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ABSTRACT 

 

STABILIZATION OF AN IMAGE BASED TRACKING SYSTEM 

 

 

 

Şener, Irmak Ece 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. M. Kemal Leblebicioğlu 

 

 

June 2015, 104 pages 

 

 

Vision based tracking systems require high resolution images of the targets. In 

addition, tracking system will try to hold the tracked objects at the center of field of 

view of the camera to achieve robust and successful tracking. Such systems are 

usually placed on a platform which is to be controlled by a gimbal. The main job of 

the gimbal is to get rid of jitters and/or undesirable vibrations of the image platform. 

In this thesis, such an image platform together with its gimbal, and its controller will 

be modeled and simulated. The design of the controller will be done to yield the 

resultant system with the optimum performance. The study will be concluded with 

hardware-in-the-loop simulation studies and theoretical performances will be 

compared with the practical system’s performance.    

 

Keywords: Stabilization, Target Tracking System, Gimbal, Image Platform, 

Disturbance Rejection 
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ÖZ 

 

GÖRÜNTÜ TABANLI BİR HEDEF TAKİP SİSTEMİNİN 

KARARLILAŞTIRILMASI 

 

 

 

Şener, Irmak Ece 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Leblebicioğlu 

 

 

Aralık 2015, 104 sayfa 

 

 

Görüntü tabanlı hedef takip sistemleri hedeflerin yüksek çözünülürlüklü 

görüntülerine ihtiyaç duyarlar. İlaveten, başarılı bir izleme işi yapmanın yolu, 

hedefleri kameranın görüş açısının merkezinde tutmaktan geçer. Böyle sistemlerde, 

kameralar genellikle, bir gimbal tarafından kontrol edilen bir platformun üzerine 

konulur. Gimbalin ana görevi, kameranın konulduğu platformun titreşimlerini ve 

gereksiz hareketlerinin kamerayı etkilemesini engellemektir. Bu tezde, bu işi yapan 

bir görüntü platformu, onun gimbali ve kontrolcüsü modellenecek ve benzetimi 

yapılacaktır. Kontrolcü, elde edilecek sistemin performansının optimum olmasını 

sağlayacak şekilde tasarlanacaktır. Çalışma, döngüde donanım içeren benzetim 

çalışmaları ile sonlandırılacak ve teorik performanslar ile pratik sistemin 

performansı karşılaştırılacaktır. 

 

Anahtar Kelimeler: Kararlılaştırma, Hedef Takip Sistemi, Gimbal, Görüntü 

Platformu, Bozucu Etken Baskılama 
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CHAPTER 1  

INTRODUCTION 

1.1 Line-of-Sight Stabilization Systems 

Stabilized platforms are gaining more and more importance every day for line of 

sight (LOS) systems, since images with higher resolution have become essential in 

defense industries, in order to keep tracking of targets far away. These platforms are 

also used for line of fire systems that must accurately point a device at a distant 

object [2]. The device to be pointed or controlled is described as the payload. 

Stabilization refers to stabilizing the angular position of the payload with respect to 

the inertial frame, i.e., earth, by utilizing a moving platform [3]. Line of sight (LOS) 

stabilization includes optics, radars, laser beam, etc., while line of fire stabilization 

considers the position of a pointed weapon [3]. 

 

In order not to have blur or jitter on the image of the target tracking system, only 

very small stabilization errors can be tolerated. To achieve this, the components of 

the stabilizing platforms such as high-bandwidth inertial measurement units (IMU), 

actuators avoiding saturation, low friction bearings and gimbals with balanced mass 

center must be selected carefully. For reducing the cost of high-quality sensors, the 

performance can be improved by using some algorithms such as Kalman and noise 

rejecting filters. In this thesis work, a stabilized platform, developed and 

manufactured by ASELSAN, which requires very accurate stabilization on the 

orders of micro radians and carrying out target tracking tasks, is investigated. This 

electro-optic platform produced to be assembled on avionic vehicles, is shown in 

Figure 1.1 
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Figure 1.1: CATS: A Stabilized Electro-Optic Platform Developed and 

Manufactured by ASELSAN [4] 

 

Two control problems are handled in this LOS stabilization platform, are the 

problem of positioning and the problem of stabilization [3]. The stabilization 

problem is a regulator problem, whereas the positioning problem is a servo problem. 

The stabilization problem requires a disturbance rejection algorithm which 

eliminates disturbances due to vibrations coming from the avionic vehicle, friction 

of the bearings which provides rotational motion of gimbal axes, unbalanced mass 

center of the platform, external torques and forces such as drag force of the air. 

The bandwidth of the control loop is determined by the bandwidth of the IMU, 

which is the gyroscope on the CATS system, in the stabilization loop, and the 

bandwidth of the hardware for the embedded software of control algorithms. Most of 

the time, the integration time of the sensors specify the bandwidth of the 

stabilization loop. 
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1.2 Literature Survey, 

“For beam- and weapon-pointing applications, the LOS is the aim-point, whereas, 

for radars and electro-optical sensors, the LOS is defined by the field-of-view (FOV) 

of the sensor, where the motion of the target in the FOV is of interest” [5]. Besides 

the basics of rate loop of LOS stabilizatiıon system, the effect of bandwidth, 

structural dynamics of the tracking system such as bending and torsional motor 

interaction, mounting and compliance interaction on LOS stabilization is 

investigated in [5]. [6] presents strapdown stabilization method on high-resolution 

imaging systems which is implemented through the linear state space model of the 

tracking system. The impacts of mass properties of the stabilization platforms on 

static and dynamical unbalance and methods of balancing the gimbal masses are 

investigated in [7]. The RMS pointing jitter criterion is presented as an important 

statistic of any stationary random pointing process which completely characterizes 

the control performance, and it is evaluated in [8]. Kinematics and dynamics of a 

double-gimbal control moment gyroscope is presented in [9], which is an inspiration 

source of the dynamical model of the 4-DOF platform model in this thesis. Stability 

of a MEMs gyroscope via sliding mode control through a dynamical model is 

considered in [10], which resembles this thesis work in such a way that sliding mode 

control will be implemented on the dynamical model of the platform gimbals for the 

stabilization. Similar to our work, [3] has investigated the modeling and stabilization 

of a 2-DOF stabilization platform by utilization of linear accelerometers, a Linear 

Quadratic Regulator and a load torque estimator. 

1.3 Objectives and Contributions of Thesis 

In this thesis work, a 4-DOF stabilization platform is modeled through dynamic 

relationships belonging to each gimbal. Different types of system identification 

procedures are carried out for each gimbal and IMU. The positioning and 

stabilization problems are handled with sliding mode control. The immunity to 

disturbances and accuracy of stabilization will be evaluated. 
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1.4 Publication 

Within the scope of this thesis, a conference article [1] was written and has been 

presented at the 17
th

 of National Conference (TOK’15) of Turkish National 

Committee of Automatic Control (TOK) on September 10
th

, 2015 in Denizli. 

1.5 Outline of Thesis 

In Chapter 2, theoretical background of thesis which will be utilized in the system 

modeling and simulation, system identification and control loop of the target 

tracking system, is presented. Mathematical model of the 4-DOF platform and a 

brief summary of Kalman filtering are explained. 

 

Chapter 3 presents the system identification solution employing the constrained 

optimization toolbox of MATLAB. Also, the system identification of the fiber-optic 

gyroscopes which are used in the system with the aim of velocity feedback in the 

control loop is carried out using ARMAX system identification model. 

 

In Chapter 4, construction of the simulation model in MATLAB 

Simulink/SimMechanics is explained including the rigid body block models which 

are imported from SolidWorks CAD model into the MATLAB environment, the 6-

DOF Stewart platform model, the Karnopp friction model, the model of actuator and 

the modeling of sensor noise and delay. The model parameters and transfer functions 

come from the system identification process in Chapter 3. 

 

In Chapter 5, control and disturbance rejection algorithms are presented. Sliding 

mode control method is used for the stabilization. 

 

Finally, Chapter 6 summarizes the overall studies of the thesis. Future work beyond 

the scope of thesis is given. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

In this chapter, theoretical background which is to be used in the system modeling, 

system identification and construction of the control loop of the target tracking 

system will be presented. In the next section, a mathematical model of the 4-DOF 

platform which is composed of transformations of coordinate frames and dynamical 

equations of motion based on Newton-Euler approach is derived. In the second 

section, the simplification of the mathematical model is carried out in order to 

construct the position and rate loops of the platform. In the third section, Karnopp 

friction model is introduced. In the fourth section, Kalman filtering is given as a 

brief summary, which is to be used to eliminate the errors in the sensor measurement 

data. 

2.1 Mathematical Model of the 4-DOF Gimbal Platform Including Base 

Disturbances 

This model will include 2-DOF gimbal platform with the outer azimuth, the outer 

elevation, the inner elevation and the inner azimuth gimbals, respectively, and the 

base motion. The base motion model consists of a yaw-pitch-roll sequence. For the 

analysis of motion, frame transformations with the following reference frames are 

used. 

 

(e)  : Inertial Frame 

(m),(n) : Intermediate coordinate frames used in describing the base motion 

(B)  : Coordinate frame fixed to the gimbal base 
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(OA)  : Coordinate frame fixed to the outer azimuth gimbal 

(OE) : Coordinate frame fixed to the outer elevation gimbal 

(IE) : Coordinate frame fixed to the inner elevation gimbal 

(IA) : Coordinate frame fixed to the inner azimuth gimbal 

 

Relations between these frames can be shown in Figure 2.1: 

 

         ̂           ̂           ̂              ̂                 ̂            ̂             ̂        

                                                                                        

       Yaw ( )      Pitch( )    Roll( )       Yaw (  )      Pitch(  )        Pitch(  )        Yaw (  ) 

Figure 2.1: Coordinate Frames and Rotational Relations between Frames [3] 

 

Coordinate frame transformations matrices relating these coordinate frames are as 

follows, theory of which is mentioned in [11]: 

 

 ̂      =  [
               

              
   

] =  ̂       
(2.1) 

 ̂      =  [
              

   
               

] =  ̂       

(2.2) 

 ̂      =   [

   
               
              

] =  ̂       

(2.3) 

 ̂       = [
                 
                

   

]=  ̂        
(2.4) 

 ̂        =[
                

   
                 

]   ̂         

(2.5) 

 ̂        = [
                

   
                 

] =  ̂         

(2.6) 
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 ̂        =  [
                 
                

   

]   ̂         
(2.7) 

 

 

Figure 2.2 shows some unit vectors of these coordinate frames on the gimbal. 

 

 

 

Figure 2.2: Unit Directions on the 4-DOF Gimbal 

 

Newton – Euler equations of motion for each 4 gimbal is derived and frame 

transformations are applied on the vectors in these equations. 

