

BICRITERIA BIN PACKING PROBLEM

WITH

DEVIATION BASED OBJECTIVES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYLA ÖYLEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

DECEMBER 2015

Approval of the thesis:

BICRITERIA BIN PACKING PROBLEM

WITH

DEVIATION BASED OBJECTIVES

submitted by AYLA ÖYLEK in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. M. Gülbin Dural Ünver _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan _____________________

Head of Department, Industrial Engineering

Assoc. Prof. Dr. Esra Karasakal _____________________

Supervisor, Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu _____________________

Co-Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ömer Kırca _____________________

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Esra Karasakal _____________________

Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu _____________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Sakine Batun _____________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Özlem Karsu _____________________

Industrial Engineering Dept., Bilkent University

Date: 04.12.2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : AYLA ÖYLEK

Signature :

v

ABSTRACT

BICRITERIA BIN PACKING PROBLEM

WITH

DEVIATION BASED OBJECTIVES

Öylek, Ayla

M. S., Department of Industrial Engineering

 Supervisor : Assoc. Prof. Dr. Esra Karasakal

 Co-Supervisor : Prof. Dr. Meral Azizoğlu

December 2015, 78 pages

In this thesis, two bicriteria bin packing problems are addressed. Bin packing

problem is an NP-hard combinatorial optimization problem. Items with different

weights are packed into bins with limited capacity in order to minimize the

required number of bins. Objectives of the first problem are minimizing the

number of bins and minimizing the total overdeviation. In the second problem,

minimization of the number of bins and minimization of the maximum

overdeviation are two conflicting objectives. For the solutions of the problems

mixed integer linear programming models are formulated and used to find all

nondominated objective vectors. The upper bounds and lower bounds are

developed on the objective function values and bounds are incorporated into the

mathematical models to increase the solution efficiency of the models.

Computational results show that the problem with up to 100 items could be solved

for high capacity bins. The problems with up to 75 items can be solved when the

capacity is low.

Keywords: Bin Packing, Total Overdeviation, Maximum Overdeviation,

Multiobjective Optimization, Nondominated Objective Vectors

vi

ÖZ

İKİ KRİTERLİ

KUTU PAKETLEME PROBLEMLERİ

Öylek, Ayla

Yüksek Lisans, Endüstri Mühendisliği Bölümü

 Tez Yöneticisi : Doç. Dr. Esra Karasakal

 Ortak Tez Yöneticisi : Prof. Dr. Meral Azizoğlu

Aralık 2015, 78 sayfa

Bu çalışmada, iki kriterli iki kutu paketleme problemini ele aldık. Kutu paketleme

problemi çözümü polinom zamanlı olmayan (NP) kombinatoriyal bir problemdir.

Farklı ağırlıktaki nesnelerin en az kutu kaplayacak şekilde sınırlı kapasiteli kutulara

yerleştirilmesidir. İlk problemin birbiriyle çelişen amaç fonksiyonları kutu sayısının

ve kutu kapasitesinden toplam sapmanın en azlanmasıdır. Kutu sayısının ve

maksimum sapmanın en azlanması ikinci problemin birbiriyle çelişen amaç

fonksiyonlarıdır.

Problemi tam sayılı karmaşık model olarak formüle ettik ve etkin çözümler elde eden

kesin yöntemler kullandık. Çözümlerin kalitesini arttırmak için alt ve üst sınırlar

önerdik.

Deneysel sonuçlarımız 100 nesneye kadar olan problemlerin yüksek kapasiteli

kutular için çözülebildiğini, düşük kapasiteli kutular için 75 nesneye kadar olan

problemlerin çözülebileceğini gösterdi.

Anahtar Kelimeler: Kutu Paketleme, Toplam Sapma, Maksimum Sapma, Çok

Amaçlı Optimizasyon, Etkin Çözümler

vii

ACKNOWLEDGMENTS

First of all, I would like to express my deepest appreciation to my supervisor Assoc.

Prof. Dr. Esra Karasakal and my co-supervisor Prof. Dr. Meral Azizoğlu for their

guidance, their valuable insight and their important contributions. It has been a great

privilege to have been mentored by them.

Then, I should reveal that, being with me in all this exhaustive period and providing

endless support, my family deserves the best wishes. I offer sincere thanks to my

parents, Ayşe and Yakup Öylek, and my sister Kadriye Öylek for their love and

patience.

I would like to express my deep sense of gratitude to Cem Tüfekci for his great

encouragment and support throughout this study. I also would like to thank Cem

Kundakçı and Yusuf Kaplan for supporting me. Without their patience, completing

this work would not be possible.

I also would like to express my special thanks to the special person in my life; Erdem

Çolak for his great technical support and being with me; giving his love and making

me feel better in every instance during this study. I am extremely fortunate for

having his love and support at the most hopeless moments. Without him, completing

this work would not be possible.

Lastly, I would like to thank all the members of the examining committee and all the

people I had the chance to know in the Department of Industrial Engineering.

viii

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vi

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES .. xii

CHAPTERS ... 1

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 5

2.1. Single Criterion Bin Packing Problems (BPPs) .. 6

2.1.1. Classical Bin Packing Problems ... 6

2.1.2. Maximum Cardinality Bin Packing Problem ... 12

2.1.3. Bin Covering Problems .. 14

2.1.4. Modified Bin Packing Problems .. 16

2.2. Multi-Criteria Bin Packing Problems .. 18

3. BICRITERIA BIN PACKING PROBLEM .. 21

3.1. Problem Definition .. 21

3.2. Some Definitions ... 23

3.3. Mathematical Model ... 24

3.4. Properties of Efficient Solutions ... 26

4. SOLUTION APPROACHES .. 29

4.1. A Two Stage Solution Procedure .. 29

4.2. Lower Bounding Procedures ... 35

4.3. Upper Bounding Procedures ... 37

5. COMPUTATIONAL EXPERIMENTS .. 43

5.1. Problem Sets .. 43

5.2. Analysis of the Results .. 44

5.2.1. Problem I: Minimization of Number of Bins and Total Overdeviation ... 44

ix

5.2.2. Problem II: Minimization of the Number of Bins and Maximum

Overdeviation ... 61

6. CONCLUSIONS ... 73

REFERENCES ... 75

x

LIST OF TABLES

TABLES

Table 5. 1. The CPU times for the number of bins problem when time limit is 3600

seconds ... 45

Table 5. 2. The CPU times for the total overdeviation problem 46

Table 5. 3. The CPU times for the improvement heuristic for the total overdeviation

problem ... 47

Table 5. 4. The number of unsolved instances for the number of bins problem when

time limit is 3600 seconds .. 48

Table 5. 5. The number of efficient solutions for total overdeviation problem 49

Table 5. 6. Results on the efficient solutions for the total overdeviation problem 51

Table 5. 7. The performance of the model solutions for unsolved instances - The

Number of Bins Problem .. 52

Table 5.8. The performance of the model solutions for unsolved problems - Total

Overdeviation Problem .. 53

Table 5. 9. The lower and upper bound values for the number of bins problem 54

Table 5. 10. The upper bound values on the number of bins and the optimal number

of bins ... 55

Table 5. 11. The lower bound values on the number of bins and the optimal number

of bins ... 56

Table 5.12. The performance of the improvement heuristic on the total overdeviation

problem ... 57

Table 5.13. The lower and upper bound values for total overdeviation problem 58

xi

Table 5.14. The upper bound values on the total overdeviation and the optimal total

overdeviation .. 59

Table 5.15. The lower bound values on the total overdeviation and the optimal total

overdeviation .. 60

Table 5.16. The CPU times for the number of bins problem when time limit is 9000

seconds ... 62

Table 5.17. The CPU times for the maximum overdeviation problem 63

Table 5.18. The number of unsolved instances for the number of bins problem when

time limit is 9000 seconds .. 63

Table 5.19. The number of efficient solutions for maximum overdeviation problem64

Table 5.20. Results on the efficient solutions for the maximum overdeviation

problem .. 66

Table 5.21. The performance of the model solutions for unsolved problems –

Maximum Overdeviation Problem ... 67

Table 5. 22. The lower and upper bound values for the maximum overdeviation

problem .. 68

Table 5.23. The upper bound values on the maximum overdeviation and the optimal

maximum overdeviation... 70

Table 5.24. The lower bound values on the maximum overdeviation and the optimal

maximum overdeviation... 71

xii

LIST OF FIGURES

FIGURES

Figure 4.1. Elimination procedure of improvement heuristic 40

Figure 4.2. Solution of reduced configuration ... 40

Figure 4.3. Final solution by adding two configurations ... 41

1

CHAPTERS

CHAPTER 1

INTRODUCTION

The bin packing problem is one of the well-recognized problems of the Operational

Research (OR) literature. The problem decides on the assignment of the items to the

bins so as to minimize the prespecified objective function. The items have defined

capacity usages and the bins have defined capacity availabilities.

The objective functions used in the Bin Packing Problems (BPP) define the type of

the problem. The classical bin packing problems minimize the number of bins used

to pack all items without exceeding any bin capacity. The maximum cardinality BPP

takes fixed number of bins and maximizes the number of items packed without

exceeding any bin capacity. The bin covering problem maximizes the number of bins

used by exceeding the capacity of each bin.

The BPPs in general and the classical BPP in particular have been taken the attention

of many researchers for many years. This is due to their theoretical challenge and

practical importance. They are theoretically challenging as they are shown to be

hard-to-solve problems. They are practically important as they are directly and

indirectly applied to many practical situations.

Logistics sector is an area where the BPPs find their direct application. Assigning

items into trucks, cargo airplanes, ships while minimizing the number of trucks,

cargo airplanes and ships are examples for the classical BPPs.

The BPPs find their indirect applications in manufacturing environments. The well-

known cutting stock problem is a BPP where the items are assigned to the sheets so

as to minimize the waste, i.e., the number of sheets used. Parallel machine

scheduling problem is a BPP where the jobs (items) of specified processing times

2

(capacity requirements) are to be assigned to the machines (bins) of specified

capacities. The classical Assembly Line Balancing Problem is another notable

application area. The tasks (items) of specified task times (capacity requirements) are

to be assigned to the workstations (bins) without exceeding the cycle time (bin

capacity).The BPPs studied in the literature either minimize/maximize the number of

bins used for a given number of items or maximize the number of items for a given

number of bins. The capacities are set tight in those studies; they either play a role of

upper bounds or lower bounds.

In this study, it is assumed that the bin capacities can be violated with some penalty,

i.e., the capacities are soft –but not hard- constraints. The associated objective

functions minimize a function of the deviations around the preset capacities, like

minimizing total overdeviation or minimizing maximum overdeviation.

Dealing with bin capacity violations, i.e., deviations might be an important concern

for the cases where the bins are shared by some other parties. The deviations will

then be represented the amount that the user wants to increase his/her capacity share.

The share of the user can be increased provided that proper negotiations are done.

The proper negotiations might be done provided that the deviations around the preset

capacities are found properly.

The total/maximum overdeviation problem finds its application in the assembly line.

The cycle time defines the production rate of an assembly line. An increase in cycle

time, capacity in BPP terminology, would lead to a reduction in the number of

workstations, bins in BPP. A decision maker might accept an increase in the cycle

time; thereby decrease in the production rate, provided that such an increase leads to

a reduction in the number of workstations, thereby resource usages. The natural

problem becomes to catch the trade-off between the deviation from the capacity and

the number of workstations (Naderi et al. [27]).

In this study, a bicriteria problem that considers minimizing total number of bins

used and minimizing total/maximum overdeviation around the bin capacities is

studied. Our aim is to generate all nondominated objective vectors. To the best of our

knowledge, our study is the first attempt for deviation based objectives, in BPPs.

3

The rest of the thesis is organized as follows: Chapter 2 presents a literature review

on the bin packing problems then gives brief information about the types of bin

packing problems and classifies the literature review according to these types. In

Chapter 3, our problems are defined, their mathematical models are given and some

properties of the solutions are presented. The notation used and some definitions are

given in this chapter. Chapter 4 discusses our solution approaches to generate all

nondominated objective vectors along with the lower bounds and upper bounds.

Chapter 5 reports on our computational experiments and discusses its results.

Chapter 6 gives a brief conclusion of our study.

4

5

CHAPTER 2

LITERATURE REVIEW

This section reviews the literature on the bin packing problems. The single criterion

bin packing problems are reported first and then the multi-criteria bin packing

problems are reviewed.

Online and offline are two different categories of bin packing according to the

information about the input. Items arrive dynamically in online bin packing problems

where all items are known at the beginning in offline type bin packing problems. Our

study focuses on offline type bin packing problems.

The dimension of the items and bins is another important criterion for classification

of the bin packing problem. Single or multiple dimensions can be used to pack items

to bins. In one-dimensional bin packing problems, the weight of an item is selected

mostly as the single property. In multi-dimensional bin packing problems, other

properties like weight, height, length, width can be used for packing. Our problem is

one-dimensional bin packing problem and the weight of items is used in our

problem.

