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ABSTRACT

INTERACTIVE AND NONPARAMETRIC MODELING OF PREFERENES
ON AN ORDINAL SCALE USING SMALL DATA

Eriskin, Levent
Ph.D., Department of Industrial Engineering

Supervisor: Prof.Dr. Gulser Koksal

December 2015, 170 pages

In this study, we consider learning preferencecstime of a Decision Maker (DM).

Many preference modeling problems in a variety iefds such as marketing,
quality control and economics, involve possiblyenaicting criteria, and an ordinal
scale is used to express preference of objecthelse cases, typically underlying
preference structure of the DM and distributioncoferia values are not known,

and only a few data can be collected about theeprates of the DM.

For developing a preference model under such cistamees, we propose using
nonparametric Statistical Learning approaches acterely. In particular, we

employ Active Learning by asking a preference quoasto the DM at each step
and try to reach a close approximation to the comeodel in a small number of

steps. Our experimental analysis proves that tbpgsed approach outperforms a



“naive” approach where subsequent questions aredasithdomly. In the study,
we also provide algorithmic recommendations for eliog) different underlying
value functions, if information is available abailite form of the preference

structure and/or distribution of criteria values.

This study can be regarded as a pioneering approaaidering that Statistical
Learning based approaches in the literature haga developed and tested based
on a relatively large preference information anelytdo not interact with the DM
in model developing process while Multi Criteriadd#on Aid based approaches
typically ignore interactions among the criteriaffer from generalization ability,
and have no concern about predicting equally gogetygvhere in the criteria

domain.

Keywords: preference modeling, sorting, active nesy, interactive approach,

multi criteria decision aid
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SIRALI OLCEKTE, AZ VERI KULLANARAK ETK ILESIMLI VE
PARAMETRIK OLMAYAN TERCIiH MODELLEMESI

Eriskin, Levent
Doktora, Endustri Muhendigi Bolim
Tez Yoneticisi: Prof.Dr. Gulser Kdksal

Aralik 2015, 170 sayfa

Bu calsmada, Karar Verici (KV) tercih yapisining@nilmesi konusunu ele
aliyoruz. Pazarlama, kalite kontrolii ve ekonomii dpilocok farklh alandaki tercih
modelleme problemleri, tercihlerin sirali Olcektade edildgi ve kriterlerin
etkilesim icinde oldgu durumlari icerirler. Bu gibi durumlarda genelékKV
tercih yapisi ile kriter dgerlerinin da&ilimi bilinmez ve KV tercihlerine yonelik az

miktarda veri edinilebilir.

Bu tlr problemlerde bir tercih modelinin ggliilmesine yonelik olarak parametrik
olmayan Istatistiksel @renme tekniklerinin etkikdmli olarak kullaniimasini
oneriyoruz. Ozellikle, her adimda KV'ye bir tercdorusu sormak ve az sayida
adimda en d&ru modele ulgabilmek icin Aktif Osrenme tekniklerini
kullaniyoruz. Deneysel analizlerimiz, 6nerilen yakinin muteakip sorulari rassal

olarak soran “sade” yaklama goOre daha Rkaril olduwunu gostermektedir.

Vil



Calismamizda ayrica, elimizde tercih yapisinin formuek@ya kriter dgerlerinin
dagilmina iliskin bilgi olmasi durumlari icin farkh tercih fonkg@nlarinin

modellenmesine yonelik olarak algoritmik tavsiyedersunuyoruz.

Calismamiz; literatiirde onerileistatistiksel @renme tabanl yakiamlarin biyiik
miktarda tercih verisi kullanilarak ggiirilmesi ve test edilmesi, model ggdlme
surecinde KV ile etkilgme gecmemeleri; Cok Kriterli Karar Degte
yaklasimlarinin ise genellikle kriterler arasi etkilmi ihmal etmeleri, genelleme
yeteneklerinin zayif olmasi ve kriter bélgesinirr gerinde ayni tahmin Rarisini
elde etmeyi dikkate almamalari nedeniyle bu aladdal bir cagma olarak

deserlendirilebilir.

Anahtar kelimeler: tercih modellemesi, sirali damflirma, aktif @renme,

etkilesimli yaklasim, cok kriterli karar desgs.
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CHAPTER 1

INTRODUCTION

Many real life decision problems involve multipleteria usually conflicting with
each other. In the presence of multiple criteria,may not talk about an optimal
solution or best alternative since there often texiso dominant alternative
outperforming others in terms of all criteria. Téfre, the Decision Maker (DM)
needs to consider trading off the achievement ef@iterion against another one.
Thus, decision making under multiple criteria tuous to be a subjective task that

depends on the preference structure of the DM.

When there are more than two criteria, the tradessffie gets more complex. In
this respect, as the number of criteria to be clared increases, the decision to be
made becomes more confusing for the DM. Multi Ciagtéecision Aid (MCDA)
offers several techniques to help confused DM nd#@@sions in the presence of
multiple criteria. MCDA basically deals with preégice modeling, criteria
aggregating and interactive problem solving. Intaftse applications, the main
idea remains the same: explicitly or implicitlyc#ipreference structure of the DM
in order to provide a decision support model tlaat be used in solving multiple

criteria decision problems.



As part of MCDA, preference modeling aims at expliceliciting preferential
system of the DM. Preference modeling is drawirggaaving interest recently due
to the fact that it became an imperative step inetyaof areas. The alternatives
considered in these decision problems range froojegts to cars or candidate
students to investment options. Especially if we amterested in making
predictions about the DM's preferences with regéod multiple objectives,
developed preference model provides a practicdl timcachieve this. Making
predictions for the preference of some alternagleition is particularly important
in marketing and manufacturing fields. In marketifigr instance, determining
product features to maximize customer preferenegglires estimation of the
preference structure of potential customers. Adddlly, as part of the marketing
analysis, determining how much each feature camet to overall preference
(called part-worth) needs a robust preference nmuglelin manufacturing,
predicting which quality characteristic values tesn an acceptable product,
which ones cause rework or scrap is needed torésitier product and processes.
Restrictive experimental conditions and inadequeseurces available for design
of data collection experiments require careful aadnomical determination of the
levels of product and process variables to be usede design. If the aggregate
response metric is the “quality” of a product, thére design points can be
determined close to the quality characteristic lewhat maximize the DM’s
preferences. Again, this process may require esbmaf the DM’s preference

structure.

When criteria considered in the decision probletararct with (or depend on) each
other, preference modeling task gets more chalhgngin the simplest form,
criterion setY is preferentially independent of the remainindgecion setZ if the
conditional preference structure in thiespace givenz' does not depend om
(Keeney & Raiffa, 1993). More formally, this indeqakence statement holds if and

only if for somez',



v.2)=(.Z) = (¥.9=(y.,2 all zy,y 1)

Several different independence definitions havenbeade in the Multi-Attribute
Utility Theory (MAUT) based on degree of dependemacyl if the consequences
are certain or associated with probabilities. Refer Dyer (2005) for a
comprehensive review of these independence defnsiti Without loss of
generality, we will assume that there exist inteéngccriteria if preference relation
in (1) does not hold for any subset of criteriagonplicity and use interaction and

preferential dependency terms interchangeably.

Even though there is a general consent among tdwgarregarding the existence
of interaction among criteria in real life decisiproblems, it is often ignored in
applications. Marichal (2000) enumerates main nesgor ignorance as; lack of
suitable tools to model them, absence of precisaitiens for different types of
interactions, complexity of some interactions aiffladiity to detect one. Due to
these reasons, most of the preference modelingegiea assume preferential
independence among criteria, making modeling pooaatively easygoing.

Nevertheless, interaction phenomenon is encountquéte@ commonly, even in
simpler cases. Dolgun (2014) mentions several cas#se quality control field
where criteria under consideration interact witbheather. For instance, consider
this example given by Marichal (2000): The problewolves evaluating students
in statistics (St), probability (Pr), and algebAd)( In this example, statistics and
probability are assumed to be more important tHgebaa. Evaluations of four

students are shown in Table 1. (Scale from 0 to 20)



Table 1. Evaluations of students in three subjects.

Student| St Pr Al
a 19 15 18
b 19 18 15
C 11 15 18
d 11 18 15

The DM is asked to rank students based on evahsiio three subjects. DM
easily states that-c and b>d. On the other hand, DM realizes that other
comparisons are not so evident since scores somewterlace. Hence,
considering statistics and probability are substi&y DM decides that a student
being good at statistics is preferred to be betteralgebra than probability.
Additionally, if a student is not good at statistithan it is better that (s)he is good
at probability than algebra. These two prefereneg¢esents reveah b and

d > c. Consequently, these preference statements prdapaseriteria expressed

as evaluations in three subjects are not (prefiatBntindependent.

Most of the MCDA methodologies utilize value fumetiapproach and assume an
underlying functional model. According to this apach, DM preference structure
is compatible with the functional form adapted. kmtance, UTA based methods
assume an additive functional form that is belieieedepresent DM’s preferential
system. However, DM preference structure is usuailgnown and adapting a
functional form may lead to poor results. Additibpa even though proper
functional (i.e. nonlinear) form is assumed for eeferential system having
interactions among criteria, parametric functionabdels may fail to address

complex interaction structures in high dimensions.



Many preference modeling problems in variety olidsesuch as marketing, quality
prediction and economics, involve possibly intaragtriteria and an ordinal scale
Is used to express preference of objects. In thases, typically no information is
available about the underlying preference structarel only a few data can be
collected about the preferences of the DM. Foramse, preference information is
usually obtained via on-line questionnaires in tharketing field. Before a

respondent gets bored and leaves the questionmaibg,a limited number of

guestions can be posed. Hence, every single gaastisonsumed thriftily. There

are other cases where data collection processef@rgting reference alternatives)
is costly in terms of time or money. In quality eregring, for instance, we may
need to produce expensive alternatives to genaradéerence set, which will be
useless after determining quality or preferenceanh product. Therefore, in order
to conduct data collection or preference elicitprgcess affordably, we need to

determine alternatives that will provide the magtf@rence information.

Preference models where preferences are exprassiee ordinal scale have many
real life applications. This kind of developed preince models are used for
classification or sorting tasks. Some of theseiapfbn areas can be summarized

as follows (Zopounidis & Doumpos, 2002):

» Pattern recognition: Based on recognized attributes, subjects of istere
are classified into predefined classes.

 Human resources managementEvaluating personnel based on their
attributes such as skills, education, leadership atd promoting some of
them or assigning to appropriate positions.

» Marketing: Classifying customer profiles and developing costo
marketing policies for each group.

» Economics:Credit risk assessment, portfolio selection.

» Education: Selecting a subset of applicants for graduaterarog

* Medicine: Diagnosis of diseases based on observed symptoms.



* Quality management: Sorting products into predefined quality groups
based on considered attributes.
e Evaluation of hotels: Evaluating and assigning stars to hotels based on

criteria of interest.

We can extend this list with many other applicagiofll these applications require
preference models that are developed by obtainreéerence information from
the DM(s).

There are many studies proposed in the literatuceal with preference modeling
problems in the ordinal scale, however, most ofrthequire big amount of
preference data for modeling and ignore interacéiomong criteria. Additionally,
majority assume a known underlying preference siracwhich is not a plausible
assumption. Some others using small data suffen fsoor generalization ability.
Also most of them only aim to sort limited numbdratternatives at hand and
consider a subset of the alternatives for gettirgfgpence information. Hence,
preference model developed based on the preferefmenation obtained with
respect to these alternatives is used to sort ése Consequently, there is no
concern about predicting equally good everywheréhen criteria domain. These

problematic issues have not been solved in thepete learning field.

In recent years there is a growing interest amotagisical Learning (SL)

practitioners towards MCDA. In one perspective, hbdilCDA and SL

methodologies aim to build robust models that wépresent or explain the
phenomenon of interest. In MCDA, phenomenon ofraggeis preferential system
of the DM, while SL functions in a variety of domaidepending on the type of
data. Incorporating Machine Learning (MA) methodpés in it, SL is one of the
major research areas in Atrtificial Intelligence YAAI is a popular field of study
that comprise several major research areas, namelghine learning/data mining,

soft computing, evolutionary computation, knowledgengineering and



management, expert systems, symbolic reasoningnitogg systems, etc.
(Doumpos & Grigoroudis, 2013). Main focus of Al ie develop predictive
decision systems and technologies that will modehéin brain. In this respect,
finding the common ground in Al applications, Sisearchers are more interested

in MCDA field more than ever.

There are several applications in SL dealing wit€DA problems, mainly in
cases where response (or preference) is exprassedagorical or ordinal scale.
Doumpos and Zopounidis (2011) provide a comparatigeiew regarding
integration of these two fields, connections, samiiiles, differences and potential
research areas. Emphasizing that similarities dogioas, they enumerate

differences as follows (last three previously desad by Waegeman et al., 2009):

* Model interpretability: It is important in MCDA that models developed
be interpretable since MCDA not only aims at depilg decision models
but also integrating DM into modeling process sattbM perceives
his/her preferential system. On the other handm®dels usually focus on
developing models of higher accuracy and preséoibak-box” structure.

« Data dimensionality: SL applications usually require big amount of data,
whereas MCDA methodologies assume that only a srefdfence set is
available, in general.

* Model validation: Even though validation of the model developed is
considered to some extent in MCDA by interactinghwthe DM, model
validation is an important component of SL praciddoreover, numerous
techniques developed for validation process ohtbedels.

* The role of the DM: In MCDA most of the time DM actively participates
in model developing process, while SL assumesdhigta training sample
is available, hence, interacting with DM is notuegd.

* Regularization: SL puts special emphasis on generalization capalofi

the model developed, hence, considers trade-offdet complexity and



performance of the model. In MCDA, however, regakion is not a big
issue.

» Data type: In MCDA the data is characterized by criteria; dpaséive or
guantitative. SL, on the other hand, handles differtypes of data with

more complex structures such as text, image oabiipta.

From this discussion, it becomes evident that bidlds have some strong
capabilities with respect to developing predictireference models. As Doumpos
and Zopounidis (2011) imply, future research iregnation of these two areas will

evolve towards this bearing.

Considering all aforementioned shortcomings of gveposed approaches in
MCDA, we utilize SL methodologies in preference ralialy where preference is
expressed in the ordinal scale and criteria inteveith each other. Modeling
strategy is based on obtaining holistic judgemeinten the DM regarding
alternatives and adjusting subsequent questioredb@s the judgements gathered
thus far, in an adaptive fashion. We start withnaalé reference set and employ
nonparametric classifiers for model developing.ndsnonparametric classifiers
brings two advantages; firstly, we assume no fomneti form for the preferential
system of the DM, hence, we do not suffer from meously adapting a wrong
function. Secondly, nonparametric classifiers oritpen their parametric
counterparts in modeling complex data structuresorbler to conduct modeling
process in an adaptive way, we propose employingvéclLearning (AL)
techniques. In particular, we employ AL by askingraference question to the
DM at each step and try to reach a close approiomab the correct model in a
small number of steps. AL is an application of ssopervised Machine Learning
(ML) where the learning algorithm iteratively quesi“the Oracle” or user. The
main rationale for using AL is that, usually we basbundant unlabeled data
(those sinstances that do not have class informagéibhand, whereas labeled data

is scanty and labeling one is expensive. Thus,yiugiprocess is implemented so



that as much information as possible is obtainedewds less unlabeled data as
possible is queried, as mentioned in the markegxgmple. Consequently,
preference modeling is structured as a learningga® Utilizing AL, we query the
DM in an interactive way, thereby, DM is integratedo the model developing
process. In this context, while utilizing stron@tigres of SL in modeling complex
structures, we also address the weak sides of 8icizwd by Doumpos and
Zopounidis (2011), in conjunction with preferencedaling. As a consequence,
this study can be regarded as a pioneering approacsidering that SL based
approaches in the literature have been developédested based on a relatively
large preference information and do not interadhvidM in model developing
process while MCDA based approaches ignore interat suffer from
generalization ability, and have no concern aborgdigting equally good

everywhere in the criteria domain.

This thesis is organized as follows: In Chaptew@,provide literature review and
background. In Chapter 3 we present our proposemoaph. In Chapter 4
experimental design and analysis performed in otdeevaluate our proposed
approach are explained in detail. Chapter 5 explaxtension of the algorithm
where we consider input distribution of the criserin Chapter 6 we present

conclusion remarks and future work.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

In decision making problems involving multiple era, the DM is presented a set
of A potential actions that (s)he needs to consideterfdial actions might be
comprised of a discrete set of alternatives whaoh alternative is described by a
criterion set. On the other hand, there are casesermnumber of potential actions
might be infinite. In this case, there exists aiorgin which all feasible
alternatives lie and each point in this region esponds to a potential action. In
MCDA, the first problem type is defined as discretecision making problem

while problems of second type are called continudrsion making problems.

When the DM faces a discrete decision making probtbe analyst can provide a
decision aid by utilizing four different types aiayses. In MCDA, these analysis
types are referred to as decision making probla®and can be classified as
follows (Roy, 1996; Doumpos & Zopounidis, 2002; trig 1)

» Choice: Best or limited set of best alternatives are itfiexol

* Ranking: Alternatives are rank-ordered from the most preférto the
least preferred.

« Classification/Sorting: Alternatives are put into predefined groups based

on degree of preference.

11



» Description: Alternatives are described based on their disigigog

features that are explained with criterion set.

Ranking

Choice

Alternatives

Description

Features of the
alternatives

Classification/Sorting

Figure 1. Decision making problematics (Source: pas & Zopounidis (2011)).

In general, the first three problem types lead fmadicular result. The first two
problem types (choice and ranking) involve relajivégements, meaning, results

12



are expressed taking into account the other aliggsaunder consideration. If we
add new alternatives to the set, the decision rhgdbe DM might change. On the
other hand, in the classification/sorting problerafprences made by the DM are
absolute, based on the pre-defined groups. In raaturing industry, for instance,
a product undergoes a quality control process abeléd as “accepted”, “rejected”
or “rework” based on some attributes under conatitanr. This judgement does

not differ with respect to the other alternativesgroducts) to be classified/sorted.

Classification/sorting problem is one of the masidged problems in variety of
disciplines. Even though different disciplines ddse this problem using different
parlance, in general the main idea is to assigmeadefined class label to the
alternatives under consideration. There are diffieterms used for this problem
type, however, the commonly accepted terms are olews (Doumpos &
Zopounidis, 2002) :

* Discrimination
+ Classification

* Sorting

The first two terms are used by people studyin§lirand Al fields, while sorting

has been established by the MCDA practitioners @deer, sorting problems are
defined as ordinal classification problems in the @arlance) (Doumpos &

Zopounidis, 2002). Even though all these three lprab deal with assigning a
class label to the alternatives under consideratigare is an ordering of classes in
the sorting problem while in discrimination andsddication problem, classes are
defined nominally. This is the main difference begéw classification and sorting

problems.

In the classification/sorting problem, each altéx®ax is represented with a set of

criteria  c=(cy,...,G,). Therefore, alternatives turn out to be vectors
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X; = (cil,...,c]n ) , wherec; corresponds to the score of alternatiwgachieved in

criterion ¢ . Consequently, the classification task can benéelfias developing a

model that maps each alternative into a class Iafrﬁ( yl,...,y), where indext

corresponds to the number of pre-defined classeshd sorting case, however,

classes are ordered, hen(yé]( Y > )4) :

Even though the above definition of classificatsmmting problem is common for

various classification/sorting techniques, the nhaged to map alternatives into

predefined groups may have different forms in MCDAast commonly used ones

include (Doumpos & Zopounidis, 2011):

Value functions: A value function Y(x)) representing degree of

preference is defined such that, for two alterrestivandy,

V(X)>V(y) = x>y @
V(X)=V(y) = x~y
where > and ~ correspond to preference and indifference relations
Outranking relations: An outranking relatiors between two alternatives
x andy is defined such that;

XSy < X isatleastasgood g (3)

“If...then...” decision rules: In this form, model consists of two parts;
condition part that follows “if” statement and cdusion part that follows
“then” statement.

Name of the function that is used to represent Dptsference structure differs

based on the decision condition. Making this detton first time in the literature,
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Keeney and Raiffa (1993) distinguish preferencections based on the risk
associated with the alternatives. In their parlanpeeference representation
functions under risk are referred to as utility dtions while preference

representation functions under certainty are refeto as value functions. In the
case of risky choice, a probability distributiondssociated with consequences,
hence, there exists uncertainty with respect tch emansequence. Conversely,
consequences of alternatives are certain in therlat@se. Assuming that all
consequences of the alternatives are certain (desisre made under certainty)
we will refer to functions representing preferersteucture of the DM as value

function thereafter.

Obtaining preference information from the DM is mnportant aspect of the

preference modeling process. There are two mainsvedygetting preferential

information from the DM: In direct way (or forwardpproach) DM specifies

values for the parameters used in the preferenageim@e. weights, threshold
values, etc.). In indirect way (or backward apphdaM is asked to make holistic
judgements about reference alternatives. Basedhesetreference judgements,
parameters of the preference model are elicitedquid-Lagreze and Siskos
(2001) explain the relationship between these tpr@aches with aggregation-
disaggregation paradigms. In the aggregation pgmadriteria aggregation model
is known a priori, hence, parameters of the model estimated in the model
development process. Conversely, in the disaggmyaiaradigm, the model is
estimated from the holistic judgements made by EiM. In other words,

disaggregation approach uses regression-like tqabaito model DM preference
structure by using a reference set of alternatifRgationship between these two

paradigms is illustrated in Figure 2 (Jacquet-Lagr& Siskos, 2001).

Model development process utilizing disaggregajamadigm is referred to as

Disaggregation Analysis (DA). The most importarpuh of DA is the reference
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set which contains representative alternativescas®al with global preferences

(or label information). Reference set may be cosgatiof (Siskos et al. ,2005):

» Fictitious but realistic representative examples,
» Past decisions of the DM,

* Subset of past decisions when the set is large.

Aggregation
Model

R/
N
e

Global
Preference

Aggregation
Model ?

Figure 2. Aggregation and disaggregation paradi@osirce: Siskos et al. (2005)).

In DA, the main objective is to estimate the best af parametersp of the

decision model that is believed to represent tledepence structure of the DM as

shown in Equation (4) (Doumpos & Zopounidis, 2011):
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A

@ =argmin
FIA

o-9 @)

where

q}—qpﬂ corresponds t@-norm of the differences between the actual and
p

the estimated parameters aAccorresponds to the feasible set of values for the
parameters. In order to solve problem (4), theresfee set is used empirically. Let
D(X) denote evaluations of the DM on a 3etThen, the optimization problem

turns out to be:
qb* =argm inL[D(X),If)(X,fA)} (5)
gOA ¢

where fq} Is the preference model developed & is a function that measures

the difference between preferences made by the DNIX()) and estimations

made by the model (X, f.)).

Similar to the DA of MCDA, SL also learns from exples. For the
classification/sorting setting where output is gaéle, an estimaté is used to
predict outputs where each output takes values fseind . A loss function
represented by K XK matrix L is used to measure difference between estimates
and observations, wheke= card () (Hastie et al., 2009). According to Hastie et

al. (2009), the Expected Prediction Error (EPEE@esented as:
EPE= § (G § X)) 6)

where X JR" denote a real valued random input vector. Takiqpetation with
respect to the joint distributid®G, X) and conditioning,
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epE= £ 1<, & X Ae.1 ¥ ™

minimizing EPE pointwise,
~ . K
G(x)=arg I;‘D]I(I‘IZ L[<, .9] P(¢, IX= % (8)
k=1

with the 0-1 loss function,

A

G(x)=arg ggl(n[ -P(g|X= %] (9)

As seen from the formal definitions of multi-cri@multi-attribute
sorting/classification problem in MCDA and SL domsi the main idea is to
develop a model/classifier that learns from exas@led maps each alternative
into consequence space of outcomes. In the follgveections we will provide
techniques from these two fields that are developed deal with
classification/sorting problem. Additionally, welismention Conjoint Analysis, a
decomposition method from the marketing field, aighto estimate preference
structure of customer(s) (and parameters of thdnenadtical representation of the
model) by means of questionnaires. Similar toftioeis of this thesis and different
than the techniques proposed in MCDA, Conjoint Asil considers preference
modeling as a learning process, thereby seeks &hadologies that implement

preference modeling process in an evolutionary way.

2.1 Multicriteria Sorting Techniques in MCDA

One of the earlier examples of DA based sortinghodst in MCDA is UTADIS
(UTilities Additives DIScriminantes). Basic prindgs introduced by Devaud et al.
(1980), UTADIS is a variant of UTA (UTilities Addites) method (Jaquet-
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Lagreze and Siskos, 1982) that is developed fdkimgnproblems. UTA method
aims at inferring an additive utility function bying ordinal regression approach
that ranks reference alternatives the same watyveasi done by the DM. Utilizing

an additive utility function, UTA assumes preferahtindependence among
criteria. Likewise, UTADIS also utilizes an addgiwtility function as the criteria
aggregation model and assumes preferential indeperd Inferred additive utility
function is used to sort reference alternatives revhaternatives that achieve
highest scores are labeled with, and alternatives that achieve worst scores are
labeled withCy , wherek represents number of groups a@d-...> C, . UTADIS

procedure may generate multiple optimal solutiofbis situation is usually
encountered when references are perfectly separéibléhis case, alternative
utility functions that sort the reference examgles same way as it was done by
the DM can be obtained. These kind of utility fuont are called compatible
utility functions (Figueira et al., 2009). In orde&r improve generalization ability
of the model, post-optimality analysis is performed an effort to explore

existence of alternative optimal and near optirméaitsons.

As a member of the family of ELECTRE methods, ELIRETTRI method has
been proposed by Yu (1992) for sorting problemkelather ELECTRE methods,
ELECTRE TRI utilizes outranking relations approachhe procedure is
implemented in two stages. In the first stage, @namking relation is developed in
order to determine if an alternative outranks afileowhich is a fictitious
alternative defined for separating classes. In #seond stage, developed
outranking relations are used to assign alternsiiveclasses. Being an outranking
relation approach, ELECTRE TRI can model incompiéitalyelations. The main
drawback of ELECTRE TRI procedure is that it nepserential parameters like
criteria weights, veto thresholds or profiles. dt unrealistic to expect DM to
provide these parameters directly and the prooessli¢it these parameters is

usually troublesome.
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Ulu and Koksalan (2001) have developed an interactorting procedure for a
two-class case where classes corresponded to abte@tnd unacceptable sets.
They considered three different underlying utilitynctions, namely, linear,
guasiconcave, and general monotone. Their procadwetfective when there are
not many criteria and number of alternatives isggearin the algorithm, an
alternative is assigned to one of the two classsgd on previous preferences of
the DM, dominance relationships among alternatieesl properties of assumed
underlying utility function. In order to assign eihatives to classes, feasibility
Linear Programs (LPs) are solved. If an alternatiaenot be assigned to a class,

then preference information for the alternativelémed from the DM.

Utilizing the principles of rough set theory of Halw (1982), MCDA techniques
based on rough sets theory have become popular gamesearchers. In their
prominent paper, Greco et al. (2001) have outlithedprinciples of Dominance-
based Rough Set Approach (DRSA) where a distinctietween attribute and
criterion was made. Different than an attribute,cidterion is defined on
preference-ordered domain. In this respect, indisiodity relation based on
attributes is substituted by dominance relationhé&ent with these principles,
Greco et al. (2002) have developed a rule basezbguve for dealing with sorting
problems. Their procedure makes use of disaggmggaradigm, thereby, they
use reference examples for eliciting preferencermétion from the DM. Making
the distinction between attribute and criterioreyttbuild “rough” approximations
of decision classes defined by “indiscernibilityélations based on qualitative
attributes, “similarity” relations based on quaatiie attributes, and “dominance”
relations based on criteria. They present the matthl decision rules in the form
of logical statements agf.".then..”. They state that models of this form have the

advantage of interpretability.

Kdksalan and Ulu (2003) have developed an interactnulticriteria sorting
procedure in which DM was assumed to have a li(additive) utility function.
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The procedure is evolutionary in nature and basethe preference information
obtained from the DM, dominance relations of theraktives and additivity of the
utility function, unlabeled alternatives are pladadpre-defined classes. At each
iteration, either class information of an altematiis asked to the DM or an
alternative is placed in a class by the algorittasda on the answers gathered thus

far.

Utilizing disaggregation paradigm, Koksalan et @009) have proposed a
multicriteria sorting procedure based on outrankielgtions. Their work can be

considered as an extension to the ELECTRI TRI ntetB ECTRE TRI method

requires DM to provide parameters like weightseshiolds and profiles that
represent categories. Considering unrealistic patfr the method due to the
difficulty of obtaining this information from the W@, they have proposed a new
method that elicits profiles representing limitstioé categories from the reference

set that has been constructed in supervision ddiie

Koksalan and Bilgin Ozpeynirci (2009) have consédiea method that assumed an
additive underlying utility function representingeference structure of the DM.
The proposed method, which is an extension to fhaS procedure in general,
overcomes the misclassification drawback of UTADMNs interactively querying
the DM. Rather than trying to estimate parametéthe additive utility function,
they place alternatives into pre-defined classeedban additive utility function
assumption and preference information obtained filoeenDM. In their paper they

have showed that proposed approach has outperfddma®IS procedure.

As an another extension to the UTADIS method, Gretoal. (2010) have

proposed UTADIS. Like its predecessor, UTADTS® is an ordinal regression
method, nevertheless, rather than considering oné/or a subset of compatible
utility functions produced by the model, the progsprocedure considers all

compatible utility functions. By doing that, tworkis of assignments are made for

21



the alternatives: necessary and possible assigsmietessary assignments are
those that are proposed by all compatible valuectfons while assignments

proposed by any compatible value function are dalessible assignments.

Considering inadequacy of additive utility funct®onn handling interacting
criteria, Angilella et al. (2009) have proposedhgsChoquet integrals, which have
been popular as an aggregation operator in ordedeta with interaction
phenomenon, in the robust ordinal regression fraonkevior sorting problems.
Extending the idea of UTADIS, they utilize Choquetegral as an aggregator
instead of an additive value function. Similartie UTADIS™® procedure, robust
ordinal regression framework is used to handle iplalt compatible value

functions, hence, necessary and possible assigarasntlicited.