 

Newton’s equation for the outer azimuth gimbal: 

 

    ⃗    ⃗      ⃗       ⃗           ⃗ (2.8) 
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where; 

     : mass of the outer azimuth gimbal 

 ⃗   : acceleration of the outer azimuth gimbal (about center of gravity) 

 ⃗     : force applied by gimbal base on the outer azimuth gimbal 

 ⃗      : force applied by the inner azimuth gimbal on the outer azimuth 

gimbal 

 ⃗        force applied by the outer elevation gimbal on the outer azimuth 

gimbal 

 ⃗ : gravity vector 

Euler’s equation for the outer azimuth gimbal about point “O” which is the 

intersection of the rotation axes: 

           

    ⃗    ⃗⃗⃗         ⃗⃗⃗    = 

 ⃗⃗⃗      ⃗⃗⃗       ⃗⃗⃗       ⃗          ⃗   ⃗⃗⃗   

(2.9) 

 

where; 

    : inertia of the outer azimuth gimbal 

 ⃗   : angular acceleration of the outer azimuth gimbal 

 ⃗⃗⃗   : angular velocity of the outer azimuth gimbal 

 ⃗⃗⃗      : moment applied by the inner azimuth gimbal on the outer azimuth 

gimbal 

 ⃗⃗⃗     : moment applied by gimbal base on the outer azimuth gimbal 

 ⃗⃗⃗     : moment applied by the outer elevation gimbal on the outer azimuth 

gimbal 

 ⃗   : the offset between center of gravity and intersection of the rotation 

axes 
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 ⃗⃗⃗   : disturbance moments effecting the outer azimuth gimbal (friction 

etc.) 

Newton’s equation for the outer elevation gimbal: 

 

    ⃗    ⃗      ⃗       ⃗           ⃗ (2.10) 

 

where; 

    : mass of the outer elevation gimbal 

 ⃗   : acceleration of the outer elevation gimbal (about center of gravity) 

 ⃗     : force applied by gimbal base on the outer elevation gimbal 

 ⃗      : force applied by the outer azimuth gimbal on the outer elevation gimbal 

 ⃗      : force applied by the inner elevation gimbal on the outer elevation gimbal 

 ⃗ : gravity vector 

 

Euler’s equation for the outer elevation gimbal about point “O” which is the 

intersection of the rotation axes: 

 

    ⃗    ⃗⃗⃗         ⃗⃗⃗   =  ⃗⃗⃗      ⃗⃗⃗       ⃗⃗⃗      

 ⃗          ⃗   ⃗⃗⃗   

       (2.11) 

 

where; 

    : inertia tensor of the outer elevation gimbal 

 ⃗   : angular acceleration of the outer elevation gimbal 

 ⃗⃗⃗    : angular velocity of the outer elevation gimbal 

 ⃗⃗⃗      : moment applied by gimbal base on the outer elevation gimbal 

 ⃗⃗⃗       :moment applied by the outer azimuth gimbal on the outer elevation gimbal 

 ⃗⃗⃗       :moment applied by the inner elevation gimbal on the outer elevation gimbal 
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 ⃗   :the offset between center of gravity and intersection of the rotation axes 

 ⃗⃗⃗   :disturbance moments effecting the outer elevation gimbal (friction etc.) 

 

Newton’s equation for the inner elevation gimbal: 

 

    ⃗    ⃗       ⃗           ⃗ (2.12) 

 

where; 

    : mass of the inner elevation gimbal 

 ⃗   : acceleration of the inner elevation gimbal (about center of gravity) 

 ⃗       : force applied by the outer elevation gimbal on the inner elevation gimbal 

 ⃗       : force applied by the inner azimuth gimbal on the inner elevation gimbal 

 ⃗ : gravity vector 

 

Euler’s equation for the inner elevation gimbal about point “O” which is the 

intersection of the rotation axes: 

 

    ⃗    ⃗⃗⃗         ⃗⃗⃗  =  

 ⃗⃗⃗       ⃗⃗⃗       ⃗          ⃗   ⃗⃗⃗   

(2.13) 

 

 

where; 

    : inertia of the inner elevation gimbal 

 ⃗   : angular acceleration of the inner elevation gimbal 

 ⃗⃗⃗   : angular velocity of the inner elevation gimbal 

 ⃗⃗⃗      : moment applied the outer elevation gimbal on the inner elevation gimbal 

 ⃗⃗⃗      : moment applied the inner azimuth gimbal on the inner elevation gimbal 

 ⃗   : the offset between center of gravity and intersection of the rotation axes 

 ⃗⃗⃗   : disturbance moments effecting the inner elevation gimbal (friction etc.) 
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Newton’s equation for the inner azimuth gimbal: 

 

    ⃗    ⃗       ⃗          ⃗ (2.14) 

 

where; 

    : mass of the inner azimuth gimbal 

 ⃗   : acceleration of the inner azimuth gimbal (about center of gravity) 

 ⃗      : force applied by the outer azimuth gimbal on the inner azimuth gimbal 

 ⃗      : force applied by the inner elevation gimbal on the inner azimuth gimbal 

 ⃗ : gravity vector 

 

Euler’s equation for the inner azimuth gimbal about point “O” which is the 

intersection of the rotation axes: 

 

    ⃗    ⃗⃗⃗         ⃗⃗⃗  

  ⃗⃗⃗       ⃗⃗⃗       ⃗          ⃗   ⃗⃗⃗   

(2.15) 

 

where; 

    : inertia of the inner azimuth gimbal 

 ⃗   : angular acceleration of the inner azimuth gimbal 

 ⃗⃗⃗   : angular velocity of the inner azimuth gimbal 

 ⃗⃗⃗      : moment applied by the outer azimuth gimbal on the inner azimuth gimbal 

 ⃗⃗⃗      : moment applied the inner elevation gimbal on the inner azimuth gimbal 

 ⃗   : the offset between center of gravity and intersection of the rotation axes 

 ⃗⃗⃗   : disturbance moments effecting the inner azimuth gimbal (friction etc.) 

 

Due to the fact that linear forces do not create any net torque on none of the 4 

gimbals, since they are acting on the center of rotations, we are specifically 

interested in Euler’s equations.  
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The angular velocity of the outer azimuth gimbal coordinate frame relative to 

inertial frame  ⃗⃗⃗     is represented as: 

 

 ⃗⃗⃗     =  ⃗⃗⃗     +  ⃗⃗⃗   +  ⃗⃗⃗   +  ⃗⃗⃗    

= ̇  ⃗⃗ 
       

 +  ̇ ⃗⃗ 
      

+  ̇ ⃗⃗ 
      

  ̇ ⃗⃗ 
      

 

= ̇  ⃗⃗ 
       

 +  ̇ ̂       ⃗⃗ 
     

+  ̇ ̂       ⃗⃗ 
     

 

+ ̇ ̂       ⃗⃗ 
     

 

= ̇  ⃗⃗ 
       

+ ̇ ̂       ⃗⃗ 
     

 

+ ̇ ̂       ̂      ⃗⃗ 
     

 

+ ̇ ̂       ̂      ̂      ⃗⃗ 
     

 

(2.16) 

 

where; 

 

 ̂        [
                
                 

   

] =  ̂        

 ̂        [

   
              
               

] =  ̂       

 ̂      [
               

   
              

] =  ̂       

 

Secondly, the angular velocity of the outer elevation gimbal coordinate frame 

relative to inertial frame  ⃗⃗⃗     is represented as: 

 

 ⃗⃗⃗      ⃗⃗⃗       ⃗⃗⃗     

= ̇  ⃗⃗ 
       

  ̇  ̂
        ⃗⃗ 

       
 

+ ̇ ̂        ⃗⃗ 
      

+ ̇ ̂        ⃗⃗ 
      

 

+ ̇ ̂        ⃗⃗ 
      

 

(2.17) 
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= ̇  ⃗⃗ 
       

  ̇  ̂
        ⃗⃗ 

       
 

+ ̇ ̂        ̂       ⃗⃗ 
     

 

+ ̇ ̂        ̂       ̂      ⃗⃗ 
     

 

+ ̇ ̂        ̂       ̂      ̂      ⃗⃗ 
     

 

 

where; 

 

 ̂         [
                 

   
                

]   ̂         

 

Thirdly, the angular velocity of the inner elevation gimbal coordinate frame relative 

to inertial frame  ⃗⃗⃗     is represented as: 

 

 ⃗⃗⃗      ⃗⃗⃗       ⃗⃗⃗     

= ̇  ⃗⃗ 
       

   ̇  ̂
        ⃗⃗ 

       
 

+ ̇  ̂
        ⃗⃗ 

       
 

+ ̇ ̂        ⃗⃗ 
      

+   ̇ ̂        ⃗⃗ 
      

 

+ ̇ ̂        ⃗⃗ 
      

 

= ̇  ⃗⃗ 
       

   ̇  ̂
        ⃗⃗ 

       
 

+ ̇  ̂
        ̂        ⃗⃗ 

       
 

+ ̇ ̂        ̂        ̂       ⃗⃗ 
     

 

+ ̇ ̂        ̂        ̂       ̂      ⃗⃗ 
     

 

+ ̇ ̂        ̂        ̂       ̂      ̂      ⃗⃗ 
     

 

 

(2.18) 

 

where; 

 ̂       =[
                 

   
                

]   ̂         
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Fourthly, the angular velocity of the inner azimuth gimbal coordinate frame relative 

to inertial frame  ⃗⃗⃗     is represented as: 

 

 ⃗⃗⃗      ⃗⃗⃗       ⃗⃗⃗     

=  ̇  ⃗⃗ 
       

   ̇  ̂
        ⃗⃗ 

       
 

+ ̇  ̂
        ⃗⃗ 

       
 

+ ̇  ̂
        ⃗⃗ 

       
 + ̇  ̂        ⃗⃗ 

      
 

+ ̇  ̂        ⃗⃗ 
      

 + ̇ ̂        ⃗⃗ 
      

 

=  ̇  ⃗⃗ 
       

   ̇  ̂
        ⃗⃗ 

       
 

+ ̇  ̂
        ̂        ⃗⃗ 

       
 

+ ̇  ̂
        ̂        ̂        ⃗⃗ 

       
 

+ ̇  ̂        ̂        ̂        ̂       ⃗⃗ 
     

 

+ ̇ ̂        ̂        ̂        ̂       ̂      ⃗⃗ 
     

  

+ ̇ ̂        ̂        ̂        ̂       ̂      ̂      ⃗⃗ 
     

 

 

(2.19) 

 

where; 

 

 ̂       =[
                
                 

   

]   ̂         

 

