

AN OPTIMAL APPLICATION PARTITIONING AND COMPUTATIONAL

OFFLOADING FRAMEWORK FOR MOBILE CLOUD COMPUTING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAHİR KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2016

AN OPTIMAL APPLICATION PARTITIONING AND COMPUTATIONAL

OFFLOADING FRAMEWORK FOR MOBILE CLOUD COMPUTING

Submitted by MAHİR KAYA in partial fulfillment of the requirements for the degree of

Philosophy of Doctorate in Information Systems, Middle East Technical University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute ______________________________

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems ______________________________

Assoc. Prof. Dr. Altan Koçyiğit

Supervisor, Information Systems, METU ______________________________

Examining Committee Members:

Assoc. Prof. Dr. Alptekin Temizel

Modeling and Simulation, METU ______________________________

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, METU ______________________________

Assist. Prof. Dr. P. Erhan Eren

Information Systems, METU ______________________________

Assist. Prof. Dr. Sadık Eşmelioğlu

Computer Engineering, Çankaya University ______________________________

Assist. Prof. Dr. Ömer Özgür Tanrıöver

Computer Engineering, Ankara University ______________________________

 Date: 13.01.2016

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name and Surname : Mahir Kaya

Signature :

iv

ABSTRACT

AN OPTIMAL APPLICATION PARTITIONING AND COMPUTATIONAL

OFFLOADING FRAMEWORK FOR MOBILE CLOUD COMPUTING

Kaya, Mahir

PhD, Department of Information Systems

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

January 2016, 111 pages

The use of mobile applications is increasing every day and they offer more functionality on

mobile devices. However, these devices are inferior to server computers in terms of memory

and processor capacity. Furthermore, rapid depletion of mobile devices’ energy resources is

still a major problem. Performance and energy shortcomings of mobile devices can be

improved by using surrogate or cloud computing technologies. In this thesis, an offloading

framework is proposed to improve the performance and efficiency of mobile applications.

The framework seamlessly handles offloading and provides distribution transparency via the

Inversion of Control mechanism. In particular, computation intensive components of an

application are run on a remote server. It is possible to migrate different combinations of

components to remote servers. Indeed, offloading some combinations of components are

productive and others are counterproductive. Experimental results show that offloading the

optimal combination of components to remote servers reduces the execution time and energy

consumption of mobile devices. Hence, a call graph model is proposed to decide on the

components to be offloaded. Offloading decisions are made by finding the best partitioning

in the graph. The graph model has been validated by extensive experiments.

Keywords: Code offloading, distribution transparency, application graph partitioning,

mobile cloud computing.

v

ÖZ

MOBİL BULUT BİLİŞİM İÇİN EN İYİ UYGULAMA BÖLME VE HESAPLAMA

AGIRLIKLI TAŞIMA ÇERÇEVESİ

Kaya, Mahir

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Ocak 2016, 111 sayfa

Mobil uygulamaların kullanımı her geçen gün artmakta ve bu uygulamalar mobil cihazlarda

daha fazla işlevsellik sunmaktadır. Bununla birlikte, bu cihazlar, bellek ve işlemci kapasitesi

açısından sunucu bilgisayarlardan daha düşükler. Ayrıca, mobil cihazların enerji

kaynaklarının hızla tükenmesi hala önemli bir sorundur. Mobil cihazların performans ve

enerji eksiklikleri yerel sunucular veya bulut bilişim teknolojileri kullanılarak iyileştirilebilir.

Bu tezde, mobil uygulamaların performansını ve verimliliğini artırmak için bir kod taşıma

çerçevesi önerilmektedir. Bu çerçeve kod taşımayı kesintisiz bir şekilde ele almakta ve

kontrol mekanizmasının çerçeve yazılıma verilmesi yoluyla dağıtım şeffaflığı sağlamaktadır.

Özellikle, bir uygulamanın hesaplama yoğunluklu bileşenleri uzak bir sunucuda

çalıştırılmaktadır. Uzak sunuculara uygulama bileşenlerinin farklı kombinasyonlarını

göndermek mümkündür. Gerçekten, bazı bileşenlerin kombinasyonlarının sunucuya

taşınması kazançlı iken diğerleri için kazançlı olmamaktadır. Deneysel sonuçlar, bileşenlerin

optimum kombinasyonun uzak sunuculara taşınmasının işlem süresini kısaltığını ve mobil

cihazların enerji tüketimini azalttığını göstermektedir. Bu nedenle, taşınacak bileşenlere

karar vermek için bir çağrım çizge modeli önerilmiştir. Taşıma kararları çizgedeki en iyi

bölümleme bulunarak yapılmaktadır. Çizge modeli kapsamlı deneyler ile doğrulanmıştır.

Anahtar Kelimeler: Kod taşıma, dağıtım saydamlığı, uygulama çizgesini bölme, mobil

bulut bilişim.

vi

DEDICATION

dedicated to my wife and son

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks to my supervisor Dr.

Altan Koçyiğit for his guidance, support and patience throughout this study. I am very

grateful for his inspiring ideas, he always provides insightful discussions about the research.

I thank the thesis monitoring committee members Dr. P. Erhan Eren and Dr. Alptekin

Temizel for their guidance and feedback throughout this study. I would also like to thank the

examining committee members Dr. Sadık Eşmelioğlu and Dr. Ömer Özgür Tanrıöver for

their valuable comments and suggestions.

I also wish to thank my colleagues at the institute for an excellent working atmosphere.

Special thanks to Serhat Peker, Kerem Kayabay, Ali Mert Ertuğrul, Ahmet Coşkunçay,

Ahmet Faruk Acar, Nurcan Alkış, Bilge Sürün and Okan Bilge Özdemir for their personal

and scholarly interactions, and Sibel Gülnar and Sibel Ergin for her support in administrative

procedures.

Finally, I would like to thank my family for their love, and support. I would like to express

my deepest gratitude to my beloved wife Yasemin for her love, encouragement and support,

and for not losing her patience throughout this study. The birth of our son Yaman was a great

experience that we lived in this period.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ... v

DEDICATION .. vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF LISTING .. xiv

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION .. 1

1.1 Motivation .. 2

1.2 Objectives and Scope ... 3

1.3 Research Questions .. 4

1.4 Thesis Structure .. 6

2. BACKGROUND AND RELATED WORK .. 7

2.1 Application Offloading Approaches... 7

2.1.1 Offloading Virtual Machine of Mobile Devices... 7

2.1.2 Offloading Application Components ... 8

2.2 Related Work .. 9

2.3 Proxy-Based Method .. 14

2.3.1 Transparency of Proxy-based method .. 15

2.3.2 Proxy Inheritance ... 15

2.3.3 Proxy Instantiation ... 17

2.3.4 Field Access ... 17

2.3.5 Static Members and Private Methods ... 17

2.3.6 Dynamic Proxies .. 18

2.3.7 Inversion of Control ... 19

2.3.8 Java RMI .. 19

ix

2.3.9 OSGi .. 20

2.3.10 Android IDL ... 21

2.3.11 DCOM and CORBA .. 22

2.3.12 Bytecode Instrumentation .. 23

2.4 Graph Partitioning .. 23

2.4.1 Multilevel Algorithm ... 24

2.4.2 (k+1) Algorithm ... 26

2.4.3 Min-Cut Algorithm .. 26

2.4.4 Runtime vs Compile Time Partitioning ... 27

2.5 Mobile Cloud Computing .. 27

2.5.1 Cloud Computing ... 28

2.5.2 Cloudlet Approach ... 31

2.6 Discovery of Local Machines and Services ... 32

2.6.1 Jini Service Discovery ... 32

2.6.2 UPnP and DPWS ... 32

2.6.3 DNS-SD ... 32

2.7 Security .. 33

2.7.1 Secure Sockets Layer (SSL) .. 33

2.7.2 Open Authorization (OAuth) ... 33

3. CODE OFFLOADING .. 35

3.1 Offloading Approach ... 35

3.2 Offloading Programming Model .. 35

3.2.1 Proxy and Object Creation ... 36

3.2.2 Method Call ... 37

3.2.3 Callback Mechanism .. 39

3.2.4 Processing Requests ... 40

3.3 Discussion on Programming Model ... 42

4. OFFLOADING DECISION MODEL ... 43

4.1 Offloading Decision Making ... 43

4.1.1 Defining the weights of vertices and edges .. 45

4.1.2 Verification of the Graph Model .. 46

4.1.3 Graph Construction Algorithm .. 49

4.2 Decision heuristic for offloading classes ... 50

5. OFFLOADING FRAMEWORK ARCHITECTURE .. 53

x

5.1 High Level Architecture of the Offloading Framework ... 53

5.2 Flowchart of a mobile application development with the offloading framework .. 55

5.2.1 Determining the network cost function coefficient on-the-fly 58

5.3 Fault Tolerance Mechanism of the Framework .. 59

5.4 Comparison with Other Framework Approaches ... 60

5.5 Extensibility of the Framework .. 61

5.6 Sample Application .. 62

5.7 Using Mobile GPU for General-Purpose Computing .. 65

6. EXPERIMENTAL EVALUATION .. 67

6.1 Experiment 1 .. 67

6.1.1 Execution time results .. 68

6.1.2 Energy consumption results ... 71

6.2 Experiment 2 (Synthetic Applications) .. 72

6.2.1 Synthetic Application 1 .. 72

6.2.2 Synthetic Application 2 .. 75

6.3 Speed up and network cost functions using history-based profiles 79

6.4 Experiment 3 .. 82

6.5 Experiment 4 .. 85

6.5.1 Results on the execution time (response time) ... 88

6.5.2 Power consumption results ... 91

6.6 Performance Comparison of Frameworks .. 91

6.7 Discussion on Roaming, SSL connection, Failure and Load on Server 92

7. CONCLUSION .. 93

7.1 Summary .. 93

7.2 Contributions .. 95

7.3 Limitations and Future Work ... 95

REFERENCES ... 97

APPENDICIES .. 105

APPENDIX A: ... 105

APPENDIX B: ... 106

CIRCULUM VITAE .. 109

xi

LIST OF TABLES

Table 1 Comparison of offloading models .. 9
Table 2 Evaluation of offloading models ... 11
Table 3 Comparison of the well-known cloud providers [68] ... 30
Table 4 Key differences: Cloudlet vs. cloud [15] .. 31
Table 5 Offloading gain calculation ... 44
Table 6 Graph model verification (two classes) .. 46
Table 7 Graph model verification on a callback .. 47
Table 8 Graph model verification (three classes) .. 48
Table 9 Comparison of the frameworks ... 61
Table 10 The OCR precision values .. 71
Table 11 Delay for each method of Synthetic Application 1 ... 72
Table 12 Application call graph of Synthetic Application 1 and offloading results 1 73
Table 13 Application call graph of Synthetic Application 1 and offloading results 2 74
Table 14 Application call graph of Synthetic Application 1 and offloading results 3 74
Table 15 Application call graph of Synthetic Application 1 and offloading results 4 75
Table 16 Delay for each method of Synthetic Application 2 ... 76
Table 17 Application call graph of Synthetic Application 2 and offloading results 1 77
Table 18 Application call graph of Synthetic Application 2 and offloading results 2 78
Table 19 Comparison of Offloading gains for a LAN server .. 83
Table 20 Comparison of Offloading gains for the cloud ... 83
Table 21 Offloading cases for the OR application ... 86
Table 22 Graph partitioning results ... 87
Table 23 Offloading gains for LAN server .. 88
Table 24 Offloading gains for Cloud Server .. 89

xii

LIST OF FIGURES

Figure 1 (a) Single machine computation, (b) VM migration [10] .. 8
Figure 2 Application partitioning taxonomy [36] .. 12
Figure 3 A class diagram of proxy ... 15
Figure 4 An object diagram of proxy [46].. 15
Figure 5 The extending approach for a proxied class [32] ... 16
Figure 6 The extending approach for a non-proxied class [32] .. 16
Figure 7 Dynamic proxy dispatch .. 18
Figure 8 (a) Local invocation, (b) Remote method invocation (RMI) [3] 20
Figure 9 Android IDL [54] ... 21
Figure 10 Android service binder [54] ... 22
Figure 11 CORBA architecture [9] .. 23
Figure 12 Different ways to coarsen a graph [20] .. 25
Figure 13 A graph with edge weights [58] ... 27
Figure 14 The graph after the first minimum cut phase [58].. 27
Figure 15 Mobile cloud computing structure [36] ... 28
Figure 16 Abstract protocol flow [79] .. 34
Figure 17 An overview of the offloading programming model 1 ... 36
Figure 18 The class diagram of a sample application .. 36
Figure 19 The sequence diagram of object creation using a proxy on the smartphone.......... 37
Figure 20 The sequence diagram of a proxy method call... 38
Figure 21 The sequence diagram of a proxy method call with object parameter 38
Figure 22 The sequence diagram of a callback .. 40
Figure 23 Application call graphs .. 43
Figure 24 Energy model ... 45
Figure 25 Calculating execution times of the vertices and edges ... 45
Figure 26 Graph representation of the execution times .. 46
Figure 27 Graph representation of the energy model ... 46
Figure 28 An overview of the offloading framework 2 .. 54
Figure 29 Flowchart of a mobile application development .. 55
Figure 30 The activity diagram of the runtime behavior of the mobile application 57
Figure 31 Transmission time .. 58
Figure 32 Logging and recovery mechanism of the framework .. 60
Figure 33 The class diagram of the OR application ... 62
Figure 34 The sequence diagram of the OR application 1 ... 63
Figure 35 The sequence diagram of the OR application 2 ... 64
Figure 36 An OCR application ... 68
Figure 37 The OCR image set taken by the smartphone camera ... 68
Figure 38 The OCR control image set taken by an image-processing tool 69
Figure 39 The OCR execution time for 400x800 resolution images 69
Figure 40 The offloading execution time for 480x800 resolution images 69
Figure 41 The OCR execution time for 1232x2048 resolution images 69
Figure 42 The offloading execution time for 1232x2048 resolution images 69

xiii

Figure 43 The OCR execution time for different network connection (400x800 pixels) 70
Figure 44 The OCR execution time for different network connections (1232x2048 pixels). 70
Figure 45 The OCR execution time for 1232x2048 resolution control images 70
Figure 46 The offloading execution time for 1232x2048 resolution control images 70
Figure 47 The OCR power consumption ... 71
Figure 48 The offloading power consumption ... 71
Figure 49 The OCR power consumption for different network connections 71
Figure 50 The class diagram of Synthetic Application 1 ... 72
Figure 51 The sequence diagram of Synthetic Application 1 .. 73
Figure 52 The class diagram of Synthetic Application 2 ... 75
Figure 53 The sequence diagram of Synthetic Application 2 .. 76
Figure 54 The regression analysis of the processing time in the smartphone 80
Figure 55 The regression analysis of the processing time in the LAN server 80
Figure 56 The regression analysis of the speed up function in the LAN server 80
Figure 57 The regression analysis of the processing time in the cloud server 80
Figure 58 The regression analysis of the speed up function in the cloud server 80
Figure 59 The regression analysis of network cost (Wi-Fi connection) in the LAN server .. 80
Figure 60 The regression analysis of the network cost (Wi-Fi connection) in the cloud server

 ... 81
Figure 61 The regression analysis of the network cost (3G connection) in the cloud server 81
Figure 62 An image filter application .. 82
Figure 63 Comparison of execution times on local, LAN server and cloud 82
Figure 64 Scatter Plot of the gain of the model and the measured gain for LAN server 84
Figure 65 Scatter Plot of the gain of the model and the measured gain for the cloud 84
Figure 66 A graph representation of the OR application ... 87
Figure 67 The screenshots of the OR application using our offloading framework 87
Figure 68 The offloading cases of the OR application .. 88
Figure 69 Scatter Plot of the gain of the model and the measured gain for LAN server 89
Figure 70 Scatter Plot of the gain of the model and the measured gain for the cloud 90
Figure 71 Execution time of the OR .. 90
Figure 72 Execution time of offloading ... 90
Figure 73 The energy consumption of the OR application cases ... 91
Figure 74 Scatter Plot of the gain of the model and the measured gain for LAN server 91
Figure 75 Comparison of the frameworks ... 92

xiv

LIST OF LISTING

Listing 1 InvocationHandler interface .. 18
Listing 2 A dynamic proxy factory that wraps a class ... 18
Listing 3 (a) Concrete implementation, (b) IoC constructor injection 19
Listing 4 The pseudo code of the offloading factory create-method 37
Listing 5 The pseudo code of the proxy method handler ... 39
Listing 6 The pseudo code of the offloading factory processing the request message 41
Listing 7 (a) Raw and (b) filtered method call stack .. 49
Listing 8 Application Call Graph Construction Algorithm .. 50
Listing 9 FM heuristic for the graph partition .. 51
Listing 10 KL based partitioning heuristic ... 51
Listing 11 Heuristic solution extension point of the framework .. 62
Listing 12 A code snippet from the OR application 1 .. 63
Listing 13 A code snippet from the OR application 2 .. 64

xv

LIST OF ABBREVIATIONS

AIDL : Android Interface Definition Language

AMI : Amazon Machine Image

AOP : Aspect Oriented Programming

API : Application Programming Interface

AR : Augmented Reality

ASM : A SMifier

AspectJ : Aspect Java

BCEL : Byte Code Engineering Library

BIC : Bytecode Instructions Count

CA : Certificate Authority

CLR : Common Language Runtime

CORBA : Common Object Request Broker Architectures

CPU : Central Processing Unit

DaaS : Data Storage as a Service

DCOM : Distributed Component Object Model

DHCP : Dynamic Host Configuration Protocol

DNS : Domain Name System

DNS SRV : Domain Name System Service

DNS TXT : Domain Name System Text

DNS-SD : Domain Name System -Service Discovery

DPWS : Devices Profile for Web Services

EC2 : Elastic Compute Cloud

EJB : Enterprise JavaBean

EWMA : Exponentially Weighted Moving Average

FM : Fiduccia and Mattheyses

FT-CORBA : Fault Tolerant- Common Object Request Broker Architectures

GGGP : Greedy Graph Growing Partitioning

GGP : Graph Growing Partitioning

GPS : Global Position System

GUI : Graphical User Interface

HELVM : Heavy Edge Light Vertex Matching

HEM : Heavy Edge Matching

HTTP : Hypertext Transfer Protocol

IaaS : Infrastructure as a Service

ICT : Information and Communication Technologies

IDE : Integrated Development Environment

IDL : Interface Definition Language

xvi

ILP : Integer Linear Programming

IoC : Inversion of Control

IPC : Inter Process Communication

ITU : International Telecommunication Union

J2SE : Java 2 Platform, Standard Edition

JVM : Java Virtual Machine

KB : Kilobyte

KL : Kernighan and Lin

LAN : Local Area Network

LEM : Light Edge matching

MAUI : Mobile Assistance Using Infrastructure

MCCF : Mobile Cloud Computing Frameworks

MP : Megapixel

ms : Millisecond

NP-Hard : Non-deterministic Polynomial-time Hard

OASIS : Organization for the Advancement of Structured Information Standards

OAuth : Open Authorization

OCR : Optical Character Recognition

OMG : Object Management Group

OR : Object Recognition

ORB : Object Request Broker

OS : Operating System

OSGi : Open Services Gateway initiative

PaaS : Platform as a Service

PDA : Personal Digital Assistant

PKCS : Public-Key Cryptography Standards

RGB : Red Green Blue

RM : Random Matching

RMI : Remote Method Invocation

R-OSGi : Remote Services for OSGi

S3 : Simple Storage Service

SaaS : Software as a Service

SOAP : Simple Object Access Protocol

SQL : Structured Query Language

SSL : Secure Socket Layer

TCP : Transmission Control Protocol

TCP/IP : Transmission Control Protocol/Internet Protocol

TCP/UDP : Transmission Control Protocol/User Datagram Protocol

TSL : Transport Layer Security

UPnP : Universal Plug and Play

URL : Uniform Resource Locator

xvii

VLSI : Very Large Scale Integration

VM : Virtual Machine

VMM : Virtual Machine Manager

WAN : Wide Area Network

WLAN : Wireless Local Area Network

XML : Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

Parallel to the developments in information technologies, the use of mobile devices (such as

smartphones, tablets) has considerably increased in the past decade. With the improvements

in mobile communication technologies (such as Wi-Fi and 3G), users can now easily and

instantly access information from a variety of sources. According to the development reports

on the Information and Communication Technologies (ICT) of the International

Telecommunication Union (ITU), subscription to mobile and fixed broadband is increasing

all around the world [1]. In addition, the ITU [1] estimated that the rate of global internet use

would reach 40.4% by the end of 2014. The rapidly developing technologies offer many

benefits to users in terms of time and cost effectiveness. More recently, smartphones are

widely used not only for relatively simple applications such as displaying and sending e-

mails, capturing, displaying and sending photos, and instant messaging, but also for more

complex and computation intensive applications.

As mobile applications such as image processing, object recognition, augmented reality

applications and mobile games are gaining exponential growth, the need for more powerful

mobile devices becomes main concern for mobile software developers. On the other hand,

user satisfaction requirements such as thickness and weight constrain the capabilities of these

devices in terms of processing power and battery. In addition, running these applications

solely on smartphones can be impractical with respect to battery lifetime and responsiveness.

During the last decade, in order to overcome the resource limitation of mobile devices,

mobile software developers used two major approaches to relieve the constrained mobile

devices. First is to optimize complex algorithms that are memory and computation intensive

to be implemented in the constrained mobile devices. The second approach is to use client-

server architecture based on delegation where the computation intensive components are run

on a resourceful server, then at runtime, mobile devices request the services provided by the

remote server. In the first approach, the software developer concentrates on optimizing the

complex algorithms instead of focusing on the business logic of the applications. The second

approach also requires designing a communication mechanism between clients and the

server, in which low-level network issues and errors in network communication should be

handled. Moreover, creating fixed remote services is feasible only if the computational

resource configurations such as energy consumption and network characteristic will not

change at runtime.

Offloading is an invaluable contribution since it is utilized in mobile computing

environments in order to enhance the capability of resource-constrained mobile devices by

migrating the components of applications such as classes, objects, services or methods to

resourceful servers that are nearby machines (called surrogates) or the virtual machines of

the cloud [2]. Mobile devices generally use two offloading mechanisms to benefit from a

nearby server or cloud computing infrastructure. In the first method, a virtual machine (VM)

of the smartphone is entirely moved to the remote server, re-started, resource

2

intensive tasks are performed and the VM is brought back to the mobile device. In this

method, not only the network cost is too expensive, but also problems occur during

calculations that require smartphone’ resources such as sensors. The second method is the

application partitioning mechanism. This method can be grouped under three sub-headings;

the proxy-based methods like Remote Method Invocation (RMI) [3], preparing computation

intensive parts as a service using the Interface Definition Language (IDL) [4], and the OSGi

service-based method [5]. Partitioning an application and sending the components to be

offloaded to remote servers incur less overhead, but require various degrees of program

restructuring; and in both cases, problems can arise when an application runs processes that

are dependent on the resources of a smartphone.

Recent studies based on services (application components) that require the use of IDL and an

OSGi middleware [6], [7] implement the computation intensive parts as services and migrate

these services to the remote server. However, these services should be independent of the

resources of smartphones such as sensors and cameras. Another problem is that even if

services run locally, the application communicates with these services using Inter-Process

Communication (IPC) via the network stack, which is time-consuming and thus limits the

goal of the computation offloading in terms of increasing the overall performance and

reducing the energy consumption. Marshalling (serialization) arguments of the services also

create argument inconsistency if the remote operation modifies the arguments passed.

Microsoft’s DCOM [8], [9] and OMG’s CORBA [8], [9] that are well-known architectures

for distributed application development, also suffer from such argument inconsistencies.

Hence, it is assumed that arguments are passed by value or they are immutable.

Although significant research has been conducted on the mobile cloud computing systems

[2], [6], [7], [10]–[14], there are still several challenges to be addressed, as stated above,

concerning the design and implementation of a widely adopted framework and the selection

of components to be offloaded in current smartphone applications. The limited bandwidth in

wireless networks as well as high and changing network latencies in a WAN environment

also need to be considered [15]. Therefore, an adaptive, seamless offloading strategy should

be implemented without resulting in any extra overhead for the smartphone applications.

1.1 Motivation

There are many offloading solutions in the literature, which allow migrating computation

intensive components of an application to remote servers. However, most of them are based

on offloading specific components that do not depend on local components such as sensors,

camera, Global Position System (GPS) of the mobile device; in other words, they do not

support callbacks. Apart from the component granularity level of the existing frameworks for

offloading, sending application state such as method parameters, especially large objects, to

the remote server leads to extra network overhead as well as argument inconsistency.

Therefore, a framework which integrates remote resources as part of mobile devices by

overcoming these limitations is required in order to enable them to become dominant

powerful computing devices

Offloading usually becomes counterproductive if components which incur higher

communication cost than processing cost savings are offloaded to remote servers. An

application consists of several components some of which are dependent on each other either

highly or loosely. In distributed computing, partitioning an application is a major problem in

terms of detecting profitable partitions for remote execution. Most of the existing studies

leave marking components to be offloaded to software developers. Hence, an effective

model which dynamically presents application behavior at runtime as well as determining

optimal partition by which both overall performance increases and energy consumption

decreases for mobile applications enhances mobile computing development. In both cases

where mobile devices are enhanced help mobile devices industry to satisfy the highest user

expectations.

3

1.2 Objectives and Scope

In this section, the scope and main directions of this study are presented. This thesis focuses

on offloading objects of an application through the application partitioning which is based on

a call graph based model. Designing an offloading framework to bridge the gap between

mobile devices and resourceful servers is a complex process. The major properties of such a

framework are determined and solutions are provided. These properties are listed as follows:

 A transparent object offloading technique that supports callback functionality is

provided.

 The offloading technique takes into account execution times (or energy

consumption) and network bandwidth that are collected and dynamically updated.

 An application partitioning mechanism based on a call graph is modeled

 An optimal partition containing computation intensive classes is migrated to a

remote server at runtime.

 Resource-rich local servers and services providing processing capability are

discovered and maintained.

 Security related issues such as Secure Socket Layer (SSL) and authentication

mechanism are taken into account.

The offloading technique presented in this thesis is based on the Inversion of Control (IoC)

[16], [17] mechanism. This technique seamlessly synchronizes resource access on both the

smartphone and the surrogate/cloud side of an application and eliminates the limitations of

the existing offloading approaches [18], [19]. First, the software modules that are not

suitable for offloading; such as software modules providing the Graphical User Interface

(GUI), utilizing local resources such as sensors and network components are ignored. Other

components are candidates to be offloaded to resourceful servers. The selection of the

components to be offloaded depends on certain factors; such as the amount of computation

and data required for the method call, and bandwidth of the available wireless network.

The proposed framework delegates an object creation to a factory in which when an object

creation is requested, it checks the object type to determine whether it is eligible to be

offloaded. If the framework decides that an object type (class) is the component to be

offloaded, it returns a proxy to access the services of the object created in the server. In the

mobile device, methods invoked from the proxy are delegated to the object residing in the

surrogate/cloud. When the execution is completed, the returned values are sent back to the

mobile device. There may be cases, where the object that is run on a server requires the

callback functionality or the resources in the mobile device, which need to be handled with

extra caution. In such cases, reverse proxies are provided in the server to access objects

residing in the local device.

The dynamic proxies also allow profiling the method calls and collecting measurement data;

such as the execution time of the called methods, methods’ parameter types, the size of the

parameter values. Once an object creation is requested from the framework, a proxy is

locally executed to collect such information. During offloading, remote execution and

network times are also collected and updated for each class. This information which is

collected at object level accumulated at the class level. A profiling algorithm is developed to

collect the cumulative statistics for each class including (method execution times and

number of method calls). Since estimating the method execution time statically from the

source code [12] is not easy and lacks run time behavior of applications, the desired metrics

have been collected at run time. In order to provide an input to the optimal partitioning

algorithm, a call graph is constructed. For each method call, the method call stack is

monitored and the call graph is updated. In this graph, the vertices stands for classes and the

edges present the class dependency in terms of method calls.

In this study, in addition to the offloading technique, a framework is presented to discuss the

offloading decision-making. To this end, a novel graph model is proposed to collect the

4

profiling information and then to decide on the parts of the application to be offloaded and to

be executed on the remote server. Constructing the call graph, the offloading decision

making problem is converted to the graph partitioning (min-cut) problem [20]. The graph

partitioning approaches are suitable to make such offloading decisions [2], [21]. However,

finding an optimal solution for the graph partition is NP-Hard [20], [22], therefore in this

study, a well-known graph partitioning heuristic; Fiduccia and Mattheyses (FM) heuristic

[20], [23], was implemented to determine the minimum edge-cut that is the best offloading

decision. The proposed framework uses a modular approach, and therefore is suitable for the

inclusion of a new heuristic algorithm. Different combinations of application classes were

offloaded to identify the cases where offloading can be counterproductive. This is important

in terms of finding an optimal solution for offloading to decrease the network cost involved.

The quality of the offloading decision-making is measured with respect to achieving a

specific goal which is improvement of the application performance and decrease on energy

consumption. As a result, partitioning an application effectively at runtime is one of the

research questions of this thesis.

Network discovery allows services and computers to learn the availability of networked

devices and consume their services. The goal of service discovery protocol is to decrease or

eliminate explicit administration [24]. In this study, DNS-SD [25] protocol has been

implemented to be aware of the availability of local machines. The network resources are

classified according to the DNS-SD naming structure. DNS SRV and DNS TXT records are

used to facilitate this protocol [26]. A DNS query in a specific format is sent to a local

network in order to find available services.

Security related issues are also handled in the framework, Secure Socket Layer (SSL) socket

connection is utilized [27], [28]. SSL regulates authentication of the client and server. The

communication between parts is encrypted to provide security. The software developer can

indicate the SSL connection at the object creation phase for specific objects. The software

developer can also make all communication with SSL; however, this situation would result

in costly offloading which is not worth for large data transmission. In addition, Twitter

OAuth mechanism [29] was used to authenticate users to access server resources. In OAuth,

the client initiates an access request to protected resources that are managed by a resource

owner and hosted by a resource server. During authorization, the credentials of the resource

owner are not used. The client acquires an access token that indicates various attributes such

as scope and life time. The token is provided by an authorization server [30]. Once the

authorization is achieved, the client can access all offloading servers.

