STABILITY ANALYSIS, DISPLACEMENT MONITORING AND JUSTIFICATION OF THE CRITICAL SECTIONS OF THE KONAK TUNNEL

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

KADİR YERTUTANOL

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF GEOLOGICAL ENGINEERING

DECEMBER 2015

Approval of the thesis:

STABILITY ANALYSIS, DISPLACEMENT MONITORING AND JUSTIFICATION OF THE CRITICAL SECTIONS OF THE KONAK TUNNEL

Submitted by **Kadir Yertutanol** in partial fulfillment of the requirements for the degree of **Master of Science in Geological Engineering Department, Middle East Technical University** by,

Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Erdin Bozkurt Head of Department, Geological Engineering	
Prof. Dr. Haluk Akgün Supervisor, Geological Engineering Dept., METU	
Examining Committee Members:	
Prof. Dr. Candan Gökçeoğlu Geological Engineering Dept., Hacettepe University	
Prof. Dr. Haluk Akgün Geological Engineering Dept., METU	
Assoc. Prof. Dr. Kaan Sayıt Geological Engineering Dept., METU	
Assoc. Prof. Dr. Hakan A. Nefeslioğlu Geological Engineering Dept., Akdeniz University	
Assist. Prof. Dr. Nejan Huvaj Sarıhan Civil Engineering Dept., METU	

Date: 07.12.2015

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Kadir YERTUTANOL

Signature :

ABSTRACT

STABILITY ANALYSIS, DISPLACEMENT MONITORING AND JUSTIFICATION OF THE CRITICAL SECTIONS OF THE KONAK TUNNEL

Yertutanol, Kadir

M.S., Department of Geological Engineering Supervisor: Prof. Dr. Haluk Akgün P.E. December 2015, 346 Pages

The main focus of this research is numerical analysis and preliminary support design for the critical sections of the twin tube Konak Tunnel that was constructed in a highly populated area in Konak, İzmir. The displacements of the tunnel were monitored and justified by comparing with the results of the numerical analyses. The stability of the tunnel exit portal and associated slopes, which is one of the most challenging sections of the project, was analyzed as well.

In study area, volcanics, pyroclastics and some sedimentary deposits (sandstone, mudstone and conglomerate) often intertongue with each other especially in the exit portal area. The accurate determination of the shear strength and deformation parameters of these units is important for the assessment of portal slope stability and support design and displacement predictions in the tunnel design. Rock mass classification systems, namely, RMR, Q system and GSI, have been employed to obtain the rock mass shear strength and deformation parameters. Stress analysis around the tunnel openings has been done through employing 2D finite element analysis for inspecting the tunnel support design and the vertical displacement in the critical sections and five different measurement points. The results of the finite

element analysis have been controlled and correlated with the results of monitored vertical displacements. Consequently, when the monitoring points on the critical sections are evaluated individually, 70 % of the points ensure the predicted displacement limits and only 12.5 % of the displacements mismatch ratio is higher than the 50 %. Moreover both the support system elements and the rock mass have not been yielded due to the redistribution of stress conditions.

KEYWORDS: İzmir region, Tunnel, Volcanics, Rock mass, Rock mass classification, Monitoring, Numerical modelling.

KONAK TÜNELİ KRİTİK KESİMLERİNİN DURAYLILIK ANALİZLERİ, DEFORMASYON İZLEMESİ VE DOĞRULANMASI

Yertutanol, Kadir

Yüksek Lisans, Jeoloji Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. Haluk Akgün P.E. Aralık 2015, 346 Sayfa

Bu araştırmanın başlıca amacı, İzmir'in yoğun nüfuslu alanlarından biri olan Konak yerleşim bölgesinde çift tüplü olarak inşa edilen Konak Tüneli'nin kritik kesimlerinde sayısal analiz sonrası kazı ön destek tasarımı yapılmasıdır. Tünel açımı sırasında ölçülen deplasmanlar izlenmiş ve sayısal analiz sonuçları ile karşılaştırılarak doğrulanmıştır. Projenin en sorunlu bölümlerinden biri olan tünel çıkış portalı ve açık kazıları da bu çalışma kapsamında modellenmiş ve duraylılık analizleri yapılmıştır.

Çalışma alanında volkanikler, volkanik çökeller ve tortul kayaçlar (kumtaşı, çamurtaşı ve çakıltaşı) özellikle çıkış portal kesiminde birbirleriyle sık geçişlidirler. Tünel destek tasarımı ve deplasman tahminleri açısından bu karmaşıkların dayanım ve deformasyon parametrelerinin doğru olarak belirlenmesi tünel portal şev duraylılığı ve tünel destek tasarımı değerlendirmeleri için çok önemlidir. Bu doğrultuda RMR, Q Sistem ve GSI kaya sınıflamaları yapılmış, birbirleri ile deneştirilmiş ve kaya kütlesi dayanım ve deformasyonu bağlamında yorumlanmıştır. Bu yorumlar ışığında 2B sonlu eleman yöntemiyle tünel açıklığı çevresindeki gerilme çözümlemeleri yapılmış ve tünel destek tasarımı ile düşey deplasmanların denetlenmesi için belirlenen kritik kesimlerde beş farklı ölçüm noktasında veri olarak

kullanılmıştır. Bu doğrultuda sonlu eleman çözümleri ile yapım aşamasında ölçülen deplasmanlar karşılaştırmalı olarak kontrol edilmiştir. Sonuç olarak kritik kesimleri ve ölçüm noktalarını teker teker değerlendirdiğimizde, % 70 oranda öngörülen düşey deplasmanların belirlenen limitler içerisinde olduğunu ve sadece %12,5'inin belirlenen limitlerin % 50'sinden fazla olduğu belirlenmiştir. Ek olarak hiçbir destek elamanının ve kaya kütlesinin değişen gerilme koşulları nedeniyle yenilmediği görülmüştür.

ANAHTAR SÖZCÜKLER: İzmir bölgesi, Tünel, Volkanik kayaçlar, Kaya kütlesi, Kaya kütlesi sınıflaması, Deplasman ölçümü, Sayısal modelleme.

ACKNOWLEDGMENTS

I would like to extend my gratitude to many people who helped to bring this thesis to fruition. I profoundly thank to all who supported me.

First of all, I would like to thank Prof. Dr. Haluk AKGÜN, P.E. for providing me the opportunity of taking part in Master of Science program. I am deeply grateful for his help, professionalism, and valuable guidance throughout this thesis and through my entire program. I do not have enough words to express my deep and sincere appreciation.

In the name of TEMELSU International Engineering Services Inc., I would like to thank Dr. Evrim SOPACI for sharing his vast experience and his guidance at every stage of my thesis and my engineering career. I am gratefully indebted to him for his very valuable comments on this thesis. I also appreciate the support of Mr. Batuhan SOYUGUR, Mr. Egemen FIRAT, Mr. H. Berkay ORAL, Mr. Z. Sarper EKİM and Dr. Tülin SOLAK.

In addition, I appreciate the support of METU research assistants Miss Hatice KILIÇ and Miss Arzu ARSLAN. I also appreciate the support of Dr. Mustafa K. KOÇKAR, Mr. Karim YOUSEFIBAVIL and Mr. Şazi İNANÇ.

Finally, I must express my very profound gratitude to my family and Miss Behice YURTSEVEN for their endless support and continuous encouragement throughout the process of researching and writing this thesis. This accomplishment would not have been possible without them.

TABLE OF CONTENTS

ABSTRACT	V
ÖZ	VII
ACKNOWLEDGMENTS	IX
TABLE OF CONTENTS	XI
LIST OF TABLES	XIV
LIST OF FIGURES	XVI
CHAPTERS	
1 INTRODUCTION	1
1.1 Purpose and Scope	1
1.2 Methodology	2
1.3 Study Area	3
1.4 Project Characteristics	4
2 GEOLOGY OF THE STUDY AREA	5
2.1 Stratigraphy	7
2.1.1 Bornova Flysch	8
2.1.2 Terrestrial and Marine Sedimentary Rocks	8
2.1.3 Volcanic Rocks	8
2.1.4 Quaternary Sediments	9
2.2 Tectonics	10
2.3 Structural Geology	10
2.4 Geomorphology	12
2.5 Seismicity of the Study Area	

2.5.1 The İzmir Fault	15
3 GEOLOGICAL AND GEOTECHNICAL INVESTIGATIONS	17
3.1 In-Situ Investigations	18
3.1.1 Surface Investigations	18
3.1.2. Boreholes	20
3.2 Laboratory Tests	23
4 ENGINEERING GEOLOGICAL PROPERTIES OF ROCKS AND ROCK	
MASS CLASSIFICATION	25
4.1 Rock Material and Rock Material Properties	26
4.1.1 Unit Weight	27
4.1.2 Uniaxial Compressive Strength (UCS)	27
4.1.3 Point Load Strength Index (Is)	28
4.1.4 Elastic Modulus	29
4.1.5 Poisson's Ratio	30
4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification	30 30
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification 4.2.1 Rock Mass Rating System (RMR) 	30 30 32
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification 4.2.1 Rock Mass Rating System (RMR) 4.2.2 NGI Tunneling Quality Index (Q-system) 	30 30 32 40
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification	30 30 32 40 50
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification	30 30 32 40 50 53
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification	30 30 32 40 50 53
 4.1.5 Poisson's Ratio	30 30 32 40 50 53
 4.1.5 Poisson's Ratio	30 30 32 40 50 53 61 62
 4.1.5 Poisson's Ratio	30 30 32 40 50 53 61 62 69
 4.1.5 Poisson's Ratio 4.2 Rock Mass and Rock Mass Classification	30 30 32 40 50 53 61 62 69 72
 4.1.5 Poisson's Ratio	30 30 32 40 50 53 61 62 62 72 74

6 TUNNEL PORTAL SLOPE DESIGN	79
6.1 Geotechnical Field Evaluation of the Exit Portal	
6.2 Limit Equilibrium Analyses	
7 MONITORING AND EXCAVATION CONDITIONS DURING	
CONSTRUCTION STAGE	
8 FINITE ELEMENT (2D) MODELING	97
8.1 In-Situ Stresses	97
8.2 Induced Stresses	98
8.3 Numerical Modelling	
8.3.1 Numerical Analyses Results	102
9 DISCUSSION AND CONCLUSION	105
10 RECOMMENDATIONS	111
REFERENCES	113
APPENDICIES	
APPENDIX-A: GEOLOGICAL MAPS AND PROFILES	125
APPENDIX-B: DRILLING LOGS AND PHOTOES	
APPENDIX-C: LABORATORY TEST RESULTS	
APPENDIX-D: ROCK MASS RATING CHARTS	
APPENDIX-E: CIRCULAR FAILURE ANALYSES RESULTS	
APPENDIX-F: RAW DATA OF MEASURED DISPLACEMENTS	
APPENDIX-G: FINITE ELMENT ANAYSES RESULTS	309
APPENDIX-H: AXISMMETRICAL MODELLING RESULTS	
APPENDIX-I: ROCLAB SOFTWARE RESULTS AND COMPARIS	ON OF
RMR & GSI	
APPENDIX-J: DESCRIPTIONS OF LIMIT EQULIBRIUM METHO	DS FOR
SLOPE STABILITY ANALYSIS	

LIST OF TABLES

TABLES

Table 18: Summary of the Q values and suggested support for the Konak Tunnel 68
Table 19: Elastic modulus of the rock masses on the tunnel section 68
Table 20: Determined geotechnical parameters and support categories with the RMR
classification71
Table 21: Values of m _i for different rock materials (Hoek et al. 1997)73
Table 22: Determined geotechnical parameters with the GSI classification
Table 23: Correlated NATM descriptions with RMR and Q system for the critical
sections of the Konak Tunnel75
Table 24: NATM Support and excavation recommendations for the Konak Tunnel 75
Table 25: Excavation and Support recommendations for the critical sections of the
Konak Tunnel76
Table 26: Summary of the shear strength parameters and the deformation modulus
for the geotechnical sections
Table 27: Cut slopes and portal face inclination angles
Table 28: Recommended rock mass engineering geological parameters of the exit
portal open cuts of the Konak Tunnel
Table 29: Circular failure analyses of the Konak Tunnel exit portal
Table 30: The cumulative vertical displacement measurements of the Konak Tunnel
Table 31: The average cumulative vertical displacements of each point on the
geotechnical sections96
Table 32: Rock mass properties of the tunnel geotechnical sections
Table 33: The axisymmetric analyses results of the critical sections
Table 34: The properties of the tunnel support elements applied in the analyses 103
Table 35: Summary table of total vertical displacements calculated from numerical
analyses for both tubes at all monitoring points
Table 36: Comparison of observed and calculated total vertical displacements at the
monitoring points

LIST OF FIGURES

FIGURES

Figure 1: Location view of the project area (ITRF, 3°, Cent. Mer. 27 - Google Earth, 2015)
2015)
Figure 2: Typical cross section of the Konak tunnel
Figure 3: Tectonic map of Turkey showing the major sutures and continental blocks (as quoted by Okay and Tüysüz, 1999)
Figure 4: The larger scaled geological map of İzmir region (Uzel et al., 2012)6
Figure 5: Stratigraphic section of the study area (Uzel et al., 2012)7
Figure 6: Fault map of İzmir region (MTA - Geoscience Map Viewer and Drawing Editor, 2015)
Figure 7: Simplified map of the western Anatolian grabens (Uzel et al., 2012)13
Figure 8: Location of the project area on the map of Turkey Earthquake Zones (Earthquake Research Center, Ankara)
Figure 9: Sketch figure for transition from the rock material to the rock masses
(Hoek, E., and Brown, E.T., 1980)
Figure 10: The parameters used in the RMR rock mass classification system (Hudson 1989)
Figure 11: RMR parameters rating distribution (Bieniawski, 1989)37
Figure 12: Duration of standing unsupported time (Bieniawski, 1989)38
Figure 13: Reduction factor for the deformation modulus of the rock material
determined from laboratory tests (Bieniawski and Nicholson, 1990)40
Figure 14: Rock mass quality of Q System (Barton et. al 1974)45

Figure 15: Q values and supports (permanent and temporary) (Grimstad 2002 - Barton, 2002)
Figure 16: Q system stand up time vs rock mass quality (Barton, 1976)
Figure 17: Rock mass characterization on the basis of interlocking and joint alteration by GSI (Hoek, 1999a)
Figure 18: Quantification of GSI classification system by joint conditions and RQD (JCond ₈₉ values taken from RMR) (Hoek et al. 2013)
Figure 19: The relationship between support pressure and radial deformation in tunnels (Daemen, 1977 as quoted by Hoek, Kaiser and Bawden, 1995)
Figure 20: Correlations of RMR, Q and NATM (based on Bieniawski 1996 - Sopacı, 2003)
Figure 21: Borehole lay-out of the critical sections and the exit portal of Konak Tunnel (Yv: Yamanlı Volcanics, Nupp: Upper Sedimentary Sequence, Yd: Fill Material)
Figure 22: General view of tuff, andesite and Upper Sedimentary Sequence (sandstone, claystone and conglomerate)
Figure 23: Correlation chart between Q and D _e values for determining the maximum unsupported height of the tunnel wall
Figure 24: The Q system support categories for Konak Tunnel
Figure 25: RMR results with maximum unsupported spans and stand up time70
Figure 26: Correlation between RMR and Q values of the Konak Tunnel72
Figure 27: The types of rock slope failure (Hoek and Bray, 1981) 80
Figure 28: General view of the Konak Tunnel exit portal
Figure 29: Core box photos from the exit portal boreholes at the maximum excavation height
Figure 30: Excavation boundaries of cut slopes of the Konak Tunnel exit portal86
Figure 31: Open cut slopes analyses for the exit portal of the Konak tunnel

Figure 32: The cumulative vertical displacement profiles of the five monitoring
points of tube-294
Figure 33: The cumulative vertical displacement profiles of the five monitoring points of tube-1
Figure 34: Sample axisymmetric model for T-Px section of the Konak Tunnel 101
Figure 35: Comparison of the total vertical stresses measured during field monitoring and calculated from numerical modeling for tube-2
Figure 36: Comparison of the total vertical stresses measured during field monitoring
and calculated from numerical modeling for tube-1
Figure 37: General trend lines of the observed measurements and a comparison of the calculated measurements for tube-2
Figure 38: General trend lines of the observed measurements and a comparison of the
calculated measurements for tube-1

CHAPTER 1

INTRODUCTION

1.1 Purpose and Scope

The increasing traffic load, air and noise pollution around the Konak district bring some problems for people who settle in this region. To get rid of the disturbance of casual life of people and decrease the traffic load, the Konak tunnel and access roads were planned by General Directorate of Highways. Along the Konak Tunnel, there exist many superstructures such as viaducts, open-cuts, jet grouts, anchors, piles, crossover roads, junctions and tunnels. However, the main purpose in this thesis is tunnel support design and analysis of critical sections including the exit portal of the tunnel. The aforementioned sections have been categorized as critical due to the high degree of weathering condition of the rock mass and related large vertical deformations measured along these sections. Hence, the tunnel support determination and the slope stability investigations of the exit portal with respect to rock mass classifications systems form the main purpose of the study. For these purposes, the following studies have been implemented:

- Prior studies about the geological conditions and geotectonic model of tunnel route and its vicinity have been elaborated,
- Literature survey for the tunnel and portal design have been performed,
- The rock mass characterization along the critical sections of the tunnel has been performed by the Geomechanical Classification (RMR, Rock Mass Rating) and NGI-Q System (NGI, Norwegian Geotechnical Institute),
- Empirical support design has been suggested,

• The verification of the empirical support design has been implemented by comparing the deformation measurements taken during tunnel construction and the results of the numerical model.

1.2 Methodology

In order to achieve the set goal, first of all, the geological settings and tectonics of the tunnel area have been evaluated.

The geotectonic model and the rock mass design parameters have been attempted to be connected in the next step. The engineering properties of the rocks have been used as design parameters. These parameters and rock mass classification systems, which will be given comparatively, have been used to specify tunnel support categories. The investigation methods to obtain the inputs of the rock mass classification systems have been presented in detail. Then, the latest developments about rock mass strength determination have been used in tunnel support design.

In addition, both kinematic and analytical slope stability analysis have been accomplished for the tunnel exit portal in order to verify open cut slope angles. Similarly, the slope support design, which is empirical, has been verified with the aid of finite element analyses.

In the end, the analysis presenting the efficiency of support design and displacement amounts have been discussed. In addition, the rock mass behavior surrounding the tunnel was attempted to be understood based on empirical rock mass classification systems along with drill work and the results of the rock mechanics laboratory test. Furthermore, an evaluation of the deformation during the tunnel construction with the numerical model was attempted to be performed.

1.3 Study Area

The study area is located in a highly populated area in Konak, İzmir (Figure 1). The Konak tunnel begins in the Ethnography Museum of Konak County and extends to Yeşildere Street. The 1650 m twin tube tunnels route passes through the Namık Kemal, Fatih, Duatepe and Kadiriye neighborhoods in south east direction and connect the Konak Square and Yeşildere Street to provide access to the İzmir-Urla Highway.

Figure 1: Location view of the project area (ITRF, 3°, Cent. Mer. 27 - Google Earth, 2015)

1.4 Project Characteristics

The total length of the highway is 2.5 km and the Konak Tunnel is located in between Km 0+550 to Km 2+200. The total length of the twin tube tunnel is 1650 meters and extends in the south east direction. The tunnel entrance base elevation is 4.0 m and the exit base level is 48.0 m; in this context, the inclination of the tunnel is 2.78 %. The diameter of the tunnel is 11.5 m and the distance between the outer walls of the tunnel is 23.0 m in the entrance and exit portals. A typical cross section of the horseshoe tunnel is given Figure 2.

Figure 2: Typical cross section of the Konak tunnel

CHAPTER 2

GEOLOGY OF THE STUDY AREA

The study area and its neighborhood is in the Bornova Flysch Zone, which is in large scale interpreted as a part of the Anatolide-Tauride Block and exists in the northwest part of the Menderes Massif (Figure 3: Şengör (1984), Okay (1989a) Okay et al. (1994, 1996)). The Bornova Flysch Zone is in between the suture zone (İzmir-Ankara-Erzincan suture zone) of Neo-Tethys Ocean and the Menderes Massif that is in between Gondwana and Laurasia as per Paleozoic and Early Tertiary time interval. The suture zone along the İzmir-Ankara-Erzincan Ocean is formed by the rocks of past subduction zones and their products (APPENDIX-A).

Figure 3: Tectonic map of Turkey showing the major sutures and continental blocks (as quoted by Okay and Tüysüz, 1999)

The study area is represented by the volcanic units and Neogene sedimentary rocks in the Bornova Flysch zone (Figure 4).

Figure 4: The larger scaled geological map of İzmir region (Uzel et al., 2012)

The tectonic evolution of the study area and the geological units along the tunnel route and its vicinity will be presented in detail in the following section.

2.1 Stratigraphy

The following formations, as sub-units of the Bornova Flysch zone, crop out in an order from older to younger in the study area and its neighborhood (Figure 5);

- Bornova Flysch (Mesozoic)
- Terrestrial and Marine Sedimentary Rocks (Early Miocene Late Miocene)
- Volcanic Rocks (Miocene)
- Quaternary Sediments

In the next sections, the geological conditions related to tectonic and structural features of these units will be presented briefly.

Age	(Uzel & Sözbilir 2008)		Explanation
Holocene		Recent Alluvium	shallow marine deposits fan - delta deposits alluvial fan deposits
Plio-Pleistocene		Görece / Güzelbahçe formation	A:U. Görece formation reddish brown, cross-bedded, thick to medium-bedded sandstone A.U. A.U.
	12,5±9 Ma	Cumaovası volcanics	Yaka formation thin to medium-bedded limestone
Middle - Late Miocene		Yeniköy Formation Ürkmez formation	Beşyol basalt / basaltic lava flows Kızılca formation medium-bedded conglomerate, sandstone and mudstone with limestone intercalations
Early - Middle Miocene	V 19.2-14.7 Ma V V 19.2-14.7 Ma V V V V V V V V V V V V V V V V V V V	Yamanlar volcanics Çatalca formation	A:U. Yamanlar volcanics andesitic and dacitic lava, tuff and dome complex Sabuncubeli formation thick-bedded conglomerate, sandstone and mudstone alternation with limestone toward the top
Late Cretaceous - Paleocene		Bornova melange	Kızıldere formation reddish conglomerate, sandstone and limestone A:U. Bornova melange
Mesozoic - Paleozoic	Menderes Massif		submarine volcanis and serpantinites embedded in a flysche type matrix

Figure 5: Stratigraphic section of the study area (Uzel et al., 2012)

2.1.1 Bornova Flysch

The Bornova Flysch is in the form of a mélange, which is generally dark colored and is being represented by numerous schist, micaceous sandstone, arkose, conglomerate, re-crystalline or dolomitic limestone, reddish pink to grayish limestone with schist and radiolarites. Various schists and highly re-crystallized limestones those are predominant within this flysch zone, show folding and metamorphism intensively. Serpentinites crop out in some parts of the flysch zone between İzmir Bay and Seferihisar and Doğanbey. Dark green, black or light green serpentines were formed as the result of the alteration of ultrabasic rocks and they show a fragile structure (Uzel et al., 2012).

2.1.2 Terrestrial and Marine Sedimentary Rocks

The terrestrial and shallow marine sedimentary rocks are formed by limestone, marl, sandstone and conglomerate that were deposited in the fore and back basins of island arc volcanism. Limestones containing locally plant roots are strong and gray-beige colored; marls are weak and thinly bedded. Carbonate cemented conglomerate and sandstone are stronger than marls. The grains are derived from basic units such as schist and ultrabasic rocks. There is a mottled appearance due to red-brown-beige-gray colors of the units. In the upper parts of the sequence, conglomerate content decreases, as the alternation of gray-beige colored sandstone-siltstone-marl-limestone become the dominant lithology. The thickness of the Miocene aged rock containing the coal veinlets is approximately 2500 m. Uzel et al., 2012 have described these units in two groups as "Lower Sedimentary Series" and "Upper Sedimentary Series", which consists of Sabuncubeli and Çatalca Formations and of Kızılca Formation, respectively, based on the study carried out for the İzmir Bay (Figure 4).

2.1.3 Volcanic Rocks

In the study area and its vicinity, there was an active volcanism as both acidic and alkaline with calc-alkaline nature during the Mid-Miocene. Lavas are of alkaline basaltic, trachytic and rhyolitic origin. Rhyolitic rocks are locally perlites and form

significant volcanic domes in the Cumaovası region. The chemical analyses made in various glassy rhyolite rocks and perlite in the region show that there are two phases in this type of volcanism. The alkaline and acidic lavas are located together in the region. As per the radiometric dating, the age was determined as Mid-Miocene (11.3, 11.9 and 12.5 million years ago).

The andesitic featured volcanics in the Kadifekale region are settled uncomfortably on the level of the terrestrial-marine deposits of clay and marl. The volcanic rocks in this region are generally observed in an order from top to bottom as tuff, agglomerate and andesite. Uzel et al., 2010 have described these volcanic units as "Yamanlar Volcanics".

2.1.4 Quaternary Sediments

The Quaternary sediments deposited in the study area and its near plains are formed by various units ranging from clay to cobble size. These sediments which are the decomposed products of volcanic lavas, pyroclastics and sedimentary rocks are generally volcanic in origin. These deposits often exhibit characteristics of alluvium and colluvium or talus.

Alluvium; especially towards the exit of the tunnel area is loose, unconsolidated soil or sediments, which has been eroded and reshaped by the Yeşildere River, and redeposited in a non-marine setting.

Colluvium – Talus; slope debris is formed as a result of mechanical disintegration of the andesite rock mass whose particle size is ranging from block to sand or clay.

2.2 Tectonics

The units constituting the project area at a local scale and the Aegean and Mediterranean regions at a regional scale have been developed under the control of island arc volcanism, as associated with subduction zones.

Before Maastrichtian, the Intra Pontide Ocean was closed and the suture zone along the Sakarya Continent was united and collided with the Rodop-Pontide continent. During Paleocene, the İzmir-Ankara Ocean branch of Neo-Tethys began to close and by this closure, the Anatolide platform, with the northern branch, began to subduct below the Intra-Pontide continent (Şengör, A.M.C. and Yılmaz, Y., 1981 - Figure 3). This subduction resulted in the formation of Miocene units of island arc volcanism and lacustrine sedimentary rocks related with them, which is characteristic in the project area.

2.3 Structural Geology

İzmir and its vicinity are located in western Anatolia, which is dominated by Neo-Tectonic extensional tectonics. The city of İzmir is located towards the western end of the Gediz Graben and this graben occurred as a result of aforementioned tectonic compression. The most prominent feature that stands out as the structural geology of the region is the Horst-Graben structure. However, there is no enough information and findings available regarding the outside of the Gediz Graben, which can be a source of intense seismic activity in the presence of active faults. The linearity of Cumaovası, some faults in the western part of the Gediz Graben and Dumanlıdağ Fault zone in the Menemen region are indicated in the Active Fault Map of Turkey (Şaroğlu et al., 1992), where some active faults and other faults without any knowledge of their seismicity features have been mapped in some studies performed for Neo-Tectonical and regional purposes. Thirteen active faults have been identified during active fault mapping studies made in an area with approximately 50 km radius, where İzmir City is the center (Table 1 & Figure 6). Information of the faults near to the project area is given in Section 2.5.

No	Fault Name	Activity Class	Туре	Total Length (km)	General Strikes	Dip Direction	Seismicity (Instrumental Eq.	
1	İzmir Fault	AF	Ν	35	D-B	60°N	1688 (Historical Eq.), 1977 (M:5.5)	
2	Tuzla Fault	AF	RLSS	50	K30D	Е	1992 (M:6.0)	
3	Seferihisar Fault	AF	RLSS	30	K20D	Е	2003 (M:5.6)	
4	Gulbahaa Fault	ΔE	V	70	KG	F	1953 (M:5.0), 1979 (M:5.7),	
-	Guidanee I aux	AI	v	70	K-O	L	1994 (M:5.0)	
	Main Detachment							
5	Fault of Gediz Graben	AF	Ν	27	K70D	18°N	-	
	(Western Part)							
6	Kemalpaşa Fault	AF	Ν	24	K75D	50°N	-	
7	Manisa Fault	AF	N	40	K65B	55°N	1994 (M:5.2)	
8	Dağkızılca Fault	AF	RLSS	27	K70D	Е	1926 (M:6.5)	
9	Güzelhisar Fault	PAF	RLSS	25	K70B	Е	-	
10	Menemen Fault Zone	PAF	RLSS	17	K45B	E	-	
11	Yenifoça Fault	L		20	K-G	-	-	
12	Gümüldür Fault	PAF	Ν	15	K55B	50° W	-	
13	Bornova Fault	L	RLSS	19	K75B	Е	-	
AF: Active Fault, PAF: Possible Active Fault, L: Lineament, N: Normal, RLSS: Right Lateral Strike Slip, V: Vertical.								

Table 1: Some parameters related to the mapped active faults around İzmir (İzmir EIA, 2012)

Figure 6: Fault map of İzmir region (MTA - Geoscience Map Viewer and Drawing Editor, 2015)

2.4 Geomorphology

The regional geomorphology was controlled first by Paleo-Tectonic [compression tectonics] and then Neo-Tectonic [extension tectonics] regimes. Accordingly, the continent-continent collision produced mountain and basin formation stage, which was followed by frequent volcanic activity. In the next stage, namely, active pulling tectonics, the geomorphology was controlled by young forms of erosion as typical for the region as horst and graben formation (Figure 7). Lithological characteristics of rocks, drainage system and geological structure have been active in the formation of current morphology. Additionally, related with geological formations those facts could be highlighted for the morphology of the project area and its close neighborhood (Bozkurt E., 2001).

The Miocene Yuntdağ volcano associated with the continent-continent collision and its volcanic products has taken place in the project area. The Yuntdağ volcanism which is a part of the volcanic Dumanlıdağ that rose up to an elevation of about 1000 m consisting of andesitic and rhyolitic pyroclastics, trachy-andesitic lava flows and domes is composed of dikes and lava flows. These levels are extremely resistant to external factors and therefore they are too rough and form a high topography. However, towards the foot of the volcano, accumulated screes developed by mechanical weathering of volcanic rocks provides recumbent morphology (Bozkurt E., 2001).

Figure 7: Simplified map of the western Anatolian grabens (Uzel et al., 2012)

2.5 Seismicity of the Study Area

The project area is located in a "1st Degree Earthquake Zone" according to the Department of Earthquake Research, Earthquake Zonation Map of Turkey of R. T. Ministry of Public Works and Settlement. For this region the peak ground acceleration is taken as 0.4g. (Figure 8).

In İzmir, from 1909 to present, there have been about 5 devastating earthquakes that resulted with deaths, injuries, property damage and losses (Table 2).

There are two alternatives to be used for the estimation of the magnitudes of earthquake, based on fault length. The first assumption is that the two separate geometrical segments of the fault can be broken individually. Both segments that comprise the fault is about 15 km long. In foresight of the two separate segments, the fault could break in one earthquake with a total fault length of 35 km.

Figure 8: Location of the project area on the map of Turkey Earthquake Zones (Earthquake Research Center, Ankara)

Table 2 shows the location and magnitude of the earthquakes. As a result of the detailed investigations that are presented in the report of the General Directorate of Mineral Research and Exploration regarding İzmir (Ömer, E. et al. 2005), the İzmir fault has been defined as the closest fault zone to the project area and its vicinity. Detailed information related to the İzmir fault is presented below.

Location	Date	Magnitude
Foça	19.01.1909	6.0
Soma	18.11. 1919	6.9
Dereköy-Torbalı	31.03.1928	
Dikili–Bergama	22.09.1939	6.6
Karaburun	22.07.1949	6.6
Karaburun-Çeşme	02.05.1963	6.6
Salihli	02.03.1965	5.6
Alaşehir	28.03.1969	6.5
Karaburun	06.04.1969	5.9
İzmir	01.02.1974	5.2
İzmir	16.12.1977	5.3
İzmir - Seferihisar - Menderes - Urla -	06.11.1992	5.5
Narlıbahçe - Buca - Karaburun - Bornova		
Seferihisar	10.04.2003	5.6

Table 2: Recent earthquakes that have occurred in the İzmir area (MTA, 2005)

2.5.1 The İzmir Fault

In the eastern zone of the İzmir Bay, the E-W trending fault bounding this bay from the south is morphologically named as the İzmir Fault (Emre and Barka, 2000) (Figure 6). The Izmir fault, with a total length of 35 km between Güzelbahçe and Pinarbaşı is a normal dip-slip fault. Two faults are divaricated in the west end. The south branch terminated in accordance with the NE-SW trending dextral strike-slip of the Seferihisar faults. The northern branch towards NW in the İzmir Bay basin is most probably associated with a N - NW to S - SE trending fault zones that are located between Çiçekadaları and Uzunada. The fault crosses along the İzmir residential area in the E-W direction. Field studies show that the İzmir fault is a dipslip normal fault caused by a massive earthquake that resulted in the surface rupture in Holocene. According to geological data, it can be said that the fault occurred after Miocene. No sediments older than Quaternary exist within the current basin of the Izmir rift, which has developed as a half graben on the hanging wall of the fault. The aforementioned fault, limits the Buca-Cumaovası rill that started to be formed in the erosional stage of Pliocene tectonically and this erosion remains unsettled along the fault. This information and data most probably indicates that the İzmir fault became active in the Late Pliocene - Early Quaternary.

Along the İzmir fault, periodically monitored micro-earthquakes have concentrated in the eastern zone of the fault (Akıncı et al, 2000). Instrumental epicenter locations of 1974 (M: 5.2) and 1977 (M: 5.3) earthquakes made territorial claims in the City of İzmir that were close to the İzmir fault. It is also worth noting that two earthquakes have damaged the buildings in the city center. The normal faulting mechanism was obtained from the 1977 earthquake fault plane solutions. However, according to the seismological data, it cannot be interpreted whether the source of those earthquakes is the İzmir fault or not.

CHAPTER 3

GEOLOGICAL AND GEOTECHNICAL INVESTIGATIONS

This section describes the investigations to determine the geotechnical parameters of the rock material and of the rock mass. In this sense, three groups of work, namely, surface, subsurface and laboratory investigations have been performed.

As well known, the rock mass behavior is commonly controlled by the discontinuity properties of the rock, which could be observed and studied during the surface investigations. Besides the weathering and groundwater conditions, aperture, roughness, persistence and spacing of these discontinuities are important for the determination of the rock mass strength.

During tunnel support design, the surface investigations are interpreted to resolve the rock mass behavior at the tunneling depth. Since the geotechnical conditions of the rock mass on the ground surface do not represent the conditions at tunneling depth, boreholes are drilled along the tunnel alignments at the tunneling depths.

The final stage of the investigations is the laboratory tests performed on rock samples which are taken from the boreholes. These core samples are preserved to provide the minimum disturbance and natural conditions for testing as these test results determine the rock material geotechnical parameters.

3.1 In-Situ Investigations

3.1.1 Surface Investigations

Before proceeding, there is a need to explain and to differentiate concepts classification and description related to the rock mass and rock material. Classification is a system or order list which is followed with information being recorded as foreseen. In description concept, all the intricate technical terms are written down; basically the personal intuition is important.

The rock material classification, which is a solid consisting of minerals used by geologists, needs a comprehensive study of mineralogy and petrography. This type of geological classification systems are not comprised of engineering properties of rocks. In a rock material description, the significant descriptive parameters required are; color, rock name, texture and structure, grain size, weathering conditions, strength and some other properties. Nonetheless, the rock mass description requires information related to discontinuities or weakness planes in addition to the description of the rock material. The illustrator indices of weakness planes, which are written below for the rock mass classification, can easily be gathered during field observations:

- i) Location, orientation and number of discontinuities
- ii) Type of discontinuities
- iii) Spacing frequency between discontinuities
- iv) Persistence and extent of discontinuities
- v) Weathering and alteration state of discontinuities
- vi) Aperture or separation of discontinuity surfaces
- vii) Nature of discontinuity surfaces
- viii) Infilling
The field descriptions of the rock masses were made on the basis of ISRM (2007) and BSI (1981). In addition, surface observations in the project area were made at outcrops that were observed rarely due to intense settlement and highly populated areas. Surface observations were limited with the outcrops especially at the exit portal and rarely at the entrance portal. Therefore, geological conditions along the tunnel route were evaluated according to the geological model, which is constituted for this study. As per these observations and research results, the tunnel route generally cuts the Miocene aged volcanic rock and volcano – sedimentary rocks with the same age. In general, volcanic rocks, which are formed in the study area, are represented by andesite, tuff and agglomerate. Besides, sedimentary rocks are represented by claystone, siltstone, sandstone and conglomerate. Among all lithologies in the project areas, only the andesite crops out to display its rock mass properties in natural slopes. Thus, these tangible data together with the geological model and borehole data have been used to determine the rock mass properties.

a) Surface investigation of the volcanic rocks

Andesitic lavas and pyroclastics (tuff and agglomerate) have especially been observed around the exit portal at Km 2+200. Miocene aged volcanic rocks, which are andesite, andesitic tuff and agglomerate, exhibit transition in both vertical and lateral directions. Additionally, according to observations made in this area, it was estimated that the sedimentary rocks and volcanic rocks may be in transition between each other. Volcanic rocks present similar mass strength parameters along both tubes of the tunnel alignment.

Andesitic lavas can easily be distinguished by their pinkish colored outcrops. Andesites are generally slightly weathered and weak to moderately strong (UCS in between 25.0 - 100.0 MPa – ISRM, 2007) around the exit portal of the Konak Tunnel. Andesite contains at least three (two systematic and one random) discontinuity sets in the exit portal area. In areas where weathering effects increase, many irregular discontinuity sets and a blocky appearance is possessed by andesite. The discontinuities possessing orientation of 135/65° (dip direction/dip amount) and 075/90° are discontinuous, undulating and rough. The spacing of the discontinuities is between 60-600 mm with RQD (Rock Quality Designation) values between 25 - 75%. The aperture of the discontinuities is between 1.00 and 5.00 mm at the surface, and the discontinuities are slightly altered and not filled or rarely filled with non-softening and non-cohesive rock mineral.

Pyroclastic rocks (agglomerates and tuffs), which show lateral and vertical transition with andesitic lavas possess poorly sorted, angular to sub-angular block size materials within a matrix of ash and tuff. These rocks do not outcrop out in the exit portal area and are located under andesite as per the regional geological model. While the moderately weathered sections of the tuff and agglomerate are very weak (UCS in between 1.0 - 5.0 MPa – ISRM, 2007), the slightly weathered and fresh sections are weak (UCS in between 5.0 - 25.0 MPa – ISRM, 2007). Additionally, these sections are highly fractured where RQD value ranges in between 0% to 50% and the discontinuity spacing ranges between 60-200 mm on the average.

b) Surface Investigation of the sedimentary rocks

Exhibiting vertical and lateral transition with Miocene aged sedimentary rocks; sedimentary rocks generally show typical shallow marine and terrestrial characteristics. These rocks consist primarily of claystone, siltstone, sandstone and conglomerate. However, no sedimentary rock outcrops were encountered during field observations.

Lastly, except the rock units around the exit portal of the Konak Tunnel, fill material is observed and its thickness has been determined with the aid of the boreholes.

3.1.2. Boreholes

In order (1) to check the engineering geological model along the tunneling elevation, (2) to complete the lack information for interpretation, (3) to determine the lateral

and vertical rock variations, (4) to allow in-situ tests and ground water measurements and (5) to obtain samples for laboratory tests, a total length of 1081 m of drilling has been performed. Twenty-one boreholes have been drilled where in this study the boreholes TSK-1-2-3-4-5 and EK-TSK-1 at the exit portal and TSK-6 and EK-TSK-2 at the most critical and deepest sections of the tunnel (Km 1+750 – 2+130) alignment deserve special attention. The brief information of all boreholes opened along the tunnel is presented in Table 3. The lithological changes, groundwater levels, average TCR's and average RQD's for the critical boreholes are presented Table 4. Detailed information about the borehole logs and core box photos are given in APPENDIX-B.

DBILLINC		KOORDINA	ATES (Zone 3	. of Zone 27°)	GROUND	перти	
NO	KM	IT	RF	ED	50	ELEVATION	UEFIN
NO		X	Y	X	Y	(m)	(111)
TSK-1*	2+200	512304.0	4252253.0	512355.7	4252432.5	85.00	40.00
TSK-2**	2+155	512299.0	4252313.0	512343.7	4252495.1	95.00	60.00
TSK-3*	2+180	512316.0	4252292.0	512373.6	4252467.6	94.00	50.00
TSK-4*	2+213	512363.0	4252296.0	512411.7	4252485.9	80.00	42.00
TSK-5*	2+207	512339.0	4252279.0	512389.6	4252453.3	79.00	34.00
TSK-6**	1+730	511999.0	4252610.0	512041.0	4252795.0	136.00	113.00
TSK-7 ^(a)	1+245	511615.0	4252912.0	511657.0	4253097.0	120.00	110.00
TSK-8 ^(a)	0+970	511441.0	4253123.0	511483.0	4253308.0	83.00	90.00
TSK-9 ^(a)	0+815	511354.0	4253255.0	511395.0	4253441.0	61.00	61.00
TSK-10 ^(a)	0+585	511255.0	4253461.0	511297.0	4253648.0	18.00	20.00
TSK-11 ^(a)	0+560	511247.0	4253485.0	511289.0	4253672.0	15.00	16.00
TSK-12 ^(a)	0+565	511223.0	4253467.0	511265.0	4253655.0	18.00	19.00
TSK-13 ^(a)	0+575	511280.0	4253423.0	511321.0	4253661.0	15.00	16.00
TSK-14 ^(a)	0+605	511245.0	4253433.0	511286.0	4253620.0	22.00	23.00
EK-TSK-1*	2+170	512335.0	4252325.0	512377.0	4252512.0	98.00	60.00
EK-TSK-2**	1+960	512166.0	4252454.0	512210.0	4252644.0	113.00	85.00
EK-TSK-3 ^(a)	1+530	511837.0	4252752.0	511795.0	4252939.0	138.00	120.00
EK-TSK-4 ^(a)	0+615	511273.0	4253435.0	511315.0	4253623.0	19.00	25.00
EK-TSK-5 ^(a)	0+615	511287.0	4253442.0	511329.0	4253629.0	17.00	25.00
EK-TSK-6 ^(a)	0+655	511269.0	4253390.0	511311.0	4253577.0	32.00	36.00
EK-TSK-7 ^(a)	0+655	511297.0	4253401.0	511339.0	4253588.0	31.00	36.00
* Portal drilling	gs reach	to 5.00 m belo	w the tunnel de	esign elevation	•	TOTAL	1081 00
** Tunnel drill	lings reac	h to 10.00 m b	elow the tunne	l design elevat	tion.	IUIAL	1001.00
(a) Grey color	ed boreh	oles out of the	study area				

Table 3: List of boreholes drilled along the tunnel alignment

DRILLING NO	SECTION	LITHOLOGY	GROUNDWATER ELEVATION (m)	TCR (%)	RQD (%)
		0.00-4.00 m fill material			
		4.00-9.00 m agglomerate			
		9.00-10.50 m tuff			
		10.50-12.00 m andesite			
		12.00-15.00 m agglomerate			
	тру	15.00-15.80 m andesite		55	Б
1011-1	1-1-2	15.80-24.50 m tuff	-	55	Э
		24.50-30.00 m claystone-sandstone			
		30.00-31.50 m conglomerate			
		31.50-39.00 m sandstone			
		39.00-40.00 m claystone			
		0.00-6.00 m fill material			
		6.00-14.00 m agglomerate			
TSK-2	T-50x	14.00-44.00 m andesite	10.45	70	5
		44.00-46.00 m agglomerate			
		46.00-60.00 m tuff			
		0.00-12.00 m fill material			
		12.00-15.70 m tuff			
		15.70-16.20 m agglomerate			
		16 20-30 50 m andesite			
TSK-3	T-Px	20 50 22 00 m tuff	10.80	50	5
		32 00-39 00 m sandstone			
		39 00-43 00 m claystone			
		43.00-44.50 m siltstone			
		44.50-50.00 m claystone			
		0.00-0.60 m fill material			
		0.60-30.50 m andesite			
		30.50-34.50 m weathered andesite			
		34.50-35.70 m tuff			10
TSK-4	T-Pv	35.70-36.50 m sandstone	-	80	
151(-4	1-1-2	36.50-36.80 m conglomerate			
		36.80-37.40 m siltstone			
		37.40-38.50 m conglomerate			
		38.50-41.00 m claystone			
		41.00-42.00 m tuff			
		0.00-5.00 m fill material			
		5.00-12.00 m andesite			
		12.00-15.50 m tuff			
		15.50-16.80 m claystone			
	TDV	16.80-18.00 m claystone	9.50	00	10
15K-5	I-PX	18.00-21.65 m sandstone	0.50	90	10
		23 35-24 10 m condomorato			
		24 10-30 90 m claystone			
		30 90-33 20 m sandstone	ł		
		33.00-34.00 m siltstone			
		0.00-1.70 m fill material			
TSK-6	T-100x	1.70-113.00 m andesite	23.00	100	25
		0.00-10.00 m fill material	10.17	465	0.5
EK-ISK-1	I-Px	10.00-60.00 m andesite	13.17	100	30
EK-TOK-2	T-75v	0.00-1.00 m fill material	7 60	05	38
EN-13N-2	1-70X	1.00-85.00 m andesite	1.00	90	30
Note: P: Port	al, T: Tunne	l, e: Enterance, x: Exit			

 Table 4: The lithological changes, groundwater levels, average TCR's and average RQD's of the boreholes considered during this study

The groundwater levels in the drillings have been interpreted as a perched aquifer rather than a static groundwater level. These groundwater levels are interpreted as the surface waters leaking via the discontinuity systems of rocks. In this context, these surface waters may have penetrated only the rocks which are close to the surface and more frequent and open discontinuous rock masses, in other words, the deeper parts of the rock masses could possibly not been affected by these surface waters. Within this framework, groundwater is not expected at the tunnel design elevation. Nevertheless, the groundwater can cause some construction difficulties at the tunnel portals due to the lower thickness of the overburden rock and open cuts.

In addition, the first 15 to 30 m of these drillings have crossed the sedimentary rock sequence. According to the observations of the core boxes, these parts are mostly composed of brown to yellowish brown claystone, sandstone and conglomerate. All are volcanic in origin because of their mode of occurrence. They are highly to moderately weathered thus their strengths are very weak to weak (UCS is between 1.00-5.00 MPa). Their RQD value ranges in between 0% to 50%. Consequently, in the slope stability analysis these sections will be treated as soil rather than rock at the exit portal.

3.2 Laboratory Tests

Laboratory rock mechanics tests were conducted on core samples taken from the drillings. A summary of these tests are presented in Table 5 and all related laboratory test results are given in APPENDIX-C.

