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ABSTRACT 

HUMAN BEHAVIOR UNDERSTANDING THROUGH 3D DATA  

 

Akdağ, Erkut 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

December 2015, 69 pages 
 

In the human action recognition area, so far 2D action recognition has been studied 

extensively. Recently some studies, understanding human actions in 3D is emerging 

due to development of devices collecting 3D data. In this thesis, a new human 

behavior recognition method, that we call silhouette flows, is proposed for 3D data 

sequences of depth map. The method proposed in this thesis constitutes two steps, 

which are the feature extraction and classification. In feature extraction part, motion 

features are extracted from the 3D binary depth data in order to discern possibilities 

for action within the environment. For this purpose, the 3D depth data is projected 

on to cartesian planes in order to obtain silhouettes in frontal, top and side views 

and then optical flow vector fields on these planes over each frame of the video are 

computed. After finding these flow vectors, averages are prepared according to the 

motion vector values separately for negative and positive values for each frame of 

each plane. In order to recognize various human behaviors, each frame in video is 

divided into some meaningful blocks. According to the significant motion blocks, 

the final motion feature vector is obtained. Then, this motion feature vector is given 

to the SVM classification system and the results are investigated. All experiments 

are conducted on depth map data “MSR Action3D Dataset”. This dataset includes 
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twenty human actions depth map sequences recorded with Microsoft Kinect depth 

sensors for ten different people. The experimental results are quite successful and 

the proposed method outperformed in some test the other methods existing in 

literature for the same data. 

Keywords: Optical flow, SVM classifier, action recognition, 3D data, depth map.  
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ÖZ 

3 BOYUTLU VERİLERDEN İNSAN DAVRANIŞI ANLAMA  

 

Akdağ, Erkut 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Aralık 2015, 69 sayfa 

 

İnsan hareketi tanıma alanında, bugüne kadar 2 boyutlu hareket tanıma yoğun 

çalışılmıştır. Son zamanlarda, 3 boyutlu veri toplayan cihazların geliştirilmesiyle, 3 

boyutlu insan hareketlerini anlama çalışmaları ortaya çıkmaktadır. Bu tezde, 3 

boyutlu derinlik haritası veri dizileri için siluet akı olarak adlandırdığımız yeni bir 

insan davranışı tanıma yöntemi önerilmektedir. Bu tezde önerilen yöntem, özellik 

çıkarma ve sınıflandırma olmak üzere iki aşamadan oluşmaktadır. Özellik çıkarma 

bölümünde, hareket özellikleri 3 boyutlu ikili derinlik verilerinden, eylemin 

çevreyle etkileşimini fark etme amacıyla elde edilir. Bu amaçla, karşıdan görünüş, 

yukarıdan görünüş ve yandan görünüş siluetlerini elde etmek için 3D derinlik 

verileri kartezyen düzlemleri üzerine yansıtılır ve daha sonra bu düzlemlerde her 

videonun her çerçevesi içinde optik akış vektör alanları hesaplanır. Bu akış 

vektörleri bulunduktan sonra, her düzlemin her çerçevesi için ayrı ayrı pozitif ve 

negatif hareket vektör değerlerine göre ortalamalar hazırlanır. Çeşitli insan 

davranışlarını tanımak amacıyla, videoda her çerçeve bazı anlamlı bloklara ayrılır. 

Bu anlamlı hareket bloklarına göre, son hareket özelliği vektörü elde edilir. Sonra, 

bu hareket özelliği vektörü SVM sınıflandırma sistemine verilir ve sonuçlar 

incelenir. Tüm deneyler derinlik harita verileri "MSR Action3D Veri Seti" üzerinde 

yürütülür. Bu veri kümesi on farklı insan için Microsoft Kinect derinlik sensörleri 
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ile kaydedilen yirmi tane insan hareketinin derinlik harita dizilerini içerir. Deneysel 

sonuçlar oldukça başarılıdır ve önerilen yöntem bazı testlerde aynı veri seti için 

literatürde mevcut diğer yöntemleri geride bırakmıştır. 

Anahtar Kelimeler: optik akı, destekçi vektör makinesi sınıflandırıcı, hareket 

tanıma, 3 boyutlu veri, derinlik haritası 
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CHAPTER 1  

INTRODUCTION 

1.1.Motivation  

Human behavior understanding is an active research topic in computer vision. Its 

development began in the early 1980’s. Rich literature about human action 

recognition can be found in a wide range of fields including computer vision, pattern 

recognition, machine learning and signal processing. While researches have mainly 

focused on understanding human behaviors from a single camera in the past decade, 

human action recognition researches are progressed on depth cameras instead of 

single camera in recent years.  

 

During the recent years a wide range of applications using human activity 

recognition has been introduced such as assisted living, advanced human-computer 

interaction, gesture based interactive games, movies, 3D TV and animation, 

intelligent driver assistance systems, video surveillance, sport motion analysis and 

video annotation. 

 

Instead of 2D dataset, 3D depth map dataset sequences used in experiments makes 

the task of action segmentation easier. It gives more information for human action 

recognition compared to 2D data. The researches on 3D dataset have recently started 

to emerge and the research on human action recognition using 3D data is quiet 

limited. These are the main reasons of motivation for this thesis. 
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1.2.Available Datasets for 3D Action Recognition 

In recent years, the technology of action recognition has entered a new phase with 

release of the low-cost depth cameras like Microsoft Kinect [1]. These depth 

cameras provide 3D depth data as well as color image sequences in real time, which 

makes it possible to explore the fundamental solution for traditional problems in 

human action classification. There are a number of limited datasets containing depth 

information for human action recognition.  

 

The publicly available datasets “DailyActivity3D” and “MSR Action3D” datasets 

for 3D action recognition are both constructed by Microsoft Research Group (MSR) 

[2]. Although there are some other datasets such as (RGBD-HuDaAct[3], CAD-

60[4], UTKinect Action[5]), the two datasets by MSR mentioned above are the ones 

mostly used and cited in the literature. These datasets are explained in more detail in 

the following with emphasize on the MSR Action3D dataset since it is the one used 

in this thesis study.  

 

DailyActivity3D dataset [2] is a daily activity dataset captured by a Kinect device. 

In this dataset, the entire captured scene is kept. There are 16 activity types such as 

drink, eat, read book, call cell phone etc. Totally ten subjects perform an activity 

twice in standing position and in sitting position and there is a sofa in all scenes. 

This dataset is designed to cover human’s daily activities in the living room. Most of 

the activities involve the humans-object interactions. Thus this dataset is 

challenging. 

 

The MSR Action3D dataset [6] is an action dataset of depth sequences captured by a 

depth camera. This dataset contains twenty actions: high arm wave, horizontal arm 

wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw 

circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick, 

jogging, tennis swing, tennis serve, golf swing, pick up & throw. Each action was 

performed by ten subjects for two or three times. The number of frames is changing 
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depending on action and it also varies for different recordings of the same action.  

The frame rate is 15 frames per second and depth map size is 320×240 pixels. 

Altogether, the dataset has 23797 frames of depth map for 402 action samples, 

resulting in about 60 frames per sequence on the average. The actions in the dataset 

were chosen to cover various movements of arms, legs, torso and their 

combinations, and the subjects were advised to use their right arm or leg if an action 

is performed by a single arm or leg. Although the background of this dataset is 

clean, this dataset is challenging because many of the actions in the dataset are 

highly similar to each other.  

Figure 1.1-Figure 1.3 are showing ten depth sequences of tennis serve, pickup & 

throw, and golf swing actions used in dataset.  

 

 

Figure 1.1: Examples of the sequences of depth files for tennis serve action 

 

Figure 1.2: Examples of the sequences of depth files for pickup & throw action 
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Figure 1.3: Examples of the sequences of depth files for golf swing action 

1.3.Objective and Scope of the Thesis  

Recent studies taking advantage of 3D information have been showing advanced 

performances compared to the traditional 2D video-based researches [1, 7 and 8]. 

This thesis is focused on the human action recognition by utilizing sequences of 

only depth maps without any additional information. The depth map provides 3D 

shape information of the body. With the help of this information, distinguishing the 

actions can be more efficient rather than the 2D silhouettes captured from a single 

view. Although depth maps have some benefits, there is also drawback of them that 

is; the amount of the data to be processed is increased by using depth maps. 

Effective and efficient use of depth information is a key to develop a 

computationally efficient algorithm for human action recognition based on the 

sequences of depth maps. In this study the MSR Action3D dataset is considered.  

