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ABSTRACT

DYNAMIC ANALYSIS FOR COMPLEX EVENT PROCESSING

Özcan, Muhammet O§uz

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ece Guran Schmidt

Co-Supervisor : Prof. Dr. Ali Hikmet Do§ru

December 2015, 93 pages

Analysis facilities are developed in the course of this thesis for a domain-speci�c

real-time and rule-based language along with a supporting tool. Such analysis

facilities are required due to the need for investigating the functional correctness

and stringent timing properties expected to take place in the software developed

through this language. An early version of this language was developed during

a Ph.D. study for the domain of fault management in mission critical systems.

Five program analysis facilities are proposed and tested with randomly gener-

ated numbers of events and rules. Also, discussions about static and dynamic

analysis in the event processing domain are presented along with a comparison

of related existing tools. The comparisons of existing tools include the two dif-

ferent implementations of the similar design for interpreters for the language.

The di�erent implementations involved the languages C++ and Python.

Keywords: Real-Time, Rule-Based Languages, Complex Event Processing, Dy-
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namic Analysis, Fault Management Systems, Domain Speci�c Languages
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ÖZ

KARMA�IK OLAY ��LEME �Ç�N D�NAM�K ANAL�Z

Özcan, Muhammet O§uz

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Ece Guran Schmidt

Ortak Tez Yöneticisi : Prof. Dr. Ali Hikmet Do§ru

Aral�k 2015 , 93 sayfa

Bu tezde gerçek zamanl� ve kural tabanl� bir alana özel dil için analiz kabili-

yetleri ve bir yorumlay�c� geli³tirilmi³tir. Analiz kabiliyetleri, dilin kullan�lmas�

ile geli³tirilecek yaz�l�mlarda gerekecek olan fonksiyonel do§ruluk ve kat� zaman

k�s�tlar�n�n irdelenmesi icin önerilmi³tir. Bu dil ilk olarak görev kritik sistemlerin

hata yonetimi icin gerekmi³tir ve bir ba³ka doktora çal�³mas�nda geli³tirilmi³tir.

Be³ tip analiz kabiliyeti geli³tirilmi³ ve rastgele say�da kural ve olay ile denen-

mi³tir. Olay i³leme alan�nda statik ve dinamik analiz seçenekleri incelenmi³tir ve

benzer araçlarla kar³�la³t�rma da yap�lm�³t�r. Ayr�ca kar³�la³t�rmalar, ayn� tasa-

r�ma tabi olan dil yorumlay�c�s�n�n C++ ve Python ile iki farkl� uygulamalar�n�

da içermektedir.

Anahtar Kelimeler: Gerçek Zamanl�l�k, Kural Tabanl� Diller, Karma³�k Olay

�³leme, Dinamik Analiz, Hata Yönetim Sistemi, Alana Özgü Diller
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CHAPTER 1

INTRODUCTION

In this thesis study, a simulator is developed to analyze various aspects of the

programs written using a domain speci�c language. This language has the fol-

lowing properties: it is rule based, it can process events with real time respon-

siveness, and it can process complex events. Five analysis facilities are proposed

to support this language. The initial version of the language has been devel-

oped before, during a PhD study for utilization in the development of mission

critical fault management systems [20]. It's requirements have originated in a

project. Referred to as KOTAY in some project documentation, unfortunately

the language does not have a well published or documented name. The need

for analysis facilities for the language surfaced before using it in development,

to assess the reliability of the systems to be developed using this language and

to simulate the system beforehand. Various adaptations of KOTAY is used in

real-time mission-critical systems for fault management through complex event

processing (CEP).

KOTAY name is an abbreviation in Turkish that includes the `rule-based, event-

based, and fault management' terminologies (Kural ve Olay Tabanl� Ar�za Yöne-

timi). The facilities behind such terminology are explained in the following

paragraphs. In general, CEP languages are implementing some kind of event

algebra. There has been some event algebras introduced and supported with

programming languages. Most of those however, are very complex and not suit-

able for real-time processing. A simple and e�cient to implement such language

has been the Generalized Event Monitoring (GEM) language [38]. KOTAY has

1



largely utilized the concepts in GEM. Basically, GEM was adapted with some

simpli�cations and some additional de�nitions for optimization towards time

performance e�ciency. Besides the language supporting run-time performance,

the language processors (compiler or interpreter as in our case) e�ciency be-

comes a critical factor. Part of the work conducted for this thesis includes the

performance improvement for the interpreter.

Previously existing interpreter was implemented in the Python language. Al-

though it was fast enough for the speci�c domain and the requirements for the

originating project, Python is interpretive and hence, slow. This thesis aims at

providing a wider application opportunity for the language and so making use

of any chance to further improve the speed performance. A faster version was

implemented for this thesis, utilizing the faster run-time code, �rst of all as a

result of being a compiled executable. Also, the data structures that are heav-

ily based on tables in Python, were mostly converted to various data structure

making use of pointers. One principle in the new interpreter is, using as much

memory as required since there is no space constraint, for the bene�t of faster

run-time response. The results related to speed-up are provided in the late sec-

tions as time responses collected during the tests run using random input events

and randomly generated rules. Although, there is no direct measure to com-

pare the speed-up a general idea can be perceived looking at the measurements

conducted in the previous case (Python) and this one.

Rule-based languages consist of sets of rules and are usually used in expert sys-

tems. Most of them comprise "if Condition, then Action" structures. When

the condition part is satis�ed, the action part executes. An advantage of rule-

based languages is the high abstraction level they o�er: Every rule can be coded

independent of the others, without considering an execution order. Real-time

systems are decision systems which respond to external events and conduct de-

cisions based on input and state information in a pre-determined time period.

Usually this response time is very short. CEP is a technology used to analyze

and track streams of data from multiple sources and identify meaningful complex

events to be able to respond to them quickly. Complex events are the compo-

sition of events with logical, causal and temporal operators. Domain speci�c

2



languages, in contrast to general purpose languages such as Java, C, or Pas-

cal, are de�ned for development in a special application �eld, easily. The �eld

associated with the language involved in this research is fault management.

The analysis facilities are speci�c to KOTAY. However, they can be adapted

to other languages with similar properties. These facilities are mentioned in a

language independent manner, and they should be applicable to the languages

that include the corresponding capability for each analysis type. This thesis

work includes the development of the facilities on the interpreter of KOTAY, as a

supporting tool for the language. For other languages, a similar implementation

e�ort will be required. Most of the analysis functions would be applicable to

any event-processing language.

Real-time systems are important for many military and business related tech-

nologies. There are two main requirements for these systems; functional correct-

ness and stringent timing constraints where exceeding the upper bound could

cause fatal consequences. These two main requirements need to be analyzed very

carefully before using the systems in their real applications to avoid undesirable

consequences.

Aim of timing requirement analysis studies is �nding whether the system has

a bounded response time and if there is, what the response time is. Existing

timing analysis studies are all related to formal or static analysis and none of

them are de�ned for event processing languages [1], [2], [3], [4], [5], [6], [26], [27],

[28], [29], [30], [31]. Although static analysis is a very important subject, it does

not give the real system response results and can be considered as inadequate

for some environments. Therefore the importance of dynamic analysis for the

software that are part of such systems emerges. Di�erence between static and

dynamic analysis will be explained in the following paragraphs.

Functional correctness analysis relates to validation and veri�cation (V&V) of

software [24]. Validation is determining the correctness of a software according

to the requirements and veri�cation is determining the completeness and consis-

tency aspects. Consistency analysis includes determination of redundant, con-

�icting, subsumed and circular rules, and unnecessary if conditions. Complete-

3



ness analysis includes determination of the dead-end, missing and unreachable

rules [24]. Some simulators exist in the literature that provide the aforemen-

tioned analysis facilities. The tools and the existing studies cover only static

analyses and do not have CEP capability [24], [25], [34], [35], [36], [37]. There-

fore, a tool that provides dynamic functional correctness analysis of event pro-

cessing rule-based programs is required.

It is stated that many of rule-based languages are not suitable for real-time

applications in [13]. Representing knowledge in the real-time domain can be

problematic [20]. This opinion supports the need for the created language and

implicitly shows that analysis of these kind of languages are also important.

Besides, in [12] it is directly stated that most of the CEP studies do not include

real-time processing, they focus on improving the performance and handling

large volumes of streaming data. It is also stated that instead of the real-time

properties, they are more focused on accomplishing maximum throughput and

minimum end-to-end latency.

In [8] the analysis of event based systems are divided into two parts; static

analysis and dynamic analysis. Static analysis considers analysis before run-

time. It is mostly used to validate the design of the application and it shows

possible errors that might occur when the system is actually working. To be

completely certain about the results, dynamic analysis must be conducted. Dy-

namic analysis is conducted at run-time. It might provide some results that

cannot be understood in static analysis. It is done based on the observation

of runtime execution of the application. Because of these advantages, we have

added dynamic analysis facilities into our simulator. We have also added one

static analysis facility which is the static cycle warning.

The advantages of dynamic analysis over static analysis can be combined in

three main topics. Firstly, dynamic analysis enables to detect if the system

terminates at some point or in other words, complete its execution. This is

called the termination problem detection. The termination problem might occur

because of a loop involving some rules, resulting with in�nitely executing cycles.

Rather than predicting it through static analysis, dynamic analysis gives the

4



real consequences [8]. Secondly, some of the rules in the existing rule set may

never �re during the system execution. These rules are called unreachable rules

and the situation is called the reachability issue. Those rules are redundant and

must be eliminated from the rule set. Detection of these kind of rules with static

analysis is not conclusive and not possible for all di�erent situations. Some of the

rules that are stated as reachable after a static analysis may never �re during

the system execution. Therefore, dynamic analysis is required in order to be

certain about the results of the reachability issue detection [8]. Thirdly, after

condition parts have completed, action parts of the rules are executed and they

produce some outputs which are called generated events in the event processing

domain. In some cases these outputs may not be used by the other rules in the

system. Static analysis is not suitable for this analysis, since the consumption

of the generated outputs depends on the current situation of the system. Static

analysis may only provide a checking mechanism for the existence of generated

outputs in the condition parts of the rules. With dynamic analysis this situation

can be detected easily with a guarantee. Therefore, preferring dynamic analysis

seems to be a better choice since it provides real results rather than predictions.

There are two types of dynamic analysis: simulation and tracing [8]. Creation

of random test data, using these data in the system and observing the results of

scenarios are de�ned as simulation. Taking the traces of execution and analyzing

them is called tracing. In this study, simulation type of a dynamic analysis

approach is preferred. The simulator and created analysis facilities were tested

with randomly created event and rule sets.

In this thesis, we created a dynamic simulator and �ve analysis facilities to

be able to analyze the programs developed using the mentioned language. The

analysis facilities are required to test the software applications before using them

in mission critical systems. Existing studies in this area either do not include a

comprehensive simulator, or included simulators do not provide dynamic analysis

and complex event processing facilities.

Contributions can be summarized in two �elds: 1- Improving the existing lan-

guage interpreter for performance and 2- developing analysis facilities for the

5



CEP �eld. The 2nd contribution is an innovation that di�erentiates this re-

search.

The thesis continues as follows: In Chapter 2, some foundation technologies and

literature survey in the following subcategories: Real-Time Systems, Rule-Based

Languages, Complex Event Processing, Rete, and Structure of the Language

are introduced. Chapter 3, de�nes the work done in the process of simulator

development. Creation of analysis facilities and experimentations are presented

in Chapter 4. Chapter 5 includes conclusion

6



CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Real-Time Systems

Real-time systems are computer controlled systems that respond to external

events and decide based on inputs and state information in a pre-determined

and usually very short time. Real-time systems range over several domains

in computer science. Defense systems in �Command and Control Information

Systems (C2IS)�, space systems in space stations, hospital systems in inten-

sive care units and emergencies, automobile networking systems in �Anti-lock

Braking Systems (ABS)� are some of the very critical systems where real-time

systems are being widely used. Real-time systems generally are critical systems,

where a failure might cause catastrophic consequences. In real-time systems the

correctness of the system depends not only on producing the e�ects of logical

computation and result of that computation, but also on the physical time that

these results are produced and also how fast they are produced [18], [19].

