOLUTION APPROACH 
 

 

 

Mathematical models in the literature suggested for Emergency Medical Service 

Systems, despite being as detailed and finical as possible, generally fall short in fully 

reflecting the real world. Many simplifying assumptions are made to handle several 

sources of uncertainty. Moreover, performance measures of the system such as 

demand coverage, response time are not measured properly due to the inadequacies 

of the mathematical models developed so far. For example, many mathematical 

models overestimate the coverage because of their inadequacy in estimating the time 

when ambulances are busy (Repede and Bernardo, 1994). On the other hand, 

approaches to the problem with the incorporation of simulation models as well, 

better reflect real world assets, but may not yield the optimal locations for 

ambulances as the mathematical models can. These simulation models built for EMS 

systems are generally used for evaluating the existing EMS systems, or for testing 

the impact of change when moving to a new system. Therefore, the ambulance 

location and allocations are known prior to simulation, making the simulation a tool 

for assessing performance rather than a tool to decide on the location and allocation 

of stations and ambulances.   

We propose an integrated optimization and simulation approach to take advantages 

of both the mathematical modelling’s ability to find the optimal locations for the 

ambulances, and the simulation modelling’s power to evaluate the performance of 

EMS systems in a more realistic manner. Our approach allows us to evaluate the 

operational performance of the ambulance location plan obtained from the 

mathematical model through a detailed simulation model. Mathematical model is 
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used to find the initial locations of the ambulances using some initial parameter 

settings. Then ambulance locations are input to the simulation model in order to 

evaluate the performance of the system in a stochastic environment in which the 

arrival time of calls, travel times, service times are all uncertain as they are in the 

real world. If the performance of the system is not found to be satisfactory, the 

mathematical model is reconstructed by the updated parameters. 

Our integrated approach involves the G-MEXCLP model as the mathematical model 

and the simulation model which is actually a generic EMS model. These two models 

are used in an iterative manner so as to improve the solution to the ambulance 

location and allocation problem of the EMS system. Figure 6.1 shows the logical 

flow of the integrated approach.  

According to our approach, iterations start with the construction of the G-MEXCLP 

model with its initial parameters. Throughout the iterations, some of the parameters 

of the G-MEXCLP are updated, while some others are not changed. Average travel 

time between nodes and average demand of each node are the only constant input 

parameters of the model, while the number of available ambulances and busy 

fraction of each ambulance are parameters that can be updated throughout the 

iterations. Iterations begin with the construction of the G-MEXCLP model with the 

initial parameters; then it is solved to obtain ambulance locations, and number of 

ambulances at each location. If the problem is infeasible, G-MEXCLP model is 

reconstructed with one more ambulance added in the fleet, and busy fraction is 

estimated for the updated number of ambulances.  

Thus, second iteration begins with these updated parameters.  When the G-

MEXCLP model gives a feasible solution for the ambulance locations plan, 

ambulance locations and number of ambulances are used as input parameters to be 

updated together with the other constant (i.e., not changing during iterations) input 

parameters such as the average travel time between locations, interarrival time 

between calls, control center performing time, ambulance setup time, and times at 

the incident scene and hospital. Then simulation model is run with these parameters
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 Figure 6.1. Integrated Optimization and Simulation Approach for the EMS 

System 
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to observe the performance of the system in terms of busy fraction, response time 

and demand coverage as the key performance measures. So these performance 

measures are analyzed to decide whether the system reaches the steady state. If not, 

a new iteration is started again with the increased number of ambulances. 

If the system reaches the steady state, output analysis is performed on these values 

obtained from many replications of the simulation model. The number of 

replications is also decided to achieve the required precision for these performance 

measures. 95% confidence interval is constructed for the three performance 

measures. Busy fraction is the first performance measure to be examined in this 

integrated approach. If both the estimated and the initial busy fractions at the start of 

the G-MEXCLP model construction do not fall in this interval, this initial busy 

fraction value is exchanged with the mean of the CI constructed for the busy fraction. 

So, the third iteration begins with the busy fraction updated only keeping the same 

number of ambulances.             

The purpose of these updates is to reach the correct value of busy fraction for the 

determined number of ambulances. As a result, a correct combination of busy 

fraction and number of ambulances values are obtained. These new parameters are 

again input to the G-MEXCLP model and new ambulance locations are obtained; 

thus, the third iteration begins.  

If, in the second iteration, the estimated and the initial busy fraction values at the 

start of the G-MEXCLP model fall in the CI interval for the busy fraction, the 

iterations continue with the response time check.  

In the third iteration, if the ambulance locations do not differ from those in the 

second iteration, iterations again continue with the response time check.  

In this part of the approach, if the upper limit of CI constructed for the response time 

turns out to be greater than 10 minutes, which is the target response time value for 

this problem set, the next iteration begins with the increased number of ambulances, 

and continues in a way similar to the previous iterations. If the CI includes 10 
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minutes, or it is less than 10 minutes, iterations go onwith the check of the demand 

coverage.  

Up to this point of the algorithm, busy fraction is adjusted and response time is 

brought up to the desired level according to the step of the flow in the approach. 

After this point, coverage is improved as much as possible. This improvement is 

achieved with some constraint addition/deletion to/from the G-MEXCLP model. 

According to the simulation model results, some constraints that force higher 

coverage for nodes which have higher response times can be added while omitting 

the mandatory coverage constraint, (4). The reason for removing the mandatory 

coverage constraint is not to over-restrict the system by adding too many constraints 

and cause it to underperform. It is important to state here that, for some of the test 

runs, that was indeed the case. Hence, demand points that have higher response 

times are favored instead of covering all demand points at least at one of the 

coverage levels.  

This constraint addition process can continue until no more improvement is obtained 

in coverage or coverage gets worse than it was in the previous iterations.  
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CHAPTER 7 
 

 

COMPUTATIONAL STUDY 
 

 

 

Solution approach proposed in the previous chapter is tested with the data for the 

City of Adana. The detailed description of the data characteristics are given in the 

mathematical model validation part. Some initial computational studies on the 

mathematical model, G-MEXCLP, and the simulation model are conducted in their 

verification and validation processes. Therefore, in this chapter, we perform a 

computational study on our integrated approach. 

Each iteration of the approach can be defined as the process that begins with the 

construction of the G-MEXCLP model with its initial original parameters, and ends 

with the re-construction of the G-MEXCLP model with the updated parameters 

and/or deletion/addition of some constraints, or ends at the termination part.  

7.1.Testing Our Solution Approach 

1
st
 Iteration 

This iteration begins with scenario 2.2 in Table 4.4 in section 4.2.2.3, which is the 

first scenario that gives a feasible solution to the G-MEXCLP model. The variable 

input parameter settings and the solution of the model are presented in Table 7.1. 

Table 7.1. Model Inputs and Solutions for the 1
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

11 0.78 11,15,16,25(2),31,39,41,53,57,62 
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Simulation model is constructed and run for one year. However, it can be seen from 

Figure 7.1 that response time value goes down after 120,000 min, but it does not 

reach the steady state even in one year. Therefore, this iteration ends with the 

increased number of ambulances.  

 

Figure 7.1. Mean Response Time by Simulation Length for the 1
st
 Iteration 

2
nd

 Iteration 

Based on the decision obtained from the previous iteration, number of ambulances is 

increased by one, and 2
nd

 iteration continues with scenario 2.3 in Table 4.4 in 

section 4.2.2.3 whose parameter settings and solution are as in Table 7.2 

Table 7.2. Model Inputs and Solutions for the 2
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

12 0.71 5,11,15,17,23,27,31,35,51,53,57,62 

Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior, and determine the truncation point. Moving average 

graphs are plotted for the three performance measures. These can be seen in Figures 

7.2, 7.3 and 7.4. 
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Figure 7.2. Mean Response Time by Simulation Length for the 2
nd

 Iteration 

 

Figure 7.3. Mean Busy Fraction by Simulation Length for the 2
nd

 Iteration 

 

Figure 7.4. Mean Coverage by Simulation Length for the 2
nd

 Iteration 
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According to these graphs, it is seen that the system reaches the steady state at 

100,000 minutes. However, truncation point is determined as 120,000 minutes to be 

conservative, and statistics accumulated up to 120,000 minutes are not used. Since 

the replication length is determined as 300,000 minutes, statistics for 180,000 

minutes are collected to interpret the results.  

Initially, we start with 10 replications (N=10) for the time interval [120,000; 

300,000], and construct a 95% confidence interval for the three performance 

measures using the replication averages. Confidence intervals are obtained as in 

Table 7.3.  

Table 7.3. 95% Confidence Intervals on Performance Measures 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.79430 0.00494 0.00156 [0.79077, 0.79784] 

Response Time (min) 10 20.426 0.706 0.223 [19.921, 20.931] 

Coverage 10 0.28963 0.00948 0.00300 [0.28285, 0.29642] 

Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.00445 = 0.445% 

Precision for response time = 
          

    
  

     

      
  0.024723 = 2.47% 

Precision for coverage = 
          

    
  

        

       
  0.023426 = 2.34% 

These precision values are considered as strong enough; hence, we do not need any 

more replication to interpret the outputs. 

According to the solution approach flowchart that was described in the previous 

chapter, the first performance measure that should be analyzed in conducting the 

iterations is the busy fraction. Since the initial busy fraction value is 0.71, and it is 

not in the confidence interval, the next iteration begins by updating the busy fraction 

value as 0.7943 (the mean value of simulation output) to be used in the G-MEXCLP 

model.    
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3
rd

 Iteration 

Based on the decision obtained from the previous iteration, busy fraction is updated 

as 0.7943 and this 3
rd

 iteration continues with the following parameters given in 

Table 7.4. 

