
 

 

 

 

HANDWRITTEN DIGIT STRING SEGMENTATION AND RECOGNITION 

USING DEEP LEARNING 

 
 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO                                                                                                             

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES                                                        

OF                                                                                                                                                   

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY  

 

 

 

ORCUN ELITEZ 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS                                                               

FOR                                                                                                                                                  

THE DEGREE OF MASTER OF SCIENCE                                                                                       

IN                                                                                                                                            

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

DECEMBER 2015 

 



 

 

 

 

 

 

 

  



 

 

Approval of the thesis: 

 

HANDWRITTEN DIGIT STRING SEGMENTATION AND RECOGNITION 

USING DEEP LEARNING 

 

Submitted by ORÇUN ELİTEZ in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronics Engineering 

Department, Middle East Technical University by, 

 

Prof. Dr. Gülbin Dural Ünver   _____________                                                                                                               
Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. Gönül Turhan Sayan   _____________                                                                                                               

Head of Department, Electrical and Electronics Engineering 

Prof. Dr. Uğur Halıcı   _____________                                                       
Supervisor, Electrical and Electronics Engineering Dept., METU  

 

Examining Committee Members: 

Prof. Dr. Aydın Alatan   _____________                                                       

Electrical and Electronics Engineering Dept., METU 

Prof. Dr. Uğur Halıcı   _____________                                                      
Electrical and Electronics Engineering Dept., METU  

Prof. Dr. Gözde Bozdağı Akar   _____________                                                       

Electrical and Electronics Engineering Dept., METU  

Assist. Prof. Dr. Elif Vural   _____________                                                       
Electrical and Electronics Engineering Dept., METU 

Assist. Prof. Dr. Tolga İnan   _____________                                                        

Electrical and Electronics Engineering Dept., TED University 

                        Date: 08.11.2015 

  



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 Name, Last name: ORÇUN ELİTEZ 

 Signature:  



v 

 

 

ABSTRACT 

 

HANDWRITTEN DIGIT STRING SEGMENTATION AND RECOGNITION 

USING DEEP LEARNING 

 

Elitez, Orçun 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

December 2015, 79 pages 

The main purpose of this thesis is to build a reliable method for the recognition of 

handwritten digit strings. In order to accomplish the recognition task, first, the digit 

string is segmented into individual digits. Then, a digit recognition module is 

employed to classify each segmented digit completing the handwritten digit string 

recognition task.  

In this study, a novel method, which uses deep belief networks architecture, is 

proposed in order to achieve high performance on the digit string segmentation 

problem. In the proposed method, images of digit strings are trained into a DBN 

structure by sliding a fixed size window through the images labelling each sub-image 

as a part of a digit or not. After the completion of the segmentation, in order to achieve 

the complete recognition of handwritten digit strings, the segmented digits are 

classified using both DBN algorithm and support vector machines and the results of 

these algorithms are compared over CVL Digit Strings Dataset. The result of the 
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segmentation which uses the proposed method is compared with the result of the 

segmentation algorithm using water reservoir concept. Moreover, the results of some 

benchmark algorithms which use the same database of handwritten digit strings are 

included in the comparison. 

The proposed method outperformed the state of the art methods and also the baseline 

algorithm using water reservoir concept for digit segmentation on the CVL Digit 

Strings Dataset. 

Keywords: Handwritten Digit String Segmentation, Touching Numeral Segmentation, 

Handwritten Digit Recognition, Deep Learning, Deep Belief Networks, Artificial 

Neural Networks, Pattern Recognition 
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ÖZ 

 

 

DERİN ÖĞRENME YÖNTEMİ KULLANARAK EL YAZISI RAKAM 

DİZİLERİNİ BÖLÜTLEME VE TANIMA 

 

Elitez, Orçun 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Aralık 2015, 79 sayfa 

Bu tezin amacı el yazısı rakam dizilerinin tanınabilmesi için güvenilir bir yöntem 

geliştirilmesidir. Tanımayı yapabilmek için öncelikle rakam dizileri bağımsız 

rakamlara ayrılmalıdır. Daha sonra bir rakam tanımlama yöntemi kullanılarak 

birbirinden ayrılmış rakamlar tanınır. Sonuç olarak el yazısı rakam dizisi tanıma işi 

gerçekleşmiş olur. 

Bu çalışmada, rakamları bölütlemedeki başarıyı arttırmak için derin öğrenme metodu 

kullanılarak yeni bir yöntem geliştirilmiştir. Bu yöntemde, sabit büyüklükteki bir 

pencere rakam dizilerinin bulunduğu resim üzerinde kaydırılarak, bu pencerenin 

kapsadığı bütün parçalar derin yapay sinir ağına öğretilmektedir. Bu parçalar rakamın 

bir parçası veya rakamlar arasındaki geçişin bir parçası olarak sınıflandırılır. 

Bölütleme işlemi tamamlandıktan sonra ayrılmış rakamlar, rakam sınıflandırma 
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algoritmasına girdi olarak verilir. Rakam sınıflandırma işlemi için DBN (Deep Belief 

Networks) ve SVM (Support Vector Machines) yöntemleri uygulanmış ve bunların 

sonuçları karşılaştırılmıştır. Aynı zamanda önerilen bölütleme algoritması da başarısı 

kanıtlanmış başka algortmalar ile karşılaştırılmıştır. Bu karşılaştırmalara aynı veriseti 

üzerinde uygulanmış referans yöntemlerin sonuçları da eklenmiştir. 

Önerilen yöntem, CVL veriseti üzerinde yapılan deneylerde, gelişmiş yöntemlere ve 

‘water reservoir’ kavramını kullanan referans rakam dizisi bölütleme algoritmasına 

göre daha iyi sonuç vermiştir. 

Anahtar Kelimeler: El Yazısı Rakam Dizisi Bölütleme, El Yazısı Rakam Tanıma, 

Derin Öğrenme, Yapay Sinir Ağları, Örüntü Tanıma 
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CHAPTERS 

CHAPTER 1 

1. INTRODUCTION 

1.1. Motivation and Objective 

The purpose of machine learning is to sense, remember, learn and recognize like a 

human being. One of the most in demand methods of machine learning is deep 

learning. The idea behind deep learning emerged back in 1950s with the definition of 

perceptron. Perceptron was the first machine that had the capability to sense and learn. 

Then, the multilayer perceptron structure with limited number of hidden layers was 

defined in 1980s. However, the learning capability of the perceptron was very limited. 

Thus, it was disregarded for years until the proposition of neural networks with many 

hidden layers in 2000s. The connectionism introduced by multiple levels of 

representation has brought better learning capability to the architecture. Actually, the 

main aspect behind deep learning is this multiple levels of representation phenomenon. 

It is originated by the theory that the brain processes information in multiple layers. 

As the deep learning algorithms have been improved, the resemblance of the 

architecture to the biological neural networks has been increased. 

A complete document processing system should include handwritten text recognition, 

digit string recognition, signature recognition and localization of the handwritten 

inputs. Most of the existing systems have been privatized towards the application, and 

the main problem observed with such systems is that they define a wide variety of 

rules to the authors. These rules include respective boxes for each field, writing rules, 

restraining touching characters in a string, restraining slant angle of the characters etc. 

Our main purpose is to reduce the number of rules and to avoid application-specific 

methods so as to approach a universal document processing system.  
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The field studied in this thesis spans the concept of handwritten text recognition and 

all the steps from digitizing the text image to complete recognition of the intended 

meaning of the text. Since handwritten text recognition contains a wide variety of 

options that the text is written, the main concern of this study will be recognizing 

handwritten digit strings, such as the courtesy field of the bank cheques. 

Although, the performance of machine learning algorithms on handwritten digits are 

very good when the digits are segmented well, the segmentation performance of the 

existing algorithms are poor, which in turn reduces the recognition performance when 

digit strings are considered. Therefore, reliable handwritten digit string recognition 

methods are necessary in order to increase the recognition rate of handwritten digit 

strings. 

The success of deep neural networks in handwritten digit recognition motivated us to 

use them also to decide vertical cuts for segmentation of digit strings by training the 

regions between the digits. 

1.2. Problem Definition and Our Approach 

The recognition of the images of handwritten digit strings contains three main steps 

which are preprocessing, segmentation of image into individual digits and 

classification of each digit forming the final recognition result. In this study, deep 

learning will be used both in segmentation and classification steps and the results will 

be compared with the results of other well-known algorithms. 

There are a wide variety of studies in the field of handwritten text recognition. 

Generally digit classification and preprocessing steps are achieved to a certain level of 

success, however the segmentation step is still a challenging task for this field. In order 

to overcome this challenge, some rules that restrict the style of handwriting are applied 

in order to increase the success rate of the segmentation. In this study, the handwritten 

digit strings independent of writings styles are examined. 
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As a baseline algorithm for comparison of the performance, water reservoir concept 

[42] and [43] will be used for segmentation and support vector machines for 

classification. The reason for choosing water reservoir algorithm for segmentation is 

that it is a high performance segmentation algorithm which does not use recognition 

implicitly and the reason for choosing support vector machines as classifier is that it is 

named as the best performing classifier for handwritten digit recognition after deep 

belief networks [18]. Then, deep belief nets (DBNs) will be used to segment the same 

images. In the novel approach proposed in this thesis that the digits and the gaps 

between the digits will be fed into the deep belief net and the success rate will be 

compared to the baseline algorithm. The algorithms will be tested on CVL Digit 

Strings [21] database which contains 1262 images each having 5 to 7 digits. The reason 

why CVL dataset is chosen is that it is a dataset containing a large number of images 

of connected handwritten digits. 

In terms of classification of the digits, the segmented digits from the previous step will 

be classified by a pre-trained SVM and DBN classifiers. The classifiers will be trained 

using both MNIST database which contains already segmented handwritten digits and 

segmented digits from the CVL Strings database obtained in the previous step. 

1.3.  Contribution 

In this study, we proposed a novel handwritten digit segmentation technique which is 

a recognition-based technique. Instead of focusing of extracting characters from the 

digit strings, we trained DBN to detect the gaps between the digits and used these gaps 

to segment the digits. An image of digit strings was divided into sub-images that 

contain the information that it is whether a gap or a part of a numeral. The sub-images 

then were used to train a classifier. Then the classifier was used to identify parts of an 

image.  

The tricky part of this study is the behaviour of the touching pairs multiple times. Our 

approach extremely outperformed the baseline algorithm. 
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1.4. Organisation of the Thesis 

This section, the outline of chapters and the topics to be covered will be given. In this 

chapter, the objectives of the thesis with our motivation and the contributions to the 

field of study has already been introduced. 

Chapter 2 consists of the literature survey and background information about the main 

focus of this thesis. This chapter includes an overall review of the literature about 

handwritten digit string recognition and the techniques used in the steps of the 

handwritten digit string recognition system. The techniques used for preprocessing, 

segmentation and recognition parts are given respectively. 

Chapter 3 includes the details of the proposed approach and experimental results. The 

proposed approach is introduced and the experiments done in order to observe the 

performance are explained. Then the results of the experiments are presented.  

Finally, chapter 4 provides a conclusion of this thesis with a brief summary. The 

experimental results are discussed with some theoretical background and possible 

future works are explained. 
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CHAPTER 2 

2. LITERATURE SURVEY AND BACKGROUND INFORMATION 

2.1. Literature Survey 

In this part, the solutions towards recognition of handwritten digit strings is examined. 

