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ABSTRACT 

 

AN EVALUATION OF GHOST REMOVAL ALGORITHMS FOR EXPOSURE 

FUSION 

 

Kutlu, Tuğser 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

December 2015, 97 pages 

 

In high dynamic range imaging (HDR), the goal is to capture a scene with a higher 

dynamic range than the camera capable of capturing with a single exposure. Similar 

to HDR, exposure fusion is a process that takes multiple images and combines them 

to create a single dynamically enhanced image by only keeping the properly 

exposed elements. When using multiple images, local motion of objects can 

influence the quality of the final image in such a way that local motion of objects 

causes a ghost artifact. In this thesis, an exposure fusion algorithm is implemented 

and the techniques used for ghost removal are discussed and compared in terms of 

quality and computational time. We also propose modifications to the existing 

algorithms to improve the image quality while decreasing the computational time. 

Keywords: High Dynamic Range Imaging, Exposure Fusion, ghost detection, ghost 

removal 
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ÖZ 

 

POZLAMA FÜZYONU İÇİN GÖLGELEME GİDERME 

ALGORİTMALARININ İNCELENMESİ 

 

Kutlu, Tuğser 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

Aralık 2015, 97 sayfa 

 

Yüksek dinamik aralığa sahip sahneler, farklı pozlandırma süreleri ile çekilmiş 

görüntülerin birleştirilmesiyle elde edilir. Ancak, resim çekme sırasında, ortamda 

bir hareketli nesne bulunur ise, hayalet imgeleri belirir. Bu tezde, görüntüleri 

birleştirmek için pozlama füzyonu üzerinde çalışılmıştır, çünkü pozlama füzyonu 

işleminde bütün iyileştirmeler düşük dinamik aralıkta gerçekleştirilmekte ve giriş 

resimleri ile ilgili herhangi bir bilgiye ihtiyaç duymamaktadır. Buna ek olarak 

hayalet olgusuz yüksek dinamik aralıklı resimler için kullanılan algoritmalar, 

hesaplama zamanı ve kalite olarak incelenmiştir. Ayrıca bu çözümlere geliştirmeler 

önerilmiştir. 

Anahtar Kelimeler: Yüksek Dinamik Aralıkta Görüntüleme, Pozlama Füzyonu, 

hayalet saptama, hayalet kaldırma 

 

 

 

 

 



vii 

 

 

 

 

 

 

 

 

 

 

 

 

To Mommy … 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor Prof. Gözde Bozdağı Akar for her guidance and 

support. I have learned a lot from her, not only theoretically, but also how to be an 

engineer in practice. Having the opportunity to observe her approach to any kind of 

problems is one of the greatest benefits that I gained during my master studies. 

I would also like to thank my family and friends for their support and 

encouragement. They were always there with their smiling faces to give me hope. 

They made me feel safe and loved which provided me the strength to carry on. 

I also express my sincere gratitude to my managers and my colleagues from 

ASELSAN INC. and ASELSAN INC. itself, for their initiative ideas and guidance 

that helped to construct this work. 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

TABLE OF CONTENTS 

 

 

ABSTRACT………………………………………………………………….…....v 

ÖZ………………………………………………………………………………...vi  

ACKNOWLEDGMENTS……………………………………………………....viii 

TABLE OF CONTENTS………………………………………………………....ix 

LIST OF TABLES………………………………………………………………..xi 

LIST OF FIGURES………………………………………………...…………....xii 

LIST OF ABBREVIATIONS..............................................................................xvii 

CHAPTERS 

1. INTRODUCTION ............................................................................................... 1 

1.1 Scope of this thesis ................................................................................... 2 

1.2 Outline of the Thesis ................................................................................. 3 

2. LITERATURE REVIEW .................................................................................... 5 

2.1 HDR Imaging and Tone Mapping ............................................................ 6 

2.2 Fusion in the Image Domain ..................................................................... 7 

2.2.1 Exposure Fusion Algorithm (EF) ...................................................... 8 

2.3 Ghost Removal Algorithms .................................................................... 16 

3. GHOST REMOVAL ALGORITHMS .............................................................. 21 

3.1 Introduction ............................................................................................. 21 

3.2 Methods Implemented for Ghost Removal ............................................. 22 

3.2.1 Pixel order relation [ALG-1] ........................................................... 22 

3.2.2 Histogram Based Ghost Detection [ALG-2] ................................... 24 

3.2.3 Bitmap Movement Detection [ALG-3] ........................................... 25 

3.2.4 An Exposure Fusion Approach without Ghost for Dynamic Scenes 

[ALG-4] ......................................................................................................... 26 

3.2.5 Ghost Detection and Removal Based on Super-Pixel Grouping in 

Exposure Fusion [ALG-5] ............................................................................. 27 

3.2.6 Zero Mean Cross Correlation comparison between 4x4 pixel-groups 

[ALG-6] ......................................................................................................... 29 



x 

 

3.2.7 Improved Histogram Based Ghost Removal in Exposure Fusion for 

High Dynamic Range Images [ALG-7] ........................................................ 30 

3.2.8 Majority Voting [ALG-8] ................................................................ 31 

3.3 Improvements and Grouping of the Methods ......................................... 32 

4. EXPERIMENTAL RESULTS .......................................................................... 35 

4.1 Introduction ............................................................................................ 35 

4.2 Summary of Ghost Removal Algorithms ............................................... 36 

4.3 Experimental Results for the Ghost Removal Algorithms ..................... 38 

4.3.1 ALG-1 ............................................................................................. 38 

4.3.2 ALG-2 ............................................................................................. 40 

4.3.3 ALG-3 ............................................................................................. 44 

4.3.4 ALG-4 ............................................................................................. 46 

4.3.5 ALG-5 ............................................................................................. 48 

4.3.6 ALG-6 ............................................................................................. 50 

4.3.7 ALG-7 ............................................................................................. 52 

4.3.8 ALG-8 ............................................................................................. 56 

4.4 Comparison with respect to Computational Time and Ground Truth .... 61 

4.5 Visual Results ......................................................................................... 66 

5. CONCLUSION AND FUTURE WORK .......................................................... 73 

5.1 Summary and Conclusions ..................................................................... 73 

5.2 Future Work ............................................................................................ 74 

REFERENCES.......................................................................................................77 

APPENDICES 

A. IMAGE SETS....................................................................................................83 

B. GHOST COLOR MAP OF EACH INPUT SET...............................................91 

 

 

 

 

 

 



xi 

 

 

LIST OF TABLES 

 

 

TABLES 

Table 4-1 Acronyms and Description of the Algorithms………………...……….35 

Table 4-2 Algorithm Labelling…………………………………...…………...….57 

Table 4-3 Number of Ghost and Non-ghost Pixels in the Input Set 1....................63 

Table 4-4 Binary Classification of the Implemented Algorithms .....................….64 

Table 4-5 Comparison of the Computation times………………………………...65 

Table 4-6 False and True Detection Performance of the Image Set 13....................70 

Table 4-7 Features of the Algorithms.....................................................................71 

Table 4-8 Performance of the Algorithms in Terms of Scene Characteristics........72 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

 

TABLE OF FIGURES 

 

 

FIGURES 

Figure 1-1 Mapping from High Dynamic Range to Low Dynamic Range [3] ....... 1 

Figure 2-1 Scheme of Fusion in Radiance Domain ................................................ 6 

Figure 2-2 Scheme of Fusion in Image Domain ..................................................... 7 

Figure 2-3 Scheme of Exposure Fusion .................................................................. 8 

Figure 2-4 Contrast Measure of the Input Set 1 ...................................................... 9 

Figure 2-5 Saturation Measure of the Input Set 1 ................................................. 10 

Figure 2-6 Well-Exposedness Measure of the Input Set 1 .................................... 11 

Figure 2-7 Normalized Weights of Each Input Image .......................................... 12 

Figure 2-8 Seams with Weighted Blending, (a) Final Image, (b) Detailed Regions

 ............................................................................................................................... 13 

Figure 2-9 Modelling of Multi-Dimensional Blending ......................................... 15 

Figure 2-10 The Final Enhanced Image by Using Multi-Dimensional Blending . 16 

Figure 3-1 Ghost Artifacts in the Enhanced Image ............................................... 21 

Figure 3-2 Grouping the Pixels with 4x4 Window ............................................... 30 

Figure 3-3  Classification of Ghost Detection and Removal Methods ................. 33 

Figure 4-1 Ghost maps and the Related Part of Image of the (a) Input Set 1, (b) 

Input Set 4 ............................................................................................................. 38 

Figure 4-2 (a) Ghost Map and Related Part of 9th Input Image of Input Set 12, (b) 

Related Part of the 9th Input Image of Input Set 12 without Ghost Map .............. 39 

Figure 4-3 (a) 3rd Input Image of the Input Set 1, (b) Region where Small Movement 

Occurs, (c) Detected Ghost in this Region ............................................................ 40 

Figure 4-4 (a) Ghost Map of the 4th Image of the Input Set 1, (b) Ghost Map of the 

5th Image of the Input Set 7 ................................................................................... 41 

Figure 4-5 (a) 6th and (b) 8th Images of Input Set 12 ............................................. 42 

Figure 4-6 Ghost Map of 6th Input Image of Input Set 12 .................................... 42 

Figure 4-7 Exponential Function used for ALG-2 ................................................ 43 

Figure 4-8 Histograms of 8th Input Image of Input Set 8, (a) Actual, (b) After 

Histogram Matching toward Reference Image ..................................................... 44 



xiii 

 

Figure 4-9 4th Input of the Input Set 1 and ALG-3 Ghost Map ............................. 45 

Figure 4-10 Effect of β Values used in Adaptive Threshold in Image Set 2, (a) Ghost 

Maps of 6th Image, (b) 7th Image, (c) 8th Image ..................................................... 47 

Figure 4-11 Final Enhanced Image of ALG-5 ...................................................... 49 

Figure 4-12 Lost in Information due to the Luminescence of Background, (a) Part 

of the 7th Input Image of Image Set 12 with Superpixel Groups,  (b) Reference 

Image ..................................................................................................................... 50 

Figure 4-13 Differences between Ghost Maps of ALG- 5 and ALG-6 for Input Set 

1, (a) Differences in 1st Image, (b) 2nd Image, (c) 3rd Image and (d) 4th Image..... 51 

Figure 4-14 Final Enhanced Image of (a) ALG-5 and (b) ALG-6 for Input Set 11

 ............................................................................................................................... 51 

Figure 4-15 Final Enhanced Image of (a) ALG-5 and (b) ALG-6 for Input Set 2 52 

Figure 4-16 CDF of Input Set 1 after CDF Equalization, (a) 1st Image, (b) 2nd Image, 

(c) 3rd Image, (d) 4th Image and (e) 5th Image ....................................................... 53 

Figure 4-17 Final Enhanced Image of ALG-7, when (a) 5th Image as Reference, and 

(b) 3rd Image as Reference ..................................................................................... 53 

Figure 4-18 Ghost Maps of ALG-7 when Input Set 1 is used, (a) 1st Image, (b) 2nd 

Image, (c) 3rd Image, (d) 4th Image ........................................................................ 54 

Figure 4-19 Final Enhanced Images of Input Set 10, when Reference Image 

Selection by Evaluating, (a) Well-Exposedness, (b) Percentage of Saturated and 

Unsaturated Pixel .................................................................................................. 54 

Figure 4-20 Final Enhanced Images of Input Set 4, when Reference Image Selection 

by Evaluating, (a) Well-Exposedness, (b) Percentage of Saturated and Unsaturated 

Pixel ....................................................................................................................... 55 

Figure 4-21 Final Enhanced Images of (a) ALG-5, (b) ALG-6 and (c) ALG-7 ... 56 

Figure 4-22 Ghost Color Maps of Input Set 1, Outputs of (a) 1st Image, 2nd (b) 

Image, (c) 3rd Image, (d) 4th Image ........................................................................ 58 

Figure 4-23 Grayscale Image of (a) 4th Input, (b) Reference Grayscale Image, (c) 

Histogram Matched Grayscale Image of 4th Input ................................................ 59 

Figure 4-24 Grayscale Image of (a) 3rd Input, (b) Histogram Matched Grayscale 

Image of 3rd Input .................................................................................................. 59 

Figure 4-25 Ghost Color Maps of Input Set 12, Outputs of (a) 1st Image, (b) 2nd 

Image, (c) 3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 

9th Image ................................................................................................................ 60 



xiv 

 

Figure 4-26 (a) Input Set 1, (b) Ground Truth Extracted ...................................... 62 

Figure 4-27 Enhanced Images of Image Set 1, (a) ALG-6, (b) ALG-1, (c) EF .... 66 

Figure 4-28 Enhanced Images of Image Set 2, (a) ALG-4, (b) ALG-5, (c) EF .... 66 

Figure 4-29 Enhanced Images of Image Set 3, (a) ALG-5, (b) ALG-1, (c) EF .... 67 

Figure 4-30 Enhanced Images of Image Set 4, (a) ALG-2, (b) ALG-7, (c) EF .... 67 

Figure 4-31 Enhanced Images of Image Set 5, (a) ALG-2, (b) ALG-5, (c) EF .... 67 

Figure 4-32 Enhanced Images of Image Set 6, (a) ALG-1, (b) ALG-4, (c) EF .... 67 

Figure 4-33 Enhanced Images of Image Set 7, (a) ALG-4, (b) ALG-7, (c) EF .... 68 

Figure 4-34 Enhanced Images of Image Set 8, (a) ALG-2, (b) ALG-6, (c) EF .... 68 

Figure 4-35 Enhanced Images of Image Set 9, (a) ALG-5, (b) ALG-1, (c) EF .... 68 

Figure 4-36 Enhanced Images of Image Set 10, (a) ALG-4, (b) ALG-5, (c) EF .. 68 

Figure 4-37 Enhanced Images of Image Set 11, (a) ALG-7, (b) ALG-5, (c) EF .. 69 

Figure 4-38 Enhanced Images of Image Set 12, (a) ALG-4, (b) ALG-6, (c) EF .. 69 

Figure A-1 Image Set 1 [1024x680] [1/500 1/250 1/125 1/60 1/30]…..……........83 

Figure A-2 Image Set 2 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 1/60 

1/30 1/15]……………………………………………………………...................84 

Figure A-3 Image Set 3 [872x1304] [1/2049 1/1025 1/512 1/256 1/128 1/64 1/32 

1/16 1/8]………………………………………………………….......…………..84 

Figure A-4 Image Set 4 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 1/64 

1/32 1/16] ……………………………………………..................……………….85 

Figure A-5 Image Set 5 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 1/64 

1/32 1/16]……………………………………………….................…………….. 85 

Figure A-6 Image Set 6 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 1/60 

1/30 1/15]…………………………………….................………………………..86 

Figure A-7 Image Set 7 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 1/60 

1/30 1/15]……………………………………….................……………………..86 

Figure A-8 Image Set 8 [872x1304] [1/1580 1/790 1/395 1/197 1/99 1/49 1/25 1/12 

1/6]………………………………………………...............…………………….. 87 

Figure A-9 Image Set 9 [304x448] [1/50 1/30 1/20 1/13 1/8 1/5 1/3]…..........…..87 

