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ABSTRACT 

 

INTERACTIVE AND NONPARAMETRIC MODELING OF PREFERENCES 

ON AN ORDINAL SCALE USING SMALL DATA 

 

Erişkin, Levent 

Ph.D., Department of Industrial Engineering 

Supervisor: Prof.Dr. Gülser Köksal 

 

December 2015, 170 pages 

 

In this study, we consider learning preference structure of a Decision Maker (DM). 

Many preference modeling problems in a variety of fields such as marketing, 

quality control and economics, involve possibly interacting criteria, and an ordinal 

scale is used to express preference of objects. In these cases, typically underlying 

preference structure of the DM and distribution of criteria values are not known, 

and only a few data can be collected about the preferences of the DM.  

For developing a preference model under such circumstances, we propose using 

nonparametric Statistical Learning approaches interactively. In particular, we 

employ Active Learning by asking a preference question to the DM at each step 

and try to reach a close approximation to the correct model in a small number of 

steps. Our experimental analysis proves that the proposed approach outperforms a 
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“naive” approach where subsequent questions are asked randomly. In the study, 

we also provide algorithmic recommendations for modeling different underlying 

value functions, if information is available about the form of the preference 

structure and/or distribution of criteria values. 

This study can be regarded as a pioneering approach considering that Statistical 

Learning based approaches in the literature have been developed and tested based 

on a relatively large preference information and they do not interact with the DM 

in model developing process while Multi Criteria Decision Aid based approaches 

typically ignore interactions among the criteria, suffer from generalization ability, 

and have no concern about predicting equally good everywhere in the criteria 

domain. 

 

Keywords: preference modeling, sorting, active learning, interactive approach, 

multi criteria decision aid 
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ÖZ 

 

SIRALI ÖLÇEKTE, AZ VERİ KULLANARAK ETK İLEŞİML İ VE 

PARAMETRİK OLMAYAN TERCİH MODELLEMESİ 

 

Erişkin, Levent 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr. Gülser Köksal 

 

Aralık 2015, 170 sayfa 

 

Bu çalışmada, Karar Verici (KV) tercih yapısının öğrenilmesi konusunu ele 

alıyoruz. Pazarlama, kalite kontrolü ve ekonomi gibi birçok farklı alandaki tercih 

modelleme problemleri, tercihlerin sıralı ölçekte ifade edildiği ve kriterlerin 

etkileşim içinde olduğu durumları içerirler. Bu gibi durumlarda genellikle KV 

tercih yapısı ile kriter değerlerinin dağılımı bilinmez ve KV tercihlerine yönelik az 

miktarda veri edinilebilir. 

Bu tür problemlerde bir tercih modelinin geliştirilmesine yönelik olarak parametrik 

olmayan İstatistiksel Öğrenme tekniklerinin etkileşimli olarak kullanılmasını 

öneriyoruz. Özellikle, her adımda KV’ye bir tercih sorusu sormak ve az sayıda 

adımda en doğru modele ulaşabilmek için Aktif Öğrenme tekniklerini 

kullanıyoruz. Deneysel analizlerimiz, önerilen yaklaşımın müteakip soruları rassal 

olarak soran “sade” yaklaşıma göre daha başarılı olduğunu göstermektedir. 
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Çalışmamızda ayrıca, elimizde tercih yapısının formuna ve/veya kriter değerlerinin 

dağılımına ilişkin bilgi olması durumları için farklı tercih fonksiyonlarının 

modellenmesine yönelik olarak algoritmik tavsiyeler de sunuyoruz. 

Çalışmamız; literatürde önerilen İstatistiksel Öğrenme tabanlı yaklaşımların büyük 

miktarda tercih verisi kullanılarak geliştirilmesi ve test edilmesi, model geliştime 

sürecinde KV ile etkileşime geçmemeleri; Çok Kriterli Karar Desteği 

yaklaşımlarının ise genellikle kriterler arası etkileşimi ihmal etmeleri, genelleme 

yeteneklerinin zayıf olması ve kriter bölgesinin her yerinde aynı tahmin başarısını 

elde etmeyi dikkate almamaları nedeniyle bu alanda öncü bir çalışma olarak 

değerlendirilebilir.  

 

Anahtar kelimeler: tercih modellemesi, sıralı sınıflandırma, aktif öğrenme, 

etkileşimli yaklaşım, çok kriterli karar desteği. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Many real life decision problems involve multiple criteria usually conflicting with 

each other. In the presence of multiple criteria, we may not talk about an optimal 

solution or best alternative since there often exists no dominant alternative 

outperforming others in terms of all criteria. Therefore, the Decision Maker (DM) 

needs to consider trading off the achievement of one criterion against another one. 

Thus, decision making under multiple criteria turns out to be a subjective task that 

depends on the preference structure of the DM. 

When there are more than two criteria, the tradeoff issue gets more complex. In 

this respect, as the number of criteria to be considered increases, the decision to be 

made becomes more confusing for the DM. Multi Criteria Decision Aid (MCDA) 

offers several techniques to help confused DM make decisions in the presence of 

multiple criteria. MCDA basically deals with preference modeling, criteria 

aggregating and interactive problem solving. In all these applications, the main 

idea remains the same: explicitly or implicitly elicit preference structure of the DM 

in order to provide a decision support model that can be used in solving multiple 

criteria decision problems. 
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As part of MCDA, preference modeling aims at explicitly eliciting preferential 

system of the DM. Preference modeling is drawing a growing interest recently due 

to the fact that it became an imperative step in variety of areas. The alternatives 

considered in these decision problems range from projects to cars or candidate 

students to investment options. Especially if we are interested in making 

predictions about the DM’s preferences with regard to multiple objectives, 

developed preference model provides a practical tool to achieve this. Making 

predictions for the preference of some alternative/solution is particularly important 

in marketing and manufacturing fields. In marketing, for instance, determining 

product features to maximize customer preferences requires estimation of the 

preference structure of potential customers. Additionally, as part of the marketing 

analysis, determining how much each feature contributes to overall preference 

(called part-worth) needs a robust preference modeling. In manufacturing, 

predicting which quality characteristic values result in an acceptable product, 

which ones cause rework or scrap is needed to design better product and processes. 

Restrictive experimental conditions and inadequate resources available for design 

of data collection experiments require careful and economical determination of the 

levels of product and process variables to be used in the design. If the aggregate 

response metric is the “quality” of a product, then the design points can be 

determined close to the quality characteristic levels that maximize the DM’s 

preferences. Again, this process may require estimation of the DM’s preference 

structure. 

When criteria considered in the decision problem interact with (or depend on) each 

other, preference modeling task gets more challenging. In the simplest form, 

criterion set Y is preferentially independent of the remaining criterion set Z if the 

conditional preference structure in the y space given z′  does not depend on z′  

(Keeney & Raiffa, 1993). More formally, this independence statement holds if and 

only if for some z′ , 
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 ( , ) ( , ) ( , ) ( , ) all , ,y z y z y z y z z y y′ ′ ′′ ′ ′ ′′ ′ ′′⇒� �   (1) 

Several different independence definitions have been made in the Multi-Attribute 

Utility Theory (MAUT) based on degree of dependency and if the consequences 

are certain or associated with probabilities. Refer to Dyer (2005) for a 

comprehensive review of these independence definitions. Without loss of 

generality, we will assume that there exist interacting criteria if preference relation 

in (1) does not hold for any subset of criteria for simplicity and use interaction and 

preferential dependency terms interchangeably.  

Even though there is a general consent among researchers regarding the existence 

of interaction among criteria in real life decision problems, it is often ignored in 

applications. Marichal (2000) enumerates main reasons for ignorance as; lack of 

suitable tools to model them, absence of precise definitions for different types of 

interactions, complexity of some interactions and difficulty to detect one. Due to 

these reasons, most of the preference modeling strategies assume preferential 

independence among criteria, making modeling process relatively easygoing.  

Nevertheless, interaction phenomenon is encountered quite commonly, even in 

simpler cases. Dolgun (2014) mentions several cases in the quality control field 

where criteria under consideration interact with each other. For instance, consider 

this example given by Marichal (2000): The problem involves evaluating students 

in statistics (St), probability (Pr), and algebra (Al). In this example, statistics and 

probability are assumed to be more important than algebra. Evaluations of four 

students are shown in Table 1. (Scale from 0 to 20):  
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Table 1. Evaluations of students in three subjects. 

Student St Pr Al 

a 19 15 18 

b 19 18 15 

c 11 15 18 

d 11 18 15 

 

The DM is asked to rank students based on evaluations in three subjects. DM 

easily states that a c≻  and b d≻ . On the other hand, DM realizes that other 

comparisons are not so evident since scores somewhat interlace. Hence, 

considering statistics and probability are substitutive, DM decides that a student 

being good at statistics is preferred to be better in algebra than probability. 

Additionally, if a student is not good at statistics, than it is better that (s)he is good 

at probability than algebra. These two preference statements reveal a b≻  and 

d c≻ . Consequently, these preference statements propose that criteria expressed 

as evaluations in three subjects are not (preferentially) independent. 

Most of the MCDA methodologies utilize value function approach and assume an 

underlying functional model. According to this approach, DM preference structure 

is compatible with the functional form adapted. For instance, UTA based methods 

assume an additive functional form that is believed to represent DM’s preferential 

system. However, DM preference structure is usually unknown and adapting a 

functional form may lead to poor results. Additionally, even though proper 

functional (i.e. nonlinear) form is assumed for a preferential system having 

interactions among criteria, parametric functional models may fail to address 

complex interaction structures in high dimensions.  
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Many preference modeling problems in variety of fields such as marketing, quality 

prediction and economics, involve possibly interacting criteria and an ordinal scale 

is used to express preference of objects. In these cases, typically no information is 

available about the underlying preference structure, and only a few data can be 

collected about the preferences of the DM. For instance, preference information is 

usually obtained via on-line questionnaires in the marketing field. Before a 

respondent gets bored and leaves the questionnaire, only a limited number of 

questions can be posed. Hence, every single question is consumed thriftily. There 

are other cases where data collection process (or generating reference alternatives) 

is costly in terms of time or money. In quality engineering, for instance, we may 

need to produce expensive alternatives to generate a reference set, which will be 

useless after determining quality or preference of each product. Therefore, in order 

to conduct data collection or preference eliciting process affordably, we need to 

determine alternatives that will provide the most preference information. 

Preference models where preferences are expressed in the ordinal scale have many 

real life applications. This kind of developed preference models are used for 

classification or sorting tasks. Some of these application areas can be summarized 

as follows (Zopounidis & Doumpos, 2002): 

• Pattern recognition: Based on recognized attributes, subjects of interest 

are classified into predefined classes. 

• Human resources management: Evaluating personnel based on their 

attributes such as skills, education, leadership etc. and promoting some of 

them or assigning to appropriate positions. 

• Marketing:  Classifying customer profiles and developing custom 

marketing policies for each group. 

• Economics: Credit risk assessment, portfolio selection. 

• Education: Selecting a subset of applicants for graduate program. 

• Medicine: Diagnosis of diseases based on observed symptoms.  
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• Quality management: Sorting products into predefined quality groups 

based on considered attributes.  

• Evaluation of hotels: Evaluating and assigning stars to hotels based on 

criteria of interest.  

We can extend this list with many other applications. All these applications require 

preference models that are developed by obtaining preference information from 

the DM(s).  

There are many studies proposed in the literature to deal with preference modeling 

problems in the ordinal scale, however, most of them require big amount of 

preference data for modeling and ignore interaction among criteria. Additionally, 

majority assume a known underlying preference structure, which is not a plausible 

assumption. Some others using small data suffer from poor generalization ability. 

Also most of them only aim to sort limited number of alternatives at hand and 

consider a subset of the alternatives for getting preference information. Hence, 

preference model developed based on the preference information obtained with 

respect to these alternatives is used to sort the rest. Consequently, there is no 

concern about predicting equally good everywhere in the criteria domain. These 

problematic issues have not been solved in the preference learning field. 

In recent years there is a growing interest among Statistical Learning (SL) 

practitioners towards MCDA. In one perspective, both MCDA and SL 

methodologies aim to build robust models that will represent or explain the 

phenomenon of interest. In MCDA, phenomenon of interest is preferential system 

of the DM, while SL functions in a variety of domains depending on the type of 

data. Incorporating Machine Learning (MA) methodologies in it, SL is one of the  

major research areas in Artificial Intelligence (AI). AI is a popular field of study 

that comprise several major research areas, namely, machine learning/data mining, 

soft computing, evolutionary computation, knowledge engineering and 
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management, expert systems, symbolic reasoning, cognitive systems, etc. 

(Doumpos & Grigoroudis, 2013). Main focus of AI is to develop predictive 

decision systems and technologies that will model human brain. In this respect, 

finding the common ground in AI applications, SL researchers are more interested 

in MCDA field more than ever.  

There are several applications in SL dealing with MCDA problems, mainly in 

cases where response (or preference) is expressed in categorical or ordinal scale. 

Doumpos and Zopounidis (2011) provide a comparative review regarding 

integration of these two fields, connections, similarities, differences and potential 

research areas. Emphasizing that similarities are obvious, they enumerate 

differences as follows (last three previously discussed by Waegeman et al., 2009): 

• Model interpretability:  It is important in MCDA that models developed 

be interpretable since MCDA not only aims at developing decision models 

but also integrating DM into modeling process so that DM perceives 

his/her preferential system. On the other hand, SL models usually focus on 

developing models of higher accuracy and present a “black-box” structure. 

• Data dimensionality: SL applications usually require big amount of data, 

whereas MCDA methodologies assume that only a small reference set is 

available, in general.  

• Model validation: Even though validation of the model developed is 

considered to some extent in MCDA by interacting with the DM, model 

validation is an important component of SL practices. Moreover, numerous 

techniques developed for validation process of the models.  

• The role of the DM: In MCDA most of the time DM actively participates 

in model developing process, while SL assumes that only a training sample 

is available, hence, interacting with DM is not required. 

• Regularization: SL puts special emphasis on generalization capability of 

the model developed, hence, considers trade-off between complexity and 
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performance of the model. In MCDA, however, regularization is not a big 

issue.  

• Data type: In MCDA the data is characterized by criteria; qualitative or 

quantitative. SL, on the other hand, handles different types of data with 

more complex structures such as text, image or signal data.  

From this discussion, it becomes evident that both fields have some strong 

capabilities with respect to developing predictive preference models. As Doumpos 

and Zopounidis (2011) imply, future research in integration of these two areas will 

evolve towards this bearing. 

Considering all aforementioned shortcomings of the proposed approaches in 

MCDA, we utilize SL methodologies in preference modeling where preference is 

expressed in the ordinal scale and criteria interact with each other. Modeling 

strategy is based on obtaining holistic judgements from the DM regarding 

alternatives and adjusting subsequent questions based on the judgements gathered 

thus far, in an adaptive fashion. We start with a small reference set and employ 

nonparametric classifiers for model developing. Using nonparametric classifiers 

brings two advantages; firstly, we assume no functional form for the preferential 

system of the DM, hence, we do not suffer from erroneously adapting a wrong 

function. Secondly, nonparametric classifiers outperform their parametric 

counterparts in modeling complex data structures. In order to conduct modeling 

process in an adaptive way, we propose employing Active Learning (AL) 

techniques. In particular, we employ AL by asking a preference question to the 

DM at each step and try to reach a close approximation to the correct model in a 

small number of steps. AL is an application of semi-supervised Machine Learning 

(ML) where the learning algorithm iteratively queries “the Oracle” or user. The 

main rationale for using AL is that, usually we have abundant unlabeled data 

(those sinstances that do not have class information) at hand, whereas labeled data 

is scanty and labeling one is expensive. Thus, querying process is implemented so 
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that as much information as possible is obtained while as less unlabeled data as 

possible is queried, as mentioned in the marketing example. Consequently, 

preference modeling is structured as a learning process. Utilizing AL, we query the 

DM in an interactive way, thereby, DM is integrated into the model developing 

process. In this context, while utilizing strong features of SL in modeling complex 

structures, we also address the weak sides of SL criticized by Doumpos and 

Zopounidis (2011), in conjunction with preference modeling. As a consequence, 

this study can be regarded as a pioneering approach considering that SL based 

approaches in the literature have been developed and tested based on a relatively 

large preference information and do not interact with DM in model developing 

process while MCDA based approaches ignore interactions, suffer from 

generalization ability, and have no concern about predicting equally good 

everywhere in the criteria domain. 

This thesis is organized as follows: In Chapter 2, we provide literature review and 

background. In Chapter 3 we present our proposed approach. In Chapter 4 

experimental design and analysis performed in order to evaluate our proposed 

approach are explained in detail. Chapter 5 explains extension of the algorithm 

where we consider input distribution of the criteria. In Chapter 6 we present 

conclusion remarks and future work. 
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CHAPTER 2 

 

LITERATURE REVIEW AND BACKGROUND 

 

 

In decision making problems involving multiple criteria, the DM is presented a set 

of A potential actions that (s)he needs to consider. Potential actions might be 

comprised of a discrete set of alternatives where each alternative is described by a 

criterion set. On the other hand, there are cases where number of potential actions 

might be infinite. In this case, there exists a region in which all feasible 

alternatives lie and each point in this region corresponds to a potential action. In 

MCDA, the first problem type is defined as discrete decision making problem 

while problems of second type are called continuous decision making problems.  

When the DM faces a discrete decision making problem, the analyst can provide a 

decision aid by utilizing four different types of analyses. In MCDA, these analysis 

types are referred to as decision making problematics and can be classified as 

follows (Roy, 1996; Doumpos & Zopounidis, 2002; Figure 1) 

• Choice: Best or limited set of best alternatives are identified.  

• Ranking: Alternatives are rank-ordered from the most preferred to the 

least preferred.  

• Classification/Sorting: Alternatives are put into predefined groups based 

on degree of preference. 
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• Description: Alternatives are described based on their distinguishing 

features that are explained with criterion set.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Decision making problematics (Source: Doumpos & Zopounidis (2011)). 
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are expressed taking into account the other alternatives under consideration. If we 

add new alternatives to the set, the decision made by the DM might change. On the 

other hand, in the classification/sorting problem preferences made by the DM are 

absolute, based on the pre-defined groups. In manufacturing industry, for instance, 

a product undergoes a quality control process and labeled as “accepted”, “rejected” 

or “rework” based on some attributes under consideration. This judgement does 

not differ with respect to the other alternatives (or products) to be classified/sorted.  

Classification/sorting problem is one of the most studied problems in variety of 

disciplines. Even though different disciplines describe this problem using different 

parlance, in general the main idea is to assign a pre-defined class label to the 

alternatives under consideration. There are different terms used for this problem 

type, however, the commonly accepted terms are as follows (Doumpos & 

Zopounidis, 2002) :   

• Discrimination 

• Classification 

• Sorting 

The first two terms are used by people studying in SL and AI fields, while sorting 

has been established by the MCDA practitioners (Moreover, sorting problems are 

defined as ordinal classification problems in the SL parlance) (Doumpos & 

Zopounidis, 2002). Even though all these three problems deal with assigning a 

class label to the alternatives under consideration, there is an ordering of classes in 

the sorting problem while in discrimination and classification problem, classes are 

defined nominally. This is the main difference between classification and sorting 

problems.  

In the classification/sorting problem, each alternative x is represented with a set of 

criteria c = (c1,…,cn). Therefore, alternatives turn out to be vectors 
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( )1,...,j j jnc c=x , where jic  corresponds to the score of alternative jx achieved in 

criterion ic . Consequently, the classification task can be defined as developing a 

model that maps each alternative into a class label ( )1,..., ty y y∈ , where index t 

corresponds to the number of pre-defined classes. In the sorting case, however, 

classes are ordered, hence, ( )1 ... ty y y∈ ≻ ≻ . 

Even though the above definition of classification/sorting problem is common for 

various classification/sorting techniques, the model used to map alternatives into 

predefined groups may have different forms in MCDA. Most commonly used ones 

include (Doumpos & Zopounidis, 2011): 

•  Value functions: A value function (V(x)) representing degree of 

preference is defined such that, for two alternatives x and y,  

 
( ) ( )

( ) ( )

V V

V V

> ⇔
= ⇔

≻

∼

x y x y

x y x y
  (2) 

where ≻  and ∼ correspond to preference and indifference relations. 

• Outranking relations: An outranking relation S between two alternatives 

x and y is defined such that; 

 isat leastasgoodasS ⇔x y x y      (3) 

• “If...then...” decision rules:  In this form, model consists of two parts; 

condition part that follows “if” statement and conclusion part that follows 

“then” statement.  

Name of the function that is used to represent DM’s preference structure differs 

based on the decision condition. Making this distinction first time in the literature, 
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Keeney and Raiffa (1993) distinguish preference functions based on the risk 

associated with the alternatives. In their parlance, preference representation 

functions under risk are referred to as utility functions while preference 

representation functions under certainty are referred to as value functions. In the 

case of risky choice, a probability distribution is associated with consequences, 

hence, there exists uncertainty with respect to each consequence. Conversely, 

consequences of alternatives are certain in the latter case. Assuming that all 

consequences of the alternatives are certain (decisions are made under certainty) 

we will refer to functions representing preference structure of the DM as value 

function thereafter. 

Obtaining preference information from the DM is an important aspect of the 

preference modeling process. There are two main ways of getting preferential 

information from the DM: In direct way (or forward approach) DM specifies 

values for the parameters used in the preference model (i.e. weights, threshold 

values, etc.). In indirect way (or backward approach) DM is asked to make holistic 

judgements about reference alternatives. Based on these reference judgements, 

parameters of the preference model are elicited. Jacquet-Lagreze and Siskos 

(2001) explain the relationship between these two approaches with aggregation-

disaggregation paradigms. In the aggregation paradigm criteria aggregation model 

is known a priori, hence, parameters of the model are estimated in the model 

development process. Conversely, in the disaggregation paradigm, the model is 

estimated from the holistic judgements made by the DM. In  other words, 

disaggregation approach uses regression-like techniques to model DM preference 

structure by using a reference set of alternatives. Relationship between these two 

paradigms is illustrated in Figure 2 (Jacquet-Lagreze & Siskos, 2001). 

Model development process utilizing disaggregation paradigm is referred to as 

Disaggregation Analysis (DA). The most important input of DA is the reference 
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set which contains representative alternatives associated with global preferences 

(or label information). Reference set may be comprised of (Siskos et al. ,2005): 

• Fictitious but realistic representative examples, 

• Past decisions of the DM, 

• Subset of past decisions when the set is large. 

 

 

 

 

 

 

 

 

Figure 2. Aggregation and disaggregation paradigms (Source: Siskos et al. (2005)). 

 

In DA, the main objective is to estimate the best set of parameters φ  of the 

decision model that is believed to represent the preference structure of the DM as 

shown in Equation (4) (Doumpos & Zopounidis, 2011): 
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 *

ˆ
ˆ ˆarg min

pAφ
φ φ φ

∈
= −   (4) 

where ˆ
p

φ φ−  corresponds to p-norm of the differences between the actual and 

the estimated parameters and A corresponds to the feasible set of values for the 

parameters. In order to solve problem (4), the reference set is used empirically. Let 

D(X) denote evaluations of the DM on a set X. Then, the optimization problem 

turns out to be: 

 *
ˆˆ

ˆ ˆarg min ( ), ( , )
A

L D X D X fφφ
φ

∈
 =  

  (5) 

where ˆfφ  is the preference model developed and L(.) is a function that measures 

the difference between preferences made by the DM (( )D X ) and estimations 

made by the model  ( ˆ
ˆ ( , )D X fφ ).  

Similar to the DA of MCDA, SL also learns from examples. For the 

classification/sorting setting where output is qualitative, an estimate ̂G  is used to 

predict outputs where each output takes values from set ζ . A loss function 

represented by a K×K matrix L is used to measure difference between estimates 

and observations, where K = card (ζ ) (Hastie et al., 2009). According to Hastie et 

al. (2009), the Expected Prediction Error (EPE) is represented as: 

 ( )( )ˆ,EPE E L G G X =
 

  (6) 

where pX R∈  denote a real valued random input vector. Taking expectation with 

respect to the joint distribution P(G, X) and conditioning,  
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 ( ) ( )
1

ˆ, |
K

x k k
k

EPE E L G X P Xζ ζ
=

 =  ∑   (7) 

minimizing EPE pointwise, 

 ( ) [ ] ( )
1

ˆ arg min , |
K

k k
g

k

G x L g P X x
ζ

ζ ζ
∈ =

= =∑   (8) 

with the 0-1 loss function, 

 ( ) ( )ˆ arg min 1 |
g

G x P g X x
ζ∈

= − =     (9) 

As seen from the formal definitions of multi-criteria/multi-attribute 

sorting/classification problem in MCDA and SL domains, the main idea is to 

develop a model/classifier that learns from examples and maps each alternative 

into consequence space of outcomes. In the following sections we will provide 

techniques from these two fields that are developed to deal with 

classification/sorting problem. Additionally, we will mention Conjoint Analysis, a 

decomposition method from the marketing field, aiming to estimate preference 

structure of customer(s) (and parameters of the mathematical representation of the 

model) by means of  questionnaires. Similar to the focus of this thesis and different 

than the techniques proposed in MCDA, Conjoint Analysis considers preference 

modeling as a learning process, thereby seeks for methodologies that implement 

preference modeling process in an evolutionary way.  

2.1 Multicriteria Sorting Techniques in MCDA 

One of the earlier examples of DA based sorting methods in MCDA is UTADIS 

(UTilities Additives DIScriminantes). Basic principles introduced by Devaud et al. 

(1980), UTADIS is a variant of UTA (UTilities Additives) method (Jaquet-
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Lagreze and Siskos, 1982) that is developed for ranking problems. UTA method 

aims at inferring an additive utility function by using ordinal regression approach 

that ranks reference alternatives the same way as it was done by the DM. Utilizing 

an additive utility function, UTA assumes preferential independence among 

criteria. Likewise, UTADIS also utilizes an additive utility function as the criteria 

aggregation model and assumes preferential independence. Inferred additive utility 

function is used to sort reference alternatives where alternatives that achieve 

highest scores are labeled with C1, and alternatives that achieve worst scores are 

labeled with Ck , where k represents number of groups and 1 ... kC C≻ ≻ . UTADIS 

procedure may generate multiple optimal solutions. This situation is usually 

encountered when references are perfectly separable. In this case, alternative 

utility functions that sort the reference examples the same way as it was done by 

the DM can be obtained. These kind of utility functions are called compatible 

utility functions (Figueira et al., 2009). In order to improve generalization ability 

of the model, post-optimality analysis is performed in an effort to explore 

existence of alternative optimal and near optimal solutions.  

As a member of the family of ELECTRE methods, ELECTRE TRI method has 

been proposed by Yu (1992) for sorting problems. Like other ELECTRE methods, 

ELECTRE TRI utilizes outranking relations approach. The procedure is 

implemented in two stages. In the first stage, an outranking relation is developed in 

order to determine if an alternative outranks a profile, which is a fictitious 

alternative defined for separating classes. In the second stage, developed 

outranking relations are used to assign alternatives to classes. Being an outranking 

relation approach, ELECTRE TRI can model incomparability relations. The main 

drawback of ELECTRE TRI procedure is that it needs preferential parameters like 

criteria weights, veto thresholds or profiles. It is unrealistic to expect DM to 

provide these parameters directly and the process to elicit these parameters is 

usually troublesome.  
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Ulu and Köksalan (2001) have developed an interactive sorting procedure for a 

two-class case where classes corresponded to acceptable and unacceptable sets. 

They considered three different underlying utility functions, namely, linear, 

quasiconcave, and general monotone. Their procedure is effective when there are 

not many criteria and number of alternatives is large. In the algorithm, an 

alternative is assigned to one of the two classes based on previous preferences of 

the DM, dominance relationships among alternatives, and properties of assumed 

underlying utility function. In order to assign alternatives to classes, feasibility 

Linear Programs (LPs) are solved. If an alternative cannot be assigned to a class, 

then preference information for the alternative is claimed from the DM. 

Utilizing the principles of rough set theory of Pawlak (1982), MCDA techniques 

based on rough sets theory have become popular among researchers. In their 

prominent paper, Greco et al. (2001) have outlined the principles of Dominance-

based Rough Set Approach (DRSA) where a distinction between attribute and 

criterion was made. Different than an attribute, a criterion is defined on 

preference-ordered domain. In this respect, indiscernibility relation based on 

attributes is substituted by dominance relation. Coherent with these principles, 

Greco et al. (2002) have developed a rule based procedure for dealing with sorting 

problems. Their procedure makes use of disaggregation paradigm, thereby, they 

use reference examples for eliciting preference information from the DM. Making 

the distinction between attribute and criterion, they build “rough” approximations 

of decision classes defined by “indiscernibility” relations based on qualitative 

attributes, “similarity” relations based on quantitative attributes, and “dominance” 

relations based on criteria. They present the model with decision rules in the form 

of logical statements as “if...then...”. They state that models of this form have the 

advantage of interpretability. 

Köksalan and Ulu (2003) have developed an interactive multicriteria sorting 

procedure in which DM was assumed to have a linear (additive) utility function. 
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The procedure is evolutionary in nature and based on the preference information 

obtained from the DM, dominance relations of the alternatives and additivity of the 

utility function, unlabeled alternatives are placed in pre-defined classes. At each 

iteration, either class information of an alternative is asked to the DM or an 

alternative is placed in a class by the algorithm based on the answers gathered thus 

far. 

Utilizing disaggregation paradigm, Köksalan et al. (2009) have proposed a 

multicriteria sorting procedure based on outranking relations. Their work can be 

considered as an extension to the ELECTRl TRl method. ELECTRE TRl method 

requires DM to provide parameters like weights, thresholds and profiles that 

represent categories. Considering unrealistic nature of the method due to the 

difficulty of obtaining this information from the DM, they have proposed a new 

method that elicits profiles representing limits of the categories from the reference 

set that has been constructed in supervision of the DM. 

Köksalan and Bilgin Özpeynirci (2009) have considered a method that assumed an 

additive underlying utility function representing preference structure of the DM. 

The proposed method, which is an extension to the UTADIS procedure in general, 

overcomes the misclassification drawback of UTADIS by interactively querying 

the DM. Rather than trying to estimate parameters of the additive utility function, 

they place alternatives into pre-defined classes based on additive utility function 

assumption and preference information obtained from the DM. ln their paper they 

have showed that proposed approach has outperformed UTADIS procedure. 

