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ABSTRACT 

 
INVESTIGATION OF A GENERIC WARHEAD CONTAINING 
PLASTIC BONDED EXPLOSIVE UNDER LIQUID FUEL FIRE 

BY 
NUMERICAL AND TEST METHODS 

 

Şahin, Hakan 
M.S., Department of Aerospace Engineering 
Supervisor : Assoc. Prof. Dr. Dilek Funda Kurtuluş 
Co-Supervisor : Dr. Bekir Narin 

December 2015, 78 pages 

 

The present work provides a design methodology for a munition against fast cook-off 

threat for type V insensitivity requirement. The experimental and numerical results 

for a generic test item (warhead) filled with a PBXN-109 explosive are presented.  

Two key points for the design of an insensitive munition against fast cook-off threat, 

which are time to reaction and critical vent area is studied. Dividing the problem as 

pre-ignition and post- ignition will allow one to manage this complex problem to 

handle easier than its original form.  

The first part of the study covers 2-D and 3-D simulations of the problem by 

modeling the generic test item geometry by commercial CFD software (ANSYS - 

Fluent). The second part of the study reveals low pressure (2-10 MPa) burn 

characteristics of a PBXN-109 by strand burner tests. After obtaining pressure 

dependent burning rate, conservation of mass equation is used to determine the 

chamber pressure using MATLAB Simulink software.  

Calculations are compared with the tests performed. Results are seen to be in 

reasonable agreement with some discrepancies at 8.9% for time to reaction 

prediction and at 10.9% for ventilation characteristics analyses. Possible reasons of 

these differences are discussed in this study.  
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ÖZ 

 
SIVI YAKIT YANGININA MARUZ KALAN PLASTİK PATLAYICI 

İÇERİKLİ BİR HARP BAŞLIĞININ  
NÜMERİK VE TEST METODUYLA İNCELENMESİ 

 

Şahin, Hakan 
Yüksek Lisans, Havacılık ve Uzay Mühendisliği 
Tez Yöneticisi  : Doç. Dr. Dilek Funda Kurtuluş 
Ortak Tez Yöneticisi : Dr. Bekir Narin 

Aralık 2015, 78 sayfa 

 

Yapılan bu çalışmada sıvı yakıt yangını tehdidine karşı tip V duyarsızlık isterine 

sahip bir mühimmatın tasarımına yönelik bir metodolojisi sunulmuştur. PBXN-109 

patlayıcısı içeren test kalemi (harp başlığı) ile yapılan deneysel ve nümerik sonuçlar 

paylaşılmıştır. 

Reaksiyon başlangıç zamanı ve kritik tahliye deliği çapı, sıvı yakıt yangınına karşı 

tasarımı yapılan bir mühimmat için iki önemli anahtar parametredir. Problemin 

reaksiyon öncesi ve sonrası olarak ikiye bölünmesi bu kompleks problemin çözümü 

için tasarımcıya kolaylık sağlayabilir. 

Çalışmanın ilk aşaması test kaleminin 2 ve 3 boyutlu olarak ticari hesaplamalı 

akışkanlar dinamiği programı ANSYS-Fluent ile modellenmesini içermektedir. 

İkinci aşama ise PBXN-109 patlayıcısına ait düşük basınçlı (2-10MPa) yanma 

karakteristiğinin strand burn testleri ile çıkarıldığı çalışmayı içermektedir. Basınca 

bağlı yanma hızının elde edilmesi ile birlikte test kalemi içerisinde oluşacak basıncın 

tespiti için MATLAB Simulink ticari yazılımında kütlenin korunumu denklemleri 

kullanılmıştır. 

Hesaplamalar yapılan testler ile karşılaştırılmıştır. Buna göre, sonuçlar makul kabul 

edilebilecek seviye birbiri ile örtüşmekte olup; reaksiyonun süresinin tespiti için 

yapılan öngörüler için %8,9 olup, kritik tahliye deliğinin tespiti için yapılan 
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çözümlemeler için %10,9’dur. Bu farklara olması muhtemel sebepler çalışma 

içerisinde paylaşılmıştır. 

