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ABSTRACT 

 

TIME SERIES ANALYSIS OF TURKISH EXPORTS OF SELECTED ORES 

AND CONCENTRATES 

 

 

 

Boğazlıyan, Metin 

M.S., Department of Statistics 

     Supervisor: Assist. Prof. Ceylan Yozgatlıgil 

 

 

 

December 2015, 57 pages 

 

 

 

This study investigates exports of chromium ores and concentrates, feldspar, copper 

ores and concentrates, zinc ores and concentrates, natural borates and their 

concentrates from Turkey. The cointegration analysis demonstrates that there exists 

long run relationship among the variables. The study uses Vector Error Correction 

(VECM) model to forecast the export amounts of aforesaid ores and concentrates 

based on exogenous variables, incentive certificates, fixed investment amount, total 

industrial turnover index, industrial production index and manufacturing purchasing 

managers’ index of China. It is seen that incentive certificates and industrial 

production index are positively related to all the endogenous variables. 

 

 

Keywords: Exports of Ores and Concentrates, Cointegration, Multivariate Time 

Series Analysis, VECM.  
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ÖZ 

 

SEÇİLMİŞ CEVHER VE KONSANTRELERİN İHRACATININ ZAMAN 

SERİSİ ANALİZİ 

 

 

 

Boğazlıyan, Metin 

Yüksek Lisans, Ġstatistik Bölümü 

   Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Yozgatlıgil 

 

 

 

Aralık 2015, 57 sayfa 

 

 

 

Bu çalışmada, krom cevherleri ve konsantreleri, feldispat, bakır cevherleri ve 

konsantreleri, çinko cevherleri ve konsantreleri ve tabii boratlar ve bunların 

konsantreleri ihracatı araştırılmıştır. Eşbütünleşme analizi, değişkenler arasında uzun 

dönemli bir ilişki bulunduğunu göstermektedir. Anılan cevher ve konsantrelerin 

ihracat miktarlarını tahmin etmek için teşvik belge adedini, sabit yatırım tutarını, 

toplam sanayi ciro endeksini, sanayi üretim endeksini ve Çin imalat sanayi satın alma 

yöneticileri endeksini dışsal değişken olarak kabul eden Vektör Hata Düzeltme 

Modeli (VHDM) kullanılmıştır. Teşvik belge adedi ile sanayi üretim endeksinin tüm 

içsel değişkenler ile pozitif ilişkili olduğu görülmektedir. 

 

 

Anahtar Kelimeler: Cevher ve Konsantre Ġhracatı, Eşbütünleşme, Çok Boyutlu 

Zaman Serileri Analizi, Vektör Hata Düzeltme Modeli. 
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  CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

It is known that mining in Anatolia dates back to approximately 10.000 B.C. and it 

leaded the civilizations developed here. It is not a coincidence that Anatolia has been 

a cradle for man civilizations and this situation results from many mine resources 

known and produced since ancient times. 

 

In the time of Ottoman Empire, mining activities were carried out in order to meet 

the gun and ammunition needs and to print money. In the last periods of Ottoman 

Empire, mines of Anatolia were opened for foreign capital entry in the area of 

country in accordance with Paris Treaty dated 1862. France being in the first place, 

England, Germany, Italy and Russia made considerable investments to produce 

Anatolia mines and they performed considerable mine production. Traces of mining 

activities performed in this period are found in many places of the country today. 

 

Turkey’s Republic period mining dates back to İzmir Economic Congress in 1923. In 

this period in which liberal economy was adopted, important steps were taken in 

mining, “Mines and Industry High School”, “Industry Mine Bank”, “Mineral 

Research and Exploration Institute” and “Etibank” were established respectively in 

order to be appointed in education, finance, research and production areas. 

 

“Mining Sector” is one of the sectors constituting national economy. Mining sector 

provides the basic elements needed by the other sectors of economy, primarily the 

industry (agriculture, services, transportation, energy etc.) and on the other hand 

creates new employment opportunities in rural areas and prevents migration. In these 

regions, it makes important infrastructure investments possible, transportation being 

in the first place. Modern technology, marketing and finance methods are adopted 
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and they become widespread in the rural areas of the country in parallel with the 

development of the mining sector. In another aspect, export of mining products is an 

important source which gains foreign currency to the country. In almost all 

developed industry countries of today, the mining sector undertakes the role of a 

“leading sector” which started economic development. In domestic incomes of such 

countries, the share of mining sector is a high rate such as 10-15% (Council of Chiefs 

of Mining Sector, 2012). 

 

1.1. Purpose and Motivation 

Mining sector has great importance for Turkey’s economy. National industry and 

agriculture sector, which are developing, depend on the mining sector for main 

inputs. Although it is known that there are quite various and rich mine reserves in 

Turkey, most of these resources couldn’t be commissioned yet. Share of mining 

sector in Turkey’s domestic income is in a very low level such as 1.2%. Although 

Turkey has the potential to become an important mine exporter, Turkey’s mine 

export is quite limited and some mine products are imported. Briefly, the mining 

sector cannot make the great and important contribution to the development of the 

country despite its potential (Council of Chiefs of Mining Sector, 2012).  

 

The share of the mining sector in Turkey’s domestic income should be considered as 

an indicator that the mine resources in Turkey are not evaluated sufficiently and this 

study aims at making a contribution to the development of the mining sector in 

Turkey. 

 

Statistical analysis of the mines, which are very important for Turkey and for the 

world, is important in terms of establishing future policies. 

 

Types of ores and concentrates to be modeled in the study are listed below. Export 

values of these ores and concentrates are generally the highest compared to other 

ores and concentrates. 
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Chromium Ores and Concentrates 

Turkey, which is among the limited number of chromium producers in the world, 

acquires an important foreign currency income due to the export of crude ore, 

ferrochromium and chromium chemicals. In addition to the increasing consumption 

of crude ore in the domestic market, a considerable amount of shivered and 

concentrated ores are exported. 

 

Although the production of Turkey ranked first in the world in some of the past 

years, it has generally preserved its place between the 3
rd

 and the 6
th

. Share of Turkey 

in chromium ore export is about 15%. 

 

When long term chromium ore production and export amounts of the Turkey are 

examined, there is a general trend increase in production and export in spite of some 

fluctuations. 

 

In January 1987, the government of USA has renewed its decision that the chromium 

ore and ferrochromium are strategic materials based on the fact that the procurement 

sources of chromium are not very reliable. 

 

The number of major countries producing chromium ore is about 30 and the largest 

chromium metal producer in the world is USA. 

 

Chromium ore is used primarily in metallurgy, chemistry, refractory and molding 

industry.  The most important area of use of chromium ore in metallurgy industry is 

the production of stainless steel. Chrome provides steel with hardness and resistance 

against fraction and impacts, it protects steel from abrasion and oxidation. In this 

scope, various alloys of chromium are used in automotive, submarine, ship and plane 

industry and in gun production. Super alloys of chromium are used in the 

construction of heat resistant, high productivity turbine motors. Chrome chemicals 

are used in chemistry industry in the production of sodium bichromate, chromic acid 

and dye raw materials. Chrome chemicals are consumed in metal coating, alutation, 
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ceramics, polisher tools, catalyst, conserved food canning (canning agents), water 

treatment, drilling fluid and many other areas (DPT, 2001). 

 

Feldspar 

Feldspar is one of the basic raw materials in tile and ceramic production and welding 

electrode production. Also, glass, plastic and dye industry are main feldspar 

consumers. 

 

USA ranks the first in terms of feldspar consumption amount. 

 

Feldspar group minerals have an important marker because they are important raw 

materials for a certain level of quality in ceramic and glass industries. In recent 

feldspar production order of the countries; there are Italy, Turkey, USA, Thailand 

and other European countries (DPT, 2001). 

 

Copper Ores and Concentrates 

Use of copper in human history started in ancient ages. People used copper in their 

daily lives in ornaments, guns and handcrafts and as civilization developed, the need 

for copper increased. Copper, the consumption of which is above 13 million tons 

today, is the second most used metal. Constant demand increase for copper is parallel 

with the developments in industrialization. The place of copper in industrialization 

and mechanization is an indisputable fact. 

 

The features of high electricity and heat conductivity make the copper an essential 

input for power plants and conductive material. The copper has wide areas of use in 

cool air machines and equipments, in shipping vehicles and external coatings due to 

its anti-corrosive properties. In addition, the copper has an important place in 

welding works, metallurgy and bronze production and many other areas of use can 

be listed. The widest areas of use are plants regarding electricity production and 

transmission, construction, transportation machines and equipments, respectively. 
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In today’s world, in which life standards constantly rise depending of the economic 

developments, the fact is understood that the demand for copper will increase 

constantly, even if a material is devised for some areas of use, the copper will always 

maintain its currency (DPT, 2001). 

 

Zinc Ores and Concentrates 

Today, zinc is the most consumed metal in the world after steel, aluminum and 

copper. Zinc is used in the production of many alloys and compounds in the industry 

because it is chemically active and it can be alloyed with other metals easily. It is 

used in protection of other metals, especially iron and steel from abrasion due to its 

strong electro-positive properties. There are five areas in which the produced zinc 

metal is used as main product. These are galvanization, press mould alloys, brass and 

bronze alloys, zinc oxide and milled zinc alloys. 

 

Base metals, especially iron and zinc are coated with zinc in order to be protected 

from corrosion. A large portion of zinc produced in the world is used in this way. 

The most important reasons for this are zinc’s resistance to normal disintegration 

events, the property of iron protection (galvanization) and economy. Galvanization 

industry is the area in which zinc is used most in terms of amount. Its second area of 

use is the production of press mould alloys. Galvanized materials are primarily 

layers, strip pipes, tubes, wires, wire ropes, structural figures and many metal 

articles. Galvanized materials are used mostly in construction works, agriculture, 

construction of agriculture articles and automotive industry. There are thousands of 

application areas in which galvanized iron and steel products are especially used. 

