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ABSTRACT

NURSE SCHEDULING AND RESCHEDULING PROBLEM UNDER
UNCERTAINTY

Karpuz, Ece
M.S., Department of Industrial Engineering
Supervisor  : Assist. Prof. Dr. Sakine Batun

December 2015, 86 pages

Nurse planning decisions play a critical role on hospital budgeting, quality of nursing
services and nurse dissatisfaction. Nurse planning in a hospital includes four main
phases which are nurse budgeting, nurse scheduling (rostering), nurse staffing
(rescheduling) and nurse assignment. We consider the scheduling and rescheduling
problems together under demand uncertainty. We formulate this problem as a two-
stage stochastic integer program and consider different solution methods including
solving the extensive form, L-shaped method and L-shaped based branch-and-cut
method. To improve the efficiency of the decomposition methods, a lower bound is
added and closed form of dual solutions of optimality sub problems are used while
adding optimality cuts. Time series analysis is used to forecast the demand and nine
months of historical data of Intensive Care Unit of a private healthcare provider is

used for this purpose.

Keywords: Nurse Scheduling; Two Stage Stochastic Programming; L-Shaped
Method; Time Series Analysis.
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BELIRSIZLIK ALTINDA HEMSIRE CiZELGELERININ
OLUSTURULMASI VE GUNCELLENMESI

Karpuz, Ece
Yiiksek Lisans, Endiistri Miithendisligi Boliimii
Tez Yoneticisi: Yrd. Dog. Dr. Sakine Batun

Aralik 2015, 86 sayfa

Hemsire planlama, hastane biitcelemesinde, hastalara verilen hizmetin kalitesinde ve
hemsirelerin is memnuniyetinde kilit rol oynar. Bir hastanedeki hemsire planlama
siireci temel olarak dort basliktan olusur; biitgeleme, cizelgeleme, c¢izelgelerin
giincellenmesi ve hemsire atama. Biz bu ¢alismada aylik ¢izelgelerin olusturulmasi
ve giincellenmesi problemlerini talep belirsizligi altinda incelemekteyiz. Bu entegre
problem iki asamali rassal tamsayili programlama ile modellendi ve iki agamali
modelin ¢6ziimiinde extensive form, L-shaped algoritmasi ve branch ve cut’a dayal
L-shaped algoritmasi kullanildi. C6ziim performansini gelistirmek i¢cin modele bir alt
smir kisitt eklendi ve optimallik kisitlar1 alt problemin dual ¢oziimiiniin kapali
formda yazilmasi vasitasiyla bulundu. Talep tahmininde zaman serileri analizi
kullanildi. Analiz agsamasinda 6zel bir hastanesinin yogun bakim iinitesine ait 9 aylik

veri kullanildi.

Anahtar Kelimeler: Hemsire Cizelgeleme; Iki Asamali Rassal Programlama; L-

Shaped Metot; Zaman Serileri Analizi
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CHAPTER 1

INTRODUCTION

Memis [1] states that annual healthcare expenditures of Turkey increased 13% on
average between 2008 and 2011. This significant increase has directed hospital
managements to explore reasons and to use their resources in more efficient ways.
The key point is to reduce costs without sacrificing service quality. In order to
provide this, efficient use of limited resources became inevitable and operations

research methods have started to be used in hospitals.

Since nurses are one of the most important scarce resources in a hospital and nursing
services have a big impact on both hospital budgeting and the quality of service
provided, studying issues related to nursing services can help hospital managements
to make progress.

Punnakitikashem [2] classifies the nurse planning decisions in a hospital in four
categories. First step is nurse budgeting, which includes the long-term decisions such
as the number of nurses to be hired and annual budget for nursing services. The
second step is nurse scheduling or nurse rostering, in which the volume of patient
arrivals is estimated and the assignment of nurses to shifts is made. Decisions made
in this stage are referred to as mid-term decisions. The third step is nurse
rescheduling, which includes short-term decisions such as rescheduling by making
adjustments on the number of nurses available to meet the realized demand. The last
step is nurse assignment, in which assignment of nurses to patients is made. In this

study, we focus on nurse scheduling and nurse rescheduling decisions.



Making nurse scheduling and rescheduling decisions can be very critical as they have
a direct impact on service quality, nurses’ job satisfaction and hospital budgeting.
Since these decisions are typically made by head nurses, it causes a high pressure on
head nurses, takes too much of their time and requires a great deal of effort.
Scheduling and rescheduling decisions are compelling because of the reasons given

below:

e Demand is stochastic, there are variations in staffing requirements between
days and even between shifts

e Maintaining an acceptable service level at all times is compulsory.

e Nursing services require qualified nurses.

e There are limited resources.

e Equity between nurses about their working times and satisfying their special
requests are important.

e There are legal rules about working times, which are compulsory to be

considered.

Building a poor schedule creates excess workload and high variability of daily

workload on nurses, which decreases the quality of service provided by nurses.
A poor schedule also causes nurse dissatisfaction, which arises from:

e Excessive amount of changes on the schedule (high rate of calling on-call
nurses, working overtime, etc.) during the month, which brings inconsistent
working times for nurses.

¢ Not being able to meet special requests of nurses about working times.

¢ Not being able to provide equity between in terms of their working hours.

According to the interviews made by the head nurse, there is high nurse turn-over

rate in the hospital, because of nurses’ job dissatisfaction. Since qualification is so



Important in nurse services, training cost has an important role on budgeting and high

turn-over rate causes high training costs.

We handle the scheduling and rescheduling problem together and consider the
stochastic structure of demand. A two-stage stochastic programming model is
presented in which the objective is to minimize adjustment actions during a month.
The first stage decisions include mid-term decisions, which are monthly scheduling
decisions and the second stage decisions include short-term decisions, which are
adjustment (rescheduling) decisions those are made when the demand is known for
certain. L-shaped method is used to solve the two-stage stochastic model. In order to
improve efficiency, a lower bound is added and dual solutions of optimality sub
problems are used while adding optimality cuts. Time series analysis is used to

forecast the demand and nine months of historical data is included in the analysis.






CHAPTER 2

BACKGROUND INFORMATION AND PROBLEM DEFINITON

Although nurse scheduling/rescheduling is a problem encountered in all hospitals
and shares common aspects across all types of hospitals (public, private, general,
specialty, teaching, etc.), there are also hospital-specific or even ward-specific details
of the problem since each system is unique. In this study, we particularly consider
the intensive-care unit (ICU) nurse scheduling/rescheduling problem of a private
hospital in Ankara, which has been in service since 2010. There are 25 active
departments. The ICU includes 4 sub-units, which are Cardiovascular Surgery ICU,
General ICU, Coronery Intensive Care Unit, Neonatal Intensive Care Unit. Our focus
is on the nurse scheduling process in the Cardiovascular Surgery Intensive Care Unit
and General Intensive Care Unit. There are 12 beds and 17 nurses in total. The total
number of inpatients served during a month is 45 on average, and the average length

of stay of a patient is 4.5 days.

According to the interviews made by the head nurse, there is a high turnover rate in
nursing services and the reason is nurse dissatisfaction and undesirable schedules and

overtime are the main reasons which cause dissatisfaction.

2.1 Scheduling
Scheduling process in the ICU includes the assignment of nurses to shifts and

determination of off-days for each nurse.

There are 3 shifts in a day. The first shift includes the hours from 07:00 to 16:00, the
second shift is from 15:00 to 24:00 and the third shift (night shift) is from 23:00 to
08:00.



There are four types of nurses:

Scheduled nurses in a shift are the ones who are assigned to that shift in the
monthly schedule.

On-call nurses are also assigned in the monthly schedules and they should be
prepared in case of calling when there is overload in the ICU.

Overtime nurses in a shift are the nurses who are scheduled to work in that
shift in the last minute (i.e., who are rescheduled to work) when the
scheduled and on-call nurses are not enough to meet the workload.

Undertime nurses in a shift are the nurses who are allowed to go when the
actual demand is less than the planned demand and there is redundant

workforce.

Monthly schedules are prepared manually by the head nurse of the ICU. The head

nurse p

repares the monthly schedule at the beginning of each month and makes these

decisions:

How many nurses will be assigned for each shift?
Which nurse will work at which shift?
Which nurse will be an on-call nurse at which shift?

When are the off-days for each nurse?

A monthly schedule made by the head nurse at the beginning of month is given in

Figure A.1 as an example.

Preparing these schedules manually takes significant time for head nurses and

coming up with a desirable schedule can be very compelling. A desirable schedule

should:

meet legal working limit, rules and permissions,
provide equity between nurses,

be reasonably stable during the month,



e meet special requests of the nurses,

e result in a low rate of calling on-call nurses, overtime and undertime hours.

2.2 Rescheduling
The last hour of a shift overlaps with the first hour of the next shift. During this hour,

situations of patients are told to the incoming team of nurses and the operations of
next shift are determined. At the end of each shift, the charge nurse observes the

actual demand for patient care and takes rescheduling decisions given below:

e If there is a shortage, the on-call nurse is called to work primarily.

e If on-call nurse is not enough to meet over workload, a nurse is assigned to
work as an overtime nurse.

o If there is redundant workforce, the excess number of nurses will be allowed

to go.

Because of the variability in demand, rescheduling decisions are made extensively.
This sometimes causes excessive amount of changes in the existing schedule, high

rate of calling on-call nurses and excess workload on nurses.

The monthly schedule given above as an example of monthly scheduling is also
given in Figure A.2, but that representation is the schedule which includes the

changes (i.e., rescheduling actions and disruptions) made during the month.
According to these schedules some observations are made:

e The schedules of nurses are changed during a month with an average of 8
days in a month for each nurse.

e Nurses are assigned as an on-call nurse on their days-off with a rate of 12%
of days off (the number of assignments in which nurses are assigned as on-
call nurses on their days-off / the total number of assignments as an on-call
nurse).

e There are nurses who are assigned four consecutive night shifts.



e The maximum difference between the numbers of shifts in which nurses are
assigned as an on-call nurse is 4 shifts.

e The rate of calling on-call nurses is 11% (The number of calling the on-call
nurse / the total number of assignments as an on-call nurse).

e The total over-time need is 13% of total assigned normal workforce during

the month.

2.3 Forecasting
In the current system the monthly schedules and rescheduling decisions are based on

the experience of the head nurse. The demand for patient varies during a month and
it can change even between consecutive shifts. Ignoring this variability is one of the

main reasons which cause a poor schedule and end up with nurse dissatisfaction.



CHAPTER 3

LITERATURE REVIEW

We present the reviewed literature in two broad categories, which are review of
methodologies and application based studies.

3.1. Review of Methodologies

This study basically consists of two parts, which are monthly scheduling under
demand uncertainty and forecasting demand for nursing services. Stochastic
programming and L-shaped method are used for modeling and solving the
scheduling problem. In order to create the scenarios for stochastic programming by
forecasting the demand, univariate time series analysis is used. A brief review of

these methodological tools is presented below.

3.1.1 Stochastic Programming

Stochastic programming, which was first introduced by Dantzig [3], is mathematical
programming where the problem parameters are random variables. As stated in
Punnakitikashem [2], since real world problems typically include uncertainty,
stochastic programming has a wide range of application areas including finance,
manufacturing, transportation, logistics, airline operations, capacity planning and

telecommunications.

A two-stage stochastic program is the simplest form of a stochastic program. In a
two-stage stochastic program, decision variables are divided into two groups, which
are first stage decision variables and second stage decision variables. First stage

decision variables are the variables decided in the first stage before the actual



realization of the random parameters. Second stage variables are the variables

decided once the actual values of random parameters are realized.

The so-called two-stage stochastic program with recourse is of the form given in

Birge and Louveaux [4] as:
minc’x + E.Q(x,e)

Subject to:

where Q(x,e) = min{q’y|Wy = h—Tx,y = 0}, ¢ is the vector formed by the
components of g7, hT, and T, and E, represents the expectation with respect to . W

is assumed to be fixed (fixed recourse).

As the number of scenarios in a stochastic program increases, solving the extensive
form becomes computationally impractical. Therefore, using decomposition-based
methods to solve stochastic programs is very common. One of such methods is the L-
shaped method, which is basically the application of Benders decomposition to two-

stage stochastic programs.

The main idea of the L-Shaped method is to approximate the expected second stage
objective function value (i.e., the recourse function) by using a surrogate variable, Q,
within an iterative framework. At each iteration, a restricted master problem (RMP)
is solved to obtain a first-stage solution. If the solution is not feasible/optimal, a
feasibility/optimality cut is added and next iteration is performed. Otherwise, the

returned solution is the optimal solution.

The extensive form of the two stage stochastic programming model can be
formulated as given below, in which K represents the all possible realizations, and py,

represents the probability of occurrence of the k" realization:

10



K
minc’x + Z Dk 9r Vi
k=1

Subject to:
Ax=b
Tyx + Wy, = hy k=1,..,K
x =0, Y =0 k=1,..K

Because of the block structure of extensive form, the following algorithm is named
as L-shaped method. Birge and Louveaux [4] state that this structure makes a
Benders decomposition or equivalently a Dantzig-Wolfe decomposition of its dual
possible. This method has been extended in stochastic programming to take care of

the feasibility issue and is known as the L-shaped method. It proceeds as follows:
Step0: Setr = s = v = 0.

Step 1: Setv = v + 1. Solve the following LP:

minz =c’x+ 6 Q)
Subject to:
Ax=0Db
Dix = d, l=1,..r (2
Ex+06=>e¢ l=1,..,s 3

x =0, 0 eR

Let (x¥, 8Y) be an optimal solution. If no constraint (3) is present, 87 is set equal to

(-o0) and is not considered in the computation of x".