There are many de�nitions of real-time in the literature, all of them are some-

what similar to each other. A system is de�ned as real-time if it is �fast� or �faster

than human� in a very basic way [12]. In [13] real-time systems are de�ned as

the systems that have operational deadlines for the processing of events. Their

processing periods start with the occurring of the events and ends with the

response of the system. A real-time term is de�ned as a system that responds

to incoming data at a rate fast or faster than it is arriving [13]. Lastly, real-time

is de�ned as a feature, which is the ability of a system that can guarantee a

7



response after some time has elapsed. The crucial point in that de�nition is

that the elapsed time must be provided as a part of problem de�nition [13].

From all of these de�nitions it can be stated that a real-time system needs to

respond to inputs that are entering the system quickly with some limitations on

system resources.

Real-time systems comprise two sub-systems: controlling system and controlled

system. As its name implies a controlled system is the environment that is being

directed by something else, the controlling system. Whereas the controlling

system leads the environment, (i.e. the controlled system), with information

gathered from various sensors [19].

Timing constraints of real-time systems may also vary depending on the system

requirements. Basic types of real�time systems can be stated as being �periodic�

or �aperiodic. �Periodic� means events happen continuously with some time

between them which is generally de�ned as �T� time units. Whereas, �aperiodic�

means events that have beginning and ending times with no strict time between

their occurrences. More complex timing requirements can also be de�ned in

real-time systems, for example in a case where an event having to occur before

some other one.

If timing requirements are not ful�lled, the result will be failure and fatal con-

sequences might happen. Therefore, designing and creating a real-time decision

system is an important and a critical job. It requires extra attention and detailed

calculation when analyzing the time bounds.

Finally, the relation between real-time systems and rule-based languages should

be mentioned. Actually these two concepts are orthogonal. Trying to support

the real-time environment with a rule-based language � that consequently, has

to perform fast and more deterministically also, is due to the expressive power of

the rules. Especially in situations where a domain speci�c program needs to be

developed, such as medical diagnosis or fault management, the domain related

concepts can directly take place in the code rather than lower-level statements

like those of C or Java. Besides, it is expected to support the rapid development

of new fault management programs through coding by rules.
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2.2 Rule-Based Languages

A rule is a statement that describes a policy or a procedure. Rules can be atomic

or complex. Atomic rules cannot be broken down any further, whereas complex

rules include many rules and they can be broken down to lower levels. Some

event processing applications are based on rule-based languages. Therefore, a

rule can be de�ned as the basic processing primitive of event processing in some

areas.

Rule-based languages are mainly studied in �Arti�cial Intelligence�, �Knowledge

Based Systems�, and �Expert Systems�. They are used in a variety of prac-

tical systems through storing and manipulating data for making decisions in-

telligently. Most of the rule-based systems use �If-Then� structured rules to

represent knowledge and to make decisions. The number of if-then structured

rules can vary from system to system and can be very big depending on the

system's capacity [14].

Making an inference corresponds to �ring a rule in most rule-based expert sys-

tems. If all the necessary conditions take place then rules �res, in other words

action part of the rule generates the system an input [15].

In [8] these types of languages are referred to as �Rule Oriented Languages�.

Then, three types of rules are de�ned: production rules, active (event-condition-

action) rules, and rules based on logic programming.

Production Rules:

These types of rules comprise �if-condition then-action� forms. When the con-

dition part is satis�ed in a rule, its action part is �red. This type of rules

operate in a forward chaining way. They are mainly used in expert systems.

Two types of operational processing exist for these rules; declarative production

and procedural production.

Declarative production rules:

Since these rules can �re in no pre-determined sequences, a di�erent kind of
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the Rete algorithm can be applied for interpreting these rules. This algorithm

contains three main cycles; match, select, and act cycles. When a condition in

a rule set matches one of the patterns, that rule is selected and the state of the

rule changes. In that match cycle the history is also stored in an internal state,

so that there is no information loss and evaluation is done easily.

Procedural production rules:

These rules are executed in a sequential manner. They contain a series of ex-

ecution steps to be carried out and any compiled rule can be executed at any

time during the execution, by other rules or by itself.

Actually production rules are not based on events, they are based on state

changes. To support event processing capability some languages made events

as an explicit part of the model, so event occurrences are used in the condition

parts of the rules and thus events can be used for invoking a rule.

Active Rules:

These types of rules are also known as �event-condition-action� (ECA) rules.

They work as follows: When an event occurs, (this event can be primitive or

composite), if that event is found in the condition part, then condition part

is evaluated. After evaluation there are two cases, if condition part is fully

satis�ed then action part is �red. If the condition part is premature, then

waiting continues for occurrences of further events.

Logic Programming Languages:

Logic programming is based on the notion of logical deductions in symbolic logic.

The goal of logic programming is to state what needs to be done, not how to

do it. It aims to separate logic from control. Prolog (PROgramming in LOGic),

is the �rst logic programming language. It is not a functional programming

language, but rather it is a relational programming language. Therefore, it is

better to think about these types of languages as in the case of working with a

data base. Three types of statements exist in prolog: Facts, Rules, and Queries.

They also can be stated as Hypotheses, Conditions, and Goals. The language is
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looking for all answers that satisfy the query. Therefore, the language is thought

as non-procedural or non-deterministic.

2.3 Complex Event Processing

To be able to fully understand CEP, �rstly the meaning of �event� needs to be

clarifed. There are di�erent de�nitions of �events� that are stated in di�erent

studies. The event concept is explained with two meanings in [8]. Basic de�ni-

tion of event is �something that has happened�. This de�nition is based solely

on the real world, in other words this de�nition is given by only taking the real

world occurrences in a particular system or domain into account. Event is also

de�ned as �contemplated as having happened� in a domain or system. What is

meant by the `contemplated' word is that, things that have not actually occurred

in reality, instead some mimicking of the incident took place. Here the domain

and system words deserve extra explanation. Event processing concerns two

domains and systems: mainly it deals with real world incidents, things like gun

�re, plane crash or doorbell ringing are the real world incidents. Additionally

event processing also deals with arti�cial domains. Incidents in virtual worlds

like those created in training simulations are also considered as events [9]. The

event word is also used to represent an occurrence in computing environments

via a programming entity. It can be referred to as �event object�, however is

not necessarily an object as in object-oriented programming concepts. A record

in a database, a structure in programming language C or a message sent and

received between systems can be an event [8]. An event is de�ned as anything

that happens, occurs or changes the current state of a�air in [10]. Composition

or derivation of events from other events using di�erent event operators and

temporal relationships creates complex events. The operators mentioned here

can be mathematical, logical, and bitwise operators that perform some opera-

tions on event sets. Temporal operators can be used to represent some time

related operations. Waiting, occurrence priority, periodicity, aperiodicity can be

speci�ed as temporal relationships.

Event Processing is de�ned as operations on events to perform some compu-
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tations [9]. It is concerned with timely detection of compound events within

streams of simple events [10]. Detection of complex events from a cloud of

events in real-time is called Complex Event Processing (CEP). Di�erence be-

tween event processing and CEP is that, event processing deals with only one

type of events from one source, whereas CEP deals with event from multiple

sources. A complex event is a combination of more than one events, possibly

from di�erent sources, and connected by logical operators such as AND and OR,

and also sequencing operators. An example complex event, constructed from the

simple events of a, b, and c is: complex-event1 = a AND (b ; c). The meaning

of this complex event expression is that c should happen after b and a should

also happen. A CEP software will accept the complex-event1 as happened, if

a event is received before or after the reception of the sequence �b;c�. For this

example, the reception of a could happen before b, between b and c, or after

c for a successful acceptance of the complex event. CEP is done by matching

complex event patterns against event instance sequences and it is required to

be able to de�ne and trigger reactions to the complex events [11]. CEP is also

de�ned as extracting meaningful and actionable information from event streams

in [12].

CEP is a technology which allows �nding real-time relationships between di�er-

ent events using elements such as timing, causality, and membership in a stream

of data in order to extract relevant information [9]. With the help of CEP,

applications have the ability to detect and report meaningful patterns in the

condition part of events with respect to the incoming events and thus they can

react to these detections by executing their action parts [12].

2.4 Rete

Rete is a pattern matching algorithm, invented by Dr. Charles L. Forgy of

Carnegie Mellon University. Rete is a Latin word that means "net" [21]. To

increase the e�ciency of the simulator, a pattern matching approach inspired

from Rete is used. Thus, Rete algorithm will be mentioned in this section. The

approach in Rete is to keep the condition of evaluations in the memory similar to
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recording the state, hence, decrease the need for continuous calculations. As a

result, pattern-matching intensive rules can be evaluated much faster, especially

as new inputs enter the system. A cycle comprises three phases (Match-Select-

Act) that needs to be executed in every production system by an interpreter

[22]. The match phase is repeated in every cycle of this process and it consumes

up to ninety percent of the execution process [32]. Therefore, improvement of

matching process is crucial and it is done by using certain matching algorithms

as Rete. This cycle is also called �Recognize-Act Cycle� or �Inference Cycle�.

Having improved the rule-based environment's performance, there has been a

desire to incorporate the Rete approach to real-time systems, but such attempts

have not been very successful or widely accepted yet. Our approach achieves

similar performance gains through �dynamic subscription� to events hence avoid-

ing the broadcasting of an incoming event. Initial rule-based systems employed

a black-board algorithm that may be implemented through broadcasting. Rete

on the other hand, based on the immediate expectations of the rules, drives

the system to its current status as the working memory changes. Only required

actions are processed instead of attempting to activate every rule.

2.5 Structure of the KOTAY

In this section, the structure and the grammar of the subject language are

explained. The language is created and de�ned in a previous PhD study [20].

It includes temporal, logical, and arithmetic operations. The main structure of

the language is given in the following.

expression = condition `->' action;

The rules are composed of two parts: condition and action. The separator

symbol '->' is used between them, in this study. There are three keywords for

de�ning the events: �ariza�, �belirti�, and �kaynak�, their English translations

are �fault�, �symptom�, and �source�. The events and operators combine and

create the condition part. The action part may or may not include events. An

example event is �belirti(kaynak(6,9),7)�, which means that there is a sign of
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malfunction, located at source de�ned as (6,9) and type of belirti event is 7.

"ariza" and "belirti" event types are de�ned with numbers in the range of 0 to

99. The events in an action part are separated with semicolon ";". The events

in the condition part are separated with operators and parentheses. "belirti"

typed events are integer valued events, whereas "ariza" type events are Boolean

valued events. The value of "ariza" events can be "arizali" which means faulty

or "arizasiz" which means working without a fault. These two values are de�ned

as true or false correspondingly.

An example rule is given below:

(belirti(kaynak(4,2),8)||belirti(kaynak(3,9),4))

->ariza(kaynak(3,1),6),7;ariza(kaynak(9,4),2),1

There are two �symptom events� in the above example, connected through an

`or' operator in the condition part of the rule. If any of these events is received

with `true' value the rule �res by creating two �fault events". The numbers

accompanying the event type names indicate the source and the types of the

symptom or fault.

The three operators are explained in the following subsections. They are the

sequence operator, abort operator, and timer operator, where sequence and

abort operators are treated similarly in the temporal blocks section.

2.5.1 Temporal Blocks

There are two sequential operators, �rst one is the sequence operator �;� and sec-

ond one is the abort operator �~�. The sequence operator accepts two operands

and abort operator accepts three operands. For these operators ordered recep-

tion of events is important, in other words one needs to be before or after the

other. An operand can also be a parenthesis statement which may or may not

include another sequential statement, yet the whole statement creates a tem-

poral block. In abort operator if the sequence of the events is not as expected

then there is a roll-back mechanism which will reset the sub tree under the cor-
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responding tree node. At run-time there can be many active temporal blocks in

the same tree. In Figure 2.1, an example Abstract Syntax Tree (AST) is shown

for the sequence operator ";". The �A� event needs to come into the system

before the �C� event. Also, the �B� event needs to arrive before �D�. In our tool,

we manage this by not activating nodes that are not supposed to come �rst.

This situation is explained in the Semantic Issues section. So, in the example

in Figure 2.1, initially only �A� and �B� nodes are active which means if those

events enter the system than they will be processed. Then, "C" and "D" tree

nodes will be active and start listening to those events.

