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ABSTRACT 

 

NONSTANDARD HULLS OF ORDERED VECTOR SPACES 

 

 

Gül, Hasan 

Ph. D., Department of Mathematics 

Supervisor : Prof. Dr. Eduard Emelyanov 

 

December 2015, 57 pages 

This thesis undertakes the investigation of ordered vector spaces by applying 

nonstandard analysis. We introduce and study two types of nonstandard hulls of 

ordered vector spaces. Norm-nonstandard hulls of ordered Banach spaces are also 

investigated 
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ÖZ 

 

NONSTANDARD HULLS OF ORDERED VECTOR SPACES 

 

 

Gül, Hasan 

Doktora,  Matematik Bölümü 

Tez Yöneticisi : Prof. Dr. Eduard Emelyanov 

 

Aralık  2015, 57 sayfa 

Bu tezde standart olmayan analiz yöntemleri ile sıralamalı vektör uzayların 

incelenmesine başlanacaktır. Sıralamalı vektör uzaylarına ait iki tür standart 

olmayan zarflar tanımlanıp araştırılacaktır. Sıralamalı Banach uzaylarının norm 

standart olmayan zarfları da ayrıca incelenecektir. 
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CHAPTER 1

INTRODUCTION

Nonstandard Analysis may seem, at first glance, a rigorous revitalization of naive

utilization of infinitesimal and infinite elements by mathematicians till Cauchy and

Weierstrauss, that is, ε,δ formalism, after the works of Skolem (1934) and Robinson

(1966). But, one may claim that ”... one should be careful in claiming that novel

developments prove the correctness of older ideas.” [1]

The basic idea is a construction of a proper extension of R, denoted by ∗R, in which

all of the properties of the ordered field R is conserved in a sense, which will be made

explicit later.

Of course, the construction of nonstandard extension ∗R of R may be generalized

to construct a nonstandard extension ∗X of any algeabraic structure X .

The list of applications of nonstandard analysis, which proved to give us extremely

powerful mathematical tools, such as the hyperfinite approximation, Loeb Measure

( which is employed in applications of nonstandard analysis to probability theory,

stochastic analysis and mathematical finance) is significantly large in the functional

analysis (see, for example, [1, 17, 18, 20]).

One of the most important constructions while studying local properties of locally

convex vector spaces is of the nonstandard hull of a normed space by Luxemburg [21].

But, first, consider the following sets.

(1) The set of finite hyperreals is

Fin(∗R) := {x ∈ ∗R : |x|6 n for some n ∈ N}
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(2) The set of infinite hyperreals is ∗Rin f := ∗R\Fin(∗R)

(3) The set of infinitesimal hyperreals is

µ := {x ∈ ∗R : |x|6 1
n

for all n ∈ N+}

Note that µ ∩R = /0, Fin(∗R) is a subring of ∗R, and µ is an ideal of Fin(∗R) .

For x,y ∈ ∗R, we say x and y are infinitely close, denote by x ≈ y , if x− y ∈ µ . If

r ∈ Fin(∗R) then there is a unique s ∈ R such that r ≈ s. We call s standard part of r

and write st(r) = s. Clearly, st : Fin(∗R)→R is a surjective ring homomorphism. Thus,

Fin(∗R)�µ ∼=R is our, somewhat trivial, first nonstandard hull construction. Note that

if we start with Q, we will end up with Fin(∗Q)�µ(∗Q)∼= R .

Now let us return to Luxemburg’s elegant construction. Let X = (X ,‖ · ‖) be a

normed space. It can be shown that ∗X is a vector space over R. Consider also the

following vector spaces over R. The space

Fin(∗X) := {κ ∈ ∗X : (∃M ∈ R) ‖κ‖ ≤M} (1)

of norm-finite elements of ∗X and the space

µ(∗X) := {κ ∈ ∗X : (∃M ∈ R)(∀n ∈ N) ‖nκ‖ ≤M} (2)

of norm-infinitesimal elements (‖ · ‖-infinitesimals) of ∗X .

Note that µ(∗X) is a subspace of semi-normed space

(Fin(∗X),st(‖ · ‖)) and µ(∗X) = ker(st(‖ · ‖)). Then the quotient X̃ := Fin(∗X)/µ(∗X)

is a Banach space, under the norm

‖[κ]‖= st(‖κ‖). We call the (external) normed space X̃ := (X̃ ,‖ · ‖) together with the

natural embedding

X ∗→ Fin(∗X)
i→ X̃
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the norm-nonstandard hull of X . In this thesis, we use slightly different name for X̃ ,

which is commonly known as nonstandard hull of X [1, 17, 7]. The reason lies in the

fact that the same vector space X may simultaneously carry several different structures

together with the norm structure and, hence, X may possess several different types of

nonstandard hulls together with the norm-nonstandard hull. There is a well developed

theory of norm-nonstandard hulls of normed spaces and operators between them (see,

e.g., [17]).

In the case when X is a vector lattice, no norm is available in general. This reason

has motivated the study of different kinds of nonstandard hulls of X (see, e.g., [9, 7]).

Emel’yanov investigated infinitesimal approach to vector lattices in the early 1990’s

[8, 10, 11, 12, 13, 16, 14] (for survey of these results see [8, 7]). For instance, in papers

[12, 13, 14] two different types of nonstandard hulls of vector lattices were introduced

and studied. Then, in [11] a modified method of construction of nonstandard hulls has

been applied to lattice normed vector spaces and dominated operators between them.

Now that nonstandard hulls of vector lattices are sufficiently well explored, it is nat-

ural to employ methods of nonstandard analysis to investigate a class of vector spaces

more general than vector lattices, namely the vector spaces with positive cones, which

are known as ordered vector spaces (OVS, in short). Recently, the investigation of

OVS [5, 6] has been carried out and we initiated the study of nonstandard hulls in this

framework.

In this thesis, we introduce and study nonstandard hulls of OVS and of operators

between them. More specifically, after the preliminaries , we study some several exter-

nal vector spaces associated with OVS in Chapter 3. This chapter can be considered as

a continuation of development of nonstandard tools for OVS, started in [5, 6].
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Consider the following external sets: the set

fin(∗X) := {κ ∈ ∗X : (∃x,y ∈ X) κ ∈ [x,y]}

of order-finite elements of ∗X , the set

λ (∗X) := {κ ∈ ∗X : (∃y ∈ X)(∀n ∈ N)nκ ∈ [−y,y]}

of regular-infinitesimal elements (r-infinitesimals) of ∗X , the set

η(∗X) := {κ ∈ ∗X : inf
X

U(κ) = sup
X

L(κ) = 0}

of order-infinitesimal elements (o-infinitesimals) of ∗X .

The sets fin(∗X), λ (∗X), η(∗X) are ordered vector spaces overRwith respect to the

ordering inherited from ∗X . Moreover, λ (∗X) and η(∗X) are order ideals in fin(∗X).

In Chapter 4, we introduce order and regular nonstandard hulls of OVS and study

their elementary properties. Define

(o)X := fin(∗X)/η(∗X) .

The mapping X
η̂→ (o)X defined by η̂(x)= [∗x] is an order embedding since η(∗X)∩X =

{0}. OVS (o)X is called the order (nonstandard) hull of X . Consider the following

quotient space with respect to the canonical partial ordering:

(r)X := fin(∗X)/λ (∗X) .

The corresponding order homomorphism X λ̂→ (r)X , λ (x) = [∗x], is an order embedding

iff λ (∗X)∩X = {0}, and, by Theorem 4, iff X is almost Archimedean. For an almost

Archimedean OVS X , the OVS (r)X is called the regular (nonstandard) hull of X .

4



In Chapter 5, we turn our attention to Luxemburg’s nonstandard hull of a normed

OVS and discuss some results in connection with the the normality of the positive cone.

In Chapter 6, we start to investigate linear operators from a nonstandard point of

view.

We do hope that the techniques that are developed here, may serve in the theory of

OVS by providing new outlook at some of the old problems in there. Also, conversely,

the theory of nonstandard hulls of OVS possesses many interesting, difficult, and still

unsolved problems.

5



6



CHAPTER 2

PRELIMINARIES

2.1 Nonstandard extensions

There are two approaches to construct a nonstandard extension which satisfy our

requirements, one that utilizes the compactness theorem and the other, the ultrapower

construction which is outlined in the Appendix. The approach to the nonstandard anal-

ysis that we use follows that of Stroyan and Luxemburg [21] .

Let S be a set . A superstructure over S is the set V (S) :=
⋃

nVn(S), with Vn(S)

defined by recursion:

V1(S) := S,

Vn+1(S) := P(Vn(S)),

V (S) :=
⋃
n

Vn(S),

where P(X) denotes the power set of X and S is a set often not specified explicitly but

chosen large enough to contain all objects under consideration, real numbers, vector

spaces, sets of functions, etc.
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We may suppose that for the extension ∗S of the set S, the natural embedding

∗ : V (S) ↪→V (∗S)

satisfies the following principles :

Extension Principle. The set S is a proper subset of ∗S (assuming ∗x = x for every

x ∈ S). Moreover, ∗S is equipped with the same operations and relations as S is.