Now we can derive the angular acceleration terms belonging to each of the 4 

gimbals. The angular acceleration of the outer azimuth gimbal coordinate frame 

relative to inertial frame  ⃗     is represented as: 

 

 ⃗    =  ̈  ⃗⃗  + ̈ ̂       ⃗⃗ + ̇ ̂̇       ⃗⃗  

+ ̈ ̂       ̂      ⃗⃗ + ̇ ̂̇       ̂      ⃗⃗  

+ ̇ ̂       ̂̇      ⃗⃗  

(2.20) 
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+ ̈ ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂̇       ̂      ̂      ⃗⃗  

+ ̇ ̂       ̂̇      ̂      ⃗⃗  

+ ̇ ̂       ̂      ̂̇      ⃗⃗    

    

Secondly, the angular acceleration of the outer elevation gimbal coordinate frame 

relative to inertial frame  ⃗     is represented as: 

 

 ⃗     =  ̈  ⃗⃗ + ̈  ̂
        ⃗⃗  

           + ̇  ̂̈
        ⃗⃗ + ̈ ̂        ̂       ⃗⃗  

+ ̇ ̂̇        ̂       ⃗⃗   ̇ ̂        ̂̇       ⃗⃗  

+ ̈ ̂        ̂       ̂      ⃗⃗  

+ ̇ ̂̇        ̂       ̂      ⃗⃗  

+ ̇ ̂        ̂̇       ̂      ⃗⃗  

+ ̇ ̂        ̂       ̂̇      ⃗⃗  

+ ̈ ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂̇        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂̇       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂       ̂̇      ̂      ⃗⃗  

+ ̇ ̂        ̂       ̂      ̂̇      ⃗⃗  

(2.21) 

Thirdly, the angular acceleration of the inner elevation gimbal coordinate frame 

relative to inertial frame  ⃗     is represented as: 

 

 ⃗    = ̈  ⃗⃗  + ̈  ̂
        ⃗⃗ + ̇  ̂̇

        ⃗⃗ + ̈  ̂
        ̂        ⃗⃗  

+ ̇  ̂̇
        ̂        ⃗⃗  + ̇  ̂

        ̂̇        ⃗⃗  

+ ̈ ̂        ̂        ̂       ⃗⃗ + ̇ ̂̇        ̂        ̂       ⃗⃗  

+ ̇ ̂        ̂̇        ̂       ⃗⃗  

(2.22) 
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+ ̇ ̂        ̂        ̂̇       ⃗⃗  

+  ̈ ̂        ̂        ̂       ̂      ⃗⃗ + 

+  ̇ ̂̇        ̂        ̂       ̂      ⃗⃗  

+  ̇ ̂        ̂̇        ̂       ̂      ⃗⃗  

+  ̇ ̂        ̂        ̂̇       ̂      ⃗⃗  

+  ̇ ̂        ̂        ̂       ̂̇      ⃗⃗  

+ ̈ ̂        ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂̇        ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂̇        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂̇       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂       ̂̇      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂       ̂      ̂̇      ⃗⃗  

 

Fourthly, the angular acceleration of the inner azimuth gimbal coordinate frame 

relative to inertial frame  ⃗     is represented as 

 

 ⃗     =  ̈  ⃗⃗ + ̈  ̂
        ⃗⃗ + ̇  ̂̇

        ⃗⃗  

+ ̈  ̂
        ̂        ⃗⃗  

+ ̇  ̂̇
        ̂        ⃗⃗  

+ ̇  ̂
        ̂̇        ⃗⃗  

+ ̈  ̂
        ̂        ̂        ⃗⃗  

+ ̇  ̂̇
        ̂        ̂        ⃗⃗  

+ ̇  ̂
        ̂̇        ̂        ⃗⃗  

+ ̇  ̂
        ̂        ̂̇        ⃗⃗  

+ ̈  ̂        ̂        ̂        ̂       ⃗⃗  

+ ̇  ̂̇        ̂        ̂        ̂       ⃗⃗  

(2.23) 
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+ ̇  ̂        ̂̇        ̂        ̂       ⃗⃗  

+ ̇  ̂        ̂        ̂̇        ̂       ⃗⃗  

+ ̇  ̂        ̂        ̂        ̂̇       ⃗⃗  

+ ̈ ̂        ̂        ̂        ̂       ̂      ⃗⃗  

+ ̇ ̂̇        ̂        ̂        ̂       ̂      ⃗⃗  

+ ̇ ̂        ̂̇        ̂        ̂       ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂̇        ̂       ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂        ̂̇       ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂        ̂       ̂̇      ⃗⃗  

+ ̈ ̂        ̂        ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂̇        ̂        ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂̇        ̂        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂̇        ̂       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂        ̂̇       ̂      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂        ̂       ̂̇      ̂      ⃗⃗  

+ ̇ ̂        ̂        ̂        ̂       ̂      ̂̇      ⃗⃗  

 

Gravity vector is defined with respect to inertial coordinate frame as: 

 

  ⃗    = -  ⃗⃗ 
     

=-  ⃗⃗  (2.24) 

 

In the Newton-Euler equations, we use the transformed version of the gravity vector 

into the gimbal coordinate frames. 

 

 ⃗    = -  ⃗⃗ 
      

= -  ̂       ̂      ̂      ̂      ⃗⃗  

 

(2.25) 

 ⃗    =  ̂        ⃗     (2.26) 
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= -  ̂        ̂       ̂      ̂      ̂      ⃗⃗  

 

 ⃗     =  ̂        ⃗     

= -  ̂        ̂        ̂       ̂      ̂      ̂      ⃗⃗  

 

(2.27) 

 ⃗       ̂        ⃗     

=   ̂        ̂        ̂        ̂       ̂      ̂      ̂      ⃗⃗  

(2.28) 

 

Disturbance terms are defined as: 

 

 ⃗⃗⃗   =      ⃗⃗  

 

(2.29) 

 ⃗⃗⃗   =      ⃗⃗  

 

(2.30) 

 ⃗⃗⃗   =      ⃗⃗  

 

(2.31) 

 ⃗⃗⃗   =      ⃗⃗  (2.32) 

 

The moment terms are represented as: 

 

 ⃗⃗⃗    

    
= [

       

       

                

] 

(2.33) 

 ⃗⃗⃗    

    
= [

      

               

       

] 

(2.34) 

 ⃗⃗⃗     

    
= [

       

                  

        

] 

(2.35) 
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 ⃗⃗⃗     

    
= [

        

        

        

] 

(2.36) 

 ⃗⃗⃗     

    
= [

       

                  

        

] 

(2.37) 

 ⃗⃗⃗     

    
= [

       

                  

        

] 

(2.38) 

 ⃗⃗⃗     

    
= [

        

        

                  

] 

(2.39) 

 ⃗⃗⃗     

    
= [

        

        

        

] 

(2.40) 

 ⃗⃗⃗     

    
= [

        

        

        

] 

(2.41) 

 ⃗⃗⃗     

    
=[

        

        

        

] 

(2.42) 

2.2 Simplification of the Mathematical Model 

                ⃗    ⃗     ⃗  ,  ⃗                     meaning that all 4 gimbal 

centers of rotation and centers of gravity are coincident. We also assume that 

                                        exists no base disturbance on the 

4 gimbals. 

 

    [

      
      
      

] 
(2.43) 
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    [

      
      
      

] 
(2.44) 

    [
      
      
      

] 
(2.45) 

    [
      
      
      

] 
(2.46) 

 ⃗⃗⃗   = [
 
 

   

] 
(2.47) 

 ⃗⃗⃗   = [
 

   

 
] 

(2.48) 

 ⃗⃗⃗   = [
 

   

 
] 

(2.49) 

 ⃗⃗⃗   = [
 
 

   

] 
(2.50) 

With these assumptions, the angular velocity and acceleration terms of the 4 gimbals 

become 

 ⃗⃗⃗     =  ̇  ⃗⃗  

 

(2.51) 

 ⃗     = ̈  ⃗⃗  

 

(2.52) 

 ⃗⃗⃗     =  ̇  ⃗⃗   ̇  ̂
        ⃗⃗  

 

(2.53) 

 ⃗      =  ̈  ⃗⃗   ̈  ̂
        ⃗⃗   ̇  ̂̇

        ⃗⃗  

 

(2.54) 

 ⃗⃗⃗      ̇  ⃗⃗   ̇  ̂
        ⃗⃗   ̇  ̂

        ̂        ⃗⃗  

 

(2.55) 
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 ⃗    =  ̈  ⃗⃗   ̈  ̂
        ⃗⃗ + ̇  ̂̇

        ⃗⃗  

+ ̈  ̂
        ̂        ⃗⃗ + ̇  ̂̇

        ̂        ⃗⃗  

+ ̇  ̂
        ̂̇        ⃗⃗  

 

(2.56) 

 ⃗⃗⃗     =  ̇  ⃗⃗   ̇  ̂
        ⃗⃗   ̇  ̂

        ̂        ⃗⃗  

              ̇  ̂
        ̂        ̂        ⃗⃗     

 

(2.57) 

 ⃗     =  ̈  ⃗⃗ + ̈  ̂
        ⃗⃗ + ̇  ̂̇

        ⃗⃗  

+ ̈  ̂
        ̂        ⃗⃗ + ̇  ̂̇

        ̂        ⃗⃗  

+ ̇  ̂
        ̂̇        ⃗⃗  

 + ̈  ̂
        ̂        ̂        ⃗⃗   

 + ̇  ̂̇
        ̂        ̂        ⃗⃗       

 + ̇  ̂
        ̂̇        ̂        ⃗⃗    

            + ̇  ̂
        ̂        ̂̇        ⃗⃗    

(2.58) 

 

With those simplifications, the Euler’s equation for the outer azimuth axis becomes 

 

[

      
      
      

] [
 
 
 ̈ 

] + [
 
 
 ̇ 

]   [

      
      
      

] [
 
 
 ̇ 

] 

= [

       

       

                

] +[

        

        

        

]+ [

        

        

        

]  [
 
 

   

] 

(2.59) 

 

The matrix equation can be decomposed into three scalar equations 

 

         +                    (2.60) 

                            (2.61) 

      ̈                             

        +    

(2.62) 
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The Euler’s equation for the outer elevation axis becomes 

 

[

      
      
      

] [

  ̇  ̇          ̈        

  ̈

  ̇  ̇          ̈        

] + 

[

  ̇        

  ̈

 ̇        

]  [

      
      
      

] [

  ̇        

  ̈

 ̇        

]  

[

      

               

       

]+[

       

                  

        

]  

[

       

                  

        

]  [
 

   

 
] 

(2.63) 

 

 

The matrix equation can be decomposed into three scalar equations 

 