As an another extension to the UTADIS method, Greco et al. (2010) have 

proposed UTADISGMS. Like its predecessor, UTADISGMS is an ordinal regression 

method, nevertheless, rather than considering only one or a subset of compatible 

utility functions produced by the model, the proposed procedure considers all 

compatible utility functions. By doing that, two kinds of assignments are made for 
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the alternatives: necessary and possible assignments. Necessary assignments are 

those that are proposed by all compatible value functions while assignments 

proposed by any compatible value function are called possible assignments.  

Considering inadequacy of additive utility functions in handling interacting 

criteria, Angilella et al. (2009) have proposed using Choquet integrals, which have 

been popular as an aggregation operator in order to deal with interaction 

phenomenon, in the robust ordinal regression framework for sorting problems. 

Extending the idea of UTADIS, they utilize Choquet integral as an aggregator 

instead of an additive value function. Similar to the UTADISGMS procedure, robust 

ordinal regression framework is used to handle multiple compatible value 

functions, hence, necessary and possible assignments are elicited. 

Considering the difficulty of eliciting too many parameters in the ELECTRE TRI 

method, Leroy et al. (2011) have proposed using a simplified version of 

ELECTRE TRI, where an alternative was assigned to a class or above if this 

alternative was as good as the “lower profile” of that class for a majority of 

criteria. They refer to their method as MR-Sort. In order to find profile and weight 

values, they utilize a learning procedure where a set of labeled reference 

assignments are used.  

Soylu (2011) has proposed a multicriteria sorting method where preference 

structure of the DM was represented with a Tchebycheff utility function. The main 

reason for using Tchebycheff utility function is that a weighted Tchebycheff utility 

function can reach non-convex regions of the efficient frontier and may represent 

variety of preference structures by adjusting weights. The proposed methodology 

uses disaggregation paradigm, hence, a reference set of alternatives that are 

classified into predefined classes by the DM are used to label remaining 

alternatives by performing pairwise comparisons. Comparison of two alternatives 

is performed by calculating strength of alternative i over j, which is measured with 
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difference between weighted Tchebycheff distances of alternatives to the ideal 

point. The method utilizes the same idea as in UTADIS, therefore, final 

classification is made by comparing average strength of each alternative with 

computed threshold values of each class. 

As an extension to UTADISGMS method, Greco et al. (2011) have proposed a 

methodology for selection of a representative value function which represented 

necessary and possible relations produced by UTADlSGMS in an effort to provide 

an interpretable decision model to the DM. This is usually achieved by interacting 

with the DM, so that DM expresses targets that are to be attained by the 

representative value function. The produced value function has two possible uses: 

firstly, DM is presented an interpretable decision model which helps him/her 

understand his/her preference structure. Secondly, the produced model can be used 

to sort unseen (those instances that are not used in the training phase) future 

alternatives. 

Buğdacı et al. (2013) have developed a probabilistic sorting approach where the 

probability of an alternative belonging to each class was calculated. Afterwards a 

proper assignment of alternatives into pre-defined classes is performed based on 

the calculated probability of misclassification. Given the assignments made thus 

far, membership probabilities of each alternative are recalculated and the 

procedure is carried out in an evolutionary manner. They assume an additive 

underlying utility function and also assume that utility related parameters and 

thresholds can be estimated by interacting with the DM. Whenever an alternative 

cannot be assigned to a class, correct class information is requested from the DM. 

lt is claimed that the proposed approach addresses two problematic issues usually 

encountered in multiple criteria sorting methodologies. Firstly, high 

misclassification rates of those procedures that aim to estimate parameters of the 

preference model. Secondly, excessive involvement of the DM in the interactive 

procedures. 
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In another study, Ulu and Köksalan (2014) have assumed a quasiconcave value 

function that represented DM’s preferential structure for sorting alternatives to 

preference ordered classes. Emphasizing that their work is the first example 

utilizing quasiconcave underlying value functions in sorting problems, they use 

preference information obtained from the DM, dominance relations, and properties 

of quasiconcave value function for assigning unlabeled alternatives to classes. 

Whenever needed, DM is requested to place an alternative to a proper class and 

then as many alternatives as possible are assigned based on the dominance 

relations and mathematical properties of quasiconcave value function. Hence, they 

carry out the procedure in an interactive way.  

In order to deal with alternative optimal solutions that lead to multiple compatible 

value functions in the ordinal regression approach, Çelik et al. (2015) have studied 

a new probabilistic distance based sorting procedure that utilized an approach 

similar to necessary-possible class method. Two kinds of threshold levels are 

computed that are used to separate each consecutive class pair: maximum and 

minimum. Based on these thresholds, pessimistic (widest) and optimistic 

(narrowest) ranges are determined which are used to calculate class-belonging 

probabilities. 

Extending the idea of UTADIS, Corrente et al. (2015) have applied Multiple 

Criteria Hierarchy Process (MHCP) framework proposed by Corrente et al. (2012) 

to sorting problems. MHCP is developed to deal with multiple criteria in a 

hierarchical scheme, hence, large sets of criteria are partitioned into levels. By 

partitioning the criteria, MCDA process is simplified for the DM and the problem 

becomes more manageable. Similar to UTADIS, their technique assumes that 

DM’s preference structure is compatible with additive functional form.  

All these aforementioned studies are presented in Table 2 based on modeling 

approach and assumed underlying value function for comparison. 
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Table 2. Multicriteria sorting techniques proposed in the literature. 

Authors 
Modeling 
Approach 

Assumed  
Value Function 

Devaud et al. (1980) Functional Additive 

Yu (1992) Outranking 
Relations 

-  

Ulu and Köksalan (2001) Functional Additive 
Quasiconcave 
Gen.Monotone 

Greco et al. (2002) Rule Based - 

Köksalan and Ulu (2003) Functional Additive 

Köksalan et al. (2009) Outranking 
Relations 

- 

Köksalan and Özpeynirci (2009) Functional Additive 

Angilella et al. (2009) Functional Choquet integral 

Greco et al. (2010) Functional Additive 

Soylu (2011) Functional Tchebycheff 

Greco et al. (2011) Functional Additive 

Leroy et al. (2011) Outranking 
Relations 

- 

Buğdacı et al. (2013) Functional Additive 

Ulu and Köksalan (2014) Functional Quasiconcave 

Çelik et al. (2015) Functional Lp norm 

Corrente et al. (2015) Functional Additive 

 

As seen in Table 2, most of the techniques outlined in this section utilize a value 

function approach, hence, assume an underlying value function that is believed to 

represent preference structure of the DM. The main reason for assuming a 

functional form is that it makes modeling process easier, thus, by using 

mathematical properties of the assumed value function, a representative model is 

elicited. There are three outranking relations-based sorting techniques in the list 

while the only rule-based technique is proposed by Greco et al. (2002). 

Considering the years of the studies, we can infer that multicriteria sorting problem 

is drawing a growing interest recently. This is believed to stem from the fact that, 

multicriteria sorting problems are confronted more often in various fields like 

finance, risk evaluation, quality management, human resources management etc.  
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As stated previously, even though being an important phenomenon in real life 

MCDA problems, an interaction phenomenon is usually neglected or all the 

criteria under consideration are assumed to be preferentially independent. We see 

reflections of the aforesaid proposition in Table 2. Almost all of the proposed 

functional techniques assume functional forms that are not able to model 

interaction structures. Although quasiconcave functions do not assume preferential 

independence, their monotone structure prevent them model complex interaction 

structures. It is not clear if outranking relations approach can model interacting 

criteria and this is subject to experimentation, however, it is generally assumed 

that these techniques require preferential independence assumption among criteria 

(Corrente, 2012). A comparison of the proposed techniques in this context is 

presented in  Table 3.  

As clearly seen from Table 3, there are only three studies (Greco et al., 2002; 

Angilella et al., 2009; Ulu & Köksalan, 2014) that do not assume preferential 

independence. All techniques mentioned in this section assume that DM has a 

monotonic preference structure. Therefore, those three studies that do not assume 

preferential independence cannot model complex interactions that show 

nonmonotonic structures. As a consequence, we can assert that their ability to 

model interactions is limited. Interactive MCDA techniques are popular among 

sorting problems due to their ability to integrate DM to the model developing 

process and expedite learning process. Nevertheless, Table 3 reveals that 

interactive procedures usually ignore interaction phenomenon or assume it does 

not exist. Consequently, based on our literature review on MCDA sorting 

techniques, we can claim that there is a need for new procedures that elicit 

preference information from the DM interactively and is able to deal with complex 

interactions and nonmonotonic structures efficiently without making any 

functional assumptions, as indicated with gray zone in Table 3.   

 



27 

 

Table 3. Comparison of multicriteria sorting techniques. 

Interactive 
Functional 
Assumption 

Ability to Model Interactions 

No Yes (Limited) 

No 

Yes 

Devaud et al. (1980) 
Greco et al. (2010) 
Soylu et al. (2011) 
Greco et al. (2011) 
Çelik et al. (2015) 
Corrente et al. (2015) 

 

No 
Yu (1992) 
Leroy et al. (2011) 

Greco et al. (2002) 
Angilella et al. (2009) 

Yes 

Yes 

Ulu and Köksalan (2001) 
Köksalan and Ulu (2003) 
Köksalan and Özpeynirci (2009) 
Buğdacı et al. (2013) 

Ulu and Köksalan (2014) 

No Köksalan et al. (2009)  

 

In general, the main objective of the aforementioned techniques is to sort limited 

number of alternatives of the problem under consideration with maximum 

accuracy. They take a subset of the alternatives for getting preference information. 

Hence, the preference model that is developed based on the preference information 

obtained with respect to reference alternatives is used to sort the rest. Even though 

developed models represent preference structure of the DM, these techniques 

cannot be considered as preference modeling approaches. Additionally, they do 

not concern about predicting equally good everywhere in the criteria domain, 

which corresponds to generalization ability. 
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2.2 Nonparametric Classification and Ordinal Regression Techniques in 

Statistical Learning 

Drawing a growing interest in a variety of fields recently, SL refers to tools for 

understanding and modeling complex structures embedded in data (James et al., 

2013).  Emerging as a subfield of statistics, it combines various disciplines such as 

computer science and operations research. Broadly speaking, SL techniques can be 

divided into two main parts: supervised and unsupervised learning. In supervised 

learning, the main aim is to infer a statistical model for prediction or estimation 

under the supervision of “outputs”. Hence, a predictive model that explains the 

relationship between “inputs” and “outputs” is constructed. In unsupervised 

learning, on the other hand, only inputs are utilized to learn structures of the data. 

Classification problem falls into supervised learning part where outputs are 

qualitative or categorical. In this respect, classification models aim to build a 

predictive relationship between inputs, qualitative or quantitative, and qualitative 

output. After training a classification model, the model classifies or labels an 

(usually previously unseen) observation based on its input values.  

Classification is one of the most studied supervised learning techniques in the 

literature, therefore, numerous procedures have been developed. In this section, we 

will provide a brief review of prominent nonparametric classification techniques 

proposed in the literature. Additionally, we will outline basics of Support Vector 

Machines (SVM) and Random Forest (RF), since we utilize these techniques in 

our thesis. As previously stated, we utilize nonparametric classification techniques 

in this study. In general, parametric models make assumptions regarding 

underlying statistical properties of the data of interest. Based on these statistical 

assumptions, parameters of the model are elicited. However, statistical properties 

of the data are hardly known, therefore, incorrect statistical assumptions lead to 

wrong inference. At this point, it would be proper to make it clear that 

nonparametric models use parameters to build models, as well. However, these 
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parameters are not parameters of predefined statistical model, rather, parameters 

that are determined by the observations of the data. Having this property, 

nonparametric models outperform their parametric counterparts in terms of 

learning from complex data structures.  

Inspired by the human brain, artificial Neural Networks (NNs) have been 

introduced in the artificial intelligence field to deal with complex problems. 

Basically, a NN is a regression or classification model represented with a directed 

acyclic graph of neurons organized into layers. Generally speaking, a NN consist 

of a layer of input nodes (inputs), a layer of output (classes) nodes and 

intermediate (hidden) layer. Depending on the topology of the network, functions 

or models of different complexity can be represented with neural networks. 

Because of its somewhat closed-form, it is usually hard to provide an explanation 

or interpretation for outputs. Fitting NNs is quite an art. There are many issues to 

be considered to avoid overfitting. For detailed explanations of these issues, see 

Hastie et al. (2009).  

First proposed by Breiman et al. (1984), Classification and Regression Trees 

(CART) is a nonparametric decision tree based statistical learning technique that 

can be applied to regression and classification problems based on type of the 

dependent variable, quantitative or qualitative. Based on the same principles, 

Quinlan (1993) introduced C4.5 algorithm. In decision tree learning, every node 

corresponds to an attribute while every branch represents a condition based on the 

node attribute. Each leaf corresponds to a class, hence, leaves label an observation 

satisfying the conditions of the branches on the path. Decision tree based 

classification algorithms become popular recently because of their following 

properties (Doumpos & Zopounidis, 2002): 

• Handling both quantitative and qualitative attributes 

• Dealing with missing values 
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• Interpretability of the models produced 

Stone et al. (1997) developed an extension of Multivariate Adaptive Regression 

Splines (MARS) algorithm, namely PolyMARS, for classification problems. 

MARS is an adaptive procedure for regression and well-suited for modeling non-

linearities and interactions among attributes (Friedman, 1991). MARS uses basis 

functions taking one of the three forms to build models: a constant, hinge functions 

and product of two or more hinge functions. Use of hinge functions provides high 

flexibility. Weber et al. (2012) proposed an extension to MARS where they apply 

it with Tikhonov regularization and conic quadratic programming. Our previous 

experience with MARS and PolyMARS has showed that, these techniques are 

highly sensitive to size of the training set. When the training size is small, they 

have a tendency to overfit data, which harms the generalization capability of the 

model.  

2.2.1 Support Vector Machines 

Support Vector Machines (SVMs) have become very popular recently due to their 

performance in variety of different applications such as text classification, face 

recognition, database marketing and bioinformatics (Campbell & Ying, 2011). 

Initially developed for binary classification, SVMs can be applied to multi-class 

classification, regression and clustering problems. The main idea of SVM is to 

generate a hyperplane or set of hyperplanes usually in high dimensional space that 

will separate data into classes as efficient as possible. If groups are perfectly 

separable by a linear hyperplane, then this classifier is called maximum margin 

classifier.  

The main objective of a maximum margin classifier is to find a separating 

hyperplane that is farthest from the observations. Among all such perpendicular 

distances to the separating hyperplane, the one that is the smallest is called margin, 
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hence, maximum margin classifier seeks a solution where margin is maximized. 

Separating hyperplane can be formulated as . 0b+ =w x , where x are the points 

that are positioned on the hyperplane and w is the weight vector normal to the 

hyperplane. For the binary classification case, observations that satisfy . 0b+ ≥w x  

are classified as class 1 (yi = 1) , and observations that satisfy . 0b+ <w x  are 

classified as class -1 (yi = -1). In this respect, closest points to the separating 

hyperplane hold . 1b+ = ±w x . These hyperplanes are called canonical hyperplanes. 

All these concepts are illustrated in Figure 3 (Schölkopf & Smola, 2002).  

 

 

Figure 3. Margin and hyperplane concepts in SVM (Source: Schölkopf & Smola 
(2002)).  

 

Assume we have two observations (x1 and x2) on the canonical hyperplanes lying 

on the opposite sides, then we can formulate w.(x1 – x2) = 2. Normal vector to the 

separating hyperplane is 
2

/w w . Then, distance between two canonical 

hyperplanes can be written as 1 2 2
( ). /−x x w w  yielding to a margin 

2
1/ w .  

Hence, finding the maximum margin classifier problem can be formulated as 

(Campbell & Ying, 2011): 
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Generally classes are not perfectly separable, therefore there exists no separating 

hyperplane and maximum margin classifier. In this case, a generalization of the 

maximal margin classifier, namely support vector classifier, is used. Different than 

the maximum margin classifier, support vector classifiers allow some of the 

observations be on the wrong side of the margin, even wrong side of the 

hyperplane (James et al., 2013). Having this property, support vector classifiers are 

sometimes called as soft classifiers. Those vectors that lie in the margin or wrong 

side of the separating hyperplane are called support vectors and determine support 

vector classifier. In order to allow wrong located observations, an error norm and 

slack variable are utilized. Consequently, determining the support vector classifier 

turns out to be finding optimal solution to the following optimization problem: 
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where ε  is the slack variable and C is the tuning parameter that defines the trade-

off between margin maximization and error minimization (Doumpos & 

Zopounidis, 2011). By using Lagrange multipliers, the primal problem in (10) can 

be rewritten as; 
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which is minimized with respect to w, b and iε . Taking derivative of Lp with 

respect to these variables we get; 
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Substituting (13) - (15) into (12), we get Lagrangian (Wolfe) dual; 
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which is maximized subject to 0 i Cα≤ ≤  and 
1

0
m

i i
i

yα
=

=∑ .  

Like maximum margin classifiers, support vector classifiers build linear 

boundaries. However, data may not be separable with linear boundaries as 

illustrated in  Campbell & Ying (2011).  
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Figure 4. Linearly inseparable data (Source: Campbell & Ying (2011)). 

 

In order to generalize the linearly separable case, a kernel trick is used to generate 

nonlinear boundaries by mapping data points to a higher dimension, called feature 

space. This is achieved by applying a transformation . ( ). ( )i j i jx x x x→ Φ Φ  through 

the mapping function (.)Φ . Mapping function is defined with a kernel, 

( , ) ( ). ( )i j i jK x x x x= Φ Φ . The main idea is that, with the transformed data in the 

feature space, linear boundaries can be developed that will efficiently separate 

classes. Most commonly used kernels are (Hastie et al., 2009);  

• dth-Degree polynomial:  d( , ) (1 , )i j i jK x x x x= +           (17) 

• Radial basis:   
2

( )
( , ) i jx x

i jK x x e
γ− −=              (18) 

• Neural Network:  1 2( , ) tanh(k , k )i j i jK x x x x= +          (19) 
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As stated previously, SVMs are first developed for the binary classification case. 

Among many techniques to extend SVMs to multi-class case, two techniques 

prevail, namely, one-versus-one and one-versus-all. One-versus-one approach 

partitions the problem into 
2

K 
 
 

 SVM problems (K is the number of classes), 

where each problem considers two pair of classes. On the other hand, one-versus-

all approach trains SVMs to separate K classes from the remaining K-1 classes. 

Then class assignments are done accordingly. For detailed information regarding 

extending SVMs to multi-class case, refer to Hastie et al. (2009). 

2.2.2 Random Forests 

Even though the idea of RFs is based on collective work of several researchers, it 

was first Breiman (2001) to introduce principles of RF. RFs are decision tree based 

ensemble methods for classification and regression. Thus, RFs utilize multiple 

decision trees that train on the data and prediction is made based on the predictions 

of  individual trees.  

Tree-based methods utilize a simple idea where the attribute domain is partitioned 

into rectangles and then a separate model is fit to each of them. When the 

dependent variable is nominal, a class label is assigned to each of these rectangles. 

Trees dealing with nominal dependent variables are called classification trees. In 

training the tree, recursive binary partitions are implemented, hence, only one 

independent variable is considered for partition at each step. For instance, assume 

that we consider variable 1X  for partition and we decide to split at 1 1X t=  . Then 

the attribute domain is partitioned into two sub-regions as 1 1X t≤  and 1 1X t>  

(Hastie et al., 2009). The idea of recursive partitioning is illustrated in Figure 5. At 

the training phase, observations fall into proper branches in the tree based on how 

they satisfy the conditions of splits. When they reach the terminal or leaf nodes, 

they are assigned the labels of these nodes as predictions. In tree-based methods 
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the training phase is implemented so that percentage of true predicted instances is 

maximized. On the other hand, a regularization is also utilized in order to improve 

generalization ability of the model.  

 

 

Figure 5. Recursive partitioning in tree-based methods (Source: Hastie et al. 
(2009)). 

 

Decision trees have been very popular among machine learning community, 

however, when grown very deep, they tend to overfit the training data. Hence, they 

are low-bias and high variance procedures (Hastie et al., 2009). RFs use bagging 

(short for bootstrap aggregating) idea of Breiman (1996) in order to reduce the 

variance at the expense of a small increase in bias. Bagging aims at reducing the 

variance and increasing the prediction accuracy by taking many samples of same 

size from the original training set with replacement (bootstrapping), fitting 

separate decision trees (bT ) to each training set and averaging the predictions. In 

addition to bagging, RFs use a smart technique in order to decorrelate generated 

trees. When growing bagged decision trees, only a random subset of m predictor 
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variables out of all predictors (p) are considered for splitting each time we split.  

Usually size of the randomly selected random predictors is p  (Hastie et al., 

2009). The reason for this modification to bagged trees is to prevent strong 

predictors to dominate splitting phase, consequently resulting similar trees. This is 

the major difference between bagged trees and RF. In order to make prediction for 

an instance x, each tree makes its own prediction for the instance ( ˆ ( )bC x ) and then 

majority vote (ˆ ( )B
RFC x ) is output as the prediction of the ensemble. Pseudo-code of 

the RF algorithm is presented in Figure 6 (Hastie et al., 2009).  

 

1. for b = 1 to B do 

2. draw a bootstrap sample Z of size N from the training data. 

3. grow a RF tree Tb for the bootstrapped data, by recursively repeating the 

following steps for each terminal node of the tree, until the minimum node 

size nmin is reached. 

4. select m variables at random from the p variables 

5. pick the best variable/split-point among the m. 

6. split the node into two daughter nodes. 

7. end for 

8. output the ensemble of trees { }1

B

bT   

9. to make a prediction at a new point x: 

10. let ˆ ( )bC x  be the class prediction of the bth RF tree. Then;  

ˆ ( )B
RFC x = majority vote { }

1

ˆ ( )
B

bC x  

Figure 6. Pseudo-code of the RF algorithm. 
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Similar to decision trees, RFs are very capable of handling interactions among 

predictors. Additionally, RFs are very robust to overfitting (Hastie et al., 2009). 

This is due to its ensemble structure, i.e., averaging predictions of many grown 

bagged trees. This property becomes very important when size of the training data 

is small because classifiers usually suffer from overfitting in the presence of small 

data sets. Another valuable property of RFs is that, similar to other decision tree 

based learning methods, RFs handle qualitative predictors very easily, without 

creating dummy variables. On the other hand, RFs do not provide models that are 

as interpretable as those built with decision trees since they utilize multiple trees in 

the learning phase and predictions are made based on consensus.  

All nonparametric classification techniques mentioned in this section offer strong 

classifiers. Nonetheless, it is not easy to determine which classification algorithm 

is the best. There are several studies regarding this issue, comparing performance 

of classifiers under different classifying tasks (Lim et al., 2000; Duan & Keerthi, 

2005; Kotsiantis, 2007; Madjarov et al., 2012). However, as Kotsiantis (2007) and 

James et al. (2013) state, there is no best algorithm that outperforms others in all 

circumstances. For instance, if there exists a complex interaction structure among 

predictors, then a decision tree based approach like RF may outperform others. 

Conversely, if there is no interaction among predictors and classes can be 

separated with linear boundaries, another classifier (for instance SVM) may 

perform better than RF. 

2.2.3 Ordinal Classification Problem 

As stated previously, the main difference between classification and sorting (or 

ordinal classification) problems is that, in the first case classes are defined 

nominally while in the latter case there is an order among classes. All 

aforementioned SL techniques are developed to address nominal classification 

problems. Even though there are many applications that employ nominal 
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classification techniques for ordinal classification problems, special structure of 

the ordinal classification problems contain valuable information that can expedite 

the learning process. 

In their paper, Hühn and Hüllermeier (2009) pose the question “Is the ordinal 

class structure useful in classifier learning?” and aim to determine if it is 

possible to exploit the order information of the problem. In order to investigate this 

empirically, they apply ordinal classification techniques to same ordinal problem 

sets in two different settings. In the first setting, learner is applied to the true 

ordinal problem. In the second setting learner is applied to the distorted problem 

where labels are given to groups in an arbitrary permutation. At the end of the 

experimentation they come up with two results: 

• Ordinal classification techniques do exploit the ordinal structure of the data 

• Complicated learners producing highly flexible decision boundaries benefit 

less than the learners producing less flexible boundaries. 

As a consequence, prediction performance increases if learners that are able to 

exploit ordinal structure of the data are used for ordinal classification problems.  

SL practitioners studied on ordinal classification problems in an aim to develop 

nonparametric approaches. For instance, Chu and Keerthi (2007) applied support 

vector approach to ordinal regression problems by optimizing multiple thresholds 

to define parallel discriminant hyperplanes for the ordinal scales. Pinto da Costa et 

al. (2008) have proposed a new approach where posterior probabilities of the 

predictions are enforced to follow a unimodal structure. They state that since there 

is an ordinal relationship among classes, the posterior probabilities should decrease 

monotonically on both sides of the class having the highest posterior probability. 

In order to achieve this, they impose unimodality in two ways. In the parametric 

approach, posterior probabilities are enforced to follow a given parametric 

distribution. In the nonparametric approach, unimodality is imposed by penalizing 

non-unimodal distributions using error measures. Waegeman and  Boullart (2009) 
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proposed using an ensemble of SVMs to tackle with ordinal classification 

problems. They decompose problem into r-1 subproblems (where problem has r 

ordinal classes). Hence, r-1 binary SVMs are trained for each subproblem. They 

attach weights to each of the n training samples where weight of each sample 

differs for each binary classifier based on absolute difference between their rank 

(ordinal class) and predicted rank. All these aforementioned techniques require 

modification to the existing classification algorithms. To our knowledge, there 

exists no comprehensive study in the literature comparing these ordinal 

classification techniques with their nominal counterparts under different 

circumstances, such as data size, type or dimension, however, our experience with 

some of these ordinal classification algorithms showed that they did not perform 

well with small data. Their nominal classification counterparts outperform these 

techniques when they are trained on a small data set. Consequently, we think that 

there are still issues in ordinal classification area to be developed. 

In order to tackle with ordinal classification problems by using standard 

classification algorithms, Frank and Hall (2001) proposed a simple approach. The 

main advantage of their approach is that, any base classification algorithm can be 

applied without making any modification. First of all, the problem having r ordinal 

classes is decomposed into r-1 subproblems. Hence, each of these subproblems 

turns out to be binary classification problems. Figure 7 illustrates transformation of 

a 4 class ordinal classification problem into 3 binary classification problems 

(Frank & Hall, 2001).  
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Figure 7. Transforming a 4-class ordinal classification problem into 3 binary 
classification problems (Source: Frank & Hall (2001)). 

Each derived data set is trained with a base binary learner. Hence, we obtain r-1 

binary learners. In order to make predictions on unseen instances, posterior 

probabilities P(.) are calculated by using r-1 binary learners as follows: 
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where iV  corresponds to the i th ordered class. As a consequence, the class having 

the maximum posterior probability is assigned to instance. Empirical results show 

that the proposed technique outperforms standard classification algorithms when 

applied to ordinal classification problems. Another finding is that, as the number 

of classes increases, performance of the proposed approach increases with respect 

to standard classification algorithms.  
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2.3 Conjoint Analysis 

Similar to the focus of this thesis and different than the applications proposed in 

MCDA, Conjoint Analysis considers preference modeling as a learning process, 

thereby seeks for methodologies that implement preference modeling process in an 

evolutionary way. In this respect, this thesis study is comparable to the approaches 

proposed in Conjoint Analysis (CA), rather than those proposed in MCDA. 

Additionally, our proposed approach addresses the problematic and unsolved 

issues of CA, which we will mention, shortly. This is the reason why we 

particularly go over CA in this section. 

CA refers to set of decomposition methods that aim to estimate preference 

structure of the customers based on the joint effects of levels of two or more 

attributes (Rao, 2014). CA usually approaches preference structure modeling as a 

function estimation problem and uses reference evaluations of alternatives (or 

profiles as in CA parlance) as done in DA. By decomposing  holistic preferences 

to partial contributions of product features (part-worths), or in other words how 

much each feature contributes to the overall preference, are quantitatively 

computed. Once part-worths are determined, not only preferences of the existing 

products but also preferences of future ones can be estimated.  

There are mainly four types of CA methods (Rao, 2014). These are: 

• The traditional method 

• Choice-Based CA (CBCA) 

• Adaptive CA (ACA) 

• Self-explicated CA 

Among aforementioned methods the first three are decomposition methods, which 

basically utilize disaggregation phenomenon of MCDA. Thus, these methods elicit 

part-worths based on holistic judgements made by the DM or customer. The last 
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one, on the other hand, is a compositional method. Utilizing aggregation 

phenomenon of MCDA, this method estimates preferences based on DM or 

customer statements regarding importance or scores of attributes and their levels. 

In the traditional method, preferences are demanded from the customers in the 

ratio scale. In order to collect preference information, usually a design is 

constructed that includes all possible alternatives. These alternatives are called full 

profiles. Based on the assumed functional model and preference values obtained 

from the customer, regression-like techniques are used to build the preference 

model. The main drawback of this approach is that, in the presence of many 

attributes, a full profile (full factorial) design becomes very large. In order to 

overcome this issue, smaller designs (such as fractional factorial design) are 

utilized. Another disadvantage of this method is that, an underlying functional 

form representing preference structure of the customer is to be defined a priori. 

In the CBCA, the preference information is obtained in terms of stated choices, 

rather than ratings of alternatives. Hence, the customer states a choice among 4 or 

5 alternatives. The main advantage of this approach is its ability to mimic actual 

marketplace choices that people make (Rao, 2014). In CBCA, usually Multinomial 

Logit Model (MNL) is used to build a preference model. Similarly, CBCA suffers 

from large number of attributes. 

In general, models estimated in traditional method and CBCA are parametric ones, 

therefore, as the number of attributes increase, the parameters to be estimated 

increase as well. Consequently, a full profile (and even a partial profile) design 

gets very large which is impractical for customer to answer. In order to deal with 

curse of dimensionality, ACA methods are developed. The main idea of ACA is to 

ask as less questions as possible while reducing uncertainty for the parameter 

estimates. In order to achieve this, methodology adaptively selects a new question 

based on previously obtained answers. Thus, ACA aims to get as much 
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information as possible while asking as less questions as possible. This approach is 

particularly beneficial for on-line questionnaires. On-line questionnaires are 

characterized by respondents that can leave the questionnaire at any time. 