In order to support development transparency which is to minimize the burden on the

software developer in terms of application partitioning and proxy injection that connects

objects residing in different virtual machines, Android platform on the mobile device and

Java (J2SE) which is a cross-platform technology on the server side are the main focus of

this thesis to implement proposed solutions. To evaluate the offloading framework, several

experiments were carried out and the performance of offloading was assessed on real time

and synthetic applications. An Object Recognition (OR) [31], an Optical Character

Recognition (OCR) and an image filtering applications were used since they show the

effectiveness of the proposed framework. Using these applications, the offloading technique

and the decision model were implemented. The graph model allowed determining the best

offloading decision and the results were validated conducting several experiments on real

time applications. In addition, to handle all these issues automatically, the burden and the

error prone development tasks on software developers are relieved and this framework

would also reduce software development efforts by providing generic solutions.

1.3 Research Questions

Although there have been many researches for several years, offloading or cyber foraging

models still need to be improved to provide a holistic computation offloading approach

including remote server discovery, gathering context information, application partitioning,

5

remote execution, error handling and security to be practically usable in real life. In this

study, the main focus is the computation offloading models for surrogate/cloud architectures

and the following research questions have been pointed out:

1. Can offloading improve performance of the mobile devices in terms of

responsiveness (execution time) and energy consumption?

Answering this question, the existing approaches and applications were reviewed

while the smartphone capabilities were considered. As expected, smartphones have

certain limitations when compared to their desktop equivalents in terms of CPU

processing and memory capacity. The battery lifetime is also another important

constraint. To see whether offloading improves the responsiveness of an application

or not, several experiments were conducted on an OCR application. The application

was run on the smartphone locally and some computation intensive parts of the same

application were migrated to the remote server. In the experiments, which are

presented in chapter 6, the responsiveness of the smartphone applications was

considerably improved by offloading. In addition, the overall reduction in execution

times led to significant decrease in the energy consumption of the smartphones.

2. In what ways application partitioning can be achieved efficiently at runtime? Is it

possible to perform partitioning without the need of developers’ intervention?

These questions are answered through existing application partitioning approaches.

The existing frameworks heavily depend on explicitly defining computation

intensive parts of the application by annotations as discussed in Section 2.2. Thus the

software developer needs to define methods and services to be offloaded.

Application partitioning is handled through whether sending the annotated methods

and services or not. To decide the annotated methods to be offloaded is made via

integer linear programming that is too costly for each method. Therefore, some

studies handled this costly operation on the server side by communicating to the

server to send the updated state after which they gathered the results. On the other

hand, an overall optimal partitioning algorithm considering dependency to other

application components is the main focus of the thesis. After metrics collection, an

application call graph was constructed. Since the optimal partitioning solution for

the call graph is costly, an optimal partitioning heuristic is proposed to find the best

offloading containing classes. Consequently, the decision model finds productive

classes to be offloaded at runtime.

3. Is it possible to have a streamlined offloading architecture? And how can the

distribution transparency of application partitioning be improved?

To answer these questions, existing offloading mechanisms proposed by Verbelen et

al. [6] and Kemp et al. [7] were investigated. In addition, current object oriented

approaches [3], [32], [33] were reviewed in terms of injecting proxies transparently,

which does not break the existing application code. A number of limitations in these

approaches were identified and addressed. After this analysis, the proposed

offloading technique was designed, as presented in Chapter 3. The solution preserves

the polymorphic behavior of methods and invocations. The framework collects

metrics through method calls of the proxy objects. Collected metrics are also updated

during each method call. A service discovery mechanism and security issues are also

handled. Furthermore, other approaches require some processes such as a pre-

compile phase, change of smartphone’ virtual machine and third party middleware

such as Apache Flex for OSGi-based service, which increases the framework

dependency to the specific mobile application platforms. On the other hand, since

our framework only uses dynamic proxies and reflection in object oriented

languages, it does not depend on underlying smartphone OS and other middleware.

6

1.4 Thesis Structure

This thesis is organized as follows:

Chapter 2 presents a detailed background of the study. Application offloading approaches are

investigated. The taxonomy of the application offloading and granularity of application

components for offloading are discussed. Application partitioning heavily depends on proxy-

based method. Thus, transparency of proxy injection to an existing application without a

developer intervention and change of existing application structure is presented. The graph

partitioning algorithms and mobile cloud computing approaches are detailed. Lastly, service

discovery protocols and security issues are reviewed. This section also involves an overview

of the related work on offloading methods and offloading decisions. A detailed comparison

of the offloading methods is presented. The literature review helps to draw specific issues

and limitations in previous works, which contains distribution transparency, application

partitioning and execution of application components on the remote server.

Chapter 3 presents the offloading programming model. How issues related with distribution

transparency are handled is explained. The pseudo-code of the offloading technique is

presented. How the injection of proxies to the application and method call through proxies

are explained. In addition, the reverse proxy mechanism for callback is explained.

Chapter 4 presents the application partitioning model which is based on a call graph model.

The proposed graph model and offloading decision algorithm are also described. The metrics

collections and graph construction algorithm are presented.

Chapter 5 presents the offloading framework. The offloading framework structure both on

the mobile device and the server side is presented. The components of the framework are

explained. The runtime behaviour of a mobile application using the framework is presented.

A prototype implementation of the framework through an example application is discussed.

Chapter 6 presents the performance evaluation of the framework. The evaluation goal of

each example application is addressed. The examples show whether offloading is productive

or not. It has been shown that finding the optimal graph partition containing classes to send

the remote server for execution can significantly increase the overall application

performance. The most important part in this section is the verification of the graph model.

The result of the graph model and data measured in the experiments are compared.

Finally, Chapter 7 concludes the present work discussing the limitations of our study,

contributions of the thesis and possible future work.

7

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Application Offloading Approaches

In this section, main approaches related to application offloading are presented. There are

two main approaches for offloading. First approach is migrating a whole VM of a

smartphone to a server and the latter is to only send specific components of an application to

the server for utilizing extensive resources of remote machines such as clouds.

2.1.1 Offloading Virtual Machine of Mobile Devices

Recent developments in virtual machine technology and cloud computing architecture bring

a demand for utilizing the remote computers by allocating the clone of the smartphone VM.

Three approaches for VM migration were proposed. In first approach, the VM of the

smartphone, which is already executed on a smartphone, is suspended and then migrated to

the remote server with its memory and disk state, then this VM is launched in a remote

server. After execution of the requested task, it returns the VM to the smartphone [15]. The

second approach is to load a base VM of the smartphone in the remote server at the initiation

phase. During the application execution, a dynamic VM synthesis which is a small VM

overlay is sent to be integrated with the base VM in the remote server. Although, the second

approach relatively decreases the state transfer, the migrated data is also very large when

considering constrained smartphones and network bandwidth. Synchronization of both sides

can also be very complex. Satyanarayanan [15] proposed this solution for one hop away

cloudlet architectures which have high bandwidth WiFi connection. On the other hand, the

third approach [10], [34] is based on sending an application-level VM which is an abstract

computing machine. The bytecodes of the method area are executed through this VM. The

method area contains stack information and heap objects. This method requires considerable

change of the smartphone VM structure and also sends the stack information and all heap

objects at runtime, which is very costly in terms of network overhead. Figure 1 presents the

VM migration architecture for the third approach.

8

Figure 1 (a) Single machine computation, (b) VM migration [10]

2.1.2 Offloading Application Components

An adaptation of mobile applications via component (classes and services) mobility has

presented a solution to address the limitations of constrained mobile devices. By offloading

components of an application to the cloud, computational power and battery lifetime of

mobile devices can be enhanced. Component granularity is a major issue affecting the

benefits of offloading. The partition granularity level is usually handled at object, class and

method level. Therefore, it is important to analyze the advantages and disadvantages of

granularity level of the offloading decision. The computation intensive components are

executed on the remote server and the results return to the smartphone. Component

offloading is generally done through proxy-based methods as explained in Section 2.3.

2.1.2.1 Object offloading

An object can be offloaded by investigating the bytecode of an application and it is

converted to the component to be offloaded. The analysis of the application can also be

handled at runtime. There are algorithms [35] to determine the dependencies between the

objects of a program. The objects of applications are monitored and statistics are collected to

compute a usage graph. The edges between objects represent communication and nodes

represent objects’ sizes or memory usage. This graph can be partitioned in terms of

computation related objects. Moreover, Static analysis has a certain shortcoming compared

to execution analysis, since we cannot exactly depict the objects’ usage by analyzing the

source code.

2.1.2.2 Class offloading

Class offloading is based on tracing all objects of a class to partition and send all of them to a

surrogate server. Class offloading analysis can also be done either via implementation or at

runtime by computing the consumption graph. Since such a graph partitioning problem is

NP-complete, a graph partitioning heuristic can be applied to choose the classes to offload

with respect to their interactions. This method requires a special virtual machine

implementation to monitor all objects of desired class.

2.1.2.3 Method offloading

Method offloading is not as much complex as other two methods. The call graph can be

computed by static analysis and communications such as method arguments’ return values

between nodes and number of times the method is executed is collected by execution

analysis. Since the quantity of methods in an application is more than the quantity of classes,

application analyzers can spend more time in method offloading. In method offloading, all

methods are sent to a surrogate with their dependent methods. In addition, the method of an

application should be wrapped to be sent and executed on a remote server. On the other

9

hand, software developers may want to send only specific methods that do not depend on

any other method or smartphone resource.

2.2 Related Work

The studies related to offloading in the literature have been investigated via systematic

review approach. This study has especially focused on the researches between 2010 and

2015. Scopus, Web of Science and IEEE Xplore were employed in searches. Only the

studies focusing on “Computation Offloading”, “Mobile Computing”, “Mobile Cloud

Computing” and “Application Partitioning” were analyzed. Table 1 presents the comparison

of offloading studies with respect to a taxonomy containing methods, partitioning time,

dependent platform, offloading component granularity and offloading decision. Table 2

shows the evaluation of each study and applications that are implemented to validate the

studies. As a result, image processing and augmented reality applications are mostly

implemented for evaluation.

Table 1 Comparison of offloading models

App/Author Method Partitioning Partitioning

Algorithm

Platform Granularity Offloading

Decision
Verbelen et al.,

(2010, 2011)

OSGi Static, compile

time

Convert

annotated

classes to the

service

Java Bundle

ILP +

runtime

Verbelen et al.,

(2012)

OSGi Static

partitioning at

compile time

Convert

annotated

methods to

service

Android Bundle History based

profile

Kemp et al.,

(2011) Cuckoo

AIDL Static

partitioning at

compile time

Convert

methods to

AIDL services

Android Service -

Kovachev and

Klamma (2012)

MACS

AIDL Static

partitioning at

compile time

Convert

methods to

AIDL services

Android Service ILP +

runtime

Cuervo et al.

(2010) MAUI

Microsoft.

Net byte

code

instrumen

tation

Dynamic

Method

annotation as

remotable

Microsoft

.Net

Method Profiling

metrics,

ILP

Kristensen and

Bouvin (2010,

2012)

Scavenger

RPC and

decorator

pattern

Dynamic Method

annotation

Python Method Task and

peer centric

profiling

(history

based

profiling)

Chen et al.,

(2012)

AIDL Static

partitioning at

compile time

Create

wrapper for

remote

services

Android Service Execution

time, energy

consumption

and

remaining

battery

metrics

Zhang et al.,

(2012)

Byte code

instrumen

tation

Dynamic Call graph

model, depth-

first search

algorithm

Android Method -

Yang et al.

(2008)

Byte code

instrumen

tation

Dynamic (k+1) graph

partition

algorithm

Java Class Resource

metrics;

memory,

bandwidth

10

Table 1 (Cont.)

Kosta et al.

(2012)

ThinkAir

Proxy-

based

Dynamic Method

annotation as

remotable

Android Method Profiling

metrics at

runtime

Chun et al.

(2011)

CloneCloud

Java byte

code

instrumen

tation

Static compile

time

Static and

dynamic

profiling are

used to detect

expensive

methods

Android Firstly send

mobile VM,

then send

thread

includes

methods to be

offloaded

Profiling

metrics,

Zhang et al.

(2010)

weblet Dynamic - - weblet -

Hung et al.

(2011)

Android

state

transfer

Dynamic VM migration Android Android

component

state

migration

-

Gu et al. (2004) Java RPC Dynamic Min-Cut

graph

partitioning

and Fuzzy

offloading

decision

engine are

implemented

Java Class Online

profiling

Geoffray et al.

(2006)

Java RPC Dynamic Byte code

instrumentatio

n

Java Method Online

profiling

Rim et al.

(2006)

Java RPC Static, reads

configuration

file

Byte code

instrumentatio

n

Java Method Configuratio

n file

Giurgiu et al.

(2009) AlfredO

OSGi +

proxy

Dynamic All and K-step

partitioning

algorithm

Java Module called

bundles

(functional)

Offline

profiling

Rellermeyer et

al. (2008)

OSGi +

proxy

Dynamic

service call

Service based Java Module called

bundles

-

Han et al.

(2008)

Java RPC Dynamic Max-flow

Min-cut

algorithm

Java Functional

requirements

Online

profiling

Abebe and

Ryan (2012)

Byte code

injection

Dynamic Distributed

local

application

graph

Android Class Online

profiling

Ou et al. (2007) Byte code

instrumen

tation

Dynamic K+1

partitioning

algorithm

Java Class Online

profiling

Gao et al.

(2012)

Task flow

partition

Dynamic Graph based

task partition

and resource

allocation

algorithm

Simulation Task -

Flore et al

(2015)

AIDL Static

partitioning

Create

wrapper for

remote

services

Android Service Fuzzy Logic

11

Table 2 Evaluation of offloading models

App/Author Evaluation / Validation Applications
Verbelen et al.,

(2012, 2011)

Compare execution time on mobile device and

offloading, This is the first application that uses

the OSGi method.

Augmented reality shopping assistant

application

Verbelen et al.,

(2012)

Comparing execution time on mobile device, LAN

offloading and Cloud offloading

Chess and Photo Editor Application

Kemp et al.,

(2011) Cuckoo

Comparing execution time on mobile device and

server.

eyeDentify: a multimedia content

analysis application.

Kovachev and

Klamma (2012)

MACS

Comparing execution time and energy

consumption on mobile device and offloading

N-Queens problem and process a

video file, detect faces from video

file, cluster them and provide video

point in terms of faces

Zhang et al.

(2012)

Compare execution time of their method that is

Call link with ILP method.

Face recognition and Natural

language processing

Yang et al. (2008) Compare execution time on mobile device and

offloading using one and two surrogate.

Combined OCR and translation app

Kosta et al. (2012)

ThinkAir

Comparing execution time and energy

consumption in case of mobile device, WiFi local,

WiFi WAN.

N-queens problem, a face detection

program, a virus scanning app and an

image merging app.

Chen et al. (2011)

CloneCloud

Comparing execution time and energy

consumption with respect to offloading file size or

image size, WiFi and 3G connection.

Virus scanning and Image search

Cuervo et al.

(2010) MAUI

Execution time, energy consumption and cpu

usage are compared in terms of WiFi and 3G.

Face recognition, interactive video

game.

Kristensen and

Bouvin(2012)

Scavenger

Comparing running time on mobile device and

offloading.

Image manipulation app

Zhang et al.

(2010)

Comparing running time, energy and memory on

mobile device and offloading

Image processing and AR app.

Hung et al. (2011) Comparing running time on mobile device and on

server in terms of file or image size.

P2P file exchange and face

recognition

Gu et al. (2004) Execution time is compared in case of memory

constraints when offloading or not

Java İmage Editor, Graphical

molecular editor, Java text editor.

Geoffray et al.

(2006)

Execution time is compared according to

offloading or not

an interactive

bookstore implemented with servlets

Rim et al. (2006) Execution time is compared according to

downloaded application’s byte code size.

Complex scientific applications

Giurgiu et al.

(2009) AlfredO

Execution time is compared according to whether

to offload or not

3D home design from images

Rellermeyer et al.

(2008)

Execution time is compared according to whether

to offload or not

AlfredOShop shopping application

Han et al. (2008) Whole application runs on the mobile device,

except mobile device dependent components are

moved to the server and their partitioning

algorithm are implemented and energy

consumption is compared

3D game application

Abebe and Ryan

(2012)

Performance and battery consumption are

compared.

A java based n-body simulator using

the Barnes-Hut algorithm, a Hospital

System Simulator, and NASA World

Wind demo application.

Ou et al. (2007) Execution time saving is compared. PiCalculator and MP4GenPlayer

application.

Gao et al. (2012) Energy and execution time savings are compared. Simulation

Flore et al (2015) Energy and execution time savings are compared. NQueens problem

http://tureng.com/search/evaluation

12

Figure 2 Application partitioning taxonomy [36]

Figure 2 presents an application partitioning taxonomy. The application components for

partitioning can be different granularity such as class, method, service and task. The aim of

offloading components of an application can be varied. The performance improvement and

energy saving can be aim of the offloading. For partitioning an application, the parameters

related with software and network can be collected and used. An allocation decision, which

is related with whether to send the object or not, can be made offline (at compile time) or

online (at runtime). The analysis of the application can also be made at runtime or at compile

time.

For application partitioning, graph based approaches can be used to partition an application

graph into a number of disjoint subsets that contain the list of classes to be offloaded to

resourceful servers. The cumulative weight of edges whose incident vertices are located in

different virtual machines is called the edge-cut of the partition. The main goal of application

partitioning is to minimize the edge-cut that determines the network cost. Although

determining the optimal partitioning to distribute the components of applications is an NP-

Hard problem, there are various classical heuristics offering solutions [20]–[23]; however,

these heuristics need to be adapted to mobile environment in terms of costs and balance

constraints. In addition, Ou et al. [2] proposed a different multi-level graph partitioning

heuristic for mobile applications coarsening the graph based on the heavy edge-light vertex

algorithm. The coarsening phase continues until the subsets/partitions that are suitable for

component distribution are achieved. The algorithm randomly chooses vertices and merges

them with their neighbors that have low vertex cost and high edge weight. The edge weight

of this heuristic is the frequency of the method call among different classes. The vertex

weight represents memory and CPU processing cost. The runtime complexity of this

heuristic is O(|V|3) (|V| is the number of vertices) and the computation process for finding

suitable partitions to offload is also expensive. Abebe and Ryan [37] implemented the same

heuristic but maintained the distributed partitions on the cloud side to decrease the memory-

related costs.

13

Flores et al. [14] discussed the importance of the decision-making process in partitioning a

mobile application. To increase the responsiveness of an application or decrease the energy

consumption, components that with low or no dependency on the locally executed part

should be determined with caution at runtime to be offloaded. If not, code offloading usually

becomes a more costly process than locally running the application. Flores et al. proposed a

method level code offloading using the java reflection library for pure functions that do not

require callback to mobile device resources, so this approach decreases distribution

transparency.

Chun et al. [10] and Satyanarayanan et al. [15] developed a VM migration mechanism fully

migrating the processes of a VM running on a mobile device to a remote server. The

CloneCloud determines costly methods using Integer Linear Programming (ILP) at build

time (off-line) and stores the pre-defined execution sets in a database to be checked at run

time. In this method, first a mobile VM, then a thread containing offloadable methods are

sent to a remote server. However, the VM cloning of application-layers and sending this

clone with the application state to a remote server incur high communication costs.

Therefore, sending only the components with high computation costs to the remote server

can be more effective. Using this method, Android Dalvik VM [38] is also modified to

implement dynamic profiling and state synchronization, but changing Dalvik VM is

applicable only through cloud-side implementation in real scenarios.

In the Mobile Assistance Using Infrastructure (MAUI) system proposed by Cuervo et al.

[11], remotable code parts are identified and marked by programmers. This method aims to

reduce the energy consumption of smartphones through fine-grain (method level granularity)

code offloading. A programmer needs to determine the offloadable methods in the

development phase. Methods are implemented in Windows Mobile OS environment using

the features of the Common Language Runtime (CLR), which allows using meta-data

information with the methods. Compiled files contain this information to be used during

offloading. In addition, other method information including parameters and static variables

are serialized and then sent to the remote server in an XML file. However, sending the state

of each method to a remote server may result in inconsistencies if the variables and states

change during execution. In addition, in their research, Cuervo et al. did not illustrate how

MAUI can handle the callback functionality. Sending an XML state file and

marshalling/demarshalling this file is a time and resource consuming task.

Verbelen et al. [6], [39], [40] developed a framework based on the OSGi modular application

development for Android. Since the Android platform does not inherently support the OSGi

system, the researchers used a middleware (i.e. Apache Felix) to run the OSGi modules. In

this method, Android application components were converted to suitable OSGi service

interfaces to execute an Android application based on OSGi bundles. Therefore, the

researchers introduced a plugin for Eclipse IDE for the development of an Android

application. This plugin enables the developer to annotate possible offloadable methods. To

publish the annotated methods as OSGi services at build time, the plugin produces suitable

OSGi bundles. Moreover, the OSGi middleware needs to be embedded in all Android

applications to run OSGi modules at runtime.

Kemp et al. [7] developed the Cuckoo framework using the Android service mechanism,

which encapsulates a computation intensive task. This framework offloads Android services

to a resourceful server and facilitates static partitioning at compile time. The programmer

implements computation intensive tasks via the Android IDL as a local service. Android

services use Inter-Process Communication (IPC) channel for remote procedure call. Then,

the Cuckoo framework implements the same interface for a remote service. This study

involves dummy method implementations that can be run on the remote server. While real

methods can be similar to those used in the local service implementation, they can also be

changed to implement a different algorithm.

14

Kovachev and Klamma [41] further improved the Cuckoo framework adding an offloading

decision mechanism that implements ILP. It is too time consuming to provide a solution for

each method call using ILP. Energy and execution time estimations for Android services are

only based on the code size. Chen et al. [13] also utilized the Android IDL interface to

offload resource intensive code parts at compile time using static partitioning.

Zhang et al. [42] offloaded code parts using the bytecode instrumentation at runtime in a

mobile application. However, this way of code offloading requires de-compiling the signed

mobile application and then adding the required functionality to the application, which may

lead to inconsistency problems. In order to define code parts that can potentially be

offloaded, Kristensen and Bouvin [12] used a method annotation. The authors proposed a

cyber-foraging system based on Python methods using a history-based profiling that stores

the parameter size and value of each method to estimate the remote execution time at

runtime. However, this system does not support the callback functionality. Chen et al. [43]

offloaded only specific computation intensive methods to a remote server using Aspect

Oriented Programming (AOP). Since the development environments of mobile devices do

not officially support AOP, the researchers modified the Android build process. This study

was only based on the pure functions.

Ling et al. [44] presents architecture to achieve real-time mobile Augmented Reality (AR)

application. Although mobile devices are necessarily resource–poor relative to the static

client-server hardware, they are more suitable for outdoor AR applications. The main

problem is integration of cloud resources and mobile devices. For collision detection and

collision response in AR applications it should process the virtual objects with physical

objects in real time. Mobile devices can achieve low-latency and high bandwidth wireless

access by using a nearby resource-rich cloudlet instead of the remote public cloud. In the

proposed architecture, smartphones, PDAs and other mobile devices can transmit image data

via wireless network. Private AR cloudlets handle the data instead of the distance public

cloud on internet. The architecture consists of three cloudlets which are pre-processing

cloudlets, storage cloudlets and post-processing cloudlets and they are working respectively.

The experiment results show that the proposed AR cloudlets are faster than traditional

approach.

Although there has been a lot of research on offloading, most of the proposed methods

encounter problems if they need to call back resources from the smartphone or shared

memory. Therefore, the unity of the serial execution of programs cannot be guaranteed. This

issue can even be completely ignored and therefore distribution transparency may not be

completely achieved. Most of the studies only consider the pure functions (not depending on

other components) for offloading.

2.3 Proxy-Based Method

A proxy class is used as a placeholder for an original application class to intercept

communication between the client/calling class and server/called class [45]. Proxies can be

injected to an existing application to support application adaptation through object mobility.

It enhances access to the target class to provide extra capabilities before or after execution of

the target class methods. By creating proxies for a software entity, frameworks have been

also allowed to collect adaptation metrics such as execution times, CPU and memory usage.

There should be structural and semantic compatibility between a proxy class and the real

class. Structural compatibility means the equivalence of the type compatibility that the proxy

class and real class should implement the same proxy interface, method signature and

method modifiers. On the other hand, semantic compatibility guarantees that the application

behavior is not changed after proxy injection, in particular the polymorphic behavior of

methods are preserved. Since the functionality of application middleware is commonly

15

supported via proxies such as distribution transparency, the proposed offloading framework

proxies have important roles to provide an adaptive and seamless mobile application

development.

2.3.1 Transparency of Proxy-based method

The transparency of developed frameworks and middleware is dependent on the

transparency of proxies. The more transparency the proxy has, the less the software

developer intervention to the application and the more capable software applications are

achieved. The object-level proxy approaches [32], [46], [47] are discussed in Section 2.3.2.

2.3.2 Proxy Inheritance

A proxy is a class providing an interface to the real subject object that has the same interface

as the proxy. The client code calls the method of the proxy; however, the proxy has the real

subject object and forwards all calls to it [48]. The current studies have focused on many

characteristics of proxy inheritance, which are the attributes of the parent classes and the

external classes (system or library classes) extended by original classes. In order to access

the methods of the proxy and the real subject objects in the same way, both classes (proxy

and real subject) should implement an interface in the object oriented languages.

Figure 3 A class diagram of proxy

Figure 3 presents the class diagram of the proxy pattern [46]. An interface (B) declares

public method of class B and class B_Implementation is transformed from the source code of

the original class. Class B_Proxy delegates its behavior to the implementation class. This

approach has some limitations due to not covering the inheritance relation of the original

classes. This is so since object oriented languages such as Java and C# do not allow an

interface to extend a class.

Figure 4 An object diagram of proxy [46]

class Proxy

«interface»

B

+ doB() : void

B_Proxy

+ doB() : void

B_Implementation

+ doB() : void
Delegates

class Proxy

B

+ doB() : void

b_proxy:B_Proxy

+ doB() : void

b_impl:

B_Implementation

+ doB() : void

Delegates

16

An approach proposed by Eugster [46] is a flexible class structure (Figure 4). Since class

B_Proxy is extended from the original class, it has an ability to execute all methods of the

proxied class. However, the aim of the proxy is not only to execute the methods of the

original class but also it generally forwards the execution to a separate class instance such as

a remote object. In addition, if a proxy class only executes the methods of the inherited

class, it will become a decorator design pattern [45]. Another case is to extend a proxy class

and modify the original class to forward the method execution to another object. JavaParty

[33] and J-Orchestra [49] implemented this approach but when an extending relation is used

for external classes, some dependency problem might be caused in the external classes

because of the modification.

In order to overcome these limitations; class members, member identifiers, super class and

interfaces have been taken into consideration to reach a general solution. Gani and Ryan [32]

proposed an approach to improve the proxy class structure of JavaParty and J-Orchestra

frameworks in terms of extending a proxied class and a non-proxied class. The main

characteristic of this approach is that a proxy class only extends classes that are extended

from the original classes so that the class type compatibility can be assured. The drawback of

this approach is that it does not support dynamic change of the proxy class and proxied class.

Changing the proxy class and proxied class dynamically without modifying the client code is

important for adaptive framework development.

Figure 5 The extending approach for a proxied class [32]

Figure 6 The extending approach for a non-proxied class [32]

In order to provide the dynamic swapping behavior between a proxy class and a proxied

class, Ryan and Westhorpe [50] proposed the extending approach. In this approach, a proxy

class (class C) also extends the implementation class (class C_implementation) to ensure

type compatibility. As class C also extends the parent class which is class B, the type

class extendApproach

B

+ doB() : void

«interface»

Proxy

B_Implementation

+ doB() : void

C_Implementation

+ doC() : void

C

+ doB() : void

+ doC() : void

Delegates

Delegates

Delegates

class extendApproach

«interface»

Proxy

B

+ doB() : void

C

+ doB() : void

+ doC() : void

C_Implementation

+ doC() : void

Delegates

Delegates

17

compatibility among proxy of class C, class C implementation and class B implementation

are preserved (Figure 5 and Figure 6). However, if the proxied class C also extends the

proxied class B to delegate the method call of the parent proxied class, the proxied class C

will have duplicate functionality. Therefore, to prevent this duplication problem the proxied

class C has delegation relation with proxied class B rather than inheritance relation. The

dynamic swapping between the proxy and proxied object is handled by using inheritance

relation. For the proxy of classes which are not implemented an interface, the extending

approach was implemented.

2.3.3 Proxy Instantiation

The proxy creation mechanism can explicitly be handled by programmers creating a

proxy/stub in the software program. In Java RMI [3] and Dynamic Proxy API [47], the

programmer should request proxy creation. In contrast, Enterprise JavaBean (EJB), which is

an API to run software components, uses a dependency injection method by providing a

setter method to create proxies. The EJB middleware in program initialization phase creates

proxies and pass them to the setter method. On the other hand, JavaParty and J-Orchestra

frameworks handle the proxy creation in a fully transparent way. When a programmer

requests an object creation by using “new” keyword in Java program, the frameworks create

the corresponding proxy instead of the real subject object. However, these frameworks are

not explicitly targeted to constrained mobile devices. In particular, the development

environments of mobile devices such as Android platform do not allow implementing these

frameworks because Android virtual machine (Dalvik) structure is not same as the JVM.

In the framework presented in this thesis, the proxy creation is handled by the factory

method. The programmer has to use the framework’s factory to create all objects instead of

using the “new” keyword. When a software developer requests the object creation from the

factory method of the framework, the framework initiates a proxy in a fully transparent way.

Instantiation of the original class is automatically handled by the proxy.