Ceiling and wall coatings, wire and wire products, water tanks, pipes, buckets and 

canister, nails, screws, bolts, hinges can be listed. Zinc coatings are also used for the 

protection of structures under sea or in other chloride-rich solutions from corrosion. 

Pipelines, storage tanks, steel wave breakers, bridges and piers are this kind of 

places. 

 

In accordance with the developing technology, zinc metal has acquired an important 

place recently as alloy input in the production of composite materials. Its area of use 
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is widened especially in the space industry and robot development and automatic 

control systems (DPT, 2001). 

 

Natural borates and their concentrates  

Boron is one of the essential elements for all living creatures to sustain their lives in 

the nature. In addition, boron is the element which has the widest area of use in the 

world. 

 

Areas of use of boron minerals and products which are used in a variety of sectors 

increase gradually. While about 10% of produced boron minerals are consumed 

directly as minerals, the remaining portion is used to obtain boron products. 

 

Boron is used in industries such as window glass, bottle glass etc. Boric acid is an 

essential element in special glasses and they are used as refined wet/dry borax, boric 

acid or in natural structure as colemanite/borax. Boron is added to glass products for 

which heat insulation is deemed necessary as boron increases the viscosity, surface 

hardness and resistance of glass intermediate product when it is mixed with its 

molten structure. 

 

Boric oxide is used to decrease viscosity and saturation temperature of enamels. 

Enamel coated with metal prevents oxidation and glamorizes its look. Steel, 

aluminum, copper, gold and silver can be coated with enamel. Enamel increases 

resistance against acids. Many kitchen tools are enamel coated. Bathrooms, 

chemistry industry equipments, water tanks, guns, etc. can be also coated with 

enamel. Boron gives ceramic resistance to scratch. 

 

Boron compounds are added to soaps and detergents due to its germicide and water 

softener effects and they are also added to powder detergents to increase whitening 

effect. 

 

Boron provides fire resistance. Boron compounds used in plastics in gradually 

increasing rates to prevent inflammableness. 
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Boron minerals are used in order to increase or prevent the development of flora.  

 

Boron is the basic nutrition of many plants in varying rates. 

 

Borates are used in non-ferrous metal industry as a material that constitutes 

protective clinker and accelerates melting due to its properties of constituting a 

smooth, adhesive, protective, clean and burr-free fluid in high temperatures. Boron 

compounds are used in electrolyte coating industry and in the production of 

electrolytes. In alloys, it is especially used to increase the hardness of steel. 

 

Boron steel, boron carbide and titanium boron alloys are used in nuclear reactors. 

Boron minerals are also used in the storage of nuclear waste. 

 

Boron used as anti-freeze material in automobiles to secure immediate swelling of 

airbags and also in hydraulic systems. 

 

Boron is used for cleaning heavy metals in waste waters such as mercury, lead, silver 

from water. 

 

Boron is used in cancer treatment. It is used especially in brain cancers to destroy 

infected cells and it is preferred because its damage to healthy cells is in minimum 

level. 

 

Boron is used in energy storing and also as fuel (DPT, 2001). 

 

1.2. Literature Review and Outline of the Study 

Mining has received the attention of many researchers due to the fact that it has 

exhaustible characteristics and various social impacts. However, the studies specific 

to export modeling of the ores and concentrates are not available. There are very few 

studies which are about the relationship between mining export and economic 

growth. Sahoo and Sahu (2014) applied cointegration and causality analysis to find 

the relationship among mining export, industrial production and economic growth for 
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India and they showed that log run equilibrium relationship exists among the 

variables. This is the only study that we found in the literature considering the 

statistical analyses of the export of mines. 

 

Chapter 2 provides information about the variables used in the model. Chapter 3 

gives detailed information about systems of dynamic simultaneous equations and 

Chapter 4 is about data analysis. We provide the concluding remarks related to our 

study in the last section. 
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CHAPTER 2 

 

 

DATA DESCRIPTION 

 

 

 

In this section, brief information related to the variables that are used in study will be 

given. 

 

Endogenous variables with Customs Tariff Statistics Position are 261000-Chromium 

ores and concentrates, 252910-Feldspar, 260300-Copper ores and concentrates, 

260800-Zinc ores and concentrates and 2528-Natural borates and their concentrates. 

For simplicity, Chromium ores and concentrates are named as Chrome, Copper ores 

and concentrates are named as Copper, Zinc ores and concentrates are named as 

Zinc, Natural borates and their concentrates are named as Boron. 

 

Exogenous variables are incentive certificates, fixed investment amount, total 

industrial turnover index, industrial production index and manufacturing purchasing 

managers’ index of China. 

 

Monthly data on these variables are obtained from January 2007 to February 2015. 

Each time series contains 98 observations and observations announced in 6 months 

after February 2015 are used for measuring forecast accuracy.  

 

All endogenous variables are obtained from Turkish Statistical Institute 

(TURKSTAT). Incentive certificates, fixed investment amount are obtained from 

Ministry of Economy. Total industrial turnover index and industrial production index 

are obtained from TURKSTAT. Manufacturing purchasing managers’ index of 

China is obtained from National Bureau of Statistics of China. 
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Incentive certificates and fixed investment amount belong to mining industry, 

extraction and processing subsector. Total industrial turnover index and industrial 

production index are calendar adjusted, they belong to mining and quarrying sector 

and base years are 2010. 

 

Industrial turnover index is calculated in order to measure the evolution of the market 

of industry. It gives measure of the development of the receipts of sales. Industrial 

production index is calculated to measure the evolution of economy and the positive 

and negative effects of economical and political decisions in short term. 

Manufacturing purchasing managers’ index is a significant indicator of business 

conditions and the overall economic condition. Hence, it is decided to use these 

variables to describe the export amounts of the selected ores and concentrates. 

 

The time series plot of all the variables used in the study from January 2007 to 

February 2015 is given in Figure 1. 

 

 

Figure 1. Time Series Plot of Export Amounts of the Ores and Concentrates in 

Tonne  

 

From Figure 1, it is seen that export amounts of feldspar and chrome are generally 

the highest between January 2007 and August 2015. It is also seen that there is a 

decrease in export amounts of the ores and concentrates between late 2008 and early 
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2009 which is probably due to global financial crisis. It can be said that export 

amounts of the ores and concentrates of Turkey are affected by production amounts 

of the ores and concentrates and economic situations of the countries which demand 

for the ores and concentrates from Turkey. Hence, it is seen that all the variables 

move together through time. In the statistical analysis, we use this information to 

develop our time series model. 

 

The leading countries that import selected ores and concentrates of Turkey are given 

in Table 1. From this table, it is seen that China is the leading importer of almost all 

the selected ores and concentrates of Turkey. For this reason, manufacturing 

purchasing managers’ index of China is included in the model as an exogenous 

variable. 

 

Table 1. Leading Importers of Turkey’s Selected Ores and Concentrates in Tonne in 

2014 

 

RANK BORON COPPER CHROME FELDSPAR ZINC 

1 China China China Italy Belgium 

2 USA Bulgaria Swedish Spain Iran 

3 Taiwan Swedish Belgium Russia China 

 

Descriptive statistics of export amounts of the ores and concentrates are given in 

Table 2. It can be said that export amounts of chrome and feldspar are generally the 

highest compared to other ores and concentrates. It is also seen that the mean and 

median values are not far from each other. Hence, we can say that the distributions of 

export amounts of the ores and concentrates are almost symmetric. 

 

Table 2. Descriptive Statistics of Export Amounts of the Selected Ores and 

Concentrates in Tonne  

 

 BORON COPPER CHROME FELDSPAR ZINC 

MEAN 51166 27797 157176 337910 28729 

MEDIAN 51271 25469 156029 353305 28836 

ST.DEVIATION 17655 15400 59487 79011 9444 

 

The time series plot of the variables shows that the means of the series are not 

constant and changing over time. This is an indication of non-stationarity. The plot 
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also suggest that the variables are moving together and this might be the indication of 

cointegration relation between the variables. Hence, the proper modeling strategy for 

these series could be the vector error correction model (VECM). These assumptions 

will be checked in the data analysis part but now, the methodology and theoretical 

background related to the suggested modeling strategy are introduced. 
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CHAPTER 3 

 

 

METHODOLOGY AND ANALYTICAL FRAMEWORK 

 

 

 

In time series analysis, decision makers often need forecasts of a variable of interest. 

If observations of a variable are available and if they contain information about the 

future development of that variable, it is reasonable to use some function of the data 

collected in the past to forecast future values. In dealing with economic variables, 

often the value of one variable is not only related to its past values but also it depends 

on past values of others. Additional information which comes from other variables 

can be used to obtain forecasts with good properties (Lütkepohl, 2005).  

 

Vector autoregressive models (VAR), vector autoregressive moving average models 

(VARMA), vector error correction models, vector autoregressive processes with 

exogenous variables (VARX), vector autoregressive moving average processes with 

exogenous variables (VARMAX) are some of the models which can be used to 

obtain forecasts for the variables of the system. 

 

3.1. Systems of Dynamic Simultaneous Equations 

In practice, the generation processes may also be affected by the variables outside of 

the system. Such variables are called as exogenous or unmodelled and the variables 

within the system are called as endogenous (Lütkepohl, 2005). A model with 

unmodelled variables can have the structural form: 

 

A   =   
      +…+   

      +   
    +   

      +…+   
      +              (3.1.1) 
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where    =            
  is a K-dimensional vector of endogeneous variables and      

=            
  is an M-dimensional vector of unmodelled variables, A is (K×K) 

matrix and shows the relations between the endogenous variables,   
 ’s are (K×K) 

coefficient matrices,   
 ’s are (K×M) coefficient matrices and    is a K-dimensional 

error vector. If the error term is white noise, the model described in (3.1.1) is referred 

to as Vector Autoregressive Model with Exogenous Variables VARX(p,s). 

