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ABSTRACT 

 

 

BICRITERIA BIN PACKING PROBLEM  

WITH  

DEVIATION BASED OBJECTIVES 

 

 

 

Öylek, Ayla 

M. S., Department of Industrial Engineering 

         Supervisor       : Assoc. Prof. Dr. Esra Karasakal 

         Co-Supervisor : Prof. Dr. Meral Azizoğlu 

 

December 2015, 78 pages 

 

In this thesis, two bicriteria bin packing problems are addressed. Bin packing 

problem is an NP-hard combinatorial optimization problem. Items with different 

weights are packed into bins with limited capacity in order to minimize the 

required number of bins. Objectives of the first problem are minimizing the 

number of bins and minimizing the total overdeviation. In the second problem, 

minimization of the number of bins and minimization of the maximum 

overdeviation are two conflicting objectives. For the solutions of the problems 

mixed integer linear programming models are formulated and used to find all 

nondominated objective vectors. The upper bounds and lower bounds are 

developed on the objective function values and bounds are incorporated into the 

mathematical models to increase the solution efficiency of the models. 

Computational results show that the problem with up to 100 items could be solved 

for high capacity bins. The problems with up to 75 items can be solved when the 

capacity is low.  

 

Keywords: Bin Packing, Total Overdeviation, Maximum Overdeviation, 

Multiobjective Optimization, Nondominated Objective Vectors 
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ÖZ 

 

 

İKİ KRİTERLİ  

KUTU PAKETLEME PROBLEMLERİ 

 

 

 

Öylek, Ayla 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

       Tez Yöneticisi           : Doç. Dr. Esra Karasakal 

       Ortak Tez Yöneticisi : Prof. Dr. Meral Azizoğlu 

 

Aralık 2015, 78 sayfa 

 

Bu çalışmada, iki kriterli iki kutu paketleme problemini ele aldık. Kutu paketleme 

problemi çözümü polinom zamanlı olmayan (NP) kombinatoriyal bir problemdir. 

Farklı ağırlıktaki nesnelerin en az kutu kaplayacak şekilde sınırlı kapasiteli kutulara 

yerleştirilmesidir. İlk problemin birbiriyle çelişen amaç fonksiyonları kutu sayısının 

ve kutu kapasitesinden toplam sapmanın en azlanmasıdır. Kutu sayısının ve 

maksimum sapmanın en azlanması ikinci problemin birbiriyle çelişen amaç 

fonksiyonlarıdır.  

Problemi tam sayılı karmaşık model olarak formüle ettik ve etkin çözümler elde eden 

kesin yöntemler kullandık. Çözümlerin kalitesini arttırmak için alt ve üst sınırlar 

önerdik.  

Deneysel sonuçlarımız 100 nesneye kadar olan problemlerin yüksek kapasiteli 

kutular için çözülebildiğini, düşük kapasiteli kutular için 75 nesneye kadar olan 

problemlerin çözülebileceğini gösterdi. 

Anahtar Kelimeler: Kutu Paketleme, Toplam Sapma, Maksimum Sapma, Çok 

Amaçlı Optimizasyon, Etkin Çözümler 
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CHAPTERS 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The bin packing problem is one of the well-recognized problems of the Operational 

Research (OR) literature. The problem decides on the assignment of the items to the 

bins so as to minimize the prespecified objective function. The items have defined 

capacity usages and the bins have defined capacity availabilities. 

The objective functions used in the Bin Packing Problems (BPP) define the type of 

the problem. The classical bin packing problems minimize the number of bins used 

to pack all items without exceeding any bin capacity. The maximum cardinality BPP 

takes fixed number of bins and maximizes the number of items packed without 

exceeding any bin capacity. The bin covering problem maximizes the number of bins 

used by exceeding the capacity of each bin.  

The BPPs in general and the classical BPP in particular have been taken the attention 

of many researchers for many years. This is due to their theoretical challenge and 

practical importance. They are theoretically challenging as they are shown to be 

hard-to-solve problems. They are practically important as they are directly and 

indirectly applied to many practical situations. 

Logistics sector is an area where the BPPs find their direct application. Assigning 

items into trucks, cargo airplanes, ships while minimizing the number of trucks, 

cargo airplanes and ships are examples for the classical BPPs. 

The BPPs find their indirect applications in manufacturing environments. The well-

known cutting stock problem is a BPP where the items are assigned to the sheets so 

as to minimize the waste, i.e., the number of sheets used. Parallel machine 

scheduling problem is a BPP where the jobs (items) of specified processing times 
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(capacity requirements) are to be assigned to the machines (bins) of specified 

capacities. The classical Assembly Line Balancing Problem is another notable 

application area. The tasks (items) of specified task times (capacity requirements) are 

to be assigned to the workstations (bins) without exceeding the cycle time (bin 

capacity).The BPPs studied in the literature either minimize/maximize the number of 

bins used for a given number of items or maximize the number of items for a given 

number of bins. The capacities are set tight in those studies; they either play a role of 

upper bounds or lower bounds.  

In this study, it is assumed that the bin capacities can be violated with some penalty, 

i.e., the capacities are soft –but not hard- constraints. The associated objective 

functions minimize a function of the deviations around the preset capacities, like 

minimizing total overdeviation or minimizing maximum overdeviation. 

Dealing with bin capacity violations, i.e., deviations might be an important concern 

for the cases where the bins are shared by some other parties. The deviations will 

then be represented the amount that the user wants to increase his/her capacity share. 

The share of the user can be increased provided that proper negotiations are done. 

The proper negotiations might be done provided that the deviations around the preset 

capacities are found properly. 

The total/maximum overdeviation problem finds its application in the assembly line. 

The cycle time defines the production rate of an assembly line. An increase in cycle 

time, capacity in BPP terminology, would lead to a reduction in the number of 

workstations, bins in BPP. A decision maker might accept an increase in the cycle 

time; thereby decrease in the production rate, provided that such an increase leads to 

a reduction in the number of workstations, thereby resource usages. The natural 

problem becomes to catch the trade-off between the deviation from the capacity and 

the number of workstations (Naderi et al. [27]). 

In this study, a bicriteria problem that considers minimizing total number of bins 

used and minimizing total/maximum overdeviation around the bin capacities is 

studied. Our aim is to generate all nondominated objective vectors. To the best of our 

knowledge, our study is the first attempt for deviation based objectives, in BPPs. 
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The rest of the thesis is organized as follows: Chapter 2 presents a literature review 

on the bin packing problems then gives brief information about the types of bin 

packing problems and classifies the literature review according to these types. In 

Chapter 3, our problems are defined, their mathematical models are given and some 

properties of the solutions are presented. The notation used and some definitions are 

given in this chapter. Chapter 4 discusses our solution approaches to generate all 

nondominated objective vectors along with the lower bounds and upper bounds. 

Chapter 5 reports on our computational experiments and discusses its results. 

Chapter 6 gives a brief conclusion of our study. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

This section reviews the literature on the bin packing problems. The single criterion 

bin packing problems are reported first and then the multi-criteria bin packing 

problems are reviewed.  

Online and offline are two different categories of bin packing according to the 

information about the input. Items arrive dynamically in online bin packing problems 

where all items are known at the beginning in offline type bin packing problems. Our 

study focuses on offline type bin packing problems. 

The dimension of the items and bins is another important criterion for classification 

of the bin packing problem. Single or multiple dimensions can be used to pack items 

to bins. In one-dimensional bin packing problems, the weight of an item is selected 

mostly as the single property. In multi-dimensional bin packing problems, other 

properties like weight, height, length, width can be used for packing. Our problem is 

one-dimensional bin packing problem and the weight of items is used in our 

problem. 

The bin packing  problems are also categorized according to bin capacity. There are 

single sized and variable sized problems. In single sized problems, bins have equal 

capacities wherein variable sized version bins have different capacities. In our 

problem, all bins have equal capacities.   
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2.1. Single Criterion Bin Packing Problems (BPPs) 

The basic single criterion BPPs are of four types: Classical BPP, Maximum 

Cardinality BPP, Bin Covering Problem and Modified BPP. The problems assume 

that there are n items of weight wi for item i and m bins of identical capacity C. 

The mathematical model is first given and then the related literature of each basic 

problem is reviewed. 

 

2.1.1. Classical Bin Packing Problems 

The classical bin packing problem minimizes the number of bins used to pack all 

items without exceeding the bin capacities.  

The decision variables associate with the assignment of the items to the bins is stated 

as follows: 





ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 





selected  is  bin   if     1
otherwise    0

j
jy  

 

Constraint set (1) states that each item is assigned to one bin 


j

 xij =  1,                   i     (1) 

Constraint set (2) ensures that the capacity of each bin used is not exceeded 


i

wixij   cyj,    j     (2) 
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The objective function is as expressed below 

Minimize  
j

 yj      (3) 

The classical BPP is shown to be strongly NP-hard by Garey and Johnson [12]. 

There are numerous studies on the classical BPPs. The studies are reviewed 

according to the solution procedures used. Firstly, the literature review about 

approximation algorithms is given and then literature review about exact algorithms 

of classical bin packing problem is given. 

 

2.1.1.1. Approximation Algorithms     

Firstly, well-known bin packing heuristics such as next fit, first fit and best fit 

algorithm are given then recent studies are introduced.  

Johnson [17] developed a number of simple one-dimensional bin packing algorithms 

namely next fit, first fit, best fit and worst fit heuristics. 

Next fit is the simplest approximation approach. It tries to pack arbitrarily ordered 

items to bins. The approach packs the item into the current bin, if the item does not 

fit then it creates a new bin and insert the item into the new bin. 

First fit is a better algorithm than next fit. The algorithm tries to pack an item into the 

first available bin; if the item does not fit into any bin then it creates a new bin and 

inserts the item into the new bin. 

Best fit is another well-known approximation algorithm obtained from first fit 

algorithm. Best fit algorithm calculates remaining capacity of all bins. It tries to pack 

an item into a feasible bin having smallest remaining capacity. If the item does not fit 

any bin then it creates a new bin and inserts the item into the new bin. 

Worst fit is similar to best fit algorithm. Worst fit algorithm calculates remaining 

capacity of all bins then it tries to pack an item into a feasible bin having largest 
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remaining capacity. If the item does not fit any bin then it creates a new bin and 

inserts the item into the new bin. 

Johnson et al. [18] examined the performance of simple algorithms and they 

developed next fit decreasing (NFD), first fit decreasing (FFD), best fit decreasing 

(BFD) and worst fit decreasing (WFD) algorithms. These four algorithms are similar 

to the algorithms of Johnson [17]. NFD, FFD, BFD and WFD algorithms start with 

sorting the items in nonincreasing order of their weights. Other steps of the 

algorithms are similar to the steps of Johnson[17] ‘s algorithms. 

Mladenovic and Hansen [26] developed an effective meta-heuristic by variable 

neighborhood search method (VNS). The heuristic is based upon the strategy of 

using more than one neighborhood structure and of changing those structures 

systematically during the local search. VNS explores distant neighborhoods from the 

current solution and to jump to a new one if and only if an improvement was made. 

A local search routine is also applied to get from new solutions to local optima. 

Gupta and Ho [15] presented a new algorithm to bin packing problem; minimum bin 

slack heuristic (MBS). At each step, the algorithm tries to find a set of items  to pack 

that fits the bin capacity as much as possible. All possible subsets of items are tested 

to pack in order to use bin capacity better. Result part of the study shows that MBS is 

better than FFD and BFD in terms of solution quality.  