11



Step 2: For k = 1, ..., K solve the following LP:
minw’ =eTv* + eTv™ (4)
Subject to:

Wy + vt — Iv™ = hy — Ty x"(5)

And let oV be the associated simplex multipliers (i.e., dual variables). If w' > 0,

define

Dry1 = (6")'Ty
and

dri1 = (6")"hy

to generate a constraint (called a feasibility cut) of type (2). Set r = r + 1, add to
the constraint set (2), and return to Step 1. If for all k, w' = 0,go to Step 3.

Step 3: For k = 1, ..., K solve the following LP:
minw = q;"y (6)
Subject to:
Wy = h, — Tyx"
y=0

Let ,” be the simplex multipliers (i.e., dual variables) associated with the optimal

solution of Problem k of type (6). Define

K
Egiq = Z D * (") vy Ty
k=1

12



and

K
€s+1 = Z Pk * (T[kv)Tyk hy
k=1

Let w¥ = e, — EsiqxV. If 8 > w?, stop; x”is an optimal solution. Otherwise, set

s = s + 1, add to the constraint set (3) and return to Step 1 [4,5].
There are some measures used to evaluate the impact of uncertainty.

The expected value of perfect information (EVPI) measures the amount of payment
that a decision maker is willing to pay in return for complete and accurate
information about future. In order to determine EVPI, firstly one needs to solve a
deterministic model for each realization (¢) of the random variables, then find the
expected value of optimal objective values of these solutions. This is called the wait-
and-see solution (WS). EVPI is obtained by comparing the wait-and-see solution to
the here-and-now solution corresponding to the recourse problem (RP); i.e.,

stochastic program:
EVPI =RP — WS

It is assumed that for all &, there exists at least one feasible solution (which implies
there is at least one optimal solution), otherwise there is no chance to construct a
reasonable stochastic model.

A heuristic solution of the model with random parameters can be obtained by
replacing random variables with their expected values and solving a deterministic
model. This approach is called as the expected value or mean value problem (EV).
The value of the stochastic solution (VSS) is defined as the possible gain obtained

when the stochastic model is solved. VSS is calculated as given below:

VSS = EEV — RP

13



where EEV is the expected value of the mean value solution under each realization &

[4].

3.1.2 Time Series Analysis

Time series analysis deals with analyzing and modeling an ordered sequence of
observations which are generally obtained over equal time increments [6]. Compared
to regression analysis, time series analysis has an advantage of taking the internal
structure of data into consideration. To illustrate, the assumption about serial
uncorrelated residuals is often violated in regression analysis. Taking this

autocorrelation into account provides more realistic forecasts.

The assumption of time series analysis is that data are stationary, which requires the
property that the mean, variance and autocorrelation structure do not change over
time [7].

Dickey-Fuller is one of the methods for testing the existence of unit root (the

situation of nonstationarity) in a series. Address the model given below:
Ye=p*Ye1+u

Where u, is the stochastic error term and p is the coefficient. We can show the

equality as:
v =Ya=@-D*Y1+tu
VY =y *Y1 +u
where y = (p — 1). The main goal is testing the following null hypothesis:
H,:y = 0 (data contains the unit root)
H,: data is stationary.

If |y + 1| < 1, then data is said to be stationary. Testing is made by t statistics [7].

14



Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC), which
is also known as Schwarz Information Criteria (SIC), are the two methods used
commonly in order to select the best model that represents the data. The goal of AIC
is to find the best approximating model to the unknown true data generating process.
AIC selects the model that minimizes the negative likelihood penalized by the

number of model parameters.
AIC = —2logp(L) + 2m

where L represents the likelihood under the fitted model, m represents the number of

parameters in the model and p is the number of lags.
The aim of BIC is to find the most probable model. BIC is given as:
BIC = =2 logp(L) + plog(n)

The difference between the AIC and BIC representation is BIC depends on the

sample size n [8].

The ideal case for the best model is the selecting the model with the minimum AIC

and SIC values.

The autoregressive (AR) model is the common approach for modeling univariate

time series:
Xe =0+ P1Xeq + P Xe 5+ + ¢pXt—p + A;

where X, is the time series, A, is white noise, ¢, ..., ¢, are the coefficients of the

model, and

5:(1—Zp:¢i)ﬂ

with u denoting the process mean [9].

15



A white noise process is one with no discernible structure. A definition of a white

noise process is given in Rachev et al. [10] as:

E(y:) = u
var(y,) = o?

o2 ift=r

Ver = {O otherwise

Therefore a white noise process has constant mean and variance, and zero

autocovariances.

An autoregressive model is said to be simply a linear regression of the current value
against prior value, in other words the current value of the series depends on only the
values that occur in previous time periods and error term. The value of p is called the
order of the AR model [7, 9].

The moving average (MA) model is another common approach for modeling

univariate time series and is represented as:
Xe=pu+ A — 0141 — 04, — - — 0444

where X, is the time series, u is the mean of the series, A;_; are white noise terms,
and 6,, ..., 6,are the parameters of the model. The value of g is called the order of the

MA model. A moving average model is said to be a linear regression of the current

value of the series against the white noise of one or more prior values [9].

Box-Jenkins ARMA (Autoregressive Moving Average) model is the model where
AR and MA models are used at the same time. ARMA(p, q) model is obtained by
combining AR(p) and MA(q) models is represented as follows:

Xe =86+ 1 Xe 1+ o Xe o+ -+ PpXepy + Ar — 01414 — 041, — - — 0,44
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It can be inferred that in ARMA models the current value of series depends linearly
on its previous values and a combination of current and previous values of a white

noise error term [10].

The Box-Jenkins models assume that time series is stationary and in case of an non-
stationary situation, stationarity can be obtained by differencing non-stationary data
one or more times. When differencing is applied, ARMA model turns to be ARIMA
model in which “T” represents the “Integrated” term and next step will be identifying
the order of AR and MA models which are also represented with p and g also.
Autocorrelation and partial autocorrelation functions (ACF and PACF) are the

primary tools for identifying the order of AR and MA models [9].

The autocorrelation function (ACF) shows how the value is correlated to previous
values; more specifically autocorrelation in lag k, called py, is simply the correlation
between the values from p, to p,_ for stationary processes. Autocorrelation function
shows the randomness in data. As a proof of randomness, autocorrelations are
expected to be near zero for any and all time-lag separations. If one or more
autocorrelations are significantly non-zero, then data is said to be non-random. The
partial auto correlation function (PACF) measures the correlation only between an
observation k periods ago and the current observation, after controlling for
observations at intermediate lags. Partial autocorrelations are useful in identifying the

order of an autoregressive model [9, 10].

The differences in ACF and PACF among models are useful when selecting models.
ACEF is used to identify MA models and PACF is used to identify AR models. The
following Table 3.1 summarizes the ACF and PACF behavior for these models [11].
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Table 3.1 ACF and PACF Behavior for AR, MA and ARMA Models

Conditional Mean Model | ACF PACF

AR(p) Gradually decrease Cuts off after p lags

MA(Q) Cuts off after q lags Gradually decrease

ARMA(p,q) Gradually decrease and | Gradually decrease and
cuts of after g lags. cuts of after p lags.

Decrease can be exponential or sinusoidal wave [12].

To sum up the basic properties of ARIMA models are given below as mentioned in

Weggemans [13]:

e Non-stationary data can be made stationary by taking differences of the
original series.

e The residuals of the estimated ARIMA series should follow a normal
distribution and should not possess autocorrelation.

e The Akaike criterion can be used to identify the best among the estimated
ARIMA series.

3.2 Application Based Studies
Application based studies consist of five main topics which are employee scheduling,
deterministic and stochastic nurse scheduling, patient volume forecasting, measuring

nurse workload.

3.2.1 Employee Scheduling

The studies about employee scheduling include days-off scheduling and generating
working plans under some uncertainties. Employee scheduling studies are similar to
nurse scheduling studies in terms of dealing with uncertainties and days off

scheduling.
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Therefore the studies given below are included in the literature review since nurse
scheduling includes assignment of days-off to nurses and deals with similar

uncertainties.

Morton and Popova [14] study an employee scheduling problem where the demand
forecast of the required number of shafts per type with due dates for the next month
Is received at the end of each month. One of the line manager’s tasks is to build an
employee schedule for shaft production for the next month. Machines have different
production rates for each shaft type and for each crew as well as different down-time
rates. The production line manager decides which work will be assigned to which
crew and at which machine they will work to meet the required number, which is
forecasted on time and within the budget constraint. In this problem, the random
parameters are production rates and machine availabilities. To maintain this
randomness, Bayesian distributional forecast is used. The distributions are updated
with observations of each passing month. Monthly employee scheduling is made by
solving a two stage stochastic program with recourse. The Bayesian estimation
model provides point and distributional estimates for the hourly production rates by
shift and shaft type and for up times of the production equipment. These estimates
are used as inputs for the deterministic optimization model first. This model
minimizes a weighted sum of penalties for late and non-delivered shipments plus a
penalty for exceeding the target budget. Since this problem considers production
rates and down-time rates as known certainly, deterministic model is extended to a
stochastic model. Morton and Popova [14] state that Bayesian forecasting models

can rapidly capture changes in non-stationary systems using limited historical data.

Alfares [15] studies employee days-off scheduling in which work/off days are
determined for a work week. In this problem, daily labour demands are random
variables and a simulation model is used. The relevant unit has 19 employees divided
into five craft types and employees can be assigned to three types of days-off

schedule. The aim of the study is to find technician’s days-off schedules and meet
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labour demands by considering limited staff availability and policy restrictions on the
choice of employee schedules. The number of technicians of each craft to assign to
each days-off schedule is the decision that must be made while minimizing the
average throughput (waiting plus processing) time of maintenance work orders
(W/O). The number of required technicians of each craft varies from one work order
to another and the number of technicians from each craft type assigned to W/Os is
calculated from empirical probability distributions. Some W/Os need more than one
craft type therefore historical data is used to determine the percentage of time each
craft is needed by a given W/O. It is assumed that employees work at an average
speed and they are fully available during the simulation period.

Campbell [16] investigates the employee days off scheduling with random demand.
A two stage stochastic programming model is built. In the first stage, days-off
scheduling is made and in the second stage, assignment of cross-trained workers is

made to meet actual demand.

3.2.2 Nurse Scheduling

Nurse scheduling problems are widely studied in the operations research literature.
The problem is to develop a decision making tool that assigns nurses based on nurse
preference and patient workload requirements. Nurse scheduling literature includes a
wide range of studies. These studies can be classified in various ways. Studies based
on nurse scheduling in operating suites and nurse scheduling in general clinics are
the most common subjects in nurse scheduling literature. Some studies handle a
single-objective and generally the objective in these studies is either minimizing
costs or maximizing nurse preferences. On the other hand, some studies consider
multiple-objective optimization problems. In these studies, the objective function is
usually minimizing the total penalty cost that occurs due to the violations of soft

constraints.

Literature about nurse scheduling can also be classified as cyclic and non-cyclic

scheduling. In cyclic scheduling, a predetermined working pattern which is repeated
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in every scheduling period is assigned to each nurse. In non-cyclic scheduling, a new

schedule is made at the beginning of each scheduling period.

Commonly used solution approaches for the nurse scheduling are solution methods

based on mathematical programming and heuristic methods.

Most studies assume that decision makers have complete information and handle
nurse scheduling problem as a deterministic problem. However, healthcare
organizations deal with many different types of uncertainties and considering these
uncertainties is critical when modeling and solving the planning problems in
healthcare delivery systems. New efforts involve forecasting the staff requirement for
the near future. One of the key factors of high quality is assigning the correct number

of personnel to meet the requirement [17, 18, 19].

Kao and Queyranne [20] introduce eight models including single period/multi period,
aggregate/disaggregate and deterministic/probabilistic model. In a single period
model, the time-varying nature of demand for nursing hours is ignored. Aggregation
is done over the nurse skill classes. In probabilistic models, demand uncertainty is
considered. It is indicated in the study that ignoring the time-varying nature of
demand does not cause gross errors in budget estimates, on the other hand ignoring

demand uncertainty induces error about five to six percent on budget estimates.

In order to investigate general structure of nurse scheduling model, the deterministic
nurse scheduling studies are analyzed. On the other hand, in practice, the nurse
scheduling problem is a stochastic problem where demand is uncertain. As a result,
studies about stochastic nurse scheduling and rescheduling are also included in the
literature review. In addition to these studies, studies about forecasting patient
volume and measurement of workloads are reviewed for this study, since forecasting
the demand is one of the main tasks to be performed when scheduling the nurses

under demand uncertainty.
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Tein and Ramli [21] review the recent advancements on nurse scheduling. Nurse
scheduling and rescheduling reviews can also be found in Cheang et. al. [19], Clark
et. al. [22], Ernst [23].

3.2.2.1 Deterministic Nurse Scheduling

Belien and Demeulemeester [24] consider nurse scheduling and surgery scheduling
at the same time. It is stated that a common problem at hospitals is the extreme
variation in daily workload pressure for nurses and one of the main reasons for this
variety is the operating room schedules. Therefore the study aims to save staffing
cost by integrating operating room scheduling and nurse scheduling problems. The
objective function of the presented model is to minimize the total required number of
nurses. The workload distribution is the input for the nurse scheduling model.
Constraints of the model consist of two main groups. One of them is the coverage
constraints, which represent how many nurses of appropriate skills need to be
scheduled for each demand period. The other one is collective agreement
requirements, which are the constraints that define rules for an acceptable schedule in
terms of workload, day-off and resting time between shifts. Instead of assuming the
demand values which are the right-hand side values of the coverage constraints in the
nurse scheduling problem are fixed, general nurse scheduling problem (GNSP) is
studied. In GNSP, demand values are considered to be dependent on the workload
patterns which will be obtained by enumerating all possible ways of assigning
operating blocks to the different surgeons, subject to surgery demand and to capacity

restrictions. Column generation technique approach is used to solve the IP.