Drilling No	Depth (m)	Sample Length (mm)	Sample Diameter (mm)	Sample Weight (g)	∆l (mm)	∆d (mm)	Axial Strain ε _a	Lateral Strain ε _d	Modulus of Elasticity ε (GPa)	Poisson's Ratio V	Natural Unit Weight (kN/m ³)	Failure Load P (kgf)	UCS q _u (MPa)	Point Load I _s (MPa)	Lithology
TSK-1	13.00-14.50	93	47	311.92							18.96	2926.54	16.87		andesite
TSK-1	33.00-33.30	91	46	309.18							20.06	591.43	3.56		tuff
TSK-2	22.00-23.00	95	47	421.38	1.212	0.201	0.01276	0.00428	6.44	0.328	25.08	7892.48	45.49		andesite
TSK-2	43.00-44.00	92	47	374.61	1.025	0.189	0.01114	0.00402	5.58	0.346	23.02	5802.09	33.44		andesite
TSK-2	49.50-50.00	47	47	173.55							20.88	127.00		0.575	tuff
TSK-2	59.00-59.20	86	43	267.52							21.01	805.56	5.55		tuff
TSK-3	26.00-26.60	92	47	388.20	1.065	0.189	0.01158	0.00402	5.88	0.325	23.86	6169.19	35.56		andesite
TSK-3	44.50-46.00	53	55	272.18							21.20	139.00		0.460	tuff
TSK-4	21.00-22.00	94	47	383.17							23.05	3517.97	20.28		andesite
TSK-4	36.00-37.00	92	46	300.02							19.25	693.00	4.17		alt. andesite
TSK-4	41.00-42.00	46	45	134.06							17.98	58.00		0.286	alt. andesite
TSK-5	17.00-18.00	96	48	400.97							22.64	479.26	2.65		tuff
TSK-6	93.00-94.00	95	47	413.82	0.851	0.135	0.00896	0.00287	4.06	0.359	24.63	5159.68	29.74		andesite
TSK-6	99.00-100.00	93	47	395.26	0.675	0.111	0.00726	0.00236	3.36	0.379	24.03	3630.13	20.92		andesite
TSK-6	101.00-103.00	95	47	404.50	0.991	0.168	0.01043	0.00357	4.83	0.354	24.08	5985.64	34.50		andesite
EK-TSK-2	56.00-56.35	96	47	403.23	1.040	0.213	0.01083	0.00453	7.58	0.321	23.75	8848.22	51.00		andesite
EK-TSK-2	67.17-67.35	97	47	439.40	1.020	0.172	0.01052	0.00366	9.60	0.310	25.61	10218.82	58.90		andesite
EK-TSK-2	74.00-74.78	95	47	438.91	1.140	0.207	0.01200	0.00440	10.44	0.297	26.12	11051.60	63.70		andesite

Table 5: Summary of the laboratory tests results for the critical sections

In order to investigate the ground conditions of the Konak Tunnel, eighteen samples for unit weight determination, fifteen samples for UCS (uniaxial compressive strength) determination and three samples for point load determination were tested. As known, the rock mechanics tests made on intact rock samples provide information about material properties of rocks. Therefore, these test results would not be directly incorporated into the tunnel support design calculations. The significance of the intact rock properties will be usually reduced by the discontinuity properties of the rock masses. If the intact rock is altered and weak or has widely spaced discontinuities, the intact rock properties may determine the behavior of the rock mass. Hence, the discontinuity properties have a greater significance than the intact rock properties.

As shown in Table 5 the average standard deviation of the uniaxial compressive strength of andesite was measured to be 39.35 ± 15.97 MPa, the natural unit weight 23.84 ± 1.03 kN/m³, the modulus of elasticity 6.42 ± 2.40 GPa and the Poisson's ratio 0.33 ± 0.03 . For pyroclastics, on the other hand, the mean \pm one standard deviation of the uniaxial compressive strength was measured to be 4.00 ± 1.00 MPa and the natural unit weight 21.16 ±0.94 kN/m³.

CHAPTER 4

ENGINEERING GEOLOGICAL PROPERTIES OF ROCKS AND ROCK MASS CLASSIFICATION

Rock material (intact rock) and rock mass are significant and basic concepts that need to be distinguished. Rock material is the smallest rock unit that does not involve any discontinuity. In other words, rock material is the part of the rock unit that does not include joint, bedding plane (layering), schistosity or weakness plane which can cause reduction in strength of the material. All weakness planes according to geological aspect such as bedding planes, joint, fault, shear zone, cleavage or schistosity that have zero tensile strength or very low tensile strength can be named as discontinuity. Although rock materials may include micro fractures, they cannot be considered as discontinuity or fracture (Ulusay et al., 2007).

Rock masses are formed by a combination of various geologic discontinuities (joints, bedding planes, schistosity, faults, shear zones, etc.) and solid rock blocks separated by discontinuities. The interval or frequency of discontinuities in the rock mass and the number of discontinuity sets play an important role to make a decision on the behavior of the examined rock. As an illustration, an illustration that indicates a transition from rock material (intact rock) to a jointed rock mass is shown in Figure 9. If discontinuities are widely spaced or the rock material between the discontinuities is weak or decomposed, the general behavior of the rock mass is highly affected by the behavior of the rock material which does not include discontinuities. Under these circumstances, the rock material can form a mimic structure of the rock mass at a small scale. However, if the number and frequency of

the discontinuities increase, this creates an important effect on the discontinuous rock material parameters and on the behavior of the entire rock mass. In this case, the properties of the rock mass should be considered.

Figure 9: Sketch figure for transition from the rock material to the rock masses (Hoek, E., and Brown, E.T., 1980)

4.1 Rock Material and Rock Material Properties

Rock material, which has different sizes of rock fragments between the natural discontinuities such as joint in rock mass, stratification, schistosity, fault etc., does not include any fracture and weakness plane causing a decrease in the strength of the material. In other words, solid rock material is the smallest rock unit and it does not include any fracture. Although there are some micro fractures in rock material, they are not considered as discontinuity or fracture. These rock fragments can be in the

range varying from mm to m and they are mostly considered with elastic and isotropic behavior. The major properties of the rock material are given below.

4.1.1 Unit Weight

The ratio of total mass of rock or soil sample to the total volume is called as unit weight and calculated by Eqn. (1). The total volume includes the voids of the material. If this value is small, it demonstrates that the material has porosity and includes void spaces.

$$\gamma = m \left(\frac{g}{V}\right) \tag{1}$$

In this equation;

m: sample weight

g: acceleration of gravity

V: total volume of the sample

4.1.2 Uniaxial Compressive Strength (UCS)

Under uniaxial compression conditions, the applied load/force at the time of failure is defined as the uniaxial compressive strength for cylindrical (core) samples (ISRM, 2007) that have ratio of length to diameter ranges between 2.5 to 3. It is expressed as follows (Eqn. (2)):

$$\sigma_{\rm ci} = \frac{F}{A} \tag{2}$$

In this equation;

- σ_{ci} : Uniaxial compressive strength
- F: Applied force to the sample at failure
- A: Area of sample surface where force is applied.

If the diameter of the sample increases, in other words the sample volume increases, the number of the micro-cracks in the rock materials can increase. In this case, the uniaxial compressive strength of rock material decreases as well. Definitely, this decrease is associated with the sample size or scale factor. Hoek and Brown (1980a) attempt to take into account the scale effect for the uniaxial compressive strength of the rock material with some empirical relationship. According to researchers suggestion, samples which have a 50 mm diameter and a length / diameter ratio of 2, are considered as reference samples and the uniaxial compressive strength measured during tests is corrected by the chosen reference diameter (50 mm). This correction is expressed by Eqn. (3):

$$\sigma_{ci} = \frac{\sigma_{cd}}{({}^{50}/_D)^{0.18}}$$
(3)

In this equation;

 σ_{ci} : Uniaxial compressive strength of core sample with 50 mm diameter

D: Diameter of sample experimented in laboratory (mm)

 σ_{cd} : Uniaxial compressive strength of sample with diameter D.

4.1.3 Point Load Strength Index (Is)

The point load test is performed with the purpose for indirect measurement of uniaxial compressive strength of the core samples or irregularly shaped rock samples in the laboratory and/or in the field. Point load strength is an index related to the uniaxial compressive strength of the rock. Point load strength index (I_s) is calculated from Eqn. (4):

$$I_{s(50)} = P/_{D^2}$$
 (4)

In this equation,

I_{s(50)}: Point load strength index

P: Load applied to sample in failure

D: Diameter of core or sample

Generally, this index is suggested for samples with a diameter of 50 mm. In the empirical relationship given below for the estimation of uniaxial compressive strength, coefficient C is known to vary between 13 and 50 depending on the type of rock and the degree of anisotropy (Norbury, 1986) (Eqn. (5)). Additionally, ISRM (2007) suggest that the C values can favorably be chosen between 20 and 25.

$$\sigma_{\rm ci} = C I_{s(50)} \tag{5}$$

In this equation,

 σ_{ci} : Uniaxial compressive strength

I_{s(50)}: Point load strength index

C: Correction factor

4.1.4 Elastic Modulus

Modulus of elasticity or Young's modulus is a measure of elastic deformation of the material under applied force. By definition, it is a value that measures a specimen or sub-surface's resistance to be deformed elastically when a force applied to it. As a result of the relationship between strain in elastic deformation and normal stress (tensile or compressive stress), it is defined as strength per strain. Linear relationship between unit strain and normal stress can be defined as follows (Eqn. (6)):

$$E = \sigma/\mathcal{E} \tag{6}$$

In this equation,

- E: Elastic modulus
- σ : Normal stress (tensile or compressive stress)
- ε: Strain in elastic deformation

4.1.5 Poisson's Ratio

Poisson's ratio being involved in the deformation of the elastic material is a mechanical parameter used in rock engineering problems related to the deformation of rocks. Although there are many studies related with this parameter, the values of Poisson's ratio and determination of Poisson's ratio of rock types, especially for different rock types is still open for debate. The latest publication that highlights the importance of this parameter has been made by Gerçek (2006), who carried out an extensive literature survey. Constitutively, Poisson's ratio is defined as the ratio of the strain in the horizontal direction to the strain in the axial direction for a material that is subjected to uniaxial strain.

Poisson's ratio of the rock material can be determined indirectly by dynamic methods (ISRM, 1977; ASTM, 1998a) or directly by static tests (ISRM, 1978; ASTM, 1998b) in the laboratory. Gerçek (2006) states that porosity has a significant effect on Poisson's ratio as well as geometry (size and shape), orientation, distribution and connections of pore spaces.

Regarding the determination of Poisson's ratio for rock materials, although there is standardization for laboratory methods and there are many studies on it, it is still limited and open to debate for rock masses. Gerçek (2006) states in many of his studies that the Poisson's ratio of the rock mass is greater than that of the rock material, sometimes unexpected values (v>0.5) can be encountered and this is related with discontinuities. Therefore, theoretically Poisson's ratio of the rock masses (Gerçek, 2006).

4.2 Rock Mass and Rock Mass Classification

Rock mass or in situ rock is a mass or system, created by the network of discontinuities together with rock material. Behavior of the rock mass under a certain

stress is usually controlled by the interaction between the blocks of rock material and discontinuities. Rock material blocks bounded by discontinuities in rock masses can show varying characteristics from fresh rock material to weathered rock. Rock mass classification systems, which have been developed in order to examine these changes regularly, should not be considered as tools that can provide a complete engineering design. These systems should be used with observation based analytic and numerical solution techniques by considering design targets and field geology in order to make a final design. When these systems are used properly, they can be a useful tool for the preliminary design phase. The main purposes of using the rock mass classification system are,

- i) To determine the main characteristics affecting the behavior of the rock mass
- To determine different rock mass classes by separating the rock mass of similar characteristics among their territory,
- iii) To create benchmarks in order to understand the characteristics of each rock mass class
- iv) To establish a relationship between the gained experience from rock mass conditions on site and the conditions encountered in other field by comparison.
- v) To obtain a guide and numeric data for engineering design
- vi) To provide a scientific and technical communication between engineers based on a common background (Bieniawski, 1989).

Since 1946, different rock mass classification systems have either been developed or suggested by different researchers (Table 6). Some of these systems have been derived from the re-modification of previously proposed systems by considering some factors. Here, all of these systems are not given systems that are most widely used today in rock engineering and tunneling applications and / or demand are essentially presented.

Name of Classification	Originator and Date	Country of Origin	Applications
Rock Load	Terzaghi, 1946	USA	Tunnels with steel support
Stand-up Time	Lauffer, 1958	Austria	Tunneling
NATM	Pacher et al., 1964	Austria	Tunneling
Rock Quality Designation	Deere et al., 1967	USA	Core logging, Tunneling
RSR Concept	Wickham et al., 1972	USA	Tunneling
RMR System (Geomechanics Classification)	Bieniawski, 1973	South Africa	Tunnels, mines, slopes, foundations
Q – System	Barton et al., 1974	Norway	Tunnels, chambers
Strength - Size	Franklin, 1975	Canada	Tunneling
Basic Geotechnical Description	International Society for Rock Mechanics, 1981	England	General, communication
Unified Classification	Williamson, 1984	USA	General, communication

Table 6: Major rock mass classification systems

4.2.1 Rock Mass Rating System (RMR)

RMR Classification System or Rock Mass Rating (RMR) has been developed in between 1972 - 1973 by Bieniawski (Bieniawski, 1973). The system has been modified from 1973 to 1989 and reached the final format after the support of updated data (Bieniawski, 1989). The statistical evaluation of tunnels, big underground galleries, mining facilities, slopes and foundations related to 351 different applications and observations is the most important tool for bringing the method to its current form.

According to the RMR classification of the rock mass, the following 6 parameters are taken into consideration (Figure 10).

i) Uniaxial compressive strength of rock material: This parameter is important for the determination of the upper limit of the strength of the

rock mass. Moreover, when considering the importance of rock mechanical compressive stress fields, it is clear that uniaxial compressive strength is a required parameter for the classification.

Rock Quality Designation (RQD): RQD is a quantitative index of rock quality that is the percentage ratio of the total length of the cylindrical shaped core recovery pieces which have 10 cm or larger length and separated by discontinuities in a natural progress interval to the length of the progress interval (Deere, 1964). RQD suggested by Deere (1964) is presented by Eqn. (7):

$$RQD(\%) = \frac{\sum Length of Core Pieces (I) > 100mm}{Total Core Run Length (L)}$$
(7)

The number of the core pieces at the borehole depth, "I" is the length of core parts that are taken into consideration for RQD and longer than 10 cm, "L" is length of progression.

- iii) Spacing of discontinuity
- iv) Status of discontinuities and surface conditions (continuity, roughness, fillings, weathering, space)
- v) Groundwater conditions
- vi) Orientation of discontinuities.

Figure 10: The parameters used in the RMR rock mass classification system (Hudson 1989)

For implementing the system, the rock mass is divided into structural regions which have similarity with respect to certain properties. It can be encountered in the structural areas that have a uniform distance between the discontinuities or rock types. In many cases, the boundaries of structural regions coincide with major discontinuities such as fault, dyke and shear zones. After structural zones are defined, classification required parameters are determined along excavation or every progression of the drilling work.

In 1973, when the system was proposed firstly, classification parameters were determined directly from a single chart. However, because the same score range is available for different parameter values, it involved shortages in terms of making a realistic scoring. These shortages have been fixed with the final update of the system in 1989.

While using the RMR Classification System, the criteria for each of the parameters in Table 7 and / or values are taken into account. Since the importance of different parameters in classification is not equal, the uniaxial compressive strength and ratings corresponding interval values related to RQD and discontinuity parameters are not determined by Table 7. They are determined by the help of the graphs given in Figure 11. The graph given in Table 7-D, in case of lack of RQD or discontinuity interval value, is suggested to determine the unknown parameter by using the known one.

In this system, discontinuity interval parameter is applied to a rock mass containing three discontinuity sets. Therefore, a consistent assessment could be made only for two discontinuity sets containing rock masses. Table 8 should be used for a better determination of ratings related with the condition of discontinuities.

The next step is to determine the effect of slope and direction of tunneling from Table 7-B. This step is made separately from previous evaluation. Because the effect of discontinuity orientation depends on the orientation of the excavation in engineering applications such as tunnels and underground mining operation, RMR rating correction related to this assessment is determined by using Table 7-C. However, due to this evaluation being qualitative, Table 7-B needs to be used in order to determine the appropriateness of the slope and the direction of the tunnel. The sum of the corrected value related to orientation and RMR value obtained from the sum of the first 5 parameters gives the final RMR value that represents rock mass. For civil engineering projects, generally, correction regarding discontinuity orientation need to be done. However, RMR classification system is used commonly for mining applications and for these applications, excavation processes contain dynamic periods and they may require underground openings that intersect each other from different directions. In this case, factors such as field strains, blasting etc., should be taken into account and, if necessary, the RMR values need to be calculated with the corrections of those factors. The coefficients obtained from the corrections must not be less than 0.5.

A.	CLASSIF	CATION PARAMETE	RS AND THEIR RATING	S					
	P	arameter			Range of values				
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 Mpa	For th uniaxia test	iis low ra al compr is prefe	ange- essive rred
1	rock material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50 Mpa	5-25 Mpa	1-5 Мра	<1 Mpa
		Rating	15	12	7	4	2	1	0
~	Drill core	Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%		<25%	
2		Rating	20	17	13	8		3	
2	Spacir	ng of discontinuities	>2 m	0.6-2 m	200-600 mm	60-200 mm	<60 mm		
3		Rating	20	15	10	8		5	
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft g	Soft gouge >5 mm	
			Not continuous	Separation <1 mm	Separation <1 mm	or		thick	
	Conditi	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 mm thick	or		
4		(See E)	Unweathered wall rock			or			
						Separation 1-5 mm	Sepa	ration >	5 mm
						Continuous	С	ontinuo	JS
		Rating	30	25	20	10		0	
		Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-125		>125	
5	Ground Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0.5		>0.5	
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing	
		Rating	15	10	7	4		0	

Table 7: RMR classification parameters (Bieniawski, 1989)

B. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING						
Strike per	pendicular to tunnel axis	Strike parallel to tunnel axis.				
Drive with dip-Dip 45-90	Drive with dip-Dip 20-45	Dip 45-90	Dip 20-45			
Very favourable	Favourable	Very Favourable	Fair			
Drive against dip-Dip 45-90	Drive against dip-Dip 20-45	Dip 0-20-Irrespective of strike				
Fair	Unfavourable	Fair				

C. RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS (See F)								
Strike and dip orientations		Very favourable	Favourable	Fair	Unfavourable	Very Unfavourable		
	Tunnels and mines	0	-2	-5	-10	-12		
Ratings	Foundations	0	-2	-7	-15	-25		
	Slopes	0	-5	-25	-50			

D. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS							
Rating	100<81	80<61	60<41	40<21	<21		
Class Number	I		Ш	IV	V		
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock		

E. MEANING OF ROCK CLASSES							
Class Number	I	Ш	=	IV	V		
Average stand-up time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 min for 1 m span		
Cohesion of rock mass (kPa)	>400	300-400	200-300	100-200	<100		
Friction angle of rock mass (deg)	>45	35-45	25-35	15-25	<15		

Table 8: Guidelines for classification of discontinuity conditions (Bieniawski, 1989)

Discontinuity length (persistence)	<1 m	1-3 m	3-10 m	10-20 m	>20 m
Rating	6	4	2	1	0
Separation (aperture)	None	<0.1 mm	0.1-1.0 mm	1-5 mm	>5 mm
Rating	6	5	4	1	0
Roughness	Very rough	Rough	Slightly rough	Smooth	Slickensided
Rating	6	5	3	1	0
Infilling (gouge)	None	Hard filling<5mm	Hard filling>5mm	Soft filling<5mm	Soft filling>5mm
Rating	6	4	2	2	0
Weathering	Unweathered	Slightly weathered	Moderately weathered	Highly weathered	Decomposed
Ratings	6	5	3	1	0

Figure 11: RMR parameters rating distribution (Bieniawski, 1989)

The resultant RMR rating obtained after making the necessary corrections can be used for the purposes as defined below.

- Bieniawski (1989) suggested that the cohesion and internal friction angle of the rock mass can be roughly determined from Table 7, D and E sections.
- RMR value or rock class provides the opportunity to determine the support system by using the guide (Table 9) for the determination of the tunnel support system. Table 9 is used for the excavations carried out using conventional drilling and blasting methods.

Table 9: Tunnel excavation and support guide based on RMR System (Bieniawski, 1989)

			Supports	
Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Conventional shotcrete	Steel sets
Very good rock RMR = 81–100	Full face; 3 m advance	Generally, no support required	d except for occasional spot boltin	ß
Good rock RMR = 61-80	Full face; 1.0–1.5 m advance; complete support 20 m from face	Locally, bolts in crown 3 m long, spaced 2.5 m, with occasional wire mesh	50 mm in crown where required	None
Fair rock RMR = 41–60	Heading and bench; 1.5–3 m advance in heading; commence support after each blast; complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with wire mesh in crown	50–100 mm in crown and 30 mm in sides	None
Poor rock RMR = 21–40	Top heading and bench; 1.0– 1.5 m advance in top heading; install support concurrently with excavation 10 m from face	Systematic bolts 4–5 m long, spaced 1–1.5 m in crown and wall with wire mesh	100–150 mm in crown and 100 mm in sides	Light to medium ribs spaced 1.5 m where required
Very poor rock RMR <20	Multiple drifts; 0.5–1.5 m advance in top heading; install support concurrently with excavation; shotcrete as soon as possible after blasting	Systematic bolts 56 m long, spaced 1-1.5 m in crown and walls with wire mesh; bolt invert	150–200 mm in crown, 150 mm in sides, and 50 mm on face	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required; close invert

 iii) For any specific dimension of the underground opening, the duration of standing of the unsupported tunnel section is determined from the graph in Figure 12.

Figure 12: Duration of standing unsupported time (Bieniawski, 1989)

iv) Support load can be estimated using the RMR value by Eqn. (8).

$$P = \left[\frac{(100 - RMR)}{100} \right] B\gamma \tag{8}$$

In this equation,

P: Support load (kN)

B: width of the tunnel (m)

- γ : unit weight of the rock (kN/m³)
- v) In the RMR classification system, Eqn. (9) can be used for the determination of in-situ deformation modulus of the rock masses (Bieniawski, 1978).

$$E_m = 2RMR - 100 \tag{9}$$

The unit of E_m is GPa, "Basic RMR" rating is used in Eqn. (9). In order to use Eqn. (9), the RMR value needs to be greater than 50. However, in the case the RMR value is lower than 50, Serafim and Pereira (1983) suggested using Eqn. (10):

$$E_m = 10^{(RMR - 10)/40} \tag{10}$$

Additionally, caution is recommended when using Eqns. (9) or (10) since these equations, in some cases, can give higher values than the deformation modulus of the rock material (E_{intact}) that is determined from laboratory tests. Therefore, for the determination of the rock masses deformation modulus, more realistic values could be gained by applying a reduction factor (RF) defined by the RMR rating of Figure 13 on the determined deformation modulus of the rock material (Bieniawski and Nicholson, 1990) (Eqn. (11):

$$E_m = (RF)E_{intact} \tag{11}$$

Figure 13: Reduction factor for the deformation modulus of the rock material determined from laboratory tests (Bieniawski and Nicholson, 1990)

4.2.2 NGI Tunneling Quality Index (Q-system)

Rock mass classification system named as Q or NGI (Norwegian Geotechnical Institute) has been developed by Barton (1974) specifically for tunnel design in the beginning of the 70's. Rock Tunneling Quality Q is calculated from 6 independent parameters by an equation which is given below (Eqn. (12)):

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$
(12)

In this equation;

RQD: Rock quality designation

J_n: Joint set number

- J_r: Joint roughness number
- J_a: Joint alteration number

 J_w : Joint water reduction factor

SRF: Stress reduction factor

In Eqn. (12), "RQD/Jn" refers to rock mass structure and block size, "Jr/Ja" refers to filled or unfilled discontinuity surface roughness and characteristics of discontinuity (the inter-block shear strength), and finally "Jw/SRF" refers to effective stress conditions. This system has been developed based on the experiences gained from more than 1000 cases in constructed tunnels. For the Q system, there is no significant change except a modification made by Grimstad and Barton (1993) and Barton and Grimstad (1994) related with the Stress Reduction Factor (SRF). Values of the 6 parameters, which can change according to different conditions used for the calculation of the Q value including the changes made to the SRF, are presented in Table 10.

Table 10: () parameters for	different conditions	(Barton,	, 2002)
---------------------	------------------	----------------------	----------	---------

Table A1				Table A2				
Rock quality designation RQD			Joint s	Joint set number				
A B C D E	Very poor Poor Fair Good Excellent	0-25 25-50 50-75 75-90 90-100	A B C D E F	Massive, no or few joints One joint set One joint set plus random joints Two joint sets Two joint sets plus random joints Three joint sets	0.5–1 2 3 4 6 9			
Notes: (i) Where RQD is reported or measured as ≤ 10 (including 0), a nominal value of 10 is used to evaluate Q . (ii) RQD intervals of 5, i.e., 100, 95–90, etc., are sufficiently accurate			G H J	Three joint sets plus random joints Four or more joint sets, random, heavily jointed, 'sugar-oube', etc. Crushed rock, earthlike	12 15 20			

Notes: (i) For tunnel intersections, use $(3.0 \times J_n)$. (ii) For portals use $(2.0 \times J_n)$.

Table A3

Joint roughness number	Jr	
(a) Rock-wall contact, o A	4	
В	Rough or irregular, undulating	3
С	Smooth, undulating	2
D	Slickensided, undulating	1.5
E	Rough or irregular, planar	1.5
F	Smooth, planar	1.0
G	Slickensided, planar	0.5
(h) No noch well conto	, i se se se se se se se se se se se se se	

(b) No rock-wall contact when sheared H	Zone containing clay minerals thick enough to prevent rock-wall contact.	1.0
1	Sandy, gravely or crushed zone thick enough to prevent rock-wall contact	1.0

Notes: (i) Descriptions refer to small-scale features and intermediate scale features, in that order. (ii) Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m. (iii) $J_r = 0.5$ can be used for planar, slickensided joints having lineations, provided the lineations are oriented for minimum strength. (iv) J_r and J_a classification is applied to the joint set or discontinuity that is least favourable for stability both from the point of view of orientation and shear resistance, τ (where $\tau \approx \sigma_n \tan^{-1} (J_r/J_a)$.

Table .	A4		
Joint a	teration number	$\phi_{\rm r}$ approx. (deg)	Ja
(a) <i>Roc</i> A	k-wall contact (no mineral fillings, only coatings) Tightly healed, hard, non-softening, impermeable filling, i.e., quartz or epidote	_	0.75
в	Unaltered joint walls, surface staining only	25-35	1.0
с	Slightly altered joint walls, non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.	25–30	2.0
D	Silty- or sandy-clay coatings, small clay fraction (non-softening)	20-25	3.0
E	Softening or low friction clay mineral coatings, i.e., kaolinite or mica. Also chlorite, talc, gypsum, graphite, etc., and small quantities of swelling clays	8–16	4.0
(b) <i>Roo</i> F	k-wall contact before 10 cm shear (thin mineral fillings) Sandy particles, clay-free disintegrated rock, etc.	25-30	4.0
G	Strongly over-consolidated non-softening clay mineral fillings (continuous, but <5 mm thickness)	16–24	6.0
н	Medium or low over-consolidation, softening, clay mineral fillings (continuous, but <5 mm thickness)	12–16	8.0
l	Swelling-clay fillings, i.e., montmorillonite (continuous, but $<5 \text{ mm}$ thickness). Value of J_a depends on per cent of swelling clay-size particles, and access to water, etc.	6–12	8–12
(c) <i>No</i> KLM	rock-wall contact when sheared (thick mineral fillings) Zones or bands of disintegrated or crushed rock and clay (see G, H, J for description of clay condition)	6–24	6, 8, or 8–12
N	Zones or bands of silty- or sandy-clay, small clay fraction (non-softening)	_	5.0
OPR	Thick, continuous zones or bands of clay (see G, H, J for description of clay condition)	6–24	10, 13, or 13-20

Table A5

	Joint water reduction factor	Approx. water pres. (kg/cm ²)	J_{w}
A	Dry excavations or minor inflow, i.e., <51/min locally	<1	1.0
В	Medium inflow or pressure, occasional outwash of joint fillings	1-2.5	0.66
С	Large inflow or high pressure in competent rock with unfilled joints	2.5–10	0.5
D	Large inflow or high pressure, considerable outwash of joint fillings	2.5-10	0.33
E	Exceptionally high inflow or water pressure at blasting, decaying with time	>10	0.2-0.1
F	Exceptionally high inflow or water pressure continuing without noticeable decay	>10	0.1-0.05

Notes: (i) Factors C to F are crude estimates. Increase J_w if drainage measures are installed. (ii) Special problems caused by ice formation are not considered. (iii) For general characterisation of rock masses distant from excavation influences, the use of $J_w = 1.0$, 0.66, 0.5, 0.33, etc. as depth increases from say 0–5, 5–25, 25–250 to > 250 m is recommended, assuming that RQD/ J_n is low enough (e.g. 0.5–25) for good hydraulic connectivity. This will help to adjust Q for some of the effective stress and water softening effects, in combination with appropriate characterisation values of SRF. Correlations with depth-dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed.

1 401				
Stres	s reduction factor	SRF		
(а) И А	Veakness zones intersecting excavation, which may cause loosening of rock mass when tunnel is excavated Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock (any depth)	10		
B	Single weakness zones containing clay or chemically disintegrated rock (depth of excavation ≤ 50 m)	5		
С	Single weakness zones containing clay or chemically disintegrated rock (depth of excavation >50 m)	2.5		
D	Multiple shear zones in competent rock (clay-free), loose surrounding rock (any depth)	7.5		
E	Single shear zones in competent rock (clay-free), (depth of excavation ≤ 50 m)	5.0		
F	Single shear zones in competent rock (clay-free), (depth of excavation > 50 m)	2.5		
G	Loose, open joints, heavily jointed or 'sugar cube', etc. (any depth)	5.0		
		$\sigma_{\rm c}/\sigma_1$	$\sigma_{ heta}/\sigma_{ ext{c}}$	SRF
(b) C H	ompetent rock, rock stress problems Low stress, near surface, open joints	> 200	<0.01	2.5
J	Medium stress, favourable stress condition	200-10	0.01-0.3	1
K	High stress, very tight structure. Usually favourable to stability, may be unfavourable for wall stability	10-5	0.3-0.4	0.5–2
Ĺ	Moderate slabbing after >1 h in massive rock	5–3	0.5-0.65	5–50
М	Slabbing and rock burst after a few minutes in massive rock	3–2	0.65-1	50-200
N	Heavy rock burst (strain-burst) and immediate dynamic deformations in massive rock	<2	>1	200-400
		$\sigma_{ heta}/\sigma_{ m c}$	SRF	
(c) <i>S</i> O	uueezing rock: plastic flow of incompetent rock under the influence of high rock pressure Mild squeezing rock pressure	1–5	5–10	
P	Heavy squeezing rock pressure	> 5 SRF	10-20	
(d) <i>S</i> R	welling rock: chemical swelling activity depending on presence of water Mild swelling rock pressure	5–10		
S	Heavy swelling rock pressure	10-15		
_				

Table A6

Notes: (i) Reduce these values of SRF by 25–50% if the relevant shear zones only influence but do not intersect the excavation. This will also be relevant for characterisation. (ii) For strongly anisotropic virgin stress field (if measured): When $5 \le \sigma_1/\sigma_3 \le 10$, reduce σ_c to $0.75\sigma_c$. When $\sigma_1/\sigma_3 > 10$, reduce σ_c to $0.5\sigma_c$, where σ_c is the unconfined compression strength, σ_1 and σ_3 are the major and minor principal stresses, and σ_θ the maximum tangential stress (estimated from elastic theory). (iii) Few case records available where depth of crown below surface is less than span width, suggest an SRF increase from 2.5 to 5 for such cases (see H). (iv) Cases L, M, and N are usually most relevant for support design of deep tunnel excavations in hard massive rock masses, with RQD/J_n ratios from about 50–200. (v) For general characterisation of rock masses distant from excavation influences, the use of SRF = 5, 2.5, 1.0, and 0.5 is recommended as depth increases from say 0–5, 5–25, 25–250 to > 250 m. This will help to adjust Q for some of the effective stress effects, in combination with appropriate characterisation values of J_w . Correlations with depth-dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed. (vi) Cases of squeezing rock may occur for depth $H > 350Q^{1/3}$ according to Single [34]. Rock mass compression strength can be estimated from SIGMA_{cm} $\approx 5\gamma Q_c^{1/3}$ (MPa) where γ is the rock density in t/m³, and $Q_c = Q \times \sigma_c/100$, Barton [29].

Related with the Q value, in terms of sensitivity and support requirements of underground openings, Barton and others (1974) defined a parameter named as "equivalent size, D_e ". This parameter is calculated from Eqn. (13):

$$D_e = \frac{Excavation span, diameter or height (m)}{Excavation Suppoert Ratio (ESR)}$$
(13)

The ESR value in the above equation is a kind of safety factor and this value has an impact on the support system placed in order to provide the stability of the underground openings. According to the type and purpose of the underground excavation, the original ESR values had been proposed by Barton et al. (1974). However; Barton and Grimstad (1994) made some modifications and updated the

ESR values after 1994. The original and updated ESR values are given in Table 11 comparatively.

Excavation Category	Original ESR (1974)	Updated ESR (1994)
A. Temporary Mine Openings	3– 5	2-5
B. Vertical shafts: Circular section Rectangular / square section	2.5 2.0	-
C. Permanent Mine Openings, water tunnels for hydropower (excluding high-pressure pen stocks), pilot tunnels, drifts, and headings for large excavations. Rectangular Square Section	1.6	1.6-2.0
D. Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers, access tunnels	1.3	1.2-1.3
E. Power stations, major highway or railroad tunnels, civil defense chambers, portals, intersections	1.0	0.9-1.1
F. Underground nuclear power stations, railway stations, sports and public facilities, factories.	0.8	0.5-0.8

Table 11: Original and updated ESR values by Barton et al. (1974) and Barton and Grimstad (1994)

The Q values which are calculated from Eqn. (12) by using the values determined from Table 10 for the Q system parameters, change between 0.001 and 1000. The Q system, depending on these values, has nine different rock mass classifications that vary from exceptionally good to exceptionally poor category. Rock mass classifications related to the Q system and the graph showing the relationship between Q and De are given in Figure 14.

Figure 14: Rock mass quality of Q System (Barton et. al 1974)

The Q classification system is used for underground openings such as tunnels, galleries and big underground chambers. In this manner, the main application areas for the use of selected parameters and Q values determined are given below.

i) Support System Selection

This system has been updated to the final version by Barton (2002) by considering improved support system technology and observations made in underground openings since 1974.

Therefore, in this study the updated support system chart is presented in Figure 15. Q values and supports (permanent and temporary) given in Figure 15 are related to the roof of the opening. Support system for side walls can be determined by considering the height of the wall and corrections to be made to the Q values as indicated below (Barton, 2002).

$$Q>10 \rightarrow Q_{wall} = 5.0Q$$
 (14)

$$0.1 < Q < 10 \qquad \rightarrow \qquad Q_{wall} = 2.5Q \tag{15}$$

$$Q < 0.1 \rightarrow Q_{wall} = Q$$
 (16)

 Determination of the largest unsupported span and roof support pressure (P_{roof})

Maximum (Unsupported) Span =
$$2 (ESR)Q^{0.4}$$
 (17)

$$P_{roof} = \frac{2}{J_r} Q^{-1/3}$$
(18)

If the number of the joint sets is less than three, the roof support pressure is calculated from Eqn. (19):

$$P_{roof} = \frac{2}{3} J_n^{1/2} J_r^{-1} Q^{-1/3}$$
⁽¹⁹⁾

iii) Determination of rock bolt and anchor size

Both supports lengths depend on the excavation dimensions. The lengths of the bolts used in the roof generally depend on the width of the excavation, the ones used in side walls depend on the length of excavation. Accordingly, equations that can be modified according to construction condition are proposed below by Barton et al, 1974.

Roof Bolt Length (L) =
$$2 + ((0.15B)/ESR)$$
 (20)

Roof Anchor Length (L) =
$$0.4B/ESR$$
 (21)

Side Wall Bolt Length (L) =
$$2 + ((0.15H)/ESR)$$
 (22)

Side Wall Anchor Length (L) =
$$0.35H/ESR$$
 (23)

In these equations;

B: Excavation width (m)

H: Excavation length (m)

L: Bolt or anchor length (m)

iv) Unsupported span time

The chart given in Figure 16 shows the relationship between Q and unsupported stand-up time. The shaded sections represent the first evaluation which is proposed to predict the decreasing amount of the unsupported standing duration, if the unsupported opening width exceeds the planned widest opening in design.

Note: Theenvelopes represent a preliminary attempt at predicting how much the stand-up time reduces when the span of an unsupported excavation is increased beyond the maximum design span

Figure 16: Q system stand up time vs rock mass quality (Barton, 1976)

v) Estimation of the rock mass deformation modulus

As in the RMR system, the rock mass deformation modulus E_m can be predicted from the Q values from empirical relations given below (Eqn. (24) (Grimstad and Barton, 1993) and Eqn. (25) (Barton, 2002)).

$$E_m(GPa) = 25 \ Log_{10}Q \qquad (for \ Q > 1)$$
 (24)

$$E_m = 10Q_c^{1/3}$$
 where $Q_c = Q \frac{\sigma_c}{100}$ (25)

In this equation;

 σ_c = Uniaxial compressive strength of rock material

vi) Estimation of the shear strength parameters

The shear strength parameters, namely, the friction angle and cohesion can be predicted from Q values from empirical relations given below (Eqns. (26) and (27); Barton and Pandey, 2011).

$$\Phi = tan^{-1}[(J_r/J_a)J_w] \tag{26}$$

$$c = \binom{RQD}{J_n} (\frac{1}{SRF}) (\frac{\sigma_c}{100})$$
⁽²⁷⁾

In this equation;

 σ_c = Uniaxial compressive strength of rock material (MPa)

 Φ = Friction angle (°)

c = Cohesion (MPa)

Comparison of the RMR and Q System

Both the RMR and Q classification systems are based on the rating of the three main features of rock masses. These are the strength of rock material, frictional properties of discontinuities and the geometry of the rock block defined by the discontinuities. The strength of the rock material in the Q system is considered as a factor of the rock stress described with SRF. In order to understand the effect of these parameters, the total change range of these features in RMR and Q can be used for comparison. It is observed that there are similarities between the two methods related to three main rock properties that are taken into consideration. However, there is no evidence showing the direct relation between these two systems. Evaluations made for the stress and strength of rock material are extremely different for both systems.

Despite the differences between the RMR and Q system, prediction of the system rating from the other by using Eqn. (28) as proposed by Bieniaewski (1976) is known to be the most popular relation for conversion from RMR to Q.

$$RMR = 9 \ln Q + 44 \tag{28}$$

In addition to Eqn. (28) above, different equations are proposed in the following years for the same purpose.

Another difference between the RMR and Q is related to the evaluation of the discontinuity spacing parameter. If there are three or more joint sets and these joints are widely spaced, it is hard to expect that the Q system reflects the rock material properties. It should be considered that the situation of jointing with large spacing will reduce the J_n parameter extremely in the Q system. Therefore, considering the numerical relationship between these two systems, Eqn. (26) should be used with caution.

4.2.3 Geological Strength Index (GSI)

The Geological Strength Index (GSI) has been presented by Hock and Brown in 1997 for both hard and weak rock masses. Experienced geological engineers generally show an affinity for a fast, simple but not completely reliable rock mass classification which is based on visual inspection of geological conditions. In this classification, at the first stage five main qualitative classifications of rock mass structures were suggested which were intact-massive, blocky, very blocky, blockydisturbed and disintegrated. Additionally, five different surface conditions which are similar to the RMR discontinuity condition descriptions for rock masses were recommended. During 1997 to 2013 the classification chart has been modified and laminated-sheared section and special chart for flysch type of rock masses have been added in GSI classification system (Figure 17). After the 2013, some quantification related to jointed rock mass has been added for in GSI chart by Hoek, E., et al. (Figure 18) due to the lack of measurable parameters for describing the discontinuity surfaces and the rock mass structures. According to Hoek and Brown (1997), estimation of a range of GSI values for the rock masses should be more reliable than estimation of a single value.

			SURFACE CONDITIONS				
Rock Type:		VERY GOOD	GOOD	FAIR	POOR	VERY POOR	
	STRUCTURE		DECREA	ASING SU	RFACE Q	UALITY 4	Ì
	INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	ECES	90			N/A	N/A
	BLOCKY - well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK PII		70 60			
	VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	ERLOCKING		5	0		
	BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	REASING INT			40 -	30	
	DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces					20	
	LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	v ·	N/A	N/A			10

Figure 17: Rock mass characterization on the basis of interlocking and joint alteration by GSI (Hoek, 1999a)

Figure 18: Quantification of GSI classification system by joint conditions and RQD (JCond₈₉ values taken from RMR) (Hoek et al. 2013)

Hoek and Brown (1980) proposed a method for obtaining estimates of the strength of jointed rock masses and they modified their estimation at the end of 2006. The most significant part of the Hoek-Brown system is the process of reducing the material constants σ_{ci} and m_i from their laboratory test values to compatible in situ values. This is accomplished through the GSI classification systems (Hoek and Diederichs, 2006). Summary tables and details of this classification system are provided in the next chapter.

For the better quality (GSI value higher that 20) rock masses, the GSI value could be estimated directly from the latest version of RMR with using the GSI = RMR-5 equation. However, estimation of very poor quality rock mass GSI value from RMR is very difficult due to the missing balance between the ratings of classification systems.

4.2.4 The New Austrian Tunneling Method (NATM)

The main reason of using NATM for the tunnels is the suitability of the method in allowing the rock mass to withstand itself against deformations as much as possible. By the help of this method, the deformation of the rock mass is controlled and loads on the support systems decrease at the time of the excavation. Therefore, rock mass supports itself as much as possible as a consequence of this acceptable deformation.

The support systems do not carry the entire rock load; however, they are used to form a load carrying arch by controlling plastic deformation and prevent weakening which can be defined as loosening of the rock strength. Hence, the flexibility of the support systems is an important parameter for this system. When the strength of the rock is not enough to bear its load, the support pressure applied near to the bearing capacity of the rock stabilizes the excavation.

Whereas 22 principles mentioned by Mueller (1978) were almost explained with the aid of NATM, the number of these principles can be gathered under the title of 7 manners by the most of authorities dealing with tunnel and support design.

a) Exploitation of the strength of rock mass:

According to this principle, the strength of the rock mass which is the fundamental element of tunnel support can be mobilized by reducing the rock deformations and preclusion of rock mass loosening.

b) Shotcrete Protection:

Application of the early temporary support is essential to preserve the rock mass strength by reducing rock mass deformations to a minimum. Steel sets, rock bolts and shotcrete can be described as temporary support measures of NATM. The application of shotcrete and NATM are almost universally associated each other. Shotcrete is appropriate as a temporary support with its natural and high early strength and rigidity. However, other support types such as steel sets should often be supplemented by shotcrete.

During tunneling, after the excavation phase, a thin layer of shotcrete, which has supplementary support or not, is applied immediately to limit the deformations of the rock mass. This support method is successful because, the shotcrete generates full strata-support contact eliminating the nature of irregularities along the tunnel profile.

c) Deformation, Measurement and Monitoring:

An important purpose of NATM is to use experience and to update the support system continuously by the help of the monitoring the rock mass during excavation.

A tunneling practice has too many support opportunities in the consequence of the increasing support equipment knowledge and the support variety is thought to be important due to the differences in the geological conditions faced along the tunnel.

d) Flexible Support:

The concept of NATM relies on the use of a flexible support system which is compatible with different ground conditions easily. The emphasis is emplaced on limiting rock mass deformations from the earliest appropriate occasion by using shotcrete supplemented by rock bolts, wire mesh or steel sets. These temporary support measures are an important component of the load-carrying arch of NATM with the concrete lining which is constructed after the stabilization of the
deformations in the tunnel. Generating the required opening shape and final extents of the tunnel are the major roles of this lining.

e) Closing of the Invert:

In NATM, the support system is a thick walled cylinder which includes the rock and the lining. According to the slit amount, the cylinder shows different characteristics. For example, it can be closed or not according the laying type. The timing of the invert closing which is identified in NATM as a crucial support parameter has an important bearing on the total attitude of the lining and the surrounding ground. Although the invert is closed very quickly to control ground movements in the soft ground, it will be closed at a certain distance behind the face in the rock tunnels to permit ground distressing which is ensured by controlled deformation.

f) Tunneling Contract Agreement:

Because of the flexibility of NATM for the tunnel support and estimation of the need to adapt to varying ground conditions, a contract, which includes an equal degree of flexibility with regard to changes during construction, will be needed. NATM, which could not have been governed by a system, need both completed design at the tender stage and the full construction responsibility at the same time.

g) Rock Mass Classification:

The ground can be classified into different classes during tunnel construction (Table 12). This is performed as per the ground characteristics and other geological and hydrogeological conditions, with each class being defined by a particular type, amount of permanent support, besides specific excavation steps. As a tunnel support concept, NATM uses the strength of the surrounding ground as the principal supporting constituent related to operating a two-step lining technique which is temporary and primary support. The temporary support is the fundamental load-bearing constituent.

In NATM, installation the support system at the right time just before the loss of the stability of the rock mass is a significant matter in terms of pace and economy. Elastic and plastic deformation of rock, which is allowed to hold the undesirable loads by itself lets one avoid the excessive loads on the tunnel support system. Hence, instrumentation made and commented at the excavation stage accompanies the success of the method. Figure 19 shows the time selection for the installation of the support system. According to this approach, the most suitable time for the support system installation can be chosen by positioning equilibrium point as close to the minimum value of the Load-Deformation curve as possible. To this end, high sensitivity monitoring should be performed during excavation.

Rock Class Description	Austrian Standard ONORM 2203 previous	Classification after Rabcewicz-Pacher		
A1 STABLE	1 STABLE	I		
A2 SLIGHTLY OVERBRAKING	2 AFTER BEAKING	STABLE ROCK, SLIGHTLY AFTERBREAKING		
B1 FRIABLE	3 SLIGHTLY FRIABLE	II		
B2	4 FRIABLE OR SLIGHTLY	FRIABLE		
HEAVILY FRIABLE	PRESSURE EXERTING	III		
C1	5	HEAVILY FRIABLE		
PRESSURE EXERTING	HEAVILY FRIABLE OR PRESSURE EXERTING	IV PRESSURE EXERTING		
C2 HEAVILY PRESSURE EXERTING	6 HEAVILY PRESSURE EXERTING	V HEAVILY PRESSURE EXERTING OR FLOWING		
L1 LOOSE GROUND HIGHLY COHESIVE L2 LOOSE GROUND LOW COHESIVE	7 FLOWING	VI SPECIAL CONDITIONS		

Table 12: Rock classification system (Rabcewicz, 1965)

Figure 19: The relationship between support pressure and radial deformation in tunnels (Daemen, 1977 as quoted by Hoek, Kaiser and Bawden, 1995)

NATM rock mass classification is presented Table 13.