Therefore, asking questions efficiently is of utmost importance in on-line 

environment. 

There are many studies in the literature dealing with CA, particularly ACA. In 

polyhedral methods, for instance, a polyhedron that is formed by feasible values of 

part-worths is considered. Hence, questions are selected to reduce this polyhedron 

as fast as possible. Toubia et al. (2003) proposed a method that utilizes polyhedral 

approach where questions are selected to maximally reduce the volume of this 

polyhedron and minimize the length of its longest axis. Then, a technique called 

analytic central estimation is used to find values of the middle-most (values that 

are closest to the center of the polyhedron) parth-worths. Based on the similar idea, 

a probabilistic version of this study is proposed, as well (Toubia et al., 2007). 

Abernethy et al. (2008) proposed a robust ACA approach where response errors 

are considered in order to prevent future questions from being influenced by the 

previous erroneous answers. Cui and Curry (2005) used SVM as the base learner 

in CA and compared with other commonly used parametric methods. Evgeniou et 

al., (2005) proposed using SVM in developing a polyhedral method for preference 

modeling. Their approach is similar to that of Cui and Curry (2005) in that their 

model is based on formulating the problem of preference modeling as an 

optimization problem where an appropriate cost function is minimized without 

assuming a particular probabilistic model. The last two studies that utilize SVM 

are not adaptive methods.  

As Rao (2014) states, ACA methods cannot model interactions among attributes, 

which is generally criticized. Traditional methods and CBCA handle interactions, 

however, proper underlying functional forms must be determined, which is usually 

unknown. Additionally, they strongly suffer from curse of dimensionality. This 
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issue is raised by Teichert and Shehu (2013), where they remark that model-free 

approaches should be developed in ACA in order to avoid model misspecifications 

and estimation biases. 

2.4 Active Learning 

Being a special case of semi-supervised learning, AL aims interactively querying 

the DM (or Oracle as in AL parlance) to learn about a phenomenon in an efficient 

way. “Passive” learning, on the other hand, learns from a training data that is 

collected in an unstructured way. Based on the training data obtained thus far, AL 

aims to minimize uncertainty regarding the data, hence, develops a “line of  

inquiry” in an evolutionary way (Settles, 2012). Consequently, main objective of 

AL is to obtain as much information as possible by querying as less questions as 

possible. In this respect, AL can be considered as ML equivalent of ACA and 

optimal experimental designs. However, AL is superior to ACA and optimal 

experimental designs due to the fact that AL can be utilized with nonparametric 

learners, hence, there is no need to assume a functional form for the phenomenon 

of interest. Having this property, it is a perfect choice for learning complex 

structures in an evolutionary and effective way.  

The main motivation behind AL is that, there is usually cheap and abundant 

unlabeled data available, whereas, labeled data is scarce and obtaining is 

expensive. Expensiveness may denote human effort, time or money. Whatever the 

reason is, in the absence of plenty of labeled data, information embedded in the 

unlabeled data is exploited to boost supervised learning process. 

AL strategies can be applied to both regression (continuous response) and 

classification problems. However, classification problems are widely studied in the 

literature. This is due to the fact that, classification problem draws more attention 

in the ML and AI fields.  
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In AL, there are mainly three different scenarios or ways in which the learner may 

ask queries (Settles, 2012): 

• Query synthesis. In this scenario, any unlabeled data in the data set can be 

queried. The only requirement regarding this scenario is that the learner 

knows the feature (attribute) domain.  

• Stream-based selective sampling. In this scenario, the learner samples an 

unlabeled instance from the input distribution, however, decides whether or 

not to query it afterwards. In this case, drawing an unlabeled instance from the 

input distribution is assumed to be free. Success of this scenario is closely 

related to form of the input distribution. If the input distribution is uniform, 

stream-based sampling is no different than the query synthesis. Conversely, if 

the input distribution is not uniform, then sampled instances will contain 

information about the structure of the input distribution. 

• Pool-based sampling. In this scenario, candidate instances to be queried 

constitute a closed set, called the pool. All instances in the pool are evaluated 

based on a utility measure. The instance providing the most information 

regarding the measure is selected as the next query.  

There are several AL strategies proposed in the literature. Most commonly used 

ones are (Settles, 2012):  

• Uncertainty sampling 

• Query by disagreement 

• Query by committee 

• Expected error reduction 

• Variance reduction 

• Density weighted methods 

• Cluster based AL 
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Query By Disagreement (QBD) approach utilizes the idea that there might be 

several different learners that model the data the same way as supervised (in other 

words, predicting reference set accurately). This phenomenon is similar to the 

alternative optimal solutions (alternative utility functions) problem encountered in 

UTADIS and many other MCDA approaches where algorithm ends up with many 

different utility functions that sort the reference set the same way as it is done by 

the DM. QBD employs all these alternative learners for selecting a new question 

and queries the one for which the learner set disagrees most. The main 

disadvantage of this approach is that it considers all alternative (optimal) learners, 

which is computationally inefficient. 

Expected Error Reduction (EER) aims for choosing a question that will provide 

the most gain in terms of reducing future error. The idea is that, if we are able to 

identify all the possible outcomes and corresponding probabilities, then we can 

calculate a weighted sum for expected future errors for each action (Settles, 2012). 

This approach requires probabilities for each DM answer to a question and the 

probabilities of making error on other instances once the answer of a particular 

question is known. In general, EER uses model’s posterior distribution to estimate 

these unknown probabilities. This technique is criticized for being computationally 

expensive (Settles, 2012).  

Similar to EER approach, Variance Reduction (VR) aims at querying an instance 

that will reduce the output variance over the unlabeled instances most. VR 

corresponds to optimal experimental design of statistics and employs Fisher 

information to calculate output variances. In order to employ Fisher information, a 

parametric model assumption is made and for a model having K parameters, K×K 

covariance matrix is computed. In general, this approach is used when parametric 

learners are utilized. 
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Density Weighted Methods (DWM) and Cluster based AL (CAL) exploit input 

distribution of unlabeled instances to expedite the learning process. DWM 

considers not only information content of a candidate question but also how much 

it represents other unlabeled instances. CAL, on the other hand, clusters the data 

and queries those instances that represent others in the same cluster most (i.e. 

cluster centroid). These approaches assume that we have a set of unlabeled 

instances that constitute an input distribution.  

Refer to Settles (2012) for extensive definitions of these strategies. In the 

subsequent subsections, we will provide detailed information about Uncertainty 

Sampling (US) and Query By Committee (QBC), which we utilize in this study. 

We will explain in detail why we prefer these two techniques in Chapter 3. 

2.4.1 Uncertainty Sampling 

Learners for the classification task generally determine decision boundaries which 

separate different classes. In general, learners are most confident about the class 

information of instances that are away from these decision boundaries, while least 

confident about labels of instances that are close to these decision boundaries. This 

is the main idea behind US; querying instances that are close to decision 

boundaries provides the most information gain. Hence, learner should concentrate 

on these kinds of instances. 

How US works is illustrated in Figure 8 (Settles, 2012). Assume a two-class data 

is scattered on the attribute domain as shown in Figure 8 (a). Figure 8 (b) shows 

label information of a reference set that is constructed randomly. Decision 

boundary determined by the learner is indicated with the dotted line. In Figure 8 

(c), we see labels of another reference set of same size, constructed by using US. 

In this case, we see that learner provides a better decision boundary than the 

previous case since US concentrates its querying effort where uncertainty is most. 
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(a) A toy data set. 

 

(b) Random sampling. 

 

(c) Uncertainty sampling. 

Figure 8. Example of US strategy (Adapted from Settles (2012)).  

 

The most important component of this querying approach is to measure the 

uncertainty of candidate instances. As we recall, classification algorithms compute 

posterior (class membership) probabilities ̂( | )iP y x  for each possible outcome 

(class) i in order to make predictions for an instance x. Then the class label having 

the biggest posterior probability is stated as the prediction. These measures utilize 

posterior probabilities to quantify uncertainty. There are mainly three measures of 

uncertainty used in the literature (Settles, 2012): 
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• Least confident. This measure considers minimum (least confident) of 

highest posterior probabilities of candidate instances: 

 

* ˆarg min ( | )

ˆarg max1 ( | )
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x

x

x P y x

P y x
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  (21) 

where ˆ arg max ( | )
y

y P y xθ=  is the prediction with the highest posterior 

probability under the model θ . The rationale for this measure is that, among 

the predictions we make for a set of candidate instances, we are least 

confident about the instance whose most likely labeling is the least likely. 

Hence, querying this instance provides the most information gain. The main 

disadvantage of this measure is that it does not take into account posterior 

probabilities of other classes.  

• Margin.  This measure recommends querying the instance,  
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where 1ŷ  and 2ŷ  are the first and second highest posterior probabilities of 

the model. Margin measure considers that, if the margin between the first and 

second highest posterior probabilities is big, then the classifier is confident 

about its prediction. However, if the margin is small, then the classifier is not 

much confident about differentiating these two class labels. Hence, querying 

the instance having the minimum margin provides the most information gain. 

• Entropy. This measure recommends querying the instance, 
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where y ranges over all possible labelings of x. Entropy (H(.)) corresponds to 

a variable’s average information content (Settles, 2012). In ML practices, it 

is considered as an impurity measure. Thereby, this measure recommends 

querying an instance having the maximum information content.  

2.4.2 Query By Committee 

QBC approach constructs a committee of learners as in ensemble learning. As we 

have stated previously, there is no best algorithm that outperforms others in all 

circumstances. Additionally, overfitting phenomenon is encountered frequently, 

which we struggle to avoid with regularization. These facts are the main 

motivation behind ensemble learning, thus, ensemble learning aims to take 

advantage of more than one learner so that prediction performance increases. In 

ensemble learning, several learners are trained on the same reference data set. In 

the prediction phase, predictions are made based on the majority vote. QBC 

exploits this idea and measures disagreement of committee members with respect 

to candidate instances. To illustrate the idea, consider a binary classification case 

where data points (“-” for Class 1, “+” for Class 2) are scattered as shown in 

Figure 9.  Assume that we partition the data as training and test sets and train 4 

classifiers (rectangles) on the same training set. Also assume that these classifiers 

predict instances lying in the rectangles as Class 2 and outside as Class 1. In this 

case, there is a consensus among classifiers regarding the instances lying in the 

dark gray zone since all classifiers predict them as Class 2. Now consider the 

instance where we designate with a dark gray circle. Two of the classifiers predict 

this instance as Class 1, while other two predict as Class 2. Therefore, 

disagreement of classifiers regarding this instance is significant because two of the 
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classifiers disagree with other two. Hence, querying this instance will provide 

more information gain than those lying on the gray zone.  

 

 

Figure 9. Example of QBC strategy. 

 

There are different methods to generate members of the committee. One option is 

to use different type of classifiers, such as SVM, RF or NN. On the other hand, 

several other alternatives are proposed in the literature: varying case weights, data 

values, guidance parameters, variable subsets, or partitions of the input space (Seni 

& Elder, 2010). One straightforward technique for generating a committee, as 

done in RF learning, is using bagging (Breiman, 1996). Bagging aims at reducing 

the variance and increasing the prediction accuracy by taking many samples of 

same size from the original training set with replacement (bootstrapping), fitting 

separate but same type of learners to each training set and averaging the 

predictions. Querying strategy using bagging algorithm is called Query By 

Bagging (QBB) and first introduced by Abe and Mamitsuka (1998). One of the 
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advantages of QBB algorithm is that, it employs bootstrapping, therefore it is 

robust to small sample sizes, unlike boosting algorithm. Boosting is a ML 

approach where performance of the weak learners is boosted by repeatedly 

resampling on the training data (Freund & Schapire, 1997). Each time resampling 

is performed, data points are weighted in order to focus on those points where 

classifiers perform poorly. Boosting algorithm usually fails in the presence of 

small data sets because when trained on small data, classifiers usually predict the 

training data accurately, hence re-weighting phase cannot be performed. There are 

mainly two disagreement measures used in QBB (Settles, 2012): 

• Vote entropy. This measure recommends querying the instance;  
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=∑  is the number of votes that the label y 

receives for x among the learners in committee C. This measure is committee 

counterpart of entropy measure. Instead of using posterior probabilities, vote 

entropy considers votes of every single committee member for labels.  

• Kullback-Leibler (KL) Divergence.  KL Divergence (or information gain) is 

the distance between two probability distributions (in general, true and target 

distributions) (Kullback & Leibler, 1951). In QBB context, KL Divergence 

measures disagreement as the average divergence of each committee member 

θ’s prediction from that of the consensus C and recommends querying the 

instance: 
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In other words, rather than considering mean posterior probabilities of the 

committee, KL Divergence measures how much each committee member 

diverge from the consensus. Even though mean posterior probabilities indicate 

that committee is confident about its prediction with regard to particular 

instance, KL Divergence measure might recommend querying it if committee 

members’ posterior probabilities vary wildly from the consensus.  

QBC can be used in the continuous case as well. In this case, variance of the 

predictions of the committee members can be used as the disagreement measure.   
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CHAPTER 3 

 

PROPOSED APPROACH 

 

 

3.1 Motivation 

Aiming at explicitly eliciting preferential system of the DM, preference modeling 

is drawing a growing interest recently due to the fact that it became an imperative 

step in many areas. Particularly if we are interested in making predictions, we need 

robust preference models that represent preference structure of the DM. As we 

pointed out previously, making predictions for the preference of some 

alternative/solution is particularly important in marketing and manufacturing 

fields.  

In many preference modeling problems where multiple interacting criteria exist, 

the DM needs to express his/her preferences in the ordinal scale. In these cases, 

typically no information is available about the underlying preference structure, and 

only a few data can be collected about the preferences of the DM. Additionally, 

data collection process (or generating reference alternatives) is usually costly in 

terms of time or money. In all these cases, preference modeling turns out to be a 

learning process where as much information as possible is required by asking as 

less preference questions as possible. 
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Preference modeling gets more complicated in the presence of interacting criteria. 

However, interaction phenomonea is encountered quite commonly, even in simpler 

cases. Even though there is a general consent among researchers regarding the 

existence of interaction among criteria in real life decision problems, it is often 

ignored in applications. Most of the preference modeling strategies assume 

preferential independence among criteria in order to make modeling process 

relatively easygoing.  

Another problematic issue with most of the proposed MCDA approaches that 

model preference structure implicitly or explicitly is that, they assume an 

underlying functional form that is believed to conform to DM preference structure. 

Additionally, most of these functional forms are monotonous. Even though it is 

commonly accepted in the literature that rational human preferences present 

monotonically increasing or decreasing structure, there are examples of 

nonmonotonic preferences in real life. Regarding this issue, let us look at a 

nonmonotonic utility function example given by Keeney and Raiffa (1993). This 

example considers the blood sugar count of a patient. There is a “normal” or 

preferred blood sugar count that is desired. A sugar count below the normal figure 

is not preferred, however, a sugar count that is higher than the normal is more 

dangerous, hence the least preferred. Such a nonmonotonic utility function is 

represented in Figure 10 (Keeney & Raiffa, 1993). 
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Figure 10. A nonmonotonic utility function (Source: Keeney & Raiffa (1993)).  

 

Parametric approaches usually fail to model interactions, especially if a wrong 

functional form is assumed. A wrong functional form produces estimation bias and 

reduces the predictive performance of the model. In this respect, a straightforward 

approach might seem to be partitioning the criterion domain where preference 

shows somewhat monotonic behavior and then model preference corresponding to 

each of these domains with a monotonic function. However, it is not generally that 

simple to partition criteria domain where preference is monotonous, particularly in 

higher dimensions and in the presence of multi-way interactions. Consider a 

simple case, where we have two interacting criteria and preference is expressed in 

the ratio scale. Assume that preference surface is as illustrated in Figure 11. 

Additionally, contour plot of this preference surface is provided in Figure 12. As 

we see from Figure 11, the preference is nonmonotonic. Contour plot of the 

preference structure present a complex structure on the criteria domain which is 

hard to estimate. 

These two figures reveal that even for the simplest case where preference depends 

on two interacting criteria, determining boundaries of the criteria domain where 

preference shows monotonic behavior is a hard task. Moreover, we probably 
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would have to ask many questions just to determine these boundaries. Restating, it 

becomes a harder task in the presence of more than two interacting criteria. This 

fact leads us to search for a better methodology in order to deal with 

nonmonotonocity and interacting criteria. 

 

 

Figure 11. Preference surface of a two-criterion value function.  

 

 

Figure 12. Contour plot of the preference surface of the two-criterion value 
function shown in Figure 11. 
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The main objective of preference modeling is to build predictive models that will 

be used to make predictions on unseen instances. Models with good generalization 

ability are expected to perform well on unseen instances. Not receiving enough 

interest in MCDA, generalization is one of the key issues in SL (particularly in AI) 

and CA. Apart from prediction, developed models can also be used for 

optimization. In a quality improvement problem, for instance, optimal process 

parameter levels are to be selected so that quality of a product, which is defined by 

the joint effects of all quality characteristics, is optimized. Quality characteristics 

usually interact with each other, therefore, models that are capable of dealing with 

interacting criteria may be required. 

Restating, preference modeling is a learning process that should be handled 

evolutionary. Almost all of the MCDA approaches obtaining preference 

information in the ordinal scale aim at sorting limited number of alternatives of the 

problem under consideration with maximum accuracy. They take a subset of the 

alternatives or use a separate reference set that happens to be available for getting 

preference information. Additionally, instances in the initial reference set are not 

collected in a structured and evolutionary way so that subsequent learning process 

is expedited. Hence, the preference model that is developed based on the 

preference information obtained with respect to reference alternatives is used to 

sort the rest. In this respect, their generalization ability is limited. Even though 

developed models represent preference structure of the DM, these techniques 

cannot be considered as preference modeling approaches. Additionally, they 

cannot model nonmonotonic preference structures having complex interactions 

among criteria. ACA approaches, on the other hand, consider preference modeling 

as a learning process, where preference information is obtained in an evolutionary 

way and questions are structured in order to obtain as much information as 

possible by asking as less questions as possible. However, Rao (2014) states, ACA 

methods are model dependent and cannot model interactions among attributes. 

Additionally, they strongly suffer from curse of dimensionality. 
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Consequently, all these aforementioned discussions reveal that, there is a need for 

new preference modeling methodologies that approach the problem as a learning 

process, are able to model nonmonotonic structures having complex interactions 

successfully and have good predictive performance while training on small data. 

3.2 Proposed Approach 

In this section, we provide detailed information about our approach for modeling 

DM preference structure. In this study, we consider the case where DM expresses 

her/his preferences in the ordinal scale. For the DM, this task is a sorting or ordinal 

classification task after all, where DM assigns preference ordered class labels to 

alternatives of profiles, hence, preference structure of the DM is represented by the 

trained classifier. Using the classifier, one can make predictions on unseen 

instances. In order to illustrate the idea, consider the two-criteria nonmonotonic 

value function example presented in Section 3.1. Let us assume that preference of 

the DM conforms to an unknown continuous functional form as shown in Figure 

13. For a sorting problem, there are some threshold values, which are explicitly 

unknown to the DM her(him)self, that separate preference values into classes, 

thus, creating an ordinal relationship among them. These hypothetical threshold 

values are presented in Figure 13 for a three class ordinal classification problem. 

In this setting, the main objective of a trained classifier is to find projections of 

these threshold values on the criteria domain, which are implied by the DM via 

answers to the alternatives presented. Without prior knowledge about underlying 

functional form of the preference and threshold values separating classes, classifier 

constructs boundaries on the criteria domain that separate domain into classes as 

shown in Figure 14. At the end of the training phase, trained classifier can be used 

as a predictive model and an optimization aide since it designates regions on the 

criteria domain where preference is most. 
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Figure 13. Preference surface of a two-criterion value function for a three-class 
ordinal classification problem. 

 

 

 

Figure 14. Criterion domain of the value function of Figure 13 separated into 
preference ordered classes by the trained classifier. 
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In our approach we assume that we do not have any previous knowledge about 

preference structure of the DM. Moreover, we have no information about how 

criteria values of the potential alternatives are distributed (input distribution). AL 

techniques, on the other hand, are developed to query DM on a data set that is 

present. In other words, we have abundant unlabeled instances and small number 

of labeled instances obtained from some source. All candidate data points that can 

be queried constitute a closed data set. Hence, we can talk about an input 

distribution where data comes from. In this respect, “Density Weighted Methods” 

and “Cluster Based AL” techniques aim to exploit the structure of the whole data 

set. This is the reason why AL practitioners put special emphasis on how much a 

candidate data point represents remaining unlabeled data points in the data set. As 

a consequence, the data set that we need to predict or classify is present (unlabeled 

instances) and we do not want to spend our query resources with those that do not 

represent other points in the whole data set (outliers). In our case where we model 

DM preferences, however, we cannot talk about an input distribution since we do 

not have an unlabeled data set. This is particularly valid in the marketing field. In 

marketing, the main objective is to model customer preferences with respect to 

presented products. We tailor attributes of the alternative products in order to 

estimate customer preferences. Therefore, we aim to model preference on the 

whole attribute domain (design domain) where we desire to perform equally good 

everywhere. This requirement makes our problem a more challenging one with 

respect to classical AL practices. On the other hand, we provide an extension to 

our algorithm for special cases where we can exploit information provided by the 

unlabeled data set. 

We employ SVM and RF as the base learners in the algorithm. From variety of 

learners, we prefer SVM and RF because they are among the strongest 

nonparametric classifiers proposed in the literature. Additionally, our experience 

showed that most of the nonparametric classifiers perform bad or fail with small 

data sets. Conversely, SVM and RF model small data sets very successfully. RF is 
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very robust to overfitting (Hastie et al., 2009). This is due to its ensemble 

structure, i.e., averaging predictions of many grown bagged trees. This property 

becomes very important when size of the training data is small because classifiers 

usually suffer from overfitting in the presence of small data sets. Another valuable 

property of RF is that, similar to other decision tree based learning methods, RF 

handles qualitative predictors very easily, without creating dummy variables. 

SVM and RF are nominal classifiers, meaning, they are developed to handle 

classes that do not have order relation. However, DM preferences are ordinal in 

nature, hence, there exists additional information to be exploited, as stated by 

Hühn and Hüllermeier (2009). Even though there are several learners proposed in 

the literature for ordinal classification, to our knowledge, there exists no 

comprehensive study in the literature comparing these ordinal classification 

techniques with their nominal counterparts under different circumstances, such as 

data size, type or dimension. However, our experience with some of these ordinal 

classification algorithms showed that they did not perform well with small data. 

Their nominal classification counterparts outperform these techniques when they 

are trained on a small data set. Due to these reasons, we apply Frank and Hall 

(2001) approach to SVM and RF for multiclass (more than two classes) cases in 

the study. The main advantage of Frank and Hall (2001) approach is that, it can be 

used with any standard classification algorithm without modifying it. Additionally, 

our experiments prove that when used with Frank and Hall (2001) approach, SVM 

and RF outperform their standard nominal counterparts if the training data have 

ordinal classes. 

Initially, we do not have any reference alternative having class information at 

hand. First of all, we ask DM how many ordinal classes (s)he wants to consider or 

determine the number of classes based on the problem under consideration. In 

order to generate an initial reference set to start with, we perform a stratified 

random sampling where we ask DM to show random examples from each class.  



64 

 

Size of the reference set depends on willingness of the DM and characteristic of 

the process of interest (i.e., easiness of providing examples, number of classes and 

attributes). However, we generally demand a small reference set since we aim to 

ask small number of questions to the DM and thereby consume our questions 

thriftily. After constituting our reference set, we start running our algorithm. Our 

algorithm asks one question at a time and tailors the new question based on the 

answers obtained thus far (that is the current reference set comprising of initial 

reference set and alternatives asked to that point). In order to determine next 

question to be asked, we utilize AL techniques and implement Pool-Based US and 

Pool-Based QBC with different uncertainty measures, namely, Least Confident, 

Margin and Entropy. In applying QBC, we use QBB approach proposed by Abe 

and Mamitsuka (1998). 

Among 3 different querying scenarios we prefer using pool-based sampling. 

Stream-based selective sampling requires a set of unlabeled instances that 

constitute the input distribution. As stated previously, we cannot talk about an 

input distribution in preference modeling. In query synthesis, on the other hand, 

any unlabeled data point from the attribute domain can be queried. This technique 

is effective if we know additional information about the attribute domain, so that 

asking questions from some particular region boosts the learning process. Thereby, 

this scenario is not applicable to our problem. Consequently, pool-based sampling 

is the best alternative because we would like to perform equally good everywhere 

on the attribute domain in terms of prediction ability. By using pool-based 

sampling, we draw random samples from the overall domain in order to form 

candidate questions (alternative profiles) pool. Among these profiles, we query the 

one that will provide the most information gain. 

In Chapter 2, we mentioned several different querying strategies used in AL. 

Among these, DWM and CAL strategies exploit information provided by the input 

distribution of unlabeled instances. As we emphasized previously, we do not have 
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an input distribution under consideration in our problem setting. VR strategy 

employs Fisher information in order to compute output variances. This approach is 

applicable when we use parametric classifiers since Fisher information needs 

design matrix expanded to the form of the parametric model that we assume. QBD 

and EER approaches are criticized for being computationally inefficient (Settles, 

2012). On the other hand, US and QBB strategies do not require parametric 

models or input distribution while they are computationally efficient. Additionally, 

QBB is robust to small sample sizes because it employs bootstrapping. Due to 

these reasons, we prefer US and QBB querying strategies in our study. 

The most important component of the proposed approach is to measure the 

uncertainty of candidate instances. In Chapter 2, we explained main uncertainty 

measures proposed in the literature. In this study, we developed and experimented 

several uncertainty measures which would also exploit ordinal structure of the 

preference classes. However, developed measures performed worse than those 

proposed in the literature. We will provide more information about developed 

measures in the subsequent section. Among those measures proposed for the QBB 

strategy, Vote Entropy utilizes a hard voting approach where the number of votes 

given by the committee members is counted in order to compute uncertainty of 

each candidate instance. This voting scheme loses information offered by the 

posterior probabilities of predictions made by each committee member. Kullback-

Leibler Divergence measure, on the other hand, gives instable results due to log(.) 

term in the formulation, because when committee member’s posterior probability (

( | )P y xθ ) is less than the consensus posterior probability ( ( | )CP y x ), this term 

yields to a negative value. However, a positive divergence from the consensus 

posterior probability of same amount (when ( | )P y xθ  is greater than ( | )CP y x ), 

which yields to a positive value, should have the same uncertainty value. Due to 

these reasons, we utilized a soft voting scheme for prediction aggregation in QBB 

and used the same uncertainty measures (Least Confident, Margin and Entropy) 

for both US and QBB querying strategies.  
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As we emphasized in the preceding paragraphs, we propose and experiment 

different classifiers, querying strategies and uncertainty measures for preference 

modeling. However, determining which classifier, querying strategy and 

uncertainty measure to use for which circumstances is the most important 

ingredient of this thesis study. For this purpose, we will provide algorithmic 

recommendations for the end user in Chapter 4. Below are the pseudo codes and 

commentary of our algorithms. 

 

1. R is the initial reference set of size n, m is the number of queries, L is the 
learner, p is the pool size 

2. for  i=1, 2, …m do 

3.  train L using R 

4.  generate random set of instances from the attribute domain of size p for the 
 pool 

5.  predict labels of instances in the pool using L 

6.  calculate uncertainty measure for each instance in the pool 

7.  select instance having the maximum uncertainty (*w ) 

8.  Ask label (class) y of  *w to the DM 

9.  * ,R R w y← ∪  

10.  	 ← 	 + 1 

11. end for 

Figure 15. Pseudo-code of the Pool-Based Uncertainty Sampling Algorithm. 
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1. R is the initial reference set of size n, m is the number of queries, L is the 
learner, p is the pool size, C is the committee of learners 

2. for  i=1, 2, …m do 

3.  generate random set of instances from the attribute domain of size p for the   

  pool 

4.  for  j=1, 2, …|C| do 

5.   draw a bootstrap sample of size n from the reference set (�) 

6.   train �� using � 

7.   predict labels of instances in the pool using �� 

8.  end for  

9.  aggregate predictions made by the committee (��, … , �|�|) 

10.  calculate uncertainty measure for each instance in the pool 

11.  select instance having the maximum uncertainty (*w ) 

12.  Ask label (class) y of  *w to the DM 

13.  * ,R R w y← ∪  

14.  	 ← 	 + 1 

15.  train L using R 

16. end for 

Figure 16. Pseudo-code of the Pool-Based Query By Bagging Algorithm. 

 

Generating the initial reference set. Generating the initial reference set 

constitutes the first stage of the preference learning. Based on the preference 

information obtained from this set, line of inquiry is initiated. This set is generated 

by stratified random sampling, meaning, labels of random instances from each 

preference class is asked to the DM. Alternatively, DM can be encouraged to 

provide such exemplary instances from each preference class. Size of the initial 

reference set depends on the number of classes and attributes as well as 

willingness of the DM to provide such examples. Since we perform stratified 
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random sampling, number of exemplary instances must be greater than the number 

of preference classes. Additionally, as the number of attributes increases, size of 

the reference set must increase as well. Another limiting factor is the ability of the 

learner to train on small data sets. Most of the nonparametric learners fail to train 

on small sets. SVM and RF are very capable with this regard, however, our 

experiments show that when the number of training instances is less than 10, the 

probability that these learners fail increases. Hence, we can assert that a reference 

set of minimum size 10 is preferable.  

Training the learner. We use Frank and Hall (2001) approach when training our 

base learners SVM and RF for the multiclass cases while we employ them directly 

in the two-class cases. First of all, the training (reference) set having r ordinal 

classes is decomposed into r-1 binary subproblems in multi-class cases. Hence, 

each of these subproblems turns out to be binary classification problems as 

illustrated in Figure 7. Each derived data set is trained with a base binary learner. 

Hence, we obtain r-1 binary learners. In order to make predictions on unseen 

instances, posterior probabilities P(.) are calculated by using r-1 binary learners as 

shown in (20). As a consequence, the class label having the maximum posterior 

probability is assigned to the instance. 

