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ABSTRACT 

REASONING ABOUT AND GRAPHING THE RELATIONSHIP BETWEEN 

COVARYING QUANTITIES: THE CASE OF HIGH SCHOOL STUDENTS 

AND PROSPECTIVE MATHEMATICS TEACHERS 

 

Sofuoğlu, Sevgi 

Ms., Department of Secondary Science and Mathematics Education 

Supervisor: Assoc. Prof. Bülent Çetinkaya 

 

December 2015, 83 pages 

 

The purpose of this study is to investigate high school students’ and 

prospective mathematics teachers’ graphing, their reasoning and the relation 

between their graphing and reasoning in the context of a modeling task that 

requires graphing and covariational reasoning. This study is conducted within a 

larger project designed to develop in-service and prospective mathematics 

teachers’ knowledge and skills about modeling and using modeling in 

mathematics education.  

Qualitative method is used in the study and high school students and 

prospective mathematics teachers are treated as two cases. 24 prospective 

mathematics teachers and 107 10th and 11th grade level high school students 

participated in the study. Data for the study is collected through worksheets, and 

audio and video recordings. Qualitative data analysis methods are used to analyze 

the data. Analysis of data revealed that students’ graphs can be categorized into 

four groups: smooth, smooth chunk, uniform chunks, non-uniform chunks; and 

their covariational reasoning related to rate of change can be categorized into 

three groups: i) using extensive quantities, ii) creating intensive quantity-

comparing intensities, iii) creating intensive quantity-consider variation in 

intensity. While, the prospective mathematics teachers constructed graphs in 
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smooth or smooth chunks and considered variance in the intensity, the high school 

students rarely drew smooth graphs and usually constructed graphs in smooth 

chunks, uniform chunks and non-uniform chunks. Furthermore, the high school 

students considered variance of intensities, compared intensities, and extensive 

quantities in their reasoning. 

There exists a consistency between participants’ sketches of graphs and 

their reasoning about rate of change. The students who constructed smooth graphs 

considered variation in intensities with a global approach. All the students who 

drew smooth graphs took slope of the graph into consideration. Students who 

sketched graphs in smooth chunk considered variation in intensity, and compared 

intensities with a more local approach. Students who drew chunky graphs used 

extensive quantities with a local approach. However, some students who drew 

non-uniform chunks changed the slope of the graph to represent variation similar 

to students who drew smooth graphs. Associating students’ sketches of graphs 

with their reasoning provided us a further insight into how students interpret a 

covariational situation; and how students’ understanding of covariation can be 

deduced from their graphing. 

Keywords: Constructing graph, covariational reasoning, rate of change, 

students, prospective mathematics teachers 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

ÖZ 

KOVARYASYONEL OLARAK DEĞİŞEN NİCELİKLER ARASINDAKİ 

İLİŞKİ HAKKINDA AKIL YÜRÜTME VE GRAFİK ÇİZME: LİSE 

ÖĞRENCİLERİ VE MATEMATİK ÖĞRETMEN ADAYLARI ÖRNEĞİ 

 

Sofuoğlu, Sevgi 

Yüksek Lisans, Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü 

Tez Yöneticisi: Doç. Dr. Bülent Çetinkaya 

 

 Aralık 2015, 83 sayfa   

 

 Bu çalışmanın amacı lise öğrencileri ve matematik öğretmen adaylarının 

kovaryasonel düşünme gerektiren bir modelleme sorusu kapsamında grafik 

çizimleri, akıl yürütmeleri ve grafik çizimleri ile akıl yürütme yolları arasındaki 

ilişkiyi incelemektir. Bu çalışma, hizmet-içi matematik öğretmenleri ve matematik 

öğretmen adaylarının modelleme ve modellemenin matematik eğitiminde 

kullanımı hakkında bilgi ve becerilerini geliştirmek için tasarlanan kapsamlı bir 

proje dâhilinde yürütülmüştür. 

 Bu çalışmada nitel araştırma yöntemleri kullanılmıştır ve lise öğrencileri 

ile matematik öğretmen adayları iki örnek durum olarak ele alınmıştır. Bu 

çalışmaya 24 matematik öğretmen adayı ve 107 10. ve 11. sınıf seviyesinde lise 

öğrencisi katılmıştır.  Çalışmada veriler çalışma kâğıtları, ses ve video kayıtları 

yardımıyla toplanmıştır. Verileri analiz etmek için nitel veri analizi yöntemleri 

kullanılmıştır. Veri analizlerine göre öğrencilerin grafikleri dört grupta 

sınıflandırılabilir: düzgün, düzgün parçalı, düzenli parçalı, düzensiz parçalı. 

Öğrencilerin değişim oranı ile ilgili kovaryasyonel akıl yürütmeleri ise üç grupta 

sınıflandırılabilir: i) ölçülebilir nicelik kullanma, ii) dolaylı nicelik oluşturma-

değişimi karşılaştırma, iii) dolaylı nicelik oluşturma-değişim varyansını dikkate 
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alma. Matematik öğretmen adayları düzgün ve düzgün parçalı grafikler çizip 

değişim varyansını dikkate alırken, lise öğrencileri nadiren düzgün grafik 

çizmişlerdir ve genellikle düzgün parçalı, düzenli parçalı ve düzensiz parçalı 

grafikler oluşturmuşlardır. Ayrıca lise öğrencileri akıl yürütürken değişim 

varyansını dikkate almış, değişimleri karşılaştırmış ve ölçülebilir nicelik 

kullanmışlardır. 

 Katılımcıların grafik çizimleri ile değişim oranı ile ilgili akıl yürütmeleri 

arasında bir tutarlılık bulunmuştur. Düzgün grafik çizen öğrenciler daha genel bir 

yaklaşım sergileyerek değişim varyansını ve grafiğin eğimini dikkate almışlardır. 

Düzgün parçalı grafik çizen öğrenciler daha yerel bir yaklaşımla değişim 

varyansını dikkate almışlarıdır ve değişimleri karşılaştırmışlardır. Parçalı grafik 

çizen öğrenciler yerel yaklaşımla ölçülebilir nicelik kullanmışlardır. Ancak, 

düzensiz parçalı grafik çizen bazı öğrenciler değişimi açıklamak için, düzgün 

grafik çizen öğrencilerin yaklaşımına benzer bir şekilde grafiğin eğimini 

değiştirmişlerdir. Öğrencilerin grafik çizimlerini ve akıl yürütmelerini 

ilişkilendirmek, onların kovaryosyanel durumları yorumlayabilme ve 

kovaryasyonel düşünmelerini grafik çizimlerinden çıkartabilme konularında bize 

geniş bilgi sağlamıştır. 

Anahtar kelimeler: Grafik Oluşturma, Kovaryasyonel Düşünme, Değişim Oranı, 

Öğrenciler, Matematik Öğretmen Adayları 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Education does not serve its purpose unless students can transform what they 

learn to their lives.  To adapt students to their working life following their education, 

modeling problems and activities gained importance in mathematics and science 

education (Dijk, Oers, & Terwel, 2003; Lesh & Doerr, 2003; Lesh & Fennewald, 

2010; Orfanos 2010) 

One of the most common subjects we deal in real life is covariation. 

Covariation is a major concept in understanding the relationship between two 

variables and interpreting them depending on the other (Fitzallen, 2012). Covariation 

helps us explain the relations and patterns in a phenomenon, which mathematics, in 

real-life, intends. Understanding covariation is one of the most difficult and 

problematic issues for high school students (Fitzallen, 2012). Modeling real life 

situations gives students a chance to realize the relationship between covarying 

variables as they know the relationship between the variables in daily life situations 

(Carlson, Larsen, & Lesh, 2003). Dealing with real life problems enhances students’ 

understanding of important subjects of mathematics with the familiarity of the topic 

(Leinhardt, Zaslavsky, & Stein, 1990). 

Graphs are one of the most frequent ways to model covariation (Fitzallen, 

2012). Thus, its importance in mathematics education and work life is preserved. 

From statistics to science, medicine to engineering, graphs are used to summarize 

and manipulate the data or variables and to investigate relations in a compatible and 

communicable manner. Students’ use of graphs in representing the relation of real-

life phenomena can give clues about their understanding of covariation. 

 

Students meet graphing in mathematics education in early ages with bar or 
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figure graphs of representing data in elementary school in Turkey. Cartesian graph 

and statistics graphs expanding to the linear graphs of relations are placed in middle 

school levels.  At the secondary level, students learn to relate sets with functions and 

graphing of functions, so covariation gains importance at this level. Considering the 

educational research on secondary school level, there have been many studies 

conducted to investigate students understanding of graphs of functions and relations. 

Most of them investigated the students’ interpretation of graphs (Araujo, Veit, & 

Moreira, 2008; Bektaşlı & White, 2012; Fitzallen, 2012; Glazer, 2011; Nathan & 

Bieda, 2006; Perez-Goytia, Dominuguez, Zavala, Singh, Sabella, & Rebello, 2010; 

Tebabal & Kahssay, 2011;), while some of them gave space to students’ construction 

of graphs from a table or an algebraic equation (Berry & Nyman, 2003; Even, 1998; 

Hattikudur et al., 2012; Tairab & Al-Naqbi, 2004). Construction of graphs of real-life 

related situations, which requires a higher level reasoning (Leinhardt et al., 1990), 

takes place in modeling or covariational understanding studies (Araujo et al., 2008; 

Köklü & Jakubowski, 2010; Maverech & Kramarsky, 1997; Şen-Zeytun, Çetinkaya, 

& Erbaş, 2010). These studies focus on the problems of students in modeling 

activities and how they use covariational reasoning. One of them (Castillo-Garsow, 

Johnson, & Moore 2013) just focuses on the shapes of students’ graphing by 

associating it to the students’ type of thinking. Castillo-Garsow and others (2013) 

indicate that students who reason covariation in discrete, measurable intervals graph 

covariation in chunky style, whereas students who consider covariation in a 

continuous manner, graph covariation smoothly. In her research, Johnson (2011) 

reports a student that uses both types and graph in “smooth chunk” approach. 

Students may think smoothly in intervals/chunks which they determine. Kertil (2014) 

also reported that students may graph transition points of these intervals inconsistent 

with the rate of change of the covariational situation. 

Moreover, Johnson (2011) provides deep information about how students 

think and what types of reasoning they use while dealing with covariation with her 

research studies. Ratio based and not ratio based reasoning focus on covariational 

reasoning types (Johnson, 2011). Some studies on covariational understanding 

(Koklu & Jakubowski, 2010; Şen-Zeytun et al., 2010; Yemen-Karpuzcu, Ulusoy, & 

Işıksal-Bostan, 2015) use Carlson’s (Carlson et al., 2002; Carlson et al., 2003) 

covariational understanding steps which classify students covariational 
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understanding regarding the ratio over change in variables and scaling down the 

intervals of change to focus on the change on initial point. Carlson et al. (2003) 

reported that students may use cross-sectional area of the bottle which is not a ratio 

based reasoning way at the classical bottle problem that relates the change in one 

variable directly to another variable or situation, which does not fit with the 

covariational steps she defined.  Thus Carlson et al. (2003) called for a revision of 

these steps. Johnson (2011) also proposed that while dealing with covariation, some 

students use not ratio-based reasoning such as tracing the change in one of the 

variables depending on the other, rather than using ratio-based reasoning that is 

considering the change in the ratio of variables. Johnson (2012) investigated how 

students may reason about rate of change regarding their reliance on the use of 

variables. There are three categories she reported; using extensive quantities, creating 

and comparing intensities of variables, or creating intensities and considering the 

variance in the intensity. While using extensive quantities and comparing intensities 

of variables depend on ratio reasoning, considering the variance in the intensity of 

one variable includes a not ratio-based way of the reasoning about the rate of change. 

In interpretation and construction of graphs, we face other facts effecting 

students’ reasoning types such as local-global approaches and quantitative-

qualitative types of reasoning. Students may approach functions locally, such as by 

giving importance to certain points or intervals; or they may be able to see and use 

more global aspects, such as general trend of the graph, while they interpret or 

construct graphs. Not necessarily, but generally global aspects are related to 

qualitative reasoning, whereas local properties are handled by quantitative methods 

(Leinhardt et al., 1990). In Johnson’s (2012) categorization of the extensive quantity 

measuring, students’ use of quantitative operations to explain the change in variables 

is included. Moreover, Castillo-Garsow and others (2013) mention student’ chunky 

graphing in discrete and countable intervals. In general, global approach or reasoning 

qualitatively requires a higher level of understanding than local approach and 

quantitative reasoning. Students have more difficulty in interpreting or constructing 

graphs with a global point of view and they have problems in tasks that require 

qualitative reasoning of the graphs (Leinhardt et al., 1990).  
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1.1.Purpose and research questions  

It is stated in the literature that there are students who graph covariation 

smoothly or in chunks. Also students may use ratio or non-ratio based reasoning in 

different ways and at different levels for a given covariational situation. However, an 

extensive review of related literature shows no studies that investigate both students’ 

graphing and their reasoning and connections between them. Furthermore, smooth 

chunk graphing and inappropriate transition points in graphs are reported in the 

literature but not studied deeply. There is a need to study the relation between 

reasoning and graphing of students in a deeper qualitative research to explore 

reasoning behind students’ graphing. In addition, previous studies only focus on 

students who have not taken calculus or students who have already taken calculus 

(Carlson et al., 2002; Johnson, 2011; Köklü & Jakubowski, 2010; Şen-Zeytun et al., 

2010; Yemen-Karpuzcu et al., 2015). Studying both groups at the same time will 

provide a wider range of perspectives into students understanding of covariational 

reasoning. 