Figure A-10 Image Set 10 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15]……………………………………………………….....….....…..88 

Figure A-11 Image Set 11 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15]………………………………………………………............……88 



xv 

 

Figure A-12 Image Set 12 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 

1/64 1/32 1/16]…………………………………………………………..........…..89 

Figure A-13 Image Set 13 [698x1024] [1/250 1/125 1/60 1/30 1/15 1/8 1/5 1/2.5 

1/1.25 1/0.625]....................................................................................................... 89 

Figure B-1 Ghost Color Maps of ALG-8 for Image Set 1 when Reference Image is 

5th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image and 

(d) 4th Image.......................................................................................................... 91 

Figure B-2 Ghost Color Maps of ALG-8 for Image Set 2 when Reference Image is 

9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th Image ....................92 

Figure B-3 Ghost Color Maps of ALG-8 for Image Set 3 when Reference Image is 

9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th Image...................92 

Figure B-4 Ghost Color Maps of ALG-8 for Image Set 4 when Reference Image is 

8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th Image...................93 

Figure B-5 Ghost Color Maps of ALG-8 for Image Set 5 when Reference Image is 

7th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 8th Image, (h) 9th Image..................93 

Figure B-6 Ghost Color Maps of ALG-8 for Image Set 6 when Reference Image is 

7th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 8th Image, (h) 9th Image...................94 

Figure B-7 Ghost Color Maps of ALG-8 for Image Set 7 when Reference Image is 

9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th Image.....................94 

Figure B-8 Ghost Color Maps of ALG-8 for Image Set 8 when Reference Image is 

9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th Image.....................95 

Figure B-9 Ghost Color Maps of ALG-8 for Image Set 9 when Reference Image is 

4th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

5th Image, (e) 6th Image, (f) 7th Image...................................................................95 

Figure B-10 Ghost Color Maps of ALG-8 for Image Set 10 when Reference Image 

is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th Image.....................96 



xvi 

 

Figure B-11 Ghost Color Maps of ALG-8 for Image Set 11 when Reference Image 

is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th Image....................96 

Figure B-12 Ghost Color Maps of ALG-8 for Image Set 12 when Reference Image 

is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th Image....................97 

Figure B-13 Ghost Color Maps of ALG-8 for Image Set 13 when Reference Image 

is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 3rd Image, (d) 

4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th Image, (i) 10th 

Image......................................................................................................................97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 

 

 

LIST OF ABBREVIATIONS 

 

1D    One Dimensional 

2D    Two Dimensional 

CCD  Charge-coupled Device 

CDF    Cumulative Distribution Function 

CMOS  Complementary Metal-oxide Semiconductor 

CRF    Camera Response Function 

DC    Direct Current 

EF    Exposure Fusion 

HDR   High Dynamic Range 

HDRI   High Dynamic Range Imaging 

JPEG   Joint Photographic Expert Group 

MD    Multiscale Decomposition 

MTB   Median Threshold Map 

ZNCC  Zero Mean Normalized Cross Correlation 

 

 

 

 

 

 

 

 

 

 



xviii 

 

 

 

 

 

 



1 

 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

The main aim of digital cameras is to form an image of a scene similar to the scene 

as observed by the human visual system. With the advancement of digital camera 

technology, this goal is achieved to a great extent. However, not all problems are 

solved in capturing the scene as close as possible to reality. In [1], Eastman Kodak 

Company describes the sources of noise for the CCD image sensors; and underlines 

the performance of the digital camera is limited by CCD.  

Although, the digital cameras have been improved in terms of performance and 

quality, photography is still having a problem with a wide range of radiance 

variations in the real world. The scenes in the real world comprise of harsh 

lightening conditions that cause shadows (underexposed regions) or highlights 

(overexposed regions) in digitally captured images. The reason is that the dynamic 

range of camera sensors is not high enough to capture the dynamic range of the 

scenes. Dynamic range of the scene is defined as the ratio of radiances between the 

brightest and the darkest points in the scene. For example, the radiance range of the 

real world reaches up to 1:500000 but today’s camera sensors have pixel depth 

ranging from 8-bit to 14-bit which correspond 256 to 16384 digital values [2]. 

 

Figure 1-1 Mapping from High Dynamic Range to Low Dynamic Range [3] 
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To visualize the scene as realistic as possible, dynamic range enhancement methods 

are presented. For this purpose, some improvements are made in software as well 

as hardware. For example, Toshiba Company have presented a new type of CMOS 

image sensor that is capable of simultaneously capturing an image with different 

exposure times and merges them into a single image [4]. However, production of 

this type of sensors and their control integrated circuits are expensive, and also on 

the market these types of sensors are not common. Therefore, software solutions 

are presented to form an image of a scene similar as the scene observed by the 

human visual system. These solutions are for the commercial cameras. Mainly two 

approaches are used in software. Firstly, High Dynamic Range (HDR) imaging 

techniques is used to extract the actual radiance map of the scene and tone-mapping 

is used to display it for the display devices, secondly, fusion of the input images 

with different weights are presented to create “HDR-like” image [5]. 

In the software, post-processing techniques are used to increase the dynamic range 

of the scene. However, because of the limitations of the digital camera, dynamic 

range cannot be fully extracted from one image. The most common method for 

dynamically enhanced image generation is based on the combination of multiple 

distinct exposures. The motivation behind this technique is that different exposures 

capture different dynamic range characteristics of the scene. 

However, moving objects in the scene cause unwanted artifacts in HDR or HDR-

like images. Classical image enhancement methods cannot eliminate these. For this 

purpose, ghost removal algorithms have been developed. Mainly, these algorithms 

are intended to be used with the image enhancement methods. Ghost detection and 

ghost removal are the two main steps of these algorithms. One can achieve ghost-

free high dynamic range with the help of these ghost removal algorithms. 

1.1 Scope of this thesis 

In this thesis, an exposure fusion algorithm is implemented and the techniques used 

for ghost removal are discussed and compared in terms of quality with different 

image sets. In terms of computational time, ghost removal algorithms are compared, 

and improvements are given. 
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The main goals of this thesis are given as follows: 

 Describing the principles of exposure fusion algorithms to create an 

enhanced image 

 Performing detailed analysis of ghost removal algorithms with different 

image sets 

 Comparison of the performance of the ghost removal algorithms in terms of 

quality and computational time 

Common datasets found in the literature are used for performance evaluation [6] 

[7]. All images have been aligned; thus, registration of these images is out of the 

scope of this thesis. Image sets are shown in Appendix A. 

1.2 Outline of the Thesis 

In Chapter 2, a literature review on image enhancement methods and ghost removal 

algorithms is presented. HDR image algorithms and exposure fusion algorithms are 

explained. Ghost removal algorithms found in the literature and their techniques are 

briefly explained and compared. 

In Chapter 3, detailed explanations of analyzed algorithms are given. The theory 

behind each algorithm is explained. 

In Chapter 4, the performance evaluation of ghost removal algorithms is presented. 

This chapter mainly focuses on the comparison of ghost removal algorithms. 

In Chapter 5, conclusion is given and possible future directions are discussed. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

Many natural scenes have a dynamic range that is larger than the dynamic range of 

a camera’s image sensor. A popular approach to producing an image without under- 

and over-exposed areas is to capture several input images with varying exposure 

settings, and later merge them into a single high-quality dynamically enhanced 

image. 

The main limitation for the combination of the multiple exposures is the 

requirement of the static scene when taking images. Certainly, any movement in 

the scene causes the noticeable ghosting artifacts in resulting image. This problem 

cannot be avoided in outdoor environments which contain movements, such as 

automobiles, people and nature movement due to wind. 

This chapter is composed of different literature review sections: 1) HDR imaging 

and tone mapping 2) fusion in the image domain 3) methods used for ghost removal.  

In the first section, HDR imaging and tone mapping are described, in the second 

section, exposure fusion techniques are described. In the subsection of this section, 

exposure fusion technique used in this thesis is detailed and experimental results 

are shown. In the third section, overview of various techniques that have been 

proposed for ghost removal is given. 
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2.1 HDR Imaging and Tone Mapping 

 

Figure 2-1 Scheme of Fusion in Radiance Domain 

The HDR image generation in radiance domain consists of three steps [8]: firstly, 

estimation of camera response function (CRF) is conducted to bring pixel 

brightness values into radiance domain.  However, it is not an easy task because 

CRF depends on camera characteristics, and it is not same for all cameras. Since 

CRF is not provided by the manufacturers, different methods are proposed for its 

estimation using series of different exposed LDR images [8] [9]. Secondly, the 

sensor irradiance is calculated by using CRF and the exposure times of the input 

image. This operation can be explained mathematically as follows:  

𝐿(𝑖, 𝑗) ≈ 𝐸(𝑖, 𝑗) ∗  ∆𝑡𝑘 = 𝑇−1(𝐼𝑘(𝑖, 𝑗)) 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2, … , 𝑁 

𝐼𝑘(𝑖, 𝑗) = 𝑇(𝐸(𝑖, 𝑗) ∗ ∆𝑡𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2, … , 𝑁 

where 𝐼𝑘(𝑖, 𝑗) is the intensity value of the pixel at (i,j), and ∆𝑡𝑘 is the exposure time 

of kth image. The sensor irradiance is denoted by (𝑖, 𝑗) . 

The calculated image represents an approximation of the sensor irradiance, and it 

is called as HDR image or HDR radiance map. The sensor irradiance has been 

calculated, but the scene radiance has to be found. Most of the time, it is assumed 

that scene radiance 𝐿(𝑖, 𝑗) is proportional to sensor irradiance 𝐸(𝑖, 𝑗). This 

assumption is valid because manufactured lenses include designs to compensate the 

nonlinearity between the scene radiance and sensor irradiance. By the help of these 

designs, the relation between the radiance and the irradiance becomes almost 

constant. 

Finally, tone mapping operators are used to make HDR radiance maps displayable 

on common low dynamic range monitors [8] [10]. 

Camera Response 

Function 

Estimation 

HDRI Image 

Formation 

Tone 

mapping 
Display Input Image 

Sequence 

(2.1) 

(2.2) 
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Methods that combine the images in radiance domain, produce a true HDR radiance 

map. For this purpose, accurate estimation of the CRF, which is sensitive to image 

noise and misalignment, is needed for this purpose. 

2.2 Fusion in the Image Domain 

 

Figure 2-2 Scheme of Fusion in Image Domain 

Alternative methods combine multiple exposures directly without the knowledge 

of the camera response function [11] [12]. The fusion methods combine LDR 

images by conserving only the best parts of each exposure. These parts could be 

pixel, feature or symbol. The final enhanced image is obtained as a weighted 

average of pixel values across exposures. Note that, fusion algorithms create an 

“HDR-like” image which can be displayable on common display devices without 

any mapping. Although, it does not display actual radiance map of the scene, 

features, colors and dynamic range of the scene are conserved in the final enhanced 

image. 

The choice of the weighting function is crucial to get accurate results. The main 

goal of image fusion can be defined as; transferring salient information in the input 

images to the fused image by preserving the details of the input images and not 

causing any artifacts in the fused image. For this purpose, gradient information [13], 

entropy measure [12] and bilateral filter [14] are used. 

Introducing artifacts and losing important features of the input images are the main 

problem of the selection of the weight function. In this thesis, the technique 

proposed in [15] is implemented because, firstly, it is a pixel level fusion algorithm. 

This helps to eliminate the problematic pixels at the final enhanced image by using 

a binary mask. Secondly, it uses multi-dimensional blending technique. This 

technique helps to eliminate the artifacts. Finally, estimation of the CRF is not 

required. This reduces computational cost compared to tone mapping. In the 

following section, the implemented exposure fusion algorithm is explained. 

Weighting Map 

Calculation 

Combination of 

LDR images Display Input Image 

Sequence 
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2.2.1 Exposure Fusion Algorithm (EF) 

The exposure fusion algorithm is the work of Mertens, Kautz and Reeth [15]. This 

algorithm uses Laplacian and Gaussian pyramids with three quality measures. 

These measures determine the weight of the pixel in the final HDR image. The 

methodology can be explained symbolically as follows: 

 

Figure 2-3 Scheme of Exposure Fusion 

As it has been mentioned previously, three different quality measures are used for 

this method. These measures are explained in details in following sections. For 

visualization of the quality measures and the enhanced image, image set in 

Appendix A.1 is used. 

Contrast 

Contrast is the difference in luminescence that makes object distinguishable. It is 

one of the important characteristics of an image to get the salient features, such as 

textures and edges. In the exposure fusion algorithm, contrast measures are 

conducted as follows: 

𝐶𝑘 = 𝑐𝑜𝑛𝑣(𝐼𝑚𝑜𝑛𝑜,𝑘, 𝐻𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛) 

where, 𝑐𝑜𝑛𝑣(. ) is the convolution operation, 𝑘 is the number of the input, 𝐼𝑚𝑜𝑛𝑜 is 

the grayscale converted image of the input and 𝐻𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 is the Laplacian kernel, 

defined as:  

Contrast 

Measure Multi-

Dimensional 

Blending 

Display 
Input Image 

Sequence 

Saturation 

Measure 

Well-

Exposedness 

Measure 

Weighting Map 

Calculation 

(2.3) 
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𝐻𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 =  [
0 1 0
1 −4 1
0 1 0

] 

By using Laplacian kernel, sum of differences over the nearest neighbors of the 

central pixel are calculated. If there is an edge, or rapid changes, the resulting 𝐶𝑘 

has more values. Contrast measures of input scene are seen in Figure 2-4. 

Weights of the edges are dominant in the contrast measures of each input. Selecting 

these dominant pixel improves the performance of the final image, since keeping 

edge information is perceptually important to human visual system. 

 

Figure 2-4 Contrast Measure of the Input Set 1 

Saturation 

The saturation of a color is determined by a combination of light intensity and how 

much it is distributed across the spectrum of different wavelengths. In other words, 

most saturated color is achieved by using only one wavelength. In RGB domain, 

most saturated color of a pixel is achieved such a way that, one or two of the color 

channels has the most value while others are the least. Saturation measure is 

conducted by computing standard deviation of the Red, Green and Blue channel of 

a pixel in the input image. This computation is done as follows:  

(2.4) 
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𝑎𝑖,𝑗,𝑘 =  
𝑅𝑖,𝑗,𝑘 + 𝐺𝑖,𝑗,𝑘 + 𝐵𝑖,𝑗,𝑘

3
 

𝑆𝑖,𝑗,𝑘 = √
(𝑅𝑖,𝑗,𝑘 − 𝑎𝑖,𝑗,𝑘)2 + (𝐺𝑖,𝑗,𝑘 − 𝑎𝑖,𝑗,𝑘)2 + (𝐵𝑖,𝑗,𝑘 − 𝑎𝑖,𝑗,𝑘)2

3
 

where 𝑅𝑖,𝑗,𝑘, 𝐺𝑖,𝑗,𝑘 and 𝐵𝑖,𝑗,𝑘 are the color values of the pixel at (𝑖, 𝑗) in 𝑘th input 

image, red, green and blue, respectively. 𝑎𝑖,𝑗,𝑘 is mean of the color values, and 𝑆𝑖,𝑗,𝑘 

is the saturation value at that pixel. 