Transfer Principle. Let ψ(x1,x2, ...,xn) be a bounded formula of the superstructure

V (S) (i.e., a formula of the restricted language L(V (S)) [1, p.18]), and let A1,A2, ...,An

be elements of the superstructure V (S).

Then the assertion ψ(A1,A2, ...,An) about elements of V (S) holds true iff the asser-

tion ψ(∗A1,
∗A2, ...,

∗An) about elements of ∗(V (S)) does.

Let ∗(V (S)) be a nonstandard enlargement of a superstructure V (S). An element

x∈ ∗(V (S)) is called: standard if x = ∗X for some X ∈V (S); internal if x∈ ∗X for some

X ∈V (S); external if x is not internal. Note that every standard element is internal, and

every element of an internal set is internal .

Internal Definition Principle. Given a formula ψ(x,x1, ...,xn) of L(V (S)) and

internal sets A,A1, ...,An. Then the set {x ∈ A : ψ(x,A1, ...,An)} is internal.

General Saturation Principle. If a family {Aγ}γ∈Γ of internal sets possesses the

finite intersection property and card(Γ)< card(V (S)), then
⋂

γ∈Γ Aγ 6= /0.

Lemma 1. For every directed set (Θ,≺) ∈V (S), there is an infinitely remote element

a ∈ aΘ := {ξ ∈ ∗Θ : (∀τ ∈Θ)τ ≺ ξ}.

8



One of equivalent forms of Lemma 1 is the following: in a polysaturated enlarge-

ment of V (S), any set A with card(A) < card(V (S)) is a subset of a hyperfinite set B

(meaning that there is an internal bijection between B and some ν ∈ ∗N).

2.2 Ordered vector spaces

All vector spaces under consideration in this thesis assumed to be over the real field

R. A subset K of a vector space X is called a cone if it satisfies

K∩ (−K) = {0}, K +K ⊆ K and rK ⊆ K

for all r ≥ 0. A cone K is said to be generating if K−K = X . Given a cone X+ in X ,

we say that (X ,X+) is an ordered vector space. The partial ordering ≤ on X is defined

by

x≤ y if y− x ∈ X+ .

The OVS (X ,X+) is also denoted by (X ,≤) or simply by X if the partial ordering is

well understood.

For every x,y ∈ X , the (possibly empty if x 6≤ y) set

[x,y] = {z : x≤ z≤ y}

is called an order interval. A vector subspace I of X is called an order ideal if for every

x,y ∈ I we have that [x,y]⊂ I. It is well known that if Y ⊆ X is an order ideal, then the

quotient space X/Y is an OVS with respect to the following ordering:

[0]≤ [ f ] if ∃q ∈ Y with 0≤ f +q .

An OVS X is said to be Archimedean, if

[(∀n≥ 1) ny≤ x ∈ X+]⇒ [y≤ 0] .

9



Note that an x ∈ X+ in the definition above can be replaced by an arbitrary x ∈ X .

Also, X is Archimedean iff infn≥1
1
nx = 0 for all x ∈ X+.

One may say that an Archimedean space does not contain any infinitely small or large

comparable elements.

An OVS X is called almost Archimedean if

[(∀n ∈ Z) ny≤ x ∈ X+]⇒ [y = 0]

for every x ∈ X+. Clearly, X is almost Archimedean iff⋂
n≥1

[
−1

n
x,

1
n

x
]
= {0} ∀x ∈ X+ .

Archimedean ordered vector spaces are are almost Archimedean but the converse does

not hold.

Example 1. Let X be the ovs with generating cone

X+ = {(x,y) ∈ R2 | x > 0 and y≥ 0 and orx = y = 0}

.

n(0,−1)≤ (1,1)

holds for all n ∈ N, but (0,−1)
 (0,0). Thus, (X ,X+) is not Archimedean. However,

(X ,X+) is almost Archimedean for it is a subcone of an

almost Archimedean cone given by {(x,y) ∈ R2 | x≥ 0 and y≥ 0}.

Example 2.The Euclidean plane with lexicographic ordering

(R2,≤lex) is not almost Archimedean.

X+ = {(x,y) ∈ R2 | x > 0 or x = 0 and y ≥ 0 } is the generating cone. n(0,1) ≤ (1,0)

holds for all n ∈ Z, but (0,1) 6= (0,0).

10



An OVS X is said to be order complete if every nonempty bounded above subset of

X has a supremum (cf. [26, p.209]). X is called Dedekind complete if every increasing

bounded above net in X has a supremum [2]. It is easy to see that any order complete

OVS is Dedekind complete, but, in general, not vice versa.

Let {xξ} be a net in X . Then {xξ} is said to be order convergent to an x ∈ X (in

symbols xξ

o→ x), if there exists a net {pξ} ↓ 0 in X+ such that

xξ − x ∈ [−pξ , pξ ].

Let (xn) be a sequence in X and u ∈ X+, then (xn) is said to be u-uniformly conver-

gent to an x ∈ X (in symbols xn
u→ x), if

xn− x ∈ [−εnu,εnu]

for some sequence εn of reals such that εn ↓ 0 , or, equivalently, for any given ε > 0,

there exists n(ε) ∈ N such that

xn− x ∈ [−εu,εu]

for all n > n(ε). In general, these u-uniform limits may not be unique.

Example 3. Consider the sequence of the lexicographic plane ( a non-Archimedean

space) defined by xn =(1
n ,0) and u=(2,2). Then for every vector of the form x=(0,r),

where r ∈ R, we have

xn− x = (
1
n
,0)− (0,r) = (

1
n
,−r).

Since (0,0) ≤ (1
n ,−r) ≤ (2

n ,
2
n), we have 0 ≤ xn− x ≤ 1

nu, that is, each vector of the

form (0,r) is a limit for each r ∈ R.

11



• The uniform limits are unique in an Archimedean OVS.

Proof : Suppose a sequence (xn) in an Archimedean OVS X satisfies xn
u→ x and

xn
v→ y. for some u,v ∈ X+ . Fix k and choose n such that −1

k u ≤ xn− x ≤ 1
k u and

−1
k v≤ y− xn ≤ 1

k v. Adding the inequalities yields

−1
k
(u+ v)≤ y− x≤ 1

k
(u+ v)

for each k. Since X is Archimedean, y− x = 0 or y = x.

• Let (xn) be a sequence in an Archimedean OVS X . If (xn) converges uniformly,

then it is also convergent in order. But, in general, order convergence of (xn) does not

imply relative uniform convergence.

Proof : Suppose xn
u→ x, that is, there exists u ∈ X+ and a sequence of reals εn ↓ 0

such that −εnu ≤ xn− x ≤ εnu for all n ∈ N. Since X is Archimedean, εnu ↓ 0. Then,

let yn = εnu for each n ∈ N to claim that (xn) converges in order to x.

Example 4. Let X be the Archimedean space l∞ of all bounded real sequences

with coordinatewise ordering and xn be the element with first n coordinates equal to 0,

and the rest coordinates equal to 1. Then, xn ↓ 0 in order, but there does not exist any

u ∈ (l∞)+ to be a regulator for the relative uniform convergence of (xn).

The positive cone X+ in a normed OVS X is said to be normal if there exists ε > 0

such that for every x,y ∈ X+ with ‖x‖= ‖y‖= 1 we have ‖x+ y‖ ≥ ε . It can be shown

that X+ is normal iff X admits an equivalent monotone norm ‖ · ‖m (that is: 0 ≤ x ≤ y

implies ‖x‖m ≤ ‖y‖m) and iff every order bounded set is bounded in norm (that is,

normality is a condition of compatibility of the order and the topology).

Example 5. C1[0,1] does not have a normal cone under the norm ‖ f ‖=‖ f ‖∞ + ‖

f
′ ‖∞

12



The norm ‖ · ‖ in X is said to be order continuous if for every net xξ in X , xξ ↓ 0

implies ‖xξ‖ ↓ 0.

An element e of an OVS X is called an order unit if for every x ∈ X there exists

n ∈ N such that −ne 6 x 6 ne.

A Banach OVS (X ,X+,‖ · ‖) with the closed positive cone X+ and an order unit

is called a Krein space. The positive cone of a Krein space need not be normal (see

Example 5).

The positive cone X+ in a Banach OVS X satisfies the Levi property (or an ordered

Banach space (X ,X+,‖ · ‖) has the Levi property) if it follows from 0 ≤ xn ↑≤ x that

the sequence xn is norm convergent in X.

An OVS X is said to be vector lattice if every nonempty finite subset of X has a

supremum. It is well known that any almost Archimedean vector lattice is Archimedean

and any Dedekind complete vector lattice is order complete. For further information

on ordered spaces we refer to [2, 22, 20, 26, 28].

2.3 Nonstandard hulls

Let X = (X ,‖ · ‖ be a normed space. Clearly, ∗X is a vector space over R. Consider

also the following vector spaces over R. The space

Fin(∗X) := {κ ∈ ∗X : (∃M ∈ R) ‖κ‖ ≤M} (1)

of norm-finite elements of ∗X and the space

µ(∗X) := {κ ∈ ∗X : (∃M ∈ R)(∀n ∈ N) ‖nκ‖ ≤M} (2)

13



of norm-infinitesimal elements (‖ · ‖-infinitesimals) of ∗X . The following elegant con-

struction was invented by Luxemburg [21].

