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ABSTRACT

GPU ACCELERATED HIGH-ORDER DISCONTINUOUS GALERKIN
LEVEL SET METHODS FOR INCOMPRESSIBLE MULTIPHASE FLOWS

Karakuş, Ali
Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. Mehmet Haluk Aksel

Co-Supervisor : Assist. Prof. Dr. Cüneyt Sert

September 2015, 182 pages

This thesis study focuses on the development of GPU accelerated, high-order

discontinuous Galerkin methods for the solution of unsteady incompressible and

immiscible multiphase flows with level set interface representation. Nodal dis-

continuous Galerkin framework is used for Navier-Stokes, level set evolution and

reinitialization equations on unstructured elements. Computations are localized

mostly near the interface location with an adaptive method to reduce compu-

tational cost without sacrificing the accuracy. An artificial diffusion approach

with a modal decay rate based regularity estimator is used to damp out high fre-

quency solution components near kinks. For the computation of interface equa-

tions, a multi-rate Adams-Bashforth time integrator is designed to avoid time

step restrictions resulting from artificial diffusion stabilization and local mesh

refinement. Implicit systems arising from the semi-explicit time discretization

of the flow equations are solved with a matrix-free p-multigrid preconditioned

conjugate gradient method to minimize memory requirements and to increase

overall runtime performance. The developed numerical scheme is accelerated

v



using modern GPUs and many-core CPUs. Platform independence of the solver

is achieved with an extensible multi-threading programming API as common

kernel language that allows runtime selection of different computing devices and

threading interfaces. Efficiency, scalability, local high-order accuracy and mass

conservation of the method are confirmed through distinct numerical test cases.

Keywords: Discontinuous Galerkin Method, Incompressible Navier-Stokes, Mul-

tiphase Flow, Level Set, Interface Capturing, Reinitialization, Adaptivity, GPU-

CPU Parallelization
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ÖZ

ÇOK FAZLI AKIŞLAR İÇİN YÜKSEK BAŞARIMLI YÜKSEK SEVİYELİ
SÜREKSİZ GALERKİN METODLARI

Karakuş, Ali
Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet Haluk Aksel

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Cüneyt Sert

Eylül 2015 , 182 sayfa

Bu tez çalışmasında, zamana bağlı çok fazlı akışlar için yüksek başarımlı, level

set ara-yüzey modellemesine dayalı, yüksek-seviyeli süreksiz Galerkin metod-

ları geliştirilmiştir. Çok fazlı Navier-Stokes, ara-yüzey ilerleme ve tekrar ilklen-

dirme denklemlerinin çözümünde noktasal süreksiz Galerkin sistemi kullanılmış-

tır. Kullanılan yerel uzaysal ağ adaptasyonu ile hesaplama yükü, doğruluktan fe-

regat etmeden, ara-yüzey çevresinde yoğunlaştırılarak önemli ölçüde azaltılmış-

tır. Yüksek frekanstaki çözüm bileşenlerini sönümlemek için, modal katsayiların

azalma oranına bağlı düzensizlik tahmini temelli bir yapay difüzyon stabilizas-

yonu yaklaşımı kullanılmıştır. Arayüzey denklemlerinin çözümünde, lokal grid

adaptasyonu ve yapay difüzyondan kaynaklı zaman adımı boyutundaki kısıtla-

malar, geliştirilen çok adımlı Adams-Bashforth metoduna dayanan yerel zaman

integrasyonu yöntemiyle engellenmiştir. Akış denklemlerinin yarı-açık zaman ay-

rıklaştırılmasından kaynaklanan kapalı sistemler, hafıza gereksinimlerini azalt-

mak ve toplam çözüm performansını arttıtmak için, matristen bağımsız p- çoklu
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ağ ön koşullayıcı konjuge gradyan metodu ile çözülmüştür. Geliştirilen sayısal

metod, modern ekran kartı ve ana işlemciler kullanılarak hızlandırılmıştır. Çö-

zücünün platformdan bağımsız olaral çalışması, hesaplama araçlarının çalışma

sırasında seçilmesine olanak veren bir çok-çekirdek programlama dili kullanılarak

elde edilmiştir. Geliştirilen metodun verimliliği, paralel hızı, yerel yüksek-seviyeli

doğruluğu ve kütle korunumu farklı sayısal testler ile gösterilmiştir.

Anahtar Kelimeler: Süreksiz Galerkin Metodları, Sıkıştırılamaz Akışlar, Çok

Fazlı Akışlar, Level Set, Ara-yüzey Yakalama, Yeniden İlklendirme, Adaptas-

yon, GPU-CPU Paralel Hesaplama

viii



To my wife Serap and my parents

ix



ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisors Prof.

Haluk Aksel and Prof. Cüneyt Sert for their continuous support to my Ph.D

study and for their patience, motivation, and immense knowledge. Their guid-

ance helped me in all the time of research and writing of this thesis.

My sincere thanks goes to Prof. Tim Warburton for being the best host during

my studies at Rice University, giving me chance to work with his fantastic re-

search team and for his continuous help, contributions and support in all parts

of this study. Special thanks to my colleagues from CAAM, Rice University, Dr.

David Medina for introducing me multi-threaded parallelization, Dr. Rajesh

Gandham for providing me the insight of multigrid techniques and Dr. Jesse

Chan for many fruitful discussions about spectral approximation. Thank you

all for sharing good moments at work as well as at Houston social life.

I am forever thankful to my colleagues at fluid mechanics division of Mechani-

cal Engineering Department,METU for their friendship, support and creating a

cordial working environment.

I gratefully acknowledge the partial financial support from Scientific and Techno-

logical Research Council of Turkey (TUBITAK) International Doctoral Research

Fellowship Program (2214).

I deeply thank to my family: my parents and to my brother and sister for their

love, support, and sacrifices. Without them, this thesis would never have been

written. I have saved the last words of acknowledgment for my dear wife Serap,

who has been with me all these years and has made them the best years of my

life.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . xxiii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Multi-Phase Flows . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Surface methods . . . . . . . . . . . . . . . . . 2

1.1.2 Volume Methods . . . . . . . . . . . . . . . . . 5

1.2 Discontinuous Galerkin Methods . . . . . . . . . . . . . 7

1.2.1 Overview of Basic Numerical Methods . . . . . 8

1.2.2 Development of Discontinuous Galerkin Methods 10

1.2.3 Incompressible Navier-Stokes and Stokes Equa-
tions . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 High Performance Computing . . . . . . . . . . . . . . . 14

xi



1.3.1 Central Processing Units . . . . . . . . . . . . 15

1.3.2 Graphical Processing Units . . . . . . . . . . . 16

1.3.3 OCCA . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Motivation and Contributions . . . . . . . . . . . . . . . 17

1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . 19

2 BUILDING NODAL DISCONTINUOUS GALERKIN SCHEME 21

2.1 Interpolation Concepts . . . . . . . . . . . . . . . . . . . 21

2.1.1 Nodal Distribution . . . . . . . . . . . . . . . . 22

2.1.1.1 Triangular Nodal Distribution . . . 22

2.1.1.2 Tetrahedral Nodal Distribution . . 24

2.1.2 Local Coordinate Systems . . . . . . . . . . . . 26

2.1.2.1 Orthogonal Expansions . . . . . . . 29

2.1.3 Nodal Basis Functions and Vandermonde Matrix 33

2.1.4 Interpolation Quality . . . . . . . . . . . . . . 36

2.2 Discontinuous Galerkin Operators . . . . . . . . . . . . 39

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Global to Local Mapping . . . . . . . . . . . . 41

2.2.3 Evaluation of Inner Products . . . . . . . . . . 44

2.2.4 Defining Interpolation Matrices . . . . . . . . . 48

2.2.5 De-aliasing and Cubature Integration . . . . . 50

2.3 Massively Parallel Implementation . . . . . . . . . . . . 54

2.3.1 Volume Kernel . . . . . . . . . . . . . . . . . . 56

2.3.2 Surface Kernel . . . . . . . . . . . . . . . . . . 57

xii



2.3.3 Update Kernel . . . . . . . . . . . . . . . . . . 58

2.3.4 Kernel Tuning . . . . . . . . . . . . . . . . . . 59

3 A GPU ACCELERATEDADAPTIVE DISCONTINUOUS GALERKIN
METHOD FOR LEVEL SET EQUATION . . . . . . . . . . . . 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Level Set Equation . . . . . . . . . . . . . . . 66

3.2.2 Local Time Stepping . . . . . . . . . . . . . . 67

3.2.3 Localizing Level Set Function . . . . . . . . . . 71

3.2.4 Mesh Adaptivity . . . . . . . . . . . . . . . . . 71

3.3 Parallel Implementation . . . . . . . . . . . . . . . . . . 74

3.3.1 Volume Kernel . . . . . . . . . . . . . . . . . . 75

3.3.2 Surface Kernel . . . . . . . . . . . . . . . . . . 76

3.3.3 Update Kernel . . . . . . . . . . . . . . . . . . 77

3.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 2D Zalesak’s Rotating Disk . . . . . . . . . . . 78

3.4.2 Vortex in a box . . . . . . . . . . . . . . . . . 82

3.4.3 3D Deformation Field . . . . . . . . . . . . . . 84

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 A GPU ACCELERATED LEVEL SET REINITIALIZATION
FOR AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Mathematical Formulation . . . . . . . . . . . . . . . . 95

4.2.1 Regularize Sign Function . . . . . . . . . . . . 95

xiii



4.2.2 Discretization of Hamiltonian . . . . . . . . . . 96

4.2.3 Artificial Diffusion . . . . . . . . . . . . . . . . 97

4.2.4 Mesh Adaptivity . . . . . . . . . . . . . . . . . 102

4.2.5 Local Time Stepping . . . . . . . . . . . . . . 103

4.3 Parallel Implementation . . . . . . . . . . . . . . . . . . 106

4.3.1 Volume Kernel . . . . . . . . . . . . . . . . . . 107

4.3.2 Surface Kernel . . . . . . . . . . . . . . . . . . 108

4.3.3 Update Kernel . . . . . . . . . . . . . . . . . . 109

4.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Circle . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . 113

4.4.3 Intersecting Circles . . . . . . . . . . . . . . . 115

4.4.4 Square . . . . . . . . . . . . . . . . . . . . . . 117

4.4.5 3D Smooth Interface . . . . . . . . . . . . . . . 119

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 A DISCONTINUOUS GALERKIN LEVEL SETMETHOD FOR
INCOMPRESSIBLE MULTIPHASE FLOWS . . . . . . . . . . 125

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Governing Equations . . . . . . . . . . . . . . 129

5.2.2 Discretization . . . . . . . . . . . . . . . . . . 130

5.2.2.1 Nonlinear Treatment . . . . . . . . 131

5.2.2.2 Implicit Treatment . . . . . . . . . 132

xiv



5.2.3 Interface Modeling . . . . . . . . . . . . . . . . 139

5.2.3.1 Discontinuous Fluid Properties . . 139

5.2.3.2 Level Set Advection . . . . . . . . . 140

5.2.3.3 Reinitialization . . . . . . . . . . . 141

5.2.4 Mesh Adaptivity . . . . . . . . . . . . . . . . . 144

5.3 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . 145

5.3.1 Sloshing in Rectangular Tank . . . . . . . . . . 145

5.3.2 Dam Break Problem . . . . . . . . . . . . . . . 148

5.3.3 Rayleigh-Taylor instability . . . . . . . . . . . 150

5.3.4 3D Dam Break with Obstacle . . . . . . . . . . 153

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . 161

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xv



LIST OF TABLES

TABLES

Table 1.1 Generic properties of common numerical methods. + and x in-
dicate succes and failure respectively, while (+) symbol indicates that
method requires modications to be capable for solving the problem
[82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 2.1 Comparison of Lebesgue constant for different order of approx-
imations and node distributions on triangle. . . . . . . . . . . . . . 37

Table 2.2 Comparison of condition number of Vandermonde matrix con-
structed with PKD polynomials for different order of approximations
and node distributions on triangle. . . . . . . . . . . . . . . . . . . . 39

Table 2.3 Comparison of condition number of Vandermonde matrices con-
structed with PKD polynomials for different order of approximations
and node distributions on tetrahedron. . . . . . . . . . . . . . . . . 39