Considering the difficulty of eliciting too many q@aneters in the ELECTRE TRI
method, Leroy et al. (2011) have proposed usinginapldgied version of

ELECTRE TRI, where an alternative was assigned tdaas or above if this
alternative was as good as the “lower profile” bétt class for a majority of
criteria. They refer to their method as MR-Sortohder to find profile and weight
values, they utilize a learning procedure whereeh &f labeled reference

assignments are used.

Soylu (2011) has proposed a multicriteria sortingthnod where preference
structure of the DM was represented with a Tchebffaltility function. The main

reason for using Tchebycheff utility function istta weighted Tchebycheff utility
function can reach non-convex regions of the efitifrontier and may represent
variety of preference structures by adjusting wsigithe proposed methodology
uses disaggregation paradigm, hence, a referertcef salternatives that are
classified into predefined classes by the DM areduso label remaining

alternatives by performing pairwise comparisonsm@arison of two alternatives

is performed by calculating strength of alternatie®erj, which is measured with
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difference between weighted Tchebycheff distandeslternatives to the ideal
point. The method utilizes the same idea as in UISADtherefore, final
classification is made by comparing average streruft each alternative with
computed threshold values of each class.

As an extension to UTAD®' method, Greco et al. (2011) have proposed a
methodology for selection of a representative vdlugction which represented
necessary and possible relations produced by UTABI$ an effort to provide

an interpretable decision model to the DM. Thigssally achieved by interacting
with the DM, so that DM expresses targets that tarebe attained by the
representative value function. The produced valuetion has two possible uses:
firstly, DM is presented an interpretable decisimodel which helps him/her
understand his/her preference structure. Secotidyproduced model can be used
to sort unseen (those instances that are not usdbei training phase) future

alternatives.

Bugdaci et al. (2013) have developed a probabiligiitirey approach where the
probability of an alternative belonging to eachsslavas calculated. Afterwards a
proper assignment of alternatives into pre-defiokedses is performed based on
the calculated probability of misclassification.vémn the assignments made thus
far, membership probabilities of each alternativee aecalculated and the
procedure is carried out in an evolutionary manfddrey assume an additive
underlying utility function and also assume thatitytrelated parameters and
thresholds can be estimated by interacting withDMe Whenever an alternative
cannot be assigned to a class, correct class iataymis requested from the DM.
It is claimed that the proposed approach addreasse@roblematic issues usually
encountered in multiple criteria sorting methodadsg Firstly, high
misclassification rates of those procedures that tai estimate parameters of the
preference model. Secondly, excessive involvemétheo DM in the interactive
procedures.
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In another study, Ulu and Koksalan (2014) have ragslia quasiconcave value
function that represented DM’s preferential struetfor sorting alternatives to
preference ordered classes. Emphasizing that theik is the first example

utilizing quasiconcave underlying value functiomssorting problems, they use
preference information obtained from the DM, domirerelations, and properties
of quasiconcave value function for assigning unkdbealternatives to classes.
Whenever needed, DM is requested to place an atteento a proper class and
then as many alternatives as possible are assigasdd on the dominance
relations and mathematical properties of quasicamealue function. Hence, they

carry out the procedure in an interactive way.

In order to deal with alternative optimal solutidhat lead to multiple compatible
value functions in the ordinal regression appro&#iik et al. (2015) have studied
a new probabilistic distance based sorting proaedhbat utilized an approach
similar to necessary-possible class method. Twalskiof threshold levels are
computed that are used to separate each conseclds® pair: maximum and
minimum. Based on these thresholds, pessimisticdgst) and optimistic
(narrowest) ranges are determined which are usechltulate class-belonging

probabilities.

Extending the idea of UTADIS, Corrente et al. (20ave applied Multiple
Criteria Hierarchy Process (MHCP) framework propmblg Corrente et al. (2012)
to sorting problems. MHCP is developed to deal wthltiple criteria in a
hierarchical scheme, hence, large sets of crit@meapartitioned into levels. By
partitioning the criteria, MCDA process is simpdifi for the DM and the problem
becomes more manageable. Similar to UTADIS, theahmnique assumes that

DM’s preference structure is compatible with additiunctional form.

All these aforementioned studies are presentedaileT2 based on modeling

approach and assumed underlying value functioodorparison.
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Table 2. Multicriteria sorting techniques proposethe literature.

Authors Modeling Assumed

Approach Value Function
Devaud et al. (1980) Functional Additive
Yu (1992) Outranking -

Relations
Ulu and Koksalan (2001) Functional Additive

Quasiconcave
Gen.Monotone

Greco et al. (2002) Rule Based -
Kdksalan and Ulu (2003) Functional Additive
Kdksalan et al. (2009) Outranking -

Relations
Koksalan and Ozpeynirci (2009)  Functional Additive
Angilella et al. (2009) Functional Choquet integral
Greco et al. (2010) Functional Additive
Soylu (2011) Functional Tchebycheff
Greco et al. (2011) Functional Additive
Leroy et al. (2011) Outranking -

Relations
Bugdaci et al. (2013) Functional Additive
Ulu and Koksalan (2014) Functional Quasiconcave
Celik et al. (2015) Functional plnorm
Corrente et al. (2015) Functional Additive

As seen in Table 2, most of the techniques outlinetthis section utilize a value
function approach, hence, assume an underlyingeVialoction that is believed to
represent preference structure of the DM. The nramson for assuming a
functional form is that it makes modeling processsier, thus, by using
mathematical properties of the assumed value foimct representative model is
elicited. There are three outranking relations-tlaserting techniques in the list
while the only rule-based technique is proposed Grxeco et al. (2002).
Considering the years of the studies, we can thigrmulticriteria sorting problem
is drawing a growing interest recently. This isi®e&td to stem from the fact that,
multicriteria sorting problems are confronted maféen in various fields like

finance, risk evaluation, quality management, hune@ources management etc.
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As stated previously, even though being an imporgdrenomenon in real life

MCDA problems, an interaction phenomenon is usuakglected or all the

criteria under consideration are assumed to beepefially independent. We see
reflections of the aforesaid proposition in TableAYmost all of the proposed

functional techniques assume functional forms the¢ not able to model

interaction structures. Although quasiconcave fiomst do not assume preferential
independence, their monotone structure prevent timedel complex interaction

structures. It is not clear if outranking relatiomgproach can model interacting
criteria and this is subject to experimentationwéweer, it is generally assumed
that these techniques require preferential indegere assumption among criteria
(Corrente, 2012). A comparison of the proposed riggles in this context is

presented in Table 3.

As clearly seen from Table 3, there are only thsralies (Greco et al., 2002;
Angilella et al., 2009; Ulu & Koksalan, 2014) thdb not assume preferential
independence. All techniqgues mentioned in thisisecassume that DM has a
monotonic preference structure. Therefore, thoseetktudies that do not assume
preferential independence cannot model complex raotens that show
nonmonotonic structures. As a consequence, we ss@rtathat their ability to
model interactions is limited. Interactive MCDA hedques are popular among
sorting problems due to their ability to integrdd® to the model developing
process and expedite learning process. NeverthelEsble 3 reveals that
interactive procedures usually ignore interactitrerpmenon or assume it does
not exist. Consequently, based on our literaturéieve on MCDA sorting
techniques, we can claim that there is a need &w procedures that elicit
preference information from the DM interactivelydas able to deal with complex
interactions and nonmonotonic structures efficientvithout making any

functional assumptions, as indicated with gray zanEable 3.
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Table 3. Comparison of multicriteria sorting teajues.

Functional Ability to Model Interactions

Interactive Assumption

No Yes (Limited)

Devaud et al. (1980)
Greco et al. (2010)
Soylu et al. (2011)
Greco et al. (2011)
Celik et al. (2015)

No Corrente et al. (2015)

Yes

Yu (1992) Greco et al. (2002)

No Leroy et al. (2011) Angilella et al. (2009)

Ulu and Kéksalan (2001)
Kdksalan and Ulu (2003)
Koksalan and Ozpeynirci (2009
Bugdaci et al. (2013)

Yes Ulu and Koéksalan (2014)

Yes

No Kdksalan et al. (2009)

In general, the main objective of the aforementibtechniques is to sort limited
number of alternatives of the problem under comatiten with maximum
accuracy. They take a subset of the alternativegédtiing preference information.
Hence, the preference model that is developed basd#ue preference information
obtained with respect to reference alternativesesl to sort the rest. Even though
developed models represent preference structurtheofDM, these techniques
cannot be considered as preference modeling agmsaédditionally, they do
not concern about predicting equally good everywhier the criteria domain,

which corresponds to generalization ability.
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2.2 Nonparametric Classification and Ordinal RegressionTechniques in

Statistical Learning

Drawing a growing interest in a variety of fieldscently, SL refers to tools for
understanding and modeling complex structures eddzkedh data (James et al.,
2013). Emerging as a subfield of statistics, inbaes various disciplines such as
computer science and operations research. Bropdbkeng, SL techniques can be
divided into two main parts: supervised and unsuped learning. In supervised
learning, the main aim is to infer a statisticaldabfor prediction or estimation
under the supervision of “outputs”. Hence, a priddécmodel that explains the
relationship between “inputs” and “outputs” is cwouosted. In unsupervised
learning, on the other hand, only inputs are wdizo learn structures of the data.
Classification problem falls into supervised leagipart where outputs are
gualitative or categorical. In this respect, clasaiion models aim to build a
predictive relationship between inputs, qualitatorequantitative, and qualitative
output. After training a classification model, theodel classifies or labels an

(usually previously unseen) observation basedomjgut values.

Classification is one of the most studied suped/iksarning techniques in the
literature, therefore, numerous procedures have beeeloped. In this section, we
will provide a brief review of prominent nonparametclassification techniques
proposed in the literature. Additionally, we willittine basics of Support Vector
Machines (SVM) and Random Forest (RF), since whkzeatthese techniques in
our thesis. As previously stated, we utilize noapaetric classification techniques
in this study. In general, parametric models malssumptions regarding
underlying statistical properties of the data dkiast. Based on these statistical
assumptions, parameters of the model are eliciesvever, statistical properties
of the data are hardly known, therefore, incoratistical assumptions lead to
wrong inference. At this point, it would be propts make it clear that
nonparametric models use parameters to build modslsvell. However, these
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parameters are not parameters of predefined statishodel, rather, parameters
that are determined by the observations of the.dd&ving this property,
nonparametric models outperform their parametricnterparts in terms of

learning from complex data structures.

Inspired by the human brain, artificial Neural Netks (NNs) have been
introduced in the artificial intelligence field tdeal with complex problems.
Basically, a NN is a regression or classificatioodel represented with a directed
acyclic graph of neurons organized into layers. égalty speaking, a NN consist
of a layer of input nodes (inputs), a layer of amtgclasses) nodes and
intermediate (hidden) layer. Depending on the togplof the network, functions
or models of different complexity can be represgnwth neural networks.
Because of its somewhat closed-form, it is usuadlgd to provide an explanation
or interpretation for outputs. Fitting NNs is quée art. There are many issues to
be considered to avoid overfitting. For detaileghlarations of these issues, see
Hastie et al. (2009).

First proposed by Breiman et al. (1984), Clasdifice and Regression Trees
(CART) is a nonparametric decision tree basedssizdi learning technique that
can be applied to regression and classificatiorblpros based on type of the
dependent variable, quantitative or qualitativesd®h on the same principles,
Quinlan (1993) introduced C4.5 algorithm. In demisiree learning, every node
corresponds to an attribute while every branchesgmts a condition based on the
node attribute. Each leaf corresponds to a class;d) leaves label an observation
satisfying the conditions of the branches on théh.p®ecision tree based

classification algorithms become popular recentgcause of their following

properties (Doumpos & Zopounidis, 2002):

e Handling both quantitative and qualitative attramut

* Dealing with missing values
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* Interpretability of the models produced

Stone et al. (1997) developed an extension of Maitate Adaptive Regression
Splines (MARS) algorithm, namely PolyMARS, for dddsation problems.

MARS is an adaptive procedure for regression anittsueed for modeling non-

linearities and interactions among attributes @man, 1991). MARS uses basis
functions taking one of the three forms to builddeig: a constant, hinge functions
and product of two or more hinge functions. Usdiafje functions provides high
flexibility. Weber et al. (2012) proposed an exiensgo MARS where they apply
it with Tikhonov regularization and conic quadrapiiogramming. Our previous
experience with MARS and PolyMARS has showed thatse techniques are
highly sensitive to size of the training set. Whha training size is small, they
have a tendency to overfit data, which harms theegdization capability of the

model.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) have become veryapecently due to their
performance in variety of different applicationsclsuas text classification, face
recognition, database marketing and bioinformaficampbell & Ying, 2011).
Initially developed for binary classification, SVM=mn be applied to multi-class
classification, regression and clustering problefif®e main idea of SVM is to
generate a hyperplane or set of hyperplanes usudfigh dimensional space that
will separate data into classes as efficient assiptes If groups are perfectly
separable by a linear hyperplane, then this classg called maximum margin
classifier.

The main objective of a maximum margin classifierto find a separating
hyperplane that is farthest from the observatigxmong all such perpendicular

distances to the separating hyperplane, the onésthiae smallest is called margin,

30



hence, maximum margin classifier seeks a solutiberer margin is maximized.
Separating hyperplane can be formulatedwas+b =0, wherex are the points
that are positioned on the hyperplane ands the weight vector normal to the
hyperplane. For the binary classification casegolaions that satisfyw.x+b>0

are classified as class § € 1) , and observations that satisty.x+b<0 are
classified as class -1;(= -1). In this respect, closest points to the sepagatin
hyperplane holdv.x +b=+1. These hyperplanes are called canonical hyperplane
All these concepts are illustrated in Figure 3 (Bkbpf & Smola, 2002).

\

|{x|<w,x>+b:

A
A \
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v‘.‘Q ‘{X | <w,x>+b=0}
\ ‘\
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\ \

Figure 3. Margin and hyperplane concepts in SVMu(Be: Scholkopf & Smola
(2002)).

Assume we have two observations §ndx,) on the canonical hyperplanes lying

on the opposite sides, then we can formuwlafg; — x,) = 2. Normal vector to the

separating hyperplane iSN/HWﬂz. Then, distance between two canonical

hyperplanes can be written 4%, —X,)W/|w|, yielding to a marginl/|w,.

Hence, finding the maximum margin classifier problean be formulated as
(Campbell & Ying, 2011):
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. 1
Minimize §||w||§
st (20)
y(wx +b) =21 Oi

Generally classes are not perfectly separableefibrer there exists no separating
hyperplane and maximum margin classifier. In trase; a generalization of the
maximal margin classifier, namely support vectasslfier, is used. Different than
the maximum margin classifier, support vector d¢fass allow some of the
observations be on the wrong side of the margirenewrong side of the
hyperplane (James et al., 2013). Having this ptgpsupport vector classifiers are
sometimes called as soft classifiers. Those vethatslie in the margin or wrong
side of the separating hyperplane are called stieectors and determine support
vector classifier. In order to allow wrong locatelolservations, an error norm and
slack variable are utilized. Consequently, detemmgithe support vector classifier
turns out to be finding optimal solution to theldaing optimization problem:

Minimize %||W||§ + sz:q
i=1
st (11)

y.(w.x +b)=1-¢ 0Oi
=20 Oi

where ¢ is the slack variable ard is the tuning parameter that defines the trade-
off between margin maximization and error minimiazat (Doumpos &
Zopounidis, 2011). By using Lagrange multiplietss primal problem in (10) can

be rewritten as;
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l m m m
Ly =2l + Ca =2 a [ w(wx + B-1+£] -3 44
i=1 i=1 oy

a 20, 420 [

(12)

which is minimized with respect to, b and & . Taking derivative ofL, with

respect to these variables we get;

W= ayx (13)
0=3ay, (14)
0, =C-4 (15)

Substituting (13) - (15) into (12), we get Lagraamg{Wolfe) dual;

> S aayy (x x) (16)

i=1

LZm:aI

i=1

I\Jll—‘
M

1
[y

which is maximized subject toOa; <C and ) ay, =0.
i=1

Like maximum margin classifiers, support vector seliers build linear
boundaries. However, data may not be separable iln#ar boundaries as
illustrated in Campbell & Ying (2011).
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Figure 4. Linearly inseparable data (Source: Camhgbging (2011)).

In order to generalize the linearly separable cadesrnel trick is used to generate

nonlinear boundaries by mapping data points taghdridimension, called feature
space. This is achieved by applying a transformatiax, — ®(x).®(x) through
the mapping function®(.). Mapping function is defined with a kernel,

K(%,%)=®(x)®P(x). The main idea is that, with the transformed datéhe

feature space, linear boundaries can be develdpsdwiill efficiently separate

classes. Most commonly used kernels are (Hastk,2009);

- d"-Degree polynomial:  K(x,x)= (1+<>,<, >§>)d (17)
. Radial basis: K(x,x)=d "D (18)
* Neural Network: K(x,%)= tanh(lg<>|< ,>§>+ k) (29)
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As stated previously, SVMs are first developedtfa binary classification case.
Among many techniques to extend SVMs to multi-claase, two techniques

prevail, namely,one-versus-oneand one-versus-all One-versus-oneapproach
. (K :
partitions the problem int 5 SVM problems K is the number of classes),

where each problem considers two pair of classagh® other handyne-versus-
all approach trains SVMs to separ#éteclasses from the remainiri$1 classes.
Then class assignments are done accordingly. Railete information regarding

extending SVMs to multi-class case, refer to Hastial. (2009).

2.2.2 Random Forests

Even though the idea of RFs is based on collestioek of several researchers, it
was first Breiman (2001) to introduce principlesR¥i. RFs are decision tree based
ensemble methods for classification and regressitnis, RFs utilize multiple

decision trees that train on the data and prediégtionade based on the predictions

of individual trees.

Tree-based methods utilize a simple idea wherattnéute domain is partitioned
into rectangles and then a separate model is fiegoh of them. When the
dependent variable is nominal, a class label igasd to each of these rectangles.
Trees dealing with nominal dependent variablescatied classification trees. In
training the tree, recursive binary partitions @arglemented, hence, only one
independent variable is considered for partitioeath step. For instance, assume

that we consider variablX , for partition and we decide to split &, =t, . Then
the attribute domain is partitioned into two subiods as X, <t, and X, >t,

(Hastie et al., 2009). The idea of recursive gartihg is illustrated in Figure 5. At
the training phase, observations fall into propanbhes in the tree based on how
they satisfy the conditions of splits. When thegate the terminal or leaf nodes,

they are assigned the labels of these nodes agtwead. In tree-based methods
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the training phase is implemented so that percent@drue predicted instances is
maximized. On the other hand, a regularizatiorise atilized in order to improve

generalization ability of the model.

X1 <t
f
X2 < to X1 < t3
Xo <ty
Ri R Rs (W
Ry R5

Figure 5. Recursive partitioning in tree-based mésh(Source: Hastie et al.
(2009)).

Decision trees have been very popular among maclgaming community,

however, when grown very deep, they tend to ovtréttraining data. Hence, they
are low-bias and high variance procedures (Hasta. £2009). RFs use bagging
(short for bootstrap aggregating) idea of Breima896) in order to reduce the
variance at the expense of a small increase in Biagging aims at reducing the
variance and increasing the prediction accuracyaking many samples of same
size from the original training set with replacemdbootstrapping), fitting

separate decision tree§, | to each training set and averaging the predistidm

addition to bagging, RFs use a smart techniquerdercto decorrelate generated
trees. When growing bagged decision trees, ongndam subset ah predictor
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variables out of all predictorg) are considered for splitting each time we split.

Usually size of the randomly selected random ptedicis \/B (Hastie et al.,

2009). The reason for this modification to baggesed is to prevent strong
predictors to dominate splitting phase, consequesgulting similar trees. This is

the major difference between bagged trees andrRérder to make prediction for
an instance, each tree makes its own prediction for the insta(rib(x)) and then
majority vote Csp(x)) is output as the prediction of the ensemble. &s@ode of

the RF algorithm is presented in Figure 6 (Hadti&.e 2009).

1. forb=1toBdo
2. draw a bootstrap sampeof sizeN from the training data.

3. grow a RF tred, for the bootstrapped data, by recursively repgatire
following steps for each terminal node of the treetjl the minimum node

sizenminis reached.

4. selecimvariables at random from tlpevariables
5. pick the best variable/split-point among the
6. split the node into two daughter nodes.

7. endfor

8.

output the ensemble of tref§) "
9. to make a prediction at a new point

10 et G, (X be the class prediction of th8 RF tree. Then;

CAZFE;F(X) = majority vote{(fb ( x)}

B
1

Figure 6. Pseudo-code of the RF algorithm.
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Similar to decision trees, RFs are very capabldarfdling interactions among
predictors. Additionally, RFs are very robust toeditting (Hastie et al., 2009).

This is due to its ensemble structure, i.e., avagagredictions of many grown
bagged trees. This property becomes very impowaen size of the training data
is small because classifiers usually suffer frorarbiting in the presence of small
data sets. Another valuable property of RFs is, thiatilar to other decision tree
based learning methods, RFs handle qualitativeigioed very easily, without

creating dummy variables. On the other hand, RFsad@rovide models that are
as interpretable as those built with decision tesese they utilize multiple trees in

the learning phase and predictions are made basednsensus.

All nonparametric classification techniques mengidnn this section offer strong
classifiers. Nonetheless, it is not easy to deteemvhich classification algorithm

is the best. There are several studies regardisgs$ue, comparing performance
of classifiers under different classifying tasksniLet al., 2000; Duan & Keerthi,

2005; Kotsiantis, 2007; Madjarov et al., 2012). Koer, as Kotsiantis (2007) and
James et al. (2013) state, there is no best digoribat outperforms others in all
circumstances. For instance, if there exists a ¢exnipteraction structure among
predictors, then a decision tree based approaehRik may outperform others.
Conversely, if there is no interaction among prenigc and classes can be
separated with linear boundaries, another class{fier instance SVM) may

perform better than RF.

2.2.3 Ordinal Classification Problem

As stated previously, the main difference betwekassification and sorting (or
ordinal classification) problems is that, in thesfi case classes are defined
nominally while in the latter case there is an ordenong classes. All
aforementioned SL techniques are developed to asldneminal classification

problems. Even though there are many applicatidmst tmploy nominal
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classification techniques for ordinal classificatiproblems, special structure of
the ordinal classification problems contain valeaisiformation that can expedite

the learning process.

In their paper, Hihn and Hullermeier (2009) pose dluestion Is the ordinal

class structure useful in classifier learning? and aim to determine if it is
possible to exploit the order information of thelgiem. In order to investigate this
empirically, they apply ordinal classification textjues to same ordinal problem
sets in two different settings. In the first segtinearner is applied to the true
ordinal problem. In the second setting learnerpigliad to the distorted problem
where labels are given to groups in an arbitrammpéation. At the end of the

experimentation they come up with two results:

« Ordinal classification techniques do exploit thdioal structure of the data
» Complicated learners producing highly flexible d&mn boundaries benefit

less than the learners producing less flexible Hatias.

As a consequence, prediction performance increiidearners that are able to

exploit ordinal structure of the data are usedifalinal classification problems.

SL practitioners studied on ordinal classificatimmblems in an aim to develop
nonparametric approaches. For instance, Chu andh{2007) applied support
vector approach to ordinal regression problems gainozing multiple thresholds
to define parallel discriminant hyperplanes for tindinal scales. Pinto da Costa et
al. (2008) have proposed a new approach where rpmsgaobabilities of the
predictions are enforced to follow a unimodal dwue. They state that since there
is an ordinal relationship among classes, the posterobabilities should decrease
monotonically on both sides of the class havingltighest posterior probability.
In order to achieve this, they impose unimodalitytwo ways. In the parametric
approach, posterior probabilities are enforced atov a given parametric
distribution. In the nonparametric approach, unialibg is imposed by penalizing
non-unimodal distributions using error measureseffé¢aan and Boullart (2009)
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proposed using an ensemble of SVMs to tackle wittinal classification
problems. They decompose problem intb subproblems (where problem has
ordinal classes). Hence;1 binary SVMs are trained for each subproblem.yThe
attach weights to each of thetraining samples where weight of each sample
differs for each binary classifier based on absollifference between their rank
(ordinal class) and predicted rank. All these afmrtioned techniques require
modification to the existing classification algbms. To our knowledge, there
exists no comprehensive study in the literature manng these ordinal
classification techniques with their nominal coupgets under different
circumstances, such as data size, type or dimensmwvever, our experience with
some of these ordinal classification algorithmsveta that they did not perform
well with small data. Their nominal classificatieounterparts outperform these
techniques when they are trained on a small dataCsmsequently, we think that

there are still issues in ordinal classificatioaaato be developed.

In order to tackle with ordinal classification plelms by using standard
classification algorithms, Frank and Hall (2001pposed a simple approach. The
main advantage of their approach is that, any blssification algorithm can be
applied without making any modification. First dif, #he problem having ordinal
classes is decomposed intd subproblems. Hence, each of these subproblems
turns out to be binary classification problems.ufgy7 illustrates transformation of

a 4 class ordinal classification problem into 3adbyn classification problems
(Frank & Hall, 2001).
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Figure 7. Transforming a 4-class ordinal classifa@aproblem into 3 binary
classification problems (Source: Frank & Hall (2p01

Each derived data set is trained with a base bileamner. Hence, we obtaral
binary learners. In order to make predictions orse@m instances, posterior

probabilitiesP(.) are calculated by usingl binary learners as follows:

P(V) =1-P(y> V)
PM)=Ry>V,)-Ry>V 1<kr (20)
P(V)=1-P(y>V,)

whereV, corresponds to thid' ordered class. As a consequence, the class having

the maximum posterior probability is assigned &tance. Empirical results show
that the proposed technique outperforms standaskification algorithms when

applied to ordinal classification problems. Anotfieding is that, as the number
of classes increases, performance of the propggedach increases with respect
to standard classification algorithms.
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2.3 Conjoint Analysis

Similar to the focus of this thesis and differemart the applications proposed in
MCDA, Conjoint Analysis considers preference maaglas a learning process,
thereby seeks for methodologies that implemenepeece modeling process in an
evolutionary way. In this respect, this thesis gtisdcomparable to the approaches
proposed in Conjoint Analysis (CA), rather than stoproposed in MCDA.
Additionally, our proposed approach addresses tloblgmatic and unsolved
issues of CA, which we will mention, shortly. This the reason why we

particularly go over CA in this section.

CA refers to set of decomposition methods that &mestimate preference
structure of the customers based on the joint &ffet levels of two or more
attributes (Rao, 2014). CA usually approaches peafse structure modeling as a
function estimation problem and uses referenceuetians of alternatives (or
profiles as in CA parlance) as done in DA. By deposing holistic preferences
to partial contributions of product features (padrths), or in other words how
much each feature contributes to the overall pesfe®, are quantitatively
computed. Once part-worths are determined, not preéjerences of the existing

products but also preferences of future ones castwmated.

There are mainly four types of CA methods (Rao430These are:

* The traditional method

» Choice-Based CA (CBCA)
* Adaptive CA (ACA)

» Self-explicated CA

Among aforementioned methods the first three acemgosition methods, which
basically utilize disaggregation phenomenon of MCDAus, these methods elicit

part-worths based on holistic judgements made bylXN or customer. The last
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one, on the other hand, is a compositional methdtilizing aggregation
phenomenon of MCDA, this method estimates prefergnsased on DM or

customer statements regarding importance or schsributes and their levels.

In the traditional method, preferences are demarided the customers in the
ratio scale. In order to collect preference infatiorg usually a design is
constructed that includes all possible alternatiié®se alternatives are called full
profiles. Based on the assumed functional model@eterence values obtained
from the customer, regression-like techniques aeduo build the preference
model. The main drawback of this approach is tiratthe presence of many
attributes, a full profile (full factorial) desighecomes very large. In order to
overcome this issue, smaller designs (such asidreait factorial design) are
utilized. Another disadvantage of this method iatthan underlying functional

form representing preference structure of the costas to be defined a priori.

In the CBCA, the preference information is obtaimederms of stated choices,
rather than ratings of alternatives. Hence, théotner states a choice among 4 or
5 alternatives. The main advantage of this apprasdts ability to mimic actual
marketplace choices that people make (Rao, 2044)BICA, usually Multinomial
Logit Model (MNL) is used to build a preference nebdSimilarly, CBCA suffers

from large number of attributes.

In general, models estimated in traditional methnd CBCA are parametric ones,
therefore, as the number of attributes increase,pdrameters to be estimated
increase as well. Consequently, a full profile (a&awkn a partial profile) design
gets very large which is impractical for custome@hswer. In order to deal with
curse of dimensionality, ACA methods are develodda main idea of ACA is to
ask as less guestions as possible while reducicgrtainty for the parameter
estimates. In order to achieve this, methodologptdely selects a new question

based on previously obtained answers. Thus, ACAsaim get as much
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information as possible while asking as less qaestas possible. This approach is
particularly beneficial for on-line questionnaire®n-line questionnaires are
characterized by respondents that can leave thetigoeaire at any time.
Therefore, asking questions efficiently is of utitamportance in on-line

environment.

There are many studies in the literature dealinth V@A, particularly ACA. In
polyhedral methods, for instance, a polyhedron gh&irmed by feasible values of
part-worths is considered. Hence, questions aeetssl to reduce this polyhedron
as fast as possible. Toubia et al. (2003) propaseethod that utilizes polyhedral
approach where questions are selected to maximadlyce the volume of this
polyhedron and minimize the length of its longedsaThen, a technique called
analytic central estimation is used to find valeéshe middle-most (values that
are closest to the center of the polyhedron) patths. Based on the similar idea,
a probabilistic version of this study is proposead, well (Toubia et al., 2007).
Abernethy et al. (2008) proposed a robust ACA aagmowhere response errors
are considered in order to prevent future questfioms being influenced by the
previous erroneous answers. Cui and Curry (2008) 8/M as the base learner
in CA and compared with other commonly used paremetethods. Evgeniou et
al., (2005) proposed using SVM in developing a pebtiral method for preference
modeling. Their approach is similar to that of @uid Curry (2005) in that their
model is based on formulating the problem of pexiee modeling as an
optimization problem where an appropriate cost fioncis minimized without
assuming a particular probabilistic model. The Iagi studies that utilize SVM
are not adaptive methods.