Note that µ(∗X) is a subspace of semi-normed space

(Fin(∗X),st(‖ · ‖)) and µ(∗X) = ker(st(‖ · ‖)). Then the quotient X̃ := Fin(∗X)/µ(∗X)

is a Banach space, under the norm

‖[κ]‖= st(‖κ‖). Following Luxemburg, we call the (external) normed space

X̃ := (X̃ ,‖ · ‖) together with the natural embedding

X ∗→ Fin(∗X)
i→ X̃

the norm-nonstandard hull of X . In this thesis, we use slightly different name for X̃ ,

which is commonly known as nonstandard hull of X [1, 17, 7]. The reason lies in the

fact that the same vector space X may simultaneously carry several different structures

together with the norm structure and, hence, X may possess several different types of

nonstandard hulls together with the norm-nonstandard hull. There is a well developed

theory of norm-nonstandard hulls of normed spaces and operators between them (see,

e.g., [17]).

In the case when X is a vector lattice, no norm is available in general. This reason

has motivated the study of different kinds of nonstandard hulls of X (see, e.g., [9, 7]).

We begin with the following (external) vector spaces over R associated with the vector

lattice X (cf. [7, p.184]). The space

f in(∗X) := {κ ∈ ∗X : (∃x ∈ X) |κ| ≤ x} (3)

of order-finite elements of ∗X , the space

λ (∗X) := {κ ∈ ∗X : (∃y ∈ X)(∀n ∈ N) |nκ| ≤ y} (4)

14



of regular-infinitesimal elements (r-infinitesimals) of ∗X , and the space

η(∗X) := {κ ∈ ∗X : inf
X
{x ∈ X : |κ| ≤ x}= 0}} (5)

of order-infinitesimal elements (o-infinitesimals) of ∗X .

It is immediate to see that both λ (∗X) and η(∗X) are order ideals in the (exter-

nal) vector lattice f in(∗X) and therefore one may consider the quotients (r)−X :=

f in(∗X)/λ (∗X) and (o)−X := f in(∗X)/η(∗X) which are also vector lattices. Follow-

ing [7, Sect.4.9, 4.8], we call (r)−X the regular-nonstandard hull of X and (o)−X the

order-nonstandard hull of X .

Notice that the lattice homomorphism

X ∗→ fin(∗X)
i→ (o)−X

is always an embedding, while the lattice homomorphism

X ∗→ f in(∗X)
i→ (r)−X

is an embedding iff the lattice X is Archimedean. For more information on regular and

order-nonstandard hulls of vector lattices we refer to survey [7].
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CHAPTER 3

SOME EXTERNAL VECTOR SPACES ASSOCATED WTH AN OVS

From now on X = (X ,X+) is an OVS, unless otherwise stated. As usual, we identify

X with its image under the embedding X
∗
↪→ ∗X . Given κ ∈ ∗X , denote the set of stan-

dard upper and lower bounds of κ by U(κ) := {x ∈ X : κ ≤ x} and L(κ) :=−U(−κ),

respectively. X may not have a lattice structure, but we must choose appropriate ana-

logues of finite/infinitesimal elements to be consistent when X is a vector lattice to

boot.

3.1. Consider the following external sets: the set

fin(∗X) := {κ ∈ ∗X : (∃x,y ∈ X) κ ∈ [x,y]}

of order-finite elements of ∗X , the set

λ (∗X) := {κ ∈ ∗X : (∃y ∈ X)(∀n ∈ N)nκ ∈ [−y,y]}

of regular-infinitesimal elements (r-infinitesimals) of ∗X , the set

r-pns(∗X) := {κ ∈ ∗X :
⋂

n∈N
(U(nκ)−L(nκ)) 6= /0}

of regular-pre-near-standard elements of ∗X , the set

η(∗X) := {κ ∈ ∗X : inf
X

U(κ) = sup
X

L(κ) = 0}

17



of order-infinitesimal elements (o-infinitesimals) of ∗X , and the set

o-pns(∗X) := {κ ∈ ∗X : inf
X
(U(κ)−L(κ)) = 0}

of order-pre-near-standard elements of ∗X . The above defined external sets make sense

also for an ordered group X but we do not consider this generalization in the present

paper. Clearly, the above defined sets are (external) vector spaces over R satisfying

η(∗X)⊆ o-pns(∗X)⊆ fin(∗X), λ (∗X)⊆ r-pns(∗X)⊆ fin(∗X),

X ⊆ r-pns(∗X)∩o-pns(∗X), and η(∗X)∩X = {0}.

In general, X ∩λ (∗X) may contain nonzero elements (for instance, when X = (R2,≤lex

)). The inclusions X +η(∗X)⊆ o-pns(∗X) and X +λ (∗X)⊆ r-pns(∗X) may be proper

(cf. [7, Thm.4.4.2]). If X is Archimedean then λ (∗X) ⊆ η(∗X) since infn≥1
1
ny = 0

for every y ∈ X+. If X is not Archimedean, η(∗X) may be a proper subset of λ (∗X)

even when X is almost Archimedean and dim(X) = 2 (take X = (R2,�) ordered by

(x,y)� (0,0) if either x = y = 0 or x > 0 and y > 0).

The sets fin(∗X), λ (∗X), r-pns(∗X), η(∗X), and o-pns(∗X) are ordered vector spaces

over R with respect to the ordering inherited from ∗X . Moreover, fin(∗X), λ (∗X), and

η(∗X) are order ideals in ∗X , λ (∗X) is an order ideal in r-pns(∗X), and η(∗X) is an

order ideal in o-pns(∗X).

Proposition 1. Let X be an OVS. Then,

(a) for any κ ∈ fin(∗X), κ ∈ λ (∗X) iff there exists ν ∈ ∗N \N and y ∈ X+ with

νκ ∈ [−y,y];

(b) the positive cone of λ (∗X) is generating.

Proof. (a): It follows immediately from the general saturation principle.
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(b): Let κ ∈ λ (∗X). Then, by (a), νκ ∈ [−y,y] for some y ∈ X+ and ν ∈ ∗N \N.

Hence

ν
−1y,κ ∈ [−ν

−1y,ν−1y]⊂ λ (∗X)

and

ν
−1y−κ ∈ [−2ν

−1y,2ν
−1y]⊂ λ (∗X).

Therefore,

κ = ν
−1y− (ν−1y−κ) ∈ λ (∗X)+−λ (∗X)+.

3.2. The following theorem extends [7, Lm.4.6.1.] to OVS.

Theorem 1. Let X be an OVS with the generating positive cone X+ and let A be a

subset of X+. Then the following conditions are equivalent:

1) A is order bounded;

2) ∗A⊆ fin(∗X);

3) ∗A⊆ ν ·λ (∗X) for every ν ∈ ∗N\N;

4) there exists ν ∈ ∗N\N such that ∗A⊆ ν ·λ (∗X);

5) there exists ν ∈ ∗N\N such that ∗A⊆ ν ·fin(∗X).

Moreover, if 1)⇔ 2) in some OVS X, then the cone X+ is generating.

Proof. 1)⇒ 2): It follows from the transfer principle.

2)⇒ 1): Since X+ is generating, we obtain

fin(∗X) =
⋃

u∈X+

∗[−u,u]. (1)
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Assume that ∗A⊆ fin(∗X) but A is not order bounded. The family {∗A\ ∗[−u,u]}u∈X+

of internal sets possesses the finite intersection property, since

/0 6= ∗A\ ∗[−
n

∑
k=1

uk,
n

∑
k=1

uk]⊆

∗A\
n⋃

k=1

∗[−uk,uk] =
n⋂

k=1

(∗A\ ∗[−uk,uk])

for every finite subset {uk}n
k=1 of X+. By (1) and the general saturation principle,

∗A\fin(∗X) = ∗A\
⋃

u∈X+

∗[−u,u] =
⋂

u∈X+

(∗A\ ∗[−u,u]) 6= /0

which violates our hypothesis ∗A ⊆ fin(∗X). The contradiction shows that A is order

bounded.

1)⇒ 3): Let A be order bounded. Since X+ is generating, we get A ⊆ [−u,u] for

some u ∈ X+. Then 1
ν

∗A ⊆ [− 1
ν

u, 1
ν

u] ⊆ λ (∗X) for every ν ∈ ∗N \N, since if − 1
ν

u ≤

κ ≤ 1
ν

u then

−1
n

u≤− 1
ν

u≤ κ ≤ 1
ν

u≤ 1
n

u

for all n ∈ N.

3)⇒ 4)⇒ 5): This is obvious.

5)⇒ 1): Assume that A is not order bounded. By the transfer principle, ∗A is

not order bounded in ∗X . So, ν−1∗A is not order bounded in ∗X as well. Then

(ν−1∗A) \ ∗[−u,u] is a nonempty internal set for every u ∈ X+. Arguing as in the

proof of implication 2)⇒ 1), we obtain that the family {(ν−1∗A) \ ∗[−u,u]}u∈X+ has

the finite intersection property. In view of the general saturating principle,

(ν−1∗A)\fin(∗X) = (ν−1∗A)\
⋃

u∈X+

∗[−u,u] =
⋂

u∈X+

(
(ν−1∗A)\ ∗[−u,u]

)
6= /0,
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that is, ∗A 6⊆ ν ·fin(∗X). The obtained contradiction shows that A is order bounded.