 

Anahtar Kelimeler: Duyarsız Mühimmat, Sıvı Yakıt Yangını, Reaksiyon Süresi, 

Yanma Hızı Testleri, PBXN-109 
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CHAPTER 1 
 
 

1. INTRODUCTION 
 
 
 

Energetic materials such as explosives, pyrotechnics and propellants are widely used 

in many military applications. Explosives are defined as materials which react to 

produce a violent expansion of hot gas, an explosion, which rapidly delivers energy 

to its surroundings. The rate of transformation from solid to hot gas takes place on 

timescales of microseconds. Propellants are less violent in reaction and are used to 

accelerate objects such as missiles and bullets. For propellants transformation takes 

place in a slower timescale which is milliseconds. Pyrotechnics are systems which 

react to produce an effect such as smoke, light or noise with reaction times from 

milliseconds to many minutes [1]. 

Comparing energetics materials with other materials such as petrol, petrol contains 

six times more available energy as the same mass of TNT but unlike petrol, TNT 

releases its energy a hundred million times faster [1]. These reaction (transformation) 

time form the basis of the explosion.  

Today, safety design of the munitions against unplanned stimuli like terrorist attack, 

accidental fire environment etc. becomes as important as the design for performance 

and operational requirements. Many nations have been undertaken significant work 

to reduce the response of munition systems under attack. These efforts include 

understanding explosive response under thermal load and mechanical shocks. 

Knowing the material behavior of the explosive, it becomes possible to prevent 

unwanted reaction of the munition while it is in non-operational condition by taking 

precautions at the design phase. 

Several studies have been performed in TÜBİTAK-SAGE for the design of munition 

components like warheads and rocket motors against threats especially after 

insensitivity became a requirement by the Turkish Ministry of Defense. Liquid fuel 

fire is one of the threads that munition can be exposed to. Past studies that have been 
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made includes test of munitions having a case material that can melt and allow 

explosive to have a contact with atmosphere directly. But not all munitions can take 

advantage of the same solution such as munitions that have a penetrator type of 

warhead.  

In this thesis study, investigation of behavior of the warhead under liquid fuel fire is 

performed by using analytical formulas, commercial Fluent program and performing 

tests. It is aimed to develop a general method for designing insensitive munitions 

against liquid fuel fire threat and minimize the test number required in the test phase.  

1.1. Definition of Insensitive Munitions, Threats and Reaction Levels 

Insensitive munition by the definition of STANAG 4439 is: “…munitions which 

reliably fulfil their performance, readiness and operational requirements on demand 

but which minimize the probability of inadvertent initiation and severity of 

subsequent collateral damage to weapon platforms, logistic systems and personnel 

when subjected to unplanned stimuli…” [2]. These unplanned stimuli are stated as 

follow:  

 Fast heating (fast cook-off) 

 Slow heating (slow cook-off) 

 Bullet impact 

 Fragment impact 

 Shaped charge jet impact 

 Sympathetic reaction 

In Figure 1, possible threats against munitions, related insensitive munitions tests and 

phenomena are shown schematically [3]. 
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fuel fire with an average steady-state temperature of at least 800 °C is used as the test 

stimulus [4]. 

1.3. Literature Survey 

Thermal Initiation Theory describes the initiation of deflagration due to thermal 

effects from surrounding conditions and the heat generated inside the energetic 

material. Understanding the ignition characteristics of energetic materials is the basis 

of the studies in order to predict the cook-off behavior of munitions and development 

of design techniques for insensitive munitions. 

Energetic materials are unstable and decompose rapidly as their temperature is 

raised. Energetic materials can be characterized by an ignition temperature; however, 

the temperature at which ignition occurs more accurately depends upon the geometry 

of the energetic material and the rate at which it is heated [13]. 

Energetic materials exothermically decompose when exposed to external heat source. 

A part of the heat release accompanied with the decomposition is dissipated out 

while some is accumulated inside the energetic material. Any material that gives 

exothermic decomposition reactions during heating like explosive in a warhead, 

propellant in a rocket motor or even a bale of wool may end up with ignition. Self-

heating can be defined as the increase of temperature of a material due to the heat 

generated inside with exothermic decomposition reactions [14]. Decomposition rate 

increases as the temperature increases, thus self-heating rate increases. 