Table 7.4. Model Inputs for the 3
rd

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

12 0.7943 

G-MEXCLP model is reconstructed with these parameters, and the ambulance 

location nodes are obtained as in Table 7.5. 

Table 7.5. Model Inputs and Solutions for the 3
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

12 0.7943 5,11,15,17,23,27,31,35,51,53,57,62 

So the new ambulance locations are not different from the previous ambulance 

location nodes, so the iteration continues with the response time check obtained in 

the previous iteration. Confidence interval for the response time is obtained as 

[19.921, 20.931]. Since this interval is much larger than the target response time (10 

minutes), iterations are carried out with the updated number of ambulances; and the 

next iteration begins.  

4
th

 Iteration 

Based on the decision obtained from the previous iteration, number of ambulances is 

increased by one, and this 4
th

 iteration continues with scenario 2.4 in Table 4.4 in 

section 4.2.2.3 whose parameter settings and the solution of the model are in Table 

7.6. 
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Table 7.6. Model Inputs and Solutions for the 4
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

13 0.66 5,8,11,15,17,23,27,31,35,51,53,57,62 

Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior and determine the truncation point. Moving average 

graphs are plotted for the three performance measures. These can be seen in Figures 

7.5, 7.6 and 7.7. 

 

Figure 7.5. Mean Response Time by Simulation Length for the 4
th

 Iteration 

 

Figure 7.6. Mean Busy Fraction by Simulation Length for the 4
th

 Iteration 
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Figure 7.7. Mean Coverage by Simulation Length for the 4
th

 Iteration 

According to these graphs, it is seen that the system again reaches the steady state at 

100,000 minutes. Therefore, truncation point and replication length are determined 

as in the second iteration. We run the simulation model with 10 replications for the 

time interval [120,000; 300,000], and construct 95% confidence interval for the 

three performance measures using the replication averages. Confidence intervals are 

obtained as in Table 7.7. 

Table 7.7. 95% Confidence Intervals on Performance Measures 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.68562 0.00335 0.00106 [0.68323,0.68802] 

Response Time 10 12.8862 0.198 0.0626 [12.7446,13.0278] 

Coverage 10 0.47034 0.00542 0.00171 [0.46646,0.47422] 

Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

        

       
  0.006986 = 0.70% 

Precision for response time = 
          

    
  

      

       
  0.021977 = 2.20% 

Precision for coverage = 
          

    
  

       

       
  0.016499 = 1.65% 
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These precision values are considered as strong enough; hence, we do not need any 

more replication to interpret the outputs. 

According to the solution approach flowchart, the first performance measure that 

should be analyzed is the busy fraction. Since the initial busy fraction value is 0.66, 

and it is not in this confidence interval, the next iteration begins by updating the 

busy fraction value as 0.6856 (mean value in the simulation model) to be used in the 

G-MEXCLP model.   

5
th

 Iteration 

Based on the decision obtained from the previous iteration, busy fraction is updated 

0.6856 and this 5
th

 iteration continues with following parameters as in Table 7.8. 

Table 7.8. Model Inputs for the 5
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

MIP 

Objective 

Solution 

Time 

(sec) 

13 0.6856 9171.84 13.28 

G-MEXCLP model is reconstructed with these parameters and the ambulance 

location nodes are obtained as Table 7.9. 

Table 7.9. Model Inputs and Solutions for the 5
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

13 0.6856 5,8,11,15,17,23,27,31,35,51,53,57,62 

So the new ambulance locations are not different from the previous ambulance 

location nodes, so the iteration continues with the response time check obtained in 

the previous iteration. Confidence interval for the response time is obtained as 

[12.7446, 13.0278]. Since this interval is greater than the target response time (10 

minutes), iterations go on with the update of the number of ambulances, and the next 

iteration begins.  
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6
th

 Iteration 

Based on the decision obtained from the previous iteration, number of ambulances is 

increased by one and this 6
th

 iteration continues with scenario 2.5 whose details are 

given in Table 4.4 in section 4.2.2.3. Parameter settings and the solution of scenario 

2.5 are presented in Table 7.10. 

Table 7.10. Model Inputs and Solutions for the 6
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

14 0.61 5,12,15,17,20,23,27,31,34,36,51,53,57,62 

Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior and to determine the truncation point. Moving average 

graphs are plotted for the three performance measures. These can be seen from 

Figures 7.8, 7.9, and 7.10. 

 

Figure 7.8. Mean Response Time by Simulation Length for the 6
th

 Iteration 
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Figure 7.9. Mean Busy Fraction by Simulation Length for the 6
th

 Iteration 

 

Figure 7.10. Mean Coverage by Simulation Length for the 6
th

 Iteration 

According to these graphs, the system reaches the steady state again in 100,000 

minutes. Therefore, truncation point and replication length are determined as in the 

previous iteration. We run the simulation model with 10 replications for the time 

interval [120,000; 300,000], and construct 95% confidence intervals for all of three 

performance measures using the replication averages. Confidence intervals are 

obtained as in Table 7.11. 

Table 7.11. 95% Confidence Intervals on Performance Measures for the 6
th

 Iteration 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.61099 0.00329 0.00104 [0.60864, 0.61334] 

Response Time 10 10.5117 0.1857 0.0587 [10.3789, 10.6445] 

Coverage 10 0.57742 0.00535 0.00169 [0.57359, 0.58125] 
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Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.007692 = 0.77% 

Precision for response time = 
          

    
  

      

       
  0.02527 = 2.53% 

Precision for coverage = 
          

    
  

       

       
  0.013266 = 1.33% 

These precision values are considered as strong enough; hence, we do not need any 

more replications to interpret the outputs. 

According to the solution approach, the first performance measure that should be 

analyzed is the busy fraction. Since the initial busy fraction value is found to be 0.61, 

and it is in this confidence interval, [0.60864, 0.61334], the iteration continues with 

the response time check. Confidence interval for the response time is obtained as 

[10.3789, 10.6445], and target response time (10 minutes) is not in this confidence 

interval. So, iteration goes on by updating the number of ambulances block, and the 

next iteration begins.  

7
th

 Iteration 

Based on the decision obtained from the previous iteration, number of ambulances is 

increased by one, and this 7
th

 iteration continues with the scenario 2.6 in Table 4.4 in 

section 4.2.2.3 whose parameter settings and solution are as seen in Table 7.12. 

Table 7.12. Model Inputs and Solutions for the 7
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

15 0.57 5,7,11,15,17,23,27,30,34,36,51,52,57,61,62 

Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior and to determine the truncation point. Moving average 
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graphs are plotted for all of the three performance measures. These can be seen in 

Figures 7.11, 7.12, 7.13. 

 

Figure 7.11. Mean Response Time by Simulation Length for the 7
th

 Iteration 

 

Figure 7.12. Mean Busy Fractions by Simulation Length for the 7
th

 Iteration 

 

Figure 7.13. Mean Coverage by Simulation Length for the 7
th

 Iteration 
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According to these graphs, system reaches the steady state, and truncation point and 

replication length are determined as in the previous iteration. We run the simulation 

model with 10 replications for the time interval [120,000; 300,000], and construct  

95% confidence interval for the three performance measures using the replication 

averages. Confidence intervals are obtained as in Table 7.13. 

Table 7.13. 95% Confidence Intervals on Performance Measures for the 7
th

 Iteration 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.5418 0.00327 0.00104 [0.53946, 0.54415] 

Response Time 10 9.1716 0.0787 0.0249 [9.1153, 9.2279] 

Coverage 10 0.6775 0.0405 0.00128 [0.67459, 0.68039] 

Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.00866 = 0.87% 

Precision for response time = 
          

    
  

      

      
  0.01227 = 1.23% 

Precision for coverage = 
          

    
  

      

      
  0.00856 = 0.86% 

These precision values are strong enough; we do not need any more replications to 

interpret the outputs. 

Since the initial busy fraction value is 0.57 for this number of ambulances, and it is 

not in this confidence interval, [0.53946, 0.54415], the next iteration begins by 

updating busy fraction value as 0.5418 to be used in the G-MEXCLP model. 

8
th

 Iteration 

Based on the decision obtained from the previous iteration, the busy fraction is 

updated as 0.5418 and this 8
th

 iteration continues with the following parameters in 

Table 7.14. 
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Table 7.14. Model Inputs for the 8
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

15 0.5418 

G-MEXCLP model is reconstructed for these parameters and the ambulance location 

nodes are obtained as in Table 7.15. 

Table 7.15. Model Inputs and Solutions for the 8
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Solution 

Time 

(min) 

15 0.5418 5,12,15,17,20,23,27,31,34,36,51,52,57,61,62 11071 8.23 

Simulation model is constructed with these ambulance locations and run for one 

year, and the outputs for the performance measures (response time, busy fraction 

and coverage) are analyzed to see the steady state behavior and determine the 

truncation point. Moving average graphs are plotted for the three performance 

measures. These can be seen in Figures 7.14, 7.15, and 7.16. 

 

Figure 7.14. Mean Response Time by Simulation Length for the 8
th

 Iteration 
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Figure 7.15. Mean Busy Fraction by Simulation Length for the 8
th

 Iteration 

 

Figure 7.16. Mean Coverage by Simulation Length for the 8
th

 Iteration 

According to these graphs, truncation point and replication length can again be 

determined as 120,000 and 300,000 respectively. We run the simulation model with 

10 replications for the time interval [120,000; 300,000], and construct 95% 

confidence interval for the three performance measures using the replication 

averages. Confidence intervals are obtained as in Table 7.16. 