 

1.4.Contribution of the Thesis 

A new human action recognition method to operate on depth maps is proposed. This 

method, called, silhouette flows, has two basic stages which are feature extraction 

and classification. In the feature extraction part, which is the main contribution of 

thesis, firstly the silhouettes in front, top and side views are extracted by projecting 

the depth information on the related Cartesian planes, which are x-y, x-z and y-z 

planes respectively. While it is possible to extract the exact silhouette in the frontal 
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view, the silhouettes in the top and side views do not correspond to exact body 

silhouettes but they are the areas obtained by filling the backside of the partial 

contour available in these views due to lack of information in depth data for the 

obscured parts of the body. Optical flow is a fine technique for feature extraction 

from successive video frames. In our case, since the data is depth sequence, the 

optical flow values are calculated for each plane separately considering the 

silhouettes on these planes. Calculated optical flow values are examined and 

separated by being positive or negative values. Afterwards, average of optical flow 

is estimated. The classification part is straightforward. Support vector machine 

(SVM) is well accepted methodology for human action recognition and this 

technique is used also in this thesis.  

As mentioned previously, the proposed method is evaluated on MSR Action3D 

dataset[6]. Our extensive experimental results show that the proposed method is able 

to achieve quite successful recognition accuracy and competes the state of the art 

methods.  

1.5.Organization of the Thesis 

The rest of this thesis is organized as follows. In Chapter 2, a literature survey on 3D 

human action recognition is presented and background information on fundamental 

techniques that are used in the thesis are provided. In Chapter 3, our proposed 

method is presented in detail with emphasize on feature extraction stage. In Chapter 

4, experimental results obtained on MSR Action3D dataset is presented and 

compared with the results of the methods evaluated on the same dataset in literature. 

Finally, Chapter 5 concludes the thesis study and explains future work. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

In this chapter, a literature survey is provided and the fundamental techniques which 

are used in this study are explained. In Section 2.1, the literature survey on human 

behavior understanding using 3D data is mentioned. In Section 2.2, Lucas Kanade 

optical flow method is explained. Finally, in Section 2.3, support vector machine 

(SVM) classifier is presented. 

2.1.Literature Survey on Human Behavior Understanding Using 3D Data 

 

Only a limited datasets recorded by depth sensors are publicly available for 

researchers. These datasets include different actions and activities performed by 

different volunteer subjects. The dataset used in this thesis study is the MSR 

Action3D dataset, which is also the one used in literature mostly. In this survey, 

human action recognition methods which are evaluated on MSR Action3D dataset 

[6] are reviewed. 

Microsoft Kinect is the depth camera used in recording the videos in the MSR 

Action3D dataset. Microsoft Kinect automatically delivers the skeleton information 

beside the depth maps of people. Therefore the researches based on the datasets 

extracted with this device, commentated human action systems either using skeleton 

joints or depth map. 
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2.1.1. Human Action Recognition using depth maps 

Li et al. [6] introduced a method that recognizes human actions from depth 

sequences. The study aims to develop a method that does not require joint tracking. 

This method uses 3D contour points instead of 2D silhouette. There are three 

orthogonal Cartesian plane projections of depth maps. In each frame, a specified 

numbers of points along the contours of all three projections are sampled. These 

samples are used in order to develop “a bag of points” model. Since dynamics of the 

actions are modeled in action graph, this model shows a set of salient postures that 

correspond to the nodes of an action graph. MSR Action3D dataset was created and 

firstly used by these authors. The human action recognition rate of this research is 

74.4%.  

 

 

In order to enhance some of the issues and to obtain better recognition accuracies, 

Vieira et al. [9] proposed space–time occupancy patterns (STOP). This method 

portrays the sequence of depth maps. In this method, the space and time axes are 

divided into multiple segments for embedding each action sequence in a multiple 4D 

grid. A saturation scheme consisting of points on a silhouette or some parts of body 

with motion was proposed in order to develop the role of spare grids. For 

classification part, a nearest neighbor classifier using the cosine distance was 

employed. Experiments are conducted on MSR Action3D dataset and the results 

show that STOP features produce better recognition accuracy for human action 

classification with respect to [6]. The disadvantage of this method is that setting the 

parameter for dividing sequences into the grids are done empirically. 

 

 

Wang et al. [10] proposed a new method based on random occupancy pattern (ROP) 

features for addressing the noise and occlusion issues in action recognition. In this 

method, 4D shape is constructed from 3D action sequences. According to this 

method, randomly sampled 4D sub-volumes of different sizes and at different 
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locations using a weighted sampling scheme constitute the ROP features. In order to 

select the most discriminative features, an elastic-net regularized classification is 

modeled. These selected features are robust to noise and less sensitive to occlusions. 

While in real implementation 4D sub-volumes are used, 3D sub-volumes are shown 

in the illustration. For classification part, SVM classifier is used. Experiments are 

performed on the MSR Action3D dataset and the results show that this method 

outperforms previous methods by Li et al. [6] and Vieira et al. [9]. 

 

 

Yang et al. [11] proposed the new action recognition method which has ability to 

extract additional motion and shape information by using 3D depth maps. According 

to this system, three orthogonal Cartesian planes projections are obtained firstly for 

each 3D depth maps in the sequence. In order to generate each projection, the 

differences of consecutive depth frames are thresholded and then depth motion map 

(DMM) is obtained. For the feature extraction part, histogram of oriented gradients 

(HOG) is applied to each Cartesian plane projection. After this process, the futures 

obtained for each plane are concatenated and DMM-HOG descriptor is generated. In 

classification part, SVM classifier is used. The disadvantage of this method is that 

motion maps do not provide directional velocity information between the frames.  

 

 

Dobhal et al. [12] proposed a new method based on binary motion image (BMI). On 

the idea of 2D representation of action video sequence, the image sequences are 

combined into a single image called BMI. BMI demonstrates the flow of motion of 

action and it is invariant to holes, shadows and partial occlusions. For classification 

part, they employed the Convolutional Neural Network (CNN) classifier. This 

classification method not only extracts meaningful features automatically but also 

introduces invariance to distortion. Experiments are performed on 2D Weizmann 

dataset. They extended their proposed 2D method to 3D depth maps using MSR 

Action3D dataset by extracting three BMI projections namely the front view, the 
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side view and top view. In order to obtain one single image for each action, three 

calculated BMIs are superimposed and normalized. Then this single image is fed 

into CNN classifier for training and testing part. According to the experimental 

results, they believe that BMI is sufficient for human action recognition and it has 

shown to be invariant to speed of the action performed in addition to the 

aforementioned variations.  

2.1.2. Human Action Recognition using skeleton joints 

In the sense of human action recognition using skeleton joints, Xia et al. [5] 

proposed the method based on 3D skeleton joints. In this method, histogram of 3D 

joint locations (HOJ3D) reveals the 3D human postures.  In their representation, 3D 

space is partitioned into bins using a modified spherical coordinate system. For this 

purpose, 12 manually selected joints were used to build a compact representation of 

the human posture. While votes of 3D skeleton joints were cast into neighboring 

bins, Gaussian weight function is used in order to make the representation more 

robust. In feature extraction part, linear discriminant analysis (LDA) was carried out 

for dimension reduction in order to choose most dominant and discriminative 

features. These features were clustered into a fixed number of posture vocabularies 

which represent the prototypical poses of actions. Lastly, in human action 

classification part, the discrete Hidden Markov Model (HMM) was applied to 

extracted visual words for training and testing. Experimental results were obtained 

by using the MSR Action3D dataset. The method has the disadvantage that relying 

only on the hip joint might potentially decrease recognition accuracy because of the 

noise in estimation of hip joint location. 

 

Yang et al. [13] also proposed a new method based on skeleton joints. The authors 

mentioned that skeleton joints have some advantages such as computationally 

inexpensive, more compact, and distinctive compared to depth maps. In the light of 

these benefits, they proposed the Eigen joints–based action recognition method. In 
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this system, three different features were extracted by using the skeleton joints. 

These features include posture (Fcc), motion features (Fcp) and offset features (Fci). 

Fcp encode the spatial and temporal characteristics of skeleton joints. Fci calculate 

the difference between a current pose and the initial one. In next step, principle 

component analysis (PCA) is applied to joint differences for obtaining the Eigen 

joints. As a classifier Naive-Bayes-Nearest- Neighbor (NBNN) classifier is used for 

human action recognition. Moreover, they found that there are a specific number of 

frames for successful recognition rates of human actions. Therefore, short sequence 

of 15-20 frames is sufficient for human action recognition according to their 

experimental results on the MSR Action3D dataset. In feature extraction part, the 

offset feature is calculated assuming that the initial skeleton pose is neutral. This is 

actually a disadvantage for this method, since the initial skeleton pose is not always 

neutral. 