In order to prove the last statement of the Theorem 1, assume that X+ is non-

generating. Then, there are x,y ∈ X such that A = {x,y} is not order bounded, although
∗A = A ⊂ X ⊂ fin(∗X). Since the implication 1)⇒ 2) holds regardless of X+ being

generating or not, we are done.

3.3. In this subsection, we discuss nonstandard interpretations of some additional

properties of the external vector spaces defined above. For the order convergence (the

(o)-convergence, e.g., [22, 28]) of monotone nets in X , there is the following [5, Prop.3]

(cf. [7, 4.3.2], [8] for the vector lattice setting) nonstandard characterization:

Proposition 2. For a monotone net (xα)α∈Ξ in an OVS X, the following conditions are

equivalent :

(a) xα

(o)→ 0 ;

(b) xβ ∈ η(∗X) for all β ∈ aΞ ;

(c) xβ ∈ η(∗X) for some β ∈ aΞ ,

where the definition of aΞ is given in Lemma 1.

For the (r)-convergence, we have [5, Prop.4]:

Proposition 3. For a monotone sequence (xn) in an OVS X, the following conditions

are equivalent :

(a) xn
(r)→ 0 ;

(b) xν ∈ λ (∗X) for all ν ∈ ∗N\N;

(c) xν ∈ λ (∗X) for some ν ∈ ∗N\N.

The next two results are taken from [5, Lm.1, Thm.2].
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Lemma 2. Let X be an OVS, u ∈ X, and ν ∈ ∗N \N. Then either u = 0 or νu 6∈

o-pns(∗X).

However, it may be the case that νu ∈ fin(∗X) for all ν ∈ ∗N for some u 6= 0 in a

non-Archimedean space X .

Proposition 4. Any Archimedean OVS X satisfying

o-pns(∗X) = X +η(∗X) is Dedekind complete.

3.4. The following theorem is a refinement of the proposition above.

Theorem 2. Let X be an Archimedean OVS. Consider the following conditions:

1) X is order complete;

2) o-pns(∗X) = X +η(∗X);

3) X is Dedekind complete.

Then 1)⇒ 2)⇒ 3).

Proof. 1)⇒ 2): It suffices to show that o-pns(∗X) ⊆ X +η(∗X). Let κ ∈ o-pns(∗X).

Since X is order complete and L(κ) is order bounded in X , there exists a := supX L(κ).

Then L(κ)≤ {a,κ} ≤U(κ), and hence

a−κ ≤U(κ)−L(κ) =U(a−κ)−L(a−κ). (2)

Thus U(a−κ)−L(a−κ) ⊆U(a−κ). Since a−κ ∈ o-pns(∗X), it follows from (2)

that infX U(a− κ) = 0. A similar argument shows that supX L(a− κ) = 0. Hence

a−κ ∈ η(∗X) or κ ∈ X +η(∗X), as desired.

2)⇒ 3): It is just Proposition 4.
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We do not know whether or not 2) implies 1) in Theorem 2. However, if X is Archi-

medean vector lattice then 2)⇒ 1) holds by [7, Thm.4.4.2]. Moreover, in this case the

quotient space

o-pns(∗X)/η(∗X)⊆ (o)X

is a Dedekind completion of X [7, Thm.4.4.1].

A short inspection of the proof of [7, Thm.4.4.1] suggests (assuming X to be an

Archimedean OVS) that o-pns(∗X)/η(∗X) is a Dedekind completion of X (but not

necessarily an order completion).

3.5. The next two theorems give an extended and corrected version of [5, Thm.1]

(cf. also [6, Thm.1]). Namely, the equivalent conditions 3)-5) in [6, Thm.1] are sup-

plemented by the last two equivalent conditions of Theorem 4 below.

Theorem 3. Let X be an OVS. Then the following conditions are equivalent :

1) X is almost Archimedean;

2) λ (∗X)∩X = {0}.

Proof. 1)⇔ 2): It follows readily from the definition of λ (∗X).

Theorem 4. Let X be an OVS. Then the following conditions are equivalent :

1) X is Archimedean;

2) λ (∗X)⊆ η(∗X);

3) λ (∗X)⊆ o-pns(∗X);

4) η(∗X) is r-closed in fin(∗X);

5) o-pns(∗X) is r-closed in fin(∗X).
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Proof. 1)⇒ 2): Let κ ∈ λ (∗X). Then −1
nu ≤ κ ≤ 1

nu for some u ∈ X+ and all n ∈

N \ {0}. In order to show that κ ∈ η(∗X), it is sufficient to prove that infX U(κ) = 0.

Take a w ∈U(κ). Then −1
nu ≤ κ ≤ w for all n ∈ N \ {0}. Since X is Archimedean,

inf
n∈N\{0}

1
nu = 0 and

0 =− inf
n∈N\{0}

1
n

u = sup
n∈N\{0}

(−1
n

u)≤ w.

We obtain 0 ≤ w, and hence 0 ≤U(κ). Let z ∈ X and z ≤U(κ). Then z ≤ 1
nu for all

n ∈ N\{0}. As X is Archimedean, we get z≤ 0. Thus, infX U(κ) = 0, as desired.

2)⇒ 3): It follows readily from the fact that η(∗X)⊆ o-pns(∗X).

3)⇒ 1): It suffices to show that

[(∀n ∈ N) ny≤ u ∈ X+]⇒ [y≤ 0] .

Take a y ∈ X , so that ny ≤ u ∈ X+ for all n ∈ N. Fix ν ∈ ∗N\N. Then 1
ν

u ∈ λ (∗X) ⊆

o-pns(∗X). Let z ∈ X , then, by the transfer principle, 1
ν

u ≤ z iff 1
nu ≤ z for some

n ∈ N\{0}. Therefore,

U
( 1

ν
u
)
=

⋃
n∈N\{0}

Un, where Un =U
(1

n
u
)
.

By the hypothesis, infX(U( 1
ν

u)− L( 1
ν

u)) = 0. Since 0 ∈ L( 1
ν

u), then infX U( 1
ν

u) =

infX(U( 1
ν

u)−0) = 0. Thus

inf
X

⋃
n∈N\{0}

Un = 0. (3)

Since y≤ 1
nu ∈Un for all n ∈ N\{0}, then it follows from (3), that y≤ 0, as desired.

1)⇒ 4): Take a sequence (κn)n in η(∗X) which r-converges to κ ∈ fin(∗X). It is

enough to show that κ ∈ η(∗X). We may suppose that κn
u→ κ for some u ∈ X+. So,
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there is a sequence εn ↓ 0 of reals such that −εnu≤ κk−κ ≤ εnu for all naturals k ≥ n.

Then, κn− εnu≤ κ ≤ κn + εnu, and therefore, L(κn)− εnu⊆ L(κ), and U(κn)+ εnu⊆

U(κ) for every n ∈ N. In view of (κn)n ⊆ η(∗X), one gets

−εnu≤ κ ≤ εnu (∀n ∈ N) (4)

Since X is Archimedean, u∈X+, and εn ↓ 0, (4) implies that infX U(κ)= 0= supX L(κ).

Thus, κ ∈ η(∗X), as desired.

4) ⇒ 1): Suppose that X is not Archimedean. Then, there are vectors u ∈ X+

and v ∈ X \ (−X+) such that nv ≤ u for all n ∈ N. Take some ν ∈ ∗N \N. Clearly,
1
ν

u 6∈ η(∗X) since infX U( 1
ν

u) does not exist. However, the sequence (xn)n∈N, where

xn = 0 ∈ η(∗X) for all n ∈ N, converges u-uniformly to 1
ν

u. By the hypothesis of

the r-closeness of η(∗X), 1
ν

u ∈ η(∗X). The obtained contradiction shows that X is

Archimedean.

1)⇒ 5): Take a sequence (κn)n in o-pns(∗X) which

r-converges to κ ∈ fin(∗X). It is enough to show that

κ ∈ o-pns(∗X). One may suppose that κn
u→ κ for some u∈ X+. So, there is a sequence

εn ↓ 0 of reals such that −εnu ≤ κk−κ ≤ εnu for all naturals k ≥ n. For every n ∈ N,

we have κn− εnu≤ κ ≤ κn + εnu, and hence

L(κn− εnu)≤ κ ≤U(κn + εnu). (5)

Given n∈N, assign Hn :=U(κn+εnu)−L(κn−εnu). The inclusion (κn)n⊆ o-pns(∗X)

implies, by (5), that

inf
X

Hn = 2εnu (∀n ∈ N). (6)

Since the OVS X is Archimedean, (6) implies that

infX
⋃

∞
n=1 Hn = 0 Therefore, infX(U(κ)−L(κ)) = 0 (using the inclusion

⋃
∞
n=1 Hn ⊆

U(κ)−L(κ), which is ensured by (5)). Thus, κ ∈ o-pns(∗X), as required.
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5)⇒ 1): Suppose that X is not Archimedean. Then, there are u ∈ X+, v ∈ X \

(−X+) with nv ≤ u for all n ∈ N. Take a ν ∈ ∗N \N. Since infX(U( 1
ν

u)− L( 1
ν

u))

does not exist, we get 1
ν

u 6∈ o-pns(∗X). The sequence (xn)n∈N with xn = 0 ∈ η(∗X)

for all n ∈ N converges u-uniformly to 1
ν

u. But, by the hypothesis of the uniform

closeness of o-pns(∗X), we get 1
ν

u ∈ η(∗X). The obtained contradiction shows that X

is Archimedean.
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CHAPTER 4

THE ORDER AND THE REGULAR NONSTANDARD HULLS OF AN OVS

4.1. Let X be an OVS and consider the following quotient OVS equipped with the

canonical partial ordering:

(o)X := fin(∗X)/η(∗X) .