Table 3.1 Area loss/gain for 2D Zalesak’s disk problem on fixed mesh. . 79

Table 3.2 Area loss/gain in Zalesak’s disk problem for different maximum
refinement levels and order of approximations. . . . . . . . . . . . . 79

Table 3.3 Multi-rate time-stepping speedups for Zalesaks’s disk test at
different refinement levels and order of approximations. . . . . . . . 81

Table 3.4 Area loss/gain and L1 Error for vortex in box problem . . . . 84

Table 3.5 Speedups for Zalesaks’s disk for different refinement levels for
MRAB(3,m) with m = 2lM . . . . . . . . . . . . . . . . . . . . . . . 84

Table 4.1 Speedups for circle test case for different refinement levels and
order of approximations. . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 4.2 Speedups for ellipse test case for different refinement levels and
order of approximations. . . . . . . . . . . . . . . . . . . . . . . . . 114

Table 4.3 Overall timings for the solver on different multi-threading mod-
els and approximation orders. . . . . . . . . . . . . . . . . . . . . . 121

xvi



Table 5.1 Condition numbers of Pressure Poisson operator with SIP dis-
cretization for different interface topologies and density ratios. (N =
3, K = 62). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 5.2 Percentage mass fluctuations in sloshing in a rectangular tank
problem for different refinement levels and order of approximations. 148

Table 5.3 Percentage maximum mass fluctuations in Rayleigh-Taylor in-
stability for different refinement levels and order of approximations.(Re =
500, At = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xvii



LIST OF FIGURES

FIGURES

Figure 1.1 Common surface methods (a) Particle method (b) Height func-
tion approach (c) Surface fitted method (d) Level set method . . . . 3

Figure 1.2 Common volume methods (a) marker and cell (b) volume of
fluid element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.3 Some VOF interface reconstructions techniques. . . . . . . . 7

Figure 1.4 Modern CPU and GPU architectures. . . . . . . . . . . . . 17

Figure 1.5 Structure of OCCA API with relationship between supported
frontends and backends [120]. . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.1 Different node distributions for triangular expansion of order 5. 23

Figure 2.2 Warp & Blend nodes [195] on the equilateral triangle for dif-
ferent appropriation orders. . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3 Warp & Blend nodes [195] node distributions for the tetrahe-
dral expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.4 Barycentric coordinate frame and Koornwinder reference tri-
angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.5 Mapping of bi-unit rectangle to triangle. . . . . . . . . . . . 28

Figure 2.6 Barycentric coordinate system and reference element for tetra-
hedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.7 Collapsed coordinate transformation steps from bi-unit hexa-
hedron to tetrahedron. . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.8 Orthonormal basis functions on standard triangle, T 2 up to
N = 5. Each row corresponds to all basis functions of the same order,
i+ j ≤ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.9 Lagrange interpolating polynomials constructed with Warp &
Blend nodes and orthonormal PKD polynomials on T 2 for N = 5. . 35

Figure 2.10 Lebesgue function over the standard triangle for N = 5. . . 37

xviii



Figure 2.11 Condtion number of Vandermonde matrix constructed with
PKD polynomials and monomials on Warp & Blend nodes. . . . . . 38

Figure 2.12 Basic geometrical notation used in the rest of the thesis. . . 40

Figure 2.13 Illustration of the average and jump operators. . . . . . . . . 41

Figure 2.14 Mapping between physical straight sided tetrahedron, D and
the standard element, T 3. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.15 Sample uniform refinement on triangular element and corre-
sponding structure on the reference element for the interpolation. . 49

Figure 2.16 Evaluation of the flux function on non-conformal face pairs for
one level local refinement and N = 3. . . . . . . . . . . . . . . . . . 53

Figure 2.17 A work group and a work item for 3D kernels. . . . . . . . . 56

Figure 3.1 Level set function for 2D circular interface problem. . . . . . 63

Figure 3.2 One dimensional unstructured sample grid for the local time
stepping. Fast group includes D0, D1 and D2, while slow group in-
cludes D3, D4 and D5. . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.3 Multirate groups for an unstructured, locally refined grid (lM =
2) for the circular interface problem. . . . . . . . . . . . . . . . . . 70

Figure 3.4 Regularized level set function for the circle centred at (0.5, 0.5)
with radius of 0.3 on computational domain of [0, 1]2, (ε = 0.1, N = 3) 72

Figure 3.5 Mesh balancing for a triangular element. (a) Adaptation pro-
ducing a connection not a member of 3 : 1 balanced mesh. (b) Ob-
taining balanced grid with an extra refinement. . . . . . . . . . . . 73

Figure 3.6 A work group and work item for 3D kernel. . . . . . . . . . 74

Figure 3.7 Interfaces for Zalesak’s disk (a) Initial coarse level (b) Inter-
polated initial data (c) after one full rotation for (N = 3, lM = 1) (d)
comparison of N=5 and N=3 solution for lM = 1. . . . . . . . . . . 80

Figure 3.8 (a) Interfaces for N = 3, lM = 0 and N = 5, lM = 3 cases
(b) Zoomed view of the lower right corner for N = 3, lM = 0 - N =
3, lM = 1 and N = 5, lM = 3 cases from inside to outside, respectively. 81

Figure 3.9 Single precision GFLOPs and speedups of volume and surface
kernels vs polynomial order on CPU and GPU using different multi-
threading models. Speedups are computed according to serial CPU
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xix



Figure 3.10 Vortex in a box problem deformed interfaces (a) lM = 0 and
(b) lM = 1 and for N = 5 and at t = T/2 (c) recovered interfaces,
exact solution (solid), lM = 0 (dash-dot) and lM = 1 (dashed) for
N = 3 and at t = T . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.11 Interface and mesh structure of fixed and one level locally
refined grid for N = 5 at t = 0.2 s. Left: Domain part for x < 0.35.
Right: Zoomed view of interface. . . . . . . . . . . . . . . . . . . . 86

Figure 3.12 3D deformation test case interfaces at t = 0, 0.4, 0.8, 2.2, 2.6, 3.0s
for two level local adaptivity on h = 1/5 initial grid and N = 3. . . 87

Figure 3.13 Single precision GFLOPs and speedups of volume and surface
kernels vs polynomial order on CPU and GPU using different multi-
threading models. Speedups are computed according to serial CPU
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.14 Percentage of time spent for the main parts of the solver at
different orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.1 Relation of the modal coefficients for 2D and corresponding
1D polynomial expansions, N = 3 . . . . . . . . . . . . . . . . . . . 98

Figure 4.2 Modal portrait and approximated modal decay profile for com-
puted 1D expansion on an element having kink. . . . . . . . . . . . 99

Figure 4.3 Multi-rate groups for the circular interface problem. Grey
elements form the fast group, Gf and other elements form the slow
group, Gs. Dark elements show the slow-fast buffer. . . . . . . . . . 104

Figure 4.4 Accuracy of the scheme at constructing signed distance func-
tion for smooth circle test. . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 4.5 Speed of local L1 error decay for different regulated signum
terms at grid h and N = 3. . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 4.6 Reinitialization of level set function for circle test for grid h/2
and N = 5. Drawn are contour levels from −0.9 to 0.9 with step size
0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 4.7 Reinitialization of LS function for ellipse at grid h/2 and N =
5. Drawn are contour levels from −0.45 to 0.45 with step size 0.05.
Only part of the domain is shown. . . . . . . . . . . . . . . . . . . . 115

Figure 4.8 Marked elements and LS contours of the ellipse test case at
the final time of 1.0s for different refinement levels, grid h and N = 3.
In second column, only part of the domain is shown. . . . . . . . . . 116

Figure 4.9 Marked elements and LS contours at different refinement levels
for intersecting circle test, h = 0.2 and N = 3. Contours levels are
drawn from −0.9 to 1.0 with step size 0.1. In third row, only part of
the domain is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xx



Figure 4.10 Marked elements and LS contours at different refinement levels
for square test, h = 0.4 and N = 3. Contours levels are drawn from
−0.9 to 1.0 with step size 0.1. In second column, only part of the
domain is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 4.11 Single precision GFLOPs and speedups of 2D volume and sur-
face kernels vs polynomial order on CPU and GPU using different
multi-threading models. . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 4.12 Reinitialization of level set function for spherical interface test.
Drawn are contour levels from −0.8 to 2.4 with step size of 0.4. (
h = 0.4, lM = 1, N = 3 ) . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 4.13 Single precision GFLOPs and speedups of 3D volume and sur-
face kernels vs polynomial order on CPU and GPU using different
multi-threading models. . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 5.1 Sloshing problem for the small amplitude case, (a) Computa-
tional grid and initial interface shape for lM = 4 (b) Zoomed view
near the left wall. (c) Comparison of the computed wave amplitude
with analytical solution [197]. (ρl/ρg = 100, µl/µg = 100, Re = 100,
Fr = 1, N = 3, a0 = 0.01 ) . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 5.2 Standing wave problem lM = 3 locally adapted grid and the
interface at different simulation times. (ρl/ρg = 100, µl/µg = 100,
Re = 100, Fr = 1, N = 5, a0 = 0.2 ) . . . . . . . . . . . . . . . . . . 147

Figure 5.3 Comparison of the present numerical method with different
refinement levels and experimental results from Martin and Moyce
[119]. (Re = 42792, Fr = 1, N = 3) . . . . . . . . . . . . . . . . . . 149

Figure 5.4 Dam break problem interface locations and mesh structures.
(Re = 42792, Fr = 1, N = 3) . . . . . . . . . . . . . . . . . . . . . . 150

Figure 5.5 Tip positions of the rising and dropping fluids for Rayleigh
Taylor instability. (Re = 42792, At = 0.5, N = 3) . . . . . . . . . . 151

Figure 5.6 Interface evolution for the Rayleigh-Taylor instability for lM =
2 adaptive solutions at t = 0, 1.28, 1.71, 2.18, 2.70. (Re = 3000,
At = 0.5, N = 5, Only a part of the domain is shown.) . . . . . . . . 152

Figure 5.7 Interface shapes for the Rayleigh-Taylor instability at (a) fixed
grid (b) lM = 1 and (c) lM = 2 locally adapted grids. (t = 1.63,
Re = 500, At = 0.5, N = 3, Only a part of the domain is shown.) . . 153

Figure 5.8 Problem domain and initial water column for 3D dam break
test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 5.9 Snopshots of interface topolgy for 3D broken dam problem for
N = 3 and h = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxi



Figure 5.10 Comparasion of interface shape with Kleefsman’s VOF solution
[97] and experimental study [168] at t = 0.56 s. . . . . . . . . . . . 156

Figure 5.11 Comparasion of computed pressure histories with experimental
results [168]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 5.12 Double precision GFLOPs of advection step kernels vs poly-
nomial order on Tesla C2075 GPU using CUDA and OpenCL multi-
threading models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 5.13 Double precision GFLOPs of pressure step kernels vs polyno-
mial order on Tesla C2075 GPU using CUDA and OpenCL multi-
threading models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure 5.14 Double precision GFLOPs of velocity step kernels vs polyno-
mial order on Tesla C2075 GPU using CUDA and OpenCL multi-
threading models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xxii



LIST OF ABBREVIATIONS

AB Adams-Bashforth
CPU Central Processing Unit
CFL Courant-Friedrichs-Lewy criterion
DG Discontinuous Galerkin
DGM Discontinuous Galerkin Method
FE Finite Element
FEM Finite Element Method
Fr Froude Number
GPU Graphical Processing Unit
HJ Hamilton-Jacobi
INS Incompressible Navier-Stokes
LS Level Set
LSF Level Set Function
LSM Level Set Method
MRAB Multi-rate Adams-Bashforth
MRRK Multi-rate Runge-Kutta
Re Reynolds Number
RK Runge-Kutta
SSP Strong Stability Preserving
2D Two Spatial Dimension
3D Three Spatial Dimension

xxiii



xxiv



CHAPTER 1

INTRODUCTION

In the first part of this chapter, literature survey is presented to point out the cur-

rent state of art. General approaches including interface capturing and interface

tracking methods for the numerical solution of multiphase flows are presented

in the first section. Second section covers the development of discontinuous

Galerkin methods for first order hyperbolic equations emphasizing the theoret-

ical investigation of convergence and stability properties. Special techniques to

handle the second order operators which play an important role for modeling

Navier-Stokes and Stokes equations are discussed in the next section. In the

second part, motivation of the thesis study is summarized which is followed by

the outline.

