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ABSTRACT 

 

 

NURSE SCHEDULING AND RESCHEDULING PROBLEM UNDER 

UNCERTAINTY 

 

 

Karpuz, Ece 

M.S., Department of Industrial Engineering 

Supervisor : Assist. Prof. Dr. Sakine Batun 

 

December 2015, 86 pages 

 

 

Nurse planning decisions play a critical role on hospital budgeting, quality of nursing 

services and nurse dissatisfaction. Nurse planning in a hospital includes four main 

phases which are nurse budgeting, nurse scheduling (rostering), nurse staffing 

(rescheduling) and nurse assignment. We consider the scheduling and rescheduling 

problems together under demand uncertainty. We formulate this problem as a two-

stage stochastic integer program and consider different solution methods including 

solving the extensive form, L-shaped method and L-shaped based branch-and-cut 

method. To improve the efficiency of the decomposition methods, a lower bound is 

added and closed form of dual solutions of optimality sub problems are used while 

adding optimality cuts. Time series analysis is used to forecast the demand and nine 

months of historical data of Intensive Care Unit of a private healthcare provider is 

used for this purpose. 

 

Keywords: Nurse Scheduling; Two Stage Stochastic Programming; L-Shaped 

Method; Time Series Analysis. 
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ÖZ 

 

 

BELİRSİZLİK ALTINDA HEMŞİRE ÇİZELGELERİNİN 

OLUŞTURULMASI VE GÜNCELLENMESİ 

 

 

Karpuz, Ece 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Sakine Batun 

 

Aralık 2015, 86 sayfa 

 

 

Hemşire planlama, hastane bütçelemesinde, hastalara verilen hizmetin kalitesinde ve 

hemşirelerin iş memnuniyetinde kilit rol oynar. Bir hastanedeki hemşire planlama 

süreci temel olarak dört başlıktan oluşur; bütçeleme, çizelgeleme, çizelgelerin 

güncellenmesi ve hemşire atama. Biz bu çalışmada aylık çizelgelerin oluşturulması 

ve güncellenmesi problemlerini talep belirsizliği altında incelemekteyiz. Bu entegre 

problem iki aşamalı rassal tamsayılı programlama ile modellendi ve iki aşamalı 

modelin çözümünde extensive form, L-shaped algoritması ve branch ve cut’a dayalı 

L-shaped algoritması kullanıldı. Çözüm performansını geliştirmek için modele bir alt 

sınır kısıtı eklendi ve optimallik kısıtları alt problemin dual çözümünün kapalı 

formda yazılması vasıtasıyla bulundu. Talep tahmininde zaman serileri analizi 

kullanıldı. Analiz aşamasında özel bir hastanesinin yoğun bakım ünitesine ait 9 aylık 

veri kullanıldı.  

 

Anahtar Kelimeler: Hemşire Çizelgeleme; İki Aşamalı Rassal Programlama; L-

Shaped Metot; Zaman Serileri Analizi 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Memiş [1] states that annual healthcare expenditures of Turkey increased 13% on 

average between 2008 and 2011. This significant increase has directed hospital 

managements to explore reasons and to use their resources in more efficient ways. 

The key point is to reduce costs without sacrificing service quality. In order to 

provide this, efficient use of limited resources became inevitable and operations 

research methods have started to be used in hospitals. 

Since nurses are one of the most important scarce resources in a hospital and nursing 

services have a big impact on both hospital budgeting and the quality of service 

provided, studying issues related to nursing services can help hospital managements 

to make progress. 

Punnakitikashem [2] classifies the nurse planning decisions in a hospital in four 

categories. First step is nurse budgeting, which includes the long-term decisions such 

as the number of nurses to be hired and annual budget for nursing services. The 

second step is nurse scheduling or nurse rostering, in which the volume of patient 

arrivals is estimated and the assignment of nurses to shifts is made. Decisions made 

in this stage are referred to as mid-term decisions. The third step is nurse 

rescheduling, which includes short-term decisions such as rescheduling by making 

adjustments on the number of nurses available to meet the realized demand. The last 

step is nurse assignment, in which assignment of nurses to patients is made. In this 

study, we focus on nurse scheduling and nurse rescheduling decisions. 
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Making nurse scheduling and rescheduling decisions can be very critical as they have 

a direct impact on service quality, nurses’ job satisfaction and hospital budgeting.  

Since these decisions are typically made by head nurses, it causes a high pressure on 

head nurses, takes too much of their time and requires a great deal of effort. 

Scheduling and rescheduling decisions are compelling because of the reasons given 

below: 

 Demand is stochastic, there are variations in staffing requirements between 

days and even between shifts  

 Maintaining an acceptable service level at all times is compulsory. 

 Nursing services require qualified nurses. 

 There are limited resources. 

 Equity between nurses about their working times and satisfying their special 

requests are important. 

 There are legal rules about working times, which are compulsory to be 

considered. 

Building a poor schedule creates excess workload and high variability of daily 

workload on nurses, which decreases the quality of service provided by nurses. 

A poor schedule also causes nurse dissatisfaction, which arises from: 

 Excessive amount of changes on the schedule (high rate of calling on-call 

nurses, working overtime, etc.) during the month, which brings inconsistent 

working times for nurses. 

 Not being able to meet special requests of nurses about working times. 

 Not being able to provide equity between in terms of their working hours. 

According to the interviews made by the head nurse, there is high nurse turn-over 

rate in the hospital, because of nurses’ job dissatisfaction. Since qualification is so  
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important in nurse services, training cost has an important role on budgeting and high 

turn-over rate causes high training costs. 

We handle the scheduling and rescheduling problem together and consider the 

stochastic structure of demand. A two-stage stochastic programming model is 

presented in which the objective is to minimize adjustment actions during a month. 

The first stage decisions include mid-term decisions, which are monthly scheduling 

decisions and the second stage decisions include short-term decisions, which are 

adjustment (rescheduling) decisions those are made when the demand is known for 

certain. L-shaped method is used to solve the two-stage stochastic model. In order to 

improve efficiency, a lower bound is added and dual solutions of optimality sub 

problems are used while adding optimality cuts. Time series analysis is used to 

forecast the demand and nine months of historical data is included in the analysis.  
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CHAPTER 2 

 

BACKGROUND INFORMATION AND PROBLEM DEFINITON 

 

 

Although nurse scheduling/rescheduling is a problem encountered in all hospitals 

and shares common aspects across all types of hospitals (public, private, general, 

specialty, teaching, etc.), there are also hospital-specific or even ward-specific details 

of the problem since each system is unique. In this study, we particularly consider 

the intensive-care unit (ICU) nurse scheduling/rescheduling problem of a private 

hospital in Ankara, which has been in service since 2010. There are 25 active 

departments. The ICU includes 4 sub-units, which are Cardiovascular Surgery ICU, 

General ICU, Coronery Intensive Care Unit, Neonatal Intensive Care Unit. Our focus 

is on the nurse scheduling process in the Cardiovascular Surgery Intensive Care Unit 

and General Intensive Care Unit. There are 12 beds and 17 nurses in total. The total 

number of inpatients served during a month is 45 on average, and the average length 

of stay of a patient is 4.5 days. 

According to the interviews made by the head nurse, there is a high turnover rate in 

nursing services and the reason is nurse dissatisfaction and undesirable schedules and 

overtime are the main reasons which cause dissatisfaction. 

2.1 Scheduling 

Scheduling process in the ICU includes the assignment of nurses to shifts and 

determination of off-days for each nurse. 

There are 3 shifts in a day. The first shift includes the hours from 07:00 to 16:00, the 

second shift is from 15:00 to 24:00 and the third shift (night shift) is from 23:00 to 

08:00. 
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There are four types of nurses: 

 Scheduled nurses in a shift are the ones who are assigned to that shift in the 

monthly schedule. 

 On-call nurses are also assigned in the monthly schedules and they should be 

prepared in case of calling when there is overload in the ICU. 

 Overtime nurses in a shift are the nurses who are scheduled to work in that 

shift in the last minute (i.e., who are rescheduled to work) when the 

scheduled and on-call nurses are not enough to meet the workload.  

 Undertime nurses in a shift are the nurses who are allowed to go when the 

actual demand is less than the planned demand and there is redundant 

workforce. 

Monthly schedules are prepared manually by the head nurse of the ICU. The head 

nurse prepares the monthly schedule at the beginning of each month and makes these 

decisions: 

 How many nurses will be assigned for each shift? 

 Which nurse will work at which shift? 

 Which nurse will be an on-call nurse at which shift? 

 When are the off-days for each nurse? 

A monthly schedule made by the head nurse at the beginning of month is given in 

Figure A.1 as an example. 

Preparing these schedules manually takes significant time for head nurses and 

coming up with a desirable schedule can be very compelling. A desirable schedule 

should: 

 meet legal working limit, rules and permissions, 

 provide equity between nurses, 

 be reasonably stable during the month, 
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 meet special requests of the nurses, 

 result in a low rate of calling on-call nurses, overtime and undertime hours. 

2.2 Rescheduling 

The last hour of a shift overlaps with the first hour of the next shift. During this hour, 

situations of patients are told to the incoming team of nurses and the operations of 

next shift are determined. At the end of each shift, the charge nurse observes the 

actual demand for patient care and takes rescheduling decisions given below: 

 If there is a shortage, the on-call nurse is called to work primarily. 

 If on-call nurse is not enough to meet over workload, a nurse is assigned to 

work as an overtime nurse.  

 If there is redundant workforce, the excess number of nurses will be allowed 

to go. 

Because of the variability in demand, rescheduling decisions are made extensively. 

This sometimes causes excessive amount of changes in the existing schedule, high 

rate of calling on-call nurses and excess workload on nurses. 

The monthly schedule given above as an example of monthly scheduling is also 

given in Figure A.2, but that representation is the schedule which includes the 

changes (i.e., rescheduling actions and disruptions) made during the month. 

According to these schedules some observations are made: 

 The schedules of nurses are changed during a month with an average of 8 

days in a month for each nurse. 

 Nurses are assigned as an on-call nurse on their days-off with a rate of 12% 

of days off (the number of assignments in which nurses are assigned as on-

call nurses on their days-off / the total number of assignments as an on-call 

nurse). 

 There are nurses who are assigned four consecutive night shifts. 
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 The maximum difference between the numbers of shifts in which nurses are 

assigned as an on-call nurse is 4 shifts. 

 The rate of calling on-call nurses is 11% (The number of calling the on-call 

nurse / the total number of assignments as an on-call nurse). 

 The total over-time need is 13% of total assigned normal workforce during 

the month. 

2.3 Forecasting 

In the current system the monthly schedules and rescheduling decisions are based on 

the experience of the head nurse. The demand for patient varies during a month and 

it can change even between consecutive shifts. Ignoring this variability is one of the 

main reasons which cause a poor schedule and end up with nurse dissatisfaction.  
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CHAPTER 3 

 

LITERATURE REVIEW 

 

 

We present the reviewed literature in two broad categories, which are review of 

methodologies and application based studies. 

3.1. Review of Methodologies 

This study basically consists of two parts, which are monthly scheduling under 

demand uncertainty and forecasting demand for nursing services. Stochastic 

programming and L-shaped method are used for modeling and solving the 

scheduling problem. In order to create the scenarios for stochastic programming by 

forecasting the demand, univariate time series analysis is used. A brief review of 

these methodological tools is presented below. 

3.1.1 Stochastic Programming 

Stochastic programming, which was first introduced by Dantzig [3], is mathematical 

programming where the problem parameters are random variables. As stated in 

Punnakitikashem [2], since real world problems typically include uncertainty, 

stochastic programming has a wide range of application areas including finance, 

manufacturing, transportation, logistics, airline operations, capacity planning and 

telecommunications. 

A two-stage stochastic program is the simplest form of a stochastic program. In a 

two-stage stochastic program, decision variables are divided into two groups, which 

are first stage decision variables and second stage decision variables. First stage 

decision variables are the variables decided in the first stage before the actual  
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realization of the random parameters. Second stage variables are the variables  

decided once the actual values of random parameters are realized. 

The so-called two-stage stochastic program with recourse is of the form given in 

Birge and Louveaux [4] as: 

min 𝑐𝑇𝑥 +  𝐸𝜀𝑄(𝑥, 𝑒) 

Subject to: 

𝐴𝑥 = 𝑏 

           𝑥 ≥ 0,            

where 𝑄(𝑥, 𝑒) = min{𝑞𝑇𝑦|𝑊𝑦 = ℎ − 𝑇𝑥, 𝑦 ≥ 0}, 𝜀 is the vector formed by the 

components of 𝑞𝑇 , ℎ𝑇 , and 𝑇, and 𝐸𝜀 represents the expectation with respect to 𝜀. 𝑊 

is assumed to be fixed (fixed recourse). 

As the number of scenarios in a stochastic program increases, solving the extensive 

form becomes computationally impractical. Therefore, using decomposition-based 

methods to solve stochastic programs is very common. One of such methods is the L-

shaped method, which is basically the application of Benders decomposition to two-

stage stochastic programs. 

The main idea of the L-Shaped method is to approximate the expected second stage 

objective function value (i.e., the recourse function) by using a surrogate variable, 𝑄, 

within an iterative framework. At each iteration, a restricted master problem (RMP) 

is solved to obtain a first-stage solution. If the solution is not feasible/optimal, a 

feasibility/optimality cut is added and next iteration is performed. Otherwise, the 

returned solution is the optimal solution. 