The mapping X
η̂→ (o)X defined by η̂(x)= [∗x] is an order embedding since η(∗X)∩X =

{0}. OVS (o)X is called the order (nonstandard) hull of X .

It is known that the order hull of an Archimedean vector lattice is Archimedean [7,

Thm.4.8.3]. The reason lies in r-closeness of η(∗X) by Theorem 4 and in the fact that

the quotient of any vector lattice by an r-closed order ideal is Archimedean by Veksler’s

theorem (cf. [27], [22, Thm.60.2]).

In general, (o)X is not o-complete even if X is a Dedekind complete vector lattice,

for example Lp[0,1] with 0 < p < ∞ (see [7, p.202])

4.2. Consider the following quotient space with respect to the canonical partial

ordering:

(r)X := fin(∗X)/λ (∗X) .

The corresponding order homomorphism X λ̂→ (r)X , λ (x) = [∗x], is an order embedding

iff λ (∗X)∩X = {0}, and, by Theorem 4, iff X is almost Archimedean. For an almost

Archimedean OVS X , the OVS (r)X is called the regular (nonstandard) hull of X .
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According to [7, Cor.4.9.6], the regular hull of any Banach lattice is Archimedean.

For an arbitrary almost Archimedean OVS X , it is still unknown whether or not (r)X is

almost Archimedean, even if X is a vector lattice [7, p.214]. The challenge here may

pertain to establishment of the r-closeness of λ (∗X) even in the case if X is a vector

lattice.

If X = SA(H) the algebra of all selfadjoint linear operators on a Hilbert space H,

then X is a Krein spaces with the normal cone of all positive operators and by Corollary

1, X̃ = (r)X . Since X̃ is a normed lattice, it is Archimedean and, therefore, (r)X is also

Archimedean.

Theorem 5. Let X be an OVS, in which for every sequence zk ∈ X, there exists a se-

quence of reals αk > 0 such that the set {αkzk : k ∈ N} is order bounded above. Then

(r)X is almost Archimedean.

Proof. Note that it follows immediately from the assumption of the theorem that X+

is generating. Let [κ], [ζ ] ∈ (r)X satisfy

±[κ]≤ n−1[ζ ] (∀n ∈ N).

Take y ∈ X so that ζ ≤ y then

±[κ]≤ n−1[y] (∀n ∈ N).

Therefore, there exist two sequences ξ ′n,ξ
′′
n ∈ λ (∗X) such that

κ ≤ n−1y+ξ
′
n, −κ ≤ n−1y+ξ

′′
n (∀n ∈ N).

Since λ (∗X)+−λ (∗X)+ = λ (∗X) by Proposition 1, there exists

ξn ∈ λ (∗X)+ such that ξn ≥ ξ ′n,ξ
′′
n and hence

±κ ≤ n−1y+ξn (∀n ∈ N). (7)
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Since ξn ∈ λ (∗X)+, there is a sequence zn ∈ X+ satisfying

0≤ ξn ≤ k−2zn (∀k,n ∈ N)

By the general saturation principle, there is ν ∈ ∗N\N with

0≤ ξn ≤ ν
−2zn (∀n ∈ N) (8)

By the assumption of the theorem, there is z ∈ X+ such that

0≤ αnzn ≤ z (αn > 0,n ∈ N)

Then

0≤ ν
−2zn ≤ ν

−1
αnzn ≤ ν

−1z (∀n ∈ N) (9)

It follows from (8) and (9) that 0≤ ξn ≤ ν−1z, and hence, by (7)

±κ ≤ n−1y+ν
−1z (∀n ∈ N).

Then

±κ ≤ n−1(y+ z) (∀n ∈ N).

which means that κ ∈ λ (∗X) and therefore, [κ] = 0. We have shown that (r)X is almost

Archimedean

Theorem 6. Let X be a Banach OVS with the closed and generating cone X+. Then

(r)X is Archimedean.

Proof. It suffices to check if the hypothesis of Theorem 5 is satisfied. Let zk ∈ X . Since

X+ is generating, there exists a sequence yk ∈ X+ with zk ≤ yk. Since X is a Banach
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space and the cone X+ is closed, y :=
∞

∑
n=1

yn
2n‖yn‖ ∈ X+. Taking the norm limits in the

inequality
1

2k‖yk‖
zk ≤

1
2k‖yk‖

yk ≤
k+m

∑
n=1

yn

2n‖yn‖

as m→ ∞ and using closeness of X+, we obtain

1
2k‖yk‖

zk ≤ y (∀k ∈ N),

as required.
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CHAPTER 5

NORMED OVS

5.1. In this section, (X ,X+,‖ · ‖) is a normed OVS. If e ∈ X is an order unit, one

may consider also the following seminorm on X

‖ x ‖e:= inf{λ ∈ R+ :−λe 6 x 6 λe}

which is also a norm when X is Archimedean.

Theorem 7. Let (X ,‖ · ‖) be a normed OVS with a normal generating cone X+. Then

the following conditions are equivalent:

1) X possesses an order unit e, and the norm ‖ · ‖e is equivalent to ‖ · ‖;

2) Fin(∗X) = fin(∗X);

3) µ(∗X)⊆ fin(∗X);

4) µ(∗X) = λ (∗X);

5) µ(∗X)⊆ λ (∗X);

6) Fin(∗X) = fin(∗X)+µ(∗X).

Proof. Since both Fin(∗X) and µ(∗X) do not depend on choice of an equivalent norm

in X and the cone X+ is normal, we may and do assume that ‖ · ‖ is monotone.

First, we prove the equivalence 2)⇔ 3)⇔ 4)⇔ 5).

Since the implications 2)⇒ 3) and 4)⇒ 5)⇒ 3) do not require checking, it is

enough to show that 3)⇒ 4) and 4)⇒ 2).
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3)⇒ 4): Take an arbitrary κ ∈ µ(∗X). Then νκ ∈ µ(∗X) for some ν ∈ ∗N \N.

Thus, by hypothesis, νκ ∈ fin(∗X). Hence κ ∈ λ (∗X). So, µ(∗X) ⊆ λ (∗X). The

reverse inclusion λ (∗X)⊆ µ(∗X) is trivial.

4)⇒ 2): Let µ(∗X) = λ (∗X). By normality of X+, fin(∗X)⊆ Fin(∗X). Assume that

the inclusion is proper. Then, there exists κ ∈ ∗X such that ‖ κ ‖= 1 and κ 6∈ fin(∗X)

and, in particular, κ 6∈ [−y,y] for all y ∈ X+. Consider the internal sets

An
y := {r ∈ ∗R+ : n 6 r,κ 6∈ [−ry,ry]} (y ∈ X+,n ∈ N).

Since κ 6∈ [−ny,ny] for every y ∈ X+ and n ∈ N, we have n ∈ An
y , that is, all of these

sets are nonempty. The family {An
y : y ∈ X+,n ∈N} has the finite intersection property,

since

Amax(n,m)
y+z ⊆ An

y ∩Am
z .

Thus, by the general saturation principle, there exist r ∈ ∗R satisfying

r ∈
⋂
{An

y : y ∈ X+,n ∈ N}.

Then r is an infinite positive number such that κ 6∈ [−ry,ry] for all y ∈ X+. However,

(1/r)κ ∈ µ(∗X), since ‖ (1/r)κ ‖= 1/r ≈ 0. By the hypothesis, µ(∗X) = λ (∗X) ⊂

fin(∗X), that is. there exists z ∈ X+, such that (1/r)κ ∈ [−z,z] or −rz 6 κ 6 rz, which

contradicts the fact that r ∈ A1
z .

So 4)⇒ 2) and the equivalence 2)⇔ 5) are established.

Since 1)⇒ 2)⇒ 6) is trivial, it suffices to prove 6)⇒ 1).

6)⇒ 1): Suppose that Fin(∗X) = fin(∗X)+ µ(∗X). First, we prove that the unit

ball B := {x ∈ X : ‖x‖ 6 1} is order bounded. Assume the contrary. Take an arbitrary

nonzero x ∈ X+. Then, there exists y ∈ X+ with ‖y‖ = 1 and y 6∈ [0,x], for otherwise
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B will be order bounded. Let z ∈ [ x
2 + y,x+ y]. Then, we have y < x

2 + y ≤ z ≤ x+ y.

Thus,

1 = ‖y‖< ‖z‖6 ‖x+ y‖6 ‖x‖+‖y‖= ‖x‖+1.

