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ABSTRACT

DYNAMIC ANALYSIS FOR COMPLEX EVENT PROCESSING

Ozcan, Muhammet Oguz
M.S., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. Ece Guran Schmidt

Co-Supervisor : Prof. Dr. Ali Hikmet Dogru

December 2015, [93] pages

Analysis facilities are developed in the course of this thesis for a domain-specific
real-time and rule-based language along with a supporting tool. Such analysis
facilities are required due to the need for investigating the functional correctness
and stringent timing properties expected to take place in the software developed
through this language. An early version of this language was developed during
a Ph.D. study for the domain of fault management in mission critical systems.
Five program analysis facilities are proposed and tested with randomly gener-
ated numbers of events and rules. Also, discussions about static and dynamic
analysis in the event processing domain are presented along with a comparison
of related existing tools. The comparisons of existing tools include the two dif-
ferent implementations of the similar design for interpreters for the language.

The different implementations involved the languages C++ and Python.

Keywords: Real-Time, Rule-Based Languages, Complex Event Processing, Dy-



namic Analysis, Fault Management Systems, Domain Specific Languages
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Y/

KARMASIK OLAY ISLEME ICIN DINAMIK ANALIZ

Ozcan, Muhammet Oguz
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Do¢. Dr. Ece Guran Schmidt
Ortak Tez Yoneticisi : Prof. Dr. Ali Hikmet Dogru

Aralik 2015 , [93] sayfa

Bu tezde gercek zamanlh ve kural tabanl bir alana 6zel dil icin analiz kabili-
yetleri ve bir yorumlayic1 geligtirilmistir. Analiz kabiliyetleri, dilin kullanilmasi
ile geligtirilecek yazilimlarda gerekecek olan fonksiyonel dogruluk ve kati zaman
kisitlarinin irdelenmesi icin 6nerilmistir. Bu dil ilk olarak gorev kritik sistemlerin
hata yonetimi icin gerekmigtir ve bir bagka doktora ¢aligmasinda geligtirilmigtir.
Bes tip analiz kabiliyeti geligtirilmis ve rastgele sayida kural ve olay ile denen-
migtir. Olay isleme alaninda statik ve dinamik analiz secenekleri incelenmigtir ve
benzer araclarla karsilagtirma da yapilmigtir. Ayrica kargilagtirmalar, ayni tasa-
rima tabi olan dil yorumlayicisinin C++ ve Python ile iki farkli uygulamalarini

da icermektedir.

Anahtar Kelimeler: Gercek Zamanhlik, Kural Tabanli Diller, Karmagik Olay

Isleme, Dinamik Analiz, Hata Yonetim Sistemi, Alana Ozgii Diller
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CHAPTER 1

INTRODUCTION

In this thesis study, a simulator is developed to analyze various aspects of the
programs written using a domain specific language. This language has the fol-
lowing properties: it is rule based, it can process events with real time respon-
siveness, and it can process complex events. Five analysis facilities are proposed
to support this language. The initial version of the language has been devel-
oped before, during a PhD study for utilization in the development of mission
critical fault management systems [20]. It’s requirements have originated in a
project. Referred to as KOTAY in some project documentation, unfortunately
the language does not have a well published or documented name. The need
for analysis facilities for the language surfaced before using it in development,
to assess the reliability of the systems to be developed using this language and
to simulate the system beforehand. Various adaptations of KOTAY is used in
real-time mission-critical systems for fault management through complex event

processing (CEP).

KOTAY name is an abbreviation in Turkish that includes the ‘rule-based, event-
based, and fault management’ terminologies (Kural ve Olay Tabanh Ariza Yone-
timi). The facilities behind such terminology are explained in the following
paragraphs. In general, CEP languages are implementing some kind of event
algebra. There has been some event algebras introduced and supported with
programming languages. Most of those however, are very complex and not suit-
able for real-time processing. A simple and efficient to implement such language

has been the Generalized Event Monitoring (GEM) language [38]. KOTAY has



largely utilized the concepts in GEM. Basically, GEM was adapted with some
simplifications and some additional definitions for optimization towards time
performance efficiency. Besides the language supporting run-time performance,
the language processors (compiler or interpreter as in our case) efficiency be-
comes a critical factor. Part of the work conducted for this thesis includes the

performance improvement for the interpreter.

Previously existing interpreter was implemented in the Python language. Al-
though it was fast enough for the specific domain and the requirements for the
originating project, Python is interpretive and hence, slow. This thesis aims at
providing a wider application opportunity for the language and so making use
of any chance to further improve the speed performance. A faster version was
implemented for this thesis, utilizing the faster run-time code, first of all as a
result of being a compiled executable. Also, the data structures that are heav-
ily based on tables in Python, were mostly converted to various data structure
making use of pointers. One principle in the new interpreter is, using as much
memory as required since there is no space constraint, for the benefit of faster
run-time response. The results related to speed-up are provided in the late sec-
tions as time responses collected during the tests run using random input events
and randomly generated rules. Although, there is no direct measure to com-
pare the speed-up a general idea can be perceived looking at the measurements

conducted in the previous case (Python) and this one.

Rule-based languages consist of sets of rules and are usually used in expert sys-
tems. Most of them comprise "if Condition, then Action" structures. When
the condition part is satisfied, the action part executes. An advantage of rule-
based languages is the high abstraction level they offer: Every rule can be coded
independent of the others, without considering an execution order. Real-time
systems are decision systems which respond to external events and conduct de-
cisions based on input and state information in a pre-determined time period.
Usually this response time is very short. CEP is a technology used to analyze
and track streams of data from multiple sources and identify meaningful complex
events to be able to respond to them quickly. Complex events are the compo-

sition of events with logical, causal and temporal operators. Domain specific



languages, in contrast to general purpose languages such as Java, C, or Pas-
cal, are defined for development in a special application field, easily. The field

associated with the language involved in this research is fault management.

The analysis facilities are specific to KOTAY. However, they can be adapted
to other languages with similar properties. These facilities are mentioned in a
language independent manner, and they should be applicable to the languages
that include the corresponding capability for each analysis type. This thesis
work includes the development of the facilities on the interpreter of KOTAY, as a
supporting tool for the language. For other languages, a similar implementation
effort will be required. Most of the analysis functions would be applicable to

any event-processing language.

Real-time systems are important for many military and business related tech-
nologies. There are two main requirements for these systems; functional correct-
ness and stringent timing constraints where exceeding the upper bound could
cause fatal consequences. These two main requirements need to be analyzed very
carefully before using the systems in their real applications to avoid undesirable

consequences.

Aim of timing requirement analysis studies is finding whether the system has
a bounded response time and if there is, what the response time is. Existing
timing analysis studies are all related to formal or static analysis and none of
them are defined for event processing languages [1], [2], [3], [4], [5], [6], [26], [27],
[28], [29], [30], [31]. Although static analysis is a very important subject, it does
not give the real system response results and can be considered as inadequate
for some environments. Therefore the importance of dynamic analysis for the
software that are part of such systems emerges. Difference between static and

dynamic analysis will be explained in the following paragraphs.

Functional correctness analysis relates to validation and verification (V&V) of
software [24]. Validation is determining the correctness of a software according
to the requirements and verification is determining the completeness and consis-
tency aspects. Consistency analysis includes determination of redundant, con-

flicting, subsumed and circular rules, and unnecessary if conditions. Complete-



ness analysis includes determination of the dead-end, missing and unreachable
rules [24]. Some simulators exist in the literature that provide the aforemen-
tioned analysis facilities. The tools and the existing studies cover only static
analyses and do not have CEP capability [24], [25], [34], [35], [36], [37]. There-
fore, a tool that provides dynamic functional correctness analysis of event pro-

cessing rule-based programs is required.

It is stated that many of rule-based languages are not suitable for real-time
applications in [13]. Representing knowledge in the real-time domain can be
problematic [20]. This opinion supports the need for the created language and
implicitly shows that analysis of these kind of languages are also important.
Besides, in [12] it is directly stated that most of the CEP studies do not include
real-time processing, they focus on improving the performance and handling
large volumes of streaming data. It is also stated that instead of the real-time
properties, they are more focused on accomplishing maximum throughput and

minimum end-to-end latency.

In [8] the analysis of event based systems are divided into two parts; static
analysis and dynamic analysis. Static analysis considers analysis before run-
time. It is mostly used to validate the design of the application and it shows
possible errors that might occur when the system is actually working. To be
completely certain about the results, dynamic analysis must be conducted. Dy-
namic analysis is conducted at run-time. It might provide some results that
cannot be understood in static analysis. It is done based on the observation
of runtime execution of the application. Because of these advantages, we have
added dynamic analysis facilities into our simulator. We have also added one

static analysis facility which is the static cycle warning.

The advantages of dynamic analysis over static analysis can be combined in
three main topics. Firstly, dynamic analysis enables to detect if the system
terminates at some point or in other words, complete its execution. This is
called the termination problem detection. The termination problem might occur
because of a loop involving some rules, resulting with infinitely executing cycles.

Rather than predicting it through static analysis, dynamic analysis gives the



real consequences [8]. Secondly, some of the rules in the existing rule set may
never fire during the system execution. These rules are called unreachable rules
and the situation is called the reachability issue. Those rules are redundant and
must be eliminated from the rule set. Detection of these kind of rules with static
analysis is not conclusive and not possible for all different situations. Some of the
rules that are stated as reachable after a static analysis may never fire during
the system execution. Therefore, dynamic analysis is required in order to be
certain about the results of the reachability issue detection [8]. Thirdly, after
condition parts have completed, action parts of the rules are executed and they
produce some outputs which are called generated events in the event processing
domain. In some cases these outputs may not be used by the other rules in the
system. Static analysis is not suitable for this analysis, since the consumption
of the generated outputs depends on the current situation of the system. Static
analysis may only provide a checking mechanism for the existence of generated
outputs in the condition parts of the rules. With dynamic analysis this situation
can be detected easily with a guarantee. Therefore, preferring dynamic analysis

seems to be a better choice since it provides real results rather than predictions.

There are two types of dynamic analysis: simulation and tracing [8]. Creation
of random test data, using these data in the system and observing the results of
scenarios are defined as simulation. Taking the traces of execution and analyzing
them is called tracing. In this study, simulation type of a dynamic analysis
approach is preferred. The simulator and created analysis facilities were tested

with randomly created event and rule sets.

In this thesis, we created a dynamic simulator and five analysis facilities to
be able to analyze the programs developed using the mentioned language. The
analysis facilities are required to test the software applications before using them
in mission critical systems. Existing studies in this area either do not include a
comprehensive simulator, or included simulators do not provide dynamic analysis

and complex event processing facilities.

Contributions can be summarized in two fields: 1- Improving the existing lan-

guage interpreter for performance and 2- developing analysis facilities for the



CEP field. The 2nd contribution is an innovation that differentiates this re-

search.

The thesis continues as follows: In Chapter 2, some foundation technologies and
literature survey in the following subcategories: Real-Time Systems, Rule-Based
Languages, Complex Event Processing, Rete, and Structure of the Language
are introduced. Chapter 3, defines the work done in the process of simulator
development. Creation of analysis facilities and experimentations are presented

in Chapter 4. Chapter 5 includes conclusion



CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Real-Time Systems

Real-time systems are computer controlled systems that respond to external
events and decide based on inputs and state information in a pre-determined
and usually very short time. Real-time systems range over several domains
in computer science. Defense systems in “Command and Control Information
Systems (C2IS)”, space systems in space stations, hospital systems in inten-
sive care units and emergencies, automobile networking systems in “Anti-lock
Braking Systems (ABS)” are some of the very critical systems where real-time
systems are being widely used. Real-time systems generally are critical systems,
where a failure might cause catastrophic consequences. In real-time systems the
correctness of the system depends not only on producing the effects of logical
computation and result of that computation, but also on the physical time that

these results are produced and also how fast they are produced [18], [19].

There are many definitions of real-time in the literature, all of them are some-
what similar to each other. A system is defined as real-time if it is “fast” or “faster
than human” in a very basic way [12|. In [13] real-time systems are defined as
the systems that have operational deadlines for the processing of events. Their
processing periods start with the occurring of the events and ends with the
response of the system. A real-time term is defined as a system that responds
to incoming data at a rate fast or faster than it is arriving [13]. Lastly, real-time

is defined as a feature, which is the ability of a system that can guarantee a

7



response after some time has elapsed. The crucial point in that definition is
that the elapsed time must be provided as a part of problem definition [13].
From all of these definitions it can be stated that a real-time system needs to
respond to inputs that are entering the system quickly with some limitations on

System resources.

Real-time systems comprise two sub-systems: controlling system and controlled
system. As its name implies a controlled system is the environment that is being
directed by something else, the controlling system. Whereas the controlling
system leads the environment, (i.e. the controlled system), with information

gathered from various sensors [19].

Timing constraints of real-time systems may also vary depending on the system
requirements. Basic types of real-time systems can be stated as being “periodic”
or “aperiodic. “Periodic” means events happen continuously with some time
between them which is generally defined as “T” time units. Whereas, “aperiodic”
means events that have beginning and ending times with no strict time between
their occurrences. More complex timing requirements can also be defined in
real-time systems, for example in a case where an event having to occur before

some other one.

If timing requirements are not fulfilled, the result will be failure and fatal con-
sequences might happen. Therefore, designing and creating a real-time decision
system is an important and a critical job. It requires extra attention and detailed

calculation when analyzing the time bounds.

Finally, the relation between real-time systems and rule-based languages should
be mentioned. Actually these two concepts are orthogonal. Trying to support
the real-time environment with a rule-based language — that consequently, has
to perform fast and more deterministically also, is due to the expressive power of
the rules. Especially in situations where a domain specific program needs to be
developed, such as medical diagnosis or fault management, the domain related
concepts can directly take place in the code rather than lower-level statements
like those of C or Java. Besides, it is expected to support the rapid development

of new fault management programs through coding by rules.



2.2 Rule-Based Languages

A rule is a statement that describes a policy or a procedure. Rules can be atomic
or complex. Atomic rules cannot be broken down any further, whereas complex
rules include many rules and they can be broken down to lower levels. Some
event processing applications are based on rule-based languages. Therefore, a
rule can be defined as the basic processing primitive of event processing in some

areas.