The extensive form of the two stage stochastic programming model can be 

formulated as given below, in which 𝐾 represents the all possible realizations, and 𝑝𝑘 

represents the probability of occurrence of the 𝑘𝑡ℎ realization: 
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min 𝑐𝑇𝑥 +  ∑ 𝑝𝑘

𝐾

𝑘=1

𝑞𝑘
𝑇𝑦𝑘 

Subject to: 

𝐴𝑥 = 𝑏 

                                                         𝑇𝑘𝑥 + 𝑊𝑦𝑘 = ℎ𝑘            𝑘 = 1, … , 𝐾                                 

                                𝑥 ≥ 0, 𝑦𝑘 ≥ 0                 𝑘 = 1, … , 𝐾  

Because of the block structure of extensive form, the following algorithm is named 

as L-shaped method. Birge and Louveaux [4] state that this structure makes a 

Benders decomposition or equivalently a Dantzig-Wolfe decomposition of its dual 

possible. This method has been extended in stochastic programming to take care of 

the feasibility issue and is known as the L-shaped method. It proceeds as follows: 

Step 0: Set 𝑟 =  𝑠 =  𝑣 =  0. 

Step 1: Set 𝑣 =  𝑣 +  1. Solve the following LP: 

                                                         min z = 𝑐𝑇𝑥 +  𝜃                                                     (1) 

Subject to: 

𝐴𝑥 = 𝑏 

                                                                𝐷𝑙𝑥 ≥ 𝑑𝑙            𝑙 = 1, … , 𝑟                                      (2) 

                                                          𝐸𝑙𝑥 + 𝜃 ≥ 𝑒𝑙               𝑙 = 1, … , 𝑠                                (3) 

𝑥 ≥ 0, 𝜃 ∈ ℝ 

Let (𝑥𝑣, 𝜃𝑣) be an optimal solution. If no constraint (3) is present, 𝜃𝑣 is set equal to 

( -∞) and is not considered in the computation of 𝑥𝑣. 
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Step 2: For 𝑘 = 1, … , 𝐾 solve the following LP: 

     min w′ = 𝑒𝑇𝑣+ +  𝑒𝑇𝑣− (4) 

Subject to: 

𝑊𝑦 + 𝐼𝑣+ −  𝐼𝑣− = ℎ𝑘 − 𝑇𝑘𝑥𝑣(5) 

𝑦 ≥ 0,     𝑣+ ≥ 0,       𝑣− ≥ 0             

And let 𝜎𝑣 be the associated simplex multipliers (i.e., dual variables). If 𝑤′ > 0, 

define  

𝐷𝑟+1 = (𝜎𝑣)𝑇𝑇𝑘 

and 

𝑑𝑟+1 = (𝜎𝑣)𝑇ℎ𝑘 

to generate a constraint (called a feasibility cut) of type (2). Set 𝑟 =  𝑟 +  1, add to 

the constraint set (2), and return to Step 1. If for all 𝑘, 𝑤′ =  0,go to Step 3. 

Step 3: For 𝑘 = 1, … , 𝐾 solve the following LP: 

                                                                 min w = 𝑞𝑘
𝑇𝑦                                                   (6) 

Subject to: 

 𝑊𝑦 = ℎ𝑘 − 𝑇𝑘𝑥𝑣 

𝑦 ≥ 0            

Let 𝜋𝑘
𝑣 be the simplex multipliers (i.e., dual variables) associated with the optimal 

solution of Problem 𝑘 of type (6). Define 

𝐸𝑠+1 =  ∑ 𝑝𝑘 ∗ (𝜋𝑘
𝑣)𝑇𝑦𝑘

𝐾

𝑘=1

𝑇𝑘 
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and 

𝑒𝑠+1 =  ∑ 𝑝𝑘 ∗ (𝜋𝑘
𝑣)𝑇𝑦𝑘

𝐾

𝑘=1

ℎ𝑘 

Let 𝑤𝑣 = 𝑒𝑠+1 − 𝐸𝑠+1𝑥𝑣. If 𝜃𝑣 ≥ 𝑤𝑣, stop; 𝑥𝑣is an optimal solution. Otherwise, set 

𝑠 =  𝑠 +  1, add to the constraint set (3) and return to Step 1 [4,5]. 

There are some measures used to evaluate the impact of uncertainty. 

The expected value of perfect information (𝐸𝑉𝑃𝐼) measures the amount of payment 

that a decision maker is willing to pay in return for complete and accurate 

information about future. In order to determine 𝐸𝑉𝑃𝐼, firstly one needs to solve a 

deterministic model for each realization (𝜀) of the random variables, then find the 

expected value of optimal objective values of these solutions. This is called the wait-

and-see solution (𝑊𝑆). 𝐸𝑉𝑃𝐼 is obtained by comparing the wait-and-see solution to 

the here-and-now solution corresponding to the recourse problem (𝑅𝑃); i.e., 

stochastic program: 

𝐸𝑉𝑃𝐼 = 𝑅𝑃 −  𝑊𝑆 

It is assumed that for all 𝜀, there exists at least one feasible solution (which implies 

there is at least one optimal solution), otherwise there is no chance to construct a 

reasonable stochastic model. 

A heuristic solution of the model with random parameters can be obtained by 

replacing random variables with their expected values and solving a deterministic 

model. This approach is called as the expected value or mean value problem (EV).        

The value of the stochastic solution (VSS) is defined as the possible gain obtained 

when the stochastic model is solved. VSS is calculated as given below: 

𝑉𝑆𝑆 = 𝐸𝐸𝑉 −  𝑅𝑃 
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where 𝐸𝐸𝑉 is the expected value of the mean value solution under each realization 𝜀 

[4]. 

3.1.2 Time Series Analysis 

Time series analysis deals with analyzing and modeling an ordered sequence of 

observations which are generally obtained over equal time increments [6]. Compared 

to regression analysis, time series analysis has an advantage of taking the internal 

structure of data into consideration. To illustrate, the assumption about serial 

uncorrelated residuals is often violated in regression analysis. Taking this 

autocorrelation into account provides more realistic forecasts. 

The assumption of time series analysis is that data are stationary, which requires the 

property that the mean, variance and autocorrelation structure do not change over 

time [7]. 

Dickey-Fuller is one of the methods for testing the existence of unit root (the 

situation of nonstationarity) in a series. Address the model given below: 

𝑌𝑡 = 𝑝 ∗ 𝑌𝑡−1 + 𝑢𝑡 

Where 𝑢𝑡 is the stochastic error term and 𝑝 is the coefficient. We can show the 

equality as: 

𝑌𝑡 − 𝑌𝑡−1 = (𝑝 − 1) ∗ 𝑌𝑡−1 + 𝑢𝑡 

∇𝑌𝑡 = 𝛾 ∗ 𝑌𝑡−1 + 𝑢𝑡 

where 𝛾 = (𝑝 − 1). The main goal is testing the following null hypothesis:  

𝐻0: 𝛾 = 0 (data contains the unit root) 

𝐻1: data is stationary.  

If |𝛾 + 1| < 1, then data is said to be stationary. Testing is made by 𝑡 statistics [7]. 
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Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC), which 

is also known as Schwarz Information Criteria (SIC), are the two methods used 

commonly in order to select the best model that represents the data. The goal of AIC 

is to find the best approximating model to the unknown true data generating process. 

AIC selects the model that minimizes the negative likelihood penalized by the 

number of model parameters. 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔𝑝(𝐿) + 2𝑚 

where 𝐿 represents the likelihood under the fitted model, 𝑚 represents the number of 

parameters in the model and 𝑝 is the number of lags. 

The aim of BIC is to find the most probable model. BIC is given as: 

𝐵𝐼𝐶 =  −2 𝑙𝑜𝑔𝑝(𝐿) + 𝑝𝑙𝑜𝑔(𝑛) 

The difference between the AIC and BIC representation is BIC depends on the 

sample size 𝑛 [8]. 

The ideal case for the best model is the selecting the model with the minimum AIC 

and SIC values. 

The autoregressive (AR) model is the common approach for modeling univariate 

time series: 

𝑋𝑡 = 𝛿 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝐴𝑡 

where 𝑋𝑡 is the time series, 𝐴𝑡 is white noise, 𝜙1, … , 𝜙𝑝 are the coefficients of the 

model, and 

𝛿 = (1 − ∑ 𝜙𝑖

𝑝

𝑖=1

)𝜇 

with 𝜇 denoting the process mean [9]. 
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A white noise process is one with no discernible structure. A definition of a white 

noise process is given in Rachev et al. [10] as: 

𝐸(𝑦𝑡) =  𝜇 

𝑣𝑎𝑟(𝑦𝑡) = 𝜎2 

𝛾𝑡−𝑟 = {
𝜎2                        𝑖𝑓 𝑡 = 𝑟
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Therefore a white noise process has constant mean and variance, and zero 

autocovariances. 

An autoregressive model is said to be simply a linear regression of the current value 

against prior value, in other words the current value of the series depends on only the 

values that occur in previous time periods and error term. The value of 𝑝 is called the 

order of the AR model [7, 9]. 

The moving average (MA) model is another common approach for modeling 

univariate time series and is represented as: 

𝑋𝑡 = 𝜇 + 𝐴𝑡 − 𝜃1𝐴𝑡−1 − 𝜃2𝐴𝑡−2 − ⋯ − 𝜃𝑞𝐴𝑡−𝑞 

where 𝑋𝑡 is the time series, 𝜇 is the mean of the series, 𝐴𝑡−𝑖 are white noise terms, 

and 𝜃1, … , 𝜃𝑞are the parameters of the model. The value of 𝑞 is called the order of the 

MA model. A moving average model is said to be a linear regression of the current 

value of the series against the white noise of one or more prior values [9]. 

Box-Jenkins ARMA (Autoregressive Moving Average) model is the model where 

AR and MA models are used at the same time. ARMA(𝑝, 𝑞) model is obtained by 

combining AR(𝑝) and MA(𝑞) models is represented as follows: 

𝑋𝑡 = 𝛿 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝐴𝑡 − 𝜃1𝐴𝑡−1 − 𝜃2𝐴𝑡−2 − ⋯ − 𝜃𝑞𝐴𝑡−𝑞 
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It can be inferred that in ARMA models the current value of series depends linearly 

on its previous values and a combination of current and previous values of a white 

noise error term [10]. 

The Box-Jenkins models assume that time series is stationary and in case of an non-

stationary situation, stationarity can be obtained by differencing non-stationary data 

one or more times. When differencing is applied, ARMA model turns to be ARIMA 

model in which “I” represents the “Integrated” term and next step will be identifying 

the order of AR and MA models which are also represented with 𝑝 and 𝑞 also. 

Autocorrelation and partial autocorrelation functions (ACF and PACF) are the 

primary tools for identifying the order of AR and MA models [9]. 

The autocorrelation function (ACF) shows how the value is correlated to previous 

values; more specifically autocorrelation in lag 𝑘, called 𝑝𝑘, is simply the correlation 

between the values from 𝑝𝑡 to 𝑝𝑡−𝑘 for stationary processes. Autocorrelation function 

shows the randomness in data. As a proof of randomness, autocorrelations are 

expected to be near zero for any and all time-lag separations. If one or more 

autocorrelations are significantly non-zero, then data is said to be non-random. The 

partial auto correlation function (PACF) measures the correlation only between an 

observation 𝑘 periods ago and the current observation, after controlling for 

observations at intermediate lags. Partial autocorrelations are useful in identifying the 

order of an autoregressive model [9, 10]. 

The differences in ACF and PACF among models are useful when selecting models. 

ACF is used to identify MA models and PACF is used to identify AR models. The 

following Table 3.1 summarizes the ACF and PACF behavior for these models [11]. 
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Table 3.1 ACF and PACF Behavior for AR, MA and ARMA Models 

Conditional Mean Model ACF PACF 

AR(p) Gradually decrease Cuts off after 𝑝 lags 

MA(q) Cuts off after 𝑞 lags  Gradually decrease  

ARMA(p,q) Gradually decrease and 

cuts of after 𝑞 lags. 

Gradually decrease and 

cuts of after 𝑝 lags. 

 

Decrease can be exponential or sinusoidal wave [12].  

To sum up the basic properties of ARIMA models are given below as mentioned in 

Weggemans [13]: 

 Non-stationary data can be made stationary by taking differences of the 

original series. 

 The residuals of the estimated ARIMA series should follow a normal 

distribution and should not possess autocorrelation. 

 The Akaike criterion can be used to identify the best among the estimated 

ARIMA series.  

3.2 Application Based Studies 

Application based studies consist of five main topics which are employee scheduling, 

deterministic and stochastic nurse scheduling, patient volume forecasting, measuring 

nurse workload. 

3.2.1 Employee Scheduling 

The studies about employee scheduling include days-off scheduling and generating 

working plans under some uncertainties. Employee scheduling studies are similar to 

nurse scheduling studies in terms of dealing with uncertainties and days off 

scheduling. 
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Therefore the studies given below are included in the literature review since nurse 

scheduling includes assignment of days-off to nurses and deals with similar 

uncertainties. 

Morton and Popova [14] study an employee scheduling problem where the demand 

forecast of the required number of shafts per type with due dates for the next month 

is received at the end of each month. One of the line manager’s tasks is to build an 

employee schedule for shaft production for the next month. Machines have different 

production rates for each shaft type and for each crew as well as different down-time 

rates. The production line manager decides which work will be assigned to which 

crew and at which machine they will work to meet the required number, which is 

forecasted on time and within the budget constraint. In this problem, the random 

parameters are production rates and machine availabilities. To maintain this 

randomness, Bayesian distributional forecast is used. The distributions are updated 

with observations of each passing month. Monthly employee scheduling is made by 

solving a two stage stochastic program with recourse. The Bayesian estimation 

model provides point and distributional estimates for the hourly production rates by 

shift and shaft type and for up times of the production equipment. These estimates 

are used as inputs for the deterministic optimization model first. This model 

minimizes a weighted sum of penalties for late and non-delivered shipments plus a 

penalty for exceeding the target budget. Since this problem considers production 

rates and down-time rates as known certainly, deterministic model is extended to a 

stochastic model. Morton and Popova [14] state that Bayesian forecasting models 

can rapidly capture changes in non-stationary systems using limited historical data. 