The bin packing problems are also categorized according to bin capacity. There are

single sized and variable sized problems. In single sized problems, bins have equal

capacities wherein variable sized version bins have different capacities. In our

problem, all bins have equal capacities.

6

2.1. Single Criterion Bin Packing Problems (BPPs)

The basic single criterion BPPs are of four types: Classical BPP, Maximum

Cardinality BPP, Bin Covering Problem and Modified BPP. The problems assume

that there are n items of weight wi for item i and m bins of identical capacity C.

The mathematical model is first given and then the related literature of each basic

problem is reviewed.

2.1.1. Classical Bin Packing Problems

The classical bin packing problem minimizes the number of bins used to pack all

items without exceeding the bin capacities.

The decision variables associate with the assignment of the items to the bins is stated

as follows:





ji
ijx

bin toassigned is item if 1
otherwise 0





selected is bin if 1
otherwise 0

j
jy

Constraint set (1) states that each item is assigned to one bin


j

 xij = 1,  i (1)

Constraint set (2) ensures that the capacity of each bin used is not exceeded


i

wixij  cyj,  j (2)

7

The objective function is as expressed below

Minimize 
j

 yj (3)

The classical BPP is shown to be strongly NP-hard by Garey and Johnson [12].

There are numerous studies on the classical BPPs. The studies are reviewed

according to the solution procedures used. Firstly, the literature review about

approximation algorithms is given and then literature review about exact algorithms

of classical bin packing problem is given.

2.1.1.1. Approximation Algorithms

Firstly, well-known bin packing heuristics such as next fit, first fit and best fit

algorithm are given then recent studies are introduced.

Johnson [17] developed a number of simple one-dimensional bin packing algorithms

namely next fit, first fit, best fit and worst fit heuristics.

Next fit is the simplest approximation approach. It tries to pack arbitrarily ordered

items to bins. The approach packs the item into the current bin, if the item does not

fit then it creates a new bin and insert the item into the new bin.

First fit is a better algorithm than next fit. The algorithm tries to pack an item into the

first available bin; if the item does not fit into any bin then it creates a new bin and

inserts the item into the new bin.

Best fit is another well-known approximation algorithm obtained from first fit

algorithm. Best fit algorithm calculates remaining capacity of all bins. It tries to pack

an item into a feasible bin having smallest remaining capacity. If the item does not fit

any bin then it creates a new bin and inserts the item into the new bin.

Worst fit is similar to best fit algorithm. Worst fit algorithm calculates remaining

capacity of all bins then it tries to pack an item into a feasible bin having largest

8

remaining capacity. If the item does not fit any bin then it creates a new bin and

inserts the item into the new bin.

Johnson et al. [18] examined the performance of simple algorithms and they

developed next fit decreasing (NFD), first fit decreasing (FFD), best fit decreasing

(BFD) and worst fit decreasing (WFD) algorithms. These four algorithms are similar

to the algorithms of Johnson [17]. NFD, FFD, BFD and WFD algorithms start with

sorting the items in nonincreasing order of their weights. Other steps of the

algorithms are similar to the steps of Johnson[17] ‘s algorithms.

Mladenovic and Hansen [26] developed an effective meta-heuristic by variable

neighborhood search method (VNS). The heuristic is based upon the strategy of

using more than one neighborhood structure and of changing those structures

systematically during the local search. VNS explores distant neighborhoods from the

current solution and to jump to a new one if and only if an improvement was made.

A local search routine is also applied to get from new solutions to local optima.

Gupta and Ho [15] presented a new algorithm to bin packing problem; minimum bin

slack heuristic (MBS). At each step, the algorithm tries to find a set of items to pack

that fits the bin capacity as much as possible. All possible subsets of items are tested

to pack in order to use bin capacity better. Result part of the study shows that MBS is

better than FFD and BFD in terms of solution quality.

Fleszar and Hindi [10] enhanced the approach of Gupta and Ho and proposed four

new algorithms based on MBS. The first algorithm, MBS’, is modified version of the

original algorithm. Before the search procedure is started, an item is chosen and fixed

in the bin. Other three heuristics are based on MBS’. In relaxed MBS’, the authors

accept some packing with positive slack. The third one is Perturbation MBS, starting

from an initial solution, the heuristic finds a new solution by perturbing the current

one. Sampling MBS’ algorithm is the last one; the algorithm applies MBS’ several

times by changing the order of unassigned items. Results show that MBS based

heuristics give good results in reasonably short solution times.

9

Ross et al. [32] suggested an approach based on messy genetic algorithm in order to

solve one-dimensional bin packing problem. Hyper-heuristics uses some

combination of well-known heuristics to find a better solution to problems. The

approach applied four basic bin packing heuristics and four improvement heuristics

trying to pack an item in any open bins rather than in a new bin. GA-based algorithm

applied to a large set of benchmark problems. Experiments showed that the algorithm

found the optimal solution for nearly 80% of them and for others found a solution

very close to optimal.

Alvim et al. [1] described a hybrid improvement procedure for the bin packing

problem. The approach is based on feasible solutions to dual bin packing problem

using fixed number of bins. Progressive increase in the number of bins is used by a

possibly feasible solution. Reduction techniques lower and upper bounds, an

algorithm using lower bounding strategies, load redistribution and an improvement

process utilizing tabu search are used in the procedure. Experiments with benchmark

problem sets showed that the procedure improved the best-known solutions for many

of the benchmark instances and found the largest number of optimal solutions with

respect to the other available approximate algorithms. The hybrid algorithm

outperforms any known heuristics.

Singh and Gupta [34] proposed an approach combining two heuristics for the one-

dimensional bin packing problem. The authors applied a hybrid steady-state grouping

genetic algorithm to bin packing problem and developed an improved version of

Perturbation MBS heuristic [10]. The approach combines hybrid steady-state

grouping genetic algorithm and improved Perturbation MBS heuristic. The hybrid

algorithm combines steady state grouping genetic algorithm and improved better fit

heuristic. Improved better fit heuristic allocates unassigned items to the bins after the

application of the genetic algorithm.

Stawowy [35] presented a simple, non-specialized and non-hybridized evolutionary

based heuristic to the bin packing problem. The algorithm does not have a pure

evolutionary strategy. Modified encoding scheme for the permutation with

separators, the concept of separators’ movements during mutation, and separators’

removal for problem size reduction are used to solve the one-dimensional bin

10

packing problem. Computational experiments with benchmark problem sets showed

that the procedure is comparable to much more complicated algorithms.

Loh et al. [23] presented a new way of one-dimensional bin packing problem with

weight annealing procedure. Proposed algorithm is easy to understand and

straightforward. The algorithm finds an initial solution by use of first fit decreasing

heuristic and calculates bin load and residual capacity for each bin. In improvement

phase, exchanging operations are derived between all possible pairs of bins.

Experiments of benchmark instances showed that procedure found high-quality

solutions within very low computing times and found new optimal solutions.

Kim and Wy [20] introduced a new packing algorithm which considers the use of the

last two fit (L2F) augmentation to next fit decreasing, first fit decreasing, and best fit

decreasing algorithms. L2F augmentation improves the solution of original

algorithms checking to pack an additional item into the bins or to replace an item

with a pair of unpacked items whose total weights are larger than the item. The

authors studied on four simple algorithms; NFD_L2F, FFD_L2F, BBB_FFD_L2F,

and BFD_L2F. Computational results showed that the algorithm improved the

solutions of the benchmark problem sets.

Pérez et al. [30] described a hybrid algorithm in order to find the optimal solution to

one dimensional bin packing problem. Hybrid algorithm is based on a heuristic and a

mathematical model. Heuristic method uses FFD_L2F algorithm first, if the number

of bins is equal to lower bound then the algorithm terminates, otherwise an exact

method is used. Lower bound is derived using a metaheuristic and the mathematical

model is based on flow arcs technique introduced by de Carvalho [8] called as

Valerio model. Valerio model is modified by defining new constraint with the lower

bound. Computational results showed that the proposed algorithm finds the optimal

solution for all instances using less time than Valerio model.

11

2.1.1.2. Exact Algorithms

In this subsection, the exact algorithms developed for solving Classical BPPs are

introduced.

Eilon and Christofides [9] presented a branch and bound procedure with a simple

depth-first search and a best-fit decreasing branching strategy. In each node,

alternative subproblems are generated by assigning the selected item to all initialized

bins in increasing order of their residual capacities if it fits. If there is no available

bin, a new bin is initialized by assigning the current item to it.

Hung and Brown [16] proposed a branch and bound algorithm for the generalization

of the BPP with different bin capacities. The algorithm performs a branching strategy

similar to that in the procedure of Eilon and Christofides [9]. The algorithm is based

on a characterization of equivalent assignments, thereby reducing the number of

explored nodes. Results of the study show that only small-sized problem instances

can be solved.

Martello and Toth [24] developed an algorithm, MTP, based on a “first fit

decreasing” branching strategy. The items are indexed in nonincreasing order of their

weights and MTP applies a reduction algorithm. The algorithm indexes the bins

according to their initial order. At each decision node, the first unassigned item is put

to the feasible initialized bin or to a new bin. Computational results indicate that

MTP algorithm is the most effective branch and bound procedure.

Scholl et al. [33] proposed a fast hybrid procedure BISON for solving the classical

BPP. BISON composed of different known and new bound arguments and reduction

procedures, several heuristics, and a branch and bound procedure. BISON calculated

lower bound and upper bound first if they are equal the procedure terminates, if they

are not equal, the procedure continues with tabu search. BISON tries to find a

feasible solution with tabu search. After tabu search, if lower and upper bounds are

still not equal then an algorithm that uses a depth-first search branch and bound

procedure is implemented.

12

Carvalho [8] studied the one-dimensional bin packing problem. They make use of its

similarity with the cutting stock problem and present an exact solution algorithm to

the cutting stock problem which actually solves the application of it; the bin packing

problem (the demand for each item –stock size- is 1). At each node in a branch and

bound tree subproblems with different structures are produced. In order to overcome

this difficulty an arc flow formulation is introduced which includes a set of flow

constraints and set of constraints to ensure demand is satisfied. The arc flow

formulation allows column generation at any node in the tree. The subproblem

generates a set of arcs which mean cutting patterns in cutting stock problem (or set of

items to fit in a bin in the bin-packing problem). They also make use of LP relaxation

to define lower bounds at nodes and generate attractive columns.

2.1.2. Maximum Cardinality Bin Packing Problem

The maximum cardinality BPP maximizes the number of items packed without

exceeding the capacity of a prespecified number of bins (Labbé et al. [22]).

The decision variable associated with the assignment of the items to the bins is stated

as follows





ji
ijx

bin toassigned is item if 1
otherwise 0

The mathematical formulation of the problem is as stated below:

Maximize 
i


j

xij (4)

s.t. 
i

wixij  c j (j=1,…,m) (5)


j

 xij  1 i (i=1,…,n) (6)

xij = 0 or 1  i and j (i=1,…,n), (j=1,…,m) (7)

13

The objective function expressed in (4) maximizes the number of items packed. The

constraint set (5) ensures that the capacity of each bin is not exceeded. Each item is

assigned to at most one bin as stated by constraint sets (6) and (7).

2.1.2.1. Approximation Algorithms

Coffman et al. [6] analyzed very fast heuristics for maximum cardinality type bin

packing problem. They developed an algorithm, First- Fit Increasing (FFI) algorithm

and analyzed its running time and performance. The algorithm sorts the items

according to the increasing order of their weights, and an item is placed into the

lowest indexed bin which it fits. The algorithm tries to find a maximum subset of

smaller pieces.

Foster and Vohra [11] presented the probabilistic analysis of First- Fit Increasing

heuristic for the maximum cardinality bin packing problem. Results of the study

indicate that for the independent and identically distributed items, the relative error

of the first fit increasing heuristic approaches to zero where the number of items

approaches to infinity.

Peeters and Degraeve [29] studied on branch and price algorithms in order to solve

the maximum cardinality bin packing problem and the bin covering problem. The

authors introduced a new formulation for both problems. This formulation can be

solved with column generation and tight upper bounds are derived from the LP

relaxation of this formulation. They introduced a branch and price algorithm for both

problems. The branch-and-price algorithm is applied whenever the upper bound

derived from the LP relaxation differs from the heuristics. Experimental results

showed that mostly the upper bound found by LP relaxation is equal to the optimal

solution. The algorithm can solve large instances and difficult data sets.

Labbé, Laporte and Martello [22] developed an algorithm for maximum cardinality

bin packing problem. The objective of the problem is to maximize the number of

items packed bins without exceeding bin capacities. The algorithms is a heuristic

approach using simple bin packing heuristics of the Johnson et al. [18]. The authors

14

described a reduction procedure for the heuristic approach. Tight upper bounds are

derived. The algorithm guarantees a feasible solution and computational results

showed that algorithm finds an optimal solution within very low computing times.