The saturation measure of the input scene is seen in Figure 2-5. Under-exposed and 

over-exposed pixels tend to get lowest values because the color information of these 

areas are not recovered by the camera. 

 

Figure 2-5 Saturation Measure of the Input Set 1 

Saturation measure is the key measure to keep the color information as much as 

possible in the final image by taking only most saturated pixels. Main goal of this 

measure is the selection of the best color of the pixel in the final image. 

(2.5) 

(2.6) 
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Well-Exposedness 

Over-exposed and under-exposed pixels are the undesirable regions in an image, 

because, pixels in that region are not exposed enough to show the sufficient 

information in that scene. Well-exposedness measure excludes the pixels of that 

kind. Calculation of this measure is given as follows:  

E𝑖,𝑗,𝑘 =  exp(−
(𝐼𝑖,𝑗,𝑘 − 0.5)2

2𝜎2
) 

where, 𝐼𝑖,𝑗,𝑘 is the intensity value at the pixel (𝑖, 𝑗) in 𝑘th input image. 𝜎 is a constant 

which is equal to 0.2. 

This measure is a Gaussian filter, therefore, it weights each pixel based on how 

close it is to 0.5. Importance of this measure is the selecting the pixels by looking 

its exposed value. In this method, intensity map is used to get the exposed value of 

a pixel. 

The well-exposedness measure of the input set is seen in Figure 2-6. 

 

Figure 2-6 Well-Exposedness Measure of the Input Set 1 

As stated previously, this measure excludes the under-exposed and over-exposed 

regions. For this input set, ceiling is the under-exposed area and sky is the over-

(2.7) 
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exposed areas. Weights of these regions are relatively low compared to other 

regions. This circumstance is seen for each input image. 

Fusion of the Images 

For each input image, a weight map is calculated by using these quality measures. 

The calculation of the weight maps is given as follows:  

𝑊𝑖,𝑗,𝑘 = 𝐶𝑖,𝑗,𝑘
𝑤𝐶 ∗ 𝑆𝑖,𝑗,𝑘

𝑤𝑆 ∗ 𝐸𝑖,𝑗,𝑘
𝑤𝐸  

where, wC, wS and wE are used to control the contribution of each quality measure 

to the weight map. In this thesis, these exponents are selected as unity, because, the 

scope of this thesis does not cover the effect of changing contributions of each 

quality measure. 

Until now, weights along each pixel of N input images are calculated. To obtain a 

consistent result, the values of the N weight maps are normalized such that they 

sum to one at each pixel as follows:  

�̂�𝑖,𝑗,𝑘 =  [∑ 𝑊𝑖,𝑗,𝑘

𝑁

𝑘=1

]

−1

∗ 𝑊𝑖,𝑗,𝑘 

where, �̂�𝑖,𝑗,𝑘 is the normalized weight of the pixel in the k-th image. Weights of 

each pixel in each input set can be seen in Figure 2-7.  

 

Figure 2-7 Normalized Weights of Each Input Image 

(2.8) 

(2.9) 
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For fusion of the input images, weighted blending technique is not feasible; because 

of rapid changes in weights. These changes are degraded the final image such a way 

that disturbing seams will appear. This problem can be seen in Figure 2-8. 

 

Figure 2-8 Seams with Weighted Blending, (a) Final Image, (b) Detailed 

Regions 

Seam problem is avoided by using multi-dimensional blending technique. This 

problem is avoided by applying a Gaussian filter to the weight map prior to the 

blending operation. On the other hand, this filtering causes artifacts in the fused 

image. However, these artifacts are not as dominant as seams. Therefore, multi-

dimensional blending improves the quality of the image. The fusion operation is 

defined as follows: 

𝐿{𝑅}𝑖,𝑗
𝑙 = ∑ 𝐺{𝑊}𝑖,𝑗,𝑘

𝑙 ∗ 𝐿{𝐼}𝑖,𝑗,𝑘
𝑙

𝑁

𝑘=1

 

where, L{} is the Laplacian pyramid with level l, G{} is the Gaussian pyramid with 

level l. R is the final image, I is the input image, and k is the number of input image. 

In a Gaussian pyramid, subsequent images are weighted down using Gaussian 

average and down sampling. It creates a stack of successive smaller images with 

each pixel containing a local average that corresponds to a pixel neighborhood on 

(a) (b) 

(2.10) 
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a lower level of the pyramid. Each value within level (n) is computed as a weighted 

average of values in level (n-1) within a 5-by-5 window. The window is specified 

as follows:  

𝑎 = [0.0625 0.25 0.375 0.25 0.0625] 

𝐻5𝑥5 = 𝑎𝑇 ∗ 𝑎 

This window is separable, normalized and symmetric [16]. Therefore, it is easy to 

implement, and neighborhood pixels contribute Gaussian-like distribution at 

filtering. 

Laplacian pyramid generates a sequence of error images. Each image is the 

difference between two levels of Gaussian pyramid as follows:  

𝐿𝑙 =  𝑔𝑙 –  𝐸𝑋𝑃𝐴𝑁𝐷 (𝑔𝑙+1 ) 

where, EXPAND(.) is the interpolation operator. While Gaussian pyramid is set of 

low-pass filtered images, Laplacian pyramid is set of band-pass filtered version of 

the image. The scale of the Laplacian operator doubles from level to level of the 

pyramid, while the center frequency of the passband is reduced by an octave. 

Multi-dimensional blending can be summarized in Figure 2-9. 

Multi-dimensional blending operation provides consistent results because these 

methods blend features rather than pixel intensities. Therefore, the resultant image 

does not have any blending artifacts or sharp transitions. Finally, the fused image 

is calculated by inverse Laplace Pyramid. The resulting image by using input set 1 

is seen Figure 2-10. 

Using Laplacian and the Gaussian pyramids have satisfying result in terms of 

seamless blending, this result is expected since multi-dimensional blending of 

multiple images, guided by each level of pyramid weight measure, is the process of 

combining to create the appearance of partial or full transparency. It should be noted 

that the processing is longer as the level increasing, because decomposition and 

composition of the image by using pyramids requires more time. However, filtering 

artifacts are unnoticeable when the level of the pyramids are increasing. 

 

(2.13) 

(2.11) 

(2.12) 



15 

 

 

Figure 2-9 Modelling of Multi-Dimensional Blending 
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Figure 2-10 The Final Enhanced Image by Using Multi-Dimensional 

Blending 

Exposure fusion algorithm creates an “HDR-like” image which can be displayable 

on common display devices without any mapping. Although, it does not display 

actual radiance map of the scene, features, colors and dynamic range of the scene 

are conserved in the final enhanced image. 

2.3 Ghost Removal Algorithms 

The main limitation of the multiple input fusion technique is the requirement of a 

complete static scene when capturing the images. Indeed, any object movement in 

the scene can cause ghosting artifacts in the resulting dynamically enhanced image. 

The ghosting problem is a severe limitation of the multiple input fusion technique 

since motion can hardly be avoided in outdoor environment. 

In the fusion of images, several problems occur due to global and local motions of 

an object or camera. Global motion is the cause of misalignment between input 

images, it occurs when the images are captured by a hand-held camera. Even though 

this misalignment is eliminated by image registration algorithms, the ghost effect 

by local motion of an object still remains, influencing the quality of the final 

enhanced image. In this thesis, image registration algorithms are out of the scope. 
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Mainly, ghost detection methods are based on detection of motion, present in the 

input exposure sequence. Detection of motion is done in various ways [6]. 

Variance measure is used to detect the ghost regions. First of all, camera response 

function is estimated and then computation of radiance map is conducted. To make 

a comparison between images, variance of radiance values at each spatial location 

is generated. Regions affected by motion are tending to have high variance. 

Therefore, thresholding is applied to variance image to get the ghost regions. 

After alignment of input images, Grosch [17] suggests that deviation between 

predicted intensity value of a pixel and its actual intensity can be used to detect 

either ghost pixel or non-ghost pixel. Actual intensity of a pixel is given as follows:  

𝐼′
𝑖,𝑗,𝑘 = 𝑓(

∆𝑡𝑘

∆𝑡𝑙
𝑓−1(𝐼𝑖,𝑗,𝑙)) 

where, 𝑓(.) denotes the camera response function, 𝐼𝑖,𝑗  is the color of the pixel at 

position (𝑖, 𝑗), taken with exposure time ∆𝑡𝑙. ∆𝑡𝑘 is the exposure time of second 

image. 

For each consecutive pair of input images, pixels which show significant difference 

between predicted value and actual value are labelled as ghost pixels based on 

thresholding as follows:  

|𝐼′
𝑖,𝑗,𝑘

−  𝐼𝑖,𝑗,𝑙| <  𝜀 

The user parameter ε depends on the amount of noise in the camera images. This 

threshold is to find the significant difference between the two colors. After then, 

pixel is labelled as ghost if this rule is violated. 

Jacobs et al. [18] defines two types of motion; high contrast and low contrast 

motion. High contrast motion is caused when motion object is different from 

background and variance based ghost detection is used to detect this kind of 

motions. For high contrast motion, it uses approach similar to Grosch [17]. On the 

contrary, low contrast motion is caused when background and moving object are 

similar in color and intensity, hence; variance map is not able to detect this kind of 

motion. In order to detect low contrast motion, entropy based ghost detection is 

presented. First, a local neighborhood based entropy map is computed and then 

(2.14) 

(2.15) 
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Uncertainty Image (UI) is then derived from the weighted difference of the 

precomputed entropy images as follows:  

𝑈𝐼(𝑥) =  ∑ 𝐻(𝑥𝑛) +  ∑ (

𝑁

𝑛=1,𝑛≠𝑚

∑ 𝐻(𝑥𝑛|𝑥𝑚)

𝑁

𝑚=1

𝑁

𝑛=1

) 

where, 𝑥𝑛 small segments of the input image. 𝐻(𝑥𝑛) is per segmented entropy, and 

𝐻(𝑥𝑛|𝑥𝑚) is the conditional entropy between matching segments from different 

input images are calculated using the histogram and joined histogram of the 

segments [19]. Then, ghost regions are found based on thresholding. 

Gallo et al [20] uses an approach to generate ghost-free HDR images in such a way 

that firstly, the input image with least saturated regions is selected as reference 

image. Secondly, in order to determine if a patch is affected by ghost, log intensities 

of the patch are plotted against the related patch in the reference image. Then, using 

RANSAC procedure, best fit line through the plot is obtained. Distance threshold 

is used to determine the percentage of outliners. Finally, if this percentage of the 

patch is greater than predefined threshold, the patch is labelled as ghost region. 

Sidibe et al. [7] use a similar approach to generate ghost-free HDR images. 

However, their algorithm is based on pixels rather than working with image patch 

processing. 

Heo et al. [21] uses joint probability densities to estimate the global relationship 

between different exposures coarsely and using energy minimization based on 

graph cuts methods. Ghost map for each exposure is created based on a threshold 

by comparing the joint probability densities. However, ghost regions estimated by 

thresholding are noisy. The use of graph-cuts method helps to overcome the noise. 

Bogoni [22] proposed a ghost detection method based on the assumption of “ghost 

regions are mainly occurred due to the moving object in the scene”. If the motion 

between exposures is found, it is possible to estimate the ghost map. For this reason, 

Lucas and Kanade [23] algorithm is used to detect dense local motion. After that, 

all input images are correctly aligned by warping the image. Finally, differences in 

warped images are labelled as ghost regions. 

(2.16) 
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Khan et al. [24] propose a kernel density estimation method that iteratively 

estimates the probability that a pixel belongs to the static part of the scene, and then, 

weighting function [8] used in the HDR image generation equation is adjusted by 

using this information. In addition, Pedone and Heikkilä [25] propose similar 

iterative method to compute the weighting function. However, instead of using 

kernel density estimation, they propose an iterative method to propagate influences 

of pixels that have low chances to belong to the static part of the scene through an 

image-guided energy minimization approach. 

Among the algorithms found in the literature, there are mainly two approaches in 

order to get the luminous intensity of the scene, one is the grayscale image 

converted by using RGB channel [26] [27], other is the L channel in CIELAB color 

space [28]. In addition, detection of the ghost region is carried out in pixel level [7] 

or patch level [29].  In the literature, the comparison of images that are taken under 

different exposure settings by effectively removing most of the illumination 

differences between images is carried out with different approaches. Median 

threshold is used to reveal image features while removing intensity differences 

between different exposures [11], on the contrary, instead of using only median 

value, classification the intensity values into multi-levels is used [27]. In addition, 

histogram matching method [26] is used to remove intensity differences between 

different exposures. These algorithms are selected, because they cover the whole 

representative of ghost removal algorithms. Detailed explanations of these 

algorithms are given in the next chapter. 
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CHAPTER 3  

 

 

GHOST REMOVAL ALGORITHMS 

 

 

3.1 Introduction 

The main problem with exposure fusion technique is that ghost artifacts are created 

in the final image when a local or global motion is present in the scene. Image 

quality is degraded in the enhanced image unless ghost artifact are eliminated. This 

problem can be seen in Figure 3-1. In order to reduce the effect of this problem, 

ghost reduction algorithms are presented. 

 

Figure 3-1 Ghost Artifacts in the Enhanced Image 

This section is organized as follows, 1) The details of the methods used in this thesis 

are given 2) The improvements are proposed, and the comparison of the methods 

are provided. 
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3.2 Methods Implemented for Ghost Removal 

Ghost removal methods are developed to overcome the ghost artifacts in dynamic 

scenes. Mainly these algorithms use two step strategies; firstly, regions affected by 

the ghost are detected, secondly ghost artifacts are removed. The main problem is 

the detection of the ghost region. In the literature, different ghost detection 

techniques are presented and they differ based on how they approach the ghost 

removal problem. The groups of approaches are given as follows [6]: 

 Registration methods that are used for the registration of the input 

exposures. 

 Moving object removal methods are used to remove ghost artifacts in the 

final enhanced image by estimating static background. 

 Moving object selection methods are used to detect the inconsistencies in 

the intensities of pixels or patches, and remove of these regions. 

 Moving object registration methods is used to recover the ghost pixels by 

searching for the best matching region in the input exposures. 

 Video deghosting methods are used in HDR videos, they remove the ghost 

artifacts by the using temporal information of videos. 

In this thesis, mainly moving object selection methods are analyzed. This approach 

is suitable for exposure fusion algorithms, because, resulted ghost maps are used to 

mask out the pixels that are selected as ghost. In addition, they try to maximize 

dynamic range by using many exposure as possible for each dynamic region. 

In this section, detailed explanation of analyzed algorithms is given. 

3.2.1 Pixel order relation [ALG-1] 

Order relation between each LDR images are investigated in this method [7]. 