Table 7.16. 95% Confidence Intervals on Performance Measures for the 8
th

 Iteration 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.54651 0.00338 0.00107 [0.54409, 0.54893] 

Response Time 10 9.3697 0.0864 0.0273 [9.3078, 9.4315] 

Coverage 10 0.6651 0.0423 0.00134 [0.66209, 0.66814] 
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Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.00886 = 0.89% 

Precision for response time = 
          

    
  

      

      
  0.01320 = 1.32% 

Precision for coverage = 
          

    
  

       

      
  0.00910 = 0.91% 

These precision values are strong enough; hence, no more replication is needed to 

interpret the outputs.  

Since the busy fraction value used in this iteration is 0.5418, and it is not again in 

the confidence interval [0.54409 0.54893], the next iteration begins by updating 

busy fraction value as 0.5465. 

9
th

 Iteration 

Based on the decision obtained from the previous iteration, busy fraction is updated 

as 0.5465 and this 9
th

 iteration continues with the following parameters as in Table 

7.17. 

Table 7.17. Model Inputs for the 9
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

15 0.5465 

G-MEXCLP model is reconstructed with these parameters and the ambulance 

location nodes are obtained as in Table 7.18: 

Table 7.18. Model Inputs and Solutions for the 9
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5418 5,12,15,17,20,23,27,31,34,36,51,52,57,61,62 11043 8.44 



 
 

 121   
 

So the new ambulance locations are not different from the previous ambulance 

location nodes, so the iteration continues with the response time check obtained in 

the previous iteration. Confidence interval for the response time is obtained as 

[9.3078, 9.4315]. Since this interval is less than the target response time (10 

minutes), response time value satisfies the requirements. Hence, iteration continues 

with the coverage improvement point. Consequently, the next iteration begins with 

the G-MEXCLP model update once again. 

10
th

 Iteration 

At this point, response time obtained from the simulation results of iteration 8 is 

checked for all nodes separately.  According to the results (see Table D.1 in 

Appendix D), average response time of nodes 10, 28 and 63 are 11.1866 minutes, 

11.6397 minutes, and 11.0639 minutes, respectively. These are nodes that have the 

highest response times. Moreover, when we investigate the mathematical model 

results of the previous iteration and consider each node separately, it is found that 

the nodes 10, 28 and 63 are covered only at one level. Therefore, the following 

constraints are added to the mathematical model to improve the demand coverage: 

∑      
 
    ≥ 2 

∑      
 
    ≥ 2 

∑      
 
    ≥ 2 

In addition, mandatory coverage constraint is omitted at the same time. So the G-

MEXCLP model is solved with this new constraint set, and the following results are 

obtained as in Table 7.19. 

Table 7.19. Model Inputs and Solutions for the 10
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5418 2,7,13,14,15,25,27,31,34,40,41,51,57,60,61 10877 5.81 
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Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior and determine the truncation point. Moving average 

graphs are plotted in Figures 7.17, 7.18 and 7.19. 

 

Figure 7.17. Mean Response Time by Simulation Length for the 10
th

 Iteration 

 

Figure 7.18. Mean Busy Fraction by Simulation Length for the 10
th

 Iteration 

According to these graphs, busy fraction and response time reach the steady state at 

120,000 minutes, but the system reaches steady state behavior after 250,000 minutes 

for coverage values. Therefore, this time truncation point is determined as 300,000 

minutes and replication length is determined as 480,000 minutes. Statistics for 

180,000 minutes are collected for this iteration. 95% confidence interval for the 

three performance measures are conducted using the replication averages. 

Confidence intervals are obtained as in Table 7.20. 
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Figure 7.19. Mean Coverage by Simulation Length for the 10
th

 Iteration 

Table 7.20. 95% Confidence Intervals on Performance Measures for the 10
th

 

Iteration 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.53858 0.00296 0.00094 [0.53646, 0.54069] 

Response Time 

(min) 10 9.0959 0.0765 0.0242 [9.0411, 9.1506] 

Coverage 10 0.6841 0.00337 0.00107 [0.68166, 0.68648] 

Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.00785 = 0.79% 

Precision for response time = 
          

    
  

      

      
  0.01204 = 1.20% 

Precision for coverage = 
          

    
  

       

      
  0.00705 = 0.71% 

These precision values are strong enough; hence, no more replication is needed to 

interpret the outputs. 

Since the busy fraction value used in this iteration is 0.5418, and it is not again in 

the confidence interval, [0.53646, 0.54069], the next iteration begins by updating 

busy fraction value as 0.5386 to be used in the G-MEXCLP model.  
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11
th

 Iteration 

Based on the decision obtained from the previous iteration, busy fraction is updated 

as 0.5386 and this 11
th

 iteration continues with the following parameters in Table 

7.21. 

Table 7.21. Model Inputs for the 11
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

15 0.5386 

G-MEXCLP model is reconstructed for these parameters and the ambulance location 

nodes are obtained as in Table 7.22. 

Table 7.22. Model Inputs and Solutions for the 11
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5386 2,7,13,14,15,25,27,31,34,40,41,51,57,60,61 10922 7.11 

So the new ambulance locations are not different from the previous ambulance 

location nodes, so the iteration continues with the response time check obtained in 

the previous iteration. Confidence interval for the response time is obtained as 

[9.0411, 9.1506]. Since this interval is less than the target response time (10 

minutes), response time value meets the requirements. Therefore, iterations continue 

with the coverage improvement point.  

According to these results, mean coverage has improved to 0.6841 from 0.6651, as 

was obtained in the previous iterations. Since the results are not the same or worse 

than the previous iteration, iterations continue with updating the G-MEXCLP model 

again.    

12
th

 Iteration 

In this point, response times obtained from the simulation results of iteration 10 is 

checked for all nodes separately. According to the results (see Table D.2 in 
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Appendix D), average response time of nodes 20 and 65 are 13.3685 minutes and 

11.1308 minutes respectively. These are the nodes that have the highest response 

times. In addition, the G-MEXCLP model results of the previous iteration are 

investigated on the basis of each node separately. We see that nodes 20 and 65 are 

not covered at any level. Therefore, the following constraints are added to G-

MEXCLP model developed in the previous level to improve the demand coverage: 

∑      
 
    ≥ 1 

∑      
 
    ≥ 1 

The G-MEXCLP model is solved by adding this new constraint set, and the 

following results are obtained as seen in Table 7.23. 

Table 7.23. Model Inputs and Solutions for the 12
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5386 3,14,15,17,20,23,25,27,31,34,40,51,57,60,62 10839 7.56 

Simulation model is constructed and run for one year, and the outputs for the 

performance measures (response time, busy fraction and coverage) are analyzed to 

see the steady state behavior and to determine the truncation point. Moving average 

graphs are plotted as in Figures 7.20, 7.21, 7.22. 

 

Figure 7.20. Mean Response Time by Simulation Length for the 12
th

 Iteration 
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Figure 7.21. Mean Busy Fraction by Simulation Length for the 12
th

 Iteration 

 

Figure 7.22. Mean Coverage by Simulation Length for the 12
th

 Iteration 

According to these graphs, truncation point and replication length can be determined 

as 120,000 and 300,000 respectively. We run the simulation model with 10 

replications for the time interval [120,000; 300,000], and construct 95% confidence 

intervals for all of three performance measures using the replication averages. 

Confidence intervals are obtained as in Table 7.24. 

Table 7.24. 95% Confidence Intervals on Performance Measures for the 12
th

 

Iteration 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.54723 0.00386 0.00122 [0.54447, 0.54999] 

Response Time 10 9.3158 0.0652 0.0206 [9.2692, 9.3625] 

Coverage 10 0.6646 0.00419 0.00133 [0.66157, 0.66756] 



 
 

 127   
 

Results of these initial 10 replications from the output files are as follows: 

Precision for busy fraction = 
          

    
  

       

       
  0.01009 = 1.01% 

Precision for response time = 
          

    
  

      

      
  0.01002 = 1.00% 

Precision for coverage = 
          

    
  

       

      
  0.00901 = 0.90% 

These precision values are strong enough; hence, no more replications are needed to 

interpret the outputs. 

Since the busy fraction value that used in this iteration is 0.5386, and it is not again 

in the confidence interval, [0.54447, 0.54999]. Therefore, the next iteration begins 

by updating busy fraction value as 0.5472 to be used in the G-MEXCLP model.  

13
th

 Iteration 

Based on the decision obtained from the previous iteration, busy fraction is updated 

as 0.5472 and this 11
th

 iteration continues with following parameters as in Table 

7.25. 

Table 7.25. Model Inputs for the 13
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction 

15 0.5472 

G-MEXCLP model is reconstructed for these parameters and the ambulance location 

nodes are obtained as in Table 7.26. 

Table 7.26. Model Inputs and Solutions for the 13
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5472 3,14,15,17,20,23,25,27,31,34,40,51,57,60,62 10786 8.38 

So the new ambulance locations are not different from the previous ambulance 

location nodes, so the iteration continues with the response time check obtained in 
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the previous iteration. Confidence interval for the response time is obtained as 

[9.2692,9.3625]. Since this interval is less than the target response time (10 

minutes), response time value meets the requirements. Therefore, iteration continues 

with the coverage improvement  point.  