A critical analysis is carried out for the methods used solving this problem. A top-

down research strategy will be adopted.  

Automatic processing of handwritten text images is very crucial for creating document 

processing systems for bank cheques, government records etc. [1]. The main goal is to 

increase the reliability of the result of recognition process and to speed up the routine 

of collecting training and test data from handwritten digit strings.  

Main focus of this study is recognition of handwritten digit sequences without 

restricting the writer with rules. The recognition of the segmented digits is an easier 

task compared to segmentation of the sequence. The overall recognition process 

consists of preprocessing, segmentation and classification modules.  

 

 

Preprocessing Segmentation ClassificationPreprocessed Image Segmented Digits

 

Figure 2.1: Modules of Handwritten Digit Recognition 
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2.1.1. Preprocessing 

 

 

Gray Scale 
Conversion

Binarization Preprocessed Digit StringSkew Correction

Figure 2.2: Steps of Preprocessing 

 

 

The preprocessing could start with the binarization of the image if binary data is 

needed for the rest of the techniques used, as it is, in fact, needed in most of the cases. 

First the image must be converted to grayscale image if the image input is in RGB 

format. Hue and saturation are discarded and intensity is used to obtain grayscale 

image. Then the grayscale image should be turned into binary form. There are two 

main categories of binarization methods. These are global and local thresholding.  

Global thresholding algorithms use a single threshold value for the overall image while 

the local thresholding algorithms use different threshold values for each pixel using 

their spatial information [1]. Twenty global thresholding techniques were compared 

by Sahoo et al. [2] based on uniformity and shape measures. According to the 

comparison, Otsu’s thresholding method [3] gave the best performance. There are 

various local thresholding techniques as well. Trier and Jain [4], Sezgin and Sankur 

[5] surveyed and discussed these thresholding techniques.  

After the binarization, skew correction could be done in order to correct the angle of 

the digits and the X-axis. Knerr et al. [6] determined the angle by computing the pixel 

densities between ±5 degrees with the help of horizontal guidelines. With the help of 

the histogram created using the pixel densities, the histogram with the longest peak is 
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chosen as the angle of the text in the image. The problem with this method is that it 

relies on the fact that there is a horizontal guideline to realize the actual angle. 

2.1.2. Segmentation 

As stated earlier, segmentation of the handwritten digit strings is the most challenging 

problem of the recognition process. The problem arises from the fact that the number 

of digits, size of each digit and the gap between the digits are unknown [7]. 

A complete digit segmentation algorithm should be successful with all types of digit 

connections. It is easier to segment the string if there is a gap between the digits or 

there is a writing rule such as a box for each digit. These type of string could be 

separated by using a trivial algorithm such as applying connected component analysis 

after removing noises. 

However, the intention of this study is to implement a complete handwritten digit 

string segmentation algorithm. Therefore, digit strings containing touching numbers 

should be considered as well. Chen and Wang [15] proposed that there are 5 types of 

touching digit strings that could be categorized as multiple-touching and single-

touching digit strings. Examples of each type are shown in Table 2.1. 
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Table 2.1: Types of touching digit strings. (Adapted from [3]) 

Category Type Style of touching Examples 

Single-

touching 

I.  

   

II.  

   

III.  

   

IV.  

   

Multiple-

touching 

V.  

   

 

 

 

Segmentation algorithms could be categorized as segmentation-then recognition and 

recognition-based algorithms [8]. The segmentation-then recognition based 

algorithms, first, extract segmented images where each segmented region is assumed 

to contain a single character and then these regions are given to the classifier. The 

recognition-based algorithms provide a list of segmentation results. Then all of the 

results are submitted to the classifier. The computational cost of the recognition-based 

algorithms are very high, since all of the options from the segmentation process must 

be classified. However, they generate better results [7]. Additionally, the recognition 

module must classify fragments, isolated characters and connected characters.  

Recognition-based segmentation can be categorized as explicit segmentation and 

implicit segmentation. In explicit segmentation, segmentation generates candidate 
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characters for the recognizer. In the implicit segmentation, segmentation and 

recognition are performed simultaneously.  

 

 

 

Figure 2.3: Methods of segmentation of digit strings (adapted from [9]) 

 

 

The literature shows that explicit segmentation have better results. The main problem 

with the implicit segmentation is that it is highly sensitive to the slanted images.  

Fujisawa et al. [10] proposed a recognition-based algorithm. According to the 

algorithm, first connected components are detected. Then a classifier classifies each 

segmented image as a digit or a string of digits. The classifier in this algorithm is 

depends on the horizontal length of the segmented images. In order to segment the 

string of digits that was not classified earlier, contour information is divided into upper 

and lower contours. Then an approximate vertical width is computed and candidate 

segmentation points are assigned to whose vertical length exceeds the threshold. 

Moreover, for the touching loops such as 8-8, 0-9 inner loops are divided into two 

groups and the distance between them is calculated. If the distance is greater than a 

threshold, segmentation occurs. Segmentation cuts are produced using line segments. 

Then the segmentation points are used in order to build a segmentation graph. Shortest 
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path of the graph gives the best option for the segmentation. This algorithm is tested 

by Fujisawa et al. [10] with 920 custom images. In these images, touching pairs are 

used. However, digits touching to each other multiple times were not used. 95% 

success rate in terms of segmented digits is calculated by the authors. The success rate 

is calculated by using a commercial optical character reader (OCR) for each segmented 

digit. 

Fenrich and Krishnamoorthy [11] applied a trivial recognition-based method for the 

segmentation problem. Vertical histogram projection and valleys and peaks of the 

contour are used. First vertical histogram projection is applied to segment the digit 

string. The column with the minimal value is considered as a candidate for the vertical 

segmentation line. If this minimal value is larger than the minimum stroke width or 

multiple crosses occur through the segmentation line, the segmentation terminates.  

If there is no candidate segmentation points from the first part of the algorithm where 

the vertical histogram projection is applied, upper and lower contours are used to 

define the segmentation points. If a peak of the lower contour and a valley of the upper 

contour could be connected with a line segment that satisfies slope thresholds, then a 

piecewise linear split is made. If they cannot be connected with a line segment that 

satisfies the slope threshold, then a straight line is used to generate the segmentation 

cut [7]. A success rate of 94.9% is calculated by the authors with 450 images of ZIP 

codes. Although solution is very trivial, it inspired many other researchers. 

Yu and Yan proposed a method using morphological structuring technique for 

segmentation [12]. In the preprocessing step, smoothing and linearization are done and 

structural points of the image contours which are used in defining segmentation cuts 

are detected. If the digit string consists of more than two members, then the region 

containing left two numerals is determined and string of two numerals is separated. 

Then the same method is applied to the rest of the image until there is no region of two 

members left. The algorithm contains a lot of rules and heuristics. The success rate is 

calculated as between 85 to 95% on 3287 images which were extracted from NIST 

database depending on the length of the string.  
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Elnagar and Alhajjb [13] proposed a segmentation-recognition type algorithm to split 

pair of digits. Normalization and thinning are applied before segmentation. Although 

thinning is computationally expensive, according to authors thinning is necessary to 

get uniform stroke width to simplify detection of features. Since thinning process 

creates spurious points, a noise reduction algorithm is applied before the segmentation 

algorithm. For the segmentation, heuristics are defined to obtain most probable 

segmentation cuts. The success rate of the segmentation calculated by the authors was 

96% with CEDAR and NIST datasets. 

Suwa and Naoi proposed a segmentation-recognition based algorithm that uses the 

skeleton of the image as input [14]. Edges and vertices are extracted from this skeleton 

and a connected graph is formed. As in [11], possible segmentation points are found 

based on peaks and valleys of the skeleton. The segmentation path is computed using 

graph theory methods. The authors reported that the success rate is 88.75% with 2000 

images form NIST SD19 dataset. 

Sadri et al. combined a recognition-based algorithm with a genetic algorithm [9]. 

Before detecting the segmentation points, it uses a classifier to identify parts of digits, 

isolated digits and pairs of digits from the connected components. Segmentation paths 

are created using background and foreground skeleton. Then, all segmentation 

candidates are combined into a graph and a genetic algorithm searches all possible 

outputs. 96.5% success rate with 5000 touching pairs from NIST SD19 database.   

Ribas et al. [7] observed that although some algorithms have lower performances 

compared to the others, they may be able to achieve segmentation with some samples 

that others cannot. These algorithms could be used developing more reliable 

segmentation models. 

The segmentation algorithms using water reservoir concept proposed in [42] and [43] 

are the ones used as baseline in this thesis and they are explained in the next section. 
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2.1.2.1. Segmentation using Water Reservoir Concept 

Pal et al. [42] proposed a new method for segmenting handwritten touching numerals 

based on a concept named water reservoir. The reservoir concept is used to identify 

the regions where digits touch each other.  

The water reservoirs are obtained by dropping water from the top and bottom of an 

image and the locations where the water is accumulated are called the reservoir points. 

Using these reservoir points, the segmentation points are decided without any thinning 

and normalization processed done beforehand.  

First connected components are extracted from the image, then it is decided whether a 

connected component is isolated or touching. Then the segmentation is applied to the 

touching numerals.  

When two digits touch each, they create large reservoir space. The cutting points 

generally lies on the base of the reservoir. In order to get the best cutting scenario the 

attributes of the reservoir such as height and centre of gravity could be used.  

Firstly, the reservoirs are obtained based on the structure of the image containing 

touching digits. These reservoirs are grouped into two types as top and bottom 

reservoirs. Observing the base positions of these reservoirs and according to the types 

of the reservoirs, touching position of the digits is decided [42]. Then the touching 

position, close loops, heights of the reservoirs and centre of gravity of the reservoirs 

help decide the best cutting point.  
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Figure 2.4: Examples of top and bottom reservoirs of different types of touching 

numerals (obtained from [42]) 

 

 

The reservoirs are formed by dropping water from the top of the image and filling the 

appropriate regions that could accumulate water and then the image is rotated upside 

down and water pouring is applied to the rotated image. A threshold, T, is assigned in 

order to limit the heights of the reservoirs appropriate for the segmentation process. In 

[42], the threshold value is chosen to be 1/8 of the height of the connected component.  

The features chosen for segmentation by Pal et al. [42] are 

1. The number of reservoirs 

2. Location of reservoirs in the bounding box of the connected component 

3. Size and shape of the reservoirs 

4. Centre of gravity of reservoirs 

5. Relative position of reservoirs 

6. Number of closed loops 
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7. Locations of closed loops 

8. Centre of gravity of the closed loops 

9. The ratio of the height of the closed loops to the height of the connected 

component. 

Before applying segmentation, the connected component is classified whether it is 

an isolated digit or a touching digit string. 

Let 

N = number of closed loops 

𝐺𝑖(𝑥, 𝑦) = 𝐶𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑡ℎ  𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝  

𝑊 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠  

𝑅𝑗̅ =  𝑗𝑡ℎ 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟  

𝐺𝑗̅(𝑥, 𝑦) = 𝐶𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑗𝑡ℎ  𝑅𝑗̅  

𝑅𝐻𝑗
̅̅ ̅̅̅ = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑅𝑗̅  

𝑇 = 𝑁 + 𝑊  

𝑆𝐴 = 𝑓𝑢𝑛𝑐1(𝑁, 𝐺𝑖(𝑥, 𝑦)) = {
1, 𝑁 ≥ 2 𝑎𝑛𝑑 − 45° ≤ 𝜃 ≤ 45° 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , where 𝜃 is the 

angle between the CGs of two closed loops. 