2.1.3. Bin Covering Problems

The bin covering problem assumes that there are unlimited number of bins and

maximizes the number of bins used. The problem takes the capacity of each bin as a

lower bound on the total weight assigned to that bin. (Chen and Yao [5])

The decision variables associate with the assignment of the items to the bins are

stated as follows





ji
ijx

bin toassigned is item if 1
otherwise 0





selected is bin if 1
otherwise 0

j
jy

The mathematical formulation of the problem is as stated below:

Maximize 
j

 yj (8)

s.t. 
j

 xij  1  I (9)


i

wixij  cyj  j (10)

xij = 0 or 1  i and j (11)

yj = 0 or 1  j (12)

The objective unction expressed in (8) maximizes the number of bins used. The

constraint sets (9) and (11) ensure that each item is assigned to at most one bin.

Constraint set (10) states the lower limit on the capacity usage.

15

In this section, the approximation algorithms are reviewed first and then a few exact

algorithms are presented to solve bin covering problems.

2.1.3.1. Approximation Algorithms

Bruno and Downey [2] applied First-Fit Increasing heuristic for bin covering

problem. Item sizes are chosen uniformly. The authors showed that the performance

of the FFI policy can be made arbitrarily close to the optimal policy with any desired

degree of confidence for large sample sizes. The authors derived a lower bound on

the expected result of the FFI.

Csirik et al. [7] developed two simple algorithms for bin covering problems;

Heuristic Simple (SI) and Improved Heuristic Simple (ISI). Items are sorted in

nonincreasing order with respect to their weights and first k items are packed where

the sum of the weights up to (k+1)th item is greater than or equal to one in the

heuristic simple algorithm. Algorithm tries to fill slack of the bin by adding items

from the end of the list. Improved Simple Heuristic (ISI) is the improved version of

Heuristic Simple. The heuristic divides the items into three groups according to their

weights. The algorithm compares the item subsets from different groups and selects

the best combination. The authors aimed to assign larger items to empty bins so as to

use more bins.

2.1.3.2. Exact Algorithms

Labbé et al. [21] studied on an exact algorithm for the bin covering problem. They

presented some reduction criteria, upper bounds and an enumerative algorithm. The

authors developed a depth first branch and bound algorithm. At the first step of the

algorithm, two reduction criteria are applied and an upper bound is derived. A lower

bound is computed and if the upper bound is equal to lower bound procedure

terminates. The branching strategy of the algorithm is based on finding more

promising nodes. Experimental results of the study showed that the combined effect

16

of the reduction criteria and the upper bounds made a hard problem relatively easy to

solve one, in most cases

Chen and Yao [5] study the bin covering problem which is a dual problem of the bin

packing problem. They formulate the problem as a set partitioning problem and

develop a branch and bound strategy using column generation. In order to overcome

the difficulty of subproblems with different structures, they use the idea of

Carvalho[8] and use a flow model. At the branch and bound tree, they also use the

LP relaxation method to either to continue the depth-first branching or fathoming a

node. They introduce some criterion to produce attractive and feasible paths (the

columns to be added) which is the main difference of the study from Carvalho[8].

2.1.4. Modified Bin Packing Problems

Brusco et al. [4] described a variant of the classical bin packing problem as modified

bin-packing problem. The modified bin packing problem decides on the assignment

of items to the fixed number of bins of unlimited capacity so as to minimize the

squared deviation of the bins from the average weight.

The decision variable associate with the assignment of the items to the bins is stated

as follows





ji
ijx

bin toassigned is item if 1
otherwise 0

The mathematical formulation of the problem is as stated below:

Minimize 
j

 [T - 
i

 xijwi]
2
 (13)

s.t. 
j

 xij = 1  i (14)

xij = 0 or 1  i and j (15)

17

The objective function (13) gives the total squared deviation around an average

weight T = 
i

 wi / m.

The constraint sets (14) and (15) ensure that each item is assigned to exactly one bin.

Rao and Iyengar [31] studied a different version of classical bin packing problem; the

modified bin packing problem. Bins have unlimited capacity and there is fixed

number of bins available. The objective of the problem is to minimize the sum of

squared deviation between the average weight of a bin calculated by dividing the

total weight of items to the number of bins and sums of the item weights in that bin.

The authors proposed an algorithm based on simulated annealing. The algorithm

starts from a randomly generated initial solution and uses a completely random

neighborhood search procedure. Experimental results showed that the algorithm is

much better than any of the heuristic methods of bin packing in terms of solution

quality.

Brusco, Thompson and Jacobs [4] enhanced Rao and Iyengar’s algorithm and

presented a heuristic based on simulated annealing for modified bin packing

problem. Their procedure used a morph-based search procedure in order to find

better allocation. Rao and Iyengar’s neighborhood search procedure evaluates many

interchanges that have little chance of improving the objective function. The

neighborhood search procedure of Brusco et al. [4] evaluates interchanges that are

more likely to improve the objective function by limiting such interchanges to

similarly-sized items. Results of the study indicate that the morphing process

improves the solution of simulated annealing heuristics for these problems.

Brusco, Köhn and Steinley [3] suggested a new way to solve modified bin packing

problem. They combined minimax bin packing problem and modified bin packing

problem. The objective function of the problem is minimizing the maximum sum of

the weights within each bin. The authors formulated a mixed zero-one integer linear

programming model and developed a heuristic procedure based on the simulated

annealing algorithm. Results showed that the simulated annealing heuristic generally

provided better solutions than commercial mathematical programming software

package solution to the mathematical formulation.

18

2.2. Multi-Criteria Bin Packing Problems

The majority of the BPP studies consider single criterion problems. The studies on

the multicriteria BPPs are scarce and of relatively recent origin. The most noteworthy

of these studies are due to Geiger [13], Mezghani et al.[25], Naderi et al. [27], and

Patel et al. [28].

Geiger [13] proposed a heuristic approximation approach for the multi-objective bin

packing problem. Minimizing the number of bins and minimizing the

heterogeneousness of the elements in each bin are two conflicting objectives of the

problem. Geiger presents a heuristic approach using modified best fit algorithm

based on the principle of the conventional method. The approach computes an

approximation of the set of efficient solutions when controls the heterogeneousness

of the bins. His computational results compared with benchmark instances and

random-fit algorithm showed the applicability of the heuristic approach to the

problem.

Mezghani et al. [25] considered manager’s preferences in the multi-objective bin

packing problem and proposed a goal programming model for the problem where the

objectives are minimizing the number of bins and minimizing the conflict between

items among the bin. Goal programming model includes satisfaction function to

integrate different types of manager’s preferences.

Naderi et al. [27] developed a local search-based heuristic for a real case study of

multi-objective bin packing problem. They formulated the problem as a mixed

integer linear programming model and proposed a heuristic procedure for large sized

instances of the problem. The objectives of the car manufacturer are related to

improving logistic activities, which are to minimize the number of required

transportation vehicles and to minimize the maximum workload difference among

the transportation vehicles. Results of the model and the procedure showed that the

heuristic procedure outperforms the mixed integer linear programming model in

large sized instances.

19

Patel et al. [28] suggested a memetic algorithm for the one-dimensional multi-

objective bin packing problem. The algorithm used local search on each chromosome

so the algorithm is guaranteed to give near optimal solutions. The first objective is

minimizing the number of bins and the second objective is maximizing total profit.

The memetic algorithm calculates the fitness function first, selects the bin of items

according to the fitness function, apply crossover to items and apply local search

method in order to improve the solution.

20

21

CHAPTER 3

BICRITERIA BIN PACKING PROBLEM

In this chapter, we define two bicriteria bin packing problems. The first problem

considers the number of bins and the total overdeviation as two objectives. The

objectives of the second problem are the minimization of the number of bins and

minimization of maximum overdeviation. Then, the associated mathematical models

are given.

The section is organized as follows: Section 3.1 defines the problem and some basics

are given in Section 3.2 In Section 3.3 the mathematical model for the problems are

given and Section 3.4 discuss a property associated with efficient solutions.

3.1. Problem Definition

In the classical bin packing problem, given the weights of the items and bin capacity,

the items are packed into a minimum number of bins without exceeding the bin

capacity.

Our study allows violation of the bin capacity and penalizes the amount of

overdeviation. The overdeviation of a bin is the total weight of items in the bin minus

the capacity of the bin.

We first study the problem of minimizing the number of bins and minimizing the

total overdeviation, and then consider the problem of minimizing the number of bins

and minimizing the maximum overdeviation. Total overdeviation is described as the

sum of overdeviation of all of the bins. Maximum overdeviation is the maximum

22

overdeviation among all bins. Overdeviation, total overdeviation and maximum

overdeviation are calculated as;

Overdeviation of bin j = dj = Max {0, 
i

iw xij– c}

where




ji
ijx

bin toassigned is item if 1
otherwise 0

Total overdeviation = 
j

dj = 
j

 Max {0,
i

iw xij – c}

where




ji
ijx

bin toassigned is item if 1
otherwise 0

Maximum overdeviation = f = Maxj { Max {0, 
i

iw xij – c}}

The problem assigns n items into m bins. Item i (i =1,2,…,n) has a weight of wi

units and the capacity of each bin j is c units.

As in Karasakal et al. [19] the problem of minimizing total overdeviation is defined

as Problem I and problem of minimizing maximum overdeviation is defined as

Problem II.

We first solve the number of bins problem to find the minimum number of bins. We

then find the total and the maximum overdeviation. Starting from the minimum

number of bins calculated, the number of bins is decreased by one and the total / the

maximum overdeviation is found. As the number of bins decreases, the total / the

maximum overdeviation increases, therefore, they are conflicting. We find the set of

nondominated objective vectors.

23

3.2. Some Definitions

A multi-criteria problem with p objectives can be defined as follows:

Min {Z1(x) , Z2(x),…,Zp(x)}

subject to

x ∈ X

where

Zi (x) : value of the objective i at x

x : decision vector

X : feasible solution decision space

A solution x ∈ X is said to be efficient if there is no other x such that :

Zi (x)  Zi (x)  i and

Zk (x) < Zk (x) for at least one k.

Z(x) = (Z1(x) , Z2(x),…,Zp(x)) is the image of x in the objective function space.

If x is efficient then Z(x) is a nondominated objective vector.

In this study, all nondominated objective vectors, and an efficient solution

corresponding to each nondominated objective vector are generated.

24

3.3. Mathematical Model

Recall that xij is the main decision variable that is defined as





ji
ijx

bin toassigned is item if 1
otherwise 0

We let





selected is bin if 1
otherwise 0

j
jy

Problem I :

The model has two objectives; minimization of the total number of bins used, and the

minimization of total overdeviation. The objectives are expressed as:

Minimize 
j

 yj (3.1)

Minimize 
j

dj (3.2)

The constraints of the problem are explained next.

Each item should be assigned to exactly one bin.


j

xij = 1,  i (3.3)

If an item is assigned to a bin, then the bin should be opened.

xij  yj,  i and j (3.4)

25

Constraint (3.5) gives the overdeviation due to bin capacity;


i

wixij – dj  cyj,  j (3.5)

The overdeviation of a bin should be greater than or equal to 0.

dj  0  j (3.6)

xij values are binary.

xij = 0, 1  i and j (3.7)

yj values are binary. Note that yj takes value 1 if xij is 1.

yj = 0, 1  j (3.8)

Problem II:

Minimizing the number of bins used and minimizing the maximum overdeviation are

two objectives for the second problem. The objectives are expressed as:

Minimize 
j

yj (3.9)

Minimize f (3.10)

The constraints of the problem are explained next.

Each item should be assigned to exactly one bin.


j

xij = 1,  i (3.3)

If an item is assigned to a bin, then the bin should be opened.

xij  yj,  i and j (3.4)

26

Constraint (3.5) calculates the overdeviation due to bin capacity.


i

wixij – dj  cyj,  j (3.5)

Constraint (3.12) calculates the maximum overdeviation f.

f  dj,  j (3.11)

The overdeviation of a bin should be greater than or equal to 0.

dj  0  j (3.6)

xij ‘s are binary.

xij = 0, 1  i and j (3.7)

yj values are binary. Note that yj takes value 1 if xij is 1.

yj = 0, 1  j (3.8)

3.4. Properties of Efficient Solutions

In this section, three properties of the efficient solutions are given. Karasakal et al.

[19] define the range of nondominated objective vectors for the number of bins and

total/maximum overdeviation problems. Karasakal et al. [19] find that efficient

solutions lie between the solution with one bin and the solution with zero

total/maximum overdeviation.

We define a two-step approach to generate the nondominated objective vectors. The

solution with one bin gives the total/maximum overdeviation. The upper bound on

the total/maximum overdeviation of all nondominated objective vectors is (
i

wi –

c) and it gives an efficient solution (1, 
i

wi – c).