1.1 Multi-Phase Flows

Multiphase flow denotes the systems in which more then one phase are simulta-

neously present. In this definition, phases refer to fluids of the same substance

such as a liquid and its vapor or fluids of different substances such as liquid

and gas or fluid and solid, all coexisting in the same domain and at the same

time. It is hard to define multiphase flows precisely but common to all, they

are very complex due to mutual interaction of subsystems. In this thesis work,

we investigate a specific multiphase flow i.e. incompressible and immiscible flow

where the phases are separated with a well definite, sharp interface. These types

of multiphase flows are generally called free surface flows.
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Immiscible multiphase flows occur in many areas of practical importance such

as phase change problems, flow-structure interactions, reacting flows, fluid-fluid

inter-facial dynamics. Numerical prediction of the multiphase flow with sharp

interfaces are challenging due to locating position of the dynamic interface, cap-

turing topological changes, handling discontinuous material properties and vary-

ing range of scales. In multiphase flows, numerical methods can be classified as

Lagrangian (front tracking) and Eulerian (interface capturing) based on the ex-

plicit or implicit representation of the interface. Also, it can be classified as

surface and volume methods according to defining or reconstructing the inter-

face position, respectively. Main properties of these methods are covered in

subsequent sections.

1.1.1 Surface methods

In this class of methods, interface is marked with some special marker points,

mesh itself or values of some continuous functions. The most important ad-

vantage of the method is that the location of interface can be known explicitly

during the computation and interface remains sharp while convected. Fig. 1.1 il-

lustrates the common surface methods used for representing interface dynamics.

The particle based surface methods [51, 86] use massless markers inserted on the

interface as shown in the Fig. 1.1(a). Then, they are convected with a known

velocity field to find their new locations. Interface and its geometric properties

such as normal and curvature are approximated by the interpolation between

subsequent particles generally using the linear polynomials. This approach is

very sensitive to the spacing between markers. If the spacing is too large, inter-

face can not be represented accurately. On the other hand, if it is too small, local

fluctuations increase which destroy the accuracy of the approximation especially

in curvature and surface tension computations. To retain the regularity of the

marker spacing, it is required to add or remove particles dynamically during the

simulation. This situation creates a new problem related with the renumbering

of particles to compute geometric properties. Keeping markers in sequence is
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(a) (b)

(c) (d)

Figure 1.1: Common surface methods (a) Particle method (b) Height function
approach (c) Surface fitted method (d) Level set method

the main drawback of the method because it puts restrictions when the interface

encounters topological changes such as merging or breaking up. Also, extend-

ing the method to 3D problems requires sophisticated bookkeeping strategies to

handle 2D connections on the interface which is practically impossible.

In [129], marker particles approach is extended by relating a point on the inter-

face to a corresponding point on a reference plane. Interface is then represented

by a height function defined from the reference plane. Fig. 1.1(b) illustrates a

schematic description of the method. Each point on the reference plane can only

represent a single value which is the main limitation of the method. In other

words, it is impossible to approximate interface location when the height func-

tion is multivalued that is encountered frequently in the topological changes.

But, the method is very efficient in terms of memory requirements, computa-

tional time and easy to generalize 3D problems of the non-complex interface
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dynamics.

Another class is the surface fitted methods based on the attaching of mesh to

interface [190, 144]. Fig. 1.1(c) shows the basic description of the method. As

seen in the figure, the method provides a sharp interface profile enabling accurate

application of boundary conditions at interface. However, interfaces subjected

to large deformations cause highly distorted elements. In those cases, frequent

mesh optimization or re-meshing procedures are required to obtain regular grids

which lead to considerable computational burden in highly dynamic problems.

Also, interpolation between old and new mesh structures destroys the optimal

accuracy in high-order numerical methods.

Level set method (LSM) [133] is one of the most popular interface capturing

method due its simplicity and efficiency. A continuous function defined on the

whole computational domain is used to separate the phases. This function takes

a constant value on the interface, which is generally zero. Smaller and larger

function values indicate each phase. The scalar LS function is propagated with

the flow velocity field to represent the dynamics of interface. Generally, signed

distance is used as the LS function with zero iso-contour showing the current

location of the interface. Because signed distance function is symmetric and

regular around the interface, discontinuous material properties can be smoothed

using the LS function leading to a continuous problem governing all the fluid

flow. An LS function is illustrated in Fig. 1.1(d) with interface, negative and

positive iso-contours shown with red, blue and black colors respectively. Al-

though interface always remains at zero contour level, initial distance function

loses its property and creates non-uniform gradients in the vicinity of the in-

terface. Then, LS formulation uses reinitialization step to recover the signed

distance function for numerical stability and accuracy [181]. LS interface mod-

eling offers many advantages, such as straightforward extension from 2D to 3D,

simple handling of topological changes and direct calculation of geometric prop-

erties due to implicit representation with continuous functions. The details of

LS formulation will be given in the following chapters.
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1.1.2 Volume Methods

Volume methods mark the fluid domains in both sides of the interface. Unlike

surface methods, interface location is not known explicitly through the solu-

tion time. Because of this drawback, special techniques are required to capture

interface shape and related geometric properties.

In the marker and cell method (MAC) [76, 75] massless particles are distributed

over the one of the fluid domain. Empty elements indicate second fluid domain

and first neighbors of the empty cells with marker particles contain the interface.

Then, each particle is moved with its own velocity in the domain. MAC and

its variants are very powerful in capturing complex interface dynamics and can

be used in 3D problems easily. But, MAC methods require high computational

effort and memory because of tracking of all particles and storing their coordi-

nates in time. A simple illustration of MAC method can be found in Fig. 1.2(a).

(a) (b)

Figure 1.2: Common volume methods (a) marker and cell (b) volume of fluid
element.

The volume of fluid element (VOF) [83] method uses volume of fractions as the

indicator function to distinguish the phases. Volume fraction of zero indicates

presence of one fluid and a value of unity indicates second fluid. Volume fraction

between these two values shows the presence of interface as shown in Fig. 1.2(b).

Method is very efficient in terms of computational time and memory because,

only a scalar volume fraction should be stored and convected to evolve in time.
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Also, VOF method directly enforces the mass conservation, unlike the LSM, in

incompressible flows where volume conservation directly implies mass conser-

vation. Due to its attractive properties, VOF methods are used widely in the

multiphase flow simulations and will be investigated briefly.

Standard discretizations of VOF evolution lead to numerical dissipation and

smearing off interface over the cells. Special discretization techniques are needed

to overcome this problem. These techniques can be classified as donor-acceptor

formulation and reconstruction [189]. The basic idea of the donor-acceptor for-

mulation is to switch between downwinding and upwinding elements in flux

calculation using slope information of the interface to ensure the boundness.

Early VOF method [83] and some improved versions such as CICSAM [189],

fall into this category. Reconstruction based algorithms predict the interface

geometry using the volume fractions of some neighboring elements to evolve

the volume fraction equation. The Simple Line Interface Calculation (SLIC)

[130] is the first VOF reconstruction scheme where the interface is represented

by a piecewise-constant line in each of the two fluid cells either vertically or

horizontally. Then, this scheme is slightly improved by considering the direct

neighbors of the elements called corner element concept in [27]. Youngs [201]

introduced the piecewise linear interface calculation, (PLIC) and achieved a sig-

nificant improvement. Interface representation is further improved by using flux

line-segment model [5], least squares fit (LVIRA) [145], and parabolic (PROST)

[152] reconstruction techniques. Fig. 1.3 shows schematic description of the dif-

ferent interface reconstruction algorithms. Detailed comparison of popular VOF

advection and reconstruction techniques can be found in [69] and more recently

in [2].

LS and VOF are the common methods used in multiphase flow simulations.

Both methods have strengths and weaknesses. VOF methods are strictly mass

conserving, can deal with topological changes but reconstruction of interface is

complex and generalization to high order numerical methods and unstructured

meshes are difficult. Because of that, VOF methods are second order accurate

at most. On the other hand, LS method has great capability of geometric rep-

resentation of interface and discontinuous properties. But, LS equation does
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(a) Exact interface (b) x-sweep [130] (c) y-sweep [130]

(d) x-sweep [27] (e) y-sweep [27] (f) PLIC [201]

(g) FLAIR [5] (h) LVIRA [145] (i) PROST [152]

Figure 1.3: Some VOF interface reconstructions techniques.

not enforce the fluid discrete mass conservation principle even in the conserva-

tive formulations. Special care should be considered for the mass conservative,

efficient solutions of the LS equations.

1.2 Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods are a class of finite element methods that

make use of completely discontinuous, piecewise polynomial approximations for

spatial discretization and have excellent numerical dissipation properties which
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is essential for obtaining mass conservative interface models. Due to relaxed

strong elemental connectivity, DG methods are very flexible and well suited

for local mesh and polynomial order based adaptations. In this section, basic

properties of the DG method will be given, and advantages / disadvantages of

the method compared with the well known classical methods will be pointed

out. Then, a brief literature survey of the DG methods will be provided.

1.2.1 Overview of Basic Numerical Methods

All numerical methods differ in the sense of representation of approximate so-

lution and satisfying the underlying partial differential equation. For example,

in the oldest, finite difference method (FDM) spatial derivatives are approxi-

mated by simple difference equations and residual of the system is expected to

vanish at each nodal point. This gives simple finite difference equations in the

size of total nodal unknowns. The main advantages of the method are its sim-

plicity, efficiency, robustness and potential to obtain high-order approximation.

But, simple one dimensional approximation structure comes with the price that

method is not suitable for complex geometries and discontinuous properties.

To obtain geometric flexibility, natural approach is to introduce element based

discretization leading to well known finite volume method (FVM). In its sim-

plest form, elemental unknowns are approximated with piecewise constant space

and underlying PDE is satisfied such that cell average of residual vanishes at the

center of element. Because, cell centered unknowns approximated by local piece-

wise constant space, global problem or communication of elements is obtained

by fluxes which require reconstruction of boundary information from cell aver-

aged values. FVM is easy to implement, robust and leads to pure local scheme

but increasing the order requires to increase stencil size to reconstruct solution

at element boundaries from cell center values, which is practically impossible.

A solution to obtain high-order approximation is to add more degrees of freedom

to element. Finite element method (FEM) basically uses the global and sym-

metric polynomial space to approximate the unknowns. Residual is expected to

be orthogonal with respect to all members of polynomial space. Because approx-
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imation space is globally defined, boundary degrees of freedoms are shared by

neighbors leading to a global problem. This implicit structure is the basic dis-

advantage of the method over FVM and FDM methods for the problems with

explicit time dependency. Also, symmetry of the approximating polynomials

may cause stability issues in highly wave dominated problems without consid-

ering special techniques. Note that directionality of the problem can be easily

handled in FDM and FVM by using upwinding.

DG method can be considered as the intelligent combination of classical FEM

and FVM where local high-order accuracy is achieved by using higher order ap-

proximation space. But, in this case, polynomial space is locally defined only

on the element. Global problem is obtained weakly by utilizing numerical fluxes

between elements as in FVM. As a result, DG method combines powerful prop-

erties of FEM and FVM. At the first glance, increase in the total degree of

freedom, where boundary degrees of freedoms are doubled due to relaxed strong

element connectivity, may be considered as a big disadvantage. However, these

arguments are largely misleading. First, ratio of boundary degree of freedom

to volume degree of freedom becomes smaller with increasing approximation

order and it is well known that using higher approximation space scale more

effectively then spatial refinement. Also, DG methods are well-suited for mod-

ern supercomputer architectures due to its locality and computational intensity

(over memory access) offering more scalable solutions than any other numer-

ical method. In Table 1.1, generic properties of common numerical methods

are given. Note that, the table includes basic properties of methods and many

special techniques are introduced in each context. For more information, please

refer to [82].

Table 1.1: Generic properties of common numerical methods. + and x indicate
succes and failure respectively, while (+) symbol indicates that method requires
modications to be capable for solving the problem [82].