A1:	No support required (may be local supports-random); full face or top
	heading and bench in large excavation profiles; drill and blast.
A2:	Shotcrete and random rock bolts; top heading (2.5-3.5 m) and bench
	(4.00 m); drill and blast.
B1, B2:	Shotcrete and systematic bolting; top heading (2.00-3.00 m) and bench
	(4.00 m); drill and blast.
B3:	Shotcrete, systematic bolting, fore-poling; top heading (1.5-2.5 m),
	bench (3.5 m); smooth blasting, road headers if rock masses are
	sensitive to vibrations.
C1:	Shotcrete, systematic bolting, fore-poling, steel ribs; top heading (1.0-
	1.5 m), bench (2.0 m), invert arch (100-150 m); smooth blasting or rock
	header or tunnel excavator.
C2, C3:	Shotcrete, systematic bolting, fore-poling, steel ribs; top heading (1.2
	m), side gallery may be required, bench (2.0 m) invert arch (25-50 m);
	smooth blasting or rock header, or tunnel excavator.
C4:	Shotcrete, fore-polling or lagging, ribs; top heading (1.5 m), bench (3.0
	m), invert arch (100-150 m); tunnel excavator.
C5:	Shotcrete, fore-polling or lagging, ribs; top heading (1.5 m), bench (2.0
	m), invert arch (24-50 m); tunnel excavator.

Table 13: NATM temporary support amounts

NATM rock mass classification is descriptive and far away from being quantitative. The correlation, suggested by Bieniawski (1996) among the classifications of RMR, Q system and NATM is presented below (Table 14 and Figure 20).

Q	RMR BIENIAWSKI	RMR BARTON	RMR AVERAGE	NATM
1000	106.2	95.0	100.6	
400	97.9	89.0	93.5	A1
70	82.3	77.7	80.0	
40	77.2	74.0	75.6	۸2
10	64.7	65.0	64.9	A2
4	56.5	59.0	57.8	B1
1	44.0	50.0	47.0	B2
0.406	35.9	44.1	40.0	B3
0.100	23.3	35.0	29.1	65
0.031	12.7	27.3	20.0	C1
0.016	6.9	23.1	15.0	C2
0.008	1.1	18.9	10.0	C3
0.002		10.0	5.0	C4
0.001		5.0	2.5	C5

Table 14: Correlations of RMR, Q and NATM (Bieniawski, 1996)

Figure 20: Correlations of RMR, Q and NATM (based on Bieniawski 1996 - Sopaci, 2003)

CHAPTER 5

TUNNEL SUPPORT THROUGH EMPRICAL ROCK MASS CLASSIFICATIONS

In the international tunnel practices, different empirical rock mass classifications systems are used for the tunnel support design. The most commonly used rock mass classification systems are the Q-System (NGI Tunneling Quality Index – Barton and Grimstad, 1993 & Grimstad, 2002) and the Rock Mass Rating System (RMR - Bieniawski, 1989), which are quantitative systems. The New Austrian Tunnel Method (NATM - Whittaker and Frith, 1990), which provides a descriptive or qualitative classification, is also generally used in the European countries.

All classification systems have their advantages and disadvantages. For example, although the support design members are proposed for any size of a tunnel, the Q classification system could not offer tangible stand up time for excavations. Similarly, the RMR classification was developed especially for underground excavations for mining purposes and its support suggestions are limited to 10 m openings only. In this context, combination of the strengths of both classifications is used together in the tunnel support design for obtaining more reliable and accurate data. NATM classification, which is controlled by observations and deformation measurements during the tunnel excavation, is based on more subjective geotechnical data in comparison with the Q and RMR classifications (Sopacı & Akgün, 2008).

For this study, evaluations are based on data obtained from limited surface observations, borehole drillings reaching to a depth of 10 m below the tunnel elevation and rock mechanics laboratory tests.

5.1 Q-System and Generalized Support Types

Q classification parameters were interpreted by the mass and material characteristics of rocks. These parameters are presented separately for the portal and tunnel sections in the following parts of the chapter. Undoubtedly, numerous and different Q values can be encountered along the tunnel route. Therefore, Q values have been defined for certain intervals of both rock and support characteristics as seen in laboratory test results and boreholes.

Along the Konak Tunnel 21 boreholes were drilled which are around 1081 m long in total. However, in this study, the tunnel critical sections, having a length of 484 m have been explored by 8 boreholes. Starting from KM 0+550 and ending at KM 2+200, the Konak Tunnel has two tubes running parallel to each other. The tunnel has a modified horseshoe shape with 11.5 m span diameter and 10.3 m height. The tunnel starts to be driven at an elevation of 4.0 m and reaches up to the surface at an elevation of 48.0 m. The drillings at the portals were executed on the axis of each tube and head of portal slope excavation, whereas the others were drilled on the project axis (Figure 21). Each tube starts and daylights at the same chainage. The studied part of the Konak Tunnel is starting at KM 1+750, where the overburden on the tunnel elevation reaches to 100 m.

Figure 21: Borehole lay-out of the critical sections and the exit portal of Konak Tunnel (Yv: Yamanlı Volcanics, Nupp: Upper Sedimentary Sequence, Yd: Fill Material)

According to the drillings, at the exit portal of tunnel, it has been determined that mostly andesite masses being in transition with pyroclastics will be cut at tunnel elevation (Table 15). Critical sections which are studied and analyzed in this study are located at this part of the tunnel. The exit portal of tunnel is mostly formed by tuff, andesite and sandstone, claystone and conglomerate of the Upper Sedimentary Sequence that are in transition with each other (Figure 22).

Geotechnical Section ⁽¹⁾	T-100x	T-75x	T-50x	T-Px		
КМ	1+770	1+950	2+130	2+165		
Chainage	1+950	2+130	2+165	2+200		
Drilling Included	TSK-6 (RQD=40%)	EK-TSK-2 (RQD=40%)	TSK-2 (RQD=10%)	TSK-1 (RQD=12%) TSK-3 (RQD=5%) TSK-4 (RQD=15%) TSK-5 (RQD=10%) EK-TSK-1 (POD=10%)		
Lithology in Tunnel	Andesite	Andesite	Tuff Agglomerate Wth. Andesite	Tuff Agglomerate Wth. Andesite Sed. Seq.		
(1) P: Portal, T: Tunnel, e: Enterance, x: Exit * RQD values are determined from 10 m above and below the tunneling elevation. ** Wth : Weathered, Sed, Sed : Sedimentary Sequence						

 Table 15: Expected rock masses at the tunnel elevation

Figure 22: General view of tuff, andesite and Upper Sedimentary Sequence (sandstone, claystone and conglomerate)

The tunnel alignment is divided into discrete parts depending on the overburden above the tunnel elevation and formation variation for the purpose of support design. Therefore, each drilling has been analyzed at the tunneling elevation and summed up in Table 4. Consequently, the studied parts of the Konak Tunnel were interpreted in 4 discrete parts mainly related to the tunnel excavation depth including the exit portal (T-Px). All the related parameters for the Q-Classification system for these parts are summarized in Table 16 and these parameters are provided under the section 4.2.2 from Table 10.

Table 16: Q System classification of the critical sections of the Konak Tunnel

Geotechnical Section ⁽¹⁾	RQD ⁽²⁾ (%)	Jn*	Jr*	Ja*	Jw*	SRF	H (m) (Burden)	UCS ⁽³⁾ (Mpa)	Q
T-Px	10	12 (2.E)	2 (3.a.C)	4 (4.a.E)	0.66 (5.B)	5.0	35	10	0.06
T-50x	10	6 (2.E)	2 (3.a.C)	4 (4.a.E)	0.66 (5.B)	5.0	50	15	0.11
T-75x	50	9 (2.F)	3 (3.a.B)	2 (4.a.C)	1 (5.A)	2.5	75	40	3.33
T-100x	50	9 (2.F)	3 (3.a.B)	2 (4.a.C)	1 (5.A)	1.0	100	45	8.33
 (1) P: Portal, T: Tunnel, e: Enterance, x: Exit (2) RQD values are determined from 10 m above and below the tunneling elevation. (3) UCS values are determinde from the laboratory test resuls. For the sedimentary rock mean values of test results are used but for the volcanic rocks test results are used directly. * Section numbers and related parts of Q flow chart are given in parentheses. 									

After the determination of the Q values for discrete sections, an average ESR value of 1.0 for "major highway or railroad tunnels" has been selected (Table 17). On account of determining the support category, the equivalent dimension (D_e) values have been entered in support chart with respect to Q values. Hence, D_e values of tunnel excavation have been determined by Barton's (Barton et al., 1974) rock mass quality versus the equivalent dimension chart from Figure 14 (Figure 23 & Table 17).

Geotechnical Section ⁽¹⁾	Q	Rock Class	D _e (m)	ESR	Wall Height (D _e x ESR) (m)		
T-Px	0.06	Extremely Poor	0.77	1.00	0.77		
T-50x	0.11	Very Poor	0.97	1.00	0.97		
T-75x	3.33	Poor	3.58	1.00	3.58		
T-100x	8.33	Fair	5.07	1.00	5.07		
(1) P: Portal, T: Tunnel, e: Enterance, x: Exit							

Table 17: ESR, De and maximum unsupported wall height for the critical sections of the Konak Tunnel

Figure 23: Correlation chart between Q and D_e values for determining the maximum unsupported height of the tunnel wall

Consequently, the support categories and support members have been obtained and presented in Figure 24 and summarized in Table 18. According to the calculated Q values, three rock mass classes have been determined and support elements for the roof and wall have been presented separately (Table 18). Additionally, the maximum unsupported spans which are related to the selected Q values have been calculated from Eqn. (17) and shown in Table 17.

Figure 24: The Q system support categories for Konak Tunnel

Q Range		$10.0 \le Q < 40.0$	$4.0 \le Q < 10.0$	$1.0 \le Q < 4.0$	0.1 ≤ Q <1.0	0.01 ≤ Q <0.1
Q (Cal	culated)	-	8.33	3.33	0.11	0.06
Uniaxial C Strengt	ompressive h (MPa)	-	40	40	15	10
Max. Unsupported Roof Span (m)		-	5.07	3.58	0.97	0.77
Max. Uns Wall He	supported eight (m)	-	4.67	3.24	0.83	0.65
	Roof	7.5 cm shotcrete	15.0 cm shotcrete with single weldmesh layer	20.0 cm shotcrete with double weldmesh layers	20.0 cm shotcrete with double weldmesh layers	22.5 cm shotcrete with double weldmesh layers
Suggested		+ Tensioned rockbolts (Ø28mm, spacing 1.5m, L=4.0m)	+ + + + Tensioned Tensioned Tensioned rockbolts (Ø28mm, spacing (Ø28mm, spacing 1.5m, L=4.0m) 1.5m, L=4.0m)		+ Tensioned rockbolts (Ø28mm, spacing 1.0m, L=4.0m)	+ Tensioned rockbolts (Ø28mm, spacing 1.0m, L=4.0m)
Support Categories by Q-system					+ Steel ribs (I160, spacing 1.0m) + Invert concrete	+ Steel ribs (I160, spacing 1.0m) + Invert concrete
	Wall	7.5 cm shotcrete when needed untenisoned rockbolts (Ø28mm, spot, L=4.00m)	7.5 cm shotcrete when needed untenisoned rockbolts (Ø28mm, spot, L=4.00m)	Same with roof	Same with roof	Same with roof

Table 18: Summary of the Q values and suggested support for the Konak Tunnel

As a result, with respect to the Q system, the rock masses of the critical sections vary from "Extremely Poor Rock" to "Fair Rock" along the Konak Tunnel. As can be seen in Table 18, three support categories have been suggested by the Q intervals. Additionally, Q_{wall} values were calculated from Eqns. 14-16 and the bolt lengths were calculated from Eqn. (20) and (21). Finally, the elastic modulus of the rock masses along the tunnel section has been calculated by Eqns. (24) and (25) and summarized in Table 19.

Geotechnical Section	Q	UCS (MPa)	Em (GPa)
T-Px	0.06	10	1.82
T-50x	0.11	15	2.55
T-75x	3.33	40	11.00
T-100x	8.33	45	15.53

Table 19: Elastic modulus of the rock masses on the tunnel section

5.2 RMR Classification and Largest Span Recommendation

The Q classification system is competent and useful for the generalized support types and the application of support elements for a given span or height. However, it gives no detailed information about the "Unsupported Span". Even though Bieniawski made some studies as per Q values and dimensions of the tunnel excavations for unsupported span, the results of those studies have been interpreted in international scientific environments. Therefore, benefiting from the unsupported span determination through the RMR classification is mandatory for tunnel analysis. Moreover, physical parameters which are used in tunnel analysis are determined and improved from the RMR related formulations. In this sense, during tunnel support design, the Q and RMR empirical rock classifications are used together in a manner in which they complement each other.

The RMR classification system consists of the five main parameters, namely the rock material strength (UCS), discontinuity spacing, RQD, groundwater and discontinuity conditions. Especially, the rock material strength (UCS), discontinuity spacing and RQD are more quantitative than the other two. Therefore, choosing a range of parameters is more realistic instead of giving only one number for the wide range of rock masses. On the other hand, groundwater and discontinuity conditions are more descriptive and defined more clearly in the form of RMR.

In order to determine the rock mass shear strength parameters, stand up times and rock mass classes, the rock mass rating system is used and the basic RMR values are obtained. Additionally, as related to the structural geology of the tunneling area, major joint orientation is important for the direction of tunnel excavation. Because of the incompatibility of the orientations of the joint sets and the tunnel, the rock mass is punished with correction factors from 0 to (-12). This punishment is not related to the five major rock mass parameters and RMR classification. However, in highly tectonic regions like the project area, the joint orientations change so often in very small intervals. Hence, it is not easy to determine the discontinuity orientations and punishing the rock mass strength parameters and changing the rock mass classes is

not fair. As a result, discontinuity orientations and correction factors will be disregarded in the RMR calculations.

The RMR assessment of the tunnel portal faces was another attempt. In the Q system, Barton (2002) suggests that the joint number (J_n) values are assigned twice the number in the portal regions. Hence, Q values of the portal region are decreased by half of its original value ($Q_{portal}=Q/2$). The empirical expression RMR=9LnQ+44 will be used in these classifications and RMR values will be calculated. These RMR values will be used for the determining the shear strength parameters in the finite element analyses.

In order to calculate the RMR values, the beforehand specified geological and geotechnical data of the rock mass for the Q classification system were reconsidered. RMR calculation details are presented in APPENDIX-D for all discrete sections which are included with in this thesis. A summary of the RMR classification results has been presented in Table 20. Moreover, the maximum unsupported spans and stand up times as per the RMR results have been interpreted from Figure 25.

Figure 25: RMR results with maximum unsupported spans and stand up time

Geotechnical	T_Dv	T_50v	T-75v	T-100v		
Section	1-64	1-50%	1-758	1-100X		
RMR	23.0	33.5	46.5	57.0		
Rock Class	IV	IV	III	III		
Description	Poor Rock	Poor Rock	Fair Rock	Fair Rock		
Cohesion (kPa)	100-200	100-200	200-300	200-300		
Friction Angle (°)	15-25	15-25	25-35	25-35		
Max. Unsupported	2 5	1 8	00	12 2		
Span (m)	5.5	4.0	0.0	15.5		
Stand-up Time						
for Unsupported	4.0 hr.	30.0 hr.	17.5 days	5.6 months		
Span						
Modulus of	2 11	3 87	8 18	14.00		
Elasticity (GPa)	2.11	5.87	0.10	14.00		
	RMR Suppo	rt Sugestions (Roc	of & Wall)			
	Top heading an	d bench 1-1.5m	Heading and benc	h 1.5-3m advance		
Excavation	advance in top	heading. Install	in top heading. Commence support			
Excavation	support conc	urrently with	after each blast. Complete support			
	excavation 10)m from face.	10m from face.			
	Systematic bolts	1-5m long, spaced	Systematic bolts 4m long, spaced			
Rock Bolts	1-1.5m in roof ar	d walls with wire	1.5-2m in roof and walls with wire			
	mesh (þ 28, f	ully bonded).	mesh in roof (¢ 28, fully bonded).			
	100-150mm in ro	of and 100mm in	50-100mm in ro	of and 30mm in		
Shotcrete	sid	es.	sides.			
	Light to medium	rihs snaced 1 5m				
Steel Sets	where required.		None			
Note: Support categ	ories are suggested	d for horseshoe sh	ape tunnel with 10	m span and		
excavated by drilling and blasting.						

 Table 20: Determined geotechnical parameters and support categories with the RMR classification

The results of the RMR classification showed that the rock quality varied from "Poor Rock" to "Fair Rock" along the critical sections of the Konak Tunnel. Besides rock quality, engineering parameters of the rock masses and support suggestions with the maximum unsupported span and stand-up time have been illustrated above. Moreover, the RMR values have been used for elastic modulus calculations of the rock masses by Eqns. (9) and (10).

The RMR and Q classifications have several empirical correlations. The most commonly used one is proposed by Bieniawski (1976) and given in Eqn. (28) in section 4.2.2. By this equation, the RMR and Q values of discrete sections of the tunnel have been controlled and correlated (Figure 26). The correlation line between the RMR and Q values of the discrete sections is similar to Bieniawski's correlation.

Figure 26: Correlation between RMR and Q values of the Konak Tunnel

5.3 GSI Classification and Strength Parameters

The GSI classification is based on the visual impressions on the rock mass structure and provides a system for estimating the strength reduction of rock mass for different geological conditions. This system is describing and presenting the constant parameters for the rock masses strength estimations which are σ_{ci} and mi parameters. Meaning of the σ_{ci} is uniaxial compressive strength of the rock material and m_i, on the other hand, is material constant which is defined by Hoek (2002) and with respect to the laboratory test results of the rock material. These m_i values for different rock units are given in Table 21. Careful consideration has been given to calculation of the strength reduction amounts of rock masses. GSI values for all geotechnical sections have been calculated from the RMR-5 equation which was suggested by Hoek (1997). Additionally, shear strength parameters, deformation modulus and other rock material constants have been calculated and taken from RocLab (Rocscience v1.033 – 2013) software. The results of this classification system are illustrated in Table 22 and detailed RocLab software outputs are given in APPENDIX-I.

Rock	Class Group		Texture				
type			Coarse	Medium	Fine	Very fine	
	Classia		Conglomerate (22)	Sandstone 19	Siltstone 9	Claystone 4	
	Clastic			Greyw (1	vacke 8)		
ARY		Orașele		Ch	alk ——— 7		
MENT		Organic		Co (8-	21)		
SEDI	Non-Clastic	Carbonate	Breccia (20)	Sparitic Limestone (10)	Micritic Limestone 8		
		Chemical		Gypstone 16	Anhydrite 13		
PHIC	Non Foliated		Marble 9	Hornfels (19)	Quartzite 24		
AMOR	Slightly foliated		Migmatite (30)	Amphibolite 25 - 31	Mylonites (6)		
MET	Folia	Foliated*		Schists 4 - 8	Phyllites (10)	Slate 9	
			Granite 33		Rhyolite (16)	Obsidian (19)	
	Li	Light			Dacite (17)		
IEOUS			Diorite (28)		Andesite 19		
IGN	Da	ark	Gabbro 27	Dolerite (19)	Basalt (17)		
	Extrusive pyroclastic type		Agglomerate (20)	Breccia (18)	Tuff (15)		

Table 21: Values of m_i for different rock materials (Hoek et al. 1997)

* These values are for intact rock specimens tested normal to bedding or foliation. The value of m_i will be significantly different if failure occurs along a weakness plane. Note that values in parenthesis are estimates.

Geotechnical Section	T-Px	T-50x	T-75x	T-100x		
Average E _i * (GPa)		6.	42			
Average γ* (kN/m³)		23.	.84			
Average Poissons Ratio*	0.335					
GSI**	20 (18.0)	30 (28.5)	40 (41.5)	50 (52.0)		
UCS (MPa)	10	15	40	45		
Averge m _i ***	11	19	19	19		
E _d (GPa)	0.293	0.552	1.025	1.972		
Max. Overburden (m)	35	50	75	100		
c (MPa)	0.081	0.183	0.418	0.646		
Φ (°)	35.85	45.05	52.37	53.86		
* Laboratory test result						
** Values in parenthesis calculated from directly GSI = RMR - 5 equation.						
*** m _i values calculated from the average of all units in section.						

Table 22: Determined geotechnical parameters with the GSI classification

5.4 New Austrian Tunneling Method (NATM) Classification

The NATM is more descriptive and needs more interpretation than the RMR and Q rock mass classification systems. In other words, the purpose of NATM is not classifying the rock masses; it provides suggestions about excavation stages and excavation methods. Henceforth, NATM has been based on the two other classifications made before. This study for the critical sections of the Konak Tunnel provides the correlation opportunity for NATM and the other two rock mass classification systems which are RMR and Q (Table 23). Consequently, NATM descriptions, support recommendations and excavation methods have been displayed in Table 24 for the all the critical sections of the Konak Tunnel.

Geotechnical Section	Tunneling Depth (m)	Lithology	Q	Rock Class for Q	RMR	Rock Class for RMR	NATM	
Т-Рх	35	Andesite, agglomerate, tuff and lower sedimentery sequence (sandstone - claystone - conglomerate)	0.06	Extremely Poor	23.0	Poor	C1	
T-50x	50	Andesite, tuff and agglomerate	0.11	Very Poor	33.5	Poor	B3	
T-75x	75	Andesite	3.33	Poor	46.5	Fair	B2	
T-100x	100	Andesite	8.33	Fair	57.0	Fair	B1	
* Descriptions	* Descriptions are direcly taken from the correlation chart given in Figure 18.							

 Table 23: Correlated NATM descriptions with RMR and Q system for the critical sections of the Konak Tunnel

Table 24: NATM Support and excavation recommendations for the Konak Tunnel

Geotechnical	TDv	T EOv	T 75v	T-100x	
Section	1-PX	1-50X	1-758		
Q - System	$0.04 \le Q < 0.1$	0.1 ≤ Q < 1	$1 \le Q < 4$	$4 \le Q < 10$	
NATM	C1	B3	B2	B1	
Excavation Stage	Three Stages (top heading, bench and invert arch)	Two stages (top heading and bench)	Two stages (top heading and bench)	Two stages (top heading and bench)	
Excavation Method	Smooth blasting and roadheader or excavator	Smooth blasting and roadheader or excavator(if needed)	Smooth blasting and roadheader or excavator(if needed)	Smooth blasting	
Round	1.0-1.5 m top heading, 2.0 m bench, 100-150 m invert arch	1 top 2.0 m -150 m rch		2.0-3.0 m top heading, 4.0 m bench	
NATM Support Suggestion	Shotcrete, systenatic bolting, steel ribs, forepolling	Shotcrete, systenatic bolting, steel ribs, forepolling (if needed)	Shotcrete, systenatic bolting, forepolling	Shotcrete, systenatic bolting	

5.5 Rock Mass Characterization and Tunnel Support Design

Three different classification systems have been used for the rock mass characterization and support design recommendations. Stand up times and maximum unsupported spans have been proposed by the RMR classification system. Excavation stages, excavation methods or round lengths have been determined by NATM descriptions. And lastly, support recommendations have been taken from the Q system. The description of tunnel excavation requirements has been illustrated in Table 25.

Geotechnical		T-Px	T-50x	T-75x	T-100x	
Sect	lion	0.01 4 0 4 0 1	0.1 0.1≤Q<1 1≤Q<4		1 < 0 < 10	
Q - Ra	ange	0.04 ≤ Q < 0.1	0.1≤Q<1	1 <u>≤</u> Q < 4	4 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
	2	0.06	0.11	3.33	8.33	
RN	1R	23.0	33.5	46.5	57	
NA	ΓM	C1	B3	B2	B1	
Max. Unsupported Span (m)		3.5	4.8	8.8	13.3	
Stand-up Time for Unsupported Span		4.0 hr.	30.0 hr.	17.5 days	5.6 months	
Excavation Stage		Three Stages (top heading, bench and invert arch)	Two stages (top heading and bench)	Two stages (top heading and bench)	Two stages (top heading and bench)	
Excavation Method		Smooth blasting and roadheader or excavator	Smooth blasting and roadheader or excavator(if needed)	Smooth blasting and roadheader or excavator(if needed)	Smooth blasting	
Round		1.0-1.5 m top heading,2.0 m bench, 100-150 m invert arch	1.5-2.0 m top heading, 3.0 m bench2.0-2.5 m top heading, 3.5 m bench		2.0-3.0 m top heading, 4.0 m bench	
ies		22.5 cm shotcrete with double weldmesh layers	20.0 cm shotcrete with double weldmesh layers	20.0 cm shotcrete with double weldmesh layers	15.0 cm shotcrete with single weldmesh layer	
Suggested Support Categori by Q-system	Roof	Tensioned rockbolts (Ø28mm, spacing 1.0m, L=4.0m)	Tensioned rockbolts (Ø28mm, spacing 1.0m, L=4.0m)	Tensioned rockbolts (Ø28mm, spacing 1.0m, L=4.0m)	Tensioned rockbolts (Ø28mm, spacing 1.5m, L=4.0m)	
		Steel ribs (I150 -I160, spacing 1.0m)	Steel ribs (I150 -I160, spacing 1.0m)			
	Wall	Same with roof	Same with roof	Same with roof	7.5 cm shotcrete when needed untenisoned rockbolts (Ø28mm, spot, L=4.00m)	

 Table 25: Excavation and Support recommendations for the critical sections of the Konak

 Tunnel

The rock masses control the stability of the tunnel excavation with their intact rock properties and discontinuities. Hence, the strength parameters and deformation properties of the rock mass around the tunnel excavation is critical and the determination of these parameters create concern for engineers (Sopacı et al., 2005). Many researchers have been initiated different empirical approaches for reaching the rock mass deformation modulus and shear strength parameters. Some of these approaches are given in sections 4.2.1 and 4.2.2 above (Eqn. (9)-(10)-(11)-(25)-(26)-

(27)). Furthermore, it was also benefited from some other studies and their empirical relations are given in Eqn. (29; Gökçeoğlu et al. 2003), Eqn. (30; Zhang and Einstein, 2004) and Eqn. (31; Hoek and Diederichs, 2006). All these empirical approaches are based on the intact rock strength (uniaxial strength); rock mass classifications and jointing index (RQD). The calculation results for this study have been displayed in Table 26. As seen in this table, only the mean value of the elastic modulus for the volcanic rocks (andesite - altered andesite) is presented because of the limited laboratory test results (insufficient number of specimens for testing). However, this was not a drawback since the volcanic rocks, especially andesite, is most commonly encountered unit along the tunneling area. Only around the exit portal of the tunnel, upper sedimentary sequence rock, which is the alternation of sandstone, claystone and conglomerate, has been determined to be present. Besides, all these rock masses present similar engineering properties due to their weathering degree.

The Mohr - Coulomb failure criterion will be used in both the finite element analyses for tunnel excavation and limit equilibrium solutions for slope stability analyses.

$$E_m = 0.0736e^{0.0755RMR} \tag{29}$$

In this equation;

 E_m = Deformation modulus of the rock mass (GPa)

$$E_m/E_r = 10^{0.0186RQD - 1.91}$$
(mean) (30)

In this equation;

 E_m = Deformation modulus of the rock mass (GPa)

 E_r = Elastic modulus of the intact rock (GPa)

$$E_{rm} = E_i \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - GSI)/11)}} \right)$$
(31)

In this equation;

 E_{rm} = Deformation modulus of the rock mass (GPa)

E_r = Elastic modulus of the intact rock (GPa)

D = Disturbance factor

Geotechnica	T-Px	T-50x	T-75x	T-100x			
UCS (N	10	15	40	45			
RQD	(%)	10	10	50	50		
Q		0.06	0.11	3.33	8.33		
RM	R	23.0	33.5	46.5	57		
GS		20	30	40	50		
Average E	i* (GPa)	6.42					
	Deformaton Mod	ulus of Roc	k Mass				
Bieniawski - 1	978 ⁽¹⁾ (GPa)	-	-	-	14.00		
Serafim & Pereira	- 1983 ⁽²⁾ (GPa)	2.11	3.87	8.18	-		
Barton - 200	1.82	2.55	11.00	15.53			
Nicholson & Bieniaw	Nicholson & Bieniawski - 1990 ⁽⁴⁾ (GPa)			0.832	1.286		
Gökçeoğlu et al.	0.418	0.923	2.464	5.443			
Zhang & Einstein	0.218	0.218	1.210	1.210			
Hoek & Diederich	s, 2006 ⁽⁸⁾ (GPa)	0.293	0.552	1.025	1.972		
	Shear Strength Para	meters of R	ock Mass				
DMD	Cohesion (kPa)	100-200	100-200	200-300	200-300		
	Friction Angle (°)	15-25	15-25	25-35	25-35		
C 51	Cohesion (kPa)	81	183	418	646		
651	Friction Angle (°)	35.85	45.05	52.37	53.86		
Barton & Pandey -	Cohesion (kPa)	16.7	50.0	888.9	2500.0		
2011 ⁽⁷⁾	Friction Angle (°)	18.26	18.26	56.31	56.31		
 * Average intact rock elastic modulus are recommended for volcanic rocks which are andesite, agglomerate and tuff. (1) Equation 9; (2) Equation 10; (3) Equation 25; (4) Equation 11; (5) Equation 29; (6) Equation 30; (7) 							

Table 26: Summary of the shear strength parameters and the deformation modulus for the geotechnical sections

Equation 26&27; (8) Equation 31

CHAPTER 6

TUNNEL PORTAL SLOPE DESIGN

The major object of rock slope studies is determining the rock slope stability and safety conditions to stabilize the unstable natural and excavated slopes by procuring optimum conditions in terms of reliability and economy. Disparate geological conditions can cause different type of failures on slope and it is crucial that slope specialists should be capable to recognize the potential instabilities at the beginning of a project.

All the microscopic and macroscopic features that affect the strength and deformation characteristics of rocks can be called upon as defects. Consequently, rock slope stability depends on the strength characteristics of rock, the geometrical and strength characteristics of discontinuities and effects of weathering on rock and rock defects.

The first phase of a slope design is composed of studying geological maps, air photographs, outcrops and core samples taken through drilling. Discontinuities particularly have a dominant effect on rock slopes. Although there are many stable slopes that are at steep angles and considerable height, gentle slopes having inconsiderable heights may fail. This distinction is a result of discontinuities such as faults, joints and bedding planes having different inclinations that are present within the rock mass (Hoek and Bray, 1981).

There are four types of failure which are planar, wedge, toppling (rock fall) and circular failures, commonly seen in rock slopes (Figure 27). The first three are more predominant in the rock slope and the failure system is controlled by the discontinuity planes with their orientations, spacings and surface conditions. Discontinuity controlled failures can be comprised of a single discontinuity or multiple discontinuities that intersect or combine each other. On the other hand, circular (rotational) failures occur in heavily jointed or fractured rock masses, showing very weak or heavily weathered rock and soil like behavior. The circular type of failure in rock slopes is controlled by material properties, water condition and foundation strength.

Figure 27: The types of rock slope failure (Hoek and Bray, 1981)

6.1 Geotechnical Field Evaluation of the Exit Portal

Two different meanings of the "portal" term are mentioned in this thesis. One of them is the tunnel portal which is the portion of the tunnel starting from its entrance to a location that is determined by using a height of the overburden that is equal to three times of the tunnel span. The other is the open cut slopes of the tunnel entrance and exit. The slopes considered are the side cut slopes which are located at the right and left sides and the face slope through the tunneling. The portals are the regions where the engineer first meets with the rock mass. Geological conditions present clues for recognition of the rock mass at the portals. Tunnel portals have special significance in tunnel construction and these are the most crucial parts of tunnel; thus, slopes of the portals will be examined in this section.

The first step of portal design is to determine safe slope angles. For this purpose, a discontinuity survey (site investigation) can be done and samples can be collected from the field and the shear strength parameters can be determined from these samples by laboratory tests. After the determination of the discontinuity characteristics and the shear strength parameters, these parameters are put into the empirical relations and into the limit equilibrium analyses to determine the safe slope angles. Specific conditions and necessities such as urbanization occasionally affect the slope angle.

Unfortunately, the collected samples do not represent the in-situ characteristics of the rock mass. Therefore, in addition to the first step mentioned above, determination of the rock mass shear strength parameters comes into consideration. In order to determine the rock mass shear strength parameters, the rock mass rating system (RMR) has been used and the basic RMR values have been provided.

The rock slopes of the Konak Tunnel exit portal are heterogeneous or contain several rocks having different geological origins and different lithological units, namely, volcanic rocks and upper sedimentary sequence. According to the surface investigations in the exit portal area, only andesite contains random joint systems.

These irregular joint systems display a blocky appearance and they have larger apertures and soft infillings. Apart from that, upper sedimentary and pyroclastic units are highly weathered in composition and are expected to show soil-like behavior. Therefore, all of the rock units which are located at the exit portal area have been evaluated as one type of a rock mass with a soil-like behavior, whose strength, deformation, and competence characteristics are expected to be similar. An RMR value of 21 has been specified for this rock mass at the exit portal of the Konak Tunnel and its rock category has been determined as "Poor Rock" (APPENDIX-D).

All of these studies showed that geometrical solutions (kinematic analyses) are not proper for the rock mass which is located at the exit portal of the Konak Tunnel; because the failure mechanism is not controlled by the discontinuity surfaces (Figure 28). Hence, the mass failure (circular failure) has been examined in following sections of thesis.

Figure 28: General view of the Konak Tunnel exit portal

Also, except from field studies, laboratory tests and rock mass rating study, there was one another important limitation for the selection of open cut slopes ratio. Consultant's specifications have played an important role in selecting the angle of slope. Because of the limitations of urbanization, open cut excavation boundaries or excavation orientations could not be changed. In the light of this information, slope angles have been selected as 1h:4v (h: horizontal & v: vertical) at the portal face and 1h:2v at the side slopes and the upper part of the portal face.

6.2 Limit Equilibrium Analyses

The safety factor is a unitless indicator of the stability and it is used by the classical methods of slope stability analysis which is based on the concept of limit equilibrium. The purpose of the method is to examine the stability of any mass assuming incipient or developing failure along a potential surface for sliding. Limit equilibrium methods are based on analytical solutions and consider the weight of the sliding block, shear strength parameters (c and ϕ), water conditions and pore water pressure (u), geometry of the slope, seismic acceleration, tension cracks position and external loads. Pockoski and Duncan (2000) summarized these components of equilibrium in 2000 for comparing the methods sufficiency and the summary table is given in APPENDIX-J. Hence limit equilibrium analyses are different from the kinematical analyses (Hoek and Bray, 1981):

Since 1950s the Simplified Bishop method has been widely used for stability analysis. Solution of any limit equilibrium formulation cannot be compared with a closed form correct solution as it is statistically uncertain. Even though there is no direct comparison between different methods it can be said that factor of safety determined using Bishop's simplified method for circular surfaces differ by less than 5 percent with respect to the more attentive Spencer or Morgenstern-Price solutions (Sopacı & Akgün, 2009). Consequently, Simplified Bishop, Spencer and Morgenstern-Price methods of limit equilibrium solution results will be given together in this study. The stability of cut slopes at the exit portal of the Konak Tunnel is determined by the Upper Miocene sedimentary units which are sandstone, claystone and conglomerate and Miocene aged volcanic rocks which are andesite, agglomerate and tuff (APPENDIX-A). All these rock units are highly weathered and especially the sedimentary units and tuff show soil-like behavior. Therefore, a circular type of failure has been foreseen and the related limit equilibrium analyses have been performed at the weathered zone of the portal area. This recommendation is supported by the borehole logs and core photos (Figure 29 and APPENDIX-B). At the tunneling elevation or at the highest cut slope excavation, weathering effects have been high and the rock mass is expected to behave like a soil in-situ.

Figure 29: Core box photos from the exit portal boreholes at the maximum excavation height

Consistent with the specifications of the contractor, the maximum height of the cut slope excavations were designed to be about 17.50 m on which 5.0 m wide benches were planned. The cut slopes on the left and right were planned to have 1h:4v inclination at the lower slopes which were similar to the portal face. The Upper slopes were designed at 1h:2v for the left cut slopes and portal face and 1h:2v to 1h:1v at the right cut slopes (Table 27 and Figure 30).

Location	Section	Inclination	Max. Height	Bench Width	
		(h:v)	(m)	(m)	
	Lower Slope	1:4	17.50		
Dortal Faco	Second Slope	1:2	11.50	5.00	
Portal Face	Third Slope	1:2	11.50		
	Upper Slope	Perpendicular	9.90	-	
Left Cut Slope	Lower Slope	1:4	17.50	5.00	
	Second Slope	1:2	11.50	5.00	
	Upper Slope	1:2	9.20	-	
Right Cut Slope	Lower Slope	1:4	17.50	5.00	
	Second Slope	1:2	11.50	5.00	
	Upper Slope	1:1	18.30	-	

Table 27: Cut slopes and portal face inclination angles

Figure 30: Excavation boundaries of cut slopes of the Konak Tunnel exit portal

According to the RMR classification, the rock mass around the exit portal was classified as "Poor Rock" in general (APPENDIX-D). The shear strength parameters of the rock mass have been assigned the mean value of "Poor Rock" in regards to friction angle and cohesion (Table 28). The average unit weight of the rock mass has been taken from laboratory test results. There is only one test result for the elastic modulus of intact rock and Poisson's ratio, which are 5.88 GPa and 0.325,

respectively. Besides, the water table and water conditions are another important parameter for the limit equilibrium analyses. Therefore all the related borehole logs were examined and the water level has been observed. Finally, the parameters of the selected fill material, whose unit weight, cohesion and internal friction angle values of 16 kN/m³, 5 kPa and 32° respectively, have been taken from U.S. Department of Transportation - Federal Highway Administration, soil and foundations publication (2006).

 Table 28: Recommended rock mass engineering geological parameters of the exit portal open cuts of the Konak Tunnel

Rock Mass Parameters					
Cohesion (kPa) 15					
Friction Angle (°)	20				
Unit Weight (kN/m ³)	20.90				
Poisson's Ratio	0.325				

2D circular failure limit equilibrium analyses of the exit portal of the Konak Tunnel have been carried out by the SLIDE v.6.00 software (Rocscience, 2015) and sample analyses and cross sections of open cut slopes are given in Figure 31. The results of the failure analyses are presented in APPENDIX-E and the safety factors of the cut slopes and portal face are given in Table 29. These analyses have been executed for three cases, namely, for static and dry, static with ground water and seismic load (horizontal acceleration - $a_h = 0.2g$ suggested for study area, AASHTO, 2002) with ground water conditions.

Figure 31: Open cut slopes analyses for the exit portal of the Konak tunnel

	Geotechnical Conditions								
Location	Dry and Static			With GW and Static			With GW and Seismic Load		
	Sim. Bish.	Spencer	Mor. & Pir.	Sim. Bish.	Spencer	Mor. & Pir.	Sim. Bish.	Spencer	Mor. & Pir.
Portal Face (FS)	1.688	1.690	1.684	1.420	1.426	1.417	1.105	1.132	1.103
Left Cut Slope (FS)	1.781	1.782	1.773	1.569	1.563	1.563	1.197	1.207	1.190
Right Cut Slope (FS)	1.614	1.615	1.609	1.468	1.471	1.470	1.100	1.109	1.095
* Analyzing methods are Simplified Bishop, Spencer and Morgenstern & Price (GLA).									
FS: Factor of safety; GW: ground water (taken from borehole measurements)									
Horizontal acceleration for seismic load - $a_h = 0.2g$ from AASHTO, 2002									

Table 29: Circular failure analyses of the Konak Tunnel exit portal

According to the results of the limit equilibrium analyses, the exit portal of the Konak Tunnel is stable with the selected strength parameters, slope angles and support recommendations. The upper slope of the portal face has been designed with bored piles due to the instability of the fill material. The parameters of the bored pile section have been directly taken from AASHTO - Standard Specifications for Highway Bridges (SSHB, 2002), U.S Department of Transportation - Federal Highway Administration (Geotechnical Engineering Circular - Ground Anchors and Anchored Systems) and TS500 Concrete Constructions Design - Building Specifications. The supports at the second and third slope of cut slopes and portal face have been suggested for the constructive reasons. Actually, the most convenient support recommendation has been practiced on the lower slope of all exit portal cut slopes. In order to control the support system efficiency all open cut slope of exit portal has been analyzed without support and failure surface changing is determined (APPENDIX-E).

To sum up, avoiding the determined with analyses and unforeseen or unexpected negative effects of the nature dynamics, the following support systems have been recommended for the open cut excavations at the exit portal of the Konak Tunnel:

Portal Face Excavation

On the lower slope;

- Systematical, un-tensioned (passive) nails (grouted rock bolts) with 1.0 m split-spacing, diameter φ=32 mm and increasing length bottom to top L=15.00 to 20.00 m (190 kN tensile and plate capacity, 350 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh.

On the second and third slopes;

- Systematical, un-tensioned (passive), grouted rock bolts (nail) with 1.0 m split-spacing, diameter φ=32 mm and length L=5.00 m (190 kN tensile and plate capacity, 85 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh.

On the upper slope;

- Bored piles with diameter ϕ =80 cm and length L=15.50 m
- Four tensioned (active) 1.8 m split-spacing anchor at the depth of 2.00 m, 3.50 m, 5.50 m and 7.50 m with length L=21.00 m, 19.00 m, 18.00 m and 17.00 m respectively (300 kN tensile and plate capacity, 8 m bond length, 40 kN/m bond strength)

Left Cut Slope Excavation

On the lower slope;

- Systematical, un-tensioned (passive) nails (grouted rock bolts) with 1.0 m split-spacing, diameter φ=32 mm and increasing length bottom to top L= 20.00 m (190 kN tensile and plate capacity, 350 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh
On the second and upper slopes;

- Systematical, un-tensioned (passive), grouted rock bolts (nail) with 1.0 m split-spacing, diameter φ=32 mm and length L=5.00m (190 kN tensile and plate capacity, 85 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh.

<u>Right Cut Slope Excavation</u>

On the lower slope;

- Systematical, un-tensioned (passive), grouted rock bolts (nail) with 1.0 m split-spacing, diameter φ=32 mm and increasing length bottom to top L= 20.00 m (190 kN tensile and plate capacity, 350 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh.

On the second and upper slopes;

- Systematical, un-tensioned (passive) grouted rock bolts (nail) with 1.0 m split-spacing, diameter φ=32 mm and length L=5.00m (190 kN tensile and plate capacity, 85 kN/m bond strength).
- 10 cm (5+5 cm) thick shotcrete with steel wire mesh.

Before moving on the next chapter, types of the reinforcement elements have been recalled shortly. According to engineers' manual of US Army Corps of Engineers (1994) "un-tensioned (passive) reinforcement elements such as nails or bolts provide resistance to dilation within a rock mass and along potentially unstable contact surfaces". Moreover, the progress of tensile forces reacting dilation, passive resistance against sliding have been developed when lateral forces occur lateral strains. The interaction of reinforcement elements and rock mass brings the cohesion and friction development around the bond of support and the rock. In general, passive type of reinforcement elements should not be used for gravity structures stabilization.

On the other hands, a compression zone has been occurred within the influence zone of reinforcement elements when tensioned (active) ones examined closely. According to engineers' manual of US Army Corps of Engineers (1994) "upon tensioning, load is transferred from the tensioning element, through the grout, to the surrounding rock mass". To put it more clearly, directly pull or torqueing should be applied for retaining tension between reinforcement elements and rock units.

CHAPTER 7

MONITORING AND EXCAVATION CONDITIONS DURING CONSTRUCTION STAGE

In the recent years, an important part of tunnel construction, especially for a tunnel that is designed and constructed via empirical methods, displacement monitoring by various geodetic measurements have been utilized extensively (Schubert et al., 2002). Monitoring displacement is the key to verify the design of the tunnel support, and to prepare for unpredicted conditions that may require excavation modification along with modifications related to stabilization and support systems. A further objective is last but not least, to prevent significant deviations from estimated completion costs and dates.

As for as the tape extensometer method is concerned, considering the advantage and improvement in the optical technology, the determination of the horizontal, vertical and longitudinal components of the displacement vector at the individual measurement points results in the dimensional and transitory variation of each component with great accuracy. It provides better estimation of the relative conditions ahead of the face even when the magnitudes of displacements are minute. These measurements generally require to regulation and correction processes due to the negligence and obligations occurred during construction. In terms of measurement accuracy, only the vertical displacements have been examined and evaluated. Vertical displacement monitoring in both tubes was practiced in 7 to 11 months periods by the optical method on the top heading and benches. Five measurement points were installed on each section located on the tunnel surface depending on the ground conditions. The tunnel excavation started with tube-2 and continued with tube-1. The resultant vertical displacements at each monitoring point are presented in Figure 32 and Figure 33 and the raw data are supplemented in APPENDIX-F for the Konak Tunnel tube-1 and tube-2. The first three measuring points (1-2-3) on the section are the top heading ones and the remaining two points (4-5) are at the bench level. Owing to the staged excavation, the smaller deformations have been obtained at the bench level (Table 30). It should be noted that the monitoring points at each section could be installed after at least one round of excavation (blasting) cycle was completed and the initial support components were installed.

Figure 32: The cumulative vertical displacement profiles of the five monitoring points of tube-2

Figure 33: The cumulative vertical displacement profiles of the five monitoring points of tube-1

		VER	TICAI	L DISF	PLACE	EMEN	IT MEASU	REMENTS of T	HE KONAK T	UNN	EL					
		Tub	e 2							Tube	e 1					
Geotechnical	Reading	Verti	ical D	al Dis. (mm) Points		Support	Geotechnical	Reading	Verti	ical D	is. (mm) Points			Support		
Section	Section KM	1	2	3	4	5	Туре	Section	Section KM	1	2	3	4	5	Туре	
	2+186	41	49	70	23	38	C1		2+196	30	33	33	18	19	C1	
T-Px	2+176	48	76	80	30	61	C1	T-Px	2+186	52	35	28	33	20	C1	
	2+164	117	130	138	74	104	C1		2+164	69	60	45	44	27	C1	
	2+155	131	129	135	100	102	B3		2+155	72	62	48	48	29	B3	
TEON	2+148	140	145	142	78	95	B3	T-50x	2+146	98	106	73	68	50	B3	
1-50X	2+140	135	147	131	106	101	B3		2+135	51	56	f	36	27	B3	
	2+129	129	124	122	84	75	B3		2+100	72	79	44	41	41	B2	
	2+119	116	135	122	62	70	B2		2+086	93	96	57	41	45	B2	
	2+110	115	105	129	37	60	B2	T-75x	2+077	83	78	55	37	35	B2	
	2+101	93	104	117	72	74	B2		2+058	81	83	65	49	35	B2	
	2+089	105	108	116	65	73	B2		2+040	46	53	51	37	34	B2	
	2+077	92	116	94	68	77	B2		2+007	31	29	f	10	13	B2	
T-75x	2+067	95	99	102	68	64	B2		1+980	26	34	30	10	11	B2	
	2+058	92	99	94	64	67	B2		1+958	32	28	f	8	9	B2	
	2+045	55	92	58	26	36	B2		1+935	30	38	24	16	16	B1	
	2+028	27	53	38	37	46	B2	T 100v	1+886	22	18	22	8	10	B1	
	2+015	38	52	39	26	23	B2	1-100X	1+853	36	54	29	23	27	B1	
	1+979	27	35	26	17	15	B2		1+823	25	32	27	16	18	B1	
	1+939	16	26	20	10	11	B1									
	1+913	24	35	25	9	11	B1		6	-	2	2				
T-100x	1+880	31	38	33	15	15	B1		<u> </u>	TOPP	EADING					
	1+837	24	31	18	10	7	B1		4	BE	BENCH 5					
	1+800	22	f	21	f	f	B1		1				1			
f: failed																

 Table 30: The cumulative vertical displacement measurements of the Konak Tunnel

The average cumulative vertical displacements of each point on the geotechnical sections are illustrated in Table 31. This summary table was prepared through considering the boundaries of the critical sections and the overburden depths. The most important issue of monitoring the vertical displacement at five points is the

contrasting condition about the displacement ranges in the top heading and bench sections despite the larger displacements. The reason for this condition is attributed to the errors related to the equipment, operator and tunnel conditions. To evaluate the trends of figures which are given above in tunnel conditions, it is necessary to create reference points in reference overburden depths for changing displacement vectors of various scenarios. Through the excavation, an alternating zone, softer or poorer and harder rock mass domains are simplified scenario samples for relative changes in the magnitudes of vertical displacement. Therefore, major geological changes have been recorded along both tubes during the excavation and illustrated in APPENDIX-A.