Alfares [15] studies employee days-off scheduling in which work/off days are 

determined for a work week. In this problem, daily labour demands are random 

variables and a simulation model is used. The relevant unit has 19 employees divided 

into five craft types and employees can be assigned to three types of days-off 

schedule. The aim of the study is to find technician’s days-off schedules and meet 
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labour demands by considering limited staff availability and policy restrictions on the 

choice of employee schedules. The number of technicians of each craft to assign to 

each days-off schedule is the decision that must be made while minimizing the 

average throughput (waiting plus processing) time of maintenance work orders 

(W/O). The number of required technicians of each craft varies from one work order 

to another and the number of technicians from each craft type assigned to W/Os is 

calculated from empirical probability distributions. Some W/Os need more than one 

craft type therefore historical data is used to determine the percentage of time each 

craft is needed by a given W/O. It is assumed that employees work at an average 

speed and they are fully available during the simulation period.  

Campbell [16] investigates the employee days off scheduling with random demand. 

A two stage stochastic programming model is built. In the first stage, days-off 

scheduling is made and in the second stage, assignment of cross-trained workers is 

made to meet actual demand. 

3.2.2 Nurse Scheduling 

Nurse scheduling problems are widely studied in the operations research literature. 

The problem is to develop a decision making tool that assigns nurses based on nurse 

preference and patient workload requirements. Nurse scheduling literature includes a 

wide range of studies. These studies can be classified in various ways. Studies based 

on nurse scheduling in operating suites and nurse scheduling in general clinics are 

the most common subjects in nurse scheduling literature. Some studies handle a 

single-objective and generally the objective in these studies is either minimizing 

costs or maximizing nurse preferences. On the other hand, some studies consider 

multiple-objective optimization problems. In these studies, the objective function is 

usually minimizing the total penalty cost that occurs due to the violations of soft 

constraints.  

Literature about nurse scheduling can also be classified as cyclic and non-cyclic 

scheduling. In cyclic scheduling, a predetermined working pattern which is repeated 
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in every scheduling period is assigned to each nurse. In non-cyclic scheduling, a new 

schedule is made at the beginning of each scheduling period. 

Commonly used solution approaches for the nurse scheduling are solution methods 

based on mathematical programming and heuristic methods. 

Most studies assume that decision makers have complete information and handle 

nurse scheduling problem as a deterministic problem. However, healthcare 

organizations deal with many different types of uncertainties and considering these 

uncertainties is critical when modeling and solving the planning problems in 

healthcare delivery systems. New efforts involve forecasting the staff requirement for 

the near future. One of the key factors of high quality is assigning the correct number 

of personnel to meet the requirement [17, 18, 19]. 

Kao and Queyranne [20] introduce eight models including single period/multi period, 

aggregate/disaggregate and deterministic/probabilistic model. In a single period 

model, the time-varying nature of demand for nursing hours is ignored. Aggregation 

is done over the nurse skill classes. In probabilistic models, demand uncertainty is 

considered. It is indicated in the study that ignoring the time-varying nature of 

demand does not cause gross errors in budget estimates, on the other hand ignoring 

demand uncertainty induces error about five to six percent on budget estimates. 

In order to investigate general structure of nurse scheduling model, the deterministic 

nurse scheduling studies are analyzed. On the other hand, in practice, the nurse 

scheduling problem is a stochastic problem where demand is uncertain. As a result, 

studies about stochastic nurse scheduling and rescheduling are also included in the 

literature review. In addition to these studies, studies about forecasting patient 

volume and measurement of workloads are reviewed for this study, since forecasting 

the demand is one of the main tasks to be performed when scheduling the nurses 

under demand uncertainty. 
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Tein and Ramli [21] review the recent advancements on nurse scheduling. Nurse 

scheduling and rescheduling reviews can also be found in Cheang et. al. [19], Clark 

et. al. [22], Ernst [23]. 

3.2.2.1 Deterministic Nurse Scheduling 

Belien and Demeulemeester [24] consider nurse scheduling and surgery scheduling 

at the same time. It is stated that a common problem at hospitals is the extreme 

variation in daily workload pressure for nurses and one of the main reasons for this 

variety is the operating room schedules. Therefore the study aims to save staffing 

cost by integrating operating room scheduling and nurse scheduling problems. The 

objective function of the presented model is to minimize the total required number of 

nurses. The workload distribution is the input for the nurse scheduling model. 

Constraints of the model consist of two main groups. One of them is the coverage 

constraints, which represent how many nurses of appropriate skills need to be 

scheduled for each demand period. The other one is collective agreement 

requirements, which are the constraints that define rules for an acceptable schedule in 

terms of workload, day-off and resting time between shifts. Instead of assuming the 

demand values which are the right-hand side values of the coverage constraints in the 

nurse scheduling problem are fixed, general nurse scheduling problem (GNSP) is 

studied. In GNSP, demand values are considered to be dependent on the workload 

patterns which will be obtained by enumerating all possible ways of assigning 

operating blocks to the different surgeons, subject to surgery demand and to capacity 

restrictions. Column generation technique approach is used to solve the IP. 

Mobasher et al. [25] study daily scheduling of nurses in operating suites. They work 

with a variety of objectives such as minimizing the maximum demand deviation for 

any case, maximum amount of overtime assigned to any nurse, maximum number of 

cases assigned to any nurse and aim at Pareto-optimal solutions. A multi-objective 

integer program is used to formulate the problem. The aim is to determine which 

nurse should be assigned to which surgery case, during which time intervals, and  
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what their role (Nurses can have different roles according to their skill level during a 

surgery, i.e., a scrub is responsible for preparing and passing supplies, equipments 

and instruments to the surgeon during the procedure) should be. The surgery 

durations and the number of required nurses in each role are the main parameters 

given to the model. Two methodologies are used to find a solution. The first one, 

which is called the solution pool method (SPM), generates a pool of good solutions 

by solving multiple optimization problems, each of which optimizes a single 

objective. Then a cumulative weighted index is found for each solution and the 

solution with the smallest index is picked as the best solution to be used. The second 

method is called the modified goal programming method (MGPM) and it finds the 

optimal solution for each goal separately and then solves a derivative optimization 

problem whose objective is to minimize the sum of the deviations from those goals. 

It is stated that although MGPM generates solutions with smaller deviations in 

significantly less time, SPM has the advantage of providing good solutions among 

which the decision maker can choose. 

Bard and Purnomo [26] study the rescheduling problem, which aims to reallocate the 

available resources in a way that the cost of the shortfall is minimized while ensuring 

that each unit in the hospital has sufficient coverage. Decisions made in the integer 

programming model include overtime, outside nurses and floaters. In doing so, 

minimizing the differences between the new plan and the original plan is also 

considered and the expected demand for the upcoming 24 hours is taken as an input. 

Glass and Knight [27] state that a nurse rostering problem includes two constraint 

types. Staffing constraints ensure that sufficient nurses of each type are on duty at 

any particular time and schedule constraints are related to the sequences and 

combinations of shifts to be worked by each nurse. It is said that satisfying both sets 

of constraints simultaneously is not always possible. The modeling approach 

therefore involves reducing selected constraints to soft constraints with 

measurements of their violation. The objective is then to minimize the violation of  
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these soft constraints. MIP is used for modeling and a methodology for handling 

continuity between rostering periods is studied. 

Atmaca et al. [28] study nurse scheduling problem and use 0-1 linear programming 

to formulate the problem. There are three objectives considered, which are 

minimizing the total number of working days of nurses, minimizing the difference 

between the total numbers of working days of nurses and minimizing the number of 

assignments of nurses to consecutive shifts. The objective function is represented as 

the minimization of the weighted sum of the deviations from these goals related to 

each objective. 

3.2.2.2 Stochastic Nurse Scheduling 

Punnakitikashem et al. [29] model the nurse assignment problem under uncertainty 

in the workload as a two stage stochastic integer program. Since a patient may be 

admitted or discharged during a shift, the amount of direct care required by the 

patient may vary dramatically throughout the shift. The first stage decision is 

assigning nurses to patients and the second stage decision is determination of 

realized workload. The aim is to minimize excess workload on nurses. Benders’ 

decomposition method, in which the master problem assigns nurses to patients, and 

each recourse problem penalizes the assigned workload is used as the solution 

approach. The proposed approach decomposes by scenario and also by nurse into the 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑟𝑠𝑒𝑠) linear programming subproblems. 

Therefore, the subproblems become more manageable than subproblems 

decomposed by standard L-shaped method. 

Punnakitikashem [2] builds a two stage stochastic programming model where nurse 

staffing and nurse assignments are integrated. Workload on the nurses is uncertain 

and the aim is minimizing excess workload on the nurses under a budget constraint. 

The first stage decision is to assign nurses to patients and the second stage includes 

rescheduling decisions in which the decision of assigning overtime nurses, agency 

nurses or cancelling scheduled nurses. Three solution approaches; namely Benders 
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Decomposition, Lagrangian Relaxation with Benders Decomposition, and Nested 

Benders Decomposition are presented. Firstly, Benders Decomposition is used to 

solve two stage stochastic model, then Lagrangian Relaxation with Benders 

Decomposition is used to solve model in which the budget constraint is relaxed. 

Secondly, the problem is considered as a multistage stochastic programming problem 

and Nested Benders Decomposition is demonstrated. An algorithm for finding non-

dominated solutions obtained from these three approaches is presented. Non-

dominated solution is defined as nurse schedules and assignments that are not 

dominated by any other schedules and assignments found, either they require less 

excess workload or less staffing cost than the other solutions found. 

Kim [30] builds an integrated staffing and scheduling (iStaff) model as a two-stage 

stochastic integer program with mixed integer recourse. Demand is uncertain. 

Staffing decisions are made well ahead in time and when the demand is known for 

certain, adjustments are made. As a result, the first stage decision is the 

determination of the number of nurses who will work in pregenerated scheduling 

patterns at any time and the second stage decisions are adjustment decisions 

including amount of overstaffing, amount of understaffing, etc. It is stated that the 

problem size is large because staffing and scheduling decisions include a high 

number of integer variables because of the possible shift combinations. L-shaped 

method is used to solve the model. The major contribution of this paper is defined as 

identifying valid mixed integer rounding (MIR) of feasible solutions for the second 

stage mixed integer programming problem and exploring heuristic approaches for cut 

aggregation strategies and branching strategies tailored to the model formulation. 

In most of the previous studies, the stochastic structure of demand is ignored. 

Punnakitikashem et al. [29] consider only the nurse assignment under uncertainty on 

the amount of direct care required by the patient. In the next study, Punnakitikashem 

et [2], the model in Punnakitikashem et al. [29] is extended by incorporating the 

nurse staffing decisions into the assignment model. Since a short-term nurse staffing 
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is considered, nurse preferences are not included in the model, which are normally 

included in mid-term scheduling. There are a limited number of studies that integrate  

nurse scheduling and rescheduling. Kim [30] uses the scheduling patterns which are  

pregenerated to ensure compliances with scheduling rules and regulations and in the 

first stage determines the number of nurses who will work in these scheduling 

patterns. This method disregards the special requests and special occasions of nurses 

(like breast-feeding permissions). Our model provides more flexible schedules in 

terms of these conditions. The demand uncertainty is handled via patient volume 

data. Since the required care by a patient is different among patients, the indicator 

that shows the total required patient care in terms of all patients is used to forecast 

demand in our study. 

3.2.3 Forecasting of Patient Volume 

Weggemans [13] handles three issues, namely building a model to predict the 

number of patient arrivals in a certain time period, a model that can compute the 

probability that a patient will transfer from one specialism to another in a certain 

time period and a model that can estimate the service time of patients. Markov chains 

are used to model the transition probabilities. Some studies that use time series to 

predict the patient volumes are referenced. It is stated that using queuing models is 

not an efficient way to predict patient volumes because queuing theory requires a 

specific arrival distribution and service time distribution. As a result Autoregressive 

Integrated Moving Average (ARIMA) models are commonly used for prediction of 

patient volumes.  

Schweigler et. al. [31] investigate how time series-based models perform in short-

term forecasting of emergency department (ED) crowd. While patient arrivals per 

hour is used generally in most studies, in this study ED hourly occupancy, which is 

defined as the total number of patients (patients in each adult ED + patients in 

waiting room) divided by the number of permanent beds during that hour, is used. 

Three models, which are hourly historical average, seasonal autoregressive integrated 
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moving average (SARIMA) and sinusoidal with an autoregression (AR) - structured 

error term is used for prediction. Comparison of these models is made according to 

log likelihood and AIC and accuracy of models are measured by actual observed bed  

occupancy with root mean square (RMS) error. Results show that while AR based 

models are not different from each other, they perform better compared to historical 

average model.  

Jones et. al. [32] investigate the use of seasonal autoregressive integrated moving 

average, time series regression, exponential smoothing, and artificial neural network 

models to forecast daily patient volumes at three different facilities. Forecasts are 

made for horizons ranging from 1-30 days in advance. Accuracy of models is 

evaluated according to mean absolute prediction error (MAPE). The seasonal and 

weekly pattern of daily patient volume in ED services is confirmed. It is stated that 

the existing methodology proposed in the literature, multiple linear regression based 

on calendar variables, is an acceptable approach, on the other hand regression-based 

models that incorporate calendar variables, account for site-specific special-day 

effects, and allow for residual autocorrelation provide a more appropriate, 

informative, and consistently accurate approach to forecasting daily ED patient 

volumes. 

Kam et. al. [33] evaluate three models, namely moving average, seasonal ARIMA 

(SARIMA) and multivariate SARIMA to predict the number of patients visit an 

emergency center per day. Three models are investigated by considering calendar 

and weather data. Residual analysis, ACI and Bayesian information criterion are used 

to compare goodness of fit. Accuracy of models are measured by MAPE. It is stated 

that the most appropriate and accurate model for predicting number of patients 

visiting ED is the multivariate SARIMA model. 