Mobasher et al. [25] study daily scheduling of nurses in operating suites. They work
with a variety of objectives such as minimizing the maximum demand deviation for
any case, maximum amount of overtime assigned to any nurse, maximum number of
cases assigned to any nurse and aim at Pareto-optimal solutions. A multi-objective
integer program is used to formulate the problem. The aim is to determine which

nurse should be assigned to which surgery case, during which time intervals, and
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what their role (Nurses can have different roles according to their skill level during a
surgery, i.e., a scrub is responsible for preparing and passing supplies, equipments
and instruments to the surgeon during the procedure) should be. The surgery
durations and the number of required nurses in each role are the main parameters
given to the model. Two methodologies are used to find a solution. The first one,
which is called the solution pool method (SPM), generates a pool of good solutions
by solving multiple optimization problems, each of which optimizes a single
objective. Then a cumulative weighted index is found for each solution and the
solution with the smallest index is picked as the best solution to be used. The second
method is called the modified goal programming method (MGPM) and it finds the
optimal solution for each goal separately and then solves a derivative optimization
problem whose objective is to minimize the sum of the deviations from those goals.
It is stated that although MGPM generates solutions with smaller deviations in
significantly less time, SPM has the advantage of providing good solutions among

which the decision maker can choose.

Bard and Purnomo [26] study the rescheduling problem, which aims to reallocate the
available resources in a way that the cost of the shortfall is minimized while ensuring
that each unit in the hospital has sufficient coverage. Decisions made in the integer
programming model include overtime, outside nurses and floaters. In doing so,
minimizing the differences between the new plan and the original plan is also

considered and the expected demand for the upcoming 24 hours is taken as an input.

Glass and Knight [27] state that a nurse rostering problem includes two constraint
types. Staffing constraints ensure that sufficient nurses of each type are on duty at
any particular time and schedule constraints are related to the sequences and
combinations of shifts to be worked by each nurse. It is said that satisfying both sets
of constraints simultaneously is not always possible. The modeling approach
therefore involves reducing selected constraints to soft constraints with

measurements of their violation. The objective is then to minimize the violation of
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these soft constraints. MIP is used for modeling and a methodology for handling

continuity between rostering periods is studied.

Atmaca et al. [28] study nurse scheduling problem and use 0-1 linear programming
to formulate the problem. There are three objectives considered, which are
minimizing the total number of working days of nurses, minimizing the difference
between the total numbers of working days of nurses and minimizing the number of
assignments of nurses to consecutive shifts. The objective function is represented as
the minimization of the weighted sum of the deviations from these goals related to

each objective.

3.2.2.2 Stochastic Nurse Scheduling

Punnakitikashem et al. [29] model the nurse assignment problem under uncertainty
in the workload as a two stage stochastic integer program. Since a patient may be
admitted or discharged during a shift, the amount of direct care required by the
patient may vary dramatically throughout the shift. The first stage decision is
assigning nurses to patients and the second stage decision is determination of
realized workload. The aim is to minimize excess workload on nurses. Benders’
decomposition method, in which the master problem assigns nurses to patients, and
each recourse problem penalizes the assigned workload is used as the solution
approach. The proposed approach decomposes by scenario and also by nurse into the
(number of scenarios) * (number of nurses) linear programming subproblems.
Therefore, the subproblems become more manageable than subproblems
decomposed by standard L-shaped method.

Punnakitikashem [2] builds a two stage stochastic programming model where nurse
staffing and nurse assignments are integrated. Workload on the nurses is uncertain
and the aim is minimizing excess workload on the nurses under a budget constraint.
The first stage decision is to assign nurses to patients and the second stage includes
rescheduling decisions in which the decision of assigning overtime nurses, agency

nurses or cancelling scheduled nurses. Three solution approaches; namely Benders
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Decomposition, Lagrangian Relaxation with Benders Decomposition, and Nested
Benders Decomposition are presented. Firstly, Benders Decomposition is used to
solve two stage stochastic model, then Lagrangian Relaxation with Benders
Decomposition is used to solve model in which the budget constraint is relaxed.
Secondly, the problem is considered as a multistage stochastic programming problem
and Nested Benders Decomposition is demonstrated. An algorithm for finding non-
dominated solutions obtained from these three approaches is presented. Non-
dominated solution is defined as nurse schedules and assignments that are not
dominated by any other schedules and assignments found, either they require less
excess workload or less staffing cost than the other solutions found.

Kim [30] builds an integrated staffing and scheduling (iStaff) model as a two-stage
stochastic integer program with mixed integer recourse. Demand is uncertain.
Staffing decisions are made well ahead in time and when the demand is known for
certain, adjustments are made. As a result, the first stage decision is the
determination of the number of nurses who will work in pregenerated scheduling
patterns at any time and the second stage decisions are adjustment decisions
including amount of overstaffing, amount of understaffing, etc. It is stated that the
problem size is large because staffing and scheduling decisions include a high
number of integer variables because of the possible shift combinations. L-shaped
method is used to solve the model. The major contribution of this paper is defined as
identifying valid mixed integer rounding (MIR) of feasible solutions for the second
stage mixed integer programming problem and exploring heuristic approaches for cut
aggregation strategies and branching strategies tailored to the model formulation.

In most of the previous studies, the stochastic structure of demand is ignored.
Punnakitikashem et al. [29] consider only the nurse assignment under uncertainty on
the amount of direct care required by the patient. In the next study, Punnakitikashem
et [2], the model in Punnakitikashem et al. [29] is extended by incorporating the

nurse staffing decisions into the assignment model. Since a short-term nurse staffing
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is considered, nurse preferences are not included in the model, which are normally
included in mid-term scheduling. There are a limited number of studies that integrate
nurse scheduling and rescheduling. Kim [30] uses the scheduling patterns which are
pregenerated to ensure compliances with scheduling rules and regulations and in the
first stage determines the number of nurses who will work in these scheduling
patterns. This method disregards the special requests and special occasions of nurses
(like breast-feeding permissions). Our model provides more flexible schedules in
terms of these conditions. The demand uncertainty is handled via patient volume
data. Since the required care by a patient is different among patients, the indicator
that shows the total required patient care in terms of all patients is used to forecast

demand in our study.

3.2.3 Forecasting of Patient Volume

Weggemans [13] handles three issues, namely building a model to predict the
number of patient arrivals in a certain time period, a model that can compute the
probability that a patient will transfer from one specialism to another in a certain
time period and a model that can estimate the service time of patients. Markov chains
are used to model the transition probabilities. Some studies that use time series to
predict the patient volumes are referenced. It is stated that using queuing models is
not an efficient way to predict patient volumes because queuing theory requires a
specific arrival distribution and service time distribution. As a result Autoregressive
Integrated Moving Average (ARIMA) models are commonly used for prediction of

patient volumes.

Schweigler et. al. [31] investigate how time series-based models perform in short-
term forecasting of emergency department (ED) crowd. While patient arrivals per
hour is used generally in most studies, in this study ED hourly occupancy, which is
defined as the total number of patients (patients in each adult ED + patients in
waiting room) divided by the number of permanent beds during that hour, is used.

Three models, which are hourly historical average, seasonal autoregressive integrated
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moving average (SARIMA) and sinusoidal with an autoregression (AR) - structured
error term is used for prediction. Comparison of these models is made according to
log likelihood and AIC and accuracy of models are measured by actual observed bed
occupancy with root mean square (RMS) error. Results show that while AR based
models are not different from each other, they perform better compared to historical

average model.

Jones et. al. [32] investigate the use of seasonal autoregressive integrated moving
average, time series regression, exponential smoothing, and artificial neural network
models to forecast daily patient volumes at three different facilities. Forecasts are
made for horizons ranging from 1-30 days in advance. Accuracy of models is
evaluated according to mean absolute prediction error (MAPE). The seasonal and
weekly pattern of daily patient volume in ED services is confirmed. It is stated that
the existing methodology proposed in the literature, multiple linear regression based
on calendar variables, is an acceptable approach, on the other hand regression-based
models that incorporate calendar variables, account for site-specific special-day
effects, and allow for residual autocorrelation provide a more appropriate,
informative, and consistently accurate approach to forecasting daily ED patient

volumes.

Kam et. al. [33] evaluate three models, namely moving average, seasonal ARIMA
(SARIMA) and multivariate SARIMA to predict the number of patients visit an
emergency center per day. Three models are investigated by considering calendar
and weather data. Residual analysis, ACI and Bayesian information criterion are used
to compare goodness of fit. Accuracy of models are measured by MAPE. It is stated
that the most appropriate and accurate model for predicting number of patients
visiting ED is the multivariate SARIMA model.

Kao and Tung [34] state that there are two different approaches in forecasting a time
series, which are the time series approach and the econometric approach. It also

stated that although econometric approach generally gives better forecasts, it requires
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a large amount of data set. As a result it is stated that time-series models have been
used to forecast patient census. In this paper ARIMA (Autoregressive integrated
moving average) time series models for forecasting demands for inpatient services is
studied. Prediction of demand is made on a yearly basis. Demand is stated in terms of
monthly admissions and patient days by services. First, monthly admissions and
patient days are forecasted by using ARIMA, and then the actual demand and
forecasted demand are compared empirically. Finally an indirect method to project
patient days is introduced. This approach combines admission forecasts and the

length of stay estimates and takes less effort.

Kim [30] compares forecasting methods used while predicting hospital patient
volume. Exponential smoothing model, ARIMA model, autoregressive moving
average with generalized autoregressive conditional heteroskedasticity (ARMA-
GARCH) model and vector autoregressive (VAR) model were investigated.
Comparison is made according to MAPE. It is noted that the multivariate forecasting
method used accounts for patient admissions to Hospital Medicine (HM) from a
variety of sources (e.g. emergency medicine, outpatient offices, intensive care
services, etc.), while the univariate methods use HM patient volume data only. The
results show that a univariate ARIMA model performs best. It is stated the
multivariate model does not perform better than the univariate ARIMA models,

particularly for the forecast periods of more than five days.

3.2.4 Nurse Workload Measurements

Nurses take a critical role on the quality of healthcare system. They are the major
factor that affects the quality of patient care. Continuity and strict care is inevitable
and critical for especially ICU patients. The excess workload on nurses and the
extreme turn-over rate which arises from dissatisfaction of nurses causes low quality
of patient care. Therefore measuring workload on nurses accurately is an essential

issue for hospital managers.
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Nursing workload measurement systems are used to determine the amount of care
needed by patients and required nursing time to meet those needs. In addition to this
nursing workload measurement provides information to predict number of nurses
required for next shift. Nursing workload measurement data can be a base for
budgeting, staffing, planning decisions and quality assurance.

Some of nursing workload measurement methodologies are based on tasks nurses
perform during a shift. Each task has a standard completion time and total time
required for performing tasks gives the total nursing workload. On the other hand,
some methodologies use patient classification systems. In consideration of some
specific and predetermined factors, needs of each patient are evaluated and according
to needs and features of patients each patient is assigned to a predetermined patient

type [35].

In the 1960s a method called “Utilized Work Sampling” was used. This method does
not consider the patient type and nursing skills. From the mid-1970s to 1990s a
method which takes into account the severity of patient and the dependency degree
of patient to nurses. In 1990s measurements based on performance of nurses became
important due to pressure on willing to decrease nursing expenses as a result nursing

ratio concept was started to be carried out.

Methods used currently to decide the required number of nurses can be classified

under 5 categories [36]. These are;

e Professional Judgement Approach: This approach is based on the calculation
of working hours of nurses decided in the schedules. When the qualification
of nurses and the dependence level of patients change, this approach will be
inefficient.

e Nurse Per Occupied Bed Method: This approach is based on the beds

occupancy rate and ignores the levels of dependence of patients.
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e Time-Task/Activity Approaches: The operations performed by nurses and the
required time for these operations are recorded and analysis is made
according to these records.

e Regression-based Systems: Regression analysis is made to forecast the
required number of nurses for a specific task. Generally, the relation between
the required number of nurses and the bed occupancy rate is analyzed.

e Acuity-Quality Method: In this approach, in addition to the number of
patients, the level of dependence of each patient is also considered. This
approach is efficient in the systems where the number of patients and the

types of patients are changeable.

Padilha et. al. [37] underline the importance of measuring nursing workload and
taking into account the indicators of workload to increase quality and safety of care

given in hospital departments. They consider this necessity under “Nursing Activities

Score (NAS)”.

Lin et. al. [38] focuses on quantitative models of work related fatigue. Two methods
which are called survey-based and total function-based fatigue models are
introduced. A multi-objective MIP formulation is used to model the scheduling
problem. Objective function of the model is a weighted sum of total preference
scores, total based survey-based fatigue scores and total function-based fatigue
scores for all nurses at the end of their shift patterns. It is stated that making Pareto-
optimal schedules is possible where the nurse fatigue levels are significantly reduced

for a small decrement in nurse preferences.