To determine whether the energetic material will undergo a thermal initiation under 

certain surrounding conditions, it is required to know the critical temperature of that 

material which is a function of the chemical, physical, and the geometrical properties 

of the material. Critical temperature is the limit surrounding temperature under which 

no ignition occurs regardless of the exposition time to that temperature. On the other 

hand, under a surrounding temperature conditions above the critical temperature, 

ignition eventually occurs and the level of temperature only affects time or location 

of ignition.  
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and uniform temperature distribution assumption is not applicable, Frank-

Kamenetskii [16] proposed a theory based on the conductive heat transfer in the 

energetic material which allows time dependent temperature distribution. 

Numerical studies which is based on Frank-Kamenetskii’s work on predicting the 

ignition times and temperatures for energetic materials have been performed starting 

from 1960’s. Zinn and Mader [17] applied Fourier series spatial representation for 

the solution to the reactive heat conduction equation to obtain ignition times for 

explosive material. Merzhanov and Abramov [18] used finite difference method for 

one-dimensional reactive heat conduction with the zero-order kinetic model. Suceska 

[19] used finite difference method and developed code THERMEX for the solution 

of the reactive heat conduction equation problem with the zero-order kinetic model. 

Anderson [20] developed the code TEPLO using finite difference method, which 

took temperature dependent material properties into account. Isler and Kayser [21] 

and McGuire and Tarver [22] used different kinetic models instead of zero-order 

kinetic model such as power law kinetic model to predict the ignition behavior of 

different energetic materials. There are also some methods presented by Pakulak [23] 

and Victor [13] for predicting the time to reaction by using analytical equations to 

solve 1-D heat transfer. Victor has implemented these methods to excel spread sheets 

for determining internal temperatures by taking into account the self-heating of the 

explosive, however none of those studies were involved into a chemical reaction 

modelling code. Instead, all used simple kinetic models as stated above to estimate 

and implement heat generated by the explosive as it gets heated by the stimuli.  

Other than those studies, Lawrence Livermore National Laboratory, a high explosive 

cook-off study has been conducted by a group of engineers and physicist to model 

the response of energetic materials to thermal stimuli and the processes involved in 

the energetic response [24], [25]. This study had coupled the two parts of the 

problem that was stated above which are pre-ignition and post-ignition. It is stated 

that several new algorithms have been developed to increase the accuracy and 

fidelity of the modeling process including a level set driven multi-material 

deflagration model, a multi-temperature mixed material treatment, self-consistent 
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thermal-hydro coupling, full implicit quasi-static hydrodynamics, ALE slide surfaces 

and ALE slide deletion.  

On the other hand, ventilation of burn products might be vital for a system containing 

energetic material for unplanned thermal or mechanical stimuli. The question that is 

generally raised is “what is the required ventilation size for preventing system to 

react violently”.  

Graham [26] and Victor [13] derived a methodology for the determination of critical 

ventilation requirements of rocket motor and warheads using the internal ballistics. 

They both assumed that the flow over the ventilation area becomes sonic, and 

simplified and derived equations of internal ballistics accordingly. Graham [26] also 

used ballistic analysis methodology for the determination of critical ventilation 

requirements of rocket motor. 

1.4. Motivation and Objectives 

Design phase of an insensitive warhead can be complex considering the number of 

tests which should be carried on. Considering the cost and environmental concerns, 

among all other insensitive munition sign tests, fast cook-off will probably lead in a 

"number of tests to be decreased" list for most IM design authorities. 

This thesis study is related to the insensitive munition studies that are going on at 

TÜBİTAK SAGE Terminal Ballistics Division. The aim of the study is to have an 

improved knowledge on the theory behind the fast cook-off stimuli and have a 

methodology for being able to design a munition that has reduced impact on its 

surroundings. By doing so, this will allow us to decrease the number of tests on the 

design phase leading into the decrease of cost and negative environmental effects. 
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CHAPTER 2 
 
 

2. METHOLODOGY 

 
 
 

In IM design of a typical warhead against fast cook-off test, there are two important 

parameters to be predicted which are time to reaction (TtR) and critical ventilation 

area. TtR is important for the precautions that are taken to work before reaction 

occurs, whereas critical ventilation area is important for safe disposal of burn 

products of energetic materials. Dividing the problem as pre-ignition and post- 

ignition will allow one to manage this complex problem to handle easier than its 

original form. 