2.3.4 Field Access

In object oriented programming languages, the client object communicates with a target

object through its fields and methods. The client object calls the desired method of the proxy

and then the proxy forwards the requested method call to the original object. However, the

field access is not achieved in the same manner since the field of an object allows only

standard operations such as read and write. Therefore, the proxy object cannot delegate the

field access to the original object. There are solutions to overcome this restriction. First, the

programmer is forced to add a setter function to write a field value and a getter function to

read a field value. The second solution is that frameworks modify the client code to call the

proper field access method rather than directly accessing the field. In the framework

presented in this thesis, the first solution was chosen to delegate the field access to the

original object. Software developers have to write getter and setter methods of the fields.

2.3.5 Static Members and Private Methods

Static fields and methods are members of classes in object oriented languages. They do not

belong to a specific instance of classes or objects so all instances of the classes access the

same static fields and methods. These static fields and methods are shared in a single Java

VM; therefore, in distributed applications, since each JVM loads separate copy of a class, the

sharing mechanism does not work across JVMs. This issue can be handled by providing

additional proxy class for static members (J-Orchestra). When a client needs to access static

members, the call can be delegated to the proxy of the static members to synchronize the

access.

18

Proxies are generally implemented to communicate with objects separated across the

network. The other issue is about accessing private methods. Private methods, which are

restricted to the code residing in the same class, cannot be accessed through proxies. To

access a private method of the original class is only possible by swapping the private

identifier for public. As expected, using public identifiers also change the semantic of the

methods. As an example, assuming a super class and a child class is extended from the super

class and if the identifier of a private method of the super class is changed to public, the child

class can override the method of the super class. Therefore, modifying the identifier only can

cause an inconsistency. In addition, private methods do not have polymorphic behavior

because of invisibility from the outside of the class.

2.3.6 Dynamic Proxies

A dynamic proxy provided by Java Dynamic Proxy API [47] is a class that forwards method

call from the proxy class to the original class at runtime. The dynamic proxy requires a list of

interfaces that a proxied class needs to implement and an invocation handler that delegates

the request to the original class. This API contains a proxy interface to be implemented by a

proxy class to provide type compatibility.

Figure 7 Dynamic proxy dispatch

public interface InvocationHandler {

 Object invoke(Object proxy, Method method, Object[] args)

 throws Throwable{ // dispatch to the original method }

}
Listing 1 InvocationHandler interface

public class A_ProxyFactory {

 public static <T> getClassProxy(<T> classType) {

 return (classType) Proxy.newProxyInstance

 (classType.getClassLoader(),

 new Class[] { classType },

 new InvocationHandler() {

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable {

 // collect the metrics before the method execution

 return method.invoke(proxy, args);

 // after method execution

 }

 });

 }

}
Listing 2 A dynamic proxy factory that wraps a class

Figure 7 presents a dynamic proxy creation and calls the target method. An

InvocationHandler interface is implemented by an invocation handler object which is

associated to each proxy instance. The proxy method invocations are forwarded through its

invocation handler instance’s invoke method. This invoke method takes the proxy instance, a

19

method object that contains all declared methods and an array of object that contains

arguments. The invocation handler invokes the appropriate method and the result of the

method will be returned on the method invocation on the proxy instance. This is detailed in

Listing 1 and Listing 2 where:

proxy: The method calls are forwarded to the original object through an instance of the

proxy.

method: The methods’ signature of original objects is gathered from their interfaces and the

proxy instance can implement the same interface to invoke the methods. A method class

which contains declared methods is implemented by the proxy interface.

args: An array of objects which is the arguments of the proxied object is given to the

invocation handler.

2.3.7 Inversion of Control

Inversion of Control (IoC) is a mechanism which separates an implementation from the

application code. It is more specifically known as dependency injection. The implementation

of a service can be wired at runtime to the application [16]. The main difference between

frameworks and libraries is that frameworks are extendible. Libraries usually provide some

specific functionalities and a client calls the methods to do some work. On the contrary, a

framework presents some abstract design which allows customizing various behaviors either

by sub-classing or plugging-in in specific places. This specific behavior is then called by the

framework at runtime.

As a specific example, consider class C needs to work with different implementation of class

B. If a concrete class B is provided to class C, the client class is needed to be changed for the

different implementation of class B in Listing 3a. On the other hand, the different

implementation of class B in Listing 3b can be provided through constructor injection.

There are also different type of injections such as setter injection and interface injection.

Listing 3 (a) Concrete implementation, (b) IoC constructor injection

The basic idea behind the IoC is to have a separate object, an assembler, that is responsible

to provide the different implementation. In our framework, the object creation is requested

from a factory class (an assembler). The factory class can provide either a local object or a

proxy depending on the offloading decision.

2.3.8 Java RMI

The java virtual machine allows us to use local objects by providing their references. In

Figure 8a, class B (caller) retrieves the local reference of class C (callee) from virtual

machine (VM) and then invokes the methods of C. This structure is not suitable to offload

any parts of the class C because the local reference of C that is held by B becomes invalid if

C is offloaded to another VM. Therefore, in order to call a method of a remote object, it is

Class C…

 B b;

 Public C() {

 b = new B();

 b.doB();

 }

(a)

Class C…

 B_Interface b

 Public C(B_Interface b) {

 this.b = b;

 b.doB();

 }

(b)

20

needed to use RMI or a special mechanism that implements transparent binding to the

remote object references.

Figure 8 (a) Local invocation, (b) Remote method invocation (RMI) [3]

In Figure 8b, Remote Method Invocation (RMI) mechanism employed in java programs is

illustrated. In RMI, the client objects can get the remote reference of the server object to

invoke methods of the server object through stub-skeleton classes. The java remote

communication service that is a lookup service and Android IDL mechanism are responsible

to associate an object’s reference with the real object which is located in the remote server.

For example, in Android platform, an object B retrieves a reference of object C by Service

Connection (Android IDL) class then invokes the remote method of C. However, this

architecture suffers some performance problems if both classes are in the same local

machine. If offloading frameworks decide not to offload class C, the interactions between B

and C still go through the time consuming network stack because the local reference is not

provided.

2.3.9 OSGi

OSGi, which is based on centralized service oriented architecture, enables java classes to be

produced as a service. The other bundles can use this service. A service contains the instance

of a class that is implemented, interface of the services and service properties. All published

services are saved to a registry and they are monitored and handled through the OSGi

framework [51]. Software modules are named as bundles which call each other via services.

Since OSGi specification is based on local VM references, it is not specified for distributed

application modules. Rellermeyer et al. [51] specifies and implements distributed OSGi

called R-OSGi using a remote service discovery and registering remote services to allow

consumers to find it. R-OSGi is implemented for managing interaction between bundles

located in different devices. If a remote service is called through a bundle, R-OSGi will

create a local proxy bundle which is responsible for forwarding the method call of the

original bundle. Rellermeyer et al. [52] also proposed a framework that enables distributed

application development and supports mobile devices to use modules of the applications

based on R-OSGi. The framework, called AlfredO, enables most of the electronic devices in

our vicinity to give software as a service instead of pre-installed drivers to use them. The

devices which provide some functionalities are announces their capabilities as a service;

thus, mobile devices can reach these services at runtime and use the devices.

Giurgiu et al. [53] constructs application resource consumption graph which is built using

the OSGi module system. They use offline profiling to determine the resource consumption

such as memory and data usage except CPU usage. They report that it is not easy to measure

CPU usage for different mobile environments with precision. Verbelen et al. [6], [40] also

implement OSGi and proxy-based method to offload the computation-rich tasks to the cloud

by means of dynamic decision at runtime.

21

Since Android development model is different from OSGi modular system, it requires OSGi

middleware such as Apache Felix to run OSGi modules. Therefore, in order to implement

Android application as OSGi bundles, it is needed to convert Android application

components to the proper OSGi service interfaces. Verbelen et al. [6] developed a

framework that enables OSGi modular application development for Android. It presents a

plugin for Eclipse IDE, where Android application is developed. The classes to be offloaded

are annotated by the software developer via the provided plugin. Therefore, the suitable

OSGi bundles are produced by converting the annotated classes to OSGi services at the build

time. In order to run OSGi modules at runtime, it is also required to embed the OSGi

middleware to each android application.

2.3.10 Android IDL

The most important components of an Android application are activities and services. An

activity is a user interface (screen) of an application. A service is executed in the background

for computation tasks. The android service mechanism separates user interface components

from the application logic. Since it is also possible to run services in the background as a

separate thread, it does not allow the application logic to intercept user interface components.

When a user wants to start an android application, she/he first launches an activity which

presents a graphical user interface, and allows binding to running services or initiate a new

service. Android services communicate through inter process communication (IPC)

mechanism [4], [54]. When an activity is bound to a running service, this service can also be

shared by multiple activities. Android IPC mechanism uses a predefined interface by

specifying an IDL file and a stub/proxy pair. Android pre-compiler produces the stub/proxy

pair as illustrated in Figure 9.

Figure 9 Android IDL [54]

Android interface description language called AIDL should be used to define interfaces in

both the consumer and the provider side. The arguments of proxy methods which are used to

invoke service methods can be primitive type and Parcelable [4]. The objects that implement

Parcelable are serialized to Parcels. These objects are restored from Parcels like Java

serialization mechanism that is used to serialize and deserialize objects from byte arrays.

Services can also invoke a method on the activity by callback which is supported by Android

IPC The Parcelable interface provides a protocol to write and read object from Parcel (write

both the class type and its data to the Parcel that is responsible from writing and reading

object states).

There are two main steps in Figure 9: Define a remote interface via AIDL, The AIDL

compiler then generates a marshalling code via its stub methods and Service and Client-

specific methods can be implemented. The Android AIDL build tool extracts a Java interface

from each *.aidl files and places it into a gen directory. Android AIDL tool also creates a

Stub inner class inside android service through an aidl file. Hence, developers first need to

create an instance of their own ServiceConnection class in order to use an AIDL-defined

service. In the ServiceConnection subclass, onServiceConnected() method, which is called

22

once activity is bound to the Service to obtain a proxy to the Binder implementation should

be implemented[54].

Kemp et al. [7] proposed a framework called Cuckoo which benefits from Android service

mechanism that encapsulates a computation intensive task. The framework offloads android

services to resourceful server. It enables static partitioning at compile time. The programmer

implements computation intensive tasks by an AIDL interface as a local service. For a

remote service, the Cuckoo framework produces an implementation of the same interface.

This implementation has the dummy methods to be executed on the server. The real methods

can be the same with their local service implementation; however, since the developer may

want to implement a different algorithm on the remote server, these methods have different

implementation.

 Figure 10 Android service binder [54]

A Service is the component of an application. Services generally performs heavy operations

in the background and do not have a direct user interface. They are usually started from other

application components and continue their execution in the background while the mobile

client switches between application activities.

In Figure 10, an application component (client) calls bindService() to bind to a service. After

that, onBind() method of the service is called by the Android system to provide an IBinder

that handles interaction with service. To receive the IBinder, the client has to create an

instance of ServiceConnection which is passed to bindService() method. When creating a

Bound Service, it is necessary to provide an IBinder via an interface. Clients can interact

with the Service via the following ways:

 Extending the Binder class: If the service runs in the same process as the client, it is

possible extend the Binder class and return an instance from onBind().

 Using a Messenger: Create an interface for the service with a Messenger that allows

the client to post commands to the service across processes via Message objects.

 Using Android Interface Definition Language: AIDL handles the works related with

decomposing objects into primitives. The operating system then marshal these

objects between processes to enable IPC.

2.3.11 DCOM and CORBA

Microsoft’s Distributed Component Object Model (DCOM) and OMG’s Common Object

Request Broker Architectures (CORBA) are two main standard architectures to distribute

objects across different machines in object oriented programming. The aim of these

frameworks is to support software developer to concentrate on their application logic instead

of complex network interactions. Thus, a client uses any object and their methods in the

application without considering the location of objects that may reside in the local machine

or the remote server. In case of a remote object, the method call will be forwarded to the

remote server and this network issue is hidden from a software developer [8], [9]. By

23

implementing these frameworks, distribution transparency is achieved. Both frameworks are

based on the communication type of client–server. A client calls a method of a remote object

which encapsulates server services based on the method signature defined in the interfaces.

By implementing an interface, an object guarantees to provide all functionalities presented in

that interface. An extensive documentation on how to call a method of an object, and how to

maintain object references are presented in the literature.

 Figure 11 CORBA architecture [9]

Figure 11 presents CORBA architecture including client and server side. The Object Request

Broker provides a central bus which is responsible for interacting objects transparently [9].

The stub in client side and the skeleton in the server side are automatically generated in each

side to handle network communication on behalf of each object. In addition, IDL is used to

define the public interfaces for objects. Since both is based on client-server communication,

the callback functionality is not presented for objects.

2.3.12 Bytecode Instrumentation

An application can be analyzed and computation-heavy tasks can be extracted at runtime by

using a bytecode instrumentation library. Zhang et al. [42] proposed a framework that

achieves bytecode offloading of the desired application by using java instrumentation

libraries. After partitioning the classes that are annotated, the framework creates proxy

classes that stay on the mobile phone and are responsible for implementing remote function

call. The framework also offloads the computation tasks to more than one surrogate. The

basic idea of this framework is to transform the bytecode of the application to create proxies

for original objects at runtime.

ASM, Javassist and Apache BCEL tools provide inspection, editing and creation of Java

binary classes. The inspection aspect mainly copies what is available in Java through the

Reflection API; however, if you have an alternative way to access this information, it will be

useful when you are actually modifying classes rather than just executing them. This is

because the JVM design does not provide any access to the raw class data after it has been

loaded into the JVM. In addition, most of the libraries developed for Java platform are not

compatible with Android Dalvik VM because of different VM structures.

2.4 Graph Partitioning

Graph based approaches for application partitioning are used to separate into parts that

contain components to be offloaded. The graph consists of vertices and edges. The vertices

stand for application components. The weight of vertices may consist of memory and CPU

usage and execution time of each component. The weight of edges may reflect the data

communication between vertices. A dynamic and static profiling is used to collect the

application information. The static code profiling is based on inspecting Bytecode

Instructions Count (BIC) of applications.

How a mobile application partitioning is achieved is the important subject to develop an

adaptive and efficient offloading architecture. Following issues should be addressed:

24

 Application component classification: distinguish components to be offloaded and

not offloaded.

 Application component weighing: according to resource usages such as execution

time, assign the weights of each application component.

 Reducing communication overhead: transmission time between the mobile device

and a cloud server.

 Decrease the algorithm complexity: algorithms running on the mobile device should

be light-weighted.

The computation cost resulted from running components or the application on a mobile

device and communication cost resulted from sending data between the mobile device and

the server are gathered. The migration cost is taken into account when a component is

migrated over wireless network. Then, these two classes of costs are added to the

components and connectors; thereafter a general graph model that represents the software

structure of an application is set up.

2.4.1 Multilevel Algorithm

A graph (G) can be partitioned through a multilevel algorithm which starts from coarsening a

graph to have fewer vertexes. This coarse graph then can be partitioned into smaller graph.

Lastly, the final partition is converted back to the original graph via several refinements [55].

Suppose a graph consists of vertices (V) and edges (E):

Coarsening phase: During the coarsening, the graph G is sequentially converted to smaller

graphs G1, G2… Gn such that |V|> |V1|>|V2|>…>|Vn|. |V| is the number of the vertices in the

graph and |Vi| is the number of the vertices in the subgraph Gi.

Partitioning phase: An initial two part or k part partition Pn of the graph Gn(Vn, En) is

calculated at the end of the coarsening phase when the coarsest level of the graph is

produced.

Uncoarsening phase and refinement phase: The partition Pn of Gn is uncoarsened back to G

by handling all the intermediate graphs.

During coarsening phase, A Graph Gi+1, which has fewer vertices, is computed from the

finer graph Gi by removing incident edges, thereafter the vertices connected by those edges

are joined. The weight of the combined vertices is equal to the sum of the weights of the

vertices whose edges are removed. In the case where both vertices have an edge to a third

vertex, these two edges are combined to one edge by summing the weight of the edges [20].

Thus, a multinode consisting of vertices that have matching is created. A matching of a

graph is a set of edges without common vertices. A matching is maximal if any edge in the

graph that is not marked as matching has at least one of its endpoints matched. Since the

maximal matching is used to coarsen the graph. The number of vertices in the coarsened

graph should not be less than half the number of vertices in a level finer graph. However, the

size of the maximal matching can be lesser than the |Vi|/2 according to the connection of the

edges of Gi. The coarsening algorithm can be stopped if the ratio of the number of vertices

from Gi to Gi+1 might be much smaller than two. The threshold value can be defined for

comparing with this ratio.

A maximal matching can be computed by implementing various algorithms such as Random

Matching (RM), Heavy Edge Matching (HEM) and Light Edge matching (LEM). RM is a

effective method to calculate a maximal matching and decreases the number of coarsening

level. However, the main aim of the graph partitioning in our context is to minimize the

25

edge-cut cost among separate parts. If the heavy hedge is chosen to combine the vertices, the

weight of the matching is extracted from the total edge weight of the coarser graph. Figure

12 shows different ways to coarsen a graph. The weight of the vertex of the coarser graph is

equal to sum of the sub vertices. In addition, if both vertices of an incident edge points to

third vertex, the weight of the edges are summed.

Figure 12 Different ways to coarsen a graph [20]

The second phase of a multilevel algorithm is a partitioning phase of the coarser graph.

There are various partitioning algorithms such as spectral bisection and combinatorial

methods. The spectral bisection algorithm is a time consuming algorithm; therefore, this

study has focused on the combinatorial methods. KL algorithm [22] which is one of them

begins with an preliminary partitioned graph. The algorithm tries to find a subset of the

vertices that produce a smaller edge-cut cost from each part of the graph in each iteration. If

it finds these subsets in the coarser graph, thereafter the swap is executed and this partition is

used in the next iteration. The algorithm proceeds by reiterating the whole cycle. If such

subsets cannot be found, the algorithm ends. At this point, the partition can be at a local

minimum and the KL algorithm does not provide a further improvement. Fiduccia and

Mattheyses (FM) [23] algorithm has improved the KL algorithm by reducing the run time by

moving only one vertex. The gain of a vertex is defined as the decrease on the edge-cut if

that vertex is moved from one partition to the other.

The second initial partitioning algorithm is the Graph Growing Partitioning (GGP) that starts

from a random vertex and grow a region around it in a breath-first approach. The algorithms

may stop when the vertices in the partition become a half of the coarser graph. The quality

of this algorithm depends on the selected initial vertex to start the algorithm. In order to

increase the quality, the algorithm may start by selecting ten different vertex and growing

around them, then according to the lower edge-cut cost, the partition from this set can be

chosen as an initial partition. The third one is Greedy Graph Growing Partitioning (GGGP).

In this algorithm, the gain can be calculated in the edge-cut by inserting a vertex into the

growing region. The vertices are ordered in increasing order in terms of their gain, then the

vertex with the largest decrease in the edge-cut is added to the partition and the gain of

frontier vertices are updated.

During uncoarsening phase, the partition of the coarser graph is uncoarsened back to the

original graph. As a result of this process the graph becomes finer and it has more possibility

to improve the partitioning and decrease the edge-cut. A partition refinement algorithm can

be used after uncoarsening to the original graph. The main purpose of a partition refinement

algorithm is to pick two subsets of vertices and then swaps those subset of vertices in

different subpartitions that leads to the greatest potential edge-cut cost. At this phase, KL

refinement algorithm can also be implemented to lead to a better partition within a few

iteration. In addition to this, KL refinement algorithm can also be executed for only

26

boundary vertices in the each partition. The pseudocode of the algorithms are presented in

Appendix A.

2.4.2 (k+1) Algorithm

The algorithm partitions an application represented as a call graph into k components to be

offloaded and not offloaded so as to distribute partitions to k remote machines. An

undirected graph, called dynamic multi-cost graph, presented as G(V, E). V stands for vertex

that is application’s classes and E presents edges between nodes and their corresponding

communication costs. Each vertex has multiple costs such as CPU usage, memory utilization

and bandwidth that are presented either as a vector or as a composite vertex weight that is

weighted cumulative of these costs. Edges’ cost stand for data accesses between nodes or

classes. The categories of costs can be computational costs of the application including

memory costs, processing costs, bandwidth costs and communication costs that are

interaction between components and offloading cost itself.

The clustering of the components is based on finding the most related parts. In these types of

partitioning algorithms, first collapse a graph by separating all nodes and then recursively

reduce the size of the graph by partitioning the related parts, algorithm needs pre-defined

constraints for finding match during coarsening the graph. In this step, selects k heavy

weighted edges, then if edges satisfy the predefined constraints, the lower and upper bound

for constraints should be defined, and nodes count is less then k, algorithm will finish; on the

contrary, the nodes are needed to be merged in terms of heavy edge that means the incident

vertices are tightly connected and light vertex that means more vertices will be merged under

the predefined constraints in order to coarsen the graph. If a node matches the constraints it

is marked in order to prevent to add in more vertices. If the cost constraints are fulfilled by

the partitions but an unmatched vertex remains in the graph, the partition is an unsuccessful,

and then follows this procedure again to produce the desired partitioned graph. Ou et al. [2]

implemented this algorithm to distribute an application. Ou et al. [2] partition a given

application into components to be offloaded iteratively. Some other approaches [2], [20] are

finding heavy edge or light edge matching. In addition, some heuristics [20], [56] only

consider the weights of edges and some [20] both weight of vertices and edges. Yang et al.

[57] implements k+1 algorithm in terms of decreasing communication between classes and

the memory and CPU request of the classes. The graph is constructed by a profiling phase

which is a part of the offloading. Apart from the user interfaces and network communication

classes, the graph is cut with respect to weights of the vertices and edges.

2.4.3 Min-Cut Algorithm

A min-cut heuristic was proposed by Stoer and Wagner [58] to dynamically partition a graph

G (V, E). The algorithm separates a graph into two partitions so that the sum of the weights

of edges separated to different parts is minimum. Figure 13 presents a sample graph with

edge weights. The algorithm first selects a vertex that does not change through iterations and

this vertex is one partition (the source partition). The other partition (the sink partition),

which is a subset of the graph, is iteratively found. The second partition grows by selecting

random vertices and adding them to the partition. When a random vertex is selected, it is

added to the most tightly connected vertex and the edge weight is updated. The cut of the

phase which is the sum of weights of last added edge is calculated and if the phase cut is less

than the existing minimum cut, the phase cut is saved as the existing minimum cut. The

minimum edge cut pattern will become the result. Figure 14 presents the addition of a

random selected vertex to the subset after the first minimum cut phase which is 5.

27

Figure 13 A graph with edge weights [58]

Figure 14 The graph after the first minimum

cut phase [58]

Gu et al. [56] proposed an adaptive offloading framework that implements min-cut heuristic

to partition an application at runtime. A min-cut [58] heuristic algorithm is adapted for this

purpose. The algorithm separates a graph into possible partition plans in line with the edge-

weight, thereafter it picks the best partition plan that produces the profitable cut. Since the

most of the resource usage are associated to vertex-weights such as execution times and

memory consumption rather than edge-weights such the interaction level between

components, in the min-cut heuristic of Gu et al. [56], there is a possibility to not find some

better partitioning solutions.

2.4.4 Runtime vs Compile Time Partitioning

Application partitioning can be handled either at pre-compile time or at runtime. After

application development, software developers can use proper plugins in order to create parts

to be offloaded of their applications, which is called as pre-processing. Offloading

frameworks’ plugins benefit from method annotations, pre-defined classes or services to

convert the computation heavy part of the application to the components to be offloaded.

These components to be offloaded then can be sent to resourceful servers at runtime. On the

other hand, application partitioning can also be handled at runtime according to online

profiling and runtime partitioning algorithms; however, this method incurs some extra

overhead to the mobile devices. Most of the runtime algorithms use the bytecode

instrumentation mechanism to extract the computation intensive partition from the

application.

2.5 Mobile Cloud Computing

Bridging the gap between constrained mobile devices and cloud infrastructure, there has

been an arising interest to develop the middleware that controls and coordinates

communication between the resourceful cloud machines and smartphones. The aim of

mobile cloud computing frameworks is to augment constrained mobile devices in terms of

CPU, memory and storage capabilities via utility computing vision of computational clouds.

There have been a lot of mobile cloud applications because of being assisted by cloud

resources. Mobile applications can utilize cloud resources on demand and at different levels

(SaaS, IaaS, PaaS). In order to bring cloud resources to the nearby of the mobile devices,

there are two main ways that most of the middleware implement, which are offloading and

delegation [59].

Most of the current cloud services providing a lot of functionalities to mobile devices work

on a delegation model. Mobile devices implement the cloud services which are based on

service oriented architecture. Mobile applications gathers RESTful-based [60] services at

runtime to send mobile tasks. These pre-defined services aim to fulfill the specific

functionality of mobile applications. Offloading provides more flexibility than a delegation

model. Mobile application can be partitioned at different granularity levels such as methods,

classes and services, and analyzed at either compile time or runtime to determine

28

computation-intensive components sent to a resourceful server to increase the performance

(responsiveness of an application) and decrease the energy consumption.

Currently, cloud providers present Web APIs to develop and deploy web services to be used

by mobile applications. A mobile task can be distributed to a cloud service which can be

from platform level or infrastructure level and is located on different clouds such as public,

private. However, these Web APIs causes several problems such as compiler limitations,

additional dependencies and code incompatibility. In addition, Web APIs require a

specialized knowledge to develop and deploy each mobile task to specific smartphone OSs

platform. Kaya et al. [61] developed RESTful-based services to be consumed by mobile

applications. Mashup services combining Google Map API, flickr API to provide location-

based social campus application was developed.

Figure 15 Mobile cloud computing structure [36]

Figure 15 presents the communication structure of Mobile Cloud Computing Frameworks

(MCCF). MCCFs are deployed to servers located in LAN and the cloud to provide the

computation capability to smartphones.

2.5.1 Cloud Computing

Cloud Computing has recently appear as a key technology for sharing resources. The

concept of cloud computing depends on making many computers together to get a super

computer in order to deliver computing-on request. This computing concept works like other

public services such as electricity and gas [62]. However, cloud computing is not a new

concept. Grid computing, utility computing and on-demand computing precede cloud

computing by trying to solve the problem of organizing computational power to easily

accesses and publicly available resources [63], [64]. According to Malathi [65] Cloud

Computing has six key characteristics: “on-demand self-service, broad network access,

resource pooling, location independence, measured service, rapid elasticity”.

In the On-demand computing service, without any user intervention cloud resources are

provided to clients’ devices when additional resource is required. In addition, in order to

benefit the resource pool of cloud high-bandwidth network communication is necessary.

These resources are used by various client devices such as mobile phones, laptops and

tablets. Resources of cloud are available to be used by many consumers according to the

multi-tenancy or virtualization model. Cloud resources are allocated at runtime based on

customer demand. Consumptions of the computing resources are automatically monitored

and billed to the consumer.

Cluster computing, Grid computing and currently cloud computing aim to deliver computing

as a utility vision. Cloud computing has improved this utility computing vision further step

by allowing users to reach provided services at anytime and from anywhere. Developing

29

software as a service to be used by many users instead of running on their individual

computers is becoming inevitable development aspects [66].

Cloud computing has achieved its characteristics by virtualization. Virtualization has

recently enabled the abstraction of computing researches by means of multiple logical VMs

on a physical machine. VMs enables hosting of many operating systems which are

independent from each other but actually working on the same machine, which also provides

security and privacy. In addition to this, resource allocations such as CPU and memory usage

are also varying in terms of the need of the user. According to the changing demand of

resources by user, VMs can be dynamically stopped and started.

Cloud Computing differs from Grid Computing in terms of resource utilization and

deployment model. In Grid computing, the resources are collaboratively used to construct

virtual structures or corporations while cloud is generally conducted by private corporations

except some open source organizations.[67]. Grid computing tries to achieve the maximum

capacity by dividing a huge task into a lot of independent and no related sub task, and then

allow every node to do the jobs.

Scalability and elasticity are important aspects in cloud computing in terms of a hardware

view. The cloud computing user is not worry about further plan for provisioning due to the

fact that resources is available as though they are unlimited. Cloud computing also

eliminates traditional corporations’ trade-off whether to satisfy customer needs also in the

peak by establish as many servers as required or to sacrifice some profit by establish servers

on steady usage. Thus, corporations can allocate small hardware resources at the beginning

and if an increase occurs in the demand, the cloud resources can be easily increased [68].

Since the payment of resource usage is based on short term basis such as hour and day, the

resources can be released when they are no longer needed. There are many well-known

cloud computing providers which are Amazon, Microsoft and Google. Table 3 presents the

comparison of the well-known cloud providers.

Amazon Elastic Compute Cloud (EC2) [66], [68], [69] offers a virtual computing

environment in which user can run Linux and MS Windows based applications. It is a web

service and scales up and down the capacity in the cloud. An Amazon Machine Image (AMI)

contains an operating system, application software and other settings related with

configurations is available. Multiple virtualized instances can be provisioned by using these

AMIs. In addition, it is adjustable by the web interface through web service calls to change

the capacity according to requirements. The user can start, monitor and stop instances of

either created or selected AMIs after S/he uploaded the desired AMIs to Amazon Simple

Storage Service (S3). Pricing is varying according to which service is instantiated if Amazon

EC2 is used, the price is depends on the time spent to run the instance; otherwise, Amazon

S3 price depends on any data either upload or download transferred.