3.2.4.1 TISS (Therapeutic Intervention Scoring System)
In the current system of the hospital, workload measurement is based on nurses per
occupied bed method. The data used in studies is collected from TISS method, which

is a task based approach.
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There are four categories of tasks performed. Each category has a score from 1 to 4.
For each patient tasks need to be performed during a day is checked on a check list
via using Excel worksheet. Each task has its own coefficient. At the end of the
checklist a total TISS score is obtained for each patient. According to this scoring
system a nurse should have workload corresponds to 50 TISS score on average.
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CHAPTER 4

MATHEMATICAL FORMULATION AND SOLUTION APPROACHES

4.1 Integrated Nurse Scheduling and Rescheduling Model
We formulate the problem as a two-stage stochastic programming model. In the first

stage, mid-term (monthly) scheduling decisions are made:

e Which nurse will work at which shift?
e \Which nurse will be an on-call nurse at which shift?

e When are the days-off for each nurse?
In the second stage, short-term rescheduling decisions are made:

e Calling on-call nurse
e Amount of overtime

e Amount of undertime

4.1.1 Two Stage Stochastic Programming Model

Parameters:

t: Total number of nurses in the department (assumed to be fixed during the
month)

g: Total number of days to be scheduled

S: Total number of scenarios

_ {1 if nurse i is a senior nurse
Y L0 otherwise
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L {1 if nurse i has breast — feeding permission on day j
Y L0 otherwise

vi=1,..,t;j=1,..,9

fk: required number of nurses on day j at shift k according to scenario s.
vVi=1,..,9;k=1,..,3

1 if nurseihas a request about not working on day j at shift k

g = {1 Tnurse
Uk =10 otherwise

vi=1,..,t;j=1..,9,k=1,...3

First Stage Decision Variables:

oo = {1 if nurse i works on day j at shift k
Lk 0 otherwise

Vi=1,..,t; j=1,..,9.k=1,..3

1 if nurseiisan on — call nurse on day j at shift k

e = |
Uk 0 otherwise

1 ifnurseiis on day — off on day j
0 otherwise

fij={

y;: the total number of normal working shifts for nurse i during the scheduling
period vi=1,..,t

n;: the total number of night shifts for nurse i during the scheduling period

p;: the total number ofassignments as an on — call nurse for nurse i during the

scheduling period Vi=1,..,t
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Second Stage Decision Variables:
ojsk: required number of over time nurses on day j at shift k according to
scenario s vi=1,..,9:k=1,...3;s=1,..,S

1 if on — call nurse will be called on day j at shift k according to
Cik = scenario s

0 otherwise

vVi=1,..,9;k=1,...3;s=1,..,S

rﬁc: Number of nurses who will be permitted to go on day j at shift k according to
scenario s vi=1,..,9:k=1,...3;s=1,..,S
Mathematical Formulation:

min Q(x)

Subject to:
1. There must be at least one senior nurse in each shift.

f=1xijkmi>1 Vi=1,..,9; k=1,..,3 1)

2. Nurses who are pregnant or have breast-feeding permission can not be assigned

to any third shift (night shift).
Wij+ xij3+ Zl'jggl Vizl,..,t;j:].,..,g (2)

3. There must be at least two shift periods between sequential working shifts for

each nurse.
xl-j2+xl-j3+ xl-(j+1)1S1 Vl:1,,t ;j:].,..,g (33)
xij3+xi(j+1)1+xl-(j+1)2 <1 Vi = 1,..,t ; ]: 1,..,g—1 (3b)
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4. Exactly one on-call nurse must be assigned for each shift.
=1 Zijk = 1 Vi=1..,9;k=1,..3 (4)

5. Nurses who are on day-off can not be assigned as a normal working nurse. (They
can not be assigned as an on-call nurse as well, this is guaranteed by constraint
9)

(Zi=1xijk)+fij=1 Vizl,..,t;jzl,..,g (5)

6. There must be two days-off in total in every week during scheduling period for

each nurse.
]7=1flj:2 vi=1,..,t (63.)
itefij =2 Vi=1,..,t (6.b)
Lisfij=2 Vi=1,..,t (6.c)
Roafiy=2 Vi=1,..,t (6.d)

7. Assigning nurses to 4 night shifts sequentially is not wanted.

xl-j3 + xi(j+1)3 + xi(j+2)3 + xi(j+3)3 <3 Vl,] =1,..,t and] = 1,..,g -3 (7)

8. The difference between the number of night shifts, total regular shifts and

number of assigments as an on-call nurse of nurses must be less than or equal to

two.
Vi = Zi=1 Z]gzl Xijk vi=1,..,t (8.2)
n = %71 Xij Vi=1,.,t (8.b)
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Pi = Xi=1 X1 Ziji vi=1,..,t (8.c)

pi—p; <2 Vi,j=1,..,t and i# (8.d)
nl—n]SZ Vl,]=1,,tand1¢J (86)
Yi—y; <2 Vi,j =1,..,tand i% (8.1)
9.

- The on-call nurse for the first shift is chosen among the nurses who will work
in the second shift on same day.

- The on-call nurse for the third shift is chosen among the nurses who have
worked in the second shift on same day.

- The on-call nurse for the second shift is chosen among the nurses either who

have worked in the first shift or will work in the third shift on same day.

Zijlﬁxijz Vl=1,,t,]=1,,g (9a)
Zij3Sxij2 Vl=1,,t,]=1,,g (9b)
Zij2sxij1+xij3 Vi=1,..,t;j=1,..,g (90)

10. If nurse i has a request about not working on day j at shift k, then nurse i can not

be assigned that shift on that day.

al-jk+ xijk+ Zl'ij]- Vizl,..,t;j:1,..,g;k:1,..,3 (10)

11. Sign constraints

Xijk» Ziji € {0,1} vi=1,..,t;j=1,..,9:k=1,..,3 (11.a)
fi; € {0,1} Vi=1,..,t;j=1..,9 (11.b)
pun;,¥i =0 vi=1,..,t (11.0)
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where Q(x) = Es(Q(x,s)) and

g 3
Q(x,s) = min(ZZ(a* 05 + b * €y + € x15)

j=1k=1

Subject to:

12. There must be required number of nurses at each shift to satisfy demand.

Yioi X + 0 + C — 1 = di vi=1,..,9k=1,..3 (12.a)
Cr =1 vi=1,..,9;k=1,..,3 (12.b)
13. Sign constraints

Cler 0 1220 Vi=1,..,9:k=1,..3 (13)

Two settings are considered about the objective function coefficients in the model:

The first setting is that assignments of overtime and undertime nurses are more costly
than the assignment of on-call nurse and there is no difference between overtime and
undertime. As a result, the objective function coefficient of calling an on-call nurse
(b) is lower than assigning overtime (a) or undertime (c) nurse (a,b,c >=
0 and a,c > b). The cost of assigning overtime (a) and undertime (c) nurses are

taken as 4 and the cost of calling on-call nurses (b) is taken as 2.

The second setting is that assignments of overtime and undertime nurses are more
costly than the assignment of on-call nurses and the assignment of overtime nurses is
more valuable than the assignment of undertime nurses. As a result, the objective
function coefficient of calling an on-call nurse (b) is lower than assigning overtime
(a) or undertime (c) nurse, and the objective function coefficient of assigning
undertime nurse (c) is lower than assigning overtime nurse (a) (a,b,c >=

0 and a > ¢ > b). The cost of assigning overtime nurses (a) is taken as 6, the cost
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of assigning undertime nurses (c) is taken as 4 and the cost of calling on-call nurses
(b) is taken as 2.

4.1.2 L-Shaped Method

Since the second-stage problem is feasible under every feasible first-stage solution,
we only use optimality cuts in our L-shaped method. Due to the nice structure of our
second-stage problem, it is possible to obtain the dual variables without solving a
linear program. In our computational study, we use both methods (i.e. solving the
second-stage model as an LP and using the closed form solutions of the dual
variables) to illustrate the improvement brought by using the closed form solutions.

Let y;x, zj; be the dual variables of optimality subproblem. Then dual problem is

separable across j and k, and the closed form of dual problem can be obtained as

follows:
max c?jk * Yik + Zjg
Subject to:
—c < YVik <a
Yik +Zix < b
Yk urs; zj, <0

where dj, = dj; — Xi_; %ij; where % is the first-stage solution in the considered
iteration. The feasible region of the dual problem is given in Figure 4.1. Accordingly,

the optimal solution of the dual problem (y, zji) is:

e If dj; > 1,then the optimal solution will be (y;x = a,zjx = b — a),
e If 0 <dj, < 1then the optimal solution will be (y;, = b,z = 0),

e Ifdy <0, then the optimal solution will be Wjk = —¢ zji = 0).
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(—c.0) \ (b,0) (a,0)

Figure 4.1 The Feasible Region of The Dual Problem

In addition, a lower bound is added to the master problem by using mean value

solution since it is expected to be:
EV < RP
To add this bound new variables are defined:
v required number of over time nurses on day j at shift k according to
average scenario. vVi=1,..,9:k=1,..,3
Uj: required number of under time nurses on day j at shift k according to

average scenario. vVi=1,..,9:k=1,..,3
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1 if on — call nurse will be called on day j at shift k according to
N = average scenario
0 otherwise

vi=1,.,9k=1,.3
And the constraints given below is added to the master problem.
6> Z}ll ¥ _Lax* Vi + b * mj +cx uy (14)
where 8 approximates the expected cost of the second stage.
Yic Xijre + v + g — wj = djy, vi=1,..,9:k=1,..3 (15)

where cijk represents the average required number of nurses. Constraint (14)

represents that RP > EV. Constraint (15) ensures meeting the demand in mean value

problem.

In addition to single-cut approach, multi-cut approach is used as an alternative
solution approach while adding optimality cuts. While in single-cut approach only
one cut for all realizations is added at each iteration, in multi-cut approach, one cut
for each realization is added at each iteration. As a result, master problem becomes
larger at each iteration according to the single-cut approach. Birge and Louveaux [4]
mention that the multi-cut approach is expected to be more efficient than single-cut
approach when the number of realizations is not significantly larger than the number

of first-stage constraints.

In classical L-shaped algorithm, the master problem is solved, then feasibility and
optimality subproblems are solved and feasibility and optimality cuts associated with
the current solution are added to the master problem and master problem is solved
again. This process repeats iteratively. At every solution of master problem a new
search tree is constructed from the beginning. On the other hand, L-shaped based
branch-and-cut approach applies the algorithm on a single search tree. This approach
is applied by using the lazy constraint callback feature of CPLEX. Feasibility and
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optimality subproblems are solved for each integer feasible node in the branch-and-

bound tree of the master problem.

4.2 Forecasting Demand

Historical data of 9 months of daily TISS is used. We use time series analysis to
forecast the demand. The analysis is made in EViews 8. After selection the best
model, the confidence intervals related to each day of forecasting period are found

and scenarios generations are made according to these confidence intervals.

4.2.1 The Run Sequence Plot
The run- sequence plot for the daily nurse requirement during 9 months is given in

Figure 4.2. Original series is called as “nurse_count”.

NURSE_COUNT
16

14 -

12 -

10

L o e e e e e L e e s o e e e o L o o s e s e
25 50 75 100 125 150 175 200 225 250

Figure 4.2 The Required Number of Nurses During 9 Months (Original Series)

4.2.2 Unit Root Test
Augmented Dickey-Fuller Unit Root Test is used to test the stationarity of data. Test

results are given in Table 4.1. More details about results can be found in Appendix
B.
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Table 4.1 Unit Root Test Results

Test for Unit | Include in Test | t- statistics Probability
Root in Equation

Level Intercept -5.042117 0.0000
Level Intercept and Trend | -5.032603 0.0002

In order to test stationarity, hypothesized as:

Hy = Data is not stationary

H; = Data is stationary

Since probabilities are less than the « value, which is 0.05 for the 95% confidence

interval, H, is rejected. In other words, data is said to be stationary.

4.2.3 ACF and PACF (Correlogram)

As explained in review of methodologies, ACF and PACF give a prior knowledge
about the model for stationary data. Correlogram for “nurse count” series is given in

Figure 4.3. It can be seen that ACF gradually decreases, and PACF cuts off after 1

lag. Initial interpretation is in the direction of usage of AR(1) model.
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Figure 4.3 ACF and PACF of the “nurse_count” Series

4.2 .4 Selection of Best Model

4.2.4.1 Models
In order to select the best appropriate model, the forecasted model should have the

following features at the same time:

I. Model must be statistically significant.
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ii. The forecasted coefficients of model must be statistically significant.
iii. The forecasted coefficients of the model must be in the range.

iv. The model must have the least AIC and SIC values.
The related information about the comparison of models are given in Table 4.2.

Table 4.2 Comparison of Models

Significance [ Coefficient of . - Information
Model of Model Determination (Rz) Variable | Coefficient | Probab Criterion
AIC=3.441838
F=565.
AR(1) =565.5900 AR(1) 0.825074 | 0.000
p=0.00 0.679314 SIC=3.46856
ARD) F=281.4766 AR(1) 0.845326  |0.000 | AIC=3.451141
p=0.000000 | 0.679934 AR(2) -0.023894 | 0.6977 |SIC=3.49133
AIC=3.890378
F=264,0596
MA(QL) | _57 MA(1)  |0.708676 | 0.000
p=0.000000 |0.496297 SI1C=3.917033
AG) F=108.5845 MA(1)  |0.822148  [0.0000 |AIC=3.672266
p=0.000000 | 0.597994 MAQ2) |0.440838 |0.0000 |SIC=3.712249
ARMA | F=282.0376 AR(1) 0.813562 | 0.0000 |AIC=3.448546
(1,1) 0.679547

p=0.000000 MA(1) 0.035745 0.6309 | SIC=3.488635

AR(1) -0.043343 | 0.7480
ARMA | F=189.1090 AR(2) 0.705077 0.0000

AlIC=3.450757

(2,1) |p=0.000000 | 0.682435 MAL) 0.908738 | 0.0000 |SIC=3.504354

AR(1) 0.871690 0.0000

F=189.1844 AIC=3.449233

(Alel;/lA P=0.000000 | 0.681702 MA(1)  [-0.041987 |0.5889

' MA(2) [-0.128356 |0.0822 |SIC=3.502686
AR(1)  |0.007282 0.9728 _

ARMA |F=141.3767 AR(2) |0678531 |o0.0000 | AIC3457822

2,2)  |p=0.000000 |0.682561 MA(1)  [0.844894  [0.0002 | - o cryars

MA(2) -0.031122 | 0.7234

According to Table 4.2 it is seen that all models are statistically significant. If we

evaluate each model separately:
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The forecasted coefficient of AR(1) model, ¢,, is statistically significant and

between the range of [-1,1]. As a result AR(1) model is said to be appropriate.