 

 

Wang et al. [14] proposed a method based on skeleton joint approach. In this 

method, skeleton and point cloud information are utilized. Skeleton information is 

not enough since some actions differ due to object interaction. To enhance this 

insufficient skeleton information, a novel method called actionlet ensemble model is 

introduced to refer each action and capture intra-class variance via occupancy 

information. Interactions between humans and objects are characterized by Local 

Occupancy Patterns (LOP) at each joint. The LOP features are computed based on 

the 3D point cloud around a particular joint. In this method, The Fourier Temporal 

Pyramid features are generated, and then the feature vectors are concatenated and 

Short Fourier Transform is applied to these feature vectors. In classification part, 

SVM classifier is applied. Experiments are conducted on MSR Action3D dataset 

and also on a new dataset called MSR Daily Activity3D. Experiments showed that 

their proposed method has more successful performance compared to [12] and [13] 

methods.      
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2.2.Lucas Kanade Optical Flow Method  

In optical flow calculations, several assumptions are made and the most basic one of 

them is image brightness constancy. This assumption is from a short interval t1 to t2, 

position of object may change, the illumination and reflectivity will remain constant 

[15]. This is 

 

                                                      (2.1) 

 

Where          is the intensity of the image at time t and position (x, y);    ,    is 

the change in position and    is the change in time. If the Taylor series expansion is 

applied to the left hand side, equation will be as follows: 

 

                            
  

  
   

  

  
   

  

  
                            (2.2) 

 

Where 
  

  
 
  

  
 
  

  
 are the partial derivatives of the image function in the x, y and t 

dimensions. It can be ignored the higher order terms (h.o.t.). Once substituting 

Equation 2.1 to Equation 2.2, the optical flow equation is obtained as follows. 

 

                                                  (2.3) 

 

Where            is the spatial gradient,                 is the optical flow 

vector and    is the temporal gradient. Because, it is considered a single time 

displacement between two frames,      and thus disappear. Using derivative 

operators, three gradients are easy to calculate. From this equation it can said that 

when flow vector is applied to the spatial gradient of the image it will be exactly 

canceled by temporal gradient.  
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During calculation of optical flow fields a lot of assumptions are made. Assume that 

objects are illuminated uniformly and there are no occlusions or transparencies. 

Mainly there exist two separate and widely known techniques for optical flow, 

which are Horn and Schunk and Lucas Kanade. In Horn and Schunk technique, the 

derivatives are used in order to calculate the first constraint on the flow vector, and 

then solve for the orthogonal component using a global method of minimizing a 

smoothness constraint. In Lucas and Kanade technique [17], a local method is used 

in order to calculate the flow vector using the constraints of a neighborhood around 

the pixel [16]. Lucas Kanade method uses a weighted least squares method to 

approximate the optical flow at pixel (x,y). 

 

                                                                 (2.4) 

 

Where       and      represents the spatial gradient and temporal gradient at 

neighboring pixel p respectively.   is the optical flow vector for pixel (x, y) and 

W(p) is the weight associating with neighboring pixel. For each pixel, optical flow 

vectors are found on the surrounding neighborhood   of size n, where each neighbor 

is represented as   .  

Lucas Kanade method supports for the flow vector local rather that global like Horn 

and Schunk technique. While it is needed to several iterations on Horn and Schunk 

[18], in Lucas Kanade method there is no several iterations due to being global 

technique. Since Lucas Kanade is performing consistently and robustly, it is easy to 

implement it, this method is chosen.   

2.3.Support Vector Machine (SVM) Classifier Method  

In machine learning, support vector machines are supervised learning models with 

associated learning algorithms that analyze data and recognize patterns, used 

or classification and regression analysis.  

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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The support vector machine constructs a hyper plane or set of hyper planes in 

a high-or infinite-dimensional space, which can be used for classification, regression 

or other tasks. Intuitively, a good separation is achieved by the hyper plane that has 

the largest distance to the nearest training-data point of any class (so-called 

functional margin), since in general the larger the margin the lower 

the generalization error of the classifier. 

In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick, implicitly mapping their 

inputs into high-dimensional feature spaces. 

The goal in support vector machine is to design a hyper plane that classifies all 

training vectors in two classes. There can be different hyper planes. The best choice 

will be the hyper plane that leaves the maximum margin from both classes. 

The margin is this distance between the hyper plane and closest elements from this 

hyper plane z1 and z2 margin. z2>z1 so the margin in z2 is higher than so choose 

this hyper plane. 

 

Figure 2.1: The figure of bad decision boundaries 

The decision boundary should be as far away from the data of both classes as 

possible not like the Figure 2.1. For this purpose, the margin “m” should maximize.  

Distance between the origin and the line equation are given in Equation 2.5. 

https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Kernel_trick
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                                                                           (2.5) 

 

 

 

Figure 2.2: Choosing the decision boundary representation 

 

Let {x1, ..., xn} be our data set and let yi Ɛ {1,-1} be the class label of xi and the 

decision boundary should classify all points correctly as shown in Equation 2.6. 

    
                                                             (2.6) 

The decision boundary can be found by solving the following constrained 

optimization problem in Equation 2.7. 

Minimize 
 

 
     subject to      

                         (2.7) 

This is constrained optimization problem. In order to solve it, there is a need for 

some new tools.  

In order to minimize 
 

 
     subject to      

            it should be used 

Lagrangian method. The Lagrangian method is given in Equation 2.8. 

  
 

 
              

        
                                                   (2.8) 

Setting the gradient of   with respect to w and b to zero we have following equation. 
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                               (2.9) 

If we substitute          
 
    to L, we have the following equations. 

  
 

 
       

  
          

 
                    

  
          

                         (2.10) 

  
 

 
            

   
 
   

 
       

 
                

  
     

 
        

 
            (2.11)                                                                                         

   
 

 
            

   
 
   

 
       

 
                           

 
                          (2.12) 

This is a function of    only. It is known as dual problem. If we know w, we know 

all  , if we know all   , we know w. The original problem is known as the primal 

problem. The objective function of the dual problem needs to be maximized. 

Therefore the dual problem is becoming as in Equation 2.13.  

        
 
    

 

 
           

   
 
                                

 
               (2.13) 

This is a quadratic programming problem. A global maximum of    can always be 

found. w can be recovered by follow equation. 

          
 
                   (2.14) 
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CHAPTER 3  

PROPOSED ACTION RECOGNITION METHOD 

Proposed human action recognition method is basically based on feature extraction 

and classification main stages. The general block diagram of the proposed algorithm 

is shown in Figure 3.1.  

In feature extraction stage, three different methods are carried out in order to achieve 

successful human action recognition accuracies. 3D depth sequences are input for 

the feature extraction stage. After the 3D depth sequence dataset is processed, firstly 

x-y plane (frontal view) depth information is obtained for each frame in all episodes. 

This frontal plane data is projected on to x-z (top view) and z-y (side view) 

Cartesian planes with the help of acquired frontal view depth information. These 

sections of feature extraction stage are common for all methods. At the end of 

feature extraction part, distinctive feature vectors are attained according to three 

different feature extraction methods. Afterwards, these feature vectors are fed into 

classification stage. The output of classification stage is the label of the action 

recognized.     

The best feature extraction among these methods is reached by comparing the 

human action recognition rates which are presented in detail in the next chapter.  
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Figure 3.1: The general block diagram of proposed method 

3.1. Matrix Notation for Representation of Data 

Action, subject and episode parameters are defined as follows.  

                                                  where “i” is the action number;      i=1, 2…20 

                                                 where “j” is the subject number;     j=1, 2…10 

                                               where “k” is the episode number;    k=1, 2, 3 

The episode    of the subject    of the action    is represented as             

matrix. 

The matrix notation for action i, subject j, all episodes are represented as in Equation 

3.1. In Equation 3.2, the matrix represents the action i, for all subjects and all 

episodes. If we consider all actions, all subjects and all episodes the matrix becomes 

as given in Equation 3.3.  

                  

      
      
      

                                                (3.1) 

 

              

 
 
 
 
 
     
     
 

     
       

 
 
 
 

                                                (3.2) 
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                                                                 (3.3) 

3.2. Feature Extraction 

In feature extraction part, a 3D depth file of each episode is the input which is also 

the whole system. At the end of this part, the feature vectors are extracted in order to 

supply to the classification part. Three different feature extraction methods (FEM) 

are proposed and examined in feature extraction part and the optimal one is chosen 

for our final action recognition method by conducting several experiments. These 

methods are consisting of various types of steps but they have also some common 

sections. For instance, processing of 3D depth data to obtain silhouettes in 

orthogonal planes and finding the active blocks for the convenience of operations in 

classification part are mutual for each FEM proposed. These FEMs will be explained 

in detail separately below.  

3.2.1. Feature Extraction Method 1: Average of Silhouettes (AoS) 

The block diagram of the feature extraction method 1 (FEM1) is shown in Figure 

3.2. 
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Figure 3.2: Block diagram for FEM1: Average of silhouettes (AoS) 

First feature extraction method consists of reading the 3D depth files, silhouette 

extraction, average of silhouettes and block separation parts. Firstly, 3D depth files 

of dataset are read separately for each episode of related actions and subjects. Depth 

information of x-y plane that obtained for all episodes after processing the 3D depth 

files will be used for other plane projections. In all three planes, frontal, top and side 

view silhouettes are extracted, averages of these silhouettes are calculated and these 

averages are given to the block separation part. At the end of feature extraction 

stage, the future vectors that we call AoS (average of the silhouettes) features which 

will be given to the classification stage are attained.   