     [  ̇  ̇          ̈        ]  

+(         )  ̇  ̇         

=       +       +         

 

(2.64) 

      ̈  (         )  ̇ 
 

                

=                                           

 

(2.65) 

    [  ̇  ̇          ̈        ] 

+(         )  ̇  ̇          

=        +                  

(2.66) 

 

The Euler’s equation for the inner elevation axis becomes 

 

[

      
      
      

] [

  ̈              ̇   ̇   ̇           

   ̈

 ̈              ̇   ̇   ̇           

]+ 

(2.67) 
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[

 ̇           

  ̇   ̇  

 ̇           

]x[

      
      
      

] [

 ̇           

  ̇   ̇  

 ̇           

]  

=[

       

                  

        

]    [

        

        

        

]  [
 

   

 
] 

 

The matrix equation can be decomposed into three scalar equations 

 

     [  ̈            ( ̇   ̇ ) ̇           ] 

  ̇   ̇   ̇            (         ) 

=       +         

 

(2.68) 

       ̈    ̇ 
 
                       (         ) 

=                              

 

(2.69) 

    [ ̈            ( ̇   ̇ ) ̇           ] 

+  ̇   ̇   ̇            (         ) =         

         

 

(2.70) 

 

The Euler’s equation for the inner azimuth axis becomes 
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The matrix equation can be decomposed into three scalar equations 
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(2.74) 

2.3 Karnopp Friction Model 

A basic friction model contains Coulomb friction and linear viscous damping. In a 

certain velocity region near the zero velocity, friction decreases with the increasing 



 

26 

velocity [12]. This situation is called Stribeck effect, show in Figure 2.3. Friction 

force cannot be expressed as a function of velocity where the velocity equals to zero. 

The discontinuity of the friction function results in numerical difficulties in this 

velocity region. Therefore, a friction model containing a hysteresis loop is 

necessary. Coulomb, viscous and Stribeck friction model is 

 

                         (2.75) 

 

where; 

   : Friction force, 

   : Coulomb friction force, 

   : Viscous friction coefficient,  

   : Stribeck function of velocity. 

 

 

Figure 2.3: Coulomb, viscous and Stribeck Model of Friction [13] 
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Although the friction model shown in Figure 2.3 is useful for steady velocities, it 

causes numerical difficulties in the region where velocity crosses v = 0. Karnopp 

friction model, shown in Figure 2.4, is used in the simulations in order to get rid of 

these numerical difficulties. In Karnopp model, the friction force is equal to the 

force acting on the object around the neighborhood of v = 0. Outside the 

neighborhood of v = 0, friction force is a function of velocity [14]. 

 

   { 

                                                                       
                            ̇                          

                        ̇                        

 
(2.76) 

 

where; 

 

         (2.77) 

 

   : Coulomb friction coefficient, 

   : Viscous friction coefficient,  

   : Static friction coefficient, 

DV : Limit velocity. 
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Figure 2.4: Karnopp Friction Model Containing Hysteresis Loop [13] 

2.4 Kalman Filtering 

In this section, Kalman filter, which will be used in order to filter out the gyroscope 

measurement noise, is explained. Basicaly, Kalman filter is a state estimator that 

makes use of the measured data and the system matrices. We have a linear discrete 

time system described as: 

 

             (2.78) 

  
         (2.79) 

  

where; 

    : the state of the system at time k 

    : the output of the system 

   : the process noise 

   : the measurement noise 
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The    and    are zero-mean, white and uncorrelated noise processes with 

covariance matrices    and   , respectively [15]. 

 

Prediction Update:    

 

 ̂     
    ̂       

  (2.80) 

 

      
           

        (2.81) 

 

Measurement Update:  
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where 

 

 ̂     
     ̂     

  (2.84) 

 

      
         

        (2.85) 

 

  
        

          
     (2.86) 

 

 

The aim of the Kalman filter is to estimate the state    with the presence of output 

measurements    with the noise process   , and with the information about the 

linear model of system.  The Kalman filter has 2 parts; the prediction update and the 

measurement update. By the knowledge of system matrices, we can have a 

prediction of the next state  ̂     
  and covariance matrix       

  belonging to time k, 

with the use of A and B matrices of equation (2.78). After obtaining the predicted 
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state, we can correct it with the measurement update part. Measurement update 

basically minimizes the error between the measured output and the predicted output 

of the system. Kalman filter is the optimal filter minimizing the estimation error. 

 

In this study, Kalman filter is used in order to fuse the encoder and gyroscope data. 

The system matrices, process and measurement noise covariance matrices are 

defined in (2.87), (2.88), (2.89), (2.90), (2.91) and (2.92). 
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(2.89) 

  [

 

  
            

 
 

  
           

] 

(2.91) 

 

Q = 100   

(2.92) 

 

where T is the sampling time of the slowest sensor. This fusion Kalman filter 

algorithm evaluates position, velocity and acceleration and filters out the noises 

coming from the encoder and gyroscope. 
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Figure 2.5: Velocity vs Sample Number 

 

The comparison of velocity estimation throughout the encoder and gyroscope data 

taken from the real system with the gyroscope data and the encoder data with noise 

can be seen from Figure 2.5. Kalman filter estimates the velocity state using both the 

encoder and the gyroscope data. The fusion of the sensor data is crucial for the 

control to be done properly. 
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CHAPTER 3   

MODELING AND SIMULATION USING GYROSCOPE FEEDBACK 

In this chapter, simulation model is built in MATLAB Simulink environment 

according to the mathematical model given in Chapter 2. Simulation model is 

required for the control algorithm to be developed since it provides the opportunity 

to test the algorithms without running the actual system. Parameters of the 

simulation model of the 4-DOF platform are found by a system identification 

procedure, which is explained in the next section, utilizing the measured data 

gathered from the actual system. The transfer function of the fiber-optic gyroscope, 

which gives us the velocity measurements, is also found by a different system 

identification procedure, which is the ARMAX model, since the accurate 

relationship between the actual velocity and the measured one is required. In order 

to achieve this, gyroscope data are acquired from the rate table tests.  

 

3.1 Identification of the Parameters of Each 4 Gimbal Platform 

From the mathematical model of the 4-DOF platform, we deduce that the system 

parameters to be identified are the Newton-Euler equation parameters. In order for 

the parametric system identification to be done, command velocity input is given to 

each gimbal separately, and gyroscope velocity measurements are recorded. 

According to output-error parametric estimation method in [16], [17], looking at the 

difference between the actual system measurements and the simulation model 

output, we can judge the accuracy of the simulation model. 



 

34 

Let   be the parameter vector. The cost function to be minimized is: 

 

 

 
 ∑         ̂       

   

    

 

 

(3.1) 

 

where      is the measured velocity data by gyroscope and  ̂      is the output of 

the simulation model for a value of the parameter vector,   [16]. Let the optimal 

parameter vector  ̂  be the argument of (3.1) that minimizes this cost function: 

 

 ̂   = arg min 
 

 
 ∑         ̂          

    

 
 (3.2) 

 

In other words, the parameters must be optimized in such a way that the difference 

between the model output with a selected parameter set   and the logged data from 

the real platform must be minimized. 

 

The difference between model output and the logged data from the real system, 

when same inputs are given to the real system and simulation model, are minimized 

utilizing fmincon MATLAB function, which uses the gradient-descent optimization 

algorithm. The logged data and the simulation output plot is in Figure 3.1. The plots 

belonging to outer azimuth, outer elevation, inner elevation and inner azimuth 

gimbals are shown respectively in the Figure 3.1. The blue lines are the simulation 

outputs, whereas the gray lines are the real system output. The optimization 

algorithm makes these lines closer by adjusting the system parameters specified in 

the Newton-Euler equations. 

 

In order to identify the Karnopp friction model parameters, outer azimuth and inner 

elevation axes are commanded by pulse waveform in 4 Hz frequency. No excitation 

is given to the outer elevation and inner azimuth gimbals. 
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After the iterations of the gradient-descent optimization algorithm has finished, the 

value of the minimized cost function in (3.1) becomes 217.93, which was 384.43 

initially. This is because there are 52 parameters to be optimized in the simulation, 

which will be mentioned in the following sections. The parameters of the model 

imported from Solidworks to MATLAB and the identified parameters are given in 

Table 3.1. 

 

 

Figure 3.1: The Simulation Outputs (Blue) and Logged Data from the Real System (Gray) 
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3.1.1 Outer Azimuth Parameters 

The mass of the outer azimuth gimbal is identified as 6.0746 kg. The coordinates of 

the center of gravity of the gimbal is [106.638 -0.0293 -0.293] in milimeters. The 

diagonal parameters of the moments of inertia tensor matrix are 977490, 497910 and 

1053100 kg*mm
2
, respectively. Products of inertia vector components are 0.1613, 

0,098 and -537,0095 kg*mm
2
, respectively.  

3.1.2 Outer Elevation Parameters 

The mass of the outer elevation gimbal is identified as 3.0676 kg. The coordinates of 

the center of gravity of the gimbal is [-0.6527 -0.844 -2.5581] in milimeters. The 

diagonal parameters of the moments of inertia tensor matrix are 19368, 18733 and 

19113 kg*mm
2
, respectively. Products of inertia vector components are 118,6182, 

47,1553 and -16,9277 kg*mm
2
, respectively. 

3.1.3 Inner Elevation Parameters 

The mass of the inner elevation gimbal is identified as 2.3726 kg. The coordinates of 

the center of gravity of the gimbal is [-6.4687 -5.2779  40.2476] in milimeters. The 

diagonal parameters of the moments of inertia tensor matrix is 40139.2, 35324.2 and 

72346.3 kg*mm
2
, respectively. Products of inertia vector components are -20.402, -

68.373 and 365.02 kg*mm
2
, respectively. 

3.1.4 Inner Azimuth Parameters 

The mass of the inner azimuth gimbal is identified as 5.7257 kg. The coordinates of 

the center of gravity of the gimbal is [0 0.182 100] in milimeters. The diagonal 

parameters of the moments of inertia tensor matrix are 71043.8, 64755.3 and 87031 

kg*mm
2
, respectively. Products of inertia vector components are zero kg*mm

2
. 
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3.1.5 Karnopp Friction Parameters 

The friction between outer azimuth and outer elevation gimbals are 0.4690 for 

Coulomb friction coefficient, 3.2309 for viscous friction coefficient, 8.8244 for 

Stiction coefficient and 2.8397 for Stribeck effect coefficient. The friction between 

outer elevation and inner elevation gimbals are 3.4845 for Coulomb friction 

coefficient, 0.2951 for viscous friction coefficient, 8.3661 for Stiction coefficient 

and 2.8364 for Stribeck effect coefficient. The friction between outer elevation and 

inner elevation gimbals are 1.0805 for Coulomb friction coefficient, 2.6733 for 

viscous friction coefficient, 2.6231 for Stiction coefficient and 2.9048 for Stribeck 

effect coefficient. The friction parameters are tabulated in Table 3.2. 