Rule-based languages are mainly studied in “Artificial Intelligence”, “Knowledge
Based Systems”, and “Expert Systems”. They are used in a variety of prac-
tical systems through storing and manipulating data for making decisions in-
telligently. Most of the rule-based systems use “If-Then” structured rules to
represent knowledge and to make decisions. The number of if-then structured
rules can vary from system to system and can be very big depending on the

system’s capacity [14].

Making an inference corresponds to firing a rule in most rule-based expert sys-
tems. If all the necessary conditions take place then rules fires, in other words

action part of the rule generates the system an input [15].

In [8] these types of languages are referred to as “Rule Oriented Languages”.
Then, three types of rules are defined: production rules, active (event-condition-

action) rules, and rules based on logic programming.
Production Rules:

These types of rules comprise “if-condition then-action” forms. When the con-
dition part is satisfied in a rule, its action part is fired. This type of rules
operate in a forward chaining way. They are mainly used in expert systems.
Two types of operational processing exist for these rules; declarative production

and procedural production.
Declarative production rules:

Since these rules can fire in no pre-determined sequences, a different kind of

9



the Rete algorithm can be applied for interpreting these rules. This algorithm
contains three main cycles; match, select, and act cycles. When a condition in
a rule set matches one of the patterns, that rule is selected and the state of the
rule changes. In that match cycle the history is also stored in an internal state,

so that there is no information loss and evaluation is done easily.
Procedural production rules:

These rules are executed in a sequential manner. They contain a series of ex-
ecution steps to be carried out and any compiled rule can be executed at any

time during the execution, by other rules or by itself.

Actually production rules are not based on events, they are based on state
changes. To support event processing capability some languages made events
as an explicit part of the model, so event occurrences are used in the condition

parts of the rules and thus events can be used for invoking a rule.
Active Rules:

These types of rules are also known as “event-condition-action” (ECA) rules.
They work as follows: When an event occurs, (this event can be primitive or
composite), if that event is found in the condition part, then condition part
is evaluated. After evaluation there are two cases, if condition part is fully
satisfied then action part is fired. If the condition part is premature, then

waiting continues for occurrences of further events.
Logic Programming Languages:

Logic programming is based on the notion of logical deductions in symbolic logic.
The goal of logic programming is to state what needs to be done, not how to
do it. It aims to separate logic from control. Prolog (PROgramming in LOGic),
is the first logic programming language. It is not a functional programming
language, but rather it is a relational programming language. Therefore, it is
better to think about these types of languages as in the case of working with a
data base. Three types of statements exist in prolog: Facts, Rules, and Queries.

They also can be stated as Hypotheses, Conditions, and Goals. The language is

10



looking for all answers that satisfy the query. Therefore, the language is thought

as non-procedural or non-deterministic.

2.3 Complex Event Processing

To be able to fully understand CEP, firstly the meaning of “event” needs to be
clarifed. There are different definitions of “events” that are stated in different
studies. The event concept is explained with two meanings in [8]. Basic defini-
tion of event is “something that has happened”. This definition is based solely
on the real world, in other words this definition is given by only taking the real
world occurrences in a particular system or domain into account. Event is also
defined as “contemplated as having happened” in a domain or system. What is
meant by the ‘contemplated’ word is that, things that have not actually occurred
in reality, instead some mimicking of the incident took place. Here the domain
and system words deserve extra explanation. Event processing concerns two
domains and systems: mainly it deals with real world incidents, things like gun
fire, plane crash or doorbell ringing are the real world incidents. Additionally
event processing also deals with artificial domains. Incidents in virtual worlds
like those created in training simulations are also considered as events [9]. The
event word is also used to represent an occurrence in computing environments
via a programming entity. It can be referred to as “event object”, however is
not necessarily an object as in object-oriented programming concepts. A record
in a database, a structure in programming language C or a message sent and
received between systems can be an event [8]. An event is defined as anything
that happens, occurs or changes the current state of affair in [10]. Composition
or derivation of events from other events using different event operators and
temporal relationships creates complex events. The operators mentioned here
can be mathematical, logical, and bitwise operators that perform some opera-
tions on event sets. Temporal operators can be used to represent some time
related operations. Waiting, occurrence priority, periodicity, aperiodicity can be

specified as temporal relationships.

Event Processing is defined as operations on events to perform some compu-
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tations [9]. It is concerned with timely detection of compound events within
streams of simple events [10]. Detection of complex events from a cloud of
events in real-time is called Complex Event Processing (CEP). Difference be-
tween event processing and CEP is that, event processing deals with only one
type of events from one source, whereas CEP deals with event from multiple
sources. A complex event is a combination of more than one events, possibly
from different sources, and connected by logical operators such as AND and OR,
and also sequencing operators. An example complex event, constructed from the
simple events of a, b, and ¢ is: complex-event; = a AND (b ; ¢). The meaning
of this complex event expression is that ¢ should happen after b and a should
also happen. A CEP software will accept the complex-event; as happened, if
a event is received before or after the reception of the sequence “b;c”. For this
example, the reception of a could happen before b, between b and c, or after
¢ for a successful acceptance of the complex event. CEP is done by matching
complex event patterns against event instance sequences and it is required to
be able to define and trigger reactions to the complex events [11]. CEP is also
defined as extracting meaningful and actionable information from event streams

in [12].

CEP is a technology which allows finding real-time relationships between differ-
ent events using elements such as timing, causality, and membership in a stream
of data in order to extract relevant information [9]. With the help of CEP,
applications have the ability to detect and report meaningful patterns in the
condition part of events with respect to the incoming events and thus they can

react to these detections by executing their action parts [12].

2.4 Rete

Rete is a pattern matching algorithm, invented by Dr. Charles L. Forgy of
Carnegie Mellon University. Rete is a Latin word that means "net" [21]. To
increase the efficiency of the simulator, a pattern matching approach inspired
from Rete is used. Thus, Rete algorithm will be mentioned in this section. The

approach in Rete is to keep the condition of evaluations in the memory similar to
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recording the state, hence, decrease the need for continuous calculations. As a
result, pattern-matching intensive rules can be evaluated much faster, especially
as new inputs enter the system. A cycle comprises three phases (Match-Select-
Act) that needs to be executed in every production system by an interpreter
[22]. The match phase is repeated in every cycle of this process and it consumes
up to ninety percent of the execution process [32]. Therefore, improvement of
matching process is crucial and it is done by using certain matching algorithms

as Rete. This cycle is also called “Recognize-Act Cycle” or “Inference Cycle”.

Having improved the rule-based environment’s performance, there has been a
desire to incorporate the Rete approach to real-time systems, but such attempts
have not been very successful or widely accepted yet. Our approach achieves
similar performance gains through “dynamic subscription” to events hence avoid-
ing the broadcasting of an incoming event. Initial rule-based systems employed
a black-board algorithm that may be implemented through broadcasting. Rete
on the other hand, based on the immediate expectations of the rules, drives
the system to its current status as the working memory changes. Only required

actions are processed instead of attempting to activate every rule.

2.5 Structure of the KOTAY

In this section, the structure and the grammar of the subject language are
explained. The language is created and defined in a previous PhD study [20].
It includes temporal, logical, and arithmetic operations. The main structure of

the language is given in the following.
expression = condition ‘->’ action;

The rules are composed of two parts: condition and action. The separator
symbol ’->7 is used between them, in this study. There are three keywords for
defining the events: “ariza”, “belirti”, and “kaynak”, their English translations
are “fault”, “symptom”, and “source”. The events and operators combine and
create the condition part. The action part may or may not include events. An

example event is “belirti(kaynak(6,9),7)”, which means that there is a sign of
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malfunction, located at source defined as (6,9) and type of belirti event is 7.
"ariza" and "belirti" event types are defined with numbers in the range of 0 to

":" The events

99. The events in an action part are separated with semicolon
in the condition part are separated with operators and parentheses. "belirti"
typed events are integer valued events, whereas "ariza" type events are Boolean
valued events. The value of "ariza" events can be "arizali" which means faulty
or "arizasiz" which means working without a fault. These two values are defined

as true or false correspondingly.

An example rule is given below:
(belirti(kaynak(4,2),8)||belirti(kaynak(3,9),4))
->ariza(kaynak(3,1),6),7;ariza(kaynak(9,4),2),1

There are two “symptom events” in the above example, connected through an
‘or’ operator in the condition part of the rule. If any of these events is received
with ‘true’ value the rule fires by creating two “fault events". The numbers
accompanying the event type names indicate the source and the types of the

symptom or fault.

The three operators are explained in the following subsections. They are the
sequence operator, abort operator, and timer operator, where sequence and

abort operators are treated similarly in the temporal blocks section.

2.5.1 Temporal Blocks

There are two sequential operators, first one is the sequence operator “;” and sec-
ond one is the abort operator “.”. The sequence operator accepts two operands
and abort operator accepts three operands. For these operators ordered recep-
tion of events is important, in other words one needs to be before or after the
other. An operand can also be a parenthesis statement which may or may not
include another sequential statement, yet the whole statement creates a tem-
poral block. In abort operator if the sequence of the events is not as expected

then there is a roll-back mechanism which will reset the sub tree under the cor-
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responding tree node. At run-time there can be many active temporal blocks in
the same tree. In Figure 2.1 an example Abstract Syntax Tree (AST) is shown
for the sequence operator ";". The “A” event needs to come into the system
before the “C” event. Also, the “B” event needs to arrive before “D”. In our tool,
we manage this by not activating nodes that are not supposed to come first.
This situation is explained in the Semantic Issues section. So, in the example
in Figure initially only “A” and “B” nodes are active which means if those

events enter the system than they will be processed. Then, "C" and "D" tree

nodes will be active and start listening to those events.

&&

@,

Figure 2.1: Sequence Operator “;

In Figure 2.2] the abort operator is introduced. This operator takes three
operands and works as follows: Nothing happens before the left child becomes
mature. A node being mature is defined as, either it is a leaf node and it has
received its event, or it is an operator node that has evaluated to true. Once
left child is mature, depending on what other child matures, the abort operation
makes a different decision. If center child matures first, then the “literal abort”
action is taken: the whole sub-tree under the abort node will be rolled back. Al-
ternatively, if the right child matures before the center, the operation, although
it is called abort, behaves like any other operator, reporting a successful matu-
ration to its parent. In other words, a “left; right” sequence is success but a “left;
center” sequence is a reset. This operation is used in the cases where a sequence

of two events is desired but without a third one happening in between.
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Specifically for the example in Figure 2.2] initially, only "A" event node is active
and all the other nodes are passive, which means they are not listened. After
event "A" is received, B event become "active", it starts to listen to the incoming
events. After event "B" is received, the most left child of the abort operator,
which is the sequence operator node, completes its evaluation (it matures). Then
"C", "D", and "E" event nodes become "active": now that the left is mature,
we will wait to see if center or right is the next to mature. If C comes before
D and E, the abort mechanism is activated and the sub tree under the abort
operator node will be rolled back. Tree returns to its initial state, which is the
state that only A event node is active and all the others are passive — as in
the beginning of this paragraph. If D and E events come before the C event,
"and" operation results with true value (matures), then the abort operator node
becomes "mature", meaning that result of the abort operation will be true and

event C is no longer active, its node becomes passive.

If there is a parent node for the abort operation, the result of the abort operation
will act like the result of a complex event. It would be offering its result to its
parent which should be an operator. Unless the abort operator node matures,
it acts like providing the false value to its parent operation such as an “and
operator” or so. An analogy could be made to an and gate, that receives on one
of its inputs, the output of the abort operation: that is always false until abort

node matures. Then, always true after the abort node matures.

N
( ~ \
\\ ,\
\ /
N
XN D
\ ’ /J | f\ & /‘

7\ N \\ // N\
A . B
N N4 \ / \\ //

Figure 2.2: Abort Operator “.”
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2.5.2 Timer Blocks

Apart from operator, event and constant related nodes, we also have timer nodes.
Time can be defined in “hours”, “minutes”, “seconds”, “milliseconds”, “microsec-
onds”, and “nanoseconds” units in these nodes. Those nodes are used to hold
the system for specified time. Time nodes are used in temporal blocks. Figure
can be used to understand the usage of these nodes. When the tree shown in
Figure [2.3is initialized with Activation Order Flow-graph (AOF), which will be
explained in the following sections, initially only “A” event is listened. When A
event enters the system, the sequence operator then activates right child which
is a timer node. This right child holds that node for 3 milliseconds and after
that the “;” node is successfully finishes its operation and it sends message to
the nodes that are going to be activated next, which are in this case “B” and
“4s” nodes. Now, “B” event and “4s” nodes are listened. Actually “4s” node is
not listened but it is activated and after 4 seconds, that node will be evaluated
and sends completion message to its parent. In this case if “B” event enters the

[

system in 4 seconds than “.” operator node will fail and roll back. If B event

[T}

does not occur within 4 seconds, than the “.” operator node will be successful

and evaluated as true.

A 3ms

Figure 2.3: Timer Nodes
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2.6 Literature Survey

This chapter includes the related studies that take place in the literature. The
relation to this thesis work is defined with respect to how close an article is to the
dynamic analysis facilities in CEP, being the main contribution of this thesis.
The articles could be of interest because of the probability to be utilized in
developing necessary concepts, providing a baseline to improve for CEP related
enhancements, or providing related definitions for similar facilities even if not

addressing the CEP field.

There are two kinds of analyses in rule-based systems: timing requirements and
functional correctness. Aim of timing requirement analysis studies is finding
whether the system has a bounded response time and if there is what the re-
sponse time is. Functional correctness analysis is the validation and verification
(V&V) of a rule-based system. Validation is determining the correctness of sys-
tems according to the requirements. Whereas verification is determining the
consistency and completeness phases of systems. Consistency analysis is finding
"Redundant", "Conflicting", "Subsumed", and "Circular" rules and "Unneces-
sary If" conditions in the rule set. Completeness analysis is finding "Dead-end",
"Missing", and "Unreachable" rules [37]. There are some simulators existing
in the literature that have some analysis facilities. The tools and the existing

studies provide only the static analysis.

In [1], [2], [3]. [4], [5] and [6], response time analysis of rule-based systems
which uses Equational Rule-Based Language (EQL) and EQL based languages
like Macro Rule-based Language (MRL) is studied statically using State Space
Graph (SSG) representation. A method called fixed point convergence is used for
response time analysis. In [1], the response time is optimized by the constructed
reduced cycle-free finite SSG in addition to bounded response time analysis.
With this optimization response time is reduced and therefore execution time is
reduced. A formal analysis strategy is presented in [2] to guide other studies. In
|3] a fault tolerance mechanism is presented additionally. Timing analysis and
refinement of OPS5 language is studied in [6]. Although SSG is a technique for

timing analysis, it is not applicable as the rule set gets bigger. The memory
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constraints and performance problems occur as the SSG gets bigger. These
articles clearly assert the use of performance analyses that we also provide.