 Table 31: The average cumulative vertical displacements of each point on the geotechnical sections

Gootochnical	Tube 2							Tube 1			
Section	Average Ver. Dis. (mm) Points							r. Dis. (2		
Section	1	2	3	4	5	1	2	3	4	5	
T-Px	69	85	96	42	68	71	61	47	46	28	
T-50x	134	136	133	92	93	62	68	60	38	34	4 BENCH 5
T-75x	27	35	26	17	15	31	33	24	12	12	1 /
T-100x	23	31	23	11	11	25	32	27	16	18	

The presence of a relatively weak rock mass at the exit portal and grading into better rock mass conditions which were volcanic rock masses is indicated by the measured vertical displacement vectors in the top heading (points 1, 2 and 3). When the excavation advanced to the un-weathered andesite unit (approaching the exit portal), the trend of the displacement is reversed from increasing to decreasing. The vicinity of a weak rock mass is identified by the end of the T-Px section to the head of the T-75x section. The similar behavior of the two pairs (2-4 and 3-5) of the monitoring points on the tunnel walls have been reflected by the vertical displacements. At about KM 2+030, a significant shift was observed in all monitoring points due to the thick andesite units. Depending on the temporal displacement patterns and small displacement magnitudes, the deformation rate did not decrease when the monitoring ended. The vertical displacement component was very close to its ultimate value at point 1 according to the raw data (APPENDIX-F).

CHAPTER 8

FINITE ELEMENT (2D) MODELING

It is known from previous tunneling studies that because of the weight of the overlying strata and locked in stresses of tectonism, the rock at depth is subjected to stresses, which are the induced or in-situ stresses found in the artificially undisturbed rock before the excavation processes. Right after the excavation, new sets of stresses are induced in the rock surrounding the opening due to the disruption of the initial stress field. For most of the cases, the strength of the rock is exceeded and the resulting instability can have undesired consequences on the behavior of the excavation. Hence, the main components of the underground excavation design are the magnitudes and the directions of in situ and induced stresses.

8.1 In-Situ Stresses

In respect of in-situ stresses, the Swiss geologist Heim concluded that the tunnels are highly stressed in all directions. Heim assumed that the vertical component of stress is proportionally related to the overburden weight on the tunnel and added that there is also a horizontal component of this stress. According to him, the in-situ stresses are geologically originated and the horizontal stress components are greater than the vertical ones at the mountain ridges and under the large overburden (Jaeger, 1979).

The vertical stress related to the overburden weight at a particular depth can be determined by the simple equation (Eqn. (32)). On the other hand, in order to understand the horizontal stress behavior at shallow and larger depth, Sheorey (1994)

developed a stress model of the earth. His model includes elastic constants and depth which is considered with density and thermal expansion. As a result, a simple equation has been suggested for the horizontal stress to vertical stress as a ratio "k" (Eqn. (33)):

$$\sigma_v = \gamma z \tag{32}$$

In this equation;

 σ_v = the vertical stress

 γ = the unit weight of the overburden rock

z = the depth below the surface

$$k = 0.25 + 7E_h \left(0.001 + \frac{1}{z} \right) \tag{33}$$

In this equation;

 E_h = the average deformation modulus of the overburden rock

z = the depth below surface

8.2 Induced Stresses

When underground excavation starts in the rock mass, the stress conditions around the opening are reshaped. For such a case, an analytical solution for the stress distribution in an elastic plate with a circular hole has been proposed by Kirsch (1898). Kirsch's solution formed the basis for rock behavior around tunnels and is used widely in rock mechanics.

These solutions still have an extensive value for understanding the conceptual behavior and for calibration of the numerical models. Nonetheless, in the design stage, these models present very simple geometries and material models.

8.3 Numerical Modelling

In order to control the efficiency of the selected support classes, finite element modeling of tunnel excavation has been performed in plain strain solution. The 2D finite element software Phase2 (Rocscience, 2015) has been used for these analyses. Because of the varying overburden height from 35 m to 100 m, the actual ground surface has been used to describe the upper boundary of the model. The stress ratio "k" has been calculated from Eqn. (33) for all of the sections separately and it was observed that the k values were compatible with the tectonic model of region (extensional tectonics). The boundary conditions and geometry with finite element discretization through 6 noded – triangular elements of the critical sections are illustrated in APPENDIX-G. The vertical displacement and support capacity plots are also presented in APPENDIX-G. Since the tunnel excavation has started with tube-2, the tube-2 excavation is always assumed to lead that of the tube-1.

The rock mass has been assumed to be an isotropic, homogeneous and elasto-plastic material which has been used with the Mohr - Coulob failure criterion. Estimation of the rock mass deformation modulus and the failure criterion parameters has been determined from the rock mass classification systems and empirical equations. The average elastic modulus of the intact rock has been obtained from the uniaxial tests on the andesitic specimens. The relevant rock mass properties have been summarized in Table 32. The input shear strength parameters have been derived from the RMR classification results and deformation modulus calculated by Eqn. (11).

Geotechnical Section	T-Px	T-50x	T-75x	T-100x					
UCS (MPa)	10	15	40	45					
Q	0.06	0.11	3.33	8.33					
RMR	23.0	33.5	46.5	57					
Average E _i * (GPa)	6.42								
Average 🎖 (kN/m³)	.84								
Average Poissons Ratio*	35								
E _d ** (GPa)	0.253	0.453	0.832	1.286					
Max. Overburden (m)	35	50	75	100					
с ⁽¹⁾ (МРа)	0.150	0.150	0.200	0.250					
Ф ⁽¹⁾ (°)	20	20	25	30					
Total Stress Ratio*** (k)	0.30	0.32	0.33	0.35					
* Laboratory test result	** Nicholson & Bieniawski - 1990								
*** Sheorey - 1994 (1) RMR								

Table 32: Rock mass properties of the tunnel geotechnical sections

A tunnel excavation route starts converging ahead before the excavation face reaches that section and converging affects move a distance of several tunnel radiuses at least. This stepwise attitude has appeared as a response of blasting cycles and round lengths. The effect of the convergence means that the monitoring points at given section can be installed after the outstanding displacements have taken place and 2D numerical models do not capture this deformation pattern and measurements cannot be compared with it. This deficiency can be eliminated by the softening approach which is suggested by Rocscience (2015) in Phase2 tutorials. According to this approach, to take into account the preliminary displacements and converging effects, the deformation modulus of the rock mass has been reduced on the excavation section. The axisymmetric modelling has been used for determining the reduction amount of the deformation modulus in all excavation sections (Figure 34 and APPENDIX-H). "The axisymmetric models allow analyzing a 3D excavation that is rotationally symmetric about an axis. The input parameters are for 2D, however the results apply to a 3D problem (Rocscience, 2015)." A 50 staged excavation, each of which has a 1 meter length was modelled for this analyses and displacement vs. excavation stage chart was obtained (Figure 34 and APPENDIX-H). Only the field stresses effects on a 6 noded triangular mesh and elastic type of material which has cohesion, internal friction angle and Poisson's ratio have been used in these analyses.

According to the results of the axisymmetric analyses, as approaching the study section, 20 to 30 % of the cumulative displacement has occurred. At 1 m to 2 m ahead of the face, the displacement ratio reaches 50 to 65 % of the cumulative displacement. Accordingly, the softening ratios are selected from these preliminary displacement ratios and round length of excavation (1 to 3 m for the NATM classes) for the deformation modulus of the rock mass (APPENDIX-H). The results of the analyses for all of the critical geotechnical sections are illustrated in Table 33.

Figure 34: Sample axisymmetric model for T-Px section of the Konak Tunnel

Gootochnical	Distance to	Total	Softening	Deformatio	on Modulus
Section	Excavation Face	Displacement	Ratio	in-situ	induced
Section	m	m	%	MPa	MPa
	0.0	0.11287	0.373138		158.6
	0.5	0.13796	0.456079		137.6
	1.0	0.15990	0.528597		119.3
T-Px	1.5	0.17818	0.589055	253	104.0
	2.0	0.19777	0.653787		87.6
	2.5	0.21002	0.694293		77.3
	50.0	0.30250	1.000000		0.0
	0.0	0.06304	0.373138		284.0
	0.5	0.07705	0.456079		246.4
	1.0	0.08931	0.528597		213.5
T-50x	1.5	0.09952	0.589055	453	186.2
	2.0	0.11045	0.653787		156.8
	2.5	0.11731	0.694293		138.5
	50.0	0.16894	1.000000		0.0
	0.0	0.03492	0.379760	516.0	
	0.5	0.04177	0.454316		454.0
	1.0	0.04745	0.516082		402.6
T-75x	1.5	0.05359	0.582756	832	347.1
	2.0	0.06043	0.657143		285.3
	2.5	0.06419	0.698100		251.2
	50.0	0.09195	1.000000		0
	0.0	0.02259	0.379760		797.6
	0.5	0.02703	0.454316		701.7
	1.0	0.03070	0.516082		622.3
T-100x	1.5	0.03467	0.582756	1 286	536.6
	2.0	0.03910	0.657143		440.9
	2.5	0.04153	0.698100		388.3
	50.0	0.05950	1.000000		0.0

Table 33: The axisymmetric analyses results of the critical sections

8.3.1 Numerical Analyses Results

Numerical analyses are needed for the simplification of the real conditions of nature to variable extents, and for the estimation of behavior of the model under the specific conditions. In this thesis, the measured cumulative vertical displacements have been compared with the predicted total vertical displacement distribution around both tubes from numerical analyses.

The properties of the support elements, which have been applied in the numerical analyses, are presented in Table 34. The tensile strength of the shotcrete was taken as 12 % of the compressive strength of concrete according to engineering practice (Dorf, 2005). The shear strength of the steel wire mesh was neglected. The type of rock bolts was selected as the plain strand cable with face plates.

Material Type	E (MPa)	Poisson's Ratio, U	Comp. Strength (MPa)	Tensile Strength (MPa)	Dimensions
Shotcrete	15000	0.20	20	2.4	15.0 to 22.5 cm
Rock Bolt	210000	-	365	365	Ø28 (L=4.0 m)
Steel Ribs	210000	0.20	365	365	1150 (1.0 m Spacing)

Table 34: The properties of the tunnel support elements applied in the analyses

The change in the total vertical displacement calculated during numerical analysis at the final stage of tunnel excavation for the supported sections is summarized in Table 35 and a comparison and discussion of field data and results from numerical model is presented in the "Discussion and Conclusion" Chapter.

 Table 35: Summary table of total vertical displacements calculated from numerical analyses for both tubes at all monitoring points

Googenical			Tube 2	2				Tube 3			
Section	Tota	al Ver.	Dis. (m	າm) Po	oints	Tot	al Ver.	Dis. (r	2		
Section	1	2	3	4	5	1	2	3	4	5	
T-Px	69.0	81.0	78.0	42.0	48.0	75.0	81.0	69.0	51.0	42.0	
T-50x	64.0	72.0	69.3	32.0	34.7	69.3	69.3	64.0	37.3	32.0	4 BENCH 5
T-75x	36.7	41.7	40.0	13.3	15.0	40.0	41.7	36.7	15.0	11.7	\ /
T-100x	28.0	33.3	29.3	16.0	18.7	29.3	33.3	28.0	17.3	16.0	

According to the map of earthquake zone of Turkey (Earthquake Research Center, 2015) the tunnel is located in a zone of high seismicity (Zone 1). Hence, the seismic load effects need to be taken into account in modeling and construction stages. The Earthquake Research Center suggests that the effective ground acceleration coefficient could be taken as 0.4g for this region. The horizontal component of seismic load is taken as 0.2g for analyses (AASHTO, 2002). However, the finite

element model was not able to estimate any rock mass failure or considerable increase of vertical displacement and strength factor (APPENDIX-G).

CHAPTER 9

DISCUSSION AND CONCLUSION

In order to decide whether the proposed support design is satisfactory or not for the studied tunnel sections, an evaluation has been performed through taking into account the monitoring readings. The change in the total vertical displacement calculated during numerical analysis at the final stage of tunnel excavation for the supported sections is summarized in Table 35 and a comparison of the field data and the results of the numerical model are given in Figure 35 and Figure 36 with respect to their overburden height. All monitoring points at both tubes have been observed separately and detailed illustrations are given in APPENDIX-G.

The displacements calculated from the numerical analysis have been observed to be mostly consistent with the monitoring measurements. Except from the geotechnical section T-50x, the trends for the displacement change at the analyzed sections were observed to be parallel and consistent with the monitoring measurements. The resultant vertical displacements of the finite element model have been interpreted with the monitoring measurements of the construction stage. All of the displacement patterns examined at the five points in each critical section are given graphically in Figure 35 and Figure 36.

Figure 35: Comparison of the total vertical stresses measured during field monitoring and calculated from numerical modeling for tube-2

Figure 36: Comparison of the total vertical stresses measured during field monitoring and calculated from numerical modeling for tube-1

According to this comparison, tube-1 illustrates more compatible trend at all sections and through all reading points. On the other hand, tube-2 shows higher inconsistency, especially on the T-50x geotechnical section due to the existence of a relatively weak rock mass (weathering degree is higher than the expected conditions). Table 36 gives a summary of comparison between observed and calculated total vertical displacement ratios for all monitoring points. The negative (-) values in table means that the higher expectation of total vertical displacement, in other words, calculated displacement values exceed the construction stages monitoring data. Similarly, the positive (+) values represent the lower expectation of total vertical displacements at the excavation stage. When the monitoring points on the critical sections are evaluated individually, 70 % of the points ensure the predicted displacement limits (predicted displacement limit = calculated displacement \pm 30 %). Additionally, only 12.5 % of the displacements mismatch ratio is higher than the 50 % and great majority of these mismatches are especially related to the T-50x geotechnical section. When the T-100x section is evaluated individually, the calculated vertical displacements on the bench measuring points (4 and 5) are higher than the observed measurement points especially on tube-2. The most probable reason for this may be because the systematic bolting application has been performed at the bench level of the tunnel during the construction stage. This application has been performed as a consequence of the request of the constructor because of safety reasons. However, this application did not suggested with in this study.

 Table 36: Comparison of observed and calculated total vertical displacements at the monitoring points

			Tube-2			Tube-1							
Technical Section	Com Cal	ipariso culated Monito	n of Ob Total \ ring Po	served /er. Dis ints (%	and . at)	Com Cal	ipariso culated Monito	n of Ob I Total V ring Po	1	2 TOP HEADING	3		
	1	2	3	4	5	1	2	3	4	5	\vdash		\rightarrow
T-Px	0.0	4.7	18.8	0.0	29.4	-5.6	-32.8	-46.8	-10.9	-50.0	† 4	BENCH	5
T-50x	52.2	47.1	47.9	65.2	62.7	-11.8	-1.9	-6.7	1.8	5.9	1		/
T-75x	-35.9	-19.1	-53.8	21.8	0.0	-29.0	-26.4	-52.9	-25.0	2.5			
T-100x	-21.7	-7.4	-27.4	-45.5	-70.0	-17.2	-4.1	-3.7	-8.1	11.1			
Note: Negat	ive (-) v	alues re	epresen	t the hi	gher ex	pecteta	aion of	total ve	ertical d	lisplace	ment.		
Positive (+) v	alues re	epreser	nt the lo	wer ex	pecteta	ion of	total ve	ertical d	isplace	ment.			

Furthermore, the observed and calculated displacements have been evaluated as related to the general trends lines for each tube and measurement points (Figure 37 and Figure 38). This study shows that both the observed and calculated vertical displacement measurement curves fit each other closely. Additionally, the general trends of the displacement curves are decreasing with respect to the increasing overburden height and the decreasing weathering degree of the rock mass.

Figure 37: General trend lines of the observed measurements and a comparison of the calculated measurements for tube-2

Figure 38: General trend lines of the observed measurements and a comparison of the calculated measurements for tube-1

Interpretations of the results of numerical analyses as compared with the monitoring readings have been made as follows;

- The total vertical displacement vectors on the bench level are smaller than the ones on the top heading and side walls. This difference in the displacement magnitudes could be explained by stress distribution.
- The displacement trends illustrate that the excavation of the second tube has a minor influence on vertical displacement. Generally, the tube excavated first has a little more vertical displacement and when the distance between the two tubes increases, the effect of the tubes on each other decreases.
- When comparing the displacement values, which have been taken from the numerical analyses and monitoring data, tube-1 illustrates more compatible

trend at each section and through the entire reading points. On the other hand, tube-2 shows higher inconsistency, especially on the T-50x geotechnical section (Figure 35). The possible causes of this problem will be poor estimation of rock mass parameters, improper monitoring, excavation method, support timing, etc.

- Both the support system elements and the rock mass have not been yielded due to the redistribution of stress conditions (APPENDIX-G).

In the exit portal stability analyses, the shear strength parameters of the poor rock have been obtained from the basic RMR classification. The open cut slopes directions and excavation boundaries are specified by the consultant and these boundaries have been determined with respect to the settlement in the area. For the highly weathered either volcanic or sedimentary rocks, a circular type of failure analyses has been performed with the computer program SLIDE 6.0 (Rocscience, 2015) since these highly weathered rock masses are expected to behave like a residual soil from an engineering geological point of view. Due to the staged excavation, different types of support applications on the upper to lower slopes have been recommended. At the lower slopes of the right, left and portal face, 20 m length nails have been recommended; on the other hand, for second, third and upper slopes of the portal excavation, 5 m length nails have been recommended. Additionally, for the upper slope of the portal face, four anchored bored piles type of support have been recommended. At the end of the calculations, it was observed that all of the slopes were stable with the pre-determined slope angles and support suggestions were provided for dynamic conditions. However, if the constructor specified the excavation boundaries, the exit portal location offsetting on more reliable rock mass conditions such as the north east of current location.

CHAPTER 10

RECOMMENDATIONS

It is suggested that continuous deformation measurements should be made during the construction stage of the excavation due to the interactive nature of the Q-system, RMR, GSI and NATM classification systems. Especially in NATM installation, the required support elements at the right time are a significant matter in terms of pace and economy. In order to control additional cost overrun, the existing rock mass conditions should be correctly classified and the local engineering geological setting should be correctly specified at the investigation stage. According to the results of the investigation stages, the support and excavation suggestions should be determined for the construction stage. The most important advantage of the interactive tunneling methods is realizing lower costs when high sensitivity monitoring could be integrated into the excavation and support decisions. Therefore, instrumentation and producing monitoring data made and commented at the excavation stage accompanies the success of these methods and support suggestions. Nevertheless, the accuracy of the measurements to be made is crucial for the success of such studies. Hence, the equipment and operator errors affecting this accuracy should be minimized during the optical measurements observing at the tunneling stage.

In the scope of this study only the vertical displacements have been examined and justified with 2D finite element model. However, the total displacements have two components, which are vertical and horizontal displacements, and the best way to model total displacement should be 3D modelling option. The compatibility of the

calculated total displacements from the 3D model and measuring displacements in both vertical and horizontal directions would be more reliable.

Another issue about this study is the absence of reliable groundwater data. The relation between water and rock mass and coupled effects on displacements could not been determined. If such data would be available, numerical model considering groundwater effects will be more reliable.

REFERENCES

AASHTO, 2002, Standard Specifications for Highway Bridges. 17th Edition.

- Akıncı, A., Eyidoğan, H., Göktürkler, G., Akyol, N. and Ankaya, O., 2000, İzmir İli Çevresinin Depremselliği ve Deprem Tehlikesinin İncelenmesi. Seismicity of Western Anatolian Symposium (BADSEM 2000), Notice Book, 231-238, İzmir.
- ASTM (American Society for Testing and Materials), 1998a, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, ASTM D2845-95. Annual Book of ASTM Standards, Vol. 04-08 Soil and Rock, West Consohocken PA, pp 254-259.
- ASTM (American Society for Testing and Materials), 1998a, Standard Test Method for Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression, ASTM D3148-96. Annual Book of ASTM Standards, Vol. 04-08 Soil and Rock, West Consohocken PA, pp 306-310.
- Barton, N., Lien, R., and Lunde, J., 1974, Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics, Vol.6 No.4, pp. 189-236

- Barton, N., 1976, Recent Experiences with the Q-System for Tunnel Support. Proceeding of the Symposium on Explorations for Rock Engineering. Z.T. Bieniawski (ed.) A.A. Balkema, Rotterdam, Vol. 1, pp. 107-114.
- Barton, N., Lien, R., and Lunde, J., 1977, Estimation of Support Requirements for Underground Excavations, in Proceedings. 16th Symposium on Design methods in Rock Mechanics published by ASCE, NewYork, pp. 163-167.
- Barton, N., Loset, F., Lien, R., and Lunde, J., 1980, Application of the Q-System in Design Decisions Concerning Dimensions and Appropriate Support for Underground Installations, in Proceedings. International Conference on Sub-surface Space, Rockstore, Stockholm, Vol. 2, pp. 553-561.
- Barton, N., By, T.L., Chryssanthakis, L., Tunbridge, L., Kristiansen, J., Løset, F., Bhasin, R.K., Westerdahl, H. and Vik, G., 1992, Comparison of Prediction and Performance for a 62 m Span Sports Hall in Jointed Gneiss. Proc. 4th Int. Rock Mechanics and Rock Engineering Conf., Torino. Paper 17.
- Barton, N., and Grimstad, E., 1994, The Q-system Following Twenty Years of Application in NMT Support Selection. Austria, in Felsbau 12(6), pp. 428-436.
- Barton, N., 2002, Some New Q-value Correlations to Assist in Site Characterization and Tunnel Design. Int. J. Rock Mech. Min. Sci., Vol. 39, pp. 185-216.
- Barton N., Pandey, S.K., 2011, Numerical Modelling of Two Stopping Methods in Two Indian Mines Using Degradation of c And Mobilization of Φ Based on Q Parameters. International Journal of Rock Mechanics and Mining Sciences, Vol. 48, Issue 7, pp. 1095-1112.

- Bieniawski, Z.T., 1973, Engineering Classification of Jointed Rock Masses. Trans S. Afr. Inst. Civ. Engrs. 15, pp. 335-344.
- Bieniawski, Z.T., 1976, Rock Mass Classification in Rock Engineering, in Exploration for Rock Engineering. Proc. of the Symp. 1, Cape Town, Balkema, pp. 97-106.
- Bieniawski, Z.T., 1978, Determining Rock Mass Deformability: Experience from Case Histories. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 237-47.

Bieniawski, Z.T., 1989, Engineering Rock Mass Classifications. New York: Wiley.

Bieniawski, Z.T., 1996, Milestones in Rock Engineering. Balkema / Rotterdam p.19.

- BSI, 1981, Code of Practice for Site Investigations. BS 5930, British Standards Institution.
- CECW-EG (U.S. Army Corps of Engineers), 1994, *Rock Foundations*. Washington, DC 20314-1000, Engineering Manuals (EM 1110-1-2908).
- Deere, D.U., and Deere, D.W., 1988, The Rock Quality Designation (RQD) Index in Practice. In Rock Classification Systems for Rock Engineering Purposes, ASTM Special Publication 984, pp. 91-101.

- Department of Geological Survey, 2005, *İzmir Yakın Çevresinin Diri Fayları ve Deprem Potansiyelleri*. General Directorate of Mineral Research & Exploration, Report No: 10754.
- Dorf, R.C., 2005, *The Engineering Handbook*, 2nd edition. Published by CRC Press, Washington, U.S. pp 30-2.
- Earthquake Research Center, 2015, *Earthquake Zonation Map of Turkey*. Republic of Turkey Prime Ministry Disaster & Emergency Management Authory (AFAD), Ankara.
- Emre, Ö. and Barka, A., 2000, *Gediz Grabeni –Ege Denizi Arasının (İzmir Yöresi) Aktif Fayları*. Seismicity of Western Anatolian Symposium (BADSEM 2000), Notice Book, 131–132, İzmir.
- FHWA, 2006-2007, (U.S Department of Transportation Federal Highway Administration) *Geotechnical Engineering Circular, Ground Anchors and Anchored Systems.* NHI-06-088 Soil and Foundations Volume-I.
- Gerçek, H., 2006, *Poisson's Ratio Values for Rocks*. International Journal of Rock Mechanics and Mining Sciences, 44 (I), pp. 1-13.
- Governorship of İzmir, 2014, *İzmir Environmental Impact Assessment Report 2012*. Republic of Turkey Ministry of Environment and Urbanization.
- Gökçeoğlu, C., Sönmez, H. and Kayabaşı, A., 2003. Predicting the Deformation Modulii of Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 40 (5), 703-12.

- Grimstad, E., and Barton, N., 1993, Updating the Q-System for NMT. Proc. Int. Symp. on Sprayed Concrete –Modern Use of Wet Mix Sprayed Concrete for Underground Support, pp. 46-66, , Norwegian Concrete Assn., Fagemes Oslo.
- Grimstad, E., Kankes, K., Bhasin, R., Magnussen, A., and Kaynia, A. (2002), Rock Mass Quality Q Used in Design Reinforced Ribs of Sprayed Concrete and Energy Absorption. In Proceedings: International Symposium on Sprayed Concrete. Davos 2002, pp. 134-142.
- Hoek, E., and Brown, E.T., 1980, Underground Excavations in Rock, London, Institution of Mining and Metallurgy.
- Hoek, E., and Bray, J.W., 1981, *Rock Slope Engineering*, 3rd edn., London, Institution of Mining and Metallurgy.
- Hoek, E., Kaiser, P.K. and Bawden, W.F, 1995, *Support of Underground Excavations in Hard Rock*. Balkema, Rotterdam, p. 214.
- Hoek, E. and Brown, E.T., 1997, Practical Estimation of Rock Mass Strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165-1186.
- Hoek, E., 1999a, Putting Numbers to Geology an Engineer's Viewport. Quarterly Journal of Engineering Geology, 32, 1-19.
- Hoek, E. and Marinos, P., 2000, Estimating the Mechanical Properties of Heterogeneous Rock Masses such as Flysch. Bulletin of the Int. Assoc. of Engineering Geologists, V. 60, pp. 85-92.

- Hoek, E., Torres, C.C. and Corkum, B., 2002, *Hoek-Brown Failure Criterion* 2002 Edition.
- Hoek, E. and Diederichs, M.S., 2006, *Empirical Estimation of Rock Mass Modulus*. International Journal of Rock Mechanics and Mining Sciences, 43, 203-215.
- Hoek, E., Carter, T.G., and Diederichs, M.S., 20013, *Quantification of the Geological Strength Index Chart*. 47th US Rock Mechanics / Geomechanics Symposium (ARMA). San Francisco, CA, USA.
- Hudson, J.A., 1989, *Rock Mechanics Principles in Engineering Practice*. Butterworths, London, 72 p.
- ISRM, 2007, the Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 1974-2006.
- ISRM, 2014, the ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 2007-2014.
- Jaeger, C., 1979, *Rock Mechanics and Engineering*, 2nd edition. Cambridge University Press, Cambridge, London.
- Kirsch, G, 1989, Die Theorie der Elastiziat and die Bedürfnisse der Festigkeitslehre.Z. Vereines Deutscher Ing. 42, pp. 797-807.

- Koca, M.Y., 1999, İzmir Yöresinde Andezitlerin Bozunma Ürünü Killerin Oluşum Şekilleri ve Mühendislik Özellikleri. Geological Bulletin of Turkey, V. 42, issue 2.
- Koçkar, M.K. and Akgün, H., 2003, Methodology for Tunnel and Portal Support Design in Mixed Limestone, Schist and Phyllite Conditions: A Case Study in Turkey. Int. Jrn. of Rock Mech. and Mining Sci. 40, pp. 173-196.

Mostyn, G., and Douglas, K., 2000, Strength of Intact Rock and Rock Masses.

- Nicholson, G.A. and Bieniawski, Z.T., 1990, A Nonlinear Deformation Modulus Based on Rock Mass Classification. International Journal Mining and Geological Engineering. 8, pp. 181-2002.
- Norbury, D.R., 1986, *The Point Load Test*. Site Investigation Practice Assessing BS 5930, Special Publication No.2, pp. 325-329.
- Okay, A.I., 1989. Tectonic Units and Sutures in the Pontides, Northern Turkey. In: A.M.C. Şengör, (Editor), Tectonic evolution of the Tethyan region. Kluwer Academic Publications, Dordrecht: 109-115.
- Okay, A.I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. and Akyüz, S., 1996. Paleo- and Neo-Tethyan Events in Northwest Turkey: Geological and Geochronological Constraints. In: A. Yin and M. Harrison (Eds), Tectonics of Asia. Cambridge University Press: 420-441.
- Okay, A.İ. & Tüysüz, O., 1999. *Tethyan Sutures of Northern Turkey*. İTÜ Eurasian Institute of Earth Sciences and Maden Fcaulty, Geological Department.

- Phase2 Software Tutorials, 2015, 3D Excavation Using Axisymmetric Analysis (6-1). RocScience (http://www.rocscience.com/help/phase2/webhelp9/pdf_files /tutorials/Tutorial_06_Axisymmetric.pdf)
- Pockoski, M. and Duncan, J.M., 2000, Comparison of Computer Programs for Analysis of Reinforced Slopes. Center for Geotechnical Practice and Research, p. 150.
- Rabcewicz, L.V., 1965, *The New Austrian Tunneling Method*. Water Power, 17, January, 1965.
- Republic of Turkey Ministry of Public Works and Settlement. *Earthquake Research* Department Database. 2003 (www.deprem.gov.tr).
- Sauer, G., and Gold, H., 1989, *NATM Ground Support Concepts and Their Effect on Contracting Practices*. RETC Proc. pp. 67-86.
- Serafim, J.L., and Pereira, J.P., 1983. Considerations of the Geomechanics Classification of Bieniawski. Proceedings of the International Symposium on Engineering Geology and Underground Construction, LNEC, Lisbon, Portugal, Vol. 1, pp. 33-42.
- Schubert, W. and Steindorfer, A., 2002, Selective Displacement Monitoring During Tunnel Excavation. International Conference and Exhibition on Tunneling and Underground Space Use. Workshop on Displacement Monitoring in Tunnels, Handouts, İstanbul, Turkey.

- Sheory, P. R., 1994, A Theory for In Situ Stresses in Isotropic and Transversely Isotropic Rock. Int. Jrn. Rock Mech. Min. Sci. and Geomech. Abstr. 31(1), pp. 23-34.
- Sopacı, E., 2003, Stability Investigations along the Ordu Peripheral Highway (Km: 21+000 – Km: 40+114). Master of Science Thesis, Department of Geological Engineering, METU.
- Sopacı, E., Akgün, H and Akıncı, M., 2005, Rock Mass Characterization and Primary Support Design for the Boztepe Tunnel, Turkey. Proceedings of the 31th ITA-AITES World Tunnel Congress, 7-12 May 2005, Istanbul, Turkey.
- Sopacı, E. and Akgün H., 2008, Engineering Geological Investigations and the Preliminary Support Design for the Proposed Ordu Peripheral Highway Tunnel, Ordu, Turkey. Engineering Geology, 96/1-2/43-61.
- Sopacı, E. and Akgün H., 2009, Portal Slope Stability Assessment of a Proposed Highway in NE Turkey. ISRM-Sponsored International Symposium on Rock Mechanics: "Rock Characterization, Modelling and Engineering Design Methods", SINOROCK 2009, Hong Kong.
- Şaroğlu, F., Emre, Ö. and Kuşçu, İ. (1992). *The East Anatolian Fault Zone of Turkey*. Annales Tectonicae, 99–125 (Special Issue-Supplement to Volume VI).
- Şengör, A.M.C., and Yılmaz, Y., 1981, Tethyan Evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.
- Şengör, A.M.C., 1984. The Cimmeride Orogenic System and the Tectonics of Euroasia. Geol. Soc. Am. Spec. Pap., No. 195, 82 pp.

- Tarcan, G. ve Koca, M. Y., 2001. Hydrogeological and Geotechnical Assessments of the Kadifekale Landslide Area, İzmir, Turkey. Environmental Geology, 40 (3).
- Temelsu Int. Eng. Services Inc., 2012, Design Report on Geological and Geotechnical Assessment of Konak Tunnel. General Directorate of State Highways of Turkish Republic, Ankara, Turkey.
- Ulusay, R. and Sönmez, H., 2007, *Kaya Kütlelerinin Mühendislik Özellikleri*. Published by Chamber of Geological Engineers, Ankara.
- Uzel, B., Sözbilir, H. and Özkaymak, Ç., 2012, Neotectonic Evolution of an Actively Growing Superimposed Basin in Western Anatolia: the Inner Bay of İzmir, Turkey. Turkish Journal of Earth Science, Vol. 21, 2012, pp 439-471.
- Whittaker, B. N., and Frith, R. C., 1990, *Tunneling: Design, Stability and Construction*. Elsevier Science Publishers Ltd., Barking, UK.
- Wickham, G. E., Tiedeman, H. R., and Skinner, E. H., 1972, Support Determination Based on Geologic Predictions. In Proc. North American Rapid Excav. Tunneling Conf., Chicago, pp. 43-64. New York: Soc. Min. Engnrs., Am. Inst. Min. Metall. Petrolm. Engrs.
- Zang, L. and Einstein, H.H., 2004, Estimating the Deformation Modulus of Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 41, pp. 337-341.

APPENDICIES

APPENDIX-A: GEOLOGICAL MAPS AND PROFILES

Figures in APPENDIX-A show the geological plans and profiles of the study area.

Figure A.1: Legend of the geological map of region

Figure A.2: Geological map of the Konak Tunnel

Figure A.3: Geological map of study area

Figure A.5: Legend of the profile

Figure A.6: Generalized geological profile of the Konak Tunnel 131

Figure A.7: Geological profile of the Konak Tunnel

APPENDIX-B: DRILLING LOGS AND PHOTOES

Detailed information about the borehole logs and core box photos are given in APPENDIX-B.

	eſ	<u>S</u>		Yeş	ilde	re M	ahai	lesi	Kon	ak Ti	ünell	eri	Temel Araştırma Çalışmaları		BÖLGE District SONDA Borebol	N N	lo : lo :	TS	sK-	Sa N 1	iyfa lo: /3
							5	ON	DAJ	LOC	GU /	во	RING LOG		SONDC Driller)R II	,	\bidi	n KA	RAT	AŞ
PROJE	ADI / Pr	oject Na	ame			: 1	'eşilde Ter	re Ma nel Ar	ahalles aştırm	i Konal a Çalış	k Tûne malan	lleri	DELİK CAPI / Hole Diameter	: 89	mm-74	4mm					
SOND	AJ YERİ/	Boring	Locat	ion		: Ko	onak	/izm	İR				YERALTI SUYU / Groundwater	18							
KILOM	ETRE / C	hainag	Pent	h		: - 40	00 (n					MUH.BOR.DER. / Casing Depth BAS BIT TAR / Start Finish Date	: 9. · 21	00 m. 1/11/20	11-	30/1	1/2	111		_
SOND	JKOTU	/Eleva	tion			: 91	m.						KOORDINAT / Coordinate (N-S) y	: 42	252430		00	172			_
SOND/	J MAK.	SYÖNT.	/D.Ri	g & M	et.	: C	RAE	LÍUS	:/R0	DTAR	Y		KOORDİNAT / Coordinate (E-W) x	: 05	512350	_	_	_		-	
		/Rur		STAN	NDAR	TPE	NETR	ASY	ON D	ENEY	'i					ngth	ing	(m)	oreR.	oreR.	
ERINLIČ th (m)	CINSI	BOYU	DN	ARBE	SAYIS	SI	ene	12110	GRAF	i ik h			JEOTEKNİK TANIMLAMA			LIK/Strei	Veather	ture (30	CR)/T.O	CR//S.C	
SONDAJ D Boring Depl	NUMUNE Sample T	ANEVRA	0 - 15 cm	15-30 cm	30-45 cm	Ν	10	20	30	40	50	60	Georgeninical Description		Profile	DAY ANIMUI	YRIŞMA / I	URIK / Frad	(AROT%(T((AROT%(S	saD %
1	2.0	2						21	30	1 40	50	60				a	N.	K	13 K	X	R
_ 2 _ 3	SPT-1	1.50 1.60		50/10							/		0,00 - 4,00 Yapay Dolgu Malzeme		00000				15		
- _ 4	SPT-2	3.45	7	8	13	21			K						000	_	1	c.	44		0
- _ 5 -	SPT-3	4.50 4.55	_	50/5									4,00 - 9,00 m. AGLOMERA Sarımsı gri renkli, orta		1414 141 1414 1414	=	=	c	31		0
- ⁶ - 7	SPT-4	6.00 6.02		50/2									dayanımlı, orta derecede ayrışmış, çok parçalı kırıklı		4 A A A A A A A	=	=	ŋ	23		0
_ ⁸	SPT-5	7.50 7.53		50/3								2	9.00 - 10.50 m		6 6 6 6 6 6 6 6	=	=	с г	25		0
- _ 9	SPT-6	17	28				7			Çok-Tamamen Ayrışmış Andezitik TÜF Yeşilimsi kahve rengimsi gri		4141 1414 1 1	~	×			_	_			
10		9.45									çok tamamen ayrışmış		п _р п	N.	≥.	O	e,		°		
DAYAN	IMLILIK	/ Stren	gth		_		A١	'RIŞI	4A / V	Veath	ering		INCE DANELI / Fine Grained		iRi D	ANE	Li/C	oars	e G	raine	d
DAYANIMLLIK / Strengtin AYRIŞM. I DAYANIMLI Strong I TAZE II ORTA DAYANIMLI M.Strong II AZ AVI III ORTA DAYANIMLI M.Strong II AZ AVI III ORTA ZAYIF Weak III ORTA L IV ZAYIF Weak IV COK AV V ÇOK ZAYIF V.Weak V TÜMUY											resh lightly lod. W lightly Comp.V	W. Yeath. W. Veat.	N: 0.2 ÇOKYUMUŞAK V Soft N: 3.4 YUMUŞAK Soft N: 5.8 ORTA KATI M Stiff N: 9.15 KATI Stiff N: 16-30 ÇOK KATI V.Stiff N: >3.0 SERT Hard		N 0- N 5- N 11 N 31 N >5	4 10 -30 -50 50	ÇOK GEV ORT SIKI ÇOK	GEV ŞEK A SIH	/ŞE⊦ (I	V.Loo Loose M.Der Dense V.Der	Se nse e ise
KAYA KALITESI TANIMI - RQD KIRIKLAR - 30 cm / Fractu % 0-25 ÇOKZAYIF V.Poor 1 SEYREK Wide (W) % 25-50 ZAYIF Poor 1-2 ORTA Moderate % 50-75 ORTA Fair 2-10 SIK Close (CI) % 90-100 COK SIKI Intense (I) 90 ORX (CK SIKI Intense) SIK SPT Standart Penetrasyon Testi K Karot Numunesi Karot Numunesi												PS V1) X)	ORANLAR % 5 <	Prop	% 5 % 5- % 20	< 20 1-50	PEK AZ ÇOK	AZ	L	Slighti Little Very	Y
SPT Standart Penetrasyon Testi K Karot Numunesi Standart Penetration Test Core Sample Core Sample D Örselenmiş Numune P Pressyometre Deneyi Disturbed sample Pressuremeter Test VS Veyn Deneyi											ISIM Buket UCA	_	Lü	tfull	Chec ah I	Ked I	ITA	R	_		

	~	,													
Ē	jo	<u> </u>	١	'eşil	dere	e Ma	hal	lesi	Ко	nak	Tün	elle	ri Temel Araştırma Çalışmaları District ISONDAJ	s	Sayfa No: 2/3
								sc	אר	Δ.Ι	1.00	311	BORING SONDÖR Abidin K		TAS
⊢		L.	ST	AND	ART	PENE	TRA	SY	ON	DENE	EYİ				,,
10	10	YUR		S	tanda	rt Pe	netra	ation	Tes	t		_)/S.Co	
ERIN(th (m)	De CIN	ABO	D	ARBE	SAYI	SI			GR	AFIK raph			Geotechnical Description	o(SCR	
SONDAJE Boring Dep	NUMUNE Samp. Ty	MANEVR	0 - 15 cm	15-30 cm	30-45 cm	Ν	10	20	30	40	50	60	PROFIL Profile AYRNIM KIRK/FI	KAROT%	ROD %
													Tanımlama sayfa 1/3'de ""		
11	SPT-7	10.50		50/7									10.50-12.00 m. VV = = こ 次 突		÷
F		10.57							1			ш	ANDEZİT VV Kırmızımsı gri renkli, orta VVV		
12												ш	dayanımlı, orta derecede ayrışmış, parçalı kırıklı çatlaklı, verev çatlaklı $\bigvee \bigvee = \equiv \bigcup \ \Im$		0
F "2															
1															•
- 13												ш			
۰. I													zayıf dayanımlı, orta-çok		Ξ
- ¹⁴													ayrışmış, parçalı kırıklı çatlaklı		÷
-									+			-			
_ 15													15 00-15 80 m VV	\vdash	-
ŀ													ANDEZIT $VV = \stackrel{\geq}{=} \stackrel{\circ}{\circ} \stackrel{\circ}{\otimes}$		10
- 16													orta-çok ayrışınış, parçalı kırıklı		-
-															0
- 17															
-													<u></u> 2 ≥ 2 2		20
- 18															-
-													15.80-24.50 m.		53
- 19													TÜF IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
-							-						çok zayıf-zayıf dayanımlı, çok " " ≥ ≥ 5 8		12
- 20													killeşmiş		
-													83 ♂ <u>< { </u>		0
- 21															
ŀ													۲۵ <u>۲</u> ۲ <u>۲</u> ۲ <u>۲</u>		0
_ 22							Ħ								
F -													" " <u>-</u>		30
23															
-													<u>"</u> " < < ₆ ₈		₽
24															Ľ
													LOGU YAPAN KONTROL Logged By Checked By		
1													Jame Buket UCA Lütfullah KANTA	R	
													Sign		

	~	T																				
e	<u>ļ</u> o		Y	eşi l	dere	Mal	nalle	esi K	(on	ak 1	[ün	elle	i Temel A	raştırma Çalışma	ları	BÖLGE District	Ν	lo :			S	ayfa No: 3/3
																SONDA Borehol	J r e	10 :	TS	K-	1	
								so	ND	AJ	LO	GU	BORING			SONDĆ Driller	R	<u>1</u> 9	Abidi	n KA	RAT	'AŞ
-	2	S	S		ART		TRA	SYO	N D	ENE	Yİ						en			Dor	Core	
RINLIĞ (m)	insi			DARBE	SAYIS			lion	GR/	AFİK			JEC	TEKNİK TANIMLA	MA		LIK/Str		acture	R)/T.(CR)/S.(
AJ DEF Depth	INE C Type	VRA /Run	Ę	Numb.		s			Gr	aph		_	Ge	otechnical Descripti	on	е Щ	NIMLII	ŞMA /	K / Fre	T%(TC	T%(SC	%
SOND/ Boring	NUML	MANE BOYU	0-15 c	15-30 c	30-45 c	N	10	20	30	40	50	60				PRO	DAYA	AYRI	KIRI	KARO	KARO	RaD
													Tar	umlama sayfa 2/3'de		н н п	٨.	N	-	4		
25																•••	-V-	≐	U U	4		5
-																<u> </u>	1-1	<u>ا</u> ۲	5	t3		0
_ 26																	=	=	Ľ	7		536
-																	٨-٧	٨-٧	ς	43		0
_ 27													n	24.50-40.00 m		•••	_	_		0000		
-													+24.50	20 00 m Comme			N-V	N-V	ບັ	40		0
- 28													-24.50 Kui	ntaşı Ardalanmas	aşı- I	• • •						<u> </u>
-													çok za	yıf dayanımlı, orta-	çok çok		V-VI	N-VI	ບັ	69		0
- 29													ayıışı	ayrışmış	en	•••	58	255				
- 20													*30.0 Kabye	0-31.50 m. Çakılta	işi 1-4		N-VI	NI-III	ບັ	32		•
- 30									ш				cr	ı arasında değişen utlarda, köseli-yarı	1-4	0000	-	/				
- 31													yu∨arl	ağımsı, kireçtaşı ori	jinli	0000	1-7	N-111	υ	50		•
- "									m			m	*31. (Acik sa	60-39.00 m. Kumta rumsi kahve renkli	şı orta-	0000	>	>		~		
32													çok ay davar	rışmış, orta zayıf- z nımlı, ver ver cok za	ayıf	• • •	∃	∃	U	50		10
														dayanımlı			≥	2	5	0		5
33									Ш			Ш	* 39 Açık sa	.00-40.00 m. Kiltaş rımsı kahverenkli, z	l ayıf-	•••	=	É	Ľ	7		-
-												Ш	çok za	yıf dayanımlı, orta- ayrışmış	çok	•••	> -	N-1	-	93		60
_ 34																	=	-				
-																•••	>!-!	NI-II	ບັ	77		0
_ 35																•••						—
-																	N-III	NI-III	ບັ	61		9
- 36							m		₩			Ш				• • •			-	_	-	
- 27												Ш				• • •	N-111	NI-III	-	67		16
- 37												İII				• • •		/				
- 38																• 0•		\-III	Ū	70		37
<u>ר</u>																• • •	≥	2		9		
39																• • •	É	≜	Ľ	7		ę
-																	N-VI	NI-III	ບັ	88		10
40		e-	_	_	-	6								Nelse - 4000 state - 4180 center content		F	_	_	-			
-													Ku	yu Sonu 40,00 m.								
+1			I		L				att				ISIM Name	Buket UCA		Lü	Itfull	ah I	KAN	ITA	R	
													IMZA Sign									