Kao and Tung [34] state that there are two different approaches in forecasting a time 

series, which are the time series approach and the econometric approach. It also 

stated that although econometric approach generally gives better forecasts, it requires 
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a large amount of data set. As a result it is stated that time-series models have been 

used to forecast patient census. In this paper ARIMA (Autoregressive integrated  

moving average) time series models for forecasting demands for inpatient services is 

studied. Prediction of demand is made on a yearly basis. Demand is stated in terms of 

monthly admissions and patient days by services. First, monthly admissions and 

patient days are forecasted by using ARIMA, and then the actual demand and 

forecasted demand are compared empirically. Finally an indirect method to project 

patient days is introduced. This approach combines admission forecasts and the 

length of stay estimates and takes less effort. 

Kim [30] compares forecasting methods used while predicting hospital patient 

volume. Exponential smoothing model, ARIMA model, autoregressive moving 

average with generalized autoregressive conditional heteroskedasticity (ARMA-

GARCH) model and vector autoregressive (VAR) model were investigated. 

Comparison is made according to MAPE. It is noted that the multivariate forecasting 

method used accounts for patient admissions to Hospital Medicine (HM) from a 

variety of sources (e.g. emergency medicine, outpatient offices, intensive care 

services, etc.), while the univariate methods use HM patient volume data only. The 

results show that a univariate ARIMA model performs best. It is stated the 

multivariate model does not perform better than the univariate ARIMA models, 

particularly for the forecast periods of more than five days. 

3.2.4 Nurse Workload Measurements 

Nurses take a critical role on the quality of healthcare system. They are the major 

factor that affects the quality of patient care. Continuity and strict care is inevitable 

and critical for especially ICU patients. The excess workload on nurses and the 

extreme turn-over rate which arises from dissatisfaction of nurses causes low quality 

of patient care. Therefore measuring workload on nurses accurately is an essential 

issue for hospital managers. 
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Nursing workload measurement systems are used to determine the amount of care 

needed by patients and required nursing time to meet those needs. In addition to this 

nursing workload measurement provides information to predict number of nurses  

required for next shift. Nursing workload measurement data can be a base for 

budgeting, staffing, planning decisions and quality assurance. 

Some of nursing workload measurement methodologies are based on tasks nurses 

perform during a shift. Each task has a standard completion time and total time 

required for performing tasks gives the total nursing workload. On the other hand, 

some methodologies use patient classification systems. In consideration of some 

specific and predetermined factors, needs of each patient are evaluated and according 

to needs and features of patients each patient is assigned to a predetermined patient 

type [35].  

In the 1960s a method called “Utilized Work Sampling” was used. This method does 

not consider the patient type and nursing skills. From the mid-1970s to 1990s a 

method which takes into account the severity of patient and the dependency degree 

of patient to nurses. In 1990s measurements based on performance of nurses became 

important due to pressure on willing to decrease nursing expenses as a result nursing 

ratio concept was started to be carried out. 

Methods used currently to decide the required number of nurses can be classified 

under 5 categories [36]. These are; 

 Professional Judgement Approach: This approach is based on the calculation 

of working hours of nurses decided in the schedules. When the qualification 

of nurses and the dependence level of patients change, this approach will be 

inefficient. 

 Nurse Per Occupied Bed Method: This approach is based on the beds 

occupancy rate and ignores the levels of dependence of patients.  

 



 
 

30 
 

 Time-Task/Activity Approaches: The operations performed by nurses and the 

required time for these operations are recorded and analysis is made 

according to these records. 

 Regression-based Systems: Regression analysis is made to forecast the 

required number of nurses for a specific task. Generally, the relation between 

the required number of nurses and the bed occupancy rate is analyzed. 

 Acuity-Quality Method: In this approach, in addition to the number of 

patients, the level of dependence of each patient is also considered. This 

approach is efficient in the systems where the number of patients and the 

types of patients are changeable. 

Padilha et. al. [37] underline the importance of measuring nursing workload and 

taking into account the indicators of workload to increase quality and safety of care 

given in hospital departments. They consider this necessity under “Nursing Activities 

Score (NAS)”.  

Lin et. al. [38] focuses on quantitative models of work related fatigue. Two methods 

which are called survey-based and total function-based fatigue models are 

introduced. A multi-objective MIP formulation is used to model the scheduling 

problem. Objective function of the model is a weighted sum of total preference 

scores, total based survey-based fatigue scores and total function-based fatigue 

scores for all nurses at the end of their shift patterns. It is stated that making Pareto-

optimal schedules is possible where the nurse fatigue levels are significantly reduced 

for a small decrement in nurse preferences. 

3.2.4.1 TISS (Therapeutic Intervention Scoring System) 

In the current system of the hospital, workload measurement is based on nurses per 

occupied bed method. The data used in studies is collected from TISS method, which 

is a task based approach. 
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There are four categories of tasks performed. Each category has a score from 1 to 4. 

For each patient tasks need to be performed during a day is checked on a check list 

via using Excel worksheet. Each task has its own coefficient. At the end of the 

checklist a total TISS score is obtained for each patient. According to this scoring 

system a nurse should have workload corresponds to 50 TISS score on average.  
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CHAPTER 4 

 

MATHEMATICAL FORMULATION AND SOLUTION APPROACHES 

 

 

4.1 Integrated Nurse Scheduling and Rescheduling Model 

We formulate the problem as a two-stage stochastic programming model. In the first 

stage, mid-term (monthly) scheduling decisions are made: 

 Which nurse will work at which shift? 

 Which nurse will be an on-call nurse at which shift? 

 When are the days-off for each nurse? 

In the second stage, short-term rescheduling decisions are made: 

 Calling on-call nurse  

 Amount of overtime 

 Amount of undertime 

4.1.1 Two Stage Stochastic Programming Model 

Parameters: 

𝑡: Total number of nurses in the department (assumed to be fixed during the 

month) 

𝑔: Total number of days to be scheduled 

𝑆: Total number of scenarios 

𝑚𝑖 = {
1    if nurse i is a senior nurse
0   otherwise                               

                             ∀𝑖 = 1, . . , 𝑡 
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𝑤𝑖𝑗 = {
1    if nurse i has breast − feeding permission on day j
0    otherwise                                                                             

 

                                          ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔 

𝑑𝑗𝑘
𝑠 : required number of nurses on day j at shift k according to scenario s. 

                ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 

𝑎𝑖𝑗𝑘 = {
1    if nurse i has a request about not working on day j at shift k
0    otherwise                                                                                               

 

                                                                                      ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔;  𝑘 = 1, . . ,3 

 

First Stage Decision Variables: 

𝑥𝑖𝑗𝑘 =  {
1      if nurse i works on day j at shift k
0      otherwise                                            

 

                                                                                     ∀𝑖 = 1, . . , 𝑡  ;    𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 

𝑧𝑖𝑗𝑘 = {
1    if nurse i is an on − call nurse on day j at shift k
0    otherwise                                                                       

 

                                                                                       ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 

𝑓𝑖𝑗 = {
1   if nurse i is on day − off on day j
0    otherwise                                          

    ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔 

𝑦𝑖: the total number of normal working shifts for nurse i during the scheduling 

 period                                                                                                         ∀𝑖 = 1, . . , 𝑡                                                                          

𝑛𝑖: the total number of night shifts for nurse i during the scheduling period 

∀𝑖 = 1, . . , 𝑡 

𝑝𝑖: the total number ofassignments as an on − call nurse for nurse i during the 

scheduling period             ∀𝑖 = 1, . . , 𝑡 
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Second Stage Decision Variables: 

𝑜𝑗𝑘
𝑠 : required number of over time nurses on day j at shift k according to  

scenario s                                                             ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3; 𝑠 = 1, . . , 𝑆 

𝑐𝑗𝑘
𝑠 = {

1   if on − call nurse will be called on day j at shift k according to 
scenario s

0    otherwise                                                                                                   
 

                                                                                        ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3; 𝑠 = 1, . . , 𝑆 

𝑟𝑗𝑘
𝑠 : Number of nurses who will be permitted to go on day j at shift k according to 

 scenario s                                                                   ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3; 𝑠 = 1, . . , 𝑆 

Mathematical Formulation: 

𝐦𝐢𝐧 𝑄(𝑥) 

Subject to: 

1. There must be at least one senior nurse in each shift. 

 

∑ 𝑥𝑖𝑗𝑘𝑚𝑖 ≥ 1                  𝑡
𝑖=1                                 ∀𝑗 = 1, . . , 𝑔 ;  𝑘 = 1, . . ,3                    (1) 

 

2. Nurses who are pregnant or have breast-feeding permission can not be assigned 

to any third shift (night shift). 

 

𝑤𝑖𝑗 +  𝑥𝑖𝑗3 +  𝑧𝑖𝑗3 ≤ 1                                           ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔                 (2) 

 

3. There must be at least two shift periods between sequential working shifts for 

each nurse. 

 𝑥𝑖𝑗2 + 𝑥𝑖𝑗3 +  𝑥𝑖(𝑗+1)1 ≤ 1                            ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔                  (3.a) 

𝑥𝑖𝑗3 + 𝑥𝑖(𝑗+1)1 + 𝑥𝑖(𝑗+1)2 ≤ 1                        ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔 − 1        (3.b) 
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4. Exactly one on-call nurse must be assigned for each shift.    

 

∑ 𝑧𝑖𝑗𝑘
𝑡
𝑖=1 = 1                                                        ∀𝑗 = 1, . . , 𝑔 ; 𝑘 = 1, . . ,3                        (4)    

 

5. Nurses who are on day-off can not be assigned as a normal working nurse. (They 

can not be assigned as an on-call nurse as well, this is guaranteed by constraint 

9.) 

 

(∑ 𝑥𝑖𝑗𝑘
3
𝑘=1 )+ 𝑓𝑖𝑗 = 1                                         ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔                       (5) 

 

 

6. There must be two days-off in total in every week during scheduling period for 

each nurse.  

 

∑ 𝑓𝑖𝑗 = 27
𝑗=1                                                                  ∀𝑖 = 1, . . , 𝑡                                    (6.a) 

∑ 𝑓𝑖𝑗 = 214
𝑗=8                                                                  ∀𝑖 = 1, . . , 𝑡                        (6.b) 

∑ 𝑓𝑖𝑗 = 221
𝑗=15                                                                ∀𝑖 = 1, . . , 𝑡             (6.c) 

∑ 𝑓𝑖𝑗 = 228
𝑗=22                                                                ∀𝑖 = 1, . . , 𝑡                                    (6.d) 

 

7. Assigning nurses to 4 night shifts sequentially is not wanted.  

 

𝑥𝑖𝑗3 + 𝑥𝑖(𝑗+1)3 + 𝑥𝑖(𝑗+2)3 + 𝑥𝑖(𝑗+3)3 ≤ 3    ∀𝑖, 𝑗 = 1, . . , 𝑡 𝑎𝑛𝑑 𝑗 = 1, . . , 𝑔 − 3       (7) 

 

8. The difference between the number of night shifts, total regular shifts and 

number of assigments as an on-call nurse of nurses must be less than or equal to 

two. 

𝑦𝑖 = ∑ ∑ 𝑥𝑖𝑗𝑘
𝑔
𝑗=1

3
𝑘=1                                                          ∀𝑖 = 1, . . , 𝑡                              (8.a) 

𝑛𝑖 = ∑ 𝑥𝑖𝑗3                        
𝑔
𝑗=1                                                    ∀𝑖 = 1, . . , 𝑡                             (8.b) 

 



 
 

37 
 

𝑝𝑖 = ∑ ∑ 𝑧𝑖𝑗𝑘                                                                                    ∀𝑖 = 1, . . , 𝑡
𝑔
𝑗=1

3
𝑘=1                          (8.c) 

𝑝𝑖 − 𝑝𝑗 ≤ 2                                                             ∀𝑖, 𝑗 = 1, . . , 𝑡 and i≠j            (8.d) 

𝑛𝑖 − 𝑛𝑗 ≤ 2                                                             ∀𝑖, 𝑗 = 1, . . , 𝑡 and i≠j            (8.e) 

𝑦𝑖 − 𝑦𝑗 ≤ 2                                                             ∀𝑖, 𝑗 = 1, . . , 𝑡 and i≠j  (8.f) 

 

9.  

- The on-call nurse for the first shift is chosen among the nurses who will work 

in the second shift on same day. 

- The on-call nurse for the third shift is chosen among the nurses who have 

worked in the second shift on same day. 

- The on-call nurse for the second shift is chosen among the nurses either who 

have worked in the first shift or will work in the third shift on same day. 

 

𝑧𝑖𝑗1 ≤ 𝑥𝑖𝑗2                                                            ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔            (9.a) 

𝑧𝑖𝑗3 ≤ 𝑥𝑖𝑗2                                                            ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔            (9.b) 

𝑧𝑖𝑗2 ≤ 𝑥𝑖𝑗1 + 𝑥𝑖𝑗3                                                ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔            (9.c) 

 

10. If nurse 𝑖 has a request about not working on day 𝑗 at shift 𝑘, then nurse 𝑖 can not 

be assigned that shift on that day. 