Alternative studies for timing analysis are presented in the next paragraph.

In |26], [27], [28], |29], [30], and [31] timing analysis of the systems which use
OPS5, EQL, and Estella are investigated. Those studies differ from the ones
mentioned in the previous paragraph because they do not apply the SSG tech-
nique. Instead a set of behavioral assertions are proposed and if a rule set obeys
one of the four proposed sets of conditions, then it is stated that the rule set has
a bounded response time. The proposed set is called "Special Forms". There
are four special forms (A, B, C and D) presented. Also, three compatibility
relations (CR1, CR2 and CR3) are needed to be checked before considering spe-
cial forms. These articles were used as reference in investigation of some of the
introduced analysis facilities, especially the one that provided supplementary

static analysis.

In [24], [25], [34], [35], and [36], tools for verification and validation (V&V) of rule
base systems are created. In [24] a program called 'CHECK’ is created to verify
consistency and completeness of a rule-based expert system called Lockheed
Expert System (LES). The program checks for redundant rules, conflicting rules,
subsumed rules, missing rules, circular rules, unreachable rules, and dead-end
clauses. A ’dependency chart’ is also created to show dependencies among rules
and the goals and to detect circular chains. The created program is used to
detect errors before rule base testing phase. CHECK does not perform any
syntax checking, it statically analyzes the rule base. Among seven criteria, four
are concerned with potential problems and the last three are concerned with
gaps in knowledge bases. These articles have been instrumental in directing our

analysis efforts toward defined V&V problems. Potential Problems:
Potential Problems:

Redundant rules: two rules succeed in the same situation and have the same

results.

Conflicting rules: two rules succeed in the same situation but with conflicting
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results.

Subsumed rules: two rules have the same results, but one contains additional

constraints on the situation in which it will succeed.

Circular rules: a set of rules is a circular rule set if the chaining of those rules

in the set forms a cycle.

Missing rules: a situation in which some values in the set of possible values of

an object’s attributes are not covered by any rules.

Unreachable rules: These rules are not invoked by any of the other rule or input

event in the system. They generally reduce system performance.

Dead-end rules: Action part of these rules do not affect the other rules in the

system, their results have no impact on generating a solution.

In [25] analysis of forward chaining, rule-based systems is done by modelling
the procedural semantics of such languages rather than declarative semantics.
"Abstract Interpretation’ process is defined and used to map input and output of
rules through a program called AbsPS. The program is implemented to analyze
the effect of conflict resolution, closed-world negation, and retraction of facts.
It is claimed that the previous approaches only consider declarative semantics
and this is adequate if procedural semantics are not an issue. Some of the errors
occurring in the systems may reduce efficiency of rule-based systems while the
others may result with erroneous inferences. To improve reliability and efficiency
of forward chaining rule-based systems these errors must be fixed. Four efficiency
reducing features are defined and AbsPS can detect these rule types: redundant
rules, subsumed rules, unreachable rules, and dead-end rules. This article can
be utilized as a source for selecting problems related with efficiency, in an effort

to decide what analysis facilities to include.

’'ONCOCIN’ is a system which is a rule-based consultant for clinical oncology
[34]. The authors suggest a set of mechanisms to correct problems for rule
base consistency and completeness before they cause problems. Some problems

that occurred during knowledge acquisition and debugging are described, then
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automated assistant for checking completeness and consistency of the rule base
system is created. In this study conflicting rules, redundant rules, subsumed
rules, and missing rules are analyzed. In [35] to guarantee a certain degree of
reliability in rule base programs a tool is implemented to use during the system
development process. Five consistency issues; redundant rules, conflicting rules,
subsumed rules, circular rules, and unnecessary conditions are examined using
the tool. EVA is another well-known verification tool, it can detect unreachable,
cyclic, missing, redundant, and dead-end rules through analysis. For developers
to determine anomalies the program also creates tests [36]. The work reported
in the sources [34-36] provide ideas about practical use of analysis facilities in

the application fields.

The comparison of the existing studies and our tool is given in Figure 2.4}
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CHAPTER 3

IMPLEMENTATION OF SIMULATOR

In this chapter, implementation details of the created simulator are explained.
Four main components of the tool are presented, then initialization and run-time
algorithms are presented in detail. Figure[3.1|shows the relationships of the main
components with each other. Event and rule generator parts are excluded from
the figure to avoid complications. Four main components in the tool are: Parser

Control, AST, AOF and Subscriptions.

cmp Use Case Model
Parser Control AST AOF

Subscription

Figure 3.1: Initialization Architectural Components related with program ini-
tialization
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3.1 Initialization Subsystems at Initialization

The data structures are constructed when the program is initialized, during
early run-time. Their explanations are given in the following subsections in

detail. Figure [3.2] shows the class diagram for the simulator.

3.1.1 Parser Control

Parser Control component is responsible for reading and parsing the event based
rules, then creating an AST for condition parts of each rule. The rules are in
infix format. In the parser class, they are converted into postfix notation to be

able to create ASTs for these rules [33].
Conversion from Infix Notation to Postfix:

Edsger Dijkstra invented the Shunting-Yard Algorithm to convert infix expres-
sions to postfix form (RPN), the name comes from the operation resembles to a

rail road shunting yard [33].

For the operators that have only two operands, an AST is created using Shunting-
Yard Algorithm will be a binary tree. However, in our case operators can take
one or three operands in addition to those that take two operands. Therefore
care is needed to implement the algorithm with different numbers of operands
rather than expecting always two operands per operator: most sources reporting

the algorithm may mention only the two operand case.

Our operators’ priorities and their numbers of operands needed to be defined. To
be able to utilize these parameters, we created a class named “Operators.cpp”,
in this class we defined a static array to store the “Operator”, “Priority” and
“Number of Operands®. This class has two static methods "getNOperands()"
and "getPriority()", where they accept an operator name as a parameter and
return that operators number of operands or priority. The Operator Priority

Table is shown in Table 4.1.
In table, MathNeg and MathMinus operators are shown differently. MathMinus
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n_n

operator is shown as and MathNeg operators is show with two consecutive

minus operators as "- -". This difference occurred because in the parsing, the
AST creator method could not differentiate which one is the minus and which

one is the negate operation.

Table3.1: Operator Priority Table

Priority List

Operator Name | Operator Sign Priority Number of
Operands

LogNot
MathNeg
MathDiv
MathTimes
BitAnd
MathAdd
MathMinus
BitOr

+oee

Smaller

|

<
Greater >
SmallerEqual <
GreaterEqual >
Equal ==
NotEqual I=
LogAnd &&
LogOr I
Sequence ;
Abort -

S O NN DN DNDDNDNNWWWE &= ot ot
W NN DN DN DNDNDNDDNDNDNDDNDNNN NN — =

3.1.2 Abstract Syntax Tree

An Abstract Syntax Tree is created for every condition part of every rule. Leaves
of an AST correspond to events and intermediate nodes correspond to operators.
The root node is responsible for the final evaluation and returns the result of its

evaluation.

When the analysis application is started the parser scans the rules and cre-
ates AST’s for every rule. In run-time as the events enter the system and are

received by the nodes, evaluation is made conducted from leaves to the root

26



of every AST. The "active" state nodes are allowed to receive events through
subscription whereas the "sleep" state nodes are not. Determination of such
states of the nodes, hence controlling the sequencing is managed by a structure
called Activation Order Flow-graph, which will be mentioned in the following
sections. Every AST node has three states: Sleep, Active, and Mature. Their

explanations are given in the following.
States of AST Nodes:

SLEEP: Since the node is not in the sequence currently, nodes at this state are

insensitive to the incoming events.

ACTIVE: The node starts listening to its event. The node waits for its event

to be mature.

MATURE: When the expected event received by the node, the nodes transits
to its ‘mature’ state, its parent node in AST is informed about the case for a
possible evaluation (if all operands have arrived in expected sequence). The

node stays at mature state until a re-initialization after the firing of the whole

AST.

AST Class: This class represents a single tree and includes some methods that
a tree requires and AST Node does not. After parsing is complete, the root of

the ASTNode is equated to root attribute of the AST class.

ASTList Class: This class is used to store the AST’s that are generated from
the rule set. This list is used in the main class to perform analysis on the created

ASTs.

3.1.3 Activation Order Flowgraph

AOQOF is designed to activate the AST nodes when their time comes. A node
in the AST that performs its transaction successfully sends a message to its
corresponding AOF node. This message states that the current node in the
AST has finished its job; consequently AOF triggers the next nodes. To do so,

the node receiving the message in the AOF passes the control to its neighbour
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node. Newly activated node in AOF, in turn, activates its corresponding AST

nodes, that could be more than one to activate.

Creation of an AOF structure requires traversing of the corresponding AST. This
process is done at the initialization-time, thus it does not affect time efficiency

and a recursive algorithm can be used for that.

Next, the methods used to create AOF and AOF Nodes are mentioned. There
is one base method which creates the basic structure of AOFs. Rest of the four

methods create the AOF types corresponding to the operators.

emakeAtomicFlow(): This method creates the smallest structure, atomic
flow, to be used in AOF construction. It takes an AST node pointer as a
parameter and creates three nodes that are connected to each other. The first
one is a start node, it is used to indicate the start of an AOF. Start node is
connected to an event node, which has a pointer to the corresponding node in
the AST, and corresponding AST node has a pointer to the AOF node. By this
way, a two way connection is created and transaction between AST and AOF
can be done quickly. Atomic flow structure ends with an end node. Figure [3.3

shows an example atomic flow structure.

Event

Figure 3.3: Atomic flow structure

emakeSingleFlow(): This method is used for MathNeg and LogNot operators.
Since, these operators take only one operand, their corresponding AOF will be in
the form of "single flow". This function takes only one AOF node as parameter.
Then it connects this AOF node with a start and end node as shown in Figure

3.4-a.
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emakeSerialFlow(): This method is used for the sequential operator “;”. The
activation order is important in sequential operations. One event needs to be
active before the other. This function takes two AOF nodes as parameters.
Then it connects this AOF nodes serially, the first one in the parameters, occurs
first in the AOF. Then they are connected with a start and end node as shown

in Figure 3.4-b.

emakeDiamondFlow(): This method is used for abort operator “.”. It creates
a single flow followed by a parallel flow. This function takes three AOF nodes
as parameters. Then it creates a parallel flow with the second and third nodes
in the function parameter, which is shown in Figure 3.4-d. Then, the first AOF
node is connected to the Parallel flow. Lastly, they are connected with a start

and end node as shown in Figure 3.4-c.

emakeParallelFlow(): This method is used for all other operators. It creates
start and end nodes and two nodes between them in parallel configuration.
Parallel nodes represent that two nodes (in the AST) will be actived at the

same time. This is shown in Figure 3.4-d.

Figure [3.4] shows the visual representation of the AOF structures. These are
only example figures. Note that, there can be many start and end nodes in an
AQOF structure which point to each other. To reach an event node, many start

nodes must be passed in bigger AOFs.

3.1.4 Subscriptions: (Incoming Events)

This subsystem is responsible for receiving the incoming events and directs them
to the related parts at run-time. During the initialization time, after AST and
AOF structures are generated, subscriptions are conducted for related nodes
using AST and AOF. This is done by constructing the Hash Table and inserting
pointers to related AST nodes into its lists. Hash Table is the most important
data structure in the Subscriptions subsystem. The Hash function is one-to one:
any incoming events name is directed to one entry for a pre-specified event name

in the hash table.
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Figure 3.4: AOF Representations

An approach to check whether the incoming events exist in our AST list or not,
is developed to avoid iterating over all the AST’s event nodes. This approach
increases time performance whereas it increases memory usage. Having Rete
capability in real time systems and engines is not very common. The aim of this
approach is to achieve advantages of Rete while avoiding its implementation

difficulties by the following two mechanisms:

e Subscription records are stored that utilize pointers between the hash table

and the requestor nodes in ASTs.

e For AST’s the activation order for the subscribing nodes is stored in a data
structure (AOF). This way only the nodes that can be active are sensitive to the
incoming events, the others are not covered in the search. Then, subscription
is conducted: A node in the AST becomes active and starts listening to an
incoming event. This approach is called “Dynamic Subscription”. Its dynamicity
is due to the fact that the subscription can be continuously formed and destroyed

based on when a node is activated to listen to an event.

Hash Table: A hash table is used to store event names taking place in all
AST’s to be able to control whether the incoming events exist in the rule set. If

an incoming event exists in the hash table, it performs the necessary operation
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which is sending event notification to corresponding AST nodes. With the help
of the hash table, sending input events to corresponding nodes operation is

performed in O(1).

Hash Function: A one-to-one hash function is created to determine location
of the events stored in the hash table. The hash function takes the event name
as input parameter and returns the location for the event name if it exists in
the hash table. The hash function makes use of the special naming for events.
Numbers used in the event naming are directly converted to an index, avoiding

a longer mathematical calculation.

There are three numbers that are separated with comma or parenthesis in event
names. The first two numbers determine the source of the event and the last
number defines the type of event. An example event is "ariza(kaynak(2,9),6)".
In that event, 2 and 9 defines the source of the event and 6 defines the event type.
Source of the events is defined with two digits between 0-9. Whereas, type of
events are defined with a number between 0-99, since there are 100 event types.
Therefore, there can be twenty thousand different event names. An array to store
all possible events are created, whose size is 20000. Event names and a forward
list which stores all the AST nodes that have the same event are stored in the
array. There are two type of events in our system, "ariza" and "belirti" typed
events. The location between 0 to 9999 in the array is reserved for “ariza” typed
events and 10000 to 19999 is stored for "belirti" typed events. For example,
if ariza(kaynak(2,9),6) event is given to the hash function, returning value is
296. Which means, this event is stored in 296th location in the hash table. If
belirti(kaynak(2,9),6) event is given to the hash function then returning value is
296 + 10000 = 10296. So, that event is stored in 10296th location in the hash

table. By this way, a hash function which guarantees no collision is created.