The forecasted coefficients of AR(2) model are ¢; and ¢,. While the coefficient of
¢, is statistically significant, ¢, is not significant. So AR(2) model is not an

appropriate model.

The forecasted coefficient of MA(1) model, which is 6, is statistically significant

and between the range of [-1, 1]. Therefore MA(1) model is an appropriate model.

The forecasted coefficients of MA(2) model, which are 8; and 6,are statistically
significant and between the range of [-1, 1]. For this reason, MA(2) model is an

appropriate model.

The forecasted coefficients of ARMA(1,1) model, ¢4, is statistically significant, on
the other hand the other forecasted coefficient of model, 6,, is not significant.

Therefore ARMA(1,1) model is not an appropriate model.

ARMA(2,1) is not an appropriate model because while the coefficients ¢, and 6, are

statistically significant, ¢ is not statistically significant.

ARMA(1,2) is not an appropriate model because while the forecasted coefficient ¢,
is statistically significant, the forecasted coefficients 8, and 6, are not statistically

significant.

ARMA(2,2) is not an appropriate model because while the coefficients ¢, and 6, are

statistically significant, ¢, and 8, are not statistically significant.
The more details about forecasted models can be found in Appendix C.

AR(1), MA(1) and MA(2) models satisfy the first three features as a result the model
with the smallest information criterion values will be chosen as the best appropriate
model. Since the AR(1) has the smallest AIC and SIC values, AR(1) is chosen as the

forecasting model.
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4.2.4.2 Ljung-Box Statistics
In order to test the efficiency of the AR(1) model, Ljung-Box Statistics is used by

examination of correlogram for residuals. The ACF and PACF related to residuals
are given in Figure 4.4.

Date: 091315 Time: 13:56
Sample: 1270
Included observations: 268

Autocarrelation Partial Carrelation AC PAC  Q-5Stat  Prob

I I
di I

I I 0020 0020 01116 0738
I I
11 11
I I
I I

1

2 -0.065 -0.066 1.2824 0527

3 -0.043 -0.041 18008 0.615
I I 4 -0.039 -0.041 22106 0.697
| 5 0.059 0055 31726 0.673
6 -0.014 -0.023 32267 0.780
¥ 0118 0125 71265 0416
I 8 0045 0042 77016 0463
I 9 0020 0039 78106 0.553
I

10 -0.113 -0107 11398 0.327

I 11 -0.011 0.012 11.436 0.408
i 12 0.099 0075 14194 0.289
il 12 0.070 0.064 15596 0272
M 14 0155 0146 22480 0.069

I 15 -0.004 0.012 22485 0.096
i 16 0.086 0112 24620 0.077

I 17 -0.031 -0.009 24905 0.097

I 18 -0.023 0.010 25086 0123

I 19 0.038 0012 25469 0146

I 20 -0.020 -0.043 25582 0180
il 21 0.096 0.049 28295 0132
22 -0.018 -0.016 28.388 0163
23 -0.011 -0.014 28422 0.200
24 -0.006 0.008 28434 0242
25 0.028 0025 28686 0277
26 -0.098 -0.138 31591 0.207
27 0.009 -0.001 31614 0.247
28 -0.012 -0.098 31.660 0.289
29 -0.003 -0.015 31.662 0.335
30 -0.007 -0.069 31.678 0.383
31 0013 0.044 31728 0430

I 32 -0.095 -0.143 34513 0.349

I 332 -0.013 0.005 34566 0.393

g g 34 0121 0120 39.099 0251
I I 35 -0.052 -0.074 39953 0.259

I A 36 0.016 0.028 40033 0.296

Figure 4.4 ACF and PACF Related to Residuals
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The hypothesis of Ljung-Box statistics for the AR(1) model is:
H, = Residuals are not linearly dependent, they show random distribution

H; = Residuals are linearly dependent, they do not show random

distribution

Since p = 0.296 > a = 0.05, the hypothesis H,, is accepted. It is concluded that
residuals are not linearly dependent and they show random distribution and for this

reason AR(1) model is an appropriate and efficient model for forecasting.

4.2.5 Forecasting
In order to test the validity of model, prediction is made and the results given below

in Figure 4.5 and Figure 4.6 are obtained.

16

Forecast: NURSE_COUNF

Actual: NURSE_COUNT

Forecast sample: 1 271

Adjusted sample: 2 271

Included observations: 269

Root Mean Squared Error 1.342516

Mean Absolute Error 1.027548

Mean Abs. Percent Error  24.85948

Theil Inequality Coefficient 0.121322
Bias Proportion 0.000000
Variance Proportion 0.096368
Covariance Proportion 0.903632

-4 LIS I L L L L L L L L L L L

25 50 75 100 125 150 175 200 225 250

[ — NURSE_COUNF -——+2SE |

Figure 4.5 Prediction Result of the Forecasted Model

Since Theil’s Inequality Coefficient and the Mean Absolute Percentage Error show
the success of the forecasted model, these two measurements are examined. The
Theil Inequality Coefficient is expected to be in the range of [0,1] and being close
tozero is desirable and MAPE is wanted to take a small value for the success of the
model. Since Theil’s Inequality Coefficient is 0.121322 which is close to zero and
MAPE is 24.85948%, AR(1) model is found successful.
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In Figure 4.6, the predictions made by forecasted model and the actual values for
requirement of nurses during 9 months are shown. It is seen that there is a high

consistency which supports the usage of AR(1) model.

The prediction made by AR(1) model for the next period is 3.36 nurses and the
standard deviation is +2 S.E. where S.E. is equal to 1.34, which can be seen in
Figure C.1, as a result the required number of nurses for the next period is expected
to be in the range of 3.36 + 2.68, in other words [0.68, 6.04]. Since the required
number of nurses is always be integer and satisfying the all demand is essential, the
estimated required number of nurses for the next period is in the range of [1, 7].
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Figure 4.6 Predictions and Actual Values
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CHAPTER 5

COMPUTATIONAL RESULTS AND COMPARISON

By using our numerical results we aim to analyze the efficiency of our solution
methods and the value of considering uncertainty in the problem. Objective function
values, solution times of each instance and the uncertainty related measures (which
are the Expected Value of Perfect Information and the Value of the Stochastic

Solution) are presented in the following parts.

First step is testing the performance of solution methods by measuring solution
times. In order to do this, we generate scenarios with different scheduling periods.
Our data structure, which can be seen in Figure 5.1 includes 9 months and 36 weeks.
In Figure 5.1, “M” represents months, “TW” represents two-week long periods and
“W” represents weeks. For each day, required number of nurses is available as
historical data and the number of nurses working in the unit is also known. The
number of senior nurses and the number of special requests and breast-feeding
permissions are assigned according to the interviews made by the head nurse.

M1 M2 M3 M4 M5 M6 M7 M3 M3

TWL | TW2 | TW3 | TW4 | TWS5 | TW6 | TW7 | TW8 | TW9 | TW10 | TWLL | TW12 | TW13 | TW14 | TWIS | TW16 | TW17 | TWI8
wa|wa]wa|walwa]wa|walwa[w1|wa|wswa|w1|wa]wa[walw|wa|ws|wa|wi|wa|ws|wa[wa wa|ws[wa|wa|wa]wa|walwi|wa|ws|ws

Figure 5.1 Data Structure

8 instances, which include scheduling periods of 4, 5, 6, 7 and 14 days are generated
initially. The first 4, 5, 6 and 7 days of the 33" week (first week of 9™ month which
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iIs shown in Figure 5.2) are taken as forecasting periods randomly in order to

generate scenarios for 4, 5, 6 and 7 days long scheduling periods.

M1 M2 M3 M4 M3 M6 M7 M8 M3

TWL | TW2 | TW3 | TW4 | TW5 | TW6 | TW7 | TWS | TW9 | TW10 | TWI1 | TW12 | TW13 | TWi4 | TWI5 | TWI6 | TWI7 | TW13
w|wa|ws|waw1wa|ws|wa|w1|w2|ws|walw1|waws]wa|w1]wa|ws|wa|w1|w2|ws|we|w1]wa[ws|wa|w1]w2|ws|wa|w1|w|ws]wa

Figure 5.2 Forecasting Period for the 4, 5, 6 and 7 Days Long Schedules

The 95% confidence intervals for these periods are given in Table 5.1. The scenarios

are generated in the confidence intervals uniformly.

Table 5.1 95% Confidence Intervals for the 4, 5, 6 and 7 Days Long Scheduling

Periods
Scheduling Period

4 Days 5 Days 6 Days 7 Days

1 [6,12] [6,12] [6,12] [6,12]

2 [7,12] [7,12] [7,12] [7,12]

3 [5,11] [5,11] [5,11] [5,11]

§ 4 [4,10] [4,10] [4,10] [4,10]
5 [4,10] [4,10] [4,10]

6 [6,12] [6,12]

7 [6,12]

In the same way, in order to generate scenarios for the 14 days long schedule, the
first 14 days of the 9" month, which is shown in Figure 5.3, is taken randomly as

forecasting period.

M1 M2 M3 M4 M3 Mo M7 M3 M3

TWL | TW2 | TW3 | TW4 | TW5 | TW6 | TW7 | TWS | TW9 | TW10 | TWL1 | TW12 | TW13 | W14 | TW15 | Twie | Twi7 | Twis
wi]walws|walwi|walwa|wa]wa|wa|wa|wa|wi]wa|ws|walwi|wz|wa wawa|wa|wa|wa wiwa|ws|walwi|wa|wa|wa[w1|wa|walwa

Figure 5.3 Forecasting Period for the 14 Days Long Schedule
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In the tables below g represents the number of days to be scheduled, t represents the

number of nurses to be scheduled and s represents the number of scenarios. Time is

given in terms of CPU seconds and “-“ represents that any solution could not be

obtained in 3 hours and “*” represents the best solution obtained at the end of 3

hours.

Our computational experiments are executed on a 3.10 GHz computer with 16.0 GB

memory and 64-bit Windows 7 operating system. CPLEX 12.6.1 is used as the

solver. Solution times of each method for the 4, 5, 6, 7 and 14 days long schedules

are given in Table 5.2.

Table 5.2 Solution Times of Each Approach for Each Instance

L-Shaped .

® L-Shaped | with dual Multi-Cut L-shaped
3] . . L-shaped
c . L- with solution . based
S | gltls | Extensive with dual
7] shaped Dual and . branch
c . solution and
- Solution lower and cut

lower bound

bound

1 | 4/4/2 0.23 0.43 0.27 0.32 0.35 0.04
2 | 4/4/10 0.13 0.45 0.29 0.27 0.33 0.05
3 | 5/5/2 0.22 0.31 0.27 0.22 0.57 0.12
4 | 5/5/10 0.31 0.41 0.40 0.38 0.48 0.12
5 | 6/6/2 0.24 0.51 0.39 0.28 0.53 0.13
6 | 6/6/10 0.31 0.7 0.6 0.47 - 0.15
7 | 6/7/10 0.4 0.66 0.43 0.8 0.91 0.18
8 | 7/5/10 0.23 0.31 0.23 0.23 - 0.1

According to Table 5.2, the following inferences are made:

e For all instances, solving subproblems by closed form of dual solution

improves the solution performance in terms of time.
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e Adding lower bound improves the solution performance in terms of time for
instances 2, 3, 4 and 5.

¢ Single-cut approach outperforms the multi-cut approach in all instances and it
is observed that while the optimal solutions for instance 6 and instance 8 can
not be obtained by multi-cut approach, single-cut approach provides the
optimal solution for these instances.

e Extensive form and L-shaped based branch-and-cut methods outperform all

other solution approaches in all instances.

To determine the method will be used to perform the main runs of the numerical
experiment, the best two approaches, which are extensive form and L-shaped based
branch and cut, are compared. In order to test the performance of extensive form and
L-shaped based branch and cut, eighteen different instances are generated. These
instances and the solution times of these methods for each instance are given in
Table 5.3.
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Table 5.3 Solution Times of Extensive Form and L-shaped Based Branch and Cut

Solution Time of

Solution Time of L-shaped Based

Instance gls Extensive Form Branch and Cut
9 7/5/10 0.23 0.10
10 7/5/50 0.15 0.10
11 7/5/100 0.40 0.11
12 7/5/200 0.32 0.11
13 7/6/10 0.10 0.31
14 7/7/10 0.30 0.13
15 14/8/10 0.25 0.25
16 14/9/10 0.34 0.27
17 14/10/10 0.54 0.28
18 1411/10 0.53 0.48
19 14/12/10 0.60 0.33
20 14/13/10 0.70 4.20
21 14/14/10 8.40 8.50
22 14/15/10 0.73 12.94
23 14/16/10 0.90 157.83
24 14/17/10 0.88 342.57
25 28/17/100 130 28654.98
26 28/17/200 8.68 -

According to Table 5.3, the following inferences are made:

e For instance 9, L-shaped based branch and cut performs better than the

extensive form.

e As number of scenarios is increased, L-shaped based branch and cut still

gives optimal solution in a shorter time in comparison with extensive form.

e When the number of days is increased to 14 days and the number of nurses is

increased to 8, L-shaped based branch and cut still gives optimal solution in a

shorter time in comparison with extensive form.

e When the number of nurses is increased for the 14 days long schedule, it is

observed that until instance 20 with 13 nurses, L-shaped based branch-and-
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cut outperforms the extensive form. On the other hand, beginning from the
instance 20, it is observed that the extensive form starts to outperform L-
shaped based branch-and-cut method. In addition to this, if the problem size

gets bigger, the gap between the performances of two methods increases.

Based on the results of our preliminary runs, we use the extensive form to perform

the main runs of our numerical experiment.

In order to test the performance of extensive form at the actual size of problem, each

month is taken as the forecasting period separately as seen in Figure 5.4.