𝑆𝐵 = 𝑓𝑢𝑛𝑐2 (𝑅𝐻𝑙
̅̅ ̅̅̅, 𝐺𝑙̅(𝑥, 𝑦)) = {

1, 𝑅𝐻𝑙
̅̅ ̅̅̅  ≥ 75% 𝑓𝑜𝑟 ∃𝑙 𝑎𝑛𝑑 𝐺𝑙̅(𝑥, 𝑦)  ∈ ℎ𝑚  

0,                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

Where ℎ𝑚 is the space between the horizontal lines that lies on 25% and 75% of 

the image. In other words, it is the middle portion of the image in the horizontal 

direction. 

𝑆𝐶 = 𝑓𝑢𝑛𝑐1(𝑊) = {
1,               𝑊 ≥ 4 
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The connected component is decided to be connected if SA or SC is 1. It is also 

determined as connected if SB is 1 and T is greater than or equal to 3. If SB is 1 and T 

is smaller than 3, then the connected component is decided to be confused. If none of 

the mentioned conditions are the case, then the connected component is isolated. 

The flowchart for the algorithm determining the connected component type is given in 

Figure 2.5. 
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Connected Component 
C

SA

0

SC

0

SB

1 C is connected

1 C is connected

0

C is isolated

1 T < 3

yes

C is confused

no C is connected

 

Figure 2.5: The classification algorithm deciding that a connected component is 

isolated, connected or confused. 
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Pal et al. [42] achieved 98.81% success rate using this method applied on 3800 

components from French bank checks in determining whether connected components 

are connected or isolated digits. 

After the classification of the component as isolated digit or touching digit string, 

touching numerals are segmented. In order to do so, the touching position of the digits 

is classified as top, middle or bottom. Then, the segmentation path is obtained based 

on closed loops, structural features and reservoir features. 

In order to classify the touching position of the numerals, the bounding box of the 

connected component is divided into three regions both horizontally and vertically. 

Horizontal and vertical regions are obtained dividing the image into three regions in 

horizontal and vertical directions. The region are divided in 1:2:1 fashion. Figure 2.6 

shows an example of the horizontal and vertical regions on a connected component. 

 

 

 

Figure 2.6: Horizontal and vertical regions of a connected component 
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From this point on, the largest reservoir whose centre of gravity lies in the vm region is 

found. This reservoir is called the best reservoir [42]. The row corresponding to the 

bottom of the reservoir, named baseline, is found. The algorithm for the touching 

position is applied.  

Let 

𝛿 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟  

𝑆 = {𝑓𝑅(𝑥𝑖, 𝑦𝑖)} = 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠  

𝐼𝑃 = ((𝑥1 + 𝑥𝑟) 2⁄ , (𝑦1 + 𝑦𝑟) 2⁄   

For a top reservoir, 

𝑥1 = max (𝑥𝑖) and 𝑦1 = min (𝑦𝑖) 

𝑥𝑟 = max (𝑥𝑖) and 𝑦𝑟 = max (𝑦𝑖) 

For the bottom reservoir, 

𝑥1 = min (𝑥𝑖) and 𝑦1 = min (𝑦𝑖) 

𝑥𝑟 = min (𝑥𝑖) and 𝑦𝑟 = max (𝑦𝑖) 

Where 𝑖 = 1,2, … , 𝛿 

From IP the touching region is determined.  

If 𝐼𝑃 ∈ ℎ𝑡, touching region = top region, 

If 𝐼𝑃 ∈ ℎ𝑚, touching region = middle region, 

If 𝐼𝑃 ∈ ℎ𝑏, touching region = bottom region, 

𝐿 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑙𝑦)  
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𝑅 = 𝑚𝑜𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑏𝑙𝑎𝑐𝑘 𝑟𝑢𝑛  

Pal et al. [42] proposed two segmentation algorithms for two cases. One of these cases 

is the connected components having two closed loops touching side by side and the 

other case is other touching components.  

For the first case, the number of closed loops and their positions are taken into account. 

If two close loops are side by side and touching each other, curve segment is applied 

through the middle of their touching segment. A starting point is detected from the 

touching region. A segmentation path is produced moving up and also moving down 

from the starting point until it reaches to a reservoir or a boundary of a component. 

The joint paths form the segmentation path which is named as curve segmentation. 

The starting point is found by drawing a line between centres of gravity of two close 

loops. The middle point of the points of this line lying in the touching region is 

assigned as starting point. 

For the second case, the segmentation is done by tracing the boundary of the reservoir 

clockwise until an obstacle is reached. An obstacle is defined as the vertical black run 

whose length is greater than 3R/2, where R is the most frequent black run. Then, the 

boundary is traced in the counter clockwise direction searching for another obstacle. 

The best obstacle should be chosen to determine the best segmentation path. If one of 

the obstacles is in the vm region, then this obstacle is chosen. If both of them are in the 

vm region, then the closest one to the largest close loop is chosen. If none of them is in 

the vm region the segmentation path is chosen at the middle of the obstacles.   

Pal et al. [42] named the proposed algorithm as NUM_SEGM algorithm which is 

defined as follows, 

Step 1: Detect best reservoir and find the touching position based on this reservoir. 

Step 2: Detect touching type. If the touching is loop–loop fashion, go to Step 5. 
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Step 3: Find initial points based on reservoir and find the best feature points based on 

confidence value (CV) calculated form the features extracted. 

Step 4: Find the best obstacle point. For top and bottom touching straight line 

segmentation is done at the best node point. For the middle touching the best associated 

point of the best node point is detected. Segmentation is done by joining the best node 

point and its associate point. Stop. 

Step 5: Detect start point. Segment according to the movement of starting point. Stop. 

Pal et al. [42] tested the proposed algorithm with 2250 touching digit pairs extracted 

from the courtesy amount field of French bank cheques and they claimed 94.8% 

success rate which is verified manually. 

Rui et al. [43] proposed a method merging drop-fall algorithms and the water reservoir 

concept explained earlier. The drop-fall algorithms creates a segmentation path by 

imitating an object falling or rolling in between two connected characters [44]. 

The drop-fall algorithms are proposed by Condego et al. [45]. The drop-fall algorithms 

are categorized in 4 types which are defined according to the starting point and the 

direction of the drop-fall which are ascending-left, ascending-right, descending-left 

and descending-right. Figure 2.7 illustrates 4 types of drop-fall algorithms. 
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Figure 2.7: 4 Categories of drop-fall algorithms [43]  

(a) Descend-left algorithm, (b) Descend-right algorithm, (c) Ascend-left algorithm, 
(d) Ascend-right algorithm 

 

 

The drop-fall algorithms are based on a principle that a hypothetical marble falls in 

between two characters and applies the segmentation where the marble stops.  

The important issue with the drop-fall algorithm is deciding where the marble start 

falling. Rui et al. [43] uses water reservoir concept in order to address this issue. They, 

first, divided touching numerals into categories. These categories are simple touching 

and multiple touching. 

Simple touching is the case where two numerals touch at a single location. Simple 

touching could be divided into two sub-categories which are single-segment touching 

and single-point touching. Single-segment touching is the case where there the touch 

occurs in a long continuous stroke. Moreover, single-point touching happens where 

two digits connect at one point with the help of a ligature. This ligature could belong 

to a digit or not.  

The single-point touching is also divided into 4 categories according to circumstances 

of ligatures. The ligature could belong to left, right, both or no digits.  

The multiple-touching case is the case where the touching occurs in multiple locations.  
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The categories of the touching numerals based on their touching style are illustrated in 

Figure 2.8. 

 

 

 

Figure 2.8: Different types of touching digits [43]  

Single-segment touching (b)-(e) single-point touching (f) multiple touching 

 

 

In [43], the structural features are examined in order to achieve accurate segmentation 

paths. They proposed a structural segmentation algorithms instead of recognition 

based algorithms in order to avoid recognition errors.  

Rui et al. used the water reservoir concept defined in [42] deciding which drop-fall 

algorithm would be used to create the segmentation path. First, an algorithm is applied 

in order to classify the connected component whether it is isolated digit or connected 

digits. In the second case, touching style of the connected digits needs to be 

determined. The features used in the algorithm is as follows, 

Let: 

𝑁𝑊𝑈 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑝 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠  

𝑁𝑊𝐷 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠  
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𝑁𝑊 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠  

𝐺𝑊𝑖 = 𝐶𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑊𝑖   

𝐵𝑊𝑖 = 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑊𝑖   

𝑁𝐿 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝𝑠  

𝐺𝐿𝑘 = 𝐶𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝 𝐿𝑘  

𝐵𝐿𝑘 = 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝 𝐿𝑘  

𝑓ℎ𝑜(𝐴, 𝐵) = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑒 𝐴 𝑎𝑛𝑑 𝐵  

𝑓𝑣𝑜(𝐴, 𝐵) = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑒 𝐴 𝑎𝑛𝑑 𝐵  

𝑓ℎ𝑑(𝐴, 𝐵) = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑒 𝐴 𝑎𝑛𝑑 𝐵  

𝑓𝑣𝑑(𝐴, 𝐵) = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑒 𝐴 𝑎𝑛𝑑 𝐵  

The pseudo code for the algorithm is given in Figure 2.9[43], 
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IF NL ≥ 2 

IF ( ∃ Lk,Ll) fvo (BLk,BLl) > 0 

IF ( ∃ Lk) GLk∈vm THEN s=3 

ELSE IF fhd (BLk,BLl ) >3·SW THEN s=2 

ELSE s=1 

ELSE IF ( ∃ Lk,Ll) fvd (BLk, BLl )>1.5·SW 

IF NW >0 OR fhd (BLk,BLl )>3·SW 

THEN s=2 

ELSE s = 1 

ELSE IF (∀ Lk) width(BLk) < 2/3·CW 

THEN s=3 

ELSE s = 0 

ELSE 

IF NW ≥ 3 THEN s=2 

ELSE IF ( ∃Wi ,Wj) fho (BWi , BWj ) > 0 

THEN s=2 

ELSE IF NWU = 2 

IF ( ∃Wi ,Wj) max(width(BWi),width(BWi)) < 2/3·CW 

THEN s=2 

ELSE s = 0 

ELSE IF ( ∃Wi) height (BWi ) ≥3/4·CH ∧ GWi ∈vm 

THEN s=2 

ELSE IF NL=1 

IF GLk ∈hm 

IF width(BLk)<2/3·CW 

IF NW=0 THEN s=3 

ELSE s=2 

ELSE s = 1 

ELSE 

IF NW > 0 THEN s=1 

ELSE s=0 

ELSE s=0 

Case s=0:  isolated 

Case s=1:  single-segment touching 

Case s=2:  single-point touching 

Case s=3:  multiple-segment touching 

 

  
Figure 2.9: Algorithm for touching style classification [43] 
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After the touching pattern is classified using this algorithm, the drop-fall algorithm is 

applied to the connected digits. 