Google App Engine [70] permits user to build web based applications on the same resizable

systems that support Google applications. Developers can use Python programming language

to write their applications and once applications are deployed on Google App Engine, all

maintenance and scaling up-down works will be handled by Google App Engine. Users can

also web applications which is based on Java technologies. After development, these web

applications will be available on the infrastructure provided by Google. The data store,

Google accounts, URL get, image manipulation and e –mail services have been supported by

Application Programming Interfaces (APIs). Users can use web-based administrator control

so as to manage and monitor their running web applications. It provides 1 GB of storage and

about 5 million page requests each month without any bill. When applications are enabled, it

is only billing usage above the free limit.

http://tureng.com/en/turkish-english/private%20corporation
http://tureng.com/en/turkish-english/private%20corporation

30

Since Microsoft Windows Azure [71] offers an unified development, hosting and

environment in which user can control their application. User can create, upload, and control

web and other applications via Microsoft datacenters. It consists of three parts which are

Windows Azure and SQL Azure. Compute and storage services are supplied by Windows

Azure. A relational database based on cloud services is supplied by SQL Azure. Windows

Azure aims to provide general computing services instead of serving to a specific

application. The system do not allow users to control the provided operating system but users

can choose the language. Although the network configuration, fault tolerance and scalability

are automatically handled by the libraries in the system, the developer should explicitly

configure some properties of the application. As a result, Windows Azure works as a middle

structure that has whole application framework functioning as Google AppEngine and has

virtual machines functioning as Amazon EC2

Table 3 Comparison of the well-known cloud providers [68]

 Amazon Elastic

Compute Cloud(EC2)

Microsoft Windows

Azure

Google AppEngine

Computation Model Infrastructure Platform Platform

Service Type Compute, Storage Web and other

applications

Web applications

Virtualization Operating System level on

a Xen hypervisor

Operating System

level on Fabric

Controller

Application

container

User Access Interface Administrator control

provided through web

interface

Microsoft Windows

Azure Portal

Administrator

control provided

through web

interface

Programming

Framework

Adjustable Linux,

Windows Server

Microsoft .NET Python and Java

2.5.1.1 Service Model

Software as a Service (SaaS): cloud clients or software developers deploy their applications

on an environment providing any hosting structure. Thus, application clients can reach these

services via internet by different devices such as web browsers, smartphones and tablets.

Cloud providers do not allow cloud clients to control the cloud infrastructure. Applications

uploaded by various cloud clients is structured as an isolated logical environment. This

scenario is called Software as a Service (SaaS). Examples are SalesForce.com, Google Docs

and Mail.

Platform as a Service (PaaS): An abstraction level providing the software platform rather

than a virtual machine providing infrastructure is offered by cloud providers. An additional

resource requirement is transparently fulfilled when services executed on the software

platform need extra hardware resources. This is named as Platform as a Service (PaaS).

Google Apps Engine and Microsoft Windows Azure are famous examples.

Infrastructure as a Service (IaaS): Cloud providers are allocate isolated hardware

infrastructures based on virtualized environment which allocates various computing

resources. The underlying hardware resources can be changed at runtime with the help of

virtualization. Cloud clients can choose an operating system and then deploy their software

31

structures which is providing different services. This scenario is named the Infrastructure as

a Service (IaaS). Amazon EC2 is a famous example.

Data Storage as a Service (DaaS): A virtualized storage is supplied by cloud providers as a

distinct cloud service which is named as data storage service. DaaS can be considered as a

specialized version of IaaS. Google BigTable, Amazon S3, Apache HBase and so forth are

well-known examples of the DaaS.

2.5.1.2 Deployment Model

Private cloud: Private corporations conduct the cloud infrastructure which can also be

provided by a third party and located in the corporation facility. Cloud providers can provide

specialized private cloud within their organizations.

Community cloud: For different purposes, various organizations collaboratively build and

make available the same cloud infrastructure and policies.

Public cloud: Cloud clients can generally benefit from the public cloud. Cloud providers has

a complete possession of the public cloud with a large set of properties such as policies and

charging model. Google AppEngine, Microsoft Windows Azure, Force.com and Amazon

EC2, S3 are well-known examples of public clouds.

2.5.2 Cloudlet Approach

Cloudlets are not centralized like cloud and broadly-distributed and networked infrastructure.

Various powerful computers (or a cluster of multicore computers) located in near vicinity

provide computation and storage resources. A cloudlet is considered as a “data center in a

box” [15]. They are only need internet connectivity and access control with respect to self-

managing. They provide a simple management and are deployable to specific locations such

as coffee shop and restaurants. Actually, they should be one hop away from mobile clients

and accessible through high-bandwidth wireless LAN. Table 4 presents key differences

between cloudlet and cloud.

In the cloudlet approach, mobile clients which work as a thin client delegate their

computation intensive tasks to a cloudlet in the same LAN. The most important feature of it

is that it is located in near vicinity such that the transmission time of tasks have to be in a

few milliseconds in order to overcome high and variable WAN latency of the cloud.

However, if there is not an available cloudlet which is attached in the same LAN

environment with mobile client, the computation requests can be sent to a cloud.

Table 4 Key differences: Cloudlet vs. cloud [15]

 Cloudlet Cloud

State Only soft state Hard and soft state

Management Self-managed Professionally administered

Environment Datacenter in a box at business

premises

Machine room with power

conditioning and cooling

Ownership Decentralized ownership by

local business

Centralized ownership by

Amazon, Google etc.

Network LAN latency/bandwidth Internet latency/bandwidth

Sharing Few users at a time 100s-1000s of users at a time

32

Satyanarayanan et al. [15] proposes the temporary modification of cloudlet infrastructure via

VM technology. They try to simplify cloudlet management. In the cloudlet approach, a large

range of mobile clients can benefit with the least restrictions on their software. A VM

overlay of the mobile client is migrated to the cloudlet infrastructure in the dynamic VM

synthesis. The small VM overlay is derived from cloudlet base VM and The cloudlet

combine the base VM and the overlay VM in order to create launch VM. This method is

independent of specific language such Java, C#. On the contrary the other methods,

processes migration or software virtualization are language dependent. (Capture speech from

mobile device and then apply speech recognition and language translation). They develop a

prototype called as Kimberley. The method was tested in the Linux applications and the

synthesis time is measured. The author also indicated that the method requires optimizations.

Clinch et al. [72] examines the impacts of execution location on user experience. They

conduct an experimental study in line with deploying cloudlets in different location and test

the user experience. The public displays on which users play a game connected to the three

different cloudlets. Each of them is separated to the different locations. The user experience

varied according to the distance of cloudlets because of network latency. However it is

accepted that some applications are latency tolerant.

2.6 Discovery of Local Machines and Services

Service discovery is a mechanism in which networked devices and services can notify each

other about their availability to consume services they provided. Service discovery protocols

are constructed so as to decrease administrative overworks and increase usability [24].

Although UPnP and Jini which were the most widely used service discovery protocols

provide machine-to-machine communication architectures for home networking and

enterprise automation applications, since the multicast DNS and DNS based service

discovery mechanism such as Bonjour and Zeroconf are almost eliminated the administrative

overhead, they are currently implemented protocols by most of the networked devices.

2.6.1 Jini Service Discovery

The Sun Company developed the Jini to support a distributed environment for devices to

communicate with each other [73]. The main concept of Jini is to enable devices work

together. Both hardware devices and software devices can be represented as Jini services.

When a new Jini-enabled device is plugged into a network, it broadcasts a message to any

lookup service on the network. Then the lookup service registers the new machine. Thus,

client searches proper services and sends the job. Jini consists of a set of APIs and network

protocol. The service is the resource which is made available in the distributed environment.

2.6.2 UPnP and DPWS

UPnP was promoted by the UPnP Forum to make devices to communicate discarding any

installation steps [74]. UPnP is based on internet protocols such as HTTP, IP Multicasting,

TCP/UDP, DHCP, SOAP and XML. Web Services Discovery and Web Services Devices

Profile (DPWS) is first completely web services based home networking protocol which was

developed by OASIS [75]. Because of disadvantages of Jini and UPnP, the need for a fully

compact web services based protocol was emerged. In addition, standard WS-based

protocols require too many resources such as computing power, memory and energy.

2.6.3 DNS-SD

DNS-SD is a naming structure to facilitate and classify network resources such as services

and machines to become aware of availability and capability of networked devices. This

protocol is based on two specific DNS resource records: DNS SRV and DNS TXT. Type and

33

domain specification based service records are grouped and along with name of service and

key-value pairs are inserted as DNS SRV records. An entity on a network such as client

searches for domain specific services via sending standard DNS messaging query. In

response to a query, an appropriate service instance is returned to the client [76], [77].

Multicast DNS and DNS based service discovery (also known as Bonjour) are combined to

improve the current service discovery protocol [26]. The Zeroconf and its successor, Bonjour

announced by Apple, are service discovery mechanisms in use today interchangeably. The

format of a service type which is specified as “<Service>.<Domain>” make all service

instances available in that domain. For example, a DNS query including a name format

which ends with “.local.” is sent to local network to be responded by local devices with their

address. DNS-SD protocol is heavily based on a set of naming formats presenting services as

DNS records. To find a desired service, clients need to indicate the service types using the

form “_http._tcp.example.domain”. After returning a specific service instance name, a client

can use this service instance to gather service’s host and port number.

2.7 Security

2.7.1 Secure Sockets Layer (SSL)

The Secure Sockets Layer (SSL) and its advanced form, Transport Layer Security (TLS), are

computer networking protocols that used to provide secured communication between servers

and clients, and prevent third-party access (i.e. eavesdropping) [28]. To provide the security,

SSL regulates authentication of the client and server, and encodes the communication

between them. SSL utilizes the public and symmetric key encryption to establish a secure

connection.

To initialize a secure communication, the handshaking procedure is followed by clients and

servers. To authenticate the identity of the server, a client uses the digital certificate that is

the public key of the server. An X.509 certificate is created according to the Public-Key

Cryptography Standards (PKCS) and a Certificate Authority (CA) signed the certificate [78].

Servers acquire their certificates, and once a client connects the public key is forwarded to

the client by the server. Then, the digital certificate is validated by the client, and the client

assured that a server is indeed the server it asserts to be. SSL recommends some validation

checks but practice of them are left to developer to decide. The key validation checks are

listed below:

• Check the CA whether it is trusted or not.

• Check the signature whether it is correct or not.

• Check expiry time of the certificate whether it is valid or not.

• Check the subject of the certificate whether it is equal to the destination selected by

the client.

After server authentication, the client and server assign a shared key. In order to obtain data

confidentiality and integrity, this key is used to encrypt the data that is exchanged throughout

the session.

Moreover, the handshaking procedure also permits client authentication. After server

authentication, the client authenticates itself to the server via forwarding its certificate to the

server. Then, the encrypted SSL session is established.

2.7.2 Open Authorization (OAuth)

OAuth is a widely accepted authorization standard that was presented in 2009. OAuth

facilitates users to share their resources with third party applications without revealing their

credentials (i.e. password). OAuth has two versions, and OAuth 2.0, new version, is not

backward compatible with its antecedent OAuth 1.0. [30].

34

OAuth describes four roles and these roles are briefly defined below.

a) Client is an application that gains authorization from resource owner and requests a

protected resource on behalf of it.

b) Resource Owner is an entity that is able to give access permission to its protected

resources.

c) Authorization Server is a server that supplies tokens to the client once successfully

authenticating the resource owner and gaining authorization.

d) Resource Server is a server that stores the protected resource of the resource owner

and able to cater to access request via access tokens.

In OAuth, the client makes an access request to protected resources that are managed by a

resource owner and hosted by a resource server. During authorization, the credentials of the

resource owner are not used. The client acquires an access token that indicates various

attributes such as scope and life time. The token is provided by an authorization server [79].

Figure 16 shows the abstract protocol flow in OAuth. The communications among the four

roles and the steps followed are described below.

 Step1: The client requests authorization from the resource owner for the usage of its

protected resource. This request usually is sent through the authorization server as an

intermediary.

 Step2: An authorization grant is sent to the client to notify about the authorization of

the resource owner.

 Step3: The client request an access token from the authorization server via

providing the client credentials and authorization grant.

 Step4: The validity of client credentials and the authorization grant are approved by

the authorization server and an access token is send to the client.

 Step5: The client presents the access token and requests the protected resource from

the resource server.
 Step 6: The access token is validated by the resource server and if valid, the

requested resource is serviced.

Figure 16 Abstract protocol flow [79]

35

CHAPTER 3

CODE OFFLOADING

The focus of this study is providing an offloading programming model that embodies

distribution transparency and remote method execution. In this chapter, the proxy-based

(IoC) offloading technique is explained.

3.1 Offloading Approach

Mobile devices can transparently utilize cloud resources by migrating some or all of the

components of applications such as classes, objects, services or methods to resourceful

servers that are in the near vicinity (surrogate) or the cloud. This approach is known as code

offloading. If the execution time and/or energy consumption costs of a component are larger

when it is run on the smartphone than its cloud execution, then this component is a good

candidate for offloading (components to be offloaded). On the other hand, components

depending on the smartphone OS such as user interface, sensors, and network classes are

considered non-offloadable. The granularity level of the component to be offloaded is also

important. For example, object-level granularity increases the memory cost because of larger

number of components that create complex interaction patterns. Method-level granularity not

only increases the number of the components to be offloaded but also forces to consider the

dependency on object attributes and other methods in object oriented systems. Therefore, in

this thesis, class-level granularity is chosen and instances of classes are offloaded to reduce

the cost and complexity of offloading.

In this thesis, an approach that is independent of the underlying OS is proposed. By creating

proxies of objects to be offloaded on both the server and the smartphone sides, distribution

transparency is fully achieved. In addition, coordinating object access through a unique

object identification (id) on both sides and passing this id rather than the object as the

method parameter (passing by reference) overcomes the argument inconsistency problem

and achieves complete distribution transparency.

3.2 Offloading Programming Model

In this section, the offloading programming model is explained in detail. An IoC technique at

constructor stage is proposed. In this technique, the offloading factory is given the

responsibility of creating objects at runtime. Mobile software developers request the creation

of each object from the offloading factory.

36

Figure 17 An overview of the offloading programming model 1

The overview of the offloading programming model is shown in Figure 17 where the

runtime snapshot of an example application consisting of classes A, B, C and D is illustrated.

Classes A and B are marked as local classes, namely non-offloadable classes. Classes C and

D are marked as classes to be offloaded. All class definitions are also located in the remote

server at the initiation phase. When an instance of these classes (C, D) is requested on the

smartphone, a proxy instance of the class is created in the smartphone, and the instance of

class is created on the server side, during which a unique id is associated to this remote

object to handle the method calls. The offloading factory on the server side finds the

requested object using this unique object id. On the server side, assuming object C needs to

call a method of object B on the smartphone, proxy B should be provided. Such reverse

proxies from the server side to the smartphone side provide flexibility in software

development and prevent marshalling inconsistencies. Thus, distribution transparency is

completely achieved.

Figure 18 The class diagram of a sample application

3.2.1 Proxy and Object Creation

The offloading mechanism is initiated when the application requests an object creation. A

class diagram belonging to an example application is presented in Figure 18. This

application consists of four classes. Assuming classes A and B are marked as local classes

and the other classes are marked as classes to be offloaded. Class A calls a method of class C

(doC) and class C calls methods of class B (doB) and class D (doD). In this application class

B can be considered as a sensor manager class of the smartphone which can provide a sensor

data upon each request. Since classes C and D are computation intensive classes, they are

offloaded to the server and executed there.

1 The offloading factory creates proxies for the objects to be offloaded (on Classes C and D

on the smartphone and Classes A and B on the cloud). These proxies can delegate method

calls to the server and monitor all method calls.

class diagram

A

+ doA() : void

B

+ doB() : void

C

+ doC() : void

D

+ doD() : void

37

Figure 19 The sequence diagram of object creation using a proxy on the smartphone

//Offloading factory create-method on the smartphone and the server side

1 FUNCTION static <T> T create(Class<T> Type, final Context context,

2 final ConstructorParam cp){

3 IF (DecisionManager.isClassTypeOffloadable(Type)) THEN

4 //creates the proxy object dynamically and add this object to the proxy map container

5 Object proxyObj := createsProxyObject(Type, context, cp)

6 oid := generateUniqueID()

7 proxyContainer.add(oid, proxyObj); // PMAP container

8 RETURN (T) proxyObj

9 ELSE

10 //create the local object dynamically and add this object to the local map container

11 Object localObj := createsLocalObject(Type,cp)

12 oid := generateUniqueID()

13 localObjectContainer.add(oid, localObj)

14 RETURN (T) localObj

15 END IF

16 END FUNCTION

Listing 4 The pseudo code of the offloading factory create-method

Listing 4 presents the pseudo code of object creation by the offloading factory and Figure 19

presents the proxy and local object creation mechanism. The factory first checks the class in

Listing 4 (Line 3) to determine whether it is a component to be offloaded. If the requested

class is a component to be offloaded, then the factory creates a proxy and associates a unique

id to this proxy (Lines 5-7). This indicates that the object that is responsible for doing job is

created on the server side with specified object id through the offloading factory and added

to a local object container that is responsible for providing the same object for later method

calls of the specified object. After creating the proxy, the method call of the proxy is sent to

the remote server via an Invocation handler to be delegated to the object residing on the

server.

3.2.2 Method Call

After proxy and object creation, the method calls of the proxies are delegated to the real

object residing on the remote server. Proxy method call goes through an invocation handler

sd create proxy

:A (Client) :Offloading

Factory

(Client)

:Proxy

Container

(Client)

:Offloading

Factory

(Server)

LocalObject

Container

(Server)

c_proxy:C

c_object:C

create(C.class, cp) :

c_proxy generateUniqueId() :

oid

create()

add(oid, c_ proxy)

create(C.class, cp, oid)

create()

add(oid, c_object)

38

which takes a proxy, the object itself, the method and the arguments as the parameters of

invoke method.

Figure 20 The sequence diagram of a proxy method call

Figure 21 The sequence diagram of a proxy method call with object parameter

sd proxy method call

:A (Client) c_proxy :

C (Client)

:Invocation

Handler

(Client)

: Offloading

Factory

(Server)

c_object:

C (Server)

doC() :result

doC() :result getKeyByValue(proxyContainer,

c_proxy) :oid

getServerResult(oid, className,

methodName, args[]) :result

getObjectByKey(localObjectContainer,

oid) :localObject

doC() :result

sd method

: A (Client) c_proxy : C

(Client)

: ProxyContainer

<oid,Object> (Client)

: Offloading

Factory

(Client)

: Offloading

Factory

(Server)

: P1_Proxy

(Server)

alt Parameters_ProxyControl

[P1 is Proxy]

[else]

doC(P1)
getKeyByValue(ProxyContainer,

c_proxy) :oid

getKeyByValue(ProxyContainer, P1) :

P1_oid

generateUniqueID() :

P1_oid

addObject(P1_oid, P1)

createProxy(type,

P1_oid)

create(P1_oid)

doC(Pr_oid, className,

methodName, P1_oid ...) :

result

39

 // Proxy method handler

1 InvocationHandler handler := new InvocationHandler() {

2 FUNCTION Object invoke(Object proxy, Method method, Object[] args) throws Throwable

3 IF(applicationOffloadingChoiceSelected) THEN

4 oid := getKeyByValue(proxyObjectContainer, proxy)

5 Object[] changedMethodArgs := prepareMethodParameters(args)

6 IF(ConstructorParam is NOT NULL)

7 ConstructorParam cp := prepareConstructorParameters (cp)

8 END IF

9 RequestMessage requestMessage := new RequestMessage (oid, className,

10 method.getName(), changedArgs, cp)

11 ReceivedMessage receivedMessage :=

12 CommunicationManager.sendRequestMessageToCloud(requestMessage) ;

13 RETURN receivedMessage.getMethodResult()

14 ELSE

15 methodResult := ProxyBuilder.callSuper(proxy, method, args)

16 argsSize := calculateArgumentDataSize(args, methodResult)

17 throwable := new Throwable()

18 StackTraceElement[] elements := throwable.getStackTrace()

19 ProfileManager.profile(elements, method, elapsedTime, argsSize, packageName)

20 RETURN methodResult

21 END IF

22 END FUNCTION

Listing 5 The pseudo code of the proxy method handler

Figure 20 presents the method call of a proxy in which method call is handled through the

invocation handler. As the proxy has to delegate the method call to the server, the

identification number of the proxy needs to be gathered from the proxy container. The

request is sent to the offloading factory of the server with the object identification number,

the class name, the method name and the method arguments. Figure 21 presents the method

call of the proxy with parameter. Upon a method call, the offloading factory checks whether

the method parameters are of primitive types or instances of classes, or both. If a parameter

is of a primitive type, it is converted to a wrapper type; however, if an object is passed as a

parameter, to check whether it is a proxy or a local object is needed. Parameters can be an

instance of the proxy interface, so the id of this proxy object is obtained from the map

container and passed to the server. In all other cases, the offloading factory creates a proxy

of this object in the remote server (if no such proxy has been created before) and gives the

unique id of this object as the method parameters (Figure 21 , Listing 5, Lines 9-10). When a

proxy method is called, a RequestMessage is created to set the method call information.

Then the RequestMessage is sent to the remote server via TCP/IP protocol (Listing 5, Lines

9-13). In addition, for the profiling mode, proxies of all objects are created to gather

profiling information Listing 5, Lines 15-20).

3.2.3 Callback Mechanism

In order to achieve complete distribution transparency in the programming model, a

transparent callback mechanism needs to be provided. The callback mechanism is important

because objects residing on the remote server may need to instantly access the resources of

the smartphone such as sensor data.

40

Figure 22 The sequence diagram of a callback

Figure 22 presents the callback mechanism including the proxy and object creation. This

mechanism is the same with calling the remote method on the server side. The reverse

proxies on the server side are used to intercept method calls on the smartphone side. In

Figure 22 Object C needs to call a method of the Object B but Object B belongs to non-

offloadable classes; therefore, when object C needs to create an Object B, the offloading

factory returns a proxy of B, at the same time an Object B is created on the smartphone side.

The reverse proxy on the server side delegates the method call to the object residing in the

smartphone.

3.2.4 Processing Requests

Method call requests are sent to the server side through socket connections. In both side

(smartphones and servers) a network connection manager is responsible for delivering

requests.

sd callback

: A (Client) c : C_Proxy

(Client)

: Invocation

Handler

(Client)

: Offloading

Factory

(Server)

: C_Object

(Server)

B_Object

(Client)

b : B_Proxy

(Server)

Invocation

Handler

(Server)

Offloading

Factory

(Client)

doC() :result

doC() :result
getKeyByValue(ProxyObjectContainer,

c) :oid

doC(oid) :result

doC() :result

create(B.Class) :proxyObject

create()

generateUniqueId() :oid

add(ProxyObjectContainer, proxyObject, oid)

create (B.class, oid,cp)

create()

add(LocalObjectContainer, localObject, oid)

doB() :result

doB() :result

getKeyByValue(ProxyObjectContainer, b) :oid

doB (oid)

:result

doB() :result

41

//Offloading Factory processes the RequestMessage (this functionality is the same both on the

smartphone and the server end)

1 FUNCTION Object processRequestMessage(RequestMessage rm)

2 object := null;

3 processMethodArguments(rm.getMethodArgs())

4 IF(proxyObjectContainer.contain(rm.getObjectID)) THEN

5 object := proxyObjectContainer.get(rm.getObjectID())

6 ELSE IF (proxyObjectContainer.containsKey(rm.getObjectID())) THEN

7 object := realObjectContainer.get(rm.getObjectID())

8 ELSE

9 IF (rm.getConstructorParameter is NULL) THEN

10 object := createLocalObject(rm)

11 ELSE

12 object := createLocalObjectWithConstructor(rm);

13 END IF

14 END IF

15 class := Class.forName(rm.getClassName());

16 method := class.getMethod(rm.getMethodName(),partypes)

17 RETURN method.invoke(object, rm.getMethodArgs())

18 END FUNCTION

19 FUNCTION processMethodArguments(Object[] args)

20 Class<?> paramtypes[] := new Class[rm.getArgs().length]

21 Object[] args := sr.getMethodArgs()

22 FOREACH Object args[i] in args THEN

23 IF(args[i] instanceof ParameterObjectType) THEN

24 ParameterObjectType pot := (ParameterObjectType) args[i]

25 IF(proxyObjectContainer.containsKey(pot.getId()) THEN

26 args[i] := proxyObjectContainer.get(pot.getId())

27 ELSE IF (localObjectContainer.containsKey(pot.getId())

28 args[i] := localObjectContainer.get(pot.getId())

29 ELSE

30 IF(pot.isOffloadable) THEN

31 args[i] := createProxyObject(pot)

32 Paramtypes[i] := args[i].getClass()

33 proxyObjectContainer.put(pot.getId(),obj)

34 ELSE

35 args[i] := createLocalObject(pot)

36 Paramtypes[i] := args[i].getClass()

37 localObjectContainer.put(pot.getId(),obj)

38 END IF

39 IF (isWrapperType(pot)) THEN

40 Paramtypes[i] := getPrimitiveType(pot)

41 END IF

42 END IF

43 END IF

44 END FOR

45 END FUNCTION

Listing 6 The pseudo code of the offloading factory processing the request message

Listing 6 presents the pseudo code of processing the request both on the server and the

smartphone side. On the server side, the offloading factory first checks whether an object has

already been created in the remote server, and if not, creates the local object and associates

the unique id of the proxy to this object (Listing 6, Lines 4-14). After the creation of the

local object, this unique id is used to handle all remote method calls via proxies. On the

server side, the method call continues with processing the method arguments (Listing 6,

Lines 22-44). The dynamic method invocation is handled on the server (Listing 6, Lines 15-

17).

42

3.3 Discussion on Programming Model

Proxy-based approaches that provide distribution transparency are Microsoft’s DCOM [8],

[9], OMG’s CORBA [8], [9], Java RMI [3], Android IDL [4] and OSGi [51]. Although the

current well-known distributed frameworks (CORBA, DCOM) are not explicitly targeted for

mobile environments, they provide a valuable starting point to design an offloading

framework. Microsoft’s DCOM hosted on Windows OS computers and OMG’s CORBA

that is independent of the underlying OS are viable architectures for distributed application

development. Both architectures specify how calls are made across a network and how

references to objects are represented and maintained. However, both require IDL to define

the distributed objects. Furthermore, these frameworks require the method arguments be

marshalled and unmarshalled (serialized and deserialized) to be sent to the remote server

(being passed by value). Passing by value may lead to argument inconsistency when the

marshalled and demarshalled objects are modified by the remote call. In these frameworks,

the callback functionality should be separately designed by the software developer.

The OSGi-dependent approach requires the implementation of an OSGi middleware for each

application. To transform the programing code parts to suitable OSGi and IDL services,

certain rules should be strictly followed and a pre-compiling phase should be completed to

develop a mobile application. In addition, both in OSGi and AIDL services, developers need

to allocate a great amount of time to statically designing a callback functionality for specific

services. In the proxy-based offloading approach proposed in this thesis, all these limitations

have been overcome.

The VM migration based offloading techniques not only incur high data communication but

also require the modification of the native VM of the smartphone’ OS. The proposed

offloading technique does not require the modification of a VM or any pre-compiling stage

to run the system. In addition, rather than the whole VM, only the computation intensive

classes are offloaded to the remote server

As an alternative to coordinating object access through an object id, the object can be

serialized and sent to the remote server. In this case, the offloading factory of the cloud uses

this object and calls its related method. However, this may cause argument inconsistency

problems if the remote object modifies the parameter object. Therefore, the serialization of

parameter objects is avoided. Moreover, if a method parameter is of an object array type, the

array object elements were replaced with their unique object ids.

The software developer may not want to offload a certain part of the application or specific

classes where passwords are stored. In such cases, the developer can create objects without

using the offloading factory or annotate them as local.

43

CHAPTER 4

OFFLOADING DECISION MODEL

This chapter presents an offloading decision model to determine productive application

partitioning schema. Mobile applications are monitored through the offloading factory and

the invocation handler of each object at runtime. The execution time of each class and

dependencies between classes are gathered via this monitoring process. Section 4.1 presents

application partitioning model. Section 4.1.1 explains how the weights of vertices and edges

are calculated. Verification of graph partitioning model is presented in Section 4.1.2. How an

application call graph is constructed by using the method call stack is given in Section 4.1.3.

Lastly, Section 4.2 presents the application partitioning heuristic.

4.1 Offloading Decision Making

We created a call graph based model to store the profiling information. The graph G (V, E)

consists of the vertices (V) representing classes and the edges (E) representing the method

call between the dependent objects. The vertex weight is the cumulative execution time of

the methods that belong to the instances of the same class. The edge weight is the cumulative

time it takes to send the method arguments to the cloud, receive the results and execute the

called method on the cloud. In this study, execution time optimization also contributes to the

reduction of energy consumption as will be explained in Section 6.5.2.

 (a)

 (b)

Figure 23 Application call graphs

In Figure 23, the vertices, the instance of classes, carry out the computation intensive tasks.

The execution time to perform these tasks on the smartphone is to our benefit if we decide to

offload these classes. On the other hand, if we offload these classes to the remote server, the

time required to send and receive the data (the method arguments and return value), and the

44

time spent on executing the same tasks on the cloud will be the offloading cost. The aim of

offloading is to increase the performance of an application. In the proposed model, the

offloading gain is the reduction in overall execution time. In addition, in the scope of the

thesis, gain means execution time difference (execution time difference: the local execution

time to perform the task on the smartphone and the remote execution time spent on executing

the same tasks on the cloud). Section 4.1.1 presents how to define the vertex and edge

execution time. We propose a method for the calculation of the offloading gain to define the

productive offloading decision.

Table 5 Offloading gain calculation

Figure 23a Offloaded classes : B Offloading gain := TB – TAB

Figure 23b Offloaded classes : C, D,

E
Offloading gain := TC + TD + TE - TAC - TBC -

TBD

𝐺 = ∑ 𝑏𝑖 𝑇𝑖

𝑁

𝑖

 𝐶 = ∑ 𝑏𝑖𝑗 𝑇𝑖𝑗

𝑁

𝑖,𝑗

Offloading gain : = G – C

Equation 1 Offloading gain calculation

Where:

Ti: The local execution time to perform the task on the smartphone

Tij: The transmission time and the time spent on executing the same tasks on the cloud

Table 5 presents the calculation of the offloading gain in terms of the offloaded classes. The

graph edge-cut line separates the classes to be offloaded and not offloaded (Figure 23). In

Equation 1, bi is equal to 1 if the class is marked as a component to be offloaded, and 0

otherwise. If there is an edge between vertices i and j, Tij is equal to the weight of this edge;

otherwise, it is 0. bij is equal to 0 if both classes are marked as components to be offloaded or

local, and 1 otherwise. Following the profiling phase, the edge weight needs to be

recalculated according to the local execution time of the method call (tlocal), size of method

arguments (p), and size of return values (r):

𝑇𝑒𝑑𝑔𝑒_𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑆(𝑡𝑙𝑜𝑐𝑎𝑙) + 𝐶(𝑝 + 𝑟) ; 𝑡𝑙𝑜𝑐𝑎𝑙 = ∑ (𝑇𝑒𝑑𝑔𝑒(𝐶𝑃𝑈,𝑙𝑜𝑐𝑎𝑙))𝑖∈𝑚𝑒𝑡ℎ𝑜𝑑

Equation 2 Edge cost estimation

Assuming an edge between a caller and a callee object, the callee object is offloaded to the

remote server. We now need to estimate the edge weight in terms of the time that is spent on

the network and on the cloud. To estimate the edge weight, we need a speed-up function S(t)

of the processing time of the remote calls, since the CPU of the server is likely to be faster

than the processor of the mobile device. In Equation 2, function C(p+r) presents the network

time (round trip time). The sizes of the method argument data (p) and return value (r) are

used to estimate the round trip time. We provide the regression analysis formulas S(t) and

C(p+r) to estimate the edge cost (Section 6.3). These functions are also updated based on the

history-based profiles. The model is based on the assumption that the speed up (S) and

network cost (C) functions are linear mappings. The offloading gain model has similarities

with the work of Niu et al. [80] with respect to the cost of vertices and edge. However, the

proposed offloading model dynamically adapts itself at runtime.