According to these results, mean coverage decreases to 0.6646 from 0.6841 that was 

obtained in the previous iterations. Since the results are worse than the previous 

iterations, iteration terminates at this point; and the last ambulance location plan is 

accepted. It is as in Table 7.27. 

Table 7.27. Model Inputs and Solutions for the 10
th

 Iteration 

Number of 

Ambulances 

Busy 

Fraction Ambulance Location Nodes 

MIP 

Objective 

Time 

(min) 

15 0.5418 2,7,13,14,15,25,27,31,34,40,41,51,57,60,61 10,877 5.81 

Finally, at the end of the integrated approach, 15 ambulances are allocated to the 

nodes, one ambulance for each, 2, 7, 13, 14, 15, 25, 27, 31, 34, 40, 41, 51, 57, 60, 61, 

and according to this ambulance plan, average response time obtained is 9.0959 

minutes, average busy fraction of the ambulances is 53.86%, and the percentage of 

demand that is reached in 10 minutes is 68.41%. At the same time, 97.92% of the 

demand is covered in 11 minutes, and 98.61% of the demand is covered in 12 

minutes.  

7.2. Testing the Current Stations in Adana 

In Adana, ambulances currently serve in the 16 active stations in the related districts 

(Adana 112 İl Ambulans Servisi Başhekimliği), and there are two stations in nodes 6
 

and 47. However, the total number of ambulances at these stations is not known. 

According to our solution approach, we suggest 15 ambulances at the last iteration. 

Therefore, we test the current case in Adana using 15 ambulances assuming there 

are 2 ambulances in node 6, and 1 ambulance in node 47 in the simulation model to 

compare our solution and the real case in Adana using the same number of 

ambulances.   
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We conduct 10 replications by collecting statistics in the time interval          

[120,000; 200,000] for the following ambulance locations (Table 7.28).  

Table 7.28. Ambulance Locations in the City of Adana 

Number of 

Ambulances Ambulance Location Nodes 

15 2,3,4,6(2),13,21,22,28,40,42,43,47,54,55 

We construct 95% confidence intervals for the three performance measures using the 

replication averages. Confidence intervals are obtained as in Table 7.29. 

Table 7.29. 95% Confidence Intervals on Performance Measures for Adana System 

Simulation 

Performance Measure N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.54414 0.00285 0.0009 [0.54210, 0.54618] 

Response Time 10 9.4496 0.0603 0.0191 [9.4065, 9.4928] 

Coverage 10 0.6336 0.00386 0.00122 [0.63079, 0.63632] 

According to the results in Table 7.30, our solution approach gives better results for 

all performance measures. Moreover, a major part of demand, 98.6% is covered in, 

at most, 12 minutes. This is one of our main objectives which is to cover all demand 

in lower time standards as much as possible, even lower demand areas such as rural 

areas, as we set the time standards of G-MEXCLP accordingly.  

Table 7.30. Comparison Between Our Approach and the Real Case of the City of 

Adana 

Performance Measure N City of Adana Mean Our Approach Mean 

Busy Fraction 10 0.54414 0.5386 

Response Time 10 9.4496 9.0959 

Coverage (10 min) 10 0.6336 0.6841 

Coverage (11 min) 10 0.8921 0.9792 

Coverage (12 min) 10 0.9426 0.9861 
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On the other hand, amount of decrease in the performance measures by our approach 

is thought to be small; however, if we distribute 15 ambulances among nodes 

randomly as Table 7.31, and investigate the results, simulation results are obtained 

as in Table 7.32. 

Table 7.31. Random Distribution of Ambulances Among the Nodes for the City of 

Adana 

Number of 

Ambulances Ambulance Location Nodes 

15 1(2),5,10,15,20,25,30,35,40,45,50,55,60,65 

Table 7.32. 95% CI on Performance Measures for Random Ambulance Locations 

Variable N Mean StDev SE Mean 95% CI 

Busy Fraction 10 0.56333 0.00244 0.00139 [0.56018, 0.5664] 

Response Time 10 9.9348 0.0518 0.0164 [9.8978, 9.9719] 

Coverage 10 0.5846 0.00538 0.0017 [0.58079, 0.5884] 

Thus, according to the characteristic of this data, the decrease obtained by using our 

solution approach can be considered as significant.  

According to the results of computational study on our approach, some 

modifications can be made in the flow of the iterations. As an example, instead of 

increasing number of ambulances in the 6
th

 iteration, we might move to the next 

performance measure check point (coverage improvement) since mean response 

time value (10.5117 minutes) is very close to the target response time value (10 

minutes) in this iteration. Therefore, such modifications can be made in the flow of 

the solution approach.  
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CHAPTER 8 
 

 

CONCLUSION 
 

 

 

In this study, briefly, an ambulance location and allocation problem is addressed by 

an integrated optimization and simulation approach that utilizes both a new 

mathematical model formulation -G-MEXCLP- and a generic simulation model.  

G-MEXCLP model is developed to determine the location of the ambulance stations 

and the number of ambulances at each station. G-MEXCLP model can be said to be 

a flexible one in the sense that various preferences of the decision maker can easily 

be incorporated in the model by adjusting the time standards for successive coverage 

levels. For example, it can consider all of the demand points as equal as possible, 

while slightly favoring the high demand points (see also Figures 4.9 and 4.10). On 

the other hand, these time standards can be set such that, our model G-MEXCLP 

exactly behaves like MEXCLP, totally favoring high demand points. Several test 

problems from the literature as well as the real life case of the city of Adana are used 

to validate and show the characteristics of the G-MEXCLP model.  

Our purpose in developing the generic simulation model is twofold. First we intend 

to improve the G-MEXCLP model in terms of its constraints and parameters, and 

secondly to test the ambulance location plan obtained in a completely realistic 

environment, considering all the inherent uncertainties. The most powerful aspect of 

the simulation model proposed is that it can be used for generic emergency service 

system problems. In this simulation study, most of the aspects of the ambulance 

service system are modeled, although some of which are not used in our approach. 

In the literature, a generic simulation model with substantial detail is not known to 

the best of our knowledge, despite the fact that many existing studies have been 
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conducted on this topic. Therefore, we choose to provide the detailed modeling 

information about our simulation model. In addition, simulation model verification 

and validation are conducted by using the techniques described in sections 5.4. 

All in all, in this study, a well-defined integrated approach is proposed to determine 

the location-allocation of the ambulances as well as a new mathematical model -G-

MEXCLP- and a generic simulation model. Our approach can also be considered as 

a helpful source for developing a decision support system tool for EMS vehicle 

planning in the future. We test our integrated solution approach on the data for the 

City of Adana iteratively, and compare the results against the current ambulance 

plan for the City of Adana. Our approach provides a better solution for all 

performance measures such as response time, busy fraction and coverage. Moreover, 

results show that our approach is successful in covering all demand points equally as 

much as possible with the given time standards of coverage, demonstrating the 

intended flexibility feature of our model.   

As a future research, our approach could be experienced by using some other 

mathematical models in the literature. If desired, both G-MEXCLP model and 

simulation model could be structured again to consider different types of calls and 

different types of ambulances. Moreover, for the larger scale problems that take 

longer solution times to solve by the G-MEXCLP model, some heuristics can be 

developed integrating in the solution approach.    
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APPENDIX A 

 

 

GAMS CODING OF THE MATHEMATICAL MODEL 

 

 

 

Sets 

i/1*323 / 

j/1*323/ 

k/1*5/ 

; 

Parameter 

d(i) demand of point i 

/ 

$ondelim 

$include Demand.txt 

$offdelim 

/ 

p total number of ambulances /12/ 

q busy probability of ambulances /0.7/ 

expo(k) exponential of q /1 0 , 2 1 , 3 2 , 4 3 , 5 4/ 

alpha(k) percent of damand coverage /1 0 , 2 0 , 3 0 , 4 0 , 5 0/ 

a1(i,j) if demand point i is covered by facility at point j within predetermined time 

interval 0<=t<=6 min for k=1 

/ 

$ondelim 

$include Aij1.txt 

$offdelim 

/ 

a2(i,j) if demand point i is covered by facility at point j within predetermined time 

interval 6<t<=9 min for k=2 

/ 

$ondelim 

$include Aij2.txt 

$offdelim 

/ 

a3(i,j) if demand point i is covered by facility at point j within predetermined time 

interval 9<t<=12 min for k=3 

/ 

$ondelim 
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$include Aij3.txt 

$offdelim 

/ 

a4(i,j) if demand point i is covered by facility at point j within predetermined time 

interval 12<t<=15 min for k=4 

/ 

$ondelim 

$include Aij4.txt 

$offdelim 

/ 

a5(i,j) if demand point i is covered by facility at point j within predetermined time 

interval 12<t<=18 min for k=5 

/ 

$ondelim 

$include Aij5.txt 

$offdelim 

/ 

; 

Variables 

z total expected demand covered ; 

Integer Variables 

x(j) number of ambulances located at facility j ; 

Binary Variables 

y(i,k) if demand point i is covered by at least k times ; 

Equations 

objective 

amb_equilirium1 

amb_equilirium2 

amb_equilirium3 

amb_equilirium4 

amb_equilirium5 

amb_capacity 

demand_percentage 

mandatory_coverage ; 