In hash table event name, and a list which holds a pointer to corresponding
AST node and state of that node is stored. The state information is different
than the state in an AST node. The state in hash table only has two values:
“ACTIVE” and “PASSIVE”.

ACTIVE: If the corresponding AST node’s state is active than state in hash
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table is also active. Here, the active state indicates that corresponding AST
node is ready to receive the incoming event. If the event enters the hash table
and state of a node is active, then incoming event is sent to the corresponding

AST node (event notification).

PASSIVE: If the corresponding AST node’s state is passive or mature, than
state in hash table is passive. Here the passive state indicates that corresponding
AST nodes do not listen to incoming events. The AST node might be in sleep

or mature state, but this case does not need to be known by the hash table.

3.2 Run Time Subsystems

In run-time an event that enters the system, is firstly welcomed in hash table.
Here, the event follows the pointers that indicate corresponding AST nodes,
which carry that event name in their nodes and are currently active, e.g. waiting
for an event. Important thing here is that, the event is only sent to the active
nodes, not the passive ones. After sending the event, the AST node pointers in
the hash table are unsubscribed, which means hash table becomes insensitive to
these types of events. Then, all the AST nodes make their evaluations and send
message to their parents and also to the corresponding AOF nodes. AOF nodes

are leaders to decide which nodes will be subscribed and listened next.

In Figure three main data structures of the system are shown with their

connection to each other.

3.3 Initialization Time Algorithms

In this part algorithms that are used at the beginning of the run time are ex-
plained. There are four main activities for the initialization time as stated before:

Parsing the rules, AST creation, AOF creation, and Hash Table generation.
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Figure 3.5: Main data structures and their connections

3.3.1 Parsing Rules:

The process of parsing requires other subsystems and includes the creation of
other data structures. After parsing, AST is created in postfix form. By travers-
ing the created ASTs, AOFs are created. While parsing the rules, hash table
is also filled concurrently. As the new events are encountered a new place is
filled and existing events are added to the end of list in the hash table. Parsing
is basically given in the following process definition. The below processes are

explained further in the upcoming sections.
For every rule:

1. Make Tree

2. Create AOF

3. Fill Hash Table
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4. Initialize Tree

3.3.2 AST Creation:

There is an AST for each condition part of the rules. The rule language is in
“infix” form and rules are converted into “postfix” form. For this conversion
“Shunting Yard” algorithm is used. In this algorithm, AST can also be created
when the Reverse Polish Notation’s are generated. Algorithm is based on bi-
nary trees; however AST’s in this work can have one, two or three child nodes.
Therefore, the algorithm is modified accordingly to adopt this difference. The

algorithm is presented in the following:

1. While there is more token to be read:
1.1. Get the next token
1.2. If token is an operand, put it into OperandStack
1.3. If token is an operator called (ol):

1.3.1. While there is an operator (02) in OperatorStack and its priority
is higher than (ol)

1.3.1.1. Take (02) from OperatorStack and take n operands from
OperandStack where n is the number of required operands of (ol) and

make a tree with them, then push this tree back into OperandStack
1.3.2. Put (ol) into OperatorStack
1.4. If token is a left parenthesis, put it into OperatorStack
1.5. If token is a right parenthesis:
1.5.1. Until left parenthesis comes from OperatorStack:

1.5.1.1. Pop all the operands and operators, make trees and push

them back to OperandStack
1.5.2. Drop left paranthesis.
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2. After no more tokens to be read:
2.1. While there are operators in OperatorStack:

2.1.1. Take operator and operands, make tree with them and put it into

OperandStack

This algorithm was traced manually to see if it creates correct AST representa-
tions given some test expressions. Also, a test code was written to draw trees
and inspect the AST diagrams. Hence the correct operation of the algorithm

was verified.
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Figure 3.6: AST Creation Sequence Diagram

In Figure [3.6] and Figure [3.7] sequence diagram of AST creation is given:
Frame-alt (IF) Token is an operator

sdFramel (Loop): There is an operator at the top of the OperatorStack and
priority of this operator is bigger than or equal to the operator that is hold at

token
Frame-alt (IF) Token is a right parenthesis
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Figure 3.7: AST Creation Sequence Diagram

sdFrame2 (Loop): Until left paranthesis occurs
Frame-alt (IF) there is no more token to be read
sdFrame3 (Loop): There is no more operator in OperatorStack

While creating ASTs, two stacks are used: Operator Stack and Operand Stack.
As their names imply operator stack is used to store operators e.g. Math,
Comparison, Logical, Bitwise, Sequential. The operand stack is used to store
operands e.g. Events, Constants and Time operands. Operators and operands
are pushed in and popped out of these stacks during the process. During the
AST creation scenario, ASTs that may have one to three child nodes are created
with operators and operands, then these ASTs are pushed back into the operand
stack. As the algorithm being applied, these little trees will be added to the sub
parts of bigger ASTs and they all create only one AST at the end. This scenario

is conducted during the conversion of infix to postfix notation. Therefore, cre-
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ation of AST is actually a sub part of parsing the rules and it is done using the

makeTree() method in the implementation.

Make Tree method requests can only be generated in a situation that an operator
and required number of operands exist in the stacks. After that the created tree
will be a child tree in the composed tree. The makeTree() method algorithm is

explained below.

1. Inputs of the method are one operator and number of operands depending

on the operator.
2. Create nodes for the operands.

3. Bind the child or children nodes according to the structure of the given

operator.

3.3.3 AOF Creation:

The algorithm to create AOFs is given below. MakeAOF() method will take the
root of an AST and as a result it returns the start node of the corresponding
AOF after creating it, which is defined as “s” in the following. Make Serial-Flow,
Make Parallel-Flow, and Make Diamond-Flow methods are explained in section

4.3.1.
s = MakeAOF (ASTnode n) // Start node of AOF is returned
if (n is leaf )
s = Make Atomic-Flow (n)
Else if (n is unary operator) // MathNeg and LogNot operators
S = MakeSingleFlow(n)
Else if (n is combinatorial-operator) // All two operand operators
s1 = MakeAOF (n.LeftChild)
s2 = MakeAOF (n.RightChild)
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s = Make Parallel-Flow (s1, s2)
Else if (n is }”) //Sequence operator

s1 = MakeAOF (n.LeftChild)

s2 = MakeAOF (n.RightChild)

s = Make Serial-Flow(sl, s2)
Else if (n is “.”) //Abort operator

sl = MakeAOF (n.LeftChild)

s2 = MakeAOF (n.MiddleChild)

s3 = MakeAOF (n.RightChild)

s = Make Diamond-Flow(sl, s2, s3)

In the algorithm above, there are steps that construct different types of AOF
parts. These steps receive atomic flows or more complex flows, and combines
those received flow types under one of the patterns: single, serial, parallel, or
diamond flows. In the process, the input nodes for starting and ending the input
flow, may be deleted: the resultant flow has only one start (s) and one end (e)

nodes.

s = Make Serial-Flow(sl, s2) This step receives two input flows, connects s2
after s1 and adjusts ‘s’ and ‘e’ nodes: the resultant flow-graph will start with
the ‘s’ node of s1 and ends with the ‘e’ node of s2. The s1’s end is connected to

the s2’s start as the internal structures of s1 and s2 require.

s = Make Parallel-Flow (s1, s2): This step receives two input flows, connects
them as to the two out-flow edges of the resultant ‘s’ node. Also the end (e)
nodes of the input flows are combined as one e node for the resultant flow — for
this, the edges coming to the e nodes of the two input flow graphs, are connected

to one e node and the other e node is discarded.

s = Make Diamond-Flow(s1, s2, s3) This step receives three input flows, makes
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a parallel flow using the s2 and s3: let us call this intermediate result as s4, and

makes another serial flow using s1 and s4.

Sequence diagram for AOF creation is given in Figure [3.8]
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Figure 3.8: AOF Creation Sequence Diagram
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3.3.4 Hash Table:

During run time, Hash Table is the first system that an incoming event encoun-
ters, then that event is redirected to corresponding ASTs. In initialization time,
the hash table is created during parsing. Then, with the information in the

ASTs and the AOFs, the initial subscriptions are processed in the hash table.

Hash Table algorithm is basically as follows: When AST node is created, the
event name contained in it is sent to the hash table by calling related function.
In that function, hash function is used and location for that event is found. This
location in the hash table holds a list of subscriptions for one event type (name).
The information about the AST node is added to the end of this list. In Figure
hash table creation sequence diagram is given.

3.4 Run-Time Algorithms

3.4.1 Sending events to subscription:

When an event enters the system, initially it is received by the hash table. Then,
using hash function a location is found. Next, that location is searched in the
hash table. If that location does not carry any subscription (all the nodes that
carry this event are in sleep or mature states), the event will be discarded. If
found location carries one or more subscriptions, then that event will be sent
to all subscribed AST nodes. Figure [3.10] shows the sequence diagram of this
event reception process. Since the hash function returns the exact location of

the events, complexity of this algorithm is O(1).

3.4.2 Tree evaluation:

Tree evaluation is started after an event arrives. Only leaf nodes can receive
incoming events. After the event is received by the node, that node triggers
parent nodes for evaluation. Different evaluation types exist for leaf, middle

and root nodes. After evaluation is complete, the result will be saved in the
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Figure 3.9: Hash Table Creation Sequence Diagram

corresponding node. Events without a value are considered as Boolean valued
and if that event is received by the node it is interpreted that result is true. The

tree evaluation algorithm is given in the following:
For leaf nodes:
1. receiveEvent() method

2. unsubscribe
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Figure 3.10: Sequence Diagram of Event Reception

3. state = mature
4. call parent.evaluate();
For middle nodes:
1. If right and left child state = mature
a. State = mature
b. Conduct operation: Result will depend on operands and operator
c. Call parent.evaluate()
For root node:
1. If right and left child state = mature
a. Conduct operation: Result will depend on operands and operator
b. If result is true fire action part
2. Initialize tree to start from the beginning

Complexity of evaluate() method, which is used in tree evaluation algorithm, is
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O(log(n)), because the maximum number of evaluation methods can be equal to
depth of the tree, where n is the number of operands in the condition part of a
rule. However, initializing a tree requires a traversing on the tree, which has the
complexity of O(n). Moreover, finding the nodes that are going to be activated
next also has O(n) complexity. There are two O(n) complexity messages and
one O(log(n)) message, so the worst case for the tree evaluation algorithm is

O(n).

3.5 Semantic Issues

During the design and implementation of the simulator, many changes have been
made to create a better simulator and to have better results. In this section some

of these design and implementation decision changes are mentioned.
Listening Nodes in Sequence Operators:

There were some issues about incoming event listening in temporal operators.
The requirement of sequence operator is that, left child has to occur before the
right child, and if not then this operator will not conduct its evaluation. There
were two options when designing that requirement; first one was to listen to
both of the child nodes that are without account for whether the node is the
left or right child of the sequence operator node. Second choice was not to
listen to the right side of the node before the left child matures since listening
to the right sub tree list will be a waste. After careful thoughts, it is decided
not to listen to the right child before left matures. Because when the right
node matures before the left one, the operator results with a false value and it
immediately re-initializes and starts to listen to incoming events until left child
node event occurs before right one for this process to continue. Since there is no
abortion or cancel operation, listening to both child is not logical. Therefore,
we suppress the right child (possibly a sub-tree) for incoming events until left
child is evaluated, therefore it increases the efficiency of our system and system

performance.
Listening Nodes in Abort Operators:
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A design issue existed to listen abort nodes. Should all the nodes need to be
listened for incoming events or not? If all the nodes are listened concurrently,
then there will be many wasted operations. Figure shows the selected
structure for the abort node. For this rule to be true firstly, A event should
occur in the system. If it never comes, then no matter how many times B and
C events occur, this operator will not be evaluated. Thus, it is decided that,
until A event occurs, B and C event nodes are closed for incoming events and
it is decided not to listen to all the nodes at the same time. Only A node is
listened and after it occurs, B and C operators are activated concurrently. If
B matures before C, the operator node and its sub tree are re-initialized. If C
matures before B then the abort operator node evaluates to true. At this point
another issue surfaces: After abortion, previously evaluated nodes must change
their values to initial values. Therefore, a structure called subtreelist is created:

The list contains the list of nodes to change their states quickly.

Figure 3.11: Abort operator structure

Subtree list storage

If an abort operation occurs in run-time, the nodes that become mature before-
hand need to be initialized and the process needs to start from the beginning.
There can be many nodes under abort operator nodes. In run-time to re-initialize
these nodes, AST must be traversed and some controls are needed to confirm
location of the nodes. This process takes too much of computation resource.
To avoid this computation, a structure is created in each abort node to store
pointers to its subtree nodes. This change uses more storage to gain speed in

run time.
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Decreasing AOF usage

There was also a design issue about the usage of AOF. The first usage of AOF
was to activate AST nodes that are in turn next for evaluation. For that AOF
requires a message from the AST. When an expected event is received by an AST,
that receiving node becomes “mature” and sends a message to its corresponding
AOF node. Then AOF advances its state to render control to its new set of
nodes. Those nodes send activation message to their nodes to activate their
corresponding AST nodes via pointers. This process is done repeatedly for
every AST node evaluation to find which nodes to activate next and this is done
for every rule in the rule set. It is obvious that traversing AOF and sending
activation requests for every evaluation are expensive operations. Therefore,

another approach is chosen and successfully applied.