 

Table 3.1: Output Error Parametric System Identification Values 

 

 

Parameter CAD Import Value Identified Value Unit 

m_oa 5,012 6,0746 kg 

r_oa1 -106,638 -106,9867 mm 

r_oa2 0 -82,3952 mm 

r_oa3 0 37,2439 mm 

J_oa1 977487 977490 kg*mm^2 

J_oa2 497908 497910 kg*mm^2 

J_oa3 1053090 1053100 kg*mm^2 

P_oa1 0 -32,6177 kg*mm^2 

P_oa2 0 -37,5059 kg*mm^2 

P_oa3 -537,008 -536,967 kg*mm^2 

m_oe 0,699618 3,0676 kg 

r_oe1 -0,28 85,2266 mm 

r_oe2 -0,844 -0,29124 mm 

r_oe3 -3,44 -7,3656 mm 

J_oe1 19368 19368 kg*mm^2 

J_oe2 18732,6 18733 kg*mm^2 

J_oe3 19113,09 19113 kg*mm^2 

P_oe1 118,61 118,6182 kg*mm^2 

P_oe2 47,15 47,1553 kg*mm^2 

P_oe3 -17,2 -16,9277 kg*mm^2 
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Table 3.1: Output Error Parametric System Identification Values (Continued) 

m_ie 2,24084 2,3726 kg 

r_ie1 -6,4687 -1,5509 mm 

r_ie2 -5,2779 6,3448 mm 

r_ie3 40,2746 4,6835 mm 

J_ie1 40139,2 40139,2000 kg*mm^2 

J_ie2 35324,2 35324,2000 kg*mm^2 

J_ie3 72346,3 72346,3000 kg*mm^2 

P_ie1 -20,402 -25,1181 kg*mm^2 

P_ie2 -68,373 -64,6992 kg*mm^2 

P_ie3 365,02 364,9260 kg*mm^2 

m_ia 7,3589 5,7257 kg 

r_ia1 0 37,2439 mm 

r_ia2 0,1819 26,9604 mm 

r_ia3 100 98,6244 mm 

J_ia1 71043,8 71043,8000 kg*mm^2 

J_ia2 64755,3 64755,3000 kg*mm^2 

J_ia3 87031 87031,0000 kg*mm^2 

P_ia1 0 -10,2966 kg*mm^2 

P_ia2 0 -44,3454 kg*mm^2 

P_ia3 0 -55,7843 kg*mm^2 

 

Table 3.2: Friction Parameters 

 

Between OA and OE Between OE and IE Between IE and IA 

CoulombFriction 0,469 3,4845 1,0805 

ViscousFriction 3,2309 0,2951 2,6733 

StaticFriction 8,8244 8,3661 2,6231 

wStribeck 2,8397 2,8364 2,9048 

3.2 Identification of the Fiber-Optic Gyroscope Transfer Function 

Inertial sensors (gyroscopes) have distinct error characteristics such as bias, scale 

factor, random walk, etc. Calibration and characterization tests are done with 2 or 3 

axes rate tables in order to identify these errors [40]. For stabilization and control of 

the 4-DOF platform, fiber-optic gyroscopes are used. Since fiber-optic gyroscope 

parameters are not easy to define [18], we will construct a transfer function from 

input and output time-domain data of the gyroscope. The data acquisition is carried 
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out with the aid of a rate table, an xPC target box (a hardware-in-loop simulation 

tool for MATLAB) and a digital signal analyzer. Rate table gives the movement to 

the gyroscope to be measured. The gyroscope and xPC target box transceive RS-422 

data. The digital signal analyzer takes the velocity information of the physical 

movement of the rate table as an input of the gyroscope, and the analog velocity 

information coming from xPC target box as an output of the gyroscope. With that 

information, the system identification according to the ARMAX model can be 

carried out. 

 

Figure 3.2: Gyroscope Test Setup Block Diagram 

 

The gain and phase relating the input and output data of the fiber-optic gyroscope is 

shown in Figure 3.2. 
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Figure 3.3: Gyroscope Frequency Domain Data 

 

Before jumping into the results, we will have a look at the ARMAX model. Suppose 

we have an input-output time domain data sequence which will be utilized for 

identification of the transfer function of the system 

 

     =          +           (3.3) 

 

where e(k) is the zero-mean white noise sequence, which is independent from the 

sequence u(k). G(s) is the deterministic part where H(s) is the stochastic part of the 

system [16]. The ARMAX (Auto-Regressive Moving Average with eXogenous 

input) model structure is the following specific case of general input–output 

description [16]: 

 

    = 
                

                       + 
                  

                        (3.4) 
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Since ARMAX model is a time-domain model, the response to the chirp signal from 

1 Hz to 1 kHz in time interval of 50 seconds is given in Figure 3.4. Since the Bode-

plot in Figure 3.3 has distortions beyond 1 kHz, the upper frequency limit is chosen 

as 1 kHz. 

 

Figure 3.4: Gyro Output Data with 1Hz-to-1kHz Chirp Input 

 

Using the ARMAX model system identification, the gyroscope has a transfer 

function 

    = 
                         

                          + 
                     

                           (3.5) 

 

The broadband excitation signal is used since the dynamic behaviour of a 

mechanical system is obtained from input and output signals, strictly speaking, 

nonparametric measurements [19]. The measurement errors of the gyroscope data 
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will be corrected, together with the encoder data. This is carried out using a Kalman 

filter, which is presented in Section 2.4. 
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CHAPTER 4  

CONSTRUCTION OF THE SIMULATION MODEL 

For the purpose of designing and testing different control algorithms, an accurate 

simulation model of the 4-DOF platform is necessary, since simulation provides the 

opportunity to see the system response without running it physically. With Matlab 

SimMechanics, mechanical systems can be simulated on 3-D models besides being 

connected to other Simulink blocks through sensor and actuator blocks, which 

enables us to implement several controllers. Moreover, CAD models can be 

imported on Matlab SimMechanics which provides accuracy to the SimMechanics 

blocks [20]. In our simulation, the 4-DOF platform’s SimMechanics model is 

imported from SolidWorks CAD model and the parameters of the model is corrected 

with the aid of parametric system identification on data collected from the real 

system, as explained in Section 3.1. In the third section, simulation model 

construction is explained on the SimMechanics blocksets. Mechanical bodies 

belonging to each of the gimbals of the platform, friction model, motor and driver 

dynamics, the 6-DOF motion simulator (Stewart platform) which gives the base 

motion are presented in detail. To summarize, simulation model is explained through 

the parts, which are mechanical bodies, friction, motor and driver dynamics, 6-DOF 

motion simulator (Stewart Platform), and sensor noise and delay. 

4.1 Mechanical Bodies 

In this simulation work, the SimMechanics model is imported from the real 

mechanical CAD model composed in SolidWorks environment. The SimMechanics 
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model excluding frictions is shown in Figure 4.1. With the mechanism configuration 

block, the gravity is specified in the model. The world block specifies the inertial 

frame. With the transform blocks, frame transformations, explained in the Section 

2.1 can be carried out. Using revolute joint blocks, we can establish the rotational 

relationships between two rigid bodies. Also, torque and motion inputs can be 

applied to the gimbals through revolute joint blocks, and the position, velocity, and 

acceleration measurement can be obtained in a similar manner. Inside each of the 

gimbal blocks, there exists a reference frame block, a solid block and transform 

blocks as shown in the Figure 4.2.  

 

Each rigid body requires a reference frame, which are defined in Section 2.1. The 

solid block, in the Figure 4.3 includes mass, moments of inertia, products of inertia, 

center of mass information in addition to the shape information coming from the 

imported CAD model and the visual properties for the 3-D graphical simulation. 

Transform blocks perform the rigid transformation duty.  
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Figure 4.1: Simulation Model of the 4-DOF platform on SimMechanics 

 

Figure 4.2: A Rigid Body Simulation Block 

By running this simulation, we obtain a 3-D vision of the 4-DOF platform. The 

movements of all the axes can be observed physically by adjusting the opacity of the 

solid blocks. Moreover, with the utilization of scope and ‘to workspace’ blocks, we 

can obtain the measurements of velocity, position, angular acceleration and other 

desired measurements. 

4.2 Friction 

The Karnopp friction model, which is explained in Section 2.3, is implemented on 

Simulink as in Figure 4.3. 
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Figure 4.3: Karnopp Friction Simulation Model 

 

Friction exists between gimbal base and the outer azimuth, the outer azimuth and the 

outer elevation, the outer elevation and the inner elevation, the inner elevation and 

the inner azimuth gimbal bearings. The Karnopp friction model is inserted into the 

SimMechanics model through the revolute joint blocks, as shown in the Figure 4.4. 

Revolute joint blocks can be configured to have torque inputs and velocity outputs. 

By using the velocity output of the revolute joint block, the velocity of the gimbal 

can be used as the velocity input of the friction model. The friction torque output of 

the Karnopp friction block is inserted into the simulation by subtracting it from the 

torque input of the gimbal. 
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Figure 4.4: Friction Model Inserted into the Simulation Model 

 

Friction affects the stabilization in a negative manner. Therefore it requires to be 

eliminated through several friction compensation methods. 
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4.3 6-DOF Motion Simulator 

 

Figure 4.5: A Real Stewart Platform [21] 

 

Stewart platform has an important role on the system since it has the capability to 

physically simulate different kinds of motion and disturbances on the gimbal base. 

Based on the disturbances coming from the Stewart platform, one can test the 

disturbance rejection and target tracking performance of any designed control 

algorithm. Stewart platform has a shape as in the Figure 4.5. The size of it can be 

redefined on MATLAB SimMechanics according to the requirements. With the use 

of Stewart platform, the 3 rotational degrees of freedom,     and   which are 

explained in Section 2.1, can be created besides 3 translational degrees of freedom. 
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Figure 4.6: Simulation Blocks for the Stewart Platform 

 

MATLAB SimMechanics model of Stewart platform is shown in Figure 4.6. Body 

blocks are defined for each 6 legs of the platform and upper and lower plates. Each 

leg is connected to the upper and lower plates through revolute joint blocks, which 

provide each body a freedom to move with respect to each other. Force input is 

applied to each of the legs and position and velocity of each leg can be obtained as 

an output. A predefined leg trajectory can be given to the simulation model as an 

input and the Stewart platform can make the desired movements via a PID 

controller. 