Assuming that linear response function of the imaging system and brightness value 

(Z) is related to the scene radiance value (L):  

𝑍 = 𝐿 ∗
𝑐𝑜𝑠4∅

ℎ2
∗ 𝐸 (3.1) 
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where, 𝐸 is the exposure value of the image, ∅ is the angle of principle ray and ℎ is 

the focal length of the camera. 𝐸 can be modeled as: 

𝐸 =
𝜋𝑑2

4
∗ 𝑡 

where, d is the aperture size of the camera lens and t is the exposure duration. 

Specifically, on the assumption that camera response function is a monotonic 

function, pixel values should be in the increasing order from low to high exposures, 

in the non-ghost region.  

𝐼𝑖,𝑗,𝑘 < 𝐼𝑖,𝑗,𝑘+1 

where, (i,j) is the pixel location, k is the number of LDR image. If this rule is 

violated, that pixel is stated as ghost region. 

This algorithm is based on the increasing pixel intensity with increasing exposure 

times. However, characteristic of an object that in motion determines the ghost 

labelling. For example, a moving white ball cannot be detected as ghost region with 

background of pure black because intensity level of the white ball is always larger 

than the background, and this algorithm fails to detect it. In order to overcome this 

problem, improvement is applied in such a way that rapid change in the intensity 

level of a pixel is also considered as ghost region. The expression of this is given 

as follows:  

|𝐼𝑖,𝑗,𝑘+1 − (
𝑒𝑘+1

𝑒𝑘
) 𝐼𝑖,𝑗,𝑘| > 0.1  

where, 𝑒𝑘+1 and 𝑒𝑘 are the exposure times of the (k+1)th and k-th input image, 

respectively. Please note that exposure time of (k+1)-th image is greater than k-th 

image. Linear assumption is valid for the input sequences, since linear camera 

response function is used to convert RAW images into 8-bit LDR images [6]. 

This rule helps same pixels in each image to be calibrated with using exposure 

times. Linear scaling between pixel intensity levels of input images are used for 

thresholding. This threshold value of 0.1 is obtained experimentally. If the 

calibrated value of a pixel is larger than this threshold, ghost region is detected. 

Otherwise, it is not labelled as ghost region. This approach helps to reduce the 

(3.2) 

(3.3) 

(3.4) 
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dependency of the intensity level between ghost pixel and its background, such a 

way that, rapid change in intensity difference is also considered as ghost region. 

Pixel order relation is the simplest method among other methods. There is no need 

of calibration among input images, only pixelwise comparison is done by looking 

intensity image of the inputs. As it is said, this algorithm is in the group of moving 

object removal, and it is selected to evaluate the performance of a ghost removal 

algorithm belong to this group. 

3.2.2 Histogram Based Ghost Detection [ALG-2] 

This method [26] is based on utilization of photometrically calibration function; 

this is simply a transform by using histogram of the reference image. By using this 

calibration, all input images are mapped to a common domain by histogram 

matching, and then ghost probability is found by the pixelwise difference between 

the reference image and the corresponding image:  

Mi,j,k = exp (−
(𝐼𝑖,𝑗,𝑟𝑒𝑓 − 𝐼𝑖,𝑗,𝑘

′ )2

2 ∗ 𝑐 ∗ 𝜎2
) 

where, 𝐼𝑖,𝑗,𝑘
′ is the modified image that is created by using histogram matching 

towards the reference image, Mi,j,k is the non-ghostness probability of the k-th 

image at (i,j) pixel, c is the threshold controlling constant, and σ is the noise level 

of the image. 

As it is expected, the more intensity difference occurs between reference and the 

input image, the resulting M is diverging to the 0. Therefore, by multiplying M with 

weights coming from the exposure fusion, the difference regions are masked, and 

at the final multi-dimensional blending operation, these regions are less effective, 

also, it should be noted that each entity of M has a value different from 1. Therefore, 

each weight of pixel is degraded by using M, whether it is a ghost pixel or not. 

Input mage, whose mean of well-exposedness quality measure is maximum, is 

selected as reference image and its M matrix is not taken into account. 

(3.5) 
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These M values for other LDR images are multiplied by the weights coming from 

the exposure fusion. After that, multi-dimensional blending is done to get the final 

enhanced image. 

3.2.3 Bitmap Movement Detection [ALG-3] 

In this approach [11], in order to make a comparison of the LDR images, firstly, 

median threshold bitmaps (MTB) [30] of each LDR image are found. This 

algorithm is effective to remove the illumination differences, due to the exposure 

time, for each image. When, a stack of MTB is obtained, a comparison is conducted 

such a way that, firstly, for a static scene, it is expected that each pixel preserves its 

bit value across all bitmaps, secondly, if the value changes in a pixel, there was 

movement underneath it. By using this assumption, a ghost map is created. 

However, it is susceptible to noise. To avoid this problem, series of morphological 

operations are conducted to that ghost map. 

After finding the noise-free ghost map, it is converted to the cluster map, where 

each cluster has a unique label. Clustering is done by using Connected Component 

labelling [31]. By using these unique labels of clusters, at the final enhanced image, 

these clusters pixel are selected by comparing the well-exposedness weight of each 

input LDR image. Input image, whose maximum average of the well-exposedness 

has the largest value in the cluster, is used. Pixel data of that cluster area is imported 

from that image. Then, multi-resolution blending technique is used as in the case of 

exposure fusion. 

This algorithm does not need a reference image. Only one ghost map is created 

using median threshold maps of each input image and the detected ghost regions 

are filled from the best exposed input image for each individual ghost region. 

Therefore, it uses single image to fill the pixels in the final image. This approach 

degrades the dynamic range of the enhanced image, because, using only one input 

image is against the nature of exposure fusion. 
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3.2.4 An Exposure Fusion Approach without Ghost for Dynamic Scenes 

[ALG-4] 

Method of acquiring ghost map [28] is conducted in CIELAB color domain. For this 

purpose, over-exposure image is selected as reference, and after all input images 

are converted into CIELAB color space, the average brightness of each input LDR 

is calculated by using the L component of the image, as follows: 

𝑙𝑘 =
∑  𝐻

𝑥=1 ∑ 𝐼𝑖,𝑗,𝑘
𝑊
𝑦=1

𝐻 ∗ 𝑊
 

where, 𝑙𝑘 is the average brightness of k-th input LDR image, H is the height of the 

image, W is the width of the image, 𝐼𝑖,𝑗,𝑘 is the actual brightness value of the (i,j) 

pixel in the k-th image. Each 𝑙𝑘 is compared to 𝑙𝑟𝑒𝑓 such a way that, ∆𝑙𝑘, difference 

of the average brightness values, is found by using following formula: 

∆𝑙𝑘 = 𝑙𝑟𝑒𝑓 − 𝑙𝑘 

Then, modified brightness value for each pixel is found. These values help to find 

the ghost map by comparing the modified brightness values of each pixel in the 

LDR images. Simply, by adding ∆𝑙𝑘 value to the each of the pixel in k-th brightness 

image, unified brightness image is found. After then, ∆𝐼𝑖,𝑗,𝑘, brightness differences 

of each pixel is found as follows:  

∆𝐼𝑖,𝑗,𝑘 = |𝐼𝑖,𝑗,𝑘
∗ − 𝐼𝑖,𝑗,𝑟𝑒𝑓| 

where, 𝐼𝑖,𝑗,𝑘
∗  is the brightness value of the pixel (i,j) in the unified brightness image 

of the k-th input image. Finally, ghost map is found by thresholding ∆𝐼𝑖,𝑗,𝑘 value, 

thresholding function is as follows:  

𝑀𝑥,𝑦,𝑘 = {
0, ∆𝐼𝑖,𝑗,𝑘  ≥ 𝑇𝑖,𝑗,𝑘

1, ∆𝐼𝑖,𝑗,𝑘  < 𝑇𝑖,𝑗,𝑘
 

where, 𝑀𝑖,𝑗,𝑘 is the ghost map pixel (i,j) for the k-th image and 𝑇𝑖,𝑗,𝑘, threshold value 

is defined as:  

𝑇𝑖,𝑗,𝑘 = |∆𝑙𝑘|𝛽 + (
𝐼𝑖,𝑗,𝑘 − 50

𝜎
)2 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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𝛽 , tolerance factor which represents degree of correlation, is selected as 0.7 and 𝜎 , 

scaling factor, is selected as 15. This function is an adaptive threshold function 

which is calculated for each pixel value.  

After creating ghost maps for each input image, in order to avoid false detections 

and pepper noises, erosion and dilation operations are done with square kernel sizes 

5x5, 9x9, respectively. For each input image (except reference image), 𝑀𝑖,𝑗,𝑘
′  noise-

free ghost map is found. This ghost map acts as a mask for the final weights at the 

exposure fusion algorithm. 

While other algorithms use RGB color domain, this algorithm uses CIELAB color 

domain. L component of this domain represents lightness of the scene. Therefore, 

it is useful to get the intensity values of the scene by using this component. In 

addition to that, this color domain is device independent. This means that the colors 

are defined independent of their nature of creation or the device they are displayed 

one. In addition, calibration of each input image to reference image is done in a 

simple manner, adding the average brightness difference between them. This 

reduces the complexity compared to other algorithms. Moreover, this algorithm 

uses an adaptive threshold for each pixel to find ghost regions, while others use 

general threshold. 

3.2.5 Ghost Detection and Removal Based on Super-Pixel Grouping in 

Exposure Fusion [ALG-5] 

Superpixel grouping is used for segmenting of an image into homogeneous regions 

based on color, intensity and texture details. Instead of comparing pixelwise 

difference of an input image to the reference image, Simple Linear Iterative 

Clustering (SLIC) method [32] is used for splitting the reference image and then 

each splitting area is compared to other input images in order to find ghost regions 

[29]. 

SLIC is one of the segmentation algorithm. It has a different distance measurement 

that enables compactness and regularity in the superpixel shapes. SLIC generates 

superpixels by clustering pixels based on their color similarity and proximity in the 

image plane. CIELAB color domain is used in this algorithm, because it is 
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considered as perpetually uniform for small color distances. The clustering 

procedure begins with an initialization step. For an image with N pixels and desired 

number of approximately equally-sized superpixels K, the approximate size of each 

superpixel is therefore N/K pixels. Initial cluster centers are sampled on a regular 

grid spaced 𝑆 =  √𝑁/𝐾 pixel apart as follows: 

𝐶𝑖 =  [𝑙𝑖 𝑎𝑖 𝑏𝑖 𝑥𝑖  𝑦𝑖] 

Next, in the assignment step, each pixel i is associated with the nearest cluster center 

whose search region overlaps its location, this brings speeding up the algorithm by 

reducing the number of distance measurements. Then, distance measurement is 

done as follows:  

𝐷 =  √𝑑𝑐
2 + (

𝑑𝑠

𝑆
)2 𝑚2 

where,  

𝑑𝑐 =  √(𝑙𝑗 − 𝑙𝑖)2 + (𝑎𝑗 − 𝑎𝑖)2 + (𝑏𝑗 − 𝑏𝑖)2 

𝑑𝑠 =  √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 

where, 𝑑𝑐 is the color distance measure, 𝑑𝑠 is the spatial distance measure, m is the 

constant to regularize the weight the relative importance between color similarity 

and spatial proximity, thus when m is large spatial proximity is more important and 

the resulting superpixels are more compact. 

In this thesis, m is selected as 1, so that, the resulting superpixels adhere more tightly 

to image boundaries, but have less regular size and shape, and superpixel size is 

selected as 20-pixel. 

In order to get the ghost regions, comparison is done by using the normalized cross 

correlation with zero mean for each splitting area. Normalization must be done 

because of the reducing the effect of exposure times of the input images. Zero mean 

normalized cross correlation (ZNCC) between the rest of images and the reference 

(3.12) 

(3.13) 

(3.14) 

(3.11) 
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one is presented. ZNCC is a measure factor of comparison of two super-pixels 

computed as:  

𝑍𝑁𝐶𝐶𝑥 =
∑  (𝑖,𝑗)𝜖𝑆𝑥

𝐷𝑟𝑒𝑓(𝑖, 𝑗)𝐷𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗)

√∑ 𝐷𝑟𝑒𝑓(𝑖, 𝑗)2
(𝑖,𝑗)𝜖𝑆𝑥

. √∑ 𝐷𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗)2
(𝑥,𝑦)𝜖𝑆𝑥

 

where,  

𝐷𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) = 𝐼𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) −  𝜇(𝐼𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗)) 

𝐷𝑟(𝑖, 𝑗) = 𝐼𝑟(𝑖, 𝑗) −  𝜇(𝐼𝑟(𝑖, 𝑗)) 

where; 𝐼𝑟 stands for reference image, 𝐼𝑖 stands for i-th exposure image, 𝑆𝑥 represents 

for the x-th super-pixel, 𝜇 is the average operator.  

After this calculation for each superpixel, a threshold, t=0.55, is applied to 

determine whether that super-pixel is ghost region or not. By using this threshold 

binary maps are created for each input image except reference one a follows: 

𝑀𝑥(𝑖, 𝑗) = {
1,                     𝑤ℎ𝑒𝑛 𝑍𝑁𝐶𝐶 > 𝑡
0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

These binary maps are used for masked out the ghost areas in related input image. 

Then, modified weights are normalized, and exposure fusion algorithm is used for 

creating the final enhanced image. 

Instead of pixelwise comparison between input images, this algorithm uses the 

superpixel groups. This approach is different from other algorithms. In addition, 

global calibration of the input images is not implemented. Calibration is done within 

the each superpixel cluster. 

3.2.6 Zero Mean Cross Correlation comparison between 4x4 pixel-groups 

[ALG-6] 

For this algorithm, an improved version of ALG-5 is used. Instead of using SLIC 

method, whose complexity is high, a 2D 4x4 pixel window is used for grouping the 

pixels. Without any segmentation method, reference image is divided into groups 

as follows: 

(3.16) 

(3.17) 

(3.18) 

(3.15) 
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Figure 3-2 Grouping the Pixels with 4x4 Window 

After this grouping, same ZNCC method, and thresholding is used for detection of 

the ghost areas. However, at the edges of the ghost areas, grouping results as false 

detections. In order to overcome this situation morphological operations are done. 

After getting final binary images, which represent ghost areas, is used for mask the 

related weights of input image. Then, normalization of the weights is done before 

using the exposure fusion algorithm to get the enhanced image. 

Using 4x4 pixel-groups without a segmentation helps to speed up the ALG-5. This 

algorithm is used in order to compare it with the ALG-5. 