Thus, the purpose of this study is to investigate high school students’ and 

prospective mathematics teachers’ sketches of graphs for covariational situations, 

their reasoning about covariation and the relation between their graphing and 

reasoning while they are working on a modeling task, by qualitative analysis 

methods. Below are the research questions that guide this study. 

1. How do high school students and prospective mathematics teachers draw 

graphs showing the relationship between covarying quantities in the context 

of a task that involves covariational situation?  

2. How do high school students and prospective mathematics teachers reason 

about covarying quantities in the context of a task that involves covariational 

situation?  

3. How are the students’ sketches of the graphs related to their reasoning about 

covarying quantities? 
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1.2.Significance 

Besides the importance of graphical understanding in education as a necessity 

in daily life, investigating students’ understanding and constructing graphs have 

essentiality in educational research. Covariational reasoning that is to explain the 

relation between variables that change dependently is a major object in education due 

to its reflection in real life. Students’ understanding of both covariation and graphs 

may be reflected in their sketches of graphs and can be explained through them. As 

seen in literature, some students may graph covariation smoothly whereas others may 

think in chunks where two variables change simultaneously and continuously. Also, 

there exists smooth chunk thinking style which may sometimes cause inconsistent 

graphing (Johnson, 2012; Kertil, 2014). Kertil (2014) suggests warning students 

about the rate of change before and after transition points to make them draw 

smoother. A more detailed qualitative study that focuses on students graphing and 

reasoning behind it will give researchers and teachers a chance to find a more 

naturalistic/ intuitive way to improve students’ graphing and reasoning. Moreover, 

detecting deficiencies in reasoning behind improper graphing will give clues on how 

to improve students’ graphing. 

  By investigating these types of graphing together with students’ ways of 

thinking, a deeper explanation can be given for why some students can graph 

covariation smoothly. Different approaches to reasoning about the rate of change or 

varieties in the use of concepts may affect their success. Furthermore, we can see 

why students who draw chunky graphs cannot think smoothly, and which points they 

miss when compared to smooth thinking students. This study can especially help us 

to conceive how the reasoning of students who draw smooth chunk graphs differs 

from that of students who draw smooth graphs. Hence, we can get clues to improve 

students’ thinking from chunky to smooth or smooth chunk to smooth.  

 Following Carlson et al. (2002), studies that investigate students’ 

understanding level of the covariation mostly use Carlson’s steps of covariational 

understanding levels (e.g., Köklü & Jakubowski, 2010; Şen-Zeytun et al., 2010). 

Carlson et al. (2003) explained that these steps do not fully explain the covariational 

understanding of students, thus these steps should be revised. Contrary to other 

studies, this study does not depend on Carlson’s steps of covariational reasoning 
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(Carlson et al. 2002, Carlson et al. 2003). This study approaches covariational 

understanding from the graphing point of view and tries to describe students 

graphing covariation with their rate of change reasoning or other ways of thinking by 

analyzing students’ works descriptively. It is not aimed to create a framework for 

leveling students’ covariational reasoning. However, connecting students graphing 

with their reasoning will help us to understand their needs in interpreting 

covariational situations. If there is a consistency or a meaningful pattern among their 

reasoning, this may help us to classify students reasoning by looking at their 

graphing. 

Some of the studies focused on the importance of investigating early attempts 

of understanding calculus concepts. Investigating early learning will help 

understanding students’ conceptualizations, intuitions and initiations of the 

understanding and how it improves. This will enhance the organization of instruction 

and especially the starting points of the concepts. Studies including high school 

students show that students can covariate variables and reason with rate of change in 

tasks that ask the relation between simultaneously and dependently changing 

variables even before students receive calculus education (Fitzallen, 2012; Johnson, 

2011; Köklü & Jakubowski, 2010; Şen-Zeytun et al., 2010). While the previous 

studies focus on either covariational understanding of secondary students (e.g., 

Fitzallen, 2012; Johnson, 2011), or university students (e.g., Köklü & Jakubowski, 

2010) this study investigates both high school students’ and prospective teachers’ 

(university students) reasoning about and graphing of the relationship between 

covarying quantities.  

Mathematical education of students begins with the education of their 

teachers. The importance of teacher education and studying the conceptualization of 

prospective teachers to improve their understanding of the topics is unquestionable as 

teachers transfer their understanding to their students. Investigating how prospective 

teachers graph and reason in covariational situations can give clues to improve 

teacher education in covariational topic. However high school students’ needs in this 

topic may differ from prospective teachers. Investigating both high school and 

prospective teachers graphing and reasoning in covariational situations will provide 

initial information about improving instruction for both levels. Moreover, 

investigation on both groups can provide a wider range of perspectives on graphing 
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and reasoning.  

As a result, varieties in constructing the graphs depicting the relationship 

between covarying quantities can be documented better with a broader sample with 

different levels of mathematics background. High school students at 10th and 11th 

grade levels do not have formal knowledge about derivative, and how change in the 

graph is represented by the change in rate. At the 12th grade they meet properties of 

the change in graphs by maxima points and concavity related to derivative concepts. 

The other group, prospective mathematics teachers, have calculus education and 

experience on working with curves more than high school students. Students’ 

intuitions, capabilities, and needs can be different before they take this relevant 

knowledge on curves, and after sometime experience with calculus concepts. Thus 

investigating on these two groups will provide a broader sample to observe students’ 

understanding of covariation.  

Briefly, this study is unique because it investigates students’ sketches of 

graphs together with their covariational reasoning. Describing students’ different 

ways of thinking related to graphing types may help to develop a way to improve 

students’ covariational reasoning. Moreover, this study has a sample including high 

school students and prospective mathematics teachers. Prospective mathematics 

teachers’ understanding of covariational situations is important as they have the 

potential to convey their understanding to their students in the future. Investigating 

high school students’ and their prospective teachers’ covariational reasoning is 

important for the efforts to improve covariational reasoning of at these two levels. 

Moreover, studying two groups can lead to a broader view related to the students’ 

graphing and reasoning, as high school group represents a sample which has not had 

any instruction on graphing of 2nd degree curves and prospective mathematics 

teachers have more experience with these types of graphs. At last, this study also 

differs from the others by approaching covariational reasoning from the graphing 

perspective. By using qualitative methods with an inductive perspective, and by 

focusing on graphing, new knowledge about how students covariate variables and 

visualize covariation by graphs can be provided. 
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1.3. Definitions of important terms  

Smooth graphing 

Continuous and smooth curve with smooth transitions (Kertil, 2014) over the points 

where intensity of change in dependent variable changes from one type to another 

(e.g. from decreasingly increasing to constant increase) 

Smooth chunks graphing 

Smooth curves of variation for chunks that are determined considering the 

differences in the intensity of change, with sharp transitions where curves are joint. 

(Kertil, 2014). 

Uniform chunky graphing 

Graph is consistent of linear several line segments joint together, where each 

interval/chunk seems to be equal in length.  

Non-uniform chunky graphing 

Graph consists of linear chunks/line segments joint together, where chunks are not 

equal in length.  

 Examples for each type of graphing representing the height of the water 

depending on the amount of the water filled in a given tank is provided in the Figure 

1. 
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Tank shape  

 

     
 Smooth Graphing    Smooth Chunk Graphing 
 

                    
 Uniform Chunky Graphing             Non-uniform Chunky Graphing 

 

 

Figure 1. Examples of types of graphing for a given tank: smooth, smooth chunk, 

uniform chunky and non-uniform chunky  
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CHAPTER 2 

 

LITERATURE REVIEW 

     

 

    This chapter includes review of literature related to this study. Firstly, literature on 

graphing in mathematics education is presented. As a subtitle of graphing, 

construction of graphs is summarized. Secondly, covariational reasoning studies are 

mentioned followed by a subheading of graphing covariation. At last, reasoning in 

graphing covariation/ functions is handled and under this title rate of change 

reasoning in covariation is also examined as a subtitle. 

 

2.1. Graphing 

    Due to its unquestionable importance in daily life and mathematical development, 

graphical understanding is highly valued in education field. However, dealing with 

graphics is not extremely easy for students since it is a new form of interpreting 

mathematical information that they face with coordinate systems after grades 6 or 7 

in Turkey. It is a way of picturing concrete information as abstract models. 

Moreover, interrelating graphs to graphs or other abstract mathematical objects like 

equations requires reasoning from abstracts to abstracts which makes it a difficult 

process for students (Leinhardt et al., 1990). 

         In its nature dealing with graphs includes reading, interpreting, transforming 

(Leinhardt et. al., 1990), reasoning, and constructing. Constructing seems most 

complicated and difficult one compared to others (Leinhardt et al., 1990; Sezgin, 

2013; Tairab & Al-Naqbi 2004); however, students may still have difficulties in 

interpreting and more problematically in transforming and reasoning (Baştürk, 2010; 

Bayazıt, 2011; Leinhardt et al., 1990; Tekin, Konyalıoğlu, & Işık, 2009).  
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        In educational studies, interpreting graphs takes place more (Araujo et al., 2008; 

Bektaşlı & White, 2012; Deniz & Dulger, 2012; Fitzallen, 2012; Glazer, 2011; 

Leinhardt et al., 1990; Mitnik, 2009; Tebabal & Kahssay, 2011). Then, transforming 

among graphs or transforming between algebraic equations and graphs follows that 

(Baştürk, 2010; Bayazıt, 2011; Tekin et. al., 2009).  

Even though reading and interpreting a graph seem easier for students 

(Bayazıt, 2011), the problems dealing with qualitative and global aspects of graphs 

such as commenting on how graph would change if there exist a change on 

independent variable is difficult to students (Bayazıt, 2011; Tairab & Al-Naqbi, 

2004). In addition to this problem, scaling is another issue that students have 

difficulties in interpretation (Bayazıt, 2011). Studies are conducted to improve 

students’ abilities to interpret graphs by technology enhanced education which shows 

important success (Berry & Nyman, 2003; Deniz & Dulger, 2012; Mitnik, 2009; Wu 

& Wong, 2007). 

 

    2.1.1. Constructing graphs 

Construction seems more difficult compared to interpretation and 

transformation whereas depending on the nature of the question asked to the 

students, construction is not necessarily difficult compared to interpretation or others 

all the time (Leinhardt et al., 1990). However, construction includes a more complex 

process than interpretation. Leinhardt et al. (1990) explain the complexity of 

construction as construction includes interpretation in itself but interpretation does 

not include any construction, thus no difficulty of construction. 

Studies that directly focus on constructing graphs is much less, compared to 

others such as interpretation and transformation (Leinhardt et al., 1990; Şen-Zeytun 

et al., 2010; Tekin et al., 2009). Presence of constructing graphs in Turkish 

mathematics curricula or practice is questionable, too (Tekin et al., 2009). 

  While graphing from a data table can be done successfully by students 

(Sezgin-Memnun, 2013; Tekin et al., 2009) transforming algebraic or verbal 

functions to graphs may bring difficulties within (Baştürk, 2010; Bayazıt, 2011; 

Thomas, 2010). Most well-known problem among them is the tendency to graph 
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even parabolic, logarithmic, trigonometric, or other curved functions linearly 

(Hadjidemetriou & Williams, 2002; Hadjidemetriou & Williams, 2010; Lovell, 1971; 

Leinhardt et al., 1990; Maverech 1997; Tekin et al., 2009). There are other problems 

that students have while graphing from algebraic or verbal expressions of functions 

such as scaling (Friel, Curcio, & Bright, 2001; Bayazıt 2011), mixing axes (Carlson 

et al., 2002, Şen-Zeytun et al., 2010), placing values on x and y axes oppositely 

(Tekin 2009), mixing up different types of kinematics graphs (Demirci & Uyanık, 

2009), graphing entire function as one point, conserving increase in graph 

(Maverech, 1997).  

While graphing real-life situations, students may mix the roles of dependent 

and independent variables (Yemen-Karpuzcu et al., 2015 Another typical difficulty 

observed in graphing daily life situations is having to do with picture like graphing 

(Leinhardt et al., 1990; Maverech 1997). Students may think the shape of the 

distance-time graphs as the road the vehicle moves on (Demirci & Uyanık, 2009). 

 Graphing a derivative graph of a function graph or converting between 

derivative and original graphs is another very complicated and difficult task to 

improve students’ capability on (Asiala, Cottrill, & Dubinsky, 1997; Orhun, 2012; 

Ubuz, 2007). 

 

2.2. Covariational understanding 

Not only graphing data, or turning tables or equations to graphs is in use, but 

also simulation of daily life, constructing graphs from real life situations is one of the 

most important issues to meet the demands of modern life. New studies are interested 

in students' covariational understanding. Covariational reasoning is “cognitive 

activities involved in coordinating two varying quantities while attending to the ways 

in which they change in relation to each other.” (Carlson et.al. 2002, p.466). 

According to Johnson (2011, p. 2141) “If a student were reasoning about rate of 

change as a relationship between varying quantities, then the student would also be 

reasoning covariation ally.”. Graphing is considered as one of the most essential 

ways to interpret covariation in mathematics (Leinhardt et al., 1990). Graphing daily 

life situations is very difficult for students as they need to move from very concrete 
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life situations to very abstract mathematical interpretations. It is not like graphing 

done by moving from abstract tables, formulas, or equations to abstract lines. 