	_[,	3		Yes	ilde	re M	ahal	lesi	Kona	ak Tü	ünell	eri	Temel Arastırma Çalışmaları							s	Sayfa
	4	<u>//</u>											· · · · · · · · · · · · · · · · · · ·		BÖLGE Distric	- P	10 :			1	No: 1/5
										1.00			PINC LOC		SOND/ Boreho	AJ I	No:	T٩	SK-	2	
									DAJ	LUC	50/	БО	RING LOG		SOND Driller	DR 3	E	Bekir	ÇAT	ALK	AYA
						3	reşilde Ter	re Ma nel Ar	hallesi aştırma	Konał a Çalış	k Tünel maları	leri									
PROJE	ADI / Pr	oject Na	ame	lion		· K	onak	(iZM	R	21.2		_	DELİK ÇAPI / Hole Diameter	: 8	9mm-7	4mm	۱	_	_	_	_
KILOM	ETRE / C	hainag	e	lion		: -	onak	12.101	IX.			_	MUH.BOR.DER. / Casing Depth	: 9	.00 m.						_
SONDA	JDER.	/Boring	Dept	h		: 60	1 00.C	n					BAŞ.BİT.TAR. / Start Finish Date	: 2	0/11/20)11 -	25/	11/2	011		
SONDA	JKOTU	/Eleva	tion			: 10	04 m.	iuo	(T4 D			KOORDINAT / Coordinate (N-S) y	: 4	252490)					
SONDA	AJ MAK.	SYONT.	/D.Rij	g & M STAN	IDAR	TPE	NETR	ASY		ENEY	Υ /i		KOORDINAT / Coordinate (E-W) x	: U	01234/				α.	œ	
ē		U/RI		• // 1	Star	ndart	Penet	ration	n Test		<u> </u>					ength	ering	(mol)	Core	Corel	
(m)	ype vpe	A BOY	DN	ARBE	SAYIS	SI VS			GRAF Grap	İK h			JEOTEKNİK TANIMLAMA Geotechnical Description			LIKVStr	Weath	ture (3	CR)/T.	CR)/S.	
IDAJ C	MUNE mple 1	JEVR	5 C.B	0 cm	5 cm	N									le IL	ANIMU	ISMA /	K / Fra	DT%(T	OT%(S	%
SOI	Sa	MAI	0-1	15-3	8	· .	10	20	30	40	50	60			Prof	DAY	AYR	KIRI	KAR	KAR	ROD
							ш					Ш			00						
t.															20	,			94		
- × -															20				Ĩ.		
ŀ		1.50													0	\vdash	⊢	\vdash			
- 2	SPI-1	1.05	11	6	7	13	ш					ш			00						
		1.95							N						0				90		
3		2.00										Ш	0,00 - 6,00 m.		00						
	SPT-2	3.00	21	11	19	40			m	Ň		Ш	Yapay Dolgu Malzeme		50	, \Box					
1		3.45	⊢								X	Ш			00				o		
- 4															Q				Ĩ.		
ŀ		4.50	⊢					_				X			00	\vdash	⊢				
5	SPT-3	4.60		50/10) 							Ш			9						
		4.00													20				47		
6															00	2					
F	SPT-4	6.00		50/6	2		ш					ш	6,00-14,00 m.		Å 1 & 1		5				
ŀ.		6.06	\vdash									Ш	AGLOMERA			Ē	Ē	Ū	45		•
F'												₩	zayıf dayanımlı, yer yer zayıf		1414	⊢	⊢	\vdash	\vdash	-	
ŀ												Ш	dayanımlı, orta-çok ayrışmış,		A A	≥	≧	Շ	25		•
8							ш		ш			ш	çok parçan kirikir çalakir			<u> </u>	-				
L													*6.00-8.00 m arası orta- zayıf		1414	. ≡	_	5			
9													ayrışmış			÷	-	ľ	4		-
							Ш					Ш	*8.00-14.00 m arası orta-orta zavıf davanımlı, orta								
												Ш	derecede ayrışmış		1414	. Ξ	≡	ບັ	42		•
DAYAN	IMLILIK	/ Stren	gth				A	'RIŞN	A/W	/eath	ering	ш	INCE DANELI / Fine Grained		iRİ	DANE	ELİ/C	oar	se G	rain	ed
1		MU avanimi	r.	Stron M Str	g	1		AZE	PISM	Fi	resh	N	N : 0-2 ÇOK YUMUŞAK V.Soft		N: 0	4	ÇOH GEN	(GE)	VŞEP	V.Lo	ose
iii.	ORTA ZA	YIF		M.We	eak	III		ORTA	D. AYI	Ř. M	lod. We	eath.	N : 5-8 ORTA KATI M.Stiff		N: 1	1-30	ORT	TA SI	ĸ	M.D	ense
V	ÇOK ZAY	ſΙF		V.We	k eak	V		ÇOK A	YLE A	. 0	comp.W	/v. /eat.	N : 16-30 ÇOK KATI V.Stiff		N: 3	1-50 50	ÇO	(SIK	1	V.De	se Inse
KA	YA KALI	TESİ T/		- RQ	D	к	RIKL	AR -	30 c n	n / Fra	acture	s	N : >30 SERT Hard ORANLAR ·	Pro	portion	s		_	_	_	_
% 0-25	ÇOK	ZAYIF	V.	Poor		1		SEYR	EK	Wide	(W)	0	% 5 < PEK AZ Slightly		% 5	< 20	PEK	AZ		Sligh	itly
% 25-50 % 50-75	ORT/	A	Fa	air		2-	10 :	JRTA SIK		Close	erate (N e (CI)	0)	% 15-35 ÇOK Very		% 2	0-50	ÇOP	<		Very	t i
% 75-90 % 90-10	D IYI D COK	IYI	G	ood ccellen	t	10	-20 (COK S	ALI	Intens	se (I) hed (Cr)	% 35 > VE And								
SPT	Standart	Penetras	ion To	esti		K		Karo	Same	inesi			LOGU YAPAN				KON Che	NTRC ked)L By		
D	Örselenn	niş Numu	ine	-1		Ρ		Pres	siyome	tre De	neyi.		ISIM Buket UCA		L	itfull	ah	KAN	ITA	R	
UD	Órselenn	nemiş Nu	mune			VS	S	Veyn	Deney	/i	st		IMZA	-							_
				Vane	Shear	Test			Sign								_				

		<u>.</u>	1													F	BÖLGE		lo :			s	ayfa
	ē	20	<u>1</u>		Yeşil	dere	e Ma	ahal	lle	si K	ona	ak T	ünelle	er	i Temel Araştırma Çalışmaları	1	District SONDA	J	10 :	TS	K-2	<u> </u>	No: 2/5
									S	106		JL	OGU	1	BORING		SONDÖ	e R	: в	ekir	ÇAT	ALK/	AYA
X	5	-	'U/Run	ST	rand. S	ART I tanda	PENE art Pei	ETR/	AS) ratic	YON on T	I DEN est	NEY	I	Γ		Ť	Driller	tren	hering	30cm)	T.Core	S.Cor	
CONDALIDEDINI	Boring Depth (m)	NUMUNE CINS Samp. Type	MANEVRA BOY	0 - 15 cm	ARBE	30-45 cm	SI N	10	 D 2	20	Grap	=lK bh	50 60		JEOTEKNIK TANIMLAMA Geotechnical Description		PROFIL Profile	DAYANIMLILIK/S	AYRIŞMA / Wea	KIRIK / Fracture	KAROT%(TCR)	KAROT%(SCR)	RaD %
-	11		<u> </u>	•••			_						-		Tanımlama sayfa 1/5'te	-			æ.,	ç	å6	-	۲.
-	12		ĽĽ	ASS:	10.45	m												11-11	=	c	67		0
-	13																	111-11	=	ŗ	8		21
	14															ŀ		11-11	=	ç	35		0
											#					ľ	v v v	=	=	S	92		24
-	15								Ħ	#	#					ľ	vvv	=	=	Ċ	ģ	_	20
	16														14.00-44.00 m. ANDEZİT	ļ	v v v v v v v v	=	III-II	ç	72		0
-	17														dayanımlı, az-orta ayrışmış, parçalı kırıklı çatlaklı, verev çatlaklı, çatlak yüzeyleri	,	V V V V V V V	=	=	Ċ	ē		0
-1	18														dalgalı pürüzlü, 2 yönlü eklemli, eklemler 45°- 90°eğimli, eklem araları FeO, kil dolaulu.	ľ	vvv vv	=	=	ç	100		34
	19														14.40-14.50 m, 14.90-15.10	ļ	v v v v v v v v	=	=	r,	100		0
	20														17.05 m, 17.40-17.45 m, 18.00-18.25 m, 18.45-18.55 m, 18.85-19.10 m, 19.50-	ì	V V V V V V V	=	=	Ċ	<u>6</u>		0
	21														20.00 m, 21.50-22.00 m, 23.00-23.70 m arası parçalı kırıklı	Ì	vvv vv	=	=	ç	100		10
	22									+						Ņ		=	=	ζ	55		0
Ē	23															Ň	v v v v v v v	=	Ξ	c	84		40
-	24									#						ĺ		=	Ξ	ŗ	63		0
F	24			•				1111						15	LOGU YAPAN Logged By	1			KON Chec	ITRO ked [L By	_	
														NNS	MIZA Buket UCA MIZA Sign		Lü	tfull	ahl	KAN	ITAI	₹	

	<u>, </u>	J	v	esile	dere	Ma	hall	esi I	Kon	ak T	-	ماله	ri Temel Aractırma Calısmaları	BÓLGE	b	10 :			S	ayfa
5	:10	<u>1</u>		eşin	Jere	IVIG	nan	2311	KUII		un	ene	n Temer Araştırma çanşınaları	District SOND/	w,		те			NO: 3/5
								sc	N	14.1	10	GII		Boreho	le DR	10 .	T C		2	a.v.a
			ST	AND	ART	PENE	TRA	SYC	DN D	ENE	Yİ			Driller			Sekir I	ÇAT	Φ.	
))	2			S	tanda	art Pe	netra	ation	Tes	t					/Stren		e	/T.Cor	IS.Cor	
DERIN pth (m	E CIN	AN UN	1	Numb.	SAYIS of Blow	51 15			GR	AFIK aph			Geotechnical Description		MLILIK	IV	/ Fracti	(TCR)	6(SCR)	
NDAJ ing De	MUN mp. T	NUR	15 cm	30 cm	45 cm	N								ROFI	AYAN	YRIŞN	KIRIK	ROT%	ROT%	SOD %
Sg	Sar	BOB	ċ	15	30		10	20	30	40	50	60			0	æ		K/	KA	
-													Tanımlama sayfa 2/5'te	VV	=	=	ວັ	59		13
25									 	ļ			Deal	VVV	1					
2															=		Ե	73		0
- 26														VV	⊢	\vdash	⊢	\vdash		\vdash
ŀ														VVV	=	≡	ບັ	70		0
- 27														VVV	┢		⊢	\vdash		
ř.														VV	=	=	Շ	100		0
- 28															⊣	\vdash	⊢	\vdash		
-														VVV	=	=	ບັ	60		0
- 23														VV	F	\vdash	⊢			
30														v v	=	≡	ΰ	54		0
- **							T		t ···			m	*24.20-25.50 m, 25.60-25.90 m, 26.00-27.00 m, 27.30-		Έ					
31													27.85, 28.50-29.00 m, 29.10- 31.50 m, 32.00-32.20 m,	VVV	=	=	Ū	22		•
													32.40-32.65 m, 33.00-33.10 m, 33.85-34.00 m, 35.50-	VV			η.			
32													35.90 m, 36.00-36.80 m, 38.15-38.25 m, 40.10-40.70	VV	=	=	°	7(4
Γ													m, 40.90-41.00 m, 42.00- 42.50 m arası parçalı kırıklı	VVV	1			20		_
33													and the well and a second registered at the second second second second second second second second second second		[_	=	Ŭ	8		Ŭ
														VV	_	=	5			
34															Ľ	_	Ŭ	9		
														111	_	=	_	90		5
35														VV	L			Ű		
														VV	=	=	_	53		18
36														VVV						
															=	≡	δ	61		0
_ 37										1				V V	⊢		-			
ŀ														VVV	=	≡	-	69		21
- 38									-					vvv	\vdash			\square		
ŀ														٧V						
- 39															=		ō	100		62
40														VVV	1					
F [₹]												Ħ		VVV	F	_		222		
41														VV	=	Ξ	υ Γ	99		0
						-							ISIM Buket UCA	L	ütful	lah I	KAN	ITA	R	
													IMZA Sign							

e	- 6		Y	'eşile	dere	Mal	halle	esi H	Con	ak 1	ſüne	elle	ri Temel Araştırma Çalışmaları	BÓLGE District	N	lo :			S	ayfa No: 4/5
	•							~~~				~		SONDA Borehol SONDC	le NR	lo :	TS	sK-	2	
	1		61		APT		TRA	SC				GU	BORING	Driller		B	lekir	ÇAT	ALK	AYA
riĝi	70		3	S	Standa	art Pe	netra	ation	Test	ENE	п				Strengt	hering	30cm)	T.Core	S.Corel	
DERIN pth (m	E CIN:	≴s	D	ARBE	SAYIS	SI		0	Grap	=lK ph			JEOTEKNIK TANIMLAMA Geotechnical Description		ILILIK	/ Weal	acture	(TCR)	(SCR)/	
INDA.	MUNI mp. T	NEVE	15 cm	30 cm	45 cm	N								ROFIL	VANIN	RISMA	ak / Fr	ROT%	ROT%	% Ct
88	Sa	₩ M M M M M M M M M M M M M M M M M M M	6	\$	30		10	20	30	40	50	60			DA	AYI	KIR	КA	KA	RC
-													Tanımlama sayfa 2/5'te	vv	=	≡	ŗ	46		0
- 42															⊢		\square			
- 42														VVV	=	≡	ບັ	65		0
- 43														VVV	⊢					
- 44													44,00-46,00 m. AGLOMERA	VV	=	=	ŋ	52		13
												Щ	Açık pembemsi gri renkli, orta-orta zayıf dayanımlı, orta		=	_	-			-
45													parçalı kırıklı çatlaklı	A1A1	Ξ	=	°	4		0
													*44.00-45.00 m, 45.20-45.50	141A	≣	≡	ъ	65		12
_ 46													m alası palşar kirkir		_			-		
-															>	2		8		_
- 47															Ś	Ņ.	0	7		0
-														п ^п п	⊢		H			
- 48															N-7	٨-٧	ò	59		0
49														h di n	-	-				
														1 1	>	٨.	-	7		9
50													46.00-60.00 m.	и " и	Ž	Ň	0	7		2
													Çok-Tamamen Ayrışmış TÜF	I II	1-1	N-1	ò	52		0
_ 51													Yeşilimsi kah∨e rengimsi gri renkli, çok zayıf dayanımlı,		2	<				
-													çok tamamen ayrışmış, yer yer killeşmiş		N-V	N-N	ū	100		П
- 52															\vdash	\vdash	Н	\vdash		
-														щ	N-VI	V-VI	5	100		۰
- 53														н ^ш и	-	/				
54														н ^н п	1-1	\-NI	υ	10(12
Γ								Ħ						ц п п	>	N.	2	0		5
_ 55														и ц ц	.>	-N	O	10		36
-														<u>и</u> п.	1-1	1-1	5	100		0
- 56															=	-				
- 67														u u	N-V	V-VI	ų	100		23
۲"														н <u>,</u> п	>	~				~
58														н п п	-2	-71	Ū	10		13
													ISIM Name Buket UCA	LC	itfull	ah I	KAN	ITA	R	
													Sign							

	e / 6	<u> </u>	Y	eşilo	dere	Ma	halle	esi l	Kon	ak 1	üne	elle	ri Temel Araştırma Çalışmaları	BČ Di:	LGE	Ν	lo :			S	ayfa No: 5/5
														Bo	rehol		10 :	TS	K-	2	
							TDA	SC				GU .	BORING	Dri	ller	I I	E	Bekir	ÇAT	ALK	AYA
I DERINLIĞI epth (m)	IE CINSI Ype	RA	D	ARBE	SAYI	art Pe	netra	ation	Test GRAF Grap	ik h			JEOTEKNİK TANIMLAMA Geotechnical Description			MLILIK/Strengt	v / Weathering	racture (30cm)	6(TCR)/T.Core	(SCR)/S.Core	
SONDA. Boring D	NUMUN Samp. 7	MANEV BOYU/F	0-15 cm	15-30 cm	30-45 cm	Ν	10	20	30	40	50	60		PROFI	Profile	DAYAN	AYRIŞMI	KIRIK / F	KAROT9	KAROT9	ROD %
- 59													Tanımlama sayfa 4/5'te	н п	" "	N-VI	NI-III	ŗ	100		٥
- 60														n n	" " "	N-VI	NI-III	c	100		0
- 61													Kuyu Sonu 60,00 m.	Τ							
62																					
- _ 63																					
- 64																					
- ⁶⁵																					
- ⁶⁶																					
- ⁶⁷																					
- 68																					
- 70																					
71																					
72																					
73																					
- _ 74																					
- 75													ISIM	\downarrow							
													Name Buket UCA IMZA Sign	\pm	L	uttul	an I	KAN	ATA	ĸ	_

	1	ו ר																				
4	eĮ	<u>ol</u>	•	Yeşil	dere	e Ma	aha	llesi	Kor	nak	Tüneller	ri Temel A	Araştırma Ç	alışmalar	ı	BÖLGE District	1	No :			Si 1	ayfa No: 1/4
	•							sc	ND.	AJ	LOGU /	BORING				SOND/ Boreho	AJ le ÖR	No :	т	SK-	3	
							icş	nucro	man	une	оптопак					Driller	:	A	\bidi	n KA	ARAT	ΆŞ
		roigot N	lomo			:	Tür	neller C	i Tem alışır	el A nala	raştırma rı		21 / Holo Diam	otor		20mm 7	4m)	~				
SOND	AJ YERİ	Boring	Loca	ition		: K	onak	/iZM	İR			YERALTI S	SUYU / Ground	dwater	:	10.80 m.	41111					
KİLOM	ETRE / (Chainag	je			: -						MUH.BOR	DER. / Casing	g Depth	:	15.00 m.						
SONDA	AJ DER.	/ Borin	g Dep	oth		: 50	0.00	m				BAŞ.BİT.T.	AR. / Start Fir	nish Date	:	11/11/20	11 -	· 20/	11/2	011		
SOND			ation	Q	Mat	: 10)4 m	. i i i				KOORDIN	AT / Coordinat	e (N-S) y	:	4252468						
SOND	AJ MAK.	&YONI ⊆	./D.R	TAN	Met. DART		KAE JE TE				ARY FYİ	KOORDIN	AT / Coordinate	e (E-W) x	:	0512359	_	1		'n	<u>م</u> ن	
ē		J/Ru			Stan	dart F	Pene	tratio	n Tes	st							ngth	ering	(mo	CoreF	Core	
(JUL)	iNSI	ιλo	D	ARBE	SAYI	SI			GRA	FİK		JE	ΟΤΕΚΝΙΚ ΤΑ	NIMLAMA			(/Stre	athe	e (30	()/T.C	s)/S.(
epth	с Ш	ZA B	Nu	umb.o	ofBlov	vs			Grap	ph		Ge	otechnical D	escription				/We	actur	(TCR	(SCF	
SONDA. Boring D	NUMUN	ANEVE	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	n 4	10 50 60					ROFIL	MINAYA	VRIŞMA	(IRIK / Fr	AROT%	AROT%	k QD %
-		2	-	-				20										∢	×	×	×	œ
-																						
1																V_V						
																00						
-	SPT-1	1.50		50/5												∇						
- 2		1.55		00,0				+				4				$\nabla \nabla$						
L		1.00														\bigtriangledown						
3								+	+			4				00						
- ⁻	SPT-2			ш									70									
-									-				$\nabla \nabla^{\vee}$									
_ 4												1				00						
								+	+		******	4				00						
	SPT-3	4.50		50/5								•	0 00 - 12	00		$\sim \sim$						
- ⁵		4.55										Ya	pay Dolgu I	,oo Malzeme		00						
-												-				∇						
6																VO						
Γ	SPT-4	6.00		50/10)			+	+			4				00						
-		6.10										-				\bigtriangledown						
_ 7																$\nabla_{\Box} \nabla$						
		7.50					ш					1				ŇΦ						
8	SPT-5	7.50		50/7								+				\bigtriangledown						
		7.57					ш					1				00						
ŀ												-										
- 9		9.00										4				00						
L	SPT-6	9.05		50/5				μĦ				†				∇						
10		2.05						╫╫				4				$\nabla \nabla$						
DAYAN		(/ Stre	ngth				AY	RIŞN	IA / V	Nea	thering	İNCI	E DANELÍ / Fi	ne Grained		iri d	ANI	ELI/C	oars	se G	raine	ed
	DAYANI ORTA D	MLI AYANIM	LI	Stror M.Str	ng rona			TAZE AZ AN	RISM	٨IS	Fresh Slightly W.	N : 0-2 N : 3-4	ÇOK YUMUŞ YUMUŞAK	AK V.Soft Soft		N: 0- N: 5-	4 10	ÇOF GE\	(GE' /ŞEK	VŞEI	V.Loo Loos	ose e
	ORTAZ	AYIF		M.We	eak			ORT	AD.A	YR.	Mod. Weat	h. N : 5-8	ORTA KATI	M.Stiff		N : 11	-30	ORT	TA SI	KI	M.De	ense
IV V	∠AYIF ÇOK ZA	MF		Wea V.We	k ak	IV V		çok Tümi	AYR. JYLE	A.	Slightly W. Comp.Wea	N: "9-1 at. N: 16-3	5 KATI 30 ÇOK KATI	Stiff V.Stiff		N: 31 N: >5	i -50 50	ÇOF	(SIK	1	Dens V.De	se nse
KAN	/	TEQIT	NUM						20 ~-	n / '	Fractures	N : >30) SERT	Hard	. P	ronortia						
% 0-25	ÇOK	ZAYIF	V.I	Poor	ευ	1	ur(L	SEYF	REK	Wi	de (W)	%5 <	PEK AZ	Slightly	- P	%_5	ა <	PEK	(AZ		Sligh	itly
% 25-5 % F0 7	0 ZAYI	oor		1-	2	ORT/	4	Mo	derate (M)	% 5-15	AZ	Little		% 5-	20	AZ	,		Little			
% 50-7 % 75-9	5 ORT. 0 İYİ	A	⊦a Go	ur bod		10	-20	əır. ÇOK	SIKI	Int	ense (CI)	% 15-35 % 35 >	VE	And		% 20	J-50	ÇÜŀ	`		very	
% 90-1	00 ÇOK	IYI t Penatr	Ex	celler	nt	>2	0	PAR		Cr	ushed (Cr)							KON		N		
SPI Standart Penetrasyon Testi Standart Penetration Test								Core	e San	nple	691		LOGU YAF	By				Chec	ked	v∟ By		
D Örselenmiş Numune Disturbed sample								Pres	siyor	netr	e Deneyi er Test	ISIM Name	Buke	et UCA		Lü	itful	lah I	KAN	NTA	R	
UD		VS	5	Veyr	n Den	ieyi	01 1031	İMZA														
	UD Orselenmemiş Numune Undisturbed Sample							Van	e She	ear T	est	Sign										

		0	1																
	e	lo		١	/eşil	dere	Ma	hall	esi	Ког	nak	Tür	nelle	eri Temel Araştırma Çalışmaları District	No :			3	Sayfa No: 2/4
		1												SONDAJ	No	т	sĸ	-3	2.1
L									SC	ND	AJ	LO	GU	BORING SONDOF	;	Abi	din K	ARA	TAŞ
F			Run	ST	ANDA	ART F	PENE	TRA	SYC	DN D	DENE	ΞYİ			- 3	Ē	ore	or	
VLIĞI	-	ISI	/NAC	-	S	tanda	irt Per	netra	tion	Tes	t AFİK		_	JEOTEKNÍK TANIMLAMA	VStre	e (30c	R)/T.O	RyS.C	
DERIN	pth (m	E CIN	RA B		ARBE	SAYI	SI			Gr	aph			Geotechnical Description	ALILIP	ractur	%(TC)	%(SCI	-2
LAUN	ing De	IMUN T.dm	NEV	15 cm	30 cm	45 cm	N							oFiL Mie	PICAN	RIK / F	AROT	AROT	ROD 9
So	Bor	Sa	đΜ	-0	15.	30		10	20	30	40	50	60	82 82		X	X	×	L.
-			10.50											Tanımlama sayfa 1/4'te	71	YAS	S: 10).80 n	<u> </u>
-1	1 -	SPT-7	10.60	-	50/10					1 -	X		1		-	1	÷	-	- 1
												Z		00					
_1	2		12.00								Ľ			0°0					
-		SPT-8	12.45	9	11	13	24			ť				" "					
_ 1	3													" " " " " " " " " " " " " " " " " " "					
			13.50											Cok Tamamen Ayrışmış TÜF					
_1	4	SPT-9	-	11	15	17	32							Kırmızımsı kahve renkli-kahve III II renkli, çok tamamen ayrışmış, III					
_			13.95											zayıf-çok zayıf dayanımlı " "					
1	5		15.00											и п п					
Ē.,		SPT-10	15.45	13	16	19	35							и: л п					
1	6		15.45									K						⊢	
														Açık pembemsi gri renkli, orta-orta		0	7	┝	0
1	7	SPT-11	16.50		50/1									ayrışmış, çok parçalı kırıklı	_ _				
_			16.51											vvv	- =	°	4		
1	8														+	╋	╀	┝	-
Γ														VV	= =	ð	53		12
1	9														+	╀	╀	┝	-
														dayanımlı, orta derecede VVV	_ _	5	8		8
2	0													ayrışmış, parçalı kırıklı çatlaklı, VV verev çatlaklı, çatlak yüzeyleri					
Ľ								Ħ						dalgalı pürüzlü, 2 yönlü eklemli, eklemler 30°-	╈	T	\top	\top	\square
2														60°eğimli, eklem araları kil dolaulu, ver ver FeO	= =	-	87		37
Γ														alterasyonu gözlenmektedir.					
	,														\uparrow	\top	\top	t	\square
F 1	-													ľ v v	= =	0	65		0
F.														VVV					
$+^{2}$	3														+	+	+	+	\vdash
1														vvv	= =	ō	92		24
	4						L						ш	LOGU YAPAN	K	DNTR	OL	_	1
														ISIM Buket UCA Lüt	ullah	KA	NT	٩R	
														IMZA Sign					

	ſ	T													BÓL	SE.					Is	Savfa
e	<i>e</i> /o	<u>1</u>	Y	'eşile	dere	Mal	hall	esi k	(on	ak 1	ſün	eller	ri 1	Femel Araştırma Çalışmaları	Distr	ct	No	1				No: 3/4
	•														SON Borel	DAJ nole	No	2	TS	K-	3	
								SO	ND	AJ	LO	GU	/ E	BORING	SON Drille	DOR r	-	1	\bidi	n KA	RAT	ſAŞ
<u>o</u>			ST	rand S	ART I Standa	PENE art Pe	netra	SYO	N D Test	ENE	YI					100			Φ	Cor	S.Core	
ERINU th (m)	CINS	∢ c		DARBE Numb.(SAYIS	s s			GR. Gr	AFİK aph				JEOTEKNIK TANIMLAMA Geotechnical Description		1 10/00		5	ractun	TCR)/T	SCR)/S	
DAJ D Ded gr	MUNE Pp. Ty	UNRU	e cm	0 CM	e cm	N									OFIL	C ANIMA	ALCONT OF	NIQUIN.	RIK /F	()%LO	ROT%(% OC
SON	San	MAN	0 - 1	15-3	30-4	10	10	20	30	40	50	60			E a		5 2	ž	×	KAF	KAF	R
														Tanımlama sayfa 2/4'te	VV	′ F	╉	-			\vdash	
25															vv	v =	-	=	U	86		45
-															VV		╈					⊢
26															VV	- -		=	Ե	60		11
·															VV							
_ 27															vv	v	Τ					
-															VV	6 =	1	=	ö	69		26
- 28															VV	ř	╉	-		Η	Η	\vdash
29															٧v	v						
-															vv	v =	1	=	-	72		20
30															VN							
[vv	2		≥	5	0		
31														30.50-32.00 m Cok-Tamamen Ayrışmış	Ш. П			≐	Ŭ	°		
														TÜF Beyazımsı-kahve renkli,zayıf-çok zayıf	и: 			2-	5	8		0
32														dayanımlı, çok-tamamen ayrışmış	/			<				
-													1					N-N	ъ	26		0
- 33															•••	-	+	_	_		\vdash	\vdash
-															•••			N-V	อ	46		0
- 34														32 00-50 00 m	•••		+	_	_	\vdash	\vdash	\vdash
- 25														ÜST TORTUL SERI	•••			N-V	ŗ	68		•
- 35	SPT-12	35.00	12	23	34	55		m						*32.00-39.00 m. Kumtaşı Yesilimsi kahve renkli, zavıf-	•••	÷	-	-				-
- 36		35.45												çok zayıf dayanımlı, çok- tamamen avrısmıs.	•••			、				
-														1-3 cm köşeli çakıllı	•••				ō	86		°
37	SPT-13	36.50	1	50/10)		H	Ŧ	Т			P	e.	*38.00-39.00 m arası karbonat seviyeler içeren kumtaşı	•••	-[
		36.60													•••	ΞŢ		>	5	9		
38		28.00														_ 2		Ż	O	5		0
	SPT-14	38.06		50/6									2		•••			~			_	_
39															•••	1		2	5	38		•
-																111		N-V	ບັ	32		0
- 40	SPT-15	40.00		50/13	3								ŝ				1					L
41		40.13													=	1		>->	ŗ	23		•
– – –				I		I							ISI Na	M Buket UCA		Lütf	ulla	h k	KAN	ITA	R	
													IM. Siç	ZA gn								

	ſ	T												BŐLGE					s	Sayfa
6	20	<u>1</u>	Y	'eşilo	dere	Ma	hall	esi I	Kon	ak '	Tün	elle	ri Temel Araştırma Çalışmaları	District		NO ;				No: 4/4
														Boreho	le I	No :	TS	SK-	3	
								SC	N	AJ	LO	GU	/ BORING	SOND(Driller	R		Abid	in KA	RAT	ΓAŞ
ē			SI	rand. S	ART I Standa	PENE art Pe	ETRA netra	ation	Tes	t t	YI				rengt	ering	(mo)	.Core	CoreR	
ERINL h (m)	CINS	1-	D	ARBE	SAYI	SI		(GRA	FİK			JEOTEKNİK TANIMLAMA		LIKVSt	Weath	ture (3	CR/T	CRWS	
gDept	D. Typ	URur	5	E,	5		⊢						Geolecinical Description	le FiL	ANIML	SMA.	/ Frac	DT%(T	DT%(S	%
SON	NUN Sam	MAN BOY	0-15	15-30	30-45	N	10	20	30	40	50	60		PRO	DAY	AYRIS	KIRIK	KAR	KARO	ROD
		40.50											Tanımlama sayfa 3/4'te							
42	SPT-16	40.50		50/10)										Ŀ		_	_		
		40.00											*39.00-43.00 m Camurtasi		2	2	5	5		
43		12.00											Kırmızımsı kahverenkli, zayıf- cok zayıf dayanımlı, cok-		É	2	С.			
	SPT-17	43.00	30	41	55	96							tamamen ayrışmış				_	_	_	
- 44		40.40								1		H	*43.00-44.50 m Silttaşı Yeşilimsi-kırmızımsı kabve		IV-V	N-N	ບັ	46		•
-		44.50										Ħ	renkli, zayıf-çok zayıf		N-V	V-VI	ບັ	50		0
- 45	SPT-18	44.95	17	24	32	56						ļţ	ayrışmış		L	_		_	_	
-												H	*44.50-47.50 m Çamurtaşı Kovu sarımsı vesilimsi kabve		2-2	N-7	ບັ	48		•
- 46	007.40	46.00	07	27	45	00							renkli, zayıf-çok zayıf		F	100				
╞	SP1-19	46.45	21	31	40	82							ayrışmış		\vdash	_				
- 47													*47.50-50.00 m Çamurtaşı		2-2	N-V	5	26		•
1	SPT-20	47.50		50/7		\vdash					+		zayıf-çok zayıf dayanımlı, çok-		┢					
- 48	GF 1+20	47.57		50//	<u> </u>	\vdash							tamamen ayrışmış		2	2	5	Ģ		
-															2	2		4		-
- 49																7-1	5	98		
										1					-	2	~			
50		-	_		-										t				-	
51													Kuyu Sonu 50,00 m.							
F																				
52																				
F										-										
53																				
54																				
55																				
-																				
- 56																				
ŀ																				
- 57																				
-																				
58													ISIM Name Buket UCA	11	L ütful	lah	KAN	ITA	R	
													IMZA Sign	<u> </u>						
													aldii		_					_

ļ	<u>е[6 </u>	Yeşild	ere Mahal	llesi Konak SONDAJ L	Tünelleri OGU / BO	Temel Araştırma Çalışmaları RING LOG	BČ Di: SC Bo)LGE strict NDA rehole	N J N e	o : lo :	T٤	5K-4	Sayfa No: 1/4
PROIE	ADI / Project N	300	Yeşilde : Ter	ere Mahallesi Ki mel Araştırma Ç	onak Tünelleri Calışmaları		Dri	iller	il	В	ekir	ÇATA	ALKAYA
SOND	AJ YERI/ Boring	Location	: Konak	/IZMIR		YERALTI SUYU / Groundwater	: -						
KİLOM	ETRE / Chainag	e	2.00			MUH.BOR.DER. / Casing Depth	: 15.0	0 m.					
SOND	AJ DER. / Boring	Depth	: 42.001	m		BAŞ.BİT.TAR. / Start Finish Date	: 20/1	1/20	11 - 3	30/1	1/2)11	
SOND/	A J KOTU / Eleva	In Rig & Met	: 90 m.		ARY	KOORDINAT/Coordinate (N-S) y	· 0512	2475					
SOND/		STAND	RTPENETR	RASYON DEN	IEYİ	KOOKDINA I / COORDINALE (E-W) X	<u> </u>		E			αž.	αż
Ø	IN IN	St	andart Penet	tration Test					engt	ering	0cm)	Corel	Core
IN E	BQ B CINS	DARBE SA	/ISI	GRAFIK		JEOTEKNİK TANIMLAMA			WStr	eath	re (3	E La	RJ/S.
J DEI	RA PAG	Numb. of B	ows	Graph		Geotechnical Description			ערורו	N/N	ractu	DLO	(so
SONDA. Boring D	Sample MANEV	0 - 15 cm 15-30 cm	N. 10	20 30	40 50 60		PROFIL	Profile	DAYANIN	AYRIŞMA	KIRIK / FI	KAROT%	KAROT% RQD%
						0,00 - 0,60	0	0			Η	T	+
-						Yapay Dolgu Malzeme		2				10	
- 1							Ľ.	vv	\vdash	_	\vdash	+	+
								VV	=	≣	ъ	8	8
2						0.60 - 30.50 m.	Ľ	v		=		-	
						ANDEZIT	v	vv					
ŀ						dayanımlı, az-orta ayrışmış	Ň	v v	=	≣	ັ	ē	17
- 3						parçalı kırıklı çatlaklı, verev catlaklı, catlak yüzevleri dalgalı	v	vv	\vdash		\square	+	+
						pürüzlü, 2 yönlü eklemli, eklemler	V	v	-	Ę	5	8	
4						45°-60° egimli, eklem aralari kil dolgulu, yer yer FeO alterasyonu	V	٧٧		÷		7	
						gözlenmekte.	V	v	H		\square	+	+
ŀ						*1.80-2.00 m, 10.80-12.50 m,	V	٧V	=	=	ບັ	10	5
_ 5						12.50-13.00 m arası aglomeratik	N N	/ V	\square			$ \rightarrow $	
							V	٧V			-	。	
6						*2,60-2,85 m, 3,00-3,05 m, 3,65- 3.70 m, 5,35-5,45 m, 5,70-5,75	1	VV	=	-	0	9	°
- °						m, 9,30-9,50 m, 10,00-10,50 m,	V	٧٧	\vdash		\vdash	+	+
-						15,40-15,60 m, 15,80-16,00 m,	1	VV	=	=	υ	8	•
7						16,80-16,90 m, 19,00-19,50 m, 20,60,20,75 m, 23,80,23,90 m	V	٧٧				÷	
						arası parçalı kırıklı		/ V		ľ			
÷						1.75-2.05 m. 8.05-8.10 m. 8.20-	V	٧٧	=	⊒	ō	57	9
- 8						8,50 m, 9,50-10,00 m, 17, 10-	N	/ V	\vdash	_	\vdash	+	+
-						çok parçalı kırıklı	Ľ		=	≣	5	28	9
9							, N	vv		=			
							ľ	/v	Π	1		Т	
-							V	vv	=	⊒	Ö	66	•
	IMLILIK / Strep	ath		(RISMA / We	athering	NCE DANELI / Fine Grained	-+	iRi D		Lİ/C	oar	ie Gr	ained
1	DAYANIMU	Strong	1	TAZE	Fresh	N : 0-2 ÇOK YUMUŞAK V.Soft	N	: 0-4	4	ÇOK	GEV	ŞĐ-V	V.Loose
	ORTA DAYANIML	I M.Strong		AZ AYRIŞMIŞ ORTA D. AYR	Slightly W. Mod. Weath.	N : 3-4 YUMUŞAK Soft N : 5-8 ORTAKATI M.Stiff	N	: 5-	-30	GEV	ŞEK A SII		.0050 M.Dense
IV	ZAYIE	Weak	IV	ÇOK AYR.	Slightly W.	N : 9-15 KATI Stiff	N	31	-50	SIKI	CIL	C	Dense
v	ÇÜK ZATIF	V.VVeak		TOMOTLE A.	Comp.weat.	N : >30 SERT Hard	N	: 20	0	ÇÜN	Siru		/.Dense
KA	YA KALITESI TA	ANIMI - RQD	KIRIKL	AR - 30 cm/	Fractures	0RANLAR	Proport	tions	2	PEV	A7		Slightly
% 25-50	ZAYIF	Poor	1-2	ORTA N	loderate (M)	% 5-15 AZ Little		% 5-:	20	AZ	AL	i	.ittle
% 50-75 % 75-90	5 ORTA	Fair Good	2-10	SIK C COK SIKI In	lose (CI) tense (I)	% 15-35 COK Very % 35 > VE And		% 20	-50	ÇOK		1	/ery
% 90-10	0 ÇOKİYİ Standat Brooteri	Excellent	>20	PARÇALI C	rushed (Cr)	LOCUVADAN				KON	ITDA	_	
321	Standart Penetras Standart Penetrat	ion Test	ĸ	Core Sample	751	LOGU YAPAN Logged By				Chec	ked f	3y	
D	Orselenmiş Numu Disturbed sample	ine	P	Pressivometre	Deneyi	ISIM Buket UCA	T	Lü	tfulla	ah k	KAN	TAF	२
UD	Örselenmemiş Nu	imune	VS	Veyn Deneyi	1851	IMZA	+			_			
	Undisturbed Sam	ple	1	Vane Shear T	est	Sign							

	~	7												
e	elo		Yeşil	dere	Ma	hallesi Konak Tünelle	ri Temel Araştırma Çalışmaları	BÖLGE	Ν	lo :			Sa	ayfa lo:
1 -	+	-						SONDA	J	No :	тз	ĸ-∕	1	//4
						SONDAJ LOGU	BORING	SONDÖ	R	: в	ekir	ÇAT	ALKA	AYA
		/Run	STAND	ART	PENE	TRASYON DENEYI			c	ning	(m)	Core	Cor	
(m)	INSI	BOYU	DARBE	SAYI	si	GRAFIK	JEOTEKNÍK TANIMLAMA		IK/Stre	Veathe	ure (30	CR)/T.(CR JS.(
AJ DER	JNE C	NRAI	εε	ε		Graph	Geotechnical Description		NIMLIL	V/ AMS	/Fract	DT%(T	DT%(S)	% 0
SOND/ Boring	NUM	MANE	0 - 15 0	30-45 0	Ν	10 20 30 40 50 60		PROF	DAYA	AYRIS	KRK	KAR	KAR	Rat
				_				vvv		=				
11							Tanımlama sayfa 1/4'de		=	÷		õ		30
Ē.,								٧v	=	Ē	5	8		0
_ 12										=			_	
ŀ								vvv	=	=	ວັ	8		1
_ 13								vvv	\vdash			\square	+	
·								VV	=	II-II	δ	76		0
- 14								vv		_			+	
- 15								VVV	=	⊒	ບັ	2		0
_								vvv		≡	5	2		0
_ 16										=	0	~		-
L.								vv	=	≣	ບັ	76		25
- 17								v v v v v		_			+	
-								VVV	=	≣≟	ວັ	52		0
_ 18								vvv		_			+	
19								v v v v v	=	≣	ບັ	64		0
								٧V		≡	5	ŋ		0
_ 20								VVV	Ĺ	=	0	~		-
Ł								vvv	=	≣	δ	88		0
_ 21								vvv		_			+	_
ł								vvv	=	E-	ბ	6		36
- 22								VV	\vdash	_			+	
- 22								VVV	=		δ	8		20
- 23								VVV				0	\uparrow	
24								vvv	=	=	Ű	10		0
							LOGU YAPAN Logged By			KON Chec	ITRC ked I	By		
							Name Buket UCA	Lü	tfull	ah	KAN	ITA	R	
						:	Sign							

ē	<u>}</u>	<u> </u>	Y	'eşilı	dere	Mal	halle	esi k	(on	ak 1	ſüne	elle	ri Temel Araştırma Çalışmaları	BÖLGE District SONDA	N J L	10 :	TS	K	s 1	ayfa No: 3/4
								so	ND	AJ	LO	GU	BORING	Borehol SONDO Driller	R	R E	ekir	ÇAT	ALK	AYA
-			SI		ART		TRA	SYO	N D	ENE	Yİ				en			N.	Core	
AJ DERINLIĞ Depth (m)	INE CINSI Type	VRA Run	E	DARBE Numb.i	SAYIS of Blow	airre Si Is			GR	AFIK aph			JEOTEKNİK TANIMLAMA Geotechnical Description	e Ti	NIMLI LIK/Str	ŞMA.I	K / Fracture	Г%(TCR)/T.C	T%(SCR)/S.(26
SOND/ Boring	Samp	MANE BOYU	0-15 c	15-30 c	30-45 c	Ν	10	20	30	40	50	60		PRO	DAYA	AYRI	KIRI	KARO'	KARO	RQD
- 25													Tanımlama sayfa 1/4'de	v v v v v v v v	=	Ш	I	100		47
- _ 26															=	=	Ū	100		63
- _ 27															=	=	ū	100		50
- 28															=	=	ბ	100		22
- _ 29															=	=	G	100		61
- - ³⁰																=	-	100		15
- _ ³¹															NI-III	NI-III	c	76		0
- - ³²													30.50-34.50 m. Çok-Tamamen ayrışmış ANDEZİT Kırmızımsı kah∨erenkli,	vvv vv vvv	V-VI	N-N	c	55	_	0
- - ³³													zayıf-çok zayıf dayanımlı, çok - tamamen ayrışmış	v v v v v v v	N-NI	N-NI	cr	70		0
- _ ³⁴													34,50-35,70 m		N-NI	N-NI	cr	100		0
- _ ³⁵													Orta-Çok Ayrışmış Andezitik TÜF Sarımsı beyaz renkli, zayıf dayanımlı, orta-çok ayrışmış	• • • • •	V-VI	∧-∧I /	Ŋ	100		•
- - ³⁶													35.70-41.00 m. ÜST TORTUL SERİ	" " •••	N	N-III)	C	100	_	0
- _ 37													*35,70-36,50 m Kumtaşı Koyu karmızınsı kahverenkli, zayıf- çok zayıf dayanımlı, orta-çok ayrışmış	<u>0000</u>	N-NI	NH-111	cr	100		21
- _ ³⁸													"36,50-36,80 m Çakıltaşı Koyu kırmızımsı kahve renkli, çok ayrışmış, çok zayıf dayanımlı "36,80-37,40 m Silftaşı	0000	2	∧I-III /	c	48		•
39													Açık sanımsı kahverenkli, zayıf dayanımlı, orta-çok ayrışmış 37,40-38,50 m Çakıltaşı Grimsi kahve renkli, karbonatlı		N N	V-III A	r Cr	0 52		0
_ 40													çakıltaşı, zayıf dayanımlı, orta-çok ayrışmış *38,50-41,00 m Kiltaşı Koyu sarımsı gri renkli, zayıf		V N	-IN III-	o o	00 10		0
_ 41													dayanımlı, orta-çok ayrışmış ISIM Buket LICA			l≡ ah l	KAN		R	
													Name Exite Corr, IMZA Sign							_

	0	T												-							
6	elo		Y	eşile	dere	Ma	hall	esi	Kon	ak	Tün	elle	ri Temel Araştırma Çalışmaları	B	BÓLGE	N	lo :			s	ayfa No:
														S	SONDA	JN	10 :	TS	K-	4	4/4
								sc	ONE	AJ	LC	GU	/ BORING	B	orehol SONDŐ	e R	E	Bekir	CAT	ALK	AYA
			ST	AND	ARTI	PEN	ETR/	SYG		ENE	EYİ)riller	th	0	2	φ	eR	
NLIĞI	ISI .			S	standa	art Pe	enetr	ation	Tes	t		_				Stren	atherin	e (30cn	VT.Coi	JS CO	
U DERI	IE CIN	RA	D	ARBE	SAYIS	SI			Gra	oh		_	Geotechnical Description			MLILIK	A / We	racture	%(TCR	6(SCR	
ONDA.	UMUN amp.	ANEV	- 15 cm	6-30 cm	0-45 cm	N									ROF	AYANI	RISM	IRIK / F	AROT	AROT?	0D %
-v a	zω	Σů	•	1	M	┝	10	20	30	40	50	0 60	41,00-42,00 m	+	"		A	X	X	K	œ
- 42													TÜF Koyu sarımsı beyaz renkli, orta zayıf-zayıf dayanımlı, orta-çok ayrışmış	1		N-III	NI-III	ŗ	100		35
													Kuvu Sonu 42.00 m.	Ï							
_ 43																					
_ 44																					
- _ 45																					
-																					
- ⁴⁶										-											-
47																					
-																					
- 48																					
ŀ																					
- 49									-	-										_	-
- 50																					
Ē																					
- 51																					
ŀ																					
- 52										Ħ											
53																					
-																					
_ 54																					-
-																					
- 55																					
_ 56																					
67																					
["																					
_ 58													ISIM								
													Name Buket UCA	+	Lü	Itfull	ah I	KAN	ITA	R	
													Sign								