FDM FVM FEM DG
Complex geometries x + + +
High-order accuracy + x + +

Explicit semi-discrete form + + x +
Wave dominated problems + + (+) +

Elliptic problems + (+) + (+)
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1.2.2 Development of Discontinuous Galerkin Methods

Discontinuous Galerkin Method is first introduced by [151] for the steady state

neutron transport equation. First analysis of the method for linear problems

with smooth solution is presented by [105], and showed that O(hN) convergence

on triangular grids, O(hN+1) optimal convergence on Cartesian grids for the

polynomial approximation of order N . Later this result is improved in [89] to

O(hN+1/2) for general grids. The scalar hyperbolic equations with non-smooth

solutions (discontinuous initial data) are studied in [110, 33]. For linear prob-

lems, to enhance accuracy to O(h2N+1), post processing techniques are proposed

over uniform meshes [41, 155] and non-uniform meshes [50]. A general discussion

for the discretization of hyperbolic systems is given in [16, 58] and techniques

for determination of numerical fluxes to minimize the dissipation are presented

in [18, 29].

The method was first used to non-linear scalar conservation laws in [24] by us-

ing linear element for space discretization and Forward-Euler method for time

discretization resulting unstable solution except for very limiting time step size

[82]. This problem was resolved in [23] by introducing slope limiters and ob-

tained stable solution but with low order approximations for both space and

time. Order of approximation is increased in [43] by combining the previously

developed Runge-Kutta method [164] with enhanced slope limiters [163]. Then,

this Runge Kutta Discontinuous Galerkin (RKDG) method is extended to higher

accuracy by introducing generalized slope limiter and non-linearly stable Runge-

Kutta method in [28] and for one dimensional systems in [40]. Extension of the

method to multi-dimensional cases are complex because of the multi-dimensional

slope limiting which is first completed for the scalar problems in [35] and then

non-linear conservation laws by introducing the slope limiters based on the local

maximum principle in [44]. The RKDG uses the ideas from high order finite

volume schemes such as exact or approximate Riemann solvers, Total Variable

Diminishing (TVD) Runge-Kutta time discretization and limiters. In [146] fifth

order Weighted Essentially Non-Oscillatory (WENO) schemes (which is devel-

oped for the finite difference type methods) based on the Hermite polynomials,
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termed HWENO is applied to RKDG method as a limiter. This method is also

applied to the two dimensional non-linear hyperbolic problems in [148]. A com-

parison of troubled cell (cell where limiting may be needed) indicator methods is

given in [147]. WENO scheme is also used for the RKDG method in [149]. But

all of the applications of WENO and HWENO schemes to RKDG are limited to

simple grids only. An extension to 2D and 3D unstructured grids is presented

in [114]. Recently in [206], WENO scheme is applied to Runge-Kutta Local

Discontinuous Galerkin Method (RK-LDG) over unstructured meshes.

The DGM is originally developed for hyperbolic system of equation. Extension

of method to problems with second order operators was initiated in [10] by using

a Riemann solver for fluxes and mixed formulation (by rewriting second order

operators into system of first order equations). The method is often termed

as Bassi-Rebay flux ( BR flux or central flux). This approach is revised in

[45] and lead to introduction of Local Discontinuous Galerkin (LDG) method.

At the same time, an alternative formulation is presented in [6, 11] which is

known as Interior Penalty (IP) methods having been developed much earlier.

An overview of methods, their differences and properties is given in [4]. In [203]

a detailed comparison of these three methods is presented and close results are

obtained for LDG and IP method by suitable selection of penalty parameter

and lower accuracy in BR method. The methods further developed in terms

of correct choice of penalty terms, stabilization methods and error analysis in

[20, 68, 160, 15]. A new technique is presented in [139] which is termed as

Compact Discontinuous Galerkin (CDG) method which is closely related to the

LDG but increases the compactness in multi-dimensional cases. Recently for

the elliptic problems, hybridized LDG (LDG-H) and super-convergent version

of this method is presented in [31] and [30, 34], respectively.

1.2.3 Incompressible Navier-Stokes and Stokes Equations

These developments have opened up a new range of applications, specially com-

pressible and incompressible fluid flows. The DG solution of incompressible

Navier-Stokes (INS) equation is first suggested by [111]. They used vorticity
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stream-function formulation for 2D incompressible flows and while momentum

equation is treated explicitly utilizing the DG method the stream function is

solved by continuous finite elements. There is a natural balance between con-

tinuous and discontinuous frameworks in 2D because normal components of

velocity field is continuous through element boundaries but in 3D normal ve-

locity is no longer continuous at element boundaries and the method cannot be

used. The suggested methodology utilizes a second order Godunov type fluxes

for convective terms and central flux (or BR flux) [10] for viscous terms. Later,

Cockburn and coworkers proposed and analysed LDG method for Stokes [39],

Oseen [37] equations and published a review of these works [38]. Then, they fur-

ther developed these methods for stationary incompressible Navier-Stokes equa-

tions and suggested two strategies in [36]. In the first one, the main difficulty

in enforcing incompressibility is overcame by discretization of Oseen equation

where convective velocity is taken to be projection of approximated velocity into

space of globally divergence-free functions and through an iterative procedure

locally conservative velocity field is achieved. In the second one, the pressure

is replaced with the Bernoulli pressure and locally conservativeness is attained.

Main drawback of the first method proposed in [36] is locally conservativeness

is achieved by an iterative procedure and second one is unphysical solution at

outflow boundary conditions as stated in the context of continuous Galerkin

approximation.

In [161] a DG method is presented for unsteady INS equations. The proposed

method is based on semi-implicit temporal discretization with explicit treatment

of convective terms and implicit treatment of viscous terms. For the discretiza-

tion of viscous terms they used IP formulation and applied both PN − PN and

PN − PN−1 formulations for approximation of velocity and pressure. Nonlinear

terms discretized in divergence form (yields local conservativeness immediately)

and they used the local Lax-Friedrichs flux to obtain stable results. In [9] invis-

cid numerical fluxes in continuity and momentum equations are computed by

the exact Riemann problem associated with the local artificial compressibility.

Although artificial compressibility has been extensively used in finite volume

and finite element approximation of INS equations, in this work artificial com-
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pressibility is deployed only for the construction of interface fluxes leading the

scheme independent from the amount of artificial compressibility added because

interface flux reduces physical one for vanishing interface jumps. In this work

viscous fluxes are computed by BR [10] method and time integration is estab-

lished in a fully implicit method. In [60] a DG finite element solver is proposed

for 2D incompressible Navier-Stokes equations. They have used second order

stiffly stable method [93] to discretize the equation in time leading a non-linear

convection equation, a Poisson equation for pressure and Helmholtz equation

for viscous terms and for spatial discretization, Lesaint-Raviart fluxes for con-

vective terms and Symmetric Interior Penalty (SIP) method [153] for elliptic

equations. In their solver, a modal expansion hierarchical basis functions are

used to approximate the solution.

The attractiveness of DG method is mainly due to its stability properties in con-

vection dominated problems, its efficiency in high-order approximations which

allowing hp adaptive refinement, its local conservativeness leading superior prop-

erties for parallelization. But computational cost of the DG method is higher

than the continuous finite element and finite volume methods due to doubled de-

gree of freedoms at element boundaries resulting from the relaxed inter-element

continuity condition. To decrease the degrees of freedom in both velocity and

pressure, different DG formulations are proposed in the literature. In [7] and

[90], a DG formulation is proposed with a piecewise polynomial divergence-

free velocity with optimal error bounds. This formulation uses the continuous

pressure approximation and only Drichlet boundary conditions are applied be-

cause it is not easy to handle Neumann boundary condition in this formulation.

Toselli [185] proposed a DG method for the Stokes equation with piecewise

polynomial approximations without imposing the divergence free condition and

obtained better stability properties than the continuous Galerkin approxima-

tions and uniform divergence stability is proven when velocity is approximated

one or two degrees higher than pressure. Cockburn and co-workers [19] pro-

posed a solenoidal piecewise polynomial approximation for the DG formulation

of Stokes equation. The method is derived from LDG rationale on mixed for-

mulation with velocity, vorticity and pressure. They used the concept of hybrid
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pressure which is the pressure along the element sides and pressure inside the

element is computed as a post-process of the LDG solution. In [124] a new DG

formulation is developed with solenoidal polynomial velocity and hybrid pres-

sure, in fact this method is very similar to method in [19] but derived from

IP method rather than LDG and produce similar symmetric and coercive bi-

linear form for velocity. Montlaur et.al. [125] then extended this procedure for

incompressible Navier-Stokes equations and developed the methodology in the

framework of IP and CDG methods obtained compact formulations compared

with the LDG method. Recently Nguyen et al. [128] suggested a HDG method

for the incompressible Navier-Stokes equations by extending their methodology

for Stokes system [32, 127, 42]. They showed that methodology have many ad-

vantages over the other DG methods in terms of reducing the globally-coupled

degrees of freedom, in the convergence and accuracy properties of approximation

and ability to handle wide range boundary conditions.

1.3 High Performance Computing

The history of super computers started when many single-core vector machines

were connected to each other. These machine networks were coordinated from

a single node by some special software. Starting from early 2000s, multi-core

processors started to use as accelerators for super computers. After less than

a decade of cell accelerators’ development, graphics processors units currently

dominated the co-processor cell architectures, except the Intel Xeon Phi pro-

cessors. Although, these co-processors are not widely utilized on the Top500

Supercomputer list [184], the machines at the top of the list are equipped with

them.

In this section, multi-core central processing units (CPU), graphics processing

units (GPU) architectures, both are general-purpose parallel architectures, and

programing approaches for these architectures will be briefly reviewed. In addi-

tion to this, an overview of OCCA which is a unified approach for heterogeneous

computing will be given
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1.3.1 Central Processing Units

Floating point units (FPU’s) were used as co-processors to central processing

units in order to make floating precision works until they became integrated

with the CPU’s. For many years, Moore’s law accurately predicted that the

number of transistors in a dense integrated circuit double every two years. In

parallel with Moore’s Law, peak floating points operations (FLOPS) increased

exponentially for many years. Currents and voltages were scaled proportionally

to transistor sizes also known as Dennard scaling to control power utilization

and maintain the transistor density rate suggested by Moore’s Law once power

limitations became obvious [150]. After 2000’s, performance scaling was slowed

down and further architectural improvements were required to continue scaling.

Inspired from Beowulf clusters (small networks with a few computers), multi-core

central processing units where each core containing an independent instruction

scheduler were born. In years, processors with 2 to 16 cores became the industry

standard. Increase in number of cores resulted that single instruction multiple

data (SIMD) cores became common on general-purpose and performance based

processing units. Although the idea of using the same instruction over and over

on multiple data was already used since the CRAY-1 in 1976 [154] current SIMD

vectorization units not only allow reuse of instructions but also decrease overall

fetching latency.

Over the years, latency and bandwidth improved at different rates. Nowadays

it came to a point that memory bandwidth is main bottleneck for most of the

problems because of high rates of the processor clock speed development for

many years. In order to cover the memory bandwidth problem, multilevel caches

were introduced to predict and pre-fetch data directly for processors to avoid

excessive data transfers between the RAM and processor.

Co-processors dedicated to specific computational tasks were built up, besides

the advances in CPU architecture. For co-processors , frequent usages presently

are graphics-processing and embarrassingly – parallel computations, whereas it

is the central processor for all around computations. Famous co-processors have
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graphics processing units (GPUs), field programmable gate arrays (FGPAs),

Intel’s Xeon Phi, and IBM’s Cell architecture. On the other hand, architectures

designed for performance with low-power rates are also presented like massively

parallel processor arrays (MPPAs).

1.3.2 Graphical Processing Units

The main reason behind the fast development of graphics cards were demand for

better graphics in video games. Graphics cards architectures were designed for

linear algebra operations in order to do 3D rendering. They firstly utilized for

assisting to general purpose CPU’s in graphics related tasks then became a core

component. Use of identical instructions on many pixels for graphics rendering

practically proves that GPU’s has an embarrassingly parallel architecture. Pro-

gramming graphics cards are composed of a fixed pipeline, splitting work into

various stages for updating vertices and managing single fragments. The Brook

language was constructed [17] in order to cut down the complexity of the fixed

pipeline usage for general purpose computations as a result of the potential of

graphics card for that purpose. After Brook proposed that the graphics cards

could be used for general purpose computing in 2007, NVIDIA developed CUDA

for using their graphics cards in general purpose GPU’s (GPGPUs). However

usage of CUDA is restricted to boost hardware by NVIDIA’s developers [61].