Generally, models of the form (3.1.1) are often called linear systems and in the 

econometrics literature they are known as dynamic simultaneous equations models 

(SEM).  

 

In equation (3.1.1),    is called exogenous if   ,    ,…,      are independent of the 

error term   .    is called strictly exogenous if all its leads and lags are independent 

from all leads and lags of the error term   . Consider the following system: 

 

    =   
  +      

        +      
        +      

        +    ,                         (3.1.2) 

    =   
  +      

        +          +      
        +    . 

 

The system above can be written in terms of the representation (3.1.1) as follows:  

 

[
  

       ] [
   

   
] = [

     
      

 

     
      

 ] [
      

       
] 

                                            +[
  

      
 

  
  

] [
 

      
]  [

   

   
].                                 (3.1.3) 

 

Here,              
  and            

  are both two-dimensional and the 

instantaneous effects are reflected in the elements of A. 

 

The reduced form of the system is achieved by premultiplying (3.1.1) with      

which gives 

 

    =   
      +…+   

      +   
    +   

      +…+   
      +                  (3.1.4) 
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where   
  :=      

  (i = 1,…,p),   
  :=      

  (j=1,…,s) and    :=        

 

The reduced form is useful for forecasting, multiplier analysis and control purposes. 

For the model given in (3.1.3), the reduced form is below: 

  

[
   

   
] =   

 [
      

       
] +   

 [
 

      
]  [

   

   
]                                                  (3.1.5) 

 

where 

 

  
 = [

          

          
] = [

     
      

 

          
       

           
       

 ]                (3.1.6) 

 

  
  = [

          

          
] = [

  
      

 

       
    

           
 ]                                     (3.1.7) 

 

and 

 

  [
   

   
] = [

   

        
     

 ]                                                                         (3.1.8) 

 

In lag operator notation, the reduced form (3.1.4) can be written as 

 

       =        +                                                                                 (3.1.9) 

 

where       :=    -   
   -…-   

     and          
  +   

   +…+   
   . 

 

By multiplying (3.1.9) with        , the effect of a change in an exogenous variable 

on the endogenous variables can be observed. The resulting representation: 

 

   =        +                                                                                 (3.1.10)       
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where      :=            and (3.1.10) is called the final form of the system. For 

the model given with reduced form (3.1.5), the final form is below: 

[
   

   
] =        

       
  [

 
   

]          
     [

   

   
]  

                     = ( ∑   
    

     
    )[

 
   

] + ( ∑   
  

      )[
   

   
]                            (3.1.11) 

 

3.1.1. Cointegrated Variables 

When a linear combination of two or more nonstationary, I(1), time series is 

stationary, I(0), then they are cointegrated. When there are r cointegration relations 

among the endogenous variables and they are not cointegrated with the exogenous 

variables, the form of the model is as follows:  

 

A∆   =          +   
      +…+     

         

              +   
    +   

      +…+  
      +                                            (3.1.1.1) 

 

where A is a (K×K) matrix of instantaneous effects,    is a (K×r) matrix of structural 

loading coefficients, β is the (K×r) cointegration matrix,   
  (j=1,…,p-1) is a (K×K) 

matrix of structural short-run coefficients and all other symbols are defined as in 

(3.1.1). 

 

If there is cointegration between endogenous and unmodelled variables, the form of 

the model is: 

 

A∆   =      [
    

    
] +   

      +…+     
         

             +   
    +   

      +…+    
        +                                  (3.1.1.2)                            

 

where   
  (j=0,1,…,s-1) is the coefficient matrix. 
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If the joint generation process of    and    has a reduced form vector error correction 

model (VECM) representation, 

 

[
   

   
] = [

 
  

]    [
    

    
] + [

    

    
 ] [

     

     
] + … 

 + [
        

      
 ] [

       

       
] + [

  

  
]                                             (3.1.1.3) 

 

premultiplying this model form with 

 

[
    

 

    
 ]                                                                                             (3.1.1.4) 

 

gives the model where the first K equations are in the structural form (3.1.1.2).   

 

3.2. Estimation for Stationary Variables 

Assume    
    

    is generated from a stationary process and the parameters of the 

reduced form (3.1.4) will be estimated. The reduced form can be written as 

 

   =       +       +   
    +                                                                 (3.2.1) 

 

where A = [ 1,…, p],   = [ 1,…, s],     

[
 
 
 
 
 

 
  

 
 
 

      ]
 
 
 
 
 

,    = 

[
 
 
 
 

 
  

 
 
 

      ]
 
 
 
 

. 

Furthermore, let us assume that    is standart white noise with nonsingular 

covariance matrix ∑ and a matrix R, a vector Ɉ exist such that 

 

β:= vec[A, ,  ] = RɈ.                                                                               (3.2.2) 
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For a sample of size T, the compact form of the system is 

 

Y=[A, ,  ]Z +U,                                                                                     (3.2.3) 

where Y:= [  ,…,  ], Z:= 

[
 
 
 
 
 

 
         

 
         

 
       

 ]
 
 
 
 
 

 and U:= [  ,…,  ]. 

The vector form of the equation (3.2.3) is 

 

y= (  ⊗  
 )RɈ + u,                                                                                   (3.2.4) 

 

where y:= vec(Y) and u:= vec(U). Generalized Least Squares (GLS) estimator is  

 

 ̂=        ⊗ ∑ 
         ( ⊗ ∑ 

  )y.                                                  (3.2.5) 

 

and this estimator is not operational since ∑ 
 is unknown (Lütkepohl, 2005). 

However, it can be estimated from the Least Squares (LS) estimator, 

 

 ̂=        ⊗   
        ( ⊗   

 )y                                                         (3.2.6)        

 

which gives residuals  ̆= y - (  ⊗   
 )  ̆ and the estimator of ∑ , 

 

            ∑ 
 ̆ = ̆  ̆  

/T                                                                                                (3.2.7) 

  

where  ̆ is such that vec( ̆)=  ̆. The estimator of the white noise covariance matrix 

generates the Estimated Generalized Least Squares Estimator (EGLS), 

 

 ̂̂=        ⊗ ∑̆ 
         ( ⊗ ∑̆ 

  )y.                                                  (3.2.8)                                                
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Under standard assumptions, this estimator is consistent and asymptotically normal, 

 

√  ( ̂̂ - Ɉ) 
  
→ N(0, ∑ 

 ̂̂

 )                                                                                (3.2.9) 

 

where 

 

 ∑ 
 ̂̂

  =                  ⊗ ∑ 
       .                                               (3.2.10) 

 

To have this result,              where plim refers to weak consistency and the 

inverse of the matrix in (3.2.10) should exist. To guarantee the asymptotic normal 

distribution of the EGLS estimator,    should be standard white noise,    should be 

generated by a stationary and stable VAR process which is independent of the    and 

the VAR part should be stable, that is, 

 

|    | = |  
             | ≠ 0 for | |   1                                  (3.2.11) 

 

Also, all the exogenous variables should be stochastic. It can be modified so as to 

include nonstochastic variables as well. In that case, plim in (3.2.10) becomes a 

nonstochastic limit in some or all components (Anderson, 1971; Harvey, 1981). An 

estimator for β= RɈ is obtained as  ̂̂= R ̂̂. If (3.2.9) holds, this estimator also has an 

asymptotic normal distribution, 

 

√  (  ̂̂- β) 
  
→ N(0, ∑

  ̂̂

   ∑
 ̂̂

   ).                                                           (3.2.12) 

 

Moreover, under general conditions, the estimator ∑̂̂  of the white noise covariance 

matrix is asymptotically independent of   ̂̂and it has the same asymptotic distribution 

as the estimator       based on the unobserved true residuals.                    
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3.3. Estimation of Models with Ӏ(1) Variables 

When there are integrated and cointegrated variables in the model and a reduced 

form VECM corresponding to the structural form (3.1.1.2), 

 

∆   =     [
    

    
] +   

      +…+     
         

             +   
    +   

      +…+    
        +                                       (3.3.1)     

 

is formed, where    is a process of dimension K, rk(  ) = r so that   =     , where 

  and   are (K×r) matrices with rk( ) = rk(  ) = r and    is standart white noise 

with nonsingular covariance matrix ∑ . Then, estimation procedure is as follows: 

 

Assume that a sample of size T and all required presample values are available, 

defining 

 

 ∆Y := [∆                                                                                           (3.3.2) 

 

   
 := [  

 ,…,     
 ] with     

 := [
    

    
]                                                   (3.3.3) 

 

∆  := [∆  
 ,…, ∆    

 ] with ∆    
 := 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     

 
 
 

       
  

 
    
 

         
 
 

          
 

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                  (3.3.4) 
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and  

U:= [   ,…,   ],                                                                                       (3.3.5) 

the model is achieved as follows: 

 

∆  =        
  +   

    +U                                                                     (3.3.6) 

 

where 

 

  
 := [   

 : … :     

 :   
  :   

 : … :    
 ]                                                      (3.3.7) 

 

   is a ((K + M) × r) matrix and   is (K × r). 

              

Because the error correction term now involves all the cointegration relations 

between the endogenous and unmodelled variables, it is possible that r > K. But, to 

be able to use all estimator types, r ≤ K is assumed. If r = K, the matrix   :=      is 

of full row rank under the usual assumption, rk( ) = rk(  ) = r. Therefore, estimate 

of the matrix   =     can be simply found by applying multivariate LS to (3.3.6). 