If the touching pattern is single-segment touching, then a descending-left algorithm is 

applied in the top reservoir or ascending-left algorithm is applied in the bottom 

reservoir. 

If the touching pattern is classified as single-point touching, then the drop-fall 

algorithm is chosen according to the types of the single-point touching numerals 

described earlier. If the component has top reservoir and no bottom reservoir, then it 

is type-1, where the ligature belongs to the left digit. In this case descending-left 

algorithm is applied in the top reservoir.  

If the component has bottom reservoir and no top reservoir, then it is type-2, where the 

ligature belongs to the right digit. In this case ascending-right algorithm is applied in 

the bottom reservoir. 

If the component has both top and bottom reservoir and their bounding boxes overlap 

in both horizontal and vertical directions, then it is type-3, where the ligature belongs 

to the both digits. In this case there are two possibilities. According to the middle 

positions of the top and bottom reservoir baselines, if the middle point of the top 

reservoir’s baselines lies at left side of the baseline of the bottom reservoir, then 

ascending-left algorithm is applied. 

If the middle point of the top reservoir lies at the right side of the baseline of the bottom 

reservoir, then ascending-right algorithm is applied. 

If the component has both top and bottom reservoirs and their bounding boxes overlap 

in the horizontal direction not in the vertical direction, then it is type-4, where the 

ligature belongs to no digit. In this case descending-left algorithm is applied in the top 

reservoir. 

If the touching pattern is classified as multiple touching digits and only one close loop 

is obtained then descending-left or ascending-left algorithm could be applied from the 
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centre of the loop. If there are more than one loops, the loop whose centre is in vm is 

chosen or the nearer to the centre of the touching component is chosen, then 

descending-left or ascending-left algorithm is applied. 

Rui et al. [43] tested the proposed method with NJUST603HW dataset containing 623 

binary images of digit strings, which are courtesy amount part of Chinese bank checks. 

The performance of the touching style classification algorithm was claimed to be 

98.29% with 5374 sub-images. The proposed segmentation method was applied to 

1557 sub-strings of touching numerals and 96.66% success rate was reached which is 

verified manually.   

2.1.3. Handwritten Digit Recognition 

After segmentation of the digit string is achieved successfully, separated digits must 

be classified in order to get the actual value of the digit string. Digit string recognition 

methods can be categorized into two sub-categories which are neural network based 

methods and other prominent methods. This thesis study is based on neural network 

methods. 

Neural network is a group of interconnected artificial neurons which processes the data 

using its connections. The structure of the neural network is updated during the training 

process.  

Leroux et al. [16] proposed combining a radial basis function and a time delay neural 

network (TDNN) for isolated digit classification. The radial basis function which is 

used in this study employed a concavity feature vector. In this context, the RBF is a 

neural network with three layers and the TDNN is a multilayer perceptron.  

Liazaragga et al. [17] divided the set of features in two groups. The first group consists 

of holes and their relative locations, number of intersections with the principal and 

secondary axis and crossing sequences whereas the other group contains distribution 

of foreground pixels and the relative positions of intersecting strokes. The 
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classification procedure in this algorithm has two stages. First rule based classification 

is applied. Then Hopfield Neural Network (HNN) is used to finalize classification.  

Hinton et al. [18] prosed a fast learning algorithm for deep belief nets. They showed 

that it is possible to train a deep, densely connected, belief network one layer at a time. 

After learning process is completed for each layer, weights are untied from the weights 

of the higher layers. They reported 98.75% recognition rate with MNIST database 

containing segmented and normalized handwritten digits. They argued that the only 

machine learning technique that come close to 1.25% error rate is a support vector 

machine (SVM) with a recognition rate of 98.6% [19]. It is also stated that this error 

rate could be improved by using weight sharing and sub-sampling. 

2.1.4. Survey on Handwritten Digit String Segmentation Algorithms on CVL 

Strings Dataset 

This section discusses different handwritten digit string recognition methods on CVL 

Strings dataset and their results. Moreover, this section includes the results of HDSRC 

competition of ICDAR on handwritten digit string recognition [29].  

A-1. In the method proposed by Wu et al. [30], firstly, the input image is classified 

into two subclasses as simple or complex image using a neural network. Then, 

a simple image is thresholded using Otsu’ method. While a complex image is 

thresholded using Sauvola Method after two Multilayer Perceptron neural 

networks are used to clean and enhance the image. After thresholding is done, 

connected components are extracted and slant-correction is done on the 

connected components. The connected components that are heavily overlapped 

in the horizontal direction are merged together. After that, according to the 

estimated string height, the connected components that have large width are 

considered as potential touching multiple numerals. These potential touching 

numerals are split using upper/lower profile curve analysis generating vertical 

cuts [31]. As a result, the digit string is split into primitive image segments. 

These segments are combined together in order to generate candidate digit 
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patterns and for a segmentation candidate lattice. All of the paths from the start 

node towards the end node represent a candidate segmentation. A polynomial 

classifier with gradient direction histogram feature is used for classification of 

the candidate patterns. The digit classifier and binary class-dependent 

geometric model are combined together using confidence transformation in 

order to evaluate the segmentation path [32]. This method has achieved 85.3% 

recognition rate on CVL Strings Database. 

A-2.  [33] Leite and Zanchettin designed a system combining multiple classifiers. 

First a preprocessing algorithm is applied in order to eliminate non-digit 

structures [34]. For the thresholding an MLP neural network is used to choose 

the best threshold for a set of pixels in the image [35]. In this method, a 

combination of two hybrid classifiers is used. One of them is a model which is 

a combination of k-NN and SVM that increases accuracy in highly similar 

situations. The other classifier is a combination of Multidimensional Recurrent 

Neural Networks (MDRNN) [36] and SVM [37]. Using this classifier, an 

improvement on the accuracy is achieved on highly connected digits without 

segmenting them. This algorithm achieved 58.6% recognition rate on CVL-

Strings dataset. 

A-3. Lu and Lu [38] proposed a method that applies the segmentation based on 

adaptive binarization and connected component analysis (CCA). Then 

character classifiers, such as SVM, self-organizing map (SOM) and 

backpropagation, are used to recognize segmented digits. The recognition rate 

of this method is 48.9% on CVL Strings dataset. 

A-4. Gattal et al. [39] applied a forward segmentation strategy based on oriented 

sliding window [40] and [41]. This method uses contour and skeleton points as 

structural features. Radon transform is applied on the connected digits in order 

to get the orientation of the sliding window. In order to extract the digits that 

are not overlapped, the histogram of vertical projection is applied. If the 

extracted digit could not be classified, then it is considered that the image 
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contains multiple digits. In this case, oriented sliding window algorithm is 

applied. The algorithm is summarized as 

a. Base points (BP) and Interconnection points (IP) are generated. BPs are 

extracted from the local extrema detected on the contour whereas IPs 

are calculated using Freeman code. 

b. The sliding window is set to IPs positions. 

c. Oriented window is crossed around IPs with an angle in order to find 

the cutting path. 

d. All possible relationships of BPs and IPs are scanned. The possible 

relations are [41] 

i. If the Euclidean Distance between projection BP and IP is lower 

than a threshold, then the cut is between IP and upper BP and 

between IP and lower BP. 

ii. If the lower segment of IP is related to upper segment of IP and 

they are both close to a BP, the skeleton path linking IPs is used 

as a part of a segmentation cut. 

iii. If there is no IP on the skeleton path, although there is 

connection of digits, the segmentation path is placed based on 

the minimal Euclidean distance between upper and lower BP. 

e. The correct segmentation path is evaluated using SVM. 

This algorithm achieved 59.3% recognition rate on CVL Strings dataset. 

2.1.5. Evaluation Metrics 

Two evaluation metrics are used in ICDAR competitions. First of them is the hard 

metric, it basically measures the recognition rate which is the number of correctly 

recognized digit strings divided by total test samples. 

Another metric is the soft metric. It is defined in order to find how close the 

misclassified digit string is to the actual value. This metric is Normalized Levenshtein 

Distance (NLD) [29]. It is the normalized version of the Levenshtein Distance (LD). 
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It is used in order to eliminate the effect of the string length to the performance. NLD 

is defined by the following equation, 

𝑁𝐿𝐷(𝑎𝑇 , 𝑎𝑅) =
𝐿𝐷(𝑎𝑇 , 𝑎𝑅)

|𝑎𝑇|
 

Where |𝑎𝑇| is the length of the string 𝑎𝑇, |𝑎𝑅| is the length of the string 𝑎𝑅  and LD is 

the Levenshtein distance. Levenshtein distance is a string metric measuring the 

difference between two strings. It is defined as minimum number of single character 

edits required to convert one string to another. 

After NLD is calculated, average NLD is calculated in order to reliably compare 

different methods.  

𝐴𝑁𝐿𝐷 =
∑ 𝑁𝐿𝐷(𝑎𝑇

𝑖 , 𝑎𝑅
𝑖𝑇

𝑖=1 )

𝑇
 

Where T is the number of test samples. Since ANLD is an inverse performance metric, 

low values indicate better performance whereas high values are worse. 
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2.1.6. Comparison of Algorithms 

 

 

 

Figure 2.10: The Recognition Rate of Described Algorithms on CVL Database 

B1: Wu et al. [30], B2: Leite & Zanchettin [33], 

B3: Lu & Lu [38], B4: Gattal et al. [39] 
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Figure 2.11: The Average NLD of Described Algorithms on CVL Database 

B1: Wu et al. [30], B2: Leite & Zanchettin [33], 

B3: Lu & Lu [38], B4: Gattal et al. [39] 

 

 

2.2. Datasets 

In this study, two datasets are used. MNIST database is used for the training set of the 

handwritten digit recognition algorithms. CVL-Strings databases is used for the 

segmentation algorithms. 
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2.2.1. MNIST Dataset 

This database contains 60 thousand training samples and 10 thousand test samples of 

handwritten digits from 0 to 9. Each image on this database is 28x28 pixels. The digits 

in this database are size-normalized and centred [20].  

 

 

 

Figure 2.12: Examples of digits in MNIST database. 

 

 

2.2.2.  CVL-Strings Dataset 

This database contains 10 different digit strings from about 120 writers resulting in 

1262 training images and 6698 test samples [21]. The lengths of the strings change 

from 5 to 7 averaging 6.1 digit length.  
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Strings Value Sample 1 Sample 2 

String 1 2500 

 
 

String 2 135579 

  

String 3 136075 

  

String 4 359910 

  

String 5 609251 

  

String 6 886439 

  

String 7 944361 

  

String 8 4179248 

  

String 9 5841077 

  

String 10 7062543 

  

Table 2.2: Some examples of 10 different strings from CVL-strings database 
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2.3. Background Information 

In this part, background information about the methods which are implemented in this 

thesis will be given. 

2.3.1. Otsu Thresholding 

In Otsu thresholding [3], the goal is to find a threshold value to cluster data into two 

groups minimizing within cluster variances, thus maximizing between cluster 

variances. It can be used to convert grayscale images to binary images. 

The weighted sum of within cluster variance is defined as: 

𝜎𝑤
2 (𝑡) = 𝑤1(𝑡)𝜎1

2 + 𝑤2(𝑡)𝜎2
2     (2.1) 

Where, 𝜔𝑖 is the probability of occurrence for class i that is separated by threshold t. 