As Rao (2014) states, ACA methods cannot modetant®ns among attributes,
which is generally criticized. Traditional methoaisd CBCA handle interactions,
however, proper underlying functional forms musteérmined, which is usually

unknown. Additionally, they strongly suffer from rse of dimensionality. This
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issue is raised by Teichert and Shehu (2013), wtierg remark that model-free
approaches should be developed in ACA in ordertadamodel misspecifications

and estimation biases.

2.4 Active Learning

Being a special case of semi-supervised learnihgaifs interactively querying
the DM (or Oracle as in AL parlance) to learn abayhenomenon in an efficient
way. “Passive” learning, on the other hand, ledrosn a training data that is
collected in an unstructured way. Based on thaitrgidata obtained thus far, AL
aims to minimize uncertainty regarding the datapcee develops a “line of
inquiry” in an evolutionary way (Settles, 2012).r@equently, main objective of
AL is to obtain as much information as possiblegogrying as less questions as
possible. In this respect, AL can be consideredMasequivalent of ACA and
optimal experimental designs. However, AL is supetio ACA and optimal
experimental designs due to the fact that AL carnutilezed with nonparametric
learners, hence, there is no need to assume aduaictorm for the phenomenon
of interest. Having this property, it is a perfedtoice for learning complex

structures in an evolutionary and effective way.

The main motivation behind AL is that, there is algu cheap and abundant
unlabeled data available, whereas, labeled datac&sce and obtaining is
expensive. Expensiveness may denote human effod,dr money. Whatever the
reason is, in the absence of plenty of labeled, datarmation embedded in the
unlabeled data is exploited to boost supervisechieg process.

AL strategies can be applied to both regressiomticoous response) and
classification problems. However, classificatioonlgems are widely studied in the
literature. This is due to the fact that, classifien problem draws more attention
in the ML and Al fields.
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In AL, there are mainly three different scenariosvays in which the learner may
ask queries (Settles, 2012):

* Query synthesis.In this scenario, any unlabeled data in the datacan be
gueried. The only requirement regarding this sdena that the learner
knows the feature (attribute) domain.

» Stream-based selective samplingn this scenario, the learner samples an
unlabeled instance from the input distribution, koer, decides whether or
not to query it afterwards. In this case, drawingialabeled instance from the
input distribution is assumed to be free. Succdsthie scenario is closely
related to form of the input distribution. If theput distribution is uniform,
stream-based sampling is no different than theygsymthesis. Conversely, if
the input distribution is not uniform, then sampliegtances will contain

information about the structure of the input daation.

* Pool-based sampling.In this scenario, candidate instances to be quierie
constitute a closed set, called the pool. All ins&s in the pool are evaluated
based on a utility measure. The instance providimg most information
regarding the measure is selected as the next.query

There are several AL strategies proposed in tleealiire. Most commonly used
ones are (Settles, 2012):

* Uncertainty sampling

* Query by disagreement

* Query by committee

» Expected error reduction

» Variance reduction

* Density weighted methods
* Cluster based AL
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Query By Disagreement (QBD) approach utilizes tiheai that there might be
several different learners that model the datasttree way as supervised (in other
words, predicting reference set accurately). Thhenomenon is similar to the
alternative optimal solutions (alternative utilitynctions) problem encountered in
UTADIS and many other MCDA approaches where algoriends up with many
different utility functions that sort the referenset the same way as it is done by
the DM. QBD employs all these alternative learrfersselecting a new question
and queries the one for which the learner set th&sg most. The main
disadvantage of this approach is that it consid#ralternative (optimal) learners,

which is computationally inefficient.

Expected Error Reduction (EER) aims for choosinguastion that will provide

the most gain in terms of reducing future errore Tdea is that, if we are able to
identify all the possible outcomes and correspampgirobabilities, then we can
calculate a weighted sum for expected future effiamrgach action (Settles, 2012).
This approach requires probabilities for each DMvear to a question and the
probabilities of making error on other instanceseothe answer of a particular
question is known. In general, EER uses model'sepims distribution to estimate
these unknown probabilities. This technique isazéd for being computationally

expensive (Settles, 2012).

Similar to EER approach, Variance Reduction (VRZis&at querying an instance
that will reduce the output variance over the uelad instances most. VR
corresponds to optimal experimental design of stteti and employs Fisher
information to calculate output variances. In ortieemploy Fisher information, a
parametric model assumption is made and for a muaehgK parametersKxK

covariance matrix is computed. In general, thisraggh is used when parametric

learners are utilized.
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Density Weighted Methods (DWM) and Cluster based (8IAL) exploit input
distribution of unlabeled instances to expedite tharning process. DWM
considers not only information content of a cantidguestion but also how much
it represents other unlabeled instances. CAL, enother hand, clusters the data
and queries those instances that represent otheifsei same cluster most (i.e.
cluster centroid). These approaches assume thahave a set of unlabeled

instances that constitute an input distribution.

Refer to Settles (2012) for extensive definitions tbese strategies. In the
subsequent subsections, we will provide detailddrimation about Uncertainty
Sampling (US) and Query By Committee (QBC), which wmtilize in this study.

We will explain in detail why we prefer these tvaxhniques in Chapter 3.

2.4.1 Uncertainty Sampling

Learners for the classification task generally detee decision boundaries which
separate different classes. In general, learnersmast confident about the class
information of instances that are away from thesasion boundaries, while least
confident about labels of instances that are dioskese decision boundaries. This
is the main idea behind US; querying instances #ra&t close to decision

boundaries provides the most information gain. leetearner should concentrate

on these kinds of instances.

How US works is illustrated in Figure 8 (Settle§12). Assume a two-class data
is scattered on the attribute domain as showngurgi8 (a). Figure 8 (b) shows
label information of a reference set that is carmdéd randomly. Decision

boundary determined by the learner is indicatedh wie dotted line. In Figure 8

(c), we see labels of another reference set of samee constructed by using US.
In this case, we see that learner provides a bdteirsion boundary than the
previous case since US concentrates its queryiog @here uncertainty is most.
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(c) Uncertainty sampling.

Figure 8. Example of US strategy (Adapted from|8git2012)).

The most important component of this querying apphois to measure the
uncertainty of candidate instances. As we reckgsification algorithms compute
posterior (class membership) probabiliti®§y | ) for each possible outcome
(class)i in order to make predictions for an instamc&hen the class label having
the biggest posterior probability is stated asptegliction. These measures utilize
posterior probabilities to quantify uncertainty.€fé are mainly three measures of

uncertainty used in the literature (Settles, 2012):
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* Least confident. This measure considers minimum (least confiderit) o

highest posterior probabilities of candidate instam

X.c =argmink, (¥ |x)

‘ (21)
=zargmaxtPR, § [x

where §=argmaxP, (y |x is the prediction with the highest posterior
y

probability under the moded . The rationale for this measure is that, among
the predictions we make for a set of candidateamtsts, we are least
confident about the instance whose most likely llageis the least likely.
Hence, querying this instance provides the mosirmétion gain. The main
disadvantage of this measure is that it does ri@ tato account posterior

probabilities of other classes.

* Margin. This measure recommends querying the instance,

X, =argmin B, (4 [x)- B (% %

" (22)
=argma{P, §, x> B )

where y, and y, are the first and second highest posterior prditiabi of

the model. Margin measure considers that, if thegmaetween the first and
second highest posterior probabilities is big, tkiea classifier is confident
about its prediction. However, if the margin is dirthen the classifier is not
much confident about differentiating these two slels. Hence, querying

the instance having the minimum margin providesniost information gain.

* Entropy. This measure recommends querying the instance,
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X, =argmaxH, ¥ [x)

23
=argmax- Y P, ¢ [x).log} & |x (23)
X y

wherey ranges over all possible labelingsxoEntropy H(.)) corresponds to
a variable’s average information content (SettB€4,2). In ML practices, it
is considered as an impurity measure. Thereby, rttéasure recommends

guerying an instance having the maximum informationtent.

2.4.2 Query By Committee

QBC approach constructs a committee of learneis aasemble learning. As we
have stated previously, there is no best algorithat outperforms others in all
circumstances. Additionally, overfitting phenomenignencountered frequently,
which we struggle to avoid with regularization. $hefacts are the main
motivation behind ensemble learning, thus, ensen#ening aims to take
advantage of more than one learner so that predigerformance increases. In
ensemble learning, several learners are traineth@same reference data set. In
the prediction phase, predictions are made baseth@nmmajority vote. QBC
exploits this idea and measures disagreement ohutbee members with respect
to candidate instances. To illustrate the ideasiciam a binary classification case
where data points (“-” for Class 1, “+” for Clas$ &@re scattered as shown in
Figure 9. Assume that we partition the data asitrg and test sets and train 4
classifiers (rectangles) on the same trainingAlsb assume that these classifiers
predict instances lying in the rectangles as Claasd outside as Class 1. In this
case, there is a consensus among classifiers regdite instances lying in the
dark gray zone since all classifiers predict thesnCdass 2. Now consider the
instance where we designate with a dark gray cifcko of the classifiers predict
this instance as Class 1, while other two predist Glass 2. Therefore,

disagreement of classifiers regarding this instas&ggnificant because two of the
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classifiers disagree with other two. Hence, queryihis instance will provide
more information gain than those lying on the grage.
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Figure 9. Example of QBC strategy.

There are different methods to generate membettseofommittee. One option is
to use different type of classifiers, such as S\, or NN. On the other hand,
several other alternatives are proposed in theatitee: varying case weights, data
values, guidance parameters, variable subsetsrttigns of the input space (Seni
& Elder, 2010). One straightforward technique fangrating a committee, as
done in RF learning, is using bagging (Breiman,8)98agging aims at reducing
the variance and increasing the prediction accukgcyaking many samples of
same size from the original training set with replaent (bootstrapping), fitting
separate but same type of learners to each traisgtgand averaging the
predictions. Querying strategy using bagging atbari is called Query By
Bagging (QBB) and first introduced by Abe and Mauka (1998). One of the
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advantages of QBB algorithm is that, it employs tbtvapping, therefore it is
robust to small sample sizes, unlike boosting dlgor. Boosting is a ML
approach where performance of the weak learnerbowsted by repeatedly
resampling on the training data (Freund & Schafdif97). Each time resampling
is performed, data points are weighted in ordefottus on those points where
classifiers perform poorly. Boosting algorithm ubpdails in the presence of
small data sets because when trained on small dagsifiers usually predict the
training data accurately, hence re-weighting pltasmot be performed. There are

mainly two disagreement measures used in QBB €Sef012):

« Vote entropy. This measure recommends querying the instance;

. t te( )
)g/E:argmax—zvo Tcély L .Iogvolgé |y)( (24)
X y

where vote.(y »:Z](he(x):)} is the number of votes that the label
eaoc

receives foix among the learners in committ€eThis measure is committee
counterpart of entropy measure. Instead of usirggepior probabilities, vote

entropy considers votes of every single committeentrer for labels.

*  Kullback-Leibler (KL) Divergence. KL Divergence (or information gain) is
the distance between two probability distributigimsgeneral, true and target
distributions) (Kullback & Leibler, 1951). In QBBoatext, KL Divergence
measures disagreement as the average divergeeeelbtommittee member
¢'s prediction from that of the consensGsand recommends querying the

instance:

< 1 Ryl
Xy = argxmaxl?lzz P, |x).|ogPCT|X) (25)

goc y
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In other words, rather than considering mean piostg@robabilities of the
committee, KL Divergence measures how much eachnutise member
diverge from the consensus. Even though mean parspgobabilities indicate
that committee is confident about its predictionthwregard to particular
instance, KL Divergence measure might recommendyqeeit if committee

members’ posterior probabilities vary wildly frofmetconsensus.

QBC can be used in the continuous case as welhitncase, variance of the

predictions of the committee members can be usé#teadisagreement measure.
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CHAPTER 3

PROPOSED APPROACH

3.1 Motivation

Aiming at explicitly eliciting preferential systeof the DM, preference modeling
is drawing a growing interest recently due to thet that it became an imperative
step in many areas. Patrticularly if we are inte@$& making predictions, we need
robust preference models that represent preferstmaeture of the DM. As we

pointed out previously, making predictions for tlmeference of some

alternative/solution is particularly important inarketing and manufacturing
fields.

In many preference modeling problems where multipteracting criteria exist,
the DM needs to express his/her preferences irottimal scale. In these cases,
typically no information is available about the engiing preference structure, and
only a few data can be collected about the preteemf the DM. Additionally,
data collection process (or generating referentanaltives) is usually costly in
terms of time or money. In all these cases, prataerenodeling turns out to be a
learning process where as much information as pless required by asking as
less preference questions as possible.
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Preference modeling gets more complicated in tesegurce of interacting criteria.
However, interaction phenomonea is encountere@ goinmonly, even in simpler
cases. Even though there is a general consent amegegrchers regarding the
existence of interaction among criteria in reat Idecision problems, it is often
ignored in applications. Most of the preference elng strategies assume
preferential independence among criteria in oradermake modeling process

relatively easygoing.

Another problematic issue with most of the propo84GDA approaches that
model preference structure implicitly or explicithg that, they assume an
underlying functional form that is believed to comh to DM preference structure.
Additionally, most of these functional forms are motonous. Even though it is
commonly accepted in the literature that rationamhn preferences present
monotonically increasing or decreasing structurberd are examples of
nonmonotonic preferences in real life. Regarding iksue, let us look at a
nonmonotonic utility function example given by Kegnand Raiffa (1993). This
example considers the blood sugar count of a gatiHmere is a “normal” or
preferred blood sugar count that is desired. A sagant below the normal figure
is not preferred, however, a sugar count that ghdr than the normal is more
dangerous, hence the least preferred. Such a nararoa utility function is
represented in Figure 10 (Keeney & Raiffa, 1993).
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Figure 10. A nonmonotonic utility function (Sourd¢éeeney & Raiffa (1993)).

Parametric approaches usually fail to model intevas, especially if a wrong
functional form is assumed. A wrong functional fopnoduces estimation bias and
reduces the predictive performance of the modethigrespect, a straightforward
approach might seem to be partitioning the critertimmain where preference
shows somewhat monotonic behavior and then moeéétm@nce corresponding to
each of these domains with a monotonic functionweéicer, it is not generally that
simple to partition criteria domain where preferis monotonous, particularly in
higher dimensions and in the presence of multi-wagractions. Consider a
simple case, where we have two interacting critend preference is expressed in
the ratio scale. Assume that preference surfacasigllustrated in Figure 11.
Additionally, contour plot of this preference surais provided in Figure 12. As
we see from Figure 11, the preference is nonmomotd@ontour plot of the
preference structure present a complex structuréhercriteria domain which is

hard to estimate.

These two figures reveal that even for the simptase where preference depends
on two interacting criteria, determining boundareésthe criteria domain where

preference shows monotonic behavior is a hard thBkeover, we probably
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would have to ask many questions just to deterriase boundaries. Restating, it
becomes a harder task in the presence of morettv@mteracting criteria. This
fact leads us to search for a better methodologyotider to deal with

nonmonotonocity and interacting criteria.
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Figure 11. Preference surface of a two-criterioledunction.
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Figure 12. Contour plot of the preference surfddde two-criterion value
function shown in Figure 11.
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The main objective of preference modeling is tddpredictive models that will
be used to make predictions on unseen instancedelslwith good generalization
ability are expected to perform well on unseenansés. Not receiving enough
interest in MCDA, generalization is one of the k&gues in SL (particularly in Al)
and CA. Apart from prediction, developed models calso be used for
optimization. In a quality improvement problem, fimstance, optimal process
parameter levels are to be selected so that qudlayproduct, which is defined by
the joint effects of all quality characteristics,aptimized. Quality characteristics
usually interact with each other, therefore, modeds are capable of dealing with

interacting criteria may be required.

Restating, preference modeling is a learning psodést should be handled
evolutionary. Almost all of the MCDA approaches abing preference
information in the ordinal scale aim at sortingited number of alternatives of the
problem under consideration with maximum accurddey take a subset of the
alternatives or use a separate reference setapaehs to be available for getting
preference information. Additionally, instancestlre initial reference set are not
collected in a structured and evolutionary waylsat subsequent learning process
is expedited. Hence, the preference model that eigeldped based on the
preference information obtained with respect t@nm&ice alternatives is used to
sort the rest. In this respect, their generalimagbility is limited. Even though
developed models represent preference structurtheofDM, these techniques
cannot be considered as preference modeling appFsadAdditionally, they
cannot model nonmonotonic preference structuresngasomplex interactions
among criteria. ACA approaches, on the other haadsider preference modeling
as a learning process, where preference informadiobtained in an evolutionary
way and questions are structured in order to ob&snmuch information as
possible by asking as less questions as possibleetkr, Rao (2014) states, ACA
methods are model dependent and cannot model ¢titera among attributes.

Additionally, they strongly suffer from curse ofhansionality.
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Consequently, all these aforementioned discussieveal that, there is a need for
new preference modeling methodologies that apprtiaehproblem as a learning
process, are able to model nonmonotonic structua®sg complex interactions

successfully and have good predictive performantéewraining on small data.

3.2 Proposed Approach

In this section, we provide detailed informatioroabour approach for modeling
DM preference structure. In this study, we consttiercase where DM expresses
her/his preferences in the ordinal scale. For thk tis task is a sorting or ordinal
classification task after all, where DM assignsfgmence ordered class labels to
alternatives of profiles, hence, preference stnacti the DM is represented by the
trained classifier. Using the classifier, one caaken predictions on unseen
instances. In order to illustrate the idea, corrsttie two-criteria nonmonotonic
value function example presented in Section 3.1.useassume that preference of
the DM conforms to an unknown continuous functioioam as shown in Figure
13. For a sorting problem, there are some threstaldes, which are explicitly
unknown to the DM her(him)self, that separate pesfee values into classes,
thus, creating an ordinal relationship among th&hese hypothetical threshold

values are presented in Figure 13 for a three dabral classification problem.

In this setting, the main objective of a trainedssifier is to find projections of
these threshold values on the criteria domain, kwlaie implied by the DM via
answers to the alternatives presented. Without fmowledge about underlying
functional form of the preference and thresholdigalseparating classes, classifier
constructs boundaries on the criteria domain teparate domain into classes as
shown in Figure 14. At the end of the training hasined classifier can be used
as a predictive model and an optimization aideesih@designates regions on the

criteria domain where preference is most.
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Figure 13. Preference surface of a two-criteriolmedunction for a three-class
ordinal classification problem.
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preference ordered classes by the trained classifie

61



In our approach we assume that we do not have ewops knowledge about
preference structure of the DM. Moreover, we haweinformation about how
criteria values of the potential alternatives aistrdbuted (input distribution). AL
techniques, on the other hand, are developed toydbll on a data set that is
present. In other words, we have abundant unlabetdnces and small number
of labeled instances obtained from some sourcecaitdidate data points that can
be queried constitute a closed data set. Hencecawe talk about an input
distribution where data comes from. In this respédaénsity Weighted Methods”
and “Cluster Based AL” techniques aim to explo# #gtructure of the whole data
set. This is the reason why AL practitioners pugcsal emphasis on how much a
candidate data point represents remaining unlateidés points in the data set. As
a consequence, the data set that we need to peedilEssify is present (unlabeled
instances) and we do not want to spend our quegurees with those that do not
represent other points in the whole data set @sjli In our case where we model
DM preferences, however, we cannot talk about antidistribution since we do
not have an unlabeled data set. This is partigulalid in the marketing field. In
marketing, the main objective is to model customeaferences with respect to
presented products. We tailor attributes of theradtive products in order to
estimate customer preferences. Therefore, we airmddel preference on the
whole attribute domain (design domain) where wardds perform equally good
everywhere. This requirement makes our problem snsballenging one with
respect to classical AL practices. On the otherdhave provide an extension to
our algorithm for special cases where we can ekpiormation provided by the
unlabeled data set.

We employ SVM and RF as the base learners in tparitim. From variety of
learners, we prefer SVM and RF because they arengntbe strongest
nonparametric classifiers proposed in the litemtdrdditionally, our experience
showed that most of the nonparametric classifierfopm bad or fail with small

data sets. Conversely, SVM and RF model small sletsavery successfully. RF is
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very robust to overfitting (Hastie et al., 2009)hi§ is due to its ensemble
structure, i.e., averaging predictions of many grdwagged trees. This property
becomes very important when size of the training d&asmall because classifiers
usually suffer from overfitting in the presencesafall data sets. Another valuable
property of RF is that, similar to other decisioeet based learning methods, RF

handles qualitative predictors very easily, withogating dummy variables.

SVM and RF are nominal classifiers, meaning, they @eveloped to handle
classes that do not have order relation. Howevef, @deferences are ordinal in
nature, hence, there exists additional informatiorbe exploited, as stated by
Huhn and Hullermeier (2009). Even though theresaneeral learners proposed in
the literature for ordinal classification, to oumdwledge, there exists no
comprehensive study in the literature comparingseéherdinal classification
techniques with their nominal counterparts undéent circumstances, such as
data size, type or dimension. However, our expedemith some of these ordinal
classification algorithms showed that they did petform well with small data.
Their nominal classification counterparts outparfahese techniques when they
are trained on a small data set. Due to these measee apply Frank and Hall
(2001) approach to SVM and RF for multiclass (mitv@n two classes) cases in
the study. The main advantage of Frank and HabD12@pproach is that, it can be
used with any standard classification algorithmhaitt modifying it. Additionally,
our experiments prove that when used with FrankHait (2001) approach, SVM
and RF outperform their standard nominal countéspiéirthe training data have

ordinal classes.

Initially, we do not have any reference alternathesving class information at
hand. First of all, we ask DM how many ordinal sk (s)he wants to consider or
determine the number of classes based on the pmobfeder consideration. In
order to generate an initial reference set to statth, we perform a stratified
random sampling where we ask DM to show random elesrfrom each class.
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Size of the reference set depends on willingnesteDM and characteristic of
the process of interest (i.e., easiness of progigixamples, number of classes and
attributes). However, we generally demand a sneddirence set since we aim to
ask small number of questions to the DM and theretaysume our questions
thriftily. After constituting our reference set, vggart running our algorithm. Our
algorithm asks one question at a time and tailoesrtew question based on the
answers obtained thus far (that is the currentreafee set comprising of initial
reference set and alternatives asked to that pdmtprder to determine next
guestion to be asked, we utilize AL techniques iamalement Pool-Based US and
Pool-Based QBC with different uncertainty measuresnely, Least Confident,
Margin and Entropy. In applying QBC, we use QBB raggh proposed by Abe
and Mamitsuka (1998).

Among 3 different querying scenarios we prefer gspool-based sampling.
Stream-based selective sampling requires a set ntdbeled instances that
constitute the input distribution. As stated premly, we cannot talk about an
input distribution in preference modeling. In quegnthesis, on the other hand,
any unlabeled data point from the attribute dontain be queried. This technique
is effective if we know additional information aliahe attribute domain, so that
asking questions from some particular region botbstdearning process. Thereby,
this scenario is not applicable to our problem. €aguently, pool-based sampling
is the best alternative because we would like tdopma equally good everywhere
on the attribute domain in terms of prediction i&pil By using pool-based

sampling, we draw random samples from the overathan in order to form

candidate questions (alternative profiles) pool.ofignthese profiles, we query the

one that will provide the most information gain.

In Chapter 2, we mentioned several different quegrystrategies used in AL.
Among these, DWM and CAL strategies exploit infotima provided by the input

distribution of unlabeled instances. As we emplekiareviously, we do not have

64



an input distribution under consideration in ouplgem setting. VR strategy
employs Fisher information in order to compute atitgariances. This approach is
applicable when we use parametric classifiers siRisher information needs
design matrix expanded to the form of the parametadel that we assume. QBD
and EER approaches are criticized for being contipuily inefficient (Settles,

2012). On the other hand, US and QBB strategieatorequire parametric
models or input distribution while they are compiataally efficient. Additionally,

QBB is robust to small sample sizes because it @mspbootstrapping. Due to

these reasons, we prefer US and QBB querying gtestén our study.

The most important component of the proposed apgprdaa to measure the
uncertainty of candidate instances. In Chapter & ,ewplained main uncertainty
measures proposed in the literature. In this stu@ydeveloped and experimented
several uncertainty measures which would also éxplalinal structure of the
preference classes. However, developed measurésrped worse than those
proposed in the literature. We will provide mordommnation about developed
measures in the subsequent section. Among thossunesgproposed for the QBB
strategy, Vote Entropy utilizes a hard voting aggtowhere the number of votes
given by the committee members is counted in otdezompute uncertainty of
each candidate instance. This voting scheme |asiesmation offered by the
posterior probabilities of predictions made by eachmmittee member. Kullback-
Leibler Divergence measure, on the other hand,sgiv&table results due to log(.)

term in the formulation, because when committee beta posterior probability (
P,(y| X)) is less than the consensus posterior probal{ifify(y| X)), this term
yields to a negative value. However, a positiveedyence from the consensus
posterior probability of same amount (Wh&Xy| X) is greater tharP. (y| X)),
which yields to a positive value, should have tames uncertainty value. Due to
these reasons, we utilized a soft voting schemerkediction aggregation in QBB
and used the same uncertainty measures (LeastdéanfiMargin and Entropy)
for both US and QBB querying strategies.
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As we emphasized in the preceding paragraphs, wpope and experiment
different classifiers, querying strategies and uagety measures for preference
modeling. However, determining which classifier, egqung strategy and
uncertainty measure to use for which circumstanisegshe most important
ingredient of this thesis study. For this purpose, will provide algorithmic
recommendations for the end user in Chapter 4.vBal® the pseudo codes and

commentary of our algorithms.

1. R is the initial reference set of sizen, m is the number of queries,L is the
learner, p is the pool size

n

fori=1, 2, ..mdo
trainL usingR

generate random set of instances from thdoatéridomain of sizp for the
pool

predict labels of instances in th&ol usingL
calculate uncertainty measure for each instantteepool

select instance having the maximum uncertaiwil)(
Ask label (classy of W' to the DM

R~ RU(W,

10. nen+1

11. end for

© ©® N o O

Figure 15. Pseudo-code of the Pool-Based Unceyt&ainpling Algorithm.
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1. R is the initial reference set of sizen, m is the number of queries,L is the
learner, p is the pool sizeC is the committee of learners

2. for i=1, 2, ..mdo

generate random set of instances from thdaté&ridomain of sizp for the

pool
4, for j=1, 2, ...C| do
5. draw a bootstrap sample of sizérom the reference seR/)
6. train L; usingR;
7. predict labels of instances in theolusingL;
8. end for
9. aggregate predictions made by the commitige.(, L|¢)
10. calculate uncertainty measure for each instamthepool
11. select instance having the maximum uncertailWS}X
12. Ask label (classy of W’ to the DM
13. R« RU(W, y
14. nen+1
15. trainL usingR
16. end for

Figure 16. Pseudo-code of the Pool-Based Query&yglg Algorithm.

Generating the initial reference set. Generating the initial reference set
constitutes the first stage of the preference lagrnBased on the preference
information obtained from this set, line of inquisyinitiated. This set is generated
by stratified random sampling, meaning, labels afdom instances from each
preference class is asked to the DM. Alternativ€i/ can be encouraged to
provide such exemplary instances from each preferemass. Size of the initial
reference set depends on the number of classesatindutes as well as

willingness of the DM to provide such examples.c8irwe perform stratified
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random sampling, number of exemplary instances tmgfreater than the number
of preference classes. Additionally, as the nundieattributes increases, size of
the reference set must increase as well. Anothetitig factor is the ability of the
learner to train on small data sets. Most of thepasametric learners fail to train
on small sets. SVM and RF are very capable witls tieigard, however, our
experiments show that when the number of trainimggainces is less than 10, the
probability that these learners fail increases.dgemve can assert that a reference

set of minimum size 10 is preferable.

Training the learner. We use Frank and Hall (2001) approach when trgioinr
base learners SVM and RF for the multiclass casdle we employ them directly

in the two-class cases. First of all, the train{ngference) set having ordinal
classes is decomposed intd binary subproblems in multi-class cases. Hence,
each of these subproblems turns out to be binaagsification problems as
illustrated in Figure 7. Each derived data setamed with a base binary learner.
Hence, we obtain-1 binary learners. In order to make predictionsumseen
instances, posterior probabiliti®g.) are calculated by usingl binary learners as
shown in (20). As a consequence, the class labehdpahe maximum posterior

probability is assigned to the instance.

Generating the pool. Pool corresponds to the set of candidate instafroes
which the next question to be asked to the DM lscsed at each iteration. Since
we aim at modeling preference on the whole attebdbmain (design domain)
while desiring to perform equally good everywheme generate candidate
instances randomly. Hence, assuming that we hasréeria under consideration,
criteria values of each candidate instance in ta are determined such that:

x ~U(X™, ¥™) for i=1,..,n (26)
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where x is the random value attained in criterign x™ and x™* are the

minimum and the maximum criterion values attainableriterioni respectively,
and U(.) is the uniform distribution. In order to ensureatsity, a new pool is

generated at each iteration. Even though a large# isodesirable so that we
increase the probability to find an instance thait pvovide the most information
gain, it is computationally costly. We did not pmrh an experiment as to measure
the effect of pool size on performance of the atbor, however, we generated a
pool of size 500 in our experimental studies.

Making predictions and measuring uncertainties of he instances in the pool.
After training the learner with the reference setl(iding instances queried thus
far), the learner makes predictions for each ircgaim the pool based on the
criteria values of the instances. Each predictisnquantified with posterior
probabilities provided by the learner. These pastgorobabilities are used to
measure uncertainty of each instance as explam€&tapter 2. We consider Least

Confident, Margin and Entropy as the uncertaintyasuees.

Generating the committee in QBB.In employing QBB, we need a committee of
learners. This is achieved by drawing bootstrappdasnfrom the same reference
set C| times (size of the committee). Bootstrapping cpomds to random
sampling with replacement of same size as ther@igiample. The main idea
behind bootstrapping is that, when we cannot makarpetric assumptions about
underlying distribution that generated the randammple, the sample can be
treated as a pseudo-population (Martinez & Martirg202). In QBB, same type
of learner (i.e. SVM or RF) is trained to the gexted bootstrap samples, hence,
we come up with@| separate models. Size of the committee has impadhe
performance of the predictions made by the committe return for a
computational cost, however, committees of 5 tdeBsners are quite common in
the literature and have been shown to perform (&sitles, 2012). Thereby, at
each iteration we generate a committee of size 10.
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Aggregating predictions made by the committee in QB. At each iteration,

each committee member makes predictions for thdidate instances in the pool.
These predictions are aggregated in order to measfarmation content of each
candidate instance. We use a soft voting schem@B®B strategy which accounts

for each committee member'd { confidence €,(y| X)) in predictions made such

that:

ES-CE (27)

Fe(yl ¥ = c
gic

where P.(y| X) corresponds to the consensus probability thad the correct

label, andC is the committee (Settles, 2012). Consequentlgerainty of each
candidate instance is computed based on the carsegasterior probabilities

P (Y[ %).