After gathering the execution time of each node and data communication between nodes, the

process can also be implemented to optimize energy consumption. We can detect the

amount of the energy consumed to fulfill the task of a node by a constant of proportionality

of the execution time of the node and a constant of proportionality of transmitted data size

(KB).

45

Figure 24 Energy model

Figure 24 presents the energy model of the framework. Energy consumption of the vertices

and edges can be estimated. The energy consumption of the vertex i running locally on the

smartphone is 𝐸𝑖 = 𝛼 ∗ 𝑇𝑖 , where Ti is the local execution time and 𝛼 is constant of

proportionality of the execution time (Joule/ms). The energy consumption of the edge is

𝐸𝑖𝑗 = 𝛽 ∗ (𝑝 + 𝑟). Where (p+r) is transmitted data size and 𝛽 is constant of proportionality

of the transmitted data size (Joule/KB). 𝛼 and 𝛽 constant proportionalities are provided in

Section 7.1. Offloading gain: = Ei - Eij and in Figure 24, offloading gain will become: ED +

EC + EE – (EAC + EBC + EBD). The gain means energy consumption difference in the thesis.

4.1.1 Defining the weights of vertices and edges

To construct the call graph, we need to trace all instances of classes of the application. By

creating proxies of each object, we can trace and gather all the information on the method

call. Assuming we have an application containing classes A, B, C, D, the method call

dependency of this application and the method life (execution time) would be as presented in

Figure 25 (sequence diagram). To simplify, each method first carries out certain tasks, then

calls a method of the other object, and lastly completes the method execution by performing

other tasks. We converted the sequence diagram to the application call graph (Figure 26).

For instance, the weight of the object D is t10 (t10 is the method execution time, C is the caller

and D is the callee) and the edge weight between C and D is S(t10) + C(p3+r3). S(ti) is the

speed-up function which is used to estimate the server execution time. C(pi+ri) is the network

cost function which is used to estimate the network time using p3+r3, which is the method

argument and returned data size. The cumulative weight of object C is t9 + t11 + t4.

Figure 25 Calculating execution times of the vertices and edges

46

Figure 26 Graph representation of the execution times

Execution times of each object and called methods are explicitly presented in Figure 26. We

backtrack from the last method call to assign the execution times to the objects and

corresponding method calls. Figure 26 shows the graph representation of the classes and

their method calls. This graph is constructed from the method call stack (Section 4.1.3). In

Figure 26, ti stands for local execution times and (pi + ri) represents the data size to estimate

the time spent on sending and receiving data.

Figure 27 Graph representation of the energy model

Figure 27 shows the graph representation of the energy model, and execution times of nodes

and the transmitted data on the edges are converted to the energy consumption.

4.1.2 Verification of the Graph Model

The local and remote execution times of application components are presented in this

subsection in order to verify the graph model. An application consisting of Class B, C and D

is assumed and the offloading gain is calculated from both application execution times and

the graph model. The offloading gain of an application is equivalent to the offloading gain of

the graph model.

Case 1: An instance of Class B calls a method of an instance of Class C. The graph model

and offloading gains are presented in Table 6.

Table 6 Graph model verification (two classes)

Local Execution Remote Execution: suppose Class C is

offloaded to a remote server

47

𝐸𝑙𝑜𝑐𝑎𝑙

𝑑𝑜𝐵 = 𝑡1 + 𝑡2 + 𝑡3 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑
𝑑𝑜𝐵 = 𝑡1 + 𝑆(𝑡2) + 𝐶(𝑝1 + 𝑟1) + 𝑡3

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝐸𝑙𝑜𝑐𝑎𝑙
𝑑𝑜𝐵 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑

𝑑𝑜𝐵

= 𝑡1 + 𝑡2 + 𝑡3 − (𝑡1 + 𝑆(𝑡2) + 𝐶(𝑝1 + 𝑟1) + 𝑡3)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝑡2 − 𝑆(𝑡2) − 𝐶(𝑝1 + 𝑟1)

Graph representation and offloading gain from the graph model

Now if class C is offloaded : 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ = 𝑡2 − 𝑆(𝑡2) − 𝐶(𝑝1 + 𝑟1)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ

Case 2: when an offloaded component needs a callback is presented in Table 7.

Table 7 Graph model verification on a callback

Application Execution in case of a callback Graph Model

Suppose Class C is offloaded to a remote server

𝐸𝑙𝑜𝑐𝑎𝑙
𝑑𝑜𝐵 = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡5

𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑
𝑑𝑜𝐵 = 𝑡1 + 𝑆(𝑡2 + 𝑡4) + 𝐶(𝑝1 + 𝑟1) + 𝐶(𝑝2 + 𝑟2) + 𝑡3 + 𝑡5

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝐸𝑙𝑜𝑐𝑎𝑙
𝑑𝑜𝐵 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑

𝑑𝑜𝐵 = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡4) − 𝐶(𝑝1 + 𝑟1) −

𝐶(𝑝2 + 𝑟2)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡4) − 𝐶(𝑝1 + 𝑟1) − 𝐶(𝑝2 + 𝑟2)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ

48

Case 3: An application consisting of Class B, C and D is presented in Table 8.

Table 8 Graph model verification (three classes)

Application Execution in case of a callback Graph Model

Suppose Class C is offloaded to a remote server

𝐸𝑙𝑜𝑐𝑎𝑙
𝑑𝑜𝐵 = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡5

𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑
𝑑𝑜𝐵 = 𝑡1 + 𝑆(𝑡2 + 𝑡3 + 𝑡4) + 𝐶(𝑝1 + 𝑟1) + 𝐶(𝑝2 + 𝑟2) + 𝑡3 + 𝑡5

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝐸𝑙𝑜𝑐𝑎𝑙
𝑑𝑜𝐵 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑

𝑑𝑜𝐵 = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡3 + 𝑡4) − 𝐶(𝑝1 + 𝑟1) −

 𝐶(𝑝2 + 𝑟2)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ

= 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡3 + 𝑡4) − 𝐶(𝑝1 + 𝑟1) − 𝑆(𝑡3) − 𝐶(𝑝2 + 𝑟2)

The speed up (S) and network cost (C) functions are linear mappings (demonstrated in

Section 6.3). Hence: 𝑆(𝑞𝑥 + 𝑣𝑦) = 𝑞𝑆(𝑥) + 𝑣𝑆(𝑦) , 𝑞 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑠𝑐𝑎𝑙𝑒𝑟.

𝑆(𝑡2 + 𝑡3 + 𝑡4) = 𝑆(𝑡2 + 𝑡4) + 𝑆(𝑡3)

2𝑆(𝑡3) = 𝑆(2𝑡3)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ

= 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡4) − 𝑆(𝑡3) − 𝐶(𝑝1 + 𝑟1) − 𝑆(𝑡3) − 𝐶(𝑝2 + 𝑟2)

 = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡4) − 2𝑆(𝑡3) − 𝐶(𝑝1 + 𝑟1) − 𝐶(𝑝2 + 𝑟2)

 = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 𝑡4) − 𝑆(2𝑡3) − 𝐶(𝑝1 + 𝑟1) − 𝐶(𝑝2 + 𝑟2)

 = 𝑡2 + 𝑡4 − 𝑆(𝑡2 + 2𝑡3 + 𝑡4) − 𝐶(𝑝1 + 𝑟1) − 𝐶(𝑝2 + 𝑟2)

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ

Theorem: The minimal application execution time equals the minimum edge-cut of the

graph model.

Proof: According to the results presented in these three cases, Theorem presented above is

proven via the equality of offloading gains:

(𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑎𝑝𝑝 = 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐺𝑎𝑖𝑛𝑔𝑟𝑎𝑝ℎ).

49

4.1.3 Graph Construction Algorithm

The profiling manager is responsible for constructing the call graph. A proxy object allows

us to gather method call information. Thus, we can trace the current thread of the method

call stack that presents all caller and callee objects and their methods. An example of the call

stack is shown below. We need to trace the application-specific objects and their methods so

that we define a filter function to eliminate objects and their methods depending on

smartphone OS (Listing 7).

com.myproxy.OffloadingFactory$1.invoke

B_Proxy.doY
A_Proxy.superdoXvoid

java.lang.reflect.Method.invokeNative

java.lang.reflect.Method.invoke
com.google.dexmaker.stock.ProxyBuilder.callSuper

com.myproxy.OffloadingFactory$1.invoke

A_Proxy.doX
com.myproxy.MainActivity$1.onClick

android.view.View.performClick

android.view.View$PerformClick.run
android.os.Handler.handleCallback

android.os.Handler.dispatchMessage

android.os.Looper.loop
android.app.ActivityThread.main

java.lang.reflect.Method.invokeNative

java.lang.reflect.Method.invoke
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

com.android.internal.os.ZygoteInit.main

dalvik.system.NativeStart.main

B_Proxy.doY

A_Proxy.doX
com.myproxy.MainActivity

 (a) (b)

Listing 7 (a) Raw and (b) filtered method call stack

1 FUNCTION getCallGraph(){

2 ApplicationGraph graph := new ApplicationGraph();

3 return graph

4 END FUNCTION

5 FUNCTION addVertexToGraph(Vertex callee, elapsedTime)

6 prevElapsedTime :=0

7 IF(graph.contains(vcallee)) THEN

8 Set<Edge> elist := graph.edgesOf(vcallee)

9 IF(elist is not NULL) THEN

10 FOR EACH edge e in elist :

11 IF (e.inputClassandMethodName.equals(callee.OutputclassandMethodName) &&

12 e.getCalleeMethodPath.contains(calleeMethodPath)) THEN

13 loopCount := calculateLoopCount(e,vcaller,vcalle)

14 prevElapsedTime += e.getExecutionTime()*loopCount

15 END IF

16 END FOR

17 END IF

18 vTime := elapsedTime- prevElapsedTime

19 Vertex callee = graph.getVertex(vcallee)

20 callee.setExtime(callee.getExtime+ vTime)

21 OffloadingFactory.checkLocal(vcallee)) // if vcallee is local, setLocal true

22 ELSE

23 vcalle.setExtime(vTime) // if vcallee is local, setLocal true

24 graph.addVertex(vcallee)

25 END IF

26 END FUNCTION
27 FUNCTION buildCallGraph(StackTraceElement[] elements, method, elapsedTime, argumentSize,

28 packageName)

29 ArrayList<StackTraceElement> stackElements := filterStackTraceElements (StackTraceElement []

elements)

30 IF(stackElements.size()>1) THEN

31 // top two element of the stack reperesents the current call stack of caller and callee methods

32 StackTraceElement callee := stackElements.get(0)

33 StackTraceElement caller := stackElements.get(1)

34 IF (NOT caller.className.equals(caller.className)) THEN

50

35 String calleeMethodPath := getCalleeMethodPath(ArrayList<StackTraceElement> stackElements)

36 Vertex vcallee := new Vertex(callee.getClassName)

37 Vertex vcaller := new Vertex(caller.getClassName)

38 // if method is called through other methods of the vcaller

39 vcaller := backTrackCallerMethod(stackElements, vcaller)

40 addVertexToGraph(vcallee, elapsedTime)

41 IF (NOT graph.contains(vcaller)) THEN

42 OffloadingFactory.checkLocal(vcaller)) // if vcaller is local, setLocal true

43 graph.addVertex(vcaller)

44 END IF

45 edgeName := stackElements.get(1).classAndMethodName ->

46 stackElements.get(0).classAndMethodName

47 Edge edge := graph.getEdge(vcaller,vcallee)

48 IF(edge is NULL) THEN

49 Edge edge := new Edge(edgeName, elapsedTime, argumentSize, calleeMethodPath);

50 graph.addEdge(vcaller,vcalle,edge)

51 ELSE

52 IF(edge.getExtime < elapsedTime)

53 Edge.setxtime(elapsedTime) // consider worst case

54 edge.increaseEdgeFrequency()

55 END IF

56 END IF

57 END IF

58 ELSE

59 addVertexToGraph(new Vertex(stackElements.get(0).getClassName), elapsedTime)

60 END IF

61 END FUNCTION

Listing 8 Application Call Graph Construction Algorithm

In Listing 8, the profiling manager gathers the call stack information from the offloading

factory and backtracks the last method call in the stack to construct the call graph with vertex

and edge costs. The offloading factory provides the call stack, the method name, the method

execution time and data size of the arguments and return value. In order to assign execution

times to vertices and edges, the algorithm iterates over the stack elements of the called

method and retrieves top two stack elements. Then, it creates caller and callee vertices

associated with classes (Lines 32-39). First, the callee vertex needs to be added to the graph

and the weight of the callee vertex is calculated by obtaining all of its edge set. The costs of

edges belonging to the same method path (successor calls) are extracted from the current

elapsed time (Lines 6-18). If the graph contains the same vertex, the vertex weight is

aggregated (Lines 19-20). The caller vertex is added to the graph with an empty weight and

updated later. The edge is created with the path name of the caller-callee method and the

elapsed time is assigned as the edge weight (Lines 45-56). If the graph contains the same

edge, the edge frequency is increased and the longer elapsed time is assigned to the edge

weight. The algorithm also checks whether the vertices depend on the native resources of the

mobile device. If so, these vertices are marked as local. Before the decision manager

retrieves the graph, execution time and data size of the edge are converted to the edge costs

using Equation 2.

4.2 Decision heuristic for offloading classes

By constructing the call graph, we converted the offloading decision problem to a graph

partitioning problem. Graph partitioning is a major problem in many areas of computer

science, such as the Very Large Scale Integration (VLSI) design, parallel processing and task

scheduling [20]. Graph partitioning mainly involves dividing a graph in k number of equal

sets while at the same time minimizing the edge costs of connecting vertices in different

parts. If k equals two, the partition becomes a min-cut bipartitioning problem. Finding an

optimal solution for graph partition is shown to be NP-Hard [20], [22]. Heuristic approaches

to solving this problem include move-based algorithms, which try to iteratively improve the

partition by moving a vertex or swapping vertices between parts. In this study, we

51

implemented the heuristic by FM [21], [23] to partition the call graph and then send the

computation intensive classes of an application to remote servers.

The graph min-cut algorithm is presented in Listing 9. We implemented the FM heuristic to

compute the best offloading decision based on the weight of vertices and edges. The FM

heuristic only uses the edge weight to estimate the gain, so we adapted our cost model to the

FM heuristic. In this process, in each pass, the vertex producing the best offloading gain is

identified. After a pass, this vertex is moved to another partition. In this algorithm, we first

find the candidate classes to be offloaded. For instance, smartphone OS dependent classes

are marked as non-offloadable (local) classes. The candidate classes to be offloaded are

moved to the local side one by one to check whether there is an increase in the total

offloading gain from the graph edge-cut.

FM Partitioning Heuristic
G(V,E)

LocalList : = find local vertices (GUI-Activity Classes, DataBase Classes, SensorManager

Classes etc.)

MovedList := G(V,E) - LocalList // initial bipartition

Until No better partition is found

 Gain := Find Gain of offloadable vertices

 Until All offloadable vertices

 NewGain := Move one vertex to the local side and find new gain

 If (NewGain > Gain) Gain := NewGain; Vtemp = vertex (i) ;

 End Until

 If Vtemp is not null add Vtemp to the LocalList and remove from The MovedList

End Until

Listing 9 FM heuristic for the graph partition

KL based Partitioning Heuristic
Find local object (vertices)

Extract from the graph and find candidate remotable objects

Sort vertices

Best partition := Current partition

MovedList := EmptyList

repeat

start from the vertex that has the highest weight

create a bucket and add this vertex to the bucket

repeat

Select the adjacent vertices (Heavy edge and Heavy vertex)

if vertex in MovedlList then

break

compute the gain

If gain > bestgain then

 If Currentpartition > Bestpartition then

 add the adjacent vertices to the bucket

 Bestpartition := Currentpartition

 Mark the vertex

 add vertex to the MovedList

 Update the adjacent vertices’ gain

 bestgain := gain

 Else break

Else break

Until No more adjacent vertices

Until No more vertices

Listing 10 KL based partitioning heuristic

52

For algorithm complexity of the FM heuristic, the cost of outer loop becomes c1*|V| +𝑐2 ∗

∑ 𝑡𝑖
|𝑉|−1
𝑖=1 , |V| is the number of vertices, the cost of the inner loop becomes 𝑐3 ∗ ∑ 𝑡𝑗

|𝑉|−1
𝑗=1 .

T(V) = c1 * |V| + c2 * |V| *(|V|-1) /2 + c3 * |V| *(|V|-1) /2 . According to the Big-O Notation

(the upper asymptotic bound of the function) , T(V) = O (|V|2).

A KL (Kernighan and Lin) [22] based partitioning heuristic is developed at first. Initial

partitions consisting of a part that contains vertices to be offloaded and an empty part are

created. Each vertex and with their neighbor vertex are moved separately, and then the

offloading gain is calculated. If the gain of the moved vertex is positive, then making that

move will reduce the total cost of the edge cut in the partition. A KL based partitioning

algorithm is presented in Listing 10. It firstly finds the local classes and marked these as non-

offloadable classes, then extract these classes from the graph. After removing non-

offloadable classes, the vertex weight is sorted in increasingly and the weightiest vertex is

found to initiate the partition. It also searches the adjacent vertices that produce the

maximum gain as breadth-first approach. The vertex is added to the partition if its gain is

higher than the best gain. If not, the inner loop ends and the outer loop for the second vertex

starts. The main idea behind KL based algorithms is the concept of the gain related with

moving a vertex from a set to a different set.

53

CHAPTER 5

OFFLOADING FRAMEWORK ARCHITECTURE

In this chapter, the offloading framework is explained. Section 5.1 presents a high level

architecture of the offloading framework. The runtime behavior of the framework is

discussed in Section 5.2. The fault tolerance mechanism of the framework is explained in

Section 5.3. The comparison with other offloading approaches is discussed in Section 5.4.

The extension-point of the framework is presented in Section 5.5.

5.1 High Level Architecture of the Offloading Framework

The offloading framework consists of six modules on the smartphone side which are

offloading factory, profiling manager, deployment manager, decision manager, discovery

and network communication manager and eight modules on the server side which are

offloading factory, deployment manager, library store, Android OS shadow classes,

discovery, decision manager, recovery manager and network communication manager. Each

of them is presented in Figure 28.

The proposed framework is composed of the following modules:

1. The Offloading Factory is responsible for creating and managing proxies of the

requested classes. It handles access to resources between the mobile device and the

cloud at runtime. By creating proxies of each object to be offloaded, the offloading

framework delegates a method call to the objects located in the remote server. For

instance, if a proxy is created in the mobile device that needs to access an object

created in the remote server, the offloading factory associates a unique id to the

object on the remote server to coordinate the access to the object through the method

call. This unique id as well as the object type (class name), method name, the id of

method parameters if they are object type and primitive values are then sent to the

remote server to execute the method on the server side. If the object on the remote

server needs certain resources of the mobile device such as sensors, it is essential to

create proxies that will point to those resources located in the mobile device. The

offloading factory handles the coordination of access to resources by creating

proxies of all remote resources. This means that if a resource is created in the mobile

device, the offloading factory automatically creates a proxy of that resource on the

cloud service. This mechanism is also used for resources created in the cloud, by

automatically and seamlessly creating their proxies on the mobile device side. Any

errors resulting from the network communication is handled fault tolerance

mechanism in Section 5.3.

54

Figure 28 An overview of the offloading framework 2

2. The Profiling Manager collects the monitoring information of each method call and

inspects the method call stack to construct the call graph containing information

from all methods required during execution, such as the execution time of the

method, method call frequencies, amount of data passed as method parameters, and

the size of the return value. This information is then used by the decision manager to

determine the candidate classes for remote execution.

3. The Decision Manager decides on the instance of the classes to be executed on the

remote server considering the execution time of the methods (or energy

consumption), the dependencies of the classes, and available network bandwidth.

The profiling and decision process are explained in Section 5.2.

4. The Deployment Manager is responsible for sending the server side application to a

repository server. After profiling phase, it is also responsible to send the graph object

and statistics to the repository server. When a mobile client wants to initiate

offloading, the deployment manager sends a request to a cloud server to prepare a

server process that runs the server side application and make it ready for listening in

a specified port (Section 5.2). All connections and communication tasks between a

mobile device and a server are handled by the network and communication manager.

5. The Discovery module is used to find an available cloud server or cloud service to

initiate offloading. Cloud discovery is initiated when an application is started. The

DNS-SD protocol [25] was implemented to discover the local servers. If there is a

suitable server, a connection is established and then a specific port is allocated by the

discovery module to prepare the offloading service. The network communication

manager communicates through these ports.

2 The offloading factory creates proxies for the objects to be offloaded. Profiles of all

objects can then be used in the decision manager to make an offloading decision. The

deployment manager is responsible for building up classes to be offloaded on the remote

server.

55

Secure Sockets Layer (SSL) [27] for secure connection was implemented. The software

developer can choose an SSL connection for application-specific classes by indicating

this at object creation. In addition, a single sign-on authentication was implemented

through Twitter’s OAuth mechanism [29]. Once users log into Twitter, they can access

all offloading services located either in nearby servers or the cloud. The remote

offloading framework contains other important parts. The first is the Library Store

module that is responsible for downloading and loading required libraries that are

requested during method execution. The second is shadow classes of the smartphone OS.

These classes were created for Android OS in order for their proxies to point to the

resources in the mobile device.

5.2 Flowchart of a mobile application development with the offloading

framework

In this section, the flowchart of a mobile application development by the framework is given

and runtime behavior is explained from the start to the end. Responsibilities of the software

developer and framework are described.

Figure 29 Flowchart of a mobile application development

Figure 29 presents step by step mobile application development by a software developer

utilizing the framework. The software developer imports the framework to the desired

mobile application development environment. When developing the mobile application, the

creation of the objects is delegated to the offloading factory. Then, java class definitions of

the mobile application are added to the server-side application template provided in the

framework. The mobile and server-side template applications are built. The developer

publishes the mobile application to the application market and sends the server-side

application to the repository server.

Figure 30 presents runtime behavior of the mobile application. The software developer or a

user downloads the mobile application from the application market and starts it. The

software developer firstly enables the offloading and profiling mode and run all possible use

cases of the application at least once. If software developer doesn’t want to profile the

application, he/she can employ static code analysis to construct call graph. Niu et al. [80]

implemented static code analysis by inspecting Bytecode Instructions Count (BIC) of pure

java applications. On the other hand, the framework utilizes the data collected during

runtime which reflects the actual execution profile better. The framework gives different

56

application ids to different versions of a mobile application. If the application completes the

execution in profiling mode, the framework constructs the application call graph and sends it

to the repository server with a specified unique application-id. When the repository server

receives the “save call-graph” request with an application-id, first it checks whether a graph

with same id exists or not. If a graph with same id exists, the repository server merges the

graphs and saves with the application-id. If the user or developer desires offloading, the

framework checks whether a server instance is ready or not by asking to the cloud server; if a

server instance is not ready, the framework requests a server process by sending the

application id. Then, the cloud server checks server-side application file through the

application id. If it does not exist in the cloud server, it is downloaded from the repository

server and is run on the cloud server. The server instance accepts offloading requests through

a TCP server socket. The server socket is bound to an unused port number. After the server

instance becomes ready, the cloud server sends the server socket’s port number to the

application running on the smartphone. The cloud server can also work as a load balancer; if

the server instance processes reach a certain threshold value, the cloud server can run the

server-side application on a different server and sends the server’s IP address and port

number to the application running on the smartphone.

In order to start offloading, the smartphone application sends parameters which contain the

application id, connection type, and location information to the server process which is

listening on a specified port. The server process downloads the call graph from the repository

server (if it does not exist in the server-side application process) and solves it according to

the parameters and returns the list of classes to be offloaded. The mobile application creates

objects or proxies according to the list of classes to be offloaded. In order to delegate graph

solution task to the server side process, the heuristic solution class of the decision manager is

marked as a component to be offloaded. When connection type or location change, the graph

is dynamically re-solved in the server side process and the new list of classes to be offloaded

are determined. In order to adapt to bandwidth changes, the network cost function coefficient

is updated (Section 5.2.1) and the graph is also re-solved in the server side process according

to changed network cost function coefficient and updated list of classes to be offloaded is

determined.

57

Figure 30 The activity diagram of the runtime behavior of the mobile application

act Activ ity Diagram

Repository Serv ers1:Serv er InstanceCloud Serv erSmartphone

start the mobile app

Offloading enabled?

Profil ing enabled?

Run app.

locally

Server Instance ready?

send app-id

to cloud

reciev e

app-id

app jar exists?

run app jar

send port

number

receiv e port

number

start

offloading

request

serv er-side

app jar

listen in

the

specified

port

send

serv er-side

app jar

run app in

profiling mode

send

statistics

and graph

receiv e

statistics and

graph

offloadables

specified?

request graph

solution with

specified

parameters

solv e graph

with receiv ed

parameters

send

offloadable

classes name

receiv e

offloadable

classes

name

graph exists?

merge

graphs

sav e

statistics

and graph

handle

requests

reciev e replies

YES

NO

NO

NO

YES

NO

YES
YES

YES

YES

NO

NO

58

5.2.1 Determining the network cost function coefficient on-the-fly

The framework continues to collect the network profiling data during offloading in order to

adapt to bandwidth changes. The network cost function gives the network time according to

the data sent and received between the smartphone and the server. In this thesis, y=c*(p+r) is

used as the network cost function where p is the size of function arguments sent to the server

and r stands for the size of data returned from the function. During offloading, the network

cost function coefficient is updated and if any change occurs, the framework starts to re-

solve the graph in server side process and finds new set of classes to be offloaded. Figure 31

illustrates the transmission time measurement. In this example,

Figure 31 Transmission time

tlocal = t2local – t1local , tlocal stands for execution time on the smartphone.

tserver = t2server – t1server , tserver stands for server execution time

Time spent in the network is (tlocal- tserver) and the network cost function is (y = c*(p+r) =

(tlocal- tserver)) so the coefficient of the network cost function is calculated as (c = (tlocal- tserver) /

(p+r)) for each function call. In order to adapt the application, the solver, which defines

classes to be offloaded, can be called using the updated network cost function. The measured

parameters will vary in practical settings. Therefore, an exponentially weighted moving

average (EWMA) is used to smooth the estimated averages and to make the application more

sensitive to the recent measurements. The averaging function used is as follows:

𝐶𝑎𝑣𝑔
𝑡 = 𝛼 ∗ 𝐶𝑛𝑒𝑤

𝑡 + (1 − 𝛼) 𝐶𝑎𝑣𝑔
𝑡−1

Where :

𝐶𝑎𝑣𝑔
𝑡 = 𝑇ℎ𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

𝐶𝑛𝑒𝑤
𝑡 = 𝑇ℎ𝑒 𝑙𝑎𝑠𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝛼 = 𝐴 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1

When compared to maintaining the history of metrics, the overhead of using EWMA is very

low. The degree of decreasing the older value is determined by a smoothing factor α, the

higher value of α fastly decreases the effects of older values. The value of α should be

determined by the software developer depending on dynamic responses of the application.

The frequency of sending the request of re-solve the model to the remote server is depending

on change of the network cost coefficient. After each method invocation the network cost

coefficient is recalculated and the ratio measurement scale is also calculated based on the

value of the last recorded network cost coefficient used to re-solve the model. If absolute

value of the ratio measurement scale of the network cost coefficient is over 30% , the graph

model of the application is re-solved according to new network cost coefficient and the set of

the new classes to be offloaded is adapted at runtime. Furthermore, change of the network

59

connection type (WiFi or 3G) and the server location (LAN server or cloud server) are also

initiates the re-solve request of the model at runtime.

5.3 Fault Tolerance Mechanism of the Framework

The fault tolerance mechanism is important for distributed applications to continue requested

executions even after some fault occurs during execution. The OMG’s FT-CORBA [81],

[82] defines specifications for distributed applications to handle failures. FT-CORBA

specifications describe entity redundancy (replication of objects), fault detection, and fault

recovery. Stateless, active, and passive replication styles are mostly defined by FT-CORBA.

In stateless replication style, the context information is independent of invocation of objects.

For objects that access a database as read-only can use stateless replication style. If at least

some context information is maintained between invocations, the passive and active

replication style can be used. In passive replication style, a single replication server is used

as a primary and other replications are used as backups. A request from client for replicated

object is forwarded by server’s Object Request Broker (ORB) to the primary replication

server and then replication server logs the request and dynamically calls the target object.

The reply message is also logged and returned to the server’s ORB. The primary replication

server processes all invocations and succeeds consistency with other backups by logging and

recovery mechanism. In active replication style, all replication servers gather the requests

and process them. The same reply messages from the replication servers should be

distinguished by the server’s ORB.

In this thesis, we implemented logging and recovery mechanism presented in Figure 32

according to the OMG’s FT-CORBA specifications. When a request comes to the server

implementation, it is forwarded to the recovery manager. The recovery manager saves the

request to the repository server. After processing the request, the reply and current objects’

state in the local object container are also saved to the repository server. After that, if the

server implementation does not respond to the request in case of any fault occurrence, the

mobile client sends FT_REQUEST to the cloud server. The cloud server firstly checks the

server process to determine whether it is alive or not. If the server process crashes, the cloud

server prepares a new server process and sends the port number to the mobile client. The

mobile client sends the request to the new server process. When the new server process

receives the FT_REQUEST, it gathers the objects’ state from the repository server and

processes the invocation. The server process then returns the reply message to the mobile

client.