To solve this limitation, the Khronos group introduced OpenCL standard for het-

erogeneous programming including CPUs, CPUs and Intel’s Xeon Phi. Then,

Intel and AMD released their OpenCL in 2008. Currently, CUDA and OpenCL

languages, or some applications utilizing these languages, are used for program-

ming modern multi-threaded architectures.

1.3.3 OCCA

OCCA [120] is an abstracted programming model used to encapsulate native lan-

guages for many-core devices developed by D. Medina and T. Warburton from

Rice University. OCCA creates an intermediate representation (IR) to inte-
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Figure 1.4: Modern CPU and GPU architectures.

grate different languages and standards such as serial code, Pthreads, OpenMP,

CUDA, OpenCL, and COI. Using this programming approach therefore allows

customized implementations of algorithms for several computing devices with a

single code and offers flexibility to choose hardware architectures and program-

ming model at run-time.

Fig. 1.5 represents the relation of OCCA application programming interface

(OCCA API), kernel languages and intermediate representation (IR) with sup-

ported platforms and hardwares. As seen from the figure OCCA supports

many programming languages, (frontends) such as C, C++, Phyton, etc. and

all many-core architectures (backends) through standard CUDA, OpenCL and

OCCA OKL (C type) and OFL (Fortran) kernel languages.

1.4 Motivation and Contributions

Discontinuous finite element methods have many distinct properties such as lo-

cal conservativeness, stability, high-order accuracy and also handling of complex

geometries, irregular meshes with hanging nodes and different order of approx-

imations in different elements. These properties render the methods ideal to

be used with adaptive strategies and parallelization. LS method has great ca-

pability of geometric representation of interface and discontinuous properties,

but does not enforce discrete mass conservation principle. Although, many hy-

brid methods are proposed to improve this drawback, they cause the level set
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Figure 1.5: Structure of OCCA API with relationship between supported fron-
tends and backends [120].

formulation to lose its simplicity and efficiency.

The aim of this research is to develop a robust, accurate and flexible numerical

method combining the local high order approximation with an enhanced mass

conserved level set method to predict the complex flow phenomena between two

immiscible fluids separated by well-defined interface on unstructured triangu-

lar/tetrahedral elements. To meet these requirements, research comprises the

followings,

• A high order discontinuous Galerkin level set method is developed on un-

structured grids. The formulation preserves the simplicity of the original

level set method while mass conservation properties are significantly im-

proved. It is shown that mass loss problem of the method is not related

with the formulation but with the discretization scheme used.

• To avoid the time step restriction resulting from explicit treatment of level

set equations, a multi-rate Adams-Bashforth local time stepping technique
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is proposed. Combining the local adaptive unstructured grid with hanging

nodes, computational load is significantly reduced and optimal speedups

are obtained.

• A numerical scheme for the high-order reinitialization of level set function

is proposed in discontinuous framework. Stabilization of this high-order

scheme is accomplished with artificial diffusion mechanism. Marking trou-

bled elements rely on the modal decay rate based regularity detector which

is modified from the 1D methodology proposed by [98]. Severe time step

restriction due to artificial diffusion and high order mesh dependent pa-

rameters are avoided with the developed local time stepper. The proposed

approach enables to achieve optimum convergence rates on both confor-

mal and non-conformal discretizations and is suitable for parallelization

on many-core and multi-threaded architectures.

• A fully discontinuous Galerkin multiphase flow model is presented. Com-

bining with the efficient adaptive strategies, multiphase model handles high

density/viscosity ratios, topological changes and mass loss problem. To

increase the memory efficiency and decrease computational effort, matrix-

free solution technique is used with a novel matrix-free p-multigrid pre-

conditioner for dynamic implicit systems.

• All numerical schemes mentioned above are designed for the full paral-

lelization. To the best knowledge of the author, this is the first fully dis-

continuous scheme developed for modern multi-threading and many-core

processing units. The numerical method is implemented in a platform

independent approach where low level parallelization is achieved by run-

time code generation. High scaling is obtained in all graphic and central

processing units.

1.5 Outline of Thesis

The remainder of the thesis study is structured as follows,

Chapter 2. Implementation details of discontinuous Galerkin method is in-
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troduced. Starting from the node distribution and discontinuous approxima-

tion spaces, local operators are defined for triangular and tetrahedral elements.

Then, source of aliasing errors and cubature integration are explained. Chap-

ter is closed with efficient flux calculation on conformal and non-conformal face

pairs.

Chapter 3. A discontinuous Galerkin level set method is introduced in this

chapter. A multi-rate Adams-Bashforth time stepping is designed to overcome

time step restriction introduced by the local mesh adaptivity. Efficient paral-

lelization of the method is also given.

Chapter 4. This chapter is devoted to the high order reinitialization of the

level set function. Artificial diffusion stabilization and troubled cell indicator

are introduced. Then, efficient solution of the system utilizing the explicit local

time stepping and massive parallelization is given.

Chapter 5. Multiphase flow solver on adaptive unstructured grids are pre-

sented. Matrix-free solution procedure and p-multigrid preconditioner are also

explained. Then, modified reinitialization scheme for local level set formula-

tion is presented. GPU-CPU hybrid parallelization and scaling of the numerical

method developed is presented in this chapter. Also, accuracy and efficiency of

the new method is tested for several distinct problems.
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CHAPTER 2

BUILDING NODAL DISCONTINUOUS GALERKIN

SCHEME

In this chapter, some well-known facts regarding the polynomial interpolation

in a d-dimensional simplex, i.e. triangular and tetrahedral elements, are in-

vestigated. Optimal nodal points and orthogonal polynomials are discussed in

the first section. Following this section, geometric and polynomial notations

required for the rest of the thesis are included. Then, discontinuous Galerkin

local operators are derived for efficient implementation on parallel architectures.

2.1 Interpolation Concepts

High quality interpolation of functions plays an essential role in the success

of continuous/discontinuous spectral element methods. A good interpolation

basically needs suitable orthogonal basis functions and appropriate interpolation

points. On quadrilateral/hexahedral elements, spectral element methods employ

a nodal approach based on the Legendre polynomials and tensor product of

one dimensional Gauss-Lobatto-Legendre (GLL) points. Such a straightforward

approach is no longer possible for non-tensorial triangular/tetrahedral domains

[137].
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2.1.1 Nodal Distribution

The first factor in the quality of high order polynomial approximation is the

location of interpolation points. Interpolation using uniformly distributed points

yield poor approximation quality as the polynomial degree increases even for the

smooth analytical functions. This problem is solved for tensor product domains

by recurring Gauss-Lobatto points, but for non-tonsorial domains it is still an

open question.

2.1.1.1 Triangular Nodal Distribution

For triangular elements, a widely used approach is proposed in [92] based on the

idea of changing coordinate system to transform quadrangle and its quadrature

points into triangle. Main drawback of collapsed coordinate transformation ap-

proach is that interpolation points are not symmetrically distributed over the

triangle and condensed around one vertex of the standard triangle. An early

nodal set referred as Fekete points, which maximize the Vandermonde matrix

is presented in [13] up to polynomial order of 7. Fekete points are one pos-

sible generalization of GLL points for triangle because it is known that GLL

points are the Fekete points for any d dimensional cube [14]. This approach

is further improved and extended to 13th order in [25] and 18th order in [183].

The same method is enhanced in [77] by using more sophisticated optimization

techniques with revised algorithm to find nodal sets starting from Fekete points

with minimization of Lebesgue constant. Definitions of Vandermonde matrix

and Lebesgue constant will be presented in the following sections.

A different physically motivated approach based on the early observation in [170]

is presented in [81] relying on the fact that equilibrium configuration of electric

charges constrained to lie on the bi-unit interval coincides with the location of

some Jacobi polynomials. This implies that GLL quadrature points coincide

with the equilibrium position of electric charges. Hesthaven [81] extended this

analogy to compute nodal distribution in a triangle by looking for the equilib-

rium position of charges distributed in a triangle by fixing line charges on the
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boundary.

All the methods discussed so for result from optimizing interpolation quality

of the nodes by varying their coordinates. On the contrary, [12] introduced an

explicit, simple and easy to implement, purely geometric methodology where

edge nodes constructed by the zeros of Lobatto polynomials and interior nodes

were generated by barycentric coordinate lines inside the triangle and averaging

the coordinates of vertices of some particular internal triangles. An alterna-

tive to this approach is presented in [65] by generalizing the recursive explicit

formula to arbitrarily shaped domains. In [195], a simple explicit node con-

struction method for arbitrary order approximations is introduced based on the

philosophy of replacing the task of creating of a nodal distribution with closely

related task of building a coordinate-warping transform for the triangle which is

a familiar problem encountered in the curvilinear finite elements. Fig. 2.1 shows

the different nodal distributions for the approximation order of 5.

 

 

Equispaced
Fekete
Warp & Blend
Electrostatic
Lobatto

Figure 2.1: Different node distributions for triangular expansion of order 5.

The dimension of N order polynomial space, PN for an triangle,

dimPN = Np =

(
N + 2

2

)
=

(N + 1)(N + 2)

2
(2.1)

which is the minimum dimension of the polynomial space to be complete. Np

is the number of elements in N -order Pascal triangle generally referred as the

triangular truncation. There are N + 1 nodes in each face, N − 1 interior face

nodes and 3 vertex nodes shared with neighbor faces leading totally to 3N face

23



nodes. Each face node coincides with the 1D GLL points which ensures the

conformity of the global nodal distribution. Fig. 2.2 illustrates Warp & Blend

[195] nodes for varying order of approximation on an equilateral triangle.

(a) N = 3 (b) N = 5

(c) N = 8 (d) N = 10

Figure 2.2: Warp & Blend nodes [195] on the equilateral triangle for different
appropriation orders.

2.1.1.2 Tetrahedral Nodal Distribution

To prevent the oscillations and to increase the interpolation quality, nodes should

be distributed through the tetrahedron such that the magnitude of the ith inter-

polation function reaches its maximum value of 1 at the ith node, and takes the

values changing between 0 and 1. In other words, sum of the absolute value of

the interpolation functions is bounded by Np, number of points. The nodes sat-

isfying this requirement are referred as the Fekete points as explained before. It

is important to mention that Fekete points are uniquely defined, because chang-

ing the polynomial basis only multiples the determinant of the Vandermonde
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matrix by a constant. Fekete sets are available for the 1D interval (GLL points),

for the triangle [13], for the rectangle and for the hexahedron (tensor product

of GLL points), but not for the tetrahedron. However, there are optimal nodal

approximation points for tetrahedron.

Chen and Babuska [25] introduced a optimal distribution based on the maxi-

mizing the determinant of the Vandermonde matrix and minimizing L2 norm of

magnitude of approximating functions. They use two main approximations in

the computations i.e. each face has the triangular optimal nodal distributions

and interior nodes hold the geometric symmetry of the tetrahedron. Hesthaven

and Teng [79] extended electrostatic node distribution relying the equilibrium

position of charges distributed [81] to tetrahedral elements. Explicitly computed

Lobatto distribution for triangle [12] is also generalized to the tetrahedral do-

mains in [115]. Warp & Blend nodes of Warburton [195] is explicitly computed

for triangle and tetrahedron in the same study. Also, Gassner et.al. [65] is in-

troduced a simple nodal construction based on the recursively locating nodes

using warping strategy [195] for polymorphic elements on hybrid grids.