27

Therefore; two extreme efficient solutions are; (z*,0) and (1, 
i

wi – c)

We now present the range for the number of bins and range for the total / maximum

overdeviation.

Range for the number of bins = [1, z*]

Range for the total/maximum overdeviation = [0, 
i

wi – c]

This follows an upper bound on the number of efficient solutions is

Min{z*-1 +1, 
i

wi – c - 0 +1} = Min {z* , 
i

wi – c + 1}

Note that the number of efficient solutions is bounded by z*, hence n.

Property 1.

Karasakal et al. [19] proposed an approach to find total overdeviation easily when

the remaining capacities of all bins are equal to zero.

Recall that the total overdeviation is the sum of the deviations over the capacity of all

bins. In the second stage of Problem I, total overdeviation is calculated by decreasing

the number of bins by one each time. If there is no slack in any one of the bins,

decreasing the number of bins by one increases the total ovedeviation by c units.

Let t be the minimum total overdeviation where the number of bins is equal to m.

Decreasing the number of bins by one unit increases the minimum total

overdeviation by c units.

 t (m-1) = t (m) + c if all bins are fully loaded, i.e.,

if 
i

wixij ≥ c  j

28

29

CHAPTER 4

SOLUTION APPROACHES

Our bicriteria bin packing problems aim to find the set of efficient solutions for

minimizing the number of bins and minimizing the total/maximum overdeviation

objectives. In this chapter, we present our solution approaches. In Section 4.1 the

stages of our approach are given. Section 4.2 and Section 4.3 present our lower

bounds and upper bounds respectively.

4.1. A Two Stage Solution Procedure

A two stage solution procedure is applied to generate all efficient solutions. Two-

stage procedure for Problem I is presented first and then the solution procedure for

Problem II is described.

Problem I :

Minimization of the number of bins and minimization of the total overdeviation are

the objectives of the Problem I. In stage I of Problem I, the aim is minimizing the

number of bins for zero deviation over capacity. In stage II of Problem I, minimum

total overdeviation for the given number of bins is found. All efficient solutions for

the number of bins and total overdeviation problem are generated.

30

Stage I of Problem I:

In this stage, the classical bin packing problem is solved.

The objective function is as stated below:

Minimize

z = 
j

 yj (4.1)

The constraints, are as stated below:

An upper bound for the optimal number of bins yj, should not be exceeded.


j

 yj  UB1 (4.2)

A lower bound for the optimal number of bins yj, is no bigger than the optimal

number of bins.


j

 yj  LB1 (4.3)

The constraint set (4.4) requires the assignment of each item.


j

 xij = 1  i (4.4)

In this stage, any deviation over the capacity is not allowed; therefore constraint (4.5)

is modified. The sum of the weights of items in a bin should be no bigger than the

bin capacity.


i

wixij  cyj  j (4.5)

The constraint set (4.6) relates the assignment variable to the bin opening variable.

xij  yj  i and j (4.6)

31

Constraint set (4.7) states the binary nature of the variable.

0  xij  1 and xij is integer  i and j (4.7)

Constraint set (4.8) is for nonnegativity.

yj  0  j (4.8)

An optimal solution to the above model is found in stage I and let z* be the optimal

number of bins. Stage II finds the minimum total overdeviation using the optimal

number of bins, z* value. The first efficient solution is (z*,0). In stage II of Problem

I, all efficient solutions are generated by decreasing the number of bins by one each

time.

Stage II of Problem I:

This stage aims to minimize total overdeviation for given number of bins.

The objective function is as stated below:

Minimization of total overdeviation is as expressed below.

Minimize

t = 
j

 dj (4.9)

The constraints, are as stated below:

Number of bins is k* for the first iteration of stage II. The constraint set (4.10) states

that the number of bins is decreased by one in each iteration.


j

 yj = k*- 1 (4.10)

32

The following constraint set imposes an upper bound for the optimal number of total

overdeviation dj.


j

dj  UB2 (4.11)

A lower bound for the optimal number of total overdeviation dj, is used via the

following constraint set.


j

dj  LB2 (4.12)

The constraint sets (4.4), (4.6), (4.7), and (4.8) used in the first stage are also

formulated this stage.

In this stage, deviation over the capacity is allowed. The sum of the weights of items

in a bin should be no bigger than the bin capacity and deviation over the capacity.


i

wixij - dj  cyj  j (4.13)

where






 first time for the II stage solving are weif *z

otherwise 1 -*k
*k

33

Problem II:

Minimization of the number of bins and minimization of the maximum overdeviation

are the objectives of Problem II. In stage I of Problem II, the aim is to minimize the

number of bins for zero deviation over capacity. Stage II of Problem II is the

minimax problem and the minimum of the maximum overdeviation is found for the

given number of bins. All nondominated objective vectors are generated for the

number of bins and maximum overdeviation problem.

Stage I of Problem II:

In this stage as in stage I of Problem I, the classical bin packing problem is solved.

Stage II of Problem II:

In this stage, the aim is to minimize maximum overdeviation for a given number of

bins.

Objective Function, is as stated below:

Minimization of maximum overdeviation is as expressed below.

Minimize

f (4.14)

The constraints, are as stated below:

The constraint set (4.19) states that k value is decreased by 1.


j

 yj = k*- 1 (4.15)

34

The following constraint set imposes an upper bound for the optimal number of

maximum overdeviation f.

f  UB3 (4.16)

A lower bound for the optimal number of maximum overdeviation f, is used via the

following constraint set.

f  LB3 (4.17)

Constraint set (4.22) calculates the maximum overdeviation. Maximum

overdeviation will be greater than or equal to the total overdeviation of all bins.

f  dj  j (4.18)

The constraint sets (4.4), (4.6), (4.7), and (4.8) used in the first stage and are also

formulated in this stage. Constraint set (4.13) are also formulated in this stage of

Problem II.

where






 first time for the II stage solving are weif *z

otherwise 1 -*k
*k

35

4.2. Lower Bounding Procedures

Three lower bounds on the optimal objective function values are presented. First one

is the lower bound on the optimal number of bins, the second one is the lower bound

on the optimal total overdeviation and the last lower bound is on the optimal

maximum overdeviation. We make rounding as all parameters are integers.

Lower Bound I

Lower bound I, LB1 is calculated for stage I of Problem I and Problem II solution

procedures. The first stage is the same for Problem I and Problem II and LB1 is valid

for both problems.

Martello and Toth [24] developed a lower bound for the minimum number of bins.

Their lower bound is based on the total weight of items. Total weight of items

divided by the capacity of bins [
i

wi / c] is a lower bound for the optimal number of

bins with zero total/maximum overdeviation.

LB1 = ⌈
i

𝑤𝑖 / c⌉ (4.19)

Therefore, the constraint (4.3) becomes


j

 yj  ⌈
i

𝑤𝑖 / c⌉ (4.20)

Lower Bound II

Lower bound II, LB2 is calculated for the stage II of Problem I solution procedure.

Recall that stage II of Problem I is finding the minimum total overdeviation for the

given number of bins.

36

Karasakal et al. [19] proposed a lower bound for the minimum total overdeviation.

Max 0, [
i

wi – (number of bins  c)] is a lower bound for the optimal total

overdeviation with given number of bins.

LB2 = ⌈Max 0, [
i

𝑤𝑖 – (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠  𝑐)]⌉ (4.21)

Therefore, the constraint (4.12) becomes


j

dj  ⌈Max 0, [
i

𝑤𝑖 – (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠  𝑐)]⌉ (4.22)

Lower Bound III

Lower bound III, LB3 is calculated for the stage II of Problem II solution procedure.

The objective of stage II of Problem II is to minimize the maximum overdeviation

for the given number of bins.

Karasakal et al. [19] present a lower bound for the maximum overdeviation. Max 0,

[[
i

wi – (number of bins  c)] / number of bins] is a lower bound for the minimum

of maximum overdeviation with given number of bins.

LB3 = ⌈Max 0, [[
i

𝑤𝑖 – (number of bins  c)] / number of bins]⌉ (4.23)

Therefore, the constraint (4.17) becomes

f  ⌈Max 0, [[
i

𝑤𝑖 – (number of bins  c)] / number of bins]⌉ (4.24)

These three lower bounds are the rounded up values of the optimal.

37

4.3. Upper Bounding Procedures

Three upper bounds are presented on the objective function values. First one is the

upper bound on the optimal number of bins, the second one is on the optimal total

overdeviation and the last one is on the optimal maximum overdeviation.

Upper Bound I

The first stage of Problem I and Problem II is the classical bin packing problem.

Therefore, the upper bound on the optimal number of bins is derived from a well-

known good placement approximation algorithm. The upper bound is calculated

using best fit decreasing (BFD) algorithm developed by Johnson [17]. BFD is used,

as it is easy to implement and the algorithm has a good performance.

In the BFD algorithm, items are first sorted according to the decreasing order of their

weights. BFD calculates the remaining capacity of all bins and inserts an item into a

feasible bin with smallest remaining capacity. BFD creates a new bin if the item is

not assigned to any bin and inserts the item into that bin.

Finding UB1:

Step I: Sort the items according to their decreasing weights.

Step II: Open one bin for the first time.

Step III: Calculate the remaining capacity of the open bins.

Step IV: Insert the item into a feasible bin having the smallest remaining

capacity. If there is no feasible bin to insert, open a new bin. Insert the item to

that new bin.

Step V: Apply Step III and Step IV for all items until all items are inserted to a

bin.

38

Upper Bound II:

An upper bound is derived for the second stage of Problem I, UB2. Recall that stage

II of Problem I is minimizing the total overdeviation. Karasakal et al. [19] modified

the best fit decreasing algorithm for the total overdeviation problem. Steps of their

constructive heuristic are as follows.

Step I: Sort the items according to their decreasing weights.

Step II: Assign the first item to the feasible bin having the smallest remaining

capacity. If there is no feasible bin to insert, assign the item to an arbitrarily

selected bin.

Step III: Apply Step II for all items until all items are inserted to a bin.

Karasakal et al. [19] applied an improvement heuristic for the solution of the

constructive heuristic if (UB2-LB2)/UB2  0,4. Improvement heuristic starts from the

solution of the constructive heuristic. They aim to decrease the problem size by

eliminating some bins and their assigned items. Their improvement heuristic is

applied for all solutions of the constructive heuristic to find UB2 in our study. The

improvement heuristic sorts the bins with no overdeviation in nonincreasing order of

their assigned weights and eliminates a number of bins having no overdeviation. The

bins with total assigned weight equal to the capacity of bins are eliminated first. The

steps of the improvement heuristic:

 Step I: Select the bins with zero overdeviation

Step II: Sort the selected bins in nonincreasing order of their assigned

weights.

Step III: Eliminate first b bins and the assigned items of that bins

Step IV: Solve the total overdeviation problem (stage II of Problem I) for the

remaining bins and items.

39

In step III of the improvement heuristic, Karasakal et al. [19] define a method to

calculate b value based on their computational results. They set;

 b = [y x 10(average weight of items/ capacity of bins)]

 where

 1 if number of items = 50

y = 1.5 if number of items = 75

 2 if number of items = 100

 average weight of items = wi / n

Figures 4.1 , 4.2 and 4.3 show schematic view of improvement heuristic. Value of b

is taken to be 3 in this example. Figure 4.1 shows elimination procedure of

improvement heuristic. Bins are first sorted in nonincreasing order of their assigned

weights and then 3 eliminated bins are selected and reduced configuration of bins are

shown.

40

Figure 4.1. Elimination procedure of improvement heuristic

Figure 4.2 shows the solution of total overdeviation problem for reduced

configuration.

Figure 4.2. Solution of reduced configuration

 ………

 ………

 ……………………

1 2 3 4 13 14 15

Original configuration

Sorted in nonincreasing order of their assigned weights

1 13 4 3 15 14 2

Eliminated bins

2 1 13

Reduced configuration

14 3 15 4

 ………………

14 3 15 4 5

41

Upper bound III is found by the solution of reduced configuration and the eliminated

bins. Figure 4.3 shows the final solution of problem.

Figure 4.3. Final solution by adding two configurations

Upper Bound III:

UB3 is an upper bound for the maximum overdeviation. The second stage of problem

II is similar to the minimizing makespan with parallel machines problem, therefore,

the heuristic of Graham [14] is used to calculate the upper bound. The steps of the

Graham [14] algorithm are stated below:

Step I: Sort the items according to their decreasing weights.

Step II: Assign the first item to the feasible bin having the smallest remaining

capacity. If there is no feasible bin to insert, assign the item to the bin with

smallest overdeviation including that item, if all bins are overloaded, assign the

item to the bin with smallest overdeviation.

Apply the step for all items until all items are inserted to a bin.

These three upper bounds are the rounded down results of the calculated bounds.

 …………

 +

14 3 15 4 5

13 1 2

42

43

CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, computational results of the experiments are presented. In Section

5.1, generation of the test problems is explained. In Section 5.2, the results are given

and discussed.