A vector data structure is created to hold list of AST nodes that are going to
be activated next and that structure is called “nextActivationList”. This is only
necessary for the sequential operations, in other words for the "sequence" and
"abort" operators. Because only in those operators, AOF goes vertical down,
and system needs to know the next activated nodes. Other than these operators,
there is no need for resetting some subtree. Other operators will be evaluated by
calling the evaluate method of parent node. After the left children of sequential
operators are matured, what to activate next is found with the help of this data

structure. Thus, with this approach system gains speed by sacrificing memory.
Short Circuit Fvaluation

In some cases, the result of "AND" and "OR" operations can be decided only by
having one of the operand values. This process is called short circuit evaluation.
After that the nodes below these operator nodes should be deactivated without
waiting for the other operand to mature, to prevent unnecessary computation
and to increase system efficiency. The cases that short circuit evaluation can

take place are given below.
a. In "||" (Or) operation if one of the operands matures with the “true” value

b. In "&&" (And) operator if one of the operands matures with the “false” value
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This approach is chosen to speed up execution time and prevent unnecessary
evaluations. In "OR" operator if one of the children appears as true, then there is
no need to wait for the other child. Therefore, after the reception of this decisive
value, the subtree corresponding to the other operand is closed for incoming
events. For the "AND" operator, if one of the child nodes is false valued, then
whatever the value of other child is, the process will end with false. Therefore,
waiting for other child to mature is a waste. These two approaches increase the

speed of our execution and prevent unnecessary resource consumption.
Creation of Operator and Operand Classes

In run-time, when the system is working all the trees are evaluated based on
incoming events and related operator. There are many types of operators and
the evaluation will change depend on the current operator. To accomplish the
evaluation based on our initial approach, all the operator types were checked
and evaluation was completed based on the result of checking. For example, if
the operator is mathematical add operator then two numbers would be added.
However, while re-factoring our code, it is realized that polymorphism can be
utilized to avoid type checking. Subclasses of ASTNode are created for all
the operator types. The evaluate() method is created as a virtual method in
the "ASTNode.h" class and it is implemented differently in all the different
operator classes. The "evaluate" method is one of the most used methods at
run time. With this change, type checking is avoided which would slow down
the processing at run-time. The detail of this approach is given in the following.
To have a more generic structure, the operand classes were also classified using

specific sub classes.

Operators and Operands are the main distinction in our system. In the operands,
we might have three different types, event, variable and constants. Among them
only the event class has subclasses, which are Boolean and Integer. An event can
be of one of the two types, “ariza” type events are Boolean valued and “belirti”
type events are Integer valued. There are no more subclasses of variable or

constant classes.

In operators, the main distinction is “Sequential” and “Instant”. Sequential block

46



and subclasses are related to time related operators and issues. There are two
sequential operators in our language: the ;7 sequence and the “.” abort oper-
ators. Therefore, the "sequential" class has two subclasses called sequence and
abort. In the “Instant” class, there are four alternatives. Our language supports
Comparison, Mathematical, Bitwise and Logical operations. The supported op-

erations are listed below and this class structure is shown in B.12l

Math: MathPlus, MathMinus, MathTimes, MathDiv, MathNeg, MathMod
Comparison: Greater, GreaterEqual, Smaller, SmallerEqual, Equal, NotEqual
Logical: LogAnd, LogOr, LogNot, LogExor

BitWise: BitAnd, BitOr, BitComplement

class Class Diagram
ASTNode
—
Operand Operator
Event Variable Constant Sequential Combinational
45\ \7'\ A .
Boolean Integer Sequence Abort Comparison Math Bitwise Logical
Greater MathNe
g BitAnd LogAnd
I I I I
GreaterEqual MathAdd |
BitOr LogOr
I I |
Smaller MathMinus I
BitComplement LogExor
I
SmallerEqual MathTimes ||
I I LogMot
ot MathDiv
| I
MNotEqual MathMod

Figure 3.12: Polymorphism - Class Diagram for AST Classes

The main aim of this change was to use power of polymorphism for the evaluation
functions. As a result, deciding based on the type of the operator and type of

the operands to select appropriate operations is eliminated. Any operation is
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handled similarly and consistently. The evaluate() method is the most used
method in our system and decreasing its computation time will greatly affect
the whole systems performance. When an evaluate method is called, instead of
controlling the operator type with some if-else or switch-case like statements, we
create the nodes accordingly in initialization time and implement the evaluate

method of the corresponding operator.

3.6 An Example

In this section one simple example will be demonstrated to clarify used data
structures and operations. In real-time usage, many rules can be executed in
one analysis. To make the example simpler, event names will be represented
as upper-case letters and only condition part of the rules are presented. The

example rule is:
(A B, C); (D && E)

The corresponding AST, AOF and Hash Table figures for this rule example are

presented in the following.

AST is created as in Figure [3.13]

Figure 3.13: AST - At the beginning

After the AST is constructed, its AOF is builded by traversing the AST by the
given algorithm. The AOF is only used to hold the current active nodes to define
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sequence of the nodes. AOF is shown in Figure [3.14

Figure 3.14: AOF - At the beginning

After AOF is constructed. Finally, hash table is built. As explained before,
there are "Active" and "Passive" nodes in the hash table. The incoming events
will be sent only to the "Active" nodes. Therefore, at the beginning according
to the AOF, the only node where the event A is held active and the others are
passive. This is shown in Figure [3.15| where the active node is colored with red.
So, even if events B, C or the other events are received in the input, they are

not processed.
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Event Location Event Type Subscriptions /
N = HashFunction (A) A AST.noded,‘r’*ﬁJ‘I'I
N = HashFunction (B) B AST.node5, null
N = HashFunction (C) C AST.nodeb, null
N = HashFunction (D) D AST.node7, null
N = HashFunction (E) E AST.node§, null
null null null

Figure 3.15: Hash Table - At the beginning
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Figure 3.16: AST - After A event was evaluated

After event A arrives at the system as input, B and C nodes will be activated.

This is shown in Figure [3.171 Therefore, in the hash table only event B and

event C entries are activated. Between B, C events and D, E events there is a
n.n

sequence operator ";", which causes D and E events to be passive and B and C

operators to be active.

After events B and C are received, next and last event D and E are listened to,
through the activation of the corresponding nodes in the AST. This is shown in

Figure |3.19

Here is an example for demonstrating the initialization and execution of the
system. In run-time there can be many of this execution and initializations that

work in parallel. Moreover, this example can demonstrate the usage of temporal
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Event Location Event Type Subscriptions
N = HashFunction (A) A AST.noded, null/
N = HashFunction (B) B AST.nodeS,'Fﬁm;’
N = HashFunction (C) C AST.nodeE,‘Fﬁl'
N = HashFunction (D) D AST.node7, null
N = HashFunction (E) E AST.node8, null
null null null

Figure 3.17: Hash Table - After A event was evaluated

Figure 3.18: AST - After A event was received

Event Location Event Type Subscriptions
N = HashFunction (A) A AST.node4, null
N = HashFunction (B) B AST.node5, null
N = HashFunction (C) C AST.node6, null /1
N = HashFunction (D) D AST.node?,"ﬁﬁﬁ/
N = HashFunction (E) E AST.nodeE,‘ﬁGﬁ
null null null

Figure 3.19: Hash Table - After B and C events are evaluated

operators, ";" and ".".
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Figure 3.20: AST - After B and C events are evaluated
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CHAPTER 4

CREATION OF ANALYSIS FACILITIES AND
CONDUCTING RANDOM TESTS

In this thesis, five analysis facilities are created and experimentally evaluated.
The first analysis facility allows users to measure time between processing events.
Second analysis facility provides a performance evaluation for the generated

events, which are events fired by rules, and shows their effects to the system.

The rest of the three analysis facility types are mentioned in section 10.5.2 "Dy-
namic Analysis of Event Processing Networks" in [8]. The first analysis facility
mentioned in that book is the “Termination Problem”, which is infinitely execut-
ing cycles that involve some rules. The second analysis facility is “Reachability
Issues”. If a rule exists in the rule set but never used during the analysis there
is a reachability issue. Third and the last analysis facility is “Output Terminal
is Unusable”, which is output events (events fired from action parts of rules) is

not consumed by any of the rule in the rule set.

A performance evaluation is presented in the following sections with a corre-
sponding tool and details of our tool and environment information is presented
for further studies. After the performance evaluation, a study on the mutual
exclusion detection problem and static analysis difficulties in event domain are
stated. These topics are supported with examples to facilitate the understand-

ing.

To test the created analysis facilities we created some random tests with ran-

domly created events and rules. A "Random Event Generator" which creates
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random events with random values at random intervals and a "Random Rule
Generator" is implemented for testing purposes. Event and rule numbers to be

created can be defined by users.

4.1 Random Event Generator

Two types of events exist in our domain, "belirti" and "ariza" type events. "be-
lirti" events are integer valued and "ariza" events are boolean valued events.
The value of events are written after the event name separated with a comma.
The event generator firstly selects event type as "ariza" or "belirti". Then loca-
tion of the event is determined after the "kaynak" keyword with two numbers.
Next, type of the event for either "ariza" or "belirti" events is determined with
a random number between 0 to 99. Lastly, value of the event is determined
according to the event type. Value is 0 or 1 for "ariza" events and value is a
number for "belirti" events. After an event is created, it is sent to the hash

table, simulating a real world event.

For our program to be more efficient, we implemented our program with multi-
threading capability. The “thread” class of C++ language is used for this facility.
Analyses can be performed with millions of input events. An input event goes
through many evaluations and processes. When these processes are happening,
there is no need for event generator to wait to create the next event. This fact

asserts the need for multithreading.

4.2 Random Rule Generator

Rule generation cannot be easily done completely randomly as in the event
generation process. There are some operator types that cannot exist together in
the same rule or result of some operations cannot be an operand for the other
operators. Therefore, we created some rule templates that are correct in terms
of syntax, then we created some patterns from these rules. The rule generator

randomly selects a rule template then changes its events with randomly created
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events and save the new rule to use in analyses. Some example rule templates
are given in the following. The upper case characters represent generic names of
events in the template, that will be changed by the rule generator to randomly

created events.

rulel = "(A || B) && (C && D)->E;F:G;H"
rule2 = "(A B, C); (D != E)->F,G"

rule3 = "(A == B) || (C > D)->E;F"

ruled = "(A <= B) || (C && D)->E;F"

rule5 = "(A B, C); (D && E)->F;G;H"
rule6 = "-(-A * B + - C)->D,E"

rule7 = "(A & B) | C)->D;E"

rule8 = "(A ; (B || C)) && (D == - E))->F;G"
rule9 ="(A (B|C), (D + E))->F;G;H"

rule10 = "(A - B) + (C * D)->E;F"

4.3 Performance Evaluation

The previous work [20] on interpreter development using Python has utilized av-
erage processing times for arriving events, for performance evaluation. To give a
feeling about the performance improvement, we also utilize the similar measure-
ments in our comparisons. In this study, we also perform the same evaluation
for the comparison of the two studies. Computation environment information
is also presented, because computation time also depends on the environment
[20]. The previous study utilized Windows 7 64 bit operating system, Intel 17
CPU Q720 processor running on 1.6 GHz clock, and 8 MB System memory. Our
study utilized an environment based on the 64 bit Windows 8 operating system.

The processor is Intel®) Core 15-4210 @ 1.70 GHz with 8 GB of RAM. We have
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used the latest version of the C++ programming language which is C++11 and
Code::Blocks version 13.12 as an IDE. As a compiler MinGW with gcc version
4.9.2 is used. It is the current latest version and since version 4.9, “thread” and
“chrono” headers are supported that requires no other configuration. Whereas

in the previous versions users needed to do some configurations.

C+-+ “chrono” library is used in the implementation of performance evaluation.
Timers are set into the places that events enter the system and finish their jobs.
There are two different results that an event might cause in the system. First
one might cause firing of a rule, and secondly an event entering the system that
does not cause a firing of a rule but is still processed probably to advance the
AST to a next state. We wanted to determine how much time does each of those
cases spend on the average. We have conducted many experiments with huge

numbers of randomly generated events.

The results of the performance evaluation are shown in Table 4.1. The number
of events that is used in the analysis and results in terms of microseconds are
shown. If the number of events and number of rules are small, it is more likely
that the case can arrive where there is no combination of inputs that cause an
evaluation in any rule. Therefore, for some small numbers, to be able to measure

processing time of events, a combination that evaluates is added by hand.

Tabled.1: Average Processing Time per Event Arrival in Microseconds

# of Events
# of Rulex 10 100 1000 2000 100000
10 2,055 1,985 3.454 3.503 4247
100 2074 2,004 3.109 1.739 4,289
1000 2,173 2,878 3,298 4,013 4.453
2000 2.526 2953 3.348 3.985 5.164
10000 3.001 3,192 3.458 4,444 5.250

In Appendix to the confidence interval study for these results is given.
All the experimentations are with the sample size of 30, and in table 4.1 the
average results are provided. For all the experimentations the variability is

below 5% for 95% confidence level with sample size of 30.

In this study we also aimed to see the effect of a programming language on the
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performance of a program. Result of the similar study which was conducted

during the PhD thesis of Kaya, is given in Table 4.2. In his study he used the

Python programming language in his simulator.

Table4.2: Average Processing Times per Event Arrival in Microseconds in Kaya’s

study

# of Events
# of Rules 1 10 100 2000 10000 100000
10 21,22 3334 3929 3743 4225 42,58
100 19.05 24.61 34,34 34,21 37,58 40,59
1000 25,63 28,40 43,69 32,77 5037 n/a
2000 26,97 28,50 32,77 51,19 5428 6122
10000 27,03 30,28 5037 51,19 60,61 n/a

We can see that the choice of programming language affects the system perfor-
mance along with the execution environment. Since the rules and events are
randomized for any experiment, a direct comparison is not meaningful. How-
ever, a general indicator about the performance can be achieved observing the
results. Also, there are other factors that affect the results like CPU usage,
number of processes running etc. The environment information is presented to
support more meaningful comparisons. Also Python environment is interpretive
whereas our C+-+ environment is compiled that is a big factor in efficiency. Con-
sidering all those factors, with a broad interpretation, a more or less 10 times
improvement compared to the language processor written in Python seems to

be obtained in this study.

Another comparison for the aforementioned interpreters is provided. A trend
analysis work is conducted and corresponding curves are plotted for the two
interpreters. Figure |4.1 shows trend analysis for the interpreter created in this
study and Figure shows trend analysis for the interpreter that was created
before. The black lines mentioned as linear in the graphs are the created trend-
lines for the performance evaluation results. A comparison oriented set of curves
are also provided in Appendix E where curves for C++ and Python for one ex-
periment (same numbers of events and rules) are plotted in one graph. These
curves are plotted based on the provided data corresponding to the Python case.
The performance evaluation table in Kaya’s study does not include values in the

rows that are at the intersection of "1000 rules - 100000 events" and "10000 rules
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100000 events". Therefore in Figure the lines that show these two cases are
shorter than the others, since they do not have evaluation results for 100000
events. The processing times are shown as functions of event counts and curves
are plotted for different numbers of rules. Both of the interpreters yield linear
trends, however when the equation of trend lines are created it seems that the
coefficients for our interpreter seems smaller then the coefficients of the equa-
tion of the previously created interpreter. Therefore, it can be stated that our
interpreter displays slower increase in processing times with increasing number
of events. Furthermore, in figures to a detailed comparison of the in-
terpreters is given for the cases with different numbers of rules. In these graphs
the behaviour of the two interpreters can easily be compared. As the number of
events increases, processing times of both of the interpreters increase. However,
it is clearly seen that the increase in the processing times with increasing number

of events is slower in our interpreter.