 

𝑎𝑖𝑗𝑘 +  𝑥𝑖𝑗𝑘 + 𝑧𝑖𝑗𝑘 ≤ 1                  ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3             (10) 

 

11. Sign constraints 

 

𝑥𝑖𝑗𝑘, 𝑧𝑖𝑗𝑘 ∈ {0,1}                                    ∀𝑖 = 1, . . , 𝑡  ;  𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3         (11.a) 

𝑓𝑖𝑗 ∈ {0,1}                                               ∀𝑖 = 1, . . , 𝑡  ; 𝑗 = 1, . . , 𝑔                      (11.b) 

𝑝𝑖, 𝑛𝑖, 𝑦𝑖 ≥ 0                                          ∀𝑖 = 1, . . , 𝑡                              (11.c) 
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where 𝑸(𝒙) = 𝑬𝒔(𝑸(𝒙, 𝒔)) and  

𝑸(𝒙, 𝒔) = 𝐦𝐢𝐧( ∑ ∑(𝒂 ∗ 𝒐𝒋𝒌
𝒔 + 𝒃 ∗ 𝒄𝒋𝒌

𝒔 + 𝒄 ∗ 𝒓𝒋𝒌
𝒔 ))

𝟑

𝒌=𝟏

𝒈

𝒋=𝟏

 

Subject to: 

12. There must be required number of nurses at each shift to satisfy demand. 

∑ 𝑥𝑖𝑗𝑘
𝑡
𝑖=1 + 𝑜𝑗𝑘

𝑠 + 𝑐𝑗𝑘
𝑠 − 𝑟𝑗𝑘

𝑠 =  𝑑𝑗𝑘
𝑠                           ∀𝑗 = 1, . . , 𝑔;𝑘 = 1, . . ,3             (12.a) 

𝑐𝑗𝑘
𝑠 ≤ 1                                                ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3            (12.b) 

13. Sign constraints 

𝑐𝑗𝑘
𝑠 , 𝑜𝑗𝑘

𝑠 , 𝑟𝑗𝑘
𝑠 ≥0                               ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3               (13) 

Two settings are considered about the objective function coefficients in the model: 

The first setting is that assignments of overtime and undertime nurses are more costly 

than the assignment of on-call nurse and there is no difference between overtime and 

undertime. As a result, the objective function coefficient of calling an on-call nurse 

(𝑏) is lower than assigning overtime (𝑎) or undertime (𝑐) nurse (𝑎, 𝑏, 𝑐 >=

0 𝑎𝑛𝑑 𝑎, 𝑐 > 𝑏). The cost of assigning overtime (𝑎) and undertime (𝑐) nurses are 

taken as 4 and the cost of calling on-call nurses (𝑏) is taken as 2.   

The second setting is that assignments of overtime and undertime nurses are more 

costly than the assignment of on-call nurses and the assignment of overtime nurses is 

more valuable than the assignment of undertime nurses. As a result, the objective 

function coefficient of calling an on-call nurse (𝑏) is lower than assigning overtime 

(𝑎) or undertime (𝑐) nurse, and the objective function coefficient of assigning 

undertime nurse (𝑐) is lower than assigning overtime nurse (𝑎) (𝑎, 𝑏, 𝑐 >=

0 𝑎𝑛𝑑 𝑎 > 𝑐 > 𝑏). The cost of assigning overtime nurses (𝑎) is taken as 6, the cost  
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of assigning undertime nurses (𝑐) is taken as 4 and the cost of calling on-call nurses 

(𝑏) is taken as 2.   

4.1.2 L-Shaped Method 

Since the second-stage problem is feasible under every feasible first-stage solution, 

we only use optimality cuts in our L-shaped method. Due to the nice structure of our 

second-stage problem, it is possible to obtain the dual variables without solving a 

linear program. In our computational study, we use both methods (i.e. solving the 

second-stage model as an LP and using the closed form solutions of the dual 

variables) to illustrate the improvement brought by using the closed form solutions.    

Let 𝑦𝑗𝑘 , 𝑧𝑗𝑘 be the dual variables of optimality subproblem. Then dual problem is 

separable across 𝑗 and 𝑘, and the closed form of dual problem can be obtained as 

follows:  

max �̂�𝑗𝑘 ∗  𝑦𝑗𝑘 +  𝑧𝑗𝑘  

Subject to: 

−𝑐 ≤ 𝑦𝑗𝑘 ≤ 𝑎 

𝑦𝑗𝑘 + 𝑧𝑗𝑘 ≤ 𝑏 

𝑦𝑗𝑘 𝑢𝑟𝑠; 𝑧𝑗𝑘 ≤ 0 

where �̂�𝑗𝑘 = 𝑑𝑗𝑘 − ∑ 𝑥𝑖𝑗𝑘
𝑡
𝑖=1  where 𝑥𝑖𝑗𝑘 is the first-stage solution in the considered 

iteration. The feasible region of the dual problem is given in Figure 4.1. Accordingly, 

the optimal solution of the dual problem (𝑦𝑗𝑘 , 𝑧𝑗𝑘) is: 

 If �̂�𝑗𝑘 ≥ 1,then the optimal solution will be (𝑦𝑗𝑘 = 𝑎, 𝑧𝑗𝑘 = 𝑏 − 𝑎), 

 If 0 < �̂�𝑗𝑘 < 1,then the optimal solution will be (𝑦𝑗𝑘 = 𝑏, 𝑧𝑗𝑘 = 0), 

 If �̂�𝑗𝑘 ≤ 0, then the optimal solution will be (𝑦𝑗𝑘 = −𝑐, 𝑧𝑗𝑘 = 0). 
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Figure 4.1 The Feasible Region of The Dual Problem 

In addition, a lower bound is added to the master problem by using mean value 

solution since it is expected to be: 

𝐸𝑉 ≤ 𝑅𝑃 

To add this bound new variables are defined: 

𝑣𝑗𝑘: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 𝑛𝑢𝑟𝑠𝑒𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑗 𝑎𝑡 𝑠ℎ𝑖𝑓𝑡 𝑘 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜.                                                                   ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 

𝑢𝑗𝑘: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟 𝑡𝑖𝑚𝑒 𝑛𝑢𝑟𝑠𝑒𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑗 𝑎𝑡 𝑠ℎ𝑖𝑓𝑡 𝑘 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜.                                                                     ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 
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𝑛𝑗𝑘 = {
1   𝑖𝑓 𝑜𝑛 − 𝑐𝑎𝑙𝑙 𝑛𝑢𝑟𝑠𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑜𝑛 𝑑𝑎𝑦 𝑗 𝑎𝑡 𝑠ℎ𝑖𝑓𝑡 𝑘 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                

 

                                                                                         ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3 

And the constraints given below is added to the master problem. 

𝜃 ≥ ∑ ∑ 𝑎 ∗ 𝑣𝑗𝑘 + 𝑏 ∗ 𝑛𝑗𝑘 + 𝑐 ∗ 𝑢𝑗𝑘
3
𝑘=1

𝑔
𝑗=1                                                                    (14) 

where 𝜃 approximates the expected cost of the second stage. 

∑ 𝑥𝑖𝑗𝑘
𝑡
𝑖=1 + 𝑣𝑗𝑘 +  𝑛𝑗𝑘 − 𝑢𝑗𝑘 =  �̅�𝑗𝑘                         ∀𝑗 = 1, . . , 𝑔; 𝑘 = 1, . . ,3            (15) 

where �̅�𝑗𝑘 represents the average required number of nurses. Constraint (14) 

represents that 𝑅𝑃 ≥ 𝐸𝑉. Constraint (15) ensures meeting the demand in mean value 

problem. 

In addition to single-cut approach, multi-cut approach is used as an alternative 

solution approach while adding optimality cuts. While in single-cut approach only 

one cut for all realizations is added at each iteration, in multi-cut approach, one cut 

for each realization is added at each iteration. As a result, master problem becomes 

larger at each iteration according to the single-cut approach. Birge and Louveaux [4] 

mention that the multi-cut approach is expected to be more efficient than single-cut 

approach when the number of realizations is not significantly larger than the number 

of first-stage constraints. 

In classical L-shaped algorithm, the master problem is solved, then feasibility and 

optimality subproblems are solved and feasibility and optimality cuts associated with 

the current solution are added to the master problem and master problem is solved 

again. This process repeats iteratively. At every solution of master problem a new 

search tree is constructed from the beginning. On the other hand, L-shaped based 

branch-and-cut approach applies the algorithm on a single search tree. This approach 

is applied by using the lazy constraint callback feature of CPLEX. Feasibility and  
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optimality subproblems are solved for each integer feasible node in the branch-and-

bound tree of the master problem. 

4.2 Forecasting Demand 

Historical data of 9 months of daily TISS is used. We use time series analysis to 

forecast the demand. The analysis is made in EViews 8. After selection the best 

model, the confidence intervals related to each day of forecasting period are found 

and scenarios generations are made according to these confidence intervals. 

4.2.1 The Run Sequence Plot 

The run- sequence plot for the daily nurse requirement during 9 months is given in 

Figure 4.2. Original series is called as “nurse_count”.  
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Figure 4.2 The Required Number of Nurses During 9 Months (Original Series) 

4.2.2 Unit Root Test 

Augmented Dickey-Fuller Unit Root Test is used to test the stationarity of data. Test 

results are given in Table 4.1. More details about results can be found in Appendix 

B. 
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Table 4.1 Unit Root Test Results 

Test for Unit 

Root in 

Include in Test 

Equation 

t- statistics Probability 

Level Intercept -5.042117 0.0000 

Level Intercept and Trend -5.032603 0.0002 

 

In order to test stationarity, hypothesized as: 

𝐻0 = 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

𝐻1 = 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

Since probabilities are less than the 𝛼 value, which is 0.05 for the 95% confidence 

interval, 𝐻0 is rejected. In other words, data is said to be stationary. 

4.2.3 ACF and PACF (Correlogram) 

As explained in review of methodologies, ACF and PACF give a prior knowledge 

about the model for stationary data. Correlogram for “nurse_count” series is given in 

Figure 4.3. It can be seen that ACF gradually decreases, and PACF cuts off after 1 

lag. Initial interpretation is in the direction of usage of AR(1) model. 
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Figure 4.3 ACF and PACF of the “nurse_count” Series 

4.2.4 Selection of Best Model 

4.2.4.1 Models 

In order to select the best appropriate model, the forecasted model should have the 

following features at the same time: 

i. Model must be statistically significant. 

 



 
 

45 
 

ii. The forecasted coefficients of model must be statistically significant. 

iii. The forecasted coefficients of the model must be in the range. 

iv. The model must have the least AIC and SIC values. 

The related information about the comparison of models are given in Table 4.2. 

Table 4.2 Comparison of Models 

Model 
Significance 

of Model 

Coefficient of 

Determination  (R
2
) 

Variable Coefficient Probab 
Information 

Criterion 

AR(1) 
F=565.5900 

p=0.00 
 

0.679314 
AR(1) 0.825074 0.000 

AIC=3.441838 

SIC=3.46856 

  

AR(2) 
F=281.4766 

p=0.000000 

 

0.679934 

AR(1) 0.845326 0.000 AIC=3.451141 

AR(2) -0.023894 0.6977 SIC=3.49133 

MA(1) 
F=264,0596 

p=0.000000 

 

0.496297 
MA(1) 0.708676 0.000 

AIC=3.890378 

SIC=3.917033 

MA(2) 
F=198.5845 

p=0.000000 

 

0.597994 

MA(1) 0.822148 0.0000 AIC=3.672266 

MA(2) 0.440838 0.0000 SIC=3.712249 

ARMA

(1,1) 

F=282.0376 
 

0.679547 

AR(1) 0.813562 
 

0.0000 AIC=3.448546 

p=0.000000 MA(1) 0.035745 0.6309 SIC=3.488635 

ARMA

(2,1) 

F=189.1090 

p=0.000000 

 

0.682435 

AR(1) -0.043343 0.7480 
AIC=3.450757 

AR(2) 0.705077 0.0000 

MA1) 0.908738 0.0000 SIC=3.504354 

ARMA

(1,2) 

F=189.1844 

P=0.000000 

 

 

0.681702 

 

AR(1) 0.871690 0.0000 
 AIC=3.449233 

MA(1) -0.041987 0.5889 

MA(2) -0.128356 0.0822 SIC=3.502686 

ARMA

(2,2) 

F=141.3767 

p=0.000000 

 

 

0.682561 

 

AR(1) 0.007282 0.9728 
AIC=3.457822 

AR(2) 0.678531 0.0000 

MA(1) 0.844894 0.0002 
SIC=3.524818 

MA(2) -0.031122 0.7234 

 

According to Table 4.2 it is seen that all models are statistically significant. If we 

evaluate each model separately: 
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The forecasted coefficient of AR(1) model, 𝜙1, is statistically significant and 

between the range of  [-1,1]. As a result AR(1) model is said to be appropriate.  

The forecasted coefficients of AR(2) model are 𝜙1 and 𝜙2. While the coefficient of 

𝜙1 is statistically significant, 𝜙2 is not significant. So AR(2) model is not an 

appropriate model. 

The forecasted coefficient of MA(1) model, which is 𝜃1, is statistically significant 

and between the range of [-1, 1]. Therefore MA(1) model is an appropriate model.  

The forecasted coefficients of MA(2) model, which are 𝜃1 and 𝜃2are statistically 

significant and between the range of [-1, 1]. For this reason, MA(2) model is an 

appropriate model.  

The forecasted coefficients of ARMA(1,1) model, 𝜙1, is statistically significant, on 

the other hand the other forecasted coefficient of model, 𝜃1, is not significant. 

Therefore ARMA(1,1) model is not an appropriate model.      

ARMA(2,1) is not an appropriate model because while the coefficients 𝜙2 and 𝜃1 are 

statistically significant, 𝜙1 is not statistically significant. 

ARMA(1,2) is not an appropriate model because while the forecasted coefficient 𝜙1 

is statistically significant, the forecasted coefficients 𝜃1 and 𝜃2 are not statistically 

significant.  

ARMA(2,2) is not an appropriate model because while the coefficients 𝜙2 and 𝜃1 are 

statistically significant, 𝜙1 and 𝜃2 are not statistically significant. 

The more details about forecasted models can be found in Appendix C. 

AR(1), MA(1) and MA(2) models satisfy the first three features as a result the model 

with the smallest information criterion values will be chosen as the best appropriate 

model. Since the AR(1) has the smallest  AIC and SIC values, AR(1) is chosen as the 

forecasting model.   
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4.2.4.2 Ljung-Box Statistics 

In order to test the efficiency of the AR(1) model, Ljung-Box Statistics is used by 

examination of correlogram for residuals. The ACF and PACF related to residuals 

are given in Figure 4.4.  