Mathematical models are solved by GAMS 24.2 using CPLEX MIP solver with zero

absolute and relative gaps. The algorithms are coded in C programming language.

Runs are performed on a computer with an Intel Core i7 3,10 GHz processor and

16GB of RAM.

5.1. Problem Sets

The problem data used in the experiments are generated randomly. 12 problem sets,

identified by the number of items, item weights and bin capacities, are used. Three

values, 50, 75 and 100 are used for the number of items. Problem sets with 50 and

100 items are taken from Scholl, Klein, and Jurgens [33]. Data for item weights are

generated from discrete uniform distributions within ranges [1,100] and [30,100].

Two values, 100 and 150 are used for bin capacities. For each problem set, 10

problem instances are solved, hence a total of 120 problem instances are solved in

the experiments. For each problem instance, many problems are solved to find all

nondominated sets.

44

5.2. Analysis of the Results

The solution times are expressed in Central Processing Unit (CPU) seconds. For each

problem instance and each total/maximum overdeviation problem to generate an

efficient solution, CPU time limits are set to 3600 seconds for the number of bins and

the total overdeviation problems (Problem I), and 9000 seconds for the number of

bins and the maximum overdeviation problems (Problem II). The execution of the

algorithms is terminated if the optimal solution is not found in the time limits.

The results of the computational experiments for problems I and II are given in the

following sections.

5.2.1. Problem I: Minimization of Number of Bins and Total Overdeviation

The solution times of the number of bins problem, the total overdeviation problem

and the improvement heuristic for the upper bound of the total overdeviation

problem are presented in Tables 5.1, 5.2 and 5.3 respectively. For each problem set,

maximum and average CPU times are reported. Maximum and average CPU times

of all problems are given in columns titled “Max(1)” and “Avg(1)”, CPU times of all

optimally solved problems in the prespecified time limits (i.e. excluding the unsolved

problems) are reported in columns titled “Max(2)” and “Avg(2)”.

Table 5.1 reports the CPU times of finding the optimal solution to the number of bins

for Problem I.

Since the number of bins problem is strongly NP-hard one should expect that the

solution times increase exponentially with the problem size. From Table 5.1, it can

be seen that the solution times increase exponentially with the problem size but there

are some exceptions due to the lower and upper bounds used in the MIPs. When

capacity is 150; for both 75 items and 100 items; the average CPU times are

negligible. Thanks to the strong lower and upper bounds; for all these 20 problems

the optimal solutions are found using only the bounds.

45

Moreover, the average CPU time for the problems increases when the item weights

are generated within the range [30,100]. Looking at all the instances (i.e. without

excluding the unsolved ones) for each problem set this inference can be made. This is

due to the fact that when the minimum weight is 30, the weights of all items lie in a

smaller range and the trade-off between the items is more difficult to handle.

Table 5. 1. The CPU times for the number of bins problem when time limit is 3600

seconds

n = 50

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 13.56 2.13 13.56 2.13

150 [1, 100] 58.45 5.99 58.45 5.99

100 [30, 100] 3600.00 1086.69 0.72 0.48

150 [30, 100] 3600.00 634.93 2733.01 305.38

n = 75

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 5.02 2.28 5.02 2.28

150 [1, 100] 0.00 0.00 0.00 0.00

100 [30, 100] 4.84 2.67 4.84 2.67

150 [30, 100] 3600.00 1463.52 129.50 38.85

n = 100

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 917.12 1907.21 246.29

150 [1, 100] 0.00 0.00 0.00 0.00

100 [30, 100] 3600.00 2524.30 8.48 6.11

150 [30, 100] 3600.00 1545.58 661.46 173.23

* CPU times in seconds of all problems

** CPU times in seconds of all optimally solved problems

In Table 5.2 the average and maximum CPU times for the total overdeviation

problem are presented. The problems that are solved by Property 1 are not taken into

account, as they require negligible time.

Note that for the total overdeviation problem as the problem size increases, (i.e., as

the number of items or bins increase) the average CPU time (i.e. without excluding

the unsolved ones) also increases. Also, as the minimum weight increases to 30; the

46

total overdeviation problem becomes harder to solve. Another result is that as the

capacity increases the problem becomes easier to solve.

Table 5. 2. The CPU times for the total overdeviation problem

n = 50

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 1599.72 2746.37 167.85

150 [1, 100] 0.77 0.08 0.77 0.08

100 [30, 100] 3600.00 2736.58 2954.29 151.90

150 [30, 100] 3600.00 1423.45 15.52 2.25

n = 75

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 1786.28 236.59 18.69

150 [1, 100] 0.00 0.00 0.00 0.00

100 [30, 100] 3600.00 3075.03 3251.95 345.66

150 [30, 100] 3600.00 1432.27 162.49 14.77

n = 100

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 2508.08 54.29 4.59

150 [1, 100] 3600.00 329.00 0.00 0.00

100 [30, 100] 3600.00 3394.75 1199.12 286.12

150 [30, 100] 3600.00 2068.13 0.00 0.00

* CPU times in seconds of all problems

** CPU times in seconds of all optimally solved problems

Not surprisingly, the improvement heuristic shows the same properties with the total

overdeviation problem, as it is a smaller sized version of the problem as, can be seen

from Table 5.3.

Moreover, for the improvement heuristic, it is seen that as the number of bins

increases, the average CPU time (Avg(1)) also increases. Also, one can see that from

Table 5.3 Avg(1) column as the minimum weight increases to 30; the problem is

harder to solve except for problem set with 100 items and capacity of 100.

47

Table 5. 3. The CPU times for the improvement heuristic for the total overdeviation

problem

n = 50

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 1340.36 311.18 61.92

150 [1, 100] 1.01 0.34 1.01 0.34

100 [30, 100] 3600.00 1509.59 1234.66 62.73

150 [30, 100] 3600.00 1055.04 584.48 75.37

n = 75

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 2201.92 3323.91 747.62

150 [1, 100] 3271.65 341.69 3271.65 341.69

100 [30, 100] 3600.00 2224.78 980.74 53.85

150 [30, 100] 3600.00 2333.71 3254.04 1318.81

n = 100

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 3600.00 2970.28 3288.56 1335.25

150 [1, 100] 3600.00 719.47 978.67 431.15

100 [30, 100] 3600.00 2496.92 1486.02 67.77

150 [30, 100] 3600.00 3240.71 3274.68 2770.97

* CPU times in seconds of all problems

** CPU times in seconds of all optimally solved problems

Table 5.4 reports the number of unsolved problems in 3600 seconds for the number

of bins problem. Recall that 10 problem instances are solved for each problem set.

The inferences made for the CPU times are valid here. When the problem size

increases, it is more difficult to obtain the optimal solutions. There are only 4

unsolved instances out of 40 instances when there are 50 items, whereas there are 13

instances out of 40 when there are 100 items.

For the minimum weight case, the situation is similar; only 2 out of 60 instances are

unsolved when minimum weight is 1; while there are 19 unsolved instances out of 60

when minimum weight is 30. There are 12 unsolved instances out of 60 when the

capacity is 100, whereas there are 9 unsolved instances out of 60 when capacity is

150.

48

Table 5. 4. The number of unsolved instances for the number of bins problem when

time limit is 3600 seconds

 # of unsolved instances*

C wi n = 50 n = 75 n = 100

100 [1, 100] 0 0 2

150 [1, 100] 0 0 0

100 [30, 100] 3 0 7

150 [30, 100] 1 4 4

*Out of 10 problem instances

In Table 5.5 upper bounds on the number of efficient solutions for total

overdeviation problem are presented. Maximum and average number of efficient

solutions per problem instance are reported. Recall that 10 instances are solved for

each problem set.

49

Table 5. 5. The number of efficient solutions for total overdeviation problem

n = 50

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 254 30 25.40

150 [1, 100] 161 19 16.10

100 [30, 100] 358 39 35.80

150 [30, 100] 213 23 21.30

n = 75

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 403 44 40.30

150 [1, 100] 252 26 25.20

100 [30, 100] 538 56 53.80

150 [30, 100] 318 33 32.00

n = 100

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 524 61 52.40

150 [1, 100] 336 36 33.60

100 [30, 100] 736 81 73.60

150 [30, 100] 431 46 43.10

Table 5.6 reports upper bound on the number of efficient solutions for each problem

set, number and percentage of exact solutions found and number and percentage of

solutions found by Property 1. For example when there are 100 items, capacity is 100

and minimum weight is 30, 511 exact solutions out of 736 (i.e., at least 69% of the

problems) are found. The rest could not be found within the specified time limit.

50

Moreover, 493 of them (i.e. at least 67% of the problems) are found by Property 1. It

can be concluded that Property 1 is quite useful.

In summary, in 120 problem instances, upper bound on the total number of efficient

solutions is 4526; and Property 1 finds 3726 of the efficient points which correspond

to at least 82.32%. 29.50% of the remaining efficient solutions could be solved in

the time limit.

Table 5.6 shows that Property 1 performs the worst when capacity is 100 and

minimum weight is 30; regardless of the number of items. For those problem sets,

the problem is dense; i.e., there are more bins than those of any other problem sets

since capacity is low and average weight is high; and weights of the items are closer

to each other.

We observe that the capacity is 150, Property 1 works better. The percentage of the

solutions found by Property 1 increases to 94.57%. This is due to the fact that; when

the number of bins decreases by 1, one bin will be emptied, and items in that bin will

be distributed to the other bins which will result in filling more bins at a time.

Any increase in the number of items, decreases in capacity or increases in minimum

weight of items results in a decrease in the percentage of finding exact solutions in

vast majority of the instances.

51

Table 5. 6. Results on the efficient solutions for the total overdeviation problem

n = 50

C wi

Upper

bound on

the # of

efficient

solutions

of exact

solutions

found

% of

exact

solutions

found

of soln.

found by

Property 1

% of soln.

found by

Property 1

100 [1, 100] 254 239 94 218 86

150 [1, 100] 161 161 100 151 94

100 [30, 100] 358 272 76 243 68

150 [30, 100] 213 206 97 195 92

n = 75

C wi

Upper

bound on

the # of

efficient

solutions

of exact

solutions

found

% of

exact

solutions

found

of soln.

found by

Property 1

% of soln.

found by

Property 1

100 [1, 100] 403 377 93 357 89

150 [1, 100] 252 252 100 242 96

100 [30, 100] 538 397 74 368 68

150 [30, 100] 318 313 98 299 93

n = 100

C wi

Upper

bound on

the # of

efficient

solutions

of exact

solutions

found

% of

exact

solutions

found

of soln.

found by

Property 1

% soln.

found by

Property 1

100 [1, 100] 524 481 92 463 88

150 [1, 100] 336 335 100 325 97

100 [30, 100] 736 511 69 493 67

150 [30, 100] 431 418 97 408 95

The model returns non-optimal solution to all unsolved instances of the number of

bins problem within the specified time limit. Table 5.7 reports the quality of those

solutions, i.e., average and maximum percentage deviations from the lower and

upper bounds. It is seen that the quality of solutions of unsolved problems is not

better than the upper bounds. Average percentage deviation from the upper bound is

52

0.5% the model solutions are close to the upper bounds for the number of bins

problem.

Table 5.7. The performance of the model solutions for unsolved instances - The

Number of Bins Problem

n = 50

C wi

of

unsolved

problem

instances

Avg %

deviation

from

UB1

Max %

deviation

from

UB1

Avg %

deviation

from

LB1

Max %

deviation

from

LB1

100 [1, 100] 0 - - - -

150 [1, 100] 0 - - - -

100 [30, 100] 3 0.00 0.00 13.14 15.00

150 [30, 100] 1 0.00 0.00 4.35 4.35

n = 75

C wi

of

unsolved

problem

instances

Avg %

deviation

from

UB1

Max %

deviation

from

UB1

Avg %

deviation

from

LB1

Max %

deviation

from

LB1

100 [1, 100] 0 - - - -

150 [1, 100] 0 - - - -

100 [30, 100] 0 - - - -

150 [30, 100] 4 0.00 0.00 3.06 3.13

n = 100

C wi

of

unsolved

problem

instances

Avg %

deviation

from

UB1

Max %

deviation

from

UB1

Avg %

deviation

from

LB1

Max %

deviation

from

LB1

100 [1, 100] 0 - - - -

150 [1, 100] 0 - - - -

100 [30, 100] 7 0.00 0.00 12.27 15.85

150 [30, 100] 4 2.27 2.33 2.27 2.33

Table 5.8 shows the quality of model solutions within the specified time limits to

unsolved problems for total overdeviation problem. The number of model solutions

and average and maximum percentage deviations from lower bound and upper bound

are reported in the table. The model can find more solution when the number of

53

items is 50. For 50 items, the solutions are closer to the upper bound whereas

solutions are closer to the lower bound for problems with 75 and 100 items.