Figure 2.1: Sequence Operator �;�

In Figure 2.2, the abort operator is introduced. This operator takes three

operands and works as follows: Nothing happens before the left child becomes

mature. A node being mature is de�ned as, either it is a leaf node and it has

received its event, or it is an operator node that has evaluated to true. Once

left child is mature, depending on what other child matures, the abort operation

makes a di�erent decision. If center child matures �rst, then the �literal abort�

action is taken: the whole sub-tree under the abort node will be rolled back. Al-

ternatively, if the right child matures before the center, the operation, although

it is called abort, behaves like any other operator, reporting a successful matu-

ration to its parent. In other words, a �left; right� sequence is success but a �left;

center� sequence is a reset. This operation is used in the cases where a sequence

of two events is desired but without a third one happening in between.
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Speci�cally for the example in Figure 2.2, initially, only "A" event node is active

and all the other nodes are passive, which means they are not listened. After

event "A" is received, B event become "active", it starts to listen to the incoming

events. After event "B" is received, the most left child of the abort operator,

which is the sequence operator node, completes its evaluation (it matures). Then

"C", "D", and "E" event nodes become "active": now that the left is mature,

we will wait to see if center or right is the next to mature. If C comes before

D and E, the abort mechanism is activated and the sub tree under the abort

operator node will be rolled back. Tree returns to its initial state, which is the

state that only A event node is active and all the others are passive � as in

the beginning of this paragraph. If D and E events come before the C event,

"and" operation results with true value (matures), then the abort operator node

becomes "mature", meaning that result of the abort operation will be true and

event C is no longer active, its node becomes passive.

If there is a parent node for the abort operation, the result of the abort operation

will act like the result of a complex event. It would be o�ering its result to its

parent which should be an operator. Unless the abort operator node matures,

it acts like providing the false value to its parent operation such as an �and

operator� or so. An analogy could be made to an and gate, that receives on one

of its inputs, the output of the abort operation: that is always false until abort

node matures. Then, always true after the abort node matures.

Figure 2.2: Abort Operator �~�
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2.5.2 Timer Blocks

Apart from operator, event and constant related nodes, we also have timer nodes.

Time can be de�ned in �hours�, �minutes�, �seconds�, �milliseconds�, �microsec-

onds�, and �nanoseconds� units in these nodes. Those nodes are used to hold

the system for speci�ed time. Time nodes are used in temporal blocks. Figure

2.3 can be used to understand the usage of these nodes. When the tree shown in

Figure 2.3 is initialized with Activation Order Flow-graph (AOF), which will be

explained in the following sections, initially only �A� event is listened. When A

event enters the system, the sequence operator then activates right child which

is a timer node. This right child holds that node for 3 milliseconds and after

that the �;� node is successfully �nishes its operation and it sends message to

the nodes that are going to be activated next, which are in this case �B� and

�4s� nodes. Now, �B� event and �4s� nodes are listened. Actually �4s� node is

not listened but it is activated and after 4 seconds, that node will be evaluated

and sends completion message to its parent. In this case if �B� event enters the

system in 4 seconds than �~� operator node will fail and roll back. If B event

does not occur within 4 seconds, than the �~� operator node will be successful

and evaluated as true.

Figure 2.3: Timer Nodes
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2.6 Literature Survey

This chapter includes the related studies that take place in the literature. The

relation to this thesis work is de�ned with respect to how close an article is to the

dynamic analysis facilities in CEP, being the main contribution of this thesis.

The articles could be of interest because of the probability to be utilized in

developing necessary concepts, providing a baseline to improve for CEP related

enhancements, or providing related de�nitions for similar facilities even if not

addressing the CEP �eld.

There are two kinds of analyses in rule-based systems: timing requirements and

functional correctness. Aim of timing requirement analysis studies is �nding

whether the system has a bounded response time and if there is what the re-

sponse time is. Functional correctness analysis is the validation and veri�cation

(V&V) of a rule-based system. Validation is determining the correctness of sys-

tems according to the requirements. Whereas veri�cation is determining the

consistency and completeness phases of systems. Consistency analysis is �nding

"Redundant", "Con�icting", "Subsumed", and "Circular" rules and "Unneces-

sary If" conditions in the rule set. Completeness analysis is �nding "Dead-end",

"Missing", and "Unreachable" rules [37]. There are some simulators existing

in the literature that have some analysis facilities. The tools and the existing

studies provide only the static analysis.

In [1], [2], [3], [4], [5] and [6], response time analysis of rule-based systems

which uses Equational Rule-Based Language (EQL) and EQL based languages

like Macro Rule-based Language (MRL) is studied statically using State Space

Graph (SSG) representation. A method called �xed point convergence is used for

response time analysis. In [1], the response time is optimized by the constructed

reduced cycle-free �nite SSG in addition to bounded response time analysis.

With this optimization response time is reduced and therefore execution time is

reduced. A formal analysis strategy is presented in [2] to guide other studies. In

[3] a fault tolerance mechanism is presented additionally. Timing analysis and

re�nement of OPS5 language is studied in [6]. Although SSG is a technique for

timing analysis, it is not applicable as the rule set gets bigger. The memory
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constraints and performance problems occur as the SSG gets bigger. These

articles clearly assert the use of performance analyses that we also provide.

Alternative studies for timing analysis are presented in the next paragraph.

In [26], [27], [28], [29], [30], and [31] timing analysis of the systems which use

OPS5, EQL, and Estella are investigated. Those studies di�er from the ones

mentioned in the previous paragraph because they do not apply the SSG tech-

nique. Instead a set of behavioral assertions are proposed and if a rule set obeys

one of the four proposed sets of conditions, then it is stated that the rule set has

a bounded response time. The proposed set is called "Special Forms". There

are four special forms (A, B, C and D) presented. Also, three compatibility

relations (CR1, CR2 and CR3) are needed to be checked before considering spe-

cial forms. These articles were used as reference in investigation of some of the

introduced analysis facilities, especially the one that provided supplementary

static analysis.

In [24], [25], [34], [35], and [36], tools for veri�cation and validation (V&V) of rule

base systems are created. In [24] a program called 'CHECK' is created to verify

consistency and completeness of a rule-based expert system called Lockheed

Expert System (LES). The program checks for redundant rules, con�icting rules,

subsumed rules, missing rules, circular rules, unreachable rules, and dead-end

clauses. A 'dependency chart' is also created to show dependencies among rules

and the goals and to detect circular chains. The created program is used to

detect errors before rule base testing phase. CHECK does not perform any

syntax checking, it statically analyzes the rule base. Among seven criteria, four

are concerned with potential problems and the last three are concerned with

gaps in knowledge bases. These articles have been instrumental in directing our

analysis e�orts toward de�ned V&V problems. Potential Problems:

Potential Problems:

Redundant rules: two rules succeed in the same situation and have the same

results.

Con�icting rules: two rules succeed in the same situation but with con�icting

19



results.

Subsumed rules: two rules have the same results, but one contains additional

constraints on the situation in which it will succeed.

Circular rules: a set of rules is a circular rule set if the chaining of those rules

in the set forms a cycle.

Missing rules: a situation in which some values in the set of possible values of

an object's attributes are not covered by any rules.

Unreachable rules: These rules are not invoked by any of the other rule or input

event in the system. They generally reduce system performance.

Dead-end rules: Action part of these rules do not a�ect the other rules in the

system, their results have no impact on generating a solution.

In [25] analysis of forward chaining, rule-based systems is done by modelling

the procedural semantics of such languages rather than declarative semantics.

'Abstract Interpretation' process is de�ned and used to map input and output of

rules through a program called AbsPS. The program is implemented to analyze

the e�ect of con�ict resolution, closed-world negation, and retraction of facts.

It is claimed that the previous approaches only consider declarative semantics

and this is adequate if procedural semantics are not an issue. Some of the errors

occurring in the systems may reduce e�ciency of rule-based systems while the

others may result with erroneous inferences. To improve reliability and e�ciency

of forward chaining rule-based systems these errors must be �xed. Four e�ciency

reducing features are de�ned and AbsPS can detect these rule types: redundant

rules, subsumed rules, unreachable rules, and dead-end rules. This article can

be utilized as a source for selecting problems related with e�ciency, in an e�ort

to decide what analysis facilities to include.

'ONCOCIN' is a system which is a rule-based consultant for clinical oncology

[34]. The authors suggest a set of mechanisms to correct problems for rule

base consistency and completeness before they cause problems. Some problems

that occurred during knowledge acquisition and debugging are described, then
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automated assistant for checking completeness and consistency of the rule base

system is created. In this study con�icting rules, redundant rules, subsumed

rules, and missing rules are analyzed. In [35] to guarantee a certain degree of

reliability in rule base programs a tool is implemented to use during the system

development process. Five consistency issues; redundant rules, con�icting rules,

subsumed rules, circular rules, and unnecessary conditions are examined using

the tool. EVA is another well-known veri�cation tool, it can detect unreachable,

cyclic, missing, redundant, and dead-end rules through analysis. For developers

to determine anomalies the program also creates tests [36]. The work reported

in the sources [34-36] provide ideas about practical use of analysis facilities in

the application �elds.

The comparison of the existing studies and our tool is given in Figure 2.4.
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Figure 2.4: A comparison of existing studies

22



CHAPTER 3

IMPLEMENTATION OF SIMULATOR

In this chapter, implementation details of the created simulator are explained.

Four main components of the tool are presented, then initialization and run-time

algorithms are presented in detail. Figure 3.1 shows the relationships of the main

components with each other. Event and rule generator parts are excluded from

the �gure to avoid complications. Four main components in the tool are: Parser

Control, AST, AOF and Subscriptions.

Figure 3.1: Initialization Architectural Components related with program ini-
tialization
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3.1 Initialization Subsystems at Initialization

The data structures are constructed when the program is initialized, during

early run-time. Their explanations are given in the following subsections in

detail. Figure 3.2 shows the class diagram for the simulator.

3.1.1 Parser Control

Parser Control component is responsible for reading and parsing the event based

rules, then creating an AST for condition parts of each rule. The rules are in

in�x format. In the parser class, they are converted into post�x notation to be

able to create ASTs for these rules [33].

Conversion from In�x Notation to Post�x:

Edsger Dijkstra invented the Shunting-Yard Algorithm to convert in�x expres-

sions to post�x form (RPN), the name comes from the operation resembles to a

rail road shunting yard [33].

For the operators that have only two operands, an AST is created using Shunting-

Yard Algorithm will be a binary tree. However, in our case operators can take

one or three operands in addition to those that take two operands. Therefore

care is needed to implement the algorithm with di�erent numbers of operands

rather than expecting always two operands per operator: most sources reporting

the algorithm may mention only the two operand case.

Our operators' priorities and their numbers of operands needed to be de�ned. To

be able to utilize these parameters, we created a class named �Operators.cpp�,

in this class we de�ned a static array to store the �Operator�, �Priority� and

�Number of Operands�. This class has two static methods "getNOperands()"

and "getPriority()", where they accept an operator name as a parameter and

return that operators number of operands or priority. The Operator Priority

Table is shown in Table 4.1.

In table, MathNeg and MathMinus operators are shown di�erently. MathMinus
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Figure 3.2: Class Diagram of the Simulator
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operator is shown as "-" and MathNeg operators is show with two consecutive

minus operators as "- -". This di�erence occurred because in the parsing, the

AST creator method could not di�erentiate which one is the minus and which

one is the negate operation.

Table3.1: Operator Priority Table

Priority List
Operator Name Operator Sign Priority Number of

Operands
LogNot ! 5 1
MathNeg - - 5 1
MathDiv / 4 2
MathTimes * 4 2
BitAnd & 4 2
MathAdd + 3 2
MathMinus - 3 2
BitOr | 3 2
Smaller < 2 2
Greater > 2 2
SmallerEqual <= 2 2
GreaterEqual >= 2 2
Equal == 2 2
NotEqual != 2 2
LogAnd && 2 2
LogOr || 1 2
Sequence ; 0 2
Abort ~ 0 3

3.1.2 Abstract Syntax Tree

An Abstract Syntax Tree is created for every condition part of every rule. Leaves

of an AST correspond to events and intermediate nodes correspond to operators.

The root node is responsible for the �nal evaluation and returns the result of its

evaluation.

When the analysis application is started the parser scans the rules and cre-

ates AST's for every rule. In run-time as the events enter the system and are

received by the nodes, evaluation is made conducted from leaves to the root
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of every AST. The "active" state nodes are allowed to receive events through

subscription whereas the "sleep" state nodes are not. Determination of such

states of the nodes, hence controlling the sequencing is managed by a structure

called Activation Order Flow-graph, which will be mentioned in the following

sections. Every AST node has three states: Sleep, Active, and Mature. Their

explanations are given in the following.