	<u>e</u> fo	<u> </u>		Ye	şilde	ere N	/lahal	lesi Ko	onak	Tünelle	'i Temo	el Ar	aştırn	na Ça	lışma	ları		BÖLGE District SOND/ Boreho	U I	4o : No :	T٤	SK-	5	ayfa No: 1/3
							S	ONDA	J LC	GU / BC	RING	LOC	3					SONDO	R		Hü	snü '	YILD	IZ
PROJE	E ADI / Pro	ect Nar	ne			3	'eşilder Tem	e Mahalle el Araştır	esi Kor ma Ça	ıak Tünelleri İlşmaları	DELİK	ÇAP	I / Hole	Diame	ter	:	89	9mm-7	4mm	1				
SOND	AJ YERİ/B	oring L	ocatio	on		: Ko	onak/i	ZMİR			YERAI	TIS	UYU/G	round	water	:	8.	50			_	_		
KILOM	ETRE / Ch	ainage Boring [enth			34	1 00 m	1			MUH.E	IT TA	DER./C	Casing of Finis	Depth b Date	:	18	3.00 m. 3/12/20	11 -	11/*	12/2	011		_
SOND	AJ KOTU /	Elevatio	on			: 90) m.				KOOR	DİNA	T/Coo	rdinate	(N-S)	y :	42	252459		1 17	102	011		_
SOND/	A J MAK.&	/ÖNT./	D.Rig	& M	et.	: C	RAEL	ius/R	ROTA	RY	KOOR	DİNA	T / Coo	rdinate	(E-W)	x :	05	512387	-		_		_	
-75		/Bun	5	STAN	DAR	TPE	NETRA	SYON	DENE	EYİ									dt	ing	(m	oreR.	oreR.	
ERINLIĞ	CINSI Pe	BOYU	DA	ARBE	SAYIS	SI SI	enetra	GR/	AFİK		1	JEC	DTEKN	İK TA	NIMLA	AMA			IK/Strer	Veather	ure (30c	R)/T.C(R)/S.C	
SONDAJ DE Boring Dept	NUMUNE Sample Ty	MANEVRA	0 - 15 cm	15-30 cm	30-45 cm	N	10	20 3	30 4	10 50 60		Ge	otecnn	ical D	escrip	tion		PROFIL Profile	DAYANIMUL	AYRIŞMA / V	KIRIK / Fracti	KAROT%(TC	KAROT%(SC	RaD %
1																		200				43		
- _ 2																		000				57		
3												Ya	0,0 apay D)0 - 5, olgu l	00 Malzei	ne		000				56		
4															000				44					
5																000				34				
- 6													5.00-	12.00	m.			vvv vv vvv	=	=	c	66		21
- 7												Kim dayai	AN nizimsi nimli, a	gri re	T enkli, o a ayrış	rta mış,			=	H	Շ	60		28
_ 8									YASS:	8.50 m		çat dal ek	laklı, ça Igalı pü demli, e	atlak y rüzlü, eklemi	üzeyle 2 yön ler 30°	eri Iü		vvv vv	=	H	Շ	61		٥
	• = •				I	-							gimli, e ulu Fe gözler	e Calte mekt	aralar erasyo edir.	04 	•	vv vvv	=		C.	79		-
- 10																		vv vvv vv	=	≡-1	-	100		31
DAYAN	NIMLILIK /	Streng	th	Cheve			AYF	RIŞMA /	Weat	thering		INC		LI/FI	ne Gra	ined		IRI C	DANE	ELI/C	oars	se G	rain	ed
	ORTA DAY ORTA ZAY ZAYIF ÇOK ZAYI	ANIMLI IF		M.Stro M.We Weak V.We	ak ak	=≡≥>	A) O Ç T	Z AYRIŞI RTA D. A OK AYR. JMÜYLE	MIŞ AYR.	Slightly W. Mod. Weath Slightly W. Comp.Weat	N N N N	0-2 3-4 5-8 9-15 16-3 ≥30	YUMU ORTA KATI ÇOK K SERT	şak Şak Katı 'Atı		Soft M.Stiff Stiff V.Stiff Hard		N 5- N 1' N 3'	10 1-30 1-50 50	GEV ORT SIKI ÇOK	(SIK	KI I	V.Lo Loos M.D. Den: V.De	ie ense se inse
KA	YA KALIT	ESI TAI		RQ	D	K	RIKLA	R - 30	cm/F	ractures	0/ E		DEK A	7	ORA	ILAR - F	rop	ortions		DEV	Δ7		Sint	othy
% 0-25 % 25-50 % 50-75 % 75-90 % 90-10	0 ZAYIF 5 ORTA 0 IYI 00 <u>ÇOK</u> İY	AT IP	Poo Fair Goo Exc	oor or od cellent		1 2-1 10 >2	2 01 10 SI -20 Ç 0 Pi	RTA K OK SIKI ARÇALI	Mo Clo Into Cr.	derate (M) ise (CI) inse (I) ished (Cr)	% 5 % 5 % 1 % 3	-15 5-35 5 >	AZ ÇOK VE	4	Littl Ver And	e y j		% 5 % 5- % 20	20 0-50	AZ ÇOM	(Little Very	ШУ
SPT	PT Standart Penetrasyon Testi K Standart Penetration Test O Örselenmis Numune P							Carot Nur Core San	munes nple				LO	GU YAF ogged F	PAN By					KON	ITRO	IL By		
D Orselenmers Numune Disturbed sample UD Orselenmers Numune							F	Pressiyor Pressure /eyn Der	metre E meter nevi	Deneyi Test	ISIM Name IMZA			Buke	et UC/	4		Lü	itfull	ah I	KAN	ITA	R	
~~	UD Örselenmemiş Numune Undisturbed Sample						1	/ane She	ear Tes	st	Sign													

	~	1											
6		1	1	esil	dere	Ma	halle	esi K	опа	ık Tür	nelle	ri Temel Arastırma Calısmaları	Sayfa No:
`	<u>4</u> 2	4.										District	2/3
												Borehole No: TSK-5	
		_						SON	IDA	JLO	GU	BORING SONDOR : Hüsnü YIL	DIZ
_		/Run	ST	ANDA	ART	PENE	TRA	SYON	DEI	NEYİ		Core Son	3
nLlő	NSI	OYL		ADDE	CAVI	CI.		0	RAF	İK			of a
DER epth (I CI	RAE		ANDL	SAII				Grapi	h	_	Geotechnical Description	8
UDAU D D	UMU .	NEV	15 cm	-30 cm	45 cm	Ν						OFIL AYAN AROTARK //	RaD
SOI	Sa	MA	0	15	30		10	20 3	30 4	40 50	60	R S S S S S S S S S S S S S S S S S S S	2
												VVV = 1₹ 5 8	-
11												Tanımlama sayfa 1/3'de	-
											П	V V E B	
- 10									1		ш		8
- 12									Ť		m		+
-												12.00-15.50 m. , , , , , , ≥ 글 ぢ 읒	12
- 13									+			Orta-Çok Ayrışmış ıı	+
F.									-			Grimsi kahve renkli, zayıf $ \ge \frac{2}{2} - \frac{2}{2}$	53
_ 14									1		Ш		+
L.												" " ≥ ≥ _ 8	22
15											Ш		
												15.50-34.00 m.	
16													ľ
-									Ť		Ш	*15.50 - 16.80 Çamurtaşı	
1.7									4			zayıf dayanımlı, çok	•
- ¹													
·												*16.80 - 18.00 m. Kiltaşı Yeşilimsi kahve renkli, zayıf $=$ \geq \geq \geq \leq \otimes	8
- 18												dayanımlı, orta-çok ayrışmış	+
-									Ŧ			<u> </u>	0
- 19								_	4			•••	+
L.									1			*18.00 - 21.65 m. Kumtaşı Kahve renkli, cakıl seviyeli	12
20									t		ш	kumtaşı, zayıf dayanımlı,	
21													1
									Ŧ				
~											Ш	*21.65 - 23.35 m. Çamurtaşı	°
- 22									+		Ħ	çok zayıf dayanımlı, çok	+
F												tamamen ayrışmış	9
_ 23												*23.35 - 24.10 m. Çakıltaşı	+
ŀ												çakıltaşı, orta zayıf -zayıf	•
24													
1												Logged By Checked By	
1												Name BUKELUCA Lütfullah KANTAR	
												Sign	

e	e G		Ye	şilde	ere l	Mah	allesi Konak Tünelle	ri Temel Araştırma Çalışmaları	BÖLGE District SONDA	≡ N AJ I	lo : No :	тя	5K-:	5	ayfa No: 3/3
	1						SONDAJ LOGU	/ BORING	Boreho SONDO Driller	le ÖR	:	Hü	snü `	YILD	IZ
ERİNLİĞİ h (m)	cinsi	BOYU/Run	ST.	ANDA S DARBE Numb.	ART F tanda SAYI: of Blov	PENE art Pei si	TRASYON DENEYI netration Test GRAFIK Graph			LIK/Streng	,	acture.	CR)/T.Cor	CR)/S.Core	
SONDAJ DE Boring Deptl	NUMUNE (MANEVRA	0 - 15 cm	15-30 cm	30-45 cm	N	10 20 30 40 50 6	Geolechnical Description	PROFIL	DAYANIMLI	AYRIŞMA	KIRIK / FI	KAROT%(T	KAROT%(S	RQD %
-								Tanımlama sayfa 2/3'de	 0000	N-VI	N-VI	c	82		0
- _ 1 26										N-VI	N-VI	Ċ	82		0
- _ 27								* 24.10 - 30.90 m. Çamurtaşı Açık kahve renkli, zayıf - çok zayıf dayanımlı, çok tamamen avrışmış		N-VI	V-VI	Ċ	75		0
- _ 28										V-VI	V-VI	Ċ	78		13
- _ 29										N-VI	V-VI	Ċ	84		0
_ _ ¹⁷ 30								<u>*30.90 - 33.20 m. Kumtaşı</u>		V-VI	V-VI	Ċ	100		35
- 31								Kahve renkli, siltli kum, orta zayıf -zayıf dayanımlı, orta- çok ayrışmış	•••	^-∧I ∧	∧-∧I ∧	Ċ	75		45
- _ ³²								33.20 - 34.00 m. Silttaşı Yeşilimsi kahve renkli, zayıf dayanımlı, orta-çok ayrışmış	•••	I-III	I-III >	Ū.	. 67		40
_ ³³									•••	-	-III	ū	. 17		0
- 34										2	=	_	67		0
- _ 35								Kuyu Sonu 34,00 m.							
- _ ³⁶															
- _ 37															
- _ 38															
- _ 39															
40								Isim Name Buket UCA	Lí	itful	lah I	KAN		R	
								IMZA Sign						-	

	-	57															
3	eĮ¢	<u> </u>		Yeşilde	re M	aha	alles	i Kor	nak T	üne	elleri	nel Araştırma Çalışmaları BÖLGE District	No :			S	ayfa No: 1/8
												SONDAJ Borehole	No :	T	sk.	-6	
							SO	NDA	J LO	GU	/ BC	G LOG SONDOR Driller		Beki	ÇAT	TALK	AYA
PROJE		niect N	ame		:	reşild Te	dere N emel /	Araştırı Araştırı	si Kona na Çalı	ak Tü ışmal	nelleri arı	IK CAPI / Hole Diameter 114mm-89	mm/7	4mr	n		
SOND	AJ YERI/	Boring	Locatio	n	: K	onal	k/İZN	٨İR				ALTI SUYU / Groundwater : 23.00 m.					
KILOM	ETRE / C	Chainag	e		$\ f \ \leq 1$							H.BOR.DER. / Casing Depth : 4.50 m.					
SOND	AJ DER.	/Boring	Depth		: 1	13.0	0 m					S.BİT.TAR. / Start Finish Date : 03/12/2011	- 16/	12/2	2011		_
SOND	AJMAK	SYÖNT.	D.Ria	& Met.	: 0	RAF	T. ELÍU	S/R	OTAF	۲Y		DRDINAT/Coordinate (N-S) y : 4202701					_
00110/		5	s	TANDAF	RT PE	NET	RAS	YON	DENE	Yİ			5 0	-	с,	œ.	
<u>e</u>	10	N,		Sta	ndart	Pene	etratio	on Tes	st				reng	00cm	Core	Cor	
(m)	De CIN	BO	DAR	RBE SAY	SI			GRA	FIK			JEOTEKNÍK TANIMLAMA	liv su leath	Dire (RJ/T	RVS	
Dept	INE I I	/RA	-	E		⊢		010	pii			Geotechnical Description	MLIL A /V	ract	%(TC	%(SC	
UD/ UD/	JML	NB	15 CM	30 cn	N							le el	RISN	K/	ROT	SOT	% 0
Sog	Ζö	MA	-0	30		10	0 2	20 3	0 40	0 5	50 60	문문	AVI	KIR	KAS	KAS	RQ
												$\nabla \nabla$		Г			
ŀ.,						ш						0,00 - 1,70 🗸			10(
												Yapay Dolgu Malzeme	+	╋	\vdash		\vdash
ŀ						ш	#			ш		\sim			8		
2												~~~	= =	5	-		10
							Ŧ	Ŧ				VV					
					ш						V V V 1	= =	5	10		14	
- 3					₩	++						+	╋	-			
Ļ					ш			ш	ш		~~~	= =	5	8		33	
4											VV			-			
					Ш	Ŧ	T		П		NYYE	5	Г				
t													= =	Ū	100		10
- 5					H	++					lvv -	+	╋	\vdash			
L						ш	Ħ			ш		vvv.	= =	I_	8		2
6						H						VV	-		-		
F						ш	Ŧ		IIII	ш		~~~		T.			
ŀ												VV S	= =	υ	10		18
- 7						ш						~~~ <u>~</u>	+	╀	\vdash		
L						ш						XX	= =	5	8		-
8													- -	ľ	-		-
						ш	Ħ			ш				\top			
1.00													= =	ö	ģ		•
- 9							-					vvv-	+	⊢	-		
L						ш						Tapimlama caufa 2/8'do	= _	5	8		2
10												VVV	-	ľ	=		-
DAYAN	MIMLILIK	/ Stren	gth			A	YRIŞ	MA /	Weat	herir	ıg	INCE DANELI / Fine Grained IRI DA	NELI/	Coar	se G	rain	ed
1	DAYANI ORTA D	MLI AYANIML	S N	trong AStrong	1		TAZI AZ /	E	IS I	Fresh Slight	NW.	I: 0-2 ÇOKYUMUŞAK V.Soft N: 0-4 I: 3-4 YUMUSAK Soft N: 5-10	Ç0 GE	K GE VSE	VŞE	V.Lo	1050 Se
III	ORTA Z	AYIF	N	1.Weak	III		ORT	AD.A	YR.	Mod.	Weath	I : 5-8 ORTA KATI M.Stiff N : 11-3	0 OR	TAS	KI	M.D	ense
V	COK ZA	ΥIF	V	Weak	V		TÜM	UYLE	A	Comp	www. Weat	I: 16-30 ÇOK KATI V.Stiff N: 31-5	Ç0	u K SIk	J	V.De	se ense
- KA	YAKAL	TECIT	NIM	ROD	-	IP IV	LAP	. 30 -	m / F-	raet	IFRE	A: >30 SERT Hard					_
% 0-25	ÇOK	ZAYIF	V.Pc	or	1	IN IN	SEY	REK	Wid	le (W)	1.62	5 < PEKAZ Slightly % 5 <	PE	K AZ		Sligh	itly
% 25-50 % 50-74	0 ZAYI	F	Poor	r	1-2-	2	ORT	A	Mod	derate	(M)	5-15 AZ Little % 5-20 15-35 COK Verv % 20-5	AZ	к		Little	1
% 75-9	0 IYI		Goo	d	10	-20	ÇOK	SIK	Inter	nse (l)	35 > VE And	- YV				
% 90-10 SPT	UU ÇOK Standart	Penetras	Exce syon Tes	enent ti	>2 K	<u>j</u> U	PAR	CALI ot Num	Crus	shed	(Cr)	LOGU YAPAN	KO	NTR	DL		_
0	Standart	Penetrat	ion Test		P		Cor	re Sam	ple etre D	enevi		Logged By	Che	cked	By	-	_
D Orselenmiş Numune P Pré Disturbed sample Pré UD Örselenmemiş Numune VS Ve							Pre	ssuren	neter T	est		Buket UCA Lütf	ullah	KA	NTA	R	
UD		V	5	Vey Var	m Den ne She	eyi ar Test	t										

	~	a i											
e	lo	1	Yeşildere	Ma	hallesi Konak Tünelle	eri Temel Araştırma Çalışmaları	BÖLGE	Ν	lo :			S	ayfa No:
~	7						District SONDA	J	No :	TS	K-	8	2/8
					SONDAJ LOGU	/ BORING	Borehol SONDÖ	R	: в	ekir	CAT		ΔΥΔ
		'n	STANDART P	ENE	TRASYON DENEY		Driller		0	2	2		
ē	0	YU/R	Standa	rt Pe	netration Test			Stren	atherin	(30cm	уТ.Co)/S.Co	
DERINI Mh (m)	/pe	A BO	DARBE SAYIS	SI	GRAFIK Graph	Geotechnical Description		ILLIN()	V Me	racture	6(TCR	6(SCR	
IDAJ D	MUNI	NEVE	15 cm 30 cm 45 cm	N			0FiL file	YANIN	RIŞMA	RK / F	AROT9	ROT9	sap %
SON	Sar	MA	15-1	Ĩ.	10 20 30 40 50 60		PRo	DA	ΑY	Ж	X	K	
							VVV	∃	=	ა	8		15
- 11							vvv				<u> </u>		
-						1.70 - 113.00 m. ANDEZİT	٧V	Ξ	=	_	8		20
_ 12						Kırmızımsı gri-gri renkli, orta- iyi dayanımlı, az-orta							
-						derecede ayrışmış, yer yer çok ayrışmış, parçalı kırıklı	vvv	=	=	ບັ	<u>1</u> 0		12
_ 13						çatlaklı, vere∨ çatlaklı, çatlak yüzeyleri dalgalı pürüzlü, 2	×~~						
-						yönlü eklemli, eklemler 30°- 90°eğimli, eklem araları kil	٧V	=	=	ò	10		40
_ 14						dolgulu	VVV				_		
-						*1.70-9.00 m arası kırmızımsı-gri renkli, orta	VVV	=	=	δ	10		26
_ 15						dayanımlı, orta-çok ayrışmış	٧V				· ·		<u> </u>
F						*9.00-19.70 m arası gri renkli, orta-ivi davanımlı, az	VVV	=	Ē	Շ	<u>1</u> 0		0
16						ayrışmış	VVV	_					
-						*19.70-24.20 m arası	٧V	⊒	=	Ū	100		54
17						iyi dayanımlı, orta derecede	VVV					_	
-						ayrışmış	VVV	⊒	II-II	້ວ	100		28
_ 18						"2.00-2.05 m, 2.60-2.70 m, 3.70-3.95 m, 6.35-6.65 ,	٧V					_	_
						7.15-7.25 m, 7.90-8.00 m, 8.25-8.30 m, 8.70-9.00 m,		Ξ	II-II	ວັ	100		22
- 19						9.15-9.25 m, 10.95-11.00 m, 18.40-18.50 m, 19.85-20.00	vvv	-	\vdash	\vdash	\square	_	
-						m, 20.40-20.50 m, 23.20- 23.25 m arası parçalı kırıklı	VV	Ξ	II-II	ວັ	100		12
- 20						*3.00-3.20 m, 4.35-4.55 m,	vv	┝	\vdash	\vdash	\vdash		
						12.00-12.10 m, 12.45-12.60 m, 13.90-14.00 m, 15.80-	vvv	=	≡	ΰ	100		42
_ 21						15.90 m, 15.30-16.00 m, 17.53-17.60 m, 18.90-19.00	VV	-			\square	_	-
						m, 20.25-20.40 m arası çok parcalı kırıklı	vv	Ξ	≡	-	100		48
- 22						parşan kirikir	VVV	\vdash				_	-
-							vvv	Ξ	≡.	õ	100		12
23		Δ		• •			VV	-	-			-	-
- 24		4	(ASS: 23.00 m				VVV	Ξ	Ξ	δ	100		10
24		_				LOGU YAPAN Logged By		-	KON	ITRO	L Bv		
						ISIM Buket UCA	Lü	tful	ahl	KAN	ITA	R	
						IMZA Sign							

e	e G		Y	eşi le	dere	Ma	halle	≥si K	(on:	ak 1	ſün	elle	ri T	emel Ara	aştırma Ç	alışmaları	BÓ	LGE	N	lo :			S	ayfa No:
-	-	-															SO	NDA	N N	lo :	TS	K-	6	3/0
								so	ND	AJ	LO	GU	/ B	ORING			SO	NDO	R	: E	ekir	ÇAT	ALK	ΑΥΑ
			ST	TAND	ART	PENE	TRA	SYO	N DI	ENE	Yİ		Г					er	e			5	Ore	
m) m)	ISI		\vdash	DARBE	Standa	art Pe si	netra	tion	GR/	AFIK			1	JE01	EKNİK T	NIMLAMA			H/Stre		cture	NT.C	R)/S.C	
U DER	NE CI Type	Run Run		Numb.)	of Blow	rs	⊢		Gra	aph			1	Geo	technical [Description	_		MIMUL	MA /	< / Fra	%(TO	C%(SC	8
SOND A Boring [NUMU Samp.	MANE	0-15 cm	15-30 cm	30-45 cm	Ν	10	20	30	40	50	60					PROF	Profile	DAYA	AYRIS	KIRI	KAROT	KAROT	RaD
						\vdash							t				V	vv			_	0		
25														Tanım	nlama sayi	a 2/8' de		∨ √∨	Ξ	=	Ö	10		2]
																	V	۷	∃	≡	ъ	0		20
- 26							-										V.	v			H			
F																	V.	v v	Ξ	=	-	100		17
- 27																	v	vv			Η			
28																		v v v	Ξ	=	-	10(15
																	V	V	=	=	Շ	8		30
29														*24. kırmızır	.20-26.00 n sı gri-gri	m arası renkli, orta-	Ň	v	Ē		\sim	-		
-														iyi daya	anımlı, orta ayrışmı	a derecede ş	N'V	v v	Ξ	=	ε	100		83
- 30														*26.0	0-51.40 m	arası gri	Ň	/V V						
31														Terikii, C	orta ayrışı	nış	V.	/v	Ξ	=	C	100		55
Ē																		v v v	Ę.	_	5	8		0
32														*28.05-2 m, 34	28.15 m, 3 .40-34.60	31.30-32.00 m, 35.90-	V.	v			Ť	-		
-														36.00,	parçalı kı	uu m arasi tikli	v	v	Ξ	=	-	100		40
- 33												₩		*24.55-: m ara	24.60 m, 2 sicok par	25.65-25.70 calı kırıklı	N.	/V V	\vdash	Η	Н			
34																•	K'	v	Ξ	=		100		28
																	Ň	v v	=	_	5	8		4
_ 35																	X	V	_		Ŭ	-		
-													1				V	v	Ξ	=	บ	100		27
- 36																	Ň	v	\vdash	\square	Η	\vdash		-
37																	KY	V	코	=	-	100		57
Ĕ													1				Ň	~~	_		-	0		2
38																	X	V VV	Ľ	5	0	10		1
													1				V	v	Ξ	=	_	100		78
- 39																	V	v		Η		H	Η	
40													1				V.V	/ V V	Ξ	=	ŗ	100		27
-													1				V	vv	=	=	Շ	00		0
_ 41													ISIM	И	Devi-	at 110.4	_	V					Ļ	
1													Nan IMZ	ne A	BUK		+			an I	VAN	AIA	ĸ	
													Sign											

e	- 6	<u> </u>	Y	'eşile	dere	Ma	halle	esi I	Kon	ak 1	ſüne	elle	ri Te	mel Araştırı	ma Çalışma	ları	BÖLGE District	N	10 :			s	ayfa No: 4/8
								SC	ONE	AJ	LO	GU	/ BO	RING			Borehol SONDŐ	e R	NO : E	1 S Bekir	CAT	b ALK	AYA
			ST	TAND	ARTI	PENE	TRA	SYC	DN D	ENE	Yİ						Driller	agt	60	Ê	e.	ALK	
RINLIĞİ (m)	INSI		D	ARBE	SAYIS	art Pe	netra	ation	GRAP	i ik				JEOTEKN	İK TANIMLA	MA		IK/Stren	eatherin	re (30c	R JT CC	R)/S.Co	
AJ DE	UNE C	EVRA J/Run	E	Ę	Ę		┝		Grap	on.				Geotechni	ical Descript	ion	ц Н е	NIMLIL	MA / W	/ Fractu	T%(TC	T%(SC	8
SOND Boring	NUMI	MANE	0-150	15-30 (30-45 (Ν	10	20	30	40	50	60					PRO	DAYA	AYRIŞ	KIRIK	KARC	KARO	ROD
														Tanımlama	i sayfa 2/8'd	e		=	=		00		28
42																	vvv				۶		
-																	vvv	Ξ	=	ຽ	100		28
+ ⁴³																	v v v v v		\vdash				
44																	VV	Ξ	=		101		58
-																	vv	=	=	_	00		9/
45																	v v v v v				~		
-														*26.00-51.4	40 m arası g	ri	vvv	፰	Ē	ບັ	100		18
- 40														renkli, orta-iy orta a	i dayanımlı, ayrışmış	az-	vvv		=				
47														*51.40-68	5.00 m arası		VV	Ξ	⊒	Ū	10		0
														dayanımlı, avr	orta dereceo Ismis	a le	٧v	Ξ	Ē	ŗ	100		0
- 48														*42.25-42.30	m, 44.90-45	.00	vvv vv		-		2		
-														m, 45.15-45 45.95 m, 46	5.25 m, 45.7 6.40-46.80 n	D- 1,	VVV	Ξ	Ē	ნ	100		•
- 49														47.15-47.60 m, 49.10-49	m, 48.00-49 9.50 m, 50.0	.00 5-	vvv		_				
50														50.15 m, 50 51.70-52.50	0.60-50.75 n m, 54.40-54 5.40 m 56 0	1, 60 D-		Ξ	=	ŗ	100		0
														56.25 , 57.00- 58.00 m ara:	-57.30 m, 57 si parcali kir	.80- ikli	vvv	=	≡	5	00		9
51														*53.00-53.20	m, 54.80-55	.00	٧V	_	=		F		
-														m arası çok	k parçalı kırık	dı	vvv	፰	Ŧ	ΰ	100		24
- 52																	VV	┝	\vdash	\vdash			
53																	vv	=	=	ŗ	100		10
																	VVV	_	_	5	00		1
- 54																	vvv		_	Ľ	Ł		-
																	VVV	=	=	ŗ	100		0
- 55																	VV	-	\vdash	\vdash			
56																	v v	=	=	ບັ	100		47
F									F									=	=	ų	00		21
- 57																	VVV				5		
-																	vvv	=	=	Ե	100		0
- 58	L	I											ISIM Name	e	Buket UCA		Lü	tfull	ah I	KAN	ITA	R	
													İMZA Sign										

e	- 6	<u> </u>	Ŷ	'eşile	dere	Ma	hall	esi I	Kon	ak 1	Tün	elle	ri Ter	nel Araştırma	Çalışmaları	BÖLGE District	١	10 :			s	ayfa No: 5/8
																SOND/ Boreho	le l	No :	TS	SK-	6	
								SC	NC)AJ	LO	GU	/ BO	RING		SOND(Driller	R	E	ekir	ÇAT	ALK/	AYA
SONDAJ DERINLIĜI Bonng Depth (m)	NUMUNE CINSI Samp. Type	MANEVRA BOYU/Run	0-15cm	ARBE	ART Standa SAYI: 동	N	= TRA enetra	20	Tesi Grap 30	ENE t FIK oh 40	50	60		JEOTEKNIK T Geotechnical	TANIMLAMA Description	PROFIL Profile	DAYANIMLILIK/Strengt	AYRIŞMA / Westhering	KIRIK / Fracture (30cm)	KAROT%(TCR)/T.Core	K.AROT%(SCR)/S.CoreF	RQD %
- - ⁵⁹														Tanımlama s	sayfa 2/8'de		=	=	c	100		•
60																	-	=	r C	100		4
61														*26.00-51.40 n renkli, orta-iyi da orta ayrış	n arası gri ıyanımlı, az- şmış		=	=	c v	00 10		12 24
_ 62 -														*51.40-65.00 kırmızımsı gri r dayanımlı, orta avrısm) m arası renkli, orta a drecede us		=	=	-	66 1		48
- 63 - 64														*65.00-67.00 kırmızımsı gri r orta-zayıf dayanı) m arası enkli, orta- mlı, orta-çok		=	=	-	77		11
65														ayrışm *67.00-90.00 kırmızımsı gri r) m arası renkli, orta		=	=	ŗ	57		0
66														dayanımlı, orta ayrışm	i derecede IIŞ			NI-III	ŗ	52		0
67														58.70-59.30 m, m, 65.00-65.50 67.15 m, 68.10 69.70-70.10 m, 5	59.40-59.75) m, 67.00-)-68.70 m, 71.20-71.40		H	NI-III	ບັ	48		0
68														m, 76.00-76.10 71.40 m arası pa 165.50-67.00 m,	0 m, 71.20- arçalı kırıklı 70.10-70.40		=	≡	ŋ	54		20
- 69														m arası çok pa	rçalı kırıklı		=	=	ŗ	69		17
- - ⁷⁰																	=	=	Ċ	78		19
71																	=	=	ŋ	100		16
72																	=	=	ບັ	100		0
73																	=	=	r	0 100		19
_ 74																		=	٥ ۲	12 74		2 0
_ 75													ISIM Name	Bul	ket UCA) tful	ah I	KAN	NTA	R	-
													IMZA Sign									

	0	1														Déles la se								
e	e lo		Y	eşil	dere	Ma	hall	esi k	(on	ak 1	ſüne	ellei	ri Te	emel Araştırma	Çalışmaları	BÓLGE District	N	10 :			S	ayfa No: 6/8		
		~														SOND/ Boreho	6							
								SO	NC)AJ	LO	GU.	/ B0	ORING		SOND(Driller	R	E	ekir	ÇAT	ALK	AYA		
10	_		SI	rand s	ART	PENE art Pe	netra	SYO ation	N D Tes	ENE t	Yİ						rengt	ering	(ucm)	.Core	.CoreR			
ERINL th (m)	CINS	4.0	D	ARBE	SAYI	SI		0	Grap	FIK ph]	JEOTEKNİK 1 Geotechnical	TANIMLAMA Description		ILIKVSt	Weath	cture (3	ICRUT	SCR)/S			
DAU D	NUNE IP. Ty	U/Ru	E CH	Dcm	2 cm	N.	Γ						1		Decemption	lie ir	ANIML	SMA /	K / Fra	OT%(OT%(S	%0		
8 B B B B	NUN San	MAN	0-1	15-3	8-4	N.	10	20	30	40	50	60				PRO	DAY	AYR	KIRI	KAR	KAR	Rai		
														Tanımlama sa	yfa 2/8'de	vvv vv	=	≡	ŗ	94		32		
- 76																vvv								
													1			VVV	=	≡	ъ	88		•		
- 77																VV	\vdash							
-													}				=	=	ບັ	91		•		
- 78																vvv	H		Η	\vdash		\vdash		
- 70																VV	=	=	ö	20		£		
- ''										t						VV								
80																VVV	=	≡	Ū	10		37		
]	*67.00-90.00	0 m arası	vvv	_	=	5	8		4		
81														kırmızımsı gri dayanımlı, orta	renkli, orta a derecede	vv		-		=		e		
-														ayrışn	nış		=	=	ū	8		39		
82														yer yer sarı renkli, orta-iyi dayanımlı, az avrısmıs	vvv				5					
-														dayanımlı, az	z ayrışmış			≡	υ	100		0		
83														*76.00-76.10 m,	77.00-77.60	vv	\vdash		-					
-														m, 79.70-79.75 m m, 83.70-84.00 m	n arası parçalı	VVV		≡	ບັ	10		•		
- 84														*77 60-77 00 r		vvv	\vdash		H		\square			
- 05														parçalı k	(irikli	VV	=	=	ö	10		49		
- 00																vv								
86								Ħ								VVV	=	≡	õ	<u>5</u>		20		
[vvv	_	=	5	8				
87																	_	=	0	ž		Ŭ		
																V V	=	=	5	8		0		
- 88																VVV				۶				
-																vvv	=	=	ŗ	10		0		
- 89																VV								
-																vv	=	≡	ŋ	100		10		
- 30																vvv					\square			
91																	Ξ	=	ū	10(10		
																VV	=	_	5	8		Ģ		
_ 92													1000.0			V V	-	-	Ŭ	1		4		
									Nam Mar	e Bul	ket UCA	L	itfull	ah	KAN	ITA	R							
													Sign											

e	- 6		Yeşildere Mahallesi Konak Tünelleri Temel Araştırma Çalışmaları											BÖLGE	BÖLGE No : District							
	1													SOND/		10 :	TS	K-	6	.,,,		
1								SC	NE	AJ	LO	GU	/ BORING	SONDO	R	E	Bekir	ÇAT	ALK	ΑΥΑ		
vDAJ DERINLIĞI ng Depth (m)	AUNE CINSI 1p. Type	VEVRA VU/Run	STANDART PENE TRASYON DENEYI Standart Penetration Test DARBE SAYISI GRAFIK Graph 5 5						ON D Tes GRAF Grap	ENE t FIK ph	Yİ		JEOTEKNİK TANIMLAMA Geotechnical Description	OFIL file	ANIMLILIK/Strengt	SMA / Weathering	K / Fracture (30cm)	toT%(TCR)/T.Core	OT%(SCR)/S.ConeR	% 0		
SON	NUN Sarr	MAN BOY	0-16	15-3(30-46	N	10	20	30	40	50	60		PRC	DAY	AYR	KIRI	KAR	KAR	Rac		
- _ 93													Tanımlama sayfa 2/8'de		Ξ	=	-	100		40		
- - ⁹⁴															Ξ	=	ō	100		99		
- - ⁹⁵															Ξ	11-11	່ວ	100		35		
- _ 96															Ξ	=	ō	100		70		
- _ 97													*90.00-93.00 m arası gri renkli, yer yer sarı renkli, orta-iyi		Ξ	II-II	-	100		35		
98													*93.00-113.00 m arası sarımsı-kırmızımsı-gri renkli,	v v v v v	Ξ	=	-	10		32		
- - 99													orta-iyi dayanimli, az-orta ayrışmış *84.00-84.15 m arası parçalı	vvv vv	Ξ	11-11	ບັ	100		43		
- _ 100													kırıklı *88.00-88.10 m, 91.00-91.05 m, 101.95-102.00 m arası çok		Ξ		Ö	100		35		
- - ¹⁰¹										-			parçalı kırıklı		Ξ	=	-	100		18		
102															Ξ	-	ŋ	100		56		
103															Ξ	=	ວັ 	100		10		
- _ 104															Ξ	=	ŗ	100		•		
- 105															Ξ		Ū	100		82		
- _ 106															Ξ	-	ō	100		70		
- _ 107															Ξ		E	0 100		2 79		
_ 108															-	1-11	Ū L	0 10		52		
- 109													ISIM Name Buket UCA		l <u>∃</u> ùtful	l≟ ah I	ю КАМ	₽ NTA	R	20		
									IMZA Sign					_								

e	6		Y	Yeşildere Mahallesi Konak Tünelle										eme	l Araş	tırma		ayfa No: 8/8								
[]	-																			SONDAJ Borehole No : TSK-6						
			-					SC	ND	AJ	LO	GU	/ B	ORIN	١G					SONDC Driller	R	E	lekir	ÇAT	ALK	AYA
ō			ST	FAND S	ART	PENE art Pe	TRA	SYC ation	N D Test	ENE	Yİ										engt	Bung	0cm)	Core	CoreR	
ERINLI h (m)	e e		D	ARBE	SAYI	SI		(Grad	=İK			1	JEOTEKNİK TANIMLAMA				LIKVStr	Veathe	ture (3	CRJT.	CR)/S.				
DAU DI g Dept	UNE P. Typ	EVRA J/Run	Ę	E C	E D						Georechnical Description							e H	NIMLI	MAN	/ Frac	DT%(T	DT%(S	88		
SON	NUM Sam	BOYL	0-15	15-30	30-45	N	10	20	30	40	50	60								PRO	DAYA	AYRIS	KIRIK	KARC	KARC	RaD
														Та	anımlı	ama sa	ayfa 2/8	3'de		VVV	÷	≡	5	8		0
110												Ш								vvv	_	=	Ŭ	5		_
																					፰	≣	ū	8		48
111											 									XX		-		<u>`</u>		
-																				VVV	Ξ	H	-	<u>1</u> 0		79
- 112																				vvv						
-																				VVV	Ξ	Ē	ບັ	1 0		42
113			_	_									_						_	VV		-	Η			\vdash
114														K	uyu S	onu 1	.13,00	m.								
												Ħ														
115													H													
116																										
117																										
-																										
- 118																					_					
-																										
- 119																					\vdash		\vdash	\vdash		\vdash
-																										
+ ¹²⁰																					\vdash		Η	\vdash		\vdash
121																										
F												Ħ														
122																										
F											Ħ		Ē													
123																										
-																							\square			
- 124																					\vdash		Ц	\square		
-																										
- 125																							Η	\vdash		\vdash
-																										
126			L	L	L	<u> </u>						1111	ISIN	M		Bu	uket U0	CA		Lü	tfull	ah I	KAN	ITA	R	<u> </u>
									IMZ	ZA																

ł	Yeşildere Mahallesi Konak Tünelleri Temel Araştırma Çalışmaları SONDAJ LOGU / BORING LOG														BÖLGE No : District SONDAJ No : EK-TSI Borehole SONDÖR Hüsnü YI Driller : Hüsnü YI																	
PROJE SOND/	Yeşildere Mahallesi Konak Tünelleri PROJE ADI / Project Name : Temel Araşırma Çalışmaları SONDAJ YERİ/ Boring Location : Konak/İZMİR											DELİK ÇAPI / Hole Diameter YERALTI SUYU / Groundwater	: 114mm-89mm : 13.17 m.																			
KILOM	ETRE / C	Chainag	е			3.8								MUH.BOR.DER. / Casing Depth	: 15.00 m.																	
SOND	SONDAJDER. / Boring Depth : 60.00 m										BAŞ.BİT.TAR. / Start Finish Date	: 03	3/01/20	12-	07/0)1/2(012															
SOND	ONDAJ KUTU / Elevation : 96.00 m ONDAJ MAK & YÖNT /D. Rig & Met. : CRAELIUS / ROTARY									KOORDINAT / Coordinate (N-S) y	- 51	12335)																			
SONDA	5 STANDART PENETRASYON DENEYI									KOORDINA I / Coordinate (E-W) x		2000	-			N.	2															
a		J.R.	Stan	dart Penetration Test											angth	ring	(cm)	Oref	orel													
RE	SN a	٥ ٨	DA	ARBE	SAYIS	SI GRAFİK								JEOTEKNÍK TANIMLAMA			BS	athe	e (30	ž)/S/(
는 F	П ^Ч	₹	Nu	imb. o	f Blow	vs Graph								Geotechnical Description			CILIK	I We	actur	TOR	Ϋ́ς											
SONDAJ Boring D	NUMUN Sample	MANEVE	0-15 cm	15-30 cm	30-45 cm	N 10 20 30 40 50 6						50	60			PROFIL Profile	DAYANIM	AYRIŞMA	KIRIK / Fr	KAROT%	KAROT%	ROD%										
													ш			00																
ł.																0				ê												
- 1																200	<u> </u>	-		_	_	-										
L																00				8												
2	SPT-1	1.50		50/10				_						•		0				7												
- ~		1.60															00															
ŀ									20				9																			
_ 3		3.00		50/8		50/8		50/8		50/8												0V										
	SPT-2											50/8		50/8		50/8												0.0				
t		3.08				T T																	0	00				39				
- 4										-						0	H	-	\vdash	-		-										
																00				52												
5	SPT-3	4.50	-	50/3						-				0,00 - 10,00		V																
- °		4.53					Ē		TT	Ť		Z	í	Yapay Dolgu Malzeme		00																
-											4					Q				59												
6			Ц							Ť			ш			00																
	SPT-4	6.00	6	7	10	17			4	-						00																
		6.45	\vdash						Ň							V				35												
- 7							 	+	+>	4	-+-	+			1	200	1	-		_	-											
										Ň						00				8												
8							HH			+	Y					Q																
F I							m		T	T						20																
ŀ							HH					N				nr.				4												
- 9		9.00	Ш								4		X			60	\vdash															
	SPT-5	0.02		50/3									H			0				0												
10		9.05														00				2												
DAYAN		/ Stren	gth				A	YRIŞ	MA /	Weat	her	ing		INCE DANELI / Fine Grained		iRin	DANE	LI/C	oars	e G	rain	ed										
E .	DAYANI	MLI AV AD III. II		Strong]	1		TAZE		10	Free	sh	,	N: 0-2 ÇOKYUMUŞAK V.Soft		N : 0-	4	ÇOK	GE	/ŞĐ∙	V.Lo	ose										
II ORTA DAYANIMLI M Strong II AZ AYRI: III ORTA ZAYIF M.Weak III ORTA D. IV ZAYIF Weak IV ÇOKATY V ÇOK ZAYIF V.Weak V TÜMÜYL							A D. A AYR. UYLE	YR. A.	Mod Slig Con	htly Wea htly Wea np.We	/. ath. /. eat.	N : 3-4 TUMUŞAK Soft N : 5-8 ORTA KATI M.Stiff N : 9-15 KATI Stiff N : 16-30 ÇOK KATI V.Stiff N : 240 SERT Hard		N : 1' N : 3' N : >'	1-30 1-50 50	ORT SIKI ÇOK	SIKI	a	Loos M.De Dens V.De	e ense se inse												
KA	KAYA KALITESI TANIMI - RQD KIRIKLAR - 30 cm / Fractures							:	ORANLAR -	ORANLAR - Proportions																						
% 0-25 % 25-50	% U-25 QOK ZAYIF V.Poor 1 SEYREK Wide (W) % 25-50 ZAYIF Poor 1-2 ORTA Moderate (M)								% 5 < PEK AZ Slightly % 5-15 AZ Little	% 5 < PEK AZ Slight % 5-20 AZ Little							tly															
% 50-75	% 50-75 ORTA Fair 2-10 SIK Close (Cl)								% 15-35 ÇOK Very		% 20	0-50	ÇOK	(Very																
% 75-90 % 90-10	0 COK	IYI	Go	od cellent		10	20	ÇOK	ÇALI	Inte Cru	ense Ishe	(I) d (Cr)		% 35 > VE And																		
SPT	Standart	Penetras	syon Te	sti		K		Kar	ot Num	nunesi	I			LOGU YAPAN	KONTROL																	
D	Standart Örselenn	renetrat niş Numu	ion Tes ine	t		Р		Pre	e Sam ssiyom	ple ietre D	Dene	ryi		ISIM Bulkat LICA																		
Disturbed sample						Pressuremeter Test						1		Name BUKELUCA			itiuli	an I	VAI/	ПA	ĸ											
00		VS Veyn Deneyi Vane Shear Test								Sign																						

	~																						
	sh'	1	۲	esil	dere	Ma	hallesi Konak Tünelle	eri Temel Arastırma Calısmaları	BÖLGE	N	10 :			S	ayfa No:								
``	<u>4</u>								District	J.		_	_		2/5								
									Borehol	10:	EK	-15	5K-'	1									
		-					SONDAJ LOGU	/ BORING	Uniter		:	Hü	snü `	YILD	IZ								
-		J/Rui	ST	AND/ St	ART F	PENE	TRASYON DENEYI			eu	ering	(mol)	Core	.Cor									
inLig	ivsi	BOYL	D	ARBE	SAY	SI	GRAFİK	JEOTEKNİK TANIMLAMA		IKVStr	Veath	ure (3	CR)/T	CR J/S									
J DER	NE C Type	/RA		-	-		Graph	Geotechnical Description	L	IIMI	NA /V	Fract	T96(T	T%(S	%								
ONDA oring E	UMU amp.	ANE	- 15 cn	5-30 cm	0-45 cm	N			ROFI	AYAN	VRIŞI	URIK	KARO	ARO	RaD								
ы С	zσ	M	0	÷.	Ø		10 20 30 40 50 60				4	ž	-	-	-								
Ļ									VV	=	≣	5	60		0								
_ 11									vvv	Ц													
									VV	=	⊨	_	02		88								
_ 12									VV														
								10 00 - 60 00 m	vvv		_	2	0		0								
13								ANDEZİT	vvv		=	0	2		-								
	•			-	-	• •	2 COL 2 COL 2 COL 4 COL	renkli,orta-iyi dayanimli, az-orta	×v.		-		-		-								
1.	4		VA 66.	19.17				derecede ayrışmış, parçalı kırıklı çatlaklı, verev çatlaklı,	VVV	Ξ	=	ō	10		0								
F '7		Ч	1,433.	13.1/	<u> </u>			çatlak yüzeyleri dalgalı pürüzlü, 2 yönlü eklemli, eklemler 45°-	vvv	H													
								90°eğimli, eklem araları kil	٧V	Ξ	-	៦	100		35								
- 15								gözlenmekte	VVV	\vdash	⊢	\vdash	\vdash	_									
F.									VVV	Ξ	=	ບັ	100		33								
- 16							·····	*54.00-57.00 m arası eklem aralarında açık vesil alterasyon	٧v	\vdash													
ŀ								yüzeyleri gözlenmekte.	VVV	∃		ō	100		65								
17								* 10,00-11,00 m, 11,40-11,50					-										
ŀ								m, 12,20-12,60 m,13,00-13,30 m, 14,15-14,20 m, 15,15-	VV	⊒	Ē	5	00		22								
_ 18								15,50 m, 19,45-19,50 m, 19,75-19,80 m, 20,00-20,50 m,	vvv		_	_	-										
								21,00-21,55 m, 23,75-24,00 m	VV	=	Ę	E	00		9								
19								arası parçan kirikir	v v	_	=	-	1		æ								
Γ								* 13,85-14,00 m, 14,80-15,00 m, 17,05-17,40 m, 18,00-	vvv		=		0		10								
20								18,05 m, 22,70-22,75 m arası cok parcalı kırıklı	VV	Ξ.	÷	0	10		23								
								3			_	2											
۲. 									VVV	Ξ	⊒	õ	100		45								
- 21									VVV	H					_								
ł.									٧v	Ξ	≣	ວັ	100		0								
- 22									vvv	\vdash		\vdash	\vdash		-								
-									VV.	Ξ	=	ຽ	100		20								
_ 23									VV	\vdash													
ŀ									vvv	Ξ	≣	Շ	100		13								
24									VV			ITDA											
								LOGO TAPAN Logged By			Chec	cked	By										
								Name Buket UCA	LO	tful	lah I	KAN	NTA	R									
								Sign															
	C	1															DÓLOS						
------------------	----------------	------------	--------	-----------	------------------	----------------	----------------	--------------	--------------	-------------	----	------	-------------	------------------------------	-----------------------------	-------------------	----------------------	----------------	---------------	-----------------	--------	--------	--------------------
E	<u> >/o</u>	<u>d</u> –	Y	eşile	dere	Ma	hall	esi H	(on	ak T	ün	elle	ri T	emel Araştı	rma Çalışn	naları	District	Ν	10 :			3	ayia No: 3/5
	•																SONDA Borehol	u l e	10 :	EK	(-те	SK-	1
								so	ND	AJ	LO	GU	/ B	ORING			SONDÖ Driller	R	ŝ	Hü	snü `	YILD	z
			ST	AND. S	ART I tanda	PENE art Pe	ETRA enetra	SYO ation	N DI Test	ENE	Yİ							tren			Cor	S.Core	
ERINLI th (m)	CINS Pe	< -	l I	DARBE	SAYIS of Blow	SI 'S			GRA Gra	AFİK aph				JEOTEK Geotech	NİK TANIMI Inical Descri	LAMA ption		LILIK/S	1	Fracture	TCR)/T	SCR)/S	
IDAJ D	MUNE np. Ty	VEVR.	5 cm	D CM	5 cm	N	Γ						1			I REPROVISION OF	ROFIL offle	Y ANIM	/RIŞM/	GRIK / I	ROT%(ROT%(3D %
SON Bori	San	BOY	0 - 1	15-3	30-4		10	20	30	40	50	60					H H	PA	Æ	×	KAF	KA	Ř
-														Tanıml	ama sayfa 2	2/5'te	VVV	171	11-11	ъ	100		0
- 25																	VVV	_			~		
																	vvv	Ξ	II-II	ö	100		36
- 26							m										VV	-					
27																	VV	1-0	11-11	ບັ	100		53
													1					=	=	<u>ب</u>	õ		4
28																	vvv	2	÷	0	10		2 D
																	VV	÷.	11-1 1	ΰ	100		40
- 29									Ш								vv		-				100,007
-																		Ξ	W-W	ບັ	100		•
- 30									Ш								vvv				-	_	
- 21									Ш					* 24,75-24,9 m, 26,95-27,	95 m, 25,70- 00 m, 27,90	25,75 -28,10	vvv	1	III-II	ບັ	100		31
- "														m, 29,80- 31,00 m,	30,10 m, 30 32,95-33,00	,85- m,			=				
32														34,20-34,45	m, 35,25-35 m, 37,20-37	,45 m, ,40 m,	V V	7	1-11		10		30
														33,00-33,05	m, 39,30-39 m, 33,90-34	1,00 m, 1,00 m	V V V	=	H-	_	00		55
_ 33														*24 95-25	00 m arası	cok	VVV	_	=		1		
-														pare	çalı kırıklı	ýon.	vvv	÷.	8-8	ບັ	100		40
- 34									Ш								VV						
÷																	VV	Ē	ш-н	ບັ	100		30
- 35							m		Ш									-			-		
- 36																	vvv	Ξ.	H-H	ບັ	100		18
- "								m	m								$\gamma\gamma\gamma$		=	2	0		~
- 37																		Ĩ	Ŧ	ō	10		Ę.
																	٧v	=	-H-	5	00		2
_ 38							Ш		Ш		Ш	Ш						_	=	Ŭ	7		2
																	vvv	Ē	H-H	ö	100		36
- 39																	~~~			_		_	
- 40																		Ē	111-11	ບັ	100		•
							m		Ш								٧V	-	=		0		_
- 41																		Ĩ	E		10		3,
							100.00						isiN Nar	/I me	Buket UC	A	Lü	itful	lah	KAN	ITA	R	
													Sig	A n									