𝜔1(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=1 , 𝜔2(𝑡) = ∑ 𝑃(𝑖)𝐼

𝑖=𝑡+1    (2.2) 

Therefore, mean of each cluster is calculated by 

𝜇1(𝑡) = ∑
𝑖𝑃(𝑖)

𝜔1(𝑡)

𝑡
𝑖=1 , 𝜇2(𝑡) = ∑

𝑖𝑃(𝑖)

𝜔2(𝑡)

𝐼
𝑖=𝑡+1    (2.3) 

Moreover, individual class variances are defined as 

𝜎1(𝑡) = ∑ [𝑖 − 𝜇1(𝑡)]2 𝑃(𝑖)

𝜔1(𝑡)

𝑡
𝑖=1     (2.4) 

𝜎2(𝑡) = ∑ [𝑖 − 𝜇2(𝑡)]2 𝑃(𝑖)

𝜔2(𝑡)

𝐼
𝑖=𝑡+1     (2.5) 

When all possible threshold, t, values are attempted, the threshold value that minimizes 

𝜎𝑤
2 (𝑡) could be found. 
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In order to decrease the computational cost, a faster method could be generated using 

recursive operations. This calculation exploits the definition that for any threshold, the 

total variance is the weighted sum of within cluster variances and the between cluster 

variance (sum of weighted squared distances between the class means and the overall 

mean). The total variance can be written as, 

𝜎2 = 𝜎𝑤
2 (2) +  𝜔1(𝑡)[1 − 𝜔1(𝑡)][𝜇1(𝑡) − 𝜇2(𝑡)]2  (2.6) 

Since the total variance is constant, maximizing the between cluster variance could be 

used instead of minimizing within cluster variances. This yields to the recursive 

computation of between cluster variance. 

The algorithm is as follows, 

 Compute the normalized histogram of the input image 

 Compute the global mean 

 For each possible threshold value compute the between cluster variance 

 Choose the threshold value that maximizes the between cluster variance. 

2.3.2. Deep Learning 

Deep learning is a set of algorithms in machine learning that attempt to learn multiple 

levels of representation, corresponding to different layers of abstraction. It typically 

uses artificial neural networks. Main interest of this thesis on this concept is Deep 

Belief Networks.   

Deep belief networks (DBN) is a probabilistic model with multiple layers of stochastic 

of variables. Each connected pair of DBN forms directed sigmoid belief network 

except for the top two layers that form an undirected graph. Each layer of the DBN 

contains high order relations of the features in the preceding layer.  

Hinton et al. [18] introduced an unsupervised learning algorithm for this structure 

utilizing greedy layer wise training to learn a deep network.  
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DBNs are composed of energy based models which are mostly Restricted Boltzmann 

Machines (RBM).  

2.3.2.1. Restricted Boltzmann Machines 

Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with restricted 

connectivity. In RBM, there are two layers called as visible (v) and hidden (h) layers. 

While the units in one layer are fully connected to the units in the other layer, the units 

in the same layer are not connected to each other. The connection in the RBM between 

visible and hidden layers are symmetric. 

𝑊𝑖𝑗 = 𝑊𝑗𝑖        (2.7)  

Where, 

𝑖 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑙𝑎𝑦𝑒𝑟, 

𝑗 ∈ ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟  
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Supposing the RBM consists of visible units, 𝑣 𝜖 {0,1}𝐷, and hidden units, ℎ 𝜖 {0,1}𝐹 . 

The energy function is defined as: 

𝐸(𝑣, ℎ; 𝜃) = −𝑣𝑇𝑊ℎ − 𝑏𝑇𝑣 − 𝑎𝑇ℎ      (2.8) 

𝐸(𝑣, ℎ; 𝜃) =  − ∑ ∑ 𝑊𝑖𝑗
𝐹
𝑗=1

𝐷
𝑖=1 ℎ𝑖𝑣𝑗 − ∑ 𝑏𝑗

𝐷
𝑗=1 𝑣𝑗 − ∑ 𝑎𝑖ℎ𝑖

𝐹
𝑖=1   (2.9) 

Where  𝜃 = {𝑊, 𝑏, 𝑎} are the network parameters. 

𝑾𝒊𝒋 represents weights between each visible and hidden unit pair, 

𝒃𝒋 and 𝒂𝒊 represent bias terms. 

The joint probabilistic distribution 𝑃(𝑣, ℎ; 𝜃) of the RBM states (v, h) depends on the 

energy of the state.  

𝑃(𝑣, ℎ; 𝜃)  =  
1

𝑍(𝜃)
𝑒−𝐸(𝑣,ℎ,𝜃)     (2.10) 

Where, 

Figure 2.13: RBM Structure 
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𝑍(𝜃) = ∑ ∑ 𝑒−𝐸(𝑣,ℎ,𝜃)
ℎ𝑣      (2.11) 

𝑍(𝜃) is the normalizing constant. Then the probability of the vector of the visible layer 

is 

𝑃(𝑣; 𝜃)  =  
1

𝑍(𝜃)
∑ 𝑒−𝐸(𝑣,ℎ,𝜃)

ℎ      (2.12) 

𝑃(𝑣; 𝜃)  =  
1

𝑍(𝜃)
∑ 𝑒𝑣𝑇𝑊ℎ+𝑏𝑇𝑣+𝑎𝑇ℎ

ℎ     (2.13) 

𝑃(𝑣; 𝜃)  =  
1

𝑍(𝜃)
𝑒𝑏𝑇𝑣 ∏ ∑ 𝑒𝑎𝑗ℎ𝑗+∑ 𝑊𝑖𝑗𝑣𝑖ℎ𝑗

𝐷
𝑖=1

ℎ𝑗∈{0,1}
𝐹
𝑗=1  (2.14) 

𝑃(𝑣; 𝜃)  =  
1

𝑍(𝜃)
𝑒𝑏𝑇𝑣 ∏ (1 + 𝑒𝑎𝑗+∑ 𝑊𝑖𝑗𝑣𝑖

𝐷
𝑖=1 )𝐹

𝑗=1   (2.15) 

Thus, the effect of hidden units is marginalized out.  

The RBM can be interpreted as stochastic neural network. The conditional probability 

of a single variable being 1 can be explained as the firing rate of a neuron with sigmoid 

activation function.  

𝜎(𝑥) =  1
1 +  𝑒−𝑥⁄       (2.16) 

The conditional probabilities over h and v can be derived using the joint distribution. 

𝑃(ℎ|𝑣; 𝜃) = ∏ 𝑝(𝑣𝑖|ℎ)𝑗      (2.17) 

𝑃(𝑣|ℎ; 𝜃) = ∏ 𝑝(ℎ𝑗|𝑣)𝑖      (2.18) 

𝑝(ℎ𝑗 = 1|𝑣) =  𝜎(∑ 𝑊𝑖𝑗𝑣𝑖 +  𝑎𝑗𝑖 )    (2.19) 

𝑝(𝑣𝑖 = 1|ℎ) =  𝜎(∑ 𝑊𝑖𝑗ℎ𝑗 +  𝑏𝑖𝑗 )    (2.20) 

 

The derivative of the probability function of visible layer with respect to  𝜃 is  
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𝜕log (𝑝;𝜃)

𝜕𝑊
= 𝐸𝑃𝑑𝑎𝑡𝑎

[𝑣ℎ𝑇  ] − 𝐸𝑃𝑀𝑜𝑑𝑒𝑙
[𝑣ℎ𝑇  ]    (2.21)  

𝜕log (𝑝;𝜃)

𝜕𝑎
= 𝐸𝑃𝑑𝑎𝑡𝑎

[ℎ ] − 𝐸𝑃𝑀𝑜𝑑𝑒𝑙
[ℎ ]     (2.22) 

𝜕log (𝑝;𝜃)

𝜕𝑏
= 𝐸𝑃𝑑𝑎𝑡𝑎

[𝑣 ] − 𝐸𝑃𝑀𝑜𝑑𝑒𝑙
[𝑣 ]    (2.23) 

where 𝐸𝑃𝑑𝑎𝑡𝑎
 is the expectation of the data distribution 𝑃𝑑𝑎𝑡𝑎(ℎ, 𝑣; 𝜃) and 𝐸𝑃𝑀𝑜𝑑𝑒𝑙

 is 

the expectation of the distribution of the model. In training RBM, 𝜃 is updated so that 

the expectation of the model distribution 𝐸𝑃𝑀𝑜𝑑𝑒𝑙
 gets closer to the expectation of the 

data distribution 𝐸𝑃𝑑𝑎𝑡𝑎
. In other words,  𝜃 is updated in the direction of gradient of 

the objective function. However, the computational cost of the calculation of the  

𝐸𝑃𝑀𝑜𝑑𝑒𝑙
 is quite large as it increases exponentially with respect to total number units in 

the RBM. Therefore, Hinton [24] introduced “Contrastive Divergence” function which 

is an approximation to the gradient of objective function [44] 

∆𝑊 = 𝛼(𝐸𝑃𝑑𝑎𝑡𝑎
[𝑣ℎ𝑇  ] − 𝐸𝑃𝑇

[𝑣ℎ𝑇  ])    (2.24) 

where 𝛼 is the learning rate and 𝑃𝑇 is a distribution defined by running Gibbs chain 

for T steps initializing at the data. This contrastive divergence function converges to 

maximum likelihood when T goes to infinity. 

 When an input is given to the visible units of the RBM, a sample for the hidden layer 

according to the probability distribution is chosen. Then reconstruction is done using 

the chosen sample from the hidden unit, and using the contrastive divergence method 

the weight matrix is updated. 

2.3.2.2. Training Deep Belief Networks 

Deep belief networks (DBN) are composed of one visible layer which is the input layer 

and multiple hidden layers. DBNs are formed by stacking multiple layers of RBMs. 

The top two layers of the DBN form an RBM and lower layers form a directed sigmoid 

belief network. 
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A greedy learning algorithm is applied to the deep belief networks. Considering a DBN 

with two hidden layers (h1 and h2) of the same size and a visible layer (v). The joint 

distribution of this model is given as 

𝑃(𝑣, ℎ1, ℎ2; 𝜃) = 𝑃(𝑣|ℎ1; 𝑊1)𝑃(ℎ1, ℎ2; 𝑊2)  (2.25) 

Where 

𝜃 = {𝑊1, 𝑊2}       (2.26) 

𝑃(𝑣|ℎ1; 𝑊1) = ∏ 𝑝(𝑣𝑖|ℎ
1; 𝑊1)𝑖     (2.27) 

𝑝(𝑣𝑖 = 1|ℎ1; 𝑊1) = 𝑔(∑ 𝑊𝑖𝑗
1 ℎ𝑗

1
𝑗 )    (2.28) 

𝑃(ℎ1, ℎ2; 𝑊2) =
1

𝑍(𝑊2)
𝑒ℎ1𝑇

𝑊2ℎ2
    (2.29) 

Since 𝑊2 = 𝑊1𝑇
, DBN’s joint distribution is equal to RBM’s joint distribution. 