States of AST Nodes:

SLEEP: Since the node is not in the sequence currently, nodes at this state are

insensitive to the incoming events.

ACTIVE: The node starts listening to its event. The node waits for its event

to be mature.

MATURE: When the expected event received by the node, the nodes transits

to its 'mature' state, its parent node in AST is informed about the case for a

possible evaluation (if all operands have arrived in expected sequence). The

node stays at mature state until a re-initialization after the �ring of the whole

AST.

AST Class: This class represents a single tree and includes some methods that

a tree requires and AST Node does not. After parsing is complete, the root of

the ASTNode is equated to root attribute of the AST class.

ASTList Class: This class is used to store the AST's that are generated from

the rule set. This list is used in the main class to perform analysis on the created

ASTs.

3.1.3 Activation Order Flowgraph

AOF is designed to activate the AST nodes when their time comes. A node

in the AST that performs its transaction successfully sends a message to its

corresponding AOF node. This message states that the current node in the

AST has �nished its job; consequently AOF triggers the next nodes. To do so,

the node receiving the message in the AOF passes the control to its neighbour
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node. Newly activated node in AOF, in turn, activates its corresponding AST

nodes, that could be more than one to activate.

Creation of an AOF structure requires traversing of the corresponding AST. This

process is done at the initialization-time, thus it does not a�ect time e�ciency

and a recursive algorithm can be used for that.

Next, the methods used to create AOF and AOF Nodes are mentioned. There

is one base method which creates the basic structure of AOFs. Rest of the four

methods create the AOF types corresponding to the operators.

�makeAtomicFlow(): This method creates the smallest structure, atomic

�ow, to be used in AOF construction. It takes an AST node pointer as a

parameter and creates three nodes that are connected to each other. The �rst

one is a start node, it is used to indicate the start of an AOF. Start node is

connected to an event node, which has a pointer to the corresponding node in

the AST, and corresponding AST node has a pointer to the AOF node. By this

way, a two way connection is created and transaction between AST and AOF

can be done quickly. Atomic �ow structure ends with an end node. Figure 3.3

shows an example atomic �ow structure.

Figure 3.3: Atomic �ow structure

�makeSingleFlow(): This method is used for MathNeg and LogNot operators.

Since, these operators take only one operand, their corresponding AOF will be in

the form of "single �ow". This function takes only one AOF node as parameter.

Then it connects this AOF node with a start and end node as shown in Figure

3.4-a.
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�makeSerialFlow(): This method is used for the sequential operator �;�. The

activation order is important in sequential operations. One event needs to be

active before the other. This function takes two AOF nodes as parameters.

Then it connects this AOF nodes serially, the �rst one in the parameters, occurs

�rst in the AOF. Then they are connected with a start and end node as shown

in Figure 3.4-b.

�makeDiamondFlow(): This method is used for abort operator �~�. It creates

a single �ow followed by a parallel �ow. This function takes three AOF nodes

as parameters. Then it creates a parallel �ow with the second and third nodes

in the function parameter, which is shown in Figure 3.4-d. Then, the �rst AOF

node is connected to the Parallel �ow. Lastly, they are connected with a start

and end node as shown in Figure 3.4-c.

�makeParallelFlow(): This method is used for all other operators. It creates

start and end nodes and two nodes between them in parallel con�guration.

Parallel nodes represent that two nodes (in the AST) will be actived at the

same time. This is shown in Figure 3.4-d.

Figure 3.4 shows the visual representation of the AOF structures. These are

only example �gures. Note that, there can be many start and end nodes in an

AOF structure which point to each other. To reach an event node, many start

nodes must be passed in bigger AOFs.

3.1.4 Subscriptions: (Incoming Events)

This subsystem is responsible for receiving the incoming events and directs them

to the related parts at run-time. During the initialization time, after AST and

AOF structures are generated, subscriptions are conducted for related nodes

using AST and AOF. This is done by constructing the Hash Table and inserting

pointers to related AST nodes into its lists. Hash Table is the most important

data structure in the Subscriptions subsystem. The Hash function is one-to one:

any incoming events name is directed to one entry for a pre-speci�ed event name

in the hash table.
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(a) Single Flow

(b) Serial Flow (c) Diamond Flow

(d) Parallel Flow

Figure 3.4: AOF Representations

An approach to check whether the incoming events exist in our AST list or not,

is developed to avoid iterating over all the AST's event nodes. This approach

increases time performance whereas it increases memory usage. Having Rete

capability in real time systems and engines is not very common. The aim of this

approach is to achieve advantages of Rete while avoiding its implementation

di�culties by the following two mechanisms:

� Subscription records are stored that utilize pointers between the hash table

and the requestor nodes in ASTs.

� For AST's the activation order for the subscribing nodes is stored in a data

structure (AOF). This way only the nodes that can be active are sensitive to the

incoming events, the others are not covered in the search. Then, subscription

is conducted: A node in the AST becomes active and starts listening to an

incoming event. This approach is called �Dynamic Subscription�. Its dynamicity

is due to the fact that the subscription can be continuously formed and destroyed

based on when a node is activated to listen to an event.

Hash Table: A hash table is used to store event names taking place in all

AST's to be able to control whether the incoming events exist in the rule set. If

an incoming event exists in the hash table, it performs the necessary operation
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which is sending event noti�cation to corresponding AST nodes. With the help

of the hash table, sending input events to corresponding nodes operation is

performed in O(1).

Hash Function: A one-to-one hash function is created to determine location

of the events stored in the hash table. The hash function takes the event name

as input parameter and returns the location for the event name if it exists in

the hash table. The hash function makes use of the special naming for events.

Numbers used in the event naming are directly converted to an index, avoiding

a longer mathematical calculation.

There are three numbers that are separated with comma or parenthesis in event

names. The �rst two numbers determine the source of the event and the last

number de�nes the type of event. An example event is "ariza(kaynak(2,9),6)".

In that event, 2 and 9 de�nes the source of the event and 6 de�nes the event type.

Source of the events is de�ned with two digits between 0-9. Whereas, type of

events are de�ned with a number between 0-99, since there are 100 event types.

Therefore, there can be twenty thousand di�erent event names. An array to store

all possible events are created, whose size is 20000. Event names and a forward

list which stores all the AST nodes that have the same event are stored in the

array. There are two type of events in our system, "ariza" and "belirti" typed

events. The location between 0 to 9999 in the array is reserved for �ariza� typed

events and 10000 to 19999 is stored for "belirti" typed events. For example,

if ariza(kaynak(2,9),6) event is given to the hash function, returning value is

296. Which means, this event is stored in 296th location in the hash table. If

belirti(kaynak(2,9),6) event is given to the hash function then returning value is

296 + 10000 = 10296. So, that event is stored in 10296th location in the hash

table. By this way, a hash function which guarantees no collision is created.

In hash table event name, and a list which holds a pointer to corresponding

AST node and state of that node is stored. The state information is di�erent

than the state in an AST node. The state in hash table only has two values:

�ACTIVE� and �PASSIVE�.

ACTIVE: If the corresponding AST node's state is active than state in hash
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table is also active. Here, the active state indicates that corresponding AST

node is ready to receive the incoming event. If the event enters the hash table

and state of a node is active, then incoming event is sent to the corresponding

AST node (event noti�cation).

PASSIVE: If the corresponding AST node's state is passive or mature, than

state in hash table is passive. Here the passive state indicates that corresponding

AST nodes do not listen to incoming events. The AST node might be in sleep

or mature state, but this case does not need to be known by the hash table.

3.2 Run Time Subsystems

In run-time an event that enters the system, is �rstly welcomed in hash table.

Here, the event follows the pointers that indicate corresponding AST nodes,

which carry that event name in their nodes and are currently active, e.g. waiting

for an event. Important thing here is that, the event is only sent to the active

nodes, not the passive ones. After sending the event, the AST node pointers in

the hash table are unsubscribed, which means hash table becomes insensitive to

these types of events. Then, all the AST nodes make their evaluations and send

message to their parents and also to the corresponding AOF nodes. AOF nodes

are leaders to decide which nodes will be subscribed and listened next.

In Figure 3.5 three main data structures of the system are shown with their

connection to each other.

3.3 Initialization Time Algorithms

In this part algorithms that are used at the beginning of the run time are ex-

plained. There are four main activities for the initialization time as stated before:

Parsing the rules, AST creation, AOF creation, and Hash Table generation.
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Figure 3.5: Main data structures and their connections

3.3.1 Parsing Rules:

The process of parsing requires other subsystems and includes the creation of

other data structures. After parsing, AST is created in post�x form. By travers-

ing the created ASTs, AOFs are created. While parsing the rules, hash table

is also �lled concurrently. As the new events are encountered a new place is

�lled and existing events are added to the end of list in the hash table. Parsing

is basically given in the following process de�nition. The below processes are

explained further in the upcoming sections.

For every rule:

1. Make Tree

2. Create AOF

3. Fill Hash Table
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4. Initialize Tree

3.3.2 AST Creation:

There is an AST for each condition part of the rules. The rule language is in

�in�x� form and rules are converted into �post�x� form. For this conversion

�Shunting Yard� algorithm is used. In this algorithm, AST can also be created

when the Reverse Polish Notation's are generated. Algorithm is based on bi-

nary trees; however AST's in this work can have one, two or three child nodes.

Therefore, the algorithm is modi�ed accordingly to adopt this di�erence. The

algorithm is presented in the following:

1. While there is more token to be read:

1.1. Get the next token

1.2. If token is an operand, put it into OperandStack

1.3. If token is an operator called (o1):

1.3.1. While there is an operator (o2) in OperatorStack and its priority

is higher than (o1)

1.3.1.1. Take (o2) from OperatorStack and take n operands from

OperandStack where n is the number of required operands of (o1) and

make a tree with them, then push this tree back into OperandStack

1.3.2. Put (o1) into OperatorStack

1.4. If token is a left parenthesis, put it into OperatorStack

1.5. If token is a right parenthesis:

1.5.1. Until left parenthesis comes from OperatorStack:

1.5.1.1. Pop all the operands and operators, make trees and push

them back to OperandStack

1.5.2. Drop left paranthesis.
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2. After no more tokens to be read:

2.1. While there are operators in OperatorStack:

2.1.1. Take operator and operands, make tree with them and put it into

OperandStack

This algorithm was traced manually to see if it creates correct AST representa-

tions given some test expressions. Also, a test code was written to draw trees

and inspect the AST diagrams. Hence the correct operation of the algorithm

was veri�ed.

Figure 3.6: AST Creation Sequence Diagram

In Figure 3.6 and Figure 3.7 sequence diagram of AST creation is given:

Frame-alt (IF) Token is an operator

sdFrame1 (Loop): There is an operator at the top of the OperatorStack and

priority of this operator is bigger than or equal to the operator that is hold at

token

Frame-alt (IF) Token is a right parenthesis
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Figure 3.7: AST Creation Sequence Diagram

sdFrame2 (Loop): Until left paranthesis occurs

Frame-alt (IF) there is no more token to be read

sdFrame3 (Loop): There is no more operator in OperatorStack

While creating ASTs, two stacks are used: Operator Stack and Operand Stack.

As their names imply operator stack is used to store operators e.g. Math,

Comparison, Logical, Bitwise, Sequential. The operand stack is used to store

operands e.g. Events, Constants and Time operands. Operators and operands

are pushed in and popped out of these stacks during the process. During the

AST creation scenario, ASTs that may have one to three child nodes are created

with operators and operands, then these ASTs are pushed back into the operand

stack. As the algorithm being applied, these little trees will be added to the sub

parts of bigger ASTs and they all create only one AST at the end. This scenario

is conducted during the conversion of in�x to post�x notation. Therefore, cre-
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ation of AST is actually a sub part of parsing the rules and it is done using the

makeTree() method in the implementation.

Make Tree method requests can only be generated in a situation that an operator

and required number of operands exist in the stacks. After that the created tree

will be a child tree in the composed tree. The makeTree() method algorithm is

explained below.

1. Inputs of the method are one operator and number of operands depending

on the operator.

2. Create nodes for the operands.

3. Bind the child or children nodes according to the structure of the given

operator.