In this study, we employ SL techniques in prefeesl®arning in the ordinal scale
aiming to train a predictive model. Hence, prefeeestructure is represented by
the trained model. There are several advantag&t déchniques in this respect.
Nonparametric SL techniques are model-free appesmcmaking no functional

assumptions. Additionally, they are very capablenoldeling complex structures,
i.e. interactions among variables and nonmonotstnactures. Conversely, they
require big amount of data in general and theinitng process is not interactive.
Recognizing these shortfalls, we use SL techniguéke presence of small data
set and drive the learning process in an evolutiomay while integrating DM

into it. In this context, while utilizing strong d&ures of SL in modeling complex
structures, we also address the weak sides of 8icizmd by Doumpos and

Zopounidis (2011), in conjunction with preferencedwaling in the ordinal scale.

As we pointed out previously, our approach is aeh@ne because different than
the MCDA sorting approaches proposed in the litgeathat aim at sorting limited
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number of alternatives of the problem under comaiiten with maximum

accuracy, we consider preference modeling as anitearprocess. To our
knowledge, this is the first study in the MCDA Iagure that approaches
preference modeling as an evolutionary learningcgss. With this study, we
address the criticized issues of MCDA regardingeutyihg preference function
and monotonicity assumptions, and inefficiency todel interacting criteria while
showing applicability of SL techniqgues to MCDA pefnce modeling in an
interactive manner. In this respect, rather tharCMGorting techniques proposed
in the literature, our work is comparable to Al aA€A methodologies. Al

applications usually work with big amount of daw#oreover, they offer black-box
methodologies where DM or respondent has no rothartraining process. ACA,
on the other hand, starts with a small referentase leads the line of inquiry in
an evolutionary way. However, as Rao (2014) remattkgy are incapable of

handling interactions among criteria and complexcstres.

As a consequence, this study can be regardediaseepng approach considering
that SL based approaches in the literature have teecloped and tested based on
a relatively large preference information and d¢ imteract with DM in model
developing process, while MCDA based approachesrérinteractions, suffer
from generalization ability, and have no conceroulpredicting equally good
everywhere on the criteria domain. Even thoughwveonk is not comparable with
MCDA sorting methodologies, our trained model offersorting tool, as well. In
this respect, our proposed approach also addrédsse®ed for model-free sorting
methodologies that are capable of modeling intemast while implemented
interactively with the DM, as emphasized in Tahle 4
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Table 4. Classification of the proposed approadd@DA sorting.

Functional Ability to Model Interactions

Interactive .
Assumption

No Yes (Limited)

Devaud et al. (1980)
Greco et al. (2010)
Soylu et al. (2011)
Greco et al. (2011)
Celik et al. (2015)

No Corrente et al. (2015)

Yes

Yu (1992) Greco et al. (2002)

No Leroy et al. (2011) Angilella et al. (2009)

Ulu and Kéksalan (2001)
Kdksalan and Ulu (2003)
Koksalan and Ozpeynirci (2009
Bugdaci et al. (2013)

Yes Ulu and Koéksalan (2014)

Yes

No Koksalan et al. (2009) Eri skin (2015)

3.3 Uncertainty Measures Experimented

Uncertainty measures proposed in the AL literatneee been developed for
nominal classification problem, hence, they did nodnsider additional
information embedded in the ordinal structure o€ tHata. In the ordinal
classification problem, however, there is an ordidationship among classes.
Therefore, posterior probabilities should decreas@aotonically on both sides of
the class having the highest posterior probabilityorder to provide a sound
prediction. Consider an ordinal classification peobb where we have three

ordered classes such thgf >y, > y,. Assume that our trained model makes
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predictions for two profilesX j= 1,Rand generates posterior probabilities as

follows:

P(%,|%X)=0.5 P(y |Xx)= 0.3, Py |[X¥ 0.2
(28)
P(¥,]X)=0.5 P(% |X)= 0.2, P{y |x ¥ 0.3

It is clear that, both of these profiles have sameertainty values in terms of
Least Confident, Margin and Entropy measures. Toe¥e these uncertainty
measures conclude that these two profiles haves#imee information content.
However, consider Figure 17 where we plot postepmbabilities predicted by
the trained model. Our trained model predicts buitthese profiles as clags.

Second most likely class predicted for profile lyis while it is y, for profile 2.

Figure 17 shows that posterior probabilities priticfor profile 1 conform to
ordinality, while those of profile 2 do not. Sin@ur problem is an ordinal

classification problem, querying label of profilei® expected to provide more

information gain than profile 1.
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Figure 17. Bar charts of posterior probabilitiesgcted by the trained model.
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In our study, we developed and experimented nevertaioty measures for the
multi-class cases exploiting the idea explainedvabdn this section, we provide
information about these measures. Consequentlyawed to exploit ordinal
structure of the preferences in selecting the mo&irmative profile or in

calculating consensus output distribution in QBB.

Measure 1.In this measure, we define a triangular penaltycfiom for punishing
divergence from ordinality. Each posterior probipiis multiplied with penalty
value depending on the most likely class (classngathe maximum posterior
probability). Each profile in the pool is given dty accordingly. Uncertainty
value is weighted with penalty value of the proieformulated in (29).

X =argma{¢(x) Pn( %)
Pn(x)=>"P(¥}.3( ¥ ¥)

y

(29)

O(y|y) represents penalty value for class y for a givesstntikely classy’,
#(x) represents uncertainty value for profdeand Pn(x) corresponds to penalty

for profile x. Hence, a profile not complying with ordinalityshenore chance to be

gueried. Triangular penalty function is illustraiad-igure 18.
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Class i-2 Class i-1 Class i Class i+1 Class i+2
Class

Figure 18. Penalty function for divergence frominadity (Assuming Clasgshas
the maximum posterior probability).

Measure 2.In order to take into account how much first andosel most likely
classes are away from each other, the Margin waiogrtmeasure is modified as

follows:

(P(y19-P(1Y)

(i-i)’

X =argmin (30)

Here, P(y*|x) is the maximum posterior probability arr(y|x) is the second

maximum posterior probability predicted for a pi®f. j is the numeric rank for
the most likely class andis the numeric rank for the second most likelyssla
Therefore, if first and second most likely classee not adjacent for a given
profile x, the probability that this profile is selectedtlas next query increases.

Measure 3.In order to take into account how much output dhstion is in

compliance with ordinality, we developed a measw#ollows:
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¢ =argminy (P(Y1¥-P(¥1))

Y (31)
iov/j (j —I)

where Y is the rank set of classes. Herié(y*|x) is the maximum posterior

probability andP(y; | X) is the posterior probability predicted for class is the

numeric rank for the most likely class.

Measure 4.In QBB, contribution of each committee member dasensus output
distribution is weighted with degree of complianegh ordinality. Hence, a
committee member predicting posterior probabilittesompliance with ordinality

contributes to the consensus output distributiorenag shown in (32):

o Py (¥

P () l%lz( B( 1) #] @2)

Here, Pc(y|x) is the consensus probability thats the correct class according to
the committee and, (y|x) is the probability thay is the correct class according to

committee membet. Pn. (x) is calculated as in (29).

Measure 5 In QBB, contribution of each committee membecdmsensus output
distribution is weighted with how much the comnattmember is confident about
its prediction. Hence, a committee member being emoonfident about its
prediction contributes to the consensus outputidigton more as shown in (33).
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R (1 %%(Fz( 93 -B( 91%) (33)

Here, Pg(y*|x) is the maximum posterior probability predictedthg committee

membend. C is the committee set.

Measure 6 Each measure experimented (Least Confident, Maagd Entropy
measures) measure different aspects of the outpuiibdtion. In order to make
use of each of these measures simultaneously, weegaied them into one
measure in different combinations. Below are thegragated measures

experimented. Each measure is normalized befoneggtng.

¢ =gt 04 51 (a4
< =argmin () #(4) @
< =argmif A9 99 5t @)

Here, p(X) corresponds to Least Confident measy(®) corresponds to Margin

measure andP(X) corresponds to Entropy measure.
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None of the measures explained above achieved ueprent over the ones
proposed in the AL literature. This is due to thetfthat, classifiers we use in the
study are nominal classifiers and we make themo#xpldinal structure of the
data with Frank and Hall (2001) approach. The npaablem with this approach is
that generated posterior probabilities do not addouone. Uncertainty measures
consider posterior probabilities for measuring utaety, therefore, they suffer
from this property of Frank and Hall (2001). We egp and believe that,
aforementioned measures would work successfullyh wearners developed
particularly for ordinal classification. As a cogsence, we used Least Confident,

Margin and Entropy uncertainty measures in thigytu
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CHAPTER 4

ANALYSIS OF THE PROPOSED APPROACH

In this chapter, we analyze the proposed approBchkt of all, we define an
experimental design that considers various factdngch are believed to have
impact on the performance of the proposed algosthm order to determine
which factors are statistically significant, we foem Analysis of Variance
(ANOVA). Secondly, performance measure means fbtest combinations are
computed in order to designate which querying algor is the best for different
circumstances. Thirdly, we look at learning cureéshe proposed algorithms and
compare them with the naive approach, where sulesequeries are performed
randomly. Lastly, we provide algorithmic recommetimlas for modeling different
underlying value functions in case we have inforamatabout the form of the

preference structure of the DM.

4.1 Experimental Setup

The proposed approach does not assume an undefiyimggional form that

represents preference structure of the DM and &nmodel interactions among
criteria as well as nonomonotonous preferentialaben. On the other hand, we
also expect it to perform satisfactorily over vagdorms of preference structures

including those assuming preference independenceredter, we expect a
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preference learning algorithm in the ordinal clssiion setting to be robust to
different circumstances such as number of claseamber of attributes or
reference set at hand. Therefore, in order to et@land compare performances of
the proposed algorithms, we design an experimenerevhalgorithms are
implemented and evaluated under different condstioDetailed information

regarding the experiment is provided below.

4.1.1 Design Factors

Experimental design investigates the performandaeflgorithms on the basis of
the factors shown in Table 5, which are believed heove impact on the

performance.
Table 5. Experimental factors and their levels.
LEGEND FACTOR LEVELS
. 1. Uncertainty Sampling
F1 Query Algorithm 2. Query By Bagging
1. Least Confident
F2 Uncertainty Measure 2. Margin
3. Entropy/Vote Entropy
1. Linear
. : 2. Multiplicative
F3 Underlying Value Function 3. Tchebycheff
4. Complex Nonmonotonic
F4 Number of classes L TWO
2. Five
F5 Number of attributes L T_hree
2. Six
. 1. 10
F6 Size of the reference set 5 30
: 1. 30
F7 Number of queries > 100
" 1. RF
F8 Classifier 5 SUM
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We have two algorithms under consideration fordadil. On the other hand,
using 3 different uncertainty measures (for fa¢t@) with these algorithms, we

can test 6 different querying algorithms in thipexment.

Underlying value functions listed in Table 5 foctar F3 are commonly used in
MCDA practices and believed to be representing nudsthe DM preference
structures. A complex and nonmonotonic preferefrtetsire showing switches in
preference (high order interactions among attrijutand having irregular

preference surface is represented with hinge fonsti

Factor F4 corresponds to number of classes whitéoF&5 represents the number
of attributes. Even though most of the classifmatschemes consider only two-
class (binary) classification, multiclass classifion should be considered, as well.
As the number of classes and attributes increasaplexity of the classification

problem increases. Hence, we would like to seerihgos’ performances as we

increase the complexity of the problem.

Factor F6 is the size of the reference set. Sned#érence set contains little
information about the preference structure of tih. Blowever, it is desirable that
querying algorithm exploits information embeddedha reference set as much as
possible so that next querying instance providiraximum information gain can
be determined. One of the most important featufesioapproach is that we start
with a small reference set. Hence, we expect cateligigorithms to perform well
with small sized reference sets. As we mentione@hapter 3, our experiments
show that when the number of training instanceless than 10, the probability
that these learners fail increases. Therefore,hoese 10 and 30 as the two levels

of factor F6 in the experiment.
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Another factor (F7) we consider is the number oéreggs. With this factor, we
would like to see if there exists a differencehr performance of algorithms with

respect to the number of questions asked.

As the last factor (F8), we include two types afsslifiers into our experiment. As
we have pointed out previously, there is no “bed#issification algorithm that
outperforms others in all circumstances. Bearirag ith mind, we desire to observe
performance of different classifiers with the preed algorithms. For that
purpose, we consider two well-known classifierdha SL literature, namely RF
and SVM. From variety of learners, we prefer SVMI &RF because they are
among the strongest nonparametric classifiers @@ghoin the literature.
Additionally, our experience showed that most o thonparametric classifiers
perform bad or fail with small data sets, while S\&d RF model small data sets

very successfully.

4.1.2 Evaluation Measures

We consider three different evaluation measurescyfery, Balanced Class
Accuracy and Kappa) in the experiment to measurdogeance of the
approaches. We consider two more measures (Measldb<£rror Ordinal, Mean
Squared Error Ordinal) for 5 class cases. Each mnea®nsiders a different aspect
of the algorithms. Evaluation measures used forpaoing querying algorithms

are summarized below.
* Accuracy (Acc): Accuracy can be defined as the number of correct

predictions across all classés,divided by the number of observatiom§ (
number of test cases) (Ferri et al., 2009). Acclmaformulated as follows:
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L
Z#of examples of classi predicted rig

Acc=-= 38
N (38)

Balanced Class Accuracy (BCA)Balanced class accuracy is the average
of accuracies calculated for all classes separaidlys measure takes into
account the number of instances from each claiitest data (in the case

of class imbalances) (Su & Hsiao, 2009).

ZL: #of examples of classi predicted rig
#of examplesinclassi
N

BCA="2

(39)

Kappa coefficient (Cohen’s Kappa):The kappa coefficient is a measure
of association used to describe and to test theedegf agreement in
classification (Kotz et al., 2006). This coefficida generally more robust
than simple Acc since it takes into account thebabdity of chance
agreement. Kappa coefficient can be computed fdtictass classification
as follows (Kotz et al., 2006):

K - pO_ pC
1-p,

P =0, (40)
ij

p.=>.R.p

ij

wherep, is the observed proportion of agreemgmntis the proportion of

agreement expected by chancp, is the proportion of theN items
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classified into categoriyby the first observer (true classes) and jriig the

other (predicted classes), with

=20, B=2R (41)

Mean Absolute Error Ordinal (MAEO): MAEO measures both how
much predicted classes are “incorrect” with respettue classes, and how
“inconsistent” the learner is with respect to refatorder of the classes.
MAEO can be formulated as follows (Cardoso & So2€4,1):

MAEO:%ZL:ZL: n.r-d (42)

r=lc=1

wherer corresponds to numeric rank of the true class @mepresents
numeric rank of the predicted clasg. represents the number of points

from therth class predicted as being from tile class.

Mean Squared Error Ordinal (MSEO): This measure is similar to
MAEO. The only difference is that MSEO punishesomgistency more
than MAEO. MSEO can be formulated as follows (Cam& Sousa,
2011):

MSEOZ%ZL:ZL: n.(r9° (43)

r=lc=1
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4.1.3 Underlying Value Functions

Value functions representing DM’s underlying prefese structure are
summarized below. Besides, we give threshold valbbasare used to discretize
value space so that preference ordered classegeaszated. In the experiment,
preference values of the alternatives are calallbtsed on the value functions
given below. Then, they are classified accordinghtese threshold values. For
clarification, we are not assuming any functionaini in the training phase
whatsoever. These functions mimic DM when the DMsvears algorithm’s

questions. Moreover, test cases are generateddirngdo tested underlying value

function.

e Linear Value Function

0 Three-attribute case

V( %, %, %) = 0.1x + 0.4+ 0.5

O<x<1 0 (44)

Table 6. Class threshold values for 2 class-3baittei linear value function.

Threshold Values Class

v(.)<0.5 Class 1

v(.)=0.5 Class 2
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Table 7. Class threshold values for 5 class-3baltiei linear value function.

Threshold Values Class
v(.)<0.35 Class 1
0.35sv ()< 0.4 Class 2
0.45<v ()< 0.5 Class 3
0.55<v ()< 0.6 Class 4
v(.)=0.65 Class 5

0 Six-attribute case

V(%,.... %) =0.1x+ 0.04¢+ 0.06¢+ 0.3+ 0.8+0.3«,

O<x<1 0 (43)

Table 8. Class threshold values for 2 class-6baiti linear value function.

Threshold Values Class

v(.)<0.5 Class 1

v(.)=0.5 Class 2
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Table 9. Class threshold values for 5 class-6baitei linear value function.

Threshold Values Class
v(.)<0.4 Class 1
0.4<v(.)< 0.4f Class 2
0.45<v ()< 0.5 Class 3
0.52<v ()< 0.57 Class 4
v(.)=0.57 Class 5

* Multiplicative Value Function

0 Three-attribute case

v(X, %, %) =0.5%+ 0.7%+ 0.2+ 0.2& x+
0.08x x, + 0112x, x,+ 0.056,X X, (46)
O<x <1 0

Table 10. Class threshold values for 2 class-bate multiplicative value
function.

Threshold Values Class

v(.)<0.8 Class 1

v(.)=0.8 Class 2
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Table 11. Class threshold values for 5 class-bate multiplicative value

function.
Threshold Values Class
v(.)<0.55 Class 1
0.55<v(.)< 0.6 Class 2
0.65<v ()< 0.8t Class 3
0.85<v(.)< 0.9 Class 4
v(.)=0.95 Class 5

o Six-attribute case (3 and higher order interactesms are omitted)

V(X,..., %) =0.5%+ 0.7%+ 0.2+ 0.X+ 0.6+ 0.3+ 0.28x%+
0.08¢x,+ 0.04 %+ 0.24 x+ 0.1 x+ 0.118 x+

0.056¢,x, + 0.336,x,+ 0.168x,+ 0.02gx,+ (47)
0.96,% + 0.048; %+ 0.048x.+ 0.024x,+ 0.44X,
O<sx <1 O

Table 12. Class threshold values for 2 class-tate multiplicative value
function.

Threshold Values Class

v(.)<1.8 Class 1

v(.)=1.8 Class 2
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Table 13. Class threshold values for 5 class-thate multiplicative value

function.
Threshold Values Class
v(.)<1.2 Class 1
1.2<v()<1E Class 2
15<v()<1.E Class 3
1.8<sv()< 2.k Class 4
v(.)=2.5 Class 5

* Weighted Tchebycheff Value Function

0 Three-attribute case

V(X, %, %)= ma(0.31.0-x) ,0.4 1.8x,) ,0(3 1:0x,))

48
0sx <1 [ (49)

Table 14. Class threshold values for 2 class-bate weighted Tchebycheff
value function.

Threshold Values Class

v(.)=0.25 Class 1

v(.)<0.25 Class 2
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Table 15. Class threshold values for 5 class-bate weighted Tchebycheff
value function.

Threshold Values Class
v(.)=0.3 Class 1
0.25sv ()< 0.c Class 2
0.17<v ()< 0.2 Class 3
0.11<v ()< 0.17 Class 4
v(.)<0.11 Class 5

o0 Six-attribute case

_ 0.1(1.0-x) ,0.0¢ 1.6 %,) ,0.44 1:0x,)
Ve &%mm{04152y0$1;2)ﬁ@1ﬂ3j (49)

O<x <1 O

Table 16. Class threshold values for 2 class-thatx weighted Tchebycheff
value function.

Threshold Values Class
v(.)=0.25 Class 1
v(.)<0.25 Class 2
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Table 17. Class threshold values for 5 class-thate weighted Tchebycheff
value function.

Threshold Values Class
v(.)=0.3 Class 1
0.25sv ()< 0.c Class 2
0.2<v(.)< 0.2¢ Class 3
0.15sv ()< 0.2 Class 4
v(.)<0.15 Class 5

* Complex Nonmonotonic Value Function

0 Three-attribute case

V(>a,><z,><3)=08+02f(05 X)= 0.8{( %~ Op
(% -0.79)- 0.6 0.6 %) H x~ O
3(0.7-x) h( 04- x)h(02-x,)
O<x <1 0i

(50)

Table 18. Class threshold values for 2 class-bate complex nonmonotonic
value function.

Threshold Values Class

v(.)<0.7 Class 1

v(.)=0.7 Class 2
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Table 19. Class threshold values for 5 class-®bats complex nonmonotonic
value function.

Threshold Values Class
v(.)<0.51 Class 1
0.51<v(.)< 0.€ Class 2
0.6=v(.)< 0.7 Class 3
0.7<sv()< 0.¢ Class 4
v(.)=0.8 Class 5

0 Six-attribute case

V(X,...,%) = 0.8+ 0.h( 0.5 x)- 0.5 %— 0+
0.3(x - 0.7 - 0.2%( %~ 0.4+
0.16n(x - 0.6)- 0.6( 0.6 %) H x- O}
0.8(0.7- %) h( 0.4- x) H 0.2 x)-
0.35n(x, - 0.4¢ h( (B~ x)
O<x <1 0i

(51)
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Table 20. Class threshold values for 2 class-tatsr complex nonmonotonic
value function.

Threshold Values Class

v(.)<0.6 Class 1

v(.)=0.6 Class 2

Table 21. Class threshold values for 5 class-&atsr complex nonmonotonic
value function.

Threshold Values Class
v(.)<0.5 Class 1
0.5sv()< 0.€ Class 2
0.6<v(.)< 0.6¢ Class 3
0.65sv ()< 0.7 Class 4
v(.)=0.75 Class 5

In the complex nonmonotonic value functidn(.) corresponds to hinge function
that takes the forrmax0, x- 9 or max0, c- ¥ wherec is a constant. This

constant is called a knot. Hinge functions creagzqwise linear structures and
capable of representing complex functional forntse Tain difference from other
piecewise linear functions is that they can be iplidd together to form nonlinear

functions.
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4.2 Analysis of the Experimental Results

In order to analyze the experiment, we define aegarfull factorial design. With
our factorial setting, this design has 768 comlmmagt Each combination is
replicated 20 times. Hence, we run the experimé&nB6D (768x 20) times in
order to obtain required performance measures.ygiee a run is started, a new
reference set is generated randomly. Assuming \eathaven criteria under
consideration, criteria values of each candidagtairce in the reference set are
determined such that:

x ~U(X™, X") for i=1,...,n (52)

where x is the random value attained in criteriogn x™ and x"™* are the

minimum and the maximum criterion values attainableriterioni respectively,

andU(.) is the uniform distribution. Afterwards, classédébof these instances are
determined based on the underlying value functiod elass threshold values
considered for that particular test combinationnéés underlying value function
mimics DM in answering questions. In order to im&uinstances from each

preference class in the reference set, we ensuasé ttiere are at least

reference s¢t
number of class

JL examples from each class. This is also a requméerfor
e
classifiers in order not to fail in training at timtial phases of the algorithm since

we start with small sized reference sets.

At each iteration of the algorithm (each time assifier is trained), test set
(validation set) of size 1,000 and pool set of §9@ are randomly generated in
accordance with the procedure explained in Chaptéest set is used to measure
performance of the classifier at each iterationother words, classifier trained

with the current reference set (instances in thte@irreference set and questions
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asked thus far) makes predictions for the instantéise test set and performance

of the classifier is measured in terms of the eatidun measured considered.

Algorithms are implemented in the R v3.1.2 stet@dtprogramming language (R
Core Team, 2014). We implemented SVM with the Rkpge e1071 (Meyer et
al., 2014) and RF with the R package caret (Ma®lgt2015). Results of the
experiment are analyzed using Minitab 16 (Minit@&oStatistical Software, 2010).

While performing the ANOVA, we have checked adegquat¢ the ANOVA

models in terms of;

* Normality (of the residuals)
* Homoscedasticity (constant variance)

* Auto-correlation (independence of residuals)

In our preliminary analysis, we have observed tregtiduals suffered from
nonnormality and nonconstant variance. Therefore, have decided to apply

transformations to the measures under considerafimee Acc, BCA and Kappa

are proportions, we have appliegrcsin/ perfMetric transformation to these

measures. This transformation stabilizes the veeiamd makes distribution of the
residuals close to normal (Montgomery, 2009). BaxQransformations have
been applied to MAEO and MSEO, for the same rea&fiar transformations, we

have verified that models generated met assumptibtiee ANOVA.

Table 22 shows eight-way ANOVA results for the Aneasure. All main effects
and interaction effects presented in this tablesayeificant. Other than 17 effects
shown in the table, there are 45 other interaceffects that are statistically

significant (at significance level 0.01), as wefl. order to determine how much

each effect contributes to the total variane#, statistic is computed (Tabachnick
& Fidell, 2007), as done in (Doumpos & Zopounid2902, p.135). Each effect
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presented in this table explains at least 0,1%®tdtal variance except for effects
Query Algorithm and Uncertainty Measure. Being main effects, they are

included in the table.

As stated previously, all main effects are sigaifit This result shows that all
factors included in the design have significantactpon the average classification
accuracy. FactorBlumber of Classesand Number of Attributes are the most
influential effects. Along with Underlying Value Function, these factors
determine complexity of the classification tadlumber of ClassesNumber of
Attributes interaction is the % influential effect andUnderlying Value
Function*Number of Classesinteraction is the O influential effect in the
experiment. These interactions reveal that effettdnderlying Value Function
andNumber of Attributes vary depending on the number of classes we have in
the problemNumber of Queriesis the §' influential effect. This is to be expected
since as we continue asking questions, we obtaire mdormation about the
preference structure of the DM and consequentlgsdiar performance increases.
Underlying Value Function* Classifier interaction is the most influential
interaction effect in the table. Additionallglassifier is the &' influential effect.
This reveals that performances of the algorithnfeiddepending on the classifier.
Moreover, we can conclude that underlying valuecfiom has impact on the
classifier performance. Sin€guerying Algorithm andUncertainty Measure are
statistically significant, we can state that thisretatistically significant difference

among different querying algorithms (and unceriameasures).
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Table 22. ANOVA results for the Acc measure.

Factor df Seq SS Adj SS Adj MS F p w?

F4 1 619.010 619.010 619.010 175740.280 0.000 28.17%
F5 1 185.865 185.865 185.865 52768.100 0.000 10.53%
F3*F8 3 289.144 289.144 96.381 27363.220 0.000 5.75%
F3 3 220.579 220.579 73.526 20874.480 0.000 4.45%
F7 1 49.822  49.822 49.822 14144.710 0.000 3.06%
F8 1 20.497  20.497 20.497 5819.300 0.000 1.28%
F4*F5 1 17.710  17.710 17.710 5027.870 0.000 1.11%
F5*F8 1 15582  15.582 15.582 4423.700 0.000 0.98%
F3*F4 3 35.058  35.058 11.686 3317.740 0.000 0.73%
F3*F4*F8 3 18.975  18.975 6.325 1795.720 0.000 0.40%
F4*F8 1 5.132 5.132 5.132 1457.080 0.000 0.32%
F6 1 4.558 4.558 4558 1294.110 0.000 0.29%
F3*F5 3 10.220  10.220 3.407  967.210 0.000 0.22%
F7*F8 1 2.728 2.728 2.728  774.500 0.000 0.17%
F3*F5*F8 3 7.073 7.073 2.358  669.380 0.000 0.15%
F2 2 1.089 1.089 0.544  154.550 0.000 0.03%
F1 1 0.134 0.134 0.134 38.060 0.000 0.01%

Table 23 shows eight-way ANOVA results for the BG@Aeasure. This table
presents similar results to those of Acc measuliemAin and interaction effects
shown in Table 23 are statistically significangrdfore, all factors included in the
design have impact on BCA. Other than 18 effectsvshin this table, there are 45
other interaction effects that are statisticalpngiicant (at significance level 0.01),
as well. Each effect presented in this table erplat least 0.1 % of the total

variance except for effects F1 and F2.

Number of ClassesandNumber of Attributes are the most influential effects, as
in the ANOVA table for the Acc. These two factorgpkain 38.93 % of the total
variance. The most influential interaction effed® the Underlying Value

Function* Classifier interaction. This reveals that underlying valuediion of the
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DM has impact on the classifier performance acocgrdo BCA measure. This

interaction effect explains 5.36% of the total aace.

Table 23. ANOVA results for the BCA measure.

Factor df Seq SS Adj SS Adj MS F p w?

F4 1 720.797  720.797 720.797 198684.5800.000 29.35%
F5 1 183.739  183.739 183.739 50646.820 0.000 9.58%
F3*F8 3 294910 294910 98.303 27096.910 0.000  5.36%
F3 3 249.192  249.192 83.064 22896.230 0.000 4.57%
F7 1 52.549 52.549 52,549 14484.810 0.000  2.94%
F8 1 19.288 19.288 19.288  5316.610 0.000 1.10%
F4*F5 1 16.814 16.814 16.814  4634.570 0.000  0.96%
F5*F8 1 16.216 16.216  16.216  4469.950 0.000  0.93%
F3*F4 3 45.783 45783 15.261  4206.620 0.000 0.87%
F3*F4*F8 3 21.143 21.143 7.048  1942.650 0.000 0.40%
F4*F8 1 6.251 6.251 6.251  1722.940 0.000 0.36%
F6 1 4.566 4.566 4566  1258.610 0.000 0.26%
F3*F5 3 11.163 11.163 3.721  1025.660 0.000 0.21%
F7*F8 1 2.888 2.888 2.888 796.120 0.000  0.17%
F3*F5*F8 3 7.518 7.518 2.506 690.770 0.000  0.14%
F4*F7 1 1.787 1.787 1.787 492.610 0.000 0.10%
F2 2 0.615 0.615 0.308 84.760 0.000 0.02%
F1 1 0.137 0.137 0.137 37.790 0.000 0.01%

Table 24 shows eight-way ANOVA results for the Kapmeasure. This table

presents similar results to those of Acc and BCAsnees. All main effects shown

in Table 24 are significant, thereby, all factarsluded in the design have impact
on Kappa. Other than 18 effects shown in this tablere are 45 other interaction
effects that are statistically significant, as wé&lach effect presented in this table
explains at least 0.1 % of the total variance exéepeffectsQuery Algorithm

and Uncertainty Measure. As in the ANOVA table for BCA, main effects
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Underlying Value Function, Number of Classes Number of Attributes,
Number of Queries Classifier and interaction effectUnderlying Value
Function*Classifier are the most influential effects and explain 5%5@f the

total variance.