An estimator of   can then be obtained by normalizing the cointegration matrix such 

that 

 

  = [
  
 

    
 ]                                                                                                (3.3.8) 

 

and using 

 

 ̂  =   ̂   
     ̂                                                                                       (3.3.9) 

 

where  ̂   
  is the (K × K) submatrix consisting of the first K columns of the LS 

estimator  ̂  of   . From the matrix version (3.3.6), the LS estimator of    and    

is seen to be: 



22 
 

[ ̂  :  ̂ ] = [∆    
   : ∆ ∆   ][

   
    

      
     

      
          ]

  

                     (3.3.10) 

 

For GLS estimation, it is assumed that    is normalized as in (3.3.8). Replacing the 

short-run parameters    by their LS estimators for a given    gives, 

 

 ̂ (  )=( ∆  -      
 )                                                          (3.3.11) 

 

Hence, 

 

∆ =     
  + (∆ -      

 )                   +                        (3.3.12) 

 

Rearranging terms and defining the (T×T) matrix 

 

D :=   
  -                                                                               (3.3.13) 

gives 

  

  =    +     =       +                                                                   (3.3.14) 

 

where  

 

   := ∆   and    :=    
 D.                                                                    (3.3.15) 

 

Let us denote the first r and K−r rows of    by   
    

 and   
   

, respectively, then 

(3.3.14) can be rewritten as  

 

   -    
   

 =        
    

   
 +                                                                 (3.3.16) 

Based on (3.3.16), the GLS estimator of       
   is 

 

 ̂     
  =   ∑ 

         ∑ 
  (  -   

   
)   

    
   

   
  

    
                       (3.3.17) 
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and the EGLS estimator is found as follows (Ahn and Reinsel, 1990 ; Saikkonen, 

1992): 

 

 ̂̂     
  =  ̂ ∑̂ 

   ̂     ̂ ∑̂ 
  (  - ̂  

   
)   

    
   

   
  

    
                       (3.3.18) 

 

where the first r columns of  ̂  is the estimator  ̂ and  

 

∑̂  :=         (  -  ̂    
  -  ̂    )     ̂    

   ̂         (3.3.19) 

 

If   ~N(0, ∑  , the VECM (3.3.1) can be estimated by maximum likelihood (ML) 

taking the rank restriction for   :=      into account (Johansen 1988, 1995). The 

log-likelihood function for a sample of size T is 

 

   =   
  

 
   π   

 

 
  |∑ | 

                 
 

 
           

   
         ∑ 

          
   

         (3.3.20) 

 

Let us define  

 

M :=        
        

      ,    := ∆  ,    :=    
 M               (3.3.21)      

 

and 

 

    := 
    

 

 
                                                                                          (3.3.22) 

        are the eigenvalues of    
    

      
        

    
 and         are 

corresponding orthonormal eigenvectors. Assuming rk(    = r which implies that 

the matrix can be represented as   =       where   and   are (K×r) with rk( ) = 

rk(  ) = r, the log-likelihood function in (3.3.20) is maximized for  
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  =  ̃           
    

    
                                                                  (3.3.23) 

   ̃        
  

 ̃   ̃  
   

     
  

 ̃     =     ̃
   ̃  

    ̃
     

  =  ̃    (    ̃ ̃  
   

       
        

    

∑  ∑̃   (    ̃ ̃  
   

   ̃          ̃ ̃  
   

   ̃      /T 

 

3.4. Unconditional and Conditional Forecasts 

If the endogenous variables are generated by the reduced form (3.1.4) where    is 

white noise and independent of the    process, the optimal h-step forecast of      at 

origin t can be obtained as follows: 

 

  (h) =     (h-1) +…+     (h-p) +    (h) +…+     (h-s)                  (3.4.1) 

 

where   (j) :=      and   (j) :=      for j ≤ 0 and h = 1,2,….  

 

If the future values of the unmodelled variables are unknown, forecasts of    is 

called as unconditional forecasts. In this type of forecast, future values of 

unmodelled variables should be estimated and then they should be used in forecast 

procedure. If the future values of exogenous variables are known, this type of 

forecast is referred to as conditional forecasts. Let us consider the reduced model 

(3.1.4) in VARX(1,0) form, 

 

   = A    + B   +                                                                                  (3.4.2) 

where 
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   := 

[
 
 
 
 
 
 
 
 
 
 
 

 
  

 
 
 

      
  

   
 
 
 

         
 

 ]
 
 
 
 
 
 
 
 
 
 
 

,        := 

[
 
 
 
 
 
 

 
  

 
 
 
 
  
 ]
 
 
 
 
 
 

  ((Kp+Ms)×1),                                             (3.4.3) 

 

A is a ((Kp+Ms)×(Kp+Ms)) matrix such that A:=[
      

      
],  

where 

 

   := 

[
 
 
 
 
 
          

     
    
    
    
     ]

 
 
 
 
 

,    := 

[
 
 
 
 
 
          

    
    
    
    
    ]

 
 
 
 
 

,    :0,         (3.4.4) 

   := 

[
 
 
 
 
 
     
     
    
     
    
     ]

 
 
 
 
 

 

 

and 
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B:= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
 
 
 
 
  
 
 
 
 
  
 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

  ((Kp+Ms)×M).                                                                          (3.4.5) 

 

Successive substitution for lagged    s gives 

 

   =       +∑      
   B     + ∑      

       .                                             (3.4.6) 

 

Premultiplying    by the (K×(Kp+Ms)) matrix J:=[  :0:…:0] gives: 

 

    = J    +∑       
   B       + ∑         

                                        (3.4.7)   

                                          

where   =     =    . Given     ,…,     , the optimal h-step forecast of    at origin 

t is: 

 

  (h | x) := J    +∑       
   B                                                              (3.4.8) 

 

Then, the corresponding forecast error is 

 

    -  (h | x) =∑       
           .                                                           (3.4.9)       
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So, the MSE of the conditional forecast is 

 

∑    |    := MSE[  (h | x)] = ∑       
     ∑ J       .                          (3.4.10) 

 

(Lütkepohl, 2005). In the data analysis part, the conditional forecast technique will 

be used. 
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CHAPTER 4 

 

 

DATA ANALYSIS 

 

 

 

Data analysis is done using R software. Firstly, the statistical properties of the 

variables are examined. Then, Johansen’s technique is adopted to test the long run 

relationship among the variables and to verify the causal relationship between the 

variables, Granger Causality test is applied. Moreover, structural changes are 

analyzed before fitting the model.  

 

Pearson’s correlation coefficients between endogenous and exogenous variables are 

shown in Table1. 

 

Table 3. Pearson’s Correlation Coefficients between Endogenous and Exogenous 

Variables 

 

 Incentive 

Certificates 

Fixed 

Investment 

Amount 

Total 

Industrial 

Turnover 

Index 

Industrial 

Production 

Index 

Manufa. 

PMI of 

China 

Chrome 0.338 0.068 0.197 0.310 0.172 

Feldspar 0.049 0.108 0.116 0.134 0.191 

Copper 0.287 0.303 0.149 0.154 0.029 

Zinc 0.507 0.269 0.562 0.544 -0.062 

Boron 0.206 0.137 0.602 0.452 -0.353 

 

From Table 3, it is seen that chrome is mostly correlated with incentive certificates, 

feldspar is mostly correlated with manufacturing PMI of China, copper is mostly 

correlated with fixed investment amount, zinc and boron are mostly correlated with 

total industrial turnover index. 
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It is investigated whether there is need for power transform. Using results of Box-

Cox transformation and looking at the time series plots of the endogenous variables it 

is decided that there is no need for power transform. 

 

4.1. Granger Causality Test 

To investigate the causal relationship between the variables, bivariate Granger 

Causality test is used. Bivariate Granger causality test for X and Y evaluates whether 

the past values of X are useful for predicting Y once Y’s history has been modeled 

(Hamilton, 1994). Test results are given in Table 4. 

 

Table 4. Significant Results of Granger Causality Test 

 

 F-statistic p-value 

Feldspar -> Zinc 5.818 0.018 

Feldspar -> Boron 1.644 0.0001 

Zinc -> Boron 4.651 0.034 

 

From Table 4, it is seen that past values of feldspar are useful for predicting zinc, 

boron and past values of zinc are useful for predicting boron. The other variables do 

not have significat short-term relationships at 5% significance level. 

 

4.2. Structural Change Detection 

To investigate structural changes in the series, Fstats and breakpoints functions in 

“strucchange” package are used. Test results are given in Table 5. 

 

Table 5. Result of Structural Change Test  

 

Breakpoints 
Year (Month) 

Chrome 2009 (5) 

Feldspar 2008 (7) 

Copper 2009 (8) 

Zinc 2010 (5) 

Boron 2011 (6) 
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From Table 5, it is seen that there is no common breakpoint. So, we decided not to 

put this information into the model. 

 

4.3. Integration: Unit Root and Stationarity Tests Results 

To be able to model a time series, it should be stationary. Hence, before starting the 

analysis, we have to test whether the series is stationary. There are two types of tests: 

Stationarity tests and unit root tests. One of the well known stationarity test is 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test where in the null hypothesis it tests 

whether the series is stationary. Popular unit root tests seen in the literature are 

Augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test (Hamilton, 1994). 

KPSS, ADF and PP test results are given in Table 6.  

 

Table 6. Unit Root and Stationarity Test Results at 5% Significance Level 

 

KPSS  

Trend 

Stationary 

KPSS 

Level 

Stationary 

ADF  

Test 

None 

ADF  

Test 

Drift 

ADF  

Test 

Trend 

PP Test 

Constant 

PP 

Test 

Trend 

Chrome 
Reject 

trend 

stationarity 

Fail to 

reject level 

stationarity 

Fail to 

reject 

Ho:I(1) 

Reject 

Ho:I(1)  

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Feldspar 
Reject 

trend 

stationarity 

Fail to 

reject level 

stationarity 

Fail to 

reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Copper 
Fail to 

reject trend 

stationarity 

Fail to 

reject level 

stationarity 

Fail to 

reject 

Ho:I(1) 

Fail to 

reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Zinc 
Fail to 

reject trend 

stationarity 

Reject 

level 

stationarity 

Fail to 

reject 

Ho:I(1) 

Fail to 

reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Boron 
Fail to 

reject trend 

stationarity 

Reject 

level 

stationarity 

Fail to 

reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

Reject 

Ho:I(1) 

 

Table 7 gives the results of ndiffs function in “forecast” package. This function 

estimates the number of nonseasonal differences required to make the given series 

stationary. It is decided that all the series have unit root and to make them stationary 

differencing should be applied. 
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Table 7. Number of First Differences Required for the Series 

 

Osborn-Chui-Smith-Birchenhall (OCSB) and Canova-Hansen (CH) tests are used to 

detect seasonal unit roots (Hamilton, 1994). Table 8 demonstrates the results of 

nsdiffs function in “forecast” package. This function estimates the number of 

seasonal differences required to make the given series stationary. The results suggest 

that there is no seasonal unit root. 