Covariational studies mostly focus on students’ level of how they can 

covariate variables that include awareness of rate of change in relation with these 

variables (Köklü & Jakubowski, 2010, Şen-Zeytun, et al., 2010) by using Carlson 

and others’ steps listed below: 

    Categories of Mental Actions (MA) 

    MAI) An image of two variables changing simultaneously; 

    MA2) A loosely coordinated image of how the variables are changing with respect to each other 

 (e.g., increasing, decreasing); 

    MA3) An image of an amount of change of the output variable while considering changes in  fixed 

amounts of the function's domain; 

    MA4) An image of rate/slope for contiguous intervals of the function's domain; 

    MAS) An image of continuously changing rate over the entire domain; 

    MA6) An image of increasing and decreasing rate over the entire domain.     

 (Carlson et al., 2003, p. 467) 

That is not what happened when these steps were tested with the bottle 

problem; students preferred to look at the change in height depending on the cross-

sectional area of the bottle rather depending on equal amounts of water or 

considering rate over / ratio of variables. (Carlson et al., 2003). Students do not 

consider the rate over variables or rate of change at a specific time. They relate the 

change in one variable to the width, to the area of the disk which is horizontal cross-

section of the bottle. Also Johnson’s (2011; 2012) covariational studies, which 

investigate how students use rate of change to interpret covariation, prove the fact 

that students prefer to trace the change in height with a not ratio-based reasoning. 

    2.2.1. Graphing covariation 

    Among covariational studies one of them mainly focuses on the types of students 

graphing (Castillo-Garsow et al., 2013) and associates them with their thinking. 

According to Castillo-Garsow and others (2013) there are two types of graphing 

when students interpret covariation of two variables with a graph; smooth graphing 

and chunky graphing. Smooth graphing is described as the interpretation of 

relationship between covarying variables with smooth and non-segmented (and if 
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necessary curved) graphs. In smooth thinking student graphs the covariation is in a 

continuous process. Chunky graphing is composed of discrete parts of change in 

covarying variables (Castillo-Garsow et al., 2013; Kertil, 2014). Castillo-Garsow and 

others (2013) explain chunky and smooth images as chunky images of change are 

based in countable and completed amounts whereas smooth images of change are 

based in imagining a continually changing experience. 

Castillo-Garsow and others (2013) exemplify chunky and smooth thinking by 

the classical bottle problem of Swan & Shell Centre Team, 1999 which asks students 

to draw the height of the water that is dispensed in a bottle, depending on the 

amount/volume of the water in the bottle. If student sections the bottle into heights 

and assign volumes for each height, this chunky way of thinking results in graphing 

which is composed of heights and corresponding volumes. Vice versa is also 

possible. Student can think in each time an amount of water is added to the bottle 

(like it was poured a cup in each time) and calculate or guess height of water for each 

time. As a result, graph is formed by considering change in “discrete chunks”. In 

smooth thinking student can think volume and height change at the same time and 

interpret it with a continuous increase like the water is coming from a hose. 

Castillo-Garsow and others (2013) argue that students’ graphing (chunky or 

smooth) can tell about how they conceptualize variation and how they reason 

covariation. Castillo-Garsow and others (2013) also claim that thinking independent 

variable in chunks and calculating dependent variable from independent variable “is 

not necessarily covariational”. Students just determine some points and calculate or 

estimate variables and then draw the graph by joining these points. In this way 

student thinks function as correspondence instead of covariation/relation (Şen-

Zeytun et al., 2010). Another thing Castillo-Garsow and others (2013) point is no 

matter how small the student takes the chunks, student still thinks in chunks and 

cannot move to smooth thinking. However, Castillo-Garsow et al. (2013) give 

examples of how a student that uses smooth thinking can also advance chunks. For 

the example of bottle problem Castillo-Garsow and others (2013) point Hannah from 

Johnson’s (2011) research during which Hannah segments graph in chunks/parts 

considering the points where graph shows shift in different types of rate of change 

such as from decreasingly increasing to increasingly increasing. However, in these 

chunks Hannah thinks smoothly and her graphing is smooth. 
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Another example of Castillo-Garsow and others (2013) is that drawing sine 

function considering the points 
𝜋

2
, 𝜋,

3𝜋

2
…. etc. and filling out these intervals 

smoothly. In this example it is clear that choosing the number of chunks is important 

since if the intervals are too big, drawing the smooth parts appropriately cannot be 

manageable. 

Castillo-Garsow and others (2013) conclude that smooth thinking is more 

powerful than chunky thinking as students that use smooth thinking do not have 

difficulties that students using chunky thinking face (when dealing with covariation) 

and smooth thinking also includes the ability to think chunky. He suggests beginning 

analysis with smooth images of change to ease students’ understanding limit, 

differentiation and integration by pointing the development of calculus from smooth 

Oresmo’s and Leibniz’s instantaneous rate of change to chunky (epsilon-delta) 

approach by modern analysis  

As mentioned above, in Johnson’s (2012) article about reasoning variation, 

Hannah uses “smooth chunk” type of thinking to graph covariation. In her study, 

Johnson uses the classical bottle problem in a reverse way to observe students’ 

graphing of covariation. She gives the graph of height versus volume and asks the 

shape of the bottle to eliminate considering time as independent variable in 

covariation activities. The term “smooth chunk” is used in the article to describe 

Hannah’s way of thinking of covariation because Hannah distributes the graph of 

ℎ 𝑣𝑠 𝑣 in parts/chunks where the graph shifts from one type of change to another 

such as from increasingly increasing to decreasingly increasing. Besides, in these 

chunks, Hannah thinks smoothly and draws the shape of the bottle smoothly 

connected on the points of change. 

        Castillo-Garsow and others (2013) imply that smooth reasoning can also include 

chunky reasoning, “at least one chunk”. If non-ratio reasoning is related to smooth 

thinking and ratio reasoning to chunky thinking, it can be concluded that non-ratio 

reasoning abilities complement ratio reasoning abilities. Thus, students that use non-

ratio reasoning could alter ratio approach of calculus with epsilon-delta.  

In his doctoral dissertation Kertil (2014) classifies students’ graphs in terms 

of transition at the points where change is changing as transition with sharp corners 
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and transition with “nearly” smooth corners. By transition with sharp corners he 

means the points where different parts of graphs such as linear and parabolic or 

different parabolas join together seem like a corner which is non-differentiable. 

Sharp transitions are not mentioned in Carlson’s (2002, 2003) and Johnson’s 

(2012) studies. In the examples they provide students are drawing just smooth 

graphs. In testing of Carlson’s covariational steps all of the six students graphed 

smoothly (Carlson et al., 2003). One of the reasons of this seems that students use 

smooth reasoning, also it is likely that they use chunks just to determine turning 

points. When Carlson and others. (2002) asked the student why she drew a smooth 

curve she replied “I imagined the slope changing as the water was pouring at a steady 

rate” (p. 365). In interviews, when researchers questioned students, none of them 

could provide a direct explanation for their smooth drawing; even some of them just 

say they don’t know. However, it is clear that all of these students use slope or 

steepness of the curve through their reasoning. In addition to the excerpt given above 

stating that the student “imagined changing the slopes in her drawing” the following 

quotations also indicate that students consider slopes and steepness concepts in the 

graphs. 

“It is going to be filling rapidly, so you are going to have greater slope” (Carlson 

 et al. 2002 p.366) 

 “The greater the height the steeper the graph will be.” (Carlson et al. 2003, p.  475) 

In Johnson’s (2012) example of Hannah it is documented that she draws the 

shape of the bottle from the height vs volume graph by using “smooth chunk” 

thinking. At the end the bottle needs not to be smooth at all. On the other hand, 

Kertil’s (2014) way of asking the bottle problem gives the chance to observe 

“smooth chunk” graphing with sharp transitions. In the problem which is provided by 

Kertil (2014) there are several types of water tanks and students (pre-service 

teachers) are asked to draw height vs volume graph when the tanks are filled with 

water. For the graphing of some tanks students’ graphs included transitions from 

parabolic parts to linear parts. In Kertil’s (2014) way of asking the problem, drawing 

transition points sharply seems frequent, which is not observed in other studies 

(Carlson et al., 2003; Johnson 2011).  



 

18 
 

Kertil (2014) asks students about rate of change before and after these points 

to make them recognize that graph should be smoother at these points. However, 

what about the students who are already drawing the graphs smoothly?  What is the 

difference between thinking of the students who draw smooth graphs and the 

students who draw “smooth chunk” graphs? The difference between the thinking of 

these two groups of students lies on their reasoning. If what type of reasoning 

students began, what type of concepts they use, and with what type of approaches 

they come up to these types of reasoning are determined, it can be clarified what a 

prerequisite is to graph smoothly and what is needed to improve smooth chunk 

graphing to smooth graphing. Hence the following section is devoted to the literature 

on approaches and reasoning types that might affect students’ graphing. 

 

2.3. Reasoning and approaches in constructing graphs of functions 

Students may approach construction and as well as interpretation of functions 

globally or locally. While approaching locally, students focus on certain points or 

intervals. For the construction of graphs, sketching some points for calculated 

amounts of an algebraic function can be an example for focusing locally which is the 

way students tend to approach functions. Nevertheless, global approach is more 

complicated and difficult for students. Sketching the graph by considering more 

general aspects of the function, such as increase or growth of a phenomenon, is an 

example for global approach. Yet, explaining or using general/global properties of 

the function or its graph requires a much wider perspective (Leinhardt et al., 1990).  

While interpreting or graphing a function or a covariation between variables 

students may reason quantitatively or qualitatively (Leinhardt et al., 1990; Johnson, 

2012).  In construction students may use quantitative variables to complete a graph, 

and depend on calculations and numerical results to defend their graphing. 

Conversely, they can reason with qualitative aspects of the graph; such as its shape, 

slope, or trend. 

Not necessarily but usually, quantitative reasoning is related to focusing on 

local aspects. Similarly, qualitative reasoning seems mostly in the situations where 

students approach more globally (Leinhardt et al., 1990). In quantitative reasoning, 
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focus is on mostly where specific points are placed and where they correspond on the 

axes which reflect a local focus. On quantitative reasoning, however, the focus is not 

on the axes or labeling the points but the focus is on the shape of the graph which 

usually does not need to focus on limited (specifies of) points, and requires a more 

global perspective (Leinhardt et al., 1990). 

2.3.1. Reasoning about rate of change in covariation     

In graphing covariation or particularly in classical bottle problem students 

may employ quantitative reasoning by applying certain numerals to graph the 

relation between variables, or they may approach more globally and qualitatively by 

determining change in the relation to reflect it on the graph. To define how variables 

change with respect to each other, students may look at the ratio between them, 

which is called ratio reasoning. On the other hand, Johnson (2012) explains that 

students may also use not ratio based reasoning while they work in covariation 

situations. This is a fact that exceeds the boundaries of Carlson’s covariational steps 

(Carlson et al. 2002, Carlson et.al. 2003) that highly depends on reasoning about rate 

of change in covariation. 

In a study, Johnson (2011) explains how secondary school students use 

variation in rate of change in a reversed version of classical bottle problem. She 

defines covariation as “reasoning about rate of change as a relationship between 

varying quantities” (p. 2141). Also covariational reasoning involves continuously 

varying one quantity and examining the change in the related quantity. She 

exemplifies three different types of quantification of variation in rate of change. 

The first and the least complex (and least improved) type of reasoning is 

associating extensive quantities. In this type to reason variation student just uses 

extensive quantities that are quantities that can be directly measured (Schwartz 1988 

as cited in Johnson, p. 2141), say numerically. In the bottle problem, student just 

focuses on how much height and how much volume increases and graphs just basing 

on these numerical amounts. This type of reasoning depending on numerical 

calculation does not seem to be supporting covariational reasoning (Castillo-Garsow 

et al., 2013; Johnson, 2011). 
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The second type of reasoning is “constructing an intensive quantity” with 

comparing intensities. Intensive quantities can be measured indirectly. In bottle 

problem situation, student focuses on the variation of change of intensive quantities 

that are volume and height and compares the intensities of increase of these 

variables. In the example that Johnson provides, student thinks if the increase of the 

volume and the height will occur with equivalent intense, then the graph will pass the 

points on the line 𝑦 = 𝑥. However, while graphing, student do not focus on the 

intensity of change of one variable as it is dependent on the other. There is no 

thinking of covariation or it is poor. Student just compares the intensities of the 

change of variables at the same time or according to time. 

On the third type of reasoning of variation in rate of change Johnson (2012) 

gives the example of Hannah who constructed an intensive quantity with also 

considering variation in intensity. Hannah focuses on how the change in one variable 

changes; for example, increase is decreasing.  

Johnson (2012) states that Hannah’s focusing on the rate of change does not 

include any ratio reasoning such as looking for the ratio between height and volume 

or comparing these two quantities. By quantity Johnson means “attributes of objects 

that can be measured” (Thompson, 1993, 1994b as cited in Johnson 2011, p.314). 

Johnson (2011) states that students may use rate of change numerically or non-

numerically. Moreover, they use non-ratio reasoning while dealing with covariation. 

Johnson (2011) also points out non-ratio reasoning is more useful to understand 

derivative, which is a central topic of calculus but ratio reasoning is essential for the 

topics ratio, limit and function that are pre-requisite for derivative of modern analysis 

which is an epsilon-delta approach to calculus. 

Johnson (2012) reports Hannah is looking for the difference of difference 

from data tables of covarying quantities. To determine how area of a square changes 

by increasing the length side, she looks for the difference in area for each length in 

the table. Then she recognizes a pattern that difference of the areas increases by 0.5 

at each time. She interprets this as “difference of difference”. She tries to explain that 

the area does not increase at a constant rate when length increases, in each time the 

difference increases by 0.5. Hannah did not consider the change only by creating 

intensive quantity. She associated extensive quantities to look for how change is 
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changing. However, her attention stayed at quantitative meaning of the change. She 

couldn’t interpret what this change represents in terms of the variables. 