Table 24. ANOVA results for the Kappa measure.

Factor df Seq SS Adj SS Adj MS F p w2

F4 1 489.779 489.779  489.779 76763.570 0.000 20.01%
F5 1 292571 292571  292.571 45855.060 0.000 13.00%
F3*F8 3  450.692 450.692  150.231 23545.830 0.000 7.12%
F3 3 342160 342.160 114.053 17875.720 0.000 5.50%
F7 1 82.168  82.168 82.168 12878.240 0.000 4.03%
F8 1 38.144  38.144 38.144 5978.290 0.000 1.91%
F5*F8 1 22.641  22.641 22.641 3548.510 0.000 1.14%
F4*F8 1 13.555  13.555 13.555 2124.460 0.000 0.69%
F4*F5 1 12.041  12.041 12.041 1887.130 0.000 0.61%
F3*F4 3 32941 32941 10.980 1720.980 0.000 0.56%
F6 1 7.578 7.578 7.578 1187.660 0.000 0.39%
F3*F5 3 18.099  18.099 6.033 945570 0.000 0.31%
F7*F8 1 4.714 4.714 4714  738.910 0.000 0.24%
F3*F5*F8 3 11.191  11.191 3.730 584.670 0.000 0.19%
F3*F4*F8 3 10.068  10.068 3.356 525.970 0.000 0.17%
F1*F4*F5 1 2.537 2.537 2.537  397.630 0.000 0.13%
F2 2 1.519 1.519 0.759  119.020 0.000 0.04%
F1 1 0.095 0.095 0.095 14.900e 0.000 0.00%

To sum up, three ANOVA tables presented reveal lammesults. Similarity
among results provided by different measures steam the fact that we start
with a small initial reference set that is formedhwstratified random sampling.
Therefore, initial set is somewhat balanced. Asrgjng process continues,

balance among classes rarely changes. In genanag factors explain variance in
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all three performance measures. All main effeces datistically significant and
have impact on the performance measures underdsyaton. FactorfQuery
Algorithm andUncertainty Measure are statistically significant. Hence, we can
state that there is a statistically significantfeténce among different querying
algorithms (and uncertainty measures) when these tmeasures are considered.
Factors Underlying Value Function, Number of Classes Number of
Attributes, Number of Queries and Classifier are the most influential main
effects among all factors. Factoldnderlying Value Function, Number of
ClassesandNumber of Attributes designate the complexity of the classification
task. FactorClassifier is significant, as well, indicating that theresignificant
difference between performances of SVM and RF umiiféerent experimental
conditions. Most influential interaction effect those three ANOVA tables is the
Underlying Value Function*Classifier effect. As stated previously, this
interaction reveals that underlying value functioas impact on the classifier
performance. Three way interactiddnderlying Value Function*Number of
ClassesClassifier is the most influential three-way interaction efféor Acc and
BCA. Significance of this interaction asserts thaiderlying value function,
number of classes in the problem and type of diasgointly have a significant
impact on the classification performance. In otlerds, if we have a clue about
form of the underlying value function of the DM, vean improve prediction

performance by choosing the proper classifier.

Apart from these three performance measures, we @ssider MAEO and
MSEO for 5-class cases. As stated previously, tinesasures measure not only
accuracy of a learner but also how “inconsistehg tearner is with respect to
relative order of the classes. In this context, |@&b shows seven-way ANOVA
results for the MAEO performance measure. Sinceeteeasures are considered

only for multiclass cases, factbiumber of Classess not included in the analysis.
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All main effects and interaction effects presentedTable 25 are significant,
therefore, all factors included in the design hempact on MAEO. Other than 14
effects shown in this table, there are 22 otheeradtion effects that are
statistically significant (at significance levelOQ), as well. Except foQuery

Algorithm , each effect presented in this table explaingast! 0,1% of the total

variance. Being a main effe@uery Algorithm is included in this table, too.

Table 25. ANOVA results for the MAEO measure.

Factor df Seq SS Adj SS Adj MS F p w?

F5 1 92.997  92.997 92.997 69847.190 0.000 18.90%
F3*F8 3 124776 124.776 41.592 31238.660 0.000 9.44%
F3 3 121.676 121.676 40.559 30462.510 0.000 9.23%
F7 1 22.629  22.629 22.629 16996.090 0.000 5.37%
F5*F8 1 5.970 5.970 5970 4484.010 0.000 1.47%
F6 1 1.943 1.943 1.943 1459.030 0.000 0.48%
F3*F5 3 5.650 5.650 1.883 1414.470 0.000 0.47%
F3*F5*F8 3 4.568 4.568 1.523 1143.700 0.000 0.38%
F7*F8 1 0.772 0.772 0.772  579.860 0.000 0.19%
F8 1 0.716 0.716 0.716  537.610 0.000 0.18%
F2*F8 2 1.194 1.194 0.597  448.370 0.000 0.15%
F3*F7 3 1.209 1.209 0.403  302.620 0.000 0.10%
F2 2 0.804 0.804 0.402  301.850 0.000 0.10%
F1 1 0.264 0.264 0.264  198.070 0.000 0.07%

FactorsUnderlying Value Function and Number of Attributes are the most
influential effects. These factodesignate complexity of the classification task.
Number of Queriesis the & most influential factor since as we continue agkin
questions, we obtain more information about thdepemce structure of the DM
and consequently classifier performance increashsse three factors explain

33.49 % of the total variance. The most influentialeraction effect is the
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Underlying Value Function*Classifier interaction. This interaction reveals that
underlying value function has impact on the classferformance. Factof3uery

Algorithm andUncertainty Measure are statistically significant and among the
most influential effects. This shows that, typegokry algorithm and uncertainty

measure used have impact on the performance ¢édheer in terms of MAEO.

Table 26 shows seven-way ANOVA results for MSEQmi&ir to our findings
regarding MAEO, all main effects and interactiofeefs presented in Table 26 are
significant. Other than 16 effects shown in thisléathere are 17 other interaction
effects that are statistically significant (at sfigance level 0.01), as well. Except
for Query Algorithm , each effect presented in this table explaingadt!0,1% of

the total variance. Being a main effeQtlery Algorithm is included in this table,

too.
Table 26. ANOVA results for the MSEO measure.

Factor df Seq SS Adj SS Adj MS F p w?
F5 1 358.837 358.837 358.837 18877.670 0.000 13.75%
F3*F8 3 733.834 733.834 244.611 12868.490 0.000 9.80%
F3 3 698.160 698.160 232.720 12242.930 0.000 9.37%
F7 1 122.558 122.558 122.558 6447.510 0.000 5.16%
F5*F8 1 27.192 27.192 27.192 1430.500 0.000 1.19%
F6 1 16.465 16.465 16.465 866.210 0.000 0.73%
F2 2 21.083 21.083 10.541 554.560 0.000 0.47%
F3*F7*F8 3 25.357 25.357 8.452 444,670 0.000 0.37%
F3*F7 3 24.721 24.721 8.240 433.510 0.000 0.36%
F8 1 6.895 6.895 6.895 362.730 0.000 0.31%
F3*F5 3 17.537 17.537 5.846 307.530 0.000 0.26%
F3*F5*F8 3 13.406 13.406 4.469 235.090 0.000 0.20%
F2*F8 2 7.874 7.874 3.937 207.120 0.000 0.17%
F7*F8 1 3.757 3.757 3.757 197.660 0.000 0.17%
F6*F7 1 3.184 3.184 3.184 167.500 0.000 0.14%
F1 1 1.718 1.718 1.718 90.370 0.000 0.08%
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Similar to our findings regarding MAEO, factoténderlying Value Function,
Number of Attributes andNumber of Queries are the most influential effects.
These three factors explain 28.28 % of the totaliamae. FactorsQuery
Algorithm and Uncertainty Measure are significant, hence, type of query
algorithm and uncertainty measure used have impadhe performance of the

learner in terms of MSEO.

As the next step of our analysis, we examine thiopaance of query algorithms
across all factors. We also include results of lamotjuerying strategy, the naive
approach, where the next question is asked randdrhis naive strategy provides
us a benchmark to assess performance of our qgegygorithms. Tables A.1-
A.10 in Appendix A show mean performance measutaegaof 20 replications
across all design factors. Algorithm having thetlpesformance measure value for
the given test combination is indicated with a bfadt. In all of the 64 different
experimental conditions, at least one of the pregagpproaches outperforms the

random approach in terms of the performance messure

In order to observe how querying algorithms perfovitin different reference sizes
and number of queries, we compute mean performamezsures for different
reference and query sizes which are presentedbie3@®.1-B10 in Appendix B.
Analysis results verify our prior conclusion assgytthat there exist statistically
significant differences between performances of dlgorithms that start with
different reference sizes. Performance figures awpr(Acc, BCA and Kappa
increase while MAEO and MSEO decrease) as sizheofdference set increases.
Similar result holds for the number of questiornsweell. Acc, BCA and Kappa
increase (and MAEO and MSEO decrease) as we ask queistions, as expected.

In order to designate which querying algorithmhis best for different underlying
value functions, performance measure means forteddt combinations are

computed. According to results presented in thieviehg tables, the US algorithm
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outperforms the QBB algorithm in all cases. Thamfove can conclude that, the
US algorithm is the best choice for modeling prefee of the DM in the ordinal
classification setting, regardless of the functidoam of the preference structure.
According to the following tables, SVM outperfor®$ in modeling preference
structures compatible with linear and multiplicativalue functions. Conversely,
RF performs better when the underlying value fuorcts Tchebycheff or Complex
Nonmonotonic. This result makes sense becauseb@ised learners are very
capable of modeling nonlinear or complex relatiopshvhile they may fail if the
relationship between independent and dependerdblas is close to linear. As
James et al. (2013) remark, a model that is capdbteodeling linear relationships
is likely to outperform tree-based methods in timedr case. The linear value
function is completely linear while the multiplica¢ value function is close to
linear. This is the reason why SVM, which is alsccessful in modeling linear
relationships, performs better.

Table 27. Acc means of the algorithms for differendlerlying value functions.

Uncertainty Sampling Query By Bagging
LC M E LC M E
RF SVM RF SVM RF SVM RF SVM  RF SVM RF SVM

Underlying
Value Function

Linear 0.7265 0.8101 0.7586 0.8089 0.7161 0.8051 | 0.7170 0.8009 0.7546 0.8004 0.7095 0.7979
Multiplicative 0.7239 0.8279 0.7545 0.8261 0.7160 0.8276 | 0.7206 0.8042 0.7503 0.8059 0.7124 0.8090

Tchebycheff 0.9920 0.7862 0.9907 0.7848 0.9895 0.7850 [ 0.9889 0.7942 0.9879 0.7939 0.9855 0.7907

Complex

. 0.7826 0.7820 0.8094 0.7807 0.7782 0.7811 | 0.7771 0.7932 0.8069 0.7934 0.7740 0.7967
Nonmonotonic

|Average 0.8062 0.8016 0.8283 0.8001 0.8000 0.7997 | 0.8009 0.7981 0.8249 0.7984 0.7954 0.7986
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Table 28. BCA means of the algorithms for differentierlying value functions.

Uncertainty Sampling Query By Bagging

Underlying LC M E LC M E
Value Function

RF SVM RF SVM RF SVM| RF SVYM RF SVM RF SVM
Linear 07168 0.7983 0.7427 0.7973 0.7062 0.7937 0.7091 0.7899 0.7389 0.7883 0.7019 0.7864
Multiplicative 0.6964 0.8116 0.7239 0.8044 0.6887 0.8174) 0.6912 0.7893 0.7192 0.7847 0.6830 0.7915
Tchebycheff 0.9920 0.7841 09910 07791 0.9882 0.7824| 0.9875 0.7916 0.9865 0.7881 0.9833 0.7880
Complex 0.7661 0.7698 0.7950 0.7648 0.7642 0.7701] 0.7610 0.7825 0.7913 0.7803 0.7585 0.7870
INonmonotonic
Average 07928 0.7910 0.8131 0.7864 07868 0.7909] 0.7872 0.7883 0.8090 0.7854 0.7817 0.7882

Table 29. Kappa means of the algorithms for diffierenderlying value functions.

Uncertainty Sampling Query By Bagging

Underlying LC M E LC M E
Value Function

RF SVM RF SVM RF SVM| RF SVM RF SVM RF SVM
Linear 0.6222 07323 0.6621 0.7307 0.6084 07254 0.6111 0.7148 0.6559 0.7146 0.6013 0.7120
Multiplicative | 0.6080 0.7440 0.6455 0.7411 0.5983 0.7442] 0.6015 0.7131 0.6394 0.7164 0.5911 0.7194
Tchebycheff | 0.9897 0.6838 0.9881 0.6826 0.9866 0.6809] 0.9857 0.7017 0.9845 0.7028 0.9814 0.6965
Complex 1 6037 0.6734 0.7299 06716 0.6885 0.6720] 0.6849 0.6995 07250 07012 0.6810 07051
INonmonotonic
Average 0.7283 0.7084 0.7564 0.7065 0.7204 0.7056] 0.7208 0.7073 0.7512 0.7087 0.7137 0.7082)

Table 30. MAEO means of the algorithms for différenderlying value functions.

Uncertainty Sampling Query By Bagging
Underlymg LC M E LC M E

Value Function

RF SVM RF SVM RF SVM| RF SVM RF SVM RF SVM
Linear 0.5880 03555 0.4879 0.3489 0.6243 03672 0.6036 03581 0.4923 03534 0.6262 0.3741
Multiplicative | 0.5414 0.2907 0.4650 0.2976 0.5682 02924 0.5462 03253 04716 0.3284 0.5697 0.3168
Tchebycheff | 0.0160 0.3300 0.0186 0.3391 0.0210 03299 0.0216 0.3390 0.0239 0.3498 0.0287 0.3489)
Complex 1 (3066 0.3438 03476 03533 04100 03465 04030 03550 03483 03581 04102 0.3515
INonmonotonic
|Average 03855 03300 0.3298 0.3347 04059 0.3340] 03936 03443 03340 03474 0.4087 0.3479
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Table 31. MSEO means of the algorithms for differamderlying value functions.

Uncertainty Sampling Query By Bagging
Underlying
Value Function LC M E LC M E
RF SVM RF SVM RF SVM| RF SVM RF SVM RF SVM
[Linear 58.8373 26.6222 29.292517.2059 63.6564 28.5184| 57.0389 26.2365 29.2080 17.4359 63.4934 30.1443]

Multiplicative ~ [42.4039 17.6993 25.932414.7246 47.5618 16.8677|44.8173 18.6413 26.6115 16.1575 47.3459 17.4296

Tchebycheff 0.4271 21.4122 0.5939 17.4520 0.5389 20.5120] 0.5530 21.9037 0.5332 18.8721 0.9373 23.9323

Complex . [27.7527 21.662717.1170 17.4464 28.9136 21.3312|29.2664 23.6311 17.3112 19.0478 30.1247 21.7183
INonmonotonic
|Average 32.3552 21.8491 18.233916.7072 35.1677 21.8074| 32.9189 22.6032 18.4160 17.8783 35.4753 23.3061

These tables guide us regarding which algorithmuarmrtainty measure to use if
we have information about functional form of thefprence structure. We have
already designated that US is the best choice ualtl@ircumstances. When the
underlying value function is linear, Acc, BCA andppa measures recommend
Least Confident uncertainty measure while MAEO BI8®EO propose the Margin
measure. In the Multiplicative case, Least Confideithe best choice according to
Acc and MAEO. All measures recommend using Leashfi@ent when the
underlying value function is Tchebycheff. When we &aced with a preference
structure showing complex structure having intengctriteria, majority of the

performance measures propose the Margin measure.

As stated previously, we usually have no idea alaattional form of the

preference structure of the DM unless we have pusvinformation or performed
further diagnostic analysis. In this respect, idesrto provide a global evaluation
regarding performances of all querying algorithnrmgler various classification

conditions, overall means of 64 combinations amshin Table 32.
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Table 32. Overall performance measure means of/mgealgorithms.

Uncertainty Sampling Query By Bagging
Pe;;;ormance LC M E LC M E
easure

RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM
|Acc 0.8062  0.8016 0.8283  0.8001 0.8000  0.7997( 0.8009  0.7981 0.8249  0.7984 0.7954 0.7986
BCA 0.7928  0.7910 0.8131 0.7864 0.7868  0.7909| 0.7872  0.78383 0.8090  0.7854 0.7817 0.7882
Kappa 0.7283  0.7084 0.7564  0.7065 0.7204  0.7056[ 0.7208  0.7073 0.7512  0.7087 0.7137 0.7082
IMAEO 0.3855  0.3300 0.3298  0.3347 0.4059  0.3340[ 0.3936  0.3443 0.3340  0.3474 0.4087 0.3479
IMSEO 32.3552  21.8491 18.2339 16.7072 35.1677 21.8074/32.9189 22.6032 18.4160 17.8783 35.4753 23.3061

In harmony with our previous findings, US algoritloutperforms QBB in terms

of all performance measures. Regarding the chofcanouncertainty measure,
Margin prevails. Consequently, if we have no clbew functional form of the

preference structure of the DM, which is the cageane usually faced with, the
US algorithm with the Margin uncertainty measureuldobe the best choice.
Table 32 recommends using RF as the base clagsifieis case. However, as we
have pointed out previously, if we have evidencat threference structure is

somewhat linear, it would be better to utilize SVM.

Since our primary motivation for using nonparaneetiassification techniques
with AL is to model complex preference structurelseve criteria interact with
each other and show somewhat nonmonotonic behaweowill take a closer look
at performances of querying algorithms when undeglypreference structure is

complex nonmonotonic.

In ML practices, performance of a learner/algorithsn usually displayed or
compared with another learner/algorithm by usirgyrieng curves. Concisely, a
learning curve shows cross-validation/training ewo accuracy as a function of

the number of training instances. In our researehaimn using querying resources

107



parsimoniously, hence we query new instances onengyinteractively. In this
respect, we use learning curves to illustrate perémces of querying algorithms
when the underlying value function has the complermonotonic forms shown
in Subsection 4.1.3. Figure 19-Figure 30 show legreurves of Acc and MSEO
for different reference set sizes and number oibates/classes. In these figures,
learning curves for the best RF and SVM based #lgos as well as random

approaches where RF and SVM used as base learagyseaented.
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Figure 19. Learning curve of Acc (Reference set 4i2. Value function has 3
attributes and 2 classes.)
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attributes and 2 classes.)
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Figure 24. Learning curve of Acc (Reference set 8i2. Value function has 3
attributes and 5 classes.)
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Figure 25. Learning curve of Acc (Reference set 8i2. Value function has 6
attributes and 2 classes.)
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Figure 26. Learning curve of Acc (Reference set 8i2. Value function has 6
attributes and 5 classes.)
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Figure 27. Learning curve of MAEO (Reference se¢ 4i0. Value function has 3
attributes and 5 classes.)
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Figure 28. Learning curve of MAEO (Reference se¢ 4i0. Value function has 6
attributes and 5 classes.)
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Figure 29. Learning curve of MAEO (Reference se¢ 90. Value function has 3
attributes and 5 classes.)
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Figure 30. Learning curve of MAEO (Reference se¢ €0. Value function has 6
attributes and 5 classes.)

Learning curves show that when the classificat@sk tis relatively easy (small
number of attributes and classes), proposed ahgosit outperform the naive
(random) approach by far. On the other hand, whenctassification task gets
more complex, proposed algorithms still outperfothe random approach,
however, the difference is not as significant athaprevious case. The reason for
this result is believed to stem from the fact th@mndom approach has one
advantage over the other querying strategies; #melam approach explores
regions in the attribute domain, which may not bsited by the proposed
algorithms, particularly when the reference set s&zsmall. While the proposed
algorithms concentrate over some particular regmotihe attribute domain where
uncertainty is the most, random approach mightyjaerinstance which might not
provide an instant improvement, however, providémgnificant information gain

for the whole querying process.

Another finding brought to our attention by leagnicurves is that, as size of the

reference set increases, difference in perform@ete/een proposed querying
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algorithms and random approach increases. Thiso ibe expected, because
proposed algorithms exploit information embeddedhi@ reference set to guide
interactive querying process. Hence, the more we Ingformation, the better we
explore the attribute domain.

Comparing performances of the classifiers, we zealhat RF outperforms SVM
at the initial phase of the querying process. Tagilt can be verified with both
Acc and MAEO learning curves. As querying procesxeeds, SVM catches up
with RF and in some cases performs better at tdeoéthe process. This result is
due to the ensemble characteristic of the RF diassAs we have pointed out in
Chapter 2, RFs are very robust to overfitting (litast al., 2009), because they
employ multiple decision trees generated with baggi This ensemble
characteristic improves generalization ability d&fe tmodel. Furthermore, this
property becomes very important when size of thaitng data is small because
classifiers usually suffer from overfitting in th@resence of small data sets.
Consequently, it seems to be a better strategtato with RF as the base learner
and then switch to SVM (after 30-40 questions, edicg to learning curves). If
we are certain that we are allowed to ask limitachber of questions, using RF

throughout the process would be the best couraetain.

In order to verify if the best algorithms in termisAcc and MAEO are statistically
better than the random approach when the underlyahge function is complex
nonmonotonic, we perform pairwise t-tests for threamvalues of Acc and MAEO
measures achieved throughout the querying prodesfowing hypotheses are

tested in the analysis at 95% confidence level.
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H,:d, =0
(53)
H,:d>0

where  d = Acd**'- Acd®™™ and d = MAEG™°"- MAEQ*  for

i=1,...numberOfQueriesTest results are presented in Appendix C.

Pairwise t-tests propose that we have enough esgdEnrejecH,, claiming there
is no difference in the mean Acc and MAEO valuethefbest algorithms and the
random approach. Therefore, we conclude that eéifiees between the best
algorithms and the random approach in terms of &ed MAEO performance

measures are statistically significant.

To sum up, in this chapter proposed algorithmsteséed against various cases.
Factors that are believed to have impact on thiopeance of the algorithms are
included in the experimental design. In the expenmunderlying value functions
that are believed to represent most of the preferesiructures are considered.
Preference structure representing nonmonotonicvi@hand having high order
interactions among attributes is represented witimation that is built with hinge

functions.

ANOVA reveal that all factors included in the expsent are statistically
significant with respect to measures under conata®sr, meaning that all factors
have impact on the performance of the queryingralgos. Furthermore, most of

their two and three way interactions are signiftcas well.

Regarding classification performances of the qualigorithms, US algorithm
outperforms QBB and the random approach in termsalbfmeasures across
different experimental conditions. We also concltlu, if we have no clue about

functional form of the preference structure of tl, which is the case we are
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usually faced with, employing the US algorithm withe Margin uncertainty

measure would be the best course of action.

Lastly, we have analyzed performance of the algor# when the underlying
value function is complex nonmonotonic. In thisesasost of the performance
measures propose using the US algorithm with thegiMauncertainty measure.
Regarding the classifier, we conclude that it setter strategy to start with RF as
the base learner and then switch to SVM after gskindecent number of

guestions.

In order to verify that the best algorithms deteredi outperform the random
approach, we have performed pairwise t-tests tonmedues of Acc and MAEO
achieved throughout the querying process. Thesg ¢esfirm that the differences
in means between the best algorithms and the rarafiproach are statistically

significant in all cases.
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CHAPTER 5

EXTENSION OF THE ALGORITHM TO CONSIDER THE INPUT
DISTRIBUTION

In this thesis study, we have focused on the cds¥avan unlabeled data does not
exist, as discussed in Section 3.2. Therefore, ase mot made use of input
distribution of such data. Our aim is to estimaf@raction on a particular domain
(design domain) where we desire to perform equgtpd everywhere. This
requirement makes our problem a more challengimgvath respect to typical AL
practices. This situation is particularly valid@® applications. In CA, preference
of the customers (or potential customers) is @étiby presenting alternative
profiles that are generated according to a stratégytraditional CA, these
alternatives are usually generated via a statlsagperimental design while in
ACA subsequent profiles (questions) are tailorednrinteractive query session in
order to maximize information gain. Possible objexd of these applications are
to estimate market share of an existing or a nevdymt, estimating how much
each feature of the profile contributes to overpieference (part-worths),
classifying customer profiles and developing custoarketing policies for each
group. As process definition of the CA implies, tteas (or attributes) of the
product or part-worths will be determined basedhmnpreference structure of the

customers.
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A similar application can be found in the manufaciy field. For example,
quality of a part or a product might need to bedmted for some given process
parameter levels for the purpose of improving dyaif products. This is similar
to aforementioned profile development problem in.CW both of these
applications and many others such as student swletd graduate programs,
credit risk assessment, classifying hotels or diagrg diseases, we are not
interested in how often a particular attribute eabr joint values of attributes in
other existing unlabeled examples (or alternatieeXhere happen to occur.

In some other cases, the joint distribution ofiladiie levels may change from one
setting of parameters that produce alternativesntmther setting. Let us consider
an example from the manufacturing field. A manufeetl boot is classified as
“Good”, “Rework” or “Scrap” based on the quality ashcteristics under
consideration. A Good boot is ready for market saléle a boot classified as
Rework needs to undergo a corrective operatiorrderoto be qualified as Good
for the market. There is no hope for a Scrap baodtiagoes to garbage. As the
problem definition implies, this is an ordinal dd&ation problem. A quality
control technician classifies all manufactured Boatcordingly. Assume that two
of the quality characteristics under consideratoa thickness and flexibility of
boot sole and also assume that we measure thesequaldy characteristics
guantitatively. Suppose that measured quality cherstics of manufactured
boots follow a normal distribution at each charaste domain, based on current
process parameter levels. If we change levels efpitocess parameters, then
quality characteristics may follow different disutions or at least the same
distributions with different parameters. If we kelp current parameter levels, we
may observe that thickness and flexibility haveateg correlation since a thick
sole is usually not flexible, consequently, resigitin a joint multivariate normal
distribution in two dimensional attribute domairhig is the input distribution of
two quality characteristics and an example of sdistribution is shown in Figure
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31 for illustration. This input distribution can kbetimated by analyzing previously

manufactured and unclassified pool of boots.

o0
=
v
=
i
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=

Thickness

Figure 31. Input distribution of two quality chatagstics.

In the case of a constant and known input distidoytdoes this information help
in training a classifier that will be used as a elad predicting resulting classes
such as qualities of manufactured boots? Attribusdues of most of the

manufactured boots to be classified will be lyimgthe dense region shown in
Figure 31. If our ultimate goal is to train a prdie model that will classify

instances with high accuracy, concentrating on dl@sse region in the training
phase will boost the learning process. Recognitig) special property of some
problems, AL practitioners developed “Density WeeghMethods” and “Cluster

Based AL” techniques in order to exploit informati@mbedded in the input
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distribution. In this context, density weighted hmds consider not only
information content of a candidate question bub dlsw much it represents other
instances in the unlabeled pool. Hence, these msthmeasure information
content and representativeness of candidate iregaand aggregate these two
guantities to determine the instance that will batbe learning process most.
Representativeness is usually measured with aagitgimeasure which computes
average similarity of a candidate instance to ratances in the unlabeled pool.
Consequently, assuming that we have a set of uelhlrestance$), an aggregate
measure as shown below is utilized to select thd geestion to be queried
(Settles, 2012):

5
X =argmax® ,(X) [ﬁ > sim(x, X)J (54)

where ®@ ,(x) corresponds to base uncertainty measure undelisgnsprategyA,

and the rest in the parenthesis measures reprageness of the candidate
instance. Parametel5 determines weight of the representativeness in the

aggregate measure. Similarity (sim(.)) can be nredswith different distance

measures such as Euclidean distance or Cosinasin{Settles, 2012).

In order to observe efficiency of the aforementwe&tension, we have applied it
to our most demanding experimental case, wheranderlying value function is
6-attribute complex nonmonotonic, instances aieetolassified into 5 classes and
initial reference set size is 10. SVM is employsdle base learner and Euclidean
distance is used to measure similarity. Being thestmsuccessful querying
strategy, US is utilized. In order to mimic the unlistribution, we have randomly
generated an unlabeled set of size 1,000 from aivadate normal distribution,

wherex ~ N(n, X) with parameters;
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[0.5] [0.0100 0.0050 0.0000 0.0000 0.0000 0.0¢
0.5 0.0050 0.0200 0.0011 0.0000 0.0000 0.0€
0= 0.5 5 0.0000 0.0011 0.0050 0.0000 0.0000 0.0€
0.5 0.0000 0.0000 0.0000 0.0200 0.0000 0.0€
0.5 0.0000 0.0000 0.0000 0.0000 0.0100 0.0€
| 0.5] 1 0.0023 0.0000 0.00000.0000 0.0000 0.020(

In line with the problem definition, the test sétse 1,000 is also generated from
the same multivariate normal distribution. Pseuddec of the algorithm that

considers the input distribution is shown in Fig8ge

1. R is the initial reference set of sizen, m is the number of queries,L is the
learner, p is the pool sizel is the unlabeled set of instances

2. for i=1, 2, ..mdo

3 trainL usingR
generate random set of instances from théaté&ridomain of sizp for the
pool

5. predict labels of instances in gheol usingL
calculate uncertainty measur@((x) ) for each instance in th@ool

7. calculate average similarityC(xX)) of each instance in the pool to the
instances in séi

8. calculate information content of each instancéépool @(X).Q(x)*)

9. select instance having the maximum informatiort(exm(w* )

10. Ask label (classy of W to the DM

11. R~ RU(W, Y

12. nen+1

13.  end for

Figure 32. Pseudo-code of the algorithm that camsithe input distribution.

123



Performance measures of the experiment and coropanigh the previous results

where input distribution is not considered is pnésd in Table 33. Table 33 shows

that considering input distribution helps classitr@in more efficiently and boosts

the learning process. In all measures, extensidheflgorithm outperforms the

original algorithm (that does not consider inpugtdbution) and random approach.