Fleszar and Hindi [10] enhanced the approach of Gupta and Ho and proposed four 

new algorithms based on MBS. The first algorithm, MBS’, is modified version of the 

original algorithm. Before the search procedure is started, an item is chosen and fixed 

in the bin. Other three heuristics are based on MBS’. In relaxed MBS’, the authors 

accept some packing with positive slack. The third one is Perturbation MBS, starting 

from an initial solution, the heuristic finds a new solution by perturbing the current 

one. Sampling MBS’ algorithm is the last one; the algorithm applies MBS’ several 

times by changing the order of unassigned items. Results show that MBS based 

heuristics give good results in reasonably short solution times.   
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Ross et al. [32] suggested an approach based on messy genetic algorithm in order to 

solve one-dimensional bin packing problem. Hyper-heuristics uses some 

combination of well-known heuristics to find a better solution to problems. The 

approach applied four basic bin packing heuristics and four improvement heuristics 

trying to pack an item in any open bins rather than in a new bin. GA-based algorithm 

applied to a large set of benchmark problems. Experiments showed that the algorithm 

found the optimal solution for nearly 80% of them and for others found a solution 

very close to optimal. 

Alvim et al. [1] described a hybrid improvement procedure for the bin packing 

problem. The approach is based on feasible solutions to dual bin packing problem 

using fixed number of bins. Progressive increase in the number of bins is used by a 

possibly feasible solution. Reduction techniques lower and upper bounds, an 

algorithm using lower bounding strategies, load redistribution and an improvement 

process utilizing tabu search are used in the procedure. Experiments with benchmark 

problem sets showed that the procedure improved the best-known solutions for many 

of the benchmark instances and found the largest number of optimal solutions with 

respect to the other available approximate algorithms. The hybrid algorithm 

outperforms any known heuristics. 

Singh and Gupta [34] proposed an approach combining two heuristics for the one-

dimensional bin packing problem. The authors applied a hybrid steady-state grouping 

genetic algorithm to bin packing problem and developed an improved version of 

Perturbation MBS heuristic [10]. The approach combines hybrid steady-state 

grouping genetic algorithm and improved Perturbation MBS heuristic. The hybrid 

algorithm combines steady state grouping genetic algorithm and improved better fit 

heuristic. Improved better fit heuristic allocates unassigned items to the bins after the 

application of the genetic algorithm. 

Stawowy [35] presented a simple, non-specialized and non-hybridized evolutionary 

based heuristic to the bin packing problem. The algorithm does not have a pure 

evolutionary strategy. Modified encoding scheme for the permutation with 

separators, the concept of separators’ movements during mutation, and separators’ 

removal for problem size reduction are used to solve the one-dimensional bin 
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packing problem. Computational experiments with benchmark problem sets showed 

that the procedure is comparable to much more complicated algorithms. 

Loh et al. [23] presented a new way of one-dimensional bin packing problem with 

weight annealing procedure. Proposed algorithm is easy to understand and 

straightforward. The algorithm finds an initial solution by use of first fit decreasing 

heuristic and calculates bin load and residual capacity for each bin. In improvement 

phase, exchanging operations are derived between all possible pairs of bins. 

Experiments of benchmark instances showed that procedure found high-quality 

solutions within very low computing times and found new optimal solutions. 

Kim and Wy [20] introduced a new packing algorithm which considers the use of the 

last two fit (L2F) augmentation to next fit decreasing, first fit decreasing, and best fit 

decreasing algorithms. L2F augmentation improves the solution of original 

algorithms checking to pack an additional item into the bins or to replace an item 

with a pair of unpacked items whose total weights are larger than the item. The 

authors studied on four simple algorithms; NFD_L2F, FFD_L2F, BBB_FFD_L2F, 

and BFD_L2F. Computational results showed that the algorithm improved the 

solutions of the benchmark problem sets.  

Pérez et al. [30] described a hybrid algorithm in order to find the optimal solution to 

one dimensional bin packing problem. Hybrid algorithm is based on a heuristic and a 

mathematical model. Heuristic method uses FFD_L2F algorithm first, if the number 

of bins is equal to lower bound then the algorithm terminates, otherwise an exact 

method is used. Lower bound is derived using a metaheuristic and the mathematical 

model is based on flow arcs technique introduced by de Carvalho [8] called as 

Valerio model. Valerio model is modified by defining new constraint with the lower 

bound. Computational results showed that the proposed algorithm finds the optimal 

solution for all instances using less time than Valerio model. 
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2.1.1.2. Exact Algorithms  

In this subsection, the exact algorithms developed for solving Classical BPPs are 

introduced.  

Eilon and Christofides [9] presented a branch and bound procedure with a simple 

depth-first search and a best-fit decreasing branching strategy. In each node, 

alternative subproblems are generated by assigning the selected item to all initialized 

bins in increasing order of their residual capacities if it fits. If there is no available 

bin, a new bin is initialized by assigning the current item to it. 

Hung and Brown [16] proposed a branch and bound algorithm for the generalization 

of the BPP with different bin capacities. The algorithm performs a branching strategy 

similar to that in the procedure of Eilon and Christofides [9]. The algorithm is based 

on a characterization of equivalent assignments, thereby reducing the number of 

explored nodes. Results of the study show that only small-sized problem instances 

can be solved.  

Martello and Toth [24] developed an algorithm, MTP, based on a “first fit 

decreasing” branching strategy. The items are indexed in nonincreasing order of their 

weights and MTP applies a reduction algorithm. The algorithm indexes the bins 

according to their initial order. At each decision node, the first unassigned item is put 

to the feasible initialized bin or to a new bin. Computational results indicate that 

MTP algorithm is the most effective branch and bound procedure. 

Scholl et al. [33] proposed a fast hybrid procedure BISON for solving the classical 

BPP. BISON composed of different known and new bound arguments and reduction 

procedures, several heuristics, and a branch and bound procedure. BISON calculated 

lower bound and upper bound first if they are equal the procedure terminates, if they 

are not equal, the procedure continues with tabu search. BISON tries to find a 

feasible solution with tabu search. After tabu search, if lower and upper bounds are 

still not equal then an algorithm that uses a depth-first search branch and bound 

procedure is implemented. 



12 

 

Carvalho [8] studied the one-dimensional bin packing problem. They make use of its 

similarity with the cutting stock problem and present an exact solution algorithm to 

the cutting stock problem which actually solves the application of it; the bin packing 

problem (the demand for each item –stock size- is 1). At each node in a branch and 

bound tree subproblems with different structures are produced. In order to overcome 

this difficulty an arc flow formulation is introduced which includes a set of flow 

constraints and set of constraints to ensure demand is satisfied. The arc flow 

formulation allows column generation at any node in the tree. The subproblem 

generates a set of arcs which mean cutting patterns in cutting stock problem (or set of 

items to fit in a bin in the bin-packing problem). They also make use of LP relaxation 

to define lower bounds at nodes and generate attractive columns. 

 

2.1.2. Maximum Cardinality Bin Packing Problem 

The maximum cardinality BPP maximizes the number of items packed without 

exceeding the capacity of a prespecified number of bins (Labbé et al. [22]).  

The decision variable associated with the assignment of the items to the bins is stated 

as follows 





ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 

The mathematical formulation of the problem is as stated below: 

Maximize  
i


j

xij       (4) 

s.t.  
i

wixij   c   j (j=1,…,m)    (5) 


j

 xij  1                  i (i=1,…,n)     (6) 

xij = 0 or 1     i and j (i=1,…,n), (j=1,…,m) (7) 
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The objective function expressed in (4) maximizes the number of items packed. The 

constraint set (5) ensures that the capacity of each bin is not exceeded. Each item is 

assigned to at most one bin as stated by constraint sets (6) and (7). 

 

2.1.2.1. Approximation Algorithms 

Coffman et al. [6] analyzed very fast heuristics for maximum cardinality type bin 

packing problem. They developed an algorithm, First- Fit Increasing (FFI) algorithm 

and analyzed its running time and performance. The algorithm sorts the items 

according to the increasing order of their weights, and an item is placed into the 

lowest indexed bin which it fits. The algorithm tries to find a maximum subset of 

smaller pieces.  

Foster and Vohra [11] presented the probabilistic analysis of First- Fit Increasing 

heuristic for the maximum cardinality bin packing problem. Results of the study 

indicate that for the independent and identically distributed items, the relative error 

of the first fit increasing heuristic approaches to zero where the number of items 

approaches to infinity. 

Peeters and Degraeve [29] studied on branch and price algorithms in order to solve 

the maximum cardinality bin packing problem and the bin covering problem. The 

authors introduced a new formulation for both problems. This formulation can be 

solved with column generation and tight upper bounds are derived from the LP 

relaxation of this formulation. They introduced a branch and price algorithm for both 

problems. The branch-and-price algorithm is applied whenever the upper bound 

derived from the LP relaxation differs from the heuristics. Experimental results 

showed that mostly the upper bound found by LP relaxation is equal to the optimal 

solution. The algorithm can solve large instances and difficult data sets. 

Labbé, Laporte and Martello [22] developed an algorithm for maximum cardinality 

bin packing problem. The objective of the problem is to maximize the number of 

items packed bins without exceeding bin capacities. The algorithms is a heuristic 

approach using simple bin packing heuristics of the Johnson et al. [18]. The authors 
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described a reduction procedure for the heuristic approach. Tight upper bounds are 

derived. The algorithm guarantees a feasible solution and computational results 

showed that algorithm finds an optimal solution within very low computing times. 

 

2.1.3. Bin Covering Problems 

The bin covering problem assumes that there are unlimited number of bins and 

maximizes the number of bins used. The problem takes the capacity of each bin as a 

lower bound on the total weight assigned to that bin. (Chen and Yao [5]) 

The decision variables associate with the assignment of the items to the bins are 

stated as follows 





ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 





selected  is  bin   if     1
otherwise    0

j
jy  

The mathematical formulation of the problem is as stated below: 

Maximize  
j

 yj        (8) 

s.t.  
j

 xij   1                   I    (9) 


i

wixij   cyj    j    (10) 

xij = 0 or 1     i and j   (11) 

yj = 0 or 1      j    (12) 

The objective unction expressed in (8) maximizes the number of bins used. The 

constraint sets (9) and (11) ensure that each item is assigned to at most one bin. 

Constraint set (10) states the lower limit on the capacity usage. 
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In this section, the approximation algorithms are reviewed first and then a few exact 

algorithms are presented to solve bin covering problems.  

 

2.1.3.1. Approximation Algorithms  

Bruno and Downey [2] applied First-Fit Increasing heuristic for bin covering 

problem. Item sizes are chosen uniformly. The authors showed that the performance 

of the FFI policy can be made arbitrarily close to the optimal policy with any desired 

degree of confidence for large sample sizes. The authors derived a lower bound on 

the expected result of the FFI.  

Csirik et al. [7] developed two simple algorithms for bin covering problems; 

Heuristic Simple (SI) and Improved Heuristic Simple (ISI). Items are sorted in 

nonincreasing order with respect to their weights and first k items are packed where 

the sum of the weights up to (k+1)th item is greater than or equal to one in the 

heuristic simple algorithm. Algorithm tries to fill slack of the bin by adding items 

from the end of the list. Improved Simple Heuristic (ISI) is the improved version of 

Heuristic Simple. The heuristic divides the items into three groups according to their 

weights. The algorithm compares the item subsets from different groups and selects 

the best combination. The authors aimed to assign larger items to empty bins so as to 

use more bins. 

 

2.1.3.2. Exact Algorithms  

Labbé et al. [21] studied on an exact algorithm for the bin covering problem. They 

presented some reduction criteria, upper bounds and an enumerative algorithm. The 

authors developed a depth first branch and bound algorithm. At the first step of the 

algorithm, two reduction criteria are applied and an upper bound is derived.  A lower 

bound is computed and if the upper bound is equal to lower bound procedure 

terminates. The branching strategy of the algorithm is based on finding more 

promising nodes. Experimental results of the study showed that the combined effect 
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of the reduction criteria and the upper bounds made a hard problem relatively easy to 

solve one, in most cases 

Chen and Yao [5] study the bin covering problem which is a dual problem of the bin 

packing problem. They formulate the problem as a set partitioning problem and 

develop a branch and bound strategy using column generation. In order to overcome 

the difficulty of subproblems with different structures, they use the idea of 

Carvalho[8] and use a flow model. At the branch and bound tree, they also use the 

LP relaxation method to either to continue the depth-first branching or fathoming a 

node. They introduce some criterion to produce attractive and feasible paths (the 

columns to be added) which is the main difference of the study from Carvalho[8]. 