 

objective..              z-sum((i,k),d(i)*(1-q)*(q**(expo(k)))* y(i,k)) =e= 0; 

amb_equilirium1(i)..    sum((j),a1(i,j)* x(j)) =g= y(i,'1'); 

amb_equilirium2(i)..    sum((j),a1(i,j)* x(j))+ sum((j),a2(i,j)* x(j)) =g=  2*y(i,'2'); 

amb_equilirium3(i)..    sum((j),a1(i,j)* x(j))+ sum((j),a2(i,j)* x(j))+ sum((j),a3(i,j)* 

x(j)) =g= 3*y(i,'3'); 

amb_equilirium4(i)..    sum((j),a1(i,j)* x(j))+ sum((j),a2(i,j)* x(j))+ sum((j),a3(i,j)* 

x(j))+ sum((j),a4(i,j)* x(j)) =g= 4*y(i,'4'); 

amb_equilirium5(i)..    sum((j),a1(i,j)* x(j))+ sum((j),a2(i,j)* x(j))+ sum((j),a3(i,j)* 

x(j))+ sum((j),a4(i,j)* x(j))+ sum((j),a5(i,j)* x(j)) =g= 5*y(i,'5'); 

amb_capacity..           sum(j,x(j)) =l= p  ;                    ; 
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demand_percentage(k)..   sum(i,d(i)*y(i,k)) =g= alpha(k)*sum(i,d(i))  ; 

mandatory_coverage(i)..  y(i,'1')+y(i,'2')+y(i,'3') =g= 1 

; 

model MEXCLP/all/; 

option optcr=0.01; 

option optca=0; 

option iterlim = 10000000; 

option reslim = 1000000; 

option Savepoint=2; 

solve MEXCLP using mip maximizing z; 

display x.l,y.l,z.l;  
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APPENDIX B 

 

 

DATA SETS 

 

 

 

Table B.1. X-Y Coordinates and Demands of Nodes for Test Data 

Node 

X 

Coordinate 

Y 

Coordinate Demand Node 

X 

Coordinate 

Y 

Coordinate Demand 

  

Node Demand Node Demand 

1 409154 435528 50 163 408951 436887 136 
 

 

51 654 104 25 

2 409151 435683 4 164 409610 434773 16 
 

 

321 467 120 25 

3 409277 435420 33 165 409638 434867 1 
 

 

14 301 134 25 

4 409260 435538 15 166 409684 434946 1 
 

 

54 283 184 25 

5 409240 435695 1 167 409830 435210 24 
 

 

49 193 188 25 

6 409213 435897 5 168 409738 434678 19 
 

 

161 185 247 25 

7 409199 435982 87 169 409700 434754 46 
 

 

27 173 279 25 

8 409178 436078 91 170 409732 434890 30 
 

 

72 160 294 25 

9 409174 436171 45 171 409718 435043 21 
 

 

56 153 303 25 

10 409147 436256 1 172 409810 435094 11 
 

 

75 152 167 24 

11 409469 435389 41 173 409892 435208 33 
 

 

55 150 254 24 

12 409378 435463 23 174 409968 435327 20 
 

 

25 138 298 24 

13 409378 435563 26 175 409819 434672 30 
 

 

163 136 308 24 

14 409351 435734 301 176 409812 434774 43 
 

 

322 129 12 23 

15 409328 435891 53 177 409823 434877 37 
 

 

140 127 99 23 

16 409275 435982 1 178 409798 434991 6 
 

 

301 124 213 23 

17 409289 436065 80 179 409939 435089 51 
 

 

18 118 287 23 

18 409272 436188 118 180 409972 435164 62 
 

 

43 115 35 22 

19 409208 436263 1 181 409923 434767 15 
 

 

67 105 53 22 

20 409754 435326 1 182 409920 434854 8 
 

 

151 103 121 22 

21 409609 435201 15 183 409892 434941 16 
 

 

78 102 187 22 

22 409565 435307 12 184 409971 435014 25 
 

 

45 98 230 22 

23 409577 435510 60 185 410079 435087 37 
 

 

101 96 281 22 

24 409515 435614 35 186 410064 435263 21 
 

 

148 96 282 22 

25 409478 435707 138 187 409833 434956 22 
 

 

156 94 292 22 

26 409442 435810 1 188 410157 435130 25 
 

 

8 91 30 21 

27 409442 435913 173 189 409962 434875 40 
 

 

66 90 63 21 

28 409408 436075 61 190 410042 434928 19 
 

 

127 88 171 21 

29 409344 436201 1 191 410123 434968 27 
 

 

7 87 186 21 

30 409398 436213 21 192 410197 435045 5 
 

 

142 84 215 21 

31 409638 435143 8 193 410307 434939 31 
 

 

149 84 218 21 

32 409683 435349 18 194 410389 434885 17 
 

 

17 80 261 21 

33 409670 435514 35 195 410230 434688 1 
 

 

47 79 304 21 

34 409620 435615 17 196 410071 434703 1 
 

 

68 73 57 20 

35 409688 435618 22 197 410047 434778 1 
 

 

227 70 137 20 

36 409624 435752 60 198 410113 434847 1 
 

 

138 67 174 20 

37 409570 435942 65 199 410179 435225 29 
 

 

37 65 249 20 

38 409541 436090 54 200 410209 435297 42 
 

 

74 65 262 20 

39 409512 436236 39 201 410244 435175 1 
 

 

277 64 305 20 

40 409216 435826 1 202 410298 435298 1 
 

 

52 63 64 19 

41 409158 435820 1 203 410294 435141 26 
 

 

132 62 87 19 

42 408777 434870 5 204 410347 435267 48 
 

 

180 62 112 19 
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Table B.1 (Cont’d) 

43 408731 434657 115 205 410359 435086 46   28 61 168 19 

44 408808 434639 30 206 410430 435251 53   46 61 190 19 

45 408840 435022 98 207 410429 435043 58   77 61 228 19 

46 408932 434976 61 208 410511 435237 60   98 61 266 19 

47 408897 434650 79 209 410492 434950 28   23 60 271 19 

48 409050 434674 8 210 410545 435076 6   36 60 296 19 

59 409302 435225 13 221 410660 434732 32 
 

 

248 52 194 17 

60 409264 435295 3 222 410737 434792 33 
 

 

179 51 219 17 

61 409452 434831 54 223 410744 435073 30 
 

 

1 50 255 17 

62 409553 435074 25 224 410808 435074 1 
 

 

79 49 258 17 

63 409434 435030 21 225 410830 435132 8 
 

 

85 49 265 17 

64 409517 434818 19 226 410707 434687 28 
 

 

92 49 267 17 

65 409539 434954 26 227 410780 434673 70 
 

 

129 49 274 17 

66 409038 435235 90 228 410780 434836 19 
 

 

82 48 164 16 

67 409167 435416 105 229 410826 434878 16 
 

 

204 48 183 16 

68 408778 434739 73 230 410894 434903 22 
 

 

302 48 229 16 

69 409822 435466 1 231 410939 434936 13 
 

 

293 47 272 16 

70 409811 435545 46 232 410964 434773 38 
 

 

70 46 273 16 

71 409765 435617 28 233 410816 435249 40 
 

 

103 46 275 16 

72 409812 435857 160 234 410481 434658 2 
 

 

169 46 284 16 

73 409792 435978 1 235 410651 434905 1 
 

 

205 46 4 15 

74 409837 436155 65 236 410783 434971 1 
 

 

9 45 21 15 

75 409711 436281 152 237 410920 435029 1 
 

 

80 43 159 15 

76 409969 435509 1 238 411034 435304 1 
 

 

176 43 181 15 

77 409944 435714 61 239 410556 434848 1 
 

 

141 42 291 15 

78 410041 435866 102 240 410853 434804 1 
 

 

200 42 300 14 

79 409946 436015 49 241 410958 434862 1 
 

 

299 42 59 13 

80 410015 436193 43 242 411037 434936 1 
 

 

307 42 135 13 

81 410067 435592 1 243 410220 435613 1 
 

 

11 41 136 13 

82 410073 436039 48 244 410169 435417 26 
 

 

108 41 231 13 

83 410113 436329 27 245 410228 435388 26 
 

 

189 40 269 13 

84 410204 436314 6 246 410252 435543 28 
 

 

233 40 22 12 

85 409645 436119 49 247 410289 435663 25 
 

 

39 39 95 12 

86 410120 436189 27 248 410348 436049 52 
 

 

115 39 100 12 

87 409875 435755 19 249 410301 435384 20 
 

 

118 39 276 12 

88 410180 436398 33 250 410325 435510 30 
 

 

251 39 172 11 

89 410244 436276 1 251 410345 435646 39 
 

 

155 38 259 11 

90 410224 436222 1 252 410373 435785 31 
 

 

232 38 268 11 

91 410435 436784 37 253 410394 435919 30 
 

 

91 37 306 11 

92 409573 436533 49 254 410417 436035 24 
 

 

102 37 58 10 

93 409575 436677 54 255 410439 436137 17 
 

 

146 37 158 9 

94 409553 436813 30 256 410466 436253 18 
 

 

177 37 31 8 

95 409546 436882 12 257 410395 436240 1 
 

 

185 37 48 8 

96 409701 436391 34 258 410482 436373 17 
 

 

119 36 182 8 

97 409691 436539 58 259 410371 435374 11 
 

 

24 35 225 8 

98 409680 436697 61 260 410394 435496 31 
 

 

33 35 124 7 

99 409667 436825 23 261 410416 435631 21 
 

 

106 35 130 7 

100 409657 436892 12 262 410437 435739 20 
 

 

310 35 317 7 

101 409858 436418 96 263 410468 435817 1 
 

 

96 34 84 6 

102 409795 436554 37 264 410498 435901 1 
 

 