Also, since z− x
2 > y > 0, we have ‖z− x

2‖> ‖y‖= 1. Consequently, the internal sets

Ax := {z ∈ ∗X : ‖z− x
2
‖ ≥ 1}

are nonempty for all x ∈ X+ \ {0}. Since Ax+y ⊆ Ax ∩Ay for all x,y ∈ X+ \ {0}, the

family {Ax}x∈X+\{0} satisfies the finite intersection property. Thus, by the general sat-

uration principle, there exists z0 ∈ ∗X \{0} such that

z0 ∈
⋂
{Ax : x ∈ X+ \{0}}.

Clearly, z0 ∈ Fin(∗X). By hypothesis, z0 ∈ fin(∗X)+ µ(∗X). Therefore, there are el-

ements x0 ∈ X+ and h ∈ µ(∗X), for which, z0 6 x0 + h. We may suppose x0 > 0, for

otherwise, z0 ≤ h would yield ‖z0‖6 ‖h‖ ≈ 0 contradicting the fact that ‖z0‖> 1. But,

if x0 > 0, then z0 ∈ A2x0 , that is, ‖z0− x0‖ > 1. The obtained contradiction shows that

B is order bounded.

Choose an e such that −e 6 y 6 e for all y ∈ B. Take an arbitrary nonzero x ∈ X .

Then, x
‖x‖ ∈ B, that is −e 6 x

‖x‖ 6 e. Thus, −‖x‖e 6 x 6 ‖x‖e. Therefore, e is an order

unit.

Recall that ‖ x ‖e= inf{λ ∈ R :−λe 6 x 6 λe}. Thus

‖x‖6‖ x ‖e ·‖e‖. Also, ‖ x ‖e6 ‖x‖. Consequently, the norms ‖·‖e and ‖·‖ are equiva-

lent. The implication 6)⇒ 1) is established. The proof of the theorem is complete.

Note that the normality condition for X+ cannot be dropped in Theorem 7. Indeed,

in the normed OVS X = C1[0,1] of differentiable functions on the interval [0,1] we

have µ(∗X)⊆ fin(∗X), however Fin(∗X) is a proper subset of fin(∗X).
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Theorem 8. The norm ‖ · ‖ in a normed OVS (X ,‖ · ‖) with a normal cone is order

continuous if and only if η(∗X)⊆ µ(∗X).

Proof. Assume that the norm ‖ · ‖ is order continuous. Take an arbitrary κ ∈ η(∗X)

and assume that κ 6∈ µ(∗X), that is, ‖ κ ‖6≈ 0. Then, there exists n0 ∈ N such that

‖ κ ‖≥ 1
n0

. WLOG suppose that κ > 0. Define An := {x ∈ X+ :‖ x ‖≥ 1
n} for each

n∈N. Note that, since the norm ‖·‖ is order continuous, An is closed in X with respect

to both norm and order topology (actually, they coincide, since the cone is normal) for

all n ∈ N. Also, 0 6∈ An for each n ∈ N. Note that U(κ) ⊆ An0 for some n0 ∈ N , that

is, infX U(κ)> 0, if it exists. Nevertheless, a contradiction to the fact that κ ∈ η(∗X) .

Therefore, κ ∈ µ(∗X), or in other words, η(∗X)⊆ µ(∗X).

Now, let η(∗X)⊆ µ(∗X), and assume that ρ is not order continuous. Thus, there are a

net (xξ )ξ∈Θ ⊆ X , xξ ↓ 0, and a number 0 < b ∈ R

such that ‖xξ‖ ≥ b for all ξ ∈ Θ. Take some infinitely remote element β ∈a Θ.

Then, by Proposition 2, since xξ ↓ 0, xβ ∈ η(∗X). Thus, ‖xβ‖ ≈ 0. On the other hand,

by the transfer principle, ‖xξ‖ ≥ b for all ξ ∈∗ Θ. The contradiction shows that the

norm ‖ · ‖ is order continuous.

5.2. Given a normed space X , choose a hyperfinite dimensional internal subspace V

of ∗X such that X ⊂V ⊂ ∗X . By the transfer principle, V is internally reflexive, that is:

for every φ ∈V ′′ there is a unique κφ ∈V with

φ(ψ) = ψ(κφ ) (∀ψ ∈V ′).

So, we get the norm preserving linear embedding

g→ [κg] (g ∈ X ′′)
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of X ′′ into X̃ . It is easy to show that this embedding does not depend on our choice of

V (the same construction is applicable, due to the general saturation principle, to the

diagram X ↪→ X ′′ ↪→ . . . ↪→ X (2n) ↪→ . . ., namely, every X (2n) can be embedded naturally

into X̃).

Now we have the following preliminary characterization of cone normality.

Theorem 9. Let X be a normed OVS. Then the following conditions are equivalent:

1) the cone X+ is normal;

2) µ(∗X) is an order ideal in the nonstandard extension

(∗X ,∗(X+)) of the OVS (X ,X+);

3) the set

KX = {[κ] : κ ∈ ∗(X+),‖κ‖ ∈ Fin(∗R)}

is a norm closed cone in X̃ ;

4) KX is a cone which is normal in X̃ .

Proof. 1)⇒ 2): It follows from the fact that every order interval is norm bounded due

to normality of X+.

2)⇒ 3): If µ(∗X) is an order ideal in (∗X ,∗(X+)), then µ(∗X) is an order ideal in

(Fin(∗X),∗(X+)∩Fin(∗X)). Hence, the norm-nonstandard hull X̃ = Fin(∗X)/µ(∗X) is

a normed OVS with the positive cone

KX = {[κ] : κ ∈ ∗(X+)∩Fin(∗X)}.

Clearly, KX is norm closed.

3)⇒ 4): Assume that KX is not a normal cone in X̃ . Then for every n ∈N there are

[κn
1 ], [κ

n
2 ] ∈ KX with

‖[κn
1 ]‖= ‖[κn

2 ]‖= 1 and ‖[κn
1 ]+ [κn

2 ]‖< 1/n .
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Since st(‖κ‖) = ‖[κ]‖ for every κ ∈ Fin(∗X), one gets

1/2≤ ‖κn
1‖ and 1/2≤ ‖κn

2‖ and ‖κn
1 +κ

n
2‖< 1/n

for all n ∈ N. By the general saturation principle, there exist ν ∈ ∗N \N and two

elements κν
1 ,κ

ν
2 ∈ ∗(X+) such that

‖κν
1 ‖= ‖κν

2 ‖= 1 and ‖κν
1 +κ

ν
2 ‖< 1/ν .

Therefore, 0 6= [κν
1 ] ∈ KX and 0 6= [κν

2 ] ∈ KX . On the other hand, st(‖κν
1 +κν

2 ‖) = 0

implies that [κν
2 ] = −[κν

1 ] violating the assumption that KX is a cone. The obtained

contradiction shows that KX is a normal cone in X̃ .

4)⇒ 3): It is trivial since (X ,X+) is an ordered subspace in (X̃ ,KX).

Now we are in the position to prove the following theorem.

Theorem 10. Let X be a Krein space. Then the following conditions are equivalent:

1) the cone X+ is normal;

2) Fin(∗X) = fin(∗X);

3) µ(∗X) = λ (∗X);

4) Fin(∗X) = fin(∗X)+µ(∗X).

Proof. Note that the cone X+ is generating.

1)⇒ 2): Since in the Krein space X with the normal positive cone X+ the norms

‖ · ‖ and ‖ · ‖u are equivalent, it follows from Theorem 7 that Fin(∗X) = fin(∗X).

2)⇒ 3): If κ ∈ µ(∗X) then

nκ ∈ µ(∗X)⊂ Fin(∗X) = fin(∗X) (∀n ∈ N) .
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Thus, there exist a,b ∈ X with nκ ∈ [a,b] for all n ∈ N. Since X+ is generating, we

may assume that a =−b. By the general saturation principle, there exists a hyperfinite

natural ν ∈ ∗N\N with νκ ∈ [−b,b]. Hence

κ ∈ 1
ν
[−b,b]⊂ λ (∗X).

If κ ∈ λ (∗X) then

nκ ∈ λ (∗X)⊂ fin(∗X) = Fin(∗X) (∀n ∈ N) .

Thus st(‖κ‖) = 0 and hence κ ∈ µ(∗X).

3)⇒ 2): The proof is based on the same arguments in the reverse direction, as the

proof of 2)⇒ 3) and therefore is omitted.

2)⇔ 4): It is obvious.

2)⇒ 1): By the condition 2), µ(∗X)= λ (∗X) is an order ideal in fin(∗X)= Fin(∗X).

Then µ(∗X) is an order ideal in ∗X . It follows from Theorem 9 that the cone X+ is

normal in X , as required

Notice that without an order unit in X , the conditions 1) and 2) of Theorem 10

are not equivalent. For example, in the Banach OVS `1 of absolutely summable real

sequences, the positive cone `1
+ is normal and eν ∈ Fin(∗`1)\fin(∗`1) for any ν ∈ ∗N\

N, where eν is the internal sequence with all zero coordinates except ν-th coordinate

which is 1.

Corollary 1. For any Krein space X with the normal positive cone, its norm-nonstandard

hull X̃ coincides with the regular hull (r)X.

Again as above, (r)`1 ∼= `1 but ˜̀1 is much bigger than `1.
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5.3. Another consequence of Theorem 9 is the following result.