 

2.1.4. Modified Bin Packing Problems 

Brusco et al. [4] described a variant of the classical bin packing problem as modified 

bin-packing problem. The modified bin packing problem decides on the assignment 

of items to the fixed number of bins of unlimited capacity so as to minimize the 

squared deviation of the bins from the average weight. 

The decision variable associate with the assignment of the items to the bins is stated 

as follows 





ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 

The mathematical formulation of the problem is as stated below: 

Minimize  
j

 [ T - 
i

 xijwi]
2
      (13) 

s.t.  
j

 xij =  1                   i    (14) 

xij = 0 or 1     i and j   (15) 
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The objective function (13) gives the total squared deviation around an average 

weight T = 
i

 wi / m. 

The constraint sets (14) and (15) ensure that each item is assigned to exactly one bin. 

Rao and Iyengar [31] studied a different version of classical bin packing problem; the 

modified bin packing problem. Bins have unlimited capacity and there is fixed 

number of bins available. The objective of the problem is to minimize the sum of 

squared deviation between the average weight of a bin calculated by dividing the 

total weight of items to the number of bins and sums of the item weights in that bin. 

The authors proposed an algorithm based on simulated annealing. The algorithm 

starts from a randomly generated initial solution and uses a completely random 

neighborhood search procedure. Experimental results showed that the algorithm is 

much better than any of the heuristic methods of bin packing in terms of solution 

quality. 

Brusco, Thompson and Jacobs [4] enhanced Rao and Iyengar’s algorithm and 

presented a heuristic based on simulated annealing for modified bin packing 

problem. Their procedure used a morph-based search procedure in order to find 

better allocation. Rao and Iyengar’s neighborhood search procedure evaluates many 

interchanges that have little chance of improving the objective function. The 

neighborhood search procedure of Brusco et al. [4] evaluates interchanges that are 

more likely to improve the objective function by limiting such interchanges to 

similarly-sized items. Results of the study indicate that the morphing process 

improves the solution of simulated annealing heuristics for these problems. 

Brusco, Köhn and Steinley [3] suggested a new way to solve modified bin packing 

problem. They combined minimax bin packing problem and modified bin packing 

problem. The objective function of the problem is minimizing the maximum sum of 

the weights within each bin. The authors formulated a mixed zero-one integer linear 

programming model and developed a heuristic procedure based on the simulated 

annealing algorithm. Results showed that the simulated annealing heuristic generally 

provided better solutions than commercial mathematical programming software 

package solution to the mathematical formulation. 
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2.2. Multi-Criteria Bin Packing Problems 

The majority of the BPP studies consider single criterion problems. The studies on 

the multicriteria BPPs are scarce and of relatively recent origin. The most noteworthy 

of these studies are due to Geiger [13], Mezghani et al.[25], Naderi et al. [27], and 

Patel et al. [28]. 

Geiger [13] proposed a heuristic approximation approach for the multi-objective bin 

packing problem. Minimizing the number of bins and minimizing the 

heterogeneousness of the elements in each bin are two conflicting objectives of the 

problem. Geiger presents a heuristic approach using modified best fit algorithm 

based on the principle of the conventional method. The approach computes an 

approximation of the set of efficient solutions when controls the heterogeneousness 

of the bins. His computational results compared with benchmark instances and 

random-fit algorithm showed the applicability of the heuristic approach to the 

problem. 

Mezghani et al. [25] considered manager’s preferences in the multi-objective bin 

packing problem and proposed a goal programming model for the problem where the 

objectives are minimizing the number of bins and minimizing the conflict between 

items among the bin. Goal programming model includes satisfaction function to 

integrate different types of manager’s preferences.  

Naderi et al. [27] developed a local search-based heuristic for a real case study of 

multi-objective bin packing problem. They formulated the problem as a mixed 

integer linear programming model and proposed a heuristic procedure for large sized 

instances of the problem. The objectives of the car manufacturer are related to 

improving logistic activities, which are to minimize the number of required 

transportation vehicles and to minimize the maximum workload difference among 

the transportation vehicles. Results of the model and the procedure showed that the 

heuristic procedure outperforms the mixed integer linear programming model in 

large sized instances. 
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Patel et al. [28] suggested a memetic algorithm for the one-dimensional multi-

objective bin packing problem. The algorithm used local search on each chromosome 

so the algorithm is guaranteed to give near optimal solutions. The first objective is 

minimizing the number of bins and the second objective is maximizing total profit. 

The memetic algorithm calculates the fitness function first, selects the bin of items 

according to the fitness function, apply crossover to items and apply local search 

method in order to improve the solution.  
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CHAPTER 3 

 

 

BICRITERIA BIN PACKING PROBLEM 

 

 

 

In this chapter, we define two bicriteria bin packing problems. The first problem 

considers the number of bins and the total overdeviation as two objectives. The 

objectives of the second problem are the minimization of the number of bins and 

minimization of maximum overdeviation. Then, the associated mathematical models 

are given. 

The section is organized as follows: Section 3.1 defines the problem and some basics 

are given in Section 3.2 In Section 3.3 the mathematical model for the problems are 

given and Section 3.4 discuss a property associated with efficient solutions. 

 

3.1. Problem Definition 

In the classical bin packing problem, given the weights of the items and bin capacity, 

the items are packed into a minimum number of bins without exceeding the bin 

capacity.  

Our study allows violation of the bin capacity and penalizes the amount of 

overdeviation. The overdeviation of a bin is the total weight of items in the bin minus 

the capacity of the bin. 

We first study the problem of minimizing the number of bins and minimizing the 

total overdeviation, and then consider the problem of minimizing the number of bins 

and minimizing the maximum overdeviation. Total overdeviation is described as the 

sum of overdeviation of all of the bins. Maximum overdeviation is the maximum 
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overdeviation among all bins. Overdeviation, total overdeviation and maximum 

overdeviation are calculated as; 

Overdeviation of bin j = dj  = Max {0, 
i

iw xij– c} 

where 




ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 

Total overdeviation = 
j

dj =  
j

 Max {0,
i

iw  xij – c}  

where 




ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 

Maximum overdeviation = f  =  Maxj { Max {0, 
i

iw  xij – c}} 

The problem assigns n items into m bins. Item i ( i =1,2,…,n) has a weight of wi  

units and the capacity of each bin j is c units. 

As in Karasakal et al. [19] the problem of minimizing total overdeviation is defined 

as Problem I and problem of minimizing maximum overdeviation is defined as 

Problem II.  

We first solve the number of bins problem to find the minimum number of bins. We 

then find the total and the maximum overdeviation. Starting from the minimum 

number of bins calculated, the number of bins is decreased by one and the total / the 

maximum overdeviation is found. As the number of bins decreases, the total / the 

maximum overdeviation increases, therefore, they are conflicting. We find the set of 

nondominated objective vectors.  
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3.2. Some Definitions 

A multi-criteria problem with p objectives can be defined as follows: 

Min {Z1(x) , Z2(x),…,Zp(x)} 

subject to 

x ∈ X 

where  

Zi (x) : value of the objective i at x 

x    : decision vector 

X    : feasible solution decision space 

 

A solution x ∈ X is said to be efficient if there is no other x such that : 

Zi (x)  Zi (x)   i  and 

Zk (x) < Zk (x)  for at least one k. 

 

Z(x) = ( Z1(x) , Z2(x),…,Zp(x) ) is the image of x in the objective function space. 

If x is efficient then Z(x) is a nondominated objective vector. 

In this study, all nondominated objective vectors, and an efficient solution 

corresponding to each nondominated objective vector are generated.  
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3.3. Mathematical Model  

Recall that xij is the main decision variable that is defined as 





ji
ijx

bin   toassigned is  item  if     1
otherwise    0

 

We let 





selected  is  bin   if     1
otherwise    0

j
jy  

 

Problem I : 

The model has two objectives; minimization of the total number of bins used, and the 

minimization of total overdeviation. The objectives are expressed as: 

 

Minimize 
j

  yj       (3.1) 

Minimize 
j

dj       (3.2) 

 

The constraints of the problem are explained next. 

Each item should be assigned to exactly one bin. 


j

xij = 1,                   i     (3.3) 

If an item is assigned to a bin, then the bin should be opened. 

xij  yj,          i and j    (3.4) 
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Constraint (3.5) gives the overdeviation due to bin capacity; 


i

wixij  –  dj    cyj,   j      (3.5) 

The overdeviation of a bin should be greater than or equal to 0. 

dj  0     j     (3.6) 

xij values are binary. 

xij = 0, 1    i and j    (3.7) 

yj values are binary. Note that yj takes value 1 if xij is 1. 

yj = 0, 1    j     (3.8) 

 

Problem II: 

Minimizing the number of bins used and minimizing the maximum overdeviation are 

two objectives for the second problem. The objectives are expressed as: 

Minimize 
j

yj       (3.9) 

Minimize f       (3.10) 

 

The constraints of the problem are explained next. 

Each item should be assigned to exactly one bin. 


j

xij = 1,                   i     (3.3) 

If an item is assigned to a bin, then the bin should be opened. 

xij  yj,          i and j    (3.4) 
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Constraint (3.5) calculates the overdeviation due to bin capacity. 


i

wixij  –  dj    cyj,   j      (3.5) 

Constraint (3.12) calculates the maximum overdeviation f. 

f   dj,     j     (3.11) 

The overdeviation of a bin should be greater than or equal to 0. 

dj  0     j     (3.6) 

xij ‘s are binary. 

xij = 0, 1    i and j    (3.7) 

yj values are binary. Note that yj takes value 1 if xij is 1. 

yj = 0, 1    j     (3.8) 

 

3.4. Properties of Efficient Solutions 

In this section, three properties of the efficient solutions are given. Karasakal et al. 

[19] define the range of nondominated objective vectors for the number of bins and 

total/maximum overdeviation problems. Karasakal et al. [19] find that efficient 

solutions lie between the solution with one bin and the solution with zero 

total/maximum overdeviation. 

We define a two-step approach to generate the nondominated objective vectors. The 

solution with one bin gives the total/maximum overdeviation. The upper bound on 

the total/maximum overdeviation of all nondominated objective vectors is (
i

wi – 

c) and it gives an efficient solution (1, 
i

wi – c ).  
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Therefore; two extreme efficient solutions are; (z*,0) and (1, 
i

wi – c ) 

We now present the range for the number of bins and range for the total / maximum 

overdeviation. 

Range for the number of bins = [1, z*] 

Range for the total/maximum overdeviation = [0, 
i

wi – c ] 

This follows an upper bound on the number of efficient solutions is 

Min{z*-1 +1, 
i

wi – c  - 0 +1} = Min {z* , 
i

wi – c + 1} 

Note that the number of efficient solutions is bounded by z*, hence n. 

 

Property 1. 

Karasakal et al. [19] proposed an approach to find total overdeviation easily when 

the remaining capacities of all bins are equal to zero. 

Recall that the total overdeviation is the sum of the deviations over the capacity of all 

bins. In the second stage of Problem I, total overdeviation is calculated by decreasing 

the number of bins by one each time. If there is no slack in any one of the bins, 

decreasing the number of bins by one increases the total ovedeviation by c units.  

Let t be the minimum total overdeviation where the number of bins is equal to m.  

Decreasing the number of bins by one unit increases the minimum total 

overdeviation by c units. 

 t (m-1) = t (m) + c   if all bins are fully loaded, i.e.,  

if 
i

wixij ≥  c   j   
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CHAPTER 4 

 

 

SOLUTION APPROACHES 

 

 

 

Our bicriteria bin packing problems aim to find the set of efficient solutions for 

minimizing the number of bins and minimizing the total/maximum overdeviation 

objectives. In this chapter, we present our solution approaches. In Section 4.1 the 

stages of our approach are given. Section 4.2 and Section 4.3 present our lower 

bounds and upper bounds respectively. 