 

Table 8. Number of Seasonal Differences Required for the Series 

 

nsdiffs 

“OCSB” 

nsdiffs 

“CH” 

Chrome 3 0 

Feldspar 0 0 

Copper 0 0 

Zinc 0 0 

Boron 0 0 

 

Table 6, Table 7 and Table 8 indicate that the series are not stationary and one 

nonseasonal difference is required to have stationary series. Thus, all the variables 

are integrated of order one. 

 

4.4. Lag Order of the Series in VAR 

In multivariate time series modeling, we need to define the number of past lag values 

of the series that should be in the model. Here, the aim is to use the significant past 

observations to describe the current values of the series. To find the number of lags 

VARselect function in “vars” package is used. 

 

 

ndiffs 

“KPSS” 

ndiffs 

“ADF” 

ndiffs 

“PP” 

Chrome 0 1 0 

Feldspar 0 1 0 

Copper 0 1 0 

Zinc 1 0 0 

Boron 1 1 0 
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Table 9. Optimal Lag Number According to Each Criterium 

 

AIC HQ SC FPE 

Chrome 1 1 1 1 

Feldspar 2 2 1 2 

Copper 3 3 1 3 

Zinc 1 1 1 1 

Boron 2 2 1 2 

 

From Table 9, it is seen that maximum lag number is 3 which corresponds to the lags 

in the VAR representation. So, in Johansen’s test the lag order of the series is taken 

as 3. 

 

When the integrated multivariate time series is under consideration, we have to 

control whether there exists cointegration relation between them, that is, all or some 

of the series are moving together or not. If so, there is a long-run relationship 

between them and efficient way to model such series is the VECM. One way to test 

the existence of cointegration is the Johansen’s trace test which is a likelihood ratio 

test and sequentially we are trying to find the number of linearly independent 

equations (Hamilton, 1994). For the Johansen test, we have to decide the VAR order 

of the model. Based on the results given in Table 9, the lag order of the series is 

taken as 3 in Johansen’s test. 

 

4.5. Cointegration: Johansen’s Test Results  

To test whether the series are cointegrated, Johansen Procedure is performed and the 

results are given in Table 10. 

 

Table 10. Johansen’s Cointegration Test  

######################  

# Johansen-Procedure #  

######################  

 

Values of test statistic and critical values of test: 

           test      10pct      5pct      1pct 

r <= 4 |    9.17      7.52      9.24     12.97 

r <= 3 |   22.18     17.85     19.96     24.60 
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Table 10 (continued) 
r <= 2 |   42.35     32.00     34.91     41.07 

r <= 1 |   70.42     49.65     53.12     60.16 

r = 0  |  105.84     71.86     76.07     84.40  

 

From Table 10, it is seen that there are four cointegrating relations (the cointegrating 

rank) to explain the long run relation between the endogenous variables at 5% 

significance level.  

 

4.6. Vector Error Correction Model 

As there are cointegrating relations between the variables, VECM with exogenous 

variables is fitted using “tsDyn” package. VAR with 3 lags corresponds to VECM 

with 2 lags. Hence, number of lags in VECM should be taken as 2. VECM with 2 

lags is fitted but in this model it is seen that only one variable lagged 2 periods is 

significant in just one equation. For this reason, VECM with 1 lag is fitted. 

 

VECM which is obtained using ML estimation can be written as follows: 

 

      ̂
  = –0.713ECT1 – 0.015ECT2 + 0.025ECT3 + 1.301ECT4 +            

   36Δ          –      6Δ            –     64Δ          –   66 Δ         

   896Δ         +1142.584IC – 10.405FIA+85.311TITI+700.868IPI+ 
1907.395MPMIC                                                                                                             (4.6.1)
     

        ̂
  = –0.159ECT1 – 0.187ECT2 + 0.799ECT3 – 3.308ECT4 – 

    5Δ          –   36 Δ            –   335Δ          –    6 Δ          –   

  47 Δ         +814.658IC   35.602FIA – 61.862TITI+449.751IPI+ 
5095.298MPMIC                                                                                                       (4.6.2) 

      ̂
  = 0.027ECT1 – 0.047ECT2 – 1.412ECT3 + 0.510ECT4 – 

   46Δ              46Δ                7 Δ          –      39Δ        – 

   3 Δ         317.451IC  15.464FIA –121.038TITI+226.031IPI+ 
400.098MPMIC                                                                                                             (4.6.3)                                                  
  

    ̂  = –0.024ECT1   0.011ECT2   0.209ECT3 – 0.991ECT4 – 

     Δ                 Δ            –     54Δ          –     88Δ        
    3 Δ         310.311IC    0.084FIA   60.318TITI+282.796IPI+ 
371.692MPMIC                                                                                                      (4.6.4) 
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     ̂  = –0.036ECT1   0.119ECT2   0.067ECT3 – 0.050ECT4   

   3 Δ          –     4 Δ                 Δ          –    59Δ         –   

   43Δ         118.132IC  0.150FIA   155.167TITI+142.375IPI– 
1364.240MPMIC                                                                                                       (4.6.5) 

 

where Δ is the first difference operator, IC is incentive certificate, FIA is fixed 

investment amount, TITI is total industrial turnover index, IPI is industrial 

production index, MPMIC is manufacturing PMI of China, ECT is the error 

correction term coming from the long-run cointegrating relationship.  

 

To find a better model among several trials, their information criteria values are 

compared. The smaller value means the better estimation. The well-known 

information criteria are Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The AIC and BIC of the model are 9617.104 and 

9806.866, respectively. 

 

Table 11. Cointegrating Matrix (  ) of the Model 

 
 

r1 r2 r3 r4 

Chrome 1.000 -7.725e-17 1.335e-18 -2.067e-19 

Feldspar -1.884e-17 1.000 -5.550e-18 -1.658e-17 

Copper 1.443e-16 -2.060e-18 1.000 6.923e-17 

Zinc 0 0 0 1.000 

Boron 1.350 -7.183 0.230 -0.042 

Const 162242.768 451442.135 3434.806 38781.833 

 

After estimation of the model parameters, we need to check the validity of the 

assumptions of the model which are normality of the errors, having constant error 

variance and independence of the errors. 

 

To check the normality assumptions for the residuals mvShapiro.Test function in 

“mvShapiroTest” package is used. This function is designed for checking 

multivariate normality. 
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Table 12. Generalized Shapiro-Wilk Test for Multivariate Normality 

 

data:  vecm$residuals 

MVW = 0.983, p-value = 0.126 

 

From Table 12, it is seen that p-value is greater than 0.05. So, the residuals are 

normally distributed at 5% significance level. 

 

To check the constant variance assumptions archTest function in “MTS” package is 

used. This function is designed for checking multivariate homoscedasticity.  

 

Table 13. Test for Multivariate Homoscedasticity 

 

Q(m) of squared series(LM test):   

Test statistic:  15.696  p-value:  0.109  

Rank-based Test:   

Test statistic:  11.538  p-value:  0.317  

 

From Table 13, it is seen that p-values are greater than 0.05. So, the residuals have 

constant variance at 5% significance level. 

 

To check the independence of the series BoxPierce function in “portes” package is 

used. This function is designed for checking multivariate independence.  

 

Table 14. Test for Multivariate Autocorrelation 

 

  Lags  Statistic   df    pvalue 

    1   23.562      25    0.545 

    2   60.881      50    0.139 

    3   84.539      75    0.211 

    4  100.145     100    0.477 

    5  120.056     125    0.608 

    6  136.328     150    0.781 

    7  167.014     175    0.655 

    8  199.102     200    0.505 

    9  219.580     225    0.589 

   10  245.101     250    0.576 

   11  261.982     275    0.704 

   12  288.853     300    0.668 
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From Table 14, it is seen that all p-values are greater than 0.05. So, the residuals are 

independent and there is no serial correlation problem at 5% significance level. 

 

From the results of the analysis, it is seen that incentive certificates and industrial 

production index are positively related to all the endogenous variables which are 

chromium ores and concentrates, feldspar, copper ores and concentrates, zinc ores 

and concentrates and natural borates and their concentrates. Then, manufacturing 

purchasing managers’ index of China is positively related to all the endogenous 

variables except from export amount of natural borates and their concentrates and 

fixed investment amount is positively related to all the endogenous variables except 

from export amount of chromium ores and concentrates. Also, total industrial 

turnover index has positive relationship with chromium ores and concentrates, zinc 

ores and concentrates and natural borates and their concentrates. 

 

The error correction terms have negative coefficients, as expected, which indicate 

that the system is stable and converges to the equilibrium track after some 

disturbance in the system. Large absolute values of the coefficient on the ECT show 

that equilibrium agents remove a large percentage of disequilibrium in each month, 

i.e., the speed of adjustment is very rapid. For chromium ores and concentrates, the 

value of ECT1 is −0.713 which shows that almost 71% of the disequilibrium is 

corrected within one month.  

 

The model is fitted using the series which are from January 2007 to February 2015. 