M1 M2 M3 M4 M5 M6 M7 Ma M3

TWL | TW2 | TW3 | TW4 | TW5 | TW6 | TW7 | TW8 | TW9 | TW10 | TWI1 | TW12 | TW13 | TW14 | TWIS | TW16 | TW17 | TWI8
wa|wa|wa|wa|w1|wa|ws|wa|w1|wa|ws|wa|wi|w2|wa|wa|w1|w2|ws|wa|w1|wa|ws|wa|w1|wa[ws|wa|wi|w2|ws]wa|wi]w2|wsws

Figure 5.4 Forecasting Periods for the Four Weeks Long Schedules

Forecasting for each month is made and confidence intervals for the days of each
month are found and scenarios are generated according to these confidence intervals.

The confidence intervals related to each month are given in Table5.4.
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Table 5.4 95% Confidence Intervals for the Four Weeks Long Scheduling Periods

Scheduling Period

lst 2nd 3rd 4th 5th 6th 7th 8th gth
Month | Month | Month | Month | Month | Month | Month | Month | Month

1| [2,7] | [49] | [49] | [1,5] | [3.8] | [2,7] | [1.6] | [1,7] | [6,12]
2 | [38] | [3,8] | [3,8] | [15] | [2,7] | [1,7] | [1,7] | [4.9] | [7.,12]
3 | [49] | [49] | [3,8] | [1,5] | [3.8] | [1,7] | [1,7] | [4,10] | [5,11]
4 | [49] | [4,9] | [2,7] | [1,7] | [4.9] | [1,7] | [1,6] |[8,13] | [4,10]
5 149 | [49] | [3.8] | [1,7] |[4,10] | [1,7] | [1.6] | [6,12] | [4,10]
6 | [49] | [4,9] | [4,10] | [3,8] | [3,8] | [1,7] | [1.6] | [5,11] | [6,12]
7 1 [49] | [4,9] | [4,10] | [2,7] | [3.8] | [1.6] | [2,7] | [4,10] | [6,12]
8 | [38] | [2,7] | [3.8] | [2,7] | [3.8] | [1.6] | [2,7] | [5,11] | [8,13]
9 | [38] | [2,7] | [3.8] | [2,7] | [2,7] | [1,5] | [3.8] | [5,11] | [9,14]
10 | 271 | 149 | 381 | 11,71 | 1271 | 1151 | [271 | [3,8] | [10,16]
1138 | 381 [[4101] [1.71 | 271 | 16,51 | 1,71 | 12,71 | [8.13]
12149 1 381 | 149 | [271 | 4101|4201 ] [2,71 | 10,71 | [6.12]
13 | [3,8] | [4,101 | [5,11] | [1.6] | [5,11] | [5.11] | [1.6] | [1.6] | [9.15]
> | 14| 27 | [38] | [410] | [L6] [[4,10] | [410] | [27] | [1,7] | [9.14]
o [15 | [38] | [1,7] | [410]1] [16] | [4,9] | [4.9] | [4.9] | [5.11] ] [6,12]
16 | [49] | [1.6] [[4101 | [1.71 | [271 | [2,71 | 15,111 | [6,12] | [4,10]
171149 T 11,71 1 1381 | [38] | [3.8] | [3,8] | [3.8] | [6,12] | [4,10]
18 [[4,101| 12,71 | [3.8] | [4.10] | [4,9] | [4,91 | [4.9] |[7.121] [8,13]
19 | 381 | 271 | 1271 | 5,111 | [4.91 | [4.9] | [4.10] | [4,9] | [4.10]
20 [ 14,101 381 | 271 | 5,111 [4.91 | [4.91 | [3,8] | [5,11]] [3.8]
21 [[4,101] 491 | [271 [ 14101 ] [3,8] | [3.8] | [3.8] | 8,131 [4.,9]
22 149 | 2711381 | [271 | 13,81 | [3.8] | [2,7]1 | 18,131 [2.7]
23 49 | 2711149 | 381 | 271 | 1271 | 10,71 | [7.121] [2.7]
24 [ 138] | 271 | [3,81 | [4.91 | 491 | 1491 | [1.6] | [6,12]] [2.7]
25 | [49] | [38] | [3,8] |[4.101] [3.8] | [3,8] | [L,6] | [4.10]| [1,7]
26 | [5,111] 491 | [1.71 | [38] | 3,81 | [3.8] | [1.6] | [27] | [3.8]
27 (51 (4101 | 171 [ 381 | 1271 | 1271 | [271 | [5.11]1 | [3.8]
28 | 1491 | 1491 | [L,6] | 1491 | 271 | 1271 | [3.8] | [4,10]] [4,10]

As a result, 9 different instances with 100 scenarios are generated according to the

forecasts of each month and each instance is represented as 27.1, 27.2, 27.3, etc., in
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Table 5.5. The required number of nurses during a month on average for each
instance is given with the last column of Table 5.5. In addition to these instances,
which emphasize randomness, 9 different instances with 3 scenarios are generated.
The first scenarios include the minimum values of confidence intervals, the second
scenarios include the maximum values of confidence intervals and the third scenarios
include the average value of confidence interval limits. These instances, which are
given in Table 5.5 as instance 28.1, 28.2, etc., are generated to strongly reflect the

time series connection between two consecutive days.

Table 5.5 Problem Instances with Different Number of Scenarios for Four Week

Schedule
Number of Number of Total demand
Y Number | breast-feeding special during a month
= glt/s of senior | permissions requests on average
g nurses (number of (num_ber of (number of
- days) shifts) nurses)
27.1 | 28/17/100 | 17 3 5 520.41
27.2 | 28/17/100 | 17 3 5 468.39
27.3 | 28/17/100 | 17 3 5 481.53
27.4 | 28/17/100 | 17 3 5 418.92
27.5 | 28/17/100 | 17 3 5 475.65
27.6 | 28/17/100 | 17 3 5 315.96
27.7 | 28/17/100 | 17 3 5 395.07
27.8 | 28/17/100 | 17 3 5 618.45
27.9 | 28/17/100 | 17 3 5 674.28
28.1 | 28/17/3 17 3 5 517.50
28.2 | 28/17/3 17 3 5 465
28.3 | 28/17/3 17 3 5 478.50
28.4 | 28/17/3 17 3 5 418.50
28.5 | 28/17/3 17 3 5 477
28.6 | 28/17/3 17 3 5 312
28.7 | 28/17/3 17 3 5 393
28.8 | 28/17/3 17 3 5 616.50
28.9 | 28/17/3 17 3 5 673.50
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Table 5.6 and Table 5.7 shows the solution times for extensive form and uncertainty

related measures for four week schedules. The last two rows include average values

and maximum values of each measure over 9 instances.

Table 5.6 Solution Times, EVPI and VSS Measures for the Instances with 100

Scenarios
g9 S ®
§ F g e g % .5 ."g’ g = > n—~| 5~
§|s25/285| L | 5 | £ | @ s 28|38
£ 15U 853] 3 | E o .
58 |55 =
271.1 | 45 | 6002 | 1104 | 9.1 611 | 6421 | 4964" | 65 | 17.3
27.2 | 1315 | 5286 | 815 | 241 | 930 | 5442 | 346.2° | 2.9 | 345
27.3 | 45389 | 5625 | 93.7 | 19.0 | 99 | 5853 | 4105 | 3.9 | 27.0
214 | 477 | 4942 | 587 | 425 | 447 | 5063 | 2355 | 24 | 524
275 | 679.1 | 5233 | 847 | 188 | 948 | 5358 | 3684" | 23 | 29.6
216 | 49 | 4447 | 232 | 717 | 325 | 4462 | 452 0.3 | 89.8
217 | 45 | 5086 | 57.4 | 476 | 443 | 5243 | 2084" | 30 | 59.0
21.8 | 5078 | 957.7 | 1958 | 7.9 716 | 1017 | 8862° | 58 | 75
219 | 48 |1239.0| 2607 | 132 | 71.8 | 1276 | 11530 | 3.0 | 7.0
AVO. | 6582 | 6510 | 107.3 | 282 | 544 | 6753 | 46l.1 34 | 36.0
Max | 4538.9 | 1239.0 | 260.7 | 717 | 71.8 | 1276 | 11530 | 65 | 89.8

According to Table 5.6 and Table 5.7 the following inferences are made:

The values of the stochastic solutions are in the range of 0.33%-6.53% and

the expected values of the perfect information are in the range of 7%-89.8%.

The value of stochastic solution is 3.35% on average and the expected value

of perfect information is 36.01% on average.
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The expected value of perfect information takes the largest value and the

value of the stochastic solution takes the smallest value for instance 19.6.

From Table 5.5, it can be seen that instance 19.6 has the smallest demand on

average during the month.

Table 5.7 Solution Times, EVPI and VVSS Measures for the Instances with 3

Scenarios

qé 2 v .Q w e
E|S0f/ 55838 |8 |6 | v el

3 L >
281 | 23 683.0 | 124.0 | 19.3 | 54.8 | 740.3 | 596.0 | 7.7 | 12.7
28.2 | 7200.0 | 618.8* | 942 | 35.7 | 50.5 | 636.3 | 4653 | 2.8 | 24.8
28.3 | 25345 | 664.9 | 109.0 | 31.3 | 51.8 | 696.4* | 528.7 | 45 | 20.5
284 | 28 606.7 748 | 56.0 | 41.7 | 622.7 | 3733 | 2.6 | 385
2851 26 637.0 102.5 | 30.3 | 52.8 | 654.3 | 504.7 | 2.7 | 20.8
286 | 26 558.7 37.3 | 87.3 | 30.0 | 562.7 | 177.7 | 0.7 | 68.2
28.7 1 31 602.0 725 | 57.8 | 40.3 | 620.7 | 333.7 | 3.0 | 44.6
288 | 4.4 1003.3 | 204.2 | 13.3 | 66.7 | 1113.3 | 940.0 | 99 | 6.3
289 | 20 1269.7 | 267.3 | 15.3 | 69.5 | 1357.0 | 1188.0 | 6.4 | 6.4
Avg. | 856 7382 | 1240 | 389 | 51.0 | 7782 | 5675 | 45 | 27.3
Max | 664.9 | 25345 | 267.3 | 87.3|69.5 | 1357.0 | 1188.0 | 9.9 | 68.2

According to Table 5.6 and Table 5.7 the following inferences are made:

The average of the expected values of perfect information is higher in the

instances with 100 scenarios than instances with 3 scenarios, therefore we

can conclude that randomness of data has a significant impact on the value of

the perfect information.
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The average of the values of the stochastic solutions is higher in the

instances with 3 scenarios than the instances with 100 scenarios. Therefore,

we can conclude that time series structure of the uncertainty has an impact

on the value of the stochastic solution.

The expected values of perfect information of the last two instances are the

minimum among all instances. From Table 5.5, it is seen that these instances

have the maximum demand on average during the month and even under the

perfect information setting amount of overtime and on-call is high.

In order to see the effect of objective function coefficients on the solution of four

week schedules, these instances are also solved with objective function coefficients

a =6, b=2 and c = 4, which reflects a setting where overtime is more valuable

than undertime. The results are shown in Table 5.8 and Table 5.9.

Table 5.8 Solution Times, EVPI and VVSS Measures for the Instances with 100

Scenarios and Objective Function Coefficients 6, 2, 4

GE) > ) ® L
8 |E2_|25%8 € E | = _
slEzflEsist |3 | | @ ¢ |gg|se
£ 3¢5 8sSg8 8 |E |© N e
88 ” >
27.1 4.6 820.7 | 1100 | 96 | 610 | 8716 | 669.4* | 59 | 184
27.2 | 360.7 691.3 | 810 | 248 | 53.2 | 715.7 | 458.3* | 34 | 337
273 | 51308 | 749.2 | 933 | 195 | 55.7 | 768.6 | 549.5* | 25 | 26.6
27.4 | 647.3 6103 | 578 | 435 | 446 | 6244 | 3105* | 23 | 491
275 | 4604 | 6925 | 846 | 188 | 549 | 708.3 | 485.9* | 2.2 | 2938
27.6 4.2 4885 | 212 | 746 | 314 | 4929 | 52.0* 09 | 89.0
21.7 4.7 6226 | 56.2 | 496 | 435 | 6525 | 276.3* | 46 | 55.6
2718 | 47.4 1349.2 | 1954 | 84 | 714 | 14316 | 1254.9* | 538 7.0
27.9 5.0 1757.0 | 2589 | 155 | 709 | 18013 | 16630 | 25 | 54
AVY. | 740.6 864.6 | 1065 | 29.4 | 541 | 896.3 | 6355 33 | 350
Max | 5130.8 | 1757.0 | 258.9 | 746 | 71.4 | 1801.0 | 1663.0 | 59 | 89.0

61




According to Table 5.8, the following inferences are made:

While for some instances the expected values of perfect information increase

Iin comparison to the first setting, for some instances these values decrease.

While for some instances the values of the stochastic solutions increase, for

some instances the values of the stochastic solutions decrease. When the

instances are investigated, it is observed that the instances in which increase

is observed have the lowest demand on average during the month.

undertime.