3.2.7 Improved Histogram Based Ghost Removal in Exposure Fusion for 

High Dynamic Range Images [ALG-7] 

Multi-level threshold map is used to reduce the effect of the varying exposures at 

the LDR images [27]. Unlike [11], multi-level threshold map has more than one 

threshold. These levels are labelled as rank of a pixel. Rank of a pixel is found 

according to the cumulative distribution function of intensity map of the input 

image. If median is selected as threshold, then its level is specified as 2, it is similar 

to median threshold map [11]. Then, multi-level is designated to be used as multi 

thresholding based on cumulative distribution function. After finding each rank of 

pixels, it is normalized as follows: 

�̂�𝑖,𝑗,𝑘 = 𝑟𝑜𝑢𝑛𝑑 (
𝑟𝑖,𝑗,𝑘 − 1

𝑅𝑘 − 1
)  ,            0 ≤ �̂�𝑖,𝑘 ≤ 2𝑁 − 1 

… 

… 

…
 

…
 

Image 
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(3.19) 
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where, 𝑅𝑘 is the last rank in k-th exposure image, 𝑟𝑖,𝑗,𝑘 is rank of pixel (i,j) in k-th 

exposure image, �̂�𝑖,𝑗,𝑘 is the normalized value of 𝑟𝑖,𝑗,𝑘 , finally N is the threshold 

levels. Higher this value is, better performance at the final enhanced image is. 

However, increasing the value of N is resulted in higher computational load. 

After then, differences of each image rank to the reference image ranks are 

computed as follows; 

𝑑𝑖,𝑗,𝑘 = | �̂�𝑖,𝑗,𝑟𝑒𝑓 − �̂�𝑖,𝑗,𝑘 | 

where, subscript ref represents the reference image. With the help of 𝑑𝑖,𝑗,𝑘 , ghost 

map is found for each input image such a way that:  

𝑀𝑖,𝑗,𝑘 = {

1,                                     𝑓𝑜𝑟 𝑘 = 𝑟𝑒𝑓
0,                    𝑓𝑜𝑟 𝑑𝑖,𝑗,𝑘 ≥ 𝑇, 𝑘 ≠ 𝑟𝑒𝑓

1,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where, T is the threshold value. Non-ideal intensity changes result in the wrong 

detection of ghost. To avoid this, morphological operations are applied to ghost 

maps. Firstly, erosion operation and then dilation operation are conducted to 

remove isolated pixel, and to connect disconnected pixels. Finally, holes 

surrounded by 1-value pixels are filled.  

Therefore, final ghost map 𝑀𝑖,𝑗,𝑘 is found, and this ghost map is acted as a mask to 

the weight map of the exposure fusion. 

In this thesis, rank is selected as 255. When the rank is selected as 255, cumulative 

distribution function of all input images are linearized, excluding the values of 0 

and 255. In addition, histograms tend to have equally distributed. Therefore, this 

algorithm making a global calibration without a reference image. However, when 

thresholding, it needs a reference image. It differs from other algorithm in the 

calibration process. 

3.2.8 Majority Voting [ALG-8] 

ALG-8 is a proposed method. Majority voting is conducted in such a way that if 

four of seven algorithms are labelling a pixel in their ghost maps, this pixel is 

selected as ghost region. Otherwise, this pixel is not labelled as ghost region. 

(3.20) 

(3.21) 
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The main aim of using majority voting is to analyze the overall performance of the 

implemented ghost removal algorithms. By using majority voting, number of false 

detected pixels are reduced, because, implemented algorithms do not have same 

reasoning to get the false detection. The analyzes about this are given in Chapter 4. 

As it is explained before ALG-1 and ALG-3 do not need a reference image, also 

ALG-3 creates one ghost map, not for all input images. However, in order to be 

convenient, reference image is selected for these algorithms, and comparison is 

done such a way that, for ALG-1 all images are compared to the reference image 

with same assumptions, and ghost map of each input image is created. For ALG-3, 

median threshold map of reference image and other inputs are compared by using 

exclusive-or operation, and ghost map of each input image is created. 

3.3 Improvements and Grouping of the Methods 

In this section, improvements that are done for each algorithm are given, and 

classification of the reviewed algorithms is provided. 

For ALG-1, exposure time of the images are taken into account in order to find the 

abrupt change in the intensity of the pixel between reference image and input image. 

This leads to detect ghost pixels if the background lowly exposed. 

ALG-2, and ALG-7 are adapted so that number of input images is limitless. 

Dynamic range is improved if the number of input images is increased. Therefore, 

in the final enhanced image, pixel weights are obtained from differently exposed 

input images. 

ALG-6 is created to reduce the complexity of ALG-5. SLIC method is an 

exhaustive segmentation method, because of this, 4x4 blocks without looking the 

characteristics of the pixel in the groups are created in order to detect the ghost 

regions. Moreover, morphological operation is conducted to minimize the false 

detections. 

None of the algorithms gives the logical explanation about the selection of the 

reference image. For this purpose, in the input set, the image whose average well-

exposedness measure is maximum is selected as reference image. This gives a brief 

information about the histogram. Well-exposedness measure is used to keep 
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intensities that are not near zero (underexposed) or one (overexposed). Therefore, 

by looking at just the raw intensities within a channel, reference image has the 

maximum average of well-exposedness value. 

Grouping of these methods are done in terms of photometrically calibration of the 

input images, threshold tuning, reference image selection, grouping. This overview 

gives the brief introduction to the algorithms. Classification of implemented ghost 

removal algorithms in this thesis are given in Figure 3-3. 

 

Figure 3-3  Classification of Ghost Detection and Removal Methods 

Among these algorithms, ALG-1 is selected as a simple baseline algorithm, ALG-

2 is selected as it creates probability map instead of binary map to represent ghost 

regions, ALG-3 is selected as the representative of the category which aims to 

completely eliminate moving objects, ALG-4 is selected as using different color 

domain and adaptive thresholding, ALG-5 is selected as segment the pixel by using 

SLIC method, ALG-6 is selected as grouping the pixel without any state-of-art 

segmentation, ALG-7 is selected as it uses histogram equalization to calibrate the 

input image. 
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CHAPTER 4  

 

 

COMPARISON AND DISCUSSION 

 

 

4.1 Introduction  

Until now, the implemented algorithms have been explained by giving the 

advantages and disadvantages of the algorithms with respect to the authors of the 

algorithms. However, most of these studies do not include a detailed comparison 

between proposed and former algorithms. Therefore, in this chapter detailed outputs 

of each algorithm are presented and related discussions are made. Also detailed 

explanations of the ghost maps that are created by each algorithm are given. 

For simplicity, acronyms of each of the ghost reduction technique and exposure 

fusion technique are used. The implemented algorithms are named as in Table 4-1. 

Table 4-1 Acronyms and Description of the Algorithms 

Acronyms Description of the Algorithms 
EF “Exposure Fusion”,  Tom Mertens, Jan Kautz, Frank Van Reeth [15] 

ALG-1 
“Ghost Detection and Removal in High Dynamic Range Images”,  

Desire Sidibe, William Puech, Oliver Strauss [7] 

ALG-2 
“A Simple Ghost-Free Exposure Fusion for Embedded HDR Imaging”, 

Y.-S. Moon, Y.-M. Tai, J. H. Cha and S.-H. Lee [26] 

ALG-3 
“Bitmap Movement Detection: HDR for Dynamic Scenes”, F. Pece and 

J. Kautz [11] 

ALG-4 
“An Exposure Fusion Approach Without Ghost for Dynamic Scenes”, 

C. Wang and C. Tu [28] 

ALG-5 

“Ghost detection and removal based on super-pixel grouping in 

exposure fusion”, S. Jiang, X. Zhihai, L. Qi, C. Yueting and F. Huajun 

[29] 

ALG-6 “4x4 Pixel Grouping and ghost removal using ZNCC algorithm” 

ALG-7 
“Improved Histogram Based Ghost Removal in Exposure Fusion for 

High Dynamic Range Images”, D.-K. Lee, R.-H. Park and S. Chang [27] 

ALG-8 Majority Voting 
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All of algorithms are implemented in MATLAB environment, except exposure 

fusion algorithm, of which implementation is obtained from Mertens et al. [15]. 

For all the experiments, image sets give in [6] and [33] are used. The image sets are 

given in Appendix A. There are twelve datasets. The image sets have different 

characteristics, such as, object motion type and magnitude, object motion color and 

histogram distribution. In addition, ground truth of the ghost regions are extracted 

by hand for 1st input set, in order to find the percentages of the false and correct 

detection for each algorithm. These binary images contain the data of the pixel 

movement.  

Since, there are a large number of ghost maps that are outputted for each algorithm, 

all the ghost maps for each algorithm are not given. However, related discussions 

are made for each algorithm in their respective sections. 

This section is organized as follows, 1) summary of the ghost removal algorithms 

are presented 2) for each algorithm, related experimental results and discussions are 

shown 3) comparison of the computation times are given and percentages of false 

and correct detections are shown using ground truth 4) objective evaluation with 

the final enhanced images are shown and related comparisons are given. 

4.2 Summary of Ghost Removal Algorithms 

ALG-1 compares the intensity values, if the monotonic behavior of a pixel is lost 

between input images with increasing exposure time; this pixel is labelled as ghost 

region. In addition, rapid change in the intensity values is also labelled as ghost 

region. 

ALG-2 makes comparison between the reference image and the input images. This 

comparison is done by making histogram of the input images equal to the reference 

image. Exponential function is used to find the ghost probability of each pixel to 

create the ghost map. 

ALG-3 creates ghost map by comparing the median threshold maps, ghost map for 

each input image is created by comparing the binary images. Finally, morphological 

operations are done in order to minimize the effect of noise. 



37 

 

ALG-4 uses L channel in the CIELAB domain to make the comparison instead of 

RGB domain. After selecting the reference image, others are calibrated to the 

reference image by adding the difference of the mean values at the L channel. Then, 

thresholding is applied and ghost map for each input are created. 

ALG-5 uses a rank based comparison between the intensity images such that 

intensity images divided into regions using cumulative distribution function. After 

that a ranked image is created, if there is a difference between the ranked-intensity 

image and the reference image, these areas are specified as ghost regions. 

ALG-6 is done such a way that a reference image is segmented by super-pixel 

grouping. For this purpose, SLIC method is used. After that, normalized cross 

correlation with zero mean is computed to classify the ghost regions and these 

regions are extracted from the initial LDR images. 

ALG-7 is an improvement version of the ALG-7. Instead of using SLIC method, 

4x4 pixel grouping is used to group the pixel. Within these groups, normalized cross 

correlation with zero mean is used to detect the ghost regions. 

ALG-8 is using majority voting such that if five of seven algorithms are labelling a 

pixel in their ghost maps, this pixel is selected as ghost region. Otherwise, this pixel 

is not labelled as ghost region. For this purpose, since ALG-2 uses the ghost 

probability values, a threshold of 0.25 is used to convert that image to the binary 

image. In other words, if the ghost probability of a pixel is smaller than 0.25, it is 

labelled as a ghost in the ghost map. For ALG-1, all images are compared to the 

reference image with same assumptions, and ghost map of each input image is 

created. For ALG-3, median threshold map of reference image and other inputs are 

compared by using exclusive-or operation, and ghost map of each input image is 

created. 

In order to compare the algorithms, reference image of a dataset is chosen the same 

for all algorithms, and image whose well-exposedness measure has maximum 

average is selected as the reference image. 
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4.3 Experimental Results for the Ghost Removal Algorithms 

Until now, the algorithms have been explained individually without giving any 

results. By using different image sets, we aim to compare the algorithms and see 

their weaknesses and strenghts with respect to the other algorithms. 

4.3.1 ALG-1 

As it is said, ALG-1 compares pixel intensities. The main advantage of this 

algorithm is that its complexity is lower than the other algorithms, because, there is 

not any calibration between input images before creating the ghost map. However, 

comparing only the intensity values without any preprocessing causes some 

problems, such as, if intensity level of an object in motion is the same or slightly 

larger than the background, ghost detection cannot be achieved accurately. This 

problem can be seen in Figure 4-1. In this figure, black regions show the ghost 

pixels. As a conclusion, this algorithm is not useful for these kind of input set. 

 

Figure 4-1 Ghost maps and the Related Part of Image of the (a) Input Set 1, 

(b) Input Set 4 

On the other hand, this algorithm succeeds to extract the ghost regions, if the 

background of the object in motion contains highly exposed pixels. Because, the 

difference of the intensity levels between background and the object in motion is 

more distinct. Successfully extraction of this kind of areas are seen in Figure 4-2, 

black regions in Figure 4-2 (a) show the ghost regions. As can be seen in Figure 4-2 

(b), background contains highly exposed pixels, so that ghost map are created 

(a) (b) 
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without any deficiency. Note that, ghost regions which are not derived from this 

input image are result of the reference image. 

Morphological operations are not implemented to reduce the noise or false 

detection. However, it is seen that the percentage of the non-ghost regions labelled 

as ghost is very low for this algorithm. This is expected because assumption of the 

increasing in the intensity with increase in exposure time is always valid if the 

photographs are taken in consecutive times with a functioning camera. Therefore, 

disadvantages of the morphological operations are not seen in this algorithm, such 

as annihilation of the small movement detection. This advantage is depicted in the 

Figure 4-3. 

 

Figure 4-2 (a) Ghost Map and Related Part of 9th Input Image of Input Set 

12, (b) Related Part of the 9th Input Image of Input Set 12 without Ghost 

Map 

(a) (b) 
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Figure 4-3 (a) 3rd Input Image of the Input Set 1, (b) Region where Small 

Movement Occurs, (c) Detected Ghost in this Region 

In Figure 4-3 (c), black regions show the non-ghost areas. The kernel sizes used for 

the dilation and erosion of the ghost map affect the final results and a good balance 

between the erosion kernel size and the detected ghost size is required. Although, 

erosion operation helps to reduce the noise and false detection, it excludes the small 

ghost regions, such a way that, if the size of the detected ghost regions is smaller 

than the size of the kernel, ghost region is removed. Therefore, erosion operation 

reduces the performance of ghost detection in such cases. As a conclusion, it is seen 

that this algorithm is good to find the ghost regions where small objects are in 

movement. 

To sum up, this algorithm is depending on intensity level of the object in motion 

and intensity level of the background of the object. These determine the quality of 

this algorithm. On the other hand, complexity of this algorithm is very low. In 

addition, for small movement detection, it has an advantage. 

4.3.2 ALG-2 

ALG-2 uses an approach to reduce the effect of the exposure difference in such a 

way that after the selection of the reference image, other exposure images are 

(a) 

(c) (b) 
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photometrically calibrated toward the reference image, to do this the histogram 

matching between the reference image and their individual exposure image is used. 

Then non-ghostness probabilities of each pixel is found with exponential function, 

as explained before. Since exponential function is used, all the pixels have the 

probability of belonging to the ghost region. This degrades the final enhanced 

image, because, when weights are calculated according to the probabilities, the 

pixel weights are reduced, therefore, dynamic range of the final enhanced image 

are reduced. In addition, since pixelwise differences are calculated, there are lots of 

noise in the ghost map. These problems are depicted in Figure 4-4. 

 

Figure 4-4 (a) Ghost Map of the 4th Image of the Input Set 1, (b) Ghost Map 

of the 5th Image of the Input Set 7 

The main source of noise is salt-and-pepper noise which is brief sudden intensity 

spikes. This can be seen in Figure 4-4 (b), non-ghost pixels are labelled as ghost 

with mainly 1-pixel long. It should be noted that there is not preprocessing to 

eliminate noise. 