Generating the pool. Pool corresponds to the set of candidate instances from 

which the next question to be asked to the DM is selected at each iteration. Since 

we aim at modeling preference on the whole attribute domain (design domain) 

while desiring to perform equally good everywhere, we generate candidate 

instances randomly. Hence, assuming that we have n criteria under consideration, 

criteria values of each candidate instance in the pool are determined such that:  

 min max( , ) for 1,...,i i ix U x x i n=∼      (26) 
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where ix  is the random value attained in criterion i, min
ix  and max

ix  are the 

minimum and the maximum criterion values attainable in criterion i respectively, 

and (.)U  is the uniform distribution. In order to ensure diversity, a new pool is 

generated at each iteration. Even though a large pool is desirable so that we 

increase the probability to find an instance that will provide the most information 

gain, it is computationally costly. We did not perform an experiment as to measure 

the effect of pool size on performance of the algorithm, however, we generated a 

pool of size 500 in our experimental studies.  

Making predictions and measuring uncertainties of the instances in the pool. 

After training the learner with the reference set (including instances queried thus 

far), the learner makes predictions for each instance in the pool based on the 

criteria values of the instances. Each prediction is quantified with posterior 

probabilities provided by the learner. These posterior probabilities are used to 

measure uncertainty of each instance as explained in Chapter 2. We consider Least 

Confident, Margin and Entropy as the uncertainty measures.  

Generating the committee in QBB. In employing QBB, we need a committee of 

learners. This is achieved by drawing bootstrap samples from the same reference 

set |C| times (size of the committee). Bootstrapping corresponds to random 

sampling with replacement of same size as the original sample. The main idea 

behind bootstrapping is that, when we cannot make parametric assumptions about 

underlying distribution that generated the random sample, the sample can be 

treated as a pseudo-population (Martinez & Martinez, 2002). In QBB, same type 

of learner (i.e. SVM or RF) is trained to the generated bootstrap samples, hence, 

we come up with |C| separate models. Size of the committee has impact on the 

performance of the predictions made by the committee in return for a 

computational cost, however, committees of 5 to 15 learners are quite common in 

the literature and have been shown to perform well (Settles, 2012). Thereby, at 

each iteration we generate a committee of size 10. 
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Aggregating predictions made by the committee in QBB. At each iteration, 

each committee member makes predictions for the candidate instances in the pool. 

These predictions are aggregated in order to measure information content of each 

candidate instance. We use a soft voting scheme for QBB strategy which accounts 

for each committee member’s (θ ) confidence ( ( | )P y xθ ) in predictions made such 

that: 

 
1

( | ) ( | )C
C

P y x P y x
C θ

θ∈
= ∑   (27) 

where ( | )CP y x  corresponds to the consensus probability that y is the correct 

label, and C is the committee (Settles, 2012). Consequently, uncertainty of each 

candidate instance is computed based on the consensus posterior probabilities 

( | )CP y x .  

In this study, we employ SL techniques in preference learning in the ordinal scale 

aiming to train a predictive model. Hence, preference structure is represented by 

the trained model. There are several advantages of SL techniques in this respect. 

Nonparametric SL techniques are model-free approaches, making no functional 

assumptions. Additionally, they are very capable of modeling complex structures, 

i.e. interactions among variables and nonmonotonic structures. Conversely, they 

require big amount of data in general and their training process is not interactive. 

Recognizing these shortfalls, we use SL techniques in the presence of small data 

set and drive the learning process in an evolutionary way while integrating DM 

into it. In this context, while utilizing strong features of SL in modeling complex 

structures, we also address the weak sides of SL criticized by Doumpos and 

Zopounidis (2011), in conjunction with preference modeling in the ordinal scale.  

As we pointed out previously, our approach is a novel one because different than 

the MCDA sorting approaches proposed in the literature that aim at sorting limited 
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number of alternatives of the problem under consideration with maximum 

accuracy, we consider preference modeling as a learning process. To our 

knowledge, this is the first study in the MCDA literature that approaches 

preference modeling as an evolutionary learning process. With this study, we 

address the criticized issues of MCDA regarding underlying preference function 

and monotonicity assumptions, and inefficiency to model interacting criteria while 

showing applicability of SL techniques to MCDA preference modeling in an 

interactive manner. In this respect, rather than MCDA sorting techniques proposed 

in the literature, our work is comparable to AI and ACA methodologies. AI 

applications usually work with big amount of data. Moreover, they offer black-box 

methodologies where DM or respondent has no role in the training process. ACA, 

on the other hand, starts with a small reference set and leads the line of inquiry in 

an evolutionary way. However, as Rao (2014) remarks, they are incapable of 

handling interactions among criteria and complex structures. 

As a consequence, this study can be regarded as a pioneering approach considering 

that SL based approaches in the literature have been developed and tested based on 

a relatively large preference information and do not interact with DM in model 

developing process, while MCDA based approaches ignore interactions, suffer 

from generalization ability, and have no concern about predicting equally good 

everywhere on the criteria domain. Even though our work is not comparable with 

MCDA sorting methodologies, our trained model offers a sorting tool, as well. In 

this respect, our proposed approach also addresses the need for model-free sorting 

methodologies that are capable of modeling interactions while implemented 

interactively with the DM, as emphasized in Table 4. 
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Table 4. Classification of the proposed approach in MCDA sorting. 

Interactive 
Functional 
Assumption 

Ability to Model Interactions 

No Yes (Limited) 

No 

Yes 

Devaud et al. (1980) 
Greco et al. (2010) 
Soylu et al. (2011) 
Greco et al. (2011) 
Çelik et al. (2015) 
Corrente et al. (2015) 

 

No 
Yu (1992) 
Leroy et al. (2011) 

Greco et al. (2002) 
Angilella et al. (2009) 

Yes 

Yes 

Ulu and Köksalan (2001) 
Köksalan and Ulu (2003) 
Köksalan and Özpeynirci (2009) 
Buğdacı et al. (2013) 

Ulu and Köksalan (2014) 

No Köksalan et al. (2009) Eri şkin (2015) 

 

3.3 Uncertainty Measures Experimented 

Uncertainty measures proposed in the AL literature have been developed for 

nominal classification problem, hence, they did not consider additional 

information embedded in the ordinal structure of the data. In the ordinal 

classification problem, however, there is an ordinal relationship among classes. 

Therefore, posterior probabilities should decrease monotonically on both sides of 

the class having the highest posterior probability in order to provide a sound 

prediction. Consider an ordinal classification problem where we have three 

ordered classes such that 1 2 3y y y≻ ≻ . Assume that our trained model makes 
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predictions for two profiles ( , 1, 2ix i = ) and generates posterior probabilities as 

follows: 

 

1 1 1
1 2 3

2 2 2
1 2 3

ˆ ˆ ˆ( | ) 0.5, ( | ) 0.3, ( | ) 0.2

ˆ ˆ ˆ( | ) 0.5, ( | ) 0.2, ( | ) 0.3

P y x P y x P y x

P y x P y x P y x

= = =

= = =
  (28) 

It is clear that, both of these profiles have same uncertainty values in terms of 

Least Confident, Margin and Entropy measures. Therefore, these uncertainty 

measures conclude that these two profiles have the same information content. 

However, consider Figure 17 where we plot posterior probabilities predicted by 

the trained model. Our trained model predicts both of these profiles as class1y . 

Second most likely class predicted for profile 1 is 2y , while it is 3y  for profile 2. 

Figure 17 shows that posterior probabilities predicted for profile 1 conform to 

ordinality, while those of profile 2 do not. Since our problem is an ordinal 

classification problem, querying label of profile 2 is expected to provide more 

information gain than profile 1.  

 

(a) Profile 1 (b) Profile 2 

Figure 17. Bar charts of posterior probabilities predicted by the trained model. 
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In our study, we developed and experimented new uncertainty measures for the 

multi-class cases exploiting the idea explained above. In this section, we provide 

information about these measures. Consequently, we aimed to exploit ordinal 

structure of the preferences in selecting the most informative profile or in 

calculating consensus output distribution in QBB.  

Measure 1. In this measure, we define a triangular penalty function for punishing 

divergence from ordinality. Each posterior probability is multiplied with penalty 

value depending on the most likely class (class having the maximum posterior 

probability). Each profile in the pool is given penalty accordingly. Uncertainty 

value is weighted with penalty value of the profile as formulated in (29).  

 
( ) ( )( )

( ) ( )

*

*

arg max .

 . ( | )|
x

y

x x Pn x

Pn x P y x y y

ϕ

δ

=

=∑
  (29) 

*( | )y yδ  represents penalty value for class y for a given most likely class *y , 

( )xϕ  represents uncertainty value for profile x and Pn(x) corresponds to penalty 

for profile x. Hence, a profile not complying with ordinality has more chance to be 

queried. Triangular penalty function is illustrated in Figure 18. 
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Figure 18. Penalty function for divergence from ordinality (Assuming Class i has 
the maximum posterior probability). 

 

Measure 2. In order to take into account how much first and second most likely 

classes are away from each other, the Margin uncertainty measure is modified as 

follows: 

 
( ) ( )( )

( )

*

*
2argmin  

| |

x

P y x P y x
x

j i

′−
=

−
  (30) 

Here, ( )*|P y x  is the maximum posterior probability and ( )|P y x′  is the second 

maximum posterior probability predicted for a profile x. j is the numeric rank for 

the most likely class and i is the numeric rank for the second most likely class. 

Therefore, if first and second most likely classes are not adjacent for a given 

profile x, the probability that this profile is selected as the next query increases. 

Measure 3. In order to take into account how much output distribution is in 

compliance with ordinality, we developed a measure as follows: 
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( ) ( )( )

( )

*

*
2

/

argmin  
| |i

x
i Y j

P y x P y x
x

j i∈

−
=

−
∑   (31) 

where Y is the rank set of classes. Here, ( )*|P y x  is the maximum posterior 

probability and ( | )iP y x  is the posterior probability predicted for class i. j is the 

numeric rank for the most likely class. 

Measure 4. In QBB, contribution of each committee member to consensus output 

distribution is weighted with degree of compliance with ordinality. Hence, a 

committee member predicting posterior probabilities in compliance with ordinality 

contributes to the consensus output distribution more as shown in (32): 

 ( ) ( ) ( )
1 1

|  | .
| |c

C C

P y x P y x
C Pn xθ

θ

 
=   

 
∑
ε

  (32) 

Here, ( )|CP y x  is the consensus probability that y is the correct class according to 

the committee and ( )|P y xθ  is the probability that y is the correct class according to 

committee member θ. ( )CPn x  is calculated as in (29). 

Measure 5. In QBB, contribution of each committee member to consensus output 

distribution is weighted with how much the committee member is confident about 

its prediction. Hence, a committee member being more confident about its 

prediction contributes to the consensus output distribution more as shown in (33). 
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 ( ) ( ) ( )( )*1
|  | . |c

C

P y x P y x P y x
C θ θ

θ
= ∑

ε

  (33) 

Here, ( )* |P y xθ  is the maximum posterior probability predicted by the committee 

member θ. C is the committee set. 

 

Measure 6. Each measure experimented (Least Confident, Margin and Entropy 

measures) measure different aspects of the output distribution. In order to make 

use of each of these measures simultaneously, we aggregated them into one 

measure in different combinations. Below are the aggregated measures 

experimented. Each measure is normalized before aggregating. 

 ( ) ( )
* 1

arg min .  
x

x x
x

ϕ
 

=   Φ 
  (34) 

 ( ) ( )
* 1

arg min .  
x

x x
x

β
 

=   Φ 
  (35) 

 ( ) ( )( )* arg min .  
x

x x xβ ϕ=   (36) 

 ( ) ( ) ( )
* 1

arg min . .  
x

x x x
x

β ϕ
 

=   Φ 
  (37) 

Here, φ(x) corresponds to Least Confident measure, β(x) corresponds to Margin 

measure and ( )xΦ  corresponds to Entropy measure. 
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None of the measures explained above achieved improvement over the ones 

proposed in the AL literature. This is due to the fact that, classifiers we use in the 

study are nominal classifiers and we make them exploit ordinal structure of the 

data with Frank and Hall (2001) approach. The main problem with this approach is 

that generated posterior probabilities do not add up to one. Uncertainty measures 

consider posterior probabilities for measuring uncertainty, therefore, they suffer 

from this property of Frank and Hall (2001). We expect and believe that, 

aforementioned measures would work successfully with learners developed 

particularly for ordinal classification. As a consequence, we used Least Confident, 

Margin and Entropy uncertainty measures in this study.  
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CHAPTER 4 

 

ANALYSIS OF THE PROPOSED APPROACH 

 

 

In this chapter, we analyze the proposed approach. First of all, we define an 

experimental design that considers various factors which are believed to have 

impact on the performance of the proposed algorithms. In order to determine 

which factors are statistically significant, we perform Analysis of Variance 

(ANOVA). Secondly, performance measure means for all test combinations are 

computed in order to designate which querying algorithm is the best for different 

circumstances. Thirdly, we look at learning curves of the proposed algorithms and 

compare them with the naive approach, where subsequent queries are performed 

randomly. Lastly, we provide algorithmic recommendations for modeling different 

underlying value functions in case we have information about the form of the 

preference structure of the DM. 

4.1 Experimental Setup 

The proposed approach does not assume an underlying functional form that 

represents preference structure of the DM and aims to model interactions among 

criteria as well as nonomonotonous preferential behavior. On the other hand, we 

also expect it to perform satisfactorily over various forms of preference structures 

including those assuming preference independence. Moreover, we expect a 
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preference learning algorithm in the ordinal classification setting to be robust to 

different circumstances such as number of classes, number of attributes or 

reference set at hand. Therefore, in order to evaluate and compare performances of 

the proposed algorithms, we design an experiment where algorithms are 

implemented and evaluated under different conditions. Detailed information 

regarding the experiment is provided below. 

4.1.1 Design Factors 

Experimental design investigates the performance of the algorithms on the basis of 

the factors shown in Table 5, which are believed to have impact on the 

performance. 

 

Table 5. Experimental factors and their levels. 

LEGEND FACTOR LEVELS 

F1 Query Algorithm 
1. Uncertainty Sampling 
2. Query By Bagging 

F2 Uncertainty Measure 
1. Least Confident 
2. Margin 
3. Entropy/Vote Entropy 

F3 Underlying Value Function 

1. Linear 
2. Multiplicative 
3. Tchebycheff 
4. Complex Nonmonotonic 

F4 Number of classes 
1. Two 
2. Five 

F5 Number of attributes 
1. Three 
2. Six 

F6 Size of the reference set 
1. 10 
2. 30 

F7 Number of queries 
1. 30 
2. 100 

F8 Classifier 
1. RF 
2. SVM 
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We have two algorithms under consideration for factor F1. On the other hand, 

using 3 different uncertainty measures (for factor F2) with these algorithms, we 

can test 6 different querying algorithms in this experiment.  

Underlying value functions listed in Table 5 for factor F3 are commonly used in 

MCDA practices and believed to be representing most of the DM preference 

structures. A complex and nonmonotonic preference structure showing switches in 

preference (high order interactions among attributes) and having irregular 

preference surface is represented with hinge functions.  

Factor F4 corresponds to number of classes while Factor F5 represents the number 

of attributes. Even though most of the classification schemes consider only two-

class (binary) classification, multiclass classification should be considered, as well. 

As the number of classes and attributes increase, complexity of the classification 

problem increases. Hence, we would like to see algorithms’ performances as we 

increase the complexity of the problem.  

Factor F6 is the size of the reference set. Small reference set contains little 

information about the preference structure of the DM. However, it is desirable that 

querying algorithm exploits information embedded in the reference set as much as 

possible so that next querying instance providing maximum information gain can 

be determined. One of the most important features of our approach is that we start 

with a small reference set. Hence, we expect candidate algorithms to perform well 

with small sized reference sets. As we mentioned in Chapter 3, our experiments 

show that when the number of training instances is less than 10, the probability 

that these learners fail increases. Therefore, we choose 10 and 30 as the two levels 

of factor F6 in the experiment. 
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Another factor (F7) we consider is the number of queries. With this factor, we 

would like to see if there exists a difference in the performance of algorithms with 

respect to the number of questions asked.  

As the last factor (F8), we include two types of classifiers into our experiment. As 

we have pointed out previously, there is no “best” classification algorithm that 

outperforms others in all circumstances. Bearing that in mind, we desire to observe 

performance of different classifiers with the proposed algorithms. For that 

purpose, we consider two well-known classifiers in the SL literature, namely RF 

and SVM. From variety of learners, we prefer SVM and RF because they are 

among the strongest nonparametric classifiers proposed in the literature. 

Additionally, our experience showed that most of the nonparametric classifiers 

perform bad or fail with small data sets, while SVM and RF model small data sets 

very successfully. 

4.1.2 Evaluation Measures 

We consider three different evaluation measures (Accuracy, Balanced Class 

Accuracy and Kappa) in the experiment to measure performance of the 

approaches. We consider two more measures (Mean Absolute Error Ordinal, Mean 

Squared Error Ordinal) for 5 class cases. Each measure considers a different aspect 

of the algorithms. Evaluation measures used for comparing querying algorithms 

are summarized below. 

• Accuracy (Acc): Accuracy can be defined as the number of correct 

predictions across all classes, L, divided by the number of observations (N, 

number of test cases) (Ferri et al., 2009). Acc can be formulated as follows: 
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 1

#
L

i

of examplesof class i predicted right
Acc

N
==
∑

  (38) 

• Balanced Class Accuracy (BCA): Balanced class accuracy is the average 

of accuracies calculated for all classes separately. This measure takes into 

account the number of instances from each class in the test data (in the case 

of class imbalances) (Su & Hsiao, 2009).  

 1

#
#

L

i

of examplesof class i predicted right

of examples inclass i
BCA

N
=

 

=
 
 

∑
  (39) 

• Kappa coefficient (Cohen’s Kappa): The kappa coefficient is a measure 

of association used to describe and to test the degree of agreement in 

classification (Kotz et al., 2006). This coefficient is generally more robust 

than simple Acc since it takes into account the probability of chance 

agreement. Kappa coefficient can be computed for multiclass classification 

as follows (Kotz et al., 2006): 

 0

. .

1
o c

c

ij
ij

j
c i j

i

p p
K

p

p p

p p p

−=
−

=

=

∑

∑

  (40) 

where po is the observed proportion of agreement, pc is the proportion of 

agreement expected by chance, ijp  is the proportion of the N items 



84 

 

classified into category i by the first observer (true classes) and into j by the 

other (predicted classes), with 

 . .,      i ij j ij
j i

p p p p= =∑ ∑   (41) 

• Mean Absolute Error Ordinal (MAEO): MAEO measures both how 

much predicted classes are “incorrect“ with respect to true classes, and how 

“inconsistent” the learner is with respect to relative order of the classes. 

MAEO can be formulated as follows (Cardoso & Sousa, 2011): 

 ,
1 1

1
 

L L

r c
r c

MAEO n r c
N = =

= −∑∑   (42) 

where r corresponds to numeric rank of the true class and c represents 

numeric rank of the predicted class. nr,c represents the number of points 

from the rth class predicted as being from the cth class. 

• Mean Squared Error Ordinal (MSEO): This measure is similar to 

MAEO. The only difference is that MSEO punishes inconsistency more 

than MAEO. MSEO can be formulated as follows (Cardoso & Sousa, 

2011): 

 ( )2

,
1 1

1
 

L L

r c
r c

MSEO n r c
N = =

= −∑∑   (43) 
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4.1.3 Underlying Value Functions 

Value functions representing DM’s underlying preference structure are 

summarized below. Besides, we give threshold values that are used to discretize 

value space so that preference ordered classes are generated. In the experiment, 

preference values of the alternatives are calculated based on the value functions 

given below. Then, they are classified according to these threshold values. For 

clarification, we are not assuming any functional form in the training phase 

whatsoever. These functions mimic DM when the DM answers algorithm’s 

questions. Moreover, test cases are generated according to tested underlying value 

function.  

• Linear Value Function 

o Three-attribute case 

 
( )1 2 3 1 2 3, , 0.1  0.4 0.5

0 1i

v x

x i

x x x x x

≤
=

≤
+

∀
+

  (44) 

 

Table 6. Class threshold values for 2 class-3 attribute linear value function. 

Threshold Values Class 

(.) 0.5v <  Class 1 

(.) 0.5v ≥  Class 2 

 

 



86 

 

Table 7. Class threshold values for 5 class-3 attribute linear value function. 

Threshold Values Class 

(.) 0.35v <  Class 1 

0.35 (.) 0.45v≤ <  Class 2 

0.45 (.) 0.55v≤ <  Class 3 

0.55 (.) 0.65v≤ <  Class 4 

(.) 0.65v ≥  Class 5 

 

o Six-attribute case 

 
( )1 6 1 2 3 4 5 6, , 0.1  0.04 0.06 0.3  0.2

0

0.3

1i

v x x x x x x x

i

x

x

… = + + + + +
≤ ≤ ∀

  (45) 

 

Table 8. Class threshold values for 2 class-6 attribute linear value function. 

Threshold Values Class 

(.) 0.5v <  Class 1 

(.) 0.5v ≥  Class 2 

 

 



87 

 

Table 9. Class threshold values for 5 class-6 attribute linear value function. 

Threshold Values Class 

(.) 0.4v <  Class 1 

0.4 (.) 0.45v≤ <  Class 2 

0.45 (.) 0.52v≤ <  Class 3 

0.52 (.) 0.57v≤ <  Class 4 

(.) 0.57v ≥  Class 5 

 

• Multiplicative Value Function 

o Three-attribute case 

 

( )1 2 3 1 2 3 1 2

1 3 2 3 1 2 3

, , 0.5   0.7   0.2  0.28

0.08  0.

0 1

112 0.056

i

v x x x x x x x x

x x x x

x

x x x

i

= + +

≤

+
+

≤

+

∀
+   (46) 

 

Table 10. Class threshold values for 2 class-3 attribute multiplicative value 
function. 

Threshold Values Class 

(.) 0.8v <  Class 1 

(.) 0.8v ≥  Class 2 
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Table 11. Class threshold values for 5 class-3 attribute multiplicative value 
function. 

Threshold Values Class 

(.) 0.55v <  Class 1 

0.55 (.) 0.65v≤ <  Class 2 

0.65 (.) 0.85v≤ <  Class 3 

0.85 (.) 0.95v≤ <  Class 4 

(.) 0.95v ≥  Class 5 

 

o Six-attribute case (3 and higher order interaction terms are omitted) 

( )1 6 1 2 3 4 5 6 1 2

1 3 1 4 1 5 1 6 2 3

2 4 2 5 2 6 3 4

3 5 3 6 4 5 4 6 5 6

, , 0.5 0.7 0.2 0.1 0.6 0.3 0.28

0.08 0.04  0.24 0.12 0.112

0.056 0.336 0.168 0.016

0.96 0.048 0.048 0.024 0.14

1

4

0 i

v x x x x x x x x x x

x x x x x x x x x x

x x x

x

x x x x x

x x x x x

i

x x x x x

… = + + + + + + +
+ + + + +

+ + +
+

≤
+ +

≤
+

∀

+   (47) 

 

Table 12. Class threshold values for 2 class-6 attribute multiplicative value 
function. 

Threshold Values Class 

(.) 1.8v <  Class 1 

(.) 1.8v ≥  Class 2 
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Table 13. Class threshold values for 5 class-6 attribute multiplicative value 
function. 

Threshold Values Class 

(.) 1.2v <  Class 1 

1.2 (.) 1.5v≤ <  Class 2 

1.5 (.) 1.8v≤ <  Class 3 

1.8 (.) 2.5v≤ <  Class 4 

(.) 2.5v ≥  Class 5 

 

• Weighted Tchebycheff Value Function 

o Three-attribute case 

 
( ) ( ) ( ) ( )( )1 2 3 1 2 3, , 0.3 1.0 , 0.4 1.0 ,0.3 1.0

0 1i

v x x x ma

x

x x x

i

x= − − −

≤ ≤ ∀
  (48) 

 

Table 14. Class threshold values for 2 class-3 attribute weighted Tchebycheff 
value function. 

Threshold Values Class 

(.) 0.25v ≥  Class 1 

(.) 0.25v <  Class 2 
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Table 15. Class threshold values for 5 class-3 attribute weighted Tchebycheff 
value function. 

Threshold Values Class 

(.) 0.3v ≥  Class 1 

0.25 (.) 0.3v≤ <  Class 2 

0.17 (.) 0.25v≤ <  Class 3 

0.11 (.) 0.17v≤ <  Class 4 

(.) 0.11v <  Class 5 

 

o Six-attribute case 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 3

1 6
4 5 6

0.1 1.0 , 0.06 1.0 ,0.04 1.0 ,
, ,

0.4 1.0 ,  0.3 1.0 ,0.1 1.0

0 1i

x x x
v x x max

x x

x

x

i

− − − 
… =  − − −

≤ ≤


∀
   (49) 

 

Table 16. Class threshold values for 2 class-6 attribute weighted Tchebycheff 
value function. 

Threshold Values Class 

(.) 0.25v ≥  Class 1 

(.) 0.25v <  Class 2 
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Table 17. Class threshold values for 5 class-6 attribute weighted Tchebycheff 
value function. 

Threshold Values Class 

(.) 0.3v ≥  Class 1 

0.25 (.) 0.3v≤ <  Class 2 

0.2 (.) 0.25v≤ <  Class 3 

0.15 (.) 0.2v≤ <  Class 4 

(.) 0.15v <  Class 5 

 

• Complex Nonmonotonic Value Function 

o Three-attribute case 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 1 2

3 2 3

1 2 3

, , 0.8 0.2 0.5 0.5 0.2

0.3 0.7 0.6 0.6  0.4

0.3 0.7 0

0

.4 0.

1

2

i

v x x x h x h x

h x h x h x

h x h x

x i

h x

= + − − − +

− − − −

≤
− −

≤

+

∀
−

  (50) 

 

Table 18. Class threshold values for 2 class-3 attribute complex nonmonotonic 
value function. 

Threshold Values Class 

(.) 0.7v <  Class 1 

(.) 0.7v ≥  Class 2 
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Table 19. Class threshold values for 5 class-3 attribute complex nonmonotonic 
value function. 

Threshold Values Class 

(.) 0.51v <  Class 1 

0.51 (.) 0.6v≤ <  Class 2 

0.6 (.) 0.7v≤ <  Class 3 

0.7 (.) 0.8v≤ <  Class 4 

(.) 0.8v ≥  Class 5 

 

o Six-attribute case 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 6 1 2

3 5

6 2 3

1 2 3

4 6

, , 0.8 0.2 0.5 0.5 0.2

0.3 0.7 0.25 0.4

0.18 0.64  0.6 0.6  0.4  

0.8 0.7 0.4 0.2

0.35 0.46 0

0

.8

1i

v x

x i

x h x h x

h x h x

h x h x h x

h x h x h x

h x h x

… = + − − − +

− − − +

− − − − +

−

−
≤

−

−
≤

−

∀

−
  (51) 
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Table 20. Class threshold values for 2 class-6 attribute complex nonmonotonic 
value function. 

Threshold Values Class 

(.) 0.6v <  Class 1 

(.) 0.6v ≥  Class 2 

 

Table 21. Class threshold values for 5 class-6 attribute complex nonmonotonic 
value function. 

Threshold Values Class 

(.) 0.5v <  Class 1 

0.5 (.) 0.6v≤ <  Class 2 

0.6 (.) 0.65v≤ <  Class 3 

0.65 (.) 0.75v≤ <  Class 4 

(.) 0.75v ≥  Class 5 

 

In the complex nonmonotonic value function, (.)h  corresponds to hinge function 

that takes the form (0, )max x c−  or (0, )max c x−  where c is a constant. This 

constant is called a knot. Hinge functions create piecewise linear structures and 

capable of representing complex functional forms. The main difference from other 

piecewise linear functions is that they can be multiplied together to form nonlinear 

functions.  
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4.2 Analysis of the Experimental Results 

In order to analyze the experiment, we define a general full factorial design. With 

our factorial setting, this design has 768 combinations. Each combination is 

replicated 20 times. Hence, we run the experiment 15,360 (768 ×  20) times in 

order to obtain required performance measures. Every time a run is started, a new 

reference set is generated randomly. Assuming that we have n criteria under 

consideration, criteria values of each candidate instance in the reference set are 

determined such that:  

 min max( , ) for 1,...,i i ix U x x i n=∼   (52) 

where ix  is the random value attained in criterion i, min
ix  and max

ix  are the 

minimum and the maximum criterion values attainable in criterion i respectively, 

and (.)U  is the uniform distribution. Afterwards, class labels of these instances are 

determined based on the underlying value function and class threshold values 

considered for that particular test combination. Hence, underlying value function 

mimics DM in answering questions. In order to include instances from each 

preference class in the reference set, we ensure that there are at least

reference set

number of classes

 
 
 

 examples from each class. This is also a requirement for 

classifiers in order not to fail in training at the initial phases of the algorithm since 

we start with small sized reference sets.  

At each iteration of the algorithm (each time a classifier is trained), test set 

(validation set) of size 1,000 and pool set of size 500 are randomly generated in 

accordance with the procedure explained in Chapter 3. Test set is used to measure 

performance of the classifier at each iteration. In other words, classifier trained 

with the current reference set (instances in the initial reference set and questions 
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asked thus far) makes predictions for the instances in the test set and performance 

of the classifier is measured in terms of the evaluation measured considered. 

Algorithms are implemented in the R v3.1.2  statistical programming language (R 

Core Team, 2014). We implemented SVM with the R package e1071 (Meyer et 

al., 2014) and RF with the R package caret (Max et al., 2015). Results of the 

experiment are analyzed using Minitab 16 (Minitab 16 Statistical Software, 2010).  

While performing the ANOVA, we have checked adequacy of the ANOVA 

models in terms of; 

• Normality (of the residuals) 

• Homoscedasticity (constant variance) 

• Auto-correlation (independence of residuals) 

In our preliminary analysis, we have observed that residuals suffered from 

nonnormality and nonconstant variance. Therefore, we have decided to apply 

transformations to the measures under consideration. Since Acc, BCA and Kappa 

are proportions, we have applied arcsin perfMetric transformation to these 

measures. This transformation stabilizes the variance and makes distribution of the 

residuals close to normal (Montgomery, 2009). Box-Cox transformations have 

been applied to MAEO and MSEO, for the same reason. After transformations, we 

have verified that models generated met assumptions of the ANOVA. 