 

51 

 

Figure 4.7: 3-D Simulation View of Stewart Platform 

 

The gimbal base of the simulation model presented in Section 4.1 is connected to the 

top plate of the Stewart platform in SimMechanics. Therefore, gimbal base motion 

and disturbances can be simulated through this model. The controller and leg 

trajectory blocks of the Stewart platform model are shown in Figure 4.8. PID 

controller is utilized as the controller of the Stewart platform motion. Leg trajectory 

can be adjusted in positional and angular terms. 
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Figure 4.8: The Controller and Leg Trajectory Blocks of Stewart Platform 

 

The 3-D simulation model of the 4-DOF gimbal placed on the Stewart platform is 

shown in Figure 4.9. 
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Figure 4.9: 4-DOF Platform Placed on the Stewart Platform 

 

Since the Stewart Platform is imported from its CAD model (on Solidworks), the 

sizes cannot be changed in the 3-D picture. However, the mass, moments of inertia, 

products of inertia, leg lengths can be changed in MATLAB. 
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CHAPTER 5  

STABILIZATION AND CONTROL OF THE TRACKING SYSTEM 

5.1 Introduction 

In this chapter, the controllers for the target tracking and stabilization purposes are 

investigated. Theory and implementations of the PID (Proportional, Integral and 

Derivative) Controller and the Sliding Mode Controller are explained. Disturbance 

rejection performances of these controllers are compared and evaluated. As 

explained in the Chapter 2, there are 4 gimbal axes and therefore, 4 actuators to be 

controlled. These gimbal axes will compensate the yaw and pitch disturbances 

coming from the Stewart platform, on which the 4-DOF platform is placed. 

However, the roll disturbances coming from the Stewart platform are not 

compensated since there is no actuator in roll axes on the 4-DOF platform. This 

situation does not constitute a handicap for the target-tracking system since the roll 

disturbances does not cause the target which is being tracked to escape out of the 

center of the image obtained from the camera. The cross-couplings between the 

gimbal axes are analyzed in [39]. In this study, without calculating the cross 

couplings, the stabilization is evaluated. 

In accomplishing the stabilization task, the most important disturbance source is the 

friction. The controller performances can be evaluated according to friction 

compensation performances. Sensor noise also causes performance degrading in 

stabilization, but it can be corrected using a Kalman filter, which is explained in 

Section 2.4.  
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5.2 PID Control 

In this section, for each gimbal axis, continuous time PID controllers are tuned with 

the aim of achieving the desired transient response, stability and robustness 

conditions. The desired conditions for PID control are: settling time is less than or 

equal to 0.1 sec for 5% settling limit and maximum overshoot for step response 

should be below 10% [22]. The PID controller is used for position control on the 4-

DOF gimbal system. The PID controller has the transfer function in (5.1). 

     =   +    + 
  

 
 (5.1) 

A continuous-time PID controller is tuned for the system, since a discrete-time PID 

controller can be converted into a continuous-time one by using a zero-order-hold 

(ZOH). Then, the PID tuner of the MATLAB is utilized ([23]) in order to compare 

whether the manual tuning produces sufficiently good responses as manual tuning 

and the sliding mode controller. 

5.2.1 Manually Tuned PID Control 

The manually tuned PID parameters tuned for each axis is given in Table 5.1. 

 

Table 5.1: PID Position Controller Parameters Tuned Manually 

Axis          

Outer Azimuth 25 30 15 

Outer Elevation 30 20 5 

Inner Elevation 70 50 15 

Inner Azimuth 50 40 15 
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The step responses to 0.5 rad step input belonging to each axis are given in Figures 

5.1, 5.2, 5.3, and 5.4. The step responses to 0.3 rad step input belonging to each axis 

are given in Figures 5.5, 5.6, 5.7, and 5.8. 

 

 

Figure 5.1: Outer Azimuth Step Response with PID Controller to 0.5 rad Step Input 

The step response of the outer azimuth axis to the PID controller, which can be seen 

from Figure 5.1, has a maximum overshoot of  9% and settling time about 0.8 sec. It 

has an offset error. 
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Figure 5.2: Outer Azimuth Step Response with PID Controller to 0.3 rad Step Input 

The step response of the outer azimuth axis to the PID controller, which can be seen 

from Figure 5.2,  has a maximum overshoot of  8% and settling time about 0.7 sec. 

The response has an offset error about 2%. 

 

 

Figure 5.3: Outer Elevation Step Response with PID Controller to 0.5 rad Step Input 
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The step response of the outer elevation axis to the PID controller, which can be 

seen from Figure 5.3, has a maximum overshoot of 6% and settling time about 0.32 

sec. It has an offset error about 1%. 

 

 

Figure 5.4: Outer Elevation Step Response with PID Controller to 0.3 rad Step Input 

 

The step response of the outer elevation axis to the PID controller, which can be 

seen from Figure 5.4, has a maximum overshoot of 5% and settling time about 0.3 

sec. The response has an offset error about 1%. 
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Figure 5.5: Inner Elevation Step Response with PID Controller to 0.5 rad Step Input 

The step response of the inner elevation axis to the PID controller, which can be 

seen from Figure 5.5, has a maximum overshoot of 5% and settling time about 0.4 

sec. The response has an offset error about 1%. 

 

 

Figure 5.6: Inner Elevation Step Response with PID Controller to 0.3 rad Step Input 
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The step response of the inner elevation axis to the PID controller, which can be 

seen from Figure 5.6, has a maximum overshoot of 5% and settling time about 0.35 

sec. The response has an offset error about 1.5%. 

 

 

Figure 5.7: Inner Azimuth Step Response with PID Controller to 0.5 rad Step Input 

 

The step response of the inner azimuth axis to the PID controller, which can be seen 

from Figure 5.7, has a maximum overshoot of  2% and settling time about 0.2 sec. 

The response has an offset error about 8%. 
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Figure 5.8: Inner Azimuth Step Response with PID Controller to 0.3 rad Step Input 

 

The step response of the inner azimuth axis to the PID controller, which can be seen 

from Figure 5.8, has a maximum overshoot of 3% and settling time about 0.2 sec. 

The response has an offset error about 7%. 

 

The bigger step responses are chosen with magnitude 0.5 since the unit is rad. 0.5 

rad is about 55 degrees step. In the SimMechanics model of the 4-DOF platform, the 

initial conditions are not adjusted to 0 rad. Therefore, the step responses in Figure 

5.1, Figure 5.2, Figure 5.3,Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7 and Figure 

5.8  have some overshoots while coming to zero radian position from non-zero 

initial condition. 
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5.2.2 Automatically Tuned PID Control 

The automatically tuned PID parameters tuned for each axis is given in Table 5.2. 

 

Table 5.2: PID Position Controller Parameters Tuned by MATLAB 

Axis          

Outer Azimuth 490428.067465887 11927143.6111644 4480.58950278374 

Outer Elevation 211178.45946078 18117068.3360075 222.243172194709 

Inner Elevation 10539.3154589856 79531.1018858048 141.236461941122 

Inner Azimuth 60504.5509840086 2171141.27078009 374.635538705721 

 

The step responses belonging to each axis are given in Figures 5.9, 5.10, 5.11, 5.12, 

5.13, 5.14, 5.15, 5.16 . 

 

 

Figure 5.9: Outer Azimuth Step Response with Automatically Tuned PID Controller to 0.5 

rad Step Input 
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The step response of the outer azimuth axis to the automatically tuned PID 

controller, which can be seen from Figure 5.9, has a maximum overshoot of  0% and 

settling time about 0.038 sec. The response has no offset error. 

 

 

Figure 5.10: Outer Azimuth Step Response with Automatically Tuned PID Controller to 0.3 

rad Step Input 

The step response of the outer azimuth axis to the automatically tuned PID 

controller, which can be seen from Figure 5.10, has a maximum overshoot of  0% 

and settling time about 0.035 sec. The response has no offset error. 
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Figure 5.11: Outer Elevation Step Response with Automatically Tuned PID Controller to 

0.5 rad Step Input 

 

The step response of the outer elevation axis to the automatically tuned PID 

controller, which can be seen from Figure 5.11, has a maximum overshoot of  0% 

and settling time about 0.038 sec. The response has no offset error. 

 

 

Figure 5.12: Outer Elevation Step Response with Automatically Tuned PID Controller to 

0.3 rad Step Input 
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The step response of the outer elevation axis to the automatically tuned PID 

controller, which can be seen from Figure 5.12, has a maximum overshoot of  0% 

and settling time about 0.034 sec. The response has no offset error. 

 

 

Figure 5.13: Inner Elevation Step Response with Automatically Tuned PID Controller to 

0.5 rad Step Input 

 

The step response of the outer elevation axis to the automatically tuned PID 

controller, which can be seen from Figure 5.13, has a maximum overshoot of  1.6% 

and settling time about 0.034 sec. The response has no offset error. 
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Figure 5.14: Inner Elevation Step Response with Automatically Tuned PID Controller to 

0.3 rad Step Input 

The step response of the inner elevation axis to the automatically tuned PID 

controller, which can be seen from Figure 5.14, has a maximum overshoot of 1,6% 

and settling time about 0.032 sec. The response has no offset error. 

 

 

Figure 5.15: Inner Azimuth Step Response with Automatically Tuned PID Controller to 0.5 

rad Step Input 
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The step response of the inner azimuth axis to the automatically tuned PID 

controller, which can be seen from Figure 5.15, has a maximum overshoot of 0% 

and settling time about 0.039 sec. The response has no offset error. 

 

 

Figure 5.16: Inner Azimuth Step Response with Automatically Tuned PID Controller to 0.3 

rad Step Input 

 

The step response of the inner azimuth axis to the automatically tuned PID 

controller, which can be seen from Figure 5.16, has a maximum overshoot of 0% 

and settling time about 0.036 sec. The response has no offset error. 

 

The comparison of the step responses of the manually tuned PID and automatically 

tuned PID controllers are given in Table 5.3. 
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Table 5.3: Comparison of the Step Responses of Manually and Automatically Tuned PID 

Controllers 

 PID Controller Automatically Tuned PID 

Controller 

Settling 

Time 

(sec) 

Overshoot Offset 

Error 

Settling 

Time 

(sec) 

Overshoot Offset 

Error 

Outer Azimuth 

0.5 rad step 

0.8 9% Yes 0.038 0% No 

Outer Azimuth 

0.3 rad step 

0.7 8% Yes 0.035 0% No 

Outer Elevation 

0.5 rad step 

0.32 6% Yes 0.038 0% No 

Outer Elevation  

0.3 rad step 

0.3 5% Yes 0.034 0% No 

Inner Elevation 

0.5 rad step 

0.4 5% Yes 0.034 1.6% No 

Inner Elevation 

0.3 rad step 

0.35 5% Yes 0.032 1.6% No 

Inner Azimuth 

0.5 rad step 

0.2 2% Yes 0.039 0% No 

Inner Azimuth 

0.3 rad step 

0.2 2% Yes 0.039 0% No 

 

In order to compare the performances of the PID controllers on small and big 

disturbances, 0.5 rad and 0.3 rad step inputs are given to the system. The overshoots 

are nearly the same, whereas the settling times are slightly smaller for the smaller 



 

70 

step sizes. This result is reasonable since settling of the system must be quicker for 

smaller commands. 