Plots of the series with recently announced 6 observations and corresponding 

forecast values are shown below. 
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Figure 2. Observed and Forecasted Export Amounts of Chromium Ores and 

Concentrates in Tonne 

 

 

 
 

Figure 3. Observed and Forecasted Export Amounts of Feldspar in Tonne  

 

From Figure 3, it can be said that there is an unexpected increase in export amounts 

of feldspar after February 2015. The reason to this situation can be examined further 

in future studies by analysing this variable alone. 
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Figure 4. Observed and Forecasted Export Amounts of Copper Ores and 

Concentrates in Tonne 

 

 

 

 

 

 

 
 

Figure 5. Observed and Forecasted Export Amounts of Zinc Ores and Concentrates 

in Tonne 
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Figure 6. Observed and Forecasted Export Amounts of Natural Borates and Their 

Concentrates in Tonne 

 

As it is seen from the plots of observed and forecasted export amounts of the ores 

and concentrates, the model has a good fit for some variables. Detailed information 

about forecasts of the ores and concentrates is shown in the following tables.  

 

Table 15. Observed and Forecasted Export Amounts of Chromium Ores and 

Concentrates in Tonne with Forecast Accuracy Measures 

 

EXPORT AMOUNTS OF CHROMIUM ORES AND CONCENTRATES IN 

TONNE 

DATE OBSERVED FORECASTED RMSD 

March 2015 77468.689 166093.900 50383.021 
April  2015 114504.385 160290.300 MPE (%) 

May 2015 146291.151 134818.000 -31.347 

June 2015 196343.824 152571.300 MAE 

July 2015 101660.261 156875.600 43069.815 

August 2015 142341.053 155887.800  

 

Table 16. Observed and Forecasted Export Amounts of Feldspar in Tonne with 

Forecast Accuracy Measures 

 

EXPORT AMOUNTS OF FELDSPAR IN TONNE 

DATE OBSERVED FORECASTED RMSD 

March 2015 402116.260 313395.400 140509.755 

April  2015 532361.830 344490.200 MPE (%) 

May 2015 493033.740 345144.600 28.101 

June 2015 535150.653 353866.200 MAE 

July 2015 428830.610 321111.900 134683.509 

August 2015 424961.060 330344.800  
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Table 17. Observed and Forecasted Export Amounts of Copper Ores and 

Concentrates in Tonne with Forecast Accuracy Measures 

 

EXPORT AMOUNTS OF COPPER ORES AND CONCENTRATES IN TONNE 

DATE OBSERVED FORECASTED RMSD 

March 2015 33408.338 26444.440 10145.474 

April  2015 26305.978 40342.090 MPE (%) 

May 2015 37379.815 21789.510 -7.730 

June 2015 18074.791 25512.020 MAE 

July 2015 28972.943 23564.000 9350.582 

August 2015 20144.236 26811.240  

 

 

 

Table 18. Observed and Forecasted Export Amounts of Zinc Ores and Concentrates 

in Tonne with Forecast Accuracy Measures 

 

EXPORT AMOUNTS OF ZINC ORES AND CONCENTRATES IN TONNE 

DATE OBSERVED FORECASTED RMSD 

March 2015 27035.030 30739.760 6331.641 

April  2015 30202.760 27815.970 MPE (%) 

May 2015 29808.030 28092.770 10.160 

June 2015 40439.494 35120.180 MAE 

July 2015 41225.566 30573.210 5419.920 

August 2015 39710.662 30969.590  

 

 

 

Table 19. Observed and Forecasted Export Amounts of Natural Borates and Their 

Concentrates in Tonne with Forecast Accuracy Measures 

 

EXPORT AMOUNTS OF NATURAL BORATES AND THEIR CONCENTRATES 

IN TONNE 

DATE OBSERVED FORECASTED RMSD 

March 2015 64700.720 61035.750 7781.795 

April  2015 68526.800 58097.830 MPE (%) 

May 2015 71516.430 59693.690 8.471 

June 2015 58639.150 61887.970 MAE 

July 2015 70920.700 62802.800 7045.737 

August 2015 66482.450 61491.430  
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

Mining sector has great importance for Turkey’s economy. National industry and 

agriculture sector, which are developing, depend on the mining sector for main 

inputs. Although it is known that there are quite various and rich mine reserves in 

Turkey, most of these resources couldn’t be commissioned yet. Share of mining 

sector in Turkey’s domestic income is in a very low level such as 1.2%. Although 

Turkey has the potential to become an important mine exporter, Turkey’s mine 

export is quite limited and some mine products are imported. Briefly, the mining 

sector cannot make the great and important contribution it could have to the 

development of the country. 

 

This study aims at making a contribution to the development of the mining sector in 

Turkey modeling the export amounts of chromium ores and concentrates, feldspar, 

copper ores and concentrates, zinc ores and concentrates, natural borates and their 

concentrates from Turkey based on exogenous variables, incentive certificates, fixed 

investment amount, total industrial turnover index, industrial production index and 

manufacturing purchasing managers’ index of China. 

 

It is seen that chrome is mostly correlated with incentive certificates, feldspar is 

mostly correlated with manufacturing PMI of China, copper is mostly correlated with 

fixed investment amount, zinc and boron are mostly correlated with total industrial 

turnover index. According to the results, past values of feldspar are useful for 

predicting zinc, boron and past values of zinc are useful for predicting boron. 
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The cointegration analysis demonstrates that there exists long run relationship among 

the aforesaid ores and concentrates. As there are cointegrating relations between the 

variables, VECM with exogenous variables is fitted.  

 

From the achieved models, it is seen that incentive certificates and industrial 

production index are positively related to all the endogenous variables and the error 

correction terms have negative coefficients which indicate that the system is stable 

and converges to the equilibrium track after some disturbance in the system. One can 

use the suggested model to decide on the amount of export on the future months. 

Hence, using this information the companies decide on the production level of these 

ores and concentrates. 

 

Future studies on statistical analysis of the mines, which are important for Turkey 

and for the world, will contribute to the development of the mining sector in Turkey. 

As a future study, the ores and concentrates can be studied one by one. 
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 APPENDIX A  

 

 

R CODE 

 

 

 

Chrome=ts(read.table("clipboard",header=F),start=2007,frequency=12) 

Copper=ts(read.table("clipboard",header=F),start=2007,frequency=12) 

Zinc=ts(read.table("clipboard",header=F),start=2007,frequency=12) 

Boron=ts(read.table("clipboard",header=F),start=2007,frequency=12) 

Feldspar=ts(read.table("clipboard",header=F),start=2007,frequency=12) 

 

install.packages("TSA") 

library(TSA) 

 

BoxCox.ar(Chrome) 

BoxCox.ar(Chrome, method = c("ols")) 

BoxCox.ar(Chrome, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, 

method = c("yule-walker")) 

 

BoxCox.ar(Feldspar) 

BoxCox.ar(Feldspar, method = c("ols")) 

BoxCox.ar(Feldspar, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, 

method = c("yule-walker")) 

 

BoxCox.ar(Copper) 

BoxCox.ar(Copper, method = c("ols")) 

BoxCox.ar(Copper, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, 

method = c("yule-walker")) 

 

BoxCox.ar(Zinc) 

BoxCox.ar(Zinc, method = c("ols")) 

BoxCox.ar(Zinc, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, 

method = c("yule-walker")) 

 

BoxCox.ar(Boron) 

BoxCox.ar(Boron, method = c("ols")) 

BoxCox.ar(Boron, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, 

method = c("yule-walker")) 

 

install.packages("tseries") 

library("tseries") 

 

plot(Chrome, ylab='Chrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(Chrome,lag.max=36)  

pacf(Chrome,lag.max=36) 

 

kpss.test(Chrome, null = c("Trend")) 

kpss.test(Chrome,null=c("Level")) 

 

install.packages("urca") 
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library(urca) 

 

adf.chrome=ur.df(Chrome ,type=c("none"),lags=10, 

selectlags=c("AIC")) 

summary(adf.chrome) 

adf.chromedrift=ur.df(Chrome ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.chromedrift) 

adf.chrometrend=ur.df(Chrome ,type=c("trend"),lags=10, 

selectlags=c("AIC"))  summary(adf.chrometrend) 

 

pp.chrome= ur.pp(Chrome,type=c("Z-tau"), model=c("constant"), 

lags=c("short")) 

summary(pp.chrome) 

pp.chrometrend= ur.pp(Chrome,type=c("Z-tau"), model=c("trend"), 

lags=c("short"))  

summary(pp.chrometrend) 

 

plot(Feldspar, ylab='Feldspar', xlab='Year') 

par(mfrow=c(1,2))           

acf(Feldspar,lag.max=36)  

pacf(Feldspar,lag.max=36) 

 

kpss.test(Feldspar, null = c("Trend")) 

kpss.test(Feldspar,null=c("Level")) 

 

adf.Feldspar=ur.df(Feldspar ,type=c("none"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Feldspar) 

adf.Feldspardrift=ur.df(Feldspar ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Feldspardrift) 

adf.Feldspartrend=ur.df(Feldspar ,type=c("trend"),lags=10, 

selectlags=c("AIC"))   

summary(adf.Feldspartrend) 

 

pp.Feldspar=ur.pp(Feldspar,type=c("Z-tau"), model=c("constant"),               

lags=c("short"))  

summary(pp.Feldspar) 

pp.Feldspartrend=ur.pp(Feldspar,type=c("Z-tau"), 

model=c("trend"),lags=c("short"))  

summary(pp.Feldspartrend) 

 

plot(Copper,ylab='Copper',xlab='Year',type='l') 

par(mfrow=c(1,2)) 

acf(Copper,lag.max=36)  

pacf(Copper,lag.max=36) 

 

kpss.test(Copper, null = c("Trend")) 

kpss.test(Copper,null=c("Level")) 

 

adf.Copper=ur.df(Copper ,type=c("none"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Copper) 

adf.Copperdrift=ur.df(Copper ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Copperdrift) 

adf.Coppertrend=ur.df(Copper ,type=c("trend"),lags=10, 

selectlags=c("AIC"))  summary(adf.Coppertrend) 
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pp.Copper= ur.pp(Copper,type=c("Z-tau"), model=c("constant"), 

lags=c("short")) summary(pp.Copper) 

pp.Coppertrend= ur.pp(Copper,type=c("Z-tau"), model=c("trend"), 

lags=c("short"))  

summary(pp.Coppertrend) 