 As mentioned before Hannah considered variance in the intensity with a non-

ratio based reasoning but resulting in a smooth chunk type of thinking. It was not the 

case in Hannah, but smooth chunk thinking may cause graphing with sharp 

transitions as seen in Kertil’s (2014) study. What is the difference in students’ 

reasoning for graphing smoothly or in smooth chunks? Is there a relation between 

their reasoning about rate of change and their type of sketches? What else effects 

their graphing? Investigating how high school students and prospective teachers 

think in specific types of graphing may give clues about how their graphing 

covariation and understanding of covariation can be improved. 
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CHAPTER 3 

 

METHOD 

 

 

 This chapter explains how the data is gathered and analyzed to investigate the 

types of graphs that high school and prospective mathematics teachers draw for 

representing covariational situations, and to explore the students’ reasoning related to 

rate of change.  

 Qualitative methods are employed in this study to observe and analyze 

students understanding in a natural context (Creswell, 2003). With a qualitative 

research methodology, it is aimed to conclude on students’ reasoning by analyzing 

their work inductively (Creswell, 2012). Among the qualitative methods, case study 

is used for this research. In the case studies, participants, phenomena, or certain 

behaviors are investigated in depth, in their natural context (Gall, Gall, &Borg, 

2007).  Cases are distinguished from others and studied in depth to generate some 

patterns specialized to that groups. 

 For the comparison of prospective teachers and high school students two case 

groups are formed. Analyzing these two cases of high school students and 

prospective teachers, a pattern about their graphs and reasoning can be generated 

(Cohen, Manion, & Morrison, 2007), and these two cases can be compared to each 

other. The cases are restricted to the groups of participants from particular high 

school groups and the prospective teachers defined in the latter section. 

 

3.1. Participants 

 The participants of this study are students from two different high schools and 

a university in Ankara. One of the high schools is an Anatolian High School and the 
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other one is an Anatolian Teacher High School, both of which admit students who 

get high points on the national standardized tests. Two classes of students from each 

of these two high schools (n=107) participated in this study. The classes and grade 

levels are selected by the teachers based on the teachers’ schedule and their 

availability. One of the classes is 11th grade and the other 3 classes are 10th grade. 

Students in these classes work in groups of 4 or 5 which make a total of 25 groups. 

All of the high school students completed at least one year of algebra class, but none 

of them took any calculus course before. 

 The other group who participated in this study includes prospective secondary 

school mathematics teachers attending an elective course “Mathematical Modeling 

for Prospective Mathematics Teachers” in a state university. Among 24 students who 

participated in the study, 16 of them are 3rd year students, 6 of them are 4th year 

students and 2 of them are 5th year students. The students’ ages ranges from 19 to 22. 

The students work in groups of 3-4 which make a total of 7 groups. All of the 

prospective mathematics teachers completed at least one year of calculus course in 

addition to some other mathematics courses, such as, analytic geometry, differential 

equations, Euclidean geometry, introduction to algebra, and set theory. 

 

3.2. The context of the study 

 Data for this study was collected in a project supported by The Scientific and 

Technological Research Council of Turkey (TÜBİTAK) under the grand number 

110K250. Three major purpose of the project were 

(i) to develop mathematical modeling tasks and activities that can be used with both 

secondary school students and pre-service and in-service teacher education programs;  

(ii) to develop an in-service mathematics teacher professional development program about 

mathematical modeling and to investigate how the program would affect teachers’ beliefs, 

knowledge and practices;  

(iii) to develop an academic course for preservice mathematics teachers and investigate how 

the course would affect pre-service teachers’ knowledge, competencies and attitudes in terms 

of mathematics, mathematical modeling and using mathematical modeling in mathematics 

education. (Erbaş, Çetinkaya, & Çakıroğlu, 2013, p. 2) 
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To support the first purpose of the project, as part of the research, several 

modeling tasks were developed and tested. After testing these modeling tasks, a 

professional development program for improving in-service and prospective 

teachers’ knowledge and skills about modelling activities were constructed. Out of 

32 modeling tasks developed in the project 7 tasks were revised considering the 

pedagogical issues and applied in two high schools in Ankara. These modeling tasks 

mainly covered rate, ratio, trigonometry, exponential functions, tangents, and 

derivative concepts. 10 mathematics teachers in these high schools gained experience 

on modelling tasks through meetings twice a month to discuss modelling tasks and 

implementing them in their classes. Two teachers from each school implemented one 

of the activities in each month during the academic year 2011-2012. Before and after 

the implementations, the teachers discussed on implementation plan of the tasks and 

students’ ways of thinking related to the concepts involved in the tasks. 

The modeling tasks were also used in an elective course aimed at developing 

prospective mathematics teachers’ knowledge about modeling tasks and their 

knowledge of and skills about using these tasks in teaching mathematics Out of the 7 

activities used in high schools, 6 modeling tasks were implemented to 25 prospective 

teachers in a course titled “Mathematical Modeling for Prospective Teachers” during 

the spring semester of the academic year 2011-2012. In addition, the prospective 

teachers were asked to reflect on students’ ways of thinking on four of these 

modeling tasks. The prospective teachers also developed a modeling task and a 

lesson plan to implement the task, and at the end of the semester they implemented 

the task to their classmates. 

 In this research study, among six modeling tasks that were implemented to 

improve instruction about covariational reasoning in high school levels and for 

prospective teachers, “Water Tank” task (see Figure 2) was chosen to investigate 

students’ graphing and covariational reasoning. “Water Tank” task was one of the 

last two activities that both high school and prospective teachers had worked on.  

 3.2.1. “Water Tank” Task 

 The Water Tank modeling task (Erbaş et al., 2016) which is a revised form of 

classical bottle problem (Carlson et al., 2003) is chosen for this study as it requires 

covariational reasoning by asking students to draw graphs for different situations. In 
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this version of the problem students are presented four tanks which have parts with 

different shapes. Students are asked to graph the height of the water on each tank 

depending on the volume of water. In addition, they are asked to develop a manual 

that describe how to draw the graph for any tank while it is filled with water. By 

developing a manual, students are expected to think about and compare different 

types of graphs, reveal their understanding of graphing and covariational reasoning. 

The Water Tank 

A software company produces variety of programs to educational institutions. The 

company had just been contracted to make a short animation that shows a variety of 

water tanks filled with water and some graphical representations of this process. A 

team of professionals who work on this project needs a graph that shows the height of 

the water as a function of the amount of water in the tank.  

Assume that you are a member of this team. The team members need your help to 

make sure this animation and accompanied graphs appear realistic. You are expected 

to provide a graph for each of the water tanks and a manual that tells them how to 

make their own graph for any tank that is shown in the animation. 

Figure 2. The Water Tank task used in the study [Erbaş et al. (2016). Lise matematik 

konuları için günlük hayattan modelleme soruları. Ankara, Türkiye: Türkiye 

Bilimler Akademisi.] 

 

 Although the shapes of the tanks in the tasks provided to both high school and 

prospective mathematics teachers are the same for the three of the water tanks. The 

first tank provided to high school students include only a cylindrical tank to start 

with on the other hand the first tank provided to the prospective mathematics 

teachers includes a logarithmic shaped tank (see Figure 3). As tanks have different 

parts of shape, students can think each part separately for graphing and join these 

graphs, namely think in smooth chunks. While graphing, joining especially linear 

and parabolic parts, can cause sharp transitions. Thus, Tank#2 and Tank#3 may help 

in observing sharp transitions and smooth chunk reasoning implicitly. 
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Tank #1 (high school students)   Tank #1 (prospective teachers) 

    

Tank #2      Tank #3 

   

  Tank #4 

Figure 3. Shape of tanks provided to high school students and prospective teachers 

for “Water Tank” task. 
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 3.3. Task implementation and data collection procedures 

 Since this study is a part of a larger project, in this study the modeling task 

was implemented by the participating teachers and an instructor of the project. In 

fact, for the prospective mathematics teachers the Water Tank task was implemented 

by an instructor who also implemented several other tasks; and for the two different 

high schools, the task was implemented by four different mathematics teachers who 

also implemented at least one more modeling task in their classrooms. The task was 

implemented by following an implementation plan that includes an outline of the 

lesson, possible student difficulties, and strategies and methods to overcome these 

difficulties. During the implementation of the task, the role of the teacher/instructor 

was to be a facilitator of students’ learning. 

During the implementation both in the high school classrooms and in the 

university, the students worked on the task in small groups. The students first worked 

individually on the task for a few minutes, and after developing some ideas for the 

task they started to work as a group. At the end, each group presented and discussed 

their solutions for the modeling task in about 5 minutes. After the presentations, 

instructors concluded the class with a brief summary and evaluation on the 

implementation of the activity. Working on the task and presenting the works took 

about 100 minutes for high school. Since the presentations and discussions were 

taking place more in university, the implementation of the task took about 140-150 

minutes for prospective mathematics teachers. 

 Data for this study encompass groups’ solution papers which include 

students’ graphs for the four tanks, and their explanations related to each graph. The 

groups’ other written work regarding their solutions were also collected for analysis. 

In the study, each classroom was videotaped, and one group from each high school 

classroom and three groups from prospective mathematics teachers were videotaped 

while they were working on the modeling task. While the video cameras that were 

positioned to capture whole class focused on classroom discussions and groups’ 

presentations, the other video cameras focused on the groups’ written and verbal 

work. Additionally, each group was audiotaped during the course so that the 

discussions among group members could be examined. 
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3.4. Data analysis 

 Students’ solution papers and other written works, video recordings, and 

audio recordings were analyzed by qualitative research methods. At first students’ 

solution papers were analyzed. Then audio and video recordings added to the 

analysis by considering the groups they belong to. 

 The analysis of video and audio recordings helped in exploring the details of 

students’ thinking in graphing. Before analyzing the data, the classroom video 

recordings are transcribed at first. The audio recordings served to fully complete the 

transcriptions of classroom videos in times when the video recordings were not clear 

or complete. The transcription of audio recordings was handled by watching the 

video recordings at the same time to understand how students acted on while 

graphing and what they referred to while discussing their work. The audio recordings 

of other groups that do not have video recordings were not analyzed, because 

students did not talk in proper terminology to help us understand how they reasoned. 

Moreover, just audio recordings did not provide clues how they acted on graphing.  

In analyzing the data, all of the data were read and openly coded at first. As 

coding went on, returning to the previous groups’ work and recordings occurred 

often. First coding appeared to be the way that students drew the graphs, later 

similarities and differences showed up to be as codes. After first coding the 

following codes emerged: smooth, chunky, smooth chunk, linear big chunks, 

sectional area, radius, volume, unit volume, unit based reasoning, non-unit based 

reasoning, unit height, tracing trend of increase in height, compare amount of height 

to volume, time dependence, slope, limit, sectioning tanks into parts, sectioning tanks 

into unit h or depending on shape, quantitative and non-quantitative reasoning, ratio 

and non-ratio reasoning, global and local approach. 

Next, these codes and a list of themes derived from related literature 

(Castillo-Garsow et al., 2013; Johnson, 2011; 2012) were used to reanalyze the data 

and finalize the codes. In finalizing the codes, the codes that were derived from the 

research studies but were not seen in the data were removed from the code list. 

Hence the following list of codes was used in analyzing the graphs and students’ 

covariational reasoning. The descriptions of final codes and samples quotations are 

presented in Appendix A. 
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Table 1. List of codes and categories used in the analysis 

Graphing Reasoning 

Types of students’ sketches (Castillo-

Garsow et al., 2013): 

a. smooth 

b. smooth chunk (Johnson, 2012) 

c. uniform chunk 

d. non-uniform chunk 

Reasoning about rate of change 

(Johnson, 2011): 

a. constructing intensive quantity; 

considering variation in intensity 

b. constructing intensive quantity; 

comparing intensities 

c. associating extensive quantities 

Reflecting change in graph by 

a. considering slope 

b. focusing on the trend 

Unitization:  

i. unit volume based 

ii. unit height based 

iii. both unit height and unit 

volume based 

iv. non-unit based 

v. continuous volume or 

continuous height based 

Approaches  

a. Global approach on graphing 

b. Local approach on graphing. 

 

 

Frequencies of slope consideration and global-local approach are questioned 

in graphing types. Unitization differentiated among types of reasoning about rate of 

change. Hence unitization helped in determining types of reasoning about rate of 

change. Relation between students’ sketches and their reasoning about rate of change 

is investigated. 

There are 4 types of tanks in “Water Tank” task. Thus students’ sketches and 

reasoning may differ through each of the tanks. For their sketches if there exist at 

least one smooth chunk graphing among smooth graphs, the group is coded as 

smooth chunk. The reason is that for some tanks smooth graphing may be easy or 

trivial. However, some tanks required students to use smooth thinking to be able to 

sketch accurately. For example, although connecting a decreasingly increasing and 

an increasingly increasing curve smoothly was easy for Tank #4 to represent the 
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covariational situation, joining linear and parabolic parts smoothly, or differentiating 

among different parabolic parts were not trivial for the Tank #2 (see Figure 4). If the 

group of students is aware of the necessity of the smoothness, they would reflect it in 

all of the graphs (see Appendix A). As seen in Figure 4, a group of students 

constructed graphs for Tank #1 and Tank #4 smoothly, while they drew graphs for 

Tank #2 and Tank #3 in smooth chunks. Hence, this group’s sketches were coded as 

“smooth chunk”. 