139 34 153 6 

103 409788 436708 46 265 410488 436025 17 
 

 

152 34 178 6 

104 409768 436873 25 266 410507 436128 19 
 

 

312 34 210 6 

105 409900 436600 52 267 410529 436244 17 
 

 

3 33 6 5 

106 409863 436728 35 268 410547 436346 11 
 

 

88 33 42 5 

107 409923 436735 31 269 410430 435369 13 
 

 

109 33 117 5 

108 409874 436894 41 270 410453 435478 26 
 

 

126 33 160 5 

109 410006 436607 33 271 410479 435620 19 
 

 

150 33 192 5 

110 410003 436738 26 272 410502 435734 16 
 

 

173 33 320 5 
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Table B.1 (Cont’d) 

111 410006 436804 28 273 410551 436010 16   222 33 323 5 

112 409960 436901 19 274 410570 436117 17   309 33 2 4 

113 410014 436903 17 275 410591 436231 16   318 33 50 4 

114 409816 437011 28 276 410606 436337 12   116 32 60 3 

115 410120 436627 39 277 410556 435600 64 
 

 

123 32 220 3 

116 410099 436799 32 278 410559 435512 18 
 

 

157 32 144 2 

117 410072 436904 5 279 410580 435727 25 
 

 

221 32 211 2 

118 410234 436518 39 280 410597 435874 28 
 

 

311 32 234 2 

119 410205 436634 36 281 410623 435997 22 
 

 

313 32 5 1 

120 410213 436728 25 282 410646 436100 22 
 

 

107 31 10 1 

121 410212 436795 22 283 410663 436219 27 
 

 

154 31 16 1 

122 410320 436562 17 284 410681 436312 16 
 

 

193 31 19 1 

123 410324 436701 32 285 410593 435427 27 
 

 

217 31 20 1 

124 410107 437014 7 286 410622 435569 31 
 

 

252 31 26 1 

125 410201 436904 1 287 410647 435717 23 
 

 

260 31 29 1 

126 410140 436494 33 288 410675 435867 27 
 

 

286 31 40 1 

127 409026 436332 88 289 410695 435964 1 
 

 

44 30 41 1 

128 408906 436537 18 290 410704 436034 1 
 

 

94 30 69 1 

129 408865 436634 49 291 410718 436100 15 
 

 

170 30 73 1 

130 408849 436707 7 292 410735 436203 22 
 

 

175 30 76 1 

131 408791 436841 1 293 410684 435564 47 
 

 

216 30 81 1 

132 409016 436511 62 294 410709 435710 25 
 

 

223 30 89 1 

133 408946 436666 26 295 410735 435854 28 
 

 

250 30 90 1 

134 408921 436738 25 296 410763 435977 19 
 

 

253 30 125 1 

135 408872 436787 13 297 410778 436090 18 
 

 

199 29 131 1 

136 408903 436834 13 298 410797 436186 24 
 

 

71 28 165 1 

137 409160 436346 20 299 410746 435470 42 
 

 

111 28 166 1 

138 409102 436513 67 300 410735 435556 14 
 

 

114 28 195 1 

139 409007 436747 34 301 410771 435700 124 
 

 

209 28 196 1 

140 409261 436338 127 302 410789 435850 48 
 

 

226 28 197 1 

141 409213 436540 42 303 410812 435963 25 
 

 

246 28 198 1 

142 409150 436607 84 304 410837 436079 21 
 

 

280 28 201 1 

143 409114 436740 27 305 410771 435417 20 
 

 

295 28 202 1 

144 409065 436786 2 306 410805 435484 11 
 

 

316 28 212 1 

145 409057 436848 18 307 410834 435710 42 
 

 

83 27 224 1 

146 409174 436708 37 308 410847 435782 24 
 

 

86 27 235 1 

147 409136 436838 26 309 410883 436197 33 
 

 

143 27 236 1 

148 409322 436406 96 310 410888 435542 35 
 

 

191 27 237 1 

149 409255 436694 84 311 410885 435668 32 
 

 

283 27 238 1 

150 409213 436836 33 312 410895 435848 34 
 

 

285 27 239 1 

151 409372 436561 103 313 410901 435964 32 
 

 

288 27 240 1 

152 409286 436828 34 314 410946 435666 1 
 

 

13 26 241 1 

153 409355 436788 6 315 410955 435841 19 
 

 

65 26 242 1 

154 409482 436380 31 316 410961 435942 28 
 

 

110 26 243 1 

155 409456 436520 38 317 411004 435920 7 
 

 

133 26 257 1 

156 409442 436668 94 318 411002 435664 33 
 

 

147 26 263 1 

157 409429 436834 32 319 410744 436290 1 
 

 

203 26 264 1 

158 408514 436845 9 320 408381 434917 5 
 

 

214 26 289 1 

159 408597 436868 15 321 408392 434637 467 
 

 

244 26 290 1 

160 408644 436892 5 322 408570 434746 129 
 

 

245 26 314 1 

161 408796 436835 185 323 408508 434788 5 
 

 

270 26 319 1 

162 408888 436863 54 
     

 

62 25 
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Table B.3. Demand of Nodes in the Data for the City of Adana 

Sequential Order  Descending Order 

Node Demand Node Demand 
 

Node Demand Node Demand 

1 239 34 185 
 

42 430 20 171 

2 127 35 182 
 

41 409 12 162 

3 175 36 157 
 

16 365 32 162 

4 222 37 144 
 

43 361 54 160 

5 119 38 83 
 

9 350 36 157 

6 156 39 120 
 

50 350 6 156 

7 242 40 209 
 

22 340 59 152 

8 176 41 409 
 

26 317 33 151 

9 350 42 430 
 

29 313 62 150 

10 92 43 361 
 

27 292 37 144 

11 259 44 184 
 

30 284 53 137 

12 162 45 233 
 

14 271 55 131 

13 122 46 188 
 

25 264 61 131 

14 271 47 110 
 

57 262 2 127 

15 48 48 177 
 

11 259 28 127 

16 365 49 11 
 

7 242 13 122 

17 236 50 350 
 

56 241 60 122 

18 93 51 176 
 

1 239 39 120 

19 174 52 107 
 

17 236 5 119 

20 171 53 137 
 

45 233 23 110 

21 105 54 160 
 

24 232 47 110 

22 340 55 131 
 

4 222 52 107 

23 110 56 241 
 

40 209 21 105 

24 232 57 262 
 

46 188 18 93 

25 264 58 48 
 

34 185 10 92 

26 317 59 152 
 

44 184 65 84 

27 292 60 122 
 

35 182 31 83 

28 127 61 131 
 

63 178 38 83 

29 313 62 150 
 

48 177 64 71 

30 284 63 178 
 

8 176 15 48 

31 83 64 71 
 

51 176 58 48 

32 162 65 84 
 

3 175 49 11 

33 151 
   

19 174 
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APPENDIX C 

 

 

RESULTS FOR SOME PROBLEM INSTANCES 

 

 

 

Table C.1. Results of Scenario 1.3 

     1 2 3 4 5 

 

     1 2 3 4 5 

 