Table 22 shows eight-way ANOVA results for the Acc measure. All main effects 

and interaction effects presented in this table are significant. Other than 17 effects 

shown in the table, there are 45 other interaction effects that are statistically 

significant (at significance level 0.01), as well. In order to determine how much 

each effect contributes to the total variance, 2ω  statistic is computed (Tabachnick 

& Fidell, 2007), as done in (Doumpos & Zopounidis, 2002, p.135). Each effect 
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presented in this table explains at least 0,1% of the total variance except for effects 

Query Algorithm  and Uncertainty Measure. Being main effects, they are 

included in the table. 

As stated previously, all main effects are significant. This result shows that all 

factors included in the design have significant impact on the average classification 

accuracy. Factors Number of Classes and Number of Attributes are the most 

influential effects. Along with Underlying Value Function, these factors 

determine complexity of the classification task. Number of Classes*Number of 

Attributes  interaction is the 7th influential effect and Underlying Value 

Function*Number of Classes interaction is the 9th influential effect in the 

experiment. These interactions reveal that effects of Underlying Value Function 

and Number of Attributes  vary depending on the number of classes we have in 

the problem. Number of Queries is the 5th influential effect. This is to be expected 

since as we continue asking questions, we obtain more information about the 

preference structure of the DM and consequently classifier performance increases. 

Underlying Value Function* Classifier interaction is the most influential 

interaction effect in the table. Additionally, Classifier is the 6th influential effect. 

This reveals that performances of the algorithms differ depending on the classifier. 

Moreover, we can conclude that underlying value function has impact on the 

classifier performance. Since Querying Algorithm  and Uncertainty Measure are 

statistically significant, we can state that there is statistically significant difference 

among different querying algorithms (and uncertainty measures). 
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Table 22. ANOVA results for the Acc measure. 

Factor df Seq SS Adj SS Adj MS F p 2
ω  

F4 1 619.010 619.010 619.010 175740.280 0.000 28.17% 
F5 1 185.865 185.865 185.865 52768.100 0.000 10.53% 
F3*F8 3 289.144 289.144 96.381 27363.220 0.000 5.75% 
F3 3 220.579 220.579 73.526 20874.480 0.000 4.45% 
F7 1 49.822 49.822 49.822 14144.710 0.000 3.06% 
F8 1 20.497 20.497 20.497 5819.300 0.000 1.28% 
F4*F5 1 17.710 17.710 17.710 5027.870 0.000 1.11% 
F5*F8 1 15.582 15.582 15.582 4423.700 0.000 0.98% 
F3*F4 3 35.058 35.058 11.686 3317.740 0.000 0.73% 
F3*F4*F8 3 18.975 18.975 6.325 1795.720 0.000 0.40% 
F4*F8 1 5.132 5.132 5.132 1457.080 0.000 0.32% 
F6 1 4.558 4.558 4.558 1294.110 0.000 0.29% 
F3*F5 3 10.220 10.220 3.407 967.210 0.000 0.22% 
F7*F8 1 2.728 2.728 2.728 774.500 0.000 0.17% 
F3*F5*F8 3 7.073 7.073 2.358 669.380 0.000 0.15% 
F2 2 1.089 1.089 0.544 154.550 0.000 0.03% 
F1 1 0.134 0.134 0.134 38.060 0.000 0.01% 

 

Table 23 shows eight-way ANOVA results for the BCA measure. This table 

presents similar results to those of Acc measure. All main and interaction effects 

shown in Table 23 are statistically significant, therefore, all factors included in the 

design have impact on BCA. Other than 18 effects shown in this table, there are 45 

other interaction effects that are statistically significant (at significance level 0.01), 

as well. Each effect presented in this table explains at least 0.1 % of the total 

variance except for effects F1 and F2.  

Number of Classes and Number of Attributes  are the most influential effects, as 

in the ANOVA table for the Acc. These two factors explain 38.93 % of the total 

variance. The most influential interaction effect is the Underlying Value 

Function*Classifier interaction. This reveals that underlying value function of the 
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DM has impact on the classifier performance according to BCA measure. This 

interaction effect explains 5.36% of the total variance. 

 

Table 23. ANOVA results for the BCA measure. 

Factor df Seq SS Adj SS Adj MS F p 2
ω  

F4 1 720.797 720.797 720.797 198684.580 0.000 29.35% 
F5 1 183.739 183.739 183.739 50646.820 0.000 9.58% 
F3*F8 3 294.910 294.910 98.303 27096.910 0.000 5.36% 
F3 3 249.192 249.192 83.064 22896.230 0.000 4.57% 
F7 1 52.549 52.549 52.549 14484.810 0.000 2.94% 
F8 1 19.288 19.288 19.288 5316.610 0.000 1.10% 
F4*F5 1 16.814 16.814 16.814 4634.570 0.000 0.96% 
F5*F8 1 16.216 16.216 16.216 4469.950 0.000 0.93% 
F3*F4 3 45.783 45.783 15.261 4206.620 0.000 0.87% 
F3*F4*F8 3 21.143 21.143 7.048 1942.650 0.000 0.40% 
F4*F8 1 6.251 6.251 6.251 1722.940 0.000 0.36% 
F6 1 4.566 4.566 4.566 1258.610 0.000 0.26% 
F3*F5 3 11.163 11.163 3.721 1025.660 0.000 0.21% 
F7*F8 1 2.888 2.888 2.888 796.120 0.000 0.17% 
F3*F5*F8 3 7.518 7.518 2.506 690.770 0.000 0.14% 
F4*F7 1 1.787 1.787 1.787 492.610 0.000 0.10% 
F2 2 0.615 0.615 0.308 84.760 0.000 0.02% 
F1 1 0.137 0.137 0.137 37.790 0.000 0.01% 

 

Table 24 shows eight-way ANOVA results for the Kappa measure. This table 

presents similar results to those of Acc and BCA measures. All main effects shown 

in Table 24 are significant, thereby, all factors included in the design have impact 

on Kappa. Other than 18 effects shown in this table, there are 45 other interaction 

effects that are statistically significant, as well. Each effect presented in this table 

explains at least 0.1 % of the total variance except for effects Query Algorithm  

and Uncertainty Measure. As in the ANOVA table for BCA, main effects 
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Underlying Value Function, Number of Classes, Number of Attributes , 

Number of Queries, Classifier and interaction effect Underlying Value 

Function*Classifier are the most influential effects and explain 51.57% of the 

total variance.  

 

Table 24. ANOVA results for the Kappa measure. 

Factor df Seq SS Adj SS Adj MS F p 2
ω  

F4 1 489.779 489.779 489.779 76763.570 0.000 20.01% 
F5 1 292.571 292.571 292.571 45855.060 0.000 13.00% 
F3*F8 3 450.692 450.692 150.231 23545.830 0.000 7.12% 
F3 3 342.160 342.160 114.053 17875.720 0.000 5.50% 
F7 1 82.168 82.168 82.168 12878.240 0.000 4.03% 
F8 1 38.144 38.144 38.144 5978.290 0.000 1.91% 
F5*F8 1 22.641 22.641 22.641 3548.510 0.000 1.14% 
F4*F8 1 13.555 13.555 13.555 2124.460 0.000 0.69% 
F4*F5 1 12.041 12.041 12.041 1887.130 0.000 0.61% 
F3*F4 3 32.941 32.941 10.980 1720.980 0.000 0.56% 
F6 1 7.578 7.578 7.578 1187.660 0.000 0.39% 
F3*F5 3 18.099 18.099 6.033 945.570 0.000 0.31% 
F7*F8 1 4.714 4.714 4.714 738.910 0.000 0.24% 
F3*F5*F8 3 11.191 11.191 3.730 584.670 0.000 0.19% 
F3*F4*F8 3 10.068 10.068 3.356 525.970 0.000 0.17% 
F1*F4*F5 1 2.537 2.537 2.537 397.630 0.000 0.13% 
F2 2 1.519 1.519 0.759 119.020 0.000 0.04% 
F1 1 0.095 0.095 0.095 14.900e 0.000 0.00% 

 

To sum up, three ANOVA tables presented reveal similar results. Similarity 

among results provided by different measures stems from the fact that we start 

with a small initial reference set that is formed with stratified random sampling. 

Therefore, initial set is somewhat balanced. As querying process continues, 

balance among classes rarely changes. In general, same factors explain variance in 
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all three performance measures. All main effects are statistically significant and 

have impact on the performance measures under consideration. Factors Query 

Algorithm  and Uncertainty Measure are statistically significant. Hence, we can 

state that there is a statistically significant difference among different querying 

algorithms (and uncertainty measures) when these three measures are considered. 

Factors Underlying Value Function, Number of Classes, Number of 

Attributes , Number of Queries and Classifier are the most influential main 

effects among all factors. Factors Underlying Value Function, Number of 

Classes and Number of Attributes  designate the complexity of the classification 

task. Factor Classifier is significant, as well, indicating that there is significant 

difference between performances of SVM and RF under different experimental 

conditions. Most influential interaction effect in those three ANOVA tables is the 

Underlying Value Function*Classifier effect. As stated previously, this 

interaction reveals that underlying value function has impact on the classifier 

performance. Three way interaction Underlying Value Function*Number of 

Classes*Classifier is the most influential three-way interaction effect for Acc and 

BCA. Significance of this interaction asserts that underlying value function, 

number of classes in the problem and type of classifier jointly have a significant 

impact on the classification performance. In other words, if we have a clue about 

form of the underlying value function of the DM, we can improve prediction 

performance by choosing the proper classifier.  

Apart from these three performance measures, we also consider MAEO and 

MSEO for 5-class cases. As stated previously, these measures measure not only 

accuracy of a learner but also how “inconsistent” the learner is with respect to 

relative order of the classes. In this context, Table 25 shows seven-way ANOVA 

results for the MAEO performance measure. Since these measures are considered 

only for multiclass cases, factor Number of Classes is not included in the analysis.  
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All main effects and interaction effects presented in Table 25 are significant, 

therefore, all factors included in the design have impact on MAEO. Other than 14 

effects shown in this table, there are 22 other interaction effects that are 

statistically significant (at significance level 0.01), as well. Except for Query 

Algorithm , each effect presented in this table explains at least 0,1% of the total 

variance. Being a main effect, Query Algorithm  is included in this table, too.   

 

Table 25. ANOVA results for the MAEO measure. 

Factor df Seq SS Adj SS Adj MS F p 2
ω  

F5 1 92.997 92.997 92.997 69847.190 0.000 18.90% 
F3*F8 3 124.776 124.776 41.592 31238.660 0.000 9.44% 
F3 3 121.676 121.676 40.559 30462.510 0.000 9.23% 
F7 1 22.629 22.629 22.629 16996.090 0.000 5.37% 
F5*F8 1 5.970 5.970 5.970 4484.010 0.000 1.47% 
F6 1 1.943 1.943 1.943 1459.030 0.000 0.48% 
F3*F5 3 5.650 5.650 1.883 1414.470 0.000 0.47% 
F3*F5*F8 3 4.568 4.568 1.523 1143.700 0.000 0.38% 
F7*F8 1 0.772 0.772 0.772 579.860 0.000 0.19% 
F8 1 0.716 0.716 0.716 537.610 0.000 0.18% 
F2*F8 2 1.194 1.194 0.597 448.370 0.000 0.15% 
F3*F7 3 1.209 1.209 0.403 302.620 0.000 0.10% 
F2 2 0.804 0.804 0.402 301.850 0.000 0.10% 
F1 1 0.264 0.264 0.264 198.070 0.000 0.07% 

 

Factors Underlying Value Function and Number of Attributes  are the most 

influential effects. These factors designate complexity of the classification task. 

Number of Queries is the 3rd most influential factor since as we continue asking 

questions, we obtain more information about the preference structure of the DM 

and consequently classifier performance increases. These three factors explain 

33.49 % of the total variance. The most influential interaction effect is the 



102 

 

Underlying Value Function*Classifier interaction. This interaction reveals that 

underlying value function has impact on the classifier performance. Factors Query 

Algorithm  and Uncertainty Measure are statistically significant and among the 

most influential effects. This shows that, type of query algorithm and uncertainty 

measure used have impact on the performance of the learner in terms of MAEO. 

Table 26 shows seven-way ANOVA results for MSEO. Similar to our findings 

regarding MAEO, all main effects and interaction effects presented in Table 26 are 

significant. Other than 16 effects shown in this table, there are 17 other interaction 

effects that are statistically significant (at significance level 0.01), as well. Except 

for Query Algorithm , each effect presented in this table explains at least 0,1% of 

the total variance. Being a main effect, Query Algorithm  is included in this table, 

too. 

 

Table 26. ANOVA results for the MSEO measure. 

Factor df Seq SS Adj SS Adj MS F p 2
ω  

F5 1 358.837 358.837 358.837 18877.670 0.000 13.75% 
F3*F8 3 733.834 733.834 244.611 12868.490 0.000 9.80% 
F3 3 698.160 698.160 232.720 12242.930 0.000 9.37% 
F7 1 122.558 122.558 122.558 6447.510 0.000 5.16% 
F5*F8 1 27.192 27.192 27.192 1430.500 0.000 1.19% 
F6 1 16.465 16.465 16.465 866.210 0.000 0.73% 
F2 2 21.083 21.083 10.541 554.560 0.000 0.47% 
F3*F7*F8 3 25.357 25.357 8.452 444.670 0.000 0.37% 
F3*F7 3 24.721 24.721 8.240 433.510 0.000 0.36% 
F8 1 6.895 6.895 6.895 362.730 0.000 0.31% 
F3*F5 3 17.537 17.537 5.846 307.530 0.000 0.26% 
F3*F5*F8 3 13.406 13.406 4.469 235.090 0.000 0.20% 
F2*F8 2 7.874 7.874 3.937 207.120 0.000 0.17% 
F7*F8 1 3.757 3.757 3.757 197.660 0.000 0.17% 
F6*F7 1 3.184 3.184 3.184 167.500 0.000 0.14% 
F1 1 1.718 1.718 1.718 90.370 0.000 0.08% 
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Similar to our findings regarding MAEO, factors Underlying Value Function, 

Number of Attributes  and Number of Queries are the most influential effects. 

These three factors explain 28.28 % of the total variance. Factors Query 

Algorithm  and Uncertainty Measure are significant, hence, type of query 

algorithm and uncertainty measure used have impact on the performance of the 

learner in terms of MSEO. 

As the next step of our analysis, we examine the performance of query algorithms 

across all factors. We also include results of another querying strategy, the naive 

approach,  where the next question is asked randomly. This naive strategy provides 

us a benchmark to assess performance of our querying algorithms. Tables A.1-

A.10 in Appendix A show mean performance measure values of 20 replications 

across all design factors. Algorithm having the best performance measure value for 

the given test combination is indicated with a bold font. In all of the 64 different 

experimental conditions, at least one of the proposed approaches outperforms the 

random approach in terms of the performance measures. 

In order to observe how querying algorithms perform with different reference sizes 

and number of queries, we compute mean performance measures for different 

reference and query sizes which are presented in Tables B.1-B10 in Appendix B. 

Analysis results verify our prior conclusion asserting that there exist statistically 

significant differences between performances of the algorithms that start with 

different reference sizes. Performance figures improve (Acc, BCA and Kappa 

increase while MAEO and MSEO decrease) as size of the reference set increases. 

Similar result holds for the number of questions, as well. Acc, BCA and Kappa 

increase (and MAEO and MSEO decrease) as we ask more questions, as expected.  

In order to designate which querying algorithm is the best for different underlying 

value functions, performance measure means for all test combinations are 

computed. According to results presented in the following tables, the US algorithm 
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outperforms the QBB algorithm in all cases. Therefore, we can conclude that, the 

US algorithm is the best choice for modeling preference of the DM in the ordinal 

classification setting, regardless of the functional form of the preference structure. 

According to the following tables, SVM outperforms RF in modeling preference 

structures compatible with linear and multiplicative value functions. Conversely, 

RF performs better when the underlying value function is Tchebycheff or Complex 

Nonmonotonic. This result makes sense because tree based learners are very 

capable of modeling nonlinear or complex relationships while they may fail if the 

relationship between independent and dependent variables is close to linear. As 

James et al. (2013) remark, a model that is capable of modeling linear relationships 

is likely to outperform tree-based methods in the linear case. The linear value 

function is completely linear while the multiplicative value function is close to 

linear. This is the reason why SVM, which is also successful in modeling linear 

relationships, performs better.  

 

Table 27. Acc means of the algorithms for different underlying value functions. 
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Table 28. BCA means of the algorithms for different underlying value functions. 

 

 

Table 29. Kappa means of the algorithms for different underlying value functions. 

 

 

Table 30. MAEO means of the algorithms for different underlying value functions. 
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Table 31. MSEO means of the algorithms for different underlying value functions. 

 

 

These tables guide us regarding which algorithm and uncertainty measure to use if 

we have information about functional form of the preference structure. We have 

already designated that US is the best choice under all circumstances. When the 

underlying value function is linear, Acc, BCA and Kappa measures recommend 

Least Confident uncertainty measure while MAEO and MSEO propose the Margin 

measure. In the Multiplicative case, Least Confident is the best choice according to 

Acc and MAEO. All measures recommend using Least Confident when the 

underlying value function is Tchebycheff. When we are faced with a preference 

structure showing complex structure having interacting criteria, majority of the 

performance measures propose the Margin measure.  

As stated previously, we usually have no idea about functional form of the 

preference structure of the DM unless we have previous information or performed 

further diagnostic analysis. In this respect, in order to provide a global evaluation 

regarding performances of all querying algorithms under various classification 

conditions, overall means of 64 combinations are shown in Table 32.  
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Table 32. Overall performance measure means of querying algorithms.  

 

 

In harmony with our previous findings, US algorithm outperforms QBB in terms 

of all performance measures. Regarding the choice of an uncertainty measure, 

Margin prevails. Consequently, if we have no clue about functional form of the 

preference structure of the DM, which is the case we are usually faced with, the 

US algorithm with the Margin uncertainty measure would be the best choice. 

Table 32 recommends using RF as the base classifier in this case. However, as we 

have pointed out previously, if we have evidence that preference structure is 

somewhat linear, it would be better to utilize SVM.  

Since our primary motivation for using nonparametric classification techniques 

with AL is to model complex preference structures where criteria interact with 

each other and show somewhat nonmonotonic behavior, we will take a closer look 

at performances of querying algorithms when underlying preference structure is 

complex nonmonotonic.  

In ML practices, performance of a learner/algorithm is usually displayed or 

compared with another learner/algorithm by using learning curves. Concisely, a 

learning curve shows cross-validation/training error or accuracy as a function of 

the number of training instances. In our research we aim using querying resources 
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parsimoniously, hence we query new instances one by one interactively. In this 

respect, we use learning curves to illustrate performances of querying algorithms 

when the underlying value function has the complex nonmonotonic forms shown 

in Subsection 4.1.3. Figure 19-Figure 30 show learning curves of Acc and MSEO 

for different reference set sizes and number of attributes/classes. In these figures, 

learning curves for the best RF and SVM based algorithms as well as random 

approaches where RF and SVM used as base learners are presented.  

 

 

Figure 19. Learning curve of Acc (Reference set size 10. Value function has 3 
attributes and 2 classes.) 
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Figure 20. Learning curve of Acc (Reference set size 10. Value function has 3 
attributes and 5 classes.) 

 

 

 

Figure 21. Learning curve of Acc (Reference set size 10. Value function has 6 
attributes and 2 classes.) 
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Figure 22. Learning curve of Acc (Reference set size 10. Value function has 6 
attributes and 5 classes.) 

 

 

 

Figure 23. Learning curve of Acc (Reference set size 30. Value function has 3 
attributes and 2 classes.) 
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Figure 24. Learning curve of Acc (Reference set size 30. Value function has 3 
attributes and 5 classes.) 

 

 

 

Figure 25. Learning curve of Acc (Reference set size 30. Value function has 6 
attributes and 2 classes.) 
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Figure 26. Learning curve of Acc (Reference set size 30. Value function has 6 
attributes and 5 classes.) 

 

 

 

Figure 27. Learning curve of MAEO (Reference set size 10. Value function has 3 
attributes and 5 classes.) 
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Figure 28. Learning curve of MAEO (Reference set size 10. Value function has 6 
attributes and 5 classes.) 

 

 

Figure 29. Learning curve of MAEO (Reference set size 30. Value function has 3 
attributes and 5 classes.) 
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Figure 30. Learning curve of MAEO (Reference set size 60. Value function has 6 
attributes and 5 classes.) 

 

Learning curves show that when the classification task is relatively easy (small 

number of attributes and classes), proposed algorithms outperform the naive 

(random) approach by far. On the other hand, when the classification task gets 

more complex, proposed algorithms still outperform the random approach, 

however, the difference is not as significant as in the previous case. The reason for 

this result is believed to stem from the fact that, random approach has one 

advantage over the other querying strategies; the random approach explores 

regions in the attribute domain, which may not be visited by the proposed 

algorithms, particularly when the reference set size is small. While the proposed 

algorithms concentrate over some particular region in the attribute domain where 

uncertainty is the most, random approach might query an instance which might not 

provide an instant improvement, however, providing significant information gain 

for the whole querying process. 

Another finding brought to our attention by learning curves is that, as size of the 

reference set increases, difference in performance between proposed querying 
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algorithms and random approach increases. This is to be expected, because 

proposed algorithms exploit information embedded in the reference set to guide 

interactive querying process. Hence, the more we have information, the better we 

explore the attribute domain. 

Comparing performances of the classifiers, we realize that RF outperforms SVM 

at the initial phase of the querying process. This result can be verified with both 

Acc and MAEO learning curves. As querying process proceeds, SVM catches up 

with RF and in some cases performs better at the end of the process. This result is 

due to the ensemble characteristic of the RF classifier. As we have pointed out in 

Chapter 2, RFs are very robust to overfitting (Hastie et al., 2009), because they 

employ multiple decision trees generated with bagging. This ensemble 

characteristic improves generalization ability of the model. Furthermore, this 

property becomes very important when size of the training data is small because 

classifiers usually suffer from overfitting in the presence of small data sets. 

Consequently, it seems to be a better strategy to start with RF as the base learner 

and then switch to SVM (after 30-40 questions, according to learning curves). If 

we are certain that we are allowed to ask limited number of questions, using RF 

throughout the process would be the best course of action.  

In order to verify if the best algorithms in terms of Acc and MAEO are statistically 

better than the random approach when the underlying value function is complex 

nonmonotonic, we perform pairwise t-tests for the mean values of Acc and MAEO 

measures achieved throughout the querying process. Following hypotheses are 

tested in the analysis at 95% confidence level.  
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where best random
i i id Acc Acc= −  and random best

i i id MAEO MAEO= −  for  

i=1,...,numberOfQueries. Test results are presented in Appendix C.  

Pairwise t-tests propose that we have enough evidence to reject H0, claiming there 

is no difference in the mean Acc and MAEO values of the best algorithms and the 

random approach. Therefore, we conclude that differences between the best 

algorithms and the random approach in terms of Acc and MAEO performance 

measures are statistically significant.  

To sum up, in this chapter proposed algorithms are tested against various cases. 

Factors that are believed to have impact on the performance of the algorithms are 

included in the experimental design. In the experiment, underlying value functions 

that are believed to represent most of the preference structures are considered. 

Preference structure representing nonmonotonic behavior and having high order 

interactions among attributes is represented with a function that is built with hinge 

functions.  

ANOVA reveal that all factors included in the experiment are statistically 

significant with respect to measures under consideration, meaning that all factors 

have impact on the performance of the querying algorithms. Furthermore, most of 

their two and three way interactions are significant, as well.  

Regarding classification performances of the query algorithms, US algorithm 

outperforms QBB and the random approach in terms of all measures across 

different experimental conditions. We also conclude that, if we have no clue about 

functional form of the preference structure of the DM, which is the case we are 
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usually faced with, employing the US algorithm with the Margin uncertainty 

measure would be the best course of action. 

Lastly, we have analyzed performance of the algorithms when the underlying 

value function is complex nonmonotonic. In this case, most of the performance 

measures propose using the US algorithm with the Margin uncertainty measure. 

Regarding the classifier, we conclude that it is a better strategy to start with RF as 

the base learner and then switch to SVM after asking a decent number of 

questions.  

In order to verify that the best algorithms determined outperform the random 

approach, we have performed pairwise t-tests to mean values of Acc and MAEO 

achieved throughout the querying process. These tests confirm that the differences 

in means between the best algorithms and the random approach are statistically 

significant in all cases. 
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CHAPTER 5 

 

EXTENSION OF THE ALGORITHM TO CONSIDER THE INPUT 

DISTRIBUTION 

 

 

In this thesis study, we have focused on the case where an unlabeled data does not 

exist, as discussed in Section 3.2. Therefore, we have not made use of input 

distribution of such data. Our aim is to estimate a function on a particular domain 

(design domain) where we desire to perform equally good everywhere. This 

requirement makes our problem a more challenging one with respect to typical AL 

practices. This situation is particularly valid in CA applications. In CA, preference 

of the customers (or potential customers) is elicited by presenting alternative 

profiles that are generated according to a strategy. In traditional CA, these 

alternatives are usually generated via a statistical experimental design while in 

ACA subsequent profiles (questions) are tailored in an interactive query session in 

order to maximize information gain. Possible objectives of these applications are 

to estimate market share of an existing or a new product, estimating how much 

each feature of the profile contributes to overall preference (part-worths), 

classifying customer profiles and developing custom marketing policies for each 

group. As process definition of the CA implies, features (or attributes) of the 

product or part-worths will be determined based on the preference structure of the 

customers.  
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A similar application can be found in the manufacturing field. For example, 

quality of a part or a product might need to be predicted for some given process 

parameter levels for the purpose of improving quality of products. This is similar 

to aforementioned profile development problem in CA. In both of these 

applications and many others such as student selection to graduate programs, 

credit risk assessment, classifying hotels or diagnosing diseases, we are not 

interested in how often a particular attribute value or joint values of attributes in 

other existing unlabeled examples (or alternatives) out there happen to occur.  

In some other cases, the joint distribution of attribute levels may change from one 

setting of parameters that produce alternatives to another setting. Let us consider 

an example from the manufacturing field. A manufactured boot is classified as 

“Good”, “Rework” or “Scrap” based on the quality characteristics under 

consideration. A Good boot is ready for market sale while a boot classified as 

Rework needs to undergo a corrective operation in order to be qualified as Good 

for the market. There is no hope for a Scrap boot and it goes to garbage. As the 

problem definition implies, this is an ordinal classification problem. A quality 

control technician classifies all manufactured boots accordingly. Assume that two 

of the quality characteristics under consideration are thickness and flexibility of 

boot sole and also assume that we measure these two quality characteristics 

quantitatively. Suppose that measured quality characteristics of manufactured 

boots follow a normal distribution at each characteristic domain, based on current 

process parameter levels. If we change levels of the process parameters, then 

quality characteristics may follow different distributions or at least the same 

distributions with different parameters. If we keep the current parameter levels, we 

may observe that thickness and flexibility have negative correlation since a thick 

sole is usually not flexible, consequently, resulting in a joint multivariate normal 

distribution in two dimensional attribute domain. This is the input distribution of 

two quality characteristics and an example of such distribution is shown in Figure 
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31 for illustration. This input distribution can be estimated by analyzing previously 

manufactured and unclassified pool of boots.  

 

Figure 31. Input distribution of two quality characteristics. 

 

In the case of a constant and known input distribution, does this information help 

in training a classifier that will be used as a model in predicting resulting classes 

such as qualities of manufactured boots? Attribute values of most of the 

manufactured boots to be classified will be lying in the dense region shown in 

Figure 31. If our ultimate goal is to train a predictive model that will classify 

instances with high accuracy, concentrating on this dense region in the training 

phase will boost the learning process. Recognizing this special property of some 

problems, AL practitioners developed “Density Weighted Methods” and “Cluster 

Based AL” techniques in order to exploit information embedded in the input 
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distribution. In this context, density weighted methods consider not only 

information content of a candidate question but also how much it represents other 

instances in the unlabeled pool. Hence, these methods measure information 

content and representativeness of candidate instances and aggregate these two 

quantities to determine the instance that will boost the learning process most. 

Representativeness is usually measured with a similarity measure which computes 

average similarity of a candidate instance to all instances in the unlabeled pool. 

Consequently, assuming that we have a set of unlabeled instances U, an aggregate 

measure as shown below is utilized to select the next question to be queried 

(Settles, 2012): 

 * 1
( ) sim( , )argmax A

x Ux
x x x x

U

β

′∈

 
′= Φ   

 
∑   (54) 

where ( )A xΦ  corresponds to base uncertainty measure under sampling strategy A, 

and the rest in the parenthesis measures representativeness of the candidate 

instance. Parameter β  determines weight of the representativeness in the 

aggregate measure. Similarity (sim(.)) can be measured with different distance 

measures such as Euclidean distance or Cosine similarity (Settles, 2012). 

In order to observe efficiency of the aforementioned extension, we have applied it 

to our most demanding experimental case, where the underlying value function is 

6-attribute complex nonmonotonic, instances are to be classified into 5 classes and 

initial reference set size is 10. SVM is employed as the base learner and Euclidean 

distance is used to measure similarity. Being the most successful querying 

strategy, US is utilized. In order to mimic the input distribution, we have randomly 

generated an unlabeled set of size 1,000 from a multivariate normal distribution, 

where ( , )x μ ΣN∼  with parameters; 
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=  
 
 
 
 

, 

0.0100 0.0050 0.0000 0.0000 0.0000 0.0023

0.0050 0.0200 0.0011 0.0000 0.0000 0.0000

0.0000 0.0011 0.0050 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0200 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0100 0.0000

0.0023 0.0000 0.0000

Σ =

0.0000 0.0000 0.0200

 
 
 
 
 
 
 
 
 

 

In line with the problem definition, the test set of size 1,000 is also generated from 

the same multivariate normal distribution. Pseudo-code of the algorithm that 

considers the input distribution is shown in Figure 32. 