 

Figure 4.4 ACF and PACF Related to Residuals 
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The hypothesis of Ljung-Box statistics for the AR(1) model is: 

𝐻0 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑡ℎ𝑒𝑦 𝑠ℎ𝑜𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

𝐻1 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑡ℎ𝑒𝑦 𝑑𝑜 𝑛𝑜𝑡 𝑠ℎ𝑜𝑤 𝑟𝑎𝑛𝑑𝑜𝑚  

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Since 𝑝 = 0.296 >  𝛼 = 0.05, the hypothesis 𝐻0 is accepted. It is concluded that 

residuals are not linearly dependent and they show random distribution and for this 

reason AR(1) model is an appropriate and efficient model for forecasting. 

4.2.5 Forecasting 

In order to test the validity of model, prediction is made and the results given below 

in Figure 4.5 and Figure 4.6 are obtained. 

 

Figure 4.5 Prediction Result of the Forecasted Model 

Since Theil’s Inequality Coefficient and the Mean Absolute Percentage Error show 

the success of the forecasted model, these two measurements are examined. The 

Theil Inequality Coefficient is expected to be in the range of [0,1] and being close 

tozero is desirable and MAPE is wanted to take a small value for the success of the 

model. Since Theil’s Inequality Coefficient is 0.121322 which is close to zero and 

MAPE is 24.85948%, AR(1) model is found successful. 
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In Figure 4.6, the predictions made by forecasted model and the actual values for 

requirement of nurses during 9 months are shown. It is seen that there is a high 

consistency which supports the usage of AR(1) model. 

 The prediction made by AR(1) model for the next period is 3.36 nurses and the 

standard deviation is ±2 𝑆. 𝐸. where 𝑆. 𝐸. is equal to 1.34, which can be seen in 

Figure C.1, as a result the required number of nurses for the next period is expected 

to be in the range of 3.36 ± 2.68, in other words [0.68, 6.04]. Since the required 

number of nurses is always be integer and satisfying the all demand is essential, the 

estimated required number of nurses for the next period is in the range of [1, 7]. 

 

Figure 4.6 Predictions and Actual Values 
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CHAPTER 5 

 

COMPUTATIONAL RESULTS AND COMPARISON 

 

 

By using our numerical results we aim to analyze the efficiency of our solution 

methods and the value of considering uncertainty in the problem. Objective function 

values, solution times of each instance and the uncertainty related measures (which 

are the Expected Value of Perfect Information and the Value of the Stochastic 

Solution) are presented in the following parts. 

First step is testing the performance of solution methods by measuring solution 

times. In order to do this, we generate scenarios with different scheduling periods. 

Our data structure, which can be seen in Figure 5.1 includes 9 months and 36 weeks. 

In Figure 5.1, “M” represents months, “TW” represents two-week long periods and 

“W” represents weeks. For each day, required number of nurses is available as 

historical data and the number of nurses working in the unit is also known.  The 

number of senior nurses and the number of special requests and breast-feeding 

permissions are assigned according to the interviews made by the head nurse. 

 

Figure 5.1 Data Structure 

8 instances, which include scheduling periods of 4, 5, 6, 7 and 14 days are generated 

initially. The first 4, 5, 6 and 7 days of the 33
rd

 week (first week of 9
th

 month which  
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is shown in Figure 5.2) are taken as forecasting periods randomly  in order to 

generate scenarios for 4, 5, 6 and 7 days long scheduling periods.  

 

Figure 5.2 Forecasting Period for the 4, 5, 6 and 7 Days Long Schedules 

The 95% confidence intervals for these periods are given in Table 5.1. The scenarios 

are generated in the confidence intervals uniformly. 

Table 5.1 95% Confidence Intervals for the 4, 5, 6 and 7 Days Long Scheduling 

Periods 

 Scheduling Period 

4 Days 5 Days 6 Days 7 Days 

D
a
y
 

1 [6,12] [6,12] [6,12] [6,12] 

2 [7,12] [7,12] [7,12] [7,12] 

3 [5,11] [5,11] [5,11] [5,11] 

4 [4,10] [4,10] [4,10] [4,10] 

5  [4,10] [4,10] [4,10] 

6   [6,12] [6,12] 

7    [6,12] 

 

In the same way, in order to generate scenarios for the 14 days long schedule, the 

first 14 days of the 9
th

 month, which is shown in Figure 5.3, is taken randomly as 

forecasting period.  

 

Figure 5.3 Forecasting Period for the 14 Days Long Schedule 
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In the tables below g represents the number of days to be scheduled, t represents the 

number of nurses to be scheduled and s represents the number of scenarios. Time is 

given in terms of CPU seconds and “-“ represents that any solution could not be 

obtained in 3 hours and “*” represents the best solution obtained at the end of 3 

hours.  

Our computational experiments are executed on a 3.10 GHz computer with 16.0 GB 

memory and 64-bit Windows 7 operating system. CPLEX 12.6.1 is used as the 

solver. Solution times of each method for the 4, 5, 6, 7 and 14 days long schedules 

are given in Table 5.2.  

Table 5.2 Solution Times of Each Approach for Each Instance 

In
st

a
n

ce
 

g/t/s Extensive 
L-

shaped 

L-Shaped 

with 

Dual 

Solution 

L-Shaped 

with dual 

solution 

and 

lower 

bound 

Multi-Cut 

L-shaped 

with dual 

solution and 

lower bound 

L-shaped 

based 

branch 

and cut 

1 4/4/2 0.23 0.43 0.27 0.32 0.35 0.04 

2 4/4/10 0.13 0.45 0.29 0.27 0.33 0.05 

3 5/5/2 0.22 0.31 0.27 0.22 0.57 0.12 

4 5/5/10 0.31 0.41 0.40 0.38 0.48 0.12 

5 6/6/2 0.24 0.51 0.39 0.28 0.53 0.13 

6 6/6/10 0.31 0.7 0.6 0.47 - 0.15 

7 6/7/10 0.4 0.66 0.43 0.8 0.91 0.18 

8 7/5/10 0.23 0.31 0.23 0.23 - 0.1 

 

According to Table 5.2, the following inferences are made: 

 For all instances, solving subproblems by closed form of dual solution 

improves the solution performance in terms of time.  
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 Adding lower bound improves the solution performance in terms of time for 

instances 2, 3, 4 and 5.  

 Single-cut approach outperforms the multi-cut approach in all instances and it 

is observed that while the optimal solutions for instance 6 and instance 8 can 

not be obtained by multi-cut approach, single-cut approach provides the 

optimal solution for these instances. 

  Extensive form and L-shaped based branch-and-cut methods outperform all 

other solution approaches in all instances. 

To determine the method will be used to perform the main runs of the numerical 

experiment, the best two approaches, which are extensive form and L-shaped based 

branch and cut, are compared. In order to test the performance of extensive form and 

L-shaped based branch and cut, eighteen different instances are generated. These 

instances and the solution times of these methods for each instance are given in 

Table 5.3. 
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Table 5.3 Solution Times of Extensive Form and L-shaped Based Branch and Cut 

Instance g/t/s 
Solution Time of 

Extensive Form 

Solution Time of L-shaped Based 

Branch and Cut 

9 7/5/10 0.23 0.10 

10 7/5/50 0.15 0.10 

11 7/5/100 0.40 0.11 

12 7/5/200 0.32 0.11 

13 7/6/10 0.10 0.31 

14 7/7/10 0.30 0.13 

15 14/8/10 0.25 0.25 

16 14/9/10 0.34 0.27 

17 14/10/10 0.54 0.28 

18 1411/10 0.53 0.48 

19 14/12/10 0.60 0.33 

20 14/13/10 0.70 4.20 

21 14/14/10 8.40 8.50 

22 14/15/10 0.73 12.94 

23 14/16/10 0.90 157.83 

24 14/17/10 0.88 342.57 

25 28/17/100 130 28654.98 

26 28/17/200 8.68 - 

 

According to Table 5.3, the following inferences are made: 

 For instance 9, L-shaped based branch and cut performs better than the 

extensive form. 

 As number of scenarios is increased, L-shaped based branch and cut still 

gives optimal solution in a shorter time in comparison with extensive form. 

 When the number of days is increased to 14 days and the number of nurses is 

increased to 8, L-shaped based branch and cut still gives optimal solution in a 

shorter time in comparison with extensive form. 

 When the number of nurses is increased for the 14 days long schedule, it is 

observed that until instance 20 with 13 nurses, L-shaped based branch-and- 
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cut outperforms the extensive form. On the other hand, beginning from the 

instance 20, it is observed that the extensive form starts to outperform L-

shaped based branch-and-cut method. In addition to this, if the problem size 

gets bigger, the gap between the performances of two methods increases.  

Based on the results of our preliminary runs, we use the extensive form to perform 

the main runs of our numerical experiment. 

In order to test the performance of extensive form at the actual size of problem, each 

month is taken as the forecasting period separately as seen in Figure 5.4. 

 

Figure 5.4 Forecasting Periods for the Four Weeks Long Schedules 

Forecasting for each month is made and confidence intervals for the days of each 

month are found and scenarios are generated according to these confidence intervals. 

The confidence intervals related to each month are given in Table5.4. 
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Table 5.4 95% Confidence Intervals for the Four Weeks Long Scheduling Periods 

 Scheduling Period 
1

st
 

Month 

2
nd

 

Month 

3
rd

 

Month 

4
th

 

Month 

5
th

 

Month 

6
th

 

Month 

7
th

 

Month 

8
th

 

Month 

9
th

 

Month 

D
a
y
 

1 [2,7] [4,9] [4,9] [1,5] [3,8] [2,7] [1,6] [1,7] [6,12] 

2 [3,8] [3,8] [3,8] [1,5] [2,7] [1,7] [1,7] [4,9] [7,12] 

3 [4,9] [4,9] [3,8] [1,5] [3,8] [1,7] [1,7] [4,10] [5,11] 

4 [4,9] [4,9] [2,7] [1,7] [4,9] [1,7] [1,6] [8,13] [4,10] 

5 [4,9] [4,9] [3,8] [1,7] [4,10] [1,7] [1,6] [6,12] [4,10] 

6 [4,9] [4,9] [4,10] [3,8] [3,8] [1,7] [1,6] [5,11] [6,12] 

7 [4,9] [4,9] [4,10] [2,7] [3,8] [1,6] [2,7] [4,10] [6,12] 

8 [3,8] [2,7] [3,8] [2,7] [3,8] [1,6] [2,7] [5,11] [8,13] 

9 [3,8] [2,7] [3,8] [2,7] [2,7] [1,5] [3,8] [5,11] [9,14] 

10 [2,7] [4,9] [3,8] [1,7] [2,7] [1,5] [2,7] [3,8] [10,16] 

11 [3,8] [3,8] [4,10] [1,7] [2,7] [1,5] [1,7] [2,7] [8,13] 

12 [4,9] [3,8] [4,9] [2,7] [4,10] [4,10] [2,7] [1,7] [6,12] 

13 [3,8] [4,10] [5,11] [1,6] [5,11] [5,11] [1,6] [1,6] [9,15] 

14 [2,7] [3,8] [4,10] [1,6] [4,10] [4,10] [2,7] [1,7] [9,14] 

15 [3,8] [1,7] [4,10] [1,6] [4,9] [4,9] [4,9] [5,11] [6,12] 

16 [4,9] [1,6] [4,10] [1,7] [2,7] [2,7] [5,11] [6,12] [4,10] 

17 [4,9] [1,7] [3,8] [3,8] [3,8] [3,8] [3,8] [6,12] [4,10] 

18 [4,10] [2,7] [3,8] [4,10] [4,9] [4,9] [4,9] [7,12] [8,13] 

19 [3,8] [2,7] [2,7] [5,11] [4,9] [4,9] [4,10] [4,9] [4,10] 

20 [4,10] [3,8] [2,7] [5,11] [4,9] [4,9] [3,8] [5,11] [3,8] 

21 [4,10] [4,9] [2,7] [4,10] [3,8] [3,8] [3,8] [8,13] [4,9] 

22 [4,9] [2,7] [3,8] [2,7] [3,8] [3,8] [2,7] [8,13] [2,7] 

23 [4,9] [2,7] [4,9] [3,8] [2,7] [2,7] [1,7] [7,12] [2,7] 

24 [3,8] [2,7] [3,8] [4,9] [4,9] [4,9] [1,6] [6,12] [2,7] 

25 [4,9] [3,8] [3,8] [4,10] [3,8] [3,8] [1,6] [4,10] [1,7] 

26 [5,11] [4,9] [1,7] [3,8] [3,8] [3,8] [1,6] [2,7] [3,8] 

27 [5,11] [4,10] [1,7] [3,8] [2,7] [2,7] [2,7] [5,11] [3,8] 

28 [4,9] [4,9] [1,6] [4,9] [2,7] [2,7] [3,8] [4,10] [4,10] 

 

As a result, 9 different instances with 100 scenarios are generated according to the 

forecasts of each month and each instance is represented as 27.1, 27.2, 27.3, etc., in  
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Table 5.5. The required number of nurses during a month on average for each 

instance is given with the last column of Table 5.5. In addition to these instances, 

which emphasize randomness, 9 different instances with 3 scenarios are generated. 

The first scenarios include the minimum values of confidence intervals, the second 

scenarios include the maximum values of confidence intervals and the third scenarios 

include the average value of confidence interval limits. These instances, which are 

given in Table 5.5 as instance 28.1, 28.2, etc., are generated to strongly reflect the 

time series connection between two consecutive days.  