     1 2 3 4 5 

1 1 0 1 1 0 
 

109 1 1 1 1 0 
 

217 1 1 1 0 0 

2 1 0 1 1 0 
 

110 1 1 1 1 0 
 

218 1 1 1 1 0 

3 1 1 1 1 0 
 

111 1 1 1 1 0 
 

219 1 1 1 1 0 

4 1 0 1 1 0 
 

112 1 0 1 0 0 
 

220 1 1 1 1 0 

5 1 1 1 1 1 
 

113 1 0 0 0 0 
 

221 1 0 0 0 0 

6 0 1 1 1 0 
 

114 1 0 0 0 0 
 

222 1 0 0 0 0 

7 1 1 1 0 0 
 

115 1 1 0 1 1 
 

223 1 1 1 1 0 

8 0 1 1 1 0 
 

116 1 1 0 0 0 
 

224 1 1 1 1 0 

9 0 1 1 1 0 
 

117 1 0 0 0 0 
 

225 1 1 0 1 0 

10 0 1 1 1 0 
 

118 1 1 0 1 1 
 

226 1 0 0 0 0 

11 1 1 1 1 1 
 

119 1 1 0 1 1 
 

227 1 0 0 0 0 

12 1 1 1 1 1 
 

120 1 1 0 0 0 
 

228 1 0 1 0 0 

13 1 1 1 1 0 
 

121 1 1 0 0 0 
 

229 1 0 1 0 0 

14 1 1 1 1 1 
 

122 1 1 1 0 0 
 

230 1 0 0 0 0 

15 1 1 1 1 0 
 

123 0 1 0 0 0 
 

231 1 0 0 0 0 

16 1 1 1 0 0 
 

124 1 0 0 0 0 
 

232 1 0 0 0 0 

17 1 1 1 0 0 
 

125 1 0 0 0 0 
 

233 1 1 0 1 0 

18 1 1 1 1 1 
 

126 1 1 0 1 1 
 

234 0 1 0 0 0 

19 1 1 1 1 1 
 

127 0 0 1 1 0 
 

235 1 1 1 0 0 

20 1 1 1 1 1 
 

128 1 1 0 0 0 
 

236 1 0 1 0 0 

21 1 1 1 1 1 
 

129 1 1 0 0 0 
 

237 1 0 0 0 0 

22 1 1 1 1 1 
 

130 1 0 0 0 0 
 

238 0 1 0 0 0 

23 1 1 1 1 1 
 

131 1 0 0 0 0 
 

239 1 1 1 0 0 

24 1 1 1 1 1 
 

132 1 1 1 0 0 
 

240 1 0 0 0 0 

25 1 1 1 1 1 
 

133 1 1 0 0 0 
 

241 1 0 0 0 0 

26 1 1 0 1 1 
 

134 1 1 0 0 0 
 

242 1 0 0 0 0 

27 1 1 1 1 1 
 

135 1 0 0 0 0 
 

243 1 0 1 1 1 

28 1 1 1 1 1 
 

136 1 0 0 0 0 
 

244 0 1 1 1 1 

29 1 1 1 1 1 
 

137 1 1 1 1 1 
 

245 1 1 1 1 1 

30 1 1 1 1 1 
 

138 1 1 1 1 0 
 

246 1 0 1 1 1 

31 1 1 1 1 0 
 

139 1 1 0 0 0 
 

247 1 1 1 1 1 

32 1 1 1 1 1 
 

140 1 1 1 1 1 
 

248 1 1 1 1 1 

33 1 1 1 1 1 
 

141 1 1 1 1 0 
 

249 1 1 1 1 1 

34 1 1 1 1 1 
 

142 1 1 1 1 0 
 

250 1 0 1 1 1 

35 1 1 1 1 1 
 

143 1 1 0 1 0 
 

251 1 1 1 1 1 

36 1 1 1 1 1 
 

144 1 1 0 1 0 
 

252 1 1 1 1 1 

37 1 1 1 1 1 
 

145 1 1 0 1 0 
 

253 1 1 1 1 0 

38 1 1 1 1 1 
 

146 1 1 1 1 0 
 

254 1 1 1 1 1 

39 1 1 1 1 1 
 

147 1 1 0 1 0 
 

255 1 1 1 1 1 

40 1 1 0 1 1 
 

148 1 1 1 1 1 
 

256 1 1 0 1 0 
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Table C.1 (Cont’d) 

41 1 1 0 1 1  149 1 1 1 1 0  257 1 1 1 1 1 

42 1 1 0 0 0  150 1 1 1 1 0  258 1 1 1 1 0 

43 1 1 0 0 0  151 1 1 1 1 1  259 1 1 1 1 1 

44 1 1 0 0 0  152 1 1 1 1 0  260 1 0 1 1 1 

45 1 1 1 1 0  153 1 0 1 1 0  261 1 1 1 1 1 

46 1 1 1 1 0 
 

154 1 1 1 1 1 
 

262 1 1 1 1 1 

47 1 1 0 0 0 
 

155 1 1 1 1 1 
 

263 1 1 1 0 0 

48 1 1 1 0 0 
 

156 1 1 1 1 1 
 

264 1 1 1 0 0 

49 1 1 1 1 0 
 

157 1 1 1 1 0 
 

265 1 1 1 0 0 

50 1 1 0 0 0 
 

158 1 0 0 0 0 
 

266 1 1 1 1 0 

51 1 1 1 1 1 
 

159 1 0 0 0 0 
 

267 1 1 0 1 0 

52 1 1 1 1 0 
 

160 1 0 0 0 0 
 

268 1 1 0 1 0 

53 1 1 1 1 0 
 

161 1 0 0 0 0 
 

269 1 1 1 1 0 

54 1 1 1 1 1 
 

162 1 0 0 0 0 
 

270 1 0 1 1 1 

55 1 1 1 1 0 
 

163 1 1 0 0 0 
 

271 1 1 1 1 1 

56 1 1 1 1 0 
 

164 1 0 1 1 0 
 

272 1 1 1 1 1 

57 1 1 1 1 0 
 

165 1 1 1 1 0 
 

273 1 1 1 0 0 

58 1 1 1 1 1 
 

166 1 1 1 1 0 
 

274 1 1 1 1 0 

59 1 1 1 1 1 
 

167 1 1 1 1 1 
 

275 1 1 1 1 0 

60 1 1 1 1 1 
 

168 0 1 1 0 0 
 

276 0 1 0 1 0 

61 1 1 1 1 1 
 

169 1 1 1 1 0 
 

277 1 1 1 1 1 

62 1 1 1 1 0 
 

170 1 1 1 1 0 
 

278 1 1 1 1 1 

63 1 1 1 1 0 
 

171 1 1 1 1 0 
 

279 1 1 1 1 1 

64 1 1 1 1 0 
 

172 1 1 1 1 1 
 

280 1 1 1 0 0 

65 1 1 1 1 0 
 

173 1 1 1 1 1 
 

281 1 1 1 0 0 

66 1 1 1 1 0 
 

174 0 1 1 1 1 
 

282 1 1 1 0 0 

67 1 1 1 1 1 
 

175 0 1 0 0 0 
 

283 1 1 1 0 0 

68 1 1 0 0 0 
 

176 0 1 0 0 0 
 

284 1 1 0 1 0 

69 0 1 1 1 1 
 

177 1 1 0 1 0 
 

285 1 1 1 1 0 

70 0 1 1 1 1 
 

178 1 1 1 1 0 
 

286 1 1 1 1 1 

71 0 1 1 1 1 
 

179 1 1 0 1 1 
 

287 1 1 0 1 0 

72 1 1 1 1 1 
 

180 1 1 1 1 1 
 

288 1 1 1 0 0 

73 1 1 1 1 1 
 

181 1 1 0 1 0 
 

289 1 1 1 0 0 

74 1 1 1 1 1 
 

182 1 1 0 1 1 
 

290 1 0 1 0 0 

75 1 1 1 1 1 
 

183 1 1 0 1 1 
 

291 1 0 1 0 0 

76 0 0 1 1 1 
 

184 1 1 0 1 1 
 

292 1 0 1 0 0 

77 0 0 1 1 1 
 

185 1 1 1 1 1 
 

293 1 1 1 1 1 

78 0 0 1 1 1 
 

186 1 0 1 1 1 
 

294 1 1 0 1 0 

79 0 1 0 1 1 
 

187 1 1 0 1 0 
 

295 1 1 1 1 0 

80 1 1 1 1 1 
 

188 1 0 1 1 1 
 

296 1 1 1 0 0 

81 0 0 1 1 1 
 

189 1 1 0 1 1 
 

297 1 0 1 0 0 

82 1 1 1 1 1 
 

190 1 1 0 1 0 
 

298 1 0 1 0 0 

83 1 1 1 1 1 
 

191 1 0 1 1 0 
 

299 1 1 1 1 0 

84 1 1 1 1 1 
 

192 1 0 1 1 0 
 

300 1 1 1 1 0 

85 1 1 1 1 1 
 

193 1 1 1 1 0 
 

301 1 1 0 1 0 

86 1 0 1 1 1 
 

194 1 1 1 1 0 
 

302 1 1 0 1 0 

87 0 1 1 1 1 
 

195 1 0 0 1 0 
 

303 1 1 1 0 0 

88 1 1 1 1 1 
 

196 1 0 0 0 0 
 

304 1 0 1 0 0 

89 1 0 1 1 1 
 

197 1 0 0 1 0 
 

305 1 1 1 1 0 

90 1 1 1 1 1 
 

198 1 0 1 1 0 
 

306 1 1 1 1 0 

91 0 1 0 0 0 
 

199 1 1 1 1 1 
 

307 1 1 0 1 0 

92 1 1 1 1 1 
 

200 1 1 1 1 1 
 

308 1 1 0 1 0 

93 1 1 1 1 1 
 

201 1 1 1 1 0 
 

309 1 0 0 0 0 

94 1 1 0 1 1 
 

202 1 1 1 1 1 
 

310 1 1 1 0 0 
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Table C.1 (Cont’d) 

95 0 1 0 1 1 
 

203 1 1 1 1 0 
 

311 1 1 1 0 0 

96 1 1 1 1 1 
 

204 1 1 1 1 1 
 

312 1 1 0 1 0 

97 1 1 1 1 0 
 

205 1 1 1 1 0 
 

313 1 0 0 0 0 

98 1 1 1 1 1 
 

206 1 1 1 1 1 
 

314 0 1 1 0 0 

99 1 1 0 1 1 
 

207 1 1 1 1 0 
 

315 1 1 0 1 0 

100 1 1 0 1 1 
 

208 1 1 1 1 0 
 

316 1 0 0 0 0 

101 1 1 1 1 0 
 

209 1 1 1 0 0 
 

317 1 0 0 0 0 

102 1 1 1 1 0 
 

210 1 1 1 0 0 
 

318 0 1 0 0 0 

103 1 1 1 1 0 
 

211 1 1 1 1 0 
 

319 1 0 0 0 0 

104 1 1 1 1 0 
 

212 1 1 1 1 0 
 

320 1 0 0 0 0 

105 1 1 1 1 0 
 

213 1 1 1 0 0 
 

321 1 0 0 0 0 

106 1 1 1 1 0 
 

214 1 1 1 0 0 
 

322 1 0 0 0 0 

107 1 1 1 1 0 
 

215 1 1 1 1 0 
 

323 1 0 0 0 0 

108 1 0 1 1 0 
 

216 1 1 0 0 0 
       

 



 
 

 152   
 

Table C.2. Results of Scenario 2.2 

     1 2 3 4 5 

 