 

1. R is the initial reference set of size n, m is the number of queries, L is the 
learner, p is the pool size, U is the unlabeled set of instances 

2. for  i=1, 2, …m do 

3.  train L using R 

4.  generate random set of instances from the attribute domain of size p for the 
 pool 

5.  predict labels of instances in the pool using L 

6.  calculate uncertainty measure (( )xΦ ) for each instance in the pool 

7.  calculate average similarity (( )xΩ ) of each instance in the pool to the 
 instances in set U 

8.  calculate information content of each instance in the pool ( ( )xΦ . ( )x βΩ ) 

9.  select instance having the maximum information content ( *w ) 

10.  Ask label (class) y of  *w to the DM 

11.  * ,R R w y← ∪  

12.  	 ← 	 + 1 

13. end for 

Figure 32. Pseudo-code of the algorithm that considers the input distribution. 
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Performance measures of the experiment and comparison with the previous results 

where input distribution is not considered is presented in Table 33. Table 33 shows 

that considering input distribution helps classifier train more efficiently and boosts 

the learning process. In all measures, extension of the algorithm outperforms the 

original algorithm (that does not consider input distribution) and random approach.  

 

Table 33. Experimental results of the extension and comparison with previous 
results. 

Performance 
Measure 

Considering Input       
Distribution 

Not Considering Input 
Distribution Random 

LC M E LC M E 

Acc 0.7583 0.6828 0.7519 0.6081 0.6185 0.6172 0.5840 

BCA 0.5754 0.6656 0.5770 0.5840 0.5947 0.5985 0.5626 

Kappa 0.6562 0.5619 0.6481 0.5003 0.5146 0.5137 0.4709 

MAEO 0.2433 0.3203 0.2530 0.4143 0.4176 0.4089 0.4690 

MSEO 10.6424 26.1933 11.5735 26.7399 19.0762 23.4776 24.0141 

 

Figure 33 and Figure 34 show learning curves of the extension of the algorithm for 

Acc and MAEO performance measures. These figures reveal that learning curves 

of the algorithm considering input distribution is significantly steeper than the 

random approach. Furthermore, difference between the algorithm and the random 

approach is statistically significant even at early phases of the learning process.  
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Figure 33. Learning curve of Acc (considering the input distribution). 

 

 

Figure 34. Learning curve of MAEO (considering the input distribution). 

 

To sum up, considering input distribution boosts learning process of the algorithm 

because line of inquiry is driven so that the algorithm focuses on the dense regions 
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of the input space, hence, producing a model having a better predictive ability. 

However, this extension is not applicable to all preference learning applications, 

rather, depends on the problem of interest. If nature of the problem enables us to 

exploit input distribution as in the boot manufacturing example, then the algorithm 

given in Figure 32 helps us generate superior predictive models. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 

In this study, we consider learning preference structure of a DM in an ordinal 

classification setting especially when the criteria interact, no information is 

available about underlying value function and distribution of the criteria value, and 

prior or new data about preferences are difficult to obtain. Interacting criteria make 

the preference learning problem more challenging particularly when the number of 

criteria under consideration is big, due to curse of dimensionality. Even though 

there is a general consent among researchers regarding the existence of interaction 

among criteria in real life decision problems, it is often ignored in applications. 

Accordingly, most of the preference modeling strategies assume preferential 

independence among criteria, making modeling process relatively easygoing. 

Nevertheless, interaction phenomonea is encountered quite commonly, even in 

simpler cases. 

Most of the MCDA methodologies utilizing value functions assume an underlying 

functional model. According to this assumption, DM preference structure is 

compatible with an adapted functional form, which is generally monotonous. 

However, a wrong functional form produces estimation bias and reduces the 

predictive performance of the model. Additionally, even though a proper 

functional (i.e. nonlinear) form is assumed for a preferential system having 
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interactions among criteria, parametric models may fail to address complex 

interaction structures in high dimensions. 

In order to deal with these problematic issues in preference modeling, we propose 

using nonparametric SL techniques interactively and consider preference modeling 

for sorting/ordinal classification decision problem. SL offers several 

nonparametric model-free methodologies that are particularly superior in terms of  

generalization ability and modeling complex data structures. Finding a vast 

application area in AI for human behavioral modeling, SL techniques draw a 

growing interest among MCDA researchers, as well. However, there are several 

issues criticized about usage of SL techniques in MCDA applications. The most 

important ones of these critics are their need for big amount of data and lack of 

ability to work interactively (Doumpos & Zopounidis, 2011).  In this study, we 

address these criticized issues while exploiting strong features of SL for learning 

DM preference structure in sorting/ordinal classification setting.  

Our modeling strategy is based on obtaining holistic judgements from the DM 

regarding alternatives and adjusting subsequent questions based on the judgements 

gathered thus far, in an adaptive fashion. We start with a small reference set and 

employ nonparametric classifiers for model developing. In order to conduct 

modeling process in an adaptive way, we propose employing AL techniques. Thus, 

querying process is structured so that as much information as possible is obtained 

while as less number of questions as possible is queried. Utilizing AL, we ask the 

DM in an interactive way, thereby, the DM is integrated into the model 

development process. Consequently, preference structure of the DM is represented 

with the trained classifier.  

In order to evaluate the proposed approach, we have conducted an experimental 

analysis. In the experiment we have tested the approach against several sorting 

setups, i.e. problems having different number of classes, attributes, questions and 
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reference set sizes. Additionally, we have employed four different underlying 

value functions that were believed to represent majority of preference structures in 

order to mimic the DM. Our experimental analysis proves that the proposed 

approach outperforms the “naive” approach where subsequent questions are asked 

randomly. Based on our findings, we provide algorithmic recommendations (type 

of classifier, sampling strategy and uncertainty measure) for modeling different 

underlying value functions in case we have information about form of the 

preference structure. Additionally, we provide an extension of the algorithm where 

we have information about input distribution of the criteria values. For the case 

where we have no information about functional form of the preference structure of 

the DM, which is usually the case we are faced with, we recommend using the US 

algorithm with Margin uncertainty measure and training RF as the classifier.  

Our approach is a novel one because different than the MCDA sorting approaches 

proposed in the literature that aim at sorting limited number of alternatives of the 

problem under consideration with maximum accuracy, we consider preference 

modeling as a learning process. To our knowledge, this is the first study in the 

MCDA literature that approaches preference modeling as an evolutionary learning 

process. In this respect, this study can be regarded as a pioneering approach. Even 

though our work is not comparable with MCDA sorting methodologies, our 

trained model offers a sorting tool, as well. Thereby, our proposed approach also 

addresses the need for model-free sorting methodologies that are capable of 

modeling interactions while implemented interactively with the DM. 

Our main objective is to develop a predictive model that will be used to classify 

unseen instances with high accuracy. At the end of the learning process, our 

approach provides a black-box model where the model produces outputs (class 

predictions) for a given set of criteria/attribute values. In this context, produced 

model can be used as an aide for optimization purposes where criteria/attribute 

regions of high preference can be found by performing a grid search. Developed 
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models can be used in various fields such as quality engineering and marketing, as 

well as many others that need robust ordinal classifiers modeling preference 

structure of the DM (Doumpos & Zopounidis, 2002). With these properties, our 

approach can be compared with those approaches developed in the ACA because 

similar to our approach, ACA aims to develop robust predictive models that learns 

efficiently via questionnaires that are specifically structured to accelerate learning 

process. We have not conducted an evaluation to compare our study with those of 

ACA, however, it is our intention to perform such an evaluation as a future work. 

Nevertheless, we expect our proposed approach to outperform methodologies of 

ACA since ACA methodologies are not capable of modeling interacting attributes 

(Rao, 2014).  

There are three subjects that we consider as future work. One of them is 

developing a “starting strategy”. As we explain in Section 3.2, we perform a 

stratified random sampling at the beginning of the process in order to generate an 

initial reference set. Samples from each stratum (or class) are generated randomly. 

Including at least one sample from each stratum is essential for classifiers because 

they recognize number of classes of the problem with regard to examples in the 

training set. On the other hand, there may be additional information regarding 

criteria domain based on the problem under consideration. In quality engineering, 

for instance, the DM may define upper or lower specification limits on the criteria 

(or attribute) domain that will help us localize class-separating boundaries. Asking 

initial questions in the vicinity of these boundaries may help accelerate the initial 

learning process.  

Another potential area of improvement is development of new uncertainty 

measures for the ordinal classification problem. Measures proposed in the 

literature are developed for nominal classification problem, hence, they do not 

consider additional information embedded in the ordinal structure of the data. 

Although we have developed measures of that sort, as explained in Section 3.3, 
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those measures have not provided better results. This might be partially due to the 

fact that, classifiers we use in the study are nominal classifiers and we make them 

exploit ordinal structure of the data with Frank and Hall (2001) approach. The 

main problem with this approach is that generated posterior probabilities do not 

add up to one. Uncertainty measures consider posterior probabilities for measuring 

uncertainty, therefore, they suffer from this property of Frank and Hall (2001). 

Even though there are special algorithms for ordinal classification, our trials have 

shown that they generally failed with a small number of training data. That is 

another reason why we prefer using SVM and RF as base learners and made them 

exploit ordinal information with Frank and Hall (2001) approach. Consequently, 

special algorithms and uncertainty measures developed for ordinal classification 

may further improve performance of the proposed approach. 

Yet another future work we consider is to develop a web interface for the 

algorithm where the DM is interacted via the interface and information about the 

learning process is provided such as rate of learning, prediction performance of the 

learner at that point, etc. Thus, the DM would be informed about the progress of 

the learning process and consequences of terminating the model development 

process at a particular stage. 
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APPENDIX A 

 

DETAILED PERFORMANCE MEASURE RESULTS OF THE 

ALGORITHMS ACROSS ALL FACTORS CONSIDERED 

 

 

Table A.1 Detailed Acc results (Uncertainty Sampling). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.919 0.948 0.914 0.949 0.918 0.945 0.887 0.900 

3 5 0.616 0.734 0.626 0.722 0.569 0.736 0.613 0.698 

6 2 0.852 0.851 0.857 0.839 0.844 0.841 0.815 0.805 

6 5 0.396 0.470 0.473 0.497 0.397 0.431 0.479 0.476 

Multiplicative 

3 2 0.912 0.946 0.909 0.948 0.911 0.942 0.880 0.906 

3 5 0.585 0.850 0.642 0.816 0.579 0.829 0.610 0.707 

6 2 0.848 0.840 0.847 0.842 0.852 0.842 0.809 0.803 

6 5 0.418 0.477 0.463 0.495 0.411 0.507 0.465 0.490 

Tchebycheff 

3 2 1.000 0.823 1.000 0.835 1.000 0.815 0.976 0.895 

3 5 0.962 0.775 0.948 0.726 0.959 0.757 0.894 0.700 

6 2 1.000 0.811 1.000 0.827 1.000 0.813 0.969 0.786 

6 5 0.958 0.466 0.956 0.489 0.944 0.476 0.875 0.480 

Complex 
Nonmonotonic 

3 2 0.943 0.822 0.944 0.825 0.944 0.829 0.915 0.896 

3 5 0.706 0.745 0.747 0.735 0.696 0.749 0.725 0.712 

6 2 0.877 0.846 0.885 0.842 0.880 0.841 0.847 0.801 

6 5 0.497 0.479 0.546 0.490 0.498 0.479 0.530 0.451 

30 Linear 

3 2 0.923 0.958 0.932 0.960 0.925 0.957 0.891 0.924 

3 5 0.653 0.796 0.682 0.772 0.637 0.786 0.655 0.725 

6 2 0.867 0.867 0.871 0.864 0.863 0.862 0.833 0.840 

6 5 0.428 0.515 0.492 0.535 0.417 0.509 0.490 0.529 
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Table A.1 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 30 

Multiplicative 

3 2 0.917 0.960 0.917 0.958 0.919 0.957 0.891 0.923 

3 5 0.634 0.869 0.678 0.840 0.620 0.855 0.662 0.728 

6 2 0.861 0.868 0.859 0.870 0.864 0.871 0.830 0.839 

6 5 0.458 0.562 0.496 0.563 0.444 0.553 0.502 0.532 

Tchebycheff 

3 2 1.000 0.897 1.000 0.893 1.000 0.892 0.980 0.914 

3 5 0.976 0.798 0.976 0.774 0.970 0.814 0.928 0.753 

6 2 1.000 0.851 1.000 0.848 1.000 0.849 0.977 0.817 

6 5 0.981 0.521 0.976 0.521 0.967 0.523 0.925 0.520 

Complex 
Nonmonotonic 

3 2 0.949 0.897 0.950 0.901 0.948 0.891 0.917 0.921 

3 5 0.727 0.794 0.762 0.762 0.737 0.774 0.758 0.752 

6 2 0.895 0.871 0.895 0.870 0.892 0.869 0.865 0.837 

6 5 0.529 0.517 0.555 0.517 0.515 0.516 0.544 0.493 

100 

10 

Linear 

3 2 0.958 0.985 0.960 0.984 0.956 0.982 0.928 0.942 

3 5 0.699 0.882 0.730 0.854 0.669 0.868 0.720 0.809 

6 2 0.913 0.907 0.914 0.909 0.914 0.908 0.870 0.879 

6 5 0.395 0.623 0.530 0.624 0.377 0.628 0.527 0.618 

Multiplicative 

3 2 0.952 0.983 0.951 0.983 0.948 0.984 0.909 0.942 

3 5 0.665 0.914 0.715 0.904 0.625 0.902 0.703 0.816 

6 2 0.904 0.896 0.894 0.904 0.896 0.902 0.868 0.878 

6 5 0.420 0.633 0.543 0.629 0.415 0.641 0.548 0.612 

Tchebycheff 

3 2 1.000 0.885 1.000 0.887 1.000 0.878 0.992 0.942 

3 5 0.999 0.866 0.999 0.864 0.998 0.852 0.960 0.811 

6 2 1.000 0.894 1.000 0.894 1.000 0.896 0.989 0.857 

6 5 0.999 0.628 0.999 0.632 0.998 0.643 0.957 0.594 

Complex 
Nonmonotonic 

3 2 0.965 0.864 0.964 0.856 0.963 0.859 0.938 0.945 

3 5 0.775 0.858 0.817 0.852 0.769 0.853 0.801 0.802 

6 2 0.916 0.908 0.923 0.908 0.919 0.906 0.891 0.874 

6 5 0.524 0.608 0.612 0.619 0.484 0.617 0.598 0.584 

30 

Linear 

3 2 0.956 0.986 0.958 0.986 0.958 0.984 0.923 0.949 

3 5 0.722 0.886 0.751 0.876 0.714 0.883 0.732 0.812 

6 2 0.914 0.911 0.912 0.913 0.915 0.913 0.887 0.887 

6 5 0.412 0.642 0.538 0.660 0.387 0.646 0.532 0.620 

Multiplicative 

3 2 0.953 0.986 0.954 0.985 0.951 0.984 0.915 0.948 

3 5 0.697 0.911 0.738 0.913 0.676 0.905 0.716 0.805 

6 2 0.906 0.911 0.901 0.911 0.901 0.913 0.867 0.888 

6 5 0.453 0.642 0.565 0.656 0.444 0.653 0.557 0.630 

Tchebycheff 

3 2 1.000 0.936 1.000 0.939 1.000 0.934 0.988 0.940 

3 5 0.999 0.877 0.999 0.870 0.999 0.867 0.965 0.824 

6 2 1.000 0.899 1.000 0.902 1.000 0.898 0.990 0.868 

6 5 0.999 0.652 0.999 0.655 0.999 0.653 0.971 0.622 
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Table A.1 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

100 30 
Complex 
Nonmonotonic 

3 2 0.963 0.912 0.965 0.919 0.965 0.915 0.939 0.946 

3 5 0.793 0.871 0.831 0.864 0.795 0.874 0.821 0.812 

6 2 0.920 0.915 0.926 0.915 0.918 0.914 0.895 0.885 

6 5 0.541 0.607 0.629 0.618 0.527 0.613 0.613 0.597 

 

Table A.2 Detailed Acc results (Query By Bagging). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.921 0.933 0.917 0.937 0.915 0.944 0.887 0.900 

3 5 0.573 0.742 0.617 0.725 0.548 0.738 0.613 0.698 

6 2 0.849 0.806 0.847 0.804 0.844 0.805 0.815 0.805 

6 5 0.392 0.450 0.477 0.510 0.399 0.424 0.479 0.476 

Multiplicative 

3 2 0.910 0.943 0.903 0.942 0.910 0.947 0.880 0.906 

3 5 0.578 0.768 0.630 0.753 0.558 0.762 0.610 0.707 

6 2 0.843 0.775 0.840 0.806 0.844 0.776 0.809 0.803 

6 5 0.414 0.486 0.467 0.519 0.424 0.506 0.465 0.490 

Tchebycheff 

3 2 0.999 0.928 0.999 0.926 1.000 0.929 0.976 0.895 

3 5 0.955 0.768 0.937 0.729 0.949 0.759 0.894 0.700 

6 2 0.996 0.795 0.999 0.817 0.999 0.799 0.969 0.786 

6 5 0.935 0.456 0.940 0.452 0.916 0.430 0.875 0.480 

Complex 
Nonmonotonic 

3 2 0.941 0.940 0.942 0.939 0.938 0.935 0.915 0.896 

3 5 0.694 0.743 0.742 0.734 0.694 0.755 0.725 0.712 

6 2 0.875 0.809 0.875 0.811 0.860 0.820 0.847 0.801 

6 5 0.496 0.473 0.530 0.470 0.484 0.441 0.530 0.451 

30 

Linear 

3 2 0.928 0.954 0.931 0.954 0.926 0.955 0.891 0.924 

3 5 0.637 0.793 0.671 0.767 0.625 0.793 0.655 0.725 

6 2 0.863 0.838 0.869 0.842 0.871 0.844 0.833 0.840 

6 5 0.418 0.509 0.485 0.529 0.419 0.497 0.490 0.529 

Multiplicative 

3 2 0.920 0.953 0.918 0.955 0.917 0.956 0.891 0.923 

3 5 0.622 0.779 0.660 0.775 0.604 0.791 0.662 0.728 

6 2 0.862 0.844 0.857 0.841 0.854 0.854 0.830 0.839 

6 5 0.460 0.555 0.500 0.550 0.445 0.568 0.502 0.532 
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Table A.2 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 30 

Tchebycheff 

3 2 1.000 0.941 1.000 0.938 1.000 0.940 0.980 0.914 

3 5 0.972 0.792 0.970 0.777 0.967 0.797 0.928 0.753 

6 2 1.000 0.830 1.000 0.836 1.000 0.813 0.977 0.817 

6 5 0.973 0.503 0.969 0.527 0.960 0.510 0.925 0.520 

Complex 
Nonmonotonic 

3 2 0.945 0.948 0.947 0.945 0.947 0.948 0.917 0.921 

3 5 0.741 0.776 0.765 0.762 0.745 0.784 0.758 0.752 

6 2 0.877 0.842 0.887 0.861 0.885 0.848 0.865 0.837 

6 5 0.532 0.522 0.561 0.523 0.529 0.536 0.544 0.493 

100 

10 

Linear 

3 2 0.957 0.979 0.959 0.982 0.955 0.982 0.928 0.942 

3 5 0.675 0.881 0.729 0.849 0.662 0.864 0.720 0.809 

6 2 0.906 0.894 0.902 0.890 0.900 0.894 0.870 0.879 

6 5 0.379 0.632 0.517 0.633 0.347 0.615 0.527 0.618 

Multiplicative 

3 2 0.949 0.981 0.948 0.980 0.945 0.977 0.909 0.942 

3 5 0.647 0.872 0.720 0.859 0.611 0.863 0.703 0.816 

6 2 0.891 0.891 0.897 0.892 0.896 0.884 0.868 0.878 

6 5 0.430 0.612 0.535 0.629 0.426 0.641 0.548 0.612 

Tchebycheff 

3 2 1.000 0.967 1.000 0.968 1.000 0.964 0.992 0.942 

3 5 0.999 0.865 0.998 0.861 0.994 0.857 0.960 0.811 

6 2 1.000 0.875 1.000 0.882 1.000 0.869 0.989 0.857 

6 5 0.998 0.618 0.998 0.618 0.993 0.610 0.957 0.594 

Complex 
Nonmonotonic 

3 2 0.968 0.960 0.965 0.958 0.966 0.957 0.938 0.945 

3 5 0.759 0.858 0.823 0.851 0.752 0.855 0.801 0.802 

6 2 0.912 0.890 0.915 0.896 0.912 0.895 0.891 0.874 

6 5 0.499 0.585 0.608 0.606 0.482 0.609 0.598 0.584 

30 

Linear 

3 2 0.957 0.980 0.958 0.983 0.959 0.981 0.923 0.949 

3 5 0.706 0.886 0.742 0.867 0.697 0.881 0.732 0.812 

6 2 0.912 0.896 0.908 0.895 0.912 0.899 0.887 0.887 

6 5 0.400 0.641 0.542 0.638 0.374 0.649 0.532 0.620 

Multiplicative 

3 2 0.955 0.980 0.956 0.983 0.953 0.981 0.915 0.948 

3 5 0.685 0.873 0.729 0.871 0.655 0.875 0.716 0.805 

6 2 0.901 0.895 0.901 0.895 0.907 0.894 0.867 0.888 

6 5 0.462 0.659 0.544 0.644 0.450 0.669 0.557 0.630 

Tchebycheff 

3 2 1.000 0.970 1.000 0.972 1.000 0.971 0.988 0.940 

3 5 0.999 0.876 0.999 0.874 0.996 0.869 0.965 0.824 

6 2 1.000 0.879 1.000 0.889 1.000 0.882 0.990 0.868 

6 5 0.998 0.643 0.998 0.638 0.996 0.652 0.971 0.622 

Complex 
Nonmonotonic 

3 2 0.967 0.964 0.970 0.962 0.966 0.965 0.939 0.946 

3 5 0.776 0.870 0.836 0.857 0.788 0.867 0.821 0.812 

6 2 0.917 0.900 0.925 0.901 0.918 0.899 0.895 0.885 

6 5 0.536 0.614 0.620 0.617 0.520 0.635 0.613 0.597 



145 

 

Table A.3 Detailed BCA results (Uncertainty Sampling). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.919 0.948 0.914 0.949 0.919 0.945 0.887 0.900 

3 5 0.608 0.735 0.616 0.716 0.565 0.730 0.596 0.685 

6 2 0.852 0.851 0.857 0.838 0.844 0.841 0.815 0.805 

6 5 0.362 0.423 0.419 0.456 0.361 0.406 0.422 0.445 

Multiplicative 

3 2 0.912 0.946 0.909 0.948 0.911 0.942 0.880 0.906 

3 5 0.504 0.794 0.547 0.747 0.504 0.801 0.512 0.616 

6 2 0.848 0.840 0.847 0.842 0.852 0.842 0.809 0.803 

6 5 0.391 0.436 0.438 0.466 0.383 0.482 0.436 0.465 

Tchebycheff 

3 2 1.000 0.829 1.000 0.840 1.000 0.820 0.975 0.895 

3 5 0.965 0.764 0.952 0.706 0.954 0.752 0.867 0.685 

6 2 1.000 0.811 1.000 0.826 1.000 0.814 0.968 0.786 

6 5 0.956 0.458 0.955 0.478 0.938 0.469 0.861 0.463 

Complex 
Nonmonotonic 

3 2 0.944 0.801 0.944 0.806 0.945 0.809 0.916 0.895 

3 5 0.688 0.730 0.727 0.709 0.674 0.731 0.709 0.676 

6 2 0.872 0.844 0.883 0.839 0.876 0.839 0.847 0.792 

6 5 0.464 0.458 0.519 0.464 0.476 0.463 0.498 0.425 

30 

Linear 

3 2 0.923 0.958 0.932 0.960 0.925 0.957 0.891 0.924 

3 5 0.645 0.797 0.668 0.764 0.628 0.780 0.635 0.712 

6 2 0.867 0.866 0.871 0.864 0.863 0.863 0.833 0.839 

6 5 0.381 0.473 0.439 0.494 0.371 0.471 0.432 0.489 

Multiplicative 

3 2 0.917 0.960 0.917 0.958 0.919 0.957 0.891 0.923 

3 5 0.543 0.841 0.571 0.792 0.524 0.836 0.548 0.635 

6 2 0.861 0.867 0.858 0.870 0.864 0.871 0.830 0.838 

6 5 0.429 0.533 0.471 0.537 0.424 0.529 0.474 0.509 

Tchebycheff 

3 2 1.000 0.899 1.000 0.896 1.000 0.895 0.980 0.914 

3 5 0.977 0.799 0.978 0.763 0.964 0.808 0.912 0.748 

6 2 1.000 0.851 1.000 0.847 1.000 0.848 0.976 0.816 

6 5 0.979 0.515 0.975 0.510 0.964 0.513 0.913 0.504 

Complex 
Nonmonotonic 

3 2 0.949 0.888 0.951 0.892 0.949 0.880 0.915 0.920 

3 5 0.693 0.787 0.730 0.728 0.705 0.765 0.724 0.703 

6 2 0.893 0.869 0.892 0.868 0.890 0.867 0.861 0.832 

6 5 0.494 0.488 0.532 0.493 0.489 0.491 0.526 0.478 

100 10 

Linear 

3 2 0.958 0.985 0.960 0.984 0.956 0.982 0.929 0.943 

3 5 0.703 0.880 0.724 0.850 0.673 0.869 0.705 0.801 

6 2 0.913 0.907 0.914 0.909 0.914 0.908 0.870 0.879 

6 5 0.366 0.576 0.472 0.583 0.343 0.574 0.464 0.572 

Multiplicative 

3 2 0.952 0.983 0.951 0.983 0.948 0.984 0.909 0.942 

3 5 0.593 0.876 0.636 0.831 0.552 0.885 0.596 0.734 

6 2 0.904 0.896 0.895 0.904 0.897 0.902 0.868 0.877 

6 5 0.389 0.614 0.511 0.606 0.383 0.631 0.514 0.595 

Tchebycheff 

3 2 1.000 0.888 1.000 0.890 1.000 0.882 0.992 0.942 

3 5 0.999 0.860 0.999 0.850 0.998 0.851 0.946 0.800 

6 2 1.000 0.894 1.000 0.894 1.000 0.895 0.989 0.857 

6 5 0.999 0.621 0.999 0.618 0.998 0.629 0.952 0.577 

Complex 
Nonmonotonic 

3 2 0.966 0.847 0.965 0.837 0.965 0.841 0.938 0.945 

3 5 0.757 0.851 0.792 0.834 0.751 0.852 0.781 0.776 

6 2 0.915 0.906 0.922 0.906 0.918 0.905 0.891 0.871 

6 5 0.479 0.584 0.582 0.595 0.443 0.599 0.558 0.563 
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Table A.3 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

100 30 

Linear 

3 2 0.956 0.986 0.958 0.986 0.957 0.984 0.923 0.949 

3 5 0.726 0.884 0.742 0.873 0.716 0.881 0.718 0.803 

6 2 0.914 0.911 0.912 0.913 0.915 0.913 0.887 0.886 

6 5 0.377 0.593 0.485 0.617 0.351 0.595 0.465 0.576 

Multiplicative 

3 2 0.952 0.986 0.954 0.985 0.952 0.984 0.915 0.948 

3 5 0.625 0.874 0.644 0.857 0.596 0.880 0.609 0.739 

6 2 0.906 0.911 0.901 0.911 0.901 0.913 0.867 0.888 

6 5 0.416 0.628 0.533 0.634 0.408 0.639 0.530 0.608 

Tchebycheff 

3 2 1.000 0.937 1.000 0.941 1.000 0.935 0.989 0.940 

3 5 0.999 0.876 0.999 0.865 0.999 0.866 0.956 0.813 

6 2 1.000 0.899 1.000 0.902 1.000 0.898 0.990 0.867 

6 5 0.999 0.644 0.999 0.640 0.999 0.643 0.968 0.607 

Complex 
Nonmonotonic 

3 2 0.964 0.902 0.966 0.910 0.966 0.906 0.937 0.945 

3 5 0.764 0.869 0.797 0.848 0.773 0.872 0.794 0.783 

6 2 0.919 0.913 0.924 0.914 0.917 0.913 0.892 0.883 

6 5 0.496 0.579 0.595 0.594 0.489 0.590 0.584 0.577 

 

Table A.4 Detailed BCA results (Query By Bagging). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.922 0.933 0.917 0.937 0.914 0.944 0.887 0.900 

3 5 0.567 0.735 0.609 0.715 0.546 0.728 0.596 0.685 

6 2 0.849 0.806 0.846 0.805 0.844 0.805 0.815 0.805 

6 5 0.361 0.414 0.423 0.463 0.369 0.394 0.422 0.445 

Multiplicative 

3 2 0.910 0.943 0.903 0.942 0.910 0.947 0.880 0.906 

3 5 0.500 0.680 0.531 0.671 0.488 0.667 0.512 0.616 

6 2 0.843 0.776 0.841 0.806 0.844 0.775 0.809 0.803 

6 5 0.371 0.447 0.434 0.493 0.383 0.464 0.436 0.465 

Tchebycheff 

3 2 0.999 0.928 0.999 0.925 1.000 0.929 0.975 0.895 

3 5 0.942 0.758 0.925 0.711 0.932 0.747 0.867 0.685 

6 2 0.996 0.792 0.999 0.815 0.999 0.798 0.968 0.786 

6 5 0.930 0.451 0.935 0.445 0.910 0.432 0.861 0.463 

Complex 
Nonmonotonic 

3 2 0.941 0.939 0.942 0.939 0.939 0.935 0.916 0.895 

3 5 0.669 0.727 0.719 0.702 0.665 0.735 0.709 0.676 

6 2 0.873 0.805 0.875 0.806 0.860 0.816 0.847 0.792 

6 5 0.452 0.440 0.496 0.447 0.449 0.411 0.498 0.425 

30 Linear 

3 2 0.928 0.954 0.931 0.954 0.926 0.955 0.891 0.924 

3 5 0.627 0.786 0.653 0.756 0.616 0.783 0.635 0.712 

6 2 0.863 0.838 0.870 0.842 0.871 0.844 0.833 0.839 

6 5 0.381 0.484 0.432 0.495 0.379 0.465 0.432 0.489 
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Table A.4 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 30 