3.2.1.1. Extracting Silhouettes  

The 3D depth file is consisting of depth information for specific action, subject and 

episode. Each depth file should be converted to the meaningful data. Each video has 

variety number of frames; however, all frames have 320*240 pixels in x-y plane. 

Firstly x-y projection should be found from the depth file, and x-z and z-y plane 

projections are achieved, since depth files give the depth information of each pixel 

for x-y plane. Barely, as depth information cannot give the complete 3D 

information, as explained later, some other processes are needed in these planes for 

attaining the future vectors.  
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If the depth value of one pixel is zero there is no data. If the pixel value is smaller, it 

means the part of subject related this pixel is closer to the camera. On the other 

hand, if the pixel value is larger, which means the part of subject related this pixel is 

far away from the camera. Depth values are scanned in the boundary of human body 

for each frame of each episode in all dataset. Maximum depth value and minimum 

depth value except from “0” is found after scanning the all dataset in the boundary 

of human body. These values are minimum 290 and maximum 649. In order to give 

some margin, minimum and maximum values are switched to 200 and 800. Then the 

x-y plane data is set to “0” if background, and to “1” otherwise and frontal silhouette 

frames are extracted. At the end of this operation, the silhouette in the frontal plane 

is obtained. One example of x-y plane image, that is frontal silhouette, found from 

depth file and boundary of human body is shown in Figure 3.3.  

 

Figure 3.3: The example of frontal silhouette (x-y plane image)                                

and boundary of human body  

All planes are representing the different views. The representations in x-y plane 

(frontal view), x-z plane (top view) and z-y (side view) plane are corresponding to 

frontal view, top view and side view respectively. The resolution of top view is 

320x800 pixels and side view is 800x240 pixels.   

For the projection to other planes, maximum and minimum depth values except from 

“0” are found for each frame by using the x-y plane depth information. The pixel 

corresponding to minimum depth value is chosen as reference point in x-z or z-y 

planes (other planes), after scanning rows or columns according to the related 

projections.  
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For example for the projection of x-z plane from x-y plane, x axis is common and 

we sweep the y axis of x-y plane. In x axis there are 320 columns. For each of 320 

columns, all of the 240 rows are checked and the minimum depth value (i.e. closest 

to the camera) is determined. In this way, finally a vector involving minimum depth 

values for each column is obtained. These depth minimums for columns in x-y plane 

(frontal view) are used to find the silhouette in the x-z plane (top view). For this 

purpose, firstly for each column i in the x-z plane, the pixel corresponding to the 

depth minimum in the x-y plane is determined. Let the pixel in column i, has 

minimum value at row j, and the value is    that corresponds the z axis in x-z plane. 

Then the pixel corresponding to this minimum is the one in the position (i,   ) in the 

x-z plane. Then all the pixels in positions (i, k) in x-z plane, k≥   are marked as 

belonging to the silhouette. This is repeated for each column i, in the x-y plane and 

the top view silhouette is obtained. In a similar way for each row, depth minimums 

are determined in the frontal view silhouette and the side view silhouette is obtained.  

Some examples for silhouettes in frontal, top and side views are given as in Figure 

3.4-Figure 3.9. All examples are given for selected frames of action 10, hand clap 

action, subject 1, and episode 1. Corresponding pixels for the head and hands of 

human are shown from x-y plane (frontal view) to related projected planes x-z plane, 

z-y plane (top and side views). Although z axis has 800 pixels, for representation 

400 pixels of them are shown in Figure 3.4-Figure 3.6.  

It should be noted that while the silhouette in the frontal view is exact, the 

silhouettes in the top and side views are only reflecting the correct silhouette on the 

side close to the camera. This is due to lack of information on the occluded portion 

of the body in depth data.  
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Figure 3.4: Frontal, top and side view silhouettes of frame 9                                            

for hand clap action, subject1, episode1 
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Figure 3.5: Frontal, top and side view silhouettes of frame 17                                          

for hand clap action, subject1, episode1 
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Figure 3.6: Frontal, top and side view silhouettes of frame 25                                          

for hand clap action, subject1, episode1 
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Figure 3.7: Silhouettes of frontal view for hand clap  

action, subject1, episode 1 

Figure 3.8: Silhouettes of side view for hand clap  

action, subject1, episode 1 

 

Figure 3.9: Silhouettes of top view for hand clap  

action, subject1, episode 1 

 

 

 

 

 



 

27 

3.2.1.2. Average of Silhouettes (AoS)  

After the silhouettes for frontal, top and side views are obtained; each consecutive 

silhouette matrixes in episode should be summed up and should be averaged with 

dividing considering frame numbers. This process is repeated for all actions, 

subjects, episodes and views. In the following, the calculation for the frontal view is 

explained. For the other views, the calculations are done in the similar manner. In 

the end, averages of action matrixes for each episode are obtained.  

How to find averages of silhouettes from frames is given in Equation 3.4.  

             
                         

                  
                        (3.4) 

where                  is the silhouette data extracted for frontal view, frame f, and 

corresponding episode and        is the # of frames for corresponding episode. 

After finding the averages, there are three huge matrixes for frontal, top and side 

view silhouettes. 

In order to conduct experimental results, these three matrixes are combined into one 

matrix. While combining them, block separation method is used for the purpose of 

simplification in classification part. 

Some frontal view AoS examples are given for forward punch action (Action5), side 

boxing action (Action12), side kick action (Action 15), and tennis serve action 

(Action 18) in Figure 3.10 and Figure 3.11. 

 

Figure 3.10: Subject1, episode1 for forward punch action (left) and                       

side boxing action (right) AoS examples 
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Figure 3.11: Subject1, episode1 for side kick action (left) and                             

tennis serve action (right) AoS examples 

3.2.1.3. Block Separation 

By examining the AoS for frontal, top and side view silhouettes, the meaningful 

blocks are found and final incorporated matrix of three Cartesian planes is obtained. 

With the help of block separation, the active blocks where most of the actions are 

occurring are obtained for each view by eliminating which have values close to zero.   

 

Figure 3.12: The frontal view (320*240) active blocks 
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Figure 3.13: The top view (320*800) active blocks 

 

 

Figure 3.14: The side view (800*240) active blocks 

For each view there are 4 active blocks separately. The dimension of each active 

block is 80*80 and these blocks are shown according to the corresponding view in 

Figure 3.12-Figure 3.14. All pixels in active blocks are used as a feature. Therefore, 

each active block has 80*80= 6400 features. Since there are four blocks for one 

projected view 6400*4=25600 features exist. This feature number is only for one 

view. For all three views it should be multiplied by 3. Totally there are         

      features exist for three different views. 

Since we have 20 actions, 10 subjects, 3 episodes, totally 20*10*3=600 samples 

exist. Eventually, the final matrix for all dataset has dimension (600*76800) and this 

feature vector is input for classification part.   
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3.2.2. Feature Extraction Method 2: Average of Silhouette Difference (AoSD) 

The block diagram of the feature extraction method 2 (FEM2) is shown in Figure 

3.15. 

 

Figure 3.15: Block diagram for FEM2: Average of silhouette differences (AoSD) 

Second feature extraction method consists the same steps of silhouette extraction as 

explained in FEM1. Then, consecutive frames are examined and differences of 

silhouettes are calculated for each plane. After finding these differences, averages of 

these silhouettes are calculated and these average matrixes are given to the block 

separation part. The block separation part is done in the same way with in FEM1. At 

the end of feature extraction method, the feature vectors that we call AoSD (average 

of the silhouette differences) which will be given to the classification stage are 

attained.  

3.2.2.1. Silhouette Differences (SD)  

After frontal, top and side view silhouettes are obtained, it is needed to find the 

motion existence in consecutive frames. For this purpose, silhouettes in consecutive 

frames are examined. If the pixel values in consecutive silhouette images are 

different the pixel value on the silhouette difference (SD) image is set to 1 to 

indicate existence of motion, otherwise it is set to 0.  

Finally, we have (frame number -1) SD matrixes for each episode. This process 

should be done for frontal, top and side view silhouettes for all dataset.  
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3.2.2.2. Average of Silhouette Difference (AoSD) 

After we obtain all silhouette differences, we need to obtain their averages. For this 

purpose, all obtained SD matrixes are summed up and divided by their number 

(frame number-1) for each episode. After this operation, one average matrix is 

obtained per each view, and totally there exists three matrixes (average silhouette 

difference image) for one episode. Some frontal view AoSD examples are given for 

forward punch action (Action5), side boxing action (Action12), side kick action 

(Action 15), and tennis serve action (Action 18) in Figure 3.16 and Figure 3.17. 

 

 

Figure 3.16: Subject1, episode1 for forward punch action (left) and                       

side boxing action (right) AoSD examples 

 

Figure 3.17: Subject1, episode1 for side kick action (left) and                             

tennis serve action (right) AoSD examples 



 

32 

There are several matrixes and we should combine them for the ease of calculation. 