𝑃(𝑣, ℎ1; 𝜃) = 𝑃(𝑣|ℎ1; 𝑊1)𝑥 ∑ 𝑃(ℎ1, ℎ2; 𝑊2)ℎ2   

𝑃(𝑣, ℎ1; 𝜃) =
1

𝑍(𝑊1)
𝑒𝑊𝑖𝑗

1𝑣𝑖ℎ𝑗
1

     (2.30) 

The greedy algorithm explained here takes the DBN as a stack of RBMs. First, the 

bottom RBM is trained and W1 is computed. Then W2 is initialized as 𝑊2 = 𝑊1𝑇
. Let 

𝑄(ℎ1|𝑣) be any approximating distribution, then the log-likelihood of the DBN model 

has lower bound. 

log 𝑃(𝑣; 𝜃) ≥ ∑ 𝑄(ℎ1|𝑣)[log 𝑃(ℎ1; 𝑊2) + 𝑙𝑜𝑔𝑃(𝑣|ℎ1; 𝑊1)] + 𝐻(𝑄(ℎ1|𝑣))

ℎ1

 

Where H is the entropy function. Then 𝑄(ℎ1|𝑣) is set to 𝑃(𝑣|ℎ1; 𝑊1) defined by the 

bottom RBM. Then W1 is frozen and better model for P(h1;W2) is searched maximizing 

lower bound defined previously.  
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∑ 𝑄(ℎ1|𝑣)𝑙𝑜𝑔𝑃(ℎ1; 𝑊2)ℎ1      (2.31) 

This idea could be improved to training DBN with more hidden layers. The joint 

distribution and approximate posterior of the DBN with L layers are given by 

𝑃(𝑣, ℎ1, … , ℎ𝐿) = 𝑃(𝑣|ℎ2) … 𝑃(ℎ𝐿−2|ℎ𝐿−1)𝑃(ℎ𝐿−1|ℎ𝐿)  

𝑄(ℎ1, … , ℎ𝐿|𝑣) = 𝑄(ℎ1|𝑣)𝑄(ℎ2|ℎ1) … 𝑄(ℎ𝐿|ℎ𝐿−1)  (2.32) 

In order to produce approximate sample from the DBN, a Gibbs Sampler could be 

done generating hL-1 from P(hL-1,hL) [25]. Then a top-down approach is applied through 

the DBN activating each layer. In order to produce an exact sample from Q, 

approximate posterior distribution, a bottom-up approach is applied activating each 

layer.  

Increasing number of layers, adding a layer of features, improves variational lower 

bound on the log probability of the training data. Each RBM converts its data 

distribution into an aggregated posterior distribution over its hidden layer. Firstly, 

generative weights are learned so as to convert aggregated posterior distribution over 

hidden layer into the data distribution. Then, aggregated posterior distribution is 

modelled.  

Training is done using an unsupervised greedy manner. More precisely, each layer is 

treated separately and successively trained in a greedy manner. Then a supervised fine-

tuning is applied to the whole network. The algorithm is as follows: 

 Construct an RBM with an input and a hidden layer.    

 Train the constructed RBM 

 Stack another hidden layer on top of the constructed RBM and form a new 

RBM. 

 Fix the weights of the first RBM, take a sample from the hidden layer of the 

first RBM using the probability distribution and use this sample as an input to 

the new RBM. 

 Continue to stack layers on top of the network and train in the same manner.  
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 Finally, do the supervised fine-tuning to the constructed neural network. 

Different fine-tuning algorithms are proposed for deep belief nets. In this study fine-

tuning with back propagation is used. For this purpose, the resulting DBN is 

considered as multilayer neural network and conventional back propagation algorithm 

is applied with the calculated connection weights in the unsupervised training. This is 

done in a supervised manner using labelled data. The advantage of using DBN and 

applying back propagation afterwards is a good and fast performance could be 

achieved with a very few labelled data. 

 

 

Unsupervised Learning

Supervised Learning
 

Figure 2.14: DBN Structure 
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2.3.3. Support Vector Machines 

Support Vector Machines (SVM) performs classification between two classes by 

finding a decision surface that is based on the most informative points on the training 

set. The aim of this approach is to find a separating hyperplane that classifies two 

classes of data with the largest margin. The shortest distance between samples of two 

classes that are closest to the separating hyperplane is called the margin.  

The theory behind support vector machines claims that the distance of all samples, xi, 

to the decision boundary should be as large as possible. In this way, the decision 

boundary becomes more robust. Support vector machines maximizes the distance 

between the decision boundary and the closest training samples.  

These constraints could be defined for the separating hyperplane of two linearly 

separable classes. 

𝑤. 𝑥𝑖 + 𝑏 ≥  +1, 𝑦𝑖 = +1   (2.33) 

𝑤. 𝑥𝑖 + 𝑏 ≤  −1, 𝑦𝑖 = −1   (2.34) 

The constraints defined in equations 2.33 and 2.34 can be combined as follows, 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)  ≥  +1, ∀𝑖    (2.35) 

 

Where 𝒚𝒊 is the label of each sample, 𝒙𝒊 is the feature vector of each sample and 𝒘 is 

the normal to the separating hyperplane. From these equations, 
𝒃

||𝒘||
  is the distance 

from the hyperplane to the origin and ||𝒘|| is the Euclidean norm of the surface.  

The margin, that is the distance between the hyperplanes having the same normal 

passing through the closest samples from each class, is 
𝟐

||𝒘||
. 



45 

 

 

Figure 2.15: SVM with two classes 

 

 

In order to find the separating hyperplane with maximum margin, we need to solve the 

optimization problem maximizing the calculated distance 
𝟐

||𝒘||
, thus minimizing  

 
𝟏

𝟐
||𝒘||𝟐  under constraints  𝒚𝒊(𝒘. 𝒙𝒊 + 𝒃)  ≥  +𝟏, ∀𝒊. 

Using the method of Langrange Multipliers, this optimization problem is expressed as,  

min 𝐿(𝑤, 𝑏, 𝛼) =  
1

2
 ||𝑤||2 −  ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖𝑤 + 𝑏) +  ∑ 𝛼𝑖

𝑙
𝑖=1

𝑙
𝑖=1  (2.36) 

Where 𝜶𝒊’s are the Lagrange multipliers. For minimizing this equation with respect to 

w and b, the Karush-Kuhn-Tucker conditions are used. The KKT conditions state that 

w, b and 𝜶 should satisfy the following conditions. 

 

𝜕𝐿(𝑤,𝑏,𝑎)

𝜕𝑤
= 𝑤𝑣 −  ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑣 = 0𝑖  , 𝑣 = 1, … , 𝑑    (2.37)  

𝜕𝐿(𝑤,𝑏,𝑎)

𝜕𝑏
= − ∑ 𝛼𝑖𝑦𝑖 = 0𝑖      (2.38) 
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𝑦𝑖(𝑥𝑖. 𝑤 + 𝑏) − 1 ≥ 0, ∀𝑖     (2.39)  

𝛼𝑖 ≥ 0, ∀𝑖       (2.40) 

𝛼𝑖(𝑦𝑖(𝑥𝑖. 𝑤 + 𝑏) − 1) = 0, ∀𝑖    (2.41) 

The first KKT condition defines the optimal hyperplane that separates individual 

classes 

𝑤∗ =  ∑ 𝛼𝑖
∗

𝑖

𝑦𝑖𝑥𝑖 

whereas the second condition defines a requirement for 𝜶𝒊 coefficients. 

∑ 𝛼𝑖
∗

𝑛

𝑖=1

𝑦𝑖 = 0, 𝛼𝑖
∗ ≥ 0  

At this point, the derivatives of L with respect to w and b must vanish the following 

KKT conditions. By substituting equations 2.37 and 2.38 into equation 2.16, the 

following formulation is obtained. 

max
𝛼

𝐿𝐷 = ∑ 𝛼𝑖

𝑖

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖. 𝑥𝑗              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

∑ 𝛼𝑖𝑦𝑖
𝑖

= 0

𝛼𝑖 ≥ 0𝑖,𝑗

 

Therefore solving this optimization problem, 𝛼𝑖 coefficients are obtained. The samples 

that yield     𝛼𝑖 > 0 are called the support vectors. The support vectors lie on the 

hyperplanes that defines the closest hyperplane consisting samples to the separating 

hyperplane. In order to find the solution for w, the normal to the optimal separating 

hyperplane, only the support vectors are needed. Therefore, the decision function for 

SVM becomes, 

𝑓(𝑥) =  𝑤𝑇𝑥𝑖 + 𝑏 = ∑ 𝑦𝑖𝛼𝑖(𝑥𝑖
𝑇𝑥) + 𝑏

𝑀

𝑖=1
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𝑠𝑔𝑛(𝑓(𝑥)) determines the class of a new sample, x.   

Moreover, positive slack variables, 𝜉𝑖, are introduced in order to relax the constraints 

defined previously. This is needed when the training samples cannot be seperated by 

a hyperplane. Even if the data is linearly seperable, definition pf positive slack 

variables prevents overfitting of the separating hyperplane. Basically, by defining 𝜉𝑖, 

we permit a number of instances to be inside the margin or in the area of other class. 

The number of these instances depends on 𝜉𝑖 value. As 𝜉𝑖 increases, also the number 

of instances being in the other side of the marginal hyperplane also increases. 

 

 

 

Figure 2.16: Definition of slack variables 

 

 

 

In addition to that, using ‘kernel trick’, mapping the samples into higher dimensional 

feature space, SVM can perform nonlinear classification. The training data is mapped 

to another Euclidean space by Φ. The only difference that this mapping would yield is 
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that instead of computing dot products 𝒙𝒊. 𝒙𝒋, the dot products 𝚽(𝒙𝒊). 𝚽(𝒙𝒋) are taken 

into account. Mapping all the samples by 𝚽  would be computationally expensive. 

However, using kernel function corresponding to the dot product, 𝐾(𝑥𝑖, 𝑥𝑗) =

 Φ(𝑥𝑖). Φ(𝑥𝑗), decreases the computational cost. Therefore, the optimization problem 

can be expressed as, 

max
𝛼

𝐿𝐷 = ∑ 𝛼𝑖𝑖 −
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

∑ 𝛼𝑖𝑦𝑖𝑖 = 0
𝛼𝑖 ≥ 0𝑖,𝑗  

 (2.42) 

 

The kernel functions used in the experiments are listed below. 

 RBF kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  exp (
−||𝑥𝑖−𝑥𝑗||2

2𝜎2 ) 

 Polynomial kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  (〈𝑥, 𝑦〉)𝑑 

 Linear kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  〈𝑥, 𝑦〉 

 Sigmoid Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  tanh(𝛾〈𝑥, 𝑦〉 −  𝜃) 

Where < a, b> denotes the inner product of a and b. 

 

 

 

 

Figure 2.17: The Kernel Trick (a): data is not linearly separable, (b): nonlinear 

surface is defined for separation, (c): linear surface for mapped samples. 
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Although, SVM is inherently a two-class classifier, in order to classify datasets having 

multiple classes, a multiclass SVM method is needed. The most common thing to do 

so is building a one-versus-rest classifier. It is done by generating N different 

classifiers for each class.  

Another method is to build N(N-1) one-versus-one classifiers to separate each pair of 

classes, but there is a possibility of an ambiguous region in this method.  

There are great number of techniques solving multiclass classification problem, but 

these are the simplest ones and they work good enough with properly tuned classifiers. 

The choice between two options mainly depends on the computational complexity. 

One-versus-rest method requires O(N) classifiers whereas one-versus-one method 

requires O(N2) classifier. Although, one-versus-one method require more classifiers, 

the size of the subset of dataset containing related exemplars related to each classifier 

is a lot smaller. Thus, it becomes faster and more memory efficient. 