     1 2 3 4 5 

1 0 1 1 0 1 
 

36 1 1 1 1 1 

2 0 0 1 1 1 
 

37 1 1 1 1 1 

3 0 1 1 1 1 
 

38 1 1 1 0 1 

4 0 1 1 1 1 
 

39 1 1 1 0 0 

5 1 1 1 1 1 
 

40 1 1 1 0 0 

6 0 0 1 0 0 
 

41 1 1 1 1 0 

7 1 1 0 1 1 
 

42 1 1 1 1 1 

8 0 0 1 1 1 
 

43 1 1 1 1 1 

9 0 1 1 1 1 
 

44 1 1 1 1 1 

10 1 0 0 0 0 
 

45 0 1 1 1 1 

11 1 1 0 0 0 
 

46 1 0 1 1 1 

12 1 1 0 0 1 
 

47 1 1 1 1 1 

13 0 0 1 0 1 
 

48 1 1 1 1 1 

14 1 0 1 1 1 
 

49 0 0 1 0 0 

15 1 0 0 0 0 
 

50 1 0 1 0 0 

16 1 1 0 0 1 
 

51 1 1 1 1 0 

17 1 1 0 0 0 
 

52 1 1 1 1 1 

18 0 1 0 0 0 
 

53 1 1 1 1 1 

19 1 0 0 0 0 
 

54 1 1 1 1 1 

20 0 1 0 0 0 
 

55 1 1 0 0 1 

21 1 1 0 0 0 
 

56 1 0 0 0 0 

22 1 1 1 1 1 
 

57 1 0 0 0 0 

23 0 1 1 1 1 
 

58 0 1 1 1 1 

24 1 1 1 1 1 
 

59 1 0 1 1 1 

25 1 1 1 1 1 
 

60 1 1 1 1 1 

26 1 1 1 0 0 
 

61 1 1 0 0 1 

27 1 1 1 0 0 
 

62 1 1 0 0 0 

28 0 0 1 0 0 
 

63 1 0 0 0 0 

29 1 0 1 0 0 
 

64 0 1 0 0 0 

30 1 1 0 1 0 
 

65 1 0 0 0 0 

31 1 1 1 1 1 
       

32 1 1 1 0 1 
       

33 1 1 1 1 1 
       

34 1 1 1 1 1 
       

35 1 1 1 1 1 
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APPENDIX D 

 

 

AVERAGE RESPONSE TIME FOR SOME SIMULATION RUNS 

 

 

 

Table D.1. Average Response Time of the Simulation Results for Iteration 8 

Node Average Response Time Node Average Response Time 

1 10.3888 34 7.8316 

2 10.0329 35 8.9438 

3 9.8517 36 7.3750 

4 9.9208 37 9.1240 

5 8.3508 38 9.4209 

6 10.8535 39 9.3322 

7 9.8206 40 9.5527 

8 10.0362 41 9.9966 

9 9.7971 42 9.6090 

10 11.1866 43 9.0317 

11 9.3626 44 9.4318 

12 7.6192 45 9.9152 

13 9.7502 46 9.8657 

14 10.2314 47 9.5301 

15 7.9507 48 9.7618 

16 9.3175 49 9.8519 

17 7.5029 50 10.0596 

18 10.1937 51 7.9195 

19 10.3243 52 7.7987 

20 7.1807 53 9.2469 

21 10.3304 54 9.1638 

22 9.5241 55 8.5534 

23 8.2707 56 9.5434 

24 9.7094 57 7.2701 

25 9.3384 58 10.0788 

26 9.7506 59 9.8591 

27 8.0648 60 8.4954 

28 11.6397 61 6.8739 

29 10.6094 62 6.4288 

30 10.2186 63 11.0639 

31 8.1709 64 9.5754 

32 10.4881 65 10.3494 

33 9.3925 
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Table D.2. Average Response Time of the Simulation Results for Iteration 8 

Node Average Response Time Node Average Response Time 

1 10.0945 34 7.4676 

2 7.8020 35 8.9931 

3 9.5750 36 8.4377 

4 9.5024 37 9.0594 

5 9.5213 38 8.8243 

6 10.3963 39 8.5591 

7 7.7627 40 7.2148 

8 9.3908 41 7.6828 

9 9.2767 42 8.7980 

10 10.0592 43 9.2059 

11 10.5762 44 9.1874 

12 9.9854 45 9.5975 

13 7.2710 46 9.6240 

14 6.9750 47 9.0954 

15 6.9983 48 9.4086 

16 10.1354 49 10.8130 

17 9.9921 50 9.5238 

18 10.4270 51 6.8550 

19 9.8680 52 9.5625 

20 13.2132 53 8.7279 

21 9.9374 54 8.9093 

22 9.3547 55 9.0364 

23 8.9683 56 10.2858 

24 9.5270 57 6.6933 

25 7.4293 58 9.8359 

26 8.9748 59 9.4387 

27 7.0532 60 6.6769 

28 10.6535 61 6.9130 

29 9.6950 62 9.5305 

30 9.0323 63 10.3309 

31 7.7562 64 9.5446 

32 9.8353 65 11.0314 

33 9.3524 
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APPENDIX E 

 

 

DATA SET FOR SIMULATION VERIFICATION 

 

 

 

Table E.1. Average Travel Time Between Nodes 

Index TravelTimeMatrix           

1 1.5 3 6 9 12 15 

2 3 1.5 3 6 9 12 

3 6 3 1.5 3 6 9 

4 9 6 3 1.5 3 6 

5 12 9 6 3 1.5 3 

6 15 12 9 6 3 1.5 

 

Table E.2. Ambulance and Hospital Matrix, Demand Probabilities 

Index AmbMatrix HospitalMatrix DemandProbMatrix 

1 1 0 0.2 

2 1 1 0.1 

3 0 0 0.1 

4 0 0 0.1 

5 2 1 0.4 

6 0 0 0.1 
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APPENDIX F 

 

 

VARIABLES AND ATTRIBUTES LIST 

 

 

 

Table F.1. Variable List of the Simulation Model and Initial Values for Adana Data 

Set 

Name Rows Columns File Name File Read Name 

Initial 

Values 

InterArrivalTime Real System   BeginReplication 3.523 

pAmbNeeded Real System   BeginReplication 1 

TotalNoOfLocations Real System   BeginReplication 65 

CCPerformingTimeMean Real System   BeginReplication 2 

CCPerformingTimeVariance Real System   BeginReplication 0.5 

pSeverity2 Real System   BeginReplication 0 

pSeverity1 Real System   BeginReplication 1 

TotalNoOfAmbs Real System   BeginReplication 15 

NoOfAvailableAmbs Real System   BeginReplication 15 

AmbMatrix 65 1 ExtSimDataFile BeginReplication   

HospitalMatrix 65 1 ExtSimDataFile BeginReplication   

TravelTimesMatrix 65 65 ExtSimDataFile BeginReplication   

BusyFraction Real System   BeginReplication   

TotalAmbUsage Real System   BeginReplication   

pHospitalNeeded Real System   BeginReplication 0.34 

AmbSetupTimeMean Real System   BeginReplication 2 

AmbSetupTimeVariance Real System   BeginReplication 0.5 

TimeAtSceneAlpha Real System   BeginReplication 1.2 

TimeAtSceneBeta Real System   BeginReplication 7.5 

TimeAtSceneThreshold Real System   BeginReplication 1 

TimeAtHospitalAlpha Real System   BeginReplication 1 

TimeAtHospitalBeta Real System   BeginReplication 4 

TimeAtHospitalThreshold Real System   BeginReplication 1 

TargetResponseTime Real System   BeginReplication 10 

TestInterrupt Real System   BeginReplication   

CoveredDemand Real System   BeginReplication   

Coverage Real System   BeginReplication   

TotalNoOfCalls Real System   BeginReplication   

ResponseTimeMatrix 65 1   BeginReplication   

CallCountMatrix 65 1   BeginReplication   
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Table F.2. Attribute List of the Simulation Model 

Name 

StartTime 

CallType 

CallLocation 

Severity 

TimeToEnterQueue 

AssignedStation 

Index 

ResponseTime 

DispatchTime 

AmbUsageTime 

CallResolveTime 

AssignedHospital 
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APPENDIX G 

 

 

DATA SET FOR SIMULATION VERIFICATION AND VALIDATION  

 

 

 

Table G.1. Ambulance and Hospital Matrix 

AmbulanceMatrix HospitalMatrix 

1 0 35 0 1 0 35 0 

2 1 36 0 2 0 36 0 

3 0 37 0 3 0 37 0 

4 0 38 0 4 0 38 1 

5 0 39 0 5 0 39 0 

6 0 40 1 6 0 40 0 

7 1 41 1 7 0 41 0 

8 0 42 0 8 1 42 0 

9 0 43 0 9 0 43 0 

10 0 44 0 10 0 44 0 

11 0 45 0 11 0 45 0 

12 0 46 0 12 0 46 0 

13 1 47 0 13 0 47 0 

14 1 48 0 14 0 48 0 

15 1 49 0 15 0 49 0 

16 0 50 0 16 0 50 0 

17 0 51 1 17 0 51 0 

18 0 52 0 18 0 52 0 

19 0 53 0 19 0 53 0 

20 0 54 0 20 0 54 0 

21 0 55 0 21 0 55 1 

22 0 56 0 22 1 56 0 

23 0 57 1 23 0 57 0 

24 0 58 0 24 0 58 0 

25 1 59 0 25 0 59 0 

26 0 60 1 26 0 60 0 

27 1 61 1 27 0 61 0 

28 0 62 0 28 0 62 0 

29 0 63 0 29 0 63 0 

30 0 64 0 30 0 64 0 

31 1 65 0 31 0 65 0 

32 0     32 0     

33 0     33 0     

34 1     34 0     

 