	0	1									_						
e	elo		Y	eşil	dere	Mal	nallesi Kon	ak Tünell	ler	i Temel Araştırma Çalışmaları	BÖLGE District	Ν	lo :			S	ayfa No: 4/5
-	1										SONDA Borehol	۲ لہ 9	10 :	EK	-TS	šK-	1
							SOND	AJ LOG	U /	BORING	SONDO Driller	R	_	Hü	snü \	nld	IZ
IQ .	10		SI	rand S	Standa	PENE art Pe	TRASYON D	ENEYI t				Strengt	hering	(30cm)	T.Core	S.CoreR	
DERIN epth (m)	E CIN: Ype	A n	D	ARBE	SAYIS	SI	GRAF Grap	FIK ph		JEOTEKNIK TANIMLAMA Geotechnical Description		MLILIK	/ Weat	racture	6(TCR)/	(SCR)	
Soring D	JUMUN Samp. T	IANEVI OY U/R) - 15 cm	5-30 cm	0-45 cm	N	10 00 00	40 50 6	~		PROFIL	DAYANIN	YRIŞMA	JRIK / F	(AROT%	AROT%	san %
0.11	20	20	0			\vdash	10 20 30	40 50 6		Tanımlama savfa 2/5'te	-		H H	K	-	×	
42									Ħ		vvv	2	1-11	Ū	<u>5</u>		12
									Ħ			14	11510	ۍ	100		13
_ 43													_			_	
44									Ħ		v v v v v	12	8-8	Ċ	100		28
-											VV	11-1	11-11	ŗ	100		33
_ 45									Ħ		vv		-				
46									Ħ			12	11-11	ບັ	100		0
F											vvv vv	ii.	uen.	ū	100		22
- 47										41,00-41,20 m, 42,00-42,10 m, 44,70-44,75 m, 45,00-45,10		-		_		_	
- 48									Ħ	m, 45,90-46,07 m, 48,60-48,85 m, 54,90-55,00 m, 55,95-56,00		iini.	11-11	c	100		82
-										m, 58,55-58,70 m arası parçalı kırıklı	VVV	ii:	11-11	c	100		50
- 49									Ħ		vvv					_	
- 50									Ħ			114	11-11 11-11	C	100		68
-									Η		vv	11-1		CI	100		29
_ 51									Ħ						·~~	_	
- 52												11-	*	E.	100		26
Ē									Ħ			Ē.	н	W	001		100
- 53											vvv vv						
- 54											vvv	111	111-11	Ū	100		80
Ē									Ħ		vvv	7	iij.	5	00		15
_ 55											vvv	_	-	2	-		5
- 56									₽			Ē	11-11	ບັ	100		43
Ę									₽			й÷.	111-11	ū	100		40
57									Ŧ			-	-				
- 58											v v v v v	-	æ	ŗ	100		23
										ISIM Name Buket UCA	LC	itfull	ah I	KAN	JTA	R	
										Sign							

	0	1														BÅL CT						
Ιe	elo		Y	'eşile	dere	Ma	hall	esi	Ко	nak	Ti	ünell	eri	i Temel Araştırma Çalışmaları		BOLGE Dietrict	Ν	10 :			5	No:
1	-	-														SONDA	JN	lo :	EK	(-TS	SK-	•1
								s	ON	DA.	JL	.OGL	J /	BORING		SONDÓ	R		Hü	snü '	YILD	θZ
			ST	TAND	ART	PENE	ETR/	SY	ΌN	DEN	IEY	i	Т			Driller	gt	þ	Ê	ele	reR	Г
(m)	ISI			S	tanda	art Pe	netr	atio	GR.	st AFIK			┥	JEOTEKNİK TANIMLAMA			<td>eatheri</td> <td>e (30a</td> <td>RUT CO</td> <td>s)/S.Co</td> <td></td>	eatheri	e (30a	RUT CO	s)/S.Co	
Depth	NE CI Type	Run	-	ARDE	SATI		⊢		Gr	aph			┥	Geotechnical Description		<u> </u>	ווארורוו	A / We	Fractur	%(TCF	%(SCF	
SOND/ Boring	NUMU Samp.	MANE	0-15 cm	15-30 cm	30-45 cm	Ν	10	2	0 3	04	0	50 60				PROF	DAYAN	AYRIŞN	KIRIK /	KAROT	KAROT	ROD %
														Tanımlama sayfa 2/5'te		vvv						
- 59											+		Ŧ			vvv	_	-	ō	9		26
																VV		-	_	5		80
60											#		t			٧v				-		۳.
-								t			1		t	Kuyu Sonu 60,00 m.								
61							-	ŧ.			+		Ħ				_		┡			⊢
-												Ť	ł									
- 62																	⊢	\vdash	⊢	-	\vdash	⊢
63											+											
- 00							m	T			1		t						\vdash			
64							-	Ŧ			+		ł									
[
65											4		ļ									
-											+		t									
- 66								#	+		4		Ħ				<u> </u>		┡			⊢
-													ł									
- 67								+			-		ł				-		⊢		\vdash	⊢
ŀ													t									
- °°								t	+		1		t						┢			⊢
69								Ħ			Ŧ	-	Ħ									
Γ								H			Ŧ								Γ			
70									Ŧ	Ŧ	Ŧ											
-											+		ł									
- 71											#		t						\vdash			⊢
ł.													t									
- 72								-	+	+	+								\vdash		\vdash	⊢
- 73											Ŧ											
Ē																			\vdash		\square	
74									Ŧ		Ŧ											
-													ł									
75														SIM		1.0	46, -11					L
														Name Buket UCA	-	Lü	Iauli	an	KAN	AIP	ĸ	
													\$	Sign								_

	eſ	3	Yeşi	ldere	e Mah	allesi K	lonak	Tünel	leri	Temel Araştırma Çalışmaları		BÖLGE District	N	lo :			S	ayfa No: 1/6
	-					SOND	AJ L	OGU /	во	RING LOG		SONDA Borehol SONDO	e R	10 : B	Eł	(-T:	SK	-2
┝──					Vaci	Idere Mah	allesi Ko	nak Tûne	llori			Driller		2	OK.	γAI	ALI	
		0 000			: T	emel Araş	știrma Ç	alışmalar			- 1911							
PROJE	E ADI / Pr	oject Na	me	_	Ken	L d Th al C				DELIK ÇAPI / Hole Diameter	1	14mm-8	39m I	m//4	4mn	1		-
SOND	AJ YERI/	Boring L	ocation	_	: Kona		(YERALTI SUYU / Groundwater	1	,60 m.						_
KILOM	EIRE/C	hainage) Denth	-		0				MUH.BOR.DER. / Casing Depth	4.	50 m.	4.4	04/	10	044		-
SOND	AJ DER.	Boring	Depth	_	: 85.0	Jm				BAŞ.BIT.TAR. / Start Finish Date	2	5/01/20	11 -	31/0	J1/2	011		_
SOND	AJROIU	/ Eleval	ion			<u>ELÍUE (</u>	DOT			KOORDINA I / Coordinate (N-S) y		512200						-
SOND	AJ MAK.	£YONT./	D.RIG & ME	L.	DENE	ELIUS/				KOORDINA 17 Coordinate (E-W) x	0.	12209				22	~	
175		'Ru	STAN	DARI	PENE	IRASTO	N DEN	IE 11					dtp	0°u	(iu	oreR	oreR	
3 FIG	in the second se	- F		Stand	an Per	letration	rest						Stret	ther	(300	Ŭ.	S.O	
E S	Ype Ci	8	Numb. of	Blows		G	Graph			Geotechnical Description			-IKV	Nea	bure	CR)	S	
ONDAJ D	UMUNE ample T	ANEVRA	- 15 cm 5-30 cm	0-45 cm	N					Georeennitar Description		ROFIL ofile	VY ANIMUL	RIŞMA //	RIK / Fract	ROT%(T(ROT%(S	9D %
Ω Ω	20	Ň	0 2	30	11	0 20	30	40 50	60			27	D	Ą	KIF	KA	KA	8
•										0,00 - 1,00 Yapay Dolgu Malzeme		000				100		
F*-									╉╍┅	14 1927 17		XX		-				\vdash
L												V V V	_	≡	5	8		
<u>_</u>					-							vv		÷	۲ 0	ĭ₹		Ŭ
- ²												$\vee \vee \vee$	\vdash			H	_	Н
L												VV	_	≡	-	8		N
												VVV		≐		1		-
⊢°									+			VV	\vdash				_	Н
L												VVV	_	≡	-	8		s
[VV	-	÷	0	Ψ		9
⊢ ⁴					- -				╉╍			vvv	\vdash	-			_	-
L												VV		=	-	2		0
[L.Y.	-	÷		Ę		5
- °									╉┿╋			v v v		-			-	-
L												V V		≡	-	2		50
1												$\vee \vee \vee$	=	⊒	0	9		-
- 6												VV				-		
I 1												vvv		=	-	9		
												VV	=	⊒	0	9		50
F^{τ}					- #							VVV		-			_	\square
L										•		VV		=	Ξ.	<u>_</u>		
-		· 🗸 ·			· •						- 1	Ť.	1	-	0	2	-	· 7-
۲°							╋╋╋		╉╋╋			V V V	\vdash	\vdash	\vdash	\vdash	-	\vdash
L		4	ASS: 7.60	n								V V	-	≣	5	8		•
•		5		-	4							VVV		÷		F		-
⊢°												\vee \vee	\vdash			H	-	\vdash
L										Tanımlama caufa 2/6 da		vvv	=	≣	5	8		9
10					-					Tarininana sayia 2/0 da		VV		=	Ĩ	-		
DAYA	NIMLILIK	/ Streng	yth			AYRIŞM/	A / Wea	athering		INCE DANELI / Fine Grained		iri d	ANE	LI/C	oar	se G	rain	ed
1	DAYANIN	/LI	Strong		L	TAZE		Fresh		N : 0-2 ÇOK YUMUŞAK V.Soft		N: 0-	4	ÇOK	GE	VŞEP	V.Lo	lose
н тт	ORTA DA	AY ANIML	M.Stro	ng	11	AZ AYR	IŞMIŞ	Slightly Mod 10	W.	N: 3-4 YUMUŞAK Soft		N: 5- N: 11	10	GEV	ŞEK	ĸı	Loos	50 ense
IV	ZAYIF	1.11	Weak	ars	IV	ÇOK AY	R.	Slightly	W.	N : 9-15 KATI Stiff		N : 31	-50	SIKI	A 90	si	Den	50
V	ÇOK ZAY	ΊF	V.Wea	ik	V	TÜMÜY	LE A.	Comp.	Veat.	N : 16-30 ÇOK KATI V.Stiff		N : >5	50	ÇOK	SIK		V.De	ense
КА	YAKAL	TESİTA	NIMI - ROF	, 	KIRI	LAR - 3	0 cm /	Fracture	es	N: >30 SERT Hard	Prov	ortions	0					-
% 0-25	ÇOK	ZAYIF	V.Poor	\rightarrow	1	SEYRE	K W	/ide (W)		% 5 < PEK AZ Slightly		% 5	<	PEK	AZ		Sligh	ntly
% 25-5	0 ZAYIE		Poor		1-2	ORTA	M	loderate (I	M)	% 5-15 AZ Little		% 5-	20	AZ			Little	
% 75-9	0 IYI	N	Good		10-20	ÇOK SI	KI Inf	tense (I)		% 35 > VE And		70 20	-30	YUR			very	2
% 90-1	00 ÇOK	IYI	Excellent		>20	PARÇA	LI O	rushed (C	x)									
SPT	Standart	Penetras	yon Testi	T	К	Karot N	lumune	SI		LOGU YAPAN				KON	ITRO	L BV		
D	Örselenn	r enetrati niş Numur	ne		P	Pressi	/ometre	Deneyi		ISIM Putrat LICA	_	LA	+611	onec	AAN	JT A	D	\neg
	Disturbed	sample				Pressu	remeter	r Test		Name Bukel OCA			uul	ann	An	AIN	n	
UD	Undistud	emiş Nul bed Samr	nune		VS	Veyn L	Jeneyi Shear Ta	est		Sign								
	- und atulit	-ou Janie	110			vone :	ALCORE 16	not		and the second								

	~													
	s/a	1	Yesile	dere	Ma	hallesi Konak Tünelle	eri Temel Arastırma Calısmaları	BÖLGE	Ν	lo :			S	ayfa No:
5	<u>-1-</u>		4					District	1					2/6
I 1	_							Borehol	e 1	No :	E	(-Т	SK	-2
		_				SONDAJ LOGU	/ BORING	Driller	NK .	: в	lekir	ÇAT	ALK	AYA
~		J/Run	STANDA	RT F	PENE	TRASYON DENEYI			eu	ering	(mo)	Core	Cor	
(m)	insi	BOYL	DARBE	SAYI	SI	GRAFIK	JEOTEKNİK TANIMLAMA		IK/Str	Veath	ure (3	CR)/T	CR J/S	
J DER	NE C Type	/RA I				Graph	Geotechnical Description		NIMLIL	VA /V	Fract	T%(T	T%(S(%
ONDA Dring [UMU amp.	ANE	- 15 cr 5-30 cr	0-45 Cr	Ν			ROFI	AYA	VRIŞ	(IRIK)	KARO	KARO	Rad
ЙĂ	20	×	0 -	62		10 20 30 40 50 60					-	_	1.00	_
ŀ								VV	=	-	ວັ	100		55
- 11							1.00 - 85.00 m	vvv						_
							ANDEZİT	V V	=	≡-	ö	100		0
- 12							renkli, az-orta ayrışmış, orta-	VV	\vdash		\vdash			
ŀ							ıyı dayanımı, çatlak yüzeyleri dalgalı-pürüzlü, parçalı-kırıklı-	vvv	=	≡-	5	100		45
- 13							çatlaklı, 2 yönlü eklemli, eklemler 30°-90°eğimli,	VVV						
ŀ							eklem araları kil dolgulu, FeO alterasyonu	vv	=	≣	×	100		86
- 14								VVV		_				
-							*1.00-5.00 m arası gri renkli,		=	≣	Σ	00		95
15							ayrışmış	V V		_		-		~
L								vvv	=	≣	ō	00		8
16							°5.00-11.00 m arası kırmızımsı kah∨erengimsi gri	VV		-		-		~
L							renkli, orta dayanımlı, orta ayrışmış	VV	=	≡	5	00		22
17								vvv		-	Ľ	۲		
							*11.00-13.00 m arası kabverengimsi-kırmızı, renkli	VV	=	≡	5	8		4
18							orta dayanımlı, orta derecede	V V V		=	Ŭ	٦		
							aynşınış	vvv	=	=	5	8		0
_ 19							*13.00-18.00 m arası	VVV			Ľ	Ε.		
							kirmizimsi kahverengimsi gri renkli, orta-iyi dayanimli, orta	VV	=	=	ō	8		8
20							ayrışmış	vvv			Ŭ	Ŧ		2
L							*18.00-24.50 m arası	VV	=	=		8		2
_ 21							kırmızımsı, kahverengimsi, gri renkli, orta-orta zatıf	VV		_		1		-
							dayanımlı, orta ayrışmış	vvv	_	=	5	8		6
22									_		0	Ę		2
Γ								٧V	_	_	2	0		
23								VVV	_	=	0	10		0
[vvv	_	_	-	0		ç
24								VV	-	=	0	10		5
			-				LOGU YAPAN Logged By			KON	NTRO cked	iL By		
1							ISIM Name Buket UCA	Lü	tful	ah	KAN	ITA	R	
							IMZA Sign							

e	- 6		Y	eşi le	dere	Ma	hallesi Konak Tüneller	ri Temel Araştırma Çalışmaları	BÖLGE District	N	0 :			S	ayfa No: 3/6
2	1								SONDA Borehol	J N e	lo :	EK	(-Т	sK-	2
			1				SONDAJ LOGU	BORING	SONDÖ Driller	R	: В	Bekir	ÇAT	ALK/	۹YA
IĞI			ST	rand S	ART	PENE art Pe	ETRASYON DENEYI			Stren		e	T.Cor	S.Core	
DERINL pth (m)	E CINS ype	¥ H	1	DARBE Numb.	SAYIS of Blow	GI 'S	GRAFİK Graph	JEOTEKNİK TANIMLAMA Geotechnical Description		MLILIK	1 V	Fractui	(TCR)/	(SCR)/	
SONDAJ I Boring De	NUMUN Samp. T	MANEVF BOYU/R	0-15 cm	15-30 cm	30-45 cm	N	10 20 30 40 50 60		PROFIL Profile	DAY ANII	AYRIŞM	KIRIK /	KAROT%	KAROT%	RQD %
-								*24,50-37,00 m arası kırmızımsı kabyerepoimsi ari	v v v v v	I	=	c	100		15
- ²⁵								renkli, orta ayrışmış, orta-iyi dayanımlı		н	Ξ	c	100		76
_ 26 -								*37,00-82,80 m arası kırmızımsı gri renkli, orta-az			Ш	CI	100	_	73
_ 27								aynşınış, ortariyi dayanının					g	_	ọ
_ 28								*1.00-2.10 m, 7.75-8.30 m, 10.65-11.00 m, 11.10-11.25			1		1	_	2
_ 29								m, 12:30-12:30 m, 10:70- 17:00 m, 17:70-17:80 m, 20:60 -20:75 m, 21:85-22:00 m, 26:95-27:00 m, 28:15-28:20		I	=	Ū	10	_	14
- - ³⁰								m, 37.95-38.00 m, 38.95- 39.00 m arası parçalı kırıklı		Ű.	III	C	100		30
- _ 31								*8.30-8.45 m, 18.15-19.00 m, 21.00-21.15 m, 22.00-23.60 m, 24.00-24.45m, 28.80-29.00		=	Ξ	ū	100		99
32								m, 34.93-35.00 m arası çok parçalı kırıklı	v v v v v	=	Ξ	Ū	100		72
33										-	ЭШ.	G	100		73
- 34										П	=	G	100		62
- 35										0	III	cr	100		70
- 36										П	Ξ	CI	100		66
- 37										н	Ш	G	100		85
- 20										=	111-11	C	100		77
- 38 - 30										=	II-II	1	100		49
- 33 - 40										=	111-11	C	100		30
- 41								Tanımlama sayfa 2/6 da		Ξ	111-11	ū	100		72
_ 41			L	1	L	1		ISIM Name Buket UCA IMZA	Lü	tfull	ah I	KAN	ITA	२	
								Sign							

e	G		Y	'eşilı	dere	Ma	hall	esi l	Kon	iak 1	Tün	elle	ri Temel Araştırma Çalışmaları		BÖLGE	N	0 :			s	ayfa No:
1 3	7-													-	SONDA Boreboli	J N	10 :	EK	(-T)	SK	4/6 -2
								sc	ONE)AJ	LO	GU	/ BORING		SONDŐ Driller	R	E	Bekir	ÇAT	ALK.	ΑΥΑ
NNDAJ DERINLIĞI ning Depth (m)	JMUNE CİNSİ tmp. Type	ANEVRA DYU/Run	15 cm U	ARBE	ART SAYI: 동AYI: 동	PENE art Pe SI	ETRA	SYC ation	ON D Tes GRAF Grap	ENE t FIK ph	Yİ		JEOTEKNİK TANIMLAMA Geotechnical Description		ROFIL ofile	AY ANIMLILIK / Strengt	RIŞMA / Weathering	RK / Fracture (30cm)	AROT%(TCR)/T.Core	ROT%(SCR)/S.CoreR	% DC
- -	Ξö	M/ BC	-0	15	8		10	20	30	40	50	60	Tanımlama sayfa 2/6'da			II D	H-III ΑΥ	Cr KII	100 KV	K/	35 R(
- ⁴²														,	vvv vv	I	1 11-1	c	00		49
_ 43 -																		د ت	00 1		9
_ 44															v v v v v v v	1	II II:	-	1 1		2 2
_ 45 -															vvv vv vv		-111 111-	M	00 11		1 65
_ 46													*41.00-41.06 m, 41.30-41.40 m, 41.65-41.75 m, 42.00- 42.22 m, 43.30-43.35 m		v v v v v	_		-	00 1		0
_ 47													44.80-44.85 m, 46.30-47.35 m, 49.90-50.00 m, 50.13- 50.40 m, 51.50-51.63 m,		V V V V V V V		i II	r ,	1 1		5
48													51.87- 52.00 m, 52.20-52.25 m, 52.93-53.00 m, 53.55- 54.20 m, 54.30-54.70 m, 54.90-55.00 m, 55.90-56.00			_	-11 11-	0	0 10		1
- _ 49													m, 57.65- 57.70 m arası parçalı kırıklı			=		_	0 10		57
- - ⁵⁰													* 43.70-43.75 m, 51.63-51.87 m arası çok parçalı kırıklı	8	v v v v v v v	=	0-0	ΰ	10		26
- _ 51														5	v v v v v v v v	Ξ	III-II	IJ	100		40
- _ ⁵²															/ V V V V	Π	111-11	ç	100		23
- _ 53															<pre>>>> >>> >>></pre>	=	III-II	ŗ	100		19
- _ ⁵⁴															V V / V V	I	III-II	ŗ	100		33
- _ ⁵⁵															v v v v v v	-	III-II	ŗ	100		0
- _ 56														Į	/ V V V V / V V	=	111-11	-	100		20
- _ 57															v v / v v	=	III-1I	ū	100		26
- _ 58													ISIM			I	III-II	_	100		٥
													Name Buket UCA		Lü	tfull	ah I	KAN	ATI	R	

	-																BÖLGE	- N	lo :			S	ayfa No:
	٦Ľ	1	Ye	şilde	ere l	Mah	alles	і Ко	na	ak T	üne	elle	ri Te	emel Araşt	tırma Çalı	şmaları	District	A.I					5/6
	70	<u>11</u>															Boreho	le	No :	Ek	(-T	SK	-2
	•						S	SON	D/	λ) L	-00	GU	/ BC	ORING			SOND0 Driller	ĴR	: В	lekir	ÇAT	ALK/	۹YA
Ğ		J/Run	ST	AND/ S [:]	ART F tanda	PENE art Pe	TRAS	YON	I DI est	ENE	Yİ							ength	ering)cm)	CoreR	CoreR.	
n (m)	insi	воү	D.	ARBE	E SAYI	SI		GF	RAF	İK h			l	JEOTEK		LAMA		.IK/Sti	Veath	ure (3	CR)/T.	CR)/S	
A DE Dept	NE O	VRA	ε	E	ε			0	ap					Geotech	nical Desci	ription		1 IMLIL	/ M	Fract	Т%(ТС	۲%(SC	,o
SOND	IUMU	IANE) - 15 c	5-30 c	0-45 c	Ν	10	<u> </u>	~~	40	50	00					ROF	AYA	YRIŞI	(IRIK)	(ARO)	(ARO	ROD %
	~	~				-			30 	40	50	60					VVV		<	x	_	-	_
-														Tanıml	ama sayfa	2/6' da	$\vee \vee$	=	÷	-	100		12
_ ⁵⁹													ł										
-													Ì					=	≡-	ŗ	100		13
_ 60																	$\vee \vee$						
_																	$\vee \vee \vee$	=	Ē	ŗ	100		44
_ 61																					Ì		
																		_	≓	_	00		n
62																	v v v		=		1		9
																	$\vee \vee$	_		Ľ.	6		6
63													ł				VVV	-	i ≐	0	9		4
													ł						≡		7		0
- 64																	\vee \vee	=	±	-	7		46
- 04														*58.95-59.0)5 m. 59.6	8- 59.75	$\vee \vee \vee$		_				
-														m, 60.00	-60.10 m, 0	62.85-	V V	=	⊒	Ċ	57		49
_ 65														66.65-67.0	, 04.00-04. 00 m, 68.6	0-69.20							
-														m, 69.60 72.20 m, 72	-69.80 m, 2.50-73.60	m arası	v v v	=	=	ō	52		37
_ 66														ра	ırçalı kırıklı		$\vee \vee$						
-																		=	II-II	ŗ	48		0
_ 67													ł				v v v						
-																	$\vee \vee$	=	≕	_	54		43
_ 68																	$\vee \vee \vee$						
_																		=	Ē	ŗ	69		51
69																	\vee \vee						
																	$\vee \vee \vee$	=	≓	ъ	78		42
70																	\vee \vee		=	0	14		7
																		_	≓	V	00		4
71									_								v v v		=	4	1(8
_													l				$\vee \vee$		=		0		
-																	$\vee \vee \vee$	=	≟	Ö	10(60
_ 12																			=		•		
72							┢┿┿╋						ł				v v	=	≣	ŗ	100		19
- '3							╞┿┿╋					Ħ							=				
- •													ł					=	≟	ŗ	70		15
- ' -													ł				V V		=				
-							┢╫╫					₩					VVV	=	Ē	Μ	92		99
_75					<u> </u>	I				1111		Ш	ISIM		Buket I I	CA) jtful	l lah∣	KAN	JTA	R	
													Name IMZA	e	20.000								
													Sign										

	C	T															1	BÔLGE	h	10.1			S	ayfa
6	<u> </u>	<u>1</u>	Y	eşile	dere	Ma	hall	esi l	Kon	ak	Tün	elle	eri T	emel Araş	tırma Ç	alışmaları		District		10.				No: 6/6
	•																	SONDA Borehol	6 N	10 :	EK	(-Т	SK	-2
								SC	DNE	AJ	LC	GU	/ B	ORING				SONDÖ Driller	R	E	Bekir	ÇAT	ALK	AYA
-			ST	rand S	ART	PENE art Pe	ETRA	SYC	DN D Tes	DENE t	Yİ		Γ						engt	aring	Dcm)	Core	CoreR	
n (m)	cinsi		D	ARBE	SAYI	SI	Γ	(GRA	FIK			1	JEOTE		NIMLAMA			LIK/Str	Veathe	ture (3)	CR)/T.	CR/NS.	
DAJ DE	ONE O	EVRA J/Run	5	e.	e.		⊢		010				1	Geote	chnicai L	escription		e Fi	NIMLI	MA //	/ Fract	T%(T	T%(S(88
SONE	NUM	BOYL	0-15	15-30	30-45	Ν	10	20	30	40	50	60						PRO	DAYA	AYRIŞ	KIRIK	KARC	KARC	RaD
						\square								Tanımla	ama sayf	a 2/6'da		VVV		=	_	4		2
76													ł						=	⊒	0	6		÷
														*82,8	0-85,00	m arası		v٧	_	≡	5	8		4
77														kahve renkli, o	rengims rta daya	si-kırmızı ınımlı, orta				=	Ő	8		5
														dere	ecede ay	rışmış		vvv	=	=	ö	1		0
_ 78																		VV		=				
-														*75.50	-76.00 r	n, 77.50-		VV	=	≡	5	20		22
- 79														82.00-82	2.60 m a	rası parçalı		vvv		=				
-															kirikli				=	H	ō	100		09
- 80												+	1	*76.00	⊢76.55 r	n. 78.00-		٧V	⊢					
-														78.50 i	n, 81.50	-82.00 m		VVV	=	≣	σ	100		20
- 81														arasi	çok parç			vvv	\vdash	⊢	\vdash		\square	-
-																		٧V	=	≣	ບັ	100		14
- 82																			\vdash	⊢	\vdash	_		-
ŀ																		vvv	=	=	5	100		27
- 83									†	1		t						VV	\vdash	⊢	\vdash		\square	
,																			=	≡	ບັ	100		26
- 04										t								vvv	H	F				
- 85																			=	≡	ö	100		40
- 05		_												Kunar	Sonu 95	00 m	-	_				_		_
86													1	Ruyu	50110 85	,00 11.								
													1											
87																								
										H			8											
88																								
89																								
-																								
90										†									\vdash				\square	_
-													H											
- ⁹¹																			\vdash	\vdash	\vdash		Η	
-																								
92			I	L	L	I	1111					uu	ISIN	vi me	Buke	t UCA		Lü	itfull	lah I	KAN	JTA	R	
													IMZ Sig	ZA. n										

				TSF	K-1				
								Sayfa I	No.1/2
								Page N	lo. 1/2
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
1	1.50	1.60	SPT		11	14.50	15.00	0	66
2	3.00	3.45	SPT		12	15.00	16.00	10	63
3	4.50	4.55	SPT		13	16.00	17.00	0	68
4	6.00	6.02	SPT		14	17.00	18.00	0	70
5	7.50	7.53	SPT		15	18.00	19.00	0	50
6	9.00	9.45	SPT		16	19.00	20.00	0	68
7	10.50	10.57	SPT		17	20.00	21.00	0	82
8	10.57	12.00	0	48	18	21.00	22.00	0	45
9	12.00	13.00	0	82	19	22.00	23.00	0	55
10	13.00	14.50	11	45					

-	-		
		ĸ	_ 1
- 64	D	17	-1

Sayfa No.2/2

Page No. 2/2

MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
20	23.00	24.00	0	33	29	32.00	33.00	12	70
21	24.00	25.00	0	44	30	33.00	34.00	60	93
22	25.00	26.00	0	43	31	34.00	35.00	0	77
23	26.00	27.00	0	43	32	35.00	36.00	10	61
24	27.00	28.00	0	40	33	36.00	37.00	16	67
25	28.00	29.00	0	69	34	37.00	38.00	37	70
26	29.00	30.00	0	32	35	38.00	39.00	38	76
27	30.00	31.00	0	50	36	39.00	40.00	10	88
28	31.00	32.00	10	50					

·				Т	SK-2					
								Sayfa No.1/5		
								Page N	o. 1/5	
MANEVRA CORE RUN	DERİNI DEPT	DERİNLİK (m) DEPTH (m)		KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) `H (m)	RQD (%)	KAROT (%) CORE REC.	
1	1.50	1.95	SPT		8	11.00	12.00	0	67	
2	3.00	3.45	SPT		9	12.00	13.00	21	94	
3	4.50	4.60	SPT		10	13.00	14.00	0	35	
4	6.00	6.06	SPT		11	14.00	14.50	24	92	
5	8.00	9.00	0	43	12	14.50	15.00	20	100	
6	9.00	10.00	0	42	13	15.00	16.00	0	72	
7	10.00	11.00	11	56						

				Т	SK-2				
					Sayfa No.2/5				
								Page No	b. 2/5
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.
14	16.00	17.00	0	100	20	22.00	23.00	40	84
15	17.00	18.00	34	100	21	23.00	24.00	0	63
16	18.00	19.00	0	100	22	24.00	25.00	12	59
17	19.00	20.00	0	100	23	25.00	26.00	0	73
18	20.00	21.00	10	100	24	26.00	27.00	0	70
19	21.00	22.00	0	55	25	27.00	28.00	0	100

				Т	SK-2				
								Sayfa N	10.3/5
								Page N	0. 3/5
MANEVRA CORE RUN	DERİNI DEPT	DERİNLİK (m) DEPTH (m)		QD %) KAROT MANEVRA (%) CORE (%) CORE RUN CORE RUN		LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	
26	28.00	29.00	0	60	33	35.00	36.00	18	53
27	29.00	30.00	0	54	34	36.00	37.00	0	61
28	30.00	31.00	0	55	35	37.00	38.00	21	69
29	31.00	32.00	14	70	36	38.00	40.00	62	100
30	32.00	33.00	0	85	37	40.00	41.00	0	66
31	33.00	34.00	0	60	38	41.00	42.00	0	46
32	34.00	35.00	29	66	39	42.00	43.00	0	65

				Т	SK-2						
								Sayfa No.4/5			
								Page No	b. 4/5		
MANEVRA CORE RUN	DERİNI DEPT	DERİNLİK (m) DEPTH (m)		KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.		
40	43.00	44.00	13	52	46	50.00	51.00	0	62		
41	44.00	45.00	0	48	47	51.00	52.00	0	100		
42	45.00	46.00	12	65	48	52.00	53.00	0	100		
43	46.00	47.50	0	73	49	53.00	54.00	0	100		
44	47.50	49.00	0	59	50	54.00	55.00	0	100		
45	49.00	50.00	0	77	51	55.00	56.00	0	100		

				Т	SK-2				
			Sayfa No.5/5						
								Page No	o. 5/5
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
52	56.00	57.00	0	100	54	58.00	59.00	0	100
53	57.00	58.00	0	100	55	59.00	60.00	0	100

TSK-3

Sayfa No.1/2

Page No. 1/2

		T							
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) core rec.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) core rec.
1	1.50	1.55	SPT		12	17.00	18.00		42
2	3.00	3.43	SPT		13	18.00	19.00	-	53
3	4.50	4.55	SPT		14	19.00	20.00		85
4	6.00	6.60	SPT		15	20.00	21.50	37	87
5	7.50	7.57	SPT		16	21.50	23.20	0	65
6	9.00	9.05	SPT		17	23.20	24.50	24	92
7	10.50	10.60	SPT		18	24.50	25.20	45	86
8	12.00	12.45	SPT		19	25.20	26.60	11	60
9	13.50	13.95	SPT		20	26.60	28.00	26	69
10	15.00	15.45	SPT		21	28.00	30.50	20	72
11	16.50	6.50 17.00							

				Т	SK-3				
							Sayfa No.2/2		
								Page N	0. 2/2
MANEVRA CORE RUN	DERİNI DEPT	DERİNLİK (m) DEPTH (m)		RQD (%) KAROT (%) CORE REC		DERİN DEPT	DERİNLİK (m) DEPTH (m)		KAROT (%) core rec.
22	30.50	31.00	0	60	31	40.13	41.00	0	23
23	31.00	32.00	0	30	32	40.50	40.60	SPT	
24	32.00	33.00	0	26	33	43.00	43.45	SPT	
25	33.00	34.00	0	46	34	44.50	44.95	SPT	
26	34.00	35.00	0	58	35	46.00	46.45	SPT	
27	35.00	35.45	SPT		36	47.50	47.57	SPT	
28	36.50	36.60	SPT		37	47.57	48.50	0	46
29	38.00	38.06	SPT		38	48.50	50.00	0	36
30	40.00	40.13	SPT						

				Т	SK-4			Sayfa N Page N	No.1/4 o. 1/4
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
1	1.00	2.00	30	100	6	6.00	7.00	0	100
2	2.00	3.00	17	100	7	7.00	8.00	10	57
3	3.00	4.00	0	100	8	8.00	9.00	10	78
4	4.00	5.00	13	100	9	9.00	10.00	0	56
5	5.00	6.00	0	100					

				T	SK-4						
								Sayfa No.2/4			
								Page N	0. 2/4		
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN DEPTH (m)		LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.		
10	10.00	11.00	30	80	17	17.00	18.00	0	52		
11	11.00	12.00	0	95	18	18.00	19.00	0	49		
12	12.00	13.00	11	80	19	19.00	20.00	0	79		
13	13.00	14.00	0	76	20	20.00	21.00	0	98		
14	14.00	15.00	0	70	21	21.00	22.00	36	90		
15	15.00	16.00	10	72	22	22.00	23.00	20	84		
16	16.00	17.00	25	76							

				Γ	`SK-4							
									Sayfa No.3/4			
	Page No. 3/4											
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) Ĥ (m)	RQD (%)	KAROT (%) CORE REC.			
23	23.00	24.00	0	100	29	29.00	30.00	15	100			
24	24.00	25.00	47	100	30	30.00	31.00	0	76			
25	25.00	26.00	63	100	31	31.00	32.00	0	55			
26	26.00	27.00	50	100	32	32.00	33.00	0	70			
27	27.00	28.00	22	100	33	33.00	34.00	0	100			
28	28.00	29.00	61	100								

Temel Araştırma Çalışmaları	
Sondaj No : TSK - 4	
Sandık No : 8/8	
Derinlik : 40,00 - 42,00 m	
··· T5K-4 5.N.8	···· 8
	and a
	ower th

TSK-4 Sayfa No.4/4											
								Page N	o. 4/4		
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m) RQD (%) KAROT (%) CORE RUN CORE REC.				LİK (m) Ĥ (m)	RQD (%)	KAROT (%) CORE REC.				
34	34.00	35.00	0	100	38	38.00	39.00	0	52		
35	35.00	36.00	0	100	39	39.00	40.00	0	100		
36	36.00	37.00	21	100	40	40.00	41.00	0	100		
37	37.00	38.00	0	48	41	41.00	42.00	35	100		

				TSK	-5				
								Sayfa N	lo.1/3
								Page No	o. 1/3
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) `H (m)	RQD (%)	KAROT (%) CORE REC.
1	0.00	1.00	-	43	8	7.00	8.00	0	61
2	1.00	2.00	-	57	9	8.00	9.00	0	79
3	2.00	3.00	-	56	10	9.00	10.00	31	100
4	3.00	4.00	÷	44	11	10.00	11.00	11	100
5	4.00	5.00	-	34	12	11.00	12.00	20	100
6	5.00	6.00	21	66	13	12.00	13.00	72	100
7	6.00	7.00	28	60	14	13.00	14.00	53	100

				TSK	-5				
								Sayfa N	0.2/3
								Page N	0. 2/3
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
15	14.00	15.00	35	100	20	19.00	20.00	0	100
16	15.00	16.00	0	100	21	20.00	21.00	0	100
17	16.00	17.00	0	100	22	21.00	22.00	0	100
18	17.00	18.00	35	100	23	22.00	23.00	0	100
19	18.00	19.00	0	100	24	23.00	24.00	0	100

				TSK	-5				
								Sayfa N	0.3/3
								Page No	o. 3/3
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
25	24.00	25.00	0	82	30	29.00	30.00	0	100
26	25.00	26.00	0	82	31	30.00	31.00	0	75
27	26.00	27.00	0	75	32	31.00	32.00	0	97
28	27.00	28.00	0	78	33	32.00	33.00	0	77
29	28.00	29.00	0	84	34	33.00	34.00	0	67

				TSF	K-6								
	Sayfa No.1/13												
			Page No. 1/13										
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) core rec.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.				
1	0.00	1.00	-	-	5	4.00	5.00	10	100				
2	1.00	6.00	70	100									
3	2.00	7.00	18	100									
4	3.00	4.00	33	100	8	7.00	8.00	11	100				

				Т	'SK-6				
								Sayfa N	lo.2/13
								Page N	o. 2/13
MANEVRA CORE RUN	DERİNI DEPT	∠İK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
9	8.00	9.00	0	100	13	12.00	13.00	12	100
10	9.00	10.00	12	100	14	13.00	14.00	40	100
11	10.00	11.00	15	100	15	14.00	15.00	26	100
12	11.00	12.00	20	100	16	15.00	16.00	0	100

				Т	'SK-6				
								Sayfa N	0.3/13
		Page N	D. 3/13						
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
17	16.00	17.00	54	100	21	20.00	21.00	42	100
18	17.00	18.00	28	100	22	21.00	22.00	48	100
19	18.00	19.00	22	100	23	22.00	23.00	12	100
20	19.00	20.00	12	100	24	23.00	24.00	10	100

				T	SK-6				
								Sayfa N	lo.4/13
								Page N	0. 4/13
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
25	24.00	25.00	27	100	29	28.00	29.00	30	100
26	25.00	26.00	20	100	30	29.00	30.00	83	100
27	26.00	27.00	17	100	31	30.00	31.00	55	100
28	27.00	28.00	15	100	32	31.00	32.00	0	100

				Т	'SK-6				
								Sayfa N	0.5/13
								Page N	b. 5/13
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
33	32.00	33.00	40	100	37	36.00	37.00	57	100
34	33.00	34.00	28	100	38	37.00	38.00	12	100
35	34.00	35.00	24	100	39	38.00	39.00	78	100
36	35.00	36.00	27	100	40	39.00	40.00	27	100

				TSK	-6			Sayfa N	0.6/13
								Page No	o. 6/13
MANEVRA CORE RUN	MANEVRA CORE RUN DEPTH (m) (%)				MANEVRA CORE RUN	DERİN DEPT	LİK (m) Ĥ (m)	RQD (%)	KAROT (%) CORE REC.
41	40.00	41.00	0	100	45	44.00	45.00	76	100
42	41.00	42.00	28	100	46	45.00	46.00	18	100
43	42.00	43.00	28	100	47	46.00	47.00	0	100
44	43.00	44.00	58	100	48	47.00	48.00	0	100

				TSK	-6				
								Sayfa N	No.7/13
								Page N	0. 7/13
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) `H (m)	RQD (%)	KAROT (%) CORE REC.
49	48.00	49.00	0	100	53	52.00	53.00	10	100
50	49.00	50.00	0	100	54	53.00	54.00	17	100
51	50.00	51.00	10	100	55	54.00	55.00	0	100
52	51.00	52.00	24	100	56	55.00	56.00	47	100

				TSK	-6				
								Sayfa N	0.8/13
								Page No	o. 8/13
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) `H (m)	RQD (%)	KAROT (%) CORE REC.
57	56.00	57.00	21	100	63	62.00	63.00	48	100
58	57.00	58.00	0	100	64	63.00	64.00	11	77
59	58.00	59.00	0	100	65	64.00	65.00	0	57
60	59.00	60.00	0	100	66	65.00	66.00	0	52
61	60.00	61.00	24	100	67	66.00	67.00	0	48
62	61.00	62.00	12	100					

				TSK	-6				
								Sayfa N	lo.9/13
								Page N	o. 9/13
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) Ĥ (m)	RQD (%)	KAROT (%) CORE REC.
68	67.00	68.00	20	54	74	73.00	74.00	0	70
69	68.00	69.00	17	69	75	74.00	75.00	12	92
70	69.00	70.00	19	78	76	75.00	76.00	32	94
71	70.00	71.00	16	100	77	76.00	77.00	0	88
72	71.00	72.00	0	100	78	77.00	78.00	0	91
73	72.00	73.00	19	100	79	78.00	79.00	11	70

TSK-6 Sayfa No.10/13 Page No. 10/13										
80	79.00	80.00	37	100	85	84.00	85.00	49	100	
81	80.00	81.00	34	100	86	85.00	86.00	20	100	
82	81.00	82.00	39	100	87	86.00	87.00	0	100	
83	82.00	83.00	0	100	88	87.00	88.00	0	100	
84	83.00	84.00	0	100	89	88.00	89.00	0	100	

TSK-6											
									Sayfa No.11/13		
Page No. 11/13											
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.		
90	89.00	90.00	10	100	95	94.00	95.00	35	100		
91	90.00	91.00	10	100	96	95.00	96.00	70	100		
92	91.00	92.00	46	100	97	96.00	97.00	35	100		
93	92.00	93.00	40	100	98	97.00	98.00	32	100		
94	93.00	94.00	66	100	99	98.00	99.00	43	100		

Proje Adı :	Yeşildere Mahallesi Konak Tünelleri Temel Araştırma Çalışmaları
Sondaj No :	TSK - 6
Sandık No :	24/25
. Derinlik :	104,00 - 109,00 m
Take	6
A CONTRACTOR CONTRACTOR	
· maile second and	
· And a state of the state of t	
· Construction of the second	
Supervised and the supervised of the supervised	the second second second second second second second second second second second second second second second se

				TSK	-6					
								Page No	b. 12/13	
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) core rec.	
100	99.00	100.00	35	100	105	104.00	105.00	82	100	
101	100.00	101.00	18	100	106	105.00	106.00	70	100	
102	101.00	102.00	56	100	107	106.00	107.00	79	100	
103	102.00	103.00	10	100	108	107.00	108.00	52	100	
104	103.00	104.00	0	100	109	108.00	109.00	70	100	

Proje Adı :	Yeşildere Mahallesi Konak Tünelleri Temel Araştırma Çalışmaları
Sondaj No :	TSK - 6
Sandık No:	25/25
Derinlik :	109,00 - 113,00 m
Swotzs TSK-	
· Constant of the state	And the second s
. Harrison	
	A REAL PROPERTY OF THE REAL PR
And particular	