Table 5.5 Problem Instances with Different Number of Scenarios for Four Week 

Schedule 

In
st

a
n

ce
 

g/t/s 

Number 

of senior 

nurses 

Number of 

breast-feeding 

permissions 

(number of 

days) 

Number of 

special 

requests 

(number of 

shifts) 

Total demand 

during a month 

on average 

(number of 

nurses) 

27.1 28/17/100 17 3 5 520.41 

27.2 28/17/100 17 3 5 468.39 

27.3 28/17/100 17 3 5 481.53 

27.4 28/17/100 17 3 5 418.92 

27.5 28/17/100 17 3 5 475.65 

27.6 28/17/100 17 3 5 315.96 

27.7 28/17/100 17 3 5 395.07 

27.8 28/17/100 17 3 5 618.45 

27.9 28/17/100 17 3 5 674.28 

28.1 28/17/3 17 3 5 517.50 

28.2 28/17/3 17 3 5 465 

28.3 28/17/3 17 3 5 478.50 

28.4 28/17/3 17 3 5 418.50 

28.5 28/17/3 17 3 5 477 

28.6 28/17/3 17 3 5 312 

28.7 28/17/3 17 3 5 393 

28.8 28/17/3 17 3 5 616.50 

28.9 28/17/3 17 3 5 673.50 
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Table 5.6 and Table 5.7 shows the solution times for extensive form and uncertainty 

related measures for four week schedules. The last two rows include average values 

and maximum values of each measure over 9 instances. 

Table 5.6 Solution Times, EVPI and VSS Measures for the Instances with 100 

Scenarios 

In
st

a
n

ce
 

S
o

lu
ti

o
n

 T
im

e 

fo
r 

E
x
te

n
si

v
e 

F
o

rm
 

O
b

je
ct

iv
e 

V
a
lu

e 

o
f 

S
to

ch
a

st
ic

 

S
o

lu
ti

o
n

 

O
v

er
 t

im
e 

U
n

d
er

 t
im

e 

O
n

-c
a

ll
 

E
E

V
 

W
S

 

V
S

S
 

(%
) 

E
V

P
I 

(%
) 

27.1 4.5 600.2 110.4 9.1 61.1 642.1 496.4
* 

6.5 17.3 

27.2 131.5 528.6 81.5 24.1 53.0 544.2 346.2
*
 2.9 34.5 

27.3 4538.9 562.5 93.7 19.0 55.9 585.3
*
 410.5

*
 3.9 27.0 

27.4 47.7 494.2 58.7 42.5 44.7 506.3 235.5
*
 2.4 52.4 

27.5 679.1 523.3 84.7 18.8 54.8 535.8 368.4
*
 2.3 29.6 

27.6 4.9 444.7 23.2 71.7 32.5 446.2 45.2
*
 0.3 89.8 

27.7 4.5 508.6 57.4 47.6 44.3 524.3 208.4
*
 3.0 59.0 

27.8 507.8 957.7 195.8 7.9 71.6 1017 886.2
*
 5.8 7.5 

27.9 4.8 1239.0 260.7 13.2 71.8 1276 1153.0 3.0 7.0 

Avg. 
658.2 651.0 107.3 28.2 54.4 675.3 461.1 3.4 36.0 

Max 4538.9 1239.0 260.7 71.7 71.8 1276 1153.0 6.5 89.8 

 

According to Table 5.6 and Table 5.7 the following inferences are made: 

 The values of the stochastic solutions are in the range of 0.33%-6.53% and 

the expected values of the perfect information are in the range of 7%-89.8%. 

The value of stochastic solution is 3.35% on average and the expected value 

of perfect information is 36.01% on average. 
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 The expected value of perfect information takes the largest value and the 

value of the stochastic solution takes the smallest value for instance 19.6. 

From Table 5.5, it can be seen that instance 19.6 has the smallest demand on 

average during the month. 

Table 5.7 Solution Times, EVPI and VSS Measures for the Instances with 3 

Scenarios 

In
st

a
n

ce
 

S
o

lu
ti

o
n

 T
im

e 

fo
r 

E
x
te

n
si

v
e 

F
o

rm
 

O
b

je
ct

iv
e 

V
a

lu
e 

o
f 

S
to

c
h

a
st

ic
 

S
o

lu
ti

o
n

 

O
v

er
 t

im
e 

U
n

d
er

 t
im

e 

O
n

-c
a

ll
 

E
E

V
 

W
S

 

V
S

S
 

(%
) 

E
V

P
I 

(%
) 

28.1 2.3 683.0 124.0 19.3 54.8 740.3 596.0 7.7 12.7 

28.2 7200.0 618.8* 94.2 35.7 50.5 636.3 465.3 2.8 24.8 

28.3 2534.5 664.9 109.0 31.3 51.8 696.4* 528.7 4.5 20.5 

28.4 2.8 606.7 74.8 56.0 41.7 622.7 373.3 2.6 38.5 

28.5 2.6 637.0 102.5 30.3 52.8 654.3 504.7 2.7 20.8 

28.6 2.6 558.7 37.3 87.3 30.0 562.7 177.7 0.7 68.2 

28.7 3.1 602.0 72.5 57.8 40.3 620.7 333.7 3.0 44.6 

28.8 4.4 1003.3 204.2 13.3 66.7 1113.3 940.0 9.9 6.3 

28.9 2.0 1269.7 267.3 15.3 69.5 1357.0 1188.0 6.4 6.4 

Avg. 85.6 738.2 124.0 38.9 51.0 778.2 567.5 4.5 27.3 

Max 664.9 2534.5 267.3 87.3 69.5 1357.0 1188.0 9.9 68.2 

 

According to Table 5.6 and Table 5.7 the following inferences are made: 

 The average of the expected values of perfect information is higher in the 

instances with 100 scenarios than instances with 3 scenarios, therefore we 

can conclude that randomness of data has a significant impact on the value of 

the perfect information. 
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 The average of the values of the stochastic solutions is higher in the 

instances with 3 scenarios than the instances with 100 scenarios. Therefore, 

we can conclude that time series structure of the uncertainty has an impact 

on the value of the stochastic solution. 

 The expected values of perfect information of the last two instances are the 

minimum among all instances. From Table 5.5, it is seen that these instances 

have the maximum demand on average during the month and even under the 

perfect information setting amount of overtime and on-call is high.  

In order to see the effect of objective function coefficients on the solution of four 

week schedules, these instances are also solved with objective function coefficients 

𝑎 = 6, 𝑏 = 2 and 𝑐 = 4, which reflects a setting where overtime is more valuable 

than undertime. The results are shown in Table 5.8 and Table 5.9. 

Table 5.8 Solution Times, EVPI and VSS Measures for the Instances with 100 

Scenarios and Objective Function Coefficients 6, 2, 4 
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27.1 4.6 820.7 110.0 9.6 61.0 871.6 669.4* 5.9 18.4 

27.2 360.7 691.3 81.0 24.8 53.2 715.7 458.3* 3.4 33.7 

27.3 5130.8 749.2 93.3 19.5 55.7 768.6 549.5* 2.5 26.6 

27.4 647.3 610.3 57.8 43.5 44.6 624.4 310.5* 2.3 49.1 

27.5 460.4 692.5 84.6 18.8 54.9 708.3 485.9* 2.2 29.8 

27.6 4.2 488.5 21.2 74.6 31.4 492.9 52.0* 0.9 89.0 

27.7 4.7 622.6 56.2 49.6 43.5 652.5 276.3* 4.6 55.6 

27.8 47.4 1349.2 195.4 8.4 71.4 1431.6 1254.9* 5.8 7.0 

27.9 5.0 1757.0 258.9 15.5 70.9 1801.3 1663.0 2.5 5.4 

Avg. 740.6 864.6 106.5 29.4 54.1 896.3 635.5 3.3 35.0 

Max 5130.8 1757.0 258.9 74.6 71.4 1801.0 1663.0 5.9 89.0 
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According to Table 5.8, the following inferences are made: 

 While for some instances the expected values of perfect information increase 

in comparison to the first setting, for some instances these values decrease. 

 While for some instances the values of the stochastic solutions increase, for 

some instances the values of the stochastic solutions decrease. When the 

instances are investigated, it is observed that the instances in which increase 

is observed have the lowest demand on average during the month. 

 The increase in the cost of overtime results in lower overtime and higher 

undertime. 

Table 5.9 Solution Times, EVPI and VSS Measures for the Instances with 3 

Scenarios and Objective Function Coefficients 6, 2, 4 
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28.1 2.1 930.7 123.7 19.8 54.7 986.3 840.0 5.6 9.7 

28.2 7219.0 807.3* 93.2 37.2 50.0 830.7 648.3 2.8 19.7 

28.3 7213.0 881.3* 108.0 32.8 51.3 920.3 742.7 4.2 15.7 

28.4 2.9 755.7 74.2 57.0 41.3 775.7 519.0 2.6 31.3 

28.5 3.5 841.0 101.5 31.8 52.3 860.7 705.7 2.3 16.1 

28.6 2.5 630.3 34.3 91.8 28.5 646.0 239.0 2.4 62.1 

28.7 4.0 742.7 68.2 64.3 38.2 770.3 463.3 3.6 37.6 

28.8 5.2 1412.0 204.2 13.3 66.7 1554.0 1344.3 9.1 4.8 

28.9 1.8 1802.0 265.0 18.8 68.3 1905.0 1714.0 5.4 4.9 

Avg. 1606.0 978.1 119.1 40.8 50.2 1028.0 801.8 4.2 22.4 

Max 7219.0 1802.0 265.0 91.8 68.3 1905.0 1714.0 9.1 62.1 
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According to the Table 5.9, the following inferences are made: 

 For all instances the expected values of perfect information decrease in 

comparison to the first setting. As a result the average of expected values of 

perfect information decrease. 

 While for some instances the values of the stochastic solutions increase, for 

some instances the value of the stochastic solutions decrease. When the 

instances are investigated, it is observed that the instances, in which increase 

is observed, have the lowest demand on average during the month.  

 The average of the values of the stochastic solutions decrease in comparison 

to the first setting. 

 The increase in the cost of overtime results in lower overtime and higher 

undertime. The impact of changing the objective function coefficients is a 

little more in instances with 3 scenarios, in which time series structure is 

reflected, in comparison to instances with 100 scenarios. 

Last analysis is made by calculating the value of the stochastic solution by using 

other heuristic approaches than solving the mean value problem. In these heuristic 

approaches, we solve a deterministic model by using the first quartile (𝑄1), median 

and the third quartile (𝑄3) values instead of the average values. The first quartile 

value is equal to the value that 25% of the scenarios lie below this value and the third 

quartile value is equal to the value that 75% of the scenarios lie below this value. The 

value of the stochastic solution, which is calculated according to the median value, is 

represented as VSS50, the values of stochastic solution, which are calculated 

according to 𝑄1and 𝑄3 values, are represented as VSS25 and VSS75 in the tables 

below. Together with the VSS values, values of the obtained solutions are also 

reported as 𝑄𝑉1, 𝑄𝑉2 and 𝑄𝑉3. Table 5.10 and Table 5.11 show the results with the 

objective function coefficients of 4, 2, 4 and Table 5.12 and Table 5.13 show the 

results with the objective function coefficients of 6, 2, 4. The last two columns 

include average values and maximum values of each measure over 9 instances. 
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Table 5.10 VSS Measures of Instances with 100 Scenarios According to the 

Heuristic Approaches 

Instance 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 Avg. Max 

Obj. Val. 

of Stoc. 

Sol. 

600.2 528.6 562.5 494.2 523.3 444.7 508.6 957.7 1239.0 651.0 1239.0 

EEV 642.1 544.2 585.3 506.3 535.8 446.2 524.3 1017.0 1276.0 675.3 1276.0 

VSS (%) 6.5 2.9 3.9 2.4 2.3 0.3 3.0 5.8 3.0 3.4 6.5 

Avg. 

Over-

time 

117.0 83.6 96.9 60.6 86.4 23.2 59.9 207.0 269.7 111.6 269.7 

Avg. 

Under- 

time 

13.9 26.0 22.1 43.9 20.3 72.0 49.4 14.7 16.4 31.0 72.0 

Avg. On-

call 
59.3 52.8 54.7 44.2 54.6 32.8 43.5 65.2 66.0 52.6 66.0 

QV1 606.6 600.1 581.1 628.1 549.7 666.4 676.8 978.0 1268.0 728.3 1268.0 

VSS25 

(%) 
1.1 11.9 3.2 21.3 4.8 33.3 24.9 2.1 2.3 11.6 33.3 

Avg. 

Over-

time 

112.5 97.1 102.9 78.3 96.1 49.4 77.9 201.0 273.2 120.9 273.2 

Avg. 

Under- 

time 

8.5 24.5 12.7 53.9 12.0 99.0 67.8 9.2 8.1 32.9 99.0 

Avg. On-

call 
61.4 56.9 59.4 49.5 58.6 36.6 46.9 68.6 71.2 56.6 71.2 

QV2 688.8 562.1 624.6 521.8 564.8 465.6 532.7 1056.0 1300.0 701.8 1300.0 

VSS50 

(%) 
12.9 6.0 9.9 5.3 7.3 4.5 4.5 9.3 4.7 7.2 12.9 

Avg. 

Over-

time 

123.7 82.7 102.2 61.3 90.3 24.6 61.0 213.1 271.6 114.5 271.6 

Avg. 

Under- 

time 

19.4 28.3 26.8 47.2 23.8 75.8 50.4 19.0 21.4 34.7 75.8 

Avg. On-

call 
58.2 53.1 54.1 43.9 54.1 32.2 43.5 63.5 64.0 51.8 64.0 

QV3 809.9 691.1 775.4 629.0 692.8 486.9 626.6 1161.0 1373.0 805.0 1373.0 

VSS75 

(%) 
25.9 23.5 27.5 21.4 24.5 8.7 18.8 17.5 9.8 19.7 27.5 

Avg. 

Over-

time 

137.8 101.6 122.2 75.4 107.2 20.8 66.6 227.7 280.1 126.6 280.1 

Avg. 