Although the present methodology is valid for all energetic materials, PBXN-109 

(64% RDX, 20% Al, 16% DOA/HTPB) is considered as the energetic material for 

the purpose of illustration and as it is widely used as the main charge for most 

warheads designed/manufactured worldwide. Although plastic-bonded explosives 

show relatively low responses to auxiliary thermal/mechanical effects, as long as 

they are exposed to heat within a closed chamber/casing any explosive, it will lead to 

deflagration to detonation transition unless necessary precautions are taken. 

2.1. Pre-Ignition Phase: Thermal Initiation 

The kinetic model to predict the thermal decomposition of a RDX based explosive 

has been developed by McGuire and Tarver [22]: 

ܵ ൌ െߣଶܶ  ܿߩ
݀ܶ
ݐ݀
																																																					ሺ1ሻ 

where, S is the chemical heat source during the chemical reaction, λ is the thermal 

conductivity, ρ is the density and cp is the specific heat. The scheme proposed by 

McGuire and Tarver’s model reaction for RDX based explosives is a 3 step kinetic 

model where mass is converted from one species to another: 
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ܣ
భ
→ ܤ

మ
ܥ2→

య
 ሺ2ሻ																																																											ܦ→

In which A=RDX, B=H2C, C=CH2O+N2O and D=final gaseous products. Each of 

the reduced chemical reactions follows the Arrhenius equation: 

݇ ൌ ሺିாܼ݁ܣ ோ்⁄ ሻ																																																							ሺ3ሻ 

Where k is the reaction rate coefficient, Z is the frequency factor (collision number), 

E is the activation energy and A is the molar fraction. In our model the full reaction 

is modeled as an instantaneous one step exothermic chemical reaction thus, A is 

taken to be 1 and heat generation is calculated with the equation (4). 

S ൌ ρQ௧AZe
ሺି ୖ⁄ ሻ																																																									ሺ4ሻ 

Temperature dependent heat generation term (1) using constants for PBXN-109 

given in Table 1 is implemented into Fluent with a user defined function (UDF), 

[27]. 

Table 1. Heat Generation Constants, [27] 

ρ   
[kg/m3] 

Qact 

[J/kg] 

Z        
[1/s] 

E 
[J/mol] 

R 
[J/mol.K]

1680 2198070 1.023x1014 152716 8.314 

After defining the kinetic model for the thermal decomposition of the explosive, it is 

necessary to define the boundary condition to be able to solve thermal conduction 

heat transfer to explosive. There is a boundary condition definition proposed by 

Victor [13] where temperature is assumed to be constant throughout the test and is 

1073 K with a convection coefficient of 6 W/m2K and emissivity of 1. Applying heat 

flux as a boundary condition is another option. There are some studies going on by 

Fuel Fire Experts (FFE) Working Group [28] to measure heat flux rates and compare 

the data with the alternative fast cook-off test measurements. This is being done to 

check if there is any alternative method eligible to mimic standard hydrocarbon fuel 
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fire thermal load. Measurements within the hearth of fire shows that, heat flux values 

vary between 100-150 kW/m2 [29]. 

The most time consuming but accurate way of predicting the time to reaction is 

probably modeling the fire itself instead of applying the thermal load as a boundary 

condition. There are some examples of fire modelling codes such as C-SAFE [30] 

Sierra/Fuego [31] and LES solvers [32]. But as these codes are not available for 

commercial use and requires huge amount of computational work, it has been 

decided to go on with the effort of finding the least time consuming and “accurate 

enough way” of predicting the time to reaction.  