While combining all matrixes to one matrix, block separation method that 

mentioned before is applied and final matrix is reached for classification part. In the 

end of this method, the feature vector has dimension (600*76800) which is same as 

in FEM1. 

3.2.3 Feature Extraction Method 3: Average of Silhouette Flows (AoSF) 

The block diagram of the feature extraction method 3 (FEM3) is shown in Figure 

3.18. This method provides us to most successful experimental results, therefore this 

is chosen as optimal method.  

 

Figure 3.18: Block diagram for FEM3: Average of silhouette flows (AoSF)  

Third feature extraction method consists the same steps of silhouette extraction as 

explained in FEM1. Then consecutive frames are examined and silhouette flows are 

calculated for each plane. After finding these silhouette flows, averages of silhouette 

flows are calculated and these average matrixes are given to the block separation 

part. The block separation part is done in the same way with in FEM1. At the end of 

feature extraction method, the feature vectors that we call AoSF (average of the 

silhouette flows) which will be given to the classification stage are attained. 
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3.2.3.1. Silhouette Flow (SF) 

After silhouettes are obtained, we need to find the motion feature vectors using 

optical flow method. For this purpose, Lucas Kanade method is used as optical flow 

method which is implemented in Dollar toolbox [19].  

It should be noted that Lucas Kanade method is in fact developed for gray level 

images, but here our images, i.e., silhouettes are binary images. We call the resulting 

images showing Vx and Vy values for each pixel as silhouette flows (SF).  

When the related optical flow function is applied to frontal silhouette, Vx and Vy 

values of x and y axis motion is obtained for each pixel. Vx and Vy values can be 

positive or negative in accordance with motion types and motion directions. Some 

examples for this optical flow operation are given in Figure 3.19-Figure 3.31 for 

different actions which are forward punch action (Action5), side boxing action 

(Action12), side kick action (Action 15), and tennis serve action (Action 18). 

In these figures, left columns show consecutive silhouettes in frontal view, while the 

right columns showing the flows calculated on these silhouettes. Vx values are 

shown at the top and Vy values at the bottom of the right column. 

 

Figure 3.19: Forward punch action subject1, episode1, optical flow for frame 1&2 
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Figure 3.20: Forward punch action subject1, episode1, optical flow for frame 14&15 

 

Figure 3.21: Forward punch action subject1, episode1, optical flow for frame 15&16 
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Figure 3.22: Forward punch action subject1, episode1, optical flow for frame 20&21 

 

Figure 3.23: Side boxing action subject1, episode1, optical flow for frame 15&16 
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Figure 3.24: Side boxing action subject1, episode1, optical flow for frame 18&19 

 

Figure 3.25: Side boxing action subject1, episode1, optical flow for frame 21&22 
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Figure 3.26: Side kick action subject1, episode1, optical flow for frame 1&2 

 

Figure 3.27: Side kick action subject1, episode1, optical flow for frame 9&10 
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Figure 3.28: Side kick action subject1, episode1, optical flow for frame 10&11 

 

Figure 3.29: Tennis serve action subject1, episode1, optical flow for frame 1&2 
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Figure 3.30: Tennis serve action subject1, episode1, optical flow for frame 20&21 

 

Figure 3.31: Tennis serve action subject1, episode1, optical flow for frame 28&29 
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In Equation 3.4, the matrix is showing silhouette flow values for action i, subject j, 

episode k, frame f. 

                                                                                                                                                                                                                                                                              

        (3.4) 

3.2.3.2. Average of Silhouette Flows (AoSF) 

After optical flow motion vectors are calculated for each consecutive frame, totally 

(frame number-1) silhouette flow matrixes are recorded. This operation is applied 

for each frontal, top and side view for all dataset. Some of calculated optical values 

of Vx and Vy are positive while some of them are negative. These values are 

grouped depending on positive or negative. At the end of this categorization, 4 

different features are obtained as Vx pos, Vx neg, Vy pos, Vy neg from 2 motion 

vectors Vx and Vy. After this partitioning, it is needed to find the average of these 

values. For each video, the values of Vx pos, Vx neg, Vy pos, Vy neg are summed 

separately and calculate overall sum. That means, (number of frames-1) matrixes 

should be added consecutively and overall sum matrix is achieved for these 4 

properties. These extracted optical flow sum matrix is used for calculating the 

average. How to average the optical flow values being positive or negative are given 

in Equation 3.5- Equation 3.8.  

                      
                                 

           
                          (3.5) 

 

                      
                                 

           
                  (3.6) 

 

                      
                                 

           
                                        (3.7) 

 

                      
                                 

           
                                       (3.8) 
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where             is the # of frames in frontal silhouette flow of Vx, that has 

positive value,             is the # of frames in frontal silhouette flow of Vx, that 

has negative value,             is the # of frames in frontal silhouette flow of Vy, 

that has positive value,             is the # of frames in frontal silhouette flow of 

Vy, that has negative value and where “[  ]” has value 1 if the condition inside is 

true, 0 otherwise. 

According to the silhouette flow values being positive or negative, another matrix is 

obtained as follows: 

               

 
 
 
 
 
                       

                       

                       

                        
 
 
 
 

                            (3.9) 

 

Some frontal view AoSF examples for different features (Vx_pos, Vx_neg, Vy_pos, 

Vy_neg ) are given for side boxing action (Action12) in Figure 3.32 and Figure 3.33. 

 

Figure 3.32: Subject1, episode1 for side boxing action Vx_pos (left) and        

Vx_neg (right) AoSF examples 
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Figure 3.33: Subject1, episode 1 for side boxing action Vy_pos (left) and        

Vy_neg (right) AoSF examples 

 

In addition to obtain the average of silhouette flow values, active blocks should be 

found and same block separation method should be done as mentioned in FEM1.  

Each block is chosen as 80*80 dimensions exactly same as first proposed method.  

Since there are four different type features, each block has 80*80*4= 25600 

features. Moreover, as four blocks exist in each view there are 25600*4=102400 

features. This feature number is only for one view. Totally                 

features exist for frontal, top and side views. In the end of this method, the found 

matrix has dimension (600*307200) and this feature vector is input for classification 

part.   

3.3. Action Classification 

For the classification of actions SVM classifier is used. Each feature map which are 

obtained by different feature extraction methods, is fed into a multi class linear SVM 

that is implemented by using open source library, LIBSVM [20]. In our case there 

are 20 actions so 20 classes. 

In human action classification part, different kinds of matrixes are generated 

according to the needed test subsets. Then using these matrixes, experiments are 

performed in various ways which will be explained in next chapter. 



 

43 

By comparing the human action recognition accuracies, it was decided to which 

proposed feature extraction method is more efficient. After the comparison of 

experimental results the third feature extraction method, which is the one extracting 

AoSF performed best as shown in the next chapter and it is chosen for our proposed 

method.  
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CHAPTER 4  

EXPERIMENTAL RESULTS  

In this chapter, the experimental results obtained by the proposed method on MSR 

Action3D dataset is presented and compared with the results available on the same 

dataset in literature. In first part of this chapter, MSR Action3D dataset is described. 

In the second part, experimental settings are defined. In the third part, performance 

measure of our proposed method is given based on human action recognition result 

accuracies. At the end of this chapter, timing requirements are investigated for 

different experimental settings.  

4.1.Dataset 

In order to evaluate our proposed method, MSR Action3D dataset [6] dataset is 

used. This dataset comprises of twenty actions. Each action is executed by different 

ten subjects. While some subjects were performing each action for two times, the 

others performed for three times. Totally 567 sequences exist, each one includes 

depth and skeleton joints for this dataset. 10 sequences are not valid in this dataset 

since the skeletons were either missing or wrong as explained by the authors in [2]. 

 

Subjects were fronting the camera during data recording. The actions were chosen to 

cover various movements of arms, legs, torso and their combinations. Moreover, if 

an action is performed by a single arm or leg, this is the right arm or leg. The data 

were recorded as binary depth files with the help of a depth sensor. The frame rate of 

depth files is 15 frames per second. The size of a depth map is 320x240 pixels. The 

first value of binary depth file is the total number of frames for the related video, 
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second and third values of binary depth file are image sizes and the other values are 

rest of the data. 

The Table 4.1 shows the number of existing videos for all actions and subjects. 

There would be three videos for each subject doing action if data were complete. For 

some subjects there is no data collected for some actions, as indicated by 0 in the 

table, for some others data is collected for 2 episodes, indicated by 2 in the table. 