 

plot(Zinc,ylab='Zinc',xlab='Year',type='l') 

par(mfrow=c(1,2)) 

acf(Zinc,lag.max=36)  

pacf(Zinc,lag.max=36) 

 

kpss.test(Zinc, null = c("Trend")) 

kpss.test(Zinc,null=c("Level")) 

 

adf.Zinc=ur.df(Zinc ,type=c("none"),lags=10, selectlags=c("AIC")) 

summary(adf.Zinc) 

adf.Zincdrift=ur.df(Zinc ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Zincdrift) 

adf.Zinctrend=ur.df(Zinc ,type=c("trend"),lags=10, 

selectlags=c("AIC"))   

summary(adf.Zinctrend) 

 

pp.Zinc= ur.pp(Zinc,type=c("Z-tau"), model=c("constant"), 

lags=c("short"))  

summary(pp.Zinc) 

pp.Zinctrend= ur.pp(Zinc,type=c("Z-tau"), model=c("trend"), 

lags=c("short"))  

summary(pp.Zinctrend) 

 

plot(Boron,ylab='Boron',xlab='Year',type='l') 

par(mfrow=c(1,2)) 

acf(Boron,lag.max=36)  

pacf(Boron,lag.max=36) 

 

kpss.test(Boron, null = c("Trend")) 

kpss.test(Boron,null=c("Level")) 

 

adf.Boron=ur.df(Boron ,type=c("none"),lags=10, selectlags=c("AIC")) 

summary(adf.Boron) 

adf.Borondrift=ur.df(Boron ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.Borondrift) 

adf.Borontrend=ur.df(Boron ,type=c("trend"),lags=10, 

selectlags=c("AIC"))  

summary(adf.Borontrend) 

 

pp.Boron= ur.pp(Boron,type=c("Z-tau"), model=c("constant"), 

lags=c("shortsummary(pp.Boron) 

pp.Borontrend= ur.pp(Boron,type=c("Z-tau"), model=c("trend"), 

lags=c("short")) summary(pp.Borontrend) 

 

library(forecast) 

 

ndiffs(Chrome,test=c("kpss"), max.d=4) 

ndiffs(Chrome,test=c("adf"), max.d=4) 

ndiffs(Chrome,test=c("pp"), max.d=4) 

 

ndiffs(Feldspar,test=c("kpss"), max.d=4) 
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ndiffs(Feldspar,test=c("adf"), max.d=4) 

ndiffs(Feldspar,test=c("pp"), max.d=4) 

 

ndiffs(Copper,test=c("kpss"), max.d=4) 

ndiffs(Copper,test=c("adf"), max.d=4) 

ndiffs(Copper,test=c("pp"), max.d=4) 

 

ndiffs(Zinc,test=c("kpss"), max.d=4) 

ndiffs(Zinc,test=c("adf"), max.d=4) 

ndiffs(Zinc,test=c("pp"), max.d=4) 

 

ndiffs(Boron,test=c("kpss"), max.d=4) 

ndiffs(Boron,test=c("adf"), max.d=4) 

ndiffs(Boron,test=c("pp"), max.d=4) 

 

nsdiffs(Chrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(Chrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(Chrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(Chrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(Chrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(Chrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(Chrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(Chrome, m=12, test=c("ch"), max.D=20) 

 

sdChrome=diff(Chrome,12) 

plot(sdChrome,ylab='sdChrome (kg)',xlab='Year') 

par(mfrow=c(1,2)) 

acf(sdChrome,48) 

pacf(sdChrome,48) 

 

nsdiffs(sdChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sdChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sdChrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(sdChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sdChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sdChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sdChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sdChrome, m=12, test=c("ch"), max.D=20) 

 

ndiffs(sdChrome,test=c("kpss"), max.d=4) 

ndiffs(sdChrome,test=c("adf"), max.d=4) 

ndiffs(sdChrome,test=c("pp"), max.d=4) 

 

kpss.test(sdChrome, null=c("Level")) 

kpss.test(sdChrome, null = c("Trend")) 

 

sddChrome=diff(sdChrome,12) 

nsdiffs(sddChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sddChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sddChrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(sddChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sddChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sddChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sddChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sddChrome, m=12, test=c("ch"), max.D=20) 

 

ndiffs(sddChrome,test=c("kpss"), max.d=4) 

ndiffs(sddChrome,test=c("adf"), max.d=4) 

ndiffs(sddChrome,test=c("pp"), max.d=4) 
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kpss.test(sddChrome, null=c("Level")) 

kpss.test(sddChrome, null = c("Trend")) 

sdddChrome=diff(sddChrome,12) 

 

nsdiffs(sdddChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sdddChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sdddChrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(sdddChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sdddChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sdddChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sdddChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sdddChrome, m=12, test=c("ch"), max.D=20) 

 

ndiffs(sdddChrome,test=c("kpss"), max.d=4) 

ndiffs(sdddChrome,test=c("adf"), max.d=4) 

ndiffs(sdddChrome,test=c("pp"), max.d=4) 

 

kpss.test(sdddChrome, null=c("Level")) 

kpss.test(sdddChrome, null = c("Trend")) 

 

sddddChrome=diff(sdddChrome,12) 

nsdiffs(sddddChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sddddChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sddddChrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(sddddChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sddddChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sddddChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sddddChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sddddChrome, m=12, test=c("ch"), max.D=20) 

 

ndiffs(sddddChrome,test=c("kpss"), max.d=4) 

ndiffs(sddddChrome,test=c("adf"), max.d=4) 

ndiffs(sddddChrome,test=c("pp"), max.d=4) 

 

kpss.test(sddddChrome, null=c("Level")) 

kpss.test(sddddChrome, null = c("Trend")) 

 

sdddddChrome=diff(sddddChrome,12) 

 

nsdiffs(sdddddChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sdddddChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sdddddChrome, m=12, test=c("ocsb"), max.D=4) 

nsdiffs(sdddddChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sdddddChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sdddddChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sdddddChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sdddddChrome, m=12, test=c("ch"), max.D=20) 

 

ndiffs(sdddddChrome,test=c("kpss"), max.d=4) 

ndiffs(sdddddChrome,test=c("adf"), max.d=4) 

ndiffs(sdddddChrome,test=c("pp"), max.d=4) 

 

kpss.test(sdddddChrome, null=c("Level")) 

kpss.test(sdddddChrome, null = c("Trend")) 

 

sddddddChrome=diff(sdddddChrome,12) 

nsdiffs(sddddddChrome, m=12, test=c("ocsb"), max.D=3) 

nsdiffs(sddddddChrome, m=12, test=c("ch"), max.D=3) 

nsdiffs(sddddddChrome, m=12, test=c("ocsb"), max.D=4) 



52 
 

nsdiffs(sddddddChrome, m=12, test=c("ch"), max.D=4) 

nsdiffs(sddddddChrome, m=12, test=c("ocsb"), max.D=5) 

nsdiffs(sddddddChrome, m=12, test=c("ch"), max.D=5) 

nsdiffs(sddddddChrome, m=12, test=c("ocsb"), max.D=20) 

nsdiffs(sddddddChrome, m=12, test=c("ch"), max.D=20) 

ndiffs(sddddddChrome,test=c("kpss"), max.d=4) 

ndiffs(sddddddChrome,test=c("adf"), max.d=4) 

ndiffs(sddddddChrome,test=c("pp"), max.d=4) 

 

kpss.test(sddddddChrome, null=c("Level")) 

kpss.test(sddddddChrome, null = c("Trend")) 

 

library(urca) 

adf.sddddddChrome=ur.df(sddddddChrome ,type=c("none"),lags=10, 

selectlags=c("AIC")) 

summary(adf.sddddddChrome) 

adf.sddddddChromedrift=ur.df(sddddddChrome ,type=c("drift"),lags=10, 

selectlags=c("AIC")) 

summary(adf.sddddddChromedrift) 

adf.sddddddChrometrend=ur.df(sddddddChrome ,type=c("trend"),lags=10, 

selectlags=c("AIC"))  #ADF Tests 

summary(adf.sddddddChrometrend) 

 

pp.sddddddChrome= ur.pp(sddddddChrome,type=c("Z-tau"), 

model=c("constant"), lags=c("short")) #PP Test 

summary(pp.sddddddChrome) 

pp.sddddddChrometrend= ur.pp(sddddddChrome,type=c("Z-tau"), 

model=c("trend"), lags=c("short")) #PP Test 

summary(pp.sddddddChrometrend) 

 

ndiffs(diff(sddddddChrome),test=c("kpss"), max.d=4) 

ndiffs(diff(sddddddChrome),test=c("adf"), max.d=4) 

ndiffs(diff(sddddddChrome),test=c("pp"), max.d=4) 

 

nsdiffs(diff(sddddddChrome), m=12, test=c("ocsb"), max.D=3) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ch"), max.D=3) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ocsb"), max.D=4) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ch"), max.D=4) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ocsb"), max.D=5) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ch"), max.D=5) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ocsb"), max.D=20) 

nsdiffs(diff(sddddddChrome), m=12, test=c("ch"), max.D=20) 

 

kpss.test(diff(sddddddChrome), null=c("Level")) 

kpss.test(diff(sddddddChrome), null = c("Trend")) 

 

library(urca) 

adf.sddddddanddChrome=ur.df(diff(sddddddChrome) 

,type=c("none"),lags=10, selectlags=c("AIC")) 

summary(adf.sddddddanddChrome) 

adf.sddddddanddChromedrift=ur.df(diff(sddddddChrome) 

,type=c("drift"),lags=10, selectlags=c("AIC")) 

summary(adf.sddddddanddChromedrift) 

adf.sddddddanddChrometrend=ur.df(diff(sddddddChrome) 

,type=c("trend"),lags=10, selectlags=c("AIC"))   

summary(adf.sddddddanddChrometrend) 