 

Figure 4. Sample sketches of smooth and smooth chunk graphs belonging to a group 

Participants’ reasoning about rate of change was more complicated. What 

kind of reasoning yields to sketches was not clear for all groups. All the data about 

participants’ reasoning was taken into consideration so that participants’ different 

types of reasoning about rate of change throughout the task was revealed. 

 

3.5. Reliability 

In order to ensure the reliability, the data was independently coded by the 

researcher and an expert in mathematics education. Coding by another expert met 

80% agreement. Some disagreements occurred in differentiating smooth and smooth 

chunk graphs, and thus definition of codes revised for eliminating ambiguity. Smooth 

graphing was previously considered as differentiable graphs, and its description was 
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revised almost differentiable so that rate of change is comparable just before and just 

after transition points (Kertil, 2014). Furthermore, among the four graphs, some may 

be graphed smoothly while others may be graphed in chunks. It was made clear that 

if one of the graphs is drawn as smooth chunk and others. are drawn as smooth then 

the group’s graphing will be considered as smooth chunk instead of smooth 

assuming that if the groups were aware of the essence or meaning of smooth 

graphing they had to apply it in all graphs. Drawing some of the graphs smoothly 

may have to do with just ease of drawing or non-supported good looking reasons, or 

just be by chance. Moreover, unitization code was understood to be as just assigning 

points or quantities on the axes. We agreed that any sign of unitization in students’ 

reports had to be considered under unitization category. For example, when students 

mention “for equal amounts of water” it will be considered that students mean to take 

unit volumes. Examples that illustrate “unitization” codes provided in the appendix. 

Eliminating the ambiguities by clarifying the definitions and discussing on the non-

agreed codes, 100% agreement was reached with the second coder. 
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CHAPTER 4 

 

RESULTS 

 

 

 In this chapter, the results of the study are presented under three main 

sections: i) students’ (prospective teachers and high school students) graphical 

representations of a covariational situation, ii) students’ reasoning about rate of 

change, and iii) relation between students’ sketches and their reasoning. The 

difference between high school and prospective mathematics teachers is noted in 

relevant sections. 

 

4.1. Students’ graphical representations of a covariational situation 

 Based on the analysis of data the students’ sketches of the graphs for a 

covariational situation are presented in Table 2. The table shows that while the 

prospective mathematics teachers constructed graphs in smooth or smooth chunks, 

the vast majority of the groups of high school students (64%) produced graphs in 

smooth chunk. According to the table, a remarkable number of the high school 

groups (28%) also sketched graphs in uniform or non-uniform chunks. Although 2 

groups (8%) of high school students out of 25 groups sketched smooth graphs, it was 

3 out of 7 groups (43%) for prospective teachers groups. 

Table 2. Frequency of prospective mathematics teachers and high school students’ 

sketching types 

 smooth Smooth 

chunk 

Non-

uniform 

chunk 

Uniform 

chunk 

total 

Prospective 

teachers 

 

3 (43%) 4 (57%)   7 

High school 2 (8%) 16 (64%) 5 (20%) 2 (8%) 25 
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 In the following sub-sections, excerpts from students’ work will be presented 

to portray the students’ different representations of varying quantities.     

 4.1.1. Smooth graphing 

 A group’s sketches were categorized as smooth if all the graphs were drawn 

smoothly. The analysis of data indicated that 3 groups of prospective mathematics 

teachers and 2 groups of high school students draw all of their graphs smoothly. 

Below, excerpts from a group of prospective mathematics teachers (Prospective 

Teachers Group #2, [PG-2]) and two groups of high school students are presented to 

show students’ graphical representations of a covariational situation. 

 The analysis of data indicated that PG-2 drew the graphs without placing off 

their hands as much as possible. Their drawing showed no traces of joint parts or 

chunks (see Figure 5 for an example).  

 

Figure 5. PG-2’s graph showing the relationship between the growth of height and 

the volume for water tank #2  

PG-2’s graphs that showed the relation between covarying quantities included only a 

few assigned points on the axes. For the x-axis no points were assigned while on the 

y-axis some points were assigned as a, b, c to show turning points in the graph (see 

Figure 5), while no points were assigned on any axes in the 3rd graph (see Figure 6). 

In addition, their sketching seems to occur without lifting the pen in a single motion. 

Students’ not focusing on local points on the axes and graphing in a single motion 

show that they have a global approach while graphing. 
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Figure 6. PG-2, graph for tank #3; no points assigned on axes 

 

The other prospective teachers groups (PG-5 and PG-6) that drew smooth graphs, 

sketched the graphs not in one hand action, but they also assigned only x-axis as a, b, 

c ; V1, V2, V3 (see Figure 7). They seem to have a tendency to make the linear part of 

the graph more apparent. 

 

      

Figure 7. PG-5 and PG-6’s sketches of graphs for tank #3. 

 

 The analysis of PG-2’s explanations regarding their sketches revealed that in 

the beginning the students just confused and automatically produced a graph that 
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represents the increase in the shape of the tank, and then they changed it. In other 

words, they just focused on the increase of volume at first and observed that the tank 

is widening in the lower part and it is narrowing than in the second part of the tank 

(see Figure 8). The students might just find it easy to interpret this covariation or 

automatically join the shape of tank with the parabolic graphs. Also High School 

Group #19 (HG-19) have the same difficulty. They explained graphing tank#4 as; 

“Because the volume increases, it goes outward. In the second part because volume 

decreases it goes inward.” 

 

 

Figure 8. PG-2’s graph showing the relationship between the growth of height and 

the volume for water tank #4 

 

 There was no explanation for PG-2’s smooth drawing in their work sheet and 

no clear information in their videos that they argue why it is to be smooth. They tried 

to explain it to be smooth for transitions while they were presenting their work to 

other groups. However, they had no enough explanations even to convince their 

group members. While another group was presenting, they argued and could explain 

why it should be smooth at transition points. Possibly, it is the “smooth chunk” 

example what is presented which made them awake and recognize why a smooth 

chunk graph will not represent the situation. They argued that at the transition point 
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V1, slope should start to decrease, not an increase is possible as width gets larger at 

this point (see Figure 9). 

 

Figure 9. PG-2’s discussion about sharp transitions on the graph of tank #2 of a 

group presentation. 

  

Also PG-5 and PG-6 explained why the transition points should be smooth by slope 

and slope like properties of graph. 

PG-5: “We draw horizontal lines on profile picture of the tanks. If the lengths of 

these lines are decreasing, the water accumulated (height) increases and the slope in 

graph increases…” “If the change of length between consecutive lines decreases the 

curve in graph is convex; slope is positive.” 

PG-6: “We establish the curves as more horizontal or vertical according to change of 

speed in their heights.” (The words “more horizontal”, “more vertical” prove that 

they care slope.) 

 There were two groups of students who drew smooth graphs from high 

school; HG-12 (High school Group 12) and HG-25 (High school Group 25). Similar 

to prospective mathematics teachers that draw smooth graphs, they had a global 

approach while graphing. One of the groups from high school which drew smooth 

graphs assigned only on the x-axis while the other preferred assigning only on the y-

axis, focusing or unitizing/dependent on height maybe. However, both of the high 
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school groups that graph smoothly seem to graph in one action of drawing (see 

Figure 10). 

  

Figure 10. HG-12 and HG-25’s graphs for tank #3; just assigning points on one axis 

 HG-12 depends on changing the slope while sketching their graphs.  

HG12: “In every area the volume is the same thus the height and water amount 

increases without the slope is changing.” 

 For HG-25 we did not see any focus on slope directly. They said “the height 

is slowing down” defining the action of the graph. They coordinated what slowing 

down means and how to interpret in graph. There were no memorizing parabolas as 

increasingly increasing etc. Moreover, they said “the rate of the water amount to 

height increases and the graph increases with an increasing speed”. That means they 

know the meaning of ratio of covarying variables and how it is interpreted in graph. 

They relate the ratio to the speed of graph.  

 One of the students from HG-25 was drawing the graph of covariation 

between height and volume just near the tank #2. He continued all of the process, 

drawing without taking his hands off. He moved his hands up or down by continuing 

an increase of height less or more, at the same time he pointed the corresponding 

height in the tank #2 with his other hand. He was not thinking locally about rate of 

change for this point or the points before and after. He passed through the points of 

inflection, and continued the drawing by just sketching more horizontally or 

vertically throughout the graph (see Figure 11).  
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Figure 11. A student’s graphs for tank #2; continuous and smooth 

  

 In general, we see that groups who graph smoothly both from prospective 

teachers and high school students have global approach in graphing. More 

interestingly all of these groups use slope concept, steepness or slope like properties 

of curved graphs to reflect the change in covariational situation in their graphs. They 

give clues that they are aware of what rate of change means in terms of graphing.   

 4.1.2. Smooth chunk graphing 

 Four groups of prospective mathematics teachers and 16 groups of high 

school students’ sketches of graphs were categorized as “smooth chunk”.  

 In typical smooth chunk graphing we saw “sharp transitions” between chunks 

that cause inconsistency with the rate of changes of the height that depend on the 

volume just before and just after the points where chunks are connected (Kertil, 

2014). The following sketch of a group of prospective mathematics teachers portrays 

the smooth chunk graphing. 



 

40 
 

 

Figure 12. PG-1’s graph showing the relationship between the growth of height and 

the volume for water tank #3 

Prospective teacher groups that drew smooth chunk graphs mostly assigned 

points on the both axes (see Figure 13 a-b) 

 

   A 

 

B 

Figure 13. PG-3 and PG-7’s sketches for tank #3 
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 Group discussions of PG1 also showed that students never questioned 

sketches of the graphs at the transition points or just before and after these points. 

They just focused on how might the graph look like within these chunks and joined 

them. The analysis of the worksheets and video recordings of all prospective teacher 

groups who draw smooth chunk graphs showed that they had paid no attention on the 

appearance of the sketch while joining parabolic parts and linear parts or they did not 

consider rate of changes of the height while graphing. Moreover, they did not attend 

to the slope of the graphs. 

Similar to prospective teachers groups, high school students groups that drew 

smooth chunk graphs assigned both axes at transition points (see Figure 14 a-b). 

Boundaries of chunks are determined on both of the axes.  

  

  A      B 

Figure 14. High school students’ assigning on both axes for tank #3 and #2 

 No slope or rate of change focus is observed among high school student 

groups who draw smooth chunk graphs, except one group: the HG-11.  

 HG-11 used slope in their explanation: 

…Height depending on the water amount will increase with a constant slope, linearly. … in 

the same time interval less water fills. Thus the slope of the graph of height depending on 

water amount will decrease. … The width of the shape decreases when you move to the upper 

part. Thus the growth rate of height will increase. A parabola that goes vertical to graph is 

drawn.   

We see from their explanations that this group also had a good covariation 

understanding as they say height is dependent on the water amount and they focus on 

the change in the increase of height. However, their graphs were not smooth in their 

final report. When we look at their other worksheets we see some smoother drawings 
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of one student (see Figure 15) and also in explanations of the same student we see 

focus on slope.  

 

Figure 15. HG-11’s sketches for tank #2 

  

 The analysis of classroom videos showed that all the students in this group, 

HG-11, except one who does not graph anything, were graphing the second tank 

smoother at first (see Figure 16). After some time, they recognized other groups 

graph in smooth chunk. They thought that other groups’ graphing is wrong. 

However, sometime later researcher came to the group and asked for the difference 

between 2nd and 3rd part. They tried to explain the difference as; for the 3rd part 

decrease will be more (see Figure 17). In their final reporting the student who did not 

graph anything when working by herself graphed all the graphs, deciding to graph in 

smooth chunks to show the difference between 2nd and 3rd parts. It is observed that 

interference changed their minds and they gave up insisting on smooth graphs. 

Explanations and graphing come from different students which also caused this 

inconsistency. 
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Figure 16. HG-11’s attempt to draw smooth graphs for tank #2. 

 

Figure 17. HG-11’s attempt to explain the differences between 2nd and 3rd part of the 

graph. 
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 This group is considered to be as graphing in smooth chunks regarding their 

last graphing on their report. However, before the interference of the researcher, this 

group acted actually as a group that draws graph smoothly both on their graphing and 

reasoning. 

 Briefly, it can be said that both prospective teachers and high school students 

groups who drew smooth chunk graphs preferred to graph the change of height 

depending on the volume in chunks which makes them seem more locally oriented 

when compared to student groups who draw smooth graphs. Their pointing on axis 

and assigning values proposed this fact (In smooth graphing we observed that 

students were just assigning only one axis or none of them.). Moreover, both 

prospective teacher and high school student groups who draw smooth chunk graphs 

did not focus on the slope like groups who draw smooth graphs. Their focusing on 

the change in chunks and not throughout the chunks, and also their not paying 

attention to slope change throughout the chunks resulted in sharp transitions between 

chunks. 

 4.1.3. Uniform chunky graphing 

 There were no groups from prospective teachers who drew uniform chunky 

graphs. There are two groups of high school students who drew their graphs in 

uniform chunks; one graph is from HG-20, the other is from HG-4 group.  