3.3.3 AOF Creation:

The algorithm to create AOFs is given below. MakeAOF() method will take the

root of an AST and as a result it returns the start node of the corresponding

AOF after creating it, which is de�ned as �s� in the following. Make Serial-Flow,

Make Parallel-Flow, and Make Diamond-Flow methods are explained in section

4.3.1.

s = MakeAOF (ASTnode n) // Start node of AOF is returned

if (n is leaf )

s = Make Atomic-Flow (n)

Else if (n is unary operator) // MathNeg and LogNot operators

S = MakeSingleFlow(n)

Else if (n is combinatorial-operator) // All two operand operators

s1 = MakeAOF (n.LeftChild)

s2 = MakeAOF (n.RightChild)
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s = Make Parallel-Flow (s1, s2)

Else if (n is �;�) //Sequence operator

s1 = MakeAOF(n.LeftChild)

s2 = MakeAOF(n.RightChild)

s = Make Serial-Flow(s1, s2)

Else if (n is �~�) //Abort operator

s1 = MakeAOF(n.LeftChild)

s2 = MakeAOF(n.MiddleChild)

s3 = MakeAOF(n.RightChild)

s = Make Diamond-Flow(s1, s2, s3)

In the algorithm above, there are steps that construct di�erent types of AOF

parts. These steps receive atomic �ows or more complex �ows, and combines

those received �ow types under one of the patterns: single, serial, parallel, or

diamond �ows. In the process, the input nodes for starting and ending the input

�ow, may be deleted: the resultant �ow has only one start (s) and one end (e)

nodes.

s = Make Serial-Flow(s1, s2) This step receives two input �ows, connects s2

after s1 and adjusts `s' and `e' nodes: the resultant �ow-graph will start with

the `s' node of s1 and ends with the `e' node of s2. The s1's end is connected to

the s2's start as the internal structures of s1 and s2 require.

s = Make Parallel-Flow (s1, s2): This step receives two input �ows, connects

them as to the two out-�ow edges of the resultant `s' node. Also the end (e)

nodes of the input �ows are combined as one e node for the resultant �ow � for

this, the edges coming to the e nodes of the two input �ow graphs, are connected

to one e node and the other e node is discarded.

s = Make Diamond-Flow(s1, s2, s3) This step receives three input �ows, makes
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a parallel �ow using the s2 and s3: let us call this intermediate result as s4, and

makes another serial �ow using s1 and s4.

Sequence diagram for AOF creation is given in Figure 3.8.

Figure 3.8: AOF Creation Sequence Diagram
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3.3.4 Hash Table:

During run time, Hash Table is the �rst system that an incoming event encoun-

ters, then that event is redirected to corresponding ASTs. In initialization time,

the hash table is created during parsing. Then, with the information in the

ASTs and the AOFs, the initial subscriptions are processed in the hash table.

Hash Table algorithm is basically as follows: When AST node is created, the

event name contained in it is sent to the hash table by calling related function.

In that function, hash function is used and location for that event is found. This

location in the hash table holds a list of subscriptions for one event type (name).

The information about the AST node is added to the end of this list. In Figure

3.9 hash table creation sequence diagram is given.

3.4 Run-Time Algorithms

3.4.1 Sending events to subscription:

When an event enters the system, initially it is received by the hash table. Then,

using hash function a location is found. Next, that location is searched in the

hash table. If that location does not carry any subscription (all the nodes that

carry this event are in sleep or mature states), the event will be discarded. If

found location carries one or more subscriptions, then that event will be sent

to all subscribed AST nodes. Figure 3.10 shows the sequence diagram of this

event reception process. Since the hash function returns the exact location of

the events, complexity of this algorithm is O(1).

3.4.2 Tree evaluation:

Tree evaluation is started after an event arrives. Only leaf nodes can receive

incoming events. After the event is received by the node, that node triggers

parent nodes for evaluation. Di�erent evaluation types exist for leaf, middle

and root nodes. After evaluation is complete, the result will be saved in the
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Figure 3.9: Hash Table Creation Sequence Diagram

corresponding node. Events without a value are considered as Boolean valued

and if that event is received by the node it is interpreted that result is true. The

tree evaluation algorithm is given in the following:

For leaf nodes:

1. receiveEvent() method

2. unsubscribe
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Figure 3.10: Sequence Diagram of Event Reception

3. state = mature

4. call parent.evaluate();

For middle nodes:

1. If right and left child state = mature

a. State = mature

b. Conduct operation: Result will depend on operands and operator

c. Call parent.evaluate()

For root node:

1. If right and left child state = mature

a. Conduct operation: Result will depend on operands and operator

b. If result is true �re action part

2. Initialize tree to start from the beginning

Complexity of evaluate() method, which is used in tree evaluation algorithm, is
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O(log(n)), because the maximum number of evaluation methods can be equal to

depth of the tree, where n is the number of operands in the condition part of a

rule. However, initializing a tree requires a traversing on the tree, which has the

complexity of O(n). Moreover, �nding the nodes that are going to be activated

next also has O(n) complexity. There are two O(n) complexity messages and

one O(log(n)) message, so the worst case for the tree evaluation algorithm is

O(n).

3.5 Semantic Issues

During the design and implementation of the simulator, many changes have been

made to create a better simulator and to have better results. In this section some

of these design and implementation decision changes are mentioned.

Listening Nodes in Sequence Operators:

There were some issues about incoming event listening in temporal operators.

The requirement of sequence operator is that, left child has to occur before the

right child, and if not then this operator will not conduct its evaluation. There

were two options when designing that requirement; �rst one was to listen to

both of the child nodes that are without account for whether the node is the

left or right child of the sequence operator node. Second choice was not to

listen to the right side of the node before the left child matures since listening

to the right sub tree list will be a waste. After careful thoughts, it is decided

not to listen to the right child before left matures. Because when the right

node matures before the left one, the operator results with a false value and it

immediately re-initializes and starts to listen to incoming events until left child

node event occurs before right one for this process to continue. Since there is no

abortion or cancel operation, listening to both child is not logical. Therefore,

we suppress the right child (possibly a sub-tree) for incoming events until left

child is evaluated, therefore it increases the e�ciency of our system and system

performance.

Listening Nodes in Abort Operators:
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A design issue existed to listen abort nodes. Should all the nodes need to be

listened for incoming events or not? If all the nodes are listened concurrently,

then there will be many wasted operations. Figure 3.11 shows the selected

structure for the abort node. For this rule to be true �rstly, A event should

occur in the system. If it never comes, then no matter how many times B and

C events occur, this operator will not be evaluated. Thus, it is decided that,

until A event occurs, B and C event nodes are closed for incoming events and

it is decided not to listen to all the nodes at the same time. Only A node is

listened and after it occurs, B and C operators are activated concurrently. If

B matures before C, the operator node and its sub tree are re-initialized. If C

matures before B then the abort operator node evaluates to true. At this point

another issue surfaces: After abortion, previously evaluated nodes must change

their values to initial values. Therefore, a structure called subtreelist is created:

The list contains the list of nodes to change their states quickly.

Figure 3.11: Abort operator structure

Subtree list storage

If an abort operation occurs in run-time, the nodes that become mature before-

hand need to be initialized and the process needs to start from the beginning.

There can be many nodes under abort operator nodes. In run-time to re-initialize

these nodes, AST must be traversed and some controls are needed to con�rm

location of the nodes. This process takes too much of computation resource.

To avoid this computation, a structure is created in each abort node to store

pointers to its subtree nodes. This change uses more storage to gain speed in

run time.
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Decreasing AOF usage

There was also a design issue about the usage of AOF. The �rst usage of AOF

was to activate AST nodes that are in turn next for evaluation. For that AOF

requires a message from the AST.When an expected event is received by an AST,

that receiving node becomes �mature� and sends a message to its corresponding

AOF node. Then AOF advances its state to render control to its new set of

nodes. Those nodes send activation message to their nodes to activate their

corresponding AST nodes via pointers. This process is done repeatedly for

every AST node evaluation to �nd which nodes to activate next and this is done

for every rule in the rule set. It is obvious that traversing AOF and sending

activation requests for every evaluation are expensive operations. Therefore,

another approach is chosen and successfully applied.

A vector data structure is created to hold list of AST nodes that are going to

be activated next and that structure is called �nextActivationList�. This is only

necessary for the sequential operations, in other words for the "sequence" and

"abort" operators. Because only in those operators, AOF goes vertical down,

and system needs to know the next activated nodes. Other than these operators,

there is no need for resetting some subtree. Other operators will be evaluated by

calling the evaluate method of parent node. After the left children of sequential

operators are matured, what to activate next is found with the help of this data

structure. Thus, with this approach system gains speed by sacri�cing memory.

Short Circuit Evaluation

In some cases, the result of "AND" and "OR" operations can be decided only by

having one of the operand values. This process is called short circuit evaluation.

After that the nodes below these operator nodes should be deactivated without

waiting for the other operand to mature, to prevent unnecessary computation

and to increase system e�ciency. The cases that short circuit evaluation can

take place are given below.

a. In "||" (Or) operation if one of the operands matures with the �true� value

b. In "&&" (And) operator if one of the operands matures with the �false� value
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This approach is chosen to speed up execution time and prevent unnecessary

evaluations. In "OR" operator if one of the children appears as true, then there is

no need to wait for the other child. Therefore, after the reception of this decisive

value, the subtree corresponding to the other operand is closed for incoming

events. For the "AND" operator, if one of the child nodes is false valued, then

whatever the value of other child is, the process will end with false. Therefore,

waiting for other child to mature is a waste. These two approaches increase the

speed of our execution and prevent unnecessary resource consumption.

Creation of Operator and Operand Classes

In run-time, when the system is working all the trees are evaluated based on

incoming events and related operator. There are many types of operators and

the evaluation will change depend on the current operator. To accomplish the

evaluation based on our initial approach, all the operator types were checked

and evaluation was completed based on the result of checking. For example, if

the operator is mathematical add operator then two numbers would be added.

However, while re-factoring our code, it is realized that polymorphism can be

utilized to avoid type checking. Subclasses of ASTNode are created for all

the operator types. The evaluate() method is created as a virtual method in

the "ASTNode.h" class and it is implemented di�erently in all the di�erent

operator classes. The "evaluate" method is one of the most used methods at

run time. With this change, type checking is avoided which would slow down

the processing at run-time. The detail of this approach is given in the following.

To have a more generic structure, the operand classes were also classi�ed using

speci�c sub classes.

Operators and Operands are the main distinction in our system. In the operands,

we might have three di�erent types, event, variable and constants. Among them

only the event class has subclasses, which are Boolean and Integer. An event can

be of one of the two types, �ariza� type events are Boolean valued and �belirti�

type events are Integer valued. There are no more subclasses of variable or

constant classes.

In operators, the main distinction is �Sequential� and �Instant�. Sequential block
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and subclasses are related to time related operators and issues. There are two

sequential operators in our language: the �;� sequence and the �~� abort oper-

ators. Therefore, the "sequential" class has two subclasses called sequence and

abort. In the �Instant� class, there are four alternatives. Our language supports

Comparison, Mathematical, Bitwise and Logical operations. The supported op-

erations are listed below and this class structure is shown in 3.12.

Math: MathPlus, MathMinus, MathTimes, MathDiv, MathNeg, MathMod

Comparison: Greater, GreaterEqual, Smaller, SmallerEqual, Equal, NotEqual

Logical: LogAnd, LogOr, LogNot, LogExor

BitWise: BitAnd, BitOr, BitComplement

Figure 3.12: Polymorphism - Class Diagram for AST Classes

The main aim of this change was to use power of polymorphism for the evaluation

functions. As a result, deciding based on the type of the operator and type of

the operands to select appropriate operations is eliminated. Any operation is
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handled similarly and consistently. The evaluate() method is the most used

method in our system and decreasing its computation time will greatly a�ect

the whole systems performance. When an evaluate method is called, instead of

controlling the operator type with some if-else or switch-case like statements, we

create the nodes accordingly in initialization time and implement the evaluate

method of the corresponding operator.

3.6 An Example

In this section one simple example will be demonstrated to clarify used data

structures and operations. In real-time usage, many rules can be executed in

one analysis. To make the example simpler, event names will be represented

as upper-case letters and only condition part of the rules are presented. The

example rule is:

(A ~B , C) ; (D && E)

The corresponding AST, AOF and Hash Table �gures for this rule example are

presented in the following.

AST is created as in Figure 3.13.