 

 

 

(a)      (b) 

Figure 2.18: Multiclass SVM algorithms [46]  

(a: one-versus-one classifier, b: one-versus-rest classifier) 
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CHAPTER 3 

3. PROPOSED APPROACH AND EXPERIMENTAL RESULTS 

The block diagram of the approach followed in order to solve the handwritten digit 

recognition problem is given in Figure 3.1.  

First a preprocessing part is applied. This part contains all the algorithms applied from 

the digitization of the image to segmentation. After the digitization, grayscale image 

is calculated. Then thresholding is applied using Otsu’s method to obtain binary 

images and it is resized keeping the aspect ratio fixed so that all images have the same 

height. Finally, morphological operators are used to remove the noise in the image.  

After the preprocessing is completed segmentation part is applied. Here, two 

algorithms are applied for comparison. First, the segmentation algorithm that merges 

water reservoir concept with the drop-fall algorithms [43] is applied as a baseline for 

comparison purpose. Then the segmentation using deep belief nets which is the 

segmentation approach proposed in this study is applied.  

Before the digit recognition module is used, another preprocessing module is needed 

in order to get compatible images for the classifier. This module mainly contains centre 

of mass extraction and normalization. 

Finally the digit classifier module is used to recognize segmented digits. In this part, 

support vector machines and deep belief nets are used and compared as they are 

considered as competing algorithms with high success rate by Hinton et al. [18].  

In this chapter, the modules mentioned earlier will be described step by step until the 

conclusion of the experiments. 
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Preprocessing-1

Deep Belief Nets
(proposed method)

(alternative)

Segmentation using 
Water Reservoir 

Concept
(Baseline)

Support Vector 
Machines
(Baseline)

Deep Belief Nets
(Alternative)

Recognized Digit 
Sequence

Preprocessing-2

Segmentation

Classfier

Figure 3.1: The block diagram of the proposed approach 
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3.1. Custom Dataset for Digit String Segmentation 

For the algorithm employed in this thesis, that is segmentation using deep belief 

networks, and also for the validation of the segmentation algorithms, a dataset of digit 

and non-digit members are needed. Therefore, an extraction of sample images with 

these labels from the strings is needed. CVL-Strings library is used for establishing 

this custom dataset. 

For this reason a MATLAB script is written in order to make this process less time 

consuming. This module takes the input image and applies all of the preprocessing 

algorithms that will be applied in the main segmentation and recognition module. Then 

a window which has 10 pixels horizontally slides through the image. Therefore a 

window with h=100 pixels and w=10 pixels is used, since all the digit string images 

are normalized to height h=100. While sliding, it asks the user the label of the image 

that is spanned by the window. Finally it saves the data to a .mat file. There are 36442 

samples containing digit and non-digit images in this dataset. 

3.2. Custom Dataset for Digit Recognition 

For the digit recognition algorithms, MNIST database is used for training purposes. 

However, since the tests are done with CVL Strings database, the recognition 

algorithms are decided to be tested with also classifiers trained with the individual 

digits from the CVL Strings database. This could constitute a true comparison between 

the benchmark algorithms with our results. 

Since the main database is a digit string library, correctly segmented digits are needed 

for creating this database. Therefore, the results from the segmentation module is 

passed to the digit recognition module trained with the MNIST database and classified 

the individual digits. The correctly classified digits are, then, saved to a .mat file 

forming a new custom set of digits. 
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For digit recognition module, DBN is used, since it has the highest recognition rate. 

As a result, a dataset is created containing 7344 digits. 

The digits in the resulting dataset are saved in the same format as MNIST in order to 

avoid any inconsistency.   

3.3. Preprocessing 

When the coloured input image comes to the handwritten digit string recognizer, first 

the image is converted to a grayscale image.  

Then the image is resized keeping the aspect ratio. Because, input images varies in 

vertical length and all the images must be in the same height for the segmentation and 

classification modules to work correctly, since the segmentation module creates a 

sequence of images by windows of the same size. Equalizing only the heights to same 

size would be enough. Therefore, height is fixed as h=100 and horizontal length is 

adjusted according to the aspect ratio of the image.  

From this grayscale image thresholding is applied based on Otsu Thresholding [3].  

Finally, morphological operations are applied to remove noise. 

3.4. Segmentation 

In this step two alternative segmentation algorithms are applied and compared. One is 

the segmentation combining water reservoir concept and drop-fall algorithms [43] 

explained in chapter 2 and the other one is the segmentation using deep belief network 

which is a novel approach proposed in this study. 
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3.4.1. Segmentation Using Water Reservoir Concept 

The algorithm described in chapter 2 is employed in this chapter. Since the algorithm 

described before is for segmenting connected pairs of the digits, first connected 

component analysis is applied to the input digit string and connected components are 

extracted.  

After connected components are extracted, the bounding boxes of these components 

are calculated. The components whose height is smaller than 10 pixels are eliminated 

in a noise removal step. Moreover, the bounding boxes are normalized according to a 

constant column length which is equal to 100 pixels in this case.  

Then top and bottom reservoirs are obtained as described in [42]. Figure 3.2 illustrates 

an example of reservoirs obtained from respected connected component. The 

illustrated example is a connected digit pair of 55 and in this case there is no top 

reservoir for this image. Only the bottom reservoir help decide the segmentation path. 

Moreover, corresponding segmentation result of this example is shown in Figure 3.3. 

 

 

 

  

 

(a)                                           (b) 

Figure 3.2: Water reservoir example 

 (a) Connected component (b) Corresponding bottom reservoir 
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Figure 3.3: Segmentation of touching numerals 

 

 

After finding top and bottom reservoirs the classification algorithm described in [43] 

is applied deciding whether a component is isolated or not and the touching types of 

the connected numerals. Then, the selected drop-fall algorithm is applied on the 

touching numeral segmenting the pair into two isolated digits.  

Some drawbacks of this algorithm are observed. One of the drawbacks is that when an 

isolated digit is given into the algorithm, an unnecessary segmentation points are 

sometimes found if a single digit is written in a style that it creates large reservoirs. 

One unnecessary segmentation results in wrong prediction on the value of the string. 

One other drawback of this algorithm is that when more than two digits are connected 

to each other, it fails to correctly segment all the digits. However, since it is a rare 

possibility, the effect of this error is expected to be quite small in this thesis.  

After the segmentation is completed. 40142 components are obtained and they are 

given to the digit recognition module as inputs.  

3.4.2. Segmentation Using Deep Belief Networks 

In order to segment handwritten digit strings, we proposed a recognition-based 

algorithm using deep belief nets. In this algorithm, we treated each image of digit 

strings as a concatenation of samples. These samples are formed by sliding a window 
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with a fixed size and their labels are assigned semi automatically as described 

previously. 

The idea behind this algorithm is to classify each sample if it is a part of a number or 

it is in the gap between two digits. It is expected to give better results with touching 

digit pairs, since the recognition algorithm could be trained accordingly.  

DBN structure is used as the classifier in this algorithm. The custom database 

mentioned in section 3.1.4. is used as training samples of the DBN. The input images 

are 100x10 pixels resulting in 1000 units in the input layer.  

Test are done changing the number of epochs, batch size, learning rate and momentum 

of the DBN structure. Hinton’s practical guide for training RBM [23] is used obtaining 

these values. 

The best result was obtained with: 

Hidden layer sizes = [500 500 2000] 

Number of epochs = 5 

Batch size = 10 

Momentum = 0 

Learning rate = 1 

The success rate of the classifier under these conditions was 92%. In other words, 92% 

of the sub-images with size of 100x10 pixels are predicted correctly whether each sub-

image belongs to a digit or a non-digit field. 

Although a numerical success rate of segmentation is reached with this approach, it is 

observed that most of the errors occurred on the boundary of gap regions. Therefore, 

using these results, the neighbour windows with the same label are merged and 

segmentation cuts are placed at the centre of the merged gap regions. In this way, the 
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success rate for the segmentation increases. The increase in the segmentation is 

understood after applying handwritten digit recognition module which is mentioned in 

the next section.  

After merging is completed. We reached 40198 images containing individual digits. 

3.5. Handwritten Digit Classifier 

This is the final step of the designed handwritten digit segment recognition system. 

The deep belief network structure used in the segmentation process is modified and 

used for the digit classifier. Support vector machines (SVM) is also used a baseline for 

comparison.  

Before starting this step, another preprocessing part should be applied. This part should 

move the digit to the centre of mass of the segmented digits and normalize the resulting 

image into 28x28 pixel size. 

Firstly, MNIST database is used for training and testing of both classifiers. Secondly, 

both classifiers are trained with the digits which are successfully segmented in the 

earlier step, and tested with the result of segmentation algorithm whose result is 

unknown whether it is successful or not. 

3.5.1. Support Vector Machines 

Multiclass SVM classifier is formed using one versus rest relation. Training is done 

by finding a decision boundary for each class separating it from the rest of the classes. 

Different kernel functions are tested with multiclass SVM.  

The results for MNIST database: 

 Quadratic Kernel:   

Recognition rate: 92% with 5000 training and 100 test samples 
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Recognition rate: 93.6% with 20000 training and 1000 test samples 

 Polynomial Kernel: 

Recognition rate: 73% with 5000 training and 100 test samples 

Recognition rate: 82% with 20000 training and 1000 test samples 

 Linear Kernel: 

Recognition rate: 81% with 5000 training and 100 test samples 

The best performing kernel on MNIST dataset is the quadratic kernel, thus quadratic 

kernel is considered in the rest of the experiments. 

After testing the SVM module with MNIST dataset. The segmented digits from the 

previous step is fed into the SVM algorithm. Segmented digits from previous step are 

tested only with Quadratic kernel. 

First, the digits that are segmented using baseline segmentation algorithm, that is the 

one based on the water reservoir concept, is tested with this module trained with 

MNIST database. 40142 digits are tested with the quadratic kernel. As a result, 88.4% 

recognition rate of digits is achieved. 

Then, the segmented digits from the proposed segmentation algorithm that is the one 

based on deep belief nets, is fed into the SVM module trained with MNIST database. 

40198 digits are tested and 90.2% recognition rate is achieved. 

Moreover, SVM module trained using the custom made dataset containing 7344 digits 

from CVL Strings training samples. Then, the same tests are repeated and the 

following results were obtained. 

Recognition rate of the digits from the baseline segmentation algorithm: 80.2% 

Recognition rate of the digits from the proposed segmentation algorithm: 82.1% 
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3.5.2. Deep Belief Networks 

Tests on DBN are done forming a four layer DBN structure with three hidden layers. 

Training is done one layer at a time and mean square error is used to calculate the 

average reconstruction error. After training is completed, resulting DBN is unfolded 

into a multilayer neural network and back propagation is applied using labelled data. 

Then tests are done using the test sample set and error rate is calculated. 

Hinton’s practical guide for training RBM [23] is used for obtaining parameters. The 

average reconstruction error helped monitoring the learning process. Optimization of 

the learning rate, batch sizes are done using the insight that this parameter brings. 

Average reconstruction error is defined as the average of the sum of the squared 

distance between input data in the RBM and the reconstructed data in the input layer 

with respect to the hidden layer and the weights. 