The improvement we have addressed is basically moving from an interpretive
run-time environment for the KOTAY interpreter, to a compiled one. Besides,
where possible the connections among the data structures are implemented as
pointers, reducing the time to exchange data. Any language that provides point-
ers and is offering comparable run-time performance for the developed code could
be used with similar performance. Python, on the other hand, is offering faster
development. Although this new language comes with modern interpreters that
are acceptable in performance regarding its being interpretive (a performance
slowing factor), even for the real-time requirements of the originating project
was satisfied by the previous implementation in Python. A very rough speed-up
estimation, looking at similar test runs in both implementations, with an ap-
proximate factor of 10 was a very attractive gain to invest. however, C++, being
object oriented, also is slightly slower in performance when compared to C, and
off course when compared to assembly language. There is a trade-off between
the ease of development and speed-up. C++ is easier to develop when compared
to C. The development ease in this perspective also means the dependability of
the developed code. Having better command over the developed code, under-

standing it faster and easier are the benefits that come with higher-abstraction
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Figure 4.1: Trend Analysis for KOTAY Interpreter - C++ version

level languages. C++ has higher level of abstraction when compared to C. Also,

the original project would utilize C-++ codes, while a proof of concept developed

in Python was acceptable. This is the main reason for having selected the men-
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Figure 4.2: Trend Analysis for KOTAY Interpreter - Python version

tioned languages in the development life-cycle of the fault management related

project.
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Selection of the language does not have a big effect on the treatment of the
input. In either case, the random generation of the input events would behave
equal. Although the conducted measurements do not provide exact values for
comparing the case with different factors, or even the use of different languages,
it is not very difficult to guess the factors affecting an overall difference between
the C++ and the Python cases. Treating the input events, therefore, would not
inflict further conditions other than the general behaviour of the two cases (C++
and Python). There were no specific data structures or handling algorithms
changed while implementing with C+—+. It could be argued however, that the
speed-up due to C+-+ might be less than the overall value, when only input
handling is considered: There are less numbers of data structures and less data
structures involved in input event handling so the advantages of employing faster

techniques may have reduced.

4.4 Static Analysis Difficulties in the Event Processing Domain and
Mutual Exclusion Detection Problem in Event Processing Lan-

guages

In [26], [27], [28], [29], [30], and [31] authors try to find whether the system
has a bounded response time. For this aim four “Special Forms” are defined
and systems that comply with one of the forms are said to have a bounded
response time. To check for a special form compatibility, primarily one of the
three compatibility relations must be fulfilled. Some terms used in these studies

are explained in the following.

L, and Ly are defined as the left sides of the rule a and rule b. For instance,
in the below samples, x and y constitutes L, and m and n constitutes L. The
parts that are stated as "test" are the condition part of rules. In the below

example, test a is (z < 7) and test b is (1 < 6)
Rulea =% (z < 7)-> ((x = 5), (y = 3))”

Rule b =“ (1< 6)-> ((m = 8), (n = 9))”



It is stated that two rules are compatible if and only if at least one of the three

conditions hold. The three conditions are given as follows:
CR1: Test a and test b are mutually exclusive
CR2: L,NL, =10

CR3: Suppose L, N Ly # (. Then for every variable v in L, N Ly, the same

expression must be assigned to both in rule a and b.

These studies have been conducted for variable involving rules only; they do not
consider the events. However, in terms of analysis, there is not much difference
between event and variable concepts. Events can also be represented as variables,
with some caution. Events with values can be considered the same as variables,
whereas Boolean type events can be considered as variables with only two values.
In the above conditions CR2 and CR3 can be adapted to consider events easily.
When mutual exclusion detection is considered, there is a problem. Firstly, let

us look at formal definition of mutual exclusion given in those studies.

Mutual Exclusion: The main logic behind mutual exclusion is defined as "If
two tests are mutually exclusive, then only one of the corresponding rules can
be enabled at a time." in [28]. Definition of Mutual Exclusion is given in the

following.

Let T = ( vy, Vv, ..., vy, ) and let T be the vector < vy, vo, ..., v, >. With this
definition, each test in a program can be viewed as a function f ( ¥ ) from the
space of U to the set true, false . Let f, be the function corresponding to the
test a and let V, be the subset of the space of T for which the function f, maps
to true. Let V,; be the subset of the values of v; for which the function f, may
map to true; that is, if the value of the variable v; is in the subset V, ; then there
exists an assignment of values to the variables in the set T - v; such that the
function f, maps to true. Note that if the variable v, does not appear in the
test a , then V, is the entire domain of vy. We say that two tests a and b are
mutually exclusive if and only if the subsets V,, and V}, of the corresponding

functions f,, f, are disjoint [28].
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From the above formal definition, what it means by mutual exclusion relation

can be understood. An example to clarify this subject is given in the following.
The two rules are mutually exclusive:

Rule 1: a==5and b == true-> c = 3

Rule 2: al!l=5->¢c=25

The values for which the functions map to true is:

vLa — {5}

Vip = {true}

Voa={-05] [5 0} }

Vo, = {true, false}

Since b does not exist in rule 2, according to the definition, the entire domain of
b will be in the truth map of b for rule 2. As it can be seen in the above spaces,
fi and f; are disjoint since there is no common value that both rules can fire at
the same time. Therefore, rule 1 and rule 2 are mutually exclusive. Important

point is that, these rules include variables only (no events).
The following two rules are not mutually exclusive:

Rule 1: (a == 5) and (b == true) -> ¢ = 3

Rule2: a ==5->¢c =5

The variable values that functions map to true have a common map, which is a

= 5 and b = true. To convert these rules to event processing rules, let variable

"a" be "Event A" and "b" be "Event B" and "¢" be "Event C".
The rules become:
Rule 1: (A ==5) and (B == true) -> C =3

Rule2: A—5->C =13
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In that situation, there is again a combination of event values and sequences
where these two rules can fire at the same time. If event B occurs at t; with
the value "true" and after some time, at time t, event A occurs with the value

"5" where t; < tg then these two rules can fire at the same time.
Let us consider another scenario:

We have the same rules, but the sequence of events changes. The event A occurs
with the value of "5" at time t;. After some time event B occurs with value
"true" at time to, where t; < to. If these would be values, they would fire at
the same time. However, in this situation at t; the second rule is fired, because
there is only one condition for that rule to fire and it has occurred. But, rule 1
could not fire at that time, since it is expecting also event B to enter with value
"true". So, although the expected value combination for the events exist, since
the sequence of occurrence of events was not correct, the two rules could not fire

at the same time.

Moreover, in our study, we deal with the two temporal operators: sequence
operator ";" and abort operator “.”. When analyzing mutual exclusion subject,

these operators require extra work. Consider the following example;
Rule 1: (A ==5); (B == true)-> C =3
Rule 2: A==5->C=5

The above two rules are mutually exclusive in the event processing domain.
Because, for the first rule to fire, firstly, A has to occur with value "5" and after
that B has to occur with value "true". For the second rule to fire there is only
one condition and it is the occurrence of A with value "5". But when it occurs,
it will immediately fire and there is no chance for rule 1 to fire at the same time
with rule 2. For rule 1 to fire, some time has to pass and after that event B
has to occur. When only variables are considered (no events), without temporal

operators, their mutual exclusion analysis is considerably easier.
A similar scenario exists for the abort operator;

Rule 1: (A ==5) (B ==true) , (D <4)->C=3
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Rule 2: (A ——5) (D <4), (B = true) -> C =5

For rules 1 and 2 to fire, firstly A must occur with value 5. Then for rule 1 to
fire, B has to occur with value "true" before D occurs with value smaller than
4. However, this is just the opposite for rule 2. For rule 2 to fire, event D has
to occur with value smaller than 4 before B occurs with value "true". Since
these two cases cannot happen at the same time, these two rules are mutually
exclusive. In the variable case, there are no temporal operators and therefore,
their mutual exclusion analysis is considerably easy with respect to the event

processing case.

To conclude, in event processing, time is crucial. Occurrence time and sequence
of events define the system behaviour. Furthermore, as stated before in the
real-time systems section, correctness of the real-time systems actually depends
on time and sequence of event occurrences in addition to results of logical com-
putations. However, for variables there is nothing like variable occurrence and
sequence; they are time independent. Therefore, mutual exclusion detection
problem requires different and extra work in the event processing domain. More-
over, if domain specific operators and behaviours exist, this problem becomes a

domain dependent problem and may require specific solutions for every system.

4.5 Analysis Facility 1: Measuring time between the processing of

input events

Measuring the time between two specified input events is the first analysis facility
we have developed. It is an important facility, because it allows users to see how

much time it takes for the program to finish execution.

To test the created analysis facility, we have performed the analysis with ran-
domly created events and rules. A timer is used in the implementation of the
analysis. The timer starts before the first input event enters the system and ends
when last event finishes its operations. The results of the analysis are given in

Table in Appendix A.
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The test is conducted with random events and rules. For five different tests
listed in the table, the processing time is zero. The reason is that, none of the
input events existed in the rules. These results may change for different event

and rule sets. This test only shows the analysis facility is working.

4.6 Analysis Facility 2: Performance and Effects of Generated Events

Second analysis facility we have developed measures the performance and effect
of events fired from the action part. These events are referred as "Generated
Events". When a rule fires, the events in the action part of the rule become
input to the system and they may have a great effect on the system behavior
and results. Two types of analysis facilities were developed. First type of facility
conducts a performance evaluation for generated events. This facility has some
differences from the performance evaluation of input events mentioned in Section
5.3 in the implementation, since distinguishing generated events in the input
events requires some work. The curiosity to find whether the performance of
generated events is different than input events has been the motivation to include
this analysis facility. To test the created analysis facility, randomly created rules

and events are used. Result of the tests is listed in Table in Appendix B.

The second type of analysis facility provides the ratio of computation times for
generated events which cause firing of a rule to those which stop in the middle

of an evaluation. For testing purposes, random events and rules are used. The

result of the tests is listed in Table in Appendix B.

The tests for these two types of analysis facilities are conducted only to show
that facilities are working correctly. For some other tests with different rule and

event sets, the results will be different.

4.7 Analysis Facility 3: Static and Dynamic Cycle Warning

This analysis facility is called as the "Termination Problem" in [8]. Termination

problem occurs because of a loop involving some rules, resulting with infinitely
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executing cycles. The third analysis facility in our study warns users for possible

cyclic cases statically before run time and dynamically during run time.

Static cycle warnings take place before run time. FEvents and rules that may
create a cycle in run time, are revealed through a syntactic analysis. To clarify
this concept, a simple example is presented next. Two very basic rules are typed
below. These rules may create a cycle in run time. The first rule can be enabled
with the reception of events A and B and as an output, the C event is fired. In
rule 2, C or D events are necessary for that rule to fire and as an outcome A
event is generated. If the required case occurs, these rules may create a cycle
and system crashes. Thus, our tool determines these rules as probable cyclic

rules and warns the users.

Rule 1: A && B->C

Rule2: C||D-> A

"Static Cycle Warning Rule" logic can be briefly explained as follows:
Static Cycle Warning Rule:

If the action part of a rule m includes one or more events that is found in rule
n’s condition part and rule n has one or more events in its action part that also
exists in rule m’s condition part, then these two rules are said to be probable

cyclic.

1000 randomly generated rules are used to show the usage of static cycle warning
analysis facility. Output of that test placed is in Appendix C. The probable
cycles are shown in the following format: "Rule m -> Rule n -> Rule m".
Which means, rule m might fire rule n and then rule n might fire rule m. The

event that might cause a cycle in these rules is also given afterwards.

Dynamic cycle warning warns users during run time execution. To detect these
cycles a number that defines the upper limit for a rule firing is defined, which
is called “warning limit”. When this limit is exceeded, the system is further
monitored for a short period. If cycle continues the program closes itself, after

the number of firings which is called “termination limit”.
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A test was conducted with thousand randomly generated rules and hundred
events. Then, two rules were added intentionally for the system to enter a
cycle. Rule structures are like the following: "A|| B->C" and "C || D->B". The
warning limit is given as 1000 and termination limit is given as 1500. Figure |4.3
shows the output; the program first warns the user, then it finishes the program

execution.
"(ariza(kaynak(8,3),0) || ariza(kaynak(5,0),1))->ariza(kaynak(5,7),2),1"
"(ariza(kaynak(5,7),2) || ariza(kaynak(8,1),3))->ariza(kaynak(5,0),1),1"

LBl D:A\CodeBlocksWS\EventAnalyzer\bin\Debug\EventAnalyzer.exe = B
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Count exceed the program will ex

Process returned 0 (0x0) execution time : 1.784 s
Press any key to continue.

Figure 4.3: Output of Dynamic Cycle Warning Test

4.8 Analysis Facility 4: Coverage Analysis Facility

Fourth analysis facility created in this study provides coverage analysis facility
for a given rule and input event set. If a rule in a rule set never fires during
an analysis that rule is defined as "unreachable rule". This situation generally
occurs because of a mistake, but sometimes can be done on purpose. In both
cases, users must be warned. This analysis facility is useful for revealing some
missing conditions or mistakes in the input event or rule set. Static analysis

for detecting unreachable rules gives possible results and their results are not
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certain. Rules stated as "can fire" in static analysis may not fire during a
dynamic analysis, in our study simulation. These rules may be excluded from

the rule set to increase system performance and avoid unnecessary computation.

This analysis facility is tested with 100 randomly created rules and 10000 input
events. This random experimentation shows that this analysis facility is working.
Output of this test is shown in Figure This is a random test only to show
usage and to produce example output for the developed analysis facility. Results

will change for every different rule and event set.

4.9 Analysis Facility 5: Non-Consumed Generated Events Detection

The fifth analysis facility we have developed in this study provides finding gener-
ated events that are not received by any of the existing rules. Generated events
that are not received by any of the existing rules in the rule set are referred as
"Non-consumed Generated Events". These events might point to a problem in

the system or its design.

Using static analysis to find non-consumed generated events is not sufficient
for critical systems. Static analysis semantically searches condition and action
parts of the rules, and state the events as non-consumed generated events, if
those generated events do not exist in any of the condition parts. However,
during run-time, some generated events may not be received by any of the rules
because corresponding part of the rule may not be active, or that part may
already have been evaluated. Thus, dynamic analysis is required for an accurate

result.