 

4.1. A Two Stage Solution Procedure 

A two stage solution procedure is applied to generate all efficient solutions. Two-

stage procedure for Problem I is presented first and then the solution procedure for 

Problem II is described. 

 

Problem I : 

Minimization of the number of bins and minimization of the total overdeviation are 

the objectives of the Problem I. In stage I of Problem I, the aim is minimizing the 

number of bins for zero deviation over capacity. In stage II of Problem I, minimum 

total overdeviation for the given number of bins is found. All efficient solutions for 

the number of bins and total overdeviation problem are generated.  
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Stage I of Problem I: 

In this stage, the classical bin packing problem is solved. 

The objective function is as stated below: 

Minimize   

z = 
j

 yj        (4.1) 

The constraints, are as stated below: 

An upper bound for the optimal number of bins yj, should not be exceeded. 


j

 yj  UB1        (4.2) 

A lower bound for the optimal number of bins yj, is no bigger than the optimal 

number of bins. 


j

 yj  LB1         (4.3) 

The constraint set (4.4) requires the assignment of each item. 


j

 xij = 1                   i     (4.4) 

In this stage, any deviation over the capacity is not allowed; therefore constraint (4.5) 

is modified. The sum of the weights of items in a bin should be no bigger than the 

bin capacity.   


i

wixij   cyj    j      (4.5) 

The constraint set (4.6) relates the assignment variable to the bin opening variable. 

xij  yj          i and j    (4.6) 
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Constraint set (4.7) states the binary nature of the variable. 

0  xij   1 and xij is integer   i and j   (4.7)  

Constraint set (4.8) is for nonnegativity. 

yj  0        j    (4.8) 

 

An optimal solution to the above model is found in stage I and let z* be the optimal 

number of bins. Stage II finds the minimum total overdeviation using the optimal 

number of bins, z* value. The first efficient solution is (z*,0). In stage II of Problem 

I, all efficient solutions are generated by decreasing the number of bins by one each 

time.  

 

Stage II of Problem I: 

This stage aims to minimize total overdeviation for given number of bins. 

The objective function is as stated below: 

Minimization of total overdeviation is as expressed below. 

Minimize   

t = 
j

 dj        (4.9) 

The constraints, are as stated below: 

Number of bins is k* for the first iteration of stage II. The constraint set (4.10) states 

that the number of bins is decreased by one in each iteration.  


j

 yj =  k*- 1        (4.10) 
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The following constraint set imposes an upper bound for the optimal number of total 

overdeviation dj. 


j

dj    UB2        (4.11) 

A lower bound for the optimal number of total overdeviation dj, is used via the 

following constraint set. 


j

dj    LB2        (4.12) 

The constraint sets (4.4), (4.6), (4.7), and (4.8) used in the first stage are also 

formulated this stage. 

In this stage, deviation over the capacity is allowed. The sum of the weights of items 

in a bin should be no bigger than the bin capacity and deviation over the capacity. 


i

wixij  -  dj    cyj     j     (4.13) 

 

where 

 





 first time for the II stage solving are   weif           *z

otherwise       1 -*k
*k  
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Problem II: 

Minimization of the number of bins and minimization of the maximum overdeviation 

are the objectives of Problem II. In stage I of Problem II, the aim is to minimize the 

number of bins for zero deviation over capacity. Stage II of Problem II is the 

minimax problem and the minimum of the maximum overdeviation is found for the 

given number of bins. All nondominated objective vectors are generated for the 

number of bins and maximum overdeviation problem.  

 

Stage I of Problem II: 

In this stage as in stage I of Problem I, the classical bin packing problem is solved.  

 

Stage II of Problem II: 

In this stage, the aim is to minimize maximum overdeviation for a given number of 

bins. 

Objective Function, is as stated below: 

Minimization of maximum overdeviation is as expressed below. 

Minimize   

f         (4.14) 

The constraints, are as stated below: 

The constraint set (4.19) states that k value is decreased by 1.  


j

 yj =  k*- 1        (4.15) 
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The following constraint set imposes an upper bound for the optimal number of 

maximum overdeviation f. 

f    UB3        (4.16) 

A lower bound for the optimal number of maximum overdeviation f, is used via the 

following constraint set. 

f    LB3        (4.17) 

Constraint set (4.22) calculates the maximum overdeviation. Maximum 

overdeviation will be greater than or equal to the total overdeviation of all bins. 

f    dj      j     (4.18) 

The constraint sets (4.4), (4.6), (4.7), and (4.8) used in the first stage and are also 

formulated in this stage. Constraint set (4.13) are also formulated in this stage of 

Problem II.  

where 

 





 first time for the II stage solving are   weif           *z

otherwise       1 -*k
*k  
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4.2. Lower Bounding Procedures 

Three lower bounds on the optimal objective function values are presented. First one 

is the lower bound on the optimal number of bins, the second one is the lower bound 

on the optimal total overdeviation and the last lower bound is on the optimal 

maximum overdeviation. We make rounding as all parameters are integers. 

 

Lower Bound I 

Lower bound I, LB1 is calculated for stage I of Problem I and Problem II solution 

procedures. The first stage is the same for Problem I and Problem II and LB1 is valid 

for both problems. 

Martello and Toth [24] developed a lower bound for the minimum number of bins. 

Their lower bound is based on the total weight of items. Total weight of items 

divided by the capacity of bins [
i

wi / c] is a lower bound for the optimal number of 

bins with zero total/maximum overdeviation.  

LB1 =  ⌈
i

𝑤𝑖 / c⌉       (4.19) 

Therefore, the constraint (4.3) becomes 


j

 yj  ⌈
i

𝑤𝑖 / c⌉       (4.20) 

 

Lower Bound II 

Lower bound II, LB2 is calculated for the stage II of Problem I solution procedure. 

Recall that stage II of Problem I is finding the minimum total overdeviation for the 

given number of bins. 
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Karasakal et al. [19] proposed a lower bound for the minimum total overdeviation. 

Max 0, [ 
i

wi – (number of bins  c)] is a lower bound for the optimal total 

overdeviation with given number of bins. 

LB2 = ⌈Max 0, [ 
i

𝑤𝑖 – (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠  𝑐)]⌉  (4.21) 

Therefore, the constraint (4.12) becomes 


j

dj    ⌈Max 0, [ 
i

𝑤𝑖 – (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠  𝑐)]⌉  (4.22) 

 

Lower Bound III 

Lower bound III, LB3 is calculated for the stage II of Problem II solution procedure. 

The objective of stage II of Problem II is to minimize the maximum overdeviation 

for the given number of bins. 

Karasakal et al. [19] present a lower bound for the maximum overdeviation. Max 0, 

[ [
i

wi – (number of bins  c)] / number of bins] is a lower bound for the minimum 

of maximum overdeviation with given number of bins. 

LB3 = ⌈Max 0, [ [
i

𝑤𝑖 – (number of bins  c)] / number of bins]⌉ (4.23) 

Therefore, the constraint (4.17) becomes 

f    ⌈Max 0, [ [
i

𝑤𝑖 – (number of bins  c)] / number of bins]⌉    (4.24) 

 

These three lower bounds are the rounded up values of the optimal.  
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4.3. Upper Bounding Procedures 

Three upper bounds are presented on the objective function values. First one is the 

upper bound on the optimal number of bins, the second one is on the optimal total 

overdeviation and the last one is on the optimal maximum overdeviation.  

 

Upper Bound I 

The first stage of Problem I and Problem II is the classical bin packing problem. 

Therefore, the upper bound on the optimal number of bins is derived from a well-

known good placement approximation algorithm. The upper bound is calculated 

using best fit decreasing (BFD) algorithm developed by Johnson [17]. BFD is used, 

as it is easy to implement and the algorithm has a good performance. 

In the BFD algorithm, items are first sorted according to the decreasing order of their 

weights. BFD calculates the remaining capacity of all bins and inserts an item into a 

feasible bin with smallest remaining capacity. BFD creates a new bin if the item is 

not assigned to any bin and inserts the item into that bin. 

Finding UB1: 

Step I: Sort the items according to their decreasing weights. 

Step II: Open one bin for the first time. 

Step III: Calculate the remaining capacity of the open bins. 

Step IV: Insert the item into a feasible bin having the smallest remaining 

capacity. If there is no feasible bin to insert, open a new bin. Insert the item to 

that new bin. 

Step V: Apply Step III and Step IV for all items until all items are inserted to a 

bin. 
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Upper Bound II: 

An upper bound is derived for the second stage of Problem I, UB2. Recall that stage 

II of Problem I is minimizing the total overdeviation. Karasakal et al. [19] modified 

the best fit decreasing algorithm for the total overdeviation problem. Steps of their 

constructive heuristic are as follows. 

Step I: Sort the items according to their decreasing weights. 

Step II: Assign the first item to the feasible bin having the smallest remaining 

capacity. If there is no feasible bin to insert, assign the item to an arbitrarily 

selected bin. 

Step III: Apply Step II for all items until all items are inserted to a bin. 

Karasakal et al. [19] applied an improvement heuristic for the solution of the 

constructive heuristic if (UB2-LB2)/UB2  0,4. Improvement heuristic starts from the 

solution of the constructive heuristic. They aim to decrease the problem size by 

eliminating some bins and their assigned items. Their improvement heuristic is 

applied for all solutions of the constructive heuristic to find UB2 in our study. The 

improvement heuristic sorts the bins with no overdeviation in nonincreasing order of 

their assigned weights and eliminates a number of bins having no overdeviation. The 

bins with total assigned weight equal to the capacity of bins are eliminated first. The 

steps of the improvement heuristic: 

 Step I: Select the bins with zero overdeviation 

Step II: Sort the selected bins in nonincreasing order of their assigned 

weights. 

Step III: Eliminate first b bins and the assigned items of that bins 

Step IV: Solve the total overdeviation problem (stage II of Problem I) for the 

remaining bins and items. 
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In step III of the improvement heuristic, Karasakal et al. [19] define a method to 

calculate b value based on their computational results. They set; 

  b = [ y x 10(average weight of items/ capacity of bins)] 

 where 

 1 if number of items = 50 

y =    1.5 if number of items = 75 

    2 if number of items = 100 

 average weight of items = wi / n 

 

Figures 4.1 , 4.2 and 4.3 show schematic view of improvement heuristic. Value of b 

is taken to be 3 in this example. Figure 4.1 shows elimination procedure of 

improvement heuristic. Bins are first sorted in nonincreasing order of their assigned 

weights and then 3 eliminated bins are selected and reduced configuration of bins are 

shown. 
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Figure 4.1. Elimination procedure of improvement heuristic 

 

Figure 4.2 shows the solution of total overdeviation problem for reduced 

configuration. 

 

Figure 4.2. Solution of reduced configuration 
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Upper bound III is found by the solution of reduced configuration and the eliminated 

bins. Figure 4.3 shows the final solution of problem. 

 

Figure 4.3. Final solution by adding two configurations 

 

Upper Bound III:  

UB3 is an upper bound for the maximum overdeviation. The second stage of problem 

II is similar to the minimizing makespan with parallel machines problem, therefore, 

the heuristic of Graham [14] is used to calculate the upper bound. The steps of the 

Graham [14] algorithm are stated below: 

Step I: Sort the items according to their decreasing weights. 

Step II: Assign the first item to the feasible bin having the smallest remaining 

capacity. If there is no feasible bin to insert, assign the item to the bin with 

smallest overdeviation including that item, if all bins are overloaded, assign the 

item to the bin with smallest overdeviation.  

Apply the step for all items until all items are inserted to a bin. 

 

These three upper bounds are the rounded down results of the calculated bounds.  