Table 33. Experimental results of the extension@ndparison with previous

results.
Perf Considering Input Not Considering Input
el\;é);r:jr;ce Distribution Distribution Random
LC M E LC M E
Acc 0.7583 0.6828 0.7519| 0.6081 0.6185 0.6172  0.5840
BCA 0.5754 0.6656 0.5770| 0.5840 0.5947 0.5985  0.5646
Kappa 0.6562 0.5619 0.6481| 0.5003 0.5146 0.5137  0.47p9
MAEO 0.2433 0.3203 0.2530| 0.4143 0.4176 0.4089  0.46p0
MSEO 10.6424 26.1933 11.5733 26.7399 19.0762 23.4776 24.0[141

Figure 33 and Figure 34 show learning curves oktttension of the algorithm for

Acc and MAEO performance measures. These figunesateghat learning curves

of the algorithm considering input distribution sgnificantly steeper than the

random approach. Furthermore, difference betweeraltporithm and the random

approach is statistically significant even at egitases of the learning process.
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Figure 33. Learning curve of Acc (considering theut distribution).
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Figure 34. Learning curve of MAEO (considering thyut distribution).

To sum up, considering input distribution boosteméng process of the algorithm

because line of inquiry is driven so that the athon focuses on the dense regions
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of the input space, hence, producing a model hasirgetter predictive ability.

However, this extension is not applicable to alifprence learning applications,
rather, depends on the problem of interest. If ieatd the problem enables us to
exploit input distribution as in the boot manufastg example, then the algorithm

given in Figure 32 helps us generate superior ptiedimodels.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we consider learning preferencecstine of a DM in an ordinal
classification setting especially when the critenderact, no information is
available about underlying value function and dsttion of the criteria value, and
prior or new data about preferences are diffiauibbtain. Interacting criteria make
the preference learning problem more challengingquéarly when the number of
criteria under consideration is big, due to curseimensionality. Even though
there is a general consent among researchers megane existence of interaction
among criteria in real life decision problems,dtdften ignored in applications.
Accordingly, most of the preference modeling sgee assume preferential
independence among criteria, making modeling psoaetatively easygoing.
Nevertheless, interaction phenomonea is encountgugeé commonly, even in

simpler cases.

Most of the MCDA methodologies utilizing value fuilmns assume an underlying
functional model. According to this assumption, Dddeference structure is
compatible with an adapted functional form, which generally monotonous.
However, a wrong functional form produces estinratlwmas and reduces the
predictive performance of the model. Additionallgyven though a proper

functional (i.e. nonlinear) form is assumed for eeferential system having
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interactions among criteria, parametric models ni@y to address complex

interaction structures in high dimensions.

In order to deal with these problematic issuesrafggence modeling, we propose
using nonparametric SL techniques interactively emubsider preference modeling
for sorting/ordinal classification decision problemSL offers several
nonparametric model-free methodologies that arggodarly superior in terms of
generalization ability and modeling complex dataucures. Finding a vast
application area in Al for human behavioral modglirsL techniques draw a
growing interest among MCDA researchers, as weatiweler, there are several
issues criticized about usage of SL techniques @DM applications. The most
important ones of these critics are their needbfgramount of data and lack of
ability to work interactively (Doumpos & Zopounidi2011). In this study, we
address these criticized issues while exploitimgngt features of SL for learning

DM preference structure in sorting/ordinal classifion setting.

Our modeling strategy is based on obtaining haligidgements from the DM
regarding alternatives and adjusting subsequerdtigms based on the judgements
gathered thus far, in an adaptive fashion. We stdh a small reference set and
employ nonparametric classifiers for model deveigpiln order to conduct
modeling process in an adaptive way, we proposdammg AL techniques. Thus,
guerying process is structured so that as muchinrdbon as possible is obtained
while as less number of questions as possibleasiepi Utilizing AL, we ask the
DM in an interactive way, thereby, the DM is intagd into the model
development process. Consequently, preferencetsteucf the DM is represented

with the trained classifier.

In order to evaluate the proposed approach, we bhamducted an experimental
analysis. In the experiment we have tested theoappr against several sorting

setups, i.e. problems having different number atsts, attributes, questions and
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reference set sizes. Additionally, we have emplof@ma different underlying
value functions that were believed to represenbnitgjof preference structures in
order to mimic the DM. Our experimental analysioyas that the proposed
approach outperforms the “naive” approach whersagient questions are asked
randomly. Based on our findings, we provide algponitc recommendations (type
of classifier, sampling strategy and uncertaintyasuee) for modeling different
underlying value functions in case we have inforamatabout form of the
preference structure. Additionally, we provide ateasion of the algorithm where
we have information about input distribution of tteteria values. For the case
where we have no information about functional faithe preference structure of
the DM, which is usually the case we are faced with recommend using the US
algorithm with Margin uncertainty measure and tiragrRF as the classifier.

Our approach is a novel one because different tmamMCDA sorting approaches
proposed in the literature that aim at sorting tédinumber of alternatives of the
problem under consideration with maximum accuragg, consider preference
modeling as a learning process. To our knowledgs, it the first study in the
MCDA literature that approaches preference modedsi@n evolutionary learning
process. In this respect, this study can be redaaidea pioneering approach. Even
though our work is not comparable with MCDA sortingethodologies, our
trained model offers a sorting tool, as well. Thwreour proposed approach also
addresses the need for model-free sorting methgekslothat are capable of

modeling interactions while implemented interadiwsith the DM.

Our main objective is to develop a predictive matthelt will be used to classify
unseen instances with high accuracy. At the endheflearning process, our
approach provides a black-box model where the mpdedluces outputs (class
predictions) for a given set of criteria/attributalues. In this context, produced
model can be used as an aide for optimization @m@pavhere criteria/attribute
regions of high preference can be found by perfoga grid search. Developed
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models can be used in various fields such as gualigineering and marketing, as
well as many others that need robust ordinal diassi modeling preference
structure of the DM (Doumpos & Zopounidis, 2002)iththese properties, our
approach can be compared with those approachesodeden the ACA because
similar to our approach, ACA aims to develop rohusdictive models that learns
efficiently via questionnaires that are specifigatructured to accelerate learning
process. We have not conducted an evaluation tgamrour study with those of
ACA, however, it is our intention to perform suah @valuation as a future work.
Nevertheless, we expect our proposed approach tfgerdorm methodologies of
ACA since ACA methodologies are not capable of niadanteracting attributes
(Rao, 2014).

There are three subjects that we consider as futtogk. One of them is
developing a “starting strategy”. As we explain $ection 3.2, we perform a
stratified random sampling at the beginning of pinecess in order to generate an
initial reference set. Samples from each stratuntl@ss) are generated randomly.
Including at least one sample from each stratuassential for classifiers because
they recognize number of classes of the problerh végard to examples in the
training set. On the other hand, there may be iaddit information regarding
criteria domain based on the problem under congider. In quality engineering,
for instance, the DM may define upper or lower gpEation limits on the criteria
(or attribute) domain that will help us localizes$-separating boundaries. Asking
initial questions in the vicinity of these boundgrimay help accelerate the initial

learning process.

Another potential area of improvement is developmeh new uncertainty
measures for the ordinal classification problem.aMees proposed in the
literature are developed for nominal classificatigmoblem, hence, they do not
consider additional information embedded in their@idstructure of the data.
Although we have developed measures of that serexalained in Section 3.3,
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those measures have not provided better resulis.niight be partially due to the
fact that, classifiers we use in the study are mahglassifiers and we make them
exploit ordinal structure of the data with Frankdadall (2001) approach. The
main problem with this approach is that generatestgyior probabilities do not
add up to one. Uncertainty measures consider paspgobabilities for measuring
uncertainty, therefore, they suffer from this pndpeof Frank and Hall (2001).
Even though there are special algorithms for olditessification, our trials have
shown that they generally failed with a small numbé training data. That is
another reason why we prefer using SVM and RF as learners and made them
exploit ordinal information with Frank and Hall @D) approach. Consequently,
special algorithms and uncertainty measures degdldpr ordinal classification
may further improve performance of the proposed@ggh.

Yet another future work we consider is to developveb interface for the

algorithm where the DM is interacted via the irsed and information about the
learning process is provided such as rate of lagymrediction performance of the
learner at that point, etc. Thus, the DM would ®rimed about the progress of
the learning process and consequences of termgnéti@ model development

process at a particular stage.
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APPENDIX A

DETAILED PERFORMANCE MEASURE RESULTS OF THE
ALGORITHMS ACROSS ALL FACTORS CONSIDERED

Table A.1 Detailed Acc results (Uncertainty Samg)in

. of ';ZI U”\‘jgm“g ‘o ‘o Uncertainty Sampling card | Rand
Queries Size Function attr.  class. LC M E RF SVM
RF SYM RF SVM RF SVM
3 2 | 0919 0948 0914 0949 0918 0.945| 0.887 0.90(
Linear 3 5 | 0616 0734 0626 0722 0569 0786 0413 0.698
6 2 | 0852 0851 0857 0839 0844 0841 081% 0.80p
6 5 | 0396 0470 0473 0497 0.397 04B1 0479 0476
3 2 | 0912 0946 0909 0.948 0911 0.942| 0.880 0.906
Muttiplicave | 3 5 | 0585 0.850 0642 0816 0579 0829 061 0.707
6 2 | 0848 0840 0.847 08420852 0.842| 0.809] 0.803
10 6 5 | 0418 0477 0463 0495 0411 05p7 0465 0490
3 2 | 1000 0823 1.000 0835 1.000 0.815| 0.976] 0.895
20 Tehebycheff 3 5 | 0962 0775 0948 0726 0959 0.797 0.894 0.7p0
6 2 | 1000 0811 1.000 0827 1.000 0813 0.9§9 0.7B6
6 5 | 0958 0466 0956 0.489 0944 0476 0.8]5  0.4B0
3 2 | 0943 0822 0944 08250944 0.829| 0.915| 0.896
Complex 3 5 | 0706 0745 0747 0735 0696 0749 0425 0.J12
Nonmonotonic| ¢ 2 | 0877 0846 0885 0842 0880 0841 0847 0.80L
6 5 | 0497 0479 0546 0.490 0.498 0.479 0530 0.451
3 2 | 0923 0958 0932 0960 0925 0.957| 0.891 0.924
20 | Linear 3 5 | 0653 0796 0.682 0772 0.637 0.78¢ 0.6% 0.745
6 2 | 0867 0867 0871 0864 0863 0852 0833 0.$40
6 5 | 0428 0515 0492 0.535 0.417 0.509] 0.490  0.52¢
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Table A.1 (continued).

Ref Underlying Uncertainty Sampling
Qje?ifes ;ié FXr?cI:Ltji?)n :tt(:.f cTaZfs. LC M E RF?IQd gwj
RF SYM RF SVM RF SVM
3 2 | 0917 0960 0917 0958 0919 095 0.84 0943
Mutiplicaive | 3 5 | 0634 0869 0.678 0.840 0620 0855 0.662 0748
6 2 | 0861 0868 0859 0870 0.8640.871| 0.830 | 0.839
6 5 | 0458 0562 0496 0563 0444 0553 0402 0532
3 2 | 1.000 0.897 1.000 0.893 1.000 0.894 0.98) 091k
%0 30 | Tehebycheft 3 5 | 0976 0798 0976 0774 0970 08l 0938 0.7p3
6 2 | 1.000 0851 1.000 0.848 1.000 0.849 0917 0.8[7
6 5 | 0981 0521 0976 0521 0967 0543 0.935  0.5p0
3 2 | 0949 0897 0950 0.901 00948 0.891 0917 0.92]
Complex 3 5 | 0727 0794 0762 0762 0737 0774 078 0.792
Nonmonotonic ¢ 2 | 0895 0871 0895 0.870 0892 0.864 0865 0.83f
6 5 | 0529 0517 0555 0517 0515 056 0444 0493
3 2 | 0958 0985 00960 0.984 0956 0098 0928 0942
Linear 3 5 | 0699 0.882 0730 0.854 0.669 0.86% 0720 0.8¢9
6 2 | 0913 0907 0914 0909 0914 0904 0870 0.87p
6 5 | 0.395 0.623 0530 0.624 0377 0.6p8 0427 0.18
3 2 | 0952 0983 00951 0.983 0.9480.984 | 0.900 | 0.942
Multiplcative | 2 5 | 0665 0914 0715 0.904 0625 090 0708 0.816
6 2 | 0904 0896 0894 0.904 0896 0.902| 0.868 0.878
1 6 5 | 0420 0.633 0543 0.629 0.4150.641 | 0.548 | 0.612
3 2 | 1000 0885 1.000 0.887 1.000 0.878| 0.992| 0.942
Tohebychet 3 5 | 0999 0.866 0.999 0.864 0998 0.85] 0960 0.81
6 2 | 1.000 0894 1.000 0.894 1.000 0.896| 0.989| 0.857
6 5 | 0999 0628 00999 0.632 0998 0.643 0.9%7 0.5p4
3 2 | 0965 0864 0964 0856 0963 0859 09438 0.945
100 ﬁg?mpfﬁommc 3 5 | 0775 0.858 0.817 0852 0769 085 0801 0.8(¢2
6 2 | 0916 0908 0923 0908 0919 0904 0.89] 0.87h
6 5 | 0524 0.608 0612 0.619 0.484 0.617] 0.598  0.584
3 2 | 0956 0986 0958 0.986 00958 0.984| 0.923 0.949
Linear 3 5 | 0722 0886 0751 0876 0714 088 073 0812
6 2 | 0914 0911 0912 09130915 0.913| 0.887| 0.887
6 5 | 0412 0642 0538 0.660 0.387 0.646] 0.532  0.62(
3 2 | 0953 0986 0.954 0985 0951 0984 09165 0948
50 | mutipicative | 2 5 | 0697 0911 0738 0.913 0676 0.905| 0.716  0.805
6 2 | 0906 0911 0901 0911 0.9010.913 | 0.867 | 0.888
6 5 | 0453 0.642 0565 0.656 0444 0.653 0457 0.630
3 2 | 1.000 0936 1.000 0.939 1.000 0.934| 0.988| 0.940
Tehebychet 3 5 | 0999 0.877 0.999 0.870 0.999 0.867 0.96% 0.82h
6 2 | 1.000 0899 1.000 0.902 1.000 0.898 | 0.990| 0.868
6 5 | 0999 0652 0999 0.655 0.999 0.693 0.971 0.6p2
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Table A.1 (continued).

#O-f ';ZI U”\‘jgm“g ‘o ‘o Uncertainty Sampling card | Rand
Queries Size Function attr.  class. LC M E RF SVM
RF SYM RF SVM RF SVM
3 2 | 0963 0912 0965 0919 0965 0915 0939 0.946
100 2 (N:ngnglc?:otonic 3 5 | 0793 0871 0.831 0.864 0.7950.874 | 0.821 | 0.812 _
6 2 | 0920 0915 0926 0915 0918 0914 0.89% 0.88p
6 5 | 0541 0607 0629 0618 0527 0.6[3 0.413 0.597
Table A.2 Detailed Acc results (Query By Bagging).
#of ';ZI Un\cjglr:jyeing # of # of Quety By Bagaing Rand | Rand
Queries Size Function attr.  class. LC M E RF SVM
RF SYM RF SVM RF SVM
3 2 | 0921 0933 0917 0937 0915 0944 0487 0.900
Linear 3 5 | 0573 0742 0617 0.725 0.548 0.73r 0.618 0.648
6 2 | 0849 0806 0.847 0804 0844 0.8p5 0415 0.805
6 5 | 0392 0450 0.477 0510 0.399 0.424] 0479 0.476
3 2 | 0910 0943 0903 0942 0910 0947 0480 0.906
Muliplicative 3 5 | 0578 0768 0.630 0.753 0558 0.7p2 0.410 0.f07
6 2 | 0843 0775 0.840 0806 0.844 076 0409 0.$03
10 6 5 | 0414 0486 0467 0519 0.424 0.506] 0.465  0.49(
3 2 | 0999 0928 0999 0926 1.000 09p9 0976 0.$95
Tehebycheft 3 5 | 0955 0768 0.937 0.729 0949 079 0.494 0.J00
6 2 | 0996 0795 0999 0817 0999 07p9 0969 0.f86
I~ 6 5 | 0935 0456 0940 0.452 0.916 0.4B0 0.475  0.480
3 2 | 0941 0940 0942 0939 0938 0985 0915 0.$96
Complex 3 5 | 0694 0743 0742 0.734 0.6940.755| 0.725 | 0.712
Nonmonotonic| ¢ 2 | 0875 0809 0875 0811 0860 0.8p0 0847 0.801
6 5 | 0496 0473 0530 0.470 0.484 0.4h1 0430 0.451
3 2 | 0928 0954 0931 0954 0926 0955 0491 0924
Linear 3 5 | 0637 0793 0671 0767 0625 0.7p3 0455 0.J25
6 2 | 0863 0838 0869 08420871 0.844| 0.833| 0.840
30 6 5 | 0418 0509 0485 0529 0419 04p7 0490 0.529
3 2 | 0920 0953 0918 0955 0917 09F6 0491 0.923
Multiplicative 3 5 | 0622 0779 0660 0775 0604 07p1 0462 0.J28
6 2 | 0862 0844 0857 0841 0854 0854 0430 0.$39
6 5 | 0460 0555 0500 0.550 0.4450.568 | 0.502 | 0.532

143



Table A.2 (continued).

# of Ref Underlying # of # of Query By Bagding Rand | Rand
Queries ;ié FXr?cI:Ltji?)n attr.  class. LC M E RF SVM
RF SYM RF SVM RF SVM
3 2 | 1000 0941 1000 0938 1000 0.9k0 09480 0.914
Tehebycheft 3 5 | 0972 0792 0970 0777 0967 07p7 09428 0.53
6 2 | 1000 080 1000 08361000 0813| 0.977] 0817
20 20 6 5 | 0973 0503 0969 0527 0960 0510 09425 0520
3 2 | 0945 0948 0947 0945 0947 o09h8 09417 0921
Complex 3 5 | 0741 0776 0765 0762 0745 0.784 0458 0.]52
Nonmonotonic ¢ 2 | 0877 0842 0887 0861 0885 0848 0465 0.§37
6 5 | 0532 0522 0561 0523 0529 053d 0544  0.498
3 2 | 0957 0979 0959 0982 0955 0.9B2 09428 0.942
Linear 3 5 | 0675 0881 0720 0849 0662 0.8p4 0420 0.309
6 2 | 0006 0894 0902 0890 0900 0.8p4 0470 0.$79
6 5 | 0379 0632 0517 0633 0347 0615 0527 0.614
3 2 | 0049 0981 0948 0980 0945 o0.9F7 0409 0.942
vutiplcative | 2 5 | 0647 0872 0720 0859 0611 083 0403 0.316
6 2 | 0891 0891 0897 0892 0896 084 0468 0.$78
1 6 5 | 0430 0612 0535 0620 0426 0641 0948 0.612
3 2 | 1.000 0967 1.000 0.968 1.000 0.964| 0.992| 0.942
Tehebycheft 3 5 | 0999 0865 0998 0861 0994 0857 09460 0.311
6 2 | 1.000 0875 1000 0882 1.000 0.869| 0.989| 0.857
6 5 | 0998 0618 0998 0618 0993 0610 0457 0594
3 2 | 0968 0960 0965 0958 0966 0957 0.938 0.945
Complex 3 5 | 0759 0858 0823 0851 0752 0855 0401 0.02
Nonmonotonic (¢ 2 | 0012 0890 0915 0896 0912 08p5 0491 0.374
100 6 5 | 0499 0585 0608 0606 0482 0.6p9 0498 0584
3 2 | 0957 0980 0958 0983 0959 0.9B1 09423 0.949
Linear 3 5 | 0706 o088 0742 0867 0697 081 0432 0.312
6 2 | 0012 0896 0908 0895 0912 08p9 0487 0.387
6 5 | 0400 0641 0542 0638 0374 0649 0432  0.620
3 2 | 0955 0980 0956 0983 0953 0.9B1 09415 0.948
vutiplcative | 2 5 | 0685 0873 0729 0871 0655 085 07416 0.I05
6 2 | 0901 0895 0901 0895 0907 o0.8p4 0467 0.388
% 6 5 | 0462 0659 0544 0644 0.4500.669 | 0.557 | 0.630
3 2 | 1.000 0970 1000 0972 1.000 0.971| 0.988] 0.940
Tehebycheft 3 5 | 0099 0876 0999 0874 0996 0859 09465 0.$24
6 2 | 1.000 0879 1.000 0.889 1.000 0.882| 0.990| 0.868
6 5 | 0998 0643 0998 0638 0996 0.652 0471 0.22
3 2 | 0967 0.964 0970 0.962 00966 0969 0939 0.94p
Complex 3 5 | 0776 0870 o083 0857 0788 0857 0421 0312
Nonmonotonic| ¢ 2 | 0917 0900 0925 0901 0918 0.8p9 0495 0.§85
6 5 | 0536 0.614 0620 0.617 0.5200.635 | 0.613 0.597T
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Table A.3 Detailed BCA results (Uncertainty Samgjin

Ref Underlying Uncertainty Sampling
Qfe?ifes ;ié FXr?clzltJi?) n :tt?.f cTaZfs. Lc M E Rs;d EW
RF SVYM RF SVM RF SVM
3 2 0.919 0.948 0.914 0.949 0.919 0.945| 0.887 0.90
Linear 3 5 0.608 0.735 0.616 0.716 0565 0.730) 0.596 0.685
6 2 0.852 0.851 0.857 0.838 0.844 0.841 0.81 0.806
6 5 0.362 0.423 0.419 0.456 0.361 0.4p6 0.422 0.J45
3 2 0.912 0.946 0.909 0.948 0.911 0.942| 0.880 0.90
Multiplicative 3 5 0.504 0.794 0.547 0.747 0.5040.801 | 0.512 | 0.616
6 2 0.848 0.840 0.847 0.8420.852 0.842| 0.809| 0.803
10 6 5 0.391 0.436 0.438 0.466 0.383 0.4B2 0436 0.J65
3 2 1.000 0.829 1.000 0.840 1.000 0.820| 0.975| 0.895
Tchebycheft 3 5 0.965 0764 0.952 0.706 0.954 0.792 0.8¢7 0.685
6 2 1.000 0.811 1.000 0.826 1.000 0.814| 0.968| 0.78§
6 5 0.956 0.458 0.955 0.478 0.938 0.449 0.861 0.463
3 2 0.944 0.801 0.944 0.8060.945 0.809| 0.916| 0.895
Complex 3 5 0.688 0.730 0.727 0.709 0.674 0.781 0.409 0.p76
Nonmonotonic [ g 2 0.872 0.844 0.883 0.839 0.876 0.839 0.84 0.79
30 6 5 0.464 0.458 0.519 0.464 0.476 0.463 0.49 0.426
3 2 0.923 0.958 0.932 0.960 0.925 0.957| 0.891 0.92
Linear 3 5 0.645 0.797 0.668 0.764 0.628 0.78 0.635 0.712
6 2 0.867 0.866 0.871 0.864 0.863 0.863 0.433 0.p39
6 5 0.381 0.473 0.439 0494 0.371 0.4f1 0432 0489
3 2 0917 0.960 0917 0.958 0919 0.95f 0.8 0.923
Multiplicative 3 5 0.543 0.841 0571 0.792 0.524 0.83 0.5 0.635
6 2 0.861 0.867 0.858 0.870 0.8640.871| 0.830 | 0.838
30 6 5 0.429 0533 0471 0537 0.424 0.5p9 0474 0.p09
3 2 1000 0.899 1.000 0896 1.000 0899 098h 0.9k
Tchebycheff 3 5 0977 0.799 0978 0.763 0.964 0.804 0.91 0.748
6 2 1.000 0.851 1.000 0.847 1.000 0.848 0916 0.816
6 5 0.979 0515 0.975 0510 0.964 0.513 0.913 0.504
3 2 0.949 0.888 0.951 0.892 0.949 0.880 0.91 0.92p
Complex 3 5 0.693 0.787 0.730 0.728 0.705 0.76 0.724  0.703
Nonmonotonic [ g 2 0.893 0.869 0.892 0.868 0.890 0.847 0.8¢1 0.832
6 5 0.494 0.488 0.532 0.493 0.489 0.491 0.52 0.47B
3 2 0958 0.985 0960 0.984 0956 0982 0.920 0.943
Linear 3 5 0.703 0.880 0.724 0.850 0.673 0.869 0.706 0.801
6 2 0.913  0.907 0.914 0.9090.914 0.908| 0.870| 0.879
6 5 0.366 0.576 0.472 0.583 0.343 0.574 0464 0.p72
3 2 0952 0.983 0.951 0.983 0.9480.984 | 0.909 | 0.942
Multiplicative 3 5 0593 0.876 0.636 0.831 0.5520.885| 0.596 | 0.734
6 2 0.904 0.896 0.895 0.904 0.897 0.902| 0.868 0.87
100 10 6 5 0.389 0.614 0511 0606 0.383 0.6B1 0414 0.p95
3 2 1.000 0.888 1.000 0.890 1.000 0.882| 0.992| 0.942
Tchebycheft 3 5 0.999 0.860 0.999 0.850 0.998 0.851 0.94 0.80p
6 2 1.000 0.894 1.000 0.894 1.000 0.895| 0.989| 0.857
6 5 0.999 0621 0999 0.618 0998 0.629 0.95 0.577
3 2 0966 0.847 0.965 0.837 0.965 0.8¢1 09438 0.p45
Complex 3 5 0.757 0.851 0.792 0.834 0.751 0.8p2 0181 0.J76
Nonmonotonic [ g 2 0915 0.906 0.922 0.906 0.918 0.90§ 0.89 0.871L
6 5 0.479 0584 0.582 0.595 0.4430.599 | 0.558 | 0.563
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Table A.3 (continued).

# of I;z{ Un\(j:lrlljyeing # of # of Uncertainty Sampling Rand | Rand
Queries Size Function attr. class. Lc M E RF SVM
RF SVM RF  SVM RF  SVM
3 2 0.956 0.986 0.958 0.986 0.957 0.984| 0.923] 0.94
Linear 3 5 0.726 0.884 0.742 0.873 0.716 0.8B1 0.418 0.p03
6 2 0914 0.911 0912 0.9130.915 0.913| 0.887| 0.88§
6 5 0.377 0.593 0.485 0.617 0.351 0.595| 0.465 0.57
3 2 0952 0.986 0.954 0.985 0952 0.984 0.916 0.948
Multiplicative 3 5 0.625 0.874 0.644 0.857 0.5960.880 | 0.609 | 0.739
6 2 0.906 0.911 0.901 0.911 0.9010.913 | 0.867 | 0.888
100 30 6 5 0.416 0.628 0.533 0.634 0.408 0.6B9 0.430 0.p08
3 2 1.000 0.937 1.000 0.941 1.000 0.935| 0.989]| 0.940
Tchebycheft 3 5 0999 0.876 0.999 0.865 0.999 0.864 0.95 0.81B
6 2 1.000 0.899 1.000 0.902 1.000 0.898| 0.990| 0.867]
6 5 0.999 0.644 0.999 0.640 0.999 0.643 0.96 0.6017
3 2 0.964 0.902 0966 0.910 0.966 0.9p6 0437 0.p45
Complex 3 5 0.764 0.869 0.797 0.848 0.7730.872| 0.794 | 0.783
Nonmonotonic | g 2 0919 0.913 0924 0.914 0.917 0913 0492 0.p83
6 5 0.496 0579 0595 0.594 0.489 05p0 0484 0.p77
Table A.4 Detailed BCA results (Query By Bagging).
# of gz{ Un\cjglr:jyeing # of # of Query By Bagging Rand | Rand
Queries Size Function attr. class. LC M E RF SVM
RF  SVM RF SYM RF SVM
3 2 0922 0.933 0917 0937 0.914 09p4 0.487 0.poo
Linear 3 5 0567 0.735 0.609 0.715 0.546 0.7p8 0.496 0.p85
6 2 0.849 0.806 0.846 0.805 0.844 0.8p5 0.415 0.B05
6 5 0.361 0.414 0.423 0.463 0.369 0.394] 0.422] 0.44
3 2 0910 0.943 0.903 0942 0.910 0.9p7 0.480 0.po6
Muttiplicative 3 5 0500 0.680 0.531 0.671 0.488 0.6p7 0812 0.p16
6 2 0.843 0.776 0.841 0.806 0.844 0.7/5 0.409 0.p03
10 6 5 0.371 0.447 0.434 0.493 0.383 0.464| 0.43¢ 0.46
3 2 0.999 0.928 0.999 0925 1.000 0.9p9 09475 0.p95
20 Tchebycheft 3 5 0942 0.758 0.925 0711 0.932 0767 0.467 0.p85
6 2 0996 0.792 0.999 0.815 0.999 0.7p8 09468 0.j86
6 5 0930 0.451 0.935 0.445 0.910 0.4B2 0.461 0.J63
3 2 0941 0.939 0.942 0939 0.939 0985 0916 0.p95
Complex 3 5 0.669 0.727 0.719 0.702 0.6650.735| 0.709 | 0.676
Nonmonotonic| g 2 0.873 0.805 0.875 0.806 0.860 0.86 0.447 0.J92
6 5 0.452 0.440 0.496 0.447 0.449 0.41 0498 0J25
3 2 0928 0.954 0.931 0954 0.926 09p5 0.491 0.p24
30 | Linear 3 5 0.627 0.786 0.653 0.756 0.616 0.7B3 0.435 0.J12
6 2 0.863 0.838 0.870 0.8420.871 0.844| 0.833| 0.839
6 5 0.381 0.484 0.432 0.495 0.379 0.465] 0.432] 0.48
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Table A.4 (continued).