60

Figure 32 Logging and recovery mechanism of the framework

5.4 Comparison with Other Framework Approaches

In order to support development of mobile applications that can offload their computation

intensive components to a resourceful server, many mobile cloud computing approaches [2],

[6], [7], [11], [13], [37], [41], [83], [84] have been developed. Due to the complexity of

adapting a mobile application at runtime, many limitations have been presented to be

overcome. The complexity begins with deciding what, when, where, and how to offload

with precision in order for the mobile device to gain a benefit. The studies [6], [7], [11],

[13], [14], [41], [83], [84] are dependent on annotations determined by software developers.

Software developer explicitly adds annotations to components such as classes, methods,

services; then these frameworks at compile time convert the components to be offloaded.

The decision process of these frameworks is only based on whether the pre-defined

components to be offloaded are to be sent or not to the server. As expected, this decision

process only checks the computation complexity of the component. In addition, history-

based profiles are generally used to make such a decision. For example, in case of the

method offloading, the execution time of the method is estimated based on method

arguments. A comparison can be made whether to offload a specific method or not.

However, the global optimal solution and distribution transparency are not completely

achieved in existing works. They only offload the pre-defined (at compile time) components

which are not dependent on any resource or component residing in the smartphone side.

sd Logging_Recov ery

:Mobile

(Client)

s1:

Server_Impl

:RecoveryManager :RepositoryServer:CloudServer

s2:

Server_Impl

request(SeqNum, oid, objectName,

methodName, args)
saveRequest(SeqNum, appid,

objectName, methodName, args)
saveRequest(SeqNum,

appid, objectName,

methodName, args)

saveReply(SeqNum, appid,

Object)
saveReply(SeqNum,

appid, Object)
reply() :Object

saveState(appid, seqNum,

localObjectContainer)
saveState(appid,

seqNum, byte[])

FT_RQUEST(appid, seqNum)

create(portNum)

reply(portNum)

FT_REQUEST(appid, SeqNum)

getState(appid,

seqNum)

getState(appid,

seqNum)

61

Table 9 Comparison of the frameworks

Frameworks Method Partitioning Platform Granularity Offloading

Decision

Callback

Functionality

Our

Framework

Proxy -

based

runtime,

Graph model

Android

& Java

Classes Graph based

partitioning

model

Reverse

Proxies,

(dynamic)

AIOLOS [6] OSGi -

service

compile time,

annotations

Android

& Java

Classes History

based profile

Reverse IDL

implementatio

n at compile

time (static)

Cuckoo [7] Android

IDL

compile time,

annotations

Android

& Java

Methods Annotated

methods

None

Flores and

Srirama [83]

Android

Service

compile time,

annotations

Android

& Java

Service History

based profile

None

MAUI [11] Proxy -

based

compile time,

annotations

MS

Windows

Mobile

Methods ILP at

runtime

None

Ou et al. [2] Proxy-

based,

Bytecode

Instrume

ntation

runtime, graph

model

Java Classes Graph

partitioning

None

Abebe and

Ryan [37]

Proxy –

based,

Bytecode

Instrume

ntation

runtime, graph

model

Android

& Java

Classes Graph

partitioning

None

Kosta et al.

[84]

Proxy –

based,

Bytecode

Instrume

ntation

compile time,

annotations

Android Methods History

based profile

None

Table 9 presents comparison of frameworks in terms of offloading method, partitioning

model, platform, offloading granularity, decision model, and callback. All existing

approaches only consider the delegation model of the offloading approach. They do not take

callback from server side into account. In addition, the proposed framework dynamically

adapts to changes, and finds an updated list of classes to be offloaded, thereby continuing the

offloading with the updated list. This is one of the strong features of the framework.

Moreover, offloading performance measurements for the sample application with Flores and

Srirama [83] and Cuckoo [7] frameworks are presented and compared in section 6.6.

Adaptive software systems have the ability to adjust their behaviors to provide context

specific optimization [85]. In an adaptive offloading framework, this is achieved by

distributing the components to remote servers to reduce the processing and memory cost of

applications when necessary. If an available network bandwidth deteriorates, the network

consumption of applications should be reduced. In addition, to make productive offloading

decisions, the application must update its offloading decision parameters on the fly.

5.5 Extensibility of the Framework

Proposed framework is structured with a modular approach that allows implementation of

new components and different functionalities. An extension-point is a reference to different

implementations of a task in the framework. In the framework, we defined an extension-

62

point for the heuristic that solves the graph and finds classes to be offloaded. For different

implementations of the graph solving heuristic, software developers should implement

Heuristic interface and override solveGraph method to plug the new heuristic to the

framework. Listing 11 presents extension-point for solving graph and finding list of classes

to be offloaded.

public interface Heuristic {

 public List<Vertex> solveGraph(Graph<Vertex,Edge> graph);

}

public class NewHeuristicSolution implements Heuristic {

 @Override

 public List<Class> solveGraph(Graph<Vertex, Edge> graph) {

 // implement new heuristic , return the list of offloadable vertices

 return result;

 }

}

public class DecisionManager{

 Heuristic heuristicSolution;

 setHeuristic(Heuristic heuristicSolution){

 this.heuristicSolution = heuristicSolution;

 }

}
Listing 11 Heuristic solution extension point of the framework

5.6 Sample Application

In this section, we present an implementation of the offloading framework in Android OS

and J2SE using the OR application [31] as an example scenario. The OR application takes a

bitmap image as an input and computes the feature vector and then compare it with the

stored feature vectors and returns the most related object information. We provide detailed

explanation on how the offloading framework creates proxies and local objects, and how the

mobile software developer can implement the offloading framework. Furthermore, the

importance of the enabling callbacks to the smartphone side as well as the efficiency and

efficacy of our offloading framework are presented.

Figure 33 The class diagram of the OR application

class EyeDentifyClass

EyeDentify(UI)

+ runApp() : void

+ takePicture(Camera, Preview) : Bitmap data

ImageCompression

+ getSizeOption(Bitrmap) : Bitmap option

+ getResizedImage(Bitmap) : RGB24Image rgbImage

FeatureVectorServ iceImp

+ getFeatureVector(RGB24Image) : FeatureVector fv

MyWeibull

+ initialize() : void

+ calculateFeatureVector(RGB24Image) : FeatureVector fv

+ buildInvariantImages(CxArray2dVec3Double) : void

CxWeibullFit

+ init(FitWeibull, double[][][], double[][], double[][], int) : void

+ doIt(int, int) : void

FitWeibull

+ doFit(double[], int, double) : void

+ doFitMarginal(double[], int, double, double) : void

+ calcWeibullParams() : void

CxPatTask

+ dispatch(CxWeibullFit, int, int) : void
ObjectRecognition

+ recognize(FeatureVector, Activity, double) : RecognitionResult

+ getScore(double[], double[]) : double
RecognitionResults

+ getFirstResult() : String

+ addScore(int, double) : void

+ getView(int, View, ViewGroup) : View

<uses>

<uses>

63

Figure 34 The sequence diagram of the OR application 1

Figure 33 presents the class diagram of the application. The EyeDentify class is a user

interface class. The ImageCompression class is responsible to compress a bitmap image as

an RGB image. The FeatureVector class is responsible to initialize the MyWeibull class and

request the feature vector by providing a RGB image. MyWeibull, CxWeibullFit and

FitWeibull classes are responsible to produce the feature vectors of an image. CxPatTask is

responsible for dispatching the jobs to the CxWeibullFit. ObjectRecognition class compares

the feature vectors in the recognize mode and finds the most related object according to a

specified threshold value. RecognitionResult class gathers the object information from the

database.

Class EyeDentify {

 public void onPictureTaken(final byte[] data, Camera camera) {

 public void run() {

 ImageCompression ic = OffloadingFactory.create(ImageCompression.class,

EyeDentify.this, null);

 RGB24Image rgb24Image = ic.getResizedRGB24from(takePhotos());

 FeatureVectorServiceImpl fi = OffloadingFactory.create(FeatureVectorServiceImpl.class,

 EyeDentify.this,null)

 FeatureVector mFeatureVector = fi.getFeatureVector(rgb24Image,EyeDentify.this);

 }

 }

}

 Listing 12 A code snippet from the OR application 1

Class FeatureVectorServiceImp {

public FeatureVector getFeatureVector(RGB24Image rgb24Image, Context context) throws

RemoteException {

 if (mWeibull == null) {

 ConstructorParam cp = new ConstructorParam();

 cp.setConstructorArgTypes(Integer.TYPE,Integer.TYPE,Integer.TYPE,

Integer.TYPE,Integer.TYPE);

 cp.setConstructorArgValues(COLOR_MODELS, RECEPTIVE_FIELDS,

 HISTOGRAM_BINS, COMPUTATION_WIDTH, COMPUTATION_HEIGHT);

 mWeibull = OffloadingFactory.create(MyWeibull.class,context,cp);

 mWeibull.initialize();

 FeatureVector result = mWeibull.calculateFeatureVector(rgb24Image,context);

 }

}

sd SD1

eyeDentify:UI

ic :

ImageCompression

fi :

FeatureVectorServiceImp

create() :ic

getResizedImage(byte[] array)

:RGBImage

create() :fi

getFeatureVector(RGBImage) :FeatureVector

64

Class MyWeibull {

public FeatureVector calculateFeatureVector(RGB24Image image,Context context) {

 CxWeibullFit fit =

 OffloadingFactory.create(CxWeibullFit.class,context,null);

 FitWeibull fw = OffloadingFactory.create(FitWeibull.class,context,null);

 fit.init(fw, histos, betas, gammas, numberBins);

 CxPatTask cpt = OffloadingFactory.create(CxPatTask.class, context, null);

 cpt.dispatch(fit, numberReceptiveFields, numberPartialColorModels);

 return getFeatureVector();

 }

}

 Listing 13 A code snippet from the OR application 2

Code "snippets" from the sample application are given in Listing 12 and Listing 13 to

exemplify some of the noteworthy aspects of the use of the framework such as creating

proxies of the classes on the smartphone side, creating proxies of the classes on the server for

callbacks.

Figure 35 The sequence diagram of the OR application 2

sd SD2

fi :

FeatureVectorServiceImp

mWeibull :

MyWeibull

fit :

CxWeibullFit

fw :

FitWeibull

cpt :

CxPatTask

loop dispatch Work

[Until all done]

getFeatureVector(RGBImage)

:FeatureVector

create(int, int, int, int, int) :

myWeibull

initialize()

calculateFeatureVector(RGBImage,

Context) :FeaturVector

create() :fit

create()

init(fw, double[][][], double[][],

double[][], int)

create()

dispatch(fit, int , int)

doIt(int, int)

doFit(double[][], int ,

double)

doFitMarginal(double[][], int,

double)

getBetas() :double[][]

betas() :double[][]

getGammas() :double[][]

gammas() :double[][]

65

The call graph of this application is presented in Section 6.5. Figure 34 and Figure 35 present

the sequence diagrams of this application. Suppose that the FeatureVectorServiceImp and

MyWeibull objects are decided to be offloaded to the server side (see Case 5 in Section 6.5).

On the smartphone side, whenever the application requests the creation of the

FeatureVectorServiceImp object (Figure 34, Listing 12) from the offloading factory, the

factory first checks the classes to be offloaded from the decision manager, and since, in this

example, the FeatureVectorServiceImp class is decided to be a component to be offloaded,

the factory creates the proxy of this object. When the getFeatureVector method of the

FeatureVectorServiceImp is called (Listing 12), the request is sent to the server side by the

offloading factory. On the server side the offloading factory processes the request message

(Listing 6) and creates the local object of FeatureVectorServiceImp and calls the requested

method. In the getFeatureVector method, the offloading factory creates the local object of

MyWeibull since this class is also decided to be a component to be offloaded. Here, the

calculateFeatureVector method of the MyWeibull object is important. In this method, when

an object creation is requested using CxWeibullFit, FitWeibull and CxPatTask (Figure 35,

Listing 13), the offloading factory on the server side knows that these objects are non-

offloadable and creates the proxy of these objects to send their method calls to the

smartphone side. Similarly, on the smartphone side, the offloading factory processes the

request message and creates the local objects of CxWeibullFit, FitWeibull and CxPatTask.

After completing the method execution of these objects on the smartphone side, their return

values are sent back to the server. At this point, the server completes the getFeatureVector

method and returns the result to the smartphone. Figure 35 shows the method call trace of

different offloading combinations in a sequence diagram. Other combinations of classes for

offloading are presented in the results section. Listing 12 and Listing 13 present a code

snippet from the offloading technique of the OR application. Here, the mobile software

developer requests the creation of a desired object from the offloading factory only providing

the class type and context, and if needed, the constructor parameters. The remaining is

transparently handled by the framework.

Other offloading techniques have limitations when the offloaded code parts require

smartphone resources. As described above, our offloading technique easily handles this

situation by creating a proxy of the desired object, which then calls back smartphone

resources. Another important characteristic of our technique is that except for the use of the

factory method to create objects, offloading details such as remote object creation, remote

method call, parameter passing and communication between devices are not shown to the

programmer. This means that we propose a seamless technique to develop and use software

modules that can be offloaded when necessary.

5.7 Using Mobile GPU for General-Purpose Computing

The GPU (Graphics Processing Unit) is a specialized circuit for accelerating the image

output in a frame buffer to display which also allows GPU-accelerated computing. Together

with a CPU, GPUs can be used to accelerate scientific, engineering and enterprise

applications [86]. GPUs are useful at manipulating computer graphics and they are suitable

for algorithms in which large blocks of data are processed in parallel. Mobile application

developers can implement image processing algorithms and algorithms where processing of

large blocks of data can be executed in parallel by using the GPU while the rest of the

application can be run on the CPU. Nvidia Tegra, Qualcomm snapdragon and Samsung

Exynos are new processors with multicore architectures and GPUs for mobile devices. The

NVIDIA’s Compute Unified Device Architecture (CUDA) framework, OpenCL parallel

computing framework and OpenGL ES API can be used to implement applications utilizing

GPU-accelerated computing for mobile devices.

There are two approaches to implement computation intensive applications in terms of GPU

usage. First, if the remote server allocated for processing offloading requests is not a GPU

instance, the GPU related classes should be run locally on the mobile device and the rest of

66

the code parts requiring heavy-computation can be migrated to the remote server. Hauswald

et al. [87] statically implement this approach for an image classification application where

feature extraction is handled through mobile GPU and machine learning based prediction is

migrated to remote server. Second, if the remote server is a GPU instance, the computation

intensive components can be migrated to remote server. For instance, Amazon EC2 also

provides a GPU instance with access to NVIDIA GPUs (up to 1536 cores and 4 GB of video

memory). Ayad et al. [86] statically implement a face detection application by using a GPU

server instance.

In this thesis, the proposed framework can handle both situations for applications using

GPU. For the first approach, the proposed framework can dynamically detect the classes

related to GPU programming (OpenCL, openGL ES and NVIDIA’s CUDA) and mark them

as local components that are not offloaded. For solution to second approach, if a GPU server

instance is available for offloading, a new speed-up factor for a GPU server instance is

needed to convert the edge costs depending on the components of GPU programming of the

graph model and the framework sends the components to be offloaded to the remote server

after finding a productive offloading solution.

67

 CHAPTER 6

EXPERIMENTAL EVALUATION

In this thesis, the performance of offloading was evaluated with respect to specific metrics,

namely the execution time and energy consumption. The experiments which have been

conducted using the offloading framework aimed to 1) investigate whether offloading might

bring performance benefit or not 2) evaluate the proposed framework’s effectiveness in

terms of improving performance and achieving complete distribution transparency 3)

validate the behavior of the proposed call graph based decision model.

Section 6.1 presents the first experiment that an OCR application is implemented to observe

whether offloading reduces the execution time of the application or not. Section 6.2 presents

Synthetic applications that are implemented to observe whether profiling and the graph

construction algorithm work correctly or not. Section 6.3 presents the speed-up and network

cost functions. Section 6.4 presents an image filtering application that is implemented to

evaluate the decision process in terms of server location. An object recognition application is

presented in Section 6.5 to evaluate different offloading combinations of the application’s

components and callback mechanism.

All measurement results were obtained from the following real hardware platforms:

Samsung Galaxy S3 as the mobile device (1.4 GHz Quad-core, Android 4.3-operating

system) and the wireless laboratory computer with a 2.0 GHz i7 263QM CPU and 8 GB

RAM as the nearby server. The operating system of the server was 64-bit Windows 7. In the

experimental setup, the server was accessible through a Local Area Network (LAN). The

mobile device was connected to the LAN through a Wi-Fi access point with a 54 Mbps

capacity. The LAN (nearby) server was connected to Internet with a 100BaseTX Ethernet

connection with a 100 Mbps capacity. We also deployed our framework to Amazon EC2

[35] (m3.large instance). The operating system of Amazon cloud server instance is Windows

Server 2012 r2. The experiments have been carried out in the campus LAN at the same time

period (at 20:00-22:00). Smartphone and servers is only allocated for experiments.

6.1 Experiment 1

As discussed in Section 2.2, mobile application developers adapt different libraries by

optimizing complex algorithms in order to avoid performance problems in smartphones. The

goal of this experiment is to present whether offloading is beneficial or not via implementing

a computation intensive library which is OCR library. In addition, performance and energy

consumption are evaluated. The cases where the server located in LAN and in the cloud for

offloading are also assessed in this experiment.

In the OCR application (Figure 36), a bitmap image of a text was taken using the phone

camera. Using the training dataset, the text was computed and presented to the user. The

smartphone version of the Tesseract OCR library [88] was used on the smartphone

68

side and a PC version of the same library was used on the server side. The proposed

framework is used. In this application, a software developer indicated the dependency to

Tesseract OCR library in a XML configuration file consisting of the wrapper class name,

library version and the names of the methods called. Using the information from the

configuration file, the Library Store module prepared the requested library with a wrapper

class on the server side. The Library Store enabled the application developers to implement

complex libraries without much effort for optimization.

Figure 36 An OCR application

The example image inputs that have 100 to 500 words are shown in Figure 37. For each text,

the OCR application was run 10 times. The average execution time results are shown in the

bar graphs. The text images were also classified according to their resolutions, 480x800 and

1232x2048 pixels. The text images in Figure 37 were taken by smartphone cameras. Since

these images were affected by distortion due to the amount of light, a control image input set

in Figure 38 using an image-processing tool is created and copied to the smartphone. In

addition, in order to ensure that the data transferred to the server was the same size as the

original, the original font and image canvas size was kept the same.

6.1.1 Execution time results

Figure 39 present the execution times of the OCR application for 480x800 resolution images

given in Figure 37. The images were uploaded to the remote server via a Wi-Fi (LAN)

connection. Offloading reduced the execution times by 76% to 81% depending on the

number of the words given in Figure 39. The offloading execution time consists of the server

execution time, network transmission time, and time taken to display the results on the

smartphone. As shown in Figure 40, the server execution time was higher than the network

transmission time since when the image resolution was decreased to 480x800 pixels, it took

longer time for the algorithm to extract a text. Furthermore, all the experiments were also

conducted without using the offloading framework to see whether the offloading framework

would increase the execution time. The results in Figure 39 (blue and orange bars) show that

the overhead incurred by the framework was not significant.

Figure 37 The OCR image set taken by the smartphone camera

69

Figure 38 The OCR control image set taken by an image-processing tool

Figure 39 The OCR execution time for

400x800 resolution images

Figure 40 The offloading execution time for

480x800 resolution images

Figure 41 and Figure 42 present the execution times for 1232x2048 resolution images. The

images were uploaded to the remote server via a Wi-Fi (LAN) connection. The execution

times were reduced by 1% to 52% since the increase in the image size also increased the

time taken for the images to be transmitted between the smartphone and the server. Figure 41

shows that the text extraction from the image with a resolution of 1232x2048 pixels gives

better results both on the smartphone and on the server side. The execution times were also

reduced by 77% to 84% for 1232x2048 resolution images when compared with 480x800

(Figure 39). The Tesseract OCR library was found to handle higher resolution images with

considerable improvements in terms of time, even when it is run on the smartphone.

Therefore, this is not related to the proposed offloading technique, but rather due to the

functioning of the library.

Figure 41 The OCR execution time for 1232x2048

resolution images

Figure 42 The offloading execution time for

1232x2048 resolution images

The effect of network connection between the smartphone and the server were also tested. A

Wi-Fi Local Area Network (LAN) connection established in the university campus and a

Wi-Fi Wide Area Network (WAN) connection established outside the campus were used to

access the remote server.

0

10000

20000

30000

40000

50000

60000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Number of words

Local No
Proxy(Phone)

Local
Proxy(Phone)

Offload(LAN
server)

0

2000

4000

6000

8000

10000

12000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Number of words

LAN Server

Network

Phone

0

2000

4000

6000

8000

10000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Number of words

Local No
Proxy
Local Proxy

LAN Server 0

1000

2000

3000

4000

5000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Number of words

LAN Server

Network

Phone

70

Figure 43 shows the execution time results for these connections. The Wi-Fi (LAN)

connection gave better results than other. On the other hand, the Wi-Fi (WAN) connection

leads to higher network latencies. Furthermore, as shown in Figure 44, network bandwidth

and latency have important effects on the response time (execution time) for Wi-Fi (WAN)

connection since this has a higher communication time when compared to that of the local

area network connection. In addition, the traceroute network diagnostic tool was used for

Android OS to ensure that the same route was kept in WAN connection in various

experiments. As a result in this experiment, offloading becomes counterproductive in cases

where high data communication was required and the server was accessed through a WAN

connection.

Figure 43 The OCR execution time for different network connection (400x800 pixels)

Figure 44 The OCR execution time for different network connections (1232x2048 pixels)

To eliminate any distortion on the images, the experiments with the control image sets

extracted using an image-processing tool were conducted. The execution times for these

images were also reduced by 55% to 74% for the 1232x2048 resolution (Figure 45 and

Figure 46).

Figure 45 The OCR execution time for 1232x2048

resolution control images

Figure 46 The offloading execution time for

1232x2048 resolution control images

Table 10 shows the precision values of the text extracted from the images. Although the

Tesseract OCR library was used both in the smartphone and in the server, the precision value

of the server was found slightly higher than that of the local mobile device. These higher

0

10000

20000

30000

40000

50000

60000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of Words

Local No Proxy(Phone)

Local Proxy(Phone)

Offload_WiFİ(LAN)

Offload_WiFİ(WAN)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
s

(m
s)

Number of words

Local No Proxy(Phone)
Local Proxy(Phone)
Offload_WiFi(LAN)
Offload_WiFi(WAN)

0

5000

10000

15000

20000

25000

30000

35000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Number of words

Local No
Proxy(Phone)
Local
Proxy(Phone)
LAN Server 0

2000

4000

6000

8000

10000

100 200 300 400 500

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of words

Server

Network

Phone

71

precision values in the server were attributed to the library not having to decrease the

algorithm complexity to optimize memory in the server contrary to the situation in the

phone.

Table 10 The OCR precision values

The OCR precision values (%)

Number of words/location Local Offloaded to the

LAN server

100 83 91

200 89 95

300 97 98

400 86 89

500 77 79

6.1.2 Energy consumption results

The application was run 10 times on both smartphones to collect data on the power

consumption. The image input sizes were 0.4 MP (480x800) and 2.5 MP (2048x1232). Since

the HTC Evo smartphone threw an out-of-memory exception when the number of words was

more than 300, the power consumption experiments were only conducted for text images

containing 100, 200 and 300 words (Figure 47). Offloading was found to save energy by

66% to 81%. Figure 48 shows the CPU and Wi-Fi energy consumptions for offloading.

Figure 47 The OCR power consumption

Figure 48 The offloading power consumption

Figure 49 shows the energy consumption for different network connections. Depending on

the available network bandwidth and latency, the WAN connection resulted in higher power

consumption.

 Figure 49 The OCR power consumption for different network connections

0

20

40

60

80

100 200 300

En
e

rg
y

(J
o

u
le

s)

Number of words

Local(Phone)

LAN Server
0

5

10

15

100 200 300

En
e

rg
y

(j
o

u
le

s)

Number of words

WiFi

CPU

0

20

40

60

80

100 200 300

En
e

rg
y

(J
o

u
le

s)

Number of Words

Local(Phone)

Offload_WiFi(LAN)

Offload_WiFi(WAN)

72

According to results of this experiment, Research Question 1 was answered, that is,

offloading improves the performance and energy consumption of mobile applications.

6.2 Experiment 2 (Synthetic Applications)

The experiments in this section aimed to verify the correctness of the graph construction and

the decision making heuristic of the offloading framework. Synthetic test applications which

have different method calls were implemented. In these applications, the execution times of

vertices were statically assigned and the execution times for edges were randomly converted.

The method call stack was monitored. The method call relations, graph construction and

metrics assignment for each case were compared in the test applications. After the call graph

construction, the decision-making algorithm, which is based on the graph model, was applied

to find the optimal offloading solution. In addition, each test application was executed

several times to demonstrate different offloading decisions.

6.2.1 Synthetic Application 1

The class diagram of the Synthetic Application 1 is presented in Figure 50. MainActivity is

user interface class of the application. Figure 51 presents the sequence diagram of the

application. Delay for each method is statically added and presented in Table 11. The edge

cost conversion function for speedup and network cost is (Math.random()*extime +

Math.random()*200). The first random part is considered for speedup (extime stands for

edge execution time spent for method call) and the second random part is considered for

transmission time.

Figure 50 The class diagram of Synthetic Application 1

Table 11 Delay for each method of Synthetic Application 1

Method name Delay (added statically - ms)

doA() 200

doB() 100

doC() 200

doC2() 300

doD() 100

doD2() 200

class Synthetic app

MainActiv ity(UI)

- a: A

+ runApp() : void

A

- b: B

- c: C

+ doA() : void

B

- c: C

- d: D

+ doB() : void

C

- d: D

+ doC() : void

+ doC2() : void

D

+ doD() : void

+ doD2() : void

73

Figure 51 The sequence diagram of Synthetic Application 1

Table 12 Application call graph of Synthetic Application 1 and offloading results 1

Call Graph 1

Vertex Count: 5, Edge Count: 6, {D:303, C:523, B:109, A:56, MainActivity:0}

{C.doC->D.doD2:237,1; B.doB->C.doC:364,1; B.doB->D.doD:59,1; A.doA-

>B.doB:83,1; A.doA->C.doC2:190,1; MainActivity.main->A.doA:120,1}

Optimal

Solution

Gain: 662; Optimal Set [B, C, D]; Offloaded Node Count 3

KL based

Heuristic

Gain: 662; Offloaded Set: [B, C, D]; Offloaded Node Count: 3

FM Heuristic Gain: 662; Offloaded Set: [B, C, D]; Offloaded Node Count: 3

Table 12 presents the application call graph and the offloading decision result. The

application consists of 5 classes. MainActivity is a user interface class and marked as local

class which is non-offloadable. In addition, Class A was marked as a local class. Once, the

application was executed, the decision model of the framework took the call graph

constructed at runtime as an input from the profiling manager and applied the optimal

algorithm and two offloading decision making heuristics. The results were logged. Three

algorithms provided the same result for this application. Instances of Class B, C and D were

eligible for offloading.

sd Synthetic app

:MainActivity

(UI)

:A :B :C :D

doA()

doB()

doC()

doD2()

doD()

doC2()

74

Table 13 Application call graph of Synthetic Application 1 and offloading results 2

The same application was executed in a for-loop to present the method call frequency. Since

the edge costs were randomly assigned, for this application graph, the decision heuristics and

optimal algorithm decided to offload two classes’ instances which are Class C and D (Table

13)

Table 14 Application call graph of Synthetic Application 1 and offloading results 3

Call Graph 3

Vertex Count: 5, Edge Count: 6, {D:302, C:533, B:121, A:65, MainActivity:0}

{C.doC->D.doD2:88,1; B.doB->C.doC:146,1; B.doB->D.doD:13,1; A_Proxy.doA-

>B.doB:432,1; A.doA->C.doC2:249,1; MainActivity.main->A.doA:272,1}

Optimal

Solution

Gain: 427; Optimal Set: [C, D]; Offloaded Node Count: 2

KL based

Heuristic

Gain: 427; Offloaded Set: [C, D]; Offloaded Node Count: 2

FM

Heuristic

Gain: 427; Offloaded Set: [C, D]; Offloaded Node Count: 2

Call Graph 2

Vertex Count: 5, Edge Count: 6, {D:605, C:1071, B:216, A:119,

MainActivity:0}{C.doC->D.doD2:474,2; B.doB->C.doC:898,2; B.doB-

>D.doD:118,2; A.doA->B.doB:1314,2; A.doA->C.doC2:380,2; MainActivity.main-

>A_Proxy.doA:2044,2}

Optimal

Solution

Gain: 280; Optimal Set: [C, D]; Offloaded Node Count: 2

KL based

Heuristic

Gain: 280; Offloaded Set: [C, D]; Offloaded Node Count: 2

FM Heuristic Gain: 280; Offloaded Set: [C, D]; Offloaded Node Count: 2

75

Table 15 Application call graph of Synthetic Application 1 and offloading results 4

Call Graph 4

Vertex Count: 5, Edge Count: 6, {D:1207, C:2054, B:466, A:269, MainActivity:0}

{C.doC->D.doD2:600,1; B.doB->C.doC:1688,1; B.doB->D.doD:324,1; A.doA-

>B.doB:2684,1; A.doA->C.doC2:1040,1; MainActivity.main->A.doA:4564,1}

Optimal

Solution

Gain: 283; Optimal Set: [D]; Offloaded Node Count: 1

KL based

Heuristic

Gain: 209; Offloaded Set: [C, D]; Offloaded Node Count: 2

FM Heuristic Gain: 283; Offloaded Set: [D] ; Offloaded Node Count: 1

Table 14 and Table 15 present the different execution of the same application. In Table 15,

the optimal algorithm and FM heuristic decided only to offload Class D but KL based

heuristic, which was the first heuristic developed, decided to offload Classes D and C. It did

not find the optimal solution.