Figure 3.13: AST - At the beginning

After the AST is constructed, its AOF is builded by traversing the AST by the

given algorithm. The AOF is only used to hold the current active nodes to de�ne
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sequence of the nodes. AOF is shown in Figure 3.14

Figure 3.14: AOF - At the beginning

After AOF is constructed. Finally, hash table is built. As explained before,

there are "Active" and "Passive" nodes in the hash table. The incoming events

will be sent only to the "Active" nodes. Therefore, at the beginning according

to the AOF, the only node where the event A is held active and the others are

passive. This is shown in Figure 3.15 where the active node is colored with red.

So, even if events B, C or the other events are received in the input, they are

not processed.
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Figure 3.15: Hash Table - At the beginning

Figure 3.16: AST - After A event was evaluated

After event A arrives at the system as input, B and C nodes will be activated.

This is shown in Figure 3.17. Therefore, in the hash table only event B and

event C entries are activated. Between B, C events and D, E events there is a

sequence operator ";", which causes D and E events to be passive and B and C

operators to be active.

After events B and C are received, next and last event D and E are listened to,

through the activation of the corresponding nodes in the AST. This is shown in

Figure 3.19.

Here is an example for demonstrating the initialization and execution of the

system. In run-time there can be many of this execution and initializations that

work in parallel. Moreover, this example can demonstrate the usage of temporal
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Figure 3.17: Hash Table - After A event was evaluated

Figure 3.18: AST - After A event was received

Figure 3.19: Hash Table - After B and C events are evaluated

operators, ";" and "~".
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Figure 3.20: AST - After B and C events are evaluated
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CHAPTER 4

CREATION OF ANALYSIS FACILITIES AND

CONDUCTING RANDOM TESTS

In this thesis, �ve analysis facilities are created and experimentally evaluated.

The �rst analysis facility allows users to measure time between processing events.

Second analysis facility provides a performance evaluation for the generated

events, which are events �red by rules, and shows their e�ects to the system.

The rest of the three analysis facility types are mentioned in section 10.5.2 "Dy-

namic Analysis of Event Processing Networks" in [8]. The �rst analysis facility

mentioned in that book is the �Termination Problem�, which is in�nitely execut-

ing cycles that involve some rules. The second analysis facility is �Reachability

Issues�. If a rule exists in the rule set but never used during the analysis there

is a reachability issue. Third and the last analysis facility is �Output Terminal

is Unusable�, which is output events (events �red from action parts of rules) is

not consumed by any of the rule in the rule set.

A performance evaluation is presented in the following sections with a corre-

sponding tool and details of our tool and environment information is presented

for further studies. After the performance evaluation, a study on the mutual

exclusion detection problem and static analysis di�culties in event domain are

stated. These topics are supported with examples to facilitate the understand-

ing.

To test the created analysis facilities we created some random tests with ran-

domly created events and rules. A "Random Event Generator" which creates
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random events with random values at random intervals and a "Random Rule

Generator" is implemented for testing purposes. Event and rule numbers to be

created can be de�ned by users.

4.1 Random Event Generator

Two types of events exist in our domain, "belirti" and "ariza" type events. "be-

lirti" events are integer valued and "ariza" events are boolean valued events.

The value of events are written after the event name separated with a comma.

The event generator �rstly selects event type as "ariza" or "belirti". Then loca-

tion of the event is determined after the "kaynak" keyword with two numbers.

Next, type of the event for either "ariza" or "belirti" events is determined with

a random number between 0 to 99. Lastly, value of the event is determined

according to the event type. Value is 0 or 1 for "ariza" events and value is a

number for "belirti" events. After an event is created, it is sent to the hash

table, simulating a real world event.

For our program to be more e�cient, we implemented our program with multi-

threading capability. The �thread� class of C++ language is used for this facility.

Analyses can be performed with millions of input events. An input event goes

through many evaluations and processes. When these processes are happening,

there is no need for event generator to wait to create the next event. This fact

asserts the need for multithreading.

4.2 Random Rule Generator

Rule generation cannot be easily done completely randomly as in the event

generation process. There are some operator types that cannot exist together in

the same rule or result of some operations cannot be an operand for the other

operators. Therefore, we created some rule templates that are correct in terms

of syntax, then we created some patterns from these rules. The rule generator

randomly selects a rule template then changes its events with randomly created
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events and save the new rule to use in analyses. Some example rule templates

are given in the following. The upper case characters represent generic names of

events in the template, that will be changed by the rule generator to randomly

created events.

rule1 = "(A || B) && (C && D)->E;F;G;H"

rule2 = "(A B , C) ; (D != E)->F;G"

rule3 = "(A == B) || (C > D)->E;F"

rule4 = "(A <= B) || (C && D)->E;F"

rule5 = "(A B , C) ; (D && E)->F;G;H"

rule6 = "-(-A * B + - C)->D,E"

rule7 = "(A & B) | C)->D;E"

rule8 = "(A ; (B || C)) && (D == - E))->F;G"

rule9 = "(A (B | C) , (D + E))->F;G;H"

rule10 = "(A - B) + (C * D)->E;F"

4.3 Performance Evaluation

The previous work [20] on interpreter development using Python has utilized av-

erage processing times for arriving events, for performance evaluation. To give a

feeling about the performance improvement, we also utilize the similar measure-

ments in our comparisons. In this study, we also perform the same evaluation

for the comparison of the two studies. Computation environment information

is also presented, because computation time also depends on the environment

[20]. The previous study utilized Windows 7 64 bit operating system, Intel I7

CPU Q720 processor running on 1.6 GHz clock, and 8 MB System memory. Our

study utilized an environment based on the 64 bit Windows 8 operating system.

The processor is Intel® Core i5-4210 @ 1.70 GHz with 8 GB of RAM. We have
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used the latest version of the C++ programming language which is C++11 and

Code::Blocks version 13.12 as an IDE. As a compiler MinGW with gcc version

4.9.2 is used. It is the current latest version and since version 4.9, �thread� and

�chrono� headers are supported that requires no other con�guration. Whereas

in the previous versions users needed to do some con�gurations.

C++ �chrono� library is used in the implementation of performance evaluation.

Timers are set into the places that events enter the system and �nish their jobs.

There are two di�erent results that an event might cause in the system. First

one might cause �ring of a rule, and secondly an event entering the system that

does not cause a �ring of a rule but is still processed probably to advance the

AST to a next state. We wanted to determine how much time does each of those

cases spend on the average. We have conducted many experiments with huge

numbers of randomly generated events.

The results of the performance evaluation are shown in Table 4.1. The number

of events that is used in the analysis and results in terms of microseconds are

shown. If the number of events and number of rules are small, it is more likely

that the case can arrive where there is no combination of inputs that cause an

evaluation in any rule. Therefore, for some small numbers, to be able to measure

processing time of events, a combination that evaluates is added by hand.

Table4.1: Average Processing Time per Event Arrival in Microseconds

In Appendix D.1 to D.6 the con�dence interval study for these results is given.

All the experimentations are with the sample size of 30, and in table 4.1 the

average results are provided. For all the experimentations the variability is

below 5% for 95% con�dence level with sample size of 30.

In this study we also aimed to see the e�ect of a programming language on the
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performance of a program. Result of the similar study which was conducted

during the PhD thesis of Kaya, is given in Table 4.2. In his study he used the

Python programming language in his simulator.

Table4.2: Average Processing Times per Event Arrival in Microseconds in Kaya's
study

We can see that the choice of programming language a�ects the system perfor-

mance along with the execution environment. Since the rules and events are

randomized for any experiment, a direct comparison is not meaningful. How-

ever, a general indicator about the performance can be achieved observing the

results. Also, there are other factors that a�ect the results like CPU usage,

number of processes running etc. The environment information is presented to

support more meaningful comparisons. Also Python environment is interpretive

whereas our C++ environment is compiled that is a big factor in e�ciency. Con-

sidering all those factors, with a broad interpretation, a more or less 10 times

improvement compared to the language processor written in Python seems to

be obtained in this study.

Another comparison for the aforementioned interpreters is provided. A trend

analysis work is conducted and corresponding curves are plotted for the two

interpreters. Figure 4.1 shows trend analysis for the interpreter created in this

study and Figure 4.2 shows trend analysis for the interpreter that was created

before. The black lines mentioned as linear in the graphs are the created trend-

lines for the performance evaluation results. A comparison oriented set of curves

are also provided in Appendix E where curves for C++ and Python for one ex-

periment (same numbers of events and rules) are plotted in one graph. These

curves are plotted based on the provided data corresponding to the Python case.

The performance evaluation table in Kaya's study does not include values in the

rows that are at the intersection of "1000 rules - 100000 events" and "10000 rules
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100000 events". Therefore in Figure 4.2, the lines that show these two cases are

shorter than the others, since they do not have evaluation results for 100000

events. The processing times are shown as functions of event counts and curves

are plotted for di�erent numbers of rules. Both of the interpreters yield linear

trends, however when the equation of trend lines are created it seems that the

coe�cients for our interpreter seems smaller then the coe�cients of the equa-

tion of the previously created interpreter. Therefore, it can be stated that our

interpreter displays slower increase in processing times with increasing number

of events. Furthermore, in �gures E.1 to E.5 a detailed comparison of the in-

terpreters is given for the cases with di�erent numbers of rules. In these graphs

the behaviour of the two interpreters can easily be compared. As the number of

events increases, processing times of both of the interpreters increase. However,

it is clearly seen that the increase in the processing times with increasing number

of events is slower in our interpreter.

The improvement we have addressed is basically moving from an interpretive

run-time environment for the KOTAY interpreter, to a compiled one. Besides,

where possible the connections among the data structures are implemented as

pointers, reducing the time to exchange data. Any language that provides point-

ers and is o�ering comparable run-time performance for the developed code could

be used with similar performance. Python, on the other hand, is o�ering faster

development. Although this new language comes with modern interpreters that

are acceptable in performance regarding its being interpretive (a performance

slowing factor), even for the real-time requirements of the originating project

was satis�ed by the previous implementation in Python. A very rough speed-up

estimation, looking at similar test runs in both implementations, with an ap-

proximate factor of 10 was a very attractive gain to invest. however, C++, being

object oriented, also is slightly slower in performance when compared to C, and

o� course when compared to assembly language. There is a trade-o� between

the ease of development and speed-up. C++ is easier to develop when compared

to C. The development ease in this perspective also means the dependability of

the developed code. Having better command over the developed code, under-

standing it faster and easier are the bene�ts that come with higher-abstraction
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Figure 4.1: Trend Analysis for KOTAY Interpreter - C++ version

level languages. C++ has higher level of abstraction when compared to C. Also,

the original project would utilize C++ codes, while a proof of concept developed

in Python was acceptable. This is the main reason for having selected the men-
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Figure 4.2: Trend Analysis for KOTAY Interpreter - Python version

tioned languages in the development life-cycle of the fault management related

project.
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Selection of the language does not have a big e�ect on the treatment of the

input. In either case, the random generation of the input events would behave

equal. Although the conducted measurements do not provide exact values for

comparing the case with di�erent factors, or even the use of di�erent languages,

it is not very di�cult to guess the factors a�ecting an overall di�erence between

the C++ and the Python cases. Treating the input events, therefore, would not

in�ict further conditions other than the general behaviour of the two cases (C++

and Python). There were no speci�c data structures or handling algorithms

changed while implementing with C++. It could be argued however, that the

speed-up due to C++ might be less than the overall value, when only input

handling is considered: There are less numbers of data structures and less data

structures involved in input event handling so the advantages of employing faster

techniques may have reduced.

4.4 Static Analysis Di�culties in the Event Processing Domain and

Mutual Exclusion Detection Problem in Event Processing Lan-

guages

In [26], [27], [28], [29], [30], and [31] authors try to �nd whether the system

has a bounded response time. For this aim four �Special Forms� are de�ned

and systems that comply with one of the forms are said to have a bounded

response time. To check for a special form compatibility, primarily one of the

three compatibility relations must be ful�lled. Some terms used in these studies

are explained in the following.

La and Lb are de�ned as the left sides of the rule a and rule b. For instance,

in the below samples, x and y constitutes La and m and n constitutes Lb. The

parts that are stated as "test" are the condition part of rules. In the below

example, test a is (z < 7) and test b is (l < 6)

Rule a = � (z < 7) -> ((x = 5), (y = 3))�

Rule b = � (l < 6) -> ((m = 8), (n = 9))�
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It is stated that two rules are compatible if and only if at least one of the three

conditions hold. The three conditions are given as follows:

CR1: Test a and test b are mutually exclusive

CR2: La ∩ Lb = ∅

CR3: Suppose La ∩ Lb 6= ∅. Then for every variable v in La ∩ Lb, the same

expression must be assigned to both in rule a and b.