Table 4.1: Number of videos for all actions and subjects 

Action names action 

/subject  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

High arm wave A1 3 3 3 0 3 3 3 3 3 3 

Horizontal arm wave A2 3 3 3 0 3 3 3 3 3 3 

Hammer A3 3 3 3 0 3 3 3 3 3 3 

Hand catch A4 3 3 2 0 3 3 3 3 3 3 

Forward punch A5 3 3 3 0 3 2 3 3 3 3 

High throw A6 3 3 3 0 3 2 3 3 3 3 

Draw X A7 3 3 3 2 3 3 2 3 3 3 

Draw tick A8 3 3 3 3 3 3 3 3 3 3 

Draw circle A9 3 3 3 3 3 3 3 3 3 3 

Hand clap A10 3 3 3 3 3 3 3 3 3 3 

Two hand wave A11 3 3 3 3 3 3 3 3 3 3 

Side boxing A12 3 3 3 3 3 3 3 3 3 3 

Bend A13 3 3 3 3 3 3 3 3 3 3 

Forward kick A14 3 3 3 3 3 3 3 3 3 3 

Side kick A15 3 2 0 0 0 3 3 3 3 3 

Jogging A16 3 3 3 3 3 3 3 3 3 3 

Tennis swing A17 3 3 3 3 3 3 3 3 3 3 

Tennis serve A18 3 3 3 3 3 3 3 3 3 3 

Golf swing A19 3 3 3 3 3 3 3 3 3 3 

Pick up & throw A20 3 3 3 3 3 3 3 3 3 3 

4.2.Experimental Settings 

For comparisons of the results we obtained, the studies in the literature employing 

the MSR Action3D dataset are considered. However, the number of instances used 

in some studies is unclear. Many authors have compared their experimental results 

with Li et al. according to ten subjects [5, 14]. Wang et al. [13] described the dataset 
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as made up of 402 sequences. For the sake of clarity, this mistake is stated at [2]. It 

is explained 10 sequences out of the 567 are not used since the skeletons of these 

sequences are either missing or too erroneous. Therefore, the dataset is eventually 

composed of actually 557 sequences. As a consequence, it is very difficult to 

confirm whether these works use 402, 557 or 567 samples as it is not clear sure 

whether the authors are aware of these key aspects concerning the dataset, or if those 

are only naive text mistakes. Moreover, the missing information concerning the 

number of instances prevents to make a fair comparison between different methods. 

Regarding the experimentation method used by many authors working with the 

MSR Action3D dataset, it is worth to mention that there is a lack of agreement. 

 

In the paper by Li et al. [6] where the dataset was firstly presented, three tests are 

performed: 1/3, 2/3 and cross-subject test (CrSub). In the first two tests, 1/3 and 2/3 

of the instances are respectively used as training samples and the rest as testing 

samples. In the third test, half of the subjects are used for training and the remainder 

for testing. However, it is not described which instances or subjects are actually used 

in each partition of the dataset. In this study, we assume that the 1/3 means to split 

the dataset using the one of the episodes of each action performed by each subject 

for training, and to use the remaining 2 episodes for testing. The same is assumed for 

the 2/3. We call the tests “Test1” for 1/3 and “Test2” for 2/3 in [6] for our 

experiments. 

 

Also, there exists the same conflict for the cross-subject test. It is not clearly 

mentioned which instances are used for training and which one testing. Any half of 

the 10 subjects can be used for training, e.g. 1, 2, 3, 9 and 10; and the remainder for 

testing, i.e. 4, 5, 6, 7 and 8. Since it is not clear which instances are used, each 

researcher is free to interpret anything, thereby comparing different methods where a 

distinct methodology has been used for the experimentation. However, this is not 

desirable when to compare and decide which method performs better. 

In the CrSub test employed by Li et al. [6] the samples for subjects 1, 3, 5, 7 and 9 

are used for training, whereas actors 2, 4, 6, 8 and 10 are used for validation. While 
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some authors use the mentioned settings for their training and validation sets, other 

authors use subjects 1-5 for training and 6-10 for validation.  In our experiments, we 

call “TestA” for subject 1,2,3,4,5 are used training, others as testing, while we call 

“TestB” for subject 1,3,5,7,9 as training and others as testing. 

 

In order to facilitate a fair comparison for Test1, Test2 and CrSub tests with state of 

works, we follow the same experimental settings as [1] to split 20 action categories 

into three subsets as listed in Table 4.2. This was due to the high computational cost 

of dealing with the overall dataset. Most of the papers working with MSR Action3D 

dataset have also used the same setting.   

Table 4.2: Actions subsets used in our cross subject test, Test1, Test2 

Action Set1 (AS1) Action Set2 (AS2) Action Set3 (AS3) 

actions action definition actions action definition actions action definition 

A2 horizontal arm wave A1 high arm wave A6 high throw 

A3 hammer A4 hand catch A14 forward kick 

A5 forward punch A7 draw x A15 side kick 

A6 high throw A8 draw tick A16 jogging 

A10 hand clap A9 draw circle A17 tennis swing 

A13 bend A11 two hand wave A18 tennis serve 

A18 tennis serve A12 side-boxing A19 golf swing 

A20 pickup&throw A14 forward kick A20 pickup&throw 

 

In addition to Test1, Test2 and CrSub tests in the literature, we also defined action 

set complete (AS-C) test and performed the following experimental protocol in our 

experiments.  

 

Let AS-C= {              } which is the subset containing 12 actions for 

which the data is complete, that is there are exactly 3 videos of each subject for each 

action. 
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0/3 Test 

 Leave-one-out is repeated 

 for each subject     m=1,2,…10 

  with 

TrainingSet0/3(  ) = {F(  , : , :) - F(  ,    , :) |      AS-C} 

TestSet0/3(  ) = {F(  ,    , :) |      AS-C} 

1/3 Test 

 Leave-one-out is repeated 

 for each subject    m=1,2,…10 

    for each episode    n=1,2,3 

  with 

Training Set1/3(  )= TrainingSet0/3 U {F(  ,    ,   ) |      AS-C} 

TestSet1/3(  )= TestSet0/3-{F(  ,    ,   ) |      AS-C} 

2/3 Test 

 Leave-one-out is repeated 

 for each subject    m=1,2,…10 

    for each episode     n=1,2,3 

  with 

Training Set2/3(  )= F(  , : , :) - F(  ,    ,   ) |      AS-C} 

TestSet2/3(  )= {F(  ,    ,   ) |     AS-C} 

 

Consequently, we conduct AS-C, Test1, Test2 and CrSub tests in our experiments. 

AS-C test is performed on the 12 actions for which the data is complete. As for each 

subset AS1, AS2 and AS3, there are three different tests, i.e. Test1, Test2 and CrSub 

test. In Test One, 1/3 of the subset is used as training the rest as testing; in Test Two, 

2/3 of the subset is used as training and the rest as testing; in cross subject test, half 

subjects are used for training and the rest ones used for testing. For CrSub test, also 

we define 2 tests as “TestA” and “TestB” according to which subjects used as 

training and others for testing.  
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4.3.Performance Measure 

Firstly we conducted the experiments for 0/3, 1/3 and 2/3 tests on the action set AS-

C according to the protocol we defined in the previous section. In 0/3 test on AS-C 

there are twelve actions, ten subjects and three videos per each subject. All data is 

240 videos. There is no missing data. %90 of data is used for training and %10 of 

data is used for test. This means, 9 subjects are used for training and 1 subject is 

used for test. The experimental results for 0/3 test for the FEM1, FEM2, FEM3 are 

given in Table 4.3. 

Table 4.3: Human action recognition rates (%) for FEM1, FEM2, FEM3 for 0/3 Test                   

on action set ASC                

Test FEM1(AoS) 

0/3 Test 

FEM2(AoSD) 

0/3 Test 

FEM3(AoSF) 

0/3 Test 

S1 91.66 97.33 97.33 

S2 91.66 91.66 97.33 

S3 91.66 91.66 91.66 

S4 83.33 91.66 91.66 

S5 86.11 86.11 91.66 

S6 55.55 55.55 55.55 

S7 91.66 91.66 97.22 

S8 73.67 75.00 75.00 

S9 91.66 97.22 97.22 

S10 86.11 91.66 86.11 

Average 84.31 86.95 88.07 

 

1/3 Test on ASC regards one video for training and two videos for testing of three 

episodes in twelve actions again. This experiment is performed for all subjects three 

times according to leave one out technique. The experimental results for 1/3 test for 

the FEM1, FEM2, FEM3 are demonstrated in Table 4.4, Table 4.5 and Table 4.6. 
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Table 4.4: Human action recognition rates (%) for FEM1 for 1/3 Test                      

on action set ASC (1 in train 2 in test) 

 FEM1(AoS) 1/3 Test 

subject                   Avg 

S1 91.67 91.67 95.83 93.05 

S2 87.5 87.5 91.67 88.88 

S3 83.33 79.17 83.33 81.94 

S4 100 100 100 100 

S5 91.67 95.83 87.5 91.66 

S6 95.83 100 100 98.61 

S7 100 100 100 100 

S8 95.83 83.33 100 93.05 

S9 100 95.83 95.83 97.22 

S10 95.83 100 95.83 97.22 

Average  94.16 

 

Table 4.5: Human action recognition rates (%) for FEM2 for 1/3 Test                       

on action set ASC (1 in train 2 in test) 