Although 1-D (infinitely long cylinder approach, axisymmetric) thermal analysis 

approach might satisfy the current geometry of our generic test item, most of the time 

because of the complex geometrical shapes of the energetic systems this is 

considered not to be applicable. Thus, only 2-D and 3-D thermal analysis are 

performed, using commercial ANSYS Fluent software as it is commonly used in 

similar applications [33], [34]. The aim is to conclude to a point of an improved 

boundary condition definition and to see how accurate the predictions are from the 

analysis.  

Both 2-D axisymmetric and 3-D transient analyses are performed with pressure 

based solver as it is known to be better performing for incompressible low velocity 

flows [35]. 3-D analyses are made in order to see the effect of buoyancy (trapped 

heated air within the test chamber).  

Gravitation force is enabled in order to let heated air move within test chamber. PISO 

(Pressure-implicit with splitting of operators) pressure-velocity scheme is used 

because of the limitations of the SIMPLE and SIMPLEC is that new velocities and 

corresponding fluxes do not satisfy the momentum balance after the pressure 

correction equation is solved. Although the PISO algorithm takes more CPU time per 

solver iteration, it can dramatically decrease the number of iterations required for 

convergence, especially for transient problems [35].  
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As the purpose of this work is to predict critical ventilation area, it is possible to 

assume that the flow is choked and Mach is equal to one at the orifice ventilation 

hole. The aim here is to assume that the ventilation at its highest rate and see if the 

pressure within the chamber is still rising or not. As long as the initial pressure that is 

described in the problem tends to decrease this will point out that the ventilation 

diameter will not cause a dangerous situation where the burn speed of the explosive 

diverge, cause it to deflagrate and even explode with the pressure increase. So, one 

can basically write conservation of mass equations to solve this problem assuming 

that the burn area of the explosive is constant (no burn back).  

As shown in Figure 8, problem can be defined with a single mass inlet (explosive 

burn products) and a single mass outlet (total ventilation area). As long as explosive 

self-ignites due to heat generation, burn products will start to fill chamber increasing 

the pressure within and exiting the chamber due to pressure difference with respect 

free atmosphere. 

mሶ ௧  mሶ ௨௧௧ ൌ
d൫m௨ௗ	௨൯

dt
																																														ሺ5ሻ 

The rate of mass transfer to the control volume can be defined as the product of total 

explosive area Aburn, burn speed of the explosive rburn and the density of burn 

products within the chamber ρburn. 

mሶ ௧ ൌ A௨. .௨ݎ  ሺ6ሻ																																																		௨ߩ

As the chamber pressure exceeds the outside pressure (atmospheric pressure) by a 

ratio more than 0.8 MPa, the flow becomes sonic for air [26]. Thus, mass transfer 

from the control volume can be solved at the section where Mach number is assumed 

to be 1 and very simple expression for the rate of mass discharged results in equation 

7. Although this ratio will change for burn products the same approach can be  

mሶ ௨௧௧ ൌ A௩௧. .∗ݑ .∗ߩ C																																																		ሺ7ሻ 

where CD is the discharge coefficient. It is generally used as 1 in ideal flow but in 

actuality, because of the ventilation hole shapes (square-edged orifice) that results in 

a coefficient of 0.82 is used as vena contracta is formed by the exiting gases [36]. 



 

18 

 

Unknown terms at the orifice can be solved using the isentropic equations given 

below (8, 9, 10, and 11) [36].  

∗ߩ ൌ ௩ܲ௧

ܴ ௩ܶ௧
																																																																			ሺ8ሻ 

∗ݑ ൌ ඥkܴ ௩ܶ௧ܯ																																																															ሺ9ሻ 

ܲ∗ ൌ ܲ

ቂ1  ݇ െ 1
2 ଶቃܯ


ିଵ

																																																				ሺ10ሻ 

ܶ∗ ൌ ܶ

ቂ1  ݇ െ 1
2 ଶቃܯ


ିଵ

																																																				ሺ11ሻ 

Burned explosive gaseous product properties in the chamber of the test item are 

obtained from the NASA Chemical Equilibrium and Applications (CEA) software 

[37] by modelling the PBXN-109 components as given in Table 2. 