Theorem 11. Let X be a Banach OVS with closed and normal positive cone X+. Then

the following conditions are equivalent:

1) X̃ has the Levi property;

2) X̃ is Dedekind complete;

3) X̃ is σ -Dedekind complete.

Proof. By Theorem 9, X̃ is an ordered Banach space with closed and normal positive

cone KX .

1)⇒ 2)⇒ 3): This is true in any ordered Banach space.

3)⇒ 1): Let 0 ≤ [κn] ↑≤ [ξ ] in X̃ . Then there is [κ0] = supX̃{[κn] : n ∈ N}. It is

easy to construct a sequence (κ1
n )n∈N in ∗X by induction, such that

0≤ κ
1
n ↑≤ κ

1
0 and st(‖κ1

n −κn‖) = 0

for all n = 1,2, . . .. It is enough to show that ([κ1
n ])n∈N is a Cauchy sequence. Assume

that it is not Cauchy. Then, without lost of generality. we may suppose that ‖κ1
n+1−

κ1
n‖= 1 and ‖κ1

n‖ ≤ N ∈ N for all n = 1,2, . . ..

By the internal definition principle, extend the (κ1
n )n∈N to a hyperfinite increasing

sequence (κ1
n )

ω
n=1, ω ∈ ∗N\N.

By the general saturation principle, there exists a hyperfinite ν ∈ ∗N \N, ν ≤ ω ,

such that κ1
τ ≤ κ1

τ+1 and ‖κ1
n+1−κ1

n‖= 1 for all τ ∈ ∗N, τ < ν .

Then [κ1
0 − (κ1

ν −κ1
ν−1)]< [κ1

0 ] and

[κ1
n ]≤ [κ1

0 − (κ1
ν −κ

1
ν−1)]

for all n = 1,2, . . ., violating the condition

[κ1
0 ] = supX̃{[κ1

n ] : n ∈ N}. This contradiction completes the proof.
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We conclude this subsection with a brief discussion regarding the question on ne-

cessity of assumptions of Theorem 11. From one hand side if the positive cone KX in

the OVS X̃ has the Levi property, then KX is normal (cf. [2, Thm.2.45.]). So, Theorem

9 ensures the normality of the positive cone X+ in X provided by the condition 1) of

Theorem 11. However, formally weaker condition 3) of σ -Dedekind completeness of

X̃ along may not provide the normality of X+ in X . Therefore, the problem of necessity

of the normality assumption of X+ in Theorem 11 remains open.

5.4. The following notion is motivated by the notion of a (b)-bounded set introduced

in [3]. Given an ordered normed space X , consider the diagram

X ↪→ X ′′ ↪→ . . . ↪→ X (2n) ↪→ . . .

of isometric embeddings. We say that a set A ⊂ X is X (2n)-bounded if A ⊆ [b,c] for

some b,c ∈ X (2n). Note that if A is a X (4)-bounded subset of a normed lattice X then

|A| ≤ c for some c ∈ X (4)
+ The set |A|∨ of all finite suprema of elements of |A| is upward

directed and lies in the ball BX ′′(0,‖c‖) which is w∗-compact. Therefore |A|∨ w∗→ a∈ X ′′

and since X
′′
+ is w∗-closed, |A| ⊆ |A|∨≤ a. Thus A∈ [−a,a] and hence A is X ′′-bounded.

The remark noted above is due to Süleyman Önal [23] and motivates the following

conjecture.

Conjecture 1. Let X be ordered Banach space with closed normal and generating cone

X+. Then every X (4)-bounded set A⊂ X is X ′′-bounded.

As it was mentioned above, every Banach space X (2n) can be embedded isometri-

cally into X̃ . Assume now that the cone X+ is normal and generating. Then, by The-

orem 9, the isometric embeddings X (2n) ↪→ X̃ become order embeddings. Therefore,
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any X (2n)-bounded subset of X is X̃-bounded. Recall the aforementioned construction

of isometric embedding of X ′′ into X̃ . We take a hyperfinite dimensional internal sub-

space V of ∗X such that X ⊂V ⊂ ∗X . Then V is internally reflexive, that is i(V ) =V ′′,

where

i(φ)(ψ) = ψ(φ) (∀φ ∈V )(∀ψ ∈V ′).

So, one may identify all hyperfinite dimensional internal spaces V (2n) with V induc-

tively as follows. Assume that

X (2n) ⊂ V (2n) = V . The isometric embedding of X (2(n+1)) into V is given by f → κ f

for f ∈ X (2(n+1)), where κ f ∈V (2n) satisfies

f (ξ ) = ξ (κ f ) (ξ ∈ X (2n+1)).

Thus we get an isometric and order embedding, say i, of⋃
∞
n=0 X (2n) into V

i :
∞⋃

n=0

X (2n) ↪→V ↪→ ∗X . (10)

Since µ(∗X) is an order ideal by normality of X+, (10) has natural factorization to the

isometric and order embedding

i :
∞⋃

n=0

X (2n) ↪→ X̃ . (11)

It can be shown that the embedding in (11) does not depend on choice of V . The

following result is immediate consequence of (11).

Theorem 12. Let X be ordered Banach space with closed normal and generating cone

X+ and n ∈ N. Then any

X (2n)-bounded subset of X is X̃-bounded.

Theorem 12 motivates the following conjecture.
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Conjecture 2. Let X be ordered Banach space with closed normal and generating cone

X+. Then every X̃-bounded set A⊂ X is X ′′-bounded.

Note that by Theorem 12, Conjecture 2 is formally stronger than Conjecture 1.
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CHAPTER 6

LINEAR OPERATORS BETWEEN OVS

Theorem 13. Let X and Y be ordered vector spaces such that Y = Y+−Y+, and T :

X → Y a linear operator. Then the following conditions are equivalent.

1) T is order bounded;

2) ∗T (fin(∗X))⊆ fin(∗Y );

3) ∗T (λ (∗X))⊆ λ (∗Y );

4) ∗T (λ (∗X))⊆ fin(∗Y ).

Proof. (1)⇒ (2) : Obvious.

(2)⇒ (3) : Let ∗T (fin(∗X)) ⊆ fin(∗Y ). Take an arbitrary κ ∈ λ (∗X). Then, for some

u ∈ X ,nκ ∈ [−u,u] for all n ∈ N. Define An = [−u
n ,

u
n ]. Then, the finite intersections of

sets An contain κ , i.e. are nonempty. Thus, by applying the general saturation principle,

we can find υ ∈ ∗N\N such that κ ∈ [− u
ν
, u

ν
], that is, νκ ∈ ∗[−u,u]⊆ fin(∗X), and by

linearity of T, ν∗T (κ) = ∗T (νκ) ∈ fin(∗Y ) by hypothesis. Since −νκ 6−nκ 6 nκ 6

νκ , we have ∗T (κ) ∈ λ (∗Y ). Therefore, ∗T (λ (∗X))⊆ λ (∗Y ).

(3)⇒ (4) : Obvious.

(4)⇒ (2) : Assume that ∗T (κ) is not an element of fin(∗Y ) for some κ ∈ fin∗X . For

every n ∈ N and every u ∈ Y+, assign

An,u := {k ∈ ∗N : k > n∧ ∗T (k−1
κ) 6∈ [−u,u]}.

By construction, the sets An,u are nonempty, internal and satisfy the finite intersection
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property, since

Amax(n,p),u+v ⊆ An,u∩Ap,v

for arbitrary n, p ∈ N and u,v ∈ Y+. By applying the general saturation principle, we

find ν ∈
⋂

n,u An,u. Obviously, ν ∈ ∗N\N, and thus ν−1κ ∈ λ (∗X). Hence, ∗T (ν−1κ)∈

fin(∗Y ) , that is, there exist z ∈ Y+ such that ∗T (ν−1κ) ∈ [−z,z]. A contradiction since

ν ∈ A1,z. Hence the claim.

(2)⇒ (1) : Take an arbitrary u ∈ X+. By hypothesis

∗(T ([−u,u])) = ∗T (∗[−u,u])⊆ fin(∗Y ).

Hence, by Theorem 1, the set T ([−u,u]) is order bounded.
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APPENDIX A

THE ULTRAPOWER CONSTRUCTION OF NONSTANDARD EXTENSION

A.1 Infinitesimals

• A filter F on N is a set F of subsets of N such that

· /0 6∈F , N ∈F

· If A,B ∈F , then A∩B ∈F

· A ∈F and A⊆ B⇒ B ∈F

• A filter F on N is called free if it does not contain any finite set.

• A filter U is called an ultrafilter over N if for all E ⊆ N either E ∈U or N\E ∈

U .

• Ultrafilter Theorem There exist free ultrafilters U on N extending the filter of

cofinite sets.

Let U be a free ultrafilter on N and introduce an equivalence relation on sequences

in RN as

f ∼U g iff {n ∈ N : f (n) = g(n)} ∈U

.

RN divided out by the equivalence relation ∼U gives us the nonstandart extension
∗R , the hyperreals; in symbols ,

∗R= RN/ U

If f ∈ RN, we denote its image in ∗R by fU .
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For any real number r ∈ R, let r denote the constant function with value r in RN,

i.e., r(n) = r for all n ∈ N. Then we have a natural embedding

∗ : R→ ∗R

by setting ∗r = rU , for all r ∈ R.