 FEM2(AoSD) 1/3 Test 

subject                   Avg 

S1 100 91.67 95.83 95.83 

S2 95.83 100 95.83 97.22 

S3 79.17 79.17 83.33 80.56 

S4 100 100 100 100 

S5 100 83.33 91.67 91.67 

S6 100 100 100 100 

S7 100 100 100 100 

S8 95.83 83.33 100 93,05 

S9 100 95.83 95.83 97.22 

S10 91.67 100 95.83 95.83 

Average  95.14 
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Table 4.6: Human action recognition rates (%) for FEM3 for 1/3 Test                      

on action set ASC (1 in train 2 in test)  

 FEM3(AoSF) 1/3 Test 

subject                   Avg 

S1 95.83 91.67 100 95.83 

S2 95.83 100 95.83 97.22 

S3 83.33 87.5 91.67 87.5 

S4 95.83 100 95.83 97.22 

S5 95.83 91.67 100 95.83 

S6 100 95.83 100 98.61 

S7 95.83 95.83 100 97.22 

S8 95.83 87.5 100 94.44 

S9 100 95.83 95.83 97.22 

S10 100 100 100 100 

Average  96.10 

 

2/3 Test on ASC regards two videos for training and one video for testing of three 

episodes in twelve actions. This experiment is performed by three times according to 

leave one out technique. All experimental results for 2/3 test for the FEM1, FEM2, 

FEM3 are shown in Table 4.7, Table 4.8 and Table 4.9. 
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Table 4.7: Human action recognition rates (%) for FEM1 for 2/3 Test                      

on action set ASC (2 in train 1 in test) 

 FEM1(AoS) 2/3 Test 

subject                   Avg 

S1 100 100 91.67 97.22 

S2 91.67 100 91.67 94.44 

S3 83.33 91.67 100 91.67 

S4 100 100 100 100 

S5 83.33 100 100 94.44 

S6 100 100 100 100 

S7 100 100 100 100 

S8 100 91.67 100 97.22 

S9 100 100 91.67 97.22 

S10 91.67 100 100 97.22 

Average  96.94 

 

Table 4.8: Human action recognition rates (%) for FEM2 for 2/3 Test                      

on action set ASC (2 in train 1 in test) 

 FEM2(AoSD) 2/3 Test 

subject                   Avg 

S1 100 100 91.67 97.22 

S2 91.67 100 100 97.22 

S3 91.67 83.33 100 91.67 

S4 100 100 100 100 

S5 91.67 100 100 97.22 

S6 100 100 100 100 

S7 100 100 100 100 

S8 100 91.67 100 97.22 

S9 100 100 91.67 97.22 

S10 91.67 100 100 97.22 

Average  97.50 
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Table 4.9: Human action recognition rates (%) for FEM3 for 2/3 Test                       

on action set ASC (2 in train 1 in test) 

 FEM3(AoSF) 2/3 Test 

subject                   Avg 

S1 100 91.67 100 97.23 

S2 91.67 100 100 97.23 

S3 91.67 91.67 91.67 91.67 

S4 100 100 100 100 

S5 100 100 100 100 

S6 100 100 100 100 

S7 100 91.67 100 97.23 

S8 100 91.67 100 97.23 

S9 100 100 91.67 97.23 

S10 100 100 100 100 

Average  97.70 

 

All these experiments results are summarized and variance values are also given in 

table Table 4.10. FEM3 gives the best human action recognition rates comparing to 

other feature extraction methods FEM1 and FEM2. Because of these successful 

results in this experiment with the CrSub, Test1, Test2 experiment results given later 

we consider the FEM3 as our proposed method. In Table 4.10, 0/3 test gives the 

lower recognition rates for some subjects, especially subject6 and subject8. 

However, in 1/3 test and 2/3 test these recognition rates are increasing sharply since 

some data of these subjects can be erroneous in 0/3 test while data is correct in other 

tests. Moreover, 1/3 test gives the lower rates compared to 0/3 test for some subjects, 

because for some data the used set is decreasing the rates and recognition rate 

changes. Also, these changes in recognition rates can be raised from the scaling 

issue based on the length and height of subjects.      
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Table 4.10: Human action recognition rates (%) for all tests on action set ASC  

 FEM1(AoS) FEM2(AoSD) FEM3(AoSF) 

subject 0/3 

Test 

1/3 

Test 

2/3 

Test 

0/3 

Test 

1/3 

Test 

2/3 

Test 

0/3 

Test 

1/3 

Test 

2/3 

Test 

S1 91.66 93.05 97.22 97.33 95.83 97.22 97.33 95.83 97.23 

S2 91.66 88.88 94.44 91.66 97.22 97.22 97.33 97.22 97.23 

S3 91.66 81.94 91.67 91.66 80.56 91.67 91.66 87.5 91.67 

S4 83.33 100 100 91.66 100 100 91.66 97.22 100 

S5 86.11 91.66 94.44 86.11 91.67 97.22 91.66 95.83 100 

S6 55.55 98.61 100 55.55 100 100 55.55 98.61 100 

S7 91.66 100 100 91.66 100 100 97.22 97.22 97.23 

S8 73.67 93.05 97.22 75.00 93,05 97.22 75.00 94.44 97.23 

S9 91.66 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.23 

S10 86.11 97.22 97.22 91.66 95.83 97.22 86.11 100 100 

Average 84.31 94.16 96.94 86.95 95.14 97.50 88.07 96.10 97.70 

Variance 121.79 29.26 6.87 145.36 30.95 5.32 160.98 10.34 5.86 

 

According to the test sets defined in Table 4.2, other experiments are performed in 

accordance with studies in literature. As for each subset, there are three different 

tests, i.e. Test1, Test2 and CrSub. In CrSub test; half subjects are used for training 

and the rest ones used for testing. While some authors use subjects 1-5 for training 

and 6-10 for validation, which we called “TestA”, other authors [21, 22] use the 

mentioned settings for subjects 1-3-5-7-9 for training and 2-4-6-8-10 for validation, 

which we called “TestB”. According to our proposed different feature extraction 

methods, which are AoS (FEM1), AoSD (FEM2) and AoSF (FEM3), the 

comparisons of TestA and TestB for CrSub test experimental results are given in 

Table 4.11, while for Test1, Test2 tests experimental results are given in Table 4.12. 

According to these experimental results FEM3 gives the better recognition rates 

comparing to other methods FEM1 and FEM2, thus it is chosen as proposed method.   
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Table 4.11: Comparison of human action recognition rates (%) for different                           

feature extraction methods (FEM1, FEM2, and FEM3) for CrSub test 

 CrSub CrSub 

Method TestA TestB 

 AS1 AS2 AS3 AS1 AS2 AS3 

FEM1 72.88 55.46 66.38 65.09 67.56 60.71 

FEM2 78.81 77.31 82.35 89.62 77.47 81.25 

FEM3 82.35 79.15 93.45 90.76 82.98 91.70 

 

Table 4.12: Comparison of human action recognition rates (%) for different                           

feature extraction methods (FEM1, FEM2, and FEM3) for Test1, Test2 

 Test1 Test2 

Method 

 AS1 AS2 AS3 AS1 AS2 AS3 

FEM1 95.71 88.46 94.07 98.64 96 95 

FEM2 95 92.5 95.25 93.75 92.5 97.5 

FEM3 96.25 93.70 95.50 95.80 98.80 98.80 

 

Table 4.13: Comparison of human action recognition rates (%) for CrSub test 

 Cross Subject Tests 

Set Li et 

al.          

2010 

[6] 

TestB 

Xia et 

al.               

2012 

[5] 

TestB 

Yang 

et al. 

2014 

[14] 

TestB 

Vieira 

et al. 

2012 

[9] 

TestB 

Oreifej 

et al. 

2013 

[21] 

TestA 

Rahmani 

et al.  

2014 

[22] 

TestA 

 

 

ours 

 

TestA 

 

 

ours 

 

TestB 

AS1 72.9 87.98 74.5 84.70 - - 82.35 90.76 

AS2 71.9 85.48 76.1 81.30 - - 79.15 82.98 

AS3 79.2 63.46 96.4 88.40 - - 93.45 91.70 

Average 74.7 78.97 82.33 84.80 88.89 90.9 84.98 88.48 
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The CrSub test results are given for two different test settings TestA and TestB in 

Table 4.13. For AS1 set, our experimental result for Test B outperforms the other 

results in literature. Moreover if we look for the average values of the AS1, AS2 and 

AS3 TestB results, our recognition rate is also more successful than the other 

researches. In addition, we compete with the state of the arts for TestA. However our 

recognition rates are not successful like TestA, since our proposed method gives the 

lower recognition rates when first 5 subjects are used for training.  

While in Test1, 1/3 of the subset is used as training the rest as testing; in Test2, 2/3 

of the subset is used as training and the rest as testing; if data is missing for a subject 

for an action this subject is not considered while average performance is calculated. 