The increase in the cost of overtime results in lower overtime and higher

Table 5.9 Solution Times, EVVPI and VVSS Measures for the Instances with 3

Scenarios and Objective Function Coefficients 6, 2, 4

Bl ey 2EE| £ 3| 2 2 |3g|gg
2| 52 333 & | 2|6 H“ il e
35|87 >
(9]
28.1 2.1 930.7 | 123.7 | 19.8 | 54.7 | 986.3 | 840.0 | 5.6 | 9.7
282 | 7219.0 | 807.3* | 932 | 37.2 | 50.0 | 830.7 | 648.3 | 2.8 | 19.7
283 | 7213.0 | 881.3* | 108.0 | 32.8 | 51.3 | 920.3 | 742.7 | 42 | 157
28.4 2.9 755.7 | 742 | 57.0 | 41.3 | 7757 | 519.0 | 2.6 | 31.3
285 | 35 841.0 | 1015 | 31.8 | 52.3 | 860.7 | 705.7 | 2.3 | 16.1
28.6 2.5 630.3 | 343 | 91.8 | 285 | 646.0 | 239.0 | 2.4 | 62.1
28.7 4.0 7427 | 682 | 643 | 382 | 770.3 | 463.3 | 3.6 | 376
28.8 5.2 1412.0 | 204.2 | 13.3 | 66.7 | 1554.0 | 13443 | 9.1 | 4.8
28.9 1.8 1802.0 | 265.0 | 18.8 | 68.3 | 1905.0 | 1714.0| 54 | 4.9
Avg. | 1606.0 | 978.1 | 119.1 | 40.8 | 50.2 | 1028.0 | 801.8 | 4.2 | 22.4
Max | 7219.0 | 1802.0 | 265.0 | 91.8 | 68.3 | 1905.0 | 1714.0 | 9.1 | 62.1
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According to the Table 5.9, the following inferences are made:

e For all instances the expected values of perfect information decrease in
comparison to the first setting. As a result the average of expected values of
perfect information decrease.

e While for some instances the values of the stochastic solutions increase, for
some instances the value of the stochastic solutions decrease. When the
instances are investigated, it is observed that the instances, in which increase
is observed, have the lowest demand on average during the month.

e The average of the values of the stochastic solutions decrease in comparison
to the first setting.

e The increase in the cost of overtime results in lower overtime and higher
undertime. The impact of changing the objective function coefficients is a
little more in instances with 3 scenarios, in which time series structure is

reflected, in comparison to instances with 100 scenarios.

Last analysis is made by calculating the value of the stochastic solution by using
other heuristic approaches than solving the mean value problem. In these heuristic
approaches, we solve a deterministic model by using the first quartile (Q,), median
and the third quartile (Q3) values instead of the average values. The first quartile
value is equal to the value that 25% of the scenarios lie below this value and the third
quartile value is equal to the value that 75% of the scenarios lie below this value. The
value of the stochastic solution, which is calculated according to the median value, is
represented as VSSsp, the values of stochastic solution, which are calculated
according to Q;and Q5 values, are represented as VSSy; and VSSys in the tables
below. Together with the VSS values, values of the obtained solutions are also
reported as QV;, QV, and QV5. Table 5.10 and Table 5.11 show the results with the
objective function coefficients of 4, 2, 4 and Table 5.12 and Table 5.13 show the
results with the objective function coefficients of 6, 2, 4. The last two columns

include average values and maximum values of each measure over 9 instances.
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Table 5.10 VSS Measures of Instances with 100 Scenarios According to the

Heuristic Approaches

Instance | 27.1 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | Avg. | Max
Obj. Val.
of Stoc. | 6002 | 5286 | 5625 | 4942 | 5233 | 4447 | 5086 | 9577 | 1239.0 | 651.0 | 1239.0
Sol.
EEV 6421 | 5442 | 5853 | 5063 | 5358 | 446.2 | 5243 | 1017.0 | 12760 | 6753 | 1276.0
VSS (%) | 65 2.9 3.9 2.4 23 03 3.0 5.8 3.0 3.4 6.5
Avg.
Over- 1170 | 836 | 969 60.6 86.4 23.2 50.9 | 2070 | 269.7 | 111.6 | 269.7
time
Avg.
Under- | 139 | 260 | 221 43.9 20.3 72.0 49.4 147 | 164 | 310 | 720
time
A"gél(l) N | 593 | 528 | 547 44.2 54.6 328 435 652 | 660 | 526 | 66.0
QV, 606.6 | 600.1 | 5811 | 6281 | 5497 | 6664 | 6768 | 9780 | 12680 | 7283 | 1268.0
VSSzs 11 | 119 | 32 213 48 333 24.9 21 23 | 116 | 333
(%)
Avg.
Over- 1125 | 971 | 1029 | 783 96.1 49.4 779 | 2010 | 2732 | 1209 | 2732
time
Avg.
Under- 85 | 245 | 127 53.9 12,0 99.0 67.8 9.2 81 | 329 | 990
time
A"gél?”' 614 | 569 | 594 | 495 586 | 366 | 469 686 | 712 | 566 | 712
QV, 6888 | 562.1 | 6246 | 5218 | 5648 | 4656 | 5327 | 1056.0 | 13000 | 701.8 | 1300.0
VSSs 129 | 60 9.9 5.3 7.3 45 45 9.3 47 72 | 129
(%)
Avg.
Over- 1237 | 827 | 1022 | 613 90.3 24.6 61.0 | 2131 | 271.6 | 1145 | 2716
time
Avg.
Under- | 194 | 283 | 268 47.2 238 75.8 50.4 190 | 214 | 347 | 758
time
Avg'al(lj N1 582 | 531 | 541 43.9 54.1 322 435 635 | 640 | 518 | 640
QVs, 809.9 | 6911 | 7754 | 6290 | 6928 | 486.9 | 6266 | 1161.0 | 1373.0 | 805.0 | 1373.0
VSSzs 259 | 235 | 275 21.4 245 8.7 18.8 175 98 | 197 | 275
(%)
Avg.
Over- 1378 | 1016 | 1222 | 754 | 1072 | 208 66.6 | 2277 | 2801 | 126.6 | 280.1
time
Avg.
Under- | 369 | 465 | 463 614 | 405 86.2 705 327 | 325 | 504 | 862
time
Avgéﬁ) N 555 | 493 | 506 41.0 51.0 29.4 39.0 595 | 617 | 486 | 617
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According to Table 5.10, the following inferences are made:

e When the average values of the solutions obtained by these methods are
considered, it is observed that the lowest value is obtained by solving the
expected value problem.

e From Table 5.5, it can be seen that instance 27.6 and instance 27.7 are the
instances with the lowest demand on average during the month, and instance
27.8 and instance 27.9 are the instances with the highest demand on average
during the month. Therefore, based on the results given in Table 5.10, we can
conclude that considering average values and @Q values is the best strategy

when average demand is low and high, respectively.

According to Table 5.11, the same inferences are made for the setting where we have
3 scenarios.

As can be observed from Table 5.12 and Table 5.13, the relative performance of the
heuristic methods remains the same under the setting where overtime cost is higher.
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Table 5.11 VSS Measures of Instances with 3 Scenarios According to the Heuristic

Approaches
Instance 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 Avg. Max
Obj.
Value *
of Stoc. 683.0 | 618.8* | 664.9 | 606.7 | 637.0 | 558.7 | 602.0 | 1003.3 | 1269.7 | 738.2 | 1269.7
Sol.
EEV 7403 | 636.3 | 696.4* | 622.7 | 654.3 | 5627 | 620.7 | 1113.3 | 1357.0 | 778.2 | 1357.0
VSS (%) 7.7 2.8 45 26 2.7 0.7 3.0 9.9 6.4 45 9.9
Avg.
Over- 127.7 952 | 1117 758 | 1032 | 383 738 219.2 | 281.0 | 1251 | 281.0
time
Avg.
Under- 27.7 38.0 35.7 58.3 33.0 87.7 60.5 27.3 25.3 43.7 87.7
time
Avgél(l)n- 505 | 518 | 535 | 430 | 548 | 203 | 417 | 637 658 | 515 | 658
QVv, 7450 | 7383 | 769.7 | 828.0 | 7083 | 881.0 | 801.3 | 1076.7 | 1308.7 | 873.0 | 1308.7
VSS,5(%0) 8.3 18.8 13.6 26.7 10.0 36.5 24.9 6.8 3.0 16.5 36.5
Avg.
Over- 141.0 | 1207 | 1348 | 1115 | 1247 | 755 98.2 2183 | 2793 | 1449 | 2793
time
Avg.
Under- 18.7 39.5 325 73.0 272 | 1263 80.5 17.8 12.2 475 126.3
time
Avggﬁ)n_ 532 | 488 | 502 | 450 | 505 | 368 | 433 | 66.0 713 | 517 | 713
QV, 7403 | 965.7 | 696.4* | 622.7 | 6543 | 562.7 | 620.7 | 1113.3 | 1357.0 | 829.6 | 1357.0
VSSs(%) 7.7 2.8 45 2.6 2.7 0.7 3.0 9.9 6.4 45 9.9
Avg.
Over- 127.7 | 150.8 | 111.7 75.8 | 1032 | 383 73.8 2192 | 2810 | 1337 | 2810
time
Avg.
Under- 27.7 64.3 35.7 58.3 33.0 87.7 60.5 273 25.3 48.0 87.7
time
A"gél?”' 59.5 525 535 43.0 54.8 29.3 41.7 63.7 65.8 51.3 65.8
QV; 983.7 | 851.3 | 930.7 | 820.7 | 871.0 | 6847 | 8150 | 1280.3 | 1499.7 | 970.8 | 1499.7
VSSss 30.6 27.3 28.6 26.1 26.9 184 26.1 21.6 15.3 24.6 30.6
(%0) ' ' ' ' ' ' ' ' ' ' '
Avg.
Over- 157.8 | 119.2 | 137.3 953 | 1285 | 388 84.0 2407 | 2953 | 1441 | 2953
time
Avg.
Under- 60.5 68.8 69.2 87.2 63.7 | 1155 98.2 49.7 49.0 735 1155
time
A"gél?”' 55.2 49.7 52.3 45.3 51.2 33.7 43.2 59.5 61.2 50.1 61.2
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Table 5.12 VSS Measures of Instances with 100 Scenarios and Objective Function
Coefficients of 6, 2, 4 According to the Heuristic Approaches

Instance | 27.1 27.2 27.3 27.4 275 27.6 27.7 27.8 27.9 Avg. Max
Obj.
Value
of Stoc. 820.7 | 691.3 | 749.2 | 6103 692.5 4885 6226 | 1349.2 | 17570 | 864.6 | 1757.0
Sol.
EEV 8716 | 7157 | 768.6 | 624.4 708.3 492.9 6525 | 14316 | 1801.3 | 896.3 | 1801.0
VSS (%) | 59 34 25 2.3 2.2 0.9 46 5.8 25 33 5.9
Avg.
Over- 1165 | 84.3 95.5 60.2 86.4 23.2 61.0 207.3 267.4 1113 | 2674
time
Avg.
Under- 135 26.3 21.3 437 20.2 72.0 50.0 14.6 15.5 30.8 72.0
time
Avg. 594 | 525 | 554 | 444 | 544 | 327 | 431 64.8 67.4 527 | 674
On-call ) . . ) ) . ) ) . ) )
QVv, 836.0 | 7819 | 787.4 | 8186 7426 765.1 832.7 | 1380.1 | 18152 | 973.3 | 1815.0
VSSss 18 11.6 49 25.5 6.7 36.2 25.2 2.2 32 13.0 36.2
(%0)
Avg.
Over- 1130 | 961 | 102.9 81.4 96.3 49.4 77.9 201.0 273.4 1213 | 2734
time
Avg.
Under- 8.9 23.1 12.8 57.6 12.0 99.0 67.8 9.2 8.2 33.2 99.0
time
Avg. 61.3 56.4 59.4 50.1 58.4 36.6 46.9 68.6 711 56.5 71.1
on-all ) . . ) ) ) ) ) . ) )
QV, 9544 | 7233 | 8316 | 6506 7476 512.5 663.2 | 1461.9 | 18489 | 9327 | 1849.0
VSSso 14.0 44 9.9 6.2 7.4 4.7 6.1 7.7 5.0 7.3 14.0
(%0)
Avg.
Over- 1258 | 846 | 1028 | 622 90.6 24.7 62.2 210.9 272.3 1151 | 2723
time
Avg.
Under- 21.1 27.3 26.9 47.7 24.0 75.3 51.0 17.3 21.9 34.7 75.3
time
Avg. 57.7 53.1 53.6 434 54.1 31.6 428 63.9 63.8 51.6 63.9
on-all ) . . ) ) . ) ) . ) :
QV, 1131. 926.1 | 982.6 | 747.9 909.5 527.9 7334 | 1622.3 | 1933.7 | 1057.0 | 1934.0
VSSzs 275 25.4 23.8 184 23.9 75 15.1 16.8 9.1 18.6 275
(%0)
Avg.
Over- 1431 | 1048 | 1178 | 71.8 107.0 20.9 64.2 228.1 280.1 126.4 | 280.1
time
Avg.
Under- 41.0 49.7 43.0 58.5 41.0 86.0 67.4 335 32,5 50.3 86.0
time
Avg. 54.3 49.2 51.8 415 51.7 29.1 39.3 59.9 61.7 48.7 61.7
On-call ) ' ' ) ) ' ' ' ' ' '
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Table 5.13 VSS Measures of Instances with 3 Scenarios and Objective Function

Coefficients of 6, 2, 4 According to the Heuristic Approaches

Instance | 27.1 27.2 27.3 27.4 275 27.6 27.7 27.8 27.9 Avg. Max
Obj.
Value 930.7 | 807.3* | 881.3* | 7557 | 841.0 | 630.3 742.7 1412.0 | 1802.0 978.1 1802
of Stoc. ' ' ' ' ' ' ' ' ' '
Sol.
EEV 986.3 830.7 920.3 775.7 860.7 646.0 770.3 1554.0 1905.0 1028 1905
VSS
(%) 5.6 2.8 4.2 2.6 2.3 2.4 36 9.1 5.4 4.2 9.1
Avg.
Over- 127.3 95.2 111.3 76.2 103.2 39.0 73.8 219.7 280.0 125.1 280
time
Avg.
Under- 26.3 38.7 36.0 58.3 33.0 88.3 60.8 27.7 23.7 43.7 88.3
time
Avg.