To test this analysis facility 100 rules and 10000 events, both randomly gener-
ated, were used. The output is shown in Figure The output only shows the
sample usage of this analysis facility. Different results occur for each different

rule and event set.
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Rule 1:{{arizakaynak{8,7>.4> || arizaCkaynakjP®
(8.1>.3)) && (arizadkaynak{(B,?>.2> && arizadk
ynak<{8,2>,.?22)-arizalkaynak<6.7>.5>.7 never
fired in the simulation
Rule4: <(belirtickaynak{4,4>.2> <= belirtidckay
ak(5,6>.8»> || (arizalkaynak{1l.4>.5> && ari=
(kaynak<{4,4>,.5))=->belirti<kaynak{B.5>.6>,.7;:a
rizalkaynak{5.3>,.6>.3 never fired in the simu
lation
Rulel3:{<{belirti(kaynak{B, 8>, .2>== helirtilkay
ak<{4,2>,.13» | (helirtikaynak<B.5>.1> > bel
irtil{kaynak{3.,2). 4)))->arizaCkaynak(5.8>.1>.6
never fired in the simulation
Rule 22:<{belirtickaynak(3,8>.8> extti
ldelow arizadkaynak<6.5>.8> ., bhelirtickaynak(
~72.62) ; Carizalkaynak(6,?7>.5> && arizackay
ak<(2,8>,.23»->belirti{kaynak<{B8.6>.4>.8 never
fired in the simulation
Rule 34:-<{-belirtic{kaynak{8,2>.4> = helirtick
ynak(3,6».3>» + — helirtil(kaynak<{B.2>.2>>->ar
izalkaynak<3.,.8>.8)>.5);arizalkaynak{8,?7>,.4>,. 2
ever fired in the simulation
Rule 46:<{belirti{kaynak{8.,5>.8> *~ arizalkayna
k<1.0>.5> ., belirtid(kaynak(?.5>.8>> ; (ariza(
kaynak<{1.6>.3> && arizalkaynak(2,.1>.2>>->beli
sti{kaynak{1.8>.3>.6 never fired in the simul
tion
Rule 61:—-{(-belirti(kaynak(6,.6>.1> * helirtidk
ynak{4,5,.4» + — helirtilkaynak<{6.8>.8>>->ar
izal{kaynak{0.,3>.8>.7) never fired in the simu
lation
Rule ?73:<{belirtidkaynak{(2.,8>.4> ; {({arizadlkay
ak<(5,4>,.3» || arizalkaynak<{?7.08>.7>)> && <beli
stilkaynak{(?.2>.1> == — helirtid(kaynak<{5.8>_8
2233=>helirtiCkaynak<4,.5>,.8>,.8 never fired in
the simulation
Rule 86:<{belirti{kaynak{4,8>.3> & belirtidckay
ak(@.8>.6» | belirtilkaynak{B.@>.5>>->ariza(
kaynak<{8.6>.5>.1 never fired in the simulatio

Rule 88:<{<{belirtickaynak{2,.6>,.7> == belirtick
ynak<2,2>,.8>> i <(helirtiCkaynak<{3.,8>.8> > b
lirtickaynak<4,3>.3))>->arizalkaynak(5.4>, 4>

-8 never fired in the simulation

Rule 89:<{belirtickaynak<5.8>.8> {= belirticka
nak(3,6>.6»>» || (arizalkaynak{1.5>.2> && ari
akaynak<8.,8>,.4>> ->helirtiCkaynak<5.7>.1>.6
;arizaC(kaynak<6.8>.8>.2 never fired in the si
ulation

Rule 91:<{belirtickaynak{B@,2>.8> extti

ldelow arizadkaynak<?.3>.8> ., bhelirtickaynak(

5.72.32) ; (arizaCkaynak{4.,0).6) && arizadkay
ak(8,5>,.83»->belirti{kaynak<{1.4>.4>.2 never

fired in the simulation

Rule 95: <{belirtickaynak<{2,4>.5> & belirticka
nak(2,3>.2» | belirtidkaynak<{5.5>.2>>->ariza

Ckaynak{B.1>.8>.4 never fired in the simulati
n

Figure 4.4: Output of Coverage Analysis Facility Test
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n' D:\CodeBlocksWS\EventAnalyzer\bin\Debug\EventAnalyzerexe  — =

Event: ariza(kaynak(3,6),1) in Rule:

((ariza(kaynak(3,6),1) || ariza(kaynak(8,6).0)) && (ariza(kaynak(4,3),7) && ariz
a(kaynak(7,5),5)))->ariza(kaynak(4,5),8),1

is produced but consumed by no rule

Event: ariza(kaynak(4,4),6) in Rule:

((ariza(kaynak(6,4),6) || ariza(kaynak(4,0).8)) && (arizal(kaynak(4.,4),6) && ariz
a(kaynak(1,2),1)))->ariza(kaynak(0,4),.4),5

is produced but consumed by no rule

Event: ariza(kaynak(4,4),7) in Rule:

(belirti(kaynak(7,5),5) <= belirti(kaynak(7.,3),0)) || (ariza(kaynak(®,5).,5) && a
riza(kaynak(4,4),7)) ->belirti(kaynak(5,3),7).0;ariza(kaynak(4,.4),6),0

is produced but consumed by no rule

Event: ariza(kaynak(5,2),8) in Rule:

(belirti(kaynak(4,3),1) <= belirti(kaynak(8,5),0)) || (ariza(kaynak(3,3).,6) && a
riza(kaynak(5,2),8)) ->belirti(kaynak(5,8),1), 4;ariza(kaynak(6,6),7),7

is produced but consumed by no rule

Event: ariza(kaynak(6,5),0) in Rule:

(belirti(kaynak(3,0),0) ™ ariza(kaynak(6,5).0) , belirti(kaynak(4,7),6)) ; (ariz
a(kaynak(6,7),5) && ariza(kaynak(2,0),2))->belirti(kaynak(0,6),4),8;ariza(kaynak
(8,7).,4),2

is produced but consumed by no rule

Event: ariza(kaynak(6,7),5) in Rule:

(belirti(kaynak(3,0),0) ™ ariza(kaynak(6,5).0) , belirti(kaynak(4,7),6)) ; (ariz
a(kaynak(6,7),5) && ariza(kaynak(2,0),2))->belirti(kaynak(0,6),4),8;ariza(kaynak
(8,7).,4),2

is produced but consumed by no rule

Event: belirti(kaynak(®,8),5) in Rule:

(belirti(kaynak(®@,0),5) ™ ariza(kaynak(2,2),0) , belirti(kaynak(1,4),0)) ; (ariz
a(kaynak(0,4),6) && ariza(kaynak(3,1),5))->belirti(kaynak(1,3),8),5;ariza(kaynak
(2,4),8),7

is produced but consumed by no rule

Event: belirti(kaynak(4,2),5) in Rule:

(belirti(kaynak(2,3),1) ; ((ariza(kaynak(6,3),0) || ariza(kaynak(©,1),8)) && (be
lirti(kaynak(3,0),1) == - belirti(kaynak(4,2),5))))->belirti(kaynak(2,8),3).2

is produced but consumed by no rule

Event: belirti(kaynak(5,1),4) in Rule:

(belirti(kaynak(5,1).,4) ™ ariza(kaynak(3,7).0) , belirti(kaynak(1,1),1)) ; (ariz
a(kaynak(3,0),5) && ariza(kaynak(7,8),5))->belirti(kaynak(5,2),6),6;ariza(kaynak
(8,1),2) .4

is produced but consumed by no rule

Event: belirti(kaynak(7,7),7) in Rule:

(belirti(kaynak(7,7),7) ; ((ariza(kaynak(6,6).4) || ariza(kaynak(8,2),3)) && (be
lirti(kaynak(8,8),5) == - belirti(kaynak(®,1),0))))->belirti(kaynak(5,7),5).7

is produced but consumed by no rule

Process returned 0 (0x0) execution time : 0.117 s
Press any key to continue.

Figure 4.5: Output of Non-Consumed Generated Events Detection
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CHAPTER 5

CONCLUSION

In this study an simulator and five analysis facilities were developed for a rule-
based domain specific language. The language was designed and created before
during a PhD study, along with an interpreter using Python for usage in real-
time mission critical systems for complex event processing. The performance
of the interpreter was also improved with the C+-+ implementation. The im-
plementation environment has also an effect on the results of the performance

evaluation and environment information is provided for future comparisons.

Then, difficulties in static analysis for the event processing domain were inves-
tigated. The study shows that if time is in consideration, conducting a static
analysis for rule based languages is not easy and requires extra work. Such dif-
ficulties were explained carefully and recorded as a future work to be studied

further.

Next, five dynamic analysis facilities were created. The first analysis facility
allows users of this tool to measure simulation time to predict the real usage
time of their system. Second analysis facility shows the effects and performance
of events fired from the action parts of the rules. The third analysis facility helps
and warns users to find cycles during a simulation. Also a static cycle detection
facility was developed to use beforehand. Fourth analysis facility reveals the
unused rules during a simulation in a rule set, which decreases performance and
creates confusions. The fifth analysis facility in this study discovers the unused
output events in the system and presents them to the users. To demonstrate the

usage of the analysis facilities, random tests have been conducted with randomly
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generated rules and events. Test results of the analysis facilities were presented
after the definition of facilities and some of them were given in the appendices.
With these tests operability of the system can be assessed with different numbers

of events and rules and proper results appeared in the outputs.

Finally, improvement of this simulator would be a great future study. Support
for different rule based languages can prove to be very useful. Performance
improvement is also very critical as in all other studies. Performing new types
of analysis and combination of dynamic analysis with static analysis, where
possible, would also be a great study for this area. Repeating performance
evaluation with the same event and rule set as in the previous PhD study, would

be better to make more meaningful comparisons.
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APPENDIX A

TEST OF ANALYSIS FACILITY 1

TableA.1: Processing Time of Number of Events in Milliseconds

& of Event
& of Rules 10 100 1000 10000 100000
10 1] 0 0.003 0.048 0.266
100 1] 0.0019 0.003 0.034 0.363
1000 1] 0.002 0.012 0.097 0.893
2000 1] 0.002 0.022 0.203 1.680
10000 0.001 0.008 27,737 82 957 N/A
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APPENDIX B

TEST OF ANALYSIS FACILITY 2

TableB.1: Average Processing Time of Events received from Action Part per
Event Arrival in Microseconds

8 of Events
# of Rules 2000 10000 100000
Fre Mid-Eval |Fre Mid-Eval |Fre Mid-Eval
10 N/A N/A 3987 7879 N/A N/A
100 N/A 4099 N/A 7442 N 1569
1000 N/A 5788 19923 7371| 8665 3822
2000| 21765 7553| 18524 959 11584 4595
10000) 7354 2718| 7ari5 2745| 10539 3788

TableB.2: Ratio of Events received from Action Part: Causes Fire and Stays in
Mid-Eval

# of Evenls

# of Rules 2000 10000 100000
Fre Mid-Eval | Fre Mid-Eval | Fre Mid-Eval
10 N/A N/A 92% N/A N/A
100 0% 100% 100% 7% 93%
1000 a% 91% 15% 85% 10% 20%
2000 10% 0% 13% 87% 11% 89%
10000 21% 79% 21% 7% 21% 7%

2R
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APPENDIX C

TEST OF ANALYSIS FACILITY 3

Possible Cycles:

Rule 11 -> Rule 409 -> Rule 11

Event that might cause a cycle: ariza(kaynak(5,0),1)
Rule 31 -> Rule 31 -> Rule 31

Event that might cause a cycle: belirti(kaynak(3,2),2)
Rule 61 -> Rule 427 -> Rule 61

Event that might cause a cycle: belirti(kaynak(4,4),5)
Rule 157 -> Rule 781 -> Rule 157

Event that might cause a cycle: belirti(kaynak(6,0),0)
Rule 336 -> Rule 794 -> Rule 336

Event that might cause a cycle: belirti(kaynak(8,3),3)
Rule 409 -> Rule 11 -> Rule 409

Event that might cause a cycle: belirti(kaynak(3,2),4)
Rule 427 -> Rule 61 -> Rule 427

Event that might cause a cycle: belirti(kaynak(1,3),5)

Rule 430 -> Rule 430 -> Rule 430
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Event that might cause a cycle: belirti(kaynak(7,2),5)
Rule 434 -> Rule 556 -> Rule 434

Event that might cause a cycle: ariza(kaynak(5,6),1)
Rule 479 -> Rule 817 -> Rule 479

Event that might cause a cycle: ariza(kaynak(1,8),2)
Rule 556 -> Rule 434 -> Rule 556

Event that might cause a cycle: belirti(kaynak(4,0),4)
Rule 781 -> Rule 157 -> Rule 781

Event that might cause a cycle: belirti(kaynak(6,7),3)
Rule 794 -> Rule 336 -> Rule 794

Event that might cause a cycle: ariza(kaynak(4,7),0)
Rule 817 -> Rule 479 -> Rule 817

Event that might cause a cycle: belirti(kaynak(3,0),2)
Rule 853 -> Rule 853 -> Rule 853

Event that might cause a cycle: belirti(kaynak(7,3),7)
Rule 903 -> Rule 928 -> Rule 903

Event that might cause a cycle: ariza(kaynak(7,3),0)
Rule 928 -> Rule 903 -> Rule 928

Event that might cause a cycle: belirti(kaynak(0,4),7)
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APPENDIX D