5.3 Sliding Mode Control 

Sliding Mode Control (SMC) is a robust control method which compensates the 

changes in the plant and external disturbances without change in the performance 

[22]. A sliding mode control design consists of 2 steps. The first step is to choose the 

switching surface which is in the state space on which the closed loop system 

motion shows the desired behavior regardless of plant uncertainties and 

disturbances. The second step is to design a control function which makes the 

selected surface attractive [25], [26]. As regards to the structure of the controller, it 

consists of a nominal (switching) part that provides main control action and an 

additional term for dealing with the disturbances and unmodeled dynamics [22], 

[30]. The control input coming from the SMC has the switching and the equivalent 

parts as in (5.2). 

  

   =    +     (5.2) 

 

The switching part of the controller,    , compensates the deviations from the 

sliding surface. The equivalent part of the controller,    , makes the derivative part 

of the sliding mode controller equivalent to zero in order to stay on the sliding 

surface. 
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Figure 5.17: Sliding Surface and the State Trajectory [27] 

As in Figure 5.17, the sliding mode control has 2 phases. The non-zero initial 

condition reaches the sliding surface during the reaching phase. In the sliding phase, 

the trajectory which has reached the sliding surface, stays there and evolves 

according to the dynamics specified by the sliding surface [25], [28], [29]. 

5.3.1 Sliding Surface Design 

The sliding surface  ( ̂) is a function of tracking error  ̂ =       , where    is the 

desired state. It is chosen in compliance with Lyapunov’s Global Stability Theorem 

[31]. If a scalar function      has continuous first order derivatives and it satisfies 

the following conditions 

      is positive definite for all  , 

  ̇    is negative definite for all  , 

 When      goes to infinity, ||  || should go to infinity. 

Then the equilibrium at the origin of this function is globally asymptotically stable. 

[22]. The Lyapunov function satisfying these conditions is (5.3). 
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     = 
 

 
     (5.3) 

 ̇       ̇ <0 (5.4) 

The chosen sliding surface is in the form of (5.5)     

 ( ̂) =          (5.5) 

where   is the vector of the actual states and    is the vector of desired states, h is 

the right eigenvector (corresponds to zero eigenvalue) of the desired closed loop 

system matrix A. [21]. 

The sliding surfaces chosen for the 4 gimbal axes are shown in the equations (5.6), 

(5.7), (5.8) and (5.9). 
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 ̇ 
]-[
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]) 

(5.9) 

5.3.2 Sliding Mode Controller Design 

The control law is designed using a Lyapunov-based approach [32]. The dynamics 

of   is derived in (5.10). 

 ̇ =   ̇ +  ̈ = 0 (5.10) 

 

where e = (    ) is the position error. 

A system described in [32] is give in (5.11), (5.12), (5.13): 
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 ̇  =    (5.11) 

 ̇         ) +           (5.12) 

  =    (5.13) 

Then (5.10) becomes 

 ̇ = ̈-      ̇       (5.14) 

The Lyapunov function becomes 

 ̇    =        ̈-      ̇            ̇    (5.15) 

 

In order for the Lyapunov function to be positive definite, the condition (5.16) must 

be satisfied. 

   ̇     = -   |       (5.16) 

 

The SMC law becomes 

   =       sign(   (5.17) 

where 

         ̈-      ̇            ̇    (5.18) 

where b is the feedback gain coming from robust Pole Placement Theory, [36]. In 

our case, the control inputs are 

      = sign(       (5.19) 

      = sign(                 ̈   ̈ +   ̇   ̇  (5.20) 
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      = sign(                 ̈   ̈ +   ̇   ̇  (5.21) 

      = sign(       (5.22) 

5.3.3 Chattering Phenomena 

Large switching gains may improve robustness and stability. However, they can 

cause a phenomenon called as “chattering”. Although trajectories slide along the 

sliding surface theoretically, it is a high frequency switching in practice, due to 

inclusion of sign function in the switching term. When this phenomenon occurs, 

control input starts to oscillating around the zero sliding surface. The oscillating 

control input may result in unwanted and harmful tear, vibration, sound etc. [22], 

[30]. Hence the performance may degrade in time. 

To solve the chattering problem, “soft switching” method is implemented. Other 

smooth functions around the switching zone are utilized in soft switching, instead of 

the sign function. In [37] and [38], sat function is utilized for soft switching. In this 

study, hyperbolic tangent function is chosen. Tangent function has the same 

asymptotes as the sign function. There is a continuous transition area around the 

zero value of the sliding surface. This area is known as “boundary layer”. By 

changing the boundary layer thickness parameter,  , the thickness of the boundary 

layer can also be adjusted, as in [22]. In Figure 5.18, different sliding surfaces 

created using different switching functions are exhibited. 
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Figure 5.18: Switching Function vs. Sliding Surface [31] 

 

The use of hyperbolic tangent function with boundary layer thickness parameter 

     resulted in a significant decrease in chattering. Since the Karnopp friction 

model has a hysteresis loop, the chattering phenomena have caused numerical 

difficulties during simulations. 

The step responses measure the controller performance. The SMC with soft 

switching step responses of 4 gimbals to a step with magnitude 0.5 rad is given in 

Figures 5.7, 5.8, 5.9 and 5.10. 
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Figure 5.19: Outer Azimuth Position Step Response with SMC 

 

The step response of the outer azimuth axis to the SMC, which can be seen from 

Figure 5.19, has a maximum overshoot of 5.7% and settling time about 0.05 sec. The 

response has no offset error. 

 

 

Figure 5.20: Outer Elevation Position Step Response with SMC 
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The step response of the outer elevation axis to the SMC, which can be seen from 

Figure 5.20, has a maximum overshoot of 30% and settling time about 0.2 sec. The 

response has an offset error of 4%. 

 

 

Figure 5.21: Inner Elevation Position Step Response with SMC 

 

The step response of the inner elevation axis to the SMC, which can be seen from 

Figure 5.21, has a maximum overshoot of 16% and settling time about 0.2 sec. The 

response has no offset error. There exists a glitch in the response which results from 

the resonance of the plant. 
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Figure 5.22: Inner Azimuth Position Step Response with SMC 

 

The step response of the inner azimuth axis to the SMC, which can be seen from 

Figure 5.22, has a maximum overshoot of 0% and settling time about 0.03 sec. The 

response has no offset error. 
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Table 5.4: Comparison of the Step Responses 

 PID Controller Sliding Mode Controller Automatically Tuned 

PID Controller 

Settling 

Time 

(sec) 

Over-

shoot 

Offset 

Error 

Settling 

Time 

(sec) 

Over-

shoot 

Offset 

Error 

Settling 

Time 

(sec) 

Over-

shoot 

Offset 

Error 

Outer 

Azimuth 

0.8 9% Yes 0.1 5% No 0.038 0% No 

Outer 

Elevation 

0.32 6% Yes 0.25 26% Yes 0.038 0% No 

Inner 

Elevation 

0.4 5% Yes 0.7 16% No 0.034 1.6% No 

Inner 

Azimuth 

0.2 2% Yes 0.03 0% No 0.039 0% No 

 

 

Looking at the results given in Table 5.4, although the sliding mode controller is a 

robust control methodology, automatically tuned PID controller gives the best 

responses in terms of overshoot, settling time and offset error criteria. If the sliding 

mode controller is tuned better, it may give better responses. In the next section, 

stabilization performances of these controllers are compared and evaluated. 

5.4 The Impact of Controller Implementation on Stability 

With the aim of doing a further analysis on controller implementation, phase 

margins and gain margins of each of the 4 gimbals are compared through Bode plot 

analysis. The frequency response of the closed-loop system gives a good insight to 
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measure marginal stability in terms of gain margin and phase margin. Thanks to 

Bode analysis, one can observe to where the gain and bandwidth of a controller can 

be adjusted. Phase margin is a more important performance measure than gain 

margin, since the aim of the control systems is to eliminate the unnecessary phase 

lag [33]. Phase lag mostly comes from the sensor delay and friction. Gain and phase 

margin evaluation methods are explained in [34], [35]. 

5.5 Stabilization 

Stabilizing the image-based target tracking system means that getting rid of the 

disturbances on the tracking motion. In other words, it means zeroing the position of 

the inner azimuth gimbal, on which the camera is placed, relative to the inertial 

frame. To achieve this, the frame transformations, explained in Chapter 2, are 

exploited. The performances of the control methods which are mentioned in Section 

5.2 and 5.3 will be compared according to stabilization performances. The position 

commands for the controllers of the 4 axes are generated through a code which 

calculates the angular positions of the gimbals relative to gimbal reference frames 

that make the inner azimuth (camera) position zero relative to the inertial frame, 

which is the world. 

5.5.1 Disturbance Coming from Stewart Platform 

In order to test the stabilization, first we need to generate a disturbance simulation. 

This task is carried out by the 6-DOF Stewart platform, which gives the base motion 

to the 4-DOF platform with the aim of simulating the vibrations coming from the 

vehicle on which the gimbal platform is placed.  

The Stewart top plate position with respect to inertial frame in x, y and z axes (i.e., 

roll, pitch and yaw respectively) is shown in Figure 5.23, Figure 5.24, Figure 5.25, 

Figure 5.26 and Figure 5.27. The blue lines are the roll (x-axis) disturbances, the red 
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ones are the pitch (y-axis) disturbances and the green ones are the yaw (z-axis) 

disturbances. 

 

 

Figure 5.23: Stewart Platform Disturbance 1 (0.5 rad/sec Translational and 2 rad/sec 

Rotational DOF) 

 

 

Figure 5.24: Stewart Platform Disturbance 2 (0.5 Hz Translational and 0.5 Hz Rotational 

DOF) 
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Figure 5.25: Stewart Platform Disturbance 3 (0.2 Hz Translational and 0.2 Hz Rotational 

DOF) 

 

 

Figure 5.26: Stewart Platform Disturbance 4 (0.5 Hz Translational and 1 Hz Rotational 

DOF) 
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Figure 5.27: Stewart Platform Disturbance 5 (25 Hz Rotational DOF) 

5.5.2 Stabilization Using the Manually Tuned PID Controller 

 

 

Figure 5.28: Stabilization with PID on Disturbance 1 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 
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error of the elevation axis is 5.4 mrad and the integral error of the azimuth axis is 4.4 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.03 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.024. 