 

 

 

      ………… 

 

 

      + 

 

 

 

14 3 15 4 5 

13 1 2 



42 

 

  



43 

 

CHAPTER 5 

 

 

COMPUTATIONAL EXPERIMENTS 

 

 

 

In this chapter, computational results of the experiments are presented. In Section 

5.1, generation of the test problems is explained. In Section 5.2, the results are given 

and discussed. 

Mathematical models are solved by GAMS 24.2 using CPLEX MIP solver with zero 

absolute and relative gaps. The algorithms are coded in C programming language. 

Runs are performed on a computer with an Intel Core i7 3,10 GHz processor and 

16GB of RAM. 

 

5.1. Problem Sets 

The problem data used in the experiments are generated randomly. 12 problem sets, 

identified by the number of items, item weights and bin capacities, are used. Three 

values, 50, 75 and 100 are used for the number of items. Problem sets with 50 and 

100 items are taken from Scholl, Klein, and Jurgens [33]. Data for item weights are 

generated from discrete uniform distributions within ranges [1,100] and [30,100]. 

Two values, 100 and 150 are used for bin capacities. For each problem set, 10 

problem instances are solved, hence a total of 120 problem instances are solved in 

the experiments. For each problem instance, many problems are solved to find all 

nondominated sets. 
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5.2. Analysis of the Results 

The solution times are expressed in Central Processing Unit (CPU) seconds. For each 

problem instance and each total/maximum overdeviation problem to generate an 

efficient solution, CPU time limits are set to 3600 seconds for the number of bins and 

the total overdeviation problems (Problem I), and 9000 seconds for the number of 

bins and the maximum overdeviation problems (Problem II). The execution of the 

algorithms is terminated if the optimal solution is not found in the time limits. 

The results of the computational experiments for problems I and II are given in the 

following sections.  

 

5.2.1. Problem I: Minimization of Number of Bins and Total Overdeviation  

The solution times of the number of bins problem, the total overdeviation problem 

and the improvement heuristic for the upper bound of the total overdeviation 

problem are presented in Tables 5.1, 5.2 and 5.3 respectively. For each problem set, 

maximum and average CPU times  are reported. Maximum and average CPU times 

of all problems are given in columns titled “Max(1)” and “Avg(1)”, CPU times of all 

optimally solved problems in the prespecified time limits (i.e. excluding the unsolved 

problems) are reported in columns titled “Max(2)” and “Avg(2)”. 

Table 5.1 reports the CPU times of finding the optimal solution to the number of bins 

for Problem I. 

Since the number of bins problem is strongly NP-hard one should expect that the 

solution times increase exponentially with the problem size. From Table 5.1, it can 

be seen that the solution times increase exponentially with the problem size but there 

are some exceptions due to the lower and upper bounds used in the MIPs. When 

capacity is 150; for both 75 items and 100 items; the average CPU times are 

negligible. Thanks to the strong lower and upper bounds; for all these 20 problems 

the optimal solutions are found using only the bounds.  
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Moreover, the average CPU time for the problems increases when the item weights 

are generated within the range [30,100]. Looking at all the instances (i.e. without 

excluding the unsolved ones) for each problem set this inference can be made. This is 

due to the fact that when the minimum weight is 30, the weights of all items lie in a 

smaller range and the trade-off between the items is more difficult to handle.  

Table 5. 1. The CPU times for the number of bins problem when time limit is 3600 

seconds 

n = 50 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100]     13.56      2.13      13.56     2.13 

150 [1, 100]     58.45      5.99      58.45     5.99 

100 [30, 100] 3600.00 1086.69       0.72     0.48 

150 [30, 100] 3600.00   634.93 2733.01 305.38 

n = 75 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100]       5.02       2.28      5.02    2.28 

150 [1, 100]       0.00       0.00      0.00    0.00 

100 [30, 100]       4.84       2.67      4.84    2.67 

150 [30, 100] 3600.00 1463.52  129.50  38.85 

n = 100 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00   917.12 1907.21 246.29 

150 [1, 100]       0.00       0.00       0.00     0.00 

100 [30, 100] 3600.00 2524.30       8.48     6.11 

150 [30, 100] 3600.00 1545.58   661.46 173.23 

 

* CPU times in seconds of all problems 

** CPU times in seconds of all optimally solved problems 

 

In Table 5.2 the average and maximum CPU times for the total overdeviation 

problem are presented. The problems that are solved by Property 1 are not taken into 

account, as they require negligible time.  

Note that for the total overdeviation problem as the problem size increases, (i.e., as 

the number of items or bins increase) the average CPU time (i.e. without excluding 

the unsolved ones) also increases. Also, as the minimum weight increases to 30; the 
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total overdeviation problem becomes harder to solve. Another result is that as the 

capacity increases the problem becomes easier to solve.      

Table 5. 2. The CPU times for the total overdeviation problem 

n = 50 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 1599.72 2746.37 167.85 

150 [1, 100]       0.77       0.08       0.77     0.08 

100 [30, 100] 3600.00 2736.58 2954.29 151.90 

150 [30, 100] 3600.00 1423.45     15.52     2.25 

n = 75 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 1786.28  236.59   18.69 

150 [1, 100]        0.00       0.00      0.00     0.00 

100 [30, 100] 3600.00 3075.03 3251.95 345.66 

150 [30, 100] 3600.00 1432.27  162.49   14.77 

n = 100 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 2508.08     54.29     4.59 

150 [1, 100] 3600.00   329.00       0.00     0.00 

100 [30, 100] 3600.00 3394.75 1199.12 286.12 

150 [30, 100] 3600.00 2068.13        0.00     0.00 

 

* CPU times in seconds of all problems 

** CPU times in seconds of all optimally solved problems 

 

Not surprisingly, the improvement heuristic shows the same properties with the total 

overdeviation problem, as it is a smaller sized version of the problem as, can be seen 

from Table 5.3.  

Moreover, for the improvement heuristic, it is seen that as the number of bins 

increases, the average CPU time (Avg(1)) also increases. Also, one can see that from 

Table 5.3 Avg(1) column as the minimum weight increases to 30; the problem is 

harder to solve except for problem set with 100 items and capacity of 100. 
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Table 5. 3. The CPU times for the improvement heuristic for the total overdeviation 

problem 

n = 50 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 1340.36  311.18    61.92 

150 [1, 100]        1.01       0.34       1.01     0.34 

100 [30, 100] 3600.00 1509.59 1234.66    62.73 

150 [30, 100] 3600.00 1055.04 584.48    75.37 

n = 75 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 2201.92 3323.91  747.62 

150 [1, 100] 3271.65   341.69 3271.65  341.69 

100 [30, 100] 3600.00 2224.78   980.74    53.85 

150 [30, 100] 3600.00 2333.71 3254.04 1318.81 

n = 100 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 3600.00 2970.28 3288.56 1335.25 

150 [1, 100] 3600.00   719.47   978.67   431.15 

100 [30, 100] 3600.00 2496.92 1486.02     67.77 

150 [30, 100] 3600.00 3240.71 3274.68 2770.97 

 

* CPU times in seconds of all problems 

** CPU times in seconds of all optimally solved problems 

 

Table 5.4 reports the number of unsolved problems in 3600 seconds for the number 

of bins problem. Recall that 10 problem instances are solved for each problem set. 

The inferences made for the CPU times are valid here. When the problem size 

increases, it is more difficult to obtain the optimal solutions. There are only 4 

unsolved instances out of 40 instances when there are 50 items, whereas there are 13 

instances out of 40 when there are 100 items.  

For the minimum weight case, the situation is similar; only  2 out of 60 instances are 

unsolved when minimum weight is 1; while there are 19 unsolved instances out of 60 

when minimum weight is 30. There are 12 unsolved instances out of 60 when the 

capacity is 100, whereas there are 9 unsolved instances out of 60 when capacity is 

150.  
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Table 5. 4. The number of unsolved instances for the number of bins problem when 

time limit is 3600 seconds 

    # of unsolved instances* 

C wi n = 50 n = 75 n = 100 

100 [1, 100] 0 0 2 

150 [1, 100] 0 0 0 

100 [30, 100] 3 0 7 

150 [30, 100] 1 4 4 

 

*Out of 10 problem instances 

 

In Table 5.5 upper bounds on the number of efficient solutions for total 

overdeviation problem are presented. Maximum and average number of efficient 

solutions per problem instance are reported. Recall that 10 instances are solved for 

each problem set. 
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Table 5. 5. The number of efficient solutions for total overdeviation problem 

n = 50 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem  

instance 

100 [1, 100] 254 30 25.40 

150 [1, 100] 161 19 16.10 

100 [30, 100] 358 39 35.80 

150 [30, 100] 213 23 21.30 

n = 75 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem 

instance 

100 [1, 100] 403 44 40.30 

150 [1, 100] 252 26 25.20 

100 [30, 100] 538 56 53.80 

150 [30, 100] 318 33 32.00 

n = 100 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem 

instance 

100 [1, 100] 524 61 52.40 

150 [1, 100] 336 36 33.60 

100 [30, 100] 736 81 73.60 

150 [30, 100] 431 46 43.10 

 

Table 5.6 reports upper bound on the number of efficient solutions for each problem 

set, number and percentage of exact solutions found and number and percentage of 

solutions found by Property 1. For example when there are 100 items, capacity is 100 

and minimum weight is 30, 511 exact solutions out of 736 (i.e., at least 69% of the 

problems) are found. The rest could not be found within the specified time limit. 
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Moreover, 493 of them (i.e. at least 67% of the problems) are found by Property 1. It 

can be concluded that Property 1 is quite useful.  

In summary, in 120 problem instances, upper bound on the total number of efficient 

solutions is 4526; and Property 1 finds 3726 of the efficient points which correspond 

to at least 82.32%. 29.50% of the remaining  efficient solutions could be solved in 

the time limit.  

Table 5.6 shows that Property 1 performs the worst when capacity is 100 and 

minimum weight is 30; regardless of the number of items. For those problem sets, 

the problem is dense; i.e., there are more bins than those of any other problem sets 

since capacity is low and average weight is high; and weights of the items are closer 

to each other. 

We observe that the capacity is 150, Property 1 works better. The percentage of the 

solutions found by Property 1 increases to 94.57%.  This is due to the fact that; when 

the number of bins decreases by 1, one bin will be emptied, and items in that bin will 

be distributed to the other bins which will result in filling more bins at a time.  

Any increase in the number of items, decreases in capacity or increases in minimum 

weight of items results in a decrease in the percentage of finding exact solutions in 

vast majority of the instances. 

 

 

 

 

 

 

 

 



51 

 

Table 5. 6. Results on the efficient solutions for the total overdeviation problem 

n = 50 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

# of exact 

solutions 

found 

% of 

exact 

solutions 

found 

# of soln. 

found by 

Property 1 

% of soln. 

found by 

Property 1 

100 [1, 100] 254 239 94 218 86 

150 [1, 100] 161 161 100 151 94 

100 [30, 100] 358 272 76 243 68 

150 [30, 100] 213 206 97 195 92 

n = 75 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

# of exact 

solutions 

found 

% of 

exact 

solutions 

found 

# of soln. 

found by 

Property 1 

% of soln. 

found by 

Property 1 

100 [1, 100] 403 377 93 357 89 

150 [1, 100] 252 252 100 242 96 

100 [30, 100] 538 397 74 368 68 

150 [30, 100] 318 313 98 299 93 

n = 100 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

# of exact 

solutions 

found  

% of 

exact 

solutions 

found 

# of soln. 

found by 

Property 1 

% soln. 

found by 

Property 1 

100 [1, 100] 524 481 92 463 88 

150 [1, 100] 336 335 100 325 97 

100 [30, 100] 736 511 69 493 67 

150 [30, 100] 431 418 97 408 95 

 

The model returns non-optimal solution to all unsolved instances of the number of 

bins problem within the specified time limit. Table 5.7 reports the quality of those 

solutions, i.e., average and maximum percentage deviations from the lower and 

upper bounds. It is seen that the quality of solutions of unsolved problems is not 

better than the upper bounds. Average percentage deviation from the upper bound is 
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0.5% the model solutions are close to the upper bounds for the number of bins 

problem.  