These studies have been conducted for variable involving rules only; they do not

consider the events. However, in terms of analysis, there is not much di�erence

between event and variable concepts. Events can also be represented as variables,

with some caution. Events with values can be considered the same as variables,

whereas Boolean type events can be considered as variables with only two values.

In the above conditions CR2 and CR3 can be adapted to consider events easily.

When mutual exclusion detection is considered, there is a problem. Firstly, let

us look at formal de�nition of mutual exclusion given in those studies.

Mutual Exclusion: The main logic behind mutual exclusion is de�ned as "If

two tests are mutually exclusive, then only one of the corresponding rules can

be enabled at a time." in [28]. De�nition of Mutual Exclusion is given in the

following.

Let T = ( v1, v2, ..., vn ) and let v be the vector < v1, v2, ..., vn>. With this

de�nition, each test in a program can be viewed as a function f ( v ) from the

space of v to the set true, false . Let fa be the function corresponding to the

test a and let Va be the subset of the space of v for which the function fa maps

to true. Let Va,i be the subset of the values of vi for which the function fa may

map to true; that is, if the value of the variable vi is in the subset Va,i then there

exists an assignment of values to the variables in the set T - vi such that the

function fa maps to true. Note that if the variable vk does not appear in the

test a , then Va,k is the entire domain of vk. We say that two tests a and b are

mutually exclusive if and only if the subsets Va, and Vb of the corresponding

functions fa, fb are disjoint [28].
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From the above formal de�nition, what it means by mutual exclusion relation

can be understood. An example to clarify this subject is given in the following.

The two rules are mutually exclusive:

Rule 1: a == 5 and b == true -> c = 3

Rule 2: a != 5 -> c = 5

The values for which the functions map to true is:

V1,a = {5}

V1,b = {true}

V2,a = { - 8, 5 ], [ 5, 8 } }

V2,b = {true, false}

Since b does not exist in rule 2, according to the de�nition, the entire domain of

b will be in the truth map of b for rule 2. As it can be seen in the above spaces,

f1 and f2 are disjoint since there is no common value that both rules can �re at

the same time. Therefore, rule 1 and rule 2 are mutually exclusive. Important

point is that, these rules include variables only (no events).

The following two rules are not mutually exclusive:

Rule 1: (a == 5) and (b == true) -> c = 3

Rule 2: a == 5 -> c = 5

The variable values that functions map to true have a common map, which is a

= 5 and b = true. To convert these rules to event processing rules, let variable

"a" be "Event A" and "b" be "Event B" and "c" be "Event C".

The rules become:

Rule 1: (A == 5) and (B == true) -> C = 3

Rule 2: A == 5 -> C = 5
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In that situation, there is again a combination of event values and sequences

where these two rules can �re at the same time. If event B occurs at t1 with

the value "true" and after some time, at time t2 event A occurs with the value

"5", where t1 < t2 then these two rules can �re at the same time.

Let us consider another scenario:

We have the same rules, but the sequence of events changes. The event A occurs

with the value of "5" at time t1. After some time event B occurs with value

"true" at time t2, where t1 < t2. If these would be values, they would �re at

the same time. However, in this situation at t1 the second rule is �red, because

there is only one condition for that rule to �re and it has occurred. But, rule 1

could not �re at that time, since it is expecting also event B to enter with value

"true". So, although the expected value combination for the events exist, since

the sequence of occurrence of events was not correct, the two rules could not �re

at the same time.

Moreover, in our study, we deal with the two temporal operators: sequence

operator ";" and abort operator �~�. When analyzing mutual exclusion subject,

these operators require extra work. Consider the following example;

Rule 1: (A == 5) ; (B == true) -> C = 3

Rule 2: A == 5 -> C = 5

The above two rules are mutually exclusive in the event processing domain.

Because, for the �rst rule to �re, �rstly, A has to occur with value "5" and after

that B has to occur with value "true". For the second rule to �re there is only

one condition and it is the occurrence of A with value "5". But when it occurs,

it will immediately �re and there is no chance for rule 1 to �re at the same time

with rule 2. For rule 1 to �re, some time has to pass and after that event B

has to occur. When only variables are considered (no events), without temporal

operators, their mutual exclusion analysis is considerably easier.

A similar scenario exists for the abort operator;

Rule 1: (A == 5) ~(B == true) , (D < 4) -> C = 3
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Rule 2: (A == 5) ~(D < 4) , (B == true) -> C = 5

For rules 1 and 2 to �re, �rstly A must occur with value 5. Then for rule 1 to

�re, B has to occur with value "true" before D occurs with value smaller than

4. However, this is just the opposite for rule 2. For rule 2 to �re, event D has

to occur with value smaller than 4 before B occurs with value "true". Since

these two cases cannot happen at the same time, these two rules are mutually

exclusive. In the variable case, there are no temporal operators and therefore,

their mutual exclusion analysis is considerably easy with respect to the event

processing case.

To conclude, in event processing, time is crucial. Occurrence time and sequence

of events de�ne the system behaviour. Furthermore, as stated before in the

real-time systems section, correctness of the real-time systems actually depends

on time and sequence of event occurrences in addition to results of logical com-

putations. However, for variables there is nothing like variable occurrence and

sequence; they are time independent. Therefore, mutual exclusion detection

problem requires di�erent and extra work in the event processing domain. More-

over, if domain speci�c operators and behaviours exist, this problem becomes a

domain dependent problem and may require speci�c solutions for every system.

4.5 Analysis Facility 1: Measuring time between the processing of

input events

Measuring the time between two speci�ed input events is the �rst analysis facility

we have developed. It is an important facility, because it allows users to see how

much time it takes for the program to �nish execution.

To test the created analysis facility, we have performed the analysis with ran-

domly created events and rules. A timer is used in the implementation of the

analysis. The timer starts before the �rst input event enters the system and ends

when last event �nishes its operations. The results of the analysis are given in

Table B.1 in Appendix A.
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The test is conducted with random events and rules. For �ve di�erent tests

listed in the table, the processing time is zero. The reason is that, none of the

input events existed in the rules. These results may change for di�erent event

and rule sets. This test only shows the analysis facility is working.

4.6 Analysis Facility 2: Performance and E�ects of Generated Events

Second analysis facility we have developed measures the performance and e�ect

of events �red from the action part. These events are referred as "Generated

Events". When a rule �res, the events in the action part of the rule become

input to the system and they may have a great e�ect on the system behavior

and results. Two types of analysis facilities were developed. First type of facility

conducts a performance evaluation for generated events. This facility has some

di�erences from the performance evaluation of input events mentioned in Section

5.3 in the implementation, since distinguishing generated events in the input

events requires some work. The curiosity to �nd whether the performance of

generated events is di�erent than input events has been the motivation to include

this analysis facility. To test the created analysis facility, randomly created rules

and events are used. Result of the tests is listed in Table B.1 in Appendix B.

The second type of analysis facility provides the ratio of computation times for

generated events which cause �ring of a rule to those which stop in the middle

of an evaluation. For testing purposes, random events and rules are used. The

result of the tests is listed in Table B.2 in Appendix B.

The tests for these two types of analysis facilities are conducted only to show

that facilities are working correctly. For some other tests with di�erent rule and

event sets, the results will be di�erent.

4.7 Analysis Facility 3: Static and Dynamic Cycle Warning

This analysis facility is called as the "Termination Problem" in [8]. Termination

problem occurs because of a loop involving some rules, resulting with in�nitely
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executing cycles. The third analysis facility in our study warns users for possible

cyclic cases statically before run time and dynamically during run time.

Static cycle warnings take place before run time. Events and rules that may

create a cycle in run time, are revealed through a syntactic analysis. To clarify

this concept, a simple example is presented next. Two very basic rules are typed

below. These rules may create a cycle in run time. The �rst rule can be enabled

with the reception of events A and B and as an output, the C event is �red. In

rule 2, C or D events are necessary for that rule to �re and as an outcome A

event is generated. If the required case occurs, these rules may create a cycle

and system crashes. Thus, our tool determines these rules as probable cyclic

rules and warns the users.

Rule 1: A && B -> C

Rule 2: C || D -> A

"Static Cycle Warning Rule" logic can be brie�y explained as follows:

Static Cycle Warning Rule:

If the action part of a rule m includes one or more events that is found in rule

n's condition part and rule n has one or more events in its action part that also

exists in rule m's condition part, then these two rules are said to be probable

cyclic.

1000 randomly generated rules are used to show the usage of static cycle warning

analysis facility. Output of that test placed is in Appendix C. The probable

cycles are shown in the following format: "Rule m -> Rule n -> Rule m".

Which means, rule m might �re rule n and then rule n might �re rule m. The

event that might cause a cycle in these rules is also given afterwards.

Dynamic cycle warning warns users during run time execution. To detect these

cycles a number that de�nes the upper limit for a rule �ring is de�ned, which

is called �warning limit�. When this limit is exceeded, the system is further

monitored for a short period. If cycle continues the program closes itself, after

the number of �rings which is called �termination limit�.

67



A test was conducted with thousand randomly generated rules and hundred

events. Then, two rules were added intentionally for the system to enter a

cycle. Rule structures are like the following: "A|| B->C" and "C || D->B". The

warning limit is given as 1000 and termination limit is given as 1500. Figure 4.3

shows the output; the program �rst warns the user, then it �nishes the program

execution.

"(ariza(kaynak(8,3),0) || ariza(kaynak(5,0),1))->ariza(kaynak(5,7),2),1"

"(ariza(kaynak(5,7),2) || ariza(kaynak(8,1),3))->ariza(kaynak(5,0),1),1"

Figure 4.3: Output of Dynamic Cycle Warning Test

4.8 Analysis Facility 4: Coverage Analysis Facility

Fourth analysis facility created in this study provides coverage analysis facility

for a given rule and input event set. If a rule in a rule set never �res during

an analysis that rule is de�ned as "unreachable rule". This situation generally

occurs because of a mistake, but sometimes can be done on purpose. In both

cases, users must be warned. This analysis facility is useful for revealing some

missing conditions or mistakes in the input event or rule set. Static analysis

for detecting unreachable rules gives possible results and their results are not
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certain. Rules stated as "can �re" in static analysis may not �re during a

dynamic analysis, in our study simulation. These rules may be excluded from

the rule set to increase system performance and avoid unnecessary computation.

This analysis facility is tested with 100 randomly created rules and 10000 input

events. This random experimentation shows that this analysis facility is working.

Output of this test is shown in Figure 4.4. This is a random test only to show

usage and to produce example output for the developed analysis facility. Results

will change for every di�erent rule and event set.

4.9 Analysis Facility 5: Non-Consumed Generated Events Detection

The �fth analysis facility we have developed in this study provides �nding gener-

ated events that are not received by any of the existing rules. Generated events

that are not received by any of the existing rules in the rule set are referred as

"Non-consumed Generated Events". These events might point to a problem in

the system or its design.

Using static analysis to �nd non-consumed generated events is not su�cient

for critical systems. Static analysis semantically searches condition and action

parts of the rules, and state the events as non-consumed generated events, if

those generated events do not exist in any of the condition parts. However,

during run-time, some generated events may not be received by any of the rules

because corresponding part of the rule may not be active, or that part may

already have been evaluated. Thus, dynamic analysis is required for an accurate

result.

To test this analysis facility 100 rules and 10000 events, both randomly gener-

ated, were used. The output is shown in Figure 4.5. The output only shows the

sample usage of this analysis facility. Di�erent results occur for each di�erent

rule and event set.
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Figure 4.4: Output of Coverage Analysis Facility Test
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Figure 4.5: Output of Non-Consumed Generated Events Detection

71



72



CHAPTER 5

CONCLUSION

In this study an simulator and �ve analysis facilities were developed for a rule-

based domain speci�c language. The language was designed and created before

during a PhD study, along with an interpreter using Python for usage in real-

time mission critical systems for complex event processing. The performance

of the interpreter was also improved with the C++ implementation. The im-

plementation environment has also an e�ect on the results of the performance

evaluation and environment information is provided for future comparisons.

Then, di�culties in static analysis for the event processing domain were inves-

tigated. The study shows that if time is in consideration, conducting a static

analysis for rule based languages is not easy and requires extra work. Such dif-

�culties were explained carefully and recorded as a future work to be studied

further.