 

Figure 5.29: Stabilization with PID on Disturbance 2 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.9 mrad and the integral error of the azimuth axis is 1.2 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.027 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.016. 
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Figure 5.30: Stabilization with PID on Disturbance 3 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 82.8 mrad and the integral error of the azimuth axis is 

22.9 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.03 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.024. 

 

Figure 5.31: Stabilization with PID on Disturbance 4 
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Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 114 mrad and the integral error of the azimuth axis is 73 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.07 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.05. 

 

 

Figure 5.32: Stabilization with PID on Disturbance 5 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 2.5 mrad and the integral error of the azimuth axis is 1.8 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.05 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.03. 
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5.5.3 Stabilization Using the Automatically Tuned PID Controller 

 

 

Figure 5.33: Stabilization with Automatically Tuned PID on Disturbance 1 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.59 mrad and the integral error of the azimuth axis is 

0.093 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.007 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.0003 rad. 
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Figure 5.34: Stabilization with Automatically Tuned PID on Disturbance 2 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 20 mrad and the integral error of the azimuth axis is 

0.137 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.023 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.0002 rad. 

 

 

Figure 5.35: Stabilization with Automatically Tuned PID on Disturbance 3 
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Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 1.2 mrad and the integral error of the azimuth axis is 

0.109 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.038 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.0002 rad. 

 

 

Figure 5.36: Stabilization with Automatically Tuned PID on Disturbance 4 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.53 mrad and the integral error of the azimuth axis is 

0.106 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.025 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.001 rad. 
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Figure 5.37: Stabilization with Automatically Tuned PID on Disturbance 5 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.028 mrad and the integral error of the azimuth axis is 

0.113 mrad. The peak-to peak value of the elevation axis deviation of the position 

from zero is 0.002 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.0002 rad. 
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5.5.4 Stabilization Using the Sliding Mode Controller 

 

 

Figure 5.38: Stabilization with SMC on Disturbance 1 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 63.5 mrad and the integral error of the azimuth axis is 

2.5 mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.02 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.032. 
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Figure 5.39: Stabilization with SMC on Disturbance 2 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.38 mrad and the integral error of the azimuth axis is 

0.32 mrad. The peak-to-peak value of the elevation axis deviation of the position 

from zero is 0.017 and the peak-to peak value of the azimuth axis deviation of the 

position from zero is 0.015. 
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Figure 5.40: Stabilization with SMC on Disturbance 3 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 20 mrad and the integral error of the azimuth axis is 18 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.02 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.032. 

 

Figure 5.41: Stabilization with SMC on Disturbance 4 
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Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 21 mrad and the integral error of the azimuth axis is 9.3 

mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.04 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.03. 

 

 

Figure 5.42: Stabilization with SMC on Disturbance 5 

 

Integral error of a 5-second stabilization error data is obtained by integrating the 

inner azimuth angular position signal with respect to the world frame. The integral 

error of the elevation axis is 0.61 mrad and the integral error of the azimuth axis is 

83  mrad. The peak-to peak value of the elevation axis deviation of the position from 

zero is 0.03 and the peak-to peak value of the azimuth axis deviation of the position 

from zero is 0.02. 
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5.5.5 Comparison and Evaluation of the Results 

The inner azimuth (target tracking camera) position with respect to the inertial frame 

plots are given in Section 5.5.2 and Section 5.5.3. The 4-DOF gimbal is commanded 

to look at the zero position. Examining the peak-to-peak values of the elevation and 

azimuth axes under different disturbance frequencies, which is shown in Table 5.5, 

and the integral errors of the position errors in the azimuth and elevation axes, which 

is in the Table 5.6, can give a good performance comparison between the sliding 

mode controller and the PID controller. 

 

Table 5.5: Peak-to-Peak Error Amplitudes for Disturbances at Different Frequencies 

 

Disturbance 

Frequency 

 

Stewart 

Disturbance 

Amplitude 

(rad) 

 

PID Control 

Amplitude (rad) 

 

Sliding Mode 

Control 

Amplitude (rad) 

 

Automatically 

Tuned PID 

Control 

Amplitude (rad) 

Pitch Yaw Pitch Yaw Pitch Yaw Pitch Yaw 

2 rad/sec 0.14 0.18 0.013 0.018 0.0025 0.0023 0.007 0.0003 

0.2 Hz 0.14 0.16 0.027 0.016 0.017 0.015 0.038 0.0002 

0.5 Hz 0.27 0.27 0.03 0.024 0.02 0.032 0.023 0.0002 

1 Hz 0.17 0.25 0.07 0.05 0.04 0.03 0.025 0.001 

25 Hz 0.08 0.0225 0.05 0.03 0.02 0.022 0.002 0.0002 
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Table 5.6: Integral Errors for Disturbances at Different Frequencies 

Disturbance 

Frequency 

PID Control Integral 

Error (mrad) 

Sliding Mode Integral 

Error (mrad) 

Automatically Tuned 

PID Control Integral 

Error (mrad) 

Pitch Yaw Pitch Yaw Pitch Yaw 

2 rad/sec 5.4 4.4 63.5 2.5 0.59 0.093 

0.2 Hz 0.9 1.2 0.38 0.32 1.2 0.109 

0.5 Hz 82.8 22.9 20 18 20 0.137 

1 Hz 114 73 21 9.3 0.53 0.106 

25 Hz 2.5 1.8 0.61 83 0.028 0.113 

 

Generally speaking, the peak-to-peak values in the Table 5.5 have shown a slight 

difference in manually tuned PID and SMC. However, the automatically tuned PID 

controller has shown much smaller errors. Furthermore, by investigating the figures 

in Section 5.5.2 and 5.5.3 it can be observed that the sliding mode controller has a 

faster response and a better performance in eliminating the disturbances than the 

manually tuned PID controller. However, the automatically tuned PID controller has 

given the fastest response with greatest accuracy. The manually tuned PID controller 

has an offset error in stabilization. Moreover, by investigating the integral error 

values in Table 5.6, it can be observed that there is a great difference between the 

automatically tuned PID controller and sliding mode controller and PID controller. 

As the disturbance frequency increases, the integral error of the PID controller 

becomes larger, the sliding mode controller’s integral error has a slower increase, 

whereas the integral error of the automatically tuned PID controller stays almost the 

same. A better-tuned SMC may have a great stabilization performance. It has been 

left as a future work. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

In Chapter 1, the objective of this thesis work is stated as carrying out the LOS 

stabilization of the target tracking system which is on the 4-DOF platform. Doing 

this requires handling the two control problems, namely the regulator problem and 

the servo problem. The main focus is the regulator problem, which is the task of 

stabilization. Several disturbance rejection algorithms are aimed to minimize the 

effects of disturbances, such as friction, the unbalanced mass center resulted from 

inhomogeneity of mass, external torques and forces. An accurate stabilization 

requires to approach with an accurate model. To achieve this, mathematical model 

of the physical system is required. Newton-Euler approach is utilized so as to obtain 

the mathematical model of the system as close to physical one as possible. 

Transformations between coordinate frames are used in these equations, especially 

in Euler equations due to the fact that the forces act on the center of rotations of each 

gimbal. These transformations are useful in the later sections, which are about 

explaining the subjects of simulation modeling and the stabilization. The friction is 

needed to be modeled since it is the main disturbance to the platform. Karnopp 

friction model is selected since it contains a hysteresis loop preventing the numerical 

difficulties around the zero-velocity region. The correction of the sensor data is 

important since an accurate stabilization depends on it. The sensor which is used to 

measure the velocity information is a fiber-optic gyroscope. The correction of the 

data coming from the gyroscope is executed by a Kalman filter, which is an 

algorithm filtering out the noise in the measurement and estimates the future states 

with the aid of sensor fusion with an encoder. 
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The parameters of the simulation model of the 4-DOF platform and the gyroscope 

must be accurate. To achieve this, the real system’s data must be collected and the 

outputs of the real system and the system model must be compared. Parameters must 

be selected such that the two output data are as close as possible. This is a system 

identification process which requires a minimization of the model output error by 

comparing it with the real system data. Also, the real system data comes from the 

gyroscope, which also has errors. Therefore it needs to be identified also. The 

ARMAX model is exploited to achieve this task. All these processes result in an 

accurate simulation model in MATLAB SimMechanics/Simulink environment. In 

Chapter 3, the system identification procedures for the 4-DOF platform and the 

gyroscope are carried out in order to have an accurate model of the system. Now, the 

model has become ready to be controlled and stabilized. Different control 

procedures such as PID control and sliding mode control are tested on the simulation 

model. The algorithms generated in this thesis will be implemented on the real 

system as a future work. 

 

The stabilization process requires a great theoretical background including 

mathematical modeling for physical systems, system identification procedures 

chosen appropriately for each part of the system, the dynamics of the 6-DOF base 

motion platform which is about simulating the base disturbances physically, and the 

selection of the appropriate control method for stabilization. The frame 

transformation concepts, which are developed in the Chapter 2 is used for 

determining the stabilization set point. In other words, stabilization process is carried 

out with respect to the world frame. The bandwidth of the position and rate loops are 

determined by the component in the loop with the slowest bandwidth. The accuracy 

of the stabilization directly affects the quality of the high resolution image which 

centralizes the target to be tracked. Stabilization performances are compared in 

terms of step responses of the gimbal axes (overshoot and settling time are the 

performance criteria), the frequency responses of the closed loop systems which 

give the marginal stability and bandwidth evaluation, the peak-to-peak position error 

and the integral position error of the camera with respect to the world frame. 
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Different disturbance frequencies are tested with the aim of comparing the 

performances of the controllers. A classical control method, PID controller has 

achieved the stabilization task. Manually tuned and automatically tuned (by 

MATLAB PID tuner) PID controllers are implemented. Moreover, a robust control 

method, sliding mode controller has shown a great performance while achieving this 

task. The 2 control methods are compared and evaluated. When tuned correctly, both 

controller methods achieve this task with minimal error. 

 

In conclusion, a high performance stabilization depends on a realistic system model 

and considering the system dynamics in detail. 4-DOF stabilization rejects the 

disturbances more than 2-DOF since while inner axes are tracking the target, outer 

gimbal axes filters out the main disturbances. Solving a control problem requires a 

strong theoretical background on physical concepts and control theory. Realization 

of the theoretical background via implementation on a system is an engineering 

challenge. Since the CATS system which is developed and manufactured by 

ASELSAN has not been completed yet, the implementation of the stabilization 

algorithms is left as a future work. Also different control methods, such as LQR will 

be tested after this study. 
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