Table 5.8. The performance of the model solutions for unsolved problems - Total

Overdeviation Problem

n = 50

C wi

Upper

bound on

of

unsolved

problems

of

solution

found by

model to

unsolved

problems

Avg %

deviation

from

UB2

Max %

deviation

from

UB2

Avg %

deviation

from

LB2

Max %

deviation

from

LB2

100 [1, 100] 15 7 3.35 9.84 11.53 31.97

150 [1, 100] 0 0 - - - -

100 [30, 100] 86 27 5.60 11.98 10.31 76.74

150 [30, 100] 7 1 0.00 0.00 4.44 4.44

n = 75

C wi

Upper

bound on

of

unsolved

problems

of

solution

found by

model to

unsolved

problems

Avg %

deviation

from

UB2

Max %

deviation

from

UB2

Avg %

deviation

from

LB2

Max %

deviation

from

LB2

100 [1, 100] 26 0 - - - -

150 [1, 100] 0 0 - - - -

100 [30, 100] 141 20 8.21 14.72 0.97 3.30

150 [30, 100] 7 0 - - - -

n = 100

C wi

Upper

bound on

of

unsolved

problems

of

solution

found by

model to

unsolved

problems

Avg %

deviation

from

UB2

Max %

deviation

from

UB2

Avg %

deviation

from

LB2

Max %

deviation

from

LB2

100 [1, 100] 43 0 - - - -

150 [1, 100] 1 0 - - - -

100 [30, 100] 225 11 8.45 11.32 0.69 2.97

150 [30, 100] 13 0 - - - -

54

Table 5.9. presents the performance of the lower and upper bounds for the number of

bins problem. It can be seen that as the number of bins and minimum weight increase

the number of bins thereby the complexity of the problem increases. When capacity

increases, especially when the minimum weight is 1, the bounds perform well

together. Out of 30 instances where capacity of the bins is 150 and minimum weight

is 1, the lower and upper bounds are equal for all instances, except two.

Table 5. 9. The lower and upper bound values for the number of bins problem

n = 50

C wi Avg LB1 Max LB1 Avg UB1 Max UB1

of instances

UB1=LB1

100 [1, 100] 25.20 28 26.50 31 2

150 [1, 100] 17.10 20 17.30 20 8

100 [30, 100] 32.60 35 36.90 40 0

150 [30, 100] 22.00 23 22.90 24 1

n = 75

C wi Avg LB1 Max LB1 Avg UB1 Max UB1

of instances

UB1=LB1

100 [1, 100] 39.00 41 41.30 45 0

150 [1, 100] 26.20 27 26.20 27 10

100 [30, 100] 48.70 51 54.80 57 0

150 [30, 100] 32.60 34 33.60 35 1

n = 100

C wi Avg LB1 Max LB1 Avg UB1 Max UB1

of instances

UB1=LB1

100 [1, 100] 51.10 58 53.40 62 1

150 [1, 100] 34.60 37 34.60 37 10

100 [30, 100] 65.40 69 74.60 82 0

150 [30, 100] 43.60 46 45.00 47 0

Table 5.10 reports the performance of the upper bounds for the number of bins

problem. In 79 out of 99 optimally solved instances the upper bound is equal to the

optimal value. Average percentage deviation of the upper bound from the optimal

solution is only 0.75% for the number of bins problem. The worst performance of the

upper bound is when capacity is 150 and minimum weight is 30 regardless of the

number of items.

55

Table 5. 10. The upper bound values on the number of bins and the optimal number

of bins

n = 50

C wi

of

optimally

solved

instances

Avg

UB1

Max

UB1

Avg

Opt

Max

Opt

of

instances

UB1=

Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 10 26.50 31 26.40 31 9 0.50 5.00

150 [1, 100] 10 17.30 20 17.10 20 8 1.21 6.25

100 [30, 100] 7 36.43 40 36.29 40 6 0.39 2.70

150 [30, 100] 9 22.89 24 22.22 24 3 3.08 4.76

n = 75

C wi

of

optimally

solved

instances

Avg

UB1

Max

UB1

Avg

Opt

Max

Opt

of

instances

UB1=

Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 10 41.30 45 41.30 45 10 0.00 0.00

150 [1, 100] 10 26.20 27 26.20 27 10 0.00 0.00

100 [30, 100] 10 54.80 57 54.80 57 10 0.00 0.00

150 [30, 100] 6 33.33 35 32.50 34 1 2.54 3.23

n = 100

C wi

of

optimally

solved

instances

Avg

UB1

Max

UB1

Avg

Opt

Max

Opt

of

instances

UB1=

Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 8 54.50 62 54.50 62 8 0.00 0.00

150 [1, 100] 10 34.60 37 34.60 37 10 0.00 0.00

100 [30, 100] 3 73.33 75 73.33 75 3 0.00 0.00

150 [30, 100] 6 45.00 47 44.17 47 1 1.91 2.38

Table 5.11 shows the performance of the lower bounds for the number of bins

problem. In 52 out of 99 optimally solved problems the lower bound is equal to the

optimal value. So, it can be claimed that lower bound is not as strong as the upper

bound, the average percentage deviation of the lower bound from the optimal

solution is 3.68% for the number of bins problem. The worst performance of the

lower bound is observed when capacity is 100 and item weights are generated from

the range [30,100] regardless of the number of items. Deviations from the optimal

solution is smaller when capacity is 150.

56

Table 5. 11. The lower bound values on the number of bins and the optimal number

of bins

n = 50

C wi

of

optimally

solved

instances

Avg

LB1

Max

LB1

Avg

Opt

Max

Opt

of

instances

LB1=Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 10 25.20 252 26.40 31 3 4.19 9.68

150 [1, 100] 10 17.10 171 17.10 20 10 0.00 0.00

100 [30, 100] 7 32.43 227 36.29 40 0 10.50 13.51

150 [30, 100] 9 22.00 198 22.22 24 7 0.95 4.35

n = 75

C wi

of

optimally

solved

instances

Avg

LB1

Max

LB1

Avg

Opt

Max

Opt

of

instances

LB1=Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 10 39.00 390 41.30 45 0 5.42 15.56

150 [1, 100] 10 26.20 262 26.20 27 10 0.00 0.00

100 [30, 100] 10 48.70 487 54.80 57 0 11.10 14.04

150 [30, 100] 6 32.50 195 32.50 34 6 0.00 0.00

n = 100

C wi

of

optimally

solved

instances

Avg

LB1

Max

LB1

Avg

Opt

Max

Opt

of

instances

LB1=Opt

Avg %

deviation

from

optimal

Max %

deviation

from

optimal

100 [1, 100] 8 51.88 415 54.50 62 1 4.51 10.00

150 [1, 100] 10 34.60 346 34.60 37 10 0.00 0.00

100 [30, 100] 3 64.33 193 73.33 75 0 12.25 13.33

150 [30, 100] 6 44.00 264 44.17 47 5 0.36 2.13

Table 5.12 shows the effect of the improvement heuristic on the upper bound. On the

average, the improvement is 28.79%. The heuristic improves the upper bound at

most when capacity is150 and item weights are generated from [30,100] by 50.10%

on the average.

57

Table 5.12. The performance of the improvement heuristic on the total overdeviation

problem

Total Overdeviation Problem % improvement

C wi n=50 n=75 n=100

100 [1, 100] 29.28 31.14 36.23

150 [1, 100] 12.07 12.00 19.90

100 [30, 100] 25.54 26.50 26.19

150 [30, 100] 41.47 56.82 52.98

Table 5.13 illustrates the upper and lower bound for the total overdeviation problem.

The bounds are evaluated for the problems that could not be solved by Property 1.

Problems for which lower bound is equal to 0 are excluded. In 83 out of 761

problems, that is 10.91% of the problems, upper and lower bounds are equal. The

bound values are closer when the capacities of bins are larger. Also when the

minimum weight is 1, the bounds perform better.

58

Table 5.13. The lower and upper bound values for total overdeviation problem

n = 50

C wi
of solns

(LB2≠0)

Avg

LB2

Max

LB2

Avg

UB2

Max

UB2

of solns

UB2=

LB2

Avg %

deviation

Max %

deviation

100 [1, 100] 24 150.13 383 157.96 384 7 8.47 45.61

150 [1, 100] 10 84.40 141 84.50 142 9 0.07 0.70

100 [30, 100] 73 385.12 878 458.85 952 0 23.01 91.82

150 [30, 100] 15 126.40 318 129.00 323 7 3.52 28.30

n = 75

C wi
of solns

(LB2≠0)

Avg

LB2

Max

LB2

Avg

UB2

Max

UB2

of

solutions

UB2=

LB2

Avg %

deviation

Max %

deviation

100 [1, 100] 30 155.17 406 170.63 406 10 18.61 92.68

150 [1, 100] 10 61.60 106 61.60 106 10 0.00 0.00

100 [30, 100] 109 552.55 1226 651.64 1302 0 23.28 92.93

150 [30, 100] 14 110.21 276 111.21 276 10 3.12 33.33

n = 100

C wi
of solns

(LB2≠0)

Avg

LB2

Max

LB2

Avg

UB2

Max

UB2

of

solutions

UB2=

LB2

Avg %

deviation

Max %

deviation

100 [1, 100] 38 269.29 823 298.82 823 10 16.73 88.38

150 [1, 100] 11 83.55 151 84.64 151 10 8.39 92.31

100 [30, 100] 151 748.30 1707 879.07 1844 0 23.03 98.37

150 [30, 100] 18 133.22 354 139.44 354 10 12.41 74.29

Table 5.14 illustrates the strength of the upper bound (the improved upper bound).

The results are reported for the problems whose optimal total overdeviation is found

by the model. For 151 out of 197 problems, the upper bound values were equal to the

optimal objective function values. The average deviation from the optimal value for

all problems is 1.95%.

When the capacity increases, the upper bound performs better. Note that when

capacity is 150, average percentage deviation from the exact solution is 0.12%

whereas when capacity is 100 the average percentage deviation is 2.75%. When the

problem space is more restricted (i.e. capacity is 100 and weight of item are

generated from the range [30,100]) the results found by the algorithm deviates more

from the exact solution regardless of the number of items. For this case, the

59

percentage deviation from the exact solution is 3.94% while for the case where the

capacity is 150 and item weights are generated from the range [1,100] the percentage

deviation is only 0.02%.

Table 5.14. The upper bound values on the total overdeviation and the optimal total

overdeviation

n = 50

C wi

of exact

solns

found by

the model

Avg

UB2

Max

UB2

Avg

exact

Max

exact

of

solution

s UB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 21 103.38 384 103.00 383 16 0.91 14.29

150 [1, 100] 10 84.50 142 84.40 141 9 0.07 0.71

100 [30, 100] 29 276.14 952 249.62 878 16 5.29 22.22

150 [30, 100] 11 142.55 323 141.09 318 8 0.61 4.33

n = 75

C wi

of exact

solns

found by

the model

Avg

UB2

Max

UB2

Avg

exact

Max

exact

of

solution

s UB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 27 95.70 406 95.44 406 24 2.65 26.67

150 [1, 100] 10 61.60 106 61.60 106 10 0.00 0.00

100 [30, 100] 29 391.72 1302 362.83 1226 18 3.04 12.97

150 [30, 100] 11 122.64 276 122.64 276 11 0.00 0.00

n = 100

C wi

of exact

solns

found by

the model

Avg

UB2

Max

UB2

Avg

exact

Max

exact

of

solution

s UB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 18 182.89 823 182.89 823 18 0.00 0.00

150 [1, 100] 10 91.80 151 91.80 151 10 0.00 0.00

100 [30, 100] 18 857.61 1844 810.61 1707 8 3.19 9.56

150 [30, 100] 10 187.70 354 187.70 354 10 0.00 0.00

The performances of the lower bound are given in Table 5.15 It is seen that in all

problem sets the lower bound is equal to the exact value for 10 sets except one. 10

exact solutions for each problem set are the ones for which Property 1 becomes

effective. The condition of the Property 1 holds when the exact value is equal to the

lower bound. (Lower Bound=Total Weight-Total Capacity where Total Weight=

Total Deviation + Total Capacity in order for the algorithm in Property 1 to apply).