6.2.2 Synthetic Application 2

The class diagram of the Synthetic Application 2 is presented in Figure 52. MainActivity is

user interface class of the application. Figure 53 presents the sequence diagram of the

application. Delay for each method is statically added and presented in Table 16. The edge

cost conversion function for speedup and network cost is (Math.random()*extime +

Math.random()*200). The first random part is considered for speedup (extime stands for

edge execution time spent for method call) and the second random part is considered for

transmission time.

Figure 52 The class diagram of Synthetic Application 2

class Synthetic app 2

MainActiv ity (UI)

+ runApp() : void

A

- b: B

- c: C

+ doA2() : void

B

- d: D

- e: E

+ doB3() : void

D

- k: K

+ doD3() : void

E

- k: K

+ doE() : void

C

- f: F

- g: G

+ doC3() : void

F

- l: L

+ doF() : void

G

- g: G

+ doG() : void

K

- n: N

+ doK1() : void

+ doK2() : void

L

- n: N

+ doL1() : void

+ doL2() : void

N

+ doN1() : void

+ doN2() : void

76

Table 16 Delay for each method of Synthetic Application 2

Method name Delay (added statically - ms)

doA2() 50

doB3() 75

doC3() 300

doD3() 200

doE() 350

doF() 550

doG() 450

doK1() 250

doK2() 150

doL1() 450

doL2() 350

doN1() 100

doN2() 200

Figure 53 The sequence diagram of Synthetic Application 2

sd Synthetic app 2

MainActivity

(UI)

A B C D E F G K L N

doA2()

doB3()

doD3()

doK1()

doN2()

doE()

doK2()

doC3()

doF()

doL1()

doG()

doL2()

doN1()

77

Table 17 Application call graph of Synthetic Application 2 and offloading results 1

1 Call Graph

Vertex Count: 11, Edge Count: 13, {N:301, K:423, D:203, B:87,

E:361, A:64, L:814, F:564,C:320, G:460, MainActivity:0} {K.doK1->

N.doN2:154,1; D.doD3->K.doK1:639,1; B.doB3->D.doD3:167,1;

E.doE->K.doK2:68,1; B.doB3->E.doE:598,1; A.doA2-

>B.doB3:1194,1; F.doF->L.doL1:476,1; C.doC3->F.doF:273,1;

L.doL2->N.doN1:134,1; G.doG->L.doL2:61,1; C.doC3-

>G.doG:708,1; A.doA2->C.doC3:777,1; MainActivity.main-

>A.doA2:1761,1}

 Optimal

Solution

Gain: 2073; Optimal Set: [C,D,F,G,K,L,N]; Offloaded Node

Count: 7

KL based

Heuristic

Gain: 2073; Offloaded Set: [C,D,F,G,K,L,N]; Offloaded Node

Count: 7

FM Heuristic Gain: 2073; Offloaded Set: [C,D,F,G,K,L,N]; Offloaded Node

Count: 7

2 Call Graph

Vertex size: 11, Edge size: 13, {N:301, K:436, D:209, B:89, E:366,

A:60, L:808, F:562, C:313, G:457, MainActivity:0} {K.doK1-

>N.doN2:174,1; D.doD3->K.doK1:271,1; B.doB3->D.doD3:598,1;

E.doE->K.doK2:229,1; B.doB3->E.doE:407,1; A.doA2-

>B.doB3:612,1; F.doF->L.doL1:456,1; C.doC3->F.doF:506,1;

L.doL2->N.doN1:205,1; G.doG->L.doL2:251,1; C.doC3-

>G.doG:561,1; A.doA2->C.doC3:2064,1; MainActivity.main-

>A.doA2:738,1,}

Optimal

Solution

Gain: 1549; Optimal Set: [B,D,E ,F,G,K,L,N]; Offloaded Node

Count: 8

KL based

Heuristic

Gain: 1549; Offloaded Set: [B,D,E ,F,G,K,L,N]; Offloaded

Node Count: 8

78

Table 17 (Cont.)

 FM Heuristic Gain:1549; Offloaded Set:[B,D,E ,F,G,K,L,N]; Offloaded Node

Count: 8

Table 17 presents the call graph and the decision results of the second synthetic application

consisting of 11 classes. Class A was marked as a local class. In Table 17, two different

execution of the same application led to two different results. In the first one, offloading

decision heuristic offloaded 7 classes’ instances of the application but in the second

execution 8 classes were offloaded.

Table 18 Application call graph of Synthetic Application 2 and offloading results 2

3 Call Graph

Vertex size: 11, Edge size: 13, {N:302, K:421, D:211, B:90, E:356,

A:66, L:814, F:563, C:313, G:464, MainActivity:0} {K.doK1-

>N.doN2:200,1; D.doD3->K.doK1:242,1; B.doB3->D.doD3:480,1;

E.doE->K.doK2:219,1; B.doB3->E.doE:273,1; A.doA2-

>B.doB3:671,1; F.doF->L.doL1:259,1; C.doC3->F.doF:209,1;

L.doL2->N.doN1:93,1; G.doG->L.doL2:222,1; C.doC3-

>G.doG:194,1; A.doA2->C.doC3:2036,1; MainActivity.main-

>A.doA2:2424,1}

Optimal

Solution

Gain:1552; Optimal list: [B,D,E,F,G,K,L]; Offloaded Node size:

7

KL based

Heuristic

Gain:1552; Offloaded list: [B,D,E,F,G,K,L]; Offloaded Node

size: 7

FM Heuristic Gain: 1552; Offloaded list: [B,D,E,F,G, K, L]; Offloaded Node

size: 7

4 Call Graph

79

Table 18 (Cont.)

 Vertex size: 11, Edge size: 13, {N:302, K:424, D:210, B:85, E:364,

A:60, L:811, F:563, C:316, G:462, MainActivity:0} {K.doK1-

>N.doN2:43,1; D.doD3->K.doK1:253,1; B.doB3->D.doD3:245,1;

E.doE->K.doK2:211,1; B.doB3->E.doE:262,1; A.doA2->

B.doB3:929,1; F.doF->L.doL1:332,1; C.doC3->F.doF:678,1; L.doL2-

>N.doN1:30,1; G.doG->L.doL2:323,1; C.doC3->G.doG:378,1;

A.doA2->C.doC3:1589,1; MainActivity.main->A.doA2:1377,1}

 Optimal

Solution

Gain: 1198; Optimal list: [D,E,F,G,K,L]; Offloaded Node size: 6

KL based

Heuristic

Gain: 1198; Offloaded list: [D,E,F,G,K,L]; Offloaded Node size:

6

FM Heuristic Gain: 1198; Offloaded list: [D,E,F,G,K,L]; Offloaded Node size:

6

In Table 18, the decision results were monitored. When both Classes A and N are marked as

local, the different execution of the same application results in different optimal solutions for

offloading. The other application topologies tested are presented in Appendix B. In Synthetic

applications, the graph construction algorithm and the heuristic solution that finds optimal

solutions were tested and the results show that the decision model found the optimal solution

successfully.

According to results of this experiment, Research Question 2 was answered, that is, a mobile

application was profiled at runtime and a call graph of the application was constructed. After

constructing the call graph, the optimal graph partitioning was achieved at runtime.

6.3 Speed up and network cost functions using history-based profiles

In this section, the experiments carried out to derive the speed-up and network cost functions

for the computation of edge costs are presented. For the speed-up function, a computation

intensive application that finds the prime numbers from 1 to 300 was executed. This function

was also executed 1 to 225 times. The execution times of the smartphone and server are

collected and a regression analysis was carried out to find the estimation formula. Figure 54

presents the results of the regression analysis on the smartphone and Figure 55 on the LAN

server. Combining Figure 54 and Figure 55, the speed-up function in the LAN server based

on the method execution time on the smartphone (Figure 56) was found. In addition, the

regression analysis on the cloud server is presented in Figure 57 and Figure 58. This speed-

up function is used in Equation 2 to estimate the edge cost.

80

Figure 54 The regression analysis of the

processing time in the smartphone

Figure 55 The regression analysis of the processing

time in the LAN server

Figure 56 The regression analysis of the speed up

function in the LAN server

Figure 57 The regression analysis of the processing

time in the cloud server

Figure 58 The regression analysis of the speed up

function in the cloud server

Figure 59 The regression analysis of network cost

(Wi-Fi connection) in the LAN server

y = 337.91x
R² = 0.9978

0
10000
20000
30000
40000
50000
60000
70000
80000

0 100 200 300

Ex
ec

u
ti

o
n

 t
im

es
 (

m
s)

The number of primeNumber function
call

y = 0.6209x
R² = 0.9955

0
20
40
60
80

100
120
140
160

0 100 200 300

Ex
ec

u
ti

o
n

 t
im

es
 (

m
s)

The number of primeNumber function
call

y = 0.0018x
R² = 0.9971

0
20
40
60
80

100
120
140
160

0 20000 40000 60000 80000

Se
rv

er
 e

xe
cu

ti
o

n
 t

im
es

 (
m

s)

Smartphone execution times (ms)

y = 0.5709x
R² = 0.9992

0

20

40

60

80

100

120

140

0 100 200 300

Ex
ec

u
ti

o
n

 t
im

es
 (

m
s)

The number of prime number
function call

y = 0.0017x
R² = 0.9968

0

20

40

60

80

100

120

140

0 20000 40000 60000 80000

C
lo

u
d

 s
er

ve
r

ex
ec

u
ti

o
n

ti

m
es

 (
m

s)

Smartphone execution times (ms)

y = 0.4286x
R² = 0.9313

0

100

200

300

400

500

0 500 1000 1500

R
TT

 (
m

s)

Data Size (KB)

81

Figure 60 The regression analysis of the network

cost (Wi-Fi connection) in the cloud server

Figure 61 The regression analysis of the

network cost (3G connection) in the cloud

server

To estimate the network cost from the data size of the method arguments and return value,

1000 KB data started from 10 KB and increased by 10 KB every measurement were sent to

the remote server and 1 KB data was received over the Wi-Fi connection. The times spent on

the network were measured to perform the regression analysis. The regression equations are

given in Figure 59 for the LAN server and Figure 60 for the cloud server using the WiFi

connection, respectively.

Figure 61 presents network cost function for the cloud server using the 3G connection. Using

these, the decision manager calculates the network time based on the data size, and the

resulting network cost function is thereafter used in Equation 2. We assume that the speed

up (S) and network cost (C) functions are linear mappings in Section 4.1. This experiment

proves the assumption.

In regression analysis R2 is the coefficient of determination that indicates how well data fit a

statistical model. R2 varies between 0 and 1. If it is close to 1, the regression line fits the best

to the data.

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)

2
𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

Equation 3 the coefficient of determination

In Equation 3, the nominator of the equation indicates the residual sum of squares. (𝑦𝑖 − 𝑓𝑖)

shows the differences between actual and predicted value. If this difference is small, the

nominator will become small and R2 closes to 1. The denominator part of the equation

presents the total variation of data.

For the energy model, we estimated 𝛼 and 𝛽 constants by carrying out regression analysis.

We run the prime number function and observe the energy consumption to find relationship

between execution time and energy consumption. 𝛼 constant for execution time is 0.06

Joule/ms. In addition, we also observe the relationship between transmission time and energy

consumption by transmitting data to cloud server for WiFi connection. 𝛽 constant for

transmission time is 0.004 Joule/KB. In addition, Corral et al. [89] provide 𝛼 constant

between 0.03 and 0.07 Joule/ms for functions that have different complexities and Rice and

Hay [90] provide 𝛽 constant 0.005 Joule/KB. These constant proportionalities can also be

chosen by the software developers.

y = 2.2177x
R² = 0.9542

0

500

1000

1500

2000

2500

0 500 1000 1500

R
TT

 (
m

s)

Data size (KB)

y = 44.903x
R² = 0.8204

0

1000

2000

3000

4000

5000

6000

0 50 100 150

R
TT

 (
m

s)

Data Size (KB)

82

6.4 Experiment 3

The aim of this experiment is to present the evaluation of decision processes in case of

offloading to a LAN server or a cloud server. In addition, whether offloading gains

measured fit to offloading gains of the graph model or not is also investigated. Smartphones

benefit from offloading, if proper classes of an application are offloaded. The components

which require intensive data communication such as large data passed as the method

argument and high frequency of the method call located in different side are not suitable for

offloading because of network cost. Especially, if offloading location is a cloud server rather

than a LAN server, the offloading framework can suffer from the high WAN latency. Hence,

choosing a nearby LAN server for offloading can decrease the network cost.

Figure 62 An image filter application

Figure 62 presents user interfaces of an image filter application. This application consists of

18 classes including 17 different image filter algorithms. These algorithms take an image as

an input and apply a filter. After applying the filter, the modified image is returned.

Figure 63 Comparison of execution times on local, LAN server and cloud

The comparison of response times of each image filter algorithm in terms of execution

location is presented in Figure 63. As can be seen from the eighth column of Table 19, the

offloading framework decides to offload 11 image filter algorithms if a LAN server was

preferred for offloading location. On the other hand, if a cloud server was selected for

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ex
ec

u
ti

o
n

 t
im

es
 (

m
s)

Image Filter Algorithms

Local LAN Server Cloud Server

83

offloading, 9 image filter algorithms were suitable for offloading (Table 20). For example, 2-

EmbossFilter and 11- GammaFilter were offloaded when a LAN server was selected but in

case of a cloud server as an offloading location, they were not selected for offloading

because of network cost. The offloading framework dynamically re-solves the decision

model to find classes to be offloaded when the server location is changed.

Table 19 Comparison of Offloading gains for a LAN server

Algorithms Local

LAN

Server

Gain of the

measurement

Vertex

cost

Edge

cost

Gain of the

model

1 GaussianFilter 1467 425 1042 1190 191 999

2 EmbossFilter 448 373 74 235 172 63

3 EdgeFilter 1368 432 936 1114 214 900

4 GrayscaleFilter 298 377 -79 124 170 -46

5 ContrastFilter 327 382 -55 181 191 -10

6 SharpenFilter 928 381 547 733 196 537

7 BlurFilter 1149 405 744 947 190 757

8 InvertFilter 327 382 -55 162 191 -29

9 TwirlFilter 1347 426 921 1172 202 970

10 SolarizeFilter 347 408 -62 155 213 -58

11 GammaFilter 377 370 7 194 191 3

12 BlockFilter 353 397 -44 153 189 -36

13 PosterizeFilter 363 373 -10 160 207 -47

14 DiffusionFilter 1202 463 739 881 273 608

15 MedianFilter 2240 552 1688 1961 195 1766

16 PinchFilter 1003 408 595 757 192 565

17 BumpFilter 1058 406 652 820 220 600

 Table 20 Comparison of Offloading gains for the cloud

Algorithm Local

Cloud

Server

Gain of the

measurement

Vertex

cost

Edge

cost

Gain of the

model

1 GaussianFilter 1467 599 869 1331 627 704

2 EmbossFilter 448 565 -118 236 578 -342

3 EdgeFilter 1368 624 745 1138 689 449

4 GrayscaleFilter 298 520 -223 123 572 -449

5 ContrastFilter 327 556 -228 156 628 -472

6 SharpenFilter 928 592 337 689 640 49

7 BlurFilter 1149 555 594 935 624 311

8 InvertFilter 327 560 -233 160 628 -468

9 TwirlFilter 1347 590 757 1135 654 481

10 SolarizeFilter 347 559 -212 148 687 -539

11 GammaFilter 377 560 -182 188 628 -440

12 BlockFilter 353 580 -227 158 624 -466

13 PosterizeFilter 363 571 -208 168 671 -503

14 DiffusionFilter 1202 674 528 900 807 93

15 MedianFilter 2240 733 1508 1932 636 1296

16 PinchFilter 1003 576 427 667 629 38

17 BumpFilter 1058 586 472 815 703 112

84

 Figure 64 Scatter Plot of the gain of the model and the measured gain for LAN server

 Figure 65 Scatter Plot of the gain of the model and the measured gain for the cloud

Although the primary focus of this experiment to observe the offloading gain according to

the server location parameter, this experiment also facilitated the verification of the

correctness of the call graph based model. Table 19 and Table 20 present the comparison of

offloading gains which were calculated from the graph model and the measured data. Each

algorithm was executed in the smartphone and in the remote server and the execution times

were collected. If the execution time on the local client is extracted from the execution times

on the remote server, it becomes the measured offloading gain. The positive value for the

offloading gain means a benefit for smartphones. However, cases which have negative value

are not suitable for offloading. As shown in the fifth and eighth column of Table 19 and

Table 20, there is a consistency between the measured offloading gains and graph model’

offloading gains. In addition, Figure 64 and Figure 65 present the scatter plots of the

offloading gain of the measured and graph model. As seen in these graphs, the graph model

reflects the application behavior. There is a significant positive relationship between the

gain of the model and the measured gain for LAN server Pearson’s r = 0.991, p<.001 and the

cloud server Pearson’s r = 0.983, p<.001. Thus, it is clear that our graph model reflects the

application behavior successfully.

According to results of this experiment, Research Question 2 was answered, that is, a mobile

application was profiled at runtime. The decision model of the framework dynamically

-500

0

500

1000

1500

2000

-500 0 500 1000 1500 2000

M
e

as
u

re
d

 g
ai

n

Gain of the model

-400

-200

0

200

400

600

800

1000

1200

1400

1600

1800

-1000 -500 0 500 1000 1500

M
e

as
u

re
d

 g
ai

n

Gain of the model

85

changed the classes to be offloaded at runtime according to the server location parameter and

the optimal solution for the application was achieved.

6.5 Experiment 4

This section presents the experiment using the offloading framework to validate the behavior

of the proposed call graph based model and to evaluate its effectiveness in terms of

improving the performance (i.e. execution duration). The first goal of this experiment is to

show whether offloading is productive or counterproductive. The offloading usually

becomes counterproductive if application components which have higher data

communication cost than processing cost are offloaded. Therefore, different combinations of

the application classes were offloaded to find cases where offloading is counterproductive.

The second aim of this experiment is that does the call graph based model confirm the

application behavior (measured data). As explained in Chapter 4, the execution times of the

application at runtime were collected to construct a call graph. After that, the decision

making algorithm was applied to calculate the offloading gain of each combination. The

measured offloading gain and the graph model results were drawn in the scatter plots to

investigate them. Correlation coefficient value was calculated for both of the data sets.

The following experimental procedures are common to all experiments. First, all object

creations were converted to request the object from the offloading framework. Then, mobile

applications were executed on the smartphone with various input values. The components

which are eligible for offloading were presented to the software developer. The software

developer can also monitor offloading results.

An OR application was chosen as a computation intensive smartphone application (Figure

67). In the OR application, there are two modes; learning and recognition. In the learning

mode, the OR application takes a bitmap image as an input and computes the feature vector

saved with the specified object and author name. The recognition mode compares the feature

vector of the bitmap object with the stored feature vectors and returns the most related object

information. In this study, the Eyedentify application [31] was used. The sequence diagram

and a code snippet from the application are given in Figure 33 and Figure 35.

86

Table 21 Offloading cases for the OR application

 A = Image Compression, B = FeatureVectorServiceImp, C

= MyWeibull, D = CxWeibullFit, E= FitWeibull ,

F = CxPatTask (✔ = instance of the classes are offloaded

to the server)

Cases/Classes A B C D E F

1 ✔

2 ✔

3 ✔

4 ✔ ✔

5 ✔ ✔

6 ✔ ✔ ✔

7 ✔ ✔ ✔ ✔

8 ✔ ✔ ✔ ✔ ✔

9 ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

11 ✔ ✔ ✔ ✔ ✔ ✔

12 ✔ ✔ ✔ ✔

13 ✔ ✔

14 ✔ ✔ ✔

15 ✔ ✔ ✔ ✔

16 ✔

17 ✔ ✔

18 ✔ ✔ ✔

19 ✔

20 ✔ ✔

21 ✔

22 ✔ ✔

23 ✔ ✔ ✔

24 ✔ ✔ ✔ ✔

25 ✔ ✔

26 ✔ ✔ ✔

27 ✔ ✔

28 ✔ ✔ ✔

29 ✔ ✔ ✔

30 ✔ ✔ ✔ ✔

31 ✔ ✔ ✔ ✔

32 ✔ ✔ ✔

Table 21 presents the 32 combinations of application classes to be offloaded to the remote

server to investigate offloading results for different conditions.

87

Figure 66 A graph representation of the OR application

Figure 66 shows the graph representation of the method call of the OR application (profiling

results). The numbers following the edge name present the edge weight in the LAN server,

cloud server and the frequency of the method call, respectively. The vertex and edge costs

are also presented in this graph. The grey circles (classes) present the non-offloadable classes

marked by the offloading framework. The FM heuristic was applied to this graph to find the

best offloading gain for offloading. Table 22 presents the graph partitioning results. In

addition, the optimal algorithm that checks all combinations to identify the optimal

offloading gain was also implemented. However, if the number of classes (vertices)

increases (for instance, to more than 15 classes) the optimal algorithm becomes costly. The

optimal algorithm was only used for comparison to show the effectiveness of the FM

heuristic.

Table 22 Graph partitioning results

Partitioning Algorithms Offloading Gains Offloaded Classes

Optimal Algorithm 3112 MyWeibull, FeatureVectorServiceImpl,

CxWeibullFit, FitWeibull, CxPatTask

FM Heuristic 3112 MyWeibull, FeatureVectorServiceImpl,

CxWeibullFit, FitWeibull, CxPatTask

Figure 67 The screenshots of the OR application using our offloading framework

88

6.5.1 Results on the execution time (response time)

Figure 68 The offloading cases of the OR application

This application was executed 10 times using various inputs in the smartphone. Figure 68

presents response times (logarithmic scale) for the offloading cases given in Table 21. If the

classes sent by the offloading framework to the server have higher communication costs

compared to the processing costs, offloading becomes counterproductive. Therefore, these

results also present the importance of finding the optimal solution. The FM heuristic

identifies case 8 as the best solution for offloading (response time: 282 ms) and thus offloads

the instances of classes of this case. In addition, executing the application locally on the

smartphone takes 1131 ms (response time). To measure the overhead of the framework for

profiling and solver, the application was run in profiling and solver mode, which takes 2057

ms. The framework runs in the solver mode if it finds any updates in history-based profiles.

There are also significant differences between a nearby server and a cloud server in certain

cases such as cases 6, 7 and 10. These differences result from the method call frequency of

the objects located in the different side in Figure 66.

Table 23 Offloading gains for LAN server

Cases

Offloading gain

(Measured)

Offloading gain

(Graph Model)

cases Offloading gain

(Measured)

Offloading gain

(Graph Model)

1 -198 -136 17 -12104 -12072

2 -263 -194 18 -1187 -444

3 -1712 -1743 19 -26035 -34865

4 -442 -317 20 -35251 -46583

5 -1718 -1697 21 -7002 -11718

6 -9852 -13196 22 -39644 -51260

7 -44049 -48061 23 -12248 -12253

8 849 3112 24 -1411 -625

9 -1882 -1794 25 -26261 -35046

10 -8702 -8625 26 -36208 -46764

11 722 2976 27 -7084 -11899

12 -38644 -47749 28 -39302 -47613

13 -39132 -47822 29 -28563 -36523

14 -8745 -8725 30 -9024 -8606

15 669 2903 31 -26312 -35895

16 -39354 -51079 32 -26398 -36104

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132E
x
ec

u
ti

o
n
 t

im
es

 (
m

s)

Offloading cases

WiFi (LAN server) WiFi (Cloud server)

89

Figure 69 Scatter Plot of the gain of the model and the measured gain for LAN server

Table 24 Offloading gains for Cloud Server

Cases
Offloading gain

(Measured)

Offloading gain

(Graph Model)
cases

Offloading gain

(Measured)

Offloading gain

(Graph Model)

1 -998 -1903 17 -37725 -86289

2 -674 -1048 18 -1814 -11388

3 -3684 -12940 19 -96724 -235277

4 -1382 -2951 20 -131203 -310856

5 -2673 -12482 21 -39969 -75579

6 -29714 -87722 22 -131978 -326756

7 -141701 -322999 23 -38924 -87337

8 798 2803 24 -2677 -12436

9 -2814 -14724 25 -98713 -236325

10 -36691 -74679 26 -127775 -311904

11 387 900 27 -40784 -76627

12 -130023 -314098 28 -124658 -312195

13 -128684 -312653 29 -98621 -248098

14 -36421 -73234 30 -37104 -72776

15 668 2345 31 -97423 -236616

16 -142328 -325708 32 -97801 -237074

-50000

-40000

-30000

-20000

-10000

0

10000

-60000 -50000 -40000 -30000 -20000 -10000 0 10000

M
e

as
u

re
d

 g
ai

n

Gain of the model

90

Figure 70 Scatter Plot of the gain of the model and the measured gain for the cloud

In order to validate the graph model, 32 combinations of classes as shown in Table 21 were

offloaded. The overall execution time of each combination is measured and the offloading

gain is calculated. The measured offloading gain is found by extracting the local execution

time (1131 ms: executing application locally) from the overall execution time of each

combination. Figure 69 and Figure 70 present the scatter plots of the offloading gain of the

measured and graph model. Table 23 and Table 24 present offloading gains for a LAN server

and the cloud. Figure 69 and Figure 70 indicate that the offloading gains of the measured and

the graph model are correlated. Furthermore, There is a significant positive relationship

between the gain of the model and the measured gain for LAN server Pearson’s r = 0.987,

p<.001 and the cloud server Pearson’s r = 0.994, p<.001. Thus, it is clear that our graph

model reflects the application behavior successfully.

The OR application experiments for changing the complexity of the OR algorithm were also

carried out. In these experiments, case 11 was used. Using the OR algorithm, the images

were converted to 64x48, 128x96 and 256x192 resolutions to calculate the feature vectors.

Although results obtained from higher resolutions are more precise, the 256x192-resolution

image causes an out-of-memory exception in the smartphone. Figure 71 and Figure 72

present the execution time for 480x800 resolution images taken by the smartphone camera.

The execution times are reduced by 60% to 83%. Figure 72 shows the network transmission

and the LAN server execution times for offloading. As a result, when complexity of the

algorithms in an application increase, the resource of the smartphone may become

insufficient and offloading can be inevitable.

Figure 71 Execution time of the OR

Figure 72 Execution time of offloading

According to results of this experiment, Research Question 3 was answered, that is,

distribution transparency was completely achieved. The different offloading cases of an

application were successfully migrated to the remote server, and especially the cases

requiring callback were dynamically handled by the framework at runtime.

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

20000

-400000 -300000 -200000 -100000 0 100000

M
e

as
u

re
d

 g
ai

n

Gain of the model

0

2000

4000

6000

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Image size(pixel)

Local(Phone)

Offload(server)

0

500

1000

1500

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Image Size(pixel)

server

Network

91

6.5.2 Power consumption results

PowerTutor [91] analysis tool was used to measure display, CPU, and Wi-Fi power

consumption of the application. In the OR application, the energy consumptions for the first

eleven cases given in Table 21 were measured.

Figure 73 The energy consumption of the OR application cases

In order to observe the relation between execution time and energy consumption, this

experiment was carried out. Figure 73 presents the energy consumption (logarithmic scale)

of the first eleven cases given in Table 6. Case 8 is the optimal solution for application

partitioning and gives the least energy consumption when compared with other cases. It is

clear there is a direct correlation between the response times and energy consumption of the

cases (the correlation coefficient is 0.99). The energy consumption of locally executing the

application is 8.1 joule, which reaches 9.2 joules with the solver overhead. There are also

significant differences due to the network cost between the nearby server and cloud server in

cases 6, 7 and 10. The energy consumption of the cases 6, 7 and 10 are significantly higher

than other cases because of the network cost resulted from objects resided in different

machines. In addition, the energy model of the framework determined the case 8 as the best

solution for offloading.

Figure 74 Scatter Plot of the gain of the model and the measured gain for LAN server

Figure 74 indicates that the measured gain of energy consumption and the gain of the energy

model are correlated. Furthermore, There is a significant positive relationship between the

gain of the energy model and the measured gain for LAN server Pearson’s r = 0.958, p<.001.

Thus, it is clear that the energy model reflects the application behavior successfully.

6.6 Performance Comparison of Frameworks

In order to compare the performance of our framework with existing approaches, Cuckoo [7]

and Flores and Srirama [83] frameworks are downloaded from GitHub. For comparison of

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7 8 9 10 11

En
er

gy

co
n

su
m

p
ti

o
n

(j
o

u
le

)

Offloading cases

WiFi (LAN Server) WiFi (cloud server)

-80.00

-60.00

-40.00

-20.00

0.00

20.00

-100 -80 -60 -40 -20 0 20

M
e

as
u

re
d

 g
ai

n

Gain of the model

92

frameworks, the object recognition application is implemented and run 10 times.

Experiments are carried out by using the same hardware setup for all frameworks (Section

6.2). Based on 10 runs, the proposed framework turned out to be better in all runs as shown

in Figure 75, and on average, it performed 11% better than the Cuckoo framework [7], and

9% better than that of Flores and Srirama’s [83].

Figure 75 Comparison of the frameworks

6.7 Discussion on Roaming, SSL connection, Failure and Load on Server

The proposed framework handles user mobility during offloading of application components.

Deploying components to be offloaded to the cloud server and the LAN server for remote

computing are cases where user mobility is needed to be addressed. First, if the server

location is a cloud server and a mobile user moves to a different location where he connects

to the remote server with a new access point, at this point, the network connection costs will

change and the graph model needs to be re-solved to adapt to the network cost change. The

proposed framework dynamically adapts itself in case of attached network change. The

mobility of the user is handled at the same way for LAN server. During the mobility, if the

request or response messages are lost, the mobile client sends a FT_REQUEST to remote

server to handle fault tolerance. In addition, the software developer may require a secure

connection for specific components by providing SSL connection flag when requesting

object creation. Since the SSL encrypts the messages, the data transmitted between mobile

client and remote server increases. This situation also increases the cost of communication

between components which reside in different machines and the graph model solution will

be changed when comparing cases in which a SSL connection is not implemented. The

other issue needs to be addressed is the load on the server. The cloud servers inherently

provide scalability when the demand to computing services increases. The cloud server

increases the server resources at runtime when more users request the services provided by

the cloud. For the LAN server, the proposed framework can monitor the requests and

provide a new server instance in case of an increase for requesting deployed services. Since

the synthetic applications that were implemented for testing the developed algorithms

present cases where edge costs randomly assigned based on vertices costs, they can also

address the situations such as an SSL connection (an increase in data communication

between objects) and roaming (mobile user mobility). However, the applications that

specifically evaluate the situations where an SSL connection, roaming, failure and load on

server are explicitly addressed; are left as future work.