 

pp.sddddddanddChrome= ur.pp(diff(sddddddChrome),type=c("Z-tau"), 

model=c("constant"), lags=c("short"))  
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summary(pp.sddddddanddChrome) 

pp.sddddddanddChrometrend= ur.pp(diff(sddddddChrome),type=c("Z-

tau"), model=c("trend"), lags=c("short"))  

summary(pp.sddddddanddChrometrend) 

par(mfrow=c(1,2)) 

acf(sdChrome,48) 

pacf(sdChrome,48) 

 

plot(ts(sddChrome), ylab='sddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(sddChrome,48) 

pacf(sddChrome,48) 

plot(ts(sdddChrome), ylab='sdddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(sdddChrome,48) 

pacf(sdddChrome,48) 

plot(ts(sddddChrome), ylab='sddddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(sddddChrome,48) 

pacf(sddddChrome,48) 

 

plot(ts(sdddddChrome), ylab='sdddddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(sdddddChrome,48) 

pacf(sdddddChrome,48) 

 

plot(ts(sddddddChrome), ylab='sddddddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(sddddddChrome,48) 

pacf(sddddddChrome,48) 

 

plot(ts(diff(sddddddChrome)), ylab='sddddddanddChrome', xlab='Year') 

par(mfrow=c(1,2)) 

acf(diff(sddddddChrome),lag.max=36)  

pacf(diff(sddddddChrome),lag.max=36) 

 

fit=arima(Chrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

 

sdChrome=diff(Chrome,12) 

fit=arima(sdChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

 

sddChrome=diff(sdChrome,12) 

fit=arima(sddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

 

sdddChrome=diff(sddChrome,12) 

fit=arima(sdddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

 

sddddChrome=diff(sdddChrome,12) 

fit=arima(sddddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 
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sdddddChrome=diff(sddddChrome,12) 

fit=arima(sdddddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

sddddddChrome=diff(sdddddChrome,12) 

fit=arima(sddddddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0), 

period=12)) 

fit 

 

sdddddddChrome=diff(sddddddChrome,12) 

fit=arima(sdddddddChrome,order=c(0,0,1),seasonal=list(order=c(0,0,0)

, period=12)) 

fit 

 

fit=arima(Chrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sdChrome=diff(Chrome,12) 

fit=arima(sdChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sddChrome=diff(sdChrome,12) 

fit=arima(sddChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sdddChrome=diff(sddChrome,12) 

fit=arima(sdddChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sddddChrome=diff(sdddChrome,12) 

fit=arima(sddddChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sdddddChrome=diff(sddddChrome,12) 

fit=arima(sdddddChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

sddddddChrome=diff(sdddddChrome,12) 

fit=arima(sddddddChrome,order=c(0,0,0),seasonal=list(order=c(0,0,1), 

period=12)) 

fit 

 

install.packages("strucchange") 

library(strucchange) 

 

fs.chrome <- Fstats(Chrome ~ 1) 

plot(fs.chrome) 

 

plot(fs.chrome, pval = TRUE, alpha = 0.05) 

sctest(fs.chrome) 

plot(Chrome, ylab='Chrome', xlab='Year') 

lines(breakpoints(fs.chrome)) 

breakpoints(fs.chrome) 
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bp.chrome <- breakpoints(Chrome ~ 1) 

summary(bp.chrome) 

plot(bp.chrome) 

breakpoints(bp.chrome) 

 

breakdates(bp.chrome) 

ci.chrome <- confint(bp.chrome) 

breakdates(ci.chrome) 

ci.chrome 

plot(Chrome, ylab='Chrome', xlab='Year') 

lines(ci.chrome) 

 

fs.feldspar <- Fstats(Feldspar ~ 1) 

plot(fs.feldspar) 

 

plot(fs.feldspar, pval = TRUE, alpha = 0.05) 

sctest(fs.feldspar) 

plot(Feldspar, ylab='Feldspar', xlab='Year') 

lines(breakpoints(fs.feldspar)) 

breakpoints(fs.feldspar) 

 

bp.feldspar <- breakpoints(Feldspar ~ 1) 

summary(bp.feldspar) 

plot(bp.feldspar) 

breakpoints(bp.feldspar) 

 

breakdates(bp.feldspar) 

ci.feldspar <- confint(bp.feldspar) 

breakdates(ci.feldspar) 

ci.feldspar 

plot(Feldspar, ylab='Feldspar', xlab='Year') 

lines(ci.feldspar) 

 

fs.copper <- Fstats(Copper ~ 1) 

plot(fs.copper) 

 

plot(fs.copper, pval = TRUE, alpha = 0.05) 

sctest(fs.copper) 

plot(Copper, ylab='Copper', xlab='Year') 

lines(breakpoints(fs.copper)) 

breakpoints(fs.copper) 

 

bp.copper <- breakpoints(Copper ~ 1) 

summary(bp.copper) 

plot(bp.copper) 

breakpoints(bp.copper) 

 

breakdates(bp.copper) 

ci.copper <- confint(bp.copper) 

breakdates(ci.copper) 

ci.copper 

plot(Copper, ylab='Copper', xlab='Year') 

lines(ci.copper) 

 

fs.zinc <- Fstats(Zinc ~ 1) 

plot(fs.zinc) 

 

plot(fs.zinc, pval = TRUE, alpha =0.05) 

sctest(fs.zinc) 
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plot(Zinc, ylab=' Zinc ', xlab='Year') 

lines(breakpoints(fs.zinc)) 

plot(Zinc, ylab='Zinc ', xlab='Year') 

breakpoints(fs.zinc) 

 

bp.zinc <- breakpoints(Zinc ~ 1) 

summary(bp.zinc) 

plot(bp.zinc) 

breakpoints(bp.zinc) 

 

breakdates(bp.zinc) 

ci.zinc <- confint(bp.zinc) 

breakdates(ci.zinc) 

ci.zinc 

plot(Zinc, ylab=' Zinc ', xlab='Year') 

lines(ci.zinc) 

 

fs.boron <- Fstats(Boron ~ 1) 

plot(fs.boron) 

 

plot(fs.boron, pval = TRUE, alpha =0.05) 

sctest(fs.boron) 

plot(Boron, ylab='Boron', xlab='Year') 

lines(breakpoints(fs.boron)) 

plot(Boron, ylab='Boron', xlab='Year') 

breakpoints(fs.boron) 

 

bp.boron <- breakpoints(Boron ~ 1) 

summary(bp.boron) 

plot(bp.boron) 

breakpoints(bp.boron) 

 

breakdates(bp.boron) 

## confidence intervals 

ci.boron <- confint(bp.boron) 

breakdates(ci.boron) 

ci.boron 

plot(Boron, ylab='Boron', xlab='Year') 

lines(ci.boron) 

 

ChromeFeldsparCopperZincBoron=cbind(Chrome,Feldspar,Copper,Zinc,Boron)  

 

install.packages("vars") 

library(vars) 

 

VARselect(Chrome,lag.max=8,type="both") 

VARselect(Feldspar,lag.max=8,type="both") 

VARselect(Copper,lag.max=8,type="both") 

VARselect(Zinc,lag.max=8,type="both") 

VARselect(Boron,lag.max=8,type="both") 

 

summary(ca.jo(ChromeFeldsparCopperZincBoron,type="trace",ecdet="cons

t",K=3, spec="longrun")) 

 

IncentiveCertificates=ts(read.table("clipboard",header=F),start=2007

,frequency=12) 

FixedInvestmentAmount=ts(read.table("clipboard",header=F),start=2007

,frequency=12) 
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IndustrialTurnoverIndexTotal=ts(read.table("clipboard",header=F),sta

rt=2007,frequency=12) 

IndustrialProductionIndex=ts(read.table("clipboard",header=F),start=

2007,frequency=12) 

ManuPMIofChina=ts(read.table("clipboard",header=F),start=2007,freque

ncy=12) 

 

install.packages("tsDyn") 

library(tsDyn) 

 

vecmexochinaPMI=VECM(ChromeFeldsparCopperZincBoron[,c("Chrome","Feld

spar","Copper","Zinc","Boron")],1,r=4, include="const", 

beta=NULL,estim="ML",LRinclude="const",exogen=IncentiveCertificatesF

ixedInvestmentAmountIndustrialTurnoverIndexTotalIndustrialProduction

IndexManuPMIofChina[,c("IncentiveCertificates","FixedInvestmentAmoun

t","IndustrialTurnoverIndexTotal","IndustrialProductionIndex","ManuP

MIofChina")]) 

 

summary(vecmexochinaPMI) 

coef(vecmexochinaPMI) 

 

install.packages("mvShapiroTest") 

library(mvShapiroTest) 

 

mvShapiro.Test(vecmexochinaPMI$residuals) 

 

install.packages("portes") 

library("portes") 

 

BoxPierce(vecmexochinaPMI$residuals,lags=seq(2),order=0,SquaredQ=TRUE) 

 

newIncentiveCertificates=ts(read.table("clipboard",header=F)) 

newFixedInvestmentAmount=ts(read.table("clipboard",header=F)) 

newIndustrialTurnoverIndexTotal=ts(read.table("clipboard",header=F)) 

newIndustrialProductionIndex=ts(read.table("clipboard",header=F)) 

newManuPMIofChina=ts(read.table("clipboard",header=F)) 

 

newIncentiveCertificatesFixedInvestmentAmountIndustrialTurnoverIndex

TotalIndustrialProductionIndexManuPMIofChina=cbind(newIncentiveCerti

ficates,newFixedInvestmentAmount,newIndustrialTurnoverIndexTotal,new

IndustrialProductionIndex,newManuPMIofChina) 

 

predict(vecmexochinaPMI,exoPred=newIncentiveCertificatesFixedInvestm

entAmountIndustrialTurnoverIndexTotalIndustrialProductionIndexManuPM

IofChina,n.ahead=6) 
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