 The group HG-20 graphed in typical chunky style as Castillo (2010) defines 

that they prefer to segment the graph into little chunks and quantitatively sign values 

on the axes. They separated the tanks into equal heights and then estimate volumes 

for each height. Chunks were taken in little parts, all the tanks were separated into 

6ℎ’s on the axes values are labeled as ℎ, 2ℎ, 3ℎ… for heights and 𝑥, 2𝑥, 3𝑥, … for 

volumes (see Figure 18). Assigning volumes as 𝑥 can make us think that they take 

volume as dependent variable but it was not. They took equal ℎ’s and estimate 

volumes for each and they said, “for the same time there will be more height but 

fewer amounts”. (We see there is a comparison.). Unitization, estimation and 

comparing the variable amounts in the chunks dominated all their work. 
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Figure 18. HG-20’s sketch of graph indicating unitization, approximation, chunky 

graphing 

 The other group HG-4 who draw uniform chunky graphs shows similar 

properties. This time, they segment the graph into equal volumes. They take volume 

as the independent variable and try to estimate heights for equal amounts of water 

that is added instead of estimating volume for unit h’s as the other group hg-20. They 

prefer directly assigning values rather than h’s or x’s (see Figure 19 a-b).  

   

Figure 19. HG-4’s unitization and tank segmentation (a), sketch and approximation 

of height (b) for the tank #2 

 In addition to HG-20 group that graph in uniform chunks, they have another 

strategy. Not only do they use calculations or estimate how much height or volume 

will increase, they say they also consider the slope of the graph in each chunk.  They 
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graphed the 4th graph by changing the slope of the line through three chunks. In their 

graph of 4th tank also it is observed no quantitative values are assigned on the axes 

(see Figure 20). However, for their graphing, it cannot be stated that they aim to 

determine the chunks uniformly by taking equal lengths of intervals, nor these 

intervals are as small as in the other graphs. It is seen that chunks are determined 

regarding the wide and narrow parts of the tank #4. 

 

Figure 20. HG-4’s sketch for tank #4 

  

 4.1.4. Non-uniform chunky graphing 

 There are no prospective teacher groups but 5 high school student groups that 

draw non-uniform graphs. 

 At first sight, big chunks and big linear line segments were seen in all of the 

non-uniform chunky graphs of students’ works. Graphs were constructed mostly in 3 

parts, 3 chunks, and the graph of tank#2 can be graphed in more than 3 parts. In 6 

groups, we observed this type of graphing.  

Chunks seemed to be determined considering sometimes shapes of the tanks, 

sometimes turning points from widening to narrowing, sometimes just wide or 

narrow parts of the tanks. Most of them (and the uniform chunky graphing group 

from this class) preferred to section 4th tank into 3 parts (see Figure 21 a. b.). 
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A      B 

Figure 21. HG-6’s and HG-2’s sectioning tank #4 into 3 parts 

 There appear two strategies in graphing non-uniform chunks; calculating 

amounts, and changing slope. We see calculating amounts in little chunks in the first 

tank in works of most of the groups that graphs in chunks. HG-3 typically calculated 

amounts of volumes for chunks which are determined by heights (see Figure 22 a. b. 

c.).  

    

A      B 

 

C 

Figure 22. HG-3’s calculation strategies 
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 For the calculations to be easy they prefer choosing big intervals/ chunks 

even segmenting the tank#2 as the upper balloon part to be as a whole spherical 

chunk. In tank#1 they were typically using uniform chunky approach. In others they 

also prefer unitizing height. However, calculations get more difficult and they move 

on to non-uniform chunk. Rather by using direct calculations, if they used estimation, 

probably they would work on with little uniform chunks. 

 Similarities can be observed depending on calculations in works of HG-1. 

When calculations get harder they prefer not to calculate anymore and estimate how 

lines would be in the graph; possibly changed slopes, because in the 4th graph we see 

they changed the slope of the lines comparing it to line/constant increase (see Figure 

23). 

       

Figure 23. HG-1’s sketch indicating the change in slopes comparing to the line 

 This group and the rest (4 groups) used this type of changing slope strategy 

while only one group was reasoning with direct calculations. In changing slope 

strategy, the process starts with determining wide and narrow parts of the tanks and 

then students change the slope of the lines accordingly. HG-2 also tried to change the 

slope but couldn’t handle it in the 4th graph. In the second chunk, they draw a 

decreasing line with negative slope. They might think in the wide part increase will 

decrease but do not know how to interpret it with graph and just draw a decrease. We 
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also see in y axis c, a, b order; b is smaller than a. This fact and the decrease in height 

is not considered by the group (see Figure 24). 

 

Figure 24. HG-2, changing slope in 4th graph 

HG-6 explains their graphing procedure as they showed the narrow parts of 

the tanks with more slope, wide parts with less slope on the graph providing a very 

typical example of changing slope strategy (see Figure 25). 

 

Figure 25. HG-6, changing slope for tank #2 
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Similarly, HG-5 sectioned tank as widening and narrowing parts and they say 

that “we show the increase of water (height) fast in narrow parts, slow in wide parts”. 

They seem to graph the fast water rise (height) with lines with greater slope and the 

slow rise with lines with fewer slopes. (It is like the speed concept from physics 

kinematics graphs). Different from group 8 they focus on the speed of increase, and 

change in increase. They are aware of variance of the intensity. Moreover, they do 

not segment tank#4 into 3 parts as narrow or wide as all the other groups drawing 

non-uniformly chunky, but they segment it into 2 as considering narrowing and 

widening trend. Other groups were sectioning tank #4 into 3 parts to show narrow 

and wide parts. They have another focus. “We determine the increase in the water 

amount according to tanks widening or narrowing trends in width.” They do not 

segment tanks into wide or narrow part, but they think about where the parts are 

narrowing or widening (see Figure 26). It is a more global point of view with also 

considering change in change. It results in their graphs with some curved parts (see 

Figure 27 a. b.). As it is seen, in both part parabolic parts are interpreted with the 

same curve consistently. Unfortunately, their curves are wrong, but it was a nice try. 

They are aware of the change in change but maybe they do not know anything about 

parabolic curves or properties of them. 

 

 

Figure 26. HG-5, sectioning tanks into narrowing widening parts 
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A      B 

Figure 27. HG-5’s curved graphs for tanks #3 and #4 

Briefly, if students use estimation with unitization they prefer uniform chunky 

graphing, but if they use direct calculation they need non-uniform chunky graphing 

in respectively difficult graphs. Also students, who use slope changing strategy 

according to the width of the tank, graph in non-uniform chunks due to their choice 

of wide and narrow parts on the tank. 

4.2 Students’ reasoning about rate of change 

 Students’ reasoning about rate of change was categorized by utilizing 

Johnson’s (2011) framework. The analysis of data related to students’ reasoning 

about rate of change revealed that the students considered variance of intensity, 

comparing intensities, extensive quantities and some combinations of these (see 

Table 3).  

 

Table 3. Frequency of prospective mathematics teachers and high school students’ 

reasoning types about rate of change. 
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 The table shows that all of the prospective mathematics teachers reasoned 

considering the variance of intensity, and one group of prospective mathematics 

teachers used both variance of intensity and comparison of intensities in reasoning 

about rate of change. The majority of the high school students (n=12) used variance 

of intensity, while some of the groups used comparison of intensities (n=7) or 

associating extensive quantities (n=6) in reasoning about rate of change. Moreover, 

one high school group’s written work and explanations did not reveal their reasoning 

about rate of change. 

 4.2.1. Creating intensive quantity; Variance of intensity  

 While interpreting their reasoning about covariation, all of the prospective 

mathematics teachers groups (7) and the majority of high school groups (17 out of 

25) considered variance of the intensity. Totally there were 24 groups that have this 

approach in their reasoning about rate of change.  

 The data analysis revealed that most of these groups (13 out of 24) preferred 

to consider the horizontal cross sections of the tanks, and used the changes in radius, 

width, area of cross-sections, or lengths of lines drawn from profile to interpret the 

change in height of the water in the tank. Most of them; 10 groups out of 13, related 

the change in radius or similar quantities directly to the change in height, while the 

other 3 groups related the change in radius or alike quantities to the speed of the 

graph. We observe this strategy among both prospective teachers and high school 

students: 

 r3›r2›r1 Thus, because radius goes increasingly, height increases decreasingly.” (See Figure 

28) (radius) (PG-4) 

On the profile, horizontally parallel lines are drawn. The change in the length  of these lines 

is considered. If the length is decreasing, the water  filled/accumulated (height) increases 

and the slope of the graph increase. (lines) (PG-5) 

Since the width increases between a and b, increase of height decreases. (width) (HG-13) 

If there is widening in shape, the increase in the height will decrease. The reason for this is 

that the same amount of water will share more area” (area) (HG-21) 

“Because area increases up to the middle of the tank, the increase of speed decreases. Then 

again speed of increase increases because area decreases” (area) (HG-5) 
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“In the second part in cut off cone, because the horizontal section increases, the height of 

water will increase slowing.” (horizontal section) (HG-12) 

  

 Figure 28. PG-4’s sketches showing the change in radius 

Some of the groups related width to the speed of height or speed of rise of the height 

(that might remind a consideration of speed and time). HG-25 is an example 

explaining their reasoning as “Because the shape widens, the increase in the height 

slows down.” Some of the groups such as HG-12 was able to directly relate the 

change in the volume to the change in height.  

“In the part between the points a and b, because the volume does not increase with a 

constant ratio but increases increasingly, decreasing parabola is drawn.” (volume) 

(HG-12) 

 None of the groups who used variance of intensity considered the amount of 

change in volume per unit height or the amount of change in height per unit volume 

except for the groups that both compared the intensities of covarying quantities and 

considered variation in the intensity of increase in quantity with respect to the 

increase in other quantity. Rather the results showed that some of the groups had a 

continuous image of increase in height/volume or understanding that constant 

increase in one of these variables in order to examine the difference/increase in the 

other variable (see Figure 29). 
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Figure 29. PG-1’s sketches and explanations for Tank #4 

 Prospective mathematics teachers explained their graphs as, “While volume 

increases constantly, height increases decreasingly” (UG-1), “If volume increases 

increasingly [describing the tank #1], while height is increasing constantly, the graph 

will increase decreasingly…” (UG-2). With the expression “while height is 

increasing constantly”, UG-2 seemed to refer to the increase in height, without 

unitizing, or segmenting the height into equal amounts. Imagining a continuous 

increase in height but not volume they seemed to consider the height as an 

independent variable. 

 The groups that drew uniform and non-uniform chunky graphs attempted to 

explain the covariational situation using the variance of intensity reasoning although 

their sketches had flaws in representing the situation very well. Two of the 

explanations were: “Because these parts are narrower, the speed of increase 

increases.” (HG-4), and “When width increases, the increase in water slows down.” 

(HG-5).  

 Examining the expressions that the students used to interpret variance of 

intensity, differences are observed between prospective teachers and high school 

students. While the prospective mathematics teachers mostly used expressions such 

as, “Increasingly increasing graph/parabola” or “Height increases decreasingly,” the 

high school students mostly focused on the speed (rate) of the increase or interpreted 

the change in intensity with a less formal terminology such as, 

 …the increase is slowing down 
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 …the increase of water level (height) decreases 

 …increasing parabola, but the increase is slowing down 

 …speed of rise increases 

The tank gets narrower, thus the increase in the height of the water level increases. 

  The increase in the height of the water level will decrease, slow down. 

The high school groups’ use of these expressions seemed to come from their 

experience with speed concepts and graphs in Physics courses. Since they have not 

learned the properties of parabolas and how to interpret them in math classes, the 

teacher of one the classes asked students where they had learned to sketch curved 

graphs. Students replied that they had learned from Physics lessons. 

 A discussion on the expression “decreasingly increasing”, during a group of 

high school students’ presentation, also indicated the students’ difficulty in 

interpreting curved graphs. In the discussion, one group used “decreasingly 

increasing” interpretation and a student in the classroom opposed them telling that 

they should use “the increase will slow down” interpretation claiming that there is no 

interpretation like “decreasingly increasing” or “increasingly increasing”. 

 4.2.2. Creating intensive quantity; Comparing intensities 

 The analysis of data indicated that one prospective teachers group and seven 

high school groups compared intensities in interpreting the covariational situation. In 

this type of reasoning, the students mostly but not necessarily compare the change in 

one quantity to unit amount in the other quantity. 

5 of the 8 groups that compared intensities used unit volume based or both 

unit volume and unit height based approach. Of these groups, 2 of them (one of 

which is a prospective teacher group) used only unit volume based approach. The 

other three groups used both unit volume and unit height based reasoning. The 

following quotations are examples that portray students’ unit volume based and both 

unit volume and unit height based approaches. 

… for this part, for equal amounts of water increase height will decrease by time. 

(PG-3) 
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 … for equal amounts of height, the increase in volume will decrease; for equal 

amounts of volume, the height needed will increase. (HG-15) 

3 of the 8 groups preferred non-unit way of comparing intensities. One of 

them, HG-25, compared the water level to the increase in height, and the other group, 

HG-22, compared the amount of increase in height and volume: “Although the 

amount of water increases, water level (height) will increase less compared to the 

amount of increase in amount of water (volume). The graph will be decreasing 

parabolic (parabola).”  HG-20 who drew uniformly chunky graphs directly compared 

the amount of height and volume with respect to time: “In less time, in more height, 

less amount of water will be filled up (for the spherical part of the tank #3). Then it 

will increase constantly (for the cylindrical part). Then in the conic part, in less time, 

the height will be more, but amount of water will not be much.”  

Sketching the graph for the first tank and interpreting the graph by stating that 

“the amount of water and the height of the water level have a constant ratio/direct 

proportion” was also common even high school groups did not compare this graph 

with other graphs. 

Another interesting example of comparison of intensity came from HG-1 who 

drew non-uniform chunky graphs for graphing tank #4 by comparing the change with 

a constant situation (see Figure 30). 