Table 2. PBXN-109 Gaseous Product Thermodynamic Properties in Chamber 

from NASA CEA Software  

Input 

  Reactant 
Weight Energy 

Fraction [J/Mol] 

1 Al 0.21 0.00 

2 HTPB 0.08 -260.17 

3 IPDI 0.01 
-

372249.00

4 DOA 0.07 0.29 

5 RDX 0.63 66984.78 

6 Antioxidant 0.00 
-

165587.00

Output 

Burn Temperature Cp 
λ 

Product [K] [J/g.K] 

  2552.94 1.92 1.22 
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back side does affect the heating regime over the test item, ignition point of the 

explosive does not change. 

Other than internal readings, one pressure sensor (KISTLER RAG25A80BV1K) and 

one temperature sensor (ORDEL KTTE3x0.50 5K) are used on the test item. As 

flame temperatures are expected to be around 2500 K according to the NASA CEA 

solutions, thermocouple has been placed close to wall to avoid bead getting into 

ventilation flow path of burn products of explosive and becoming too hot and 

destroyed. To protect the pressure sensor from the high temperature environment it is 

placed (buried) outside of the test pool. Connection of the sensor to the test item is 

made via Ø3 mm stainless steel pipe. The volume increase of test chamber by adding 

a pipe for the connection of the pressure will delay the instantaneous pressure 

readings due to additional volume added. 

4.2. Experimental Setup 

Tests have been performed with the mini fuel fire test setup as the test item 

dimensions are within the range of declaration of NATO standard 4240 [41]. 

Total of eight surface thermocouples (STC) is used to measure test item surface 

temperature. Measurements are made both in the front and rear side. Thermocouples 

are placed circumferentially with an angle of 90º (Figure 19). To avoid contact 

dislocations and increase the heat transfer to STCs a thermal paste (Thermigrease TG 

20033) is used which can withstand temperatures up to 1200°C and has relatively 

high thermal conductivity.  
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Table 5. Comparison of Calculated and Observed TtR 

Test 
Item 
No 

Explosive 
L/D 

Liner 
Thickness 

[mm] 
Liner Type 

Predicted 
TtR  
[s] 

Observed
TtR  
[s] 

Difference 
[s] 

Error 
(Experiment 
- Numerical) 

% 

1 2.67 3.50 
HTPB Based 
Thermoset 

189.7 200 -10.3 -5.2 

2 1.71 3.50 
Thermoplastic 

Liner 
179.7 172 7.7 4.5 

3 1.71 3.50 
Thermoplastic 

Liner 
179.7 178 1.7 1.0 

4 1.71 3.50 
Thermoplastic 

Liner 
179.7 177 2.7 1.5 

5 1.60 1.00 
Thermoplastic 

Liner 
98.8 106 -7.2 -6.8 

6 1.60 1.00 
Thermoplastic 

Liner 
98.8 95 3.8 4.0 

7 1.60 1.00 
HTPB Based 
Thermoset 

103.8 107 -3.2 -3.0 

8 1.60 1.00 
HTPB Based 
Thermoset 

103.8 114 -10.2 -8.9 

The largest difference between the predicted and observed ignition times occurred 

with 8.9 percent difference for 8 tests. Addressing the 8.9% difference, the prediction 

does not take into account the decomposition/melting of the liner and decomposition 

of the explosive that occurs before ignition in the analyses. It is assumed that the 

liner thickness is constant along the solution. These phase shifting and/or chemical 

reactions are thought to effect heat transfer to explosive through the test item hence 

increasing the error.  

Another source of the error is the unavailability of simulating the variation of 

temperature in medium hence on the test item. Flame temperature may directionally 

vary within the hearth either caused by wind or the chaotic environment of its nature. 

as shown in Figure 56 different thermocouples have different temperature readings. 