Test1 and Test2 results are given with the other test results in literature [5, 6, 12, 23] 

in Table 4.14.  Our recognition rates are more successful than the others for AS2 and 

AS3 sets of Test2; however our other results also can compete with the state of the 

arts.   

Table 4.14: Comparison of human action recognition rates (%) for Test1 and Test2 

 Test1, Test2 

Set Li et 

al.          

2010 

[6] 

Lu et 

al.               

2012 

[5] 

Yang 

et al. 

2012 

[23] 

Vieira 

et al. 

2012 

[12] 

 

 

ours 

Test1  

AS1 89.50 98.50 94.70 96 96,25 

AS2 89.00 96.70 95.40 95 93.70 

AS3 96.30 93.50 97.30 97.5 95.50 

Test2  

AS1 93.40 98.60 97.30 98 95.80 

AS2 92.90 97.20 98.70 97 98.80 

AS3 96.30 94.90 97.30 98.50 98.80 
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4.4.Timing Requirements 

Experiments are performed on laptop DELL 8 GB RAM, Intel I5 3317U @1.7GHz 

processor and time requirements during the processes are investigated. For CrSub, 

Test1 and Test2 test procedures, the time requirements for classifications are given 

in this section.  

Moreover, 80*80 blocks sizes stated in the third chapter are reduced by applying 

subsampling on the AoSF blocks explained in Chapter3. The block sizes after 

subsampling and the number of AoSF features per episode is given in Table 4.15. 

The numbers of features are found from block size x 4 blocks x 3 views x 4 feature 

per pixel. One example is illustrated of subsampling size 16 for 80*80 block size in 

Figure 4.1.  

Table 4.15: Subsample size and feature number table 

Subsample 

size 

Block 

size 

#of 

blocks 

# of  

views 

# of feature 

per pixel 

Feature 

number 

1 80*80 4 3 4 307200 

2 40*40 4 3 4 76800 

4 20*20 4 3 4 19200 

8 10*10 4 3 4 4800 

16 5*5 4 3 4 1200 

80 1*1 4 3 4 48 
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Figure 4.1: Example of subsampling size 16 

The time requirements for AoSF features with respect to feature number after 

subsampling for CrSub TestA &TestB are given detail in Table 4.16. When feature 

number decreases, the time requirements also decrease sharply.  

Table 4.16: Time requirements (sec) for AoSF features with respect to feature 

number after subsampling for CrSub tests, TestA and Test B  

 CrSub time requirements (sec) 

Feature 

number 
TestA TestB 

 AS1 AS2 AS3 AS1 AS2 AS3 

307200 20.663 22.854 20.702 25.765 26.460 24.620 

76800 4.562 5.271 4.557 5.840 5.653 5.612 

19200 1.210 1.355 1.163 1.506 1.464 1.379 

4800 0.313 0.361 0.333 0.752 0.491 0.474 

1200 0.131 0.115 0.105 1.726 0.176 0.206 

48 0.054 0.073 0.079 1.546 0.070 0.068 

 

The time requirements for AoSF features with respect to feature number after 

subsampling for CrSub TestA &TestB are shown in Figure 4.2-Figure 4.3 

respectively.  
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Figure 4.2: Time requirements (sec) for classification of AoSF features with respect 

to feature number after subsampling for CrSub test, TestA  

 

 

Figure 4.3: Time requirements (sec) for classification of AoSF features with respect 

to feature number after subsampling for CrSub test, TestB  
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Human action recognition rate analysis for AoSF features with respect to feature 

number after subsampling for CrSub test is given detail in Table 4.17. While feature 

number lessens, recognition rates are approximately stable until the minimum 

feature number value 48. However, if the enhancement in timing requirements is 

considered, this small decrease in recognition rate can be acceptable.    

Table 4.17: Human action recognition rates (%) for AoSF features with respect to 

feature number after subsampling for CrSub tests, TestA and TestB 

 CrSub recognition rates (%) 

Feature 

number 
TestA TestB 

 AS1 AS2 AS3 AS1 AS2 AS3 

307200 81.36 78.15 92.43 90.56 82.88 91.07 

76800 81.36 78.15 92.43 90.56 82.88 91.07 

19200 81.36 77.31 92.43 90.56 82.88 91.07 

4800 81.36 77.31 92.43 90.56 81.98 91.07 

1200 82.20 76.47 92.43 90.56 81.98 91.07 

48 77.96 65.54 89.92 85.85 76.58 88.40 

 

The human action recognition rates for AoSF features with respect to feature 

number after subsampling for CrSub, TestA, TestB are shown in Figure 4.4 and 

Figure 4.5 respectively.  
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Figure 4.4: Human action recognition rates (%) for AoSF features with respect to 

feature number after subsampling for CrSub TestA   

 

Figure 4.5: Human action recognition rates (%) for AoSF features with respect to 

feature number after subsampling for CrSub TestB   
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The time requirements for AoSF features with respect to feature number after 

subsampling for Test1 and Test2 are given detail in Table 4.18. When feature 

number decreases, the time requirements also decrease sharply.  

Table 4.18: Time requirements (sec) for AoSF features with respect to feature 

number after subsampling for Test1 and Test2 

 Time requirements (sec) 

Feature 

number 
Test1 Test2 

 AS1 AS2 AS3 AS1 AS2 AS3 

307200 32.31 36.55 34.75 41.88 44.22 40.45 

76800 7.59 7.15 8.03 9.52 9.99 9.39 

19200 1.78 1.77 1.61 1.98 2.10 1.91 

4800 0.60 0.50 0.54 0.55 0.57 0.51 

1200 0.34 0.17 0.15 0.14 0.15 0.14 

48 0.04 0.06 0.05 0.05 0.05 0.04 

 

To sum up, feature number can be decreased in order to enhance time requirements, 

if we consider the time requirements for CrSub, Test1 and Test2 tests. Moreover, 

human action recognition rates are approximately same for different feature numbers 

until the minimum one, so we can decrease the future number conveniently and 

robustly.  
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CHAPTER 5  

CONCLUSION  

It is worth to mention that the goal of this work is to classify actions only using raw 

depth maps without any additional information such as skeleton joint information or 

optical video. In literature, the most of the 3D human action recognition methods are 

based on skeleton joints data and depth maps are used seldom. In this thesis a new 

and effective method that we call silhouette flows is proposed for 3D human action 

recognition by using only depth map sequences. 

 

The method proposed in this thesis constitutes two steps: feature and classification. 

The novelty of the method lies in the feature extraction part, in which motion 

features are extracted by using optical flow vector fields calculated on silhouettes in 

frontal, top and side views over each frame of 3D sequence. After these flow vectors 

are obtained, averages are prepared according to the motion vector values separately 

for negative and positive values for each frame of each plane. In order to recognize 

various human behaviors, each frame in video is divided into some meaningful 

blocks. According to the significant motion blocks, the final motion feature is 

obtained. Then, these motion features are given to the SVM classification system 

and the results are investigated.  

 

In order to justify the proposed method, its performance is examined on the publicly 

available MSR Action3D dataset and compared with the performances the methods 

in literature evaluated on the same dataset.  It should be mentioned that although 

these methods that we examined are using the same data set, there might be a 

mismatch on the number of samples and validation methods used by most of these 
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studies. The lack of information in these papers about how they split the dataset into 

training and validation sets has led to a lot of confusion. Therefore, a fair 

comparison is not possible since the experiments cannot be reproduced exactly as 

they are conducted in these studies. Thus, in this work we have tried to clear up the 

existing confusion. This may enable to improve future comparisons and increase the 

awareness of the need of clarifying experimental settings. 

 

After all the validation methods in these papers are reviewed, we decide to use the 

“Cross Subject Test”, “Test1”, “Test2“. Also we define the “AS-C (action set 

complete) Test” as another validation method. In cross subject test, it is considered 

all possible splits of the dataset for action recognition within subject tests and two 

different combinations of using 5 subjects for training and the remaining 5 for 

testing. In Test1, 1/3 of the instances are used for training samples and the rest as 

testing samples, while 2/3 of the instances are used for training samples and the rest 

as testing samples in Test2. AS-C test is experienced on the complete action data, 

which means there is no erroneous or missing part in these data. Experiments 

showed that the silhouette flows method that we proposed achieves quite successful 

results on the challenging MSR Action3D dataset and also competes the methods 

available in literature in most of the cases. 

As future work, instead of 4 specific flow features we plan to investigate some other 

issues in feature extraction part. For instance, after the optical flow part, magnitude 

and phase components can be calculated for each action. These magnitude and phase 

components can be used as a feature by considering in three dimensional Cartesian 

planes. Moreover, behalf 4 specific flow features in two orthogonal directions for 

positive and negative values for each of the 3 orthogonal planes as proposed in this 

thesis, it may be enough to use a combined feature showing the size and angle of the 

flow in 3D.   

Moreover, we also plan to investigate how some other classification methods affect 

our results.  As a classification method, deep learning techniques can be applied and 

the experimental results could be observed and compared to SVM.  
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