 

Figure 30. HG-1’s sketch for the tank #4 indicating the comparison to a line. 
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The group seemed to plot points or a line that connects origin with the points 

in the form of (36x, x) plotted on the Cartesian coordinate plane to try to show 

constant increase, or to compare the slopes of the piecewise linear graphs with the 

slope of a line that they drew. The group drew lines with same slopes for the first and 

third part of the tank and constructed a line with a smaller slope for the middle part 

of the tank where the tank’s shape gets larger.  

In general, the results of the study showed that the comparison of intensities 

with a unitization approach was the most prevalent reasoning for the students. 

Furthermore, the students that directly compared the increase in the amounts of 

quantities or the students that compared the ratio of the two quantities were also 

observed in the analysis. The results also indicated that the students compared the 

given covariational situation to a constant situation. 

 4.2.3. Creating an extensive quantity 

The analysis of data revealed that four groups, all of which from high schools, used 

extensive quantity measuring reasoning in interpreting the covariational situation. 

Especially in the two groups, HG-4 and HG-20, who drew uniform chunky graphs, 

sketches by placing values such as, x, 2x, ... on the axis (unitization) and 

approximating the values in the other variable. In the following figure, a group of 

students’ unitization in their graphs, calculations, and segmentations can be seen (see 

Figure 31 a-c).  

 

 



 

58 
 

  

A      B 

 

    C 

Figure 31. A group’s unitization and tank segmentation (a and b) sketch (c) for the 

bottom part of the tank #2  

 In their drawings, both HG-4 and HG-20 considered the amount of gain in 

each chunk, and how much more or less it is compared to the previous chunk when 

the unitized variable increases equally at each time. HG-4 chose the volume to 

unitize and approximated the values for the heights while HG-20 preferred to 

segment the tanks and graphs into equal heights and approximated the volumes with 

respect to these values. These two groups used this way of thinking for all the tanks. 
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 It is observed that students’ approximations resulted in uniform chunky 

graphs, however when they used calculations they had to take some big parts of the 

tanks, and thus non-uniform graphing became inevitable (see Figure 29 a-b). 

 

A 

 

B 

Figure 32 a-b. HG-3’s calculation through non-uniform chunks. 

Briefly, high school students chose extensive quantity measuring approach, 

and mostly as a strategy for the first tank as volume can be easily calculated by 

changing the height for cylindrical tank. Unitization and approximation were 

observed to be together, while calculation required use of non-uniform chunks. 
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Moreover, extensive quantity measuring method was observed to be used with 

comparison of intensities method as seen in HG-1: “At 6h (height) because shape is 

conic, in less time there will be more h but less amount.” 

The data analysis also showed that one prospective teachers group used 

extensive quantity measuring to support or check for their solutions, but not to relate 

the covariational quantities and interpret the relationships (see Figure 33). 

 

Figure 33. PG-2’s use of extensive quantity measuring. 

As seen in the figure, PG-2 drew conic and rectangular prism, and sectioned them 

into equal heights and calculated volumes for them. By doing this, they tried to 

determine the differences between successive increases in volumes and attempted to 

see if the differences were increasing or decreasing. For example, for the conic part 

of the tank, they observed that the amount of change between successive parts was 

getting smaller (see Figure 33).  

 Prospective mathematics teachers mostly used quantitative reasoning for 

justification of their drawings or conclusions. High school students usually used it for 

the first step or for the whole reasoning of their work. If they use it as reasoning for 
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all of their work it ends up with extensive quantities reasoning of chunky graphing. 

Briefly extensive quantity measuring appears when estimation, calculation, or 

convincing exists. 

 To sum up, the students’ reasoning exists in the following forms: i) variance, 

ii) variance and comparison, iii) comparison and extensive, iv) extensive and 

variance, and v) extensive. According to the results of the study, it can be concluded 

that students do not use just one way of reasoning about rate of change, but they 

consider different ways in examining and interpreting the covariational situation. 

Sometimes they use two types of reasoning in interpreting the covariational situation 

for different tanks or different parts of the same tanks.  

  

4.3. Relation between students’ graphing types and their reasoning about rate of 

change 

 In the study, it is examined if the groups that had a particular type of graphing 

had a common reasoning about rate of change. According to the results of the data 

analysis, all of the groups that drew smooth graphs considered variance of the 

intensities (see Table 4). There were groups that considered variance of intensity or 

compared intensities or both thinking among the groups that drew graphs in smooth 

chunks. The students who drew uniform chunky graphs used only extensive quantity 

measuring reasoning or comparison of intensities reasoning beside extensive quantity 

measuring. The students who drew non-uniform chunky graphs used extensive 

measuring quantity reasoning or variance of intensity reasoning.  
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Table 4. Relation between students’ sketching types and students’ reasoning      

about rate of change 

 
Smooth Smooth 

chunk 

Non-uniform 

chunk 

Uniform 

chunk 

Variance 5 (3 PG)* 14 (3 PG) 1  

Variance and 

comparison 

 4 (1 PG)   

Comparison  2   

Comparison 

and Extensive 

  1 1 

Extensive and 

Variance 

  1 1 

Extensive   1  

* The number in the parenthesis shows the number of groups of prospective 

mathematics teachers 

 

 Recognizing that the smooth graphing is more complicated and requires 

higher level thinking than smooth chunk graphing, and smooth chunk graphing 

requires higher level thinking than chunky graphing; we get a consistent relationship 

between graphing types with the forms of reasoning about rate of change since the 

variance of intensity reasoning is a more advanced conception of rate of change than 

the comparison of intensities reasoning, which is a more advanced  conception than 

the extensive quantity measuring reasoning. 

 Based on the analysis of data, for the students to be able to draw smooth 

graphs they should consider variance of the intensities first. Then, using the global 

approach and the meaning of slope in curves, they managed to draw extremely 

smooth graphs of covariation. Variance of intensity reasoning was also essential in 

smooth chunk graphing. However, focusing on local points or having improper 

knowledge about the slope of a curve led them to produce graphs with inappropriate 

transitions between chunks. The uniform chunky graphing requires extensive 

quantity measuring reasoning with approximating values for each chunk consistent 

with the level of steps that Carlson et al. (2003) proposed. However, expecting 

students to imagine smaller and smaller chunks and reach smoother graphs was 

questionable. On the other hand, these students’ sketches represented the 
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covariational situation better than the sketches of students who drew non-uniform 

chunky graphs or used extensive quantity measuring. Changing the slopes of the 

lines in chunks to interpret the change was another strategy that students who drew 

non-uniform chunky graphs used. They knew what slope meant in terms of change, 

but were not able to apply that knowledge in interpreting the curves or slope of 

curves. Attending on the changes in the quantities and how to interpret in the graph, 

they potentially used some variance of intensity approach. 

 Based on the results of the study, the relation between students’ sketches of 

graphs for a covariational situation and the forms of reasoning about rate of change 

can be represented with the following model. This model displays the process of 

students’ representation of a covariational situation which encompasses their 

reasoning and the types of sketches. 

 

Figure 34. A model encapsulating the relations between students’ reasoning and their 

sketches of graphs. 
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 When students used variance of intensity forms of reasoning, it could end in 

three different types of graphing; smooth, smooth chunk, or non-uniform chunk. If 

the students made use of their knowledge about curves and their properties, they 

could construct graphs in smooth or smooth chunk. Smooth graphing required 

students to consider the slope of the curves together with using a more global 

approach. Variance approach without the knowledge on curves resulted in non-

uniform chunky graphing when the students used the changing slope strategy.  

 On the other hand, reasoning about rate of change through comparison of 

intensities resulted in smooth chunk or chunky sketches; however, this type of 

reasoning seems not enough to sketch smooth graphs. Reasoning about rate of 

change by associating extensive quantities resulted in chunky graphing as the 

construction of the graphs fully focused on quantitative and local aspects rather than 

qualitative and global aspects such as trends of the change on the graphs. If the 

students used calculations in reasoning about quantities, they preferred non-uniform 

chunks to create easily calculable parts. If they used approximations, they produced 

uniform chunks.  
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CHAPTER 5 

 

CONCLUSION 

 

 

 This chapter includes a summary and a discussion of the results. In the 

chapter, the implications of this research study are presented and studies for further 

research are offered. 

 

5.1. Summary of the findings 

 In this study, prospective mathematics teachers and high school students’ 

sketches while graphing covariation and their reasoning about rate of change while 

working on a covariation activity “Water Tank” were investigated.  

 We observed four different types of graphing in this sample of high school 

students and prospective teachers; smooth, smooth chunk, uniform chunks, non-

uniform chunks. Their reasoning while working on the activity centered on 

Johnson’s (2012) categorization of rate of change reasoning; creating intensive 

quantities; variance of intensity, creating intensive quantity; comparing intensities, 

and associating extensive quantities. 

 The analysis of data revealed that prospective mathematics teachers graphed 

in smooth and smooth chunk by considering variance in the intensities. High school 

students’ sketches varied in all types of graphing, and they also reasoned about rate 

of change by comparing intensities and associating extensive quantities in addition to 

considering the variance in the intensity. 

 There existed a relation between students’ sketches and their reasoning about 

rate of change. The groups that drew smooth and smooth chunk graphs seemed to be 

considering variance of intensity. Also, the comparison of intensities reasoning 

sometimes led to smooth chunk sketches. Comparing intensities together with 
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associating extensive quantities, students ended up with chunky graphing. The 

difference between the reasoning of groups who drew smooth chunk and smooth 

graphs was related to the use of variance of intensity. The groups who sketched 

graphs smoothly represented the variance of intensity by imagining the slope of the 

curve to be changing according to the covariation situation. Moreover, the groups 

who drew smooth graphs had a more global approach. Chunky graphing occurred in 

uniform and non-uniform chunks depending on whether the students used 

approximation or calculation when they used extensive quantities. Some of the 

groups that used the variance of intensity reasoning could produce chunky sketches.  

However, the groups that drew graphs in chunks seemed to have a lack of knowledge 

on curves or knowledge about how a change could be represented by curves. 

 

5.2. Discussions on findings 

 Carlson’s (2002, 2003) steps remind chunky approach in calculus that defines 

differentiation as rate of change in little chunks and in limiting chunks to zero length. 

On the other hand, in this study the students do not focus on chunks or scaling down 

the chunks and their reasoning is rather not ratio-based (Johnson, 2012). Students 

prefer to use horizontal sections, radius, or width to relate the change in height and 

volume (Carlson 2003; Johnson, 2012). They covariate the height directly to the 

cross-sectional area, which represents the change in volume at that time. This fact is 

also supported by this study. Students just trace the change in height, without looking 

at the ratio of some unit or compare to the change in one quantity to the other 

quantity. How differentiation developed in mathematics history is also similar to this 

orientation. Firstly, smooth and differential calculus was founded and used, and then 

chunky definition which was a delta- epsilon approach of differentiation came 

(Castillo-Garsow et al., 2013).  

 It is observed that some students who considered variance in the intensity, 

covariate one variable depending on a continuous change in the other. They do not 

think in a unit-based approach. Their consideration of the constant increase in the 

independent variable, not an increase in chunks shows that they have a smooth 

thinking (Castillo-Garsow et al., 2013). However, this type of reasoning does not 

always result in smooth graphs. As observed in our study, sometimes smooth 
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thinking may be bounded in chunks, resulting in a smooth chunk type of thinking 

(Johnson, 2011). 

 According to the results, if the students covariational understanding levels are 

ordered according to their sketches of graphs as smooth, smooth chunk and chunky; 

and according to their reasoning about rate of change are ordered as variance of 

intensity, comparison of intensities, and extensive quantity measuring, it is clear that 

a more advanced reasoning is linked with more advanced sketches and vice versa. 

For the students, who draw smooth chunk graphs, use of variance of intensity 

reasoning stays at local consideration of parts of the graphs. If the students do not 

focus on the change in chunks throughout the chunks, and do not pay attention to 

change in slopes throughout, then the sketches resulted in sharp transitions between 

chunks. This finding is in accordance with Yemen-Karpuzcu and others (2015) that 

report the students may just focus on the properties of the structure of the graph such 

as “decreasingly increasing” rather than associating the change in variables with 

respect to each other.  

The comparison of intensities reasoning is detected in some works of the 

students who draw smooth chunk graphs which makes them move to a ratio-based 

reasoning (Johnson, 2011). Comparison of intensities is not sufficient to reason and 

graph covariation. Our study shows that students need to consider variance in 

intensities to construct smooth graphs for a covariation situation. Moreover, 

comparison of intensities which is related to thinking about ratios over changes in 

variables and how one variable change is compared to the others change, is a 

correspondence approach on functions. Students think about the change in one 

quantity and the change in the corresponding quantity, and then compare the 

changes. In this way, the students may miss the relation between variables. Thinking 

function as correspondence, instead of relation is a poor understanding of covariation 

(Şen-Zeytun et al., 2010). 

  The results indicate that the students who draw smooth graphs have an 

understanding of covariation with considering variance of intensity approach. They 

are also globally thinking about the change throughout graphing. Moreover, they are 

able to consider the covariational situation through slopes and they can interpret the 

changes for the curved graphs. Students who draw smooth chunk graphs may also 
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compare intensities which depends on the ratio between increments of the variables. 

Consistent with the fact that non-ratio reasoning is more powerful (Johnson, 2012), it 

is again showed that smooth graphing is more powerful than smooth chunk graphing. 

However, there are students who draw graphs in smooth chunks and consider 

variance in the intensity with a non-ratio based approach by relating height directly 

to the change in cross-sectional area. The students’ sketches of smooth and smooth 

chunk graphs may be related to their covariational reasoning. In Carlson’s (2002, 

2003) and Johnson’s (2011) studies we see students who graph smoothly but cannot 

explain why they graph in that way. The results of this study revealed that the key 

difference between students who draw smoothly and students who draw in smooth 

chunks is considering the change in slope to represent the change. This is consistent 

with the interviews addressed in Carlson’s studies (2002, 2003). In these studies, 

although the students could not explain why they graphed smoothly, they used word 

“slope” in their explanations of how they graphed the covariation.  