CONFIDENCE INTERVAL STUDY FOR
PERFORMANCE EVALUATION
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TableD.1: Processing Time of Number of Events in Milliseconds for 100000

events
# of Events: 100000
10 - 100000 |100 - 100000 |1000 - 100000 |2000 - 100000 |10000 - 100000
Trial 1 4,226 5,126 4,306 4,602 452
Trial 2 4,032 4917 4,682 5,363 4,346
Trial 3 4455 4,333 4758 5,656 5716
Trial 4 4617 4,339 4,803 548 5,723
Trial 5 4,06 4379 4,883 5,482 5,366
Trial 6 454 4,005 5,154 5,29 5,689
Trial 7 4,555 111 4,504 4,706 5,117
Trial 8 3 BOR 4079 4414 4 408 5
Trial 9 4023 3,945 4383 4128 5,031
Trial 10 4,06 4,002 4378 5,631 5,382
Trial 11 4213 4214 4316 5,142 492
Trial 12 4312 4,486 4531 4982 5,214
Trial 13 4531 4012 4,298 5,031 5,521
Trial 14 4211 4,308 4301 4879 5,351
Trial 15 4,001 4,285 4572 5,348 5,366
Trial 16 4,098 4451 4329 5,315 499
Trial 17 432 3,901 4411 5,351 5,279
Trial 18 an 4,187 4,566 4984 5,386
Trial 19 4,011 4412 4326 5,013 5,109
Trial 20 4464 4,369 429 5,184 5,385
Trial 21 4,362 4,299 4021 5,241 5,169
Trial 22 4,258 4,22 455 5316 4978
Trial 23 4272 4,007 4,602 4986 5,621
Trial 24 3,985 4,239 4,467 5,363 5,23
Trial 25 4,052 4309 4,127 5,169 5,109
Trial 26 4215 4,199 4336 5,367 5,406
Trial 27 4521 4277 4,094 517 5,387
Trial 28 41 4413 4428 5,521 536
Trial 29 4,067 4346 446 53 5,316
Trial 30 4,169 454 4267 521 5,516
Total 127,404 128,659 133,593 154,918 157,503
Average 42468| 4288633333 44531 5163933333 5,2501
Standart
Deviation | 020428859 0,256651707| 0,233686307| 0,31224178|  0,307889195
Upper
Bound 4,74361938| 5285074376 5,298840274| 584952946 59138317
Lower
Bound 3,68138062| 3,741925624| 3876159726  4,21447054 41551683
A 0,03442768| 0,042830257| 0037557464 0,043274875 0,04197129
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TableD.2: Processing Time of Number of Events in Milliseconds for 10000 events

it of Events: 10000

10 - 10000 {100 - 10000 {1000 - 10000|2000 - 10000|10000 - 10000
Trial 1 4,691 41 4311 4,561 4528
Trial 2 3,905 5,099 5,016 444 4846
Trial 3 4946 4,631 5,041 4,406 5354
Trial 4 3,865 4173 4,207 4,402 5,623
Trial 5 5,063 4,309 5,094 4,409 6,466
Trial 6 463 4,666 4517 4,667 5,489
Trial 7 5,029 3,945 5,05 4828 5,137
Trial 8 3,855 445 5,269 3978 5,01
Trial 9 4776 4413 4,199 435 5,131
Trial 10 3,994 4,884 5,189 4,078 5359
Trial 11 4583 4,162 A78 452 5305
Trial 12 438 462 4,302 4,689 5418
Trial 13 4448 4,057 4,986 4,389 5,195
Trial 14 4,367 4172 5,058 4425 5416
Trial 15 4,803 4434 4752 4481 5,706
Trial 16 4,624 4,351 4,964 4,349 5274
Trial 17 4533 4287 4,504 4445 5281
Trial 18 4,086 4,965 5,105 465 5,624
Trial 19 4,468 4,801 4873 4,508 5351
Trial 20 4,506 4832 465 4759 5,257
Trial 21 457 4235 4982 4,651 5,604
Trial 22 4427 4,652 4597 4471 5,729
Trial 23 4376 4328 4,658 4415 5,294
Trial 24 4,464 4842 4,671 4753 5,541
Trial 25 4,504 4203 4548 4295 5723
Trial 26 4,467 4546 4923 4,397 5,682
Trial 27 4381 475 4,704 4451 5485
Trial 28 4436 468 4821 472 5,158
Trial 29 4,258 4451 4,659 4,107 5518
Trial 30 4562 4471 4,801 4,258 5,125
Total 133997| 134509 143,231 133,852 161,629
Average 4466567 4A8363333| 4,77436667| 446173333 5387633333
Standart
Deviation | p 302883| 028949605 0,28541473| 0,1983159| 0,332798185
Upper
Bound 5,063| 5,27843151| 5,44590188| 4,95091747| 6,672270452
Lower
Bound 3,855| 3,76556849| 4,02209812| 3,85508253| 4,321729548
A 0,048532| 0,04621022| 0,04278446| 0,03181115| 0,044208762
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TableD.3: Processing Time of Number of Events in Milliseconds for 2000 events

it of Events: 2000

10 -- 2000|100 - 2000 | 1000 - 2000 |2000 - 2000 |10000 - 2000
Trial 1 3,357 3974 4525 3,99 4531
Trial 2 4,162 3593 3,749 3,671 434
Trial 3 3,707 3,63 3,756 3933 4671
Trial 4 4,041 3,76 4129 4,063 4,462
Trial 5 3,552 3,839 3,759 3973 4,309
Trial6 3335 3,778 4213 401 4,467
Trial 7 3,596 3971 4,076 3,863 4628
Trial 8 3471 3,788 3,824 3,747 3979
Trial 9 3,055 3,863 4,077 4,186 445
Trial 10 3,625 35 3,665 4012 4178
Trial 11 3,628 3,856 4,089 3,998 4,508
Trial 12 3,541 3,68 4,152 4,205 4681
Trial 13 3573 3,964 4,205 4,186 4753
Trial 14 3,428 3,852 3,895 4,139 4692
Trial 15 3323 3971 3975 3875 A4A47
Trial 16 3,451 3,654 3,753 3,748 4398
Trial 17 3,448 3528 4,156 3,886 4257
Trial 18 3,398 3,498 3,851 3928 4316
Trial 19 3,607 3,776 3,756 4273 4,705
Trial 20 3472 3,754 4,084 4112 4426
Trial 21 3335 3,851 4,157 4217 4516
Trial 22 3,482 3,953 4,205 423 3,948
Trial 23 3,486 3,588 395 3,807 3917
Trial 24 3517 3,487 3,742 3728 4472
Trial 25 3,264 3,772 3,897 3,694 4581
Trial 26 3,349 3,582 4,185 4201 4519
Trial 27 3,468 3,647 4,153 4,154 4413
Trial 28 3476 3,586 4,305 3917 4552
Trial 29 3,507 3,709 4,198 3934 4,65
Trial 30 3,444 3,759 3,907 3,854 4549
Total 105,098 112,163 120,388 119,54 133,315
Average 3,503267| 3,738767| 4,01293333| 398466667 4443833333
Standart
Deviation | 0203838 0,150385| 0,20589948| 0,17415249| 0,213637557
Upper
Bound 4162| 406721 4,65261782| 4,38094083| 4,885413929
Lower
Bound 3,055/ 3,39379| 3,53738218| 3,56305917| 3,784586071
A 0,041643| 0028787 0,03672136| 0,03127974| 0,034406879
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TableD.4: Processing Time of Number of Events in Milliseconds for 1000 events

it of Events: 1000

10 -- 1000 100 - 1000 | 1000 - 1000 |2000 - 100010000 - 1000
Trial 1 3,078 2936 2,957 3,038 3,146
Trial 2 2931 3421 325 3,118 3326
Trial 3 4,028 3,011 3,184 3,482 3,629
Trial 4 3,955 2,56 3,178 3,069 3,258
Trial 5 299 3517 3,163 29Mm 3,645
Trial 6 3532 345 3,638 3,546 3421
Trial 7 3,461 2,864 3,643 3,698 3,587
Trial 8 3,756 3332 334 3,406 3,582
Trial 9 3,104 3,014 3716 3,458 3,763
Trial 10 3,168 3261 3,56 3,682 3,693
Trial 11 3,627 3215 3,408 3,552 3,612
Trial 12 3574 3,118 3,584 3,447 3,753
Trial 13 3,588 3,367 3517 3218 3,358
Trial 14 3,416 2,958 3,204 3,657 3,456
Trial 15 3,338 2891 3,249 3,404 3,354
Trial 16 348 3,15 3,019 3,149 3,486
Trial 17 3,716 3246 3,174 3,258 3,557
Trial 18 3,488 3219 3,297 3,167 3,082
Trial 19 3,439 3,145 2917 3,267 3346
Trial 20 358 3,117 3276 2928 3,725
Trial 21 3417 3,257 3384 3,158 3,689
Trial 22 3,442 2,904 3416 3,425 3,009
Trial 23 3,429 288 3534 3529 3,127
Trial 24 3,419 3,204 2,854 3394 3,647
Trial 25 3521 3216 3,351 3,756 3,68
Trial 26 3,451 3,155 3,416 3,618 3821
Trial 27 3,387 3,197 3,057 29Mm 3,067
Trial 28 3,408 2912 3,251 3417 3543
Trial 29 3473 2891 291 3,419 294
Trial 30 3,429 2873 3,46 3275 3,349
Total 103,625 93281 98937 100,447 103,736
Average 3454167, 3,109367 3,2979| 3,3482333| 3,457866667
Standart
Deviation | 237453 0,210852| 0,22890047| 0,2332192| 0,239476614
Upper
Bound 4028 3,647687| 385787398 3,9005507| 3,969429143
Lower
Bound 2931 2429313 271212602 2,7834493| 2,791570857
A 0,019199| 0,048532| 0,04967463| 0,049851| 0,049565593

89




TableD.5: Processing Time of Number of Events in

Milliseconds for 100 events

it of Events: 100

10-100 |100- 100 |1000- 100 |2000- 100 |10000 - 100
Trial 1 2156 1947 2,679 3321 3,402
Trial 2 2252| 2058 2,717 2926 2716
Trial 3 1985 2212 299 2,799 2,859
Trial 4 2058 2173 3201 2,804 2,999
Trial 5 1989 1922 2,668 311 3,581
Trial6 2,229 1,85 2583 3242 3,009
Trial 7 1,855 1,714 3,125 2934 2,898
Trial 8 1906 2,205 293 3,201 3324
Trial 9 2167 2,186 3,188 3,178 3,259
Trial 10 1952 1,856 2,903 3378 3,208
Trial 11 2022 2005 2,956 3,214 3,354
Trial 12 1874 2,227 2,758 3,045 3,125
Trial 13 1957 2,169 2,999 2,946 3,138
Trial 14 1,977 2,14 2716 2947 3,258
Trial 15 1882 1954 2,691 2,743 3357
Trial 16 1966 1874 2,7681 2852 3316
Trial 17 2057 1873 3,146 2934 2811
Trial 18 1923 1981 3,15 2,71 2,964
Trial 19 1911 1976 2,743 2,653 3,027
Trial 20 1,854 1974 2,851 2,753 3261
Trial 21 2143 2049 2876 2,951 3,497
Trial 22 2084 2117 2,642 2973 3,207
Trial 23 1937 2143 2,754 3,007 3,456
Trial 24 1,869 1921 2,829 3,129 3,284
Trial 25 1954 1,847 2,748 2934 3,195
Trial 26 1938 2,158 2,904 2,864 3,302
Trial 27 1,799 1959 2,74 2,716 321
Trial 28 1,819 1,863 2,746 2,819 3,368
Trial 29 2067 1907 3,115 2,661 3,089
Trial 30 1952 1,856 3217 278 3,16
Total 59564| 60,116 86,3281 88,585 95,754
Average 1,985467| 2,003867| 2,8776033| 29528333 3,1918
Standart
Deviation | 0114678 0,137207| 0,1865974| 0,1927335| 0,20013469
Upper
Bound 2,252| 2,312042| 3,3326542| 34974575 3,70504476
Lower
Bound 1,799| 1,628958| 24673458 2,5335425| 2,59195524
A 0,041337| 0,049004| 0,0464088| 0,0467136| 0,04487579

90




TableD.6: Processing Time of Number of Events in Milliseconds for 10 events

#t of Events: 10
10--10 |100-10 [1000-10 |2000-10 |10000 - 10
Trial 1 2,157 1,896 2,291 2,169 3,14
Trial 2 2239 228 2052 2,458 2,816
Trial 3 1978 2,052 2139 22 2,889
Trial 4 2202 2339 220 2,774 2,641
Trial 5 1,811 1,861 1,95 2973 3,004
Trial6 2,229 1,962 2,148 2,621 331
Trial 7 1,906 1,956 1,962 2,851 2,494
Trial 8 1,899 2,17 2,63 2,169 3,265
Trial 9 2167 2494 2,188 2,502 2,748
Trial 10 1,967 1,898 2,333 2427 3,052
Trial 11 2241 2056 2,352 2,516 2,819
Trial 12 206 2204 2047 2,608 2,993
Trial 13 1,957 1,967 2,225 2,638 3,176
Trial 14 1978 2,006) 2,118 2,558 3,206
Trial 15 2,175 1937 2,117 2474 3,008
Trial 16 2057 2008 2,284 251 2,911
Trial 17 1933 2,118 2,304 2,499 3,123
Trial 18 2057 2261 2,009 2587 2,934
Trial 19 1972 2,188 1,985 2,545 2879
Trial 20 2018 2009 2212 2,489 3,384
Trial 21 2,166 1954| 2,267 2,567 3,009
Trial 22 2064 2149 2,248 2522 3,127
Trial 23 1,997 1,875 2,006 2,481 2879
Trial 24 2,043 2,004 1,997 2,544 2,907
Trial 25 2146) 2183 2,236 2,509 3,206
Trial 26 1,875 204 2142 2,49 2,96
Trial 27 2018  2111] 2,195 2576 2,853
Trial 28 2124) 2031 2,155 2,409 2,968
Trial 29 2,055 2144 22 2,529 3,008
Trial 30 2,164 1,994 2,194 2,583 3,206
Total 61,635 62,209 65187 75773 90,035
Average 2,0545| 2073633 2,729 2,525767| 3,0011667
Standart
Deviation | 0,113327| 0,142876| 0,140275| 0,164108| 0,1938574
Upper
Bound 2,241| 2,582555| 2,716943| 3074715 3,504154
Lower
Bound 1,841| 1,772445| 1,863057| 2,067285| 2373816
A 0,039478| 0,049312| 0,046203| 0,046501| 0,0462293
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APPENDIX E

TREND ANALYSIS STUDY FOR THE KOTAY
INTERPRETERS
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Figure E.1: Trend Analysis comparison of KOTAY Interpreters - Number of

Rules - 10
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Figure E.2: Trend Analysis comparison of KOTAY Interpreters - Number of

Rules - 100
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Figure E.3: Trend Analysis comparison of KOTAY Interpreters - Number of

Rules: 1000
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Figure E.4: Trend Analysis comparison of KOTAY Interpreters - Number of

Rules: 2000
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