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 t
im

es
 (

m
s)

Experiments

Our Framework Flores and Srirama (2013) Cuckoo(2012)

93

CHAPTER 7

CONCLUSION

This thesis is concluded in this chapter by providing a summary of the research goals and

realization of these goals. Furthermore, major implications of the developed framework on

mobile application development, practical benefits and contributions are presented. Finally,

the main limitations of this work and the direction of future work to improve certain aspects

of the proposed framework are given.

7.1 Summary

The goal of this study were 1) to improve the performance of mobile applications through

offloading their computation intensive components to resourceful servers 2) to automatically

collect metrics for each component of the mobile application and construct a call graph at

runtime 3) to dynamically partition the mobile application in order to find computation

intensive components. The realization of these goals resulted in the proposed solutions

facilitated in the framework. In particular, an offloading framework should have the ability

to decide which location (local or remote) is beneficial for smartphones to execute the

computation intensive components by answering how, what, where and when to offload with

precision. These questions were considered during the design of the effective offloading

framework and answered respectively.

Mobile devices will evolve to become the dominant computing devices and they will also

provide computationally intensive applications with the help of mobile cloud computing.

Since computation intensive applications generally require more memory and processing

capacity, they can be adapted as a mobile application via migrating their computation

intensive parts to a remote server. Thus, in order to overcome resource limitations of

smartphones, client-server based delegation model and offloading mechanisms can be

utilized to augment mobile devices. In the delegation model, pre-defined services consumed

by mobile devices are implemented in the server. However, this approach not only decreases

the flexibility of the application but also increases the overhead on software developers. On

the other hand, most of the offloading mechanisms in the literature offer partial benefits for

mobile applications in terms of development efforts and functionality. The main

disadvantage of the current offloading mechanisms is that the callback functionality, which

is essential for complete distribution transparency, is not taken into account in the

frameworks. They offload computation intensive components which are annotated by

software developers and should not depend on any resource residing in the smartphone side.

Furthermore, to best of our knowledge, an effective model for determining computation

intensive components dynamically has not been presented yet.

This framework is based on the Inversion of Control mechanism that delegates the object

creation task to the offloading factory. Thus, the developer requests object creation from the

offloading factory. The offloading factory then decides whether to create a proxy or an

94

object in the local client at runtime. The main advantages of the framework are; distribution

transparency of offloading and the program structure not being changed by the developer.

Developing a distributed application via object mobility in object oriented programming has

been extensively studied. Although Java RMI, OMG’s CORBA and Microsoft DCOM are

well structured frameworks, they are not explicitly targeted for mobile platforms. In addition,

Android IDL and OSGi-service based mechanisms have faced problems such as the

difficulty of callback implementations, dependency on specific platforms and argument

inconsistency. In these approaches, application components such as methods or classes need

to be annotated by a software developer and then the frameworks convert these components

to proper services which can be migrated to a remote server. Since these services should not

be dependent on the other components, complexity and overhead over the software

developer increases. On the other hand, this study proposes a lightweight framework in

which software developers only need to deal with object creation. All other details including

remote object creation, remote method call, parameter passing and communication between

devices are the responsibility of the proposed offloading framework, and they are not even

visible to the software developers. In addition, since the same offloading framework is

implemented on both the mobile device and the cloud, when the cloud needs to call back

mobile device resources, the offloading factory creates the reverse proxy that automatically

handles the callback functionality. Furthermore, delegating object creation to a factory

method which provides flexibility at runtime by giving a local or a proxy object, which

enables smartphones to migrate method call through these proxies and utilize cloud

resources transparently.

The most important aspect of an offloading framework is to decide what to offload in order

to obtain a benefit. The components that require higher processing cost than communication

cost are determined. First, as opposed to many of existing works, the execution times of the

components and their dependencies are obtained at runtime and represented as a call graph.

A novel call graph based model is proposed in this study. Constructing this call graph, the

offloading decision is converted to a graph partitioning problem. Hence, a well-known graph

partitioning (min-cut) algorithm (FM heuristic) is implemented to make an offloading

decision at runtime. Moreover, the inclusion of a new heuristic algorithm is achieved through

a modular structure of the proposed framework. This algorithm identifies the most

productive offloading decision according to the proposed call graph based model. Different

combinations of application components are offloaded to demonstrate the importance of the

offloading decision. Code offloading can be counterproductive if sending classes to remote

servers has a higher network cost than processing them on the mobile client.

The offloading location (a nearby server or a cloud) is also an important decision which

needs to be handled. Although cloud servers provide scalability and on-demand computing,

as presented in Section 2.5, high WAN latencies have a negative effect on the offloading

mechanism. Therefore, a nearby server in vicinity of smartphones should be preferred.

Moreover, existing studies except Verbelen et al. [9] did not consider the LAN server or

service discovery. The proposed framework implemented a DNS-SD based service discovery

to find nearby servers at first rather than finding a cloud server. Where to offload determines

the benefit smartphones receive. In addition, when to offload is determined according to the

network bandwidth. In implementation of the framework, determining network bandwidth is

handled during offloading on-the-fly and the mobile application adapts itself according to

network bandwidth changes. Furthermore, the framework security is handled via providing

SSL connection. An authentication and single sign-on mechanism were implemented by

using Twitter OAuth mechanism.

Experimental results show that the proposed graph model fits well to the application

partitioning problem. The gains of the graph model and the measured gains are strongly

correlated, that is, the graph model reflects the application behavior successfully. According

to the results of several experiments, offloading reduced the execution time by 1% to 83%

and decreased power consumption by 65% to 88%. More importantly, the proposed

95

framework did not incur significant overhead. Smartphones obtain more benefits by

offloading to a nearby server rather than the cloud server. The complete distribution

transparency achieved in the framework enables smartphones to utilize server resources as

part of them.

7.2 Contributions

The key contributions of this study are summarized as:

 The framework eases the burden on the developer by transparently handling the

distribution of the application components. The programming model allows the

objects of a mobile application to be distributed, and the classes to be offloaded are

identified on-the-fly by the framework.

 The offloading programming model dynamically creates local or proxy objects on

both sides (smartphone or server side) according to the result of a call graph based

decision model. This allows simultaneous object access capability for both directions

and contributes to the transparency of the object distribution.

 The framework provides a globally optimal partitioning using a call graph based

decision model in order to identify the set of classes to be offloaded, thereby

producing the optimum benefit under current runtime context. The framework

utilizes a heuristic graph partitioning algorithm for this purpose.

 The framework constantly updates the call graph according to changing conditions

as the application is running, hence allowing dynamic adaptation. That is, as the

conditions associated with the network connectivity change, the framework

recalculates the offloading decisions according to the updated call graph model on

the server side, at runtime.

 The framework has been evaluated and compared to other frameworks through real

application scenarios. In the experiments, measurements are made on real

smartphones and servers running practical applications. Moreover, a significant

correlation is observed between the offloading gain measured and the offloading

gain suggested by the graph based model.

 The framework enables smartphones to implement complex libraries that are not

available for smartphones.

 The framework achieves fault tolerance by providing logging and recovery

mechanism.

7.3 Limitations and Future Work

The proposed offloading framework has certain limitations. During the application

development phase, the software developer should implement the get and set method of

public global class variables. In the framework, software developers need to use the

offloading factory to create objects. By a VM code modification, the object creation code

snippet presented by a “new” keyword can be detected and this code snippet can be modified

to delegate the object creation to the offloading factory automatically. The AspectJ library,

which is an aspect-oriented programming extension, can be adapted for smartphones to

enable automatic code modification to create objects.

The computation intensive tasks should not be implemented in user interface classes since

these classes are all marked as non-offloadable components. However, the computation

intensive methods in the user interface can be converted to a method of a new class and the

required code modification should be made in the user interfaces. The edge cost conversion

equations of the graph model were given for the specific smartphone, LAN server and cloud

virtual machine. These equations can be provided for several smartphones and different

server configurations by software developers, and can be saved to a cloud repository.

96

97

REFERENCES

[1] ITU, “Measuring the information society report 2014,” Geneva, Switzerland, 2014.

[2] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware for pervasive

services on mobile devices,” Pervasive Mob. Comput., vol. 3, no. 4, pp. 362–385,

2007.

[3] Oracle, “Java remote method invocation API,” 2010. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/. [Accessed: 15-Nov-

2015].

[4] Android, “Android interface definition language,” 2008. [Online]. Available:

http://developer.android.com/guide/components/aidl.html. [Accessed: 15-Nov-2015].

[5] OSGi, “OSGi Architecture,” 2010. [Online]. Available:

https://www.osgi.org/developer/architecture/. [Accessed: 15-Nov-2015].

[6] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “AIOLOS: Middleware for

improving mobile application performance through cyber foraging,” J. Syst. Softw.,

vol. 85, no. 11, pp. 2629–2639, 2012.

[7] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation offloading

framework for smartphones,” in Mobile Computing, Applications, and Services,

Springer Berlin Heidelberg, 2012, pp. 59–79.

[8] F. Plášil and M. Stal, “An architectural view of distributed objects and components in

CORBA, Java RMI and COM/DCOM,” Softw. - Concepts Tools, vol. 19, no. 1, pp.

14–28, 1998.

[9] P. Chung, Y. Huang, S. Yajnik, D. Liang, and J. Shih, “DCOM and CORBA side by

side, step by step, and layer by layer,” C++ Rep., vol. 10, no. 1, pp. 18–29, 1998.

[10] B. Chun, S. Ihm, and P. Maniatis, “Clonecloud: elastic execution between mobile

device and cloud,” in EuroSys ’11 Proceedings of the sixth conference on Computer

system, 2011, pp. 301–314.

[11] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P.

Bahl, “MAUI: making smartphones last longer with code offload,” in Proceedings of

the 8th international conference on Mobile systems, applications, and services, 2010,

vol. 17, pp. 49–62.

[12] M. D. Kristensen and N. O. Bouvin, “Scheduling and development support in the

Scavenger cyber foraging system,” Pervasive Mob. Comput., vol. 6, no. 6, pp. 677–

692, 2010.

98

[13] E. Chen, S. Ogata, and K. Horikawa, “Offloading Android applications to the cloud

without customizing Android,” in 2012 IEEE International Conference on Pervasive

Computing and Communications Workshops, PERCOM Workshops 2012, 2012, pp.

788–793.

[14] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile code

offloading: from concept to practice and beyond,” IEEE Commun. Mag., vol. 53, no.

3, pp. 80–88, 2015.

[15] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for VM-based

cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23,

2009.

[16] M. Fowler, “Inversion of control containers and the dependency injection pattern,”

2004. [Online]. Available: http://www.martinfowler.com/articles/injection.html.

[Accessed: 15-Nov-2015].

[17] M. Kaya, A. Kocyigit, and P. E. Eren, “A mobile computing framework based on

adaptive mobile code offloading,” in Software Engineering and Advanced

Applications (SEAA), 2014 40th EUROMICRO Conference on, 2014, pp. 479–482.

[18] K. Kumar, J. Liu, Y. H. Lu, and B. Bhargava, “A survey of computation offloading

for mobile systems,” Mob. Networks Appl., vol. 18, no. 1, pp. 129–140, 2013.

[19] M. Shiraz, M. Sookhak, A. Gani, and S. A. A. Shah, “A study on the critical analysis

of computational offloading frameworks for mobile cloud computing,” J. Netw.

Comput. Appl., vol. 47, pp. 47–60, 2015.

[20] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1998.

[21] B. Hendrickson and R. Leland, “A multi-level algorithm for partitioning graphs,” in

Proceedings of the IEEE/ACM SC95 Conference, 1995, pp. 1–14.

[22] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning

graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307, 1970.

[23] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network

partitions,” in Design Automation, 1982. 19th Conference on, 1982, pp. 175–181.

[24] F. Zhu, M. W. Mutka, and L. M. Ni, “Service discovery in pervasive computing

environments,” Pervasive Comput. IEEE, vol. 4, no. 4, pp. 81–90, 2005.

[25] DNS-SD, “DNS Service Discovery (DNS-SD) protocol,” 2013. [Online]. Available:

http://www.dns-sd.org/. [Accessed: 15-Nov-2015].

[26] W. K. Edwards, “Discovery Systems in Ubiquitous Computing Ubiquitous,”

Pervasive Comput., vol. 5, no. 2, pp. 70–77, 2006.

[27] Oracle, “Secure Sockets Layer (SSL) protocol,” 2010. [Online]. Available:

https://docs.oracle.com/cd/E19509-01/820-3503/6nf1il6ek/index.html. [Accessed:

15-Nov-2015].

[28] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and B. Freisleben, “Why

Eve and Mallory Love Android: An Analysis of Android SSL (In)Security Categories

99

and Subject Descriptors,” in ACM Conference on Computer and Communication

Security (CCS), 2012, pp. 50–61.

[29] Twitter Oauth, “OAuth mechanism,” 2014. [Online]. Available:

https://dev.twitter.com/oauth. [Accessed: 15-Nov-2015].

[30] D. Hardt, “The OAuth 2.0 Authorization Framework,” 2012.

[31] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and H. Bal,

“eyeDentify: Multimedia cyber foraging from a smartphone,” in ISM 2009 - 11th

IEEE International Symposium on Multimedia, 2009, pp. 392–399.

[32] H. Gani and C. Ryan, “Improving the transparency of proxy injection in Java,” in

Thirty-Second Australasian Conference on Computer Science, 2009, pp. 55–64.

[33] M. Philippsen and M. Zenger, “JavaParty - transparent remote objects in Java,”

Concurr. Pract. Exp., vol. 9, no. 11, pp. 1225–1242, 1997.

[34] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to Minimize

State Transfer Costs for Dynamic Execution Offloading in Mobile Cloud

Computing,” IEEE Trans. Mob. Comput., vol. 13, no. 11, pp. 1–1, 2014.

[35] N. Geoffray, G. Thomas, and B. Folliot, “Transparent and dynamic code offloading

for java applications,” in On the Move to Meaningful Internet Systems 2006: CoopIS,

DOA, GADA, and ODBASE, Springer Berlin Heidelberg, 2006, pp. 1790–1806.

[36] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application

partitioning algorithms in mobile cloud computing: Taxonomy, review and future

directions,” J. Netw. Comput. Appl., vol. 48, pp. 99–117, 2015.

[37] E. Abebe and C. Ryan, “Adaptive application offloading using distributed abstract

class graphs in mobile environments,” J. Syst. Softw., vol. 85, no. 12, pp. 2755–2769,

2012.

[38] Android, “Android SDK,” 2014. [Online]. Available:

https://source.android.com/devices/tech/dalvik/. [Accessed: 15-Nov-2015].

[39] T. Verbelen, T. Stevens, P. Simoens, F. De Turck, and B. Dhoedt, “Dynamic

deployment and quality adaptation for mobile augmented reality applications,” J.

Syst. Softw., vol. 84, no. 11, pp. 1871–1882, 2011.

[40] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Adaptive deployment and

configuration for mobile augmented reality in the cloudlet,” J. Netw. Comput. Appl.,

vol. 41, pp. 206–216, 2014.

[41] D. Kovachev and R. Klamma, “Framework for computation offloading in mobile

cloud computing,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 7, pp. 6–15,

2012.

[42] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactoring android

Java code for on-demand computation offloading,” ACM SIGPLAN Not., vol. 47, no.

10, p. 233, 2012.

[43] H. Y. Chen, Y. H. Lin, and C. M. Cheng, “COCA: Computation offload to clouds

using AOP,” in Proceedings - 12th IEEE/ACM International Symposium on Cluster,

100

Cloud and Grid Computing, CCGrid 2012, 2012, pp. 466–473.

[44] C. Ling, C. Ming, W. Zhang, and F. Tian, “AR Cloudlets for Mobile Computing,”

Int. J. Digit. Content Technol. its Appl., vol. 5, no. 12, pp. 162–169, 2011.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of

reusable object-oriented software. Upper Saddle River, NJ: Pearson Education, 1998.

[46] P. Eugster, “Uniform proxies for Java,” ACM SIGPLAN Not., vol. 41, no. 10, pp.

139–152, 2006.

[47] Oracle, “Dynamic proxy classes,” 2010. [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html.

[Accessed: 12-Nov-2015].

[48] C. G. Lasater, Design Patterns. 2010.

[49] E. Tilevich and Y. Smaragdakis, “J-orchestra: Automatic java application

partitioning,” in ECOOP ’02 Proceedings of the 16th European Conference on

Object-Oriented Programming, 2002, pp. 178–204.

[50] R. Caspar and W. Christopher, “Application adaptation through transparent and

portable object mobility in Java,” in On the Move to Meaningful Internet Systems

2004: CoopIS, DOA, and ODBASE, Springer Berlin Heidelberg, 2004, pp. 1262–

1284.

[51] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: Distributed Applications

through Software Modularization,” in Proceedings of the 8th International

Conference on Middleware (Middleware’07), 2007, vol. 4834, pp. 1–20.

[52] J. S. Rellermeyer, O. Riva, and G. Alonso, “AlfredO: an architecture for flexible

interaction with electronic devices,” in Middleware ’08 Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, 2008, pp. 22–41.

[53] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud: Enabling

mobile phones as interfaces to cloud applications,” in ACM/IFIP/USENIX 10th

international conference on Middleware, 2009, pp. 83–102.

[54] D. C. Schmidt, “Android AIDL,” 2013. [Online]. Available:

http://www.dre.vanderbilt.edu/~schmidt/cs282/ServicesAndIPC.pdf. [Accessed: 25-

Nov-2013].

[55] P.-O. Fjallstrom, “Algorithms for graph partitioning: A survey,” Linkoping Electron.

Artic. Comput. Inf. Sci., vol. 3, no. 10, pp. 1–34, 1998.

[56] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adaptive offloading

for pervasive computing,” IEEE Pervasive Comput., vol. 3, no. 3, pp. 66–73, 2004.

[57] K. Yang, S. Ou, and H. H. Chen, “On effective offloading services for resource-

constrained mobile devices running heavier mobile internet applications,” IEEE

Commun. Mag., vol. 46, no. 1, pp. 56–63, 2008.

[58] M. Stoer and F. Wagner, “A Simple Min-Cut Algorithm,” J. ACM, vol. 44, no. 4, pp.

585–591, 1997.

101

[59] H. Flores and S. N. Srirama, “Mobile Cloud Middleware,” J. Syst. Softw., vol. 92, pp.

82–94, 2014.

[60] J. H. Christensen, “Using RESTful web-services and cloud computing to create next

generation mobile applications,” in Proceedings of the 24th ACM SIGPLAN

conference companion on Object oriented programming systems languages and

applications, 2009, pp. 627–634.

[61] M. Kaya, M. Özpınar, Y. Çetin Kaya, and T. Taşkaya Temizel, “MobileMETU: A

Mobile Campus project based on web services,” Glob. J. Technol., vol. 3, pp. 1620–

1625, 2013.

[62] Shuai Zhang, Xuebin Chen, Shufen Zhang, and Xiuzhen Huo, “The comparison

between cloud computing and grid computing,” in International Conference on

Computer Application and System Modeling (ICCASM 2010), 2010, vol. 11, no. 46,

pp. 72–75.

[63] Y. Wei and M. B. Blake, “Service-oriented computing and cloud computing:

Challenges and opportunities,” IEEE Internet Comput., vol. 14, no. 6, pp. 72–75,

2010.

[64] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-

degree compared,” in Grid Computing Environments Workshop 2008 (GCE ’08),

2008, pp. 1–10.

[65] M. Malathi, “Cloud computing concepts,” in ICECT 2011 - 2011 3rd International

Conference on Electronics Computer Technology, 2011, vol. 6, pp. 236–239.

[66] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the

5th utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[67] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in 2010

24th IEEE International Conference on Advanced Information Networking and

Applications, 2010, pp. 27–33.

[68] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A Berkeley

view of cloud computing,” 2009.

[69] J. Varia, “Best practices in architecting cloud applications in the AWS cloud,” in

Cloud Computing: Principles and Paradigms, Hoboken, New Jersey: John Wiley &

Sons, Inc, 2011, pp. 459–490.

[70] Google, “Google app engine,” 2014. [Online]. Available:

http://appengine.google.com. [Accessed: 25-May-2014].

[71] Microsoft, “Microsoft windows azure,” 2014. [Online]. Available:

https://azure.microsoft.com/. [Accessed: 20-May-2014].

[72] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan, “How close is

close enough? Understanding the role of cloudlets in supporting display appropriation

by mobile users,” in 2012 IEEE International Conference on Pervasive Computing

and Communications, PerCom 2012, 2012, pp. 122–127.

102

[73] R. Gupta, S. Talwar, and D. P. Agrawal, “Jini home networking: a step toward

pervasive computing,” Computer (Long. Beach. Calif)., vol. 35, no. 8, pp. 34–40,

2002.

[74] P. Dobrev, D. Famolari, C. Kurzke, and B. a. Miller, “Device and service discovery

in home networks with OSGi,” IEEE Commun. Mag., vol. 40, no. 8, pp. 86–93, 2002.

[75] G. Moritz, C. Cornelius, F. Golatowski, D. Timmermann, and R. Stoll, “Differences

and Commonalities of Service-Oriented Device Architectures, Wireless Sensor

Networks and Networks-On-Chip,” in Proceedings, 4th International IEEE

Workshop on Service Oriented Architectures in Converging Networked Environments

(SOCNE2009), 2009, pp. 482–487.

[76] M. Giordano, “DNS-Based discovery system in service oriented programming,” in

Advances in Grid Computing-EGC, Springer Berlin Heidelberg, 2005, pp. 840–850.

[77] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” 2013.

[78] C. J. Lamprecht and A. P. A. van Moorsel, “Runtime Security Adaptation Using

Adaptive SSL,” in 4th IEEE Pacific Rim International Symposium on Dependable

Computing, 2008, pp. 305–312.

[79] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal verification of OAuth

2.0 using alloy framework,” in Proceedings - 2011 International Conference on

Communication Systems and Network Technologies, CSNT 2011, 2011, pp. 655–659.

[80] J. Niu, W. Song, and M. Atiquzzaman, “Bandwidth-adaptive partitioning for

distributed execution optimization of mobile applications,” J. Netw. Comput. Appl.,

vol. 37, pp. 334–347, 2014.

[81] R. Martin and S. Totten, “Introduction to fault tolerant CORBA,” 2003. [Online].

Available: http://sett.ociweb.com/cnb/CORBANewsBrief-200301.html. [Accessed:

15-Nov-2015].

[82] A. Gokhale, B. Natarajan, D. C. Schmidt, and K. C. Cross, “Towards real-time fault-

tolerant CORBA middleware,” Cluster Comput., vol. 7, no. 4, pp. 331–346, 2004.

[83] H. Flores and S. Srirama, “Adaptive code offloading for mobile cloud applications:

exploiting fuzzy sets and evidence-based learning,” in Proceeding of the fourth ACM

workshop on Mobile cloud computing and services, 2013, pp. 9–16.

[84] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading,” in

Proceedings - IEEE INFOCOM, 2012, pp. 945–953.

[85] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B.

Becker, N. Bencomo, Y. Brun, B. Cukic, G. di Marzo Serugendo, S. Dustdar, A.

Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M.

Litoiu, S. Malek, R. Mirandola, H. A. Muller, S. Park, M. Shaw, M. Tichy, M. Tivoli,

D. Weyns, and J. Whittle, “Software engineering for self-adaptive systems: a research

roadmap,” in Software Engineering for Self-Adaptive Systems, vol. 5525, Springer

Berlin Heidelberg, 2009, pp. 1–26.

[86] M. Ayad, T. Mohamed, and S. Ashraf, “Mobile GPU Cloud Computing with real

103

time application,” in Energy Aware Computing Systems & Applications (ICEAC),

2015 International Conference on. IEEE, 2015, pp. 1–4.

[87] J. Hauswald, M. Thomas, Z. Qiang, D. Ronald, C. Chaitali, and M. Trevor, “A hybrid

approach to offloading mobile image classification,” in In Acoustics, Speech and

Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014, pp.

8375–8379.

[88] R. Smith, “Tesseract OCR,” 2006. [Online]. Available:

https://code.google.com/p/tesseract-ocr/. [Accessed: 15-Nov-2015].

[89] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “Can execution time describe

accurately the energy consumption of mobile apps? an experiment in Android,” in

Proceedings of the 3rd International Workshop on Green and Sustainable Software -

GREENS 2014, 2014, pp. 31–37.

[90] A. Rice and S. Hay, “Measuring mobile phone energy consumption for 802.11

wireless networking,” Pervasive Mob. Comput., vol. 6, no. 6, pp. 593–606, 2010.

[91] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang,

“Accurate online power estimation and automatic battery behavior based power

model generation for smartphones,” in Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, 2010,

pp. 105–114.

104

105

APPENDICIES

APPENDIX A:

KL HEURISTIC

 determine a balanced initial partition of the nodes into sets A and B

 Set<Vertex> A ; Set<Vertex> B

 Set<Vertex> UnswappedA ; Set<Vertex> UnswappedB

 Until Max Gain > 0

 compute D values for all a in A and b in B

 Until |V|/2 vertices are traversed (UnswappedB)

 find a from A and b from B, such that g = D[a] + D[b] - 2*E(a, b) is maximal

 swap (a, A , B, b)

 remove a and b from UnswappedB and UnswappedA

 update D values for the elements of A = A \ a and B = B \ b

 End Until

 find k which maximizes g_max, the sum of g[1],...,g[k]

 if (g_max > 0) then

 Swap av[1],av[2],...,av[k] with bv[1],bv[2],...,bv[k]

 End Until

Pseudo code of KL algorithm is presented in this part. A graph is separated in two

partition according to edge weights. This algorithm provides min-cut of the graph.

106

APPENDIX B:

Application topologies which were implemented to verify the offloading framework are

presented in this section.

107

108

109

CIRCULUM VITAE

MAHİR KAYA

Information Systems Department

Middle East Technical University

Informatics Institute, Universiteler Mahallesi, Dumlupınar Bulvarı, No:1, 06800,

Ankara,Turkey

TEL: +90 312 210 77002 FAX: +90 312 210 3745

EMAIL: mahirkaya@gmail.com

AREAS OF INTEREST

 Code offloading

 Mobile cloud computing

 Service oriented architecture and web services

 Computer and communications networks

EDUCATION

Middle East Technical University, Ankara, Turkey

Doctor of Philosophy in Information Systems

2010-2016

Thesis Title: An Optimal Application Partitioning and Computational Offloading

Framework for Mobile Cloud Computing

Advisor: Assoc. Prof. Dr. Altan Koçyiğit

Middle East Technical University, Ankara, Turkey

Master of Science in Information Systems

2007-2010

Thesis Title: E-Cosmic: A Business Process Model Based Functional Size

Estimation Approach

Advisor: Prof. Dr. Onur Demirörs

110

Istanbul Technical University (ITU), Istanbul, Turkey

Bachelor of Science in Industrial Engineering

1995-2000

TEACHING ASSISTANTSHIPS

 Object Oriented Analysis and Design, Assistant

 Software Architecture, Assistant

 Software Design Patterns, Assistant

 Introduction to Software Engineering, Assistant

 Security Engineering, Assistant

PAPERS

 Kaya, Mahir, and Altan Koçyiğit. "A mobile computing framework based on

adaptive mobile code offloading." Software Engineering and Advanced Applications

(SEAA), 2014 40th EUROMICRO Conference on. IEEE, 2014, Verona, Italy.

 Çetin Kaya Y., Özkan Yıldırım S. & Kaya M. Effects of the Usability and Expected

Benefit on M-Service Usage: The Case of a Location-Based Mobile Campus

Service, 2014, 8th Interfaces and Human Computer Interaction (IHCI), Lisbon,

Portugal.

 Kaya, Mahir, and Altan Koçyiğit. "Mobil Uygulamalarda Vekil Tabanlı Kod

Taşıma Yönteminin Farklı Seviyelerdeki Bulut Bilişim Altyapılarının Kullanılması

Durumundaki Başarımının Karşılaştırılması." UYMS - 2014, Güzelyurt, KKTC.

 Çetin Kaya Y., Kaya M., Özkan S., Lokasyon Tabanlı Mobil Kampus Uygulaması

ve Kullanılabilirlik Değerlendirmesi, UYMS-2014, Güzelyurt, KKTC.

 Kaya, Mahir, and Onur Demirors. "E-Cosmic: A Business Process Model Based

Functional Size Estimation Approach." Software Engineering and Advanced

Applications (SEAA), 2011 37th EUROMICRO Conference on. IEEE, 2011, Oulu,

Finland.

 B.Bakır, S.Özkan, R.Köseler, T.Taşkaya Temizel, D.İncebacak, and M.Kaya

(2009), The Attitudes of students with diverse backgrounds on computer and

information literacy subjects: Evidence from a first year course, Proceedings of the

39th Annual Frontiers in Education (FIE) Conference.

 R.Köseler, T.Taşkaya Temizel, B.Bakır, D.İncebacak, M.Kaya and S. Özkan

(2009), Work in progress: Iterative curriculum development for an interdisciplinary

online-taught IT course. Proceedings of the 39th Annual Frontiers in Education

(FIE) Conference.

JOURNAL PAPERS

 Kaya, Mahir, Koçyiğit A. and Eren P.E. A Mobile Cloud Computing Framework

Using a Call Graph Based Model, Revision submitted to Journal of Network and

Computer Applications.

111

 Kaya Mahir, Özpınar M., Çetin Y., & Tuğba Taşkaya Temizel, MobileMETU: A

Mobile Campus project based on web services, Global Journal on Technology, Vol 3

(2013): 3rd World Conference on Information Technology (WCIT-2012).