Table 5.7. The performance of the model solutions for unsolved instances - The 

Number of Bins Problem 

n = 50 

C wi 

# of 

unsolved 

problem 

instances 

Avg % 

deviation 

from 

UB1 

Max % 

deviation 

from 

UB1 

Avg % 

deviation 

from 

LB1 

Max % 

deviation 

from 

LB1 

100 [1, 100] 0 - - - - 

150 [1, 100] 0 - - - - 

100 [30, 100] 3 0.00 0.00 13.14 15.00 

150 [30, 100] 1 0.00 0.00   4.35  4.35 

n = 75 

C wi 

# of 

unsolved 

problem 

instances 

Avg % 

deviation 

from 

UB1 

Max % 

deviation 

from 

UB1 

Avg % 

deviation 

from 

LB1 

Max % 

deviation 

from 

LB1 

100 [1, 100] 0 - - - - 

150 [1, 100] 0 - - - - 

100 [30, 100] 0 - - - - 

150 [30, 100] 4 0.00 0.00   3.06   3.13 

n = 100 

C wi 

# of 

unsolved 

problem 

instances 

Avg % 

deviation 

from 

UB1 

Max % 

deviation 

from 

UB1 

Avg % 

deviation 

from 

LB1 

Max % 

deviation 

from 

LB1 

100 [1, 100] 0 - - - - 

150 [1, 100] 0 - - - - 

100 [30, 100] 7 0.00 0.00 12.27 15.85 

150 [30, 100] 4 2.27 2.33  2.27   2.33 

 

Table 5.8 shows the quality of model solutions within the specified time limits to 

unsolved problems for total overdeviation problem. The number of model solutions 

and average and maximum percentage deviations from lower bound and upper bound 

are reported in the table. The model can find more solution when the number of 
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items is 50. For 50 items, the solutions are closer to the upper bound whereas 

solutions are closer to the lower bound for problems with 75 and 100 items.  

Table 5.8. The performance of the model solutions for unsolved problems - Total 

Overdeviation Problem  

n = 50 

C wi 

Upper 

bound on 

# of 

unsolved 

problems 

# of 

solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from 

UB2 

Max % 

deviation 

from 

UB2 

Avg % 

deviation 

from 

LB2 

Max  % 

deviation 

from 

LB2 

100 [1, 100] 15 7 3.35 9.84 11.53 31.97 

150 [1, 100] 0 0 - - - - 

100 [30, 100] 86 27 5.60 11.98 10.31 76.74 

150 [30, 100] 7 1 0.00  0.00  4.44   4.44 

n = 75 

C wi 

Upper 

bound on 

# of 

unsolved 

problems 

# of 

solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from 

UB2 

Max % 

deviation 

from 

UB2 

Avg % 

deviation 

from 

LB2 

Max  % 

deviation 

from 

LB2 

100 [1, 100] 26 0 - - - - 

150 [1, 100] 0 0 - - - - 

100 [30, 100] 141 20 8.21 14.72 0.97 3.30 

150 [30, 100] 7 0 - - - - 

n = 100 

C wi 

Upper 

bound on 

# of 

unsolved 

problems 

# of 

solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from 

UB2 

Max % 

deviation 

from 

UB2 

Avg % 

deviation 

from 

LB2 

Max  % 

deviation 

from 

LB2 

100 [1, 100] 43 0 - - - - 

150 [1, 100] 1 0 - - - - 

100 [30, 100] 225 11 8.45 11.32 0.69 2.97 

150 [30, 100] 13 0 - - - - 
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Table 5.9. presents the performance of the lower and upper bounds for the number of 

bins problem. It can be seen that as the number of bins and minimum weight increase 

the number of bins thereby the complexity of the problem increases. When capacity 

increases, especially when the minimum weight is 1, the bounds perform well 

together. Out of 30 instances where capacity of the bins is 150 and minimum weight 

is 1, the lower and upper bounds are equal for all instances, except two.  

Table 5. 9. The lower and upper bound values for the number of bins problem  

n = 50 

C wi Avg LB1 Max LB1 Avg UB1 Max UB1 

# of instances 

UB1=LB1 

100 [1, 100] 25.20 28 26.50 31 2 

150 [1, 100] 17.10 20 17.30 20 8 

100 [30, 100] 32.60 35 36.90 40 0 

150 [30, 100] 22.00 23 22.90 24 1 

n = 75 

C wi Avg LB1 Max LB1 Avg UB1 Max UB1 

# of instances 

UB1=LB1 

100 [1, 100] 39.00 41 41.30 45 0 

150 [1, 100] 26.20 27 26.20 27 10 

100 [30, 100] 48.70 51 54.80 57 0 

150 [30, 100] 32.60 34 33.60 35 1 

n = 100 

C wi Avg LB1 Max LB1 Avg UB1 Max UB1 

# of instances 

UB1=LB1 

100 [1, 100] 51.10 58 53.40 62 1 

150 [1, 100] 34.60 37 34.60 37 10 

100 [30, 100] 65.40 69 74.60 82 0 

150 [30, 100] 43.60 46 45.00 47 0 

 

Table 5.10 reports the performance of the upper bounds for the number of bins 

problem. In 79 out of 99 optimally solved instances the upper bound is equal to the 

optimal value. Average percentage deviation of the upper bound from the optimal 

solution is only 0.75% for the number of bins problem. The worst performance of the 

upper bound is when  capacity is 150 and minimum weight is 30  regardless of the 

number of items.  
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Table 5. 10. The upper bound values on the number of bins and the optimal number 

of bins  

n = 50 

C wi 

# of 

optimally 

solved 

instances 

Avg 

UB1 

Max 

UB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

UB1= 

Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 10 26.50 31 26.40 31 9 0.50 5.00 

150 [1, 100] 10 17.30 20 17.10 20 8 1.21 6.25 

100 [30, 100] 7 36.43 40 36.29 40 6 0.39 2.70 

150 [30, 100] 9 22.89 24 22.22 24 3 3.08 4.76 

n = 75 

C wi 

# of 

optimally 

solved 

instances 

Avg 

UB1 

Max 

UB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

UB1= 

Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 10 41.30 45 41.30 45 10 0.00 0.00 

150 [1, 100] 10 26.20 27 26.20 27 10 0.00 0.00 

100 [30, 100] 10 54.80 57 54.80 57 10 0.00 0.00 

150 [30, 100] 6 33.33 35 32.50 34 1 2.54 3.23 

n = 100 

C wi 

# of 

optimally 

solved 

instances 

Avg 

UB1 

Max 

UB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

UB1= 

Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 8 54.50 62 54.50 62 8 0.00 0.00 

150 [1, 100] 10 34.60 37 34.60 37 10 0.00 0.00 

100 [30, 100] 3 73.33 75 73.33 75 3 0.00 0.00 

150 [30, 100] 6 45.00 47 44.17 47 1 1.91 2.38 

 

Table 5.11 shows the performance of the lower bounds for the number of bins 

problem. In 52 out of 99 optimally solved problems the lower bound is equal to the 

optimal value. So, it can be claimed that lower bound is not as strong as the upper 

bound, the average percentage deviation of the lower bound from the optimal 

solution is 3.68% for the number of bins problem. The worst performance of the 

lower bound is observed when capacity is 100 and item weights are generated from 

the range [30,100] regardless of the number of items. Deviations from the optimal 

solution is smaller when capacity is 150.  
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Table 5. 11. The lower bound values on the number of bins and the optimal number 

of bins  

n = 50 

C wi 

# of 

optimally 

solved 

instances 

Avg 

LB1 

Max 

LB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

LB1=Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 10 25.20 252 26.40 31 3  4.19   9.68 

150 [1, 100] 10 17.10 171 17.10 20 10   0.00   0.00 

100 [30, 100] 7 32.43 227 36.29 40 0 10.50 13.51 

150 [30, 100] 9 22.00 198 22.22 24 7   0.95   4.35 

n = 75 

C wi 

# of 

optimally 

solved 

instances 

Avg 

LB1 

Max 

LB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

LB1=Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 10 39.00 390 41.30 45 0   5.42 15.56 

150 [1, 100] 10 26.20 262 26.20 27 10   0.00   0.00 

100 [30, 100] 10 48.70 487 54.80 57 0 11.10 14.04 

150 [30, 100] 6 32.50 195 32.50 34 6   0.00   0.00 

n = 100 

C wi 

# of 

optimally 

solved 

instances 

Avg 

LB1 

Max 

LB1 

Avg 

Opt  

Max 

Opt  

# of 

instances 

LB1=Opt 

Avg % 

deviation 

from 

optimal 

Max % 

deviation 

from 

optimal 

100 [1, 100] 8 51.88 415 54.50 62 1   4.51 10.00 

150 [1, 100] 10 34.60 346 34.60 37 10   0.00   0.00 

100 [30, 100] 3 64.33 193 73.33 75 0 12.25 13.33 

150 [30, 100] 6 44.00 264 44.17 47 5   0.36   2.13 

 

Table 5.12 shows the effect of the improvement heuristic on the upper bound. On the 

average, the improvement is 28.79%. The heuristic improves the upper bound at 

most when capacity is150 and item weights are generated from [30,100] by 50.10% 

on the average. 
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Table 5.12. The performance of the  improvement heuristic on the total overdeviation 

problem 

Total Overdeviation Problem % improvement 

C wi n=50 n=75 n=100 

100 [1, 100] 29.28 31.14 36.23 

150 [1, 100] 12.07 12.00 19.90 

100 [30, 100] 25.54 26.50 26.19 

150 [30, 100] 41.47 56.82 52.98 

 

Table 5.13 illustrates the upper and lower bound for the total overdeviation problem. 

The bounds are evaluated for the problems that could not be solved by Property 1. 

Problems for which lower bound is equal to 0 are excluded. In 83 out of 761  

problems, that is 10.91% of the problems, upper and lower bounds are equal. The 

bound values are closer when the capacities of bins are larger. Also when the 

minimum weight is 1, the bounds perform better.  
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Table 5.13. The lower and upper bound values for total overdeviation problem 

n = 50 

C wi 
# of solns  

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

UB2 

Max 

UB2 

# of solns 

UB2= 

LB2 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 24 150.13 383 157.96 384 7   8.47 45.61 

150 [1, 100] 10   84.40 141   84.50 142 9   0.07   0.70 

100 [30, 100] 73 385.12 878 458.85 952 0 23.01 91.82 

150 [30, 100] 15 126.40 318 129.00 323 7   3.52 28.30 

n = 75 

C wi 
# of solns  

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

UB2 

Max 

UB2 

# of 

solutions 

UB2= 

LB2 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 30 155.17 406 170.63 406 10 18.61 92.68 

150 [1, 100] 10   61.60 106   61.60 106 10   0.00   0.00 

100 [30, 100] 109 552.55 1226 651.64 1302 0 23.28 92.93 

150 [30, 100] 14 110.21 276 111.21 276 10   3.12 33.33 

n = 100 

C wi 
# of solns  

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

UB2 

Max 

UB2 

# of 

solutions 

UB2= 

LB2 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 38 269.29 823 298.82 823 10 16.73 88.38 

150 [1, 100] 11   83.55 151   84.64 151 10   8.39 92.31 

100 [30, 100] 151 748.30 1707 879.07 1844 0 23.03 98.37 

150 [30, 100] 18 133.22 354 139.44 354 10 12.41 74.29 

 

Table 5.14 illustrates the strength of the upper bound (the improved upper bound). 

The results are reported for the problems whose optimal total overdeviation is found 

by the model. For 151 out of 197 problems, the upper bound values were equal to the 

optimal objective function values. The average deviation from the optimal value for 

all problems is 1.95%.  