TSK-6										
		Sayfa No.13/13								
								Page No	o. 13/13	
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) Ĥ (m)	RQD (%)	KAROT (%) CORE REC.	
110	109.00	110.00	10	100	112	111.00	112.00	79	100	
111	110	111.00	48	100	113	112.00	113.00	42	100	

				Sayfa No.1/7 Page No. 1/7					
MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORFREC.
1	0.00	1.00	<u>[</u>]	100	8	7.00	8.00	12	30
2	1.00	2.00) 3 9 5	100	9	8.00	9.00	89	40
3	2.00	3.00	650	100	10	9.00	10.00	10	20
4	3.00	4.00	020	65	11	10.00	11.00	0	60
5	4.00	5.00	8 9 8	35	12	11.00	12.00	28	70
6	5.00	6.00	s - 2 7 0	65	13	12.00	13.00	10	70
7	6.00	7.00	() (A2	35		2			

		Sayfa I Page N	No.2/7 No. 2/7						
MANE VR A CORE RUN	IANEVRA DERİNLİK (m) CORE DEPTH (m) RUN		RQD (%) K	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.
14	13.00	14.00	0	100	18	17.00	18.00	22	100
15	14.00	15.00	35	100	19	18.00	19.00	83	100
16	15.00	16.00	33	100	20	19.00	20.00	25	100
17	16.00	17.00	65	100	21	20.00	21.00	45	100

		EK -TSK-I Sa Pa									
MANE VRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	ROD (%) KAROT MANE VRA (%) COPE PEC RUN			LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.		
22	21.00	22.00	0	100	26	25.00	26.00	36	100		
23	22.00	23.00	20	100	27	26.00 27.00		53	100		
24	23.00	24.00	13	100	28	27.00	28.00	57	100		
25	24.00	25.00	0	100	29	28.00	29.00	40	100		

		EK- SK-1										
MANE VR A CORE RUN	IANEVRA DERİNLİK (m) CORE DEPTH (m) RUN		R QD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC.			
30	29.00	30.00	0	100	34	33.00	34.00	40	100			
31	30.00	31.00	31	100	35	34.00	35.00	30	100			
32	31.00	32.00	30	100	36	35.00	36.00	18	100			
33	32.00	33.00	55	100	37	36.00	37.00	13	100			

	EK-TSK-I Sayfa N Page N									
MANE VR A CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%) CORE REC		DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	
38	37.00	37.00 38.00	00 38.00 22	22	100	42	41.00	42.00	12	100
39	38.00	39.00	36	100	43	42.00	43.00	13	100	
40	39.00	40.00	0	100	44	43.00	44.00	28	100	
41	40.00	41.00	31	100	45	44.00	45.00	33	100	

		EK-TSK-1 Sayı Pag									
MANE VRA CORE RUN DEPTH (m)		LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANE VRA CORE RUN	DERİNLİK (m) DEPTH (m)		RQD (%)	KAROT (%)		
46	45.00	46.00	0	100	50	49.00	50.00	68	100		
47	46.00	47.00	22	100	51	50.00	51.00	29	100		
48	47.00	48.00	82	100	52	51.00	52.00	26	100		
49	48.00	49.00	50	100	53	52.00	53.00	100	100		

				EK	-TSK-1			Sayfa I Page N	No.7/7 [o. 7/7	
MANE VRA DERİNLİK (m) CORE DEPTH (m) RUN		LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANE VRA CORE RUN	DERİN DEPI	LİK (m) 'H (m)	RQD (%)	KAROT (%) CORE REC.	
54	53.00	54.00	80	100	58	57.00	58.00	23	100	
55	54.00	55.00	15	100	59	58.00	59.00	26	100	
56	55.00	56.00	43	100	60	59.00	60.00	58	100	
57	56.00	57.00	40	100						

EK-TSK-2 Sayfa No.1/10 Page No. 1/10										
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	
1	0.00	1.00	i H	100	5	4.00	5.00	53	100	
2	1.00	2.00	0	100	6	5.00	6.00	75	100	
3	2.00	3.00	12	100	7	6.00	7.00	59	100	
4	3.00	4.00	65	100	8	7.00	8.00	40	100	

				EK-	ГSK-2				
								Sayfa N Page N	lo.2/10 o. 2/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
9	8.00	9.00	10	100	13	12.00	13.00	45	100
10	9.00	10.00	26	100	14	13.00	14.00	86	100
11	10.00	11.00	55	100	15	14.00	15.00	95	100
12	11.00	12.00	0	100	16	15.00	16.00	50	100

				EK-	ГSK-2			Sayfa I Page N	No.3/10 o. 3/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
17	16.00	17.00	37	100	21	20.00	21.00	15	100
18	17.00	18.00	14	100	22	21.00	22.00	0	100
19	18.00	19.00	0	100	23	22.00	23.00	0	100
20	19.00	20.00	60	100	24	23.00	24.00	25	100

				EK-	ГSK-2			Sayfa N Page N	(o.4/10 o. 4/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
25	24.00	25.00	15	100	29	28.00	29.00	14	100
26	25.00	26.00	76	100	30	29.00	30.00	30	100
27	26.00	27.00	73	100	31	30.00	31.00	66	100
28	27.00	28.00	50	100	32	31.00	32.00	72	100

				EK-	FSK-2			Sayfa N Page N	√0.5/10 0. 5/10
MANEVRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) TH (m)	RQD (%)	KAROT (%) CORE REC.
33	32.00	33.00	73	100	37	36.00	37.00	85	100
34	33.00	34.00	62	100	38	37.00	38.00	77	100
35	34.00	35.00	70	100	39	38.00	39.00	49	100
36	35.00	36.00	66	100	40	39.00	40.00	30	100

				EK-	FSK-2			Sayfa I Page N	No.6/10 o. 6/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
40	40.00	41.00	72	100	44	44.00	45.00	12	100
41	41.00	42.00	35	100	45	45.00	46.00	69	100
42	42.00	43.00	49	100	46	46.00	47.00	0	100
43	43.00	44.00	40	100	47	47.00	48.00	22	100

				EK-1	FSK-2				
								Sayfa N Page N	No.7/10 o. 7/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
48	48.00	49.00	24	100	53	53.00	54.00	33	100
49	49.00	50.00	55	100	54	54.00	55.00	0	100
50	50.00	51.00	40	100	55	55.00	56.00	20	100
51	51.00	52.00	23	100	56	56.00	57.00	26	100
52	52.00	53.00	19	100	57	57.00	58.00	0	100

				EK-	FSK-2				
								Sayfa N Page N	No.8/10 o. 8/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
58	58.00	59.00	12	100	63	63.00	64.00	46	77
59	59.00	60.00	13	100	64	64.00	65.00	49	57
60	60.00	61.00	44	100	65	65.00	66.00	37	52
61	61.00	62.00	63	100	66	66.00	67.00	0	48
62	62.00	63.00	46	66	67	67.00	68.00	43	54

				EK-	FSK-2				
								Sayfa I Page N	No.9/10 To. 9/10
MANEVRA CORE RUN	DERİNI DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANEVRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
68	68.00	69.00	51	69	73	73.00	74.00	15	70
69	69.00	70.00	42	78	74	74.00	75.00	66	92
70	70.00	71.00	64	100	75	75.00	76.00	17	94
71	71.00	72.00	60	100	76	76.00	77.00	14	88
72	72.00	73.00	19	100	77	77.00	78.00	0	91

				EK	K-TSK-2			Savfa I	No 10/10
								Page N	o. 10/10
MANE VRA CORE RUN	DERİN DEPT	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.	MANE VRA CORE RUN	DERİN DEPI	LİK (m) H (m)	RQD (%)	KAROT (%) CORE REC.
78	78.00	79.00	22	70	82	82.00	83.00	27	100
79	79.00	80.00	60	100	83	83.00	84.00	26	100
80	80.00	81.00	50	100	84	84.00	85.00	40	100
81	81.00	82.00	14	100				52.	

APPENDIX-C: LABORATORY TEST RESULTS

All detailed laboratory test results are given in APPENDIX-C.

			AKADEN	Aİ ZEMİN Mınteri Bulvarı, Tel: KAYA DI	I ve KAYA] 1151.Sokak, Gul 8 : 0 312 385 67 67, ENEYLERİ	MEKANÌ 86 Sitesi, No: 1/ Faks: 0 312 38 SONUÇLA	Ğİ LABOR 80 Ostim / ANKAF 5 59 52 AR FORMU	ATUVARI ^{LA}			4 PANDIAL	
FİRMA ADI PROJE ADI PROJE TİPİ	~ ~ ~	TEMELSON MÜHE KONAK YEŞİLDER Jeolojik - Jeoteknik E	NDÍSLÍK E TÜNELÍ v tüt	e BAĞLANT	T YOLU, İZN	1İR			Sayfa No: Num.Gel.Tari Rapor Tarihi: Lab. Kayıt Nc Bayındırlık K	hi: .: No:	1 / 26,01, 10,02, AKD-12, 2328	1 2012 2012 / 01-247 790
Sondaj No	Numune No	Derinlik (m)	Numune Boyu (mm)	Numune Çapı (mm)	Elastisite Modülü £ Gpa	Poisson Oranı V	Num. Ağırlığı (9)	Doğal Birim Hacim Ağırlık (kN/m ³)	Numune Kesit Alanı (cm ²)	Yenilme Yükü P (kg)	Tek Eksenli Basınç Deneyi q _u (kg/cm²)	Nokta Yükleme Deneyi I _s (kg/cm ²)
TSK-1	KAROT	13,00-14,50	93	47			311,92	18,96	17,35	2927	169	
TSK-1	KAROT	17,00-18,00	Numune dağ	Igan yapıda c	olduğundan ba:	sınç deneyle	ri yapılamamış,	zemin sınıflar	ması yapılmışı	tir.		
TSK-1	KAROT	33,00-33,30	91	46			309,18	20,06	16,62	591	36	
TSK-2	KAROT	49,50-50,00	47	47			173,55	20,88	17,35	127		5,7
1SK-2	KAROT	59,00-59,20	86	43			267,52	21,01	14,52	806	55	
TSK-3	KAROT	44,50-46,00	53	55			272,18	21,20	23,76	139		4,6
TSK-4	KAROT	21,00-22,00	94	47			383,17	23,05	17,35	3518	203	
TSK-4	KAROT	36,00-37,00	92	46			300,02	19,25	16,62	693	42	
TSK-4	KAROT	41,00-42,00	46	45			134,06	17,98	15,90	58		2,9
TSK-5	KAROT	17,00-18,00	96	48			400,97	22,64	18,10	479	26	
TSK-7	KAROT	85,00-86,00	46	46			166,47	21,36	16,62	76		3,6
TSK-7	KAROT	94,00-95,00	46	46			165,08	21,18	16,62	63		3,0
TSK-7	KAROT	102,00-103,00	94	47			367,80	22,12	17,35	387	22	
TSK-7	KAROT	104,00-105,00	46	46			156,98	20,14	16,62	86		4,1
TSK-8	KAROT	71,00-72,00	96	48			373,22	21,08	18,10	255	14	
TSK-8	KAROT	80,00-81,00	88	45			314,69	22,06	15,90	632	40	
TSK-8	KAROT	83,00-84,00	94	47			384,22	23,11	17,35	775	45	
Elastisite Modü Adres bilgileri müşl *Söz konusu deney *Deney sonuşları lat *Laboratuvarımız 47 tarafından verilen 1	Iú ve Poisson ora Je en beyanidir. sonucjari, sadece test i ocatuvarimizin čenjomi 08 Sayit Kandi Geregi 08 Sayit Kandi Geregi	Ini istenilen bazunumun Deney Sorumlusu oloji Müh. Sertan DEN edilep deney nuhuyeletime aitti tedan kismen kopyalanamaz ve i Bayndirik ve isjan Bekanig ioʻlu Laboratuver izin Belgesine	eler dayanım ; //R sogatulamaz Yapı işteri Genel I s Sahiptir.	rönünden oldı Audurluğu	ukça zayıf yapı	ılı olduğu içir	1 sadece Tek El	csenli Basınç	deneyi yapılar Lab Mozen siyar Martin Anar (2010) Tar (2010) Sayar (2010)	Miniştir Denedçi M Muth Milme Şe No: 123 Şe No: 123	IUN.	Hİ:03/24.10.2011

\triangleleft			×		teri Bulv	ZEMİN arı, 1151. Tel: 0 31 ASTİSİTE	ve KA) Sokak, G 2 385 67 MODÜL	YA MEN Sül 86 Site 67, Faks Ü VE PO	CANİĞİ L esi, No: 1/8(: 0 312 385 isson or .	ABORA) Ostim / / 59 52 ANI SONI	ANKARA UÇLAR F	RI		49700 DUBLA	Sector Se
												Sayfa No		1,	1
												Num.Gel.Ta	urihi	26,01	2012
												Rapor Tarih		10,02	2012
FİRMA ADI	••	TEMELSON	MÜHENL	i SLiK								Lab. Kayıt l	No	AKD-12	/ 01-247
PROJE ADI	••	KONAK YE	SILDERE	FÜNELİ ve	BAĞLAN	NTI YOLU	, izmir				1	Bay. Kayıt l	No	2328	190
Sondaj No	Numune No	Derinlik (m)	Numune Boyu (mm)	Numune Çapı (mm)	∆ا (mm)	Axial Strein ε _a	(шш)	Lateral Strain £ _d	Elastisite Modülü £ Gpa	Poisson Oranı V	Num. Ağırlığı (g)	Doğal Birim Hacim Ağırlık (kN/m ³)	Numune Kesit Alanı (cm²)	Yenilme Yükü P (kg)	Tek Eksenli Basınç Deneyi q _u
TSK-2	KAROT	22,00-23,00	95	47	1,212	0,01276	0,201	0,00428	6,44	0,328	421,38	25,08	17,35	7892	455
TSK-2	KAROT	43,00-44,00	92	47	1,025	0,01114	0,189	0,00402	5,58	0,346	374,61	23,02	17,35	5802	334
TSK-3	KAROT	26,00-26,60	92	47	1,065	0,01158	0,189	0,00402	5,88	0,325	388,20	23,86	17,35	6169	356
TSK-6	KAROT	93,00-94,00	95	47	0,851	0,00896	0,135	0,00287	4,06	0,359	413,82	24,63	17,35	5160	297
TSK-6	KAROT	99,00-100,00	93	47	0,675	0,00726	0,111	0,00236	3,36	0,379	395,26	24,03	17,35	3630	209
TSK-6	KAROT	101,00-103,00	95	47	0,991	0,01043	0,168	0,00357	4,83	0,354	404,50	24,08	17,35	5986	345
*Adres bilgiler müşter *Söz konusu deney sı "Ebeney sonuştar ilabo 1-aboratuvarımız 470	i beyanıdır. Ji beyanıdır. Jinuçları, sadece Ruvarımızırı 8 Sayılı Kanur (Der Jeoloji A i t <u>taat</u> etilen denev n ni olimadan kismen Sereği Bayındırılık ve	In Sertan Auh. Sertan Auh. Sertan Auh. Sertan Auh. Sertan Auh. Sertan Auh. Sertan Sertan Bakaniti Var Izin Belgesi	DEMIR DEMIR tit. ve pogatulamaz. gi Yapı İşleri Ger	iel Müdürlüğü						A Same		Genetri Muh Muh Muh Muh Muh Muh Muh Muh Muh Muh	Uh. Z.T.DNA Gross Market Market V.No/TARIHI:	2/11.02.2011

				AKAL	JEMİ Z	EMIN	re KAY	A MEK	KANİĞİ	LABO	RATU	VARI			
					Alm	teri Bulvarı, 1] Tal·	151.Sokak, C	Gül 86 Sitesi, N	No: 1/80-81 C	Stim / ANKA	rRA				
			Ŕ	AYAÇLA]	RDA EL	ASTISITE	MODÜ	LÜ VE PO	DISSON O	DRANI SC	NUÇLA	R FORM	10		
Firma Adı		TEMELSU MÜ	HENDİSLİK												
Proje Adı		Konak Tüneli Ve	Bağlantı Yol	u - İZMİR											
Sondaj No	Numune No	Derinlik (m)	Numme Boyu (mm)	Numune Çapı (mm)	Δl (mm)	A xial Strein E _a	р р	Lateral Strain E _d	Elastisite M odülü E Gpa	Poisson Oranı V	Num. Ağırlığı (g)	Doğal Birim Hacim Ağırlık (kN/m ³)	Numune Kesit Alanı (cm ²)	Yenilme Yükü P (kg)	Tek Eksenli Basınç Deneyi q _u (kg/cm ²)
SK-1	K-1	12,50-12,60	95	47	0,780	0,00821	0,138	0,00294	4,26	0,351	405,46	24,13	17,35	4476	258
YSK-1	K-1	8,65-9,00	96	47	1,030	0,01073	0,199	0,00423	6,90	0,338	384,57	22,65	17,35	7321	422
YSK-1	K-2	17,00-17,20	96	47	0,850	0,00885	0,170	0,00362	3,15	0,359	393,24	23,16	17,35	3435	198
EK-TSK-2	K-1	56,00-56,35	96	47	1,040	0,01083	0,213	0,00453	7,58	0,321	403,23	23,75	17,35	8848	510
EK-TSK-2	K-2	67,17-67,35	76	47	1,020	0,01052	0,172	0,00366	9,60	0,310	439,40	25,61	17,35	10219	589
EK-TSK-2	K-3	74,00-74,78	95	47	1,140	0,01200	0,207	0,00440	10,44	0,297	438,91	26,12	17,35	11052	637
EK-TSK-3	K-1	90,00-90,25	95	47	0,970	0,01021	0,152	0,00323	9,15	0,319	427,05	25,42	17,35	9681	558
EK-TSK-3	K-3	112,50-112,70	94	47	1,100	0,01170	0,223	0,00474	5,86	0,343	396,62	23,86	17,35	6315	364
EK-TSK-3	K-4	116,00-116,30	100	47	1,090	0,01090	0,176	0,00374	2,99	0,371	432,52	24,46	17,35	3661	211
EK-TSK-4	K-5	17,80-18,00	107	53	0,980	0,00916	0,200	0,00377	1,09	0,393	474,48	19,72	22,06	1235	56
EK-TSK-4	K-7	24,82-25,00	106	52	0,740	0,00698	0,142	0,00273	1,48	0,361	520,01	22,66	21,24	1572	74

APPENDIX-D: ROCK MASS RATING CHARTS

RMR calculation details are presented in APPENDIX-D for all geotechnical sections which are included with in this thesis.

A	CLASSIFI	CATION PARAMETE	RS AND THEIR RATING	s						
	Pa	arameter			Range of values					
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 Mpa	For th uniaxia test	is low ra Il compr is prefe	ange- essive rred	
1	material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50 Mpa	5-25 Mpa	1-5 Mpa	<1 Mpa	
	Rating		15	12	7	4	2	1	0	
2	Drill core	Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%		<25%		
2		Rating	20	17	13	8		3		
3	Spacin	g of discontinuities	>2 m	0.6-2 m	200-600 mm	60-200 mm	<60 m		1	
Ŭ	Rating		20	15	10	8	5			
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft gouge >		5 mm	
			Not continuous	Separation <1 mm	Separation <1 mm	or				
	Conditio	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 mm thick		or		
4		(See E)	Unweathered wall rock		-	or				
						Separation 1-5 mm	Sepa	ration >	5 mm	
						Continuous	C	ontinuou	JS	
<u> </u>		Rating	30	25	20	10		0		
	Ground	Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-125		>125		
5	Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0.5	>0.5			
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing		
		Rating	15	10	7	4 0				
В	. RATING A	ADJUSTMENT FOR D	DISCONTINUITY ORIENT	ATIONS (See F)	1		.			
Strike and dip orientations		orientations	Very favourable	Favourable	Fair	Unfavourable	Very	Irable		
		Tunnels and mines	0	-2	-5	-10	-12			
	Ratings	Foundations	0	-2	-7	-15	-25			
	BOCK M				-25	-50				
C. ROCK MASS CLASSES DETE		ASS CLASSES DETE		80,4 61	60 - 11	10- 21	r –	-21		
Cla	uny ee Number		100<81	00<01	00<41	11/	V			
De	scription		Verv good rock	Good rock	Fair rock	Poor rock	Ven	ock		
D	. MEANING	OF ROCK CLASSE	S	000010000	1 dil 100it	1.001.1001	tory poor roo		0011	
Cla	iss Number		-		III III	IV	V			
Ave	erage stand	-up time	20 vrs for 15 m span	1 vear for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 mir	n span		
Co	hesion of ro	ock mass (kPa)	>400	300-400	200-300	100-200		<100		
Fri	ction angle	of rock mass (deg)	>45	35-45	25-35	15-25		<15		
E	GUIDELIN	IES FOR CLASSIFIC	ATION OF DISCONTINU	ITY conditions						
Dis	continuity le	ength (persistence)	<1 m	1-3 m	3-10 m	10-20 m	>20 m			
Rat	ting		6	4	2	1		0		
Se	paration (ap	perture)	None	<0.1 mm	0.1-1.0 mm	1-5 mm		>5 mm		
Rat	ting		6	5	4	1		0		
Ro	ughness		Very rough	Rough	Slightly rough	Smooth	Sli	ckensid	ed	
Rating			6	5	3	1		0		
Infilling (gouge)		:)	None	Hard filling<5mm	Hard filling>5mm	Soft filling<5mm	Soft	filling>5	ōmm	
Rat	ting		6	4	2	2		0		
Weathering			Unweathered	Slightly weathered	Moderately weathered	Highly weathered	De	compos	sed	
Ratings			6	5	3	1		0		
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING										
Strike per			pendicular to tunnel axis		Strike parallel to tunnel ax		xis.			
┣—	Drive with	1 dip-Dip 45-90	Drive with o	dip-Dip 20-45	Dip 45-90		Dip 20-4	45		
Very favourable			Favo	ourable	Very Favoural		Fair			
┣—	Drive agair	Ist dip-Dip 45-90	Drive against		Di	p u-20-irrespective of stril	(e			
<u> </u>		ıalı	Unfav					21.5		
L						-				

Figure D.1: RMR value of the exit portal open cuts (Bieniawski, 1989)

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS											
	Pa	arameter	Range of values								
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 Mpa	For th uniaxia test	is low ra I compr is prefe	ange- essive rred		
1	rock material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50 Mpa	5-25 Mpa	1-5 Мра	<1 Mpa		
	Rating		15	12	7	4	2	1	0		
2	Drill core (Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%		<25%			
2		Rating	20	17	13	8		3			
3	Spacin	g of discontinuities	>2 m	0.6-2 m	200-600 mm	60-200 mm	-	<60 mm	1		
Ŭ	Rating		20	15	10	8		5			
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft g	ouge >	5 mm		
			Not continuous	Separation <1 mm	Separation <1 mm	or	ļ	thick			
	Conditio	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 mm thick	ļ	or			
4		(See E)	Unweathered wall rock			or	ļ				
						Separation 1-5 mm	Sepa	ration >	5 mm		
						Continuous	C	ontinuou	JS		
		Rating	30	25	20	10		0			
	Ground	Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-125		>125			
5	Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0.5	>0.5				
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing			
		Rating	15	10	7	4		0			
В	. Rating A	DJUSTMENT FOR D	ISCONTINUITY ORIENT	ATIONS (See F)							
Strike and dip orientations		orientations	Very favourable	Favourable	Fair	Unfavourable	Very Unfavou		rable		
		Tunnels and mines	0	-2	-5	-10	-12				
	Ratings Foundations		0	-2	-7	-15	-25				
	Slopes		0	-5	-25	-50					
C. ROCK MASS CLASSES DETE			RMINED FROM TOTAL	RATINGS			r				
Rat	ing		100<81	80<61	60<41	40<21	<21				
Cla	ss Number		1	II		IV	V				
De	scription		Very good rock	Good rock	Fair rock	Poor rock	rock Very poo		ock		
D	. MEANING	OF ROCK CLASSE	S						-		
Cla	ss Number	and the second				IV	V				
AVe	erage stand	-up time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 nrs for 2.5 m span	30 mir	30 min for 1 m span			
0	nesion of ro	ick mass (kPa)	>400	300-400	200-300	100-200		<100			
Fri				35-45	25-35	10-20		<15			
		and the (norrelation on)	ATION OF DISCONTINU		2.40	10.20 m					
Dis	ing	engin (persistence)	<1 m	1-3 m	3-10 m	10-20 11	>20 m				
So	any	orturo)	Nono	4	2 0.1.1.0 mm	1.5 mm		>5 mm			
Rat	ing		None	<0.11111	0.1-1.0 mm	1		>5 mm			
Po	uabnoss			5 Dough	4 Clighthy rough	Smooth	C li	okonsid	od		
Rat	ing		very rough	Kough	Siighiiy Tough	1	Slickensided		eu		
Rating)	Nono	5 Hord filling (Emm	Jurd filling: Emm	Soft filling -5mm	Soft	filling>F	mm		
Ro	ing (gouge	/	none		⊓aru miing>ວmm	our ming <omm< td=""><td>SUIT</td><td>niiniy>t 0</td><td>*****</td></omm<>	SUIT	niiniy>t 0	*****		
Westhering			Linweathered	Slightly weathered	A Moderately weathered	Highly weathered	D-0	compos	ed		
Ratings			6	5	3	1		0			
F	FFFFCT				3	1	I	5			
Strike percenticular to turned avia											
Drive with dia Dia 45.00			Drive with c	lip-Dip 20-45	Din 45-90		Dip 20-4	45			
<u> </u>	Verv	favourable	Faur	purable	Very Fayourat	ble	Fair				
Drive against din-Din 45-90			Drive against	dip-Dip 20-45	Di	p 0-20-Irrespective of stril					
Fair Unfavourable Fair											
									23.0		

Figure D.2: RMR value of T-Px section (Bieniawski, 1989)

A	CLASSIFI	CATION PARAMETE	RS AND THEIR RATING	s								
	Pa	arameter	Range of values									
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 Mpa	For th uniaxia test	ange- essive rred				
1	material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50 Mpa	5-25 Mpa	1-5 Mpa	<1 Mpa			
	Rating		15	12	7	4	2	1	0			
2	Drill core (Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%		<25%				
		Rating	20	17	13	8	3					
3	Spacin	g of discontinuities	>2 m	0.6-2 m	200-600 mm	60-200 mm	<60 mm		1			
Ľ	Rating		20	15	10	8		5				
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft gouge >		5 mm			
			Not continuous	Separation <1 mm	Separation <1 mm	or		thick				
	Conditio	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 mm thick		or				
4		(See E)	Unweathered wall rock			or						
						Separation 1-5 mm	Sepa	ration >	5 mm			
						Continuous	C	ontinuou	JS			
		Rating	30	25	20	10		0				
	Ground	Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-125		>125				
5	Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0.5	>0.5					
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing				
Rating			15	10	7	4 0						
В	. RATING A	ADJUSTMENT FOR D	SCONTINUITY ORIENT	ATIONS (See F)	1							
Strike and dip orientations		orientations	Very favourable	Favourable	Fair	Unfavourable	Very Unfavou		irable			
Tunnels and mines Ratings Foundations		Tunnels and mines	0	-2	-5	-10	-12					
		Foundations	0	-2	-7	-15	-25					
Slopes				-5	-25	-50						
C. ROCK MASS CLASSES DETE		ASS CLASSES DETE		RATINGS	CO	40 . 04		.04				
Rating			100<01	00<01	00<41	40<21	<21 V					
De	scription		Very good rock	II Good rock	Eair rock	Poor rock	Voru poor rock		ock			
D		OF ROCK CLASSE	s	GOOD TOCK	Tail Took	10011001	Very poor rook		OOK			
Cla	ss Number	0		Ш	ш	IV	V					
Ave	erage stand	-up time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 mir	n span				
Co	hesion of ro	ock mass (kPa)	>400	300-400	200-300	100-200		<100				
Fri	ction angle	of rock mass (deg)	>45	35-45	25-35	15-25		<15				
E	GUIDELIN	IES FOR CLASSIFIC	ATION OF DISCONTINU	ITY conditions								
Dis	continuity le	ength (persistence)	<1 m	1-3 m	3-10 m	10-20 m		>20 m				
Rat	ting		6	4	2	1		0				
Se	paration (ap	perture)	None	<0.1 mm	0.1-1.0 mm	1-5 mm	>5 mm					
Rat	ting		6	5	4	1		0				
Ro	ughness		Very rough	Rough	Slightly rough	Smooth	Sli	ckensid	ed			
Rating			6	5	3	1	0					
Infilling (gouge)		2)	None	Hard filling<5mm	Hard filling>5mm	Soft filling<5mm	Soft	filling>5	āmm			
Rating			6	4	2	2		0				
Weathering			Unweathered	Slightly weathered	Moderately weathered	Highly weathered	De	compos	ed			
Ratings			6	5	3	1		0				
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING												
Strike per			pendicular to tunnel axis		Strike parallel to tunnel axis.							
Drive with dip-Dip 45-90			Drive with o	dip-Dip 20-45	Dip 45-90		Dip 20-4	15				
Very favourable			Favo	ourable	Very Favoura	ble	Fair					
<u> </u>	Drive again	nst dip-Dip 45-90	Drive against	t dip-Dip 20-45	D	p 0-20-Irrespective of stril	ke					
L		Fair	Unfav	ourable		Fair	-	00 -	_			
						RMR =		33.5				

Figure D.3: RMR value of T-50x section (Bieniawski, 1989)

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS										
	Pa	arameter	Range of values							
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 Mpa	For th uniaxia test	is low ra Il compr is prefe	ange- essive rred	
1	rock material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50 Mpa	5-25 Mpa	1-5 Mpa	<1 Mpa	
	Rating		15	12	7	4	2	1	0	
2	Drill core	Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%		<25%		
2		Rating	20	17	13	8		3		
3	Spacing of discontinuities		>2 m	0.6-2 m	200-600 mm	60-200 mm		<60 mm	1	
Ŭ		Rating	20	15	10	8		5		
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft g	jouge >	5 mm	
			Not continuous	Separation <1 mm	Separation <1 mm	or		thick		
	Conditio	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 mm thick		or		
4		(See E)	Unweathered wall rock			or				
						Separation 1-5 mm	Sepa	ration >	5 mm	
						Continuous	С	ontinuo	JS	
		Rating	30	25	20	10		0		
	Ground	Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-125		>125		
5	Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0.5	>0.5			
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing		
		Rating	15	10	7	4 0				
B.	. RATING A	DJUSTMENT FOR D	ISCONTINUITY ORIENT	ATIONS (See F)			I			
Strike and dip orientations		orientations	Very favourable	Favourable	Fair	Unfavourable	Very	irable		
		Tunnels and mines	0	-2	-5	-10	-12			
	Ratings Foundations		0	-2	-7	-15	-25			
	DOCK M			-5	-25	-50				
C. ROCK MASS CLASSES DETER		ASS CLASSES DETER		80.4 61	60 4 41	40 - 21	1	-21		
Cla	es Numbor		100<01	00<01	00<41	40<21	×21			
Dee	scription		Very good rock	Good rock	Fair rock	Poor rock	Ver	ock		
D0.		OF ROCK CLASSES		COOCHICCK	Tail TOOK	TOOTTOCK	very poor rock		OCK	
Cla	ss Number		, I I	11	Ш	IV	IV V			
Ave	erage stand	-up time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 mir	30 min for 1 m span		
Col	hesion of ro	ock mass (kPa)	>400	300-400	200-300	100-200		<100		
Fric	ction angle	of rock mass (deg)	>45	35-45	25-35	15-25		<15		
E.	GUIDELIN	IES FOR CLASSIFIC	ATION OF DISCONTINU	ITY conditions						
Dis	continuity le	ength (persistence)	<1 m	1-3 m	3-10 m	10-20 m	>20 m			
Rat	ing		6	4	2	1	Ĩ	0		
Sep	paration (ap	erture)	None	<0.1 mm	0.1-1.0 mm	1-5 mm		>5 mm		
Rat	ing		6	5	4	1	1	0		
Rou	ughness		Very rough	Rough	Slightly rough	Smooth	Sli	ckensid	.ed	
Rat	ing		6	5	3	1	1	0		
Infilling (gouge))	None	Hard filling<5mm	Hard filling>5mm	Soft filling<5mm	Soft	filling>5	5mm	
Rating			6	4	2	2		0		
Weathering			Unweathered	Slightly weathered	Moderately weathered	Highly weathered	De	compos	ed	
Ratings			6	5	3	1		0		
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING										
Strike perp			endicular to tunnel axis		Strike parallel to tunnel axis.					
	Drive with	dip-Dip 45-90	Drive with d	lip-Dip 20-45	Dip 45-90		Dip 20-	45		
Very favourable			Favo	ourable	Very Favourat	ble	Fair			
	Drive agair	ist dip-Dip 45-90	Drive against	dip-Dip 20-45	Di	p 0-20-Irrespective of stri	ke			
		Fair	Unfav	ourable		Fair		40 5	_	
L						RMR =		46.5		

Figure D.4: RMR value of T-75x section (Bieniawski, 1989)

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS											
	Pa	arameter	Range of values								
	Strength of intact	Point-load strength index	>10 Mpa	4-10 Mpa	2-4 Mpa	1-2 N	Ира	For th uniaxia test i	is low ra I compr s prefe	ange- essive rred	
1	material	Uniaxial comp. Strength	>250 Mpa	100-250 Mpa	50-100 Mpa	25-50	Mpa	5-25 Mpa	1-5 Мра	<1 Mpa	
	Rating		15	12	7	4		2	1	0	
2	Drill core (Quality RQD	90%-100%	75%-90%	50%-75%	25%-	50%	<25%			
		Rating	20	17	13	8			3		
3	Spacin	g of discontinuities	>2 m	0.6-2 m	200-600 mm	60-200) mm		<60 mm	1	
Ľ		Rating	20	15	10	8			5		
			Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickenside	d surfaces	Soft g	ouge >	5 mm	
			Not continuous	Separation <1 mm	Separation <1 mm	or			thick		
	Conditio	on of discontinuities	No separation	Slightly weathered walls	Highly weathered walls	Gouge <5 r	mm thick		or		
4		(See E)	Unweathered wall rock		-	or					
						Separation	1-5 mm	Separ	ation >	5 mm	
						Contin	uous	Continuou		JS	
		Rating	30	25	20	10)		0		
	Ground	Inflow per 10 m tunnel length (I/m)	None	<10	10-25	25-1	25		>125		
5	Water	(Joint water press)/ (Major principal o)	0	<0.1	0.1-0.2	0.2-0	0.5	>0.5			
		General conditions	Completely dry	Damp	Wet	Dripp	oing		Flowing		
		Rating	15	10	7	4			0		
B	. RATING A	DJUSTMENT FOR D	SCONTINUITY ORIENT	ATIONS (See F)	1						
Strike and dip orientations		orientations	Very favourable	Favourable	Fair	Unfavou	urable	Very Unfavour		ırable	
		Tunnels and mines	0	-2	-5	-1(0				
	Ratings	Foundations	0	-2	-7	-1:	5				
			0	-5	-25	-50	0				
C. ROCK MASS CLASSES DETE		ASS CLASSES DETE			00 11	10	01	-21			
Rat	ing		100<81	80<61	60<41	40<	21	<21			
			I Vorv good rock	II Good rock	III Eair rock	Poor	rock	V Vanuaria		rock	
			s very good rock	GOODTOCK	Fail TOCK	FUUL	IUCK	very poor rock		UCK	
Cla	ss Number	OF ROOK CEASE	5 I	Ш	Ш	IV	,	V			
	erane stand	-un time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 brs for 2	5 m snan	30 min	for 1 n	n snan	
Col	hesion of ro	uck mass (kPa)	>400	300-400	200-300	100-2	200	00 1111	<100	ropun	
Frid	ction angle	of rock mass (deg)	>45	35-45	25-35	15-3	25		<15		
E	GUIDELIN	IES FOR CLASSIFIC		TY conditions	20 00				110		
Dis	continuity le	ength (persistence)	<1 m	1-3 m	3-10 m	10-20	0 m	>20 m			
Rat	ting		6	4	2	1			0		
Se	paration (ap	erture)	None	<0.1 mm	0.1-1.0 mm	1-5 r	nm		>5 mm		
Rat	ting		6	5	4	1			0		
Rou	ughness		Very rough	Rough	Slightly rough	Smo	oth	Sli	ckensid	ed	
Rating			6	5	3	1			0		
Infilling (gouge))	None	Hard filling<5mm	Hard filling>5mm	Soft filling	g<5mm	Soft	filling>5	5mm	
Rating			6	4	2	2			0		
Weathering			Unweathered	Slightly weathered	Moderately weathered	Highly we	athered	De	compos	sed	
Ratings			6	5	3	1			0		
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING											
		Strike per	pendicular to tunnel axis		Strike parallel to tunnel axis.						
	Drive with	dip-Dip 45-90	Drive with o	lip-Dip 20-45	Dip 45-90			Dip 20-4	15		
	Very	favourable	Favo	ourable	Very Favoural	ble		Fair			
Drive against dip-Dip 45-90			Drive against	dip-Dip 20-45	Di	ip 0-20-Irrespe	ective of strike	Э			
		Fair	Unfav	ourable		Fai	r .				
						1	RMR =		57.0		

Figure D.5: RMR value of T-100x section (Bieniawski, 1989)

APPENDIX-E: CIRCULAR FAILURE ANALYSES RESULTS

The results of the cut slopes and portal face failure analyses are presented in APPENDIX-E.

Figure E.1: Portal face analysis with Bishop Simp. method (GW and seismic load)

Figure E.2: Portal face analysis with Spencer method (GW and seismic load)

Figure E.3: Portal face analysis with Morgenstern method (GW and seismic load)

Figure E.4: Portal face analysis with Bishop Simp. method (GW)

Figure E.5: Portal face analysis with Spencer method (GW)

Figure E.6: Portal face analysis with Morgenstern method (GW)

Figure E.7: Portal face analysis with Bishop Simp. method (Static)

Figure E.8: Portal face analysis with Spencer method (Static)

Figure E.9: Portal face analysis with Morgenstern method (Static)

Figure E.10: Portal face analysis with Bishop Simp. method (Unsupported)

Figure E.11: Portal face analysis with Spencer method (Unsupported)

Figure E.12: Portal face analysis with Morgenstern method (Unsupported)

Figure E.13: Right cut slope analysis with Bishop Simp. method (GW and seismic load)

Figure E.14: Right cut slope analysis with Spencer method (GW and seismic load)

Figure E.15: Right cut slope analysis with Morgenstern method (GW and seismic load)

Figure E.16: Right cut slope analysis with Bishop Simp. method (GW)

Figure E.17: Right cut slope analysis with Spencer method (GW)

Figure E.18: Right cut slope analysis with Morgenstern method (GW)

Figure E.19: Right cut slope analysis with Bishop Simp. method (Static)

Figure E.20: Right cut slope analysis with Spencer method (Static)

Figure E.21: Right cut slope analysis with Morgenstern method (Static)

Figure E.22: Right cut slope analysis with Bishop Simp. method (Unsupported)

Figure E.23: Right cut slope analysis with Spencer method (Unsupported)

Figure E.24: Right cut slope analysis with Morgenstern method (Unsupported)

Figure E.25: Left cut slope analysis with Bishop Simp. method (GW and seismic load)

Figure E.26: Left cut slope analysis with Spencer method (GW and seismic load)

Figure E.27: Left cut slope analysis with Morgenstern method (GW and seismic load)

Figure E.28: Left cut slope analysis with Bishop Simp. method (GW)

Figure E.29: Left cut slope analysis with Spencer method (GW)

Figure E.30: Left cut slope analysis with Morgenstern method (GW)

Figure E.31: Left cut slope analysis with Bishop Simp. method (Static)

Figure E.32: Left cut slope analysis with Spencer method (Static)

Figure E.33: Left cut slope analysis with Morgenstern method (Static)

Figure E.34: Left cut slope analysis with Bishop Simp. method (Unsupported)

Figure E.35: Left cut slope analysis with Spencer method (Unsupported)

Figure E.36: Left cut slope analysis with Morgenstern method (Unsupported)

APPENDIX-F: RAW DATA OF MEASURED DISPLACEMENTS

The resultant vertical displacements at each monitoring point are presented in APPENDIX-F.

Figure F.1 to F.23: Tube-2 measured vertical displacement graphs at given kilometers

Figure F.24 to F.41: Tube-1 measured vertical displacement graphs at given kilometers

APPENDIX-G: FINITE ELMENT ANAYSES RESULTS

The vertical displacement and support capacity plots are presented in APPENDIX-G.

Figure G.1: Mesh and material properties of section T-Px

Figure G.2: Total vertical displacement of section T-Px 311

Figure G.3: Support capacity plots of section T-Px (Liner-1)

Figure G.4: Support capacity plots of section T-Px (Invert)

Figure G.5: Total vertical displacement of section T-Px under the seismic load

Figure G.6: Mesh and material properties of section T-50x

Figure G.7: Total vertical displacement of section T-50x

Figure G.8: Support capacity plots of section T-50x (Liner-1)

Figure G.9: Total vertical displacement of section T-50x under the seismic load

Figure G.10: Mesh and material properties of section T-75x

Figure G.11: Total vertical displacement of section T-75x

Figure G.12: Support capacity plots of section T-75x (Liner-1)

Figure G.13: Total vertical displacement of section T-75x under the seismic load

Figure G.14: Mesh and material properties of section T-100x

Figure G.15: Total vertical displacement of section T-100x

Figure G.16: Support capacity plots of section T-100x (Liner-1)

Figure G.17: Total vertical displacement of section T-100x under the seismic load

APPENDIX-H: AXISMMETRICAL MODELLING RESULTS

The axisymmetric modeling results and the reduction amount of the deformation modulus in all excavation sections are presented in APPENDIX-H.

Distance to	Cumulative	Softening Ratio -	Rock Mass Defor	mation Modulus
Face	Displacement		in-situ	induced
m	m	%	MPa	MPa
0	0,11287	37,3%		158,6
0,5	0,13796	45,6%		137,6
1	0,15990	52,9%		119,3
1,5	0,17819	58,9%	253	104,0
2	0,19777	65,4%		87,6
2,5	0,21002	69,4%		77,3
50	0,30250	100,0%		0,0

Distance to	Total	Softening Ratio	Deformatio	on Modulus
Face	Displacement		in-situ	induced
m	m	%	MPa	MPa
0	0,06304	37,3%		284,0
0,5	0,07705	45,6%		246,4
1	0,08931	52,9%		213,5
1,5	0,09952	58,9%	453	186,2
2	0,11045	65,4%		156,8
2,5	0,11731	69,4%		138,5
50	0,16894	100,0%		0,0

Distance to	Total	Softening Ratio	Deformatio	on Modulus
Face	Displacement		in-situ	induced
m	m	%	MPa	MPa
0	0,03492	38,0%		516,0
0,5	0,04178	45,4%		454,0
1	0,04746	51,6%		402,6
1,5	0,05359	58,3%	832	347,1
2	0,06043	65,7%		285,3
2,5	0,06420	69,8%		251,2
50	0,09196	100,0%		0,0

Distance to	Total	Softening Ratio	Deformatio	on Modulus
Face	Displacement		in-situ	induced
m	m	%	MPa	MPa
0	0,02259	38,0%	1 286	797,6
0,5	0,02703	45,4%		701,7
1	0,03070	51,6%		622,3
1,5	0,03467	58,3%		536,6
2	0,03910	65,7%		440,9
2,5	0,04153	69,8%		388,3
50	0,05950	100,0%		0,0

APPENDIX-I: ROCLAB SOFTWARE RESULTS AND COMPARISON OF RMR & GSI

RocLab software outputs are given in APPENDIX-I.

Figure I.1: GSI value of exit portal open cuts (Hoek, 2013), shear strength parameters and deformation modulus (Hoek et. al., 2006) (mi value taken from the average of sandstone, claystone and tuff units mi values)

Figure I.2: GSI value of T-Px section (Hoek, 2013), shear strength parameters and deformation modulus (Hoek et. al., 2006) (mi value taken from the average of sandstone, claystone and tuff units mi values)

Figure I.5: GSI value of T-100x section (Hoek, 2013), shear strength parameters and deformation modulus (Hoek et. al., 2006) (mi value taken from the average of andesite and tuff units mi values)

Geotechnical Section	T-Px	T-50x	T-75x	T-100x
RMR	23.0	33.5	46.5	57.0
Max. Overburden (m)	35	50	75	100
c (MPa)	0.15	0.15	0.2	0.25
Ф (°)	20	20	25	30
Geotechnical Section	T-Px	T-50x	T-75x	T-100x
GSI	20 (18.0)	30 (28.5)	40 (41.5)	50 (52.0)
Max. Overburden (m)	35	50	75	100
c (MPa)	0.081	0.183	0.418	0.646
φ(°)	35.85	45.05	52.37	53.86

Figure I.6: Comparison of cohesions suggested by RMR and GSI classifications for the critical sections

Figure I.7: Comparison of friction angles suggested by RMR and GSI classifications for the critical sections

APPENDIX-J: DESCRIPTIONS OF LIMIT EQULIBRIUM METHODS FOR SLOPE STABILITY ANALYSIS

Pockoski and Duncan (2000) summarized the components of limit equilibrium for comparing the methods sufficiency and the summary table is given in APPENDIX-J.

Descriptions of Methods	of Anal	ysis	140	ill allow	the all a	
Pockoski and Duncan	(2000)	CHIRIS,				
Method		NOLI	2		Assumptions	Comments
Swedish Circle	Yes	٥N	٩	Ŷ	Circular Slip Surface	Only for $\phi=0$
Ordinary Method of Slices Fellenius 1927)	Yes	Ŷ	°N N	No	Circular Slip Surface Side Forces Parallel to Base	Conservative Very inaccurate for high pore water pressures
Bishop's Modified Method Bishop 1955)	Yes	Ŷ	No	Yes	Circular Slip Surfaces Side Forces Horizontal	Very inaccurate for high pore water pressures
Morgenstern and Price's Method (Morganstern and Price 1965)	Yes	Yes	Yes	Yes	Slip surface of any shape Pattern of Side Force Orientations	Much engineering time required to vary side force assumptions.
Spencer's Method (Spencer 1967)	Yes	Yes	Yes	Yes	Slip surface of any shape Side Forces Parallel	Simplest Method
Corps of Engineers Vodified Swedish (1970)	No	No	Yes	Yes	Slip surface of any shape Side Forces Parallel to Slope	High factor of safety
-owe & Karafiath (1960)	No	No	Yes	Yes	Slip surface of any shape Side Force Orientations Average of Slope and Slip Surface	Best side force assumption
Janbu Simplified (Janbu 1954)	No	No	Yes	Yes	Slip surface of any shape Side Forces Horizontal	Low Factor of Safety
GLE - General Limit Equlibrium	Yes	Yes	Yes	Yes	Slip surface of any shape Pattern of Side Force Orientations	Much engineering time required to vary side force assumptions.
SoldNail Method* (Golder)	Yes	•	Yes	Yes	Slip surface of any shape Normal Stress Distribution	Toe circles only
SNAIL Method CALTRANS)	No	No	Yes	Yes	Slip surface of any shape Two or three wedges, with side force angle = ∳	Limited shapes of slip surfaces