 If we look at the reasoning of the students who draw chunky graphs, it cannot 

be stated that uniform chunky thinking is powerful than non-uniform chunky 

thinking in understanding covariation or vice versa. Some of the groups who draw 

non-uniform chunky use interpretations as if they consider the variance of intensities 

and also use change in slopes as a base to produce graphs like smooth thinking 

groups. However, other groups that draw graphs in non-uniform chunks just rely on 

calculations, like the students who draw graphs in uniform chunks that use 

approximations. Castillo-Garsow and others (2013) defines chunky graphing as it is a 

result of using quantitative methods. However, we see that some groups that graphs 

in non-uniform chunks used a strategy of changing slope of lines while graphing 

covariation. From their interpretations, it can be concluded that they also consider 

about change in changes, variance in the intensities. In this point of view, they have a 

more powerful reasoning about rate of change than the groups who use comparison 

of intensities. They care about the increase in the increase of one quantity and try to 

transfer it to graphing. They differentiate two different increases by examining the 

change in slopes. They seem just don’t know how to work with curves in reasoning 

about rate of change. The difference of this type of reasoning from the reasoning of 

the students who draw smooth graphs seems to be a lack of knowledge on curves and 

what slope or change means in curves. 
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In addition, it is observed that a prospective teachers group used extensive 

quantities to investigate the change in the volumes, which was similar to the case 

Hannah (Johnson, 2012) who was looking for the difference of the quantities on data 

table to quantify the change in change of the variables. Her reasoning couldn’t make 

her interpret this change in change in terms of the variance in the covarying 

variables.  In our case prospective teachers group did not take the calculations of 

differences of the volumes forward to quantify the variance. Their purpose was to 

check their arguments on the variance by quantitatively on certain shapes of tanks. 

 In the study, an important difference in the sketches and reasoning about rate 

of change between prospective mathematics teachers and high school students is 

noticed. The prospective mathematics teachers do not depend on quantitative 

reasoning except for checking their conclusions. They focus on the variation in 

change and clearly represent the covariational situation. However, a limited number 

of groups of high school students can covariate height and volume and transfer this 

relation to the graph. Slope consideration and knowledge on parabolas serve the basis 

for the reason. Their deficiency shows up in just interpreting covariation. They do 

not know the formal terms to interpret rate of change.  

 High school students learn to interpret the increasing functions, maxima, and 

concavity of the second-degree functions in 12th grade in mathematics class. 

However, before that in the 10th grade they are provided with acceleration and 

instantaneous speed concepts in physics classes. Tenth and eleventh grade high 

school students who can draw the graphs in smooth or smooth chunks may use the 

knowledge and skills about these topics from Physics courses. Prospective 

mathematics teachers’ graphing smooth graphs is plausible since they have learned to 

use the derivative of function to interpret the increase in covarying quantities and 

concavity of functions. As it is seen in Table 4, prospective mathematics teachers 

only graphed smooth and smooth chunks, and also they considered variance in the 

intensity. However, high school students had various forms of graphing and 

reasoning. Prospective mathematics teachers’ reluctance to curved graphs might help 

them in graphing in smooth and smooth chunk forms and their experience in 

derivative topic might lead them consider the variance in the intensity.  
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5.3. Implications of the study 

 According to the study, even though the prospective mathematics teachers 

coordinated the changes in one quantity (height) with respect to changes in other 

quantity (volume), almost half of them graphed covariation in smooth chunks. The 

reason may be that they are using the properties of parabolas that they memorized 

and join the graphs of parabolas without questioning the connection points and 

behavior of graphs just before and just after these points. They can even say, “Which 

was increasingly increasing, this parabola or this one?” and they may not consider 

what the change in slopes or rate of change is. To improve students understanding of 

covariation from smooth chunk thinking to smooth thinking, one way is to have 

students consider about the rate of change just before and after the inflection points 

where chunks are joint (Kertil, 2014). Moreover, in the study it is revealed that 

students were not able to consider the slope in reasoning about rate of change and 

examine the situation in a more global approach. To prevent smooth chunk graphing 

of covariation, we may need to familiarize students with a more global and 

continuous approach. Students can be guided to discover what the slope means in 

curves (and in lines) and what change and rate of change mean in terms of graphing 

curves by activities related to real life situations. This may also help students 

understand the definition of derivative with the limit of ratios. Considering the reality 

that high school students can also covariate variables (Johnson, 2011), high school 

students might also be led to focus on the meaning of the rate of change in terms of 

graphing. 

 According to this study, it can be concluded that the students’ reasoning about 

rate of change can be identified by examining their graphs for covariational 

situations. However, it should be kept in mind that even students that graph in non-

uniform chunks may have a variance of intensity reasoning. It should not be stated 

that students who draw non-uniform chunky graphs just use quantitative methods. 

Moreover, by using “Water Tank” task, students who have a good understanding of 

rate of change from the ones who just focus on visual properties of curves can be 

recognized, among the students who draw smooth and smooth chunk graphs. 

 It is clear that physics instruction of kinematics may have a bearing on 

students’ understanding of graphs of a covariational situation. In addition to the 
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students’ reports on the role of physics course, the students’ interpretation of change 

in graphs in terms of increase or decrease in speed or their dependence on time 

supports this view. This result may indicate a need to synchronize mathematics 

curriculum with the physics curriculum to improve students’ understanding of graphs 

for covariational situations. At the time that our participants were taking physics 

course, 2011 physics curriculum were in effect and this curriculum at the 10th grade 

suggests calculating instantaneous speed for the situations where constant 

acceleration exists. In the same concept, it is recommended to comment on the 

movements of objects based on the distance-time graphs for second degree functions. 

In 2013 Physics curriculum, the suggestion of “calculating instantaneous speed” is 

removed and it is recommended not to do mathematical calculations for 

instantaneous speed but recognize average speed and instantaneous speed. In 2011 

mathematics curriculum, we see the properties of second-degree graphs in 12th grade 

under the derivative concept. Students use the derivative to determine increase, 

maxima, and concavity of the graphs. However, the concept of functions is begun to 

be served in 9th grade with a correspondence definition. This definition can be 

supported by a relation that indicates how one variable depends on the other. 

Students know linear graphs and relations. Starting from linear relations and carrying 

it to varying change situation can be helpful to understand functions as relations. In 

mathematics education, we should focus on properties of lines and curves, and what 

change and rate of change mean in lines and curves. Moreover, discussing the change 

in graphs will support physics concepts, such as average and instantaneous speed in 

the situation of acceleration. Supporting student discussions on rate of change with 

modeling real life situation such as in speed concept can give the possibility to 

integrate physics and mathematics topics in one activity. 

5.4. Further research 

 Relations between types of graphs students draw for covaritional situations 

and their reasoning about rate of change can be further investigated and enlarged 

with other studies as this study is limited to group work. Case studies with in-depth 

interviews and quantitative studies testing the relations can provide meaningful 

information in this topic. The proposed model of the relation between students’ 

sketches of graphs and their reasoning about rate of change presented in Figure 34 

can be tested with large sample of students. 
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 The non-ratio reasoning is more powerful than ratio reasoning. However, the 

ratio reasoning and chunky thinking are essential for the topics of ratio, limit, and 

function (Johnson, 2012). The success of the students who draws graphs smoothly on 

these topics comes to be suspicious. But at least their ability to think about the slope 

of curves, meaning it to the rate of change may help them to handle these topics 

easily. Moreover, Castillo-Garsow et al. (2013) report that students who hold smooth 

thinking have the ability to think in chunks. Smooth thinking students’ capability to 

think in chunks can be researched in depth. 

 This study revealed that students who draw non-uniform chunky graphs may 

also be considering variance in intensity. Are there also students who draw graphs in 

uniform chunks and also consider variance in intensities? Or can we guide students 

who draw non-uniform chunky graphs and consider the variance in intensities to 

develop their graphing into uniform chunks and make uniform chunks get smaller? 

What can be the result of this orientation? Whether this can help them to improve a 

way to get closer to the instantaneous rate of change like in Carlson’s covariational 

steps (Carlson et al., 2002; Carlson et al., 2003) can be investigated. 

 Focusing on slope and rate of change in curves is important. What can be the 

reason for students not attending slope and rate of change in curves? Their 

conception of slope and rate of change needs to be investigated in depth. Students’ 

conception of slope on lines and curves could be a good starting on an investigation. 

Further, difference on the conception of the slope between students that draw smooth 

and smooth chunk graphs can be investigated. Moreover, studying the effect of their 

conceptions on rate of change and slope to their understanding of other calculus 

subjects such as derivative or limit definition can be meaningful. 

 During analysis, some difficulties students have while graphing covariation 

are observed. Firstly, graphing covariation for tank #4 was difficult for some groups 

of the students even they were reasoning correctly in the other tanks. Secondly, 

students may have an attempt to graph linear graphs representing constant increase 

with an angle of 45º. This fact caused them to draw transition points with sharp 

corners. Thirdly, students consider time as the independent variable. However, it 

does not affect their final graphs. They might use time issue to imagine a continuous 

decrease in their minds or just discover the time variable would act like volume 
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variable in the case volume increases constantly. These difficulties while students 

graph covariation can be further investigated in depth. 

 Conducting further research on and referring the results of this study will 

enhance us to gain deep information about how students reason covariation and how 

their reasoning is reflected in their graphs. 
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APPENDIX A 

 

DESCRIPTION OF FINAL CODES AND SAMPLES 

 

 

Codes Definitions and examples 

 

Graphing 

Types 

Smooth Smooth graphing is the graphing of the covarying variables 

with a completely continuous and smooth curve with smooth 

transitions (Kertil, 2014) over the points where intensity of 

change in dependent variable changes from one type to 

another (e.g. from decreasingly increasing to constant 

increase). The graph is consistent in terms of rate of change, 

with the situation in the task, before and after the transition 

points. When there is at least one smooth chunk graphing, 

while others are smooth, group is to be considered as smooth 

chunk graphing group. 

Smooth chunk Graphing in smooth chunks is graphing the covarying 

variables with smooth curves of variation for chunks that are 

determined considering the differences in the intensity of 

change. However, the curve shows sharp transitions (Kertil, 

2014) which cause inconsistency with the conditions in terms 

of rate of change before and after these points. 

Uniform 

chunks 

Graph is consistent of linear several line segments joint 

together, where intervals are determined by unitizing 

dependent or independent variable. Each interval/chunk 

seems to be equal in amount.  

Non-uniform 

chunks 

Graph consists of linear chunks/line segments joint together. 

Intervals of chunks are determined not equally depending on 

the shape of the tanks; such as narrow or wide parts or 

narrowing or widening parts. 
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Types of 

reasoning 

about rate 

of change 

Associating 

extensive 

quantities 

 

“Student focuses on numeric amounts of change in volume 

and height on interval that he chose.” (Johnson 2011, p.2143) 

 

Constructing 

an intensive 

quantity: 

comparing 

intensities 

Student compares amounts of change in variables (height and 

volume) with respect to each other, or compares the variation 

of change with a constant situation. Students’ considering 

rate of change among the variables or increase in variables is 

also considered in this type of reasoning. 

“Volume increases more than height.” 

“Increase in volume is more than increase in height” 

“Rate of change between volume and height is constant, thus 

linear…” 

 

Constructing 

an intensive 

quantity: 

considering 

variation in 

the intensity 

Student considers the variation in the change of a variable 

considering its dependence on the other variable. 

“Height is increasingly increasing when volume increases.” 

“Volume dependent on height increases increasingly” 

“Increase of height decreases” 

“Increase of height slows down” 

 

Unitization Unit height 

based 

Student segments tank or graph into equal heights or students 

tells “for the same h, there will be less volume…” “For equal 

amounts of heights….” Independent variable seems to be 

height, but height could also be used for just separation in 

ease and no dependency can be mentioned. 

 

 

Unit volume 

based 

Student thinks at each time equal amounts of water is poured 

into the tank and think about the increase in height 

Or student tells “for the same amount of water, h will 

increase more….” 

 

Both h and v 

based 

Student can think two sided and interpret covariation by 

taking each variable as independent variable. 
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Non-unit 

based 

There is no focus on unitization or dependency. Student just 

focuses on the intensity of change on one variable. 

 

Continuous 

height or 

volume based 

Student not unitizes one of the variables but assign it to be 

increasing uniformly, or constantly. 

“while volume increases, h increase increasingly” 

“When height is constantly increasing, volume increases 

more” 

“when (increase) volume is constant, height will increase 

increasingly” 

 

 Slope 

consideration 

Students mention about slope of the graph or changing slope, 

or change in slope of the graph. Steepness and more 

horizontal/ more vertical type of words also considered to be 

related to slope. Comparing slope of the parabolas in the 

second graph such as “second parabola has less slope” type 

of interpretation is not determined to be in this categorization 

as they are talking about the tilt of whole of the parabola for 

just comparing the two of them as if they were lines. Slope 

of the curve is not the matter of consideration there. 

 

 Global 

approach on 

graphing 

Students focus on the change of the whole graph. Mostly 

graph is drawn at one hand action. Local points are not 

considered or assigned in drawing 

 

Local 

approach on 

graphing 

 

Graphing appears in parts and more than one action of 

drawing. Points are considered basis of graphing. Assigning 

on both axes strengthens the position of the points. 

 