For a tetrahedron, required dimension of the N order polynomial space, PN to

be complete is given with

dimPN = Np =

(
N + 3

3

)
=

(N + 1)(N + 2)(N + 3)

6
(2.2)

which can be recovered by Np nodal points. Tetrahedral node distribution has

(N + 1)(N + 2)/2 nodes on each face with 3(N + 1) edge nodes including vertex

nodes. This allows to construct complete N order, unique, one and two dimen-

sional polynomial space in each edge and face, respectively. Also, subtracting

the all face nodes from the total nodes, one gets

Np,I =

(
N − 4

3

)
=

(N − 1)(N − 2)(N − 3)

6
(2.3)

interior nodes for N > 3. Note that, number of interior nodes is equal to number

of nodes in N − 4 polynomial space. For N ≤ 3, there is no volume nodes in

the tetrahedron indicating number of face nodes are sufficient to construct N

order, complete polynomial space. Warp & Blend nodes [195] are shown in the

Fig. 2.3 for equilateral tetrahedron and different approximation orders.

25



(a) N = 3 (b) N = 4

(c) N = 5 (d) N = 8

Figure 2.3: Warp & Blend nodes [195] node distributions for the tetrahedral
expansion.

2.1.2 Local Coordinate Systems

For d-simplexes , Koornwinder reference or standard element is used with barycen-

tric and collapsed coordinate systems to drive local operators, polynomial spaces

and mapping between physical elements.

Because of the rotational symmetry property, barycentric coordinate system has

been extensively used in unstructured domains. Maintaining rotational symme-

try in a triangular element requires one dependent coordinate unlike the quadri-

lateral elements. This makes tensor product construction of expansions very dif-

ficult or impossible. However, barycentric coordinate system is useful in defining

26



rotationally symmetric, non-tensorial expansions [92].

(a) Barycentric Coordinate (b) Koornwinder Triangle

Figure 2.4: Barycentric coordinate frame and Koornwinder reference triangle.

Barycentric coordinate system is illustrated in Fig. 2.4(a) for the standard tri-

angle. Any point, P in the triangle is uniquely defined by three coordinates,

λ1, λ2 and λ3, which are ratio of the areas A1, A2 and A3, to the total area,

A = A1 + A2 + A3 and given by

λ1 =
A1

A
, λ2 =

A2

A
, λ3 =

A3

A
(2.4)

Therefore, barycentric coordinates, λ1, λ2 and λ3 take unit values at vertices

and system satisfies λ1 + λ2 + λ3 = 1.

As previously stated, polynomial space for structural elements may be formed

by a tensor product of one-dimensional expansions based on the Cartesian co-

ordinate system bounded by constant limits. Implicit assumption of the tensor

extensions relies the fact that coordinates in two dimensional region has con-

stant limits. The Koornwinder triangle shown in Fig. 2.4(b) has the following

region,

T 2 = {(r, s)| −1 ≤ (r, s) r + s ≤ 0} (2.5)

To develop a tensorial or generalized tensorial type basis within a triangular

region, we need to develop a coordinate system where the local coordinates have

constant limits. A suitable coordinate system to describe a triangular region
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between constant independent limits is collapsed coordinates or Duffy transform

having the relation,

a =
2(1 + r)

1− s
− 1, b = s (2.6)

With this transformation triangular region is expressed as

T 2 = {(a, b)| −1 ≤ a, b ≤ 1} (2.7)

Definition of the triangular region with this coordinates system is identical to

definition of quadrilateral region so that transformation can be interpreted as a

mapping from quadrilateral region to triangular region. For this reason, coordi-

nate system with (a, b) is referred as the collapsed coordinate system [167]. It is

worthwhile to mention about the singularity of transformation at r = −1, s = 1

but r is bounded at that location similar to natural singularity in cylindrical

and spherical coordinate systems [92]. Mapping of bi-unit rectangle to triangle

and collapsing vertex C and D into single vertex C are shown in Fig. 2.5.

Figure 2.5: Mapping of bi-unit rectangle to triangle.

The same procedure for the triangular domain can be generalized to the tetrahe-

dron. Any point in the tetrahedron can be defined by four, rotational symmetric

coordinates, λ1, λ2,λ3 and λ4 which are the ratios of the areas A1, A2, A3 and

A4 to total area A = A1 +A2 +A3 +A4 as shown in the Fig. 2.6(a). Obviously,

λ1 + λ2 + λ3 + λ4 = 1 holds true.
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Standard tetrahedral element is defined by,

T 3 = {(r, s, t)| −1 ≤ (r, s, t) r + s+ t ≤ −1} (2.8)

and shown in Fig. 2.6(b).

(a) Barycentric Coordinate (b) Reference tetrahedron

Figure 2.6: Barycentric coordinate system and reference element for tetrahedron.

Tetrahedral element does not have constant limits to construct the tensor like

polynomial space. Transformation between a bi-unit hexahedron to tetrahedron

can be accomplished by successive rectangle to triangle transformations similar

to triangle. Fig. 2.7 shows how to obtain a collapsed coordinate transformation

for a tetrahedral element. No that, the same procedure can be used for pyramid

or prismatic elements as shown in the sub-steps.

Collapsed coordinate transformation leads to the following relation,

a =
2(1 + r)

−s− t
− 1, b =

2(1 + s)

1− t
− 1 c = t (2.9)

Tetrahedral region can be expressed with the constant limits as follow,

T 3 = {(a, b, c)| −1 ≤ (a, b, c) ≤ 1} (2.10)

2.1.2.1 Orthogonal Expansions

Constructing polynomial expansions is critical to develop computationally effi-

cient, high-order numerical schemes. Starting point for the multi-dimensional
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Figure 2.7: Collapsed coordinate transformation steps from bi-unit hexahedron
to tetrahedron.

polynomial expansions is to ensure the orthogonality in the Legendre inner prod-

uct norm ( L2 norm) over each elemental domain [92]. Different modal expansion

spaces are introduced for the d simplex using the barycentric coordinate systems

in non-symmetric [87] or symmetric [207] on the reference elements. Using ro-
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tationally invariant barycentric coordinate system can destroy the numerical

efficiency associated with the tensor product polynomials.

In this study, a generalized tensor product orthogonal basis is used in the compu-

tations. These polynomial spaces are introduced by Proriol [143], Koornwinder

[101] and Dubiner [55] named as PKD polynomials. Sherwin [162] also presented

a unified approach for hybrid elements based on the Dubiner’s [55] orthogonal

polynomials.

Using the collapsed coordinate transformation, tensor like (warped or general-

ized tensor product) polynomial space can be presented involving multiplication

of one, two and three dimensional tensors. Unlike the structural elements, higher

dimensional space can be constructed from the same one dimensional polynomi-

als, a triangular expansion uses more general product in the form of

Ψi,j(a, b) = ψi(a)ψi,j(b) (2.11)

where principal functions,ψi, ψi,j are the Jacobi polynomials, Pα,β of order i, j

given with

ψi = P0,0
i (a) ψi,j = P2i+1,0

j (b)(
1− b

2
)i (2.12)

The special case, P0,0
i represents the well known Legendre polynomials and

polynomial, Pα,βi (x) is orthogonal with respect to weight functions, w(x) =

(1 − x)α(1 + x)β which is the direct consequence of being solution of singular

Sturm-Liouville eigenvalue problem [194]. It is convenient to normalize the basis

space which can be achieved by normalizing the each polynomial function,

Ψi,j(r, s) =

P0,0
i (a)√

2
2i+1

P2i+1,0
j (b)(1−b

2
)i√

2
2(i+j)+1

 (2.13)

rearranging the terms leads,

Ψi,j(r, s) = ci,jP0,0
i (a)P2i+1,0

j (b)(
1− b

2
)i (2.14)

where ci,j =
√

(2i+1)(i+j+1)
2

is the normalization parameter. Finally, writing the

equation in the standard coordinate frame instead of collapsed coordinate, we

arrive

Ψi,j =

√
(2i+ 1)(i+ j + 1)

2
P0,0
i (

2r + s+ 1

1− s
)(

1− s
2

)iP2i+1,0
j (s) (2.15)
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Complete polynomial space of maximum order N on the reference element,

PN(T 2) , can be defined using the PKD polynomials, Ψi,j with i, j ≥ 0, i+j ≤ N .

Without any ambiguity, single indexed notation, Ψk is also used for the polyno-

mials such that k is any arbitrary bijection, k = k(i, j).

Figure 2.8: Orthonormal basis functions on standard triangle, T 2 up to N = 5.
Each row corresponds to all basis functions of the same order, i+ j ≤ N .

Fig. 2.8 shows all modal PKD polynomials for N = 5. Each row in the figure

corresponds basis functions of the same order where hierarchical nature of the

expansion space can be seen such that all polynomial functions of N = 1 is

embedded into the N = 2 expansion space and so on.

Using the same approach with triangular expansion, orthonormal basis functions
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of tetrahedron can be obtained. In this case, general tensor product involves

three, one dimensional polynomials of orders i, j, k such that,

Ψi,j,k(r, s, t) = ψi(a)ψi,j(b)ψi,j,k(c) (2.16)

where ψi and ψi,j are defined similar to triangular expansion,

ψi =
P0,0
i (a)√

2
2i+1

, ψi,j =
P2i+1,0
j (b)(1−b

2
)i√

2
2(i+j)+1

(2.17)

while ψi,j,k can be written as,

ψi,j,k =
P2(i+j)+2,0
k (c)(1−c

2
)i+j√

2
2(i+j+k)+3

(2.18)

Generalized orthonormal expansion become,

Ψi,j,k(r, s, t) = cP0,0
i (a)P2i+1,0

j (b)(
1− b

2
)iP2(i+j)+2,0

k (c)(
1− c

2
)i+j (2.19)

where c = c(i, j, k) is the normalization parameter. Complete polynomial space

of order N on the reference tetrahedron, PN(T 3) , is constructed with the PKD

polynomials, Ψi,j,k with i, j, k ≥ 0, i+j+k ≤ N . Similar to triangular elements,

single indexed notation, Ψm is given with arbitrary bijection, m = m(i, j, k).

The required one dimensional Jacobi polynomials can be easily computed with

three-term recursion formula which completes the construction of modal basis

functions on d-simplex.

2.1.3 Nodal Basis Functions and Vandermonde Matrix

Nodal basis functions do not have any closed form definition for general approxi-

mation orders through the arbitrary set of points in a simplex. It is necessary to

express them in terms of another polynomials which have closed form definition.

Modal polynomial space having explicit definition is given in the previous sec-

tion. Construction of nodal Lagrange polynomials having the below Kronecker

delta property will be presented following [196, 80]

Li(rj) = δij, ∀i, j = 1, · · · , Np (2.20)
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where r is the local coordinates with r = (r, s) for triangle, r = (r, s, t) for

tetrahedron and Np is the cardinality of the orthonormal basis space which is

equal to number of nodes in the standard element as discussed in Sec. 2.1.1.

Let first consider the interpolation of a function, f in a simplex with a known

function, Ψ which spans the same space, through Np distinct points,

f(r) =

Np∑
j=1

Ψj(r)cj (2.21)

Where j represents the each mode of Ψ and cj is the corresponding coefficients

associated with the expansion. These modal coefficients exhibit the relative

importance of each mode in the interpolation. Because both functions spans the

same polynomial space, any type of projection will recover the exact expansion

coefficients, cj. To obtain expansion coefficients, collocation projection at the

nodal set, ri will give

f(ri) =

Np∑
j=1

Ψj(ri)cj, ∀i = 1, · · · , Np (2.22)

or in matrix form,

f = V c (2.23)

where V (i, j) = Ψj(ri). If Ψ denotes a monomial basis then V is the Vander-

monde matrix and it is known as generalized Vandermonde matrix for general

basis functions. Under the assumption of existence and uniqueness of the La-

grange interpolation polynomial, Eq. 2.22 can be written as,

Np∑
j=1

f(ri)Lj(ri) =

Np∑
j=1

Ψj(ri)cj (2.24)

which establish the link between modal and nodal basis space,

Li(r) =

Np∑
j=1

V −1
i,j Ψj(r) (2.25)

where Lagrange polynomial, L =
[
L1(r), · · · , LNp(r)

]
can be computed once the

solution of linear system given in Eq. 2.25 is found. Fig. 2.9 shows complete La-

grange basis constructed using the Warp & Blend nodes and PKD polynomials.
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Figure 2.9: Lagrange interpolating polynomials constructed with Warp & Blend
nodes and orthonormal PKD polynomials on T 2 for N = 5.