Moreover, the RBMs in the DBN are trained passing all the training samples 

simultaneously through the RBM at once, then the weights are updated. This procedure 

is named as epoch. In general, it is defined as completed iteration of the training 

procedure. Increasing the number of epochs improves the performance of the DBM in 

expense of computational time. 

In the constructed DBN, input layer consists of 784 units, since the input images are 

28x28 pixels. Tests are done changing the number units ([h1 h2 h3]) in the hidden layers 

and changing the number of epochs for training each RBM in this structure. 

All the tests are done with 60000 training and 10000 test samples and the following 

cases are examined. 

Case 1:  

When [h1 h2 h3] = [100 100 100] with 5 epochs while training each RBM: 

Recognition Rate = 93.61% 
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The reconstruction error versus the number of total epochs for this case is 

illustrated in Figure 3.4. 

 

 

 

Figure 3.4: Average reconstruction error per epoch in case 1 for MNIST 

 

 

 

Case 2:  

When [h1 h2 h3] = [500 500 2000] with 5 epoch while training each RBM: 

Recognition Rate = 94.81% 

The reconstruction error versus the number of total epochs for this case is 

illustrated in Figure 3.5. 
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Figure 3.5: Average reconstruction error per epoch in case 2 for MNIST 

 

 

 

Case 3: 

When [h1 h2 h3] = [500 500 2000] with 50 epochs while training each RBM: 

Recognition Rate = 98.08% 

The reconstruction error versus the number of total epochs for this case is 

illustrated in Figure 3.6. 
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Figure 3.6: Average reconstruction error per epoch in case 3 for MNIST 

 

 

 

The digits segmented from earlier segmentation step are only tested with case 3, since 

it has the best result with MNIST. First, the tests are done with using MNIST as the 

training database. Then, the custom digit dataset is used for training the DBN and the 

segmented digits from the earlier segmentation modules are tested.  

3.6. Experimental Results 

In this chapter, the overall results of the experiments done on CVL-Strings database. 

For the performance metrics, the recognition rate of segmented digits, the overall 

recognition rate on the digit strings and average normalized Levenshtein Distance is 

used for comparison of the applied methods.  

The experiments varies according to the segmentation algorithm, the digit recognition 

module and the training dataset of the recognition module (MNIST or digits from the 

CVL-Strings). 

For the segmentation module, two approaches are implemented. First the drop-fall 

algorithms combined with water reservoir concept is implemented as a baseline 
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algorithm. Then, the novel approach introduced before, segmentation using DBN, is 

applied. 

The results of the both segmentation algorithms are used in the digit recognition 

modules which are support vector machines and deep belief networks. These 

recognition modules are trained with MNIST database. The digit recognition modules 

are also implemented using correctly extracted digits from CVL-Strings dataset as 

their training samples. 

Table 3.1 lists the experiments conducted using CVL-Strings dataset. In the 

experiments, there are 8 different combinations of segmentation module, digit 

recognition module and the training dataset. 

Since there are a number of parameters of DBN and SVM modules that could be 

carried out, the overall tests are implemented using the parameters that have given the 

best results in the previous sections.  

Table 3.2 shows the results of the listed experiments according to the defined 

performance metrics. The results are compared according to the recognition rate of 

segmented digits, the recognition rate of strings and average normalized Levenshtein 

Distance. 

Moreover, Figure 3.7-Figure 3.9 demonstrates the comparison of results graphically 

in detail. 
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Table 3.1: List of Conducted Experiments and Their Abbreviations 

Abbrv. Segmentation Module Digit Recognition Module Training Dataset 

CVL-1 Segmentation using 

water reservoir concept  

SVM MNIST 

CVL-2 Segmentation using 

water reservoir concept 

SVM CVL-Strings 

CVL-3 Segmentation using 

water reservoir concept 

Deep Belief Networks MNIST 

CVL-4 Segmentation using 

water reservoir concept 

Deep Belief Networks CVL-Strings 

CVL-5 Deep Belief Networks SVM MNIST 

CVL-6 Deep Belief Networks SVM CVL-Strings 

CVL-7 Deep Belief Networks Deep Belief Networks MNIST 

CVL-8 Deep Belief Networks Deep Belief Networks CVL-Strings 
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Table 3.2: Comparison of Results of Conducted Experiments 

Abbreviation Recognition Rate  

of Segmented 

Digits 

Overall 

Recognition Rate 

Of Digit Strings 

ANLD 

CVL-1 88.4% 76.2% 0.15 

CVL-2 80.2% 69.8% 0.19 

CVL-3 89.7% 77.8% 0.10 

CVL-4 82.5% 72.8% 0.13 

CVL-5 90.2% 78.2% 0.09 

CVL-6 82.1% 73.0% 0.14 

CVL-7 97.0% 89.1% 0.06 

CVL-8 91.1% 86.2% 0.07 
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Figure 3.7: Recognition Rate of Segmented Digits 

 

 

 

Figure 3.8: Recognition Rate of Overall Strings 
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Figure 3.9: Average Normalized Levenshtein Distance 

 

 

 

From the results, it is seen that CVL-7 case significantly outperformed other cases. 

Since the custom dataset including digits from correctly segmented images from CVL-

Strings database have less training samples for each label, the digit recognition 

algorithms trained with this dataset performed worse than the ones trained with 

MNIST dataset.  

Moreover, ANLD result is included in order to compare the distance between wrong 

classification result and the target digit string. In other words, our aim is to analyse the 

performance of the segmentation module. If a digit string is poorly segmented, then 

the ANLD result goes higher showing that the predicted digit string is a lot further 

away from the actual digit string.  

0,15

0,19

0,1

0,13

0,09

0,14

0,06

0,07

CVL-1

CVL-2

CVL-3

CVL-4

CVL-5

CVL-6

CVL-7

CVL-8

Average NLD

CVL-1 CVL-2 CVL-3 CVL-4 CVL-5 CVL-6 CVL-7 CVL-8



69 

 

Therefore, it is seen that the cases using the baseline segmentation algorithm have 

higher ANLD values showing that the reason of misclassification of digit strings is 

mostly the segmentation errors. 

3.7. Comparison of the Results with Benchmark Algorithms 

In this section, the results obtained from the experiments are compared with the 

benchmark algorithms explained earlier. Figure 3.10 and Figure 3.11 illustrate the 

comparison of the results. 

 

 

 

 

Figure 3.10: Comparison of Recognition Rates between Experiments and Benchmark 

Algorithms 
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Figure 3.11: Comparison of ANLD between Experiments and Benchmark 

Algorithms 

  

 

 

From the results, it is observed that the closest performance of the benchmark 

algorithms to our results is the first benchmark algorithm. CVL-7 and CVL-8 

outperformed all the benchmark algorithms in terms of recognition rate. 

However, B-1 performed slightly better in terms of average normalized Levenshtein 

distance. 
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CHAPTER 4 

4. CONCLUSION AND FUTURE WORKS 

Handwritten text recognition is a simple process for human beings. The complex 

interactions that the neurons in the human brain accomplish are often taken for granted. 

Human brain has the ability to recognize the written text simultaneously using the 

features of the text and knowledge that had been learned during life time. From these 

clues, it is understood that systems with higher performance for handwritten digit 

string recognition task or any other pattern recognition problem could be built using 

models resembling human brain. 

The main concern of this study was recognition of handwritten digit strings which 

could be divided into 3 steps which are preprocessing, segmentation and recognition 

steps. There are various studies that have been conducted in this field. However, 

handwritten digit strings might differ in many ways. Writing styles and origin of the 

authors are some of the sources of the differences in these strings. Moreover, the 

application that the hand writing is needed is also effective on these differences. For 

instance, there could be some guidelines for some applications such as courtesy fields 

of the bank checks, making easier to horizontal and vertical orientation of the string.  

Most of the studies conducted in this field take the differences mentioned earlier take 

into consideration in their proposed methods. In other words, different heuristics are 

defined according the dataset that the algorithms are built for. Moreover, the 

preprocessing step is another thing that differs depending on the dataset used. 

In order to build a universal algorithm for the handwritten digit string recognition task, 

the heuristics should not depend on the context that could differ from source to source. 

The preprocessing applied before the segmentation step should also be adaptive to the 
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data used or more general techniques could be used. Moreover, the recognition 

modules that could be used, should be trained with various datasets from different 

sources in order to make the recognition part more universal. 

The trickiest part of the handwritten digit string recognition task is the segmentation 

module which is responsible for segmenting the digit string into individual characters. 

This is actually a simple task if the digits are well separated. However, this is mostly 

not the case. There are various types of touching numerals. Some of the methods 

described in the proposed algorithms are good at some of the touching styles. The digit 

pairs that touch each other in multiple points or overlapping digits are the most difficult 

ones to separate. 

In this study, a more universal technique in handwritten digit string segmentation is 

proposed. For the segmentation, a recognition based algorithm is applied, which is free 

of any heuristics, in expense of some recognition error. In this method, a DBN 

classifier is used for classifying regions in an image of a digit string as a digit or the 

transition region between two digits. Segmentation is completed after merging 

neighbor regions which have the same label.  

In this thesis, the algorithm, which Rui et al. [43] proposed, was also implemented and 

tested with the same dataset. This algorithm was chosen for implementation, since the 

success rate claimed by the authors was quite high and it does not include any training, 

but heuristics.  

After the segmentation is completed, resulting individual digits were given as inputs 

to the digit recognition algorithms. For the digit recognition algorithms, deep belief 

networks and support vector machines were chosen. The recognizers were trained with 

MNIST database and the custom dataset formed using the accurately segmented digits 

from the CVL-Strings dataset.  

After the recognition of individual digits was achieved, the prediction of the digits in 

each strings were combined together and compared with the ground truth of the 

corresponding digit string. Hence, the overall recognition rates were achieved. 
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Moreover, average normalized Levenshtein distance (ANLD) parameter was also 

employed as performance metric. 

Overall results were calculated with each segmentation and recognition algorithms, 

which trained with both dataset separately, resulting in 8 different combination of 

experiments. The overall results were compared for each combination. The 

combination of the proposed recognition based segmentation algorithm with DBN 

digit classifier trained with the MNIST database has outperformed other combinations.  

Moreover, 4 benchmark algorithms that were tested with the CVL-Strings database, 

the same database we have used in our experiments, are chosen for comparison of our 

experiments. This algorithms are chosen because of the fact that they were chosen as 

top ranked methods in ICFHR 2014. The results showed that the proposed method here 

had better performances according to the recognition rates. 

When compared to the benchmark algorithms, the segmentation algorithm which uses 

the water reservoir concept [43] had very competitive results with the benchmark 

algorithms. 

In addition to the recognition rates, the ANLD parameter was also calculated to 

compare the handwritten digit string recognition algorithms. The definition of this 

parameter helped to decide how close a misclassified digit string is to the actual value 

of the string. From this point on, it is observed that the segmentation using water 

reservoir concept has a promising result in terms of this parameter. In other words, it 

is observed that even though it has lower recognition rates, the distance of the 

misclassified samples to the actual values are not very large. 

In the future, the proposed technique can be experimented with various datasets in 

order to become a candidate to be a universal technique solving this problem. 

Moreover, other recognition algorithms i.e. convolutional neural networks can be 

experienced and compared their results to the existing ones.  
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