# of Ref Underlying # of # of Query By Bagging Rand | Rand
Queries ;ié FXr?clzltJi?Jn attr. class. Lc M E RF SVM
RF SVYM RF SVM RF  SVM
3 2 0.920 0.953 0918 0.956 0.917 096 0491 0.p23
Multiplicative 3 5 0.538 0.703 0565 0.693 0.520 0.7p1 0.448 035
6 2 0.862 0.843 0857 0.840 0.854 08p4 0430 0.B38
6 5 0.418 0.533 0.474 0.529 0.4130.545 | 0.474 | 0.509
3 2 1.000 0941 1.000 0.938 1.000 0.940 0.980 0.p14
- 30 | Tchebycheft 3 5 0.968 0.788 0966 0.770 0.959 0.7p6 0.412 0.f48
6 2 1.000 0.829 1.000 0.836 1.000 0.81 0.976 0.B16
6 5 0.971 0.499 0967 0.512 0.959 o.sts 0.9413  0.p04
3 2 0944 0948 0948 0945 0947 o099 0415 o0p20
Complex 3 5 0.711 0.753 0734 0.725 0.711 0.7f0 0.424 0.Jo3
Nonmonotonic| g 2 0.875 0.838 0.885 0.859 0.882 0.843 0461 0.B32
6 5 0.504 0.496 0.530 0.501 0.496 0512 0.426 0.ji78
3 2 0.957 0.979 0959 0.982 0.955 092 09429 0.p43
Linear 3 5 0.678 0.880 0723 0.844 0.665 0.8p5 0.405 0.po1
6 2 0.906 0.894 0902 0.890 0.900 0.8p4 0.470 0.p79
6 5 0.358 0.579 0.469 0.592 0.329 0.564| 0.464 0.57
3 2 0.949 0.981 0948 0.981 0.945 0.9F7 0409 0.p42
Muttiplicative 3 5 0.582 0.876 0630 0.819 0.547 0.8p9 0.496 034
6 2 0.891 0.891 0897 0.892 0.896 0.8B4 0468 0.77
1 6 5 0.392 0.595 0.498 0.607 0.3750.631 | 0.514 | 0.595
3 2 1.000 0.968 1.000 0.968 1.000 0.964 | 0.992| 0.942
Tchebycheff 3 5 0.998 0.861 0998 0.851 0.993 0.848 0.446 0.Boo
6 2 1.000 0.875 1.000 0.882 1.000 0.870| 0.989| 0.857
6 5 0.997 0.613 0998 0.605 0.992 06p7 0952 0p77
3 2 0.968 0961 0.965 0.959 0966 0.999 0.938 0.5
Complex 3 5 0.743 0.857 0.803 0.833 0.737 0.85 0.78L  0.716
Nonmonotonic| g 2 0.911 0.890 0914 0.894 0.913 0.8p3 0491 0.p71
100 6 5 0.448 0.547 0561 0.582 0.434 055 0.458 0.p63
3 2 0.957 0.980 0958 0.983 0.959 091 0923 0.p49
Linear 3 5 0.709 0.885 0.736 0.862 0.701 0.88 0.718  0.803
6 2 0.912 0.896 0909 0.895 0.912 0.8p9 0.487 0.Bs6
6 5 0.372 0.596 0.484 0.599 0.345 0.5p9 0.465 076
3 2 0.955 0.980 0956 0.983 0.953 091 09415 0.p4s
Multiplicative 3 5 0.607 0.880 0639 0.827 0.582 0.8f0 0.409 039
6 2 0.901 0.895 0901 0.895 0.907 0.8p4 0.467 0.pss
30 6 5 0.420 0.653 0.516 0.622 0.3960.658 | 0.530 | 0.608
3 2 1.000 0.970 1.000 0.972 1.000 0.971| 0.989| 0.940
Tchebycheft 3 5 0.999 0.876 0999 0.867 0.996 0.8p4 0956 0.B13
6 2 1.000 0.879 1.000 0.889 1.000 0.882| 0.990| 0.867
6 5 0.998 0.638 0998 0.625 0.996 0645 0468 0.p07
3 2 0.968 0.965 0.970 0.964 0.966 0.964 0.93 0.945
Complex 3 5 0.761 0.871 0806 0.837 0.774 0.8p8 0.194 0.[83
Nonmonotonic | g 2 0.917 0.898 0.924 0.899 0.919 0.899 0.89 0.883
6 5 0.491 0.586 0.587 0.591 0.4770.606 | 0.584 | 0.577
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Table A.5 Detailed Kappa results (Uncertainty Sangpl

# of F;ZI Un\(jzlrllﬁng # of # of Uncertainty Sampling Rand | Rand
Queries Size Eunction attr. class. Lc M E RF SVM
RF SVYM RF SVM RF  SVM
3 2 0.838 0.897 0.828 0.897 0.836 0.891] 0.773 0.80
Linear 3 5 0.521 0.668 0532 0.652 0.463 0.6f0 0414 021
6 2 0.704 0.702 0.713 0.677 0.687 0.681] 0.62 0.61p
6 5 0.234 0.322 0.322 0.362 0.231 0.2B2 0.429 0.37
3 2 0.824 0.892 0.818 0.896 0.822 0.884| 0.759] 0.81
Multiplicative 3 5 0.461 0.777 0.531 0.724 0.456 0.74 0.487 0.614
6 2 0.696 0.681 0.693 0.6840.704 0.684| 0.619| 0.606]
10 6 5 0.244 0.313 0.304 0.342 0.236 0.3p7 0.303 0.B38
3 2 1.000 0.651 1.000 0.673 1.000 0.633| 0.951| 0.790
Tehebycheft 3 5 0.951 0709 0.932 0645 0947 0.6946 0.8¢3 0.613
6 2 1.000 0.623 0.999 0.652 1.000 0.647 0.937 0.571
6 5 0.947 0.329 0.945 0.358 0929 0.342 0.842 0.343
3 2 0.884 0.622 0.886 0.6290.887 0.636| 0.828| 0.789
Complex 3 5 0.621 0.670 0674 0.657 0.607 065 0.447 0.p26
Nonmonotonic| g 2 0.749 0.688 0.766 0.680 0.756 0.67¢ 0.69 0.590
30 6 5 0.357 0.337 0.421 0.350 0.361 0.34q 0.40 0.299
3 2 0.846 0.916 0.864 0.920 0.849 0.914| 0.782] 0.84
Linear 3 5 0.567 0.746 0.602 0.715 0547 0.732 0.567 0.6%5
6 2 0.734 0.733 0742 0.728 0.726 0.7p5 0.466 0.p79
6 5 0.267 0.384 0.349 0.408 0.252 0.377] 0.343 0.40
3 2 0.834 0.920 0.834 0915 0.838 0.914 0.781 0.846
Multiplicative 3 5 0.520 0.805 0.573 0.759 0501 0.78] 0.552 0.640
6 2 0.722 0.735 0717 0.740 0.7280.742 | 0.660 | 0.676
30 6 5 0.296 0.429 0.345 0.433 0.284 0.4p1 0352 0.9
3 2 1.000 0.794 1.000 0.787 1.000 0.78q 0.95 0.82
Tchebycheff 3 5 0.969 0740 0.969 0708 0961 0.799 0.9¢7 0.682
6 2 1.000 0.702 0.999 0.695 1.000 0.697 0.9%3 0.683
6 5 0.975 0.398 0.970 0.397 0958 0.399 0.9¢5 0.394
3 2 0.896 0.785 0.898 0.793 0.895 0.774 0.83 0.84p
Complex 3 5 0.643 0.734 0.689 0.691 0657 0.708 0.684 0.6]6
Nonmonotonic| g 2 0.787 0.739 0.787 0.736 0.781 0.73¢ 0.72 0.668
6 5 0.396 0.382 0.434 0.384 0.382 0.3B2 0.422 0.B58
3 2 0.915 0.969 0.919 0.967 0911 0.96 0.855 0.885
Linear 3 5 0.626 0.852 0.662 0.817 0589 0.83 0.648  0.760
6 2 0.825 0.814 0.827 0.8180.827 0.816| 0.740| 0.757]
6 5 0.235 0.521 0.397 0.522 0.207 0.5p4 0.388 012
3 2 0.905 0.967 0.902 0.965 0.8970.968 | 0.817 | 0.884
Multiplicative 3 5 0.566 0.870 0.626 0.855 0517 0.854 0.60p 0.7%5
6 2 0.807 0.792 0.788 0.808 0.792 0.804| 0.736] 0.75
100 10 6 5 0.245 0.526 0.403 0.519 0.240 0.5B9 0.409 0.j99
3 2 1.000 0.771 1.000 0.776 1.000 0.759| 0.984| 0.883
Tchebycheft 3 5 0.999 0.827 0.999 0.824 0.997 0.81q 0.94 0.756
6 2 1.000 0.787 1.000 0.788 1.000 0.791| 0.978| 0.713
6 5 0.999 0533 0.999 0.537 0.997 0.551 0.94 0.488
3 2 0.930 0.712 0928 0.693 0.926 0.7p1 0.474 0.B87
Complex 3 5 0.710 0.816 0.763 0.808 0.701 0.81] 0.748 0.743
Nonmonotonic 6 2 0.831 0.813 0.844 0.813 0.837 0.809 0.78 0.744
6 5 0.386 0.500 0504 0.515 0.336 0.514 0.48AT 0.47
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Table A.5 (continued).

Ref Underlying Uncertainty Sampling
Qﬁe?ifes ;ié FXr?clzltJi?) n :tt?.f cTaZfs. Lc M E ng;d gw
RF  SVM RF  SVM RF  SVM
3 2 0.911 0.971 0917 0.972 0.915 0.969| 0.846 0.89]
Linear 3 5 0.654 0.858 0.688 0.845 0.644 0.85 0.668 0.7¢4
6 2 0.828 0.823 0.825 0.8250.829 0.825| 0.774| 0.773
6 5 0.253 0.542 0.408 0.566 0.219 0.547| 0.394 0.51
3 2 0.905 0.971 0.907 0.971 0.903 0.96 0.831  0.896
Multiplicative 3 5 0.606 0.866 0.653 0.868 0.579 0.857| 0.623] 0.74
6 2 0.812 0.822 0.801 0.823 0.8020.826 | 0.735 | 0.776
100 30 6 5 0.285 0.540 0.432 0.555 0.274 0.5p4 0422 023
3 2 1.000 0.872 1.000 0.879 1.000 0.867 | 0.977| 0.880
Tchebycheft 3 5 0.999 0.842 0.999 0.833 0.998 0.829 0954 0.778
6 2 1.000 0.798 1.000 0.804 1.000 0.796| 0.980| 0.735
6 5 0.999 0563 0.999 0.566 0.998 0.563 0.964 0.5p3
3 2 0.925 0.816 0929 0.831 0.929 0.8p3 0476 0.pB89
Complex 3 5 0.731 0.834 0.779 0.824 0.7340.837 | 0.768 | 0.756
Nonmonotonic| g 2 0.838 0.827 0.849 0.828 0.833 0.824 0.787 0.7
6 5 0.409 0.499 0525 0.514 0.393 0.5p7 0406 0.189
Table A.6 Detailed Kappa results (Query By Bagging)
# of Ref Underlying # of # of Query By Bagging Rand | Rand
Queries ;ig FXr?cI:Ltji?)n attr. class. Lc M E RF SVM
RF  SVM RF  SVM RF  SVM
3 2 0.843 0.866 0.835 0.874 0.829 0.8B7 0.473 0.B00
Linear 3 5 0.467 0.677 0.522 0.656 0.438 0.67 0514 0.621
6 2 0.698 0.611 0.693 0.609 0.688 0610 0.429 0.p10
6 5 0.229 0.299 0.328 0.374 0.239 0.269] 0.329] 0.33]
3 2 0.819 0.886 0.806 0.885 0.819 0.8p4 0159 0.p12
Multiplicative 3 5 0.454 0.694 0514 0.675 0.430 06B6 0487 0.p14
6 2 0.686 0.551 0.680 0.612 0.688 0.5p1 0.419 0.p06
10 6 5 0.230 0.323 0.301 0.373 0.244 0.350] 0.303 0.33%
3 2 0.998 0.855 0.998 0.851 0.999 0.8p8 0951 0.f90
20 Tchebycheft 3 5 0.942 0.701 0919 0.649 0.934 06B8 0463 0.13
6 2 0.993 0.584 0998 0.631 0.997 05p6 0937 071
6 5 0.918 0.318 0924 0.311 0.894 0.2B8 0.442 0.p43
3 2 0.881 0.877 0.882 0.876 0.875 0.8p7 0428 0.f89
Complex 3 5 0.604 0.667 0.667 0.654 0.6030.684 | 0.647 | 0.626
Nonmonotonic 6 2 0.746 0.613 0748 0.614 0.717 0.6B3 0.492 0.590
6 5 0.351 0.322 0.399 0.325 0.341 0.2B5 0.400 0.p99
3 2 0.855 0.907 0.861 0.909 0.851 0.9p9 0.482 0.p49
30 | Linear 3 5 0.546 0.740 0587 0.708 0.532 0760 0467 0.p55
6 2 0.726 0.677 0.739 0.6830.743 0.688| 0.666| 0.679
6 5 0.259 0.382 0.340 0.404 0.261 0.3p5 0.343 0.i02
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Table A.6 (continued).

Query By Bagging

# of F;ZI Un\(jzlrllﬁng # of # of Rand | Rand
Queries Size Eunction attr. class. Lc M E RF SVM
RF SVYM RF SVM RF  SVM
3 2 0.840 0.907 0835 0.911 0.833 0912 0.481 0.p46
Multiplicative 3 5 0.509 0.709 0554 0.703 0.487 0.7p3 0.452 0.p40
6 2 0.723 0.686 0713 0.681 0.708 0.7p9 0.460 0.p76
6 5 0.289 0.425 0.351 0.419 0.2780.439 | 0.352 | 0.394
3 2 0.999 0.881 0999 0.876 0.999 0879 0959 0.p27
. 30 | Tchebycheft 3 5 0.964 0.732 0961 0.712 0.957 0788 0407 082
6 2 0.999 0.658 1.000 0.6711.000 0.622| 0.953| 0.633
6 5 0.966 0.377 0961 0.403 0.950 0.3B5 0.405 0.B94
3 2 0.887 0.893 0.893 0.888 0.891 0.8p5 0.431 0.p40
Complex 3 5 0.663 0.708 0.695 0.690 0.668 0.7p0 0.484 0.p76
Nonmonotonic| g 2 0.751 0.678 0771 0.719 0.767 0.6p0 0.126 0.p68
6 5 0.403 0.391 0.439 0.393 0.398 0.409 0.42 0.358
3 2 0.913 0.957 0918 0.964 0911 094 0456 0.p85
Linear 3 5 0.596 0.852 0661 0.811 0.579 0.830 0.448 0.f60
6 2 0.811 0.789 0.804 0.780 0.801 0.7B7 0.440 0.J57
6 5 0.219 0.528 0.383 0.533 0.180 0.508] 0.388 0.51
3 2 0.899 0.962 0.896 0.961 0.891 09p4 0417 0.ps4
Multiplicative 3 5 0.545 0.835 0632 0.814 0.502 0.8p2 0.406 0.f55
6 2 0.782 0.782 0794 0.784 0.791 0.7p8 0.436 0.J55
10 6 5 0.254 0.498 0.390 0.519 0.2420.539 | 0.409 | 0.499
3 2 1.000 0.935 1.000 0.936 1.000 0.928| 0.984| 0.883
Tchebycheff 3 5 0.998 0.826 0998 0.821 0.992 0815 09448 0.f55
6 2 1.000 0.749 1.000 0.763 1.000 0.739| 0.978| 0.713
6 5 0.997 0.521 0997 0.518 0.991 O05[11 09445 0.}88
3 2 0.934 0919 0.928 0915 0930 0.913 0.8]4 0.887
Complex 3 5 0.688 0.816 0.771 0.807 0.680 0.813 0.143 0.f43
Nonmonotonic| g 2 0.822 0.778 0828 0.789 0.822 0.7B7 0.480 0.f44
100 6 5 0.352 0.467 0.495 0.499 0.330 0.4p9 0.484 0.h71
3 2 0.914 0.960 0916 0.966 0.917 0962 0446 0.p97
Linear 3 5 0.634 0.857 0678 0.833 0.623 0.8p1 0.463 0.f64
6 2 0.823 0.791 0817 0.790 0.824 0.7p8 0.474 0f73
6 5 0.242 0.542 0.412 0.540 0.207 0.5p1 0.394 015
3 2 0.910 0.960 0911 0.966 0.905 0962 0431 0.B96
Muttiplicative 3 5 0.590 0.836 0643 0.830 0.553 0.888 0.423 043
6 2 0.801 0.790 0.802 0.789 0.814 0787 0.435 0.f76
30 6 5 0.293 0.565 0.406 0.540 0.2710.576 | 0.422 | 0.523
3 2 1.000 0.940 1.000 0.944 1.000 0.942| 0.977| 0.880
Tchebycheft 3 5 0.998 0.841 0999 0.838 0.995 082 0954 0F73
6 2 1.000 0.758 1.000 0.778 1.000 0.764| 0.980| 0.735
6 5 0.998 0.551 0.997 0.543 0.995 05p1 0964 023
3 2 0.933 0.926 0.938 0.924 0.931 0929 0.87 0.889
Complex 3 5 0.710 0.832 0786 0.815 0.725 0.8p8 0.168 0.J56
Nonmonotonic 6 2 0.833 0.798 0.848 0.799 0.835 0.7p7 0.487 0.f67
6 5 0.401 0.507 0514 0.512 0.3830.533 | 0.506 | 0.489
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Table A.7 Detailed MAEO results (Uncertainty Samg)i

# of Eg{ Un\(igm/eing # of # of Uneertainty Samping Rand | Rand
Queries Size Function attr. class. LC M E RF SVM
RF SYM RF SYM RF SVM
Linear 3 5 0.412 0.267 0.402 0.285 0.463 0.2p8 0439 0.p14
6 5 0.882 0.724 0.749 0.641 0915 0.774 0.464 0.p91
Muliplicative 3 5 0529 0.150 0.436 0.185 0535 0.17] 0488 0.336
10 6 5 0.728 0.628 0.666 0.592 0.745 0.5p1 0.485 0.501
Tehebycheft 3 5 0.038 0.226 0.053 0279 0.041 0244 0108 0.308
6 5 0.042 0.660 0044 0619 0056 0648 0.131 0.674
Complex 3 5 0.298 0.256 0.263 0.273 0.313 0.2p3 0.487 0.B05
. Nonmonotonic| g 5 0.597 0.625 0.544 0.625 0595 0.640 0.57 0.684
Linear 3 5 0.360 0.204 0.334 0.229 0376 0214 0376 0.285
6 5 0.828 0.598 0.694 0.568 0.860 0.609] 0.734 058
Multplicative 3 5 0.448 0.132 0.388 0.162 0.483 0.14% 0.417 0.302
2 6 5 0.658 0.493 0.616 0.504 0.690 0.5p6 0.429 0.536
Tehebycheft 3 5 0.024 0.202 0.024 0227 0.030 0147 002 0.2p2
6 5 0.019 0546 0.024 0558 0.033 0547 0.0{6 0.584
Complex 3 5 0.283 0.207 0.248 0.243 0273 022] 0.25 0.260
Nonmonotonic| g 5 0544 0564 0.515 0.568 0.574 0554 0.548 0.614
Linear 3 5 0.302 0.118 0.278 0.146 0.333 0.13f 0.287 0.193
6 5 0.837 0.423 0.606 0.420 0.898 0.4B0 0.437 0.#139
Multiplicative 3 5 0.383 0.086 0.322 0.096 0.434 0.098 0.342 0.191
10 6 5 0.645 0.379 0.511 0.393 0.6630.375| 0.525 | 0.426
Tehebycheft 3 5 0.001 0.134 0.001 0.137 0.002 0.144 0.04¢ 0.190
6 5 0.001 0.391 0.001 0.398 0.002 0.37 0.043 0.458
Complex 3 5 0.226 0.142 0.189 0.149 0232 0.147 0.407 0.p02
100 Nonmonotonic| g 5 0.517 0.414 0.432 0.418 0.5710.409 | 0.465 | 0.469
Linear 3 5 0.280 0.114 0.256 0.124 0287 0.11] 0.276 0.189
6 5 0.802 0.396 0.585 0.378 0.862 0.396] 0.627 0.43
o 3 5 0.337 0.089 0.295 0.088 0.368 0.095| 0.325 0.20
Multiplicative
. 6 5 0.603 0.367 0.486 0.361 0.628 0.38 0.422 0.502
Tehebycheft 3 5 0.001 0.123 0.001 0.130 0.001 0.133 0.03% 0.17p
6 5 0.001 0.358 0.001 0.366 0.001 0.358 0.039 0.4p3
Complex 3 5 0211 0129 0.176 0.136 0.2050.126 | 0.186 | 0.192
Nonmonotonic| g 5 0.496 0.414 0414 0415 0518 0.4f1 0448 051
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Table A.8 Detailed MAEO results (Query By Bagging).

# of FSQZI Un\(;zlrllj)gng # of # of Query By Bagging Rand | Rand
Queries Size Function attr. class. LC M E RF SVM
RF SYM RF SVM RF SVM
Linear 3 5 0.455 0.260 0.406 0.280 0.495 0.264 0439 0.3]4
6 5 0.892 0.733 0.740 0.641 0.882 0.786| 0.764 0.69
Multplicative 3 5 0534 0.249 0453 0.266 0565 0252 0488 0.B36
10 6 5 0.721 0.607 0.656 0.563 0.705 0.592| 0.685 0.60
Tehebycheff 3 5 0.045 0.233 0.063 0.276 0.051 0244 0.408 0.po8
6 5 0.065 0.665 0.060 0.679 0.085 0715 0.131 0p74
Complex 3 5 0.314 0.260 0.269 0.274 0.3160.247 | 0.287 | 0.305
20 Nonmonotonic| g 5 0599 0.665 0.555 0.642 0.605 0.7p6 0471 084
Linear 3 5 0.378 0.208 0.345 0.236 0.394 02p7 0.475 0.p85
6 5 0.835 0.603 0.715 0577 0.839 06B1 0434 0.p86
Multiplicative 3 5 0.462 0.233 0407 0.240 0.488 0.2p0 0417 0.p02
30 6 5 0.667 0.502 0.609 0.514 0.6880.486 | 0.629 | 0.536
Tehebycheft 3 5 0.028 0.208 0.030 0.224 0.033 02p3 0.472 0.p52
6 5 0.027 0574 0.031 0554 0.040 052 0476 084
Complex 3 5 0.264 0.225 0.244 0244 0261 02018 0455 0.p60
Nonmonotonic| g 5 0538 0.561 0.516 0.563 0.546 0546 0.448 014
Linear 3 5 0.327 0.119 0.273 0151 0.342 0.1B6 0487 0.93
6 5 0.848 0.427 0.617 0.410 0.899 0.454| 0.637 0.439
Multiplicative 3 5 0.406 0.128 0.312 0142 0451 0.1B7 0.442 o.fo1
10 6 5 0.626 0403 0519 0.395 0.644 03f9 0525 0426
Tehebycheff 3 5 0.001 0.135 0.002 0.139 0.006 0.143 0.040 0.p90
6 5 0.002 0403 0.002 0.414 0.007 048 0.043 0458
Complex 3 5 0.242 0142 0.180 0.149 0.249 0.14% 0.207 0.202
100 Nonmonotonic| g 5 0.542 0.449 0.434 0.430 0568 0.4p6 0.465 0.0169
Linear 3 5 0295 0.114 0.261 0.133 0.305 0.9 0.475 0..89
6 5 0.798 0401 0582 0.399 0.854 0.3P6 0.427 0.430
o 3 5 0.360 0.127 0.304 0.131 0.392 0.1p5 0.425 0.po1
Multiplicative
30 6 5 0594 0.353 0514 0.377 0.6250.344 | 0.522 | 0.402
Tehebycheff 3 5 0.002 0.124 0.001 0.126 0.004 0.1B1 0.435 0.L76
6 5 0.002 0.370 0.002 0.387 0.004 0365 0.029 0423
Complex 3 5 0.224 0.130 0.167 0.143 0213 0.1p3 0.486 0.[92
Nonmonotonic| g 5 0.501 0.407 0.422 0.419 0.5250.392 | 0.448 | 0.451
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Table A.9 Detailed MSEO results (Uncertainty Samg)i

. Uncertainty Sampling
Ref Underlying
# o_f Set Value # of # of Lc M £ Rand Rand
Queries Size Function attr. class. RF SVM
RF SVM RF SVM RF SVM
Linear 3 5 27.609 18.433 23312 15334  39.215  14.473 85p314.711
6 5 100.615  89.272  56.307 42.610 97559  109.418| 55.48  54.070
o 3 5 44.443  6.434 22.988  7.022 43515 857) 28045 13.613
Multiplicative
10 6 5 63.508 56.321 44.986 41469  62.800 45408  56/540.503
3 5 1462 10.829  2.758  14.356 1.067  13.9p1  3.959 .0016
Tchebycheff
6 5 1.304 59.725 1.066 39.633 1896 5311  6.44p 42210
Complex 3 5 16.392 16,901 11.983 12.147  18.474  13.495 63J1713.285
20 Nonmonotonic | ¢ 5 45.855  49.840 32.392 40.101  43.631  50.704 3523 51.131
Linear 3 5 20.744 8449 16.325  8.495  22.963 8.455 17.4032.018
6 5 79.538 43730 43.607 32155 92741  44.469  08JB&31.026
o 3 5 27.089 4.834 17.037 5353  38.424 6.346 18507  11.6p0
Multiplicative
30 6 5 46.831 27.107 40.886 25.441 56.058  30.662] 41.054 32.83p
3 5 0.466 9214  0.617  9.654 0.637 7.4p5 1411 505
Tchebycheff i
6 5 0.179 41.648  0.304 35.766 0.609 39147 2.0p0 31.183
Complex 3 5 14799 8590 10455  9.070  13.010  12.13f 10219  10.160
Nonmonotonic | g 5 38.108 36775 29.112 33.040  38.010  38.401 81p41.061
Linear 3 5 18.815 2793 13.819  3.610  24.481 4476 11.499 9725
6 5 108.532 26.924 37.866 18.944 105.425  25%05 7787 18.213
o 3 5 22617 1.600 13.668  1.909  30.886 226 1254  5.2f5
Multiplicative
10 6 5 62.656 22.805 30.233 19.816  66.847  20.429| 20.184  20.49
3 5 0.002  3.807 0.001 3.172 0.004 5129 079 5.981
Tchebycheff
6 5 0.002 22.756 0.002 17.990 0.005 20130 0091 19.993
Complex 3 5 11.027 3737 6.805  3.864  12.411 4.62 6477  6.4[8
100 Nonmonotonic | ¢ 5 45381 26740 21.292 19.076  53.619  23.478] 23.754 24.01}
Linear 3 5 16.412 2.385 10.094 2571  17.067 2826 10041  5.253
6 5 98.434  20.992 33.012 13.926 109.800  18.927| 38.11Q 18.06p
o 3 5 16.407 1797 10.266 1.531  21.481 2300 11.024 .87
Multiplicative
30 6 5 55.679 20.695 27.395 15.255  60.483  18.555| 20.234  17.60p
3 5 0.002  3.069 0. 2.912 0.002 4079 048 4.93
Tchebycheff 0.001
6 5 0.00L 20.250  0.002 16.134 0.003 21141  0.3p9  18.370
Complex 3 5 9556  3.135 5682  3.234 9.130 2.999 | 5.445| 5.902
Nonmonotonic | ¢ 5 40.902 27585 19.215 19.039  43.023  24.214| 20.784 20.51p
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Table A.10 Detailed MSEO results (Query By Bagging)

# of EZI Un\szlrllj)gng # of # of Query By Bagaing Rand Rand
Queries | o 0 Function attr.  class. Lc M E RF SVM
RF SVM RF SVM RF SVM
Linear 3 5 33.802 12.455 25339 13.464  41.485 12.144 | 25.938 | 14.711
6 5 83.861 94.737 52550 43.460  85.011 111483 895M4 54.070
Muliplicative 3 5 42.625 9451 24256  9.835 49257 10401  28.peB3.613
10 6 5 63.344 50.465 43.353 38.004 59.429  46.931| 46.959  40.50B
Tehebychet 3 5 0.947 10718  1.898 14.726 1015 11749  3.959 16.994
6 5 2.880 57.380  1.587 51.956 5185  73.400  6.443 .212
Complex 3 5 18.668 14.502 12.106 12.894  19.698 11.396 | 13.176 | 13.285
20 Nonmonotonic | ¢ 5 47.885 60.476  36.034 47.025  46.582  63.9447 35pH1.121
Linear 3 5 23019 8020 17.060 8928 25890 7.313 | 17.403| 12.016
6 5 79.057 45831 48118 33649  78.214 54704 08)8&31.026
Muliplicative 3 5 34287  8.095 19.204  7.839  32.999 7.956  18.5071.620
30 6 5 53.058 30.372 40.322 30.130  52.438  28.905 81[0532.836
Tehebychet 3 5 0.280 8290 0335  8.720 0.439 g2tk 16]1 10955
6 5 0.295 44.899  0.433  31.893 0.796  43.9431  2.030 .1831
Complex 3 5 12.862 10455  9.964  9.899  12.784 9431  10.p790.16D
Nonmonotonic | g 5 33.939 37.703 27.579 33.984  34.456 35541 31.64p 41.041
Linear 3 5 24515 2608 12.163  3.833  26.146 3.904p 11849  5.9f2
6 5 104.872  24.055  34.730 16.849 117.036  28.833] 37.77Q  18.21B
Multiplicative 3 5 28561  3.872 11.424 3285  36.380 4319  12.564 2755
10 6 5 63.487 25547 32767 20.298  66.317  21.]25 80J180.495
Tehebychef 3 5 0.002 3591 0002  3.483 0.017 42p7 0490  5ps1
6 5 0.005 25166  0.005 20.252 0.029  27.307  0.912 .9989
Complex 3 5 13565 4363 5779  3.928 14590 a5ps 6477 Tk
100 Nonmonotonic | ¢ 5 54308 31.336  22.892 21171  58.625  24.412 83[724.014
Linear 3 5 18917 2610 11.073 2997  19.577 2.413  10.p31 .2535
6 5 88.177 19576 32.624 16.308 114588  20.}24 188)1 18.069
Muliplicative 3 5 19.289  4.001 11.636 2631  25.274 3.964 11.p26 .8785
20 6 5 53.887 17.326 29.931 17.238  56.675  16.J08  $0p317.605
Tehebychet 3 5 0.003 3259  0.001  2.785 0.010 35p1 0483  4p36
6 5 0.003 21.927  0.004 17.161 0.008  19.980  0.339 .2708
Complex 3 5 11.841 3422 4779  3.265 9.881 3811 5445 :po
Nonmonotonic | ¢ 5 41.064 26793 19.356 20.218  44.380  20.446  30[720.515
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APPENDIX B

MEAN PERFORMANCE MEASURES FOR DIFFERENT REFERENCE
AND QUERY SIZES

Table B.1 Mean Acc results for different refereseeand query sizes
(Uncertainty Sampling).