Multiplicative 

3 2 0.920 0.953 0.918 0.956 0.917 0.956 0.891 0.923 

3 5 0.538 0.703 0.565 0.693 0.520 0.701 0.548 0.635 

6 2 0.862 0.843 0.857 0.840 0.854 0.854 0.830 0.838 

6 5 0.418 0.533 0.474 0.529 0.413 0.545 0.474 0.509 

Tchebycheff 

3 2 1.000 0.941 1.000 0.938 1.000 0.940 0.980 0.914 

3 5 0.968 0.788 0.966 0.770 0.959 0.796 0.912 0.748 

6 2 1.000 0.829 1.000 0.836 1.000 0.811 0.976 0.816 

6 5 0.971 0.499 0.967 0.512 0.959 0.505 0.913 0.504 

Complex 
Nonmonotonic 

3 2 0.944 0.948 0.948 0.945 0.947 0.949 0.915 0.920 

3 5 0.711 0.753 0.734 0.725 0.711 0.770 0.724 0.703 

6 2 0.875 0.838 0.885 0.859 0.882 0.843 0.861 0.832 

6 5 0.504 0.496 0.530 0.501 0.496 0.512 0.526 0.478 

100 

10 

Linear 

3 2 0.957 0.979 0.959 0.982 0.955 0.982 0.929 0.943 

3 5 0.678 0.880 0.723 0.844 0.665 0.865 0.705 0.801 

6 2 0.906 0.894 0.902 0.890 0.900 0.894 0.870 0.879 

6 5 0.358 0.579 0.469 0.592 0.329 0.564 0.464 0.572 

Multiplicative 

3 2 0.949 0.981 0.948 0.981 0.945 0.977 0.909 0.942 

3 5 0.582 0.876 0.630 0.819 0.547 0.859 0.596 0.734 

6 2 0.891 0.891 0.897 0.892 0.896 0.884 0.868 0.877 

6 5 0.392 0.595 0.498 0.607 0.375 0.631 0.514 0.595 

Tchebycheff 

3 2 1.000 0.968 1.000 0.968 1.000 0.964 0.992 0.942 

3 5 0.998 0.861 0.998 0.851 0.993 0.848 0.946 0.800 

6 2 1.000 0.875 1.000 0.882 1.000 0.870 0.989 0.857 

6 5 0.997 0.613 0.998 0.605 0.992 0.607 0.952 0.577 

Complex 
Nonmonotonic 

3 2 0.968 0.961 0.965 0.959 0.966 0.959 0.938 0.945 

3 5 0.743 0.857 0.803 0.833 0.737 0.855 0.781 0.776 

6 2 0.911 0.890 0.914 0.894 0.913 0.893 0.891 0.871 

6 5 0.448 0.547 0.561 0.582 0.434 0.575 0.558 0.563 

30 

Linear 

3 2 0.957 0.980 0.958 0.983 0.959 0.981 0.923 0.949 

3 5 0.709 0.885 0.736 0.862 0.701 0.881 0.718 0.803 

6 2 0.912 0.896 0.909 0.895 0.912 0.899 0.887 0.886 

6 5 0.372 0.596 0.484 0.599 0.345 0.599 0.465 0.576 

Multiplicative 

3 2 0.955 0.980 0.956 0.983 0.953 0.981 0.915 0.948 

3 5 0.607 0.880 0.639 0.827 0.582 0.870 0.609 0.739 

6 2 0.901 0.895 0.901 0.895 0.907 0.894 0.867 0.888 

6 5 0.420 0.653 0.516 0.622 0.396 0.658 0.530 0.608 

Tchebycheff 

3 2 1.000 0.970 1.000 0.972 1.000 0.971 0.989 0.940 

3 5 0.999 0.876 0.999 0.867 0.996 0.864 0.956 0.813 

6 2 1.000 0.879 1.000 0.889 1.000 0.882 0.990 0.867 

6 5 0.998 0.638 0.998 0.625 0.996 0.645 0.968 0.607 

Complex 
Nonmonotonic 

3 2 0.968 0.965 0.970 0.964 0.966 0.966 0.937 0.945 

3 5 0.761 0.871 0.806 0.837 0.774 0.868 0.794 0.783 

6 2 0.917 0.898 0.924 0.899 0.919 0.898 0.892 0.883 

6 5 0.491 0.586 0.587 0.591 0.477 0.606 0.584 0.577 
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Table A.5 Detailed Kappa results (Uncertainty Sampling). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.838 0.897 0.828 0.897 0.836 0.891 0.773 0.800 

3 5 0.521 0.668 0.532 0.652 0.463 0.670 0.514 0.621 

6 2 0.704 0.702 0.713 0.677 0.687 0.681 0.629 0.610 

6 5 0.234 0.322 0.322 0.362 0.231 0.282 0.329 0.337 

Multiplicative 

3 2 0.824 0.892 0.818 0.896 0.822 0.884 0.759 0.812 

3 5 0.461 0.777 0.531 0.724 0.456 0.748 0.487 0.614 

6 2 0.696 0.681 0.693 0.684 0.704 0.684 0.619 0.606 

6 5 0.244 0.313 0.304 0.342 0.236 0.357 0.303 0.338 

Tchebycheff 

3 2 1.000 0.651 1.000 0.673 1.000 0.633 0.951 0.790 

3 5 0.951 0.709 0.932 0.645 0.947 0.686 0.863 0.613 

6 2 1.000 0.623 0.999 0.652 1.000 0.627 0.937 0.571 

6 5 0.947 0.329 0.945 0.358 0.929 0.342 0.842 0.343 

Complex 
Nonmonotonic 

3 2 0.884 0.622 0.886 0.629 0.887 0.636 0.828 0.789 

3 5 0.621 0.670 0.674 0.657 0.607 0.675 0.647 0.626 

6 2 0.749 0.688 0.766 0.680 0.756 0.676 0.692 0.590 

6 5 0.357 0.337 0.421 0.350 0.361 0.340 0.400 0.299 

30 

Linear 

3 2 0.846 0.916 0.864 0.920 0.849 0.914 0.782 0.849 

3 5 0.567 0.746 0.602 0.715 0.547 0.732 0.567 0.655 

6 2 0.734 0.733 0.742 0.728 0.726 0.725 0.666 0.679 

6 5 0.267 0.384 0.349 0.408 0.252 0.377 0.343 0.402 

Multiplicative 

3 2 0.834 0.920 0.834 0.915 0.838 0.914 0.781 0.846 

3 5 0.520 0.805 0.573 0.759 0.501 0.787 0.552 0.640 

6 2 0.722 0.735 0.717 0.740 0.728 0.742 0.660 0.676 

6 5 0.296 0.429 0.345 0.433 0.284 0.421 0.352 0.394 

Tchebycheff 

3 2 1.000 0.794 1.000 0.787 1.000 0.786 0.959 0.827 

3 5 0.969 0.740 0.969 0.708 0.961 0.759 0.907 0.682 

6 2 1.000 0.702 0.999 0.695 1.000 0.697 0.953 0.633 

6 5 0.975 0.398 0.970 0.397 0.958 0.399 0.905 0.394 

Complex 
Nonmonotonic 

3 2 0.896 0.785 0.898 0.793 0.895 0.772 0.831 0.840 

3 5 0.643 0.734 0.689 0.691 0.657 0.708 0.684 0.676 

6 2 0.787 0.739 0.787 0.736 0.781 0.736 0.726 0.668 

6 5 0.396 0.382 0.434 0.384 0.382 0.382 0.422 0.358 

100 10 

Linear 

3 2 0.915 0.969 0.919 0.967 0.911 0.965 0.856 0.885 

3 5 0.626 0.852 0.662 0.817 0.589 0.835 0.648 0.760 

6 2 0.825 0.814 0.827 0.818 0.827 0.816 0.740 0.757 

6 5 0.235 0.521 0.397 0.522 0.207 0.524 0.388 0.512 

Multiplicative 

3 2 0.905 0.967 0.902 0.965 0.897 0.968 0.817 0.884 

3 5 0.566 0.870 0.626 0.855 0.517 0.854 0.606 0.755 

6 2 0.807 0.792 0.788 0.808 0.792 0.804 0.736 0.755 

6 5 0.245 0.526 0.403 0.519 0.240 0.539 0.409 0.499 

Tchebycheff 

3 2 1.000 0.771 1.000 0.776 1.000 0.759 0.984 0.883 

3 5 0.999 0.827 0.999 0.824 0.997 0.810 0.948 0.755 

6 2 1.000 0.787 1.000 0.788 1.000 0.791 0.978 0.713 

6 5 0.999 0.533 0.999 0.537 0.997 0.551 0.945 0.488 

Complex 
Nonmonotonic 

3 2 0.930 0.712 0.928 0.693 0.926 0.701 0.874 0.887 

3 5 0.710 0.816 0.763 0.808 0.701 0.811 0.743 0.743 

6 2 0.831 0.813 0.844 0.813 0.837 0.809 0.780 0.744 

6 5 0.386 0.500 0.504 0.515 0.336 0.514 0.484 0.471 
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Table A.5 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

100 30 

Linear 

3 2 0.911 0.971 0.917 0.972 0.915 0.969 0.846 0.897 

3 5 0.654 0.858 0.688 0.845 0.644 0.853 0.663 0.764 

6 2 0.828 0.823 0.825 0.825 0.829 0.825 0.774 0.773 

6 5 0.253 0.542 0.408 0.566 0.219 0.547 0.394 0.515 

Multiplicative 

3 2 0.905 0.971 0.907 0.971 0.903 0.968 0.831 0.896 

3 5 0.606 0.866 0.653 0.868 0.579 0.857 0.623 0.743 

6 2 0.812 0.822 0.801 0.823 0.802 0.826 0.735 0.776 

6 5 0.285 0.540 0.432 0.555 0.274 0.554 0.422 0.523 

Tchebycheff 

3 2 1.000 0.872 1.000 0.879 1.000 0.867 0.977 0.880 

3 5 0.999 0.842 0.999 0.833 0.998 0.829 0.954 0.773 

6 2 1.000 0.798 1.000 0.804 1.000 0.796 0.980 0.735 

6 5 0.999 0.563 0.999 0.566 0.998 0.563 0.964 0.523 

Complex 
Nonmonotonic 

3 2 0.925 0.816 0.929 0.831 0.929 0.823 0.876 0.889 

3 5 0.731 0.834 0.779 0.824 0.734 0.837 0.768 0.756 

6 2 0.838 0.827 0.849 0.828 0.833 0.826 0.787 0.767 

6 5 0.409 0.499 0.525 0.514 0.393 0.507 0.506 0.489 

 

Table A.6 Detailed Kappa results (Query By Bagging). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 

3 2 0.843 0.866 0.835 0.874 0.829 0.887 0.773 0.800 

3 5 0.467 0.677 0.522 0.656 0.438 0.672 0.514 0.621 

6 2 0.698 0.611 0.693 0.609 0.688 0.610 0.629 0.610 

6 5 0.229 0.299 0.328 0.374 0.239 0.269 0.329 0.337 

Multiplicative 

3 2 0.819 0.886 0.806 0.885 0.819 0.894 0.759 0.812 

3 5 0.454 0.694 0.514 0.675 0.430 0.686 0.487 0.614 

6 2 0.686 0.551 0.680 0.612 0.688 0.551 0.619 0.606 

6 5 0.230 0.323 0.301 0.373 0.244 0.350 0.303 0.338 

Tchebycheff 

3 2 0.998 0.855 0.998 0.851 0.999 0.858 0.951 0.790 

3 5 0.942 0.701 0.919 0.649 0.934 0.688 0.863 0.613 

6 2 0.993 0.584 0.998 0.631 0.997 0.596 0.937 0.571 

6 5 0.918 0.318 0.924 0.311 0.894 0.288 0.842 0.343 

Complex 
Nonmonotonic 

3 2 0.881 0.877 0.882 0.876 0.875 0.867 0.828 0.789 

3 5 0.604 0.667 0.667 0.654 0.603 0.684 0.647 0.626 

6 2 0.746 0.613 0.748 0.614 0.717 0.633 0.692 0.590 

6 5 0.351 0.322 0.399 0.325 0.341 0.285 0.400 0.299 

30 Linear 

3 2 0.855 0.907 0.861 0.909 0.851 0.909 0.782 0.849 

3 5 0.546 0.740 0.587 0.708 0.532 0.740 0.567 0.655 

6 2 0.726 0.677 0.739 0.683 0.743 0.688 0.666 0.679 

6 5 0.259 0.382 0.340 0.404 0.261 0.365 0.343 0.402 
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Table A.6 (continued). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 30 

Multiplicative 

3 2 0.840 0.907 0.835 0.911 0.833 0.912 0.781 0.846 

3 5 0.509 0.709 0.554 0.703 0.487 0.723 0.552 0.640 

6 2 0.723 0.686 0.713 0.681 0.708 0.709 0.660 0.676 

6 5 0.289 0.425 0.351 0.419 0.278 0.439 0.352 0.394 

Tchebycheff 

3 2 0.999 0.881 0.999 0.876 0.999 0.879 0.959 0.827 

3 5 0.964 0.732 0.961 0.712 0.957 0.738 0.907 0.682 

6 2 0.999 0.658 1.000 0.671 1.000 0.622 0.953 0.633 

6 5 0.966 0.377 0.961 0.403 0.950 0.385 0.905 0.394 

Complex 
Nonmonotonic 

3 2 0.887 0.893 0.893 0.888 0.891 0.895 0.831 0.840 

3 5 0.663 0.708 0.695 0.690 0.668 0.720 0.684 0.676 

6 2 0.751 0.678 0.771 0.719 0.767 0.690 0.726 0.668 

6 5 0.403 0.391 0.439 0.393 0.398 0.409 0.422 0.358 

100 

10 

Linear 

3 2 0.913 0.957 0.918 0.964 0.911 0.964 0.856 0.885 

3 5 0.596 0.852 0.661 0.811 0.579 0.830 0.648 0.760 

6 2 0.811 0.789 0.804 0.780 0.801 0.787 0.740 0.757 

6 5 0.219 0.528 0.383 0.533 0.180 0.508 0.388 0.512 

Multiplicative 

3 2 0.899 0.962 0.896 0.961 0.891 0.954 0.817 0.884 

3 5 0.545 0.835 0.632 0.814 0.502 0.822 0.606 0.755 

6 2 0.782 0.782 0.794 0.784 0.791 0.768 0.736 0.755 

6 5 0.254 0.498 0.390 0.519 0.242 0.539 0.409 0.499 

Tchebycheff 

3 2 1.000 0.935 1.000 0.936 1.000 0.928 0.984 0.883 

3 5 0.998 0.826 0.998 0.821 0.992 0.815 0.948 0.755 

6 2 1.000 0.749 1.000 0.763 1.000 0.739 0.978 0.713 

6 5 0.997 0.521 0.997 0.518 0.991 0.511 0.945 0.488 

Complex 
Nonmonotonic 

3 2 0.934 0.919 0.928 0.915 0.930 0.913 0.874 0.887 

3 5 0.688 0.816 0.771 0.807 0.680 0.813 0.743 0.743 

6 2 0.822 0.778 0.828 0.789 0.822 0.787 0.780 0.744 

6 5 0.352 0.467 0.495 0.499 0.330 0.499 0.484 0.471 

30 

Linear 

3 2 0.914 0.960 0.916 0.966 0.917 0.962 0.846 0.897 

3 5 0.634 0.857 0.678 0.833 0.623 0.851 0.663 0.764 

6 2 0.823 0.791 0.817 0.790 0.824 0.798 0.774 0.773 

6 5 0.242 0.542 0.412 0.540 0.207 0.551 0.394 0.515 

Multiplicative 

3 2 0.910 0.960 0.911 0.966 0.905 0.962 0.831 0.896 

3 5 0.590 0.836 0.643 0.830 0.553 0.838 0.623 0.743 

6 2 0.801 0.790 0.802 0.789 0.814 0.787 0.735 0.776 

6 5 0.293 0.565 0.406 0.540 0.271 0.576 0.422 0.523 

Tchebycheff 

3 2 1.000 0.940 1.000 0.944 1.000 0.942 0.977 0.880 

3 5 0.998 0.841 0.999 0.838 0.995 0.832 0.954 0.773 

6 2 1.000 0.758 1.000 0.778 1.000 0.764 0.980 0.735 

6 5 0.998 0.551 0.997 0.543 0.995 0.561 0.964 0.523 

Complex 
Nonmonotonic 

3 2 0.933 0.926 0.938 0.924 0.931 0.928 0.876 0.889 

3 5 0.710 0.832 0.786 0.815 0.725 0.828 0.768 0.756 

6 2 0.833 0.798 0.848 0.799 0.835 0.797 0.787 0.767 

6 5 0.401 0.507 0.514 0.512 0.383 0.533 0.506 0.489 
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Table A.7 Detailed MAEO results (Uncertainty Sampling). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 
3 5 0.412 0.267 0.402 0.285 0.463 0.268 0.439 0.314 

6 5 0.882 0.724 0.749 0.641 0.915 0.774 0.764 0.691 

Multiplicative 
3 5 0.529 0.150 0.436 0.185 0.535 0.171 0.488 0.336 

6 5 0.728 0.628 0.666 0.592 0.745 0.591 0.685 0.601 

Tchebycheff 
3 5 0.038 0.226 0.053 0.279 0.041 0.244 0.108 0.308 

6 5 0.042 0.660 0.044 0.619 0.056 0.648 0.131 0.674 

Complex 
Nonmonotonic 

3 5 0.298 0.256 0.263 0.273 0.313 0.253 0.287 0.305 

6 5 0.597 0.625 0.544 0.625 0.595 0.640 0.571 0.684 

30 

Linear 
3 5 0.360 0.204 0.334 0.229 0.376 0.214 0.375 0.285 

6 5 0.828 0.598 0.694 0.568 0.860 0.609 0.734 0.586 

Multiplicative 
3 5 0.448 0.132 0.388 0.162 0.483 0.145 0.417 0.302 

6 5 0.658 0.493 0.616 0.504 0.690 0.506 0.629 0.536 

Tchebycheff 
3 5 0.024 0.202 0.024 0.227 0.030 0.187 0.072 0.252 

6 5 0.019 0.546 0.024 0.558 0.033 0.547 0.076 0.584 

Complex 
Nonmonotonic 

3 5 0.283 0.207 0.248 0.243 0.273 0.227 0.255 0.260 

6 5 0.544 0.564 0.515 0.568 0.574 0.558 0.548 0.614 

100 

10 

Linear 
3 5 0.302 0.118 0.278 0.146 0.333 0.132 0.287 0.193 

6 5 0.837 0.423 0.606 0.420 0.898 0.430 0.637 0.439 

Multiplicative 
3 5 0.383 0.086 0.322 0.096 0.434 0.098 0.342 0.191 

6 5 0.645 0.379 0.511 0.393 0.663 0.375 0.525 0.426 

Tchebycheff 
3 5 0.001 0.134 0.001 0.137 0.002 0.148 0.040 0.190 

6 5 0.001 0.391 0.001 0.398 0.002 0.376 0.043 0.458 

Complex 
Nonmonotonic 

3 5 0.226 0.142 0.189 0.149 0.232 0.147 0.207 0.202 

6 5 0.517 0.414 0.432 0.418 0.571 0.409 0.465 0.469 

30 

Linear 
3 5 0.280 0.114 0.256 0.124 0.287 0.117 0.275 0.189 

6 5 0.802 0.396 0.585 0.378 0.862 0.396 0.627 0.430 

Multiplicative 
3 5 0.337 0.089 0.295 0.088 0.368 0.095 0.325 0.201 

6 5 0.603 0.367 0.486 0.361 0.628 0.358 0.522 0.402 

Tchebycheff 
3 5 0.001 0.123 0.001 0.130 0.001 0.133 0.035 0.176 

6 5 0.001 0.358 0.001 0.366 0.001 0.358 0.029 0.423 

Complex 
Nonmonotonic 

3 5 0.211 0.129 0.176 0.136 0.205 0.126 0.186 0.192 

6 5 0.496 0.414 0.414 0.415 0.518 0.411 0.448 0.451 
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Table A.8 Detailed MAEO results (Query By Bagging). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 
3 5 0.455 0.260 0.406 0.280 0.495 0.264 0.439 0.314 

6 5 0.892 0.733 0.740 0.641 0.882 0.786 0.764 0.691 

Multiplicative 
3 5 0.534 0.249 0.453 0.266 0.565 0.252 0.488 0.336 

6 5 0.721 0.607 0.656 0.563 0.705 0.592 0.685 0.601 

Tchebycheff 
3 5 0.045 0.233 0.063 0.276 0.051 0.244 0.108 0.308 

6 5 0.065 0.665 0.060 0.679 0.085 0.715 0.131 0.674 

Complex 
Nonmonotonic 

3 5 0.314 0.260 0.269 0.274 0.316 0.247 0.287 0.305 

6 5 0.599 0.665 0.555 0.642 0.605 0.706 0.571 0.684 

30 

Linear 
3 5 0.378 0.208 0.345 0.236 0.394 0.207 0.375 0.285 

6 5 0.835 0.603 0.715 0.577 0.839 0.631 0.734 0.586 

Multiplicative 
3 5 0.462 0.233 0.407 0.240 0.488 0.220 0.417 0.302 

6 5 0.667 0.502 0.609 0.514 0.688 0.486 0.629 0.536 

Tchebycheff 
3 5 0.028 0.208 0.030 0.224 0.033 0.203 0.072 0.252 

6 5 0.027 0.574 0.031 0.554 0.040 0.572 0.076 0.584 

Complex 
Nonmonotonic 

3 5 0.264 0.225 0.244 0.244 0.261 0.218 0.255 0.260 

6 5 0.538 0.561 0.516 0.563 0.546 0.546 0.548 0.614 

100 

10 

Linear 
3 5 0.327 0.119 0.273 0.151 0.342 0.136 0.287 0.193 

6 5 0.848 0.427 0.617 0.410 0.899 0.454 0.637 0.439 

Multiplicative 
3 5 0.406 0.128 0.312 0.142 0.451 0.137 0.342 0.191 

6 5 0.626 0.403 0.519 0.395 0.644 0.379 0.525 0.426 

Tchebycheff 
3 5 0.001 0.135 0.002 0.139 0.006 0.143 0.040 0.190 

6 5 0.002 0.403 0.002 0.414 0.007 0.418 0.043 0.458 

Complex 
Nonmonotonic 

3 5 0.242 0.142 0.180 0.149 0.249 0.145 0.207 0.202 

6 5 0.542 0.449 0.434 0.430 0.568 0.426 0.465 0.469 

30 

Linear 
3 5 0.295 0.114 0.261 0.133 0.305 0.119 0.275 0.189 

6 5 0.798 0.401 0.582 0.399 0.854 0.396 0.627 0.430 

Multiplicative 
3 5 0.360 0.127 0.304 0.131 0.392 0.125 0.325 0.201 

6 5 0.594 0.353 0.514 0.377 0.625 0.344 0.522 0.402 

Tchebycheff 
3 5 0.002 0.124 0.001 0.126 0.004 0.131 0.035 0.176 

6 5 0.002 0.370 0.002 0.387 0.004 0.365 0.029 0.423 

Complex 
Nonmonotonic 

3 5 0.224 0.130 0.167 0.143 0.213 0.133 0.186 0.192 

6 5 0.501 0.407 0.422 0.419 0.525 0.392 0.448 0.451 
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Table A.9 Detailed MSEO results (Uncertainty Sampling). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 
3 5 27.609 18.433 23.312 15.334 39.215 14.273 25.938 14.711 

6 5 100.615 89.272 56.307 42.610 97.559 109.418 55.489 54.070 

Multiplicative 
3 5 44.443 6.434 22.988 7.022 43.515 8.579 28.065 13.613 

6 5 63.508 56.321 44.986 41.469 62.800 45.808 46.955 40.503 

Tchebycheff 
3 5 1.462 10.829 2.758 14.356 1.067 13.921 3.959 16.994 

6 5 1.304 59.725 1.066 39.633 1.896 53.119 6.443 42.210 

Complex 
Nonmonotonic 

3 5 16.392 16.901 11.983 12.147 18.474 13.695 13.176 13.285 

6 5 45.855 49.840 32.392 40.101 43.631 50.707 35.237 51.121 

30 

Linear 
3 5 20.744 8.449 16.325 8.495 22.963 8.455 17.403 12.016 

6 5 79.538 43.730 43.607 32.155 92.741 44.469 48.860 31.026 

Multiplicative 
3 5 27.089 4.834 17.037 5.353 38.424 6.346 18.507 11.620 

6 5 46.831 27.107 40.886 25.441 56.058 30.662 41.058 32.836 

Tchebycheff 
3 5 0.466 9.214 0.617 9.654 0.637 7.405 1.611 10.555 

6 5 0.179 41.648 0.304 35.766 0.699 39.147 2.030 31.183 

Complex 
Nonmonotonic 

3 5 14.799 8.590 10.455 9.070 13.010 12.137 10.279 10.160 

6 5 38.108 36.775 29.112 33.040 38.010 38.801 31.646 41.061 

100 

10 

Linear 
3 5 18.815 2.793 13.819 3.610 24.481 4.276 11.899 5.972 

6 5 108.532 26.924 37.866 18.944 105.425 25.505 37.770 18.213 

Multiplicative 
3 5 22.617 1.600 13.668 1.909 30.886 2.263 12.564 5.275 

6 5 62.656 22.805 30.233 19.816 66.847 20.429 29.188 20.495 

Tchebycheff 
3 5 0.002 3.807 0.001 3.172 0.004 5.125 0.790 5.981 

6 5 0.002 22.756 0.002 17.990 0.005 20.130 0.912 19.993 

Complex 
Nonmonotonic 

3 5 11.027 3.737 6.805 3.864 12.411 4.620 6.477 6.478 

6 5 45.381 26.740 21.292 19.076 53.619 23.478 23.758 24.014 

30 

Linear 
3 5 16.412 2.385 10.094 2.571 17.067 2.825 10.031 5.253 

6 5 98.434 20.992 33.012 13.926 109.800 18.927 38.110 18.069 

Multiplicative 
3 5 16.407 1.797 10.266 1.531 21.481 2.300 11.026 5.878 

6 5 55.679 20.695 27.395 15.255 60.483 18.555 29.235 17.605 

Tchebycheff 
3 5 0.002 3.069 0.001 2.912 0.002 4.079 0.483 4.936 

6 5 0.001 20.250 0.002 16.134 0.003 21.171 0.339 18.270 

Complex 
Nonmonotonic 

3 5 9.556 3.135 5.682 3.234 9.130 2.999 5.445 5.902 

6 5 40.902 27.585 19.215 19.039 43.023 24.214 20.785 20.515 
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Table A.10 Detailed MSEO results (Query By Bagging). 