Difficulty of solving the linear system is related with the conditioning of the

generalized Vandermonde matrix to ensure the interpolation is well-behaved.

Obviously, conditioning of the matrix is only dependent to the orthonormal basis

forming the modal space and collocation points from its definition. To select

the most appropriate combination, interpolation quality of the Vandermonde

matrix should be measured, which is the subject of next section.
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2.1.4 Interpolation Quality

Considering the same problem of interpolating a function f(r) in the standard

elements given in Fig. 2.4 and Fig. 2.6 for triangle and tetrahedron through

a set of points, Θ = {r1, · · · , rNp}. Let assume another function in the same

polynomial space that satisfies,

g(ri) = f(ri), ∀i 1 ≤ i ≤ Np

g(r) = INf(r), g, f ∈ PN
(2.26)

where IN is the interpolation operator. Lebesgue constant, ΛN is a measure

of the quality of IN that shows how well IN approximates f . Let consider

a function f ∗ which spans the same space with f i.e. f ∗, f ∈ PN and best

represents f in usual maximum norm, ‖.‖∞ [25]. f ∗ 6= INf but f ∗ = INf ∗ and
maximum norm can be written as,

‖f − INf‖∞ = ‖f − f ∗ + INf − INf ∗‖∞

≤ ‖f − f ∗‖∞ + ‖IN‖∞‖f − f ∗‖∞

≤ (1 + ‖IN‖∞)‖f − f ∗‖∞

(2.27)

Using the Lagrange polynomials, interpolation of the function become

INf =
∑

1≤i≤Np

f(ri)Li(r) (2.28)

And using Kronecker delta property of Lagrange polynomials

ΛN = ‖IN‖∞ = max
‖f‖∞=1

‖INf‖∞ = max
T 2

Np∑
i=1

|Li(r)| (2.29)

Evaluating the sum of absolute values of Lagrange polynomials through the

standard region gives the Lebesgue function and maximum norm of this func-

tion leads the Lebesgue constant. It is worthwhile to mention that, Lebesgue

function is constructed with cardinal functions so that it is only dependent to the

nodal distribution and independent from the polynomial basis space. Lebesgue

functions on triangular domain are shown in Fig. 2.10 for equispaced and Warp

& Blend nodes. Equispaced nodes introduces large values near the domain

boundaries showing poor interpolation quality due to well-known Runge phe-

nomena. On the other hand, sophisticated nodes are clustered at edges and

36



vertices which prevent the osculations and improve the interpolation quality.

Note that, Lebesgue function takes unit values on nodes due to its definition

which is the indication of exact interpolation.

(a) Equispaced nodes (b) Warp & Blend nodes

Figure 2.10: Lebesgue function over the standard triangle for N = 5.

Table 2.1 represents the comparison of the interpolation properties of different

node distributions. Tabulated Lebesgue constants are computed very accurately

with symbolic operations. As seen from the table, interpolation quality of nodes

are very close the each other at low order approximations. Increasing the or-

der Fekete points become most attractive one, but Warp & Blend nodes [195]

have smaller values at practically applicable orders, N ≤ 10, have closed form

definition and remains a good alternative.

Table 2.1: Comparison of Lebesgue constant for different order of approxima-
tions and node distributions on triangle.

N Uniform Fekete Lobatto Warp&Blend Electrostatic
3 2.2698 2.1125 2.1125 2.1125 2.1125
4 3.47481 2.72928 2.66195 2.66208 2.58801
5 5.45164 3.61081 3.13670 3.12115 3.19559
6 8.7476 4.1711 3.87430 3.7019 4.07490
9 40.9222 6.8016 7.39200 5.7352 6.88370
12 221.2266 9.6775 17.7789 9.3565 12.6325

Conditioning of the Vandermonde matrix plays a very critical role on building
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Figure 2.11: Condtion number of Vandermonde matrix constructed with PKD
polynomials and monomials on Warp & Blend nodes.

the nodal scheme because inverse of this matrix is required to construct Lagrange

polynomials. Furthermore, efficient computation of all volume and surface in-

ner products of discontinuous Galerkin scheme relies on the good conditioning of

Vandermonde matrix. Unlike the Lebesgue function, condition number is depen-

dent to polynomial basis and node distribution so that it is not only related with

node quality but also construction of the orthogonal polynomial basis. To show

the PKD polynomials form a good basis space, let first check conditioning of

Vandermonde matrices constructed also with the simple monomial polynomials,

Ψi,j(r, s) = risj, ∀i, j, i+ j ≤ N (2.30)

Change of condition number of Vandermonde matrices constructed with Warp

& Blend nodes is shown in Fig. 2.11. It is clear that monomial basis polynomials

do not constitute orthogonal basis. Increasing the order, high order space will

be already well presented by the low order space.

Table 2.2 represents the condition number of Vandermonde matrix at varying

orders of approximation and different nodal sets. Warp & Blend nodes have

excellent properties at practical orders of approximations.

The number of node distributions for tetrahedron is smaller than those for the

triangle. In Table 2.3, condition numbers for Vandermonde matrix for the L2
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Table 2.2: Comparison of condition number of Vandermonde matrix constructed
with PKD polynomials for different order of approximations and node distribu-
tions on triangle.

N Uniform Fekete Lobatto Warp&Blend Electrostatic
3 5.8283 5.9028 5.9028 4.07804 5.9028
6 14.6583 9.7990 9.8423 11.4460 9.8294
9 59.9490 18.1216 18.0994 24.8176 18.8432
12 344.977 22.4680 43.3978 36.1323 54.0048
15 21,944.3821 29.4572 130.2558 85.6921 186.5085

nodes of Chen and Babuska [25], electrostatic nodes of Hesthaven and Teng

[79], Lobatto grid of Luo and Pozrikidis [115], Warp & Blend nodes of Warbur-

ton [195] and equispaced node distribution are compared. Similar to Lebesgue

constant, condition numbers for Warp & Blend nodes are competitive with the

other node distributions.

Table 2.3: Comparison of condition number of Vandermonde matrices con-
structed with PKD polynomials for different order of approximations and node
distributions on tetrahedron.

N Uniform L2 Lobatto Warp&Blend Electrostatic
3 10.248 10.516 10.505 10.505 10.505
6 32.997 26.171 26.536 26.310 26.549
9 162.216 89.170 99.379 88.324 98.839
12 1064.722 - 568.921 421.013 -
15 7560.901 - 3847.701 2346.218 -

2.2 Discontinuous Galerkin Operators

In this section, basic notation required to develop DG scheme will be presented

first. Then, global to local mapping, definition of basic inner products will be in-

troduced. Efficient flux function evaluation will be discussed for both conformal

and non-conformal discretizations. Scheme will be developed for the tetrahedron

unless otherwise stated, result can be obtained for the triangular elements by

inspection.
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2.2.1 Notation

We assume that d-dimensional domain, Ω ⊂ Rd is well approximated by the

computational domain, Ωh having boundaries ∂Ωh that can be Dirichlet type,

∂ΩD or Neumann type, ∂ΩN . Ωh is partitioned into non-overlapping, possibly

nonconforming triangular or tetrahedral elements, Ωh =
∑K

k=1 Dk. Two element

domains, D−k and D+
k of the triangulation Ωh has a common face if ∂D−k ∩∂D

+
k 6=

∅, where ∂Dk denotes the element interface as illustrated in Fig. 2.12. Also,

∂Dk =
∑Nf

f=1 ∂D
f
k with Nf is the total number of connections for an element

which is equal to number of faces for conformal discretizations. It is obvious that

superscripts − and + are meaningful only considering the face pairs to specify

the right and left sides. n− = −n+ = (n−1 , ·, n−d ) be the unit outward normal

vector to ∂Dk.

Figure 2.12: Basic geometrical notation used in the rest of the thesis.

φ−k and φ+
k denote the traces of a scalar function, φ when evaluated at ∂D−k and

∂D+
k , respectively. According to this definition average and jump operators for

a scalar can be defined as,

{ϕ} =
ϕ− + ϕ+

2
, JϕK = ϕ− − ϕ+ (2.31)

In the DG method, inter-element continuity constraint is relaxed which enables

the solution discontinuous through the element boundaries. Physical interpreta-

tion of the operators are illustrated in the Fig. 2.13 for a scaler valued function

on 1D sample grid. If φ is a vector-valued function, the above operators act

component wise on the function. On a Dirichlet or Neumann boundaries, nor-

mal vectors points outward to Ωh, and average and jump operators are equal to
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trace of function ϕ if otherwise stated explicitly.

Figure 2.13: Illustration of the average and jump operators.

The discontinuous approximate spaces are defined as,

VN = {v ∈ L2(Ω)|v|Dk
∈ PN(Dk), ∀Dk ∈ Ωh} (2.32)

and its vector version, VdN . PN(Dk) is the space of discontinuous piecewise

polynomial functions of degree N ≥ 1 on each elemental domain, Dk. Lagrange

polynomials are constructed as the basis for this polynomial space using Warp

& Blend nodes [195] and orthonormal PKD [143, 101, 55] polynomials. Also,

let (·, ·)Dk
represent the inner product computed over the volume of the element

k. Similarly, let (·, ·)∂Dk
denote the inner product taken along the element

boundaries.

2.2.2 Global to Local Mapping

Let consider a physical tetrahedral element abbreviated with D with straight

sided faces and the reference element, T 3 illustrated previously. Physical coor-

dinates are shown with x = (x, y, z) ∈ D and vertices of the element are given

as V1(x)− V4(x) with the faces of F1 − F4 oriented counterclockwise. Faces are

named in a way that F1 has the V1 as the base vertex and correspondingly for

the others. Similarly, vertices and faces are indexed for the T 3 with v1− v4 and

f1 − f4, respectively as shown in the Fig. 2.14.

There exist a global to local map function, Ψ : Dk → T 3. Any coordinate on the

straight sided triangle, x ∈ Dk can be represented by the convex combinations
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Figure 2.14: Mapping between physical straight sided tetrahedron, D and the
standard element, T 3.

of the barycentric coordinates,

x = λ3V1 + λ4V2 + λ2V3 + λ1V4 (2.33)

The same discussion holds for the standard element given with local coordinates

of the vertices,

r = λ3v1 + λ4v2 + λ2v3 + λ1v4 (2.34)

where vertex coordinates of the Koornwinder tetrahedron are given with v1 =

(−1,−1,−1), v2 = (1,−1,−1), v3 = (−1, 1,−1) and v4 = (−1,−1, 1), leading

λ1 =
t+ 1

2
, λ2 = −s+ 1

2
, λ3 = −r + s+ t+ 1

2
, λ4 =

r + 1

2
(2.35)

Combining with the Eq. 2.33, direct mapping, Ψ is obtained as,

x = −r + s+ t+ 1

2
V1 +

r + 1

2
V2 −

s+ 1

2
V3 +

t+ 1

2
V4 (2.36)

Transformation is linear in local coordinates because any two straight-sided

tetrahedrons are connected with an affine mapping. In other words, transfor-

mation has a constant Jacobian. The metric of transformation can be directly

obtained through,

∂x

∂r

∂r

∂x
=


∂x
∂r

∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t



∂r
∂x

∂r
∂y

∂r
∂z

∂s
∂x

∂s
∂y

∂s
∂z

∂t
∂x

∂t
∂y

∂t
∂z

 =


1 0 0

0 1 0

0 0 1

 (2.37)

where ∂x/∂r can be recovered from Eq. 2.36 leading,

∂x

∂r
=
V2 − V1

2
,

∂x

∂s
=
V3 − V1

2
,

∂x

∂t
=
V4 − V1

2
(2.38)
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Then, Jacobian of the transformation, which is the ratio of volumes of the phys-

ical element to the standard element, can be written as,

J = det



∂x
∂r

∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t


 =

∂x

∂r

(
∂y

∂s

∂z

∂t
− ∂z

∂s

∂y

∂t

)
− ∂y

∂r

(
∂x

∂s

∂z

∂t
− ∂z

∂s

∂x

∂t

)