As an algebraic structure, R is a complete ordered field, i.e., a structure of the form

〈R,+, ·,<,0,1〉

The *-embedding sends 0 to ∗0 = 0U and 1 to ∗1 = 1U . Also, we have

fU = gU iff {n ∈ N : f (n) = g(n)} ∈U .

Similarly, we extend < to ∗R by setting

fU < gU iff {n ∈ N : f (n)< g(n)} ∈U .

We now have a linear oeder on ∗R and can verify that ∗R contains infinitesimals and

infinite numbers. A (positive) infinitesimal δ in ∗R is an element δ ∈ ∗R such that
∗0 < δ < ∗r for all r > 0 in R.

Infinitesimals exist; let f (n) = 1/n for all n ∈ N. Then δ = fU is a positive in-

finitesimal. Also notice that g(n) = 1/n2 defines another infinitesimal, say δ ′ and that

δ ′ < δ in ∗R.

In the same way h(n) = n and p(n) = n2 introduce infinite numbers, say ω = hU

and ω ′ = pU , and ω < ω ′ in ∗R.

It remains to extend the operations + and · to ∗R. Set

fU +gU = hU iff {n ∈ N : f (n)+g(n) = h(n)} ∈U .
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fU ·gU = hU iff {n ∈ N : f (n) ·g(n) = h(n)} ∈U .

Let F be an n-ary function on R, i.e.,

F : R×· · ·×R→ R.

We introduce the extended function ∗F by the equivalence

∗F( f 1
U , ..., f n

U ) = gU iff {i ∈ N : F( f 1(i), ..., f n(i))} ∈U .

The structure 〈R,+, ·,<, | · |,0,1〉 has an associated simple language L(R) that can

be used to describe the kind of properties of R that are preserved under the embedding
∗ : R→ ∗R.

The elementary formulas of L(R) are expressions of the form

(i) t1 + t2 = t3 (ii) t1 · t2 = t3 (iii) |t1|= t2 (iv) t1 = t2 (v) t1 < t2 (vi) t1 ∈ X ,

where t1, t2, t3 are either the constants 0 or 1 or a variable for an arbitrary number r ∈R

and X is a variable for a subset A⊆ R.

From the elementary formulas we generate the class of all formulas or expressions

of L(R) using the propositional connectives

∧ (and), ∨ (or), ¬ (not), → (if, then)

and the number quantifiers

∀x for all x (in R), ∃x for some x (in R)

by the rules :
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(vii) If Φ and Ψ are formulas of L(R), then

Φ∧Ψ, Φ∨Ψ, ¬Φ, Φ→Ψ

are formulas of L(R).

(viii) If Φ is a formula of L(R) and x is a number variable, then ∀xΦ and ∃xΦ are

formulas of L(R).

Every formula in L(R) has an immediate meaning or interpretation in the structure

R and can also be interpreted in the extended structure ∗R.

We can now state the main result about ultrafilter extensions, which has the general

transfer principle as immediate corollary.

• Theorem of Loś Let Φ(X1, ...,Xm,x1, ...,xn) be a formula of L(R). Then for any

A1, ...,Am ⊆ R and f 1
U , ..., f n

U ∈
∗R,

Φ(∗A1, ...,
∗Am, f 1

U , ..., f n
U ) iff {i ∈ N : Φ(A1, ...,Am, f 1

U (i), ..., f n
U (i)} ∈U .

• Transfer Principle Let Φ(X1, ...,Xm,x1, ...,xn) be a formula of L(R). Then for

any A1, ...,Am⊆R and r1, ...,rn ∈R, Φ(A1, ...,Am,r1, ...,rn) is true inR iff Φ(∗A1, ...,
∗Am,

∗r1, ...,
∗rn)

is true in ∗R.

A.2 The extended universe

The structure R is not a large enough domain for the development of classical mathe-

matics. We need an extended universe that, in addition to numbers and functions, also

contains sets of functions, sets of spaces of functions, etc. In more generality, given

any set S we introduce the superstructure V(S) over S as follows.

V1(S) := S,
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Vn+1(S) := P(Vn(S)),

V (S) :=
⋃
n

Vn(S).

Classical analysis lives inside V (R). The extended universe of nonstandart analysis will

be obtained by postulating an extension ∗R⊇ R and postulating an embedding

∗ : V (R)→V (∗R)

that will have properties similar to the embedding ∗ :R→ ∗R constructed in Section 1.

First of all, we assume the following principle.

• Extension Principle ∗R is a proper extension of R and ∗r = r for all r ∈ R.

In the model of Section 1, this means we identifyRwith its ∗-image in ∗R. We shall

now extend the ultrafilter construction to demonstrate that superstructure embeddings

of the type above satisfying a transfer principle analogous to the one in Section 1 exist.

I. Constructing the bounded ultrapower A sequence 〈A1,A2, ...〉 of elements of

V (R) is bounded if there is a fixed n such that each Ai ∈ Vn(R). Two bounded se-

quence A and B are equivalent with respect to free ultrafilter U , in symbols A ∼U B

iff {i ∈ N : Ai = Bi} U . We let AU denote the equivalence class of A and define the

bounded ultrapower by

V (R)N/U = {AU : A is a bounded V (R) -sequence}.

We define the membership relation ∈U in the ultrapower by

AU ∈U BU iff {i ∈ N : Ai ∈ Bi} ∈U

There is a natural proper embedding

i : V (R)→V (R)N/U
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namely let i(A)= 〈A,A, ...〉U the equivalence class corresponding to constant sequence.

II. Embedding V (R)N/U into V (∗R)
∗R is the (bounded) ultrapower RN/U . But V (R)N/U will not be the same as the

full superstructure V (∗R). We shall now construct an embedding

j : V (R)N/U →V (∗R)

such that (i) j is the identity on ∗R and (ii) if AU 6∈ ∗R, then j(AU ) = { j(BU ) : BU ∈U

AU }. This means that the relation ∈U in the ultrapower is mapped into the ordinary

membership relation V (∗R).

The embedding j is constructed in stages. Let

Vk(R)N/U = {AU : A is a sequence from Vk(R)}.

Then the bounded ultrapower is the union of the chain

∗R=V1(R)N/U ⊆ ...⊆Vk(R)N/U ⊆ ...,

and we can define j by induction. For k= 1, j must be identity. If AU ∈Vk+1(R)N/U

and AU 6∈ ∗R, we simply set j(AU ) = { j(BU ) : BU ∈U AU }. This makes sense

: if BU ∈U AU it follows from the definition that {i ∈ N : Bi ∈ Vk(R)} ∈ U , i.e.,

BU ∈Vk(R)N/U , which means that j(BU ) is defined at a previous stage of the induc-

tive construction.

Combining i and j we get a model of the extended nonstandart universe where
∗A = j(i(A)) for any A ∈V (R).

Here V (R) and V (∗R) are connected by a transfer principle generalizing the one in

Section 1. The structure R has an associated elementary language L(R) which we used

to give the necessary precision to the transfer principle. We need a similar formal tool

to state the extended transfer principle.
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The language L(V (R)) will be an extension of the language L(R). We add to our

stock of elementary formulas in Section 1 expressions of the form ”X ∈ Y ” where X

and Y are variables for arbitrary sets in V (R).

We keep the logical symbols of L(R) but in addition to the number quantifiers we add

bounded set quantifiers

∀X ∈ Y for all sets X element of Y,

∃X ∈ Y for some set X element of Y.

Formulas Φ of L(V (R)) are then constructed in exactly the same way as formulas of

L(R) and can be interpreted in a natural way in any of the structures V (R),V (R)N/U and V (∗R).

• Transfer Principle Let A1, ...,An ∈V (R). Any L(V (R)) statement Φ that is true

of A1, ...,An in V (R) is true of ∗A1, ...,
∗An in V (∗R), and conversely.

• Let A ∈V (∗R), then

(i) A is called standard if A = ∗B for some B ∈V (R),

(ii) A is called internal if A ∈ ∗B for some B ∈V (R),

(iii) A is called external if A is not internal.

• Internal Definition Principle Let A1, ...,An be internal sets in V (∗R) and let

Φ(X1, ...,Xn,x) be an L(V (R)) statement. Then the set

{x ∈ Ai : Φ(X1, ...,Xn,x)}

is internal.

• Remark We have restricted ourselves to V (R), in some cases it may be more

natural to work inside a different superstructure. For instance, let E be a linear normed

space over the complex numbers C. It will be natural to work in the superstructure

55



V (E ∪C, i.e., to regard E and C as basic objects. The rest would be a set-theoretic

construction from the set of ”urelements” E ∪C.

• General Saturation Principle Let κ be an infinite cardinal. A nonstandard ex-

tension is called κ-saturated if for every family {Xi}i∈I , card(I) < κ with the finite

intersection property, the intersection
⋂

i∈I Xi is nonempty.

• The uniqueness theorem for superstructure embeddings There is up to iso-

morphism a unique superstructure embedding
∗ : V (R)→V (∗R) such that ∗ satisfies the transfer principle and is saturated in the sense

above [19] .

We have borrowed much of the above presentation from [1].
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