# of 
Queries 

Ref 
Set 
Size 

Underlying 
Value 

Function 

# of 
attr. 

# of 
class. 

Query By Bagging 
Rand 
RF 

Rand 
SVM LC M E 

RF SVM RF SVM RF SVM 

30 

10 

Linear 
3 5 33.892 12.455 25.339 13.464 41.485 12.144 25.938 14.711 

6 5 83.861 94.737 52.559 43.460 85.011 111.483 55.489 54.070 

Multiplicative 
3 5 42.625 9.451 24.256 9.835 49.257 10.901 28.065 13.613 

6 5 63.344 50.465 43.353 38.004 59.429 46.931 46.955 40.503 

Tchebycheff 
3 5 0.947 10.718 1.898 14.726 1.015 11.709 3.959 16.994 

6 5 2.880 57.380 1.587 51.956 5.185 73.400 6.443 42.210 

Complex 
Nonmonotonic 

3 5 18.668 14.502 12.106 12.894 19.698 11.396 13.176 13.285 

6 5 47.885 60.476 36.034 47.025 46.582 63.947 35.237 51.121 

30 

Linear 
3 5 23.019 8.020 17.060 8.928 25.890 7.313 17.403 12.016 

6 5 79.057 45.831 48.118 33.649 78.214 54.704 48.860 31.026 

Multiplicative 
3 5 34.287 8.095 19.204 7.839 32.999 7.556 18.507 11.620 

6 5 53.058 30.372 40.322 30.130 52.438 28.905 41.058 32.836 

Tchebycheff 
3 5 0.289 8.290 0.335 8.720 0.439 8.214 1.611 10.555 

6 5 0.295 44.899 0.433 31.893 0.796 43.531 2.030 31.183 

Complex 
Nonmonotonic 

3 5 12.862 10.455 9.964 9.899 12.784 9.231 10.279 10.160 

6 5 33.939 37.703 27.579 33.984 34.456 35.547 31.646 41.061 

100 

10 

Linear 
3 5 24.515 2.608 12.163 3.833 26.146 3.942 11.899 5.972 

6 5 104.872 24.055 34.730 16.849 117.036 28.833 37.770 18.213 

Multiplicative 
3 5 28.561 3.872 11.424 3.285 36.380 4.349 12.564 5.275 

6 5 63.487 25.547 32.767 20.298 66.317 21.125 29.188 20.495 

Tchebycheff 
3 5 0.002 3.591 0.002 3.483 0.017 4.257 0.790 5.981 

6 5 0.005 25.166 0.005 20.252 0.029 27.207 0.912 19.993 

Complex 
Nonmonotonic 

3 5 13.565 4.363 5.779 3.928 14.590 4.528 6.477 6.478 

6 5 54.308 31.336 22.892 21.171 58.625 24.812 23.758 24.014 

30 

Linear 
3 5 18.917 2.610 11.073 2.997 19.577 2.613 10.031 5.253 

6 5 88.177 19.576 32.624 16.308 114.588 20.124 38.110 18.069 

Multiplicative 
3 5 19.289 4.001 11.636 2.631 25.274 3.564 11.026 5.878 

6 5 53.887 17.326 29.931 17.238 56.675 16.108 29.235 17.605 

Tchebycheff 
3 5 0.003 3.259 0.001 2.785 0.010 3.561 0.483 4.936 

6 5 0.003 21.927 0.004 17.161 0.008 19.580 0.339 18.270 

Complex 
Nonmonotonic 

3 5 11.841 3.422 4.779 3.265 9.881 3.841 5.445 5.902 

6 5 41.064 26.793 19.356 20.218 44.380 20.446 20.785 20.515 
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APPENDIX B 

 

MEAN PERFORMANCE MEASURES FOR DIFFERENT REFERENCE 

AND QUERY SIZES 

 

 

Table B.1 Mean Acc results for different reference set and query sizes 
(Uncertainty Sampling). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.696 0.751 0.717 0.752 0.682 0.738 0.698 0.720 
Multiplicative 0.691 0.778 0.715 0.775 0.688 0.780 0.691 0.727 

Tchebycheff 0.980 0.719 0.976 0.719 0.976 0.715 0.928 0.715 

Complex Nonmonotonic 0.756 0.723 0.780 0.723 0.755 0.724 0.754 0.715 

Average 0.781 0.743 0.797 0.742 0.775 0.740 0.768 0.719 

100 10 

Linear 0.741 0.849 0.783 0.843 0.729 0.847 0.761 0.812 
Multiplicative 0.735 0.856 0.776 0.855 0.721 0.857 0.757 0.812 
Tchebycheff 0.999 0.818 1.000 0.819 0.999 0.817 0.974 0.801 

Complex Nonmonotonic 0.795 0.809 0.829 0.808 0.784 0.809 0.807 0.801 

Average 0.818 0.833 0.847 0.831 0.808 0.833 0.825 0.806 

30 30 

Linear 0.718 0.784 0.744 0.783 0.710 0.779 0.717 0.754 

Multiplicative 0.717 0.814 0.737 0.808 0.712 0.809 0.721 0.755 
Tchebycheff 0.989 0.767 0.988 0.759 0.984 0.769 0.952 0.751 

Complex Nonmonotonic 0.775 0.770 0.791 0.762 0.773 0.762 0.771 0.751 

Average 0.800 0.784 0.815 0.778 0.795 0.780 0.790 0.753 

100 30 

Linear 0.751 0.856 0.790 0.859 0.743 0.857 0.769 0.817 
Multiplicative 0.752 0.862 0.789 0.866 0.743 0.864 0.764 0.818 

Tchebycheff 0.999 0.841 1.000 0.842 0.999 0.838 0.979 0.814 

Complex Nonmonotonic 0.804 0.826 0.838 0.829 0.801 0.829 0.817 0.810 

Average 0.827 0.847 0.854 0.849 0.822 0.847 0.832 0.814 
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Table B.2 Mean Acc results for different reference set and query sizes (Query By 
Bagging). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.684 0.733 0.715 0.744 0.676 0.728 0.698 0.720 
Multiplicative 0.686 0.743 0.710 0.755 0.684 0.748 0.691 0.727 
Tchebycheff 0.971 0.737 0.969 0.731 0.966 0.729 0.928 0.715 

Complex Nonmonotonic 0.751 0.741 0.772 0.738 0.744 0.738 0.754 0.715 

Average 0.773 0.738 0.791 0.742 0.767 0.736 0.768 0.719 

100 10 

Linear 0.729 0.847 0.777 0.839 0.716 0.839 0.761 0.812 

Multiplicative 0.729 0.839 0.775 0.840 0.720 0.841 0.757 0.812 
Tchebycheff 0.999 0.832 0.999 0.832 0.997 0.825 0.974 0.801 

Complex Nonmonotonic 0.784 0.823 0.828 0.828 0.778 0.829 0.807 0.801 

Average 0.810 0.835 0.845 0.835 0.803 0.833 0.825 0.806 

30 30 

Linear 0.711 0.774 0.739 0.773 0.710 0.772 0.717 0.754 
Multiplicative 0.716 0.783 0.734 0.780 0.705 0.792 0.721 0.755 

Tchebycheff 0.986 0.766 0.985 0.769 0.982 0.765 0.952 0.751 

Complex Nonmonotonic 0.774 0.772 0.790 0.773 0.776 0.779 0.771 0.751 

Average 0.797 0.774 0.812 0.774 0.793 0.777 0.790 0.753 

100 30 

Linear 0.744 0.851 0.788 0.846 0.735 0.853 0.769 0.817 
Multiplicative 0.751 0.852 0.783 0.848 0.741 0.855 0.764 0.818 
Tchebycheff 0.999 0.842 0.999 0.843 0.998 0.844 0.979 0.814 

Complex Nonmonotonic 0.799 0.837 0.837 0.834 0.798 0.841 0.817 0.810 

Average 0.823 0.845 0.852 0.843 0.818 0.848 0.832 0.814 

 

Table B.3 Mean BCA results for different reference set and query sizes 
(Uncertainty Sampling). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.685 0.739 0.701 0.740 0.672 0.730 0.680 0.709 
Multiplicative 0.664 0.754 0.685 0.751 0.662 0.767 0.659 0.698 

Tchebycheff 0.980 0.716 0.977 0.713 0.973 0.714 0.918 0.707 

Complex Nonmonotonic 0.742 0.708 0.768 0.705 0.743 0.710 0.742 0.697 

Average 0.768 0.729 0.783 0.727 0.763 0.730 0.750 0.703 

100 10 

Linear 0.735 0.837 0.767 0.831 0.721 0.833 0.742 0.798 
Multiplicative 0.710 0.842 0.748 0.831 0.695 0.850 0.722 0.787 
Tchebycheff 1.000 0.816 1.000 0.813 0.999 0.814 0.970 0.794 

Complex Nonmonotonic 0.779 0.797 0.815 0.793 0.769 0.799 0.792 0.789 

Average 0.806 0.823 0.833 0.817 0.796 0.824 0.806 0.792 

30 30 

Linear 0.704 0.774 0.728 0.771 0.697 0.768 0.698 0.741 

Multiplicative 0.687 0.800 0.704 0.789 0.683 0.798 0.686 0.726 
Tchebycheff 0.989 0.766 0.988 0.754 0.982 0.766 0.945 0.745 

Complex Nonmonotonic 0.757 0.758 0.776 0.745 0.758 0.751 0.757 0.734 

Average 0.784 0.774 0.799 0.765 0.780 0.771 0.771 0.737 
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Table B.3 (continued). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

100 30 

Linear 0.743 0.843 0.774 0.847 0.735 0.843 0.748 0.804 
Multiplicative 0.725 0.849 0.758 0.847 0.714 0.854 0.730 0.796 

Tchebycheff 1.000 0.839 1.000 0.837 0.999 0.836 0.976 0.807 

Complex Nonmonotonic 0.786 0.816 0.820 0.816 0.787 0.820 0.802 0.797 

Average 0.813 0.837 0.838 0.837 0.809 0.838 0.814 0.801 

 

Table B.4 Mean BCA results for different reference set and query sizes (Query By 
Bagging). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.675 0.722 0.699 0.730 0.669 0.718 0.680 0.709 
Multiplicative 0.656 0.711 0.677 0.728 0.656 0.714 0.659 0.698 
Tchebycheff 0.967 0.732 0.965 0.724 0.960 0.726 0.918 0.707 

Complex Nonmonotonic 0.734 0.728 0.758 0.724 0.728 0.724 0.742 0.697 

Average 0.758 0.723 0.775 0.726 0.753 0.720 0.750 0.703 

100 10 

Linear 0.725 0.833 0.763 0.827 0.712 0.826 0.742 0.798 

Multiplicative 0.704 0.836 0.743 0.825 0.691 0.838 0.722 0.787 
Tchebycheff 0.999 0.829 0.999 0.826 0.996 0.822 0.970 0.794 

Complex Nonmonotonic 0.768 0.814 0.811 0.817 0.763 0.821 0.792 0.789 

Average 0.799 0.828 0.829 0.824 0.790 0.827 0.806 0.792 

30 30 

Linear 0.700 0.765 0.722 0.762 0.698 0.762 0.698 0.741 
Multiplicative 0.684 0.758 0.703 0.755 0.676 0.764 0.686 0.726 

Tchebycheff 0.985 0.764 0.983 0.764 0.979 0.763 0.945 0.745 

Complex Nonmonotonic 0.758 0.759 0.774 0.758 0.759 0.769 0.757 0.734 

Average 0.782 0.762 0.796 0.759 0.778 0.764 0.771 0.737 

100 30 

Linear 0.738 0.839 0.772 0.835 0.729 0.840 0.748 0.804 
Multiplicative 0.721 0.852 0.753 0.832 0.709 0.851 0.730 0.796 
Tchebycheff 0.999 0.841 0.999 0.838 0.998 0.841 0.976 0.807 

Complex Nonmonotonic 0.784 0.830 0.822 0.823 0.784 0.834 0.802 0.797 

Average 0.810 0.840 0.837 0.832 0.805 0.841 0.814 0.801 
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Table B.5 Mean Kappa results for different reference set and query sizes 
(Uncertainty Sampling). 

# of 
Queries 

Ref. Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.574 0.647 0.599 0.647 0.555 0.631 0.561 0.592 
Multiplicative 0.556 0.666 0.586 0.662 0.554 0.668 0.542 0.592 
Tchebycheff 0.974 0.578 0.969 0.582 0.969 0.572 0.898 0.579 

Complex Nonmonotonic 0.653 0.579 0.687 0.579 0.653 0.582 0.642 0.576 

Average 0.689 0.618 0.710 0.617 0.683 0.613 0.661 0.585 

100 10 

Linear 0.650 0.789 0.701 0.781 0.634 0.785 0.658 0.728 

Multiplicative 0.631 0.789 0.680 0.787 0.612 0.791 0.642 0.723 
Tchebycheff 0.999 0.730 0.999 0.731 0.999 0.727 0.964 0.710 

Complex Nonmonotonic 0.714 0.710 0.760 0.707 0.700 0.709 0.720 0.711 

Average 0.749 0.754 0.785 0.752 0.736 0.753 0.746 0.718 

30 30 

Linear 0.603 0.695 0.639 0.693 0.593 0.687 0.590 0.646 
Multiplicative 0.593 0.722 0.617 0.712 0.588 0.716 0.586 0.639 

Tchebycheff 0.986 0.658 0.984 0.647 0.980 0.660 0.931 0.634 

Complex Nonmonotonic 0.681 0.660 0.702 0.651 0.679 0.649 0.666 0.635 

Average 0.716 0.684 0.736 0.676 0.710 0.678 0.693 0.639 

100 30 

Linear 0.661 0.798 0.709 0.802 0.652 0.799 0.669 0.737 
Multiplicative 0.652 0.800 0.698 0.804 0.640 0.801 0.653 0.734 
Tchebycheff 0.999 0.769 0.999 0.770 0.999 0.764 0.969 0.728 

Complex Nonmonotonic 0.726 0.744 0.771 0.749 0.722 0.748 0.734 0.725 

Average 0.760 0.778 0.794 0.781 0.753 0.778 0.756 0.731 

 

Table B.6 Mean Kappa results for different reference set and query sizes (Query 
By Bagging). 

# of 
Queries 

Ref. Set 
Size 

Underlying Value 
Function 

Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.559 0.613 0.594 0.628 0.549 0.609 0.561 0.592 
Multiplicative 0.547 0.614 0.576 0.636 0.545 0.620 0.542 0.592 

Tchebycheff 0.963 0.615 0.960 0.611 0.956 0.607 0.898 0.579 

Complex Nonmonotonic 0.646 0.620 0.674 0.617 0.634 0.617 0.642 0.576 

Average 0.679 0.615 0.701 0.623 0.671 0.614 0.661 0.585 

100 10 

Linear 0.635 0.781 0.692 0.772 0.617 0.772 0.658 0.728 
Multiplicative 0.620 0.769 0.678 0.769 0.606 0.771 0.642 0.723 
Tchebycheff 0.999 0.758 0.999 0.759 0.996 0.748 0.964 0.710 

Complex Nonmonotonic 0.699 0.745 0.756 0.752 0.691 0.753 0.720 0.711 

Average 0.738 0.763 0.781 0.763 0.728 0.761 0.746 0.718 

30 30 

Linear 0.597 0.677 0.632 0.676 0.597 0.676 0.590 0.646 

Multiplicative 0.591 0.682 0.613 0.678 0.576 0.696 0.586 0.639 
Tchebycheff 0.982 0.662 0.980 0.666 0.977 0.656 0.931 0.634 

Complex Nonmonotonic 0.676 0.668 0.699 0.673 0.681 0.679 0.666 0.635 

Average 0.711 0.672 0.731 0.673 0.708 0.676 0.693 0.639 
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Table B.6 (continued). 

# of 
Queries 

Ref. Set 
Size 

Underlying Value 
Function 

Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

100 30 

Linear 0.653 0.788 0.706 0.782 0.643 0.791 0.669 0.737 
Multiplicative 0.649 0.788 0.691 0.782 0.636 0.791 0.653 0.734 

Tchebycheff 0.999 0.772 0.999 0.776 0.997 0.775 0.969 0.728 

Complex Nonmonotonic 0.719 0.766 0.771 0.763 0.718 0.772 0.734 0.725 

Average 0.755 0.778 0.792 0.775 0.749 0.782 0.756 0.731 

 

Table B.7 Mean MAEO results for different reference set and query sizes 
(Uncertainty Sampling). 

# of 
Queries 

Ref. Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.647 0.495 0.576 0.463 0.689 0.521 0.601 0.503 
Multiplicative 0.628 0.389 0.551 0.389 0.640 0.381 0.587 0.468 
Tchebycheff 0.040 0.443 0.048 0.449 0.049 0.446 0.120 0.491 

Complex Nonmonotonic 0.448 0.440 0.404 0.449 0.454 0.447 0.429 0.495 

Average 0.441 0.442 0.395 0.437 0.458 0.449 0.434 0.489 

100 10 

Linear 0.570 0.271 0.442 0.283 0.616 0.281 0.462 0.316 

Multiplicative 0.514 0.233 0.416 0.245 0.549 0.237 0.433 0.309 
Tchebycheff 0.001 0.263 0.001 0.267 0.002 0.262 0.042 0.324 

Complex Nonmonotonic 0.372 0.278 0.310 0.283 0.401 0.278 0.336 0.335 

Average 0.364 0.261 0.292 0.270 0.392 0.264 0.318 0.321 

30 30 

Linear 0.594 0.401 0.514 0.398 0.618 0.411 0.555 0.435 
Multiplicative 0.553 0.312 0.502 0.333 0.586 0.325 0.523 0.419 

Tchebycheff 0.022 0.374 0.024 0.393 0.032 0.367 0.074 0.418 

Complex Nonmonotonic 0.413 0.385 0.381 0.405 0.423 0.393 0.401 0.437 

Average 0.395 0.368 0.355 0.382 0.415 0.374 0.388 0.427 

100 30 

Linear 0.541 0.255 0.420 0.251 0.575 0.256 0.451 0.309 
Multiplicative 0.470 0.228 0.391 0.224 0.498 0.227 0.423 0.302 
Tchebycheff 0.001 0.240 0.001 0.248 0.001 0.246 0.032 0.300 

Complex Nonmonotonic 0.354 0.271 0.295 0.276 0.362 0.269 0.317 0.321 

Average 0.341 0.249 0.277 0.250 0.359 0.249 0.306 0.308 
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Table B.8 Mean MAEO results for different reference set and query sizes (Query 
By Bagging). 

# of 
Queries 

Ref. Set 
Size 

Underlying Value 
Function 

  Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 
RF SVM RF SVM RF SVM 

30 10 

Linear 0.674 0.497 0.573 0.460 0.689 0.525 0.601 0.503 
Multiplicative 0.627 0.428 0.554 0.414 0.635 0.422 0.587 0.468 
Tchebycheff 0.055 0.449 0.062 0.477 0.068 0.479 0.120 0.491 

Complex Nonmonotonic 0.457 0.463 0.412 0.458 0.460 0.477 0.429 0.495 

Average 0.453 0.459 0.400 0.452 0.463 0.476 0.434 0.489 

100 10 

Linear 0.588 0.273 0.445 0.280 0.621 0.295 0.462 0.316 

Multiplicative 0.516 0.265 0.415 0.269 0.547 0.258 0.433 0.309 
Tchebycheff 0.002 0.269 0.002 0.276 0.007 0.281 0.042 0.324 

Complex Nonmonotonic 0.392 0.296 0.307 0.290 0.408 0.286 0.336 0.335 

Average 0.374 0.276 0.292 0.279 0.396 0.280 0.318 0.321 

30 30 

Linear 0.607 0.405 0.530 0.407 0.616 0.419 0.555 0.435 
Multiplicative 0.564 0.368 0.508 0.377 0.588 0.353 0.523 0.419 

Tchebycheff 0.027 0.391 0.031 0.389 0.036 0.388 0.074 0.418 

Complex Nonmonotonic 0.401 0.393 0.380 0.404 0.404 0.382 0.401 0.437 

Average 0.400 0.389 0.362 0.394 0.411 0.385 0.388 0.427 

100 30 

Linear 0.547 0.257 0.421 0.266 0.579 0.257 0.451 0.309 
Multiplicative 0.477 0.240 0.409 0.254 0.508 0.235 0.423 0.302 
Tchebycheff 0.002 0.247 0.002 0.256 0.004 0.248 0.032 0.300 

Complex Nonmonotonic 0.362 0.268 0.295 0.281 0.369 0.262 0.317 0.321 

Average 0.347 0.253 0.282 0.264 0.365 0.251 0.306 0.308 

 

Table B.9 Mean MSEO results for different reference set and query sizes 
(Uncertainty Sampling). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 

RF SVM RF SVM RF SVM 

30 10 

Linear 64.1120 53.8523 39.8091 28.9723 68.3872 61.8456 40.7132 34.3902 

Multiplicative 53.9755 31.3777 33.9872 24.2459 53.1579 27.1935 37.5102 27.0581 

Tchebycheff 1.3825 35.2771 1.9122 26.9944 1.4812 33.5196 5.2014 29.6020 

Complex Nonmonotonic 31.1238 33.3703 22.1876 26.1240 31.0525 32.2007 24.2068 32.2028 

Average 37.6484 38.4694 24.4740 26.5841 38.5197 38.6899 26.9079 30.8133 

100 10 

Linear 63.6732 14.8586 25.8424 11.2772 64.9529 14.8905 24.8347 12.0926 

Multiplicative 42.6368 12.2026 21.9506 10.8627 48.8665 11.3461 20.8758 12.8847 

Tchebycheff 0.0016 13.2819 0.0014 10.5806 0.0044 12.6275 0.8512 12.9871 

Complex Nonmonotonic 28.2044 15.2384 14.0486 11.4701 33.0153 14.0487 15.1175 15.2463 

Average 33.6290 13.8954 15.4607 11.0476 36.7098 13.2282 15.4198 13.3026 

30 30 

Linear 50.1411 26.0894 29.9659 20.3251 57.8520 26.4618 33.1312 21.5211 

Multiplicative 36.9601 15.9705 28.9615 15.3968 47.2411 18.5041 29.7824 22.2283 

Tchebycheff 0.3226 25.4308 0.4603 22.7098 0.6677 23.2760 1.8208 20.8691 

Complex Nonmonotonic 26.4534 22.6825 19.7835 21.0548 25.5101 25.4693 20.9625 25.6105 

Average 28.4693 22.5433 19.7928 19.8716 32.8177 23.4278 21.4242 22.5572 
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Table B.9 (continued). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Uncertainty Sampling 
Rand 
RF 

Rand 
SVM 

LC M E 

RF SVM RF SVM RF SVM 

100 30 

Linear 57.4230 11.6884 21.5526 8.2488 63.4335 10.8759 24.0705 11.6610 

Multiplicative 36.0431 11.2462 18.8305 8.3932 40.9817 10.4274 20.1302 11.7416 

Tchebycheff 0.0018 11.6591 0.0017 9.5231 0.0022 12.6250 0.4109 11.6029 

Complex Nonmonotonic 25.2292 15.3597 12.4484 11.1366 26.0765 13.6063 13.1148 13.2084 

Average 29.6743 12.4883 13.2083 9.3254 32.6235 11.8836 14.4316 12.0534 

 

Table B.10 Mean MSEO results for different reference set and query sizes (Query 
By Bagging). 

# of 
Queries 

Ref. 
Set 
Size 

Underlying Value 
Function 

Query By Bagging 
Rand 
RF 

Rand 
SVM 

LC M E 

RF SVM RF SVM RF SVM 

30 10 

Linear 58.8768 53.5961 38.9490 28.4616 63.2483 61.8131 40.7132 34.3902 

Multiplicative 52.9846 29.9580 33.8043 23.9197 54.3427 28.9156 37.5102 27.0581 

Tchebycheff 1.9134 34.0493 1.7427 33.3412 3.0996 42.5545 5.2014 29.6020 

Complex Nonmonotonic 33.2765 37.4889 24.0703 29.9596 33.1402 37.6712 24.2068 32.2028 

Average 36.7628 38.7731 24.6416 28.9205 38.4577 42.7386 26.9079 30.8133 

100 10 

Linear 64.6935 13.3316 23.4463 10.3410 71.5912 16.3875 24.8347 12.0926 

Multiplicative 46.0242 14.7097 22.0955 11.7916 51.3487 12.7369 20.8758 12.8847 

Tchebycheff 0.0036 14.3784 0.0038 11.8677 0.0232 15.7321 0.8512 12.9871 

Complex Nonmonotonic 33.9365 17.8493 14.3357 12.5495 36.6077 14.6700 15.1175 15.2463 

Average 36.1644 15.0672 14.9703 11.6374 39.8927 14.8816 15.4198 13.3026 

30 30 

Linear 51.0381 26.9253 32.5889 21.2882 52.0519 31.0083 33.1312 21.5211 

Multiplicative 43.6723 19.2338 29.7628 18.9846 42.7182 18.2302 29.7824 22.2283 

Tchebycheff 0.2919 26.5941 0.3840 20.3065 0.6173 25.8728 1.8208 20.8691 

Complex Nonmonotonic 23.4003 24.0789 18.7714 21.9411 23.6203 22.3889 20.9625 25.6105 

Average 29.6006 24.2080 20.3768 20.6301 29.7519 24.3750 21.4242 22.5572 

100 30 

Linear 53.5471 11.0930 21.8480 9.6527 67.0824 11.3685 24.0705 11.6610 

Multiplicative 36.5881 10.6638 20.7834 9.9343 40.9743 9.8357 20.1302 11.7416 

Tchebycheff 0.0030 12.5930 0.0025 9.9729 0.0090 11.5701 0.4109 11.6029 

Complex Nonmonotonic 26.4525 15.1074 12.0674 11.7412 27.1307 12.1432 13.1148 13.2084 

Average 29.1477 12.3643 13.6753 10.3253 33.7991 11.2294 14.4316 12.0534 
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APPENDIX C 

 

RESULTS OF THE PAIRWISE T-TESTS COMPARING THE BEST 

ALGORITHMS AND THE RANDOM APPROACH 

 

 

Paired T-Test and CI: RF-QBB-LC; RF-Rand  
 

Paired T for RF-QBB-LC - RF-Rand 
 

              N      Mean     StDev   SE Mean 
RF-QBB-LC   100   0,94602   0,01839   0,00184 
RF-Rand     100   0,92568   0,00988   0,00099 
Difference  100  0,020340  0,009832  0,000983 
 

95% lower bound for mean difference: 0,018708 
T-Test of mean difference = 0 (vs > 0): T-Value = 20,69   
P-Value = 0,000 

Figure C.1 Pairwise t-test for Acc (Reference set size 10. Value function has 3 
attributes and 2 classes.) 

 

Paired T-Test and CI: SVM-US-LC; SVM-Rand  
 

Paired T for SVM-US-LC - SVM-Rand 
 

              N     Mean    StDev  SE Mean 
SVM-US-LC   100  0,77434  0,08664  0,00866 
SVM-Rand    100  0,71632  0,07229  0,00723 
Difference  100  0,05802  0,01644  0,00164 
 

95% lower bound for mean difference: 0,05529 
T-Test of mean difference = 0 (vs > 0): T-Value = 35,29   
P-Value = 0,000 

Figure C.2 Pairwise t-test for Acc (Reference set size 10. Value function has 3 
attributes and 5 classes.) 
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Paired T-Test and CI: RF-US-Mar; RF-Rand  
 
Paired T for RF-US-Mar - RF-Rand 
 
              N      Mean     StDev   SE Mean 
RF-US-Mar   100   0,88958   0,02630   0,00263 
RF-Rand     100   0,86873   0,01901   0,00190 
Difference  100  0,020854  0,008585  0,000858 
 
 
95% lower bound for mean difference: 0,019429 
T-Test of mean difference = 0 (vs > 0): T-Value = 24,29   
P-Value = 0,000 

Figure C.3 Pairwise t-test for Acc (Reference set size 10. Value function has 6 
attributes and 2 classes.) 

 

Paired T-Test and CI: SVM-US-Mar; SVM-Rand  
 
Paired T for SVM-US-Mar - SVM-Rand 
 
              N      Mean     StDev   SE Mean 
SVM-US-Mar  100   0,51926   0,07758   0,00776 
SVM-Rand    100   0,48567   0,07589   0,00759 
Difference  100  0,033587  0,009356  0,000936 
 
 
95% lower bound for mean difference: 0,032034 
T-Test of mean difference = 0 (vs > 0): T-Value = 35,90   
P-Value = 0,000 

Figure C.4 Pairwise t-test for Acc (Reference set size 10. Value function has 6 
attributes and 5 classes.) 
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Paired T-Test and CI: RF-QBB-Mar; RF-Rand  
 
Paired T for RF-QBB-Mar - RF-Rand 
 
              N      Mean     StDev   SE Mean 
RF-QBB-Mar  100   0,94988   0,01586   0,00159 
RF-Rand     100   0,92182   0,01142   0,00114 
Difference  100  0,028059  0,007572  0,000757 
 
 
95% lower bound for mean difference: 0,026802 
T-Test of mean difference = 0 (vs > 0): T-Value = 37,06   
P-Value = 0,000 

Figure C.5 Pairwise t-test for Acc (Reference set size 30. Value function has 3 
attributes and 2 classes.) 

 

Paired T-Test and CI: SVM-US-Ent; SVM-Rand  
 
Paired T for SVM-US-Ent - SVM-Rand 
 
              N     Mean    StDev  SE Mean 
SVM-US-Ent  100  0,80429  0,06327  0,00633 
SVM-Rand    100  0,75283  0,05442  0,00544 
Difference  100  0,05146  0,01343  0,00134 
 
 
95% lower bound for mean difference: 0,04923 
T-Test of mean difference = 0 (vs > 0): T-Value = 38,32   
P-Value = 0,000 

Figure C.6 Pairwise t-test for Acc (Reference set size 30. Value function has 3 
attributes and 5 classes.) 
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Paired T-Test and CI: RF-US-Mar; RF-Rand  
 
Paired T for RF-US-Mar - RF-Rand 
 
              N      Mean     StDev   SE Mean 
RF-US-Mar   100   0,89973   0,01958   0,00196 
RF-Rand     100   0,87532   0,01330   0,00133 
Difference  100  0,024417  0,008313  0,000831 
 
 
95% lower bound for mean difference: 0,023037 
T-Test of mean difference = 0 (vs > 0): T-Value = 29,37   
P-Value = 0,000 

Figure C.7 Pairwise t-test for Acc (Reference set size 30. Value function has 6 
attributes and 2 classes.) 

 

Paired T-Test and CI: SVM-US-Mar; SVM-Rand  
 
Paired T for SVM-US-Mar - SVM-Rand 
 
              N      Mean     StDev   SE Mean 
SVM-US-Mar  100   0,54293   0,05402   0,00540 
SVM-Rand    100   0,52875   0,05284   0,00528 
Difference  100  0,014188  0,007806  0,000781 
 
 
95% lower bound for mean difference: 0,012892 
T-Test of mean difference = 0 (vs > 0): T-Value = 18,18   
P-Value = 0,000 

Figure C.8 Pairwise t-test for Acc (Reference set size 30. Value function has 6 
attributes and 5 classes.) 
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Paired T-Test and CI: SVM-QBB-LC; SVM-Rand  
 
Paired T for SVM-QBB-LC - SVM-Rand 
 
              N      Mean    StDev  SE Mean 
SVM-QBB-LC  100   0,23187  0,09915  0,00991 
SVM-Rand    100   0,30804  0,09617  0,00962 
Difference  100  -0,07617  0,01045  0,00104 
 
 
95% upper bound for mean difference: -0,07443 
T-Test of mean difference = 0 (vs < 0): T-Value = -72,91   
P-Value = 0,000 

Figure C.9 Pairwise t-test for MAEO (Reference set size 10. Value function has 3 
attributes and 5 classes.) 

 

Paired T-Test and CI: SVM-US-Ent; SVM-Rand  
 
Paired T for SVM-US-Ent - SVM-Rand 
 
              N      Mean    StDev  SE Mean 
SVM-US-Ent  100    0,6119   0,1921   0,0192 
SVM-Rand    100    0,6472   0,1700   0,0170 
Difference  100  -0,03526  0,02854  0,00285 
 
 
95% upper bound for mean difference: -0,03052 
T-Test of mean difference = 0 (vs < 0): T-Value = -12,35   
P-Value = 0,000 

Figure C.10 Pairwise t-test for MAEO (Reference set size 10. Value function has 6 
attributes and 5 classes.) 
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Paired T-Test and CI: SVM-US-Ent; SVM-Rand  
 
Paired T for SVM-US-Ent - SVM-Rand 
 
              N      Mean    StDev  SE Mean 
SVM-US-Ent  100   0,19880  0,06989  0,00699 
SVM-Rand    100   0,25975  0,06547  0,00655 
Difference  100  -0,06096  0,01308  0,00131 
 
 
95% upper bound for mean difference: -0,05878 
T-Test of mean difference = 0 (vs < 0): T-Value = -46,59   
P-Value = 0,000 

Figure C.11 Pairwise t-test for MAEO (Reference set size 30. Value function has 3 
attributes and 5 classes.) 

 

Paired T-Test and CI: SVM-QBB-Ent; SVM-Rand  
 
Paired T for SVM-QBB-Ent - SVM-Rand 
 
               N      Mean    StDev  SE Mean 
SVM-QBB-Ent  100   0,51385  0,09990  0,00999 
SVM-Rand     100   0,56621  0,09489  0,00949 
Difference   100  -0,05236  0,01396  0,00140 
 
 
95% upper bound for mean difference: -0,05004 
T-Test of mean difference = 0 (vs < 0): T-Value = -37,50   
P-Value = 0,000 

Figure C.12 Pairwise t-test for MAEO (Reference set size 30. Value function has 6 
attributes and 5 classes.) 
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