With increasing exposure time, features in small size of the scene cannot be 

obtained, this is mainly because of the capturing sensor characteristic. Since, 

representing scene with a one pixel is achieved by taking average of the neighboring 

sensor nodes, the scene characteristics in the vicinity of the feature are also 

important. For example, in Figure 4-5, two of the images from the input set 12 are 

shown. The red squares on each image show the same region. However, the feature 

information of these red squares are not same for each input image. Highly exposed 

background degrades the Figure 4-5 (b), because features in the red square are not 

(a) (b) 
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visible. This causes a problem for this algorithm, because, when comparing these 

two input images, the intensity difference in the red square is so high that these 

pixels has high ghost probability. However, it is a false detection. The related ghost 

map of 6th image of input set 12 is shown in Figure 4-6, note that for this set 8th 

image is selected as the reference image. As a summary, the static regions in front 

of the highly exposed background have high ghost probability in this algorithm, 

because of the capturing device characteristics. 

 

Figure 4-5 (a) 6th and (b) 8th Images of Input Set 12 

 

Figure 4-6 Ghost Map of 6th Input Image of Input Set 12 

 

Exponential function characteristics is seen in Figure 4-7 with image noise level of 

2, note that difference values are changing from 0 to 20. In this figure, it is seen that 

intensity difference of 10 correspond to nearly 0.08, which means that a pixel whose 

difference of 10 is extracted out from the final enhanced image. Because of this, 

another problem occurs in the process of histogram matching toward the reference 

(a) (b) 
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image. This problem mainly occurs at the pixel which possess saturated values at 

the reference image but not in the other images. At the histogram matching method, 

unsaturated pixels become more saturated to match the histograms. However, 

limited histogram of reference image causes problems, histogram matching toward 

a limited histogram, make a wide histogram to shrink and lose actual intensity 

information of the image. For example, in Figure 4-8 (a), input image has a wide 

histogram, however, after equalization, maximum value is seen at 255. Therefore, 

the well-exposed pixels are become more saturated after equalization. The 

probabilities have more values at these point, because histogram equalization is not 

good at the highly exposed pixel. One of the example is given by using input set 8. 

 

Figure 4-7 Exponential Function used for ALG-2 
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Figure 4-8 Histograms of 8th Input Image of Input Set 8, (a) Actual, (b) After 

Histogram Matching toward Reference Image 

Pixelwise operation without morphological operations makes this algorithm to find 

the small movement detection, like ALG-1. In addition, histogram matching 

method reduce the dependency of the intensity level of the object in motion, it is 

used to reduce the effect of exposure time, thus, all the inputs possess same 

characteristic as if they are taken at the same exposure value. However, mapping 

between histograms can cause some problems. Firstly, some bins in the matched 

histogram have 0 pixel, such as making a wide histogram to the limited histogram 

or vice versa. Secondly, a pixel in the object in motion can have the same intensity 

with reference image, after histogram matching, but, these problems have limited 

effects because multi-dimensional operation in exposure fusion is greatly reduce 

these kind of pixels. 

To sum up, histogram matching is good for eliminating the effects coming from the 

exposure time. Also pixelwise difference are useful to detect small movement 

detection. However, reference image characteristics, such as, number of saturated 

or unsaturated pixels, limited histogram has effect on the creating the ghost map. In 

addition to that, all pixels have non-ghostness probability which reduce the actual 

dynamic range of the final enhanced image. 

4.3.3 ALG-3 

ALG-3 is using binary images to get the ghost areas. Instead of using histogram 

equalization, median threshold map is used. This reduces the complexity of the 

algorithm, compared to histogram equalization as in ALG-7.  

(a) (b) 
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There are limited false detections of under- and over-exposed areas, because of 

using median threshold map, these regions are in different bins independently from 

exposure time of input image. 

Ghost regions could not be fully found, if intensity values of these regions are 

related to the background. Reason of this problem is because of the median 

threshold map. If, background and moving pixels are in the same histogram bin, 

ghost detection could not be achieved. Therefore, this algorithm is dependent on 

the background characteristics. For example, areas in red rectangles in Figure 4-9 

show the deficient detection because of the above reasoning. 

 

Figure 4-9 4th Input of the Input Set 1 and ALG-3 Ghost Map 

Morphological operations are used in this algorithm. Although, it reduces effect of 

the noise and false detections, erosion operation leads to exclude small movement 

detection in ghost map. This is a disadvantage of this algorithm. 

To sum up, ALG-3 has low complexity and low percentage of false detections in 

under- and over-exposed pixels, however, background intensity level affects the 

ghost labelling process, so it is dependent on the object and background intensity 

levels, like ALG-1. 
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4.3.4 ALG-4 

ALG-4 is using L channel in CIELAB domain is used to get the intensity level of 

the scene, because CIELAB is an absolute reference space for color. Whereas RGB 

are relative spaces and can have various different definitions. L component in 

CIELAB domain specifies intensity, whose levels are in between [0 100]. Unlike 

others, adaptive threshold is used for each pixel. Adaptive threshold assignment has 

mainly two advantage, firstly, calculation of the deviation from mean brightness 

value ((
𝑙𝑖,𝑗,𝑘−50

𝜎
)2) results in larger threshold value for the pixels that brightness 

values are near 0 or 100 (underexposed or overexposed), secondly, exposure 

difference between the reference image and the related input image is taken into 

account (|∆𝑙𝑘|𝛽). These calculations greatly reduce the number of unnecessary 

labelling. Correctly classification of non-ghost regions improves the performance 

of the final enhanced image in terms of dynamic range, because more pixels 

contributed at the fusion. Calibration is done by adding a DC level as explained 

before. However, this causes problems if the reference image is dominated by 

highly exposed pixels, because, this kind of reference image does not show the 

characteristics of the scene. These are at the limits of the capturing device, thus; 

average value of the L channel is high. Therefore, adaptive threshold values β and 

σ should be selected according to the input set. In this thesis, adaptive selection of 

these values are not implemented, this is done in future work. Effect of these values 

are shown in Figure 4-10. For this input set, percentage of pixels that are in [90, 

100] is nearly %38. Note that, for this input set, reference image is 9th image. 
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Figure 4-10 Effect of β Values used in Adaptive Threshold in Image Set 2, (a) 

Ghost Maps of 6th Image, (b) 7th Image, (c) 8th Image 

In Figure 4-10, it is seen that increasing β greatly reduces false detections. 

Increasing β results in increasing of |∆𝑙𝑘|𝛽. Therefore, it is more robust at the highly 

exposed areas. When adaptive thresholding, these pixels are not labelled as ghost. 

However, β should be carefully selected, because, actual ghost regions may not be 

detected if this threshold is high. Therefore, in terms of false detections, increasing 

β reduces the effect of the highly exposed pixels in the reference image. 

Morphological operations are used in this algorithm. Although, it reduces the effect 

of the noise coming from rapid change in pixel values, erosion operation leads to 

exclude small movement detection in ghost map. This is a disadvantage of this 

algorithm. 

Adding DC level in order to calibrate is not sufficient if background luminescence 

level is close to the actual ghost pixel. Normalization of the image in order to reduce 

the effect of exposure time cannot be satisfied by adding a DC level, because 

capturing device limits this approach. In theory, the luminescence value captured 

by the sensor is linearly dependent on exposure time. If the exposure time is 

doubled, then intensity value of captured pixel is doubled. However, this 

assumption is not valid for capturing devices. That is why, adding a DC value does 

not normalize the images. 

(a) (b) (c) 

β = 0.7 

β = 0.8 
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To sum up, using adaptive threshold for each pixel is good for the minimization of 

the false detection, however, adaptive threshold values should be carefully selected 

for each input set, since it is dependent on the average intensity value of the 

reference image. 

4.3.5 ALG-5 

Unlike comparing pixel values, super-pixel groups are used for comparison in 

ALG-5. First of all, it groups the pixels by its similarity, using SLIC method. After 

that, ZNCC (Zero Mean Normalized Cross Correlation) values for each group of 

pixels in each input image are compared with the reference image, before 

thresholding. 

The main problem of ZNCC calculation arises when deviation in values of the super 

pixel at the reference image is very low. This problem leads to unnecessary labelling 

such a way that ZNCC calculation does not give reasonable outputs. Consider the 

case where the superpixel in reference image is following: 

𝐼𝑟𝑒𝑓 =  [
150 149 149
149 149 148
150 150 150

] 

And, same superpixel in an input image: 

𝐼𝑖𝑛𝑝𝑢𝑡 =  [
129 128 128
129 128 128
128 128 128

] 

ZNCC calculation of these two matrix is 0.3162, since it is below the threshold 

value this superpixel is labelled as ghost. However, there is not any ghost pixel, 

they are the regions with smooth changing in luminescence. Average of the pixels 

in the pixel groups are close to the values of the pixel such that nominator of the 

ZNCC is in the vicinity of 0. As a conclusion, using pixel groups with ZNCC gives 

such problems when average of pixel groups very close to the pixel values. This 

problem can be seen in the Figure 4-11. The seams in the red square is labelled as 

ghost in most of the ghost maps for this set. 
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Figure 4-11 Final Enhanced Image of ALG-5 

SLIC method is used for segmentation of the image by comparing the salient 

features and color information. In order to segment all features in a scene, reference 

image should be properly exposed. However, due to the capturing device 

characteristics, high luminance at the background effects the foreground object. 

This problem can be seen in Figure 4-12. Branches of the tree cannot be properly 

exposed. Since, ALG-5 is comparing group of pixels, these regions have resulted 

as ghost region such that, in the low-exposures these branches are more distinct, 

and when comparing ZNCC values the weight of the pixels of the branches are 

weighted more. Therefore, there is the detection of the ghost. It is concluded that to 

make the group of pixel, all the salient information should be properly exposed. 

In addition to that, ZNCC calculation of the highest exposed pixelgroup, whose 

pixel intensity levels are 255 for all pixels, is not logical, because, average value of 

this kind of pixelgroups are equal to the pixel values, so that, ZNCC value is 

undefined. Therefore, reference selection of this algorithm is important to avoid 

these kind of problems. 
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Figure 4-12 Lost in Information due to the Luminescence of Background, (a) 

Part of the 7th Input Image of Image Set 12 with Superpixel Groups,  (b) 

Reference Image 

To sum up, unlike pixelwise comparison, superpixel grouping is used in this 

algorithm and this makes the complexity of this algorithm higher than others. 

Problems due to the grouping and ZNCC calculation makes this algorithm be 

dependent of the reference image and input set. High percentage of the highly 

exposed pixel in the reference image effects badly for this algorithm. 

4.3.6 ALG-6 

4x4 pixel groups are used for ALG-6, it has less complexity compared to ALG-5 

because of the SLIC method used in grouping. In addition, in order to avoid the 

false detections caused by ZNCC calculations, morphological operations are used. 

For example, there is an improvement in input set 1, by the means of reducing false 

detection while conserving actual ghost regions. The improvement can be seen in 

the Figure 4-13 where red areas represents areas of intersection, green areas 

represents areas in ALG-5 but not in ALG-6, and blue areas represents areas in 

ALG-6 but not in ALG-5. According to the differences, it is clearly to say that 

output of ALG-5 has a lot of false detection than ALG-6. Under- and over-exposed 

areas are detected as ghost regions. This problem is avoidable by using 

morphological operations.  

(a) (b) 
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Figure 4-13 Differences between Ghost Maps of ALG- 5 and ALG-6 for Input 

Set 1, (a) Differences in 1st Image, (b) 2nd Image, (c) 3rd Image and (d) 4th 

Image 

Although, using morphological operations reduces percentage of false detection, 

erosion operation leads to exclude small movement detection in ghost map. This is 

a disadvantage of this algorithm. Morphological operation is help to reduce the 

number of seams that are created in the ALG-5, however, for the large group of 

unwanted seams, it is not effective. These situations can be seen in Figure 4-14 and 

Figure 4-15. Green rectangles show the improved areas; red rectangles show the 

worsened areas due to the morphological operations. 

 

Figure 4-14 Final Enhanced Image of (a) ALG-5 and (b) ALG-6 for Input Set 

11 

 

(a) (b) (c) (d)) 

(a) (b) 
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Figure 4-15 Final Enhanced Image of (a) ALG-5 and (b) ALG-6 for Input Set 

2 

To sum up, unlike segmentation, 4x4 grouping is used in this algorithm and this 

makes the complexity of this algorithm lower than ALG-5. Seams due to the SLIC 

grouping and ZNCC calculation are slightly reduced by using this algorithm. 

4.3.7 ALG-7 

Normalization of the image in order to reduce the effect of exposure time is obtained 

by the histogram equalization in ALG-7. In other words, cumulative distribution 

function of each input set is linearized for each input image. In order to find the 

ghost pixels, difference between histogram equalized image and histogram 

equalized reference image is calculated. After that, thresholding is applied to the 

difference measures. 

However, depending on the number of the least exposed and most exposed pixels, 

CDF equalization behaves differently. Example of this situation is given in Figure 

4-16, in this figure image set 1 is used. CDF of reference image (5th image) has 

abrupt change at level of 256, and between 208 to 256, there is not any differences 

in the CDF. The problem is that when finding the difference between each input to 

the reference image, these places are resulted higher than expected. Therefore, 

applying thresholding to these places are resulted in non-ghost pixels labelled as 

ghost. Therefore, percentage of non-ghost labelling is larger than expected. 

(a) (b) 
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Figure 4-16 CDF of Input Set 1 after CDF Equalization, (a) 1st Image, (b) 2nd 

Image, (c) 3rd Image, (d) 4th Image and (e) 5th Image  

As it is concluded from Figure 4-16, linearization of the CDF is successfully 

achieved for 4th image, however, since main ghost regions are in that image, 

reference image is selected as 3rd image for comparison. The resulted enhance 

images when reference is 5th image and 3rd image is seen in Figure 4-17. It is 

concluded that reference image selection should be done by comparing the CDF of 

input set. 

 

Figure 4-17 Final Enhanced Image of ALG-7, when (a) 5th Image as 

Reference, and (b) 3rd Image as Reference 

(a) (b) (c) 

(d) (e) 

(a) (b) 



54 

 

Resultant ghost maps by using input set 1 can be seen Figure 4-18. As expected, 

due to the deficiency of linearization in the CDF of reference image, there are high 

percentage non-ghost labelling. 

 

Figure 4-18 Ghost Maps of ALG-7 when Input Set 1 is used, (a) 1st Image, (b) 

2nd Image, (c) 3rd Image, (d) 4th Image 

Selection of the reference image can be adaptively applied. Such a way that, number 

of least exposed pixels and most exposed pixels in an input image is found, and 

input image that has the minimum number of these pixels is selected as reference. 

The improvements in the enhanced images are seen in the Figure 4-19 and Figure 

4-20. 