Ref. ) Uncertainty Sampling
# o_f Set Underlylng Value LC M E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.696 0.751 0.7170.752 0.682 0.738| 0.694 0.720
30 10 Multiplicative 0.691 0.778 0.715 0.775 0.6880.780| 0.691| 0.727
Tchebycheff 0.980 0.719 0.976 0.719 0.976 0.715 0.98 0.715
Complex Nonmonotonic 0.756  0.7230.780 0.723 0.755 0.724 0.75¢ 0.715
Average 0.781 0.743 0.797 0.742 0.775 0.740| 0.768 | 0.719
Linear 0.741 0.849 0.783 0.843 0.729 0.84f 0.741 0.8)2
100 10 Multiplicative 0.735 0.856 0.776 0.855 0.7210.857| 0.757 | 0.812
Tchebycheff 0.999 0.818 1.000 0.819 0.999 0.817 0.9y4 0.901
Complex Nonmonotonic 0.795 0.8090.829 0.808 0.784 0.809 0.80fy 0.801
Average 0.818 0.833 0.847 0.831 0.808 0.833| 0.825| 0.806
Linear 0.718 0.784 0.744 0.783 0.710 0.77p 0.747 0.7p4
30 30 Multiplicative 0.717 0.814 0.737 0.808 0.712 0.80p 0.741 0.7%5
Tchebycheff 0.989 0.767 0.988 0.759 0.984 0.749 0.9%2 0.751
Complex Nonmonotonic 0.775 0.7700.791 0.762 0.773 0.764 0.77L 0.791
Average 0.800 0.784 0.815 0.778 0.795 0.780| 0.790| 0.753
Linear 0.751 0.856 0.7900.859 0.743 0.857| 0.769 0.81f
100 30 Multiplicative 0.752 0.862 0.789 0.866 0.743 0.864| 0.764 0.818
Tchebycheff 0.999 0.841 1.000 0.842 0.999 0.834 0.97p 0.814
Complex Nonmonotonic 0.804 0.826 0.838 0.829 0.801829| 0.817| 0.81(¢
Average 0.827 0.847 0.854 0.849 0.822 0.847| 0.832| 0.814
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Table B.2 Mean Acc results for different refereseeand query sizes (Query By

Bagging).
# of F\éef. Underlying Value Query By Bagging Rand | Rand
Queries S.Et Function LC M E RF SVM
1ze RF SVM RF SVM RF SVM
Linear 0.684 0.733 0.715 0.744 0.676 0.7128 0.69872®
30 10 Multiplicative 0.686 0.743 0.710 0.755 0.684 O0.74®.691| 0.727
Tchebycheff 0.971 0.737 0.969 0.731 0.966 0.729 28p 0.715
Complex Nonmonotonic 0.751 0.741 0.772 0.738 0.744738| 0.754| 0.715
Average 0.773 0.738 0.791 0.742 0.767 0.736] 0.768 | 0.719
Linear 0.729 0.847 0.777 0.839 0.716 0.439 0.76181D
100 10 Multiplicative 0.729 0.839 0.775 0.840 0.720 0.84D.757| 0.812
Tchebycheff 0.999 0.832 0.999 0.832 0.997 0.825 74P 0.801
Complex Nonmonotonic 0.784 0.823 0.828 0.828 0.77®829| 0.807| 0.801
Average 0.810 0.835 0.845 0.835 0.803 0.833] 0.825| 0.806
Linear 0.711 0.774 0.739 0.773 0.710 0.172 0.1177548
30 30 Multiplicative 0.716 0.783 0.734 0.780 0.705 0.78D.721| 0.755
Tchebycheff 0.986 0.766 0.985 0.769 0.982 0.765 52 0.751
Complex Nonmonotonic 0.774 0.772 0.790 0.773 0.7@779]| 0.771] 0.75%
Average 0.797 0.774 0.812 0.774 0.793 0.777] 0.790 | 0.753
Linear 0.744 0.851 0.788 0.846 0.735 0.453 0.169810
100 30 Multiplicative 0.751 0.852 0.783 0.848 0.741 0.8pH.764| 0.818
Tchebycheff 0.999 0.842 0.999 0.843 0.998 0.844 7DPp 0.814
Complex Nonmonotonic 0.799 0.837 0.837 0.834 0.798841| 0.817| 0.810
Average 0.823 0.845 0.852 0.843 0.818 0.848| 0.832 | 0.814

Table B.3 Mean BCA results for different referese¢ and query sizes
(Uncertainty Sampling).

Ref. ) Uncertainty Sampling
# o_f Set Underlylng Value LC M E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.685 0.739 0.7010.740 0.672 0.730] 0.680 0.70%
30 10 Multiplicative 0.664 0.754 0.685 0.751 0.6620.767 | 0.659| 0.698
Tchebycheff 0.980 0.716 0.977 0.713 0.973 0.734 0.9]8 0.907
Complex Nonmonotonic 0.742 0.7080.768 0.705 0.743 0.71q 0.74p 0.697
Average 0.768 0.729 0.783 0.727 0.763 0.730| 0.750| 0.703
Linear 0.735 0.837 0.767 0.831 0.721 0.83 0.742 0.7p8
100 10 Multiplicative 0.710 0.842 0.748 0.831 0.6950.850( 0.722| 0.787
Tchebycheff 1.000 0.816 1.000 0.813 0.999 0.814 0.97p 0.794
Complex Nonmonotonic 0.779 0.797 0.815 0.793 0.768799| 0.792] 0.789
Average 0.806 0.823 0.833 0.817 0.796 0.824| 0.806 | 0.792
Linear 0.704 0.774 0.728 0.771 0.697 0.768 0.698 0.7#1
30 30 Multiplicative 0.687 0.800 0.704 0.789 0.683 0.798 0.646 0.7p6
Tchebycheff 0.989 0.766 0.988 0.754 0.982 0.746 0.9#5 0.7945
Complex Nonmonotonic 0.757 0.7580.776 0.745 0.758 0.75) 0.75¢ 0.734
Average 0.784 0.774 0.799 0.765 0.780 0.771| 0.771| 0.737
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Table B.3 (continued).

Ref ) Uncertainty Sampling
# of S ) Underlying Value Rand | Rand
. et ; LC M E
Queries . Function RF SVM
Size RF SVM RF SVM RF SVM
Linear 0.743 0.843 0.7740.847 0.735 0.843| 0.744 0.80
100 30 Multiplicative 0.725 0.849 0.758 0.847 0.7140.854| 0.730| 0.796
Tchebycheff 1.000 0.839 1.000 0.837 0.999 0.83¢q 0.97p 0.8
Complex Nonmonotonic 0.786 0.816 0.820 0.816 0.78¥820| 0.802| 0.7971
Average 0.813 0.837 0.838 0.837 0.809 0.838| 0.814 | 0.801

Table B.4 Mean BCA results for different referese¢ and query sizes (Query By

Bagging).
# of R;ef. Underlying Value Quety By Bagging Rand | Rand
. et - LC M E

Queries Size Function RE SUM RE SUM RE SUM RF SVM
Linear 0.675 0.722 0.699 0.730 0.669 0.418 0.68070D

30 10 Multiplicative 0.656 0.711 0.677 0.728 0.656 0.7049.659| 0.698
Tchebycheff 0.967 0.732 0.965 0.724 0.960 0.726 18.p 0.707

Complex Nonmonotonic 0.734 0.728 0.758 0.724 0.728724| 0.742] 0.69%

Average 0.758 0.723 0.775 0.726 0.753 0.720| 0.750| 0.703

Linear 0.725 0.833 0.763 0.827 0.712 0426 0.742798

100 10 Multiplicative 0.704 0.836 0.743 0.825 0.691 0.83®.722| 0.787
Tchebycheff 0.999 0.829 0.999 0.826 0.996 0.$22 7M.p 0.794

Complex Nonmonotonic 0.768 0.814 0.811 0.817 0.768821| 0.792| 0.789

Average 0.799 0.828 0.829 0.824 0.790 0.827| 0.806 | 0.792

Linear 0.700 0.765 0.722 0.762 0.698 0.162 0.6987410

30 30 Multiplicative 0.684 0.758 0.703 0.755 0.676 0.7649€.686| 0.726
Tchebycheff 0985 0.764 0.983 0.764 0.979 0.763 49.9 0.745

Complex Nonmonotonic 0.758 0.759 0.774 0.758 0.789769| 0.757| 0.734

Average 0.782 0.762 0.796 0.759 0.778 0.764| 0.771] 0.737

Linear 0.738 0.839 0.772 0.835 0.729 0.440 0.748804

100 30 Multiplicative 0.721 0.852 0.753 0.832 0.709 0.85D.730| 0.796
Tchebycheff 0.999 0.841 0.999 0.838 0.998 0.341 7&.p 0.807

Complex Nonmonotonic 0.784 0.830 0.822 0.823 0.784834 [ 0.802| 0.797

Average 0.810 0.840 0.837 0.832 0.805 0.841| 0.814 | 0.801
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Table B.5 Mean Kappa results for different refeeeset and query sizes
(Uncertainty Sampling).

) Uncertainty Sampling
# o_f Ref. Set Underlymg Value LC M E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.574 0.647 0.599 0.647 0.555 0.63L 0.51 0.5p2
30 10 Multiplicative 0.556 0.666 0.586 0.662 0.5540.668| 0.542| 0.592
Tchebycheff 0.974 0.578 0.969 0.582 0.969 0542 0.8p8 0.579
Complex Nonmonotonic 0.653 0.5790.687 0.579 0.653 0.584 0.64p 0.5716
Average 0.689 0.618 0.710 0.617 0.683 0.613| 0.661 | 0.585
Linear 0.650 0.789 0.701 0.781 0.634 0.78p 0.698 0.7p8
100 10 Multiplicative 0.631 0.789 0.680 0.787 0.6120.791| 0.642| 0.723
Tchebycheff 0.999 0.7300.999 0.731 0.999 0.727 0.96¢ 0.710
Complex Nonmonotonic 0.714 0.7100.760 0.707 0.700 0.709 0.72p 0.711
Average 0.749 0.754 0.785 0.752 0.736 0.753| 0.746| 0.718
Linear 0.603 0.695 0.639 0.693 0.593 0.68fy 0590 0.6{6
30 30 Multiplicative 0.593 0.722 0.617 0.712 0.588 0.71p 0.586 0.689
Tchebycheff 0.986 0.658 0.984 0.647 0.980 0.640 0.981 0.934
Complex Nonmonotonic 0.681 0.6600.702 0.651 0.679 0.649 0.66p 0.635
Average 0.716 0.684 0.736 0.676 0.710 0.678| 0.693| 0.639
Linear 0.661 0.798 0.709 0.802 0.652 0.799| 0.669 0.73f
100 30 Multiplicative 0.652 0.800 0.698 0.804 0.640 0.801| 0.653 0.73¢
Tchebycheff 0.999 0.769 0.999 0.770 0.999 0.764 0.96p 0.748
Complex Nonmonotonic 0.726 0.744 0.771 0.749 0.72Z2748| 0.734] 0.725
Average 0.760 0.778 0.794 0.781 0.753 0.778] 0.756 | 0.731

Table B.6 Mean Kappa results for different refeeeget and query sizes (Query

By Bagging).
# o_f Ref. Set Underlying Value LC Query B,\)/l/ Bagging E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM

Linear 0.559 0.613 0.594 0.628 0.549 0.409 0.56159D

30 10 Multiplicative 0.547 0.614 0576 0.636 0.545 0.6Pp®.542] 0.592
Tchebycheff 0.963 0.615 0.960 0.611 0.956 0.607 98 0.579

Complex Nonmonotonic 0.646 0.620 0.674 0.617 0.63617| 0.642| 0.574

Average 0.679 0.615 0.701 0.623 0.671 0.614| 0.661 | 0.585

Linear 0.635 0.781 0.692 0.772 0.617 0.472 0.658728

100 10 Multiplicative 0.620 0.769 0.678 0.769 0.606 0.77/D.642| 0.723
Tchebycheff 0.999 0.758 0.999 0.759 0.996 0.748 64.0 0.710

Complex Nonmonotonic 0.699 0.745 0.756 0.752 0.691753] 0.720f 0.711

Average 0.738 0.763 0.781 0.763 0.728 0.761| 0.746| 0.718

Linear 0.597 0.677 0.632 0.676 0.597 0476 0.59064®

30 30 Multiplicative 0591 0.682 0.613 0.678 0.576 0.6Pp®.586| 0.639
Tchebycheff 0.982 0.662 0.980 0.666 0.977 0.656 310.9 0.634

Complex Nonmonotonic 0.676 0.668 0.699 0.673 0.681679| 0.666] 0.63§

Average 0.711 0.672 0.731 0.673 0.708 0.676| 0.693| 0.639
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Table B.6 (continued).

# of Ref. Set Underlying Value LC Query B,\)/l/ Bagging E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.653 0.788 0.706 0.782 0.643 0.191 0.669730
100 30 Multiplicative 0.649 0.788 0.691 0.782 0.636 0.7pD.653| 0.734
Tchebycheff 0999 0.772 0.999 0.776 0.997 0.775 69D.p 0.728
Complex Nonmonotonic 0.719 0.766 0.771 0.763 0.7X8772| 0.734| 0.725
Average 0.755 0.778 0.792 0.775 0.749 0.782| 0.756 | 0.731
Table B.7 Mean MAEO results for different refereset and query sizes
(Uncertainty Sampling).
Uncertainty Sampling
# o_f Ref_. Set Underlying Value LC M E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.647 0.495 0576 0.463 0.689 0421 0.60150D
30 10 Multiplicative 0.628 0.389 0.551 0.389 0.6400.381| 0.587 | 0.468
Tchebycheff 0.040 0.443 0.048 0.449 0.049 0446 0.1p0 0491
Complex Nonmonotonig  0.448 0.4400.404 0.449 0.454 0.447 0.42p 0.495
Average 0.441 0.442 0.395 0.437 0.458 0.449| 0.434] 0.489
Linear 0.570 0.271 0.442 0.283 0.616 0.28L 0.442 0.3]6
100 10 Multiplicative 0.514 0.233 0.416 0.245 0.549 0.23¢ 0.433 0.3p9
Tchebycheff 0.001 0.263 0.001 0.267 0.002 0.263 0.04p 0.3%4
Complex Nonmonotonig 0.372 0.278 0.310 0.283 0.4@.278] 0.336 ] 0.335
Average 0.364 0.261 0.292 0.270 0.392 0.264| 0.318] 0.321
Linear 0.594 0.401 0.5140.398 0.618 0.411] 0.554 0.43p
30 30 Multiplicative 0.553 0.312 0502 0.333 0.586 0.32p 0.533 0.4]9
Tchebycheff 0.022 0.374 0.024 0.393 0.032 0.3¢7 0.0y4 0418
Complex Nonmonotonid 0.413 0.385 0.381 0.405 0.42ZB393] 0.401| 0.43%
Average 0.395 0.368 0.355 0.382 0.415 0.374| 0.388 | 0.427
Linear 0.541 0.255 0.4200.251 0.575 0.256| 0.45] 0.309
100 30 Multiplicative 0.470 0.228 0.391 0.224 0.498 0.227| 0.423 0.30p
Tchebycheff 0.001 0.240 0.001 0.248 0.001 0.24¢ 0.03p 0.3d0
Complex Nonmonotonidf 0.354 0.271 0.295 0.276 0.362269| 0.317| 0.32]
Average 0.341 0.249 0.277 0.250 0.359 0.249| 0.306 | 0.308
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Table B.8 Mean MAEO results for different referese¢ and query sizes (Query

By Bagging).
# of Ref_. Set Underlying Value LC Quelzvlry By Bagging E Rand | Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 0.674 0.497 0.5730.460 0.689 0.525| 0.60] 0.508
30 10 Multiplicative 0.627 0.428 0.554 0.414 0.635 0.4PD.587| 0.468
Tchebycheff 0.055 0.449 0.062 0.477 0.068 0.479 2M[ 0.491
Complex Nonmonotonid 0.457 0.463 0.412 0.458 0.48D477 | 0.429| 0.495
Average 0.453 0.459 0.400 0.452 0.463 0.476| 0.434| 0.489
Linear 0.588 0.273 0445 0.280 0.621 0.295 0.46231@
100 10 Multiplicative 0.516 0.265 0.415 0.269 0.547 0.268®.433| 0.309
Tchebycheff 0.002 0.269 0.002 0.276 0.007 0.281 420 0.324
Complex Nonmonotonid 0.392 0.296 0.307 0.290 0.4a8286| 0.336] 0.335
Average 0.374 0.276 0.292 0.279 0.396 0.280| 0.318 | 0.321
Linear 0.607 0.405 0.530 0.407 0.616 0419 0.$5543D
30 30 Multiplicative 0.564 0.368 0.508 0.377 0.588 0.353.523| 0.419
Tchebycheff 0.027 0.391 0.031 0.389 0.036 0.388 74 0.418
Complex Nonmonotonid 0.401 0.3930.380 0.404 0.404 0.384 0.40L 0.437
Average 0.400 0.389 0.362 0.394 0.411 0.385| 0.388| 0.427
Linear 0.547 0.257 0421 0.266 0.579 0.257 0.45130D
100 30 Multiplicative 0.477 0.240 0.409 0.254 0.508 0.289.423| 0.302
Tchebycheff 0.002 0.247 0.002 0.256 0.004 0.248 320 0.300
Complex Nonmonotonid 0.362 0.268 0.295 0.281 0.368262| 0.317 | 0.321
Average 0.347 0.253 0.282 0.264 0.365 0.251| 0.306 | 0.308

Table B.9 Mean MSEO results for different refereseeand query sizes
(Uncertainty Sampling).

Ref. ) Uncertainty Sampling
# of Set Underlymg Value LC M E Rand Rand
Queries Size Function RF SVM
RF SVM RF SVM RF SVM
Linear 64.1120 53.8523 39.8091 28.9723 68.3872 66.84 40.7132| 34.3903
30 10 Multiplicative 53.9755 31.3777 33.9872 24.2459 53.1579 .1935 | 37.5102| 27.058
Tchebycheff 1.3825 35.2771 1.9122  26.9944 1.4812  33.51p6 5.2014  20.402
Complex Nonmonotonic|  31.1238  33.370322.1876 26.1240  31.0525  32.200 24.2048  32.20p8
Average 37.6484 38.4694 24.4740 26.5841 38.5197 38.6899 | 26.9079 | 30.8133
Linear 63.6732 14.8586 25.8424 11.2772 64.9529 0589 24.8347| 12.092§
100 10 Multiplicative 42.6368 12.2026  21.9506 10.8627 48.8665 11.3461 20.875 12.8847
Tchebycheff 0.0016  13.2819 0.0014 10.5806 0.0044  12.627 0.8512  12.98f1
Complex Nonmonotonic|  28.2044  15.2384  14.048611.4701 33.0153  14.0487] 15.117 15.2443
Average 33.6290 13.8954 15.4607 11.0476 36.7098 13.2282 | 15.4198 | 13.3026
Linear 50.1411 26.0894  29.9659 20.3251 57.8520 26.4618] 33.131 21.5211
30 30 Multiplicative 36.9601 15.9705 28.9615 15.3968 47.2411  18.5041] 29.782 22.2243
Tchebycheff 0.3226  25.4308 0.4603  22.7098 0.6677 .275® 1.8208| 20.869]
Complex Nonmonotonic|  26.4534  22.6825  19.7835  21.0548.51P1  25.4693| 20.962 25.6105
Average 28.4693 22.5433 19.7928 19.8716 32.8177 23.4278 | 21.4242 | 22.5572
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Table B.9 (continued).

Ref Uncertainty Sampling
# of Set. Underlying Value LC M E Rand Rand
Queries Si Function RF SVM
1z& RF SVM RF SVM RF SVM
Linear 57.4230 11.6884  21.5526 8.2488 63.4335 10.8759] 24.070! 11.6630
100 30 Multiplicative 36.0431 11.2462 18.8305 8.3932 40.9817 10.4274]  20.130: 11.7436
Tchebycheff 0.0018 11.6591 0.0017 9.5231 0.0022 12.625 0.410p 11.60p9
Complex Nonmonotonic 25.2292 15.3597 12.448411.1366 26.0765 13.6063] 13.114 13.2044
Average 29.6743 12.4883 13.2083 9.3254 32.6235 11.8836 | 14.4316 | 12.0534

Table B.10 Mean MSEO results for different refeeret and query sizes (Query

By Bagging).
Ref ) Query By Bagging
# of Sef Underlying Value LC M E Rand Rand
Queries Si Function RF SVM
z€ RF SVM RF SVM RF SVM
Linear 58.8768 53.5961  38.9490 28.4616 63.2483 61.8131] 40.713 34.39(2
30 10 Multiplicative 52.9846 29.9580  33.8043 23.9197 54.3427 28.9156| 37.510 27.0541
Tchebycheff 1.9134  34.0493 1.7427  33.3412 3.0996 .5545 5.2014] 29.602q
Complex Nonmonotonic 33.2765  37.4889  24.0703 29.95963.1482  37.6712| 24.206 32.2048
Average 36.7628 38.7731 24.6416 28.9205 38.4577 42.7386 | 26.9079 | 30.8133
Linear 64.6935 13.3316  23.4463 10.3410 71.5912 16.3875| 24.834 12.0946
100 10 Multiplicative 46.0242 14.7097  22.0955 11.7916  51.3487 .7369 | 20.8758 12.8841
Tchebycheff 0.0036 14.3784 0.0038 11.8677 0.0232 .731 0.8512 12.9871
Complex Nonmonotonic 33.9365 17.8493 14.3357 12.54956.6037 14.6700 15.117 15.2443
Average 36.1644 15.0672 14.9703 11.6374 39.8927 14.8816 | 15.4198 | 13.3026
Linear 51.0381 26.9253  32.5889  21.2882 52.0519  8B.00 33.1312 21.521]
30 30 Multiplicative 43.6723 19.2338  29.7628 18.9846  42.7182 .23® | 29.7824| 22.2289
Tchebycheff 0.2919 26.5941 0.3840  20.3065 0.6173 25.87p8 1.8308 20.8969
Complex Nonmonotonic 23.4003 24.078918.7714 21.9411  23.6203  22.3889  20.9645 25.61PD5
Average 29.6006  24.2080 20.3768 20.6301 29.7519 24.3750 | 21.4242| 22.5572
Linear 53.5471 11.0930  21.8480 9.6527  67.0824 15.3684.0705 11.6610y
100 30 Multiplicative 36.5881 10.6638  20.7834 9.9343  40.9743 3978| 20.1302 11.7414
Tchebycheff 0.0030 12.5930 0.0025 9.9729 0.0090 5701 0.4109 11.6029
Complex Nonmonotonic 26.4525 15.1074 12.0674  11.74127.13D7 12.1432 13.114 13.2084
Average 29.1477 12.3643 13.6753 10.3253 33.7991 11.2294 | 14.4316 | 12.0534
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APPENDIX C

RESULTS OF THE PAIRWISE T-TESTS COMPARING THE BEST
ALGORITHMS AND THE RANDOM APPROACH

Paired T-Test and Cl: RF-BB-LC, RF-Rand
Paired T for RF-QBB-LC - RF-Rand

N Mean St Dev SE Mean
RF-QBB-LC 100 0, 94602 0, 01839 0, 00184
RF- Rand 100 0, 92568 0, 00988 0, 00099

Difference 100 0,020340 0,009832 0,000983

95% | ower bound for nean difference: 0,018708
T-Test of nean difference = 0 (vs > 0): T-Value = 20, 69
P- Val ue = 0, 000

Figure C.1 Pairwise t-test for Acc (Reference & $0. Value function has 3
attributes and 2 classes.)

Paired T-Test and Cl: SVN-US-LC, SVM- Rand
Paired T for SYMUS-LC - SVM Rand

N Mean St Dev  SE Mean
SV US-LC 100 0,77434 0,08664 0,00866
SVM Rand 100 0,71632 0,07229 0,00723
Difference 100 0,05802 0,01644 0,00164

95% | ower bound for nean difference: 0, 05529
T-Test of nmean difference = 0 (vs > 0): T-Value = 35,29
P- Val ue = 0, 000

Figure C.2 Pairwise t-test for Acc (Reference & $0. Value function has 3
attributes and 5 classes.)
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Paired T-Test and Cl: RF-US-Mar; RF-Rand

Paired T for RF-US-Mar - RF-Rand

N Mean St Dev SE Mean
RF- US- Mar 100 0, 88958 0, 02630 0, 00263
RF- Rand 100 0, 86873 0, 01901 0, 00190

Difference 100 0,020854 0,008585 0,000858

95% | ower bound for nean difference: 0,019429
T-Test of nean difference = 0 (vs > 0): T-Value = 24,29
P-val ue = 0, 000

Figure C.3 Pairwise t-test for Acc (Reference & $0. Value function has 6
attributes and 2 classes.)

Paired T-Test and Cl: SVM US-Mar; SVM Rand
Paired T for SVM US-Mar - SVM Rand

N Mean St Dev SE Mean
SVM US- Mar 100 0, 51926 0, 07758 0, 00776
SVM Rand 100 0, 48567 0, 07589 0, 00759
Difference 100 0, 033587 0,009356 0, 000936

95% | ower bound for nean difference: 0,032034
T-Test of nean difference = 0 (vs > 0): T-Value = 35,90
P-val ue = 0, 000

Figure C.4 Pairwise t-test for Acc (Reference & $0. Value function has 6
attributes and 5 classes.)
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Paired T-Test and Cl: RF-@BB-Mar; RF-Rand

Paired T for RF-BB-Mar - RF-Rand

N Mean St Dev SE Mean
RF- QBB- Mar 100 0, 94988 0, 01586 0, 00159
RF- Rand 100 0, 92182 0, 01142 0, 00114

Difference 100 0,028059 0,007572 0, 000757

95% | ower bound for nean difference: 0,026802
T-Test of nean difference = 0 (vs > 0): T-Value = 37,06
P- vVal ue = 0, 000

Figure C.5 Pairwise t-test for Acc (Reference & 80. Value function has 3
attributes and 2 classes.)

Paired T-Test and Cl: SVM US-Ent; SVM Rand
Paired T for SVM US-Ent - SVM Rand

N Mean St Dev SE Mean
SVM US-Ent 100 0, 80429 0, 06327 0, 00633
SVM Rand 100 0, 75283 0, 05442 0, 00544
Difference 100 0,05146 0,01343 0,00134

95% | ower bound for nean difference: 0,04923
T-Test of nmean difference = 0 (vs > 0): T-Value = 38, 32
P- Val ue = 0, 000

Figure C.6 Pairwise t-test for Acc (Reference & 80. Value function has 3
attributes and 5 classes.)
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Paired T-Test and Cl: RF-US-Mar; RF-Rand

Paired T for RF-US-Mar - RF-Rand

N Mean St Dev SE Mean
RF- US- Mar 100 0, 89973 0, 01958 0, 00196
RF- Rand 100 0, 87532 0, 01330 0, 00133

Difference 100 0,024417 0,008313 0,000831

95% | ower bound for nean difference: 0,023037
T-Test of nean difference = 0 (vs > 0): T-Value = 29, 37
P-val ue = 0, 000

Figure C.7 Pairwise t-test for Acc (Reference & 80. Value function has 6
attributes and 2 classes.)

Paired T-Test and Cl: SVM US-Mar; SVM Rand
Paired T for SVM US-Mar - SVM Rand

N Mean St Dev SE Mean
SVM US- Mar 100 0, 54293 0, 05402 0, 00540
SVM Rand 100 0, 52875 0, 05284 0, 00528
Difference 100 0, 014188 0,007806 0, 000781

95% | ower bound for nean difference: 0,012892
T-Test of nean difference = 0 (vs > 0): T-Value = 18,18
P-val ue = 0, 000

Figure C.8 Pairwise t-test for Acc (Reference & 80. Value function has 6
attributes and 5 classes.)
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Paired T-Test and Cl: SVM QBB-LC, SVM Rand
Paired T for SVM BB-LC - SVM Rand

N Mean St Dev SE Mean
SVM BB-LC 100 0,23187 0,09915 0, 00991
SVM Rand 100 0, 30804 0,09617 0, 00962
Difference 100 -0,07617 0,01045 0,00104

95% upper bound for nmean difference: -0,07443
T-Test of nean difference = 0 (vs < 0): T-Value = -72,91
P- Val ue = 0, 000

Figure C.9 Pairwise t-test for MAEO (Referencesse¢ 10. Value function has 3
attributes and 5 classes.)

Paired T-Test and Cl: SVM US-Ent; SVM Rand
Paired T for SVM US-Ent - SVM Rand

N Mean St Dev SE Mean
SVM US-Ent 100 0, 6119 0, 1921 0, 0192
SVM Rand 100 0, 6472 0, 1700 0, 0170
Difference 100 -0,03526 0,02854 0,00285

95% upper bound for mean difference: -0,03052
T-Test of mean difference = 0 (vs < 0): T-Value = -12,35
P- Val ue = 0, 000

Figure C.10 Pairwise t-test for MAEO (Referencessat 10. Value function has 6
attributes and 5 classes.)
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Paired T-Test and Cl: SVM US-Ent; SVM Rand
Paired T for SVMUS-Ent - SVM Rand

N Mean St Dev SE Mean
SVM US-Ent 100 0,19880 0,06989 0, 00699
SVM Rand 100 0, 25975 0, 06547 0, 00655
Difference 100 -0,06096 0,01308 0,00131

95% upper bound for nean difference: -0,05878
T-Test of nean difference = 0 (vs < 0): T-Value = -46,59
P-val ue = 0, 000

Figure C.11 Pairwise t-test for MAEO (Referencesset 30. Value function has 3
attributes and 5 classes.)

Paired T-Test and Cl: SVM BB-Ent; SVM Rand

Paired T for SVM @BB-Ent - SVM Rand

N Mean St Dev SE Mean
SVM BB- Ent 100 0,51385 0,09990 0, 00999
SVM Rand 100 0,56621 0,09489 0, 00949

Di fference 100 -0,05236 0,01396 0,00140

95% upper bound for nean difference: -0, 05004
T-Test of mean difference = 0 (vs < 0): T-Value = -37,50
P- Val ue = 0, 000

Figure C.12 Pairwise t-test for MAEO (Referencesset 30. Value function has 6
attributes and 5 classes.)
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