58.5 52.5 54.2 427 54.8 29.3 42.0 64.0 65.2 51.5 65.2
On-call
QVv; 1011.0 | 1007.7 | 1016.0 | 1112.7 | 957.6 | 1146.0 | 10150 | 1471.0 | 1901.0 1182 1901
VSSss 7.9 19.9 13.3 32.1 12.2 45.0 26.9 4.0 5.2 185 45.0
(%)
Avg.
Over- 139.7 123.7 1325 | 1172 | 1247 86.5 100.8 2145 283.2 1470 | 283.2
time
Avg.
Under- 16.8 42.2 30.2 795 27.2 138.0 81.7 13.3 15.2 49.3 138.0
time
Avg.

52.7 48.5 50.2 45.8 50.5 375 41.8 65.3 70.5 51.4 70.5
On-call
QV, 986.3 1267.3 920.3 775.7 860.7 646.0 770.3 1554.0 1905.0 1076 1905
VSSso 5.6 28 42 26 23 24 36 9.1 5.4 42 9.1
(%)
Avg.
Over- 127.3 | 150.8 11.3 76.2 103.2 39.0 73.8 219.2 280.0 120.1 | 280.0
time
Avg.
Under- 26.3 64.3 36.0 58.3 33.0 88.3 60.8 27.7 23.7 46.5 88.3
time
Avg.

58.5 52.5 54.2 427 54.8 29.3 42.0 64.0 65.2 51.5 65.2
On-call
QV, 12740 | 1102.3 | 1163.7 | 979.7 | 1128.0 | 742.0 958.0 1762.0 | 2112.0 1247 2112
VSSs5
(%) 27.0 26.8 24.3 229 25.4 15.1 225 19.9 14.7 22.0 27.0
Avg.
Over- 155.0 119.8 133.7 92.7 128.5 37.0 82.5 240.7 297.3 1430 | 297.3
time
Avg.
Under- 58.2 705 65.0 83.7 63.7 113.3 95.0 49.7 51.3 723 113.3
time
AV 55.7 50.7 52.3 44.5 51.2 33.3 415 59.5 61.5 50.0 61.5
On-call ' ' ' ) ' ) ) ) ' ' '
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CHAPTER 6

CONCLUSION

In this thesis, the scheduling and rescheduling of nurses in an intensive care unit
under demand uncertainty is studied. We particularly consider the Cardiovascular

Surgery and General intensive care units of a private hospital located in Ankara.

Demand is represented in terms of the required number of nurses. The required
numbers of nurses during 9 months are available as the historical data. Time series
analysis is used to forecast the future demand. According to our computations, AR(1)
model is selected as the most appropriate forecasting model. Scenarios are generated

based on the 95% confidence intervals found by the forecasts with AR(1) model.

The problem is modeled as a two-stage stochastic programming model. In the first
stage, assignments of nurses to shifts as a normal working nurse and as an on-call
nurse are made and the off-days for each nurse are settled. In the second stage, the
decision of calling on-call nurses is made and the required amount of overtime or

undertime is determined.

Extensive form and L-shaped method are used as the main solution approaches.
Since the second stage problem is feasible under every feasible first stage solution,
we only use optimality cuts in our L-shaped method. Due to the nice structure of our
second stage problem, optimality subproblems are solved by the usage of closed
form of dual solutions without solving a LP. In addition to this, a lower bound is
added to the master problem. In our computational experiments, it is observed that
using the closed form of dual solution and adding the lower bound improves the

solution performance in general.
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Multi-cut approach for the L-shaped method is also tested and it is observed that the

single-cut approach outperforms the multi-cut approach.

In order to improve the solution performance of the L-shaped method, the L-shaped
based branch-and-cut method, in which a single search tree is used, is applied. This

approach is applied by the usage of lazy constraint callback feature of CPLEX.

Finally, the uncertainty related measures are computed. In the computation of the
value of the stochastic solution, different heuristic approaches are used. In these
approaches, the values of the stochastic solutions are computed according to the
median, the first quartile and the second quartile values. It is observed that
considering average values and the first quartile values is the best strategy when

average demand is low and high, respectively.

The future studies could be extended to cover the question of which nurse will be
assigned as an overtime or undertime nurse besides the decision of amount of
overtime and undertime. In addition to this, seasonality on demand could be included

in demand forecast with the analysis of the larger historical data.
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APPENDIX A

EXAMPLES OF THE MONTHLY SCHEDULES MADE BY HEAD NURSE

MANUALLY
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Figure A.1 An Example of the Initial Monthly Schedule
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Figure A.2 An Example of Schedule at the End of the Month

76



APPENDIX B

UNIT ROOT TEST RESULTS

Null Hypothesis: NURSE_COUNT has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -5.042117 0.0000
Test critical values: 1% level -3.454534
5% level -2.872081
10% level -2.572460
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(NURSE_COUNT)
Method: Least Squares
Date: 09/15M15 Time: 17:27
Sample (adjusted): 2 270
Included observations: 269 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
NURSE_COUNT(-1) -0.174926 0.034693  -5.042117 0.0000
C 0.887171 0.194858 4552918 0.0000
R-squared 0.086939 Mean dependentvar -0.003717
Adjusted R-squared 0.083519 S.D. dependentvar 1.407597
S.E. ofregression 1.347535 Akaike info criterion 3.441838
Sum squared resid 484.8320 Schwarz criterion 3.468565
Log likelihood -460.9272 Hannan-Quinn criter. 3.452571
F-statistic 2542294 Durbin-Watson stat 1.957857
Prob(F-statistic) 0.000001

Figure B.1 Unit Root Test Results Included Intercept
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Null Hypothesis: NURSE_COUNT has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -5.032603 0.0002
Test critical values: 1% level -3.992540

5% level -3.426619

10% level -3.136553

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: DINURSE_COUNT)
Method: Least Squares

Date: 09/15/15 Time: 17:28

Sample (adjusted): 2 270

Included observations: 269 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
NURSE_COUNT(-1) -0.175722 0.034917 -5.032603 0.0000
C 0.857200 0.232684 3.683972 0.0003
@TREND("17) 0.000252 0.001065 0.236663 0.8121
R-squared 0.087131 Mean dependentvar -0.003717
Adjusted R-squared 0.080267 S.D. dependentvar 1.407597
S.E. ofregression 1.349923 Akaike info criterion 3.449062
Sum squared resid 4847300 Schwarz criterion 3.489152
Log likelihood -460.8989 Hannan-Quinn criter. 3.465163
F-statistic 12.69453 Durbin-Watson stat 1.956718
Prob(F-statistic) 0.000005

Figure B.2 Unit Root Test Results Included Intercept and Trend
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APPENDIX C

FORECASTED MODELS

Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:20

Sample (adjusted): 2 270

Included observations: 269 after adjustments
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 5071685  0.469706 10.79756 0.0000
AR(1) 0.825074  0.034693  23.78214 0.0000
R-squared 0.679314 Mean dependentvar 5.089219
Adjusted R-squared 0.678113 S.D. dependentvar 2.375135
S.E. of regression 1.347535 Akaike info criterion 3.441838
Sum squared resid 4848320 Schwarz criterion 3.468565
Log likelihood -460.9272 Hannan-Quinn criter. 3.452571
F-statistic 565.5900 Durbin-Watson stat 1.957857
Prob(F-statistic) 0.000000
Inverted AR Roots .83

Figure C.1 Forecasted AR(1) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:27

Sample (adjusted): 3 270

Included observations: 268 after adjustments
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 5.055722 0.462338 10.93511 0.0000
AR(1) 0.845326 0.061378 13.77237 0.0000
AR(2) -0.023894 0.061444  -0.388878 0.6977
R-squared 0.679934 Mean dependentvar 5.089552
Adjusted R-squared 0.677518 S.D. dependentvar 2.379572
S.E. of regression 1.351299 Akaike info criterion 3.451141
Sum squared resid 483.8927 Schwarz criterion 3.491339
Log likelihood -459.4529 Hannan-Quinn criter. 3.467287
F-statistic 281.4766 Durbin-Watson stat 1.997603
Prob(F-statistic) 0.000000
Inverted AR Roots 82 03

Figure C.2 Forecasted AR(2) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT

Method: Least Squares
Date: 09/14/15 Time: 10:30
Sample: 1270

Included observations: 270

Convergence achieved after 11 iterations

MA Backcast: 0

Variable Coefficient Std. Error t-Statistic Prob.
& 5.081166 0.175254 28.99319 0.0000
MA(1) 0.708676 0.043334 16.35389 0.0000
R-squared 0.496297 Mean dependentvar 5.085185
Adjusted R-squared 0494418 S.D. dependentvar 2.371642
S.E. of regression 1.686340 Akaike info criterion 3.890378
Sum squared resid 7621231 Schwarz criterion 3.917033
Log likelihood -523.2010 Hannan-Quinn criter. 3.901081
F-statistic 264.0596 Durbin-Watson stat 1.312475
Prob(F-statistic) 0.000000
Inverted MA Roots =71

Figure C.3 Forecasted MA(1) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:32

Sample: 1270

Included observations: 270
Convergence achieved after 19 iterations
MA Backcast: -1 0

Variable Coefficient Std. Error t-Statistic Prob.
C 5.081583 0.207684 24 46780 0.0000
MA(1) 0.822148 0.054901 14.97506 0.0000
MA(2) 0.440838 0.054902 8.029581 0.0000
R-squared 0.597994 Mean dependentvar 5.085185
Adjusted R-squared 0594983 S.D. dependentvar 2371642
S.E. of regression 1.509336 Akaike info criterion 3.672266
Sum squared resid 608.2517 Schwarz criterion 3.712249
Log likelihood -492.7559 Hannan-Quinn criter. 3.688321
F-statistic 198.5845 Durbin-Watson stat 1.682726
Prob(F-statistic) 0.000000
Inverted MA Roots -41+52i -41-52i

Figure C.4 Forecasted MA(2) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:33

Sample (adjusted): 2 270

Included observations: 269 after adjustments
Convergence achieved after 7 iterations

MA Backcast: 1

Variable Coefficient Std. Error t-Statistic Prob.
C 5.073255 0.457092 11.09899 0.0000
AR(1) 0.813562 0.043361 18.76268 0.0000
MA(1) 0.035745 0.074309 0.481036 0.6309
R-squared 0.679547 Mean dependentvar 5.089219
Adjusted R-squared 0.677138 S.D. dependentvar 2.375135
S.E. of regression 1.349575 Akaike info criterion 3.448546
Sum squared resid 484 4795 Schwarz criterion 3.488635
Log likelihood -460.8294 Hannan-Quinn criter. 3.464646
F-statistic 282.0376 Durbin-Watson stat 2.002319
Prob(F-statistic) 0.000000
Inverted AR Roots 81
Inverted MA Roots -.04

Figure C.5 Forecasted ARMA(1,1) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:35

Sample (adjusted): 3 270

Included observations: 268 after adjustments
Convergence achieved after 10 iterations

MA Backcast: 2

Variable Coefficient Std. Error t-Statistic Prob.
C 5.055386 0.464805 10.87636 0.0000
AR(1) -0.043343 0134794  -0.321548 0.7480
AR(2) 0.705077 0.119994 5.875952 0.0000
MA(1) 0.908738 0.111373 8.159393 0.0000
R-squared 0.682435 Mean dependentvar 5.089552
Adjusted R-squared 0.678827 S.D. dependentvar 2.379572
S.E. of regression 1.348555 Akaike info criterion 3.450757
Sum squared resid 480.1103 Schwarz criterion 3.504354
Log likelihood -458.4014 Hannan-Quinn criter. 3.472284
F-statistic 189.1090 Durbin-Watson stat 2.024546
Prob(F-statistic) 0.000000
Inverted AR Roots .82 -86
Inverted MA Roots -91

Figure C.6 Forecasted ARMA (2,1) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:36

Sample (adjusted): 2 270

Included observations: 269 after adjustments
Convergence achieved after 10 iterations

MA Backcast: 0 1

Variable Coefficient Std. Error t-Statistic Prob.
C 5.057453 0.532165 9.503541 0.0000
AR(1) 0.871690 0.044210 19.71695 0.0000
MA(1) -0.041987 0.077589 -0.541151 0.5889
MA(2) -0.128356 0.073575  -1.744572 0.0822
R-squared 0.681702 Mean dependentvar 5.089219
Adjusted R-squared 0.678099 S.D. dependentvar 2375135
S.E. of regression 1.347565 Akaike info criterion 3.449233
Sum squared resid 481.2215 Schwarz criterion 3.502686
Log likelihood -459.9219 Hannan-Quinn criter. 3.470700
F-statistic 189.1844 Durbin-Watson stat 1.979746
Prob(F-statistic) 0.000000
Inverted AR Roots .87
Inverted MA Roots 38 -.34

Figure C.7 Forecasted ARMA(1,2) Model for “Nurse_Count” Series
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Dependent Variable: NURSE_COUNT
Method: Least Squares

Date: 09/14/15 Time: 10:38

Sample (adjusted): 3 270

Included observations: 268 after adjustments
Convergence achieved after 10 iterations

MA Backcast 12

Variable Coefficient Std. Error t-Statistic Prob.
C 5.054143 0.476326 10.61068 0.0000
AR(1) 0.007282 0.213344 0.034135 0.9728
AR(2) 0.678531 0.162567 4173866 0.0000
MA(1) 0.844894 0.221773 3.809728 0.0002
MA(2) -0.031122 0.087837 -0.354318 0.7234
R-squared 0.682561 Mean dependentvar 5.089552
Adjusted R-squared 0677733 S.D. dependentvar 2.379572
S.E. of regression 1.350848 Akaike info criterion 3.457822
Sum squared resid 479.9197 Schwarz criterion 3.524818
Log likelihood -458.3482 Hannan-Quinn criter. 3.484731
F-statistic 141.3767 Durbin-Watson stat 2.000178
Prob(F-statistic) 0.000000
Inverted AR Roots .83 -.82
Inverted MA Roots .04 -.88

Figure C.8 Forecasted ARMA(2,2) Model for “Nurse_Count” Series
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