60

Table 5.15. The lower bound values on the total overdeviation and the optimal total

overdeviation

n = 50

C wi

of exact

solns

found by

the model

(LB2≠0)

Avg

LB2

Max

LB2

Avg

exact

Max

exact

of

solution

s LB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 11 181.36 383 103.00 383 10 4.15 45.61

150 [1, 100] 10 84.40 141 84.40 141 10 0.00 0.00

100 [30, 100] 10 690.80 878 690.80 878 10 0.00 0.00

150 [30, 100] 10 154.80 318 154.80 318 10 0.00 0.00

n = 75

C wi

of exact

solns

found by

the model

(LB2≠0)

Avg

LB2

Max

LB2

Avg

exact

Max

exact

of

solution

s LB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 10 241.60 406 241.60 406 10 0.00 0.00

150 [1, 100] 10 61.60 106 61.60 106 10 0.00 0.00

100 [30, 100] 10 1034.8 1226 1034.8 1226 10 0.00 0.00

150 [30, 100] 10 134.80 276 134.80 276 10 0.00 0.00

n = 100

C wi

of exact

solns

found by

the model

(LB2≠0)

Avg

LB2

Max

LB2

Avg

exact

Max

exact

of

solution

s LB2=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 10 324.10 823 324.10 823 10 0.00 0.00

150 [1, 100] 10 91.80 151 91.80 151 10 0.00 0.00

100 [30, 100] 10 1448.0 1707 1448.0 1707 10 0.00 0.00

150 [30, 100] 10 187.70 354 187.70 354 10 0.00 0.00

Table 5.14 shows that there are 204 exact solutions found by the model. In 120 of

these solutions (1 for every problem instance) Property 1 starts to apply; so the lower

bound is equal to upper bound (i.e. it is optimal). For the 84 remaining solutions for

only one problem, lower bound is found to be different than 0, this shows that the

lower bound has very little effect on the performance of the total overdeviation

problem. Table 5.15 shows that the upper bound is equal to the lower bound only

when the upper bound hits the optimal so Property 1 becomes effective.

61

5.2.2. Problem II: Minimization of the Number of Bins and Maximum

Overdeviation

The solution times of the number of bins problem and the maximum overdeviation

problem are reported in Tables 5.16 and 5.17 respectively. For each problem set,

maximum and average CPU times are reported. In the tables, “Max(1)” and

“Avg(1)” stand for the maximum and average CPU times of all problem instances,

respectively. On the other hand, “Max(2)” and “Avg(2)” are respective CPU times,

for all solved instances.

Table 5.16 reports the CPU times for the number of bins for Problem II. The

difference between this table and Table 5.1 is the time limit. Recall that the CPU

time limit is set to 3600 seconds for the number of bins and the total overdeviation

problems, 9000 seconds for the number of bins and the maximum overdeviation

problems.

The number of problems that can be solved within the limit changes and so do the

average and maximum times. The change can only be seen for the large size problem

instances. For the small size problems, i.e. for the problem sets for which all

problems are solved to optimality within 3600 seconds, (for example 50 items,

capacity is 150 and minimum weight is 1) average and maximum CPU times are the

same with those of Table 5.1.

62

Table 5.16. The CPU times for the number of bins problem when time limit is 9000

seconds

n = 50

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 13.56 2.13 13.56 2.13

150 [1, 100] 58.45 5.99 58.45 5.99

100 [30, 100] 9000.00 2762.79 0.72 0.48

150 [30, 100] 9000.00 1174.80 2733.01 305.38

n = 75

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 5.02 2.28 5.02 2.28

150 [1, 100] 0.00 0.00 0.00 0.00

100 [30, 100] 4.84 2.67 4.84 2.67

150 [30, 100] 9000.00 3614.14 129.50 38.85

n = 100

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 6788.10 1251.52 6788.10 1251.52

150 [1, 100] 0.00 0.00 0.00 0.00

100 [30, 100] 9000.00 6307.86 8.48 6.11

150 [30, 100] 9000.00 3707.62 661.46 173.23

* CPU times in seconds of all problems

** CPU times in seconds of all optimally solved problems

In Table 5.17 the CPU times for the maximum overdeviation problem are presented.

In the Max(1) column, it can be seen that for all the problem sets there is at least one

unsolved problem. The results show that as the number of items (so the number of

variables) increases; CPU times increase.

As the minimum weight increases; CPU times also increase. For all three problem

sets, when the gap between the minimum weighted item and the maximum weighted

item is smaller; it is more difficult to assign the items to the bins.

The results revealed that the capacity of the bins does not have any effect on the

solution times.

63

Table 5.17. The CPU times for the maximum overdeviation problem

n = 50

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 9000.00 347.86 6274.20 138.35

150 [1, 100] 9000.00 206.43 988.97 39.27

100 [30, 100] 9000.00 2260.60 8881.79 561.68

150 [30, 100] 9000.00 3158.54 8808.40 586.51

n = 75

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 9000.00 729.92 8183.57 181.79

150 [1, 100] 9000.00 732.60 8268.75 282.11

100 [30, 100] 9000.00 3773.01 8323.06 342.33

150 [30, 100] 9000.00 4210.34 8974.81 662.16

n = 100

C wi Max(1)* Avg(1)* Max(2)** Avg(2)**

100 [1, 100] 9000.00 2348.00 8628.23 451.77

150 [1, 100] 9000.00 1384.89 7933.46 351.43

100 [30, 100] 9000.00 4740.86 8643.84 450.51

150 [30, 100] 9000.00 5136.67 8965.34 613.09

* CPU times in seconds of all problems

** CPU times in seconds of all optimally solved problems

Table 5.18 shows that when the time limit is set to 9000 seconds, two more problems

are solved optimally in the problem set where the capacity is 100, number of items is

100 and item weights are generated from the range [1,100].

Table 5.18. The number of unsolved instances for the number of bins problem when

time limit is 9000 seconds

 # of unsolved instances*

C wi n = 50 n = 75 n = 100

100 [1, 100] 0 0 0

150 [1, 100] 0 0 0

100 [30, 100] 3 0 7

150 [30, 100] 1 4 4

*Out of 10 problem instances

64

In Table 5.19, the upper bounds on the number of efficient solutions for maximum

overdeviation problem are presented. The maximum and average number of efficient

solutions per problem instance are reported. Recall that 10 instances are solved for

each problem set.

Table 5.19. The number of efficient solutions for maximum overdeviation problem

n = 50

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 254 30 25.40

150 [1, 100] 161 19 16.10

100 [30, 100] 358 39 35.80

150 [30, 100] 213 23 21.30

n = 75

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 403 44 40.30

150 [1, 100] 252 26 25.20

100 [30, 100] 538 56 53.80

150 [30, 100] 318 33 32.00

n = 100

C wi

Upper

bound on

the # of

efficient

solutions

Max # of

efficient

solutions

per problem

instance

Avg # of

efficient

solutions

per problem

instance

100 [1, 100] 524 61 52.40

150 [1, 100] 336 36 33.60

100 [30, 100] 736 81 73.60

150 [30, 100] 431 46 43.10

65

Table 5.20 shows that the upper bound on the number of efficient solutions, number

of exact solutions found for the maximum overdeviation problem. The effect of the

number of items on the number of exact solutions found is clearly seen in the table.

As the number of items increases; the percentage of exact solutions found decreases.

The increase in the minimum weight from 1 to 30 also decreases the number of exact

solutions found by the model. But the effect of capacity on the number of exact

solutions is not clear.

The upper bound on the number of efficient solutions and the number of exact

solutions found are reported in Table 5.20 There are 19 dominated solutions for the

maximum overdeviation problem. The number of nondominated solutions is reported

as the number of exact solutions. The number of dominated solutions is 1 for 50

items, 5 for 75 items and 13 for 100 items.

66

Table 5.20. Results on the efficient solutions for the maximum overdeviation

problem

n = 50

C wi

Upper bound on

the # of efficient

solutions

of exact

solutions

found

% of exact

solutions

found

100 [1, 100] 254 247 98

150 [1, 100] 161 158 98

100 [30, 100] 358 286 80

150 [30, 100] 213 148 69

n = 75

C wi

Upper bound on

the # of efficient

solutions

of exact

solutions

found

% of exact

solutions

found

100 [1, 100] 403 377 93

150 [1, 100] 252 239 95

100 [30, 100] 538 320 60

150 [30, 100] 318 183 58

n = 100

C wi

Upper bound on

the # of efficient

solutions

of exact

solutions

found

% of exact

solutions

found

100 [1, 100] 524 404 78

150 [1, 100] 336 296 88

100 [30, 100] 736 358 50

150 [30, 100] 431 199 46

In Table 5.21 the quality of the model solutions for the unsolved problems of

maximum overdeviation problem is presented. The number of the model solutions

and average and maximum percentage deviations from lower and upper bounds are

reported. The model can find a solution to 1273 out of 1290 in 9000 seconds. The

solutions are close to the lower bounds for all problems.

67

Table 5.21. The performance of the model solutions for unsolved problems –

Maximum Overdeviation Problem

n = 50

C wi

Upper

bound on #

of unsolved

problems

of solution

found by

model to

unsolved

problems

Avg %

deviation

from UB3

Max %

deviation

from UB3

Avg %

deviation

from LB3

Max %

deviation

from LB3

100 [1, 100] 6 6 14.97 50.00 5.68 25.00

150 [1, 100] 3 3 80.97 216.67 6.71 16.67

100 [30, 100] 72 72 20.68 68.75 2.66 31.82

150 [30, 100] 65 65 80.16 525.00 7.25 50.00

n = 75

C wi

Upper

bound on #

of unsolved

problems

of solution

found by

model to

unsolved

problems

Avg %

deviation

from UB3

Max %

deviation

from UB3

Avg %

deviation

from

LB3

Max %

deviation

from LB3

100 [1, 100] 26 26 13.37 29.03 1.91 8.11

150 [1, 100] 13 13 34.18 100.00 10.54 50.00

100 [30, 100] 213 209 22.38 76.92 7.00 92.86

150 [30, 100] 135 132 101.98 1400.00 9.46 66.67

n = 100

C wi

Upper

bound on #

of unsolved

problems

of solution

found by

model to

unsolved

problems

Avg %

deviation

from UB3

Max %

deviation

from UB3

Avg %

deviation

from

LB3

Max %

deviation

from LB3

100 [1, 100] 116 116 19.64 400.00 4.08 50.00

150 [1, 100] 40 40 30.98 200.00 5.85 33.33

100 [30, 100] 369 365 17.86 71.43 7.39 92.86

150 [30, 100] 232 226 61.30 800.00 10.77 75.00

Table 5.22 shows the performance of the lower and upper bounds for the maximum

overdeviation problem. On the average, the lower bound deviates 16.04% from the

upper bound. For 9.22% of the problems upper bound is equal to the lower bound,

hence no optimization effort is needed.

When the item weights are generated in range [30, 100], the gaps between the

bounds are larger. For example, in the problem sets where item weights are generated

from range [30, 100]; the average percentage deviation of the lower bound from the

68

upper bound is 19.51% whereas in the problem sets where item weights are

generated from range [1,100]; the average percentage deviation is 11.59%.

When the capacity is 150; the bounds perform better and get closer. The average

percentage deviation for problems with capacity of 150 is 14.00% whilst it is 17.37%

when the capacity is 100. The number of items seems to have no significant effect on

the performance of the bounds.

Table 5. 22. The lower and upper bound values for the maximum overdeviation

problem

n = 50

C wi

of

solutions

(LB3≠0)

Avg

LB3

Max

LB3

Avg

UB3

Max

UB3

of

solutions

UB3=

LB3

Avg %

deviation

Max %

deviation

100 [1, 100] 241 288.04 2683 292.66 2683 26 12.39 89.47

150 [1, 100] 161 376.79 2765 380.80 2765 29 9.33 75.00

100 [30, 100] 316 312.96 3378 326.66 3378 19 20.25 92.86

150 [30, 100] 210 411.16 3286 425.26 3286 18 18.00 93.75

n = 75

C wi

of

solutions

(LB3≠0)

Avg

LB3

Max

LB3

Avg

UB3

Max

UB3

of

solutions

UB3=

LB3

Avg %

deviation

Max %

deviation

100 [1, 100] 380 327.93 3906 333.05 3906 47 13.13 87.50

150 [1, 100] 252 433.43 3856 436.94 3856 47 9.17 85.71

100 [30, 100] 472 349.92 4926 364.02 4926 15 20.81 93.33

150 [30, 100] 314 466.18 4831 479.75 4831 24 17.36 95.00

n = 100

C wi

of

solutions

(LB3≠0)

Avg

LB3

Max

LB3

Avg

UB3

Max

UB3

of

solutions

UB3=

LB3

Avg %

deviation

Max %

deviation

100 [1, 100] 497 354.78 5623 360.09 5623 39 13.40 91.67

150 [1, 100] 336 475.90 5317 479.84 5317 53 9.49 77.78

100 [30, 100] 635 378.28 6707 392.76 6707 37 20.94 94.44

150 [30, 100] 426 508.49 6654 522.84 6654 37 17.74 95.45

69

In Tables 5.23 and 5.24, the bounds are compared with the exact solutions for the

problems that can be solved in 9000 seconds.

Table 5.23 shows the performance of the upper bound with respect to the exact

solution for the maximum overdeviation problem. For 958 out of 3215 problems, i.e.,

29.80% of problems, the exact solution is equal to the upper bound. The average

percentage deviation of the upper bound from the exact solution is 9.50%

The performance of the upper bound gets worsen when the number of items is 100. It

deviates from the exact solution by 14.19% when there are 50 items; 7.76% when

there are 75 items and 35.80% when there are 100 items.