When the capacity increases, the upper bound performs better. Note that when 

capacity is 150, average percentage deviation from the exact solution is 0.12% 

whereas when capacity is 100 the average percentage deviation is 2.75%. When the 

problem space is more restricted (i.e. capacity is 100 and weight of item are 

generated from the range [30,100]) the results found by the algorithm deviates more 

from the exact solution regardless of the number of items. For this case, the 
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percentage deviation from the exact solution is 3.94% while for the case where the 

capacity is 150 and item weights are generated from the range [1,100] the percentage 

deviation is only 0.02%. 

Table 5.14. The upper bound values on the total overdeviation and the optimal total 

overdeviation 

n = 50 

C wi 

# of exact 

solns 

found by 

the model 

Avg 

UB2 

Max 

UB2 

Avg 

exact 

Max 

exact 

# of 

solution

s UB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 21 103.38 384 103.00 383 16 0.91 14.29 

150 [1, 100] 10   84.50 142   84.40 141 9 0.07   0.71 

100 [30, 100] 29 276.14 952 249.62 878 16 5.29 22.22 

150 [30, 100] 11 142.55 323 141.09 318 8 0.61   4.33 

n = 75 

C wi 

# of exact 

solns 

found by 

the model 

Avg 

UB2 

Max 

UB2 

Avg 

exact 

Max 

exact 

# of 

solution

s UB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 27   95.70 406   95.44 406 24 2.65 26.67 

150 [1, 100] 10   61.60 106   61.60 106 10 0.00   0.00 

100 [30, 100] 29 391.72 1302 362.83 1226 18 3.04 12.97 

150 [30, 100] 11 122.64 276 122.64 276 11 0.00   0.00 

n = 100 

C wi 

# of exact 

solns 

found by 

the model 

Avg 

UB2 

Max 

UB2 

Avg 

exact 

Max 

exact 

# of 

solution

s UB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 18 182.89 823 182.89 823 18 0.00   0.00 

150 [1, 100] 10   91.80 151   91.80 151 10 0.00   0.00 

100 [30, 100] 18 857.61 1844 810.61 1707 8 3.19   9.56 

150 [30, 100] 10 187.70 354 187.70 354 10 0.00   0.00 

 

The performances of the lower bound are given in Table 5.15 It is seen that in all 

problem sets the lower bound is equal to the exact value for 10 sets except one. 10 

exact solutions  for each problem set are the ones for which Property 1 becomes 

effective. The condition of the Property 1 holds when the exact value is equal to the 

lower bound. (Lower Bound=Total Weight-Total Capacity where Total Weight= 

Total Deviation + Total Capacity in order for the algorithm in Property 1 to apply).  
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Table 5.15. The lower bound values on the total overdeviation and the optimal total 

overdeviation 

n = 50 

C wi 

# of exact 

solns 

found by 

the model 

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

exact 

Max 

exact 

# of 

solution

s LB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 11 181.36 383 103.00 383 10 4.15 45.61 

150 [1, 100] 10   84.40 141   84.40 141 10 0.00   0.00 

100 [30, 100] 10 690.80 878 690.80 878 10 0.00   0.00 

150 [30, 100] 10 154.80 318 154.80 318 10 0.00   0.00 

n = 75 

C wi 

# of exact 

solns 

found by 

the model 

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

exact 

Max 

exact 

# of 

solution

s LB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 10 241.60 406 241.60 406 10 0.00   0.00 

150 [1, 100] 10   61.60 106   61.60 106 10 0.00   0.00 

100 [30, 100] 10 1034.8 1226 1034.8 1226 10 0.00   0.00 

150 [30, 100] 10 134.80 276 134.80 276 10 0.00   0.00 

n = 100 

C wi 

# of exact 

solns 

found by 

the model 

(LB2≠0) 

Avg 

LB2 

Max 

LB2 

Avg 

exact 

Max 

exact 

# of 

solution

s LB2= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 10 324.10 823 324.10 823 10 0.00   0.00 

150 [1, 100] 10   91.80 151   91.80 151 10 0.00   0.00 

100 [30, 100] 10 1448.0 1707 1448.0 1707 10 0.00   0.00 

150 [30, 100] 10 187.70 354 187.70 354 10 0.00   0.00 

 

Table 5.14 shows that there are 204 exact solutions found by the model. In 120 of 

these solutions (1 for every problem instance) Property 1 starts to apply; so the lower 

bound is equal to upper bound (i.e. it is optimal). For the 84 remaining solutions for 

only one problem, lower bound is found to be different than 0, this shows that the 

lower bound has very little effect on the performance of the total overdeviation 

problem. Table 5.15 shows that the upper bound is equal to the lower bound only 

when the upper bound hits the optimal  so Property 1 becomes effective. 
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5.2.2. Problem II: Minimization of the Number of Bins and Maximum 

Overdeviation  

The solution times of the number of bins problem and the maximum overdeviation 

problem are reported in Tables 5.16 and 5.17 respectively. For each problem set, 

maximum and average CPU times are reported. In the tables, “Max(1)” and 

“Avg(1)” stand for the maximum and average CPU times of all problem instances, 

respectively. On the other hand, “Max(2)” and “Avg(2)” are respective CPU times, 

for all solved instances.  

Table 5.16 reports the CPU times for the number of bins for Problem II. The 

difference between this table and Table 5.1 is the time limit. Recall that the CPU 

time limit is set to 3600 seconds for the number of bins and the total overdeviation 

problems, 9000 seconds for the number of bins and the maximum overdeviation 

problems.  

The number of problems that can  be solved within the limit changes and so do the 

average and maximum times. The change can only be seen for the large size problem 

instances. For the small size problems, i.e. for the problem sets for which all 

problems are solved to optimality within 3600 seconds, (for example 50 items, 

capacity is 150 and minimum weight is 1) average and maximum CPU times are the 

same with those of Table 5.1. 
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Table 5.16. The CPU times for the number of bins problem when time limit is 9000 

seconds 

n = 50 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100]     13.56       2.13     13.56     2.13 

150 [1, 100]     58.45       5.99     58.45     5.99 

100 [30, 100] 9000.00 2762.79       0.72     0.48 

150 [30, 100] 9000.00 1174.80 2733.01 305.38 

n = 75 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100]       5.02       2.28       5.02     2.28 

150 [1, 100]       0.00       0.00       0.00     0.00 

100 [30, 100]       4.84       2.67       4.84     2.67 

150 [30, 100] 9000.00 3614.14   129.50   38.85 

n = 100 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 6788.10 1251.52 6788.10 1251.52 

150 [1, 100]       0.00       0.00       0.00       0.00 

100 [30, 100] 9000.00 6307.86       8.48       6.11 

150 [30, 100] 9000.00 3707.62   661.46   173.23 

 

* CPU times in seconds of all problems 

** CPU times in seconds of all optimally solved problems 

 

In Table 5.17 the CPU times for the maximum overdeviation problem are presented. 

In the Max(1) column, it can be seen that for all the problem sets there is at least one 

unsolved problem. The results show that as the number of items (so the number of 

variables) increases; CPU times increase.  

As the minimum weight increases; CPU times also increase. For all three problem 

sets, when the gap between the minimum weighted item and the maximum weighted 

item is smaller; it is more difficult to assign the items to the bins.   

The results revealed that the capacity of the bins does not have any effect on the 

solution times. 
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Table 5.17. The CPU times for the maximum overdeviation problem 

n = 50 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 9000.00   347.86 6274.20 138.35 

150 [1, 100] 9000.00   206.43   988.97   39.27 

100 [30, 100] 9000.00 2260.60 8881.79 561.68 

150 [30, 100] 9000.00 3158.54 8808.40 586.51 

n = 75 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 9000.00   729.92 8183.57 181.79 

150 [1, 100] 9000.00   732.60 8268.75 282.11 

100 [30, 100] 9000.00 3773.01 8323.06 342.33 

150 [30, 100] 9000.00 4210.34 8974.81 662.16 

n = 100 

C wi Max(1)* Avg(1)* Max(2)** Avg(2)** 

100 [1, 100] 9000.00 2348.00 8628.23 451.77 

150 [1, 100] 9000.00 1384.89 7933.46 351.43 

100 [30, 100] 9000.00 4740.86 8643.84 450.51 

150 [30, 100] 9000.00 5136.67 8965.34 613.09 

 

* CPU times in seconds of all problems 

** CPU times in seconds of all optimally solved problems 

 

Table 5.18 shows that when the time limit is set to 9000 seconds, two more problems 

are solved optimally in the problem set where the capacity is 100, number of items is 

100 and item weights are generated from the range [1,100]. 

Table 5.18.  The number of unsolved instances for the number of bins problem when 

time limit is 9000 seconds 

    # of unsolved instances* 

C wi n = 50 n = 75 n = 100 

100 [1, 100] 0 0 0 

150 [1, 100] 0 0 0 

100 [30, 100] 3 0 7 

150 [30, 100] 1 4 4 

 

*Out of 10 problem instances 
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In Table 5.19, the upper bounds on the number of efficient solutions for maximum 

overdeviation problem are presented. The maximum and average number of efficient 

solutions per problem instance are reported. Recall that 10 instances are solved for 

each problem set. 

Table 5.19. The number of efficient solutions for maximum overdeviation problem 

n = 50 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem  

instance 

100 [1, 100] 254 30 25.40 

150 [1, 100] 161 19 16.10 

100 [30, 100] 358 39 35.80 

150 [30, 100] 213 23 21.30 

n = 75 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem 

instance 

100 [1, 100] 403 44 40.30 

150 [1, 100] 252 26 25.20 

100 [30, 100] 538 56 53.80 

150 [30, 100] 318 33 32.00 

n = 100 

C wi 

Upper 

bound on 

the # of 

efficient 

solutions 

Max # of 

efficient 

solutions 

per problem 

instance 

Avg # of 

efficient 

solutions 

per problem 

instance 

100 [1, 100] 524 61 52.40 

150 [1, 100] 336 36 33.60 

100 [30, 100] 736 81 73.60 

150 [30, 100] 431 46 43.10 
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Table 5.20 shows that the upper bound on the number of  efficient solutions, number 

of exact solutions found for the maximum overdeviation problem. The effect of the 

number of items on the number of exact solutions found is clearly seen in the table. 

As the number of items increases; the percentage of exact solutions found decreases. 

The increase in the minimum weight from 1 to 30 also decreases the number of exact 

solutions found by the model. But the effect of capacity on the number of exact 

solutions is not clear.  