 

Figure 4-19 Final Enhanced Images of Input Set 10, when Reference Image 

Selection by Evaluating, (a) Well-Exposedness, (b) Percentage of Saturated 

and Unsaturated Pixel 

(a) (b) (c) (d) 

(a) (b) 
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Figure 4-20 Final Enhanced Images of Input Set 4, when Reference Image 

Selection by Evaluating, (a) Well-Exposedness, (b) Percentage of Saturated 

and Unsaturated Pixel 

In the red squares, part of the ghost regions is shown. Blending into the final image 

is not satisfied at these areas. Pixel information of these areas are from the reference 

image, because, in all ghost map these parts are selected as ghost. Since, adaptive 

selection makes the reference image be the low contrast than before, these blending 

problems are arisen. Therefore, reference selection by comparing number of least 

exposed pixels and most exposed pixels reduces the number of the false detection, 

however, degradation in ghost regions is obtained in the final enhanced image. 

ALG-5, and ALG-6 have illogical outputs when ZNCC equation is conducted in 

the smooth regions, ALG-7 does not show this problem. Because, pixelwise 

comparison and thresholding make this algorithm be robust in these region. The 

problematic regions of ALG-5 and ALG-6, and the resulted regions of ALG-7 are 

given in Figure 4-21. 

(a) (b) 
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Figure 4-21 Final Enhanced Images of (a) ALG-5, (b) ALG-6 and (c) ALG-7 

In the red rectangles, unwanted seams are given for ALG-5 and ALG-6, the reason 

behind these seams have been explained in their respective section. The enhanced 

image of ALG-7 has satisfied results at these regions, because histogram 

equalization is done globally. Using pixel groups with ZNCC calculation is not 

logical for such input set where smooth regions creates the majority of the scene. 

As a consequence, histogram equalization is robust choice to eliminate the effects 

of the exposure value of each image, however, when thresholding, reference image 

characteristics effects the unwanted ghost labelling. 

4.3.8 ALG-8 

ALG-8 is a proposed method. Majority voting is conducted in such a way that if 

five of seven algorithms are labelling a pixel in their ghost maps, this pixel is 

selected as ghost region. Otherwise, this pixel is not labelled as ghost region. 

As it is explained before that ALG-1 and ALG-3 do not need a reference image, 

also ALG-3 creates one ghost map, not for all input images. However, in order to 

be convenient in this subsection, reference image is selected for these algorithms, 

and comparison is done such a way that, for ALG-1 all images are compared to the 

reference image with same assumptions, and ghost map of each input image is 

created. For ALG-3, median threshold map of reference image and other inputs are 

(a) 

(b) 

(c) 
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compared by using exclusive-or operation, and ghost map of each input image is 

created. 

Majority voting is used to detect the overall performance. Aim of this algorithm is 

combining all the ghost maps created by each algorithm. For this purpose, a color 

map is created. Different color codes are given to the algorithms, such a way that, 

if all the algorithms label same pixel as ghost, its color is pure white, in other words, 

red, green and blue channel values of this pixel are equal 255. If none of the 

algorithms label a pixel as ghost, its color is pure black. 

For each algorithm, different labels are set as following: 

Table 4-2 Algorithm Labelling 

 
Red Channel Green Channel Blue Channel 

ALG-1 40 0 0 

ALG-2 0 40 0 

ALG-3 0 0 40 

ALG-4 80 0 0 

ALG-5 0 80 0 

ALG-6 0 0 80 

ALG-7 135 135 135 

 

For example, if a pixel is selected as ghost pixel by both ALG-1 and ALG-2, its 

value is [40 40 0] and its color is yellowish. Addition is conducted, if more than 

one algorithm finds a pixel as ghost. Since ALG-8 is used in order to compare each 

algorithm, all the ghost color maps are shown, and related discussions are given. 

Ghost color maps of the input set 1 is seen in Figure 4-22. 
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Figure 4-22 Ghost Color Maps of Input Set 1, Outputs of (a) 1st Image, 2nd (b) 

Image, (c) 3rd Image, (d) 4th Image 

Low exposed areas are detected as ghost region for ALG-1, ALG-2, ALG-5 and 

ALG-7, especially in the first color map. For ALG-1, when pixels are multiplied 

with the ratio of exposure values, amplification of the noise occurs. Luminescence 

value captured by the capturing device is so low that linearity is lost in those areas, 

thus, sudden changes of the intensity levels are occurred. Therefore, ALG-1 is prone 

to noise when ratio of exposure value increases. For ALG-2, it is said that histogram 

matching method is not correctly achieved when the lowly exposed pixel and highly 

exposed pixel are dominated in the image. Limited histogram of first input image 

causes failure when mapping of the pixels. Therefore, intensity difference is so high 

that false detection occurs in these regions. As it is said, ZNCC calculation in ALG-

5 fails when smooth changing areas. False detections occur in floor of the scene is 

because of the reference image selection. In the reference image, these areas are 

highly exposed and change in the pixel intensities are very low. Therefore, ZNCC 

calculation gives illogical results. For ALG-7, histogram equalization is not able to 

linearize CDF function because of the high number of the high exposed pixels, this 

problem is explained previously. 

ALG-2 finds false detection in the fourth color map. Main problem is the change in 

the number of mostly exposed pixel drastically. This is explained by giving visual 

aid. In Figure 4-23, grayscale image of 4th input, reference grayscale image and 

histogram matched grayscale image of 4th input are seen. 

(a) (b) (c) (d) 
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Figure 4-23 Grayscale Image of (a) 4th Input, (b) Reference Grayscale Image, 

(c) Histogram Matched Grayscale Image of 4th Input 

Regions in green rectangles of Figure 4-23 (a) show the regions where low exposed 

pixels in 4th image become highly exposed pixel in reference image, because of the 

shadow change and object motion. When mapping these pixel to the reference 

image, these pixels are not going to the highly exposed pixels, as can be seen in 

Figure 4-23 (c). Therefore, well-exposed pixels in 4th image are mapped to the over-

exposed pixels when histogram matching. As can be seen in the red region, well-

exposed pixels become highly exposed, and then to find the ghost regions, these 

regions are resulted as ghost. This problem is not seen in 3rd image as expected, 

because the number of highly exposed pixels are mostly conserved between 3rd 

image and reference image. This can be seen in Figure 4-24. 

 

Figure 4-24 Grayscale Image of (a) 3rd Input, (b) Histogram Matched 

Grayscale Image of 3rd Input 

(a) (b) (c) 

(a) (b) 
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False detected regions of ALG-3 are because of the median value. The pixels near 

median are resulted in different bins in each image so that they are labelled as ghost 

pixels. However, these false detections are not so much compared to other 

algorithms, this number is greatly reduced by the dilation operation. ALG-4 has 

successful results, because this set contains mostly well-exposed pixels. Therefore, 

using DC level to reduce the effect of exposure value is succeed. Using 

morphological operations in ALG-6 reduce the false detections. As it has given, 

illogical outputs of ZNCC calculation increase the false detections. However, using 

dilation operation reduce the number of false detected regions. 

Another comparison is done with the input set 12, because the characteristic of this 

image set is different than input set 1; firstly, ghost regions are smaller, secondly, 

dynamic range of the scene is larger and finally object movement occurs mainly in 

front of the high-exposed background. Ghost color maps of input set 12 are seen in 

Figure 4-25 for each input image. Reference image of this input set is 8th image. 

 

Figure 4-25 Ghost Color Maps of Input Set 12, Outputs of (a) 1st Image, (b) 

2nd Image, (c) 3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th 

Image, (h) 9th Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Previous explanations hold for this input set, about finding false detection for ALG-

1, ALG-2, ALG-5 and ALG-7. These false detections are mainly increased with 

increasing exposure difference between the reference and input image. 

As it is explained before, segmentation results false detections for ALG-5. This is 

explained in the respective section of ALG-5. 

Red pixels in Figure 4-25 (f) represent false detections of ALG-4. These regions 

are overly exposed in reference image, while in 6th image they are well exposed. 

Calculation of adaptive threshold is failed to these regions, such a way that, second 

term, ((
𝑙𝑖,𝑗,𝑘−50

𝜎
)2), gives nothing but a low value. However, difference of these pixel 

with the reference image is large, because they are highly exposed in that region. 

Therefore, these regions are labelled as ghost. 

These comparisons have been done with different input set. Problems that is 

observed are stated. For other input set, these problems occur, however, for 

simplicity, selected input sets are used. For others, color maps of the all input sets 

can be seen in the Appendix B. 

As a conclusion, exposure value difference increases the number of false detections 

of ALG-1 because of noise amplification. Other algorithms do not show this 

problem because, firstly, morphological operations help to eliminate this kind of 

regions, secondly, histogram equalization with threshold and histogram matching 

methods reduces the noise effect. On the other hand, reference selection is main 

issue for histogram related calibration. Characteristics of the reference image is 

greatly affect the performance of these approaches. In addition, segmentation of the 

reference image is logical when all the salient features are distinguishable. Adaptive 

threshold selection is dependent on the values; values should be carefully selected 

with respect to the scene. 

4.4 Comparison with respect to Computational Time and Ground Truth 

In this subsection, percentages of non-ghost and ghost labelling are given by using 

input set 1. This approach is conducted by comparing ground truth and ghost maps 

of each algorithm. This ground truth and related input set can be seen in Figure 

4-26. Note that, ground truth is a binary image where black regions represent a 
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moving object on a static background. Most of the motion occurs in the 4th image. 

In addition, there are smaller size of moving object in the 3rd image. Moreover, there 

is not any moving object in the 1st and 5th image. In this section, these ground truths 

are used to compare the performance of the algorithms for this input set. 

In addition to that, computational times of each algorithm are given for input set 1. 

Computational time of the algorithm is only dependent on the size of input images, 

because none of the algorithms uses any iterative or adaptive approach. 

 

Figure 4-26 (a) Input Set 1, (b) Ground Truth Extracted 

Reference image is the 5th image for this set. Because, its average well-exposedness 

measure is 0.1920. Average well-exposedness measures of others are 0.1792, 

0.1526, 0.0687 and 0.1588, for 1st, 2nd, 3rd and 4th image, respectively. 

The number of ghost pixel and non-ghost pixel of this dataset is given in Table 4-3. 

 

 

(a) 

(b) 
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Table 4-3 Number of Ghost and Non-ghost Pixels in the Input Set 1 

 1st Image 2nd Image 3rd Image 4th Image 

Number of Ghost Pixels 0 4447 428 37277 

Number of Non-ghost Pixels 688128 683681 687700 650851 

 

Table 4-4 shows a binary classification of the implemented algorithms. For this 

reason, true-positive (TP), true-negative (TN), false-positive (FP) and false-

negative (FN) classifications are used. TP is a correct result where ghost pixels are 

correctly detected as ghost. TN is also a correct result where non-ghost pixel is 

correctly detected as non-ghost. However, FP is an error in which non-ghost pixel 

is labelled as ghost. FN is an error where ghost pixel is not labelled as ghost pixel. 

In Table 4-4, the number of pixels for each classification is seen. It should be noted 

that 5th image is selected as reference image by selecting the image which has the 

most average value of well-exposedness measure. In Table 4-4, each input image 

except reference image is classified as explained before. 

In terms of non-ghost labelling, ALG-7 is the worst, as explained in its respective 

section, CDF linearization degrades the non-ghost labelling if the reference image 

has a great number of highest exposed pixels. Using majority voting for ALG-8 is 

greatly decreased the non-ghost labelling, this is expected because there is not any 

common reasoning between the algorithms in terms of false detections, for 

example, ALG-2 is prone to the exponential function, on the other hand, ALG-5 

gives false detections because of the ZNCC calculation. 
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Table 4-4 Binary Classification of the Implemented Algorithms 

  1st Image 2nd Image 3rd Image 4th Image 

ALG-1 

TP 0 3982 311 28507 

TN 653176 643794 636043 627264 

FP 34952 39887 51657 23587 

FN 0 465 117 8770 

ALG-2 

TP 0 4108 376 35216 

TN 483920 522332 617993 513414 

FP 204208 161349 69707 137437 

FN 0 339 52 2061 

ALG-3 

TP 0 4346 344 32613 

TN 684076 674533 682709 599142 

FP 4052 9148 4991 51709 

FN  101 84 4664 

ALG-4 

TP 0 2831 153 32803 

TN 687526 680803 686236 630234 

FP 602 2878 1464 20617 

FN  1616 275 4474 

ALG-5 

TP 0 4277 328 36143 

TN 578310 573044 607443 558478 

FP 109818 110637 80257 92373 

FN  170 100 1134 

ALG-6 

TP 0 4084 0 35477 

TN 679050 674193 684033 623724 

FP 9078 9488 3667 27127 

FN  363 428 1800 

ALG-7 

TP 0 4263 205 35349 

TN 358636 488976 594524 537289 

FP 329492 194705 93176 113562 

FN  184 223 1928 

ALG-8 

TP 0 3785 114 31887 

TN 687803 681306 686872 638814 

FP 325 2375 828 12037 

FN  662 314 5390 

 

In terms of ghost labelling, ALG-6 loses information because of the morphological 

operations, in Image 3. However, for the large sizes of the movement it is 

satisfactory. ALG-5 properly detects object motions in 4th Image, superpixel 

grouping helps to achieve for this input set. On the other hand, ALG-1 is failed to 

extract ghost regions, because, the intensity level of the background of the object in 

motion is related to the intensity level of the object. 
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Computational time of each algorithm is given in Table 4-5. It should be noted that 

computational time ALG-8 is equal to the summation of computational times of 

others. Therefore, for comparison, ALG-8 is not taken into account. 

Table 4-5 Comparison of the Computation times 

Algorithm Time (sec) 

ALG-1 0.231 

ALG-2 0.364 

ALG-3 2.571 

ALG-4 1.972 

ALG-5 150.643 

ALG-6 31.035 

ALG-7 3.267 

ALG-8 189.488 

 

ALG-1 has the minimum computation time. There is not any morphological 

operation which increases the complexity of the implemented software code. Only 

pixelwise differences are computed. 

In addition, there is gap between computation times of ALG-2 and ALG-3. This 

situation is result of the morphological operations done in ghost map of each input. 

While, exponential function is used for ALG-2, ALG-3 is implemented with 

dilation and erosion operations. Therefore, it is concluded that complexity of 

algorithm is greatly increased with morphological operations. 

ALG-5 and ALG-6 has the maximum two of the computation time. This is mainly 

because of partitioning image to group of pixel and computing zero mean 

normalized cross correlation for each partition. This greatly increases the 

computation time. ALG-5 has the most computation time. Unlike ALG-6, using 

SLIC method to partition the image makes huge load of computation. 