Under- 

time 

36.9 46.5 46.3 61.4 40.5 86.2 70.5 32.7 32.5 50.4 86.2 

Avg. On-

call 
55.5 49.3 50.6 41.0 51.0 29.4 39.0 59.5 61.7 48.6 61.7 
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According to Table 5.10, the following inferences are made: 

 When the average values of the solutions obtained by these methods are 

considered, it is observed that the lowest value is obtained by solving the 

expected value problem. 

 From Table 5.5, it can be seen that instance 27.6 and instance 27.7 are the 

instances with the lowest demand on average during the month, and instance 

27.8 and instance 27.9 are the instances with the highest demand on average 

during the month. Therefore, based on the results given in Table 5.10, we can 

conclude that considering average values and  𝑄1 values is the best strategy 

when average demand is low and high, respectively. 

According to Table 5.11, the same inferences are made for the setting where we have 

3 scenarios. 

As can be observed from Table 5.12 and Table 5.13, the relative performance of the 

heuristic methods remains the same under the setting where overtime cost is higher. 
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Table 5.11 VSS Measures of Instances with 3 Scenarios According to the Heuristic 

Approaches 

Instance 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 Avg. Max 

Obj. 

Value 

of Stoc. 

Sol. 

683.0 618.8* 664.9 606.7 637.0 558.7 602.0 1003.3 1269.7 738.2 1269.7 

EEV 740.3 636.3 696.4* 622.7 654.3 562.7 620.7 1113.3 1357.0 778.2 1357.0 

VSS (%) 7.7 2.8 4.5 2.6 2.7 0.7 3.0 9.9 6.4 4.5 9.9 

Avg. 

Over-

time 

127.7 95.2 111.7 75.8 103.2 38.3 73.8 219.2 281.0 125.1 281.0 

Avg. 

Under- 

time 

27.7 38.0 35.7 58.3 33.0 87.7 60.5 27.3 25.3 43.7 87.7 

Avg. On-

call 
59.5 51.8 53.5 43.0 54.8 29.3 41.7 63.7 65.8 51.5 65.8 

QV1 745.0 738.3 769.7 828.0 708.3 881.0 801.3 1076.7 1308.7 873.0 1308.7 

VSS25(%) 8.3 18.8 13.6 26.7 10.0 36.5 24.9 6.8 3.0 16.5 36.5 

Avg. 

Over-

time 

141.0 120.7 134.8 111.5 124.7 75.5 98.2 218.3 279.3 144.9 279.3 

Avg. 

Under- 

time 

18.7 39.5 32.5 73.0 27.2 126.3 80.5 17.8 12.2 47.5 126.3 

Avg. On-

call 
53.2 48.8 50.2 45.0 50.5 36.8 43.3 66.0 71.3 51.7 71.3 

QV2 740.3 965.7 696.4* 622.7 654.3 562.7 620.7 1113.3 1357.0 829.6 1357.0 

VSS50(%) 7.7 2.8 4.5 2.6 2.7 0.7 3.0 9.9 6.4 4.5 9.9 

Avg. 

Over-

time 

127.7 150.8 111.7 75.8 103.2 38.3 73.8 219.2 281.0 133.7 281.0 

Avg. 

Under- 

time 

27.7 64.3 35.7 58.3 33.0 87.7 60.5 27.3 25.3 48.0 87.7 

Avg. On-

call 
59.5 52.5 53.5 43.0 54.8 29.3 41.7 63.7 65.8 51.3 65.8 

QV3 983.7 851.3 930.7 820.7 871.0 684.7 815.0 1280.3 1499.7 970.8 1499.7 

VSS75 

(%) 
30.6 27.3 28.6 26.1 26.9 18.4 26.1 21.6 15.3 24.6 30.6 

Avg. 

Over-

time 

157.8 119.2 137.3 95.3 128.5 38.8 84.0 240.7 295.3 144.1 295.3 

Avg. 

Under- 

time 

60.5 68.8 69.2 87.2 63.7 115.5 98.2 49.7 49.0 73.5 115.5 

Avg. On-

call 
55.2 49.7 52.3 45.3 51.2 33.7 43.2 59.5 61.2 50.1 61.2 
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Table 5.12 VSS Measures of Instances with 100 Scenarios and Objective Function 

Coefficients of 6, 2, 4 According to the Heuristic Approaches 

Instance 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 Avg. Max 

Obj. 

Value 

of Stoc. 

Sol. 

820.7 691.3 749.2 610.3 692.5 488.5 622.6 1349.2 1757.0 864.6 1757.0 

EEV 871.6 715.7 768.6 624.4 708.3 492.9 652.5 1431.6 1801.3 896.3 1801.0 

VSS (%) 5.9 3.4 2.5 2.3 2.2 0.9 4.6 5.8 2.5 3.3 5.9 

Avg. 

Over-

time 

116.5 84.3 95.5 60.2 86.4 23.2 61.0 207.3 267.4 111.3 267.4 

Avg. 

Under- 

time 

13.5 26.3 21.3 43.7 20.2 72.0 50.0 14.6 15.5 30.8 72.0 

Avg. 

On-call 
59.4 52.5 55.4 44.4 54.4 32.7 43.1 64.8 67.4 52.7 67.4 

QV1 836.0 781.9 787.4 818.6 742.6 765.1 832.7 1380.1 1815.2 973.3 1815.0 

VSS25 

(%) 
1.8 11.6 4.9 25.5 6.7 36.2 25.2 2.2 3.2 13.0 36.2 

Avg. 

Over-

time 

113.0 96.1 102.9 81.4 96.3 49.4 77.9 201.0 273.4 121.3 273.4 

Avg. 

Under- 

time 

8.9 23.1 12.8 57.6 12.0 99.0 67.8 9.2 8.2 33.2 99.0 

Avg. 

On-call 
61.3 56.4 59.4 50.1 58.4 36.6 46.9 68.6 71.1 56.5 71.1 

QV2 954.4 723.3 831.6 650.6 747.6 512.5 663.2 1461.9 1848.9 932.7 1849.0 

VSS50 

(%) 
14.0 4.4 9.9 6.2 7.4 4.7 6.1 7.7 5.0 7.3 14.0 

Avg. 

Over-

time 

125.8 84.6 102.8 62.2 90.6 24.7 62.2 210.9 272.3 115.1 272.3 

Avg. 

Under- 

time 

21.1 27.3 26.9 47.7 24.0 75.3 51.0 17.3 21.9 34.7 75.3 

Avg. 

On-call 
57.7 53.1 53.6 43.4 54.1 31.6 42.8 63.9 63.8 51.6 63.9 

QV3 
1131.

0 
926.1 982.6 747.9 909.5 527.9 733.4 1622.3 1933.7 1057.0 1934.0 

VSS75 

(%) 
27.5 25.4 23.8 18.4 23.9 7.5 15.1 16.8 9.1 18.6 27.5 

Avg. 

Over-

time 

143.1 104.8 117.8 71.8 107.0 20.9 64.2 228.1 280.1 126.4 280.1 

Avg. 

Under- 

time 

41.0 49.7 43.0 58.5 41.0 86.0 67.4 33.5 32.5 50.3 86.0 

Avg. 

On-call 
54.3 49.2 51.8 41.5 51.7 29.1 39.3 59.9 61.7 48.7 61.7 
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Table 5.13 VSS Measures of Instances with 3 Scenarios and Objective Function 

Coefficients of 6, 2, 4 According to the Heuristic Approaches 

Instance 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 Avg. Max 

Obj. 

Value 

of Stoc. 

Sol. 

930.7 807.3* 881.3* 755.7 841.0 630.3 742.7 1412.0 1802.0 978.1 1802 

EEV 986.3 830.7 920.3 775.7 860.7 646.0 770.3 1554.0 1905.0 1028 1905 

VSS 

(%) 
5.6 2.8 4.2 2.6 2.3 2.4 3.6 9.1 5.4 4.2 9.1 

Avg. 

Over-

time 

127.3 95.2 111.3 76.2 103.2 39.0 73.8 219.7 280.0 125.1 280 

Avg. 

Under- 

time 

26.3 38.7 36.0 58.3 33.0 88.3 60.8 27.7 23.7 43.7 88.3 

Avg. 

On-call 
58.5 52.5 54.2 42.7 54.8 29.3 42.0 64.0 65.2 51.5 65.2 

QV1 1011.0 1007.7 1016.0 1112.7 957.6 1146.0 1015.0 1471.0 1901.0 1182 1901 

VSS25 

(%) 
7.9 19.9 13.3 32.1 12.2 45.0 26.9 4.0 5.2 18.5 45.0 

Avg. 

Over-

time 

139.7 123.7 132.5 117.2 124.7 86.5 100.8 214.5 283.2 147.0 283.2 

Avg. 

Under- 

time 

16.8 42.2 30.2 79.5 27.2 138.0 81.7 13.3 15.2 49.3 138.0 

Avg. 

On-call 
52.7 48.5 50.2 45.8 50.5 37.5 41.8 65.3 70.5 51.4 70.5 

QV2 986.3 1267.3 920.3 775.7 860.7 646.0 770.3 1554.0 1905.0 1076 1905 

VSS50 

(%) 
5.6 2.8 4.2 2.6 2.3 2.4 3.6 9.1 5.4 4.2 9.1 

Avg. 

Over-

time 

127.3 150..8 11.3 76.2 103.2 39.0 73.8 219.2 280.0 120.1 280.0 

Avg. 

Under- 

time 

26.3 64.3 36.0 58.3 33.0 88.3 60.8 27.7 23.7 46.5 88.3 

Avg. 

On-call 
58.5 52.5 54.2 42.7 54.8 29.3 42.0 64.0 65.2 51.5 65.2 

QV3 1274.0 1102.3 1163.7 979.7 1128.0 742.0 958.0 1762.0 2112.0 1247 2112 

VSS75 

(%) 
27.0 26.8 24.3 22.9 25.4 15.1 22.5 19.9 14.7 22.0 27.0 

Avg. 

Over-

time 

155.0 119.8 133.7 92.7 128.5 37.0 82.5 240.7 297.3 143.0 297.3 

Avg. 

Under- 

time 

58.2 70.5 65.0 83.7 63.7 113.3 95.0 49.7 51.3 72.3 113.3 

Avg. 

On-call 
55.7 50.7 52.3 44.5 51.2 33.3 41.5 59.5 61.5 50.0 61.5 
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CHAPTER 6 

 

CONCLUSION 

 

 

In this thesis, the scheduling and rescheduling of nurses in an intensive care unit 

under demand uncertainty is studied. We particularly consider the Cardiovascular 

Surgery and General intensive care units of a private hospital located in Ankara. 

 Demand is represented in terms of the required number of nurses. The required 

numbers of nurses during 9 months are available as the historical data. Time series 

analysis is used to forecast the future demand. According to our computations, AR(1) 

model is selected as the most appropriate forecasting model. Scenarios are generated 

based on the 95% confidence intervals found by the forecasts with AR(1) model. 

The problem is modeled as a two-stage stochastic programming model. In the first 

stage, assignments of nurses to shifts as a normal working nurse and as an on-call 

nurse are made and the off-days for each nurse are settled. In the second stage, the 

decision of calling on-call nurses is made and the required amount of overtime or 

undertime is determined. 

Extensive form and L-shaped method are used as the main solution approaches. 

Since the second stage problem is feasible under every feasible first stage solution, 

we only use optimality cuts in our L-shaped method. Due to the nice structure of our 

second stage problem, optimality subproblems are solved by the usage of closed 

form of dual solutions without solving a LP. In addition to this, a lower bound is 

added to the master problem. In our computational experiments, it is observed that 

using the closed form of dual solution and adding the lower bound improves the 

solution performance in general. 
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Multi-cut approach for the L-shaped method is also tested and it is observed that the 

single-cut approach outperforms the multi-cut approach.  

In order to improve the solution performance of the L-shaped method, the L-shaped 

based branch-and-cut method, in which a single search tree is used, is applied. This 

approach is applied by the usage of lazy constraint callback feature of CPLEX. 

Finally, the uncertainty related measures are computed. In the computation of the 

value of the stochastic solution, different heuristic approaches are used. In these 

approaches, the values of the stochastic solutions are computed according to the 

median, the first quartile and the second quartile values. It is observed that 

considering average values and the first quartile values is the best strategy when 

average demand is low and high, respectively. 

The future studies could be extended to cover the question of which nurse will be 

assigned as an overtime or undertime nurse besides the decision of amount of 

overtime and undertime. In addition to this, seasonality on demand could be included 

in demand forecast with the analysis of the larger historical data. 
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APPENDIX A 

 

EXAMPLES OF THE MONTHLY SCHEDULES MADE BY HEAD NURSE 

MANUALLY 

 

 

 

Figure A.1 An Example of the Initial Monthly Schedule 



 
 

76 
 

 

Figure A.2 An Example of Schedule at the End of the Month 
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APPENDIX B 

 

UNIT ROOT TEST RESULTS 

 

 

 

Figure B.1 Unit Root Test Results Included Intercept 
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Figure B.2 Unit Root Test Results Included Intercept and Trend 
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APPENDIX C 

 

FORECASTED MODELS 

 

 

 

Figure C.1 Forecasted AR(1) Model for “Nurse_Count” Series 
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Figure C.2 Forecasted AR(2) Model for “Nurse_Count” Series 
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Figure C.3 Forecasted MA(1) Model for “Nurse_Count” Series 
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Figure C.4 Forecasted MA(2) Model for “Nurse_Count” Series 
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Figure C.5 Forecasted ARMA(1,1) Model for “Nurse_Count” Series 
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Figure C.6 Forecasted ARMA (2,1) Model for “Nurse_Count” Series 
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Figure C.7 Forecasted ARMA(1,2) Model for “Nurse_Count” Series 
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Figure C.8 Forecasted ARMA(2,2) Model for “Nurse_Count” Series 

 

 