The upper bound on the number of efficient solutions and the number of exact 

solutions found are reported in Table 5.20 There are 19 dominated solutions for the 

maximum overdeviation problem. The number of nondominated solutions is reported 

as the number of exact solutions. The number of dominated solutions is 1 for 50 

items, 5 for 75 items and 13 for 100 items. 
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Table 5.20. Results on the efficient solutions for the maximum overdeviation 

problem 

n = 50 

C wi 

Upper bound on 

the # of efficient 

solutions 

# of exact 

solutions 

found 

% of exact 

solutions 

found 

100 [1, 100] 254 247 98 

150 [1, 100] 161 158 98 

100 [30, 100] 358 286 80 

150 [30, 100] 213 148 69 

n = 75 

C wi 

Upper bound on 

the # of efficient 

solutions 

# of exact 

solutions 

found 

% of exact 

solutions 

found 

100 [1, 100] 403 377 93 

150 [1, 100] 252 239 95 

100 [30, 100] 538 320 60 

150 [30, 100] 318 183 58 

n = 100 

C wi 

Upper bound on 

the # of efficient 

solutions 

# of exact 

solutions 

found 

% of exact 

solutions 

found 

100 [1, 100] 524 404 78 

150 [1, 100] 336 296 88 

100 [30, 100] 736 358 50 

150 [30, 100] 431 199 46 

 

 

In Table 5.21 the quality of the model solutions for the unsolved problems of 

maximum overdeviation problem is presented. The number of the model solutions 

and average and maximum percentage deviations from lower and upper bounds are 

reported. The model can find a solution to 1273 out of 1290 in 9000 seconds. The 

solutions are close to the lower bounds for all problems. 
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Table 5.21. The performance of the model solutions for unsolved problems – 

Maximum Overdeviation Problem 

n = 50 

C wi 

Upper 

bound on # 

of unsolved 

problems 

# of solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from UB3 

Max % 

deviation 

from UB3 

Avg % 

deviation 

from LB3 

Max % 

deviation 

from LB3 

100 [1, 100] 6 6   14.97     50.00   5.68 25.00 

150 [1, 100] 3 3   80.97   216.67   6.71 16.67 

100 [30, 100] 72 72   20.68     68.75   2.66 31.82 

150 [30, 100] 65 65   80.16   525.00   7.25 50.00 

n = 75 

C wi 

Upper 

bound on # 

of unsolved 

problems 

# of solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from UB3 

Max % 

deviation 

from UB3 

Avg % 

deviation 

from 

LB3 

Max % 

deviation 

from LB3 

100 [1, 100] 26 26   13.37     29.03   1.91   8.11 

150 [1, 100] 13 13   34.18   100.00 10.54 50.00 

100 [30, 100] 213 209   22.38     76.92   7.00 92.86 

150 [30, 100] 135 132 101.98 1400.00   9.46 66.67 

n = 100 

C wi 

Upper 

bound on # 

of unsolved 

problems 

# of solution 

found by 

model to 

unsolved 

problems 

Avg % 

deviation 

from UB3 

Max % 

deviation 

from UB3 

Avg % 

deviation 

from 

LB3 

Max % 

deviation 

from LB3 

100 [1, 100] 116 116   19.64   400.00   4.08 50.00 

150 [1, 100] 40 40   30.98   200.00   5.85 33.33 

100 [30, 100] 369 365   17.86     71.43   7.39 92.86 

150 [30, 100] 232 226   61.30   800.00 10.77 75.00 

 

Table 5.22 shows the performance of the lower and upper bounds for the maximum 

overdeviation problem. On the average, the lower bound deviates 16.04% from the 

upper bound. For 9.22% of the problems upper bound is equal to the lower bound, 

hence no optimization effort is needed.  

When the item weights are generated in range [30, 100], the gaps between the 

bounds are larger. For example, in the problem sets where item weights are generated 

from range [30, 100]; the average percentage deviation of the lower bound from the 
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upper bound is 19.51% whereas in the problem sets where item weights are 

generated from range [1,100]; the average percentage deviation is 11.59%.  

When the capacity is 150; the bounds perform better and get closer. The average 

percentage deviation for problems with capacity of 150 is 14.00% whilst it is 17.37% 

when the capacity is 100. The number of items seems to have no significant effect on 

the performance of the bounds.  

 

Table 5. 22. The lower and upper bound values for the maximum overdeviation 

problem 

n = 50 

C wi 

# of 

solutions 

(LB3≠0) 

Avg 

LB3 

Max 

LB3 

Avg 

UB3 

Max 

UB3 

# of 

solutions 

UB3= 

LB3 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 241 288.04 2683 292.66 2683 26 12.39 89.47 

150 [1, 100] 161 376.79 2765 380.80 2765 29 9.33 75.00 

100 [30, 100] 316 312.96 3378 326.66 3378 19 20.25 92.86 

150 [30, 100] 210 411.16 3286 425.26 3286 18 18.00 93.75 

n = 75 

C wi 

# of 

solutions 

(LB3≠0) 

Avg 

LB3 

Max 

LB3 

Avg 

UB3 

Max 

UB3 

# of 

solutions 

UB3= 

LB3 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 380 327.93 3906 333.05 3906 47 13.13 87.50 

150 [1, 100] 252 433.43 3856 436.94 3856 47 9.17 85.71 

100 [30, 100] 472 349.92 4926 364.02 4926 15 20.81 93.33 

150 [30, 100] 314 466.18 4831 479.75 4831 24 17.36 95.00 

n = 100 

C wi 

# of 

solutions 

(LB3≠0) 

Avg 

LB3 

Max 

LB3 

Avg 

UB3 

Max 

UB3 

# of 

solutions 

UB3= 

LB3 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 497 354.78 5623 360.09 5623 39 13.40 91.67 

150 [1, 100] 336 475.90 5317 479.84 5317 53 9.49 77.78 

100 [30, 100] 635 378.28 6707 392.76 6707 37 20.94 94.44 

150 [30, 100] 426 508.49 6654 522.84 6654 37 17.74 95.45 
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In Tables 5.23 and 5.24, the bounds are compared with the exact solutions for the 

problems that can be solved in 9000 seconds. 

Table 5.23 shows the performance of the upper bound with respect to the exact 

solution for the maximum overdeviation problem. For 958 out of 3215 problems, i.e., 

29.80% of  problems, the exact solution is equal to the upper bound. The average 

percentage deviation of the upper bound from the exact solution is 9.50%  

The performance of the upper bound gets worsen when the number of items is 100. It 

deviates from the exact solution by 14.19% when there are 50 items; 7.76% when 

there are 75 items and 35.80% when there are 100 items.  

When the capacity is 100, the performance of the upper bound is better and is  equal 

to the exact solution in 37.65% of the problems, the average percentage deviation 

from the exact solution is 6.31%. When the capacity is 150, the upper bound is equal 

to the exact solution for 17.01% of the problems and average percentage deviation 

from the exact value is 14.69% in problems. The average percentage deviation of 

upper bounds is 36.00% when minimum weight is 1, 24.40%  when minimum weight 

is 30. It is observed that as the complexity of the problem increases, the possibility of 

finding the exact solution via the upper bound increases but the average percentage 

deviation also increases. 
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Table 5.23. The upper bound values on the maximum overdeviation and the optimal 

maximum overdeviation 

n = 50 

C wi 

# of exact 

solutions 

found 

Avg 

UB3 

Max 

UB3 

Avg 

exact 

Max 

exact 

# of 

solns 

UB3= 

exact 

Avg % 

deviation 

 Max % 

deviation 

100 [1, 100] 247   284.22 2683   281.08 2683 64   7.24     87.50 

150 [1, 100] 158   386.76 2765   382.87 2765 29 16.89   300.00 

100 [30, 100] 286   324.17 3378   336.37 3378 120   8.20     75.00 

150 [30, 100] 148   566.24 3286   579.07 3286 18 34.48 1500.00 

n = 75 

C wi 

# of exact 

solutions 

found 

Avg 

UB3 

Max 

UB3 

Avg 

exact 

Max 

exact 

# of 

solns 

UB3= 

exact 

Avg % 

deviation 

 Max % 

deviation 

100 [1, 100] 377   325.49 3906   330.34 3906 124   6.52     75.00 

150 [1, 100] 239   455.08 3856   458.45 3856 47 15.70   600.00 

100 [30, 100] 320   460.22 4926   471.14 4926 147   4.75     73.53 

150 [30, 100] 183   765.02 4831   776.64 4831 24   5.20     33.82 

n = 100 

C wi 

# of exact 

solutions 

found 

Avg 

UB3 

Max 

UB3 

Avg 

exact 

Max 

exact 

# of 

solns 

UB3= 

exact 

Avg % 

deviation 

 Max % 

deviation 

100 [1, 100] 404   416.47 5623   421.06 5623 103   8.84   300.00 

150 [1, 100] 296   534.83 5317   538.45 5317 53 14.27   350.00 

100 [30, 100] 358   583.80 6707   595.73 6707 192   2.47     59.46 

150 [30, 100] 199 1009.63 6654 1022.39 6654 37   6.38   500.00 

 

Table 5.24 presents the performance of the lower bound with respect to the exact 

solution. The lower bound for the maximum overdeviation problem performs much 

better than the lower bound for the total overdeviation problem (see Table 5.15). The 

average percentage deviation of the lower bound for the maximum overdeviation 

problem is 6.79%.  In 82.31% of the problems, the lower bound is equal to the exact 

value which means the lower bound provides a quite good estimate for the maximum 

overdeviation problem.  

It is seen that the bound is better for the problems where the capacity is 150. In 1217 

out of 1219 exact solutions, the lower bounds are equal to the optimal maximum 
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overdeviations. The average percentage deviation from the optimal maximum 

overdeviation is 0.09% for the capacity of 150. For problems with the capacity of 

100, the lower bound behaves as expected and its performance is better when 

minimum weight is 1. The average percentage deviation is 7.12% when the item 

weights are generated from the range [1,100] whereas it increases to 16.16% when 

item weights are generated from the range [30,100] for capacity of 100. 

Compared with Table 5.23 it is observed that for the maximum overdeviation 

problem, the performance of the lower bound is better than the performance of the 

upper bound. 

Table 5.24. The lower bound values on the maximum overdeviation and the optimal 

maximum overdeviation 

n = 50 

C wi 

# of 

exact 

solutions 

(LB3±0) 

Avg 

LB3 

Max 

LB3 

Avg 

exact 

Max 

exact 

# of 

solutions 

LB3= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 236   293.85 2683   295.14 2683 184   6.78 89.47 

150 [1, 100] 158   382.87 2765   382.87 2765 158   0.00   0.00 

100 [30, 100] 244   379.97 3378   383.43 3378 143 14.62 92.86 

150 [30, 100] 145   577.95 3286   577.99 3286 143   0.84 71.43 

n = 75 

C wi 

# of 

exact 

solutions 

(LB3±0) 

Avg 

LB3 

Max 

LB3 

Avg 

exact 

Max 

exact 

# of 

solutions 

LB3= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 354   346.64 3906   347.72 3906 268   7.68 87.50 

150 [1, 100] 239   455.08 3856   455.08 3856 239   0.00   0.00 

100 [30, 100] 269   556.02 4926   559.07 4926 173 15.35 93.33 

150 [30, 100] 183   765.02 4831   765.02 4831 183   0.00   0.00 

n = 100 

C wi 

# of 

exact 

solutions 

(LB3±0) 

Avg 

LB3 

Max 

LB3 

Avg 

exact 

Max 

exact 

# of 

solutions 

LB3= 

exact 

Avg % 

deviation 

Max % 

deviation 

100 [1, 100] 386   440.21 5623   441.32 5623 307   6.82 91.67 

150 [1, 100] 296   534.83 5317   534.83 5317 296   0.00   0.00 

100 [30, 100] 322   665.38 6707   669.30 6707 202 17.99 94.44 

150 [30, 100] 198 1014.73 6654 1014.73 6654 198   0.00   0.00 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

In this thesis, we consider two bicriteria problems. The first problem takes the 

number of bins and total overdeviation as two criteria, whereas the second problem 

takes the number of bins and maximum overdeviation as two criteria. 

We formulate the problems as mixed integer linear programming (MILP). Using 

these programs, we generate the set of nondominated vectors with respect to define 

criteria. We enhance the efficiency of the MILPs through lower and upper bounding 

mechanisms. For total overdeviation problem, we define a property that finds many 

nondominated solutions without using MILPs.  

The results of our experiments have revealed that the problem with up to 100 items 

could be solved for high capacity bins. The problems with up to 75 items could be 

solved when the capacity is low. 

Computational results show that the quality of the upper bound is better than that of 

the lower bound in the total overdeviation problem whereas the quality of lower 

bound is better than that of the upper bound in the maximum overdeviation problem. 

The upper bound for the total overdeviation problem is equal to the optimal value for 

76.65% of the problems while the lower bound for the maximum overdeviation 

problem is equal to the optimal maximum overdeviation for 82.31% of the problems. 

To the best of our knowledge, our study is the first bin packing study that considers 

deviation based measures.  Further research may be directed towards development of 

enumeration and heuristic algorithms. Moreover different deviation based measures 

like minimizing total squared workload might be dealt.
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