As a conclusion, grouping methods are greatly increased the complexity of the 

algorithms, while, global image calibrations, such as histogram matching, 

histogram equalization have reasonable computation times. 
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4.5 Visual Results 

The goal of this subsection is to give some visual results that have been obtained 

from the algorithms. As it has been mentioned before, there are twelve image sets, 

and each image set consists of differently exposed images. There are eight ghost 

removal algorithms. Therefore, total number of outputs is nearly one hundred. It is 

not possible to show all the images, so some of the images are given in this 

subsection. The outputs of the best and the worst performed ghost removal 

algorithms with respect to the area of unwanted seams, conserving the dynamic 

range, success of ghost removal are given for each image set. In the following 

figures, the image on the left belongs to the algorithm performs best, the middle one 

belongs to the worst algorithm, and right one belongs to the exposure fusion output 

without any ghost removal algorithms. The figures are given as follows: 

 

Figure 4-27 Enhanced Images of Image Set 1, (a) ALG-6, (b) ALG-1, (c) EF 

 

Figure 4-28 Enhanced Images of Image Set 2, (a) ALG-4, (b) ALG-5, (c) EF 

(a) (b) (c) 

(a) (b) (c) 
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Figure 4-29 Enhanced Images of Image Set 3, (a) ALG-5, (b) ALG-1, (c) EF 

 

Figure 4-30 Enhanced Images of Image Set 4, (a) ALG-2, (b) ALG-7, (c) EF 

 

Figure 4-31 Enhanced Images of Image Set 5, (a) ALG-2, (b) ALG-5, (c) EF 

 

Figure 4-32 Enhanced Images of Image Set 6, (a) ALG-1, (b) ALG-4, (c) EF 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 4-33 Enhanced Images of Image Set 7, (a) ALG-4, (b) ALG-7, (c) EF 

 

Figure 4-34 Enhanced Images of Image Set 8, (a) ALG-2, (b) ALG-6, (c) EF 

 

Figure 4-35 Enhanced Images of Image Set 9, (a) ALG-5, (b) ALG-1, (c) EF 

 

Figure 4-36 Enhanced Images of Image Set 10, (a) ALG-4, (b) ALG-5, (c) EF 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 4-37 Enhanced Images of Image Set 11, (a) ALG-7, (b) ALG-5, (c) EF 

 

Figure 4-38 Enhanced Images of Image Set 12, (a) ALG-4, (b) ALG-6, (c) EF 

Using exposure fusion to make enhanced image creates seams. These regions 

mainly occur at the edges where information of one region is selected from the 

lowly-exposed image and the other is selected from highly exposed image. This is 

expected because multi-dimensional blending technique uses the low pass filter and 

downsampled images in each level thus when increasing levels, edge is not 

conserved. On the other hand, decreasing the level of the blending results in 

unrealistic images with noise, it has been explained previously. The evaluation of 

the performance of the exposure fusion algorithm is out of the scope of this thesis. 

Until now, ghost removal algorithms are analyzed with the input sets where there 

is movement in the scene at the time of capture. Ideally, if there is not any 

movement in the scene at the time of capture, ghost removal algorithms should not 

find any ghost regions. However, this is not seen in the algorithms. For this purpose, 

image set 13 is used to evaluate the performance of the algorithms with static scene. 

This image set does not contain any movement; it contains a color checker with 

twenty-four different colors. Since, there are large number of ghost maps for each 

algorithm, a binary classification table is used to show the performance of the 

algorithms. This classification is done such a way that, false-positive (FP) is an 

error in which algorithm improperly indicates presence of a ghost pixel when in 

(a) (b) (c) 

(a) (b) (c) 
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reality there is not, true-negative (TN) is a correct result in which algorithm properly 

indicates presence of a non-ghost pixel. Since, there is not any movement in this 

set, true-positive (TP) and false-negative (FN) classifications are not used. For 

image set 13, classification table is shown in Table 4-6. It should be noted that 

reference image for this set is selected as 8th image. 

Table 4-6 False and True Detection Performance of the Image Set 13 

    
1st 

Image 

2nd 

Image 

3rd 

Image 

4th 

Image 

5th 

Image 

6th 

Image 

7th 

Image 

9th 

Image 

10th 

Image 

ALG-1 
TN 324035 459694 615460 719683 720893 720896 720886 720784 720896 

FP 396861 261202 105436 1213 3 0 10 112 0 

ALG-2 
TN 157646 456104 563607 553762 552134 586093 573761 448866 312689 

FP 563250 264792 157289 167134 168762 134803 147135 272030 408207 

ALG-3 
TN 665473 715154 683389 719006 719951 719951 719006 679594 679897 

FP 55423 5742 37507 1890 945 945 1890 41302 40999 

ALG-4 
TN 720896 720896 720896 720896 720896 720896 720896 720535 720896 

FP 0 0 0 0 0 0 0 361 0 

ALG-5 
TN 280412 347801 392243 435308 463097 481639 476711 547680 591907 

FP 440484 373095 328653 285588 257799 239257 244185 173216 128989 

ALG-6 
TN 294788 202468 101102 134253 219305 259692 247778 545999 638692 

FP 426108 518428 619794 586643 501591 461204 473118 174897 82204 

ALG-7 
TN 155909 182557 674614 680792 699459 699662 699833 689188 441521 

FP 564987 538339 46282 40104 21437 21234 21063 31708 279375 

ALG-8 
TN 383025 488424 686983 720896 720896 720896 720896 720896 706576 

FP 337871 232472 33913 0 0 0 0 0 14320 

 

As it is concluded from the table, ALG-4 has the lowest number of false positive 

pixels. Adding DC value to calibrate the images and using adaptive threshold helps 

to reduce the number of false detected pixels. Increasing in the difference in 

exposure value between input image and the reference image results in increasing 

false detected pixels. Number of improperly exposed pixels degrades the 

performance of ghost removal algorithms, such a way that, calibration toward 

reference image is not satisfied at these regions. On the other hand, these regions 

are not contributed to the final enhanced image because, the weights calculated in 

exposure fusion are negligible compared to the properly exposed pixel. Therefore, 

degradation in the final enhanced image is not noticeable. Since, image set 13 

contains color checker board, each color cell shows the characteristics of smooth 

regions. Therefore, ZNCC comparison results a great number of false positives for 
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ALG-5 and ALG-6. These algorithms are failed to label the non-ghost regions at 

these kind of regions, as explained before. Final enhanced image of these 

algorithms has the most degradation in the dynamic range compared to others. 

Using majority voting reduces number of the false positives for the images where 

under- and over-exposed pixels are limited. Therefore, this algorithm is better 

choice to get the actual ghost region and to reduce the number of false detected 

pixels. Ghost color map of input set 13 can be seen in the Appendix B, Figure B-

13. 

As a conclusion, there is not any best algorithm for each input set. It has been 

explained before, reference image selection effects the performance of the output 

enhanced image. Best in one dataset could be worst in other because of the number 

false detected regions.  These regions are mainly created from the algorithms that 

use calibration of the images, such as histogram matching and equalization, zero 

mean cross correlation. However, these algorithms are successful to extract the 

ghost regions, by minimizing the effects of the exposure difference. False detections 

are not main problem for other algorithms, however, extracting the actual ghost 

area, these algorithms are dependent on the scene characteristics. Therefore, for the 

enhanced outputs, global calibration methods have satisfactory results with 

selection of the proper reference image. 

As a summary, implemented algorithms are summarized in Table 4-7, in terms of 

the differences in features. Performances of the algorithms with different 

characteristics of scene is given in Table 4-8. 

Table 4-7 Features of the Algorithms 

 Features 

Color Domain 
Morphological 

Operation 
Threshold 

Representation of 

Ghost Regions 

RGB CIELAB Yes No Yes No 
Pixel 

Based 

Patched 

Based 

A
L

G
O

R
IT

H
M

S
 ALG-1 X   X  X X  

ALG-2 X   X  X X  

ALG-3 X  X   X X  

ALG-4  X X  X  X  

ALG-5 X   X X   X 

ALG-6 X  X  X   X 

ALG-7 X  X  X  X  
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Table 4-8 Performance of the Algorithms in Terms of Scene Characteristics 

 Performance of Algorithms 

Big Size of 

Motion 

Small Size 

of Motion 

Smooth 

Regions 

Texture 

Regions 

Effects of 

Parameter 

Selection  

A
L

G
O

R
IT

H
M

S
 

ALG-1 Bad Good Satisfactory Bad Good 

ALG-2 Satisfactory Good Bad Satisfactory Good 

ALG-3 Satisfactory Bad Good Satisfactory Good 

ALG-4 Satisfactory Bad Satisfactory Satisfactory Bad 

ALG-5 Good Satisfactory Bad Good Satisfactory 

ALG-6 Good Bad Satisfactory Good Satisfactory 

ALG-7 Good Good Satisfactory Satisfactory Good 

ALG-8 Good Satisfactory Good Good Good 
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CHAPTER 5  

 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Summary and Conclusions 

In this thesis, ghost removal methods are studied by using input sets. The main 

methods used in image enhancement methods are introduced briefly, and detailed 

information about ghost removal is presented. Different approaches of ghost 

removal algorithms are implemented, and the performance of the algorithms is 

compared with different input sets. 

The results are compared with twelve image sets. It is observed that for each input 

set algorithms provides different results because of the characteristics of the scene. 

Firstly, background of the object in motion effects the performance of ghost 

removal. Sidibe et al. [7] fails to extract all the ghost regions because of the 

similarity of the intensity level between ghost regions and background. It is 

concluded that morphological operation minimizes the number of deficient ghost 

detections and false detections. Kautz et al. [11] provides better result with 

morphological operations than Sidibe et al. [7]. Secondly, number of the under-

exposed and over-exposed pixels in the reference image effects the performance of 

ghost detection. It is seen that, false detection occurs if the reference image contains 

highly exposed pixel, such as Lee et al. [27], and Jiyang et al. [29]. When the 

comparison is done to find the ghost pixels, both of the algorithms give the false 

detection because of the methods used to normalize the image. Thirdly, finding non-

ghostness probability for each pixel is giving false detection. Moon et al. [26] have 

false detected pixels, with increasing exposure difference between reference image 

and input image. 
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Based on the outputs of image sets, it is seen that global calibration of the input 

images, such as histogram matching [26], histogram equalization [27] provides 

better results in terms of finding the actual ghost regions, because, the methods are 

minimize the effect of exposure value difference. In addition to that, using 

segmentation [29] improves the ghost detection, such a way that, object in motion 

is segmented, and related comparison can be done. However, reference image 

selection is done properly, because it effects the performance of the comparison. 

Although, using different color domain than RGB [28] does not make impact about 

finding the ghost regions, adaptive thresholding is suitable with proper selection of 

the values, because each pixel in each image behaves differently when exposure 

value is increased. 

Based on computational times, it is seen that segmentation of the image increases 

the computational time, in some input set, improvements using segmentation is not 

so much. In addition, global calibration of the images is faster than segmentation, 

as well as, they have satisfying results in terms of ghost labelling. 

As a conclusion, it is difficult to select the best algorithm for all the image sets. 

However, with proper selection of the reference image, algorithms that provides 

global calibration to minimize the effect of the exposure value have better results 

than others, because after the calibration all the input images, ghost pixel extraction 

can be easily done.  

5.2 Future Work 

Due to the time and computational cost of the subjective test, the performance of 

all the algorithms cannot be evaluated. To give whole comparison of the ghost 

removal algorithms, advanced and comprehensive subjective test can be performed. 

The results of this test will give the detailed information about the performance of 

the ghost removal algorithms. 

The most appropriate reference image for an algorithm can be determined by 

analyzing the characteristics of input scene. Therefore, performance of an algorithm 

is evaluated with respect to the reference image selection. 
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A detailed study in ghost removal in HDRI algorithms can be performed. The 

subjective tests can be repeated for these algorithms. Additionally, the comparison 

of ghost removal in HDRI algorithms and ghost removal in exposure fusion 

algorithms can be performed to show the advantages and disadvantages of each 

method. 
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APPENDIX A 

 

IMAGE SETS 

 

 

 

Figure A-1 Image Set 1 [1024x680] [1/500 1/250 1/125 1/60 1/30] 
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Figure A-2 Image Set 2 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15] 

 

Figure A-3 Image Set 3 [872x1304] [1/2049 1/1025 1/512 1/256 1/128 1/64 1/32 

1/16 1/8] 
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Figure A-4 Image Set 4 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 

1/64 1/32 1/16]

 

Figure A-5 Image Set 5 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 

1/64 1/32 1/16] 
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Figure A-6 Image Set 6 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15] 

 

Figure A-7 Image Set 7 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15] 
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Figure A-8 Image Set 8 [872x1304] [1/1580 1/790 1/395 1/197 1/99 1/49 1/25 

1/12 1/6] 

 

Figure A-9 Image Set 9 [304x448] [1/50 1/30 1/20 1/13 1/8 1/5 1/3] 
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Figure A-10 Image Set 10 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15] 

 

Figure A-11 Image Set 11 [824x1240] [1/4000 1/2000 1/1000 1/500 1/250 1/125 

1/60 1/30 1/15] 
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Figure A-12 Image Set 12 [872x1304] [1/4098 1/2049 1/1025 1/512 1/256 1/128 

1/64 1/32 1/16] 

 

Figure A-13 Image Set 13 [698x1024] [1/250 1/125 1/60 1/30 1/15 1/8 1/5 1/2.5 

1/1.25 1/0.625] 
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APPENDIX B 

 

GHOST COLOR MAP OF EACH INPUT SET 

 

 

 

Figure B-1 Ghost Color Maps of ALG-8 for Image Set 1 when Reference 

Image is 5th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image and (d) 4th Image 

 

(a) (b) (c) (d) 
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Figure B-2 Ghost Color Maps of ALG-8 for Image Set 2 when Reference 

Image is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th 

Image

 

Figure B-3 Ghost Color Maps of ALG-8 for Image Set 3 when Reference 

Image is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th 

Image 

(a) (b) (c) 

(d) 
(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure B-4 Ghost Color Maps of ALG-8 for Image Set 4 when Reference 

Image is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th 

Image 

 

Figure B-5 Ghost Color Maps of ALG-8 for Image Set 5 when Reference 

Image is 7th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 8th Image, (h) 9th 

Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure B-6 Ghost Color Maps of ALG-8 for Image Set 6 when Reference 

Image is 7th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 8th Image, (h) 9th 

Image 

 

Figure B-7 Ghost Color Maps of ALG-8 for Image Set 7 when Reference 

Image is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th 

Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure B-8 Ghost Color Maps of ALG-8 for Image Set 8 when Reference 

Image is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th 

Image 

 

 

Figure B-9 Ghost Color Maps of ALG-8 for Image Set 9 when Reference 

Image is 4th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 5th Image, (e) 6th Image, (f) 7th Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(d) (e) (f) 
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Figure B-10 Ghost Color Maps of ALG-8 for Image Set 10 when Reference 

Image is 9th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 8th 

Image 

 

Figure B-11 Ghost Color Maps of ALG-8 for Image Set 11 when Reference 

Image is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th 

Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure B-12 Ghost Color Maps of ALG-8 for Image Set 12 when Reference 

Image is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th 

Image 

 

Figure B-13 Ghost Color Maps of ALG-8 for Image Set 13 when Reference 

Image is 8th Image, Ghost Color Maps of (a) 1st Image, (b) 2nd Image, (c) 

3rd Image, (d) 4th Image, (e) 5th Image, (f) 6th Image, (g) 7th Image, (h) 9th 

Image, (i) 10th Image 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(a) (b) (c) 

(e) (d) (f) 

(g) (h) (i) 