The temperature distribution between thermocouples is shown in Figure 57. As 

mentioned above, the average of all 4 thermocouples is used as a temperature 

boundary condition. On the other hand, because of directionality of the flame, heat 

flux on one surface might be higher than the other three causing a hot spot along the 

circular direction. Thus, even if by small amounts we are already expecting to have 

different ignition times for the test item having the same geometry and liner 
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peak pressures at higher Avent/Aburn (> 0.00125) is probably because of extrapolated 

burn data between 0-2 MPa and burn surface area approximation. 
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CHAPTER 6 

 
 

6. CONCLUSION AND FUTURE WORK 

 
 
 

6.1. Conclusion 

Total of 8 tests are examined in this study utilizing thermal modeling of liquid fuel 

fire. They are performed in order to observe ignition time of generic test items. From 

the first test, an improved temperature boundary condition is obtained. With the more 

realistic boundary condition, 4 different analyses are conducted for different test 

items with 2-D, axisymmetric approach. This is done since the 3-D model where the 

buoyancy terms are included does not change the predicted time by more than 1%. 

Predicted ignition times and test results shows a maximum difference of 8.9%. 

Possible reasons of this error are discussed. An improvement on the methodology 

can be made upon implementing a melting and/or decomposition model into the 

ANSYS Fluent. By considering the current results methodology, using a 2-D 

axisymmetric thermal analysis for predicting the time to reaction seems to be 

applicable.  

Ventilation characteristic of a system that contains an explosive of type PBXN-109 is 

also studied. For this purpose, burn characteristics under relatively low pressures (0-

10 MPa) are obtained using a strand burner test setup. Next, this data is used within 

the self-developed dimensionless code to calculate the critical ventilation area and 

compared with the experimental data. According to the comparison made, results 

show some discrepancies at 10.9%. Possible reasons for the prediction of critical 

ventilation area are also discussed in the previous section. 

By this work, it will be possible for one to predict the ignition time of a munition 

containing an energetic material by knowing the heat generation characteristic of that 

energetic material by using the ANSYS Fluent or any other software that is eligible 

to model the heat transfer. By doing so, it will be also possible to study critical 
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thermal path of the energetic system and take necessary precautions to avoid any 

violent reactions.  

Another benefit of this work is that, it will guide a designer to design ventilation 

mechanism that will allow venting the system safely where the explosive will not 

lead to deflagration to detonation transition. 

6.2. Future Work 

A methodology for a design phase of an insensitive munition is discussed in this 

study. Although the methodology is valid for all solid type energetic materials, the 

current study only covers an explosive named PBXN-109. Further studies can be 

made for other type of explosives. 

To improve the accuracy of the time to reaction analyses, melting and decomposition 

of the liner and explosive can be implemented by complex user defined functions and 

other tools. However, before proceeding with modeling studies detailed physics 

behind this should be understood and several tests should be made. 

Despite a methodology to understand and improve the way energetic material acts 

under thermal stimuli, a coupled thermal, chemical and mechanical solver can be 

developed. However, it is obvious that this will require a huge amount of effort. 
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APPENDIX A 
 
 

MATLAB FUCNTIONS 
 
 
 
Input.m 

clear, clc, close all 

Pi=0; % Pa, gauge pressure 

ro=1670; % kg/m3 

ri=0.039; % m, initial radius of the explosive 

Li=0.125; % m, initial length of the explosive 

Vi=9.3669E-005; % m3 

T_chamber=2552.84; % K 

R_chamber=339.28; % Pa.m3/kg/.K 

k_chamber=1.2153;  

Cd=0.82; 

Explosive Geometry Calculation Function 

function Ab  = Expo_Geo(ri,Li,d) 

r=ri-d; % Remaining radius of the explosive 

L=Li-2*d; % Remaining length of the explosive 

if r<=0 || L<=0 

   r=0; 

   L=0; 

end 

Ab=(2*pi*(r^2)+2*pi*r*L); % Explosive burn area, based on the assumption that 

burning takes places on all explosive surfaces 

Burn Rate Calculation Function 

function rb  = Burn_rate(p) 

n1=0.93; % m/s - pascal  

a1=1.223E-9; % m/s - pascal - Ref: SAGE curve fit, 0-10 MPa 

n2=1.3196; % m/s - pascal 
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a2=2.90626E-12; % m/s - pascal - Ref: Livermore Lab., 0-10 MPa 

if p<=10^7 

  rb=a1*p^n1; 

else  

  rb=a2*p^n2; 

end 