Next, �ve dynamic analysis facilities were created. The �rst analysis facility

allows users of this tool to measure simulation time to predict the real usage

time of their system. Second analysis facility shows the e�ects and performance

of events �red from the action parts of the rules. The third analysis facility helps

and warns users to �nd cycles during a simulation. Also a static cycle detection

facility was developed to use beforehand. Fourth analysis facility reveals the

unused rules during a simulation in a rule set, which decreases performance and

creates confusions. The �fth analysis facility in this study discovers the unused

output events in the system and presents them to the users. To demonstrate the

usage of the analysis facilities, random tests have been conducted with randomly
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generated rules and events. Test results of the analysis facilities were presented

after the de�nition of facilities and some of them were given in the appendices.

With these tests operability of the system can be assessed with di�erent numbers

of events and rules and proper results appeared in the outputs.

Finally, improvement of this simulator would be a great future study. Support

for di�erent rule based languages can prove to be very useful. Performance

improvement is also very critical as in all other studies. Performing new types

of analysis and combination of dynamic analysis with static analysis, where

possible, would also be a great study for this area. Repeating performance

evaluation with the same event and rule set as in the previous PhD study, would

be better to make more meaningful comparisons.

74



REFERENCES

[1] B. Zupan and A.M.K. Cheng. Optimization of rule-based systems using
state space graphs. Knowledge and Data Engineering, IEEE Transactions
on, 10(2):238�254, Mar 1998.

[2] A.K. Mok. Formal analysis of real-time equational rule-based systems. In
Real Time Systems Symposium, 1989., Proceedings., pages 308�318, Dec
1989.

[3] James C. Browne, Allen Emerson, Mohamed Gouda, Daniel Miranker,
Aloysius Mok, and Rosier Louis. Bounded time fault tolerant rule-based
systems. Telematics and Informatics, 7:441�454, 1990.

[4] Mok A. K. Wang R. H. Deriving response-time bounds for equational rule-
based programs. Security & Privacy, IEEE 9.2, pages 50�57, 2011.

[5] Chih-Kan Wang and AloysiusK. Mok. Timing analysis of mrl: A real-time
rule-based system. Real-Time Systems, 5(1):89�128, 1993.

[6] A.M.K. Cheng and H.-Y. Tsai. A graph-based approach for timing analysis
and re�nement of ops5 knowledge-based systems. Knowledge and Data
Engineering, IEEE Transactions on, 16(2):271�288, Feb 2004.

[7] Ozgur Kaya, Seyedsasan Hashemikhabir, Cengiz Togay, and Ali Hikmet
Dogru. A rule-based domain speci�c language for fault management. J.
Integr. Des. Process Sci., 14(3):13�23, July 2010.

[8] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications Co., Greenwich, CT, USA, 1st edition, 2010.

[9] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[10] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-
sparql: A uni�ed language for event processing and stream reasoning.
In Proceedings of the 20th International Conference on World Wide Web,
WWW '11, pages 635�644, New York, NY, USA, 2011. ACM.

[11] Kia Teymourian and Adrian Paschke. Enabling knowledge-based complex
event processing. In Proceedings of the 2010 EDBT/ICDT Workshops,
EDBT '10, pages 37:1�37:7, New York, NY, USA, 2010. ACM.

75



[12] Y. Magid, A. Adi, M. Barnea, D. Botzer, and E. Rabinovich. Application
generation framework for real-time complex event processing. In Computer
Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE In-
ternational, pages 1162�1167, July 2008.

[13] James L. Schmidt Simon M. Kao Jackson Y. Readk Thomas J. La�ey, Pre-
ston A. Cox. Real-time knowledge-based systems. AI Magazine, 9(1):27�
45, 1988.

[14] P.A. Ramamoorthy and S. Huang. Implementation of rule-based expert
systems for time-critical applications using neural networks. In Systems En-
gineering, 1989., IEEE International Conference on, pages 147�150, 1989.

[15] A.D. Lunardhi and K.M. Passino. Veri�cation of dynamic properties of
rule-based expert systems. In Decision and Control, 1991., Proceedings of
the 30th IEEE Conference on, pages 1561�1566 vol.2, Dec 1991.

[16] Charles L. Forgy. Expert systems. chapter Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem, pages 324�341. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1990.

[17] Roland Stühmer Kay-Uwe Schmidt, Darko Anicic. Event-driven reactivity
a survey and requirement analysis. SBPM Proceedings.

[18] Albert M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Veri-
�cation. John Wiley & Sons, Inc., New York, NY, USA, 1 edition, 2002.

[19] John A Stankovic. Real-time computing. Byte, pág, pages 155�162, 1992.

[20] Ozgur Kaya. A Rule-Based Domain Speci�c Language For Fault Manage-
ment. PhD thesis, METU, Ankara, Turkey, 2014.

[21] Robinson Selvamony. Introduction To The Rete Algorithm. http://www.
sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/, 2010. [On-
line; accessed 19-May-2015].

[22] Robert B. Doorenbos. Production Matching for Large Learning Systems.
PhD thesis, Pittsburgh, PA, USA, 1995. UMI Order No. GAX95-22942.

[23] Ing-Ray Chen and Tawei Tsao. A reliability model for real-time rule-based
expert systems. Reliability, IEEE Transactions on, 44(1):54�62, Mar 1995.

[24] Tin A Nguyen, Walton A Perkins, Thomas J La�ey, and Deanne Pecora.
Checking an expert systems knowledge base for consistency and complete-
ness. In IJCAI, volume 85, pages 375�378, 1985.

[25] Rick Evertsz. The automated analysis of rule-based systems, based on their
procedural semantics. In IJCAI, pages 22�29, 1991.

76

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/


[26] A.M.K. Cheng and C.-H. Chen. E�cient response time bound analysis of
real-time rule-based systems. In Computer Assurance, 1992. COMPASS
'92. 'Systems Integrity, Software Safety and Process Security: Building the
System Right.', Proceedings of the Seventh Annual Conference on, pages
63�76, Jun 1992.

[27] A.M.K. Cheng, J.C. Browne, A.K. Mok, and Rwo-Hsi Wang. Analysis of
real-time rule-based systems with behavioral constraint assertions speci�ed
in estella. Software Engineering, IEEE Transactions on, 19(9):863�885, Sep
1993.

[28] A.M.K. Cheng, J.C. Browne, A.K. Mok, and Rwo-Hsi Wang. Estella; a fa-
cility for specifying behavioral constraint assertions in real-time rule-based
systems. In Computer Assurance, 1991. COMPASS '91, Systems Integrity,
Software Safety and Process Security. Proceedings of the Sixth Annual Con-
ference on, pages 107�123, Jun 1991.

[29] A.M.K. Cheng and C.-K. Wang. Fast static analysis of real-time rule-based
systems to verify their �xed point convergence. In Computer Assurance,
1990. COMPASS '90, Systems Integrity, Software Safety and Process Se-
curity., Proceedings of the Fifth Annual Conference on, pages 46�56, June
1990.

[30] Jeng-Rung Chen and A.M.K. Cheng. Response time analysis of eql real-
time rule-based systems. Knowledge and Data Engineering, IEEE Trans-
actions on, 7(1):26�43, Feb 1995.

[31] A.M.K. Cheng and Jeng-Rung Chen. Response time analysis of ops5 pro-
duction systems. Knowledge and Data Engineering, IEEE Transactions on,
12(3):391�409, May 2000.

[32] Charles Lanny Forgy. On the E�cient Implementation of Production Sys-
tems. PhD thesis, Pittsburgh, PA, USA, 1979. AAI7919143.

[33] Wikipedia. Reverse polish notation � wikipedia, the free encyclopedia,
2015. [Online; accessed 16-August-2015].

[34] A. C. Scott Suwa, M. and E.H. Shortli�e. An approach to verifying com-
pleteness and consistentcy in a rule-based expert system. The AI Magazine,
pages 16�21, 1982.

[35] INRIA Sophia Antipolis. Veri�cation and validation of knowledge-based
program supervision systems. 1995.

[36] RA Stachowitz, CL Chang, TS Stock, and JB Combs. Building validation
tools for knowledge-based systems. In NASA. Lyndon B. Johnson Space
Center, Houston, Texas, First Annual Workshop on Space Operations Au-
tomation and Robotics(SOAR 87) p 209-216(SEE N 88-17206 09-59), 1987.

77



[37] Petter Fogelqvist. Veri�cation of completeness and consistency in knowl-
edge based systems a design theory. 2011.

[38] Masoud Mansouri-samani, Morris Sloman, and Morris Sloman. Gem
- a generalised event monitoring language for distributed systems.
IEE/IOP/BCS Distributed Systems Engineering Journal, 4, 1997.

78



APPENDIX A

TEST OF ANALYSIS FACILITY 1

TableA.1: Processing Time of Number of Events in Milliseconds
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APPENDIX B

TEST OF ANALYSIS FACILITY 2

TableB.1: Average Processing Time of Events received from Action Part per
Event Arrival in Microseconds

TableB.2: Ratio of Events received from Action Part: Causes Fire and Stays in
Mid-Eval
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APPENDIX C

TEST OF ANALYSIS FACILITY 3

Possible Cycles:

Rule 11 -> Rule 409 -> Rule 11

Event that might cause a cycle: ariza(kaynak(5,0),1)

Rule 31 -> Rule 31 -> Rule 31

Event that might cause a cycle: belirti(kaynak(3,2),2)

Rule 61 -> Rule 427 -> Rule 61

Event that might cause a cycle: belirti(kaynak(4,4),5)

Rule 157 -> Rule 781 -> Rule 157

Event that might cause a cycle: belirti(kaynak(6,0),0)

Rule 336 -> Rule 794 -> Rule 336

Event that might cause a cycle: belirti(kaynak(8,3),3)

Rule 409 -> Rule 11 -> Rule 409

Event that might cause a cycle: belirti(kaynak(3,2),4)

Rule 427 -> Rule 61 -> Rule 427

Event that might cause a cycle: belirti(kaynak(1,3),5)

Rule 430 -> Rule 430 -> Rule 430
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Event that might cause a cycle: belirti(kaynak(7,2),5)

Rule 434 -> Rule 556 -> Rule 434

Event that might cause a cycle: ariza(kaynak(5,6),1)

Rule 479 -> Rule 817 -> Rule 479

Event that might cause a cycle: ariza(kaynak(1,8),2)

Rule 556 -> Rule 434 -> Rule 556

Event that might cause a cycle: belirti(kaynak(4,0),4)

Rule 781 -> Rule 157 -> Rule 781

Event that might cause a cycle: belirti(kaynak(6,7),3)

Rule 794 -> Rule 336 -> Rule 794

Event that might cause a cycle: ariza(kaynak(4,7),0)

Rule 817 -> Rule 479 -> Rule 817

Event that might cause a cycle: belirti(kaynak(3,0),2)

Rule 853 -> Rule 853 -> Rule 853

Event that might cause a cycle: belirti(kaynak(7,3),7)

Rule 903 -> Rule 928 -> Rule 903

Event that might cause a cycle: ariza(kaynak(7,3),0)

Rule 928 -> Rule 903 -> Rule 928

Event that might cause a cycle: belirti(kaynak(0,4),7)
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APPENDIX D

CONFIDENCE INTERVAL STUDY FOR

PERFORMANCE EVALUATION
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TableD.1: Processing Time of Number of Events in Milliseconds for 100000
events
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TableD.2: Processing Time of Number of Events in Milliseconds for 10000 events
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TableD.3: Processing Time of Number of Events in Milliseconds for 2000 events
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TableD.4: Processing Time of Number of Events in Milliseconds for 1000 events
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TableD.5: Processing Time of Number of Events in Milliseconds for 100 events
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TableD.6: Processing Time of Number of Events in Milliseconds for 10 events
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APPENDIX E

TREND ANALYSIS STUDY FOR THE KOTAY

INTERPRETERS
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Figure E.1: Trend Analysis comparison of KOTAY Interpreters - Number of
Rules - 10
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Figure E.2: Trend Analysis comparison of KOTAY Interpreters - Number of
Rules - 100
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Figure E.3: Trend Analysis comparison of KOTAY Interpreters - Number of
Rules: 1000
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Figure E.4: Trend Analysis comparison of KOTAY Interpreters - Number of
Rules: 2000

97



Figure E.5: Trend Analysis comparison of KOTAY Interpreters - Number of
Rules: 10000
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