When the capacity is 100, the performance of the upper bound is better and is equal

to the exact solution in 37.65% of the problems, the average percentage deviation

from the exact solution is 6.31%. When the capacity is 150, the upper bound is equal

to the exact solution for 17.01% of the problems and average percentage deviation

from the exact value is 14.69% in problems. The average percentage deviation of

upper bounds is 36.00% when minimum weight is 1, 24.40% when minimum weight

is 30. It is observed that as the complexity of the problem increases, the possibility of

finding the exact solution via the upper bound increases but the average percentage

deviation also increases.

70

Table 5.23. The upper bound values on the maximum overdeviation and the optimal

maximum overdeviation

n = 50

C wi

of exact

solutions

found

Avg

UB3

Max

UB3

Avg

exact

Max

exact

of

solns

UB3=

exact

Avg %

deviation

 Max %

deviation

100 [1, 100] 247 284.22 2683 281.08 2683 64 7.24 87.50

150 [1, 100] 158 386.76 2765 382.87 2765 29 16.89 300.00

100 [30, 100] 286 324.17 3378 336.37 3378 120 8.20 75.00

150 [30, 100] 148 566.24 3286 579.07 3286 18 34.48 1500.00

n = 75

C wi

of exact

solutions

found

Avg

UB3

Max

UB3

Avg

exact

Max

exact

of

solns

UB3=

exact

Avg %

deviation

 Max %

deviation

100 [1, 100] 377 325.49 3906 330.34 3906 124 6.52 75.00

150 [1, 100] 239 455.08 3856 458.45 3856 47 15.70 600.00

100 [30, 100] 320 460.22 4926 471.14 4926 147 4.75 73.53

150 [30, 100] 183 765.02 4831 776.64 4831 24 5.20 33.82

n = 100

C wi

of exact

solutions

found

Avg

UB3

Max

UB3

Avg

exact

Max

exact

of

solns

UB3=

exact

Avg %

deviation

 Max %

deviation

100 [1, 100] 404 416.47 5623 421.06 5623 103 8.84 300.00

150 [1, 100] 296 534.83 5317 538.45 5317 53 14.27 350.00

100 [30, 100] 358 583.80 6707 595.73 6707 192 2.47 59.46

150 [30, 100] 199 1009.63 6654 1022.39 6654 37 6.38 500.00

Table 5.24 presents the performance of the lower bound with respect to the exact

solution. The lower bound for the maximum overdeviation problem performs much

better than the lower bound for the total overdeviation problem (see Table 5.15). The

average percentage deviation of the lower bound for the maximum overdeviation

problem is 6.79%. In 82.31% of the problems, the lower bound is equal to the exact

value which means the lower bound provides a quite good estimate for the maximum

overdeviation problem.

It is seen that the bound is better for the problems where the capacity is 150. In 1217

out of 1219 exact solutions, the lower bounds are equal to the optimal maximum

71

overdeviations. The average percentage deviation from the optimal maximum

overdeviation is 0.09% for the capacity of 150. For problems with the capacity of

100, the lower bound behaves as expected and its performance is better when

minimum weight is 1. The average percentage deviation is 7.12% when the item

weights are generated from the range [1,100] whereas it increases to 16.16% when

item weights are generated from the range [30,100] for capacity of 100.

Compared with Table 5.23 it is observed that for the maximum overdeviation

problem, the performance of the lower bound is better than the performance of the

upper bound.

Table 5.24. The lower bound values on the maximum overdeviation and the optimal

maximum overdeviation

n = 50

C wi

of

exact

solutions

(LB3±0)

Avg

LB3

Max

LB3

Avg

exact

Max

exact

of

solutions

LB3=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 236 293.85 2683 295.14 2683 184 6.78 89.47

150 [1, 100] 158 382.87 2765 382.87 2765 158 0.00 0.00

100 [30, 100] 244 379.97 3378 383.43 3378 143 14.62 92.86

150 [30, 100] 145 577.95 3286 577.99 3286 143 0.84 71.43

n = 75

C wi

of

exact

solutions

(LB3±0)

Avg

LB3

Max

LB3

Avg

exact

Max

exact

of

solutions

LB3=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 354 346.64 3906 347.72 3906 268 7.68 87.50

150 [1, 100] 239 455.08 3856 455.08 3856 239 0.00 0.00

100 [30, 100] 269 556.02 4926 559.07 4926 173 15.35 93.33

150 [30, 100] 183 765.02 4831 765.02 4831 183 0.00 0.00

n = 100

C wi

of

exact

solutions

(LB3±0)

Avg

LB3

Max

LB3

Avg

exact

Max

exact

of

solutions

LB3=

exact

Avg %

deviation

Max %

deviation

100 [1, 100] 386 440.21 5623 441.32 5623 307 6.82 91.67

150 [1, 100] 296 534.83 5317 534.83 5317 296 0.00 0.00

100 [30, 100] 322 665.38 6707 669.30 6707 202 17.99 94.44

150 [30, 100] 198 1014.73 6654 1014.73 6654 198 0.00 0.00

72

73

CHAPTER 6

CONCLUSIONS

In this thesis, we consider two bicriteria problems. The first problem takes the

number of bins and total overdeviation as two criteria, whereas the second problem

takes the number of bins and maximum overdeviation as two criteria.

We formulate the problems as mixed integer linear programming (MILP). Using

these programs, we generate the set of nondominated vectors with respect to define

criteria. We enhance the efficiency of the MILPs through lower and upper bounding

mechanisms. For total overdeviation problem, we define a property that finds many

nondominated solutions without using MILPs.

The results of our experiments have revealed that the problem with up to 100 items

could be solved for high capacity bins. The problems with up to 75 items could be

solved when the capacity is low.

Computational results show that the quality of the upper bound is better than that of

the lower bound in the total overdeviation problem whereas the quality of lower

bound is better than that of the upper bound in the maximum overdeviation problem.

The upper bound for the total overdeviation problem is equal to the optimal value for

76.65% of the problems while the lower bound for the maximum overdeviation

problem is equal to the optimal maximum overdeviation for 82.31% of the problems.

To the best of our knowledge, our study is the first bin packing study that considers

deviation based measures. Further research may be directed towards development of

enumeration and heuristic algorithms. Moreover different deviation based measures

like minimizing total squared workload might be dealt.

74

75

REFERENCES

[1] Alvim, A., Ribeiro, C., Glover, F., & Aloise, D. (2004). A Hybrid Improvement

Heuristic for the One-Dimensional Bin Packing Problem. Journal of

Heuristics, 10, 205-229.

[2] Bruno, J. L., & Downey, P. J. (1985). Probabilistic bounds for dual bin-

packing.Acta Informatica, 22(3), 333-345.

[3] Brusco, M., Köhn, H., & Steinley, D. (2012). Exact and approximate methods

for a one-dimensional minimax bin-packing problem. Annals of Operations

Research ,206, 611-626.

[4] Brusco, M., Thompson, G., & Jacobs, L. (1997). A morph-based simulated

annealing heuristic for a modified bin-packing problem. Journal of the

Operational Research Society, 48, 433-439.

[5] Chen, F., & Yao, E. (2001). Exact Algorithm For Bin Covering. Journal of

Zhejiang University Science Jzus, 2(3), 241-246.

[6] Coffman Jr, E. G., Leung, J. T., & Ting, D. W. (1978). Bin packing:

maximizing the number of pieces packed. Acta Informatica, 9(3), 263-271.

[7] Csirik, J., Frenk, J. B., Labbé, M., & Zhang, S. (1999). Two simple algorithms

for bin covering. Acta Cybernetica, 14(1), 13-25.

[8] de Carvalho, J. V. (1999). Exact solution of bin‐packing problems using column

generation and branch‐and‐bound. Annals of Operations Research, 86, 629-

659.

[9] Eilon, S., & Christofides, N. (1971). The loading problem. Management

Science,17(5), 259-268.

76

[10] Fleszar, K., & Hindi, K. (2002). New heuristics for one-dimensional bin-

packing. Computers & Operations Research, 29, 821-839.

 [11] Foster, D. P., & Vohra, R. V. (1989). Probabilistic analysis of a heuristics for

the dual bin packing problem. Information Processing Letters, 31(6), 287-290.

[12] Garey, M.R. Johnson, D.S. (1979) Computers and Intractability: A guide to

the Theory of NP-Completeness, New York : W. H. Freeman and Company.

[13] Geiger, M. J. (2008). Bin packing under multiple objectives-a heuristic

approximation approach. Fourth International Conference on Evolutionary

Multi-Criterion Optimization, Matsushima, Japan, 53-56.

 [14] Graham, R. (1969). Bounds on Multiprocessing Timing Anomalies. SIAM

Journal on Applied Mathematics, 17, 416-429.

 [15] Gupta, J.N.D, & Ho, J.C. (1999). A new heuristic algorithm for the one-

dimensional bin-packing problem. Production Planning & Control, 10, 598-

603.

[16] Hung, M. S., & Brown, J. R. (1978). An algorithm for a class of loading

problems. Naval Research Logistics Quarterly, 25(2), 289-297.

[17] Johnson, D. (1974). Fast algorithms for bin packing. Journal of Computer and

System Sciences, 8, 272-314.

[18] Johnson, D., Demers, A., Ullman, J., Garey, M., & Graham, R. (1974). Worst-

Case Performance Bounds for Simple One-Dimensional Packing

Algorithms. SIAM Journal on Computing, 3(4), 299-325.

[19] Karasakal, E., Azizoglu, M., & Ilicak I. (2014). Bi-objective Bin Packing

Problems: Exact Approaches to Generate All Efficient Solutions. Technical

Report No: 14-01, Middle East Technical University, Ankara.

77

[20] Kim, B., & Wy, J. (2010). Last two fit augmentation to the well-known

construction heuristics for one-dimensional bin-packing problem: An empirical

study. The International Journal of Advanced Manufacturing Technology, 50,

1145-1152.

[21] Labbé, M., Laporte, G., & Martello, S. (1995). An exact algorithm for the dual

bin packing problem. Operations Research Letters, 17(1), 9-18.

[22] Labbé, M., Laporte, G., & Martello, S. (2003). Upper bounds and algorithms

for the maximum cardinality bin packing problem. European Journal of

Operational Research, 149, 490-498.

[23] Loh, K., Golden, B., & Wasil, E. (2008). Solving the one-dimensional bin

packing problem with a weight annealing heuristic. Computers & Operations

Research, 35, 2283-2291.

[24] Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Chichester, England.

[25] Mezghani, S., Chabchoub, H., & Aouni, B. (2013). Manager's preferences in

the Bi-Objectives Bin Packing Problem. In Modeling, Simulation and Applied

Optimization, 5th International Conference, 1-4. IEEE.

[26] Mladenović, N., & Hansen, P. (1997). Variable neighborhood search.

Computers & Operations Research, 24, 1097-1100.

[27] Naderi, B., & Yazdani, M. (2014). A Real Multi-Objective Bin Packing

Problem: A Case Study of an Engine Assembly Line. Arabian Journal for

Science and Engineering, 39(6), 5271-5277.

[28] Patel, K., & Panchal, M. (2014). One-Dimension Multi-Objective Bin Packing

Problem using Memetic Algorithm.

[29] Peeters, M., & Degraeve, Z. (2006). Branch-and-price algorithms for the dual

bin packing and maximum cardinality bin packing problem. European Journal

of Operational Research, 170(2), 416-439.

78

[30] Pérez, J., Castillo, H., Vilariño, D., Zavala, J. C., De la Rosa, R., & Ruiz-

Vanoye, J. A. (2015). A hybrid algorithm with reduction criteria for the bin

packing problem in one dimension. In Proceedings of the International

Conference on Numerical Analysis and Applied Mathematics 2014 (icnaam-

2014) (Vol. 1648, p. 820003). AIP Publishing.

[31] Rao, R. L., & Iyengar, S. S. (1994). Bin-packing by simulated

annealing.Computers & Mathematics with Applications, 27(5), 71-82.

[32] Ross, P., Marín-Blázquez, J., Schulenburg, S., & Hart, E. (2003). Learning a

Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based

Approach to Hyper-heuristics. Genetic and Evolutionary Computation 2003,

Lecture Notes in Computer Science, 2724, 1295-1306.

[33] Scholl, A., Klein, R., & Jürgens, C. (1997). BISON: A fast hybrid procedure

for exactly solving the one-dimensional bin packing problem. Computers &

Operations Research, 24(7), 627-645.

[34] Singh, A., & Gupta, A. (2006). Two heuristics for the one-dimensional bin-

packing problem. OR Spectrum, 29, 765-781.

[35] Stawowy, A. (2008). Evolutionary based heuristic for bin packing

problem. Computers & Industrial Engineering, 55, 465-474