+
∂z

∂r

(
∂x

∂s

∂y

∂t
− ∂y

∂s

∂x

∂t

)
(2.39)

and required metric entities follow directly,

∂r

∂x
=

∂y
∂s

∂z
∂t
− ∂z

∂s
∂y
∂t

J
,

∂r

∂y
= −

∂x
∂s

∂z
∂t
− ∂z

∂s
∂x
∂t

J
,

∂r

∂z
=

∂x
∂s

∂y
∂t
− ∂y

∂s
∂x
∂t

J

∂s

∂x
= −

∂y
∂r

∂z
∂t
− ∂z

∂r
∂y
∂t

J
,

∂s

∂y
=

∂x
∂r

∂z
∂t
− ∂z

∂r
∂x
∂t

J
,

∂s

∂z
= −

∂x
∂r

∂y
∂t
− ∂y

∂r
∂x
∂t

J

∂t

∂x
=

∂y
∂r

∂z
∂s
− ∂z

∂r
∂y
∂s

J
,

∂t

∂y
= −

∂x
∂r

∂z
∂s
− ∂z

∂r
∂x
∂s

J
,

∂t

∂z
=

∂x
∂r

∂y
∂s
− ∂y

∂r
∂x
∂s

J
(2.40)

In the DG scheme, geometric factors related with surfaces of the element i.e.

normals and surface Jacobian are also required to compute flux functions effi-

ciently on the standard element. Normals can be recovered from the properties

of the mapping function, Φ. Observing the Fig. 2.14 reveals that unit outward

normal vectors through the each face hold the following,

n1 = − ∇t
‖∇t‖2

,n2 = − ∇s
‖∇s‖2

,n3 =
∇r +∇s+∇t
‖∇r +∇s+∇t‖2

,n4 = − ∇r
‖∇r‖2

(2.41)

where ‖ · ‖2 denotes the standard L2 norm or Euclidean length of the vec-

tor. Then, collecting each face normal vector for the physical element, n =

(nx, ny, nz) = [n1,n2,n3,n4], following relation will be recovered for the surface

Jacobian,

J∂Dk
= ‖n‖2JDk

(2.42)

which completes the derivation of mapping for tetrahedral element. Generaliza-

tion to triangular element is straight forward and will not be covered here.
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2.2.3 Evaluation of Inner Products

Let consider two scalar functions, f and g which are well approximated by

fh, gh ∈ VN . Local Lagrange representations of the functions will be,

fh(x(r)) =

Np∑
i=1

fh(xi)Li(r), and gh(x(r)) =

Np∑
j=1

gh(xj)Lj(r) (2.43)

Similar to other numerical techniques DG formulation needs to evaluate volume

inner products in the form of,

(fh, gh)Dk
=

∫
Dk

fhghdx =

∫
T 3

fhghJDk
dr (2.44)

For a straight sided tetrahedron, where the Jacobian is constant,

(fh, gh)Dk
= JDk

∫
T 3

Np∑
i=1

Np∑
j=1

fh(xi)Li(r)Lj(r)gh(xj)dr (2.45)

which can be written as,

(fh, gh)Dk
= JDk

(fiMi,jgj) ∀i, j = 1, . . . , Np (2.46)

where nodal function values are fi = fh(xi) and gj = gh(xj). M is the completely

local mass matrix given with

Mi,j =

∫
T 3

LiLjdr ∀i, j = 1, . . . , Np (2.47)

Using the definition of Lagrange polynomials, i.e.

Li(r) =

Np∑
n=1

(V T )−1
i,nΨn(r) ∀i = 1, . . . , Np (2.48)

and inserting into Eq. 2.47,

Mi,j =

∫
T 3

Np∑
n=1

(V T )−1
i,nΨn(r)

Np∑
m=1

(V T )−1
j,mΨm(r)dr

=

Np∑
n=1

Np∑
m=1

(V T )−1
i,n(V T )−1

j,m

∫
T 3

Ψn(r)Ψm(r)dr

(2.49)

Orthogonality of the basis space results with the identity matrix,∫
T 3

Ψn(r)Ψm(r)dr = δn,m (2.50)
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and combining with the previous equation,

Mi,j =

Np∑
n=1

Np∑
m=1

(V T )−1
i,nδn,m(V T )−1

j,m (2.51)

In matrix notation, expression takes the following final form,

M = (V T )−1V −1 =
(
V V T

)−1 (2.52)

This mass matrix is locally defined on the reference element and small in the

size of Np×Np. Elemental inner products can be computed efficiently using the

local matrix-vector multiplication,

(fh, gh)Dk
= JDk

fThMgh (2.53)

It is very important to mention that the above integration is exact only for the

integrand belonging to P2N(T 3). More precisely if f, g ∈ PN and Jacobian is

constant, which is encountered in the Galerkin type discretization of the linear

problems, integration approach according to Eq. 2.53 is exact . For the quadratic

and cubic nonlinearities as in incompressible and compressible Navier-Stokes

equations, integrands are belonging to P3N and P4N , respectively. In these

circumstances, integrations will be sub-optimal leading polynomial aliasing and

more accurate cubature integration is required for accuracy and/or stability of

the numerical scheme. More sophisticated integration rules will be covered in

the Sec. 2.2.5.

Stiffness matrices can be computed in a similar procedure. Using the same scalar

function f, g ∈ PN ,

(∇fh,∇gh)Dk
=

∫
Dk

∇fh · ∇ghdx =

∫
Dk

(
∂fh
∂x

∂gh
∂x

+
∂fh
∂y

∂gh
∂y

+
∂fh
∂z

∂gh
∂z

)
dx

=

Np∑
i=1

Np∑
j=1

figj

∫
Dk

(
∂Li
∂x

∂Lj
∂x

+
∂Li
∂y

∂Lj
∂y

+
∂Li
∂z

∂Lj
∂z

)
dx

(2.54)

Derivatives in physical space can be written in the local coordinate frame,

Dx =
∂L

∂x
=
∂r

∂x

∂L

∂r
+
∂s

∂x

∂L

∂s
+
∂t

∂x

∂L

∂t
=
∂r

∂x
Dr +

∂s

∂x
Ds +

∂t

∂x
Dt

Dy =
∂L

∂y
=
∂r

∂y

∂L

∂r
+
∂s

∂y

∂L

∂s
+
∂t

∂y

∂L

∂t
=
∂r

∂y
Dr +

∂s

∂y
Ds +

∂t

∂y
Dt

Dz =
∂L

∂z
=
∂r

∂z

∂L

∂r
+
∂s

∂z

∂L

∂s
+
∂t

∂z

∂L

∂t
=
∂r

∂z
Dr +

∂s

∂z
Ds +

∂t

∂z
Dt

(2.55)

45



All geometric factors are computed in the previous section and given in the

Eq. 2.40. Local derivatives, Dr, Ds and Dt defined below are required to close

the relation.

Dr,(i,j) =
∂Lj(ri)

∂r
, Ds,(i,j) =

∂Lj(ri)

∂s
, Dt,(i,j) =

∂Lj(ri)

∂t
(2.56)

The connection of the modal and nodal expansion spaces is established before

through the Vandermonde matrix i.e. V TLi = Ψj and Lj = V −1Ψi. Then, the

following relations follow directly,

Dr,(i,j) =

Np∑
n=1

Vr,(i.n)V
−1
n,j , Ds,(i,j) =

Np∑
n=1

Vs,(i.n)V
−1
n,j , Dt,(i,j) =

Np∑
n=1

Vt,(i.n)V
−1
n,j

(2.57)

where Vr, Vs and Vt are the Vandermonde derivative matrix given with,

Vr,(i.j) =
∂Ψj(r)

∂r

∣∣∣∣
ri

(2.58)

It is more convenient to write the derivatives in matrix form,

Dr = VrV
−1, Ds = VsV

−1, Dt = VtV
−1 (2.59)

The entries of the Vr can be obtained directly from the differentiation of PKD

polynomials in collapsed coordinate frame where it is defined as,
∂Ψj

∂r
=
∂a

∂r

∂Ψj

∂a
+
∂b

∂r

∂Ψj

∂b
+
∂c

∂r

∂Ψj

∂c
∂Ψj

∂s
=
∂a

∂s

∂Ψj

∂a
+
∂b

∂s

∂Ψj

∂b
+
∂c

∂r

∂Ψj

∂c
∂Ψj

∂t
=
∂a

∂t

∂Ψj

∂a
+
∂b

∂t

∂Ψj

∂b
+
∂c

∂r

∂Ψj

∂c

(2.60)

Geometric factors of the transformation can be recovered from the Eq. 2.9 with

purely local operations. After defining all entries of the differential matrices

Dx, Dy and Dz, stiffness matrix can be computed efficiently with simple ma-

trix -vector multiplications. Different from the mass matrix, stiffness matrix

include locally defined matrices, Dr and element-wise defined geometric factors,

rx. However ,this situation does not introduce any complexity because rx is also

constant for the straight sided tetrahedral elements similar to transformation

Jacobian. Finally, Eq. 2.54 takes the following form,

SDk
= DT

xDx +DT
yDy +DT

z Dz,

(∇fh,∇gh)Dk
= JDk

fTh SDk
gh,

(2.61)
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Unlike the continuous finite element or spectral element methods, inter-element

continuity constraint is relaxed in the DG methods. Communication between the

elements are provided by the numerical fluxes defined on the element boundaries.

Boundary contribution resulting from the weak form DG scheme results with

the surface integral in the form of,

(Li,n · Fh)∂Dk
=

∫
∂Dk

Lin · Fhdx (2.62)

where Fh ∈ PdN is polynomial trace of the d dimensional vector function com-

posed of the numerical fluxes with the arguments of jump and/or average of the

field variable at the boundary. Using the Lagrange interpolation of the function

and splitting the integration into connection pairs, f

(Li,n · Fh)∂Dk
=

Nf∑
f=1

Nd−1
p∑
j=1

n · Fj

∫
∂Df

k

LiLjdx

 (2.63)

where d − 1 is the co-dimension one geometric entity, which is a surface when

d = 3 and an edge for d = 2. We use the term face and surface for all di-

mensions although it corresponds an edge for triangle, without ambiguity. Also,

Nd−1
p denotes the number of nodes in the face. respectively. Turning back to

tetrahedron where d = 3, Nf = 4 and N2
p = (N + 1)(N + 2)/2, Eq. 2.63 recast

into,

(Li,n · Fh)∂Dk
=

4∑
f=1

 N2
p∑

j=1

n · Fj

∫
∂Df

k

LiLjdx

 (2.64)

It is obvious that the last term in the form of mass matrix which can be con-

sidered to be full size of Np × N2
p . However, the Lagrange polynomials, Li are

exactly zero at points except the ones lying on the face f . Which reduces the size

of the face-mass matrix to N2
p×N2

p on each face. Then, defining two dimensional

Vandermonde matrix on each face of the element,∫
∂Df

k

LiLjdx = J∂Df
k

∫
∂T f

LiLjdr = J∂Df
k

(
VfV

T
f

)−1
(2.65)

It can be observed that only nodal information of the face is required to evaluate

surface integrals on that face. This is practically an important advantage of

nodal scheme over the modal scheme where all information is needed to define

a solution point wise.
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2.2.4 Defining Interpolation Matrices

Interpolation of the functions between different nodal distributions, basis spaces,

orders of the same space and grids are crucial to implement DG numerical

schemes. For example, interpolating nodal solutions to equispaced nodes may

be needed in post-processing. Decreasing the order of polynomial space is fre-

quently encountered to stabilize non-linear equations via. limiting and filtering.

Application of cubature rules also needs the interpolation of functions between

high and low number of nodal points through the same polynomial orders. Also,

p type multigrid solvers change the approximation orders between hierarchical

levels. In this section, interpolation matrices will be constructed to handle these

transforms efficiently.

Let first consider the function fp ∈ PN defined on the nodal set, Θ1 = {r1, · · · , rNp}.
The problem is to interpolate function to a nodal set, Θ2 = {r1, · · · , rNc} given
with f c ∈ PN with Np 6= Nc Interpolation between the nodal sets can be easily

achieved using the interpolation properties of the Lagrange polynomials,

f ci =

Np∑
k=1

V c
i,k

(
V p
k,j

)−1
fpj , ∀i = 1, · · · , Nc, ∀j = 1, · · · , Np (2.66)

where Vandermonde matrices are defined as V c
i,j = Ψj(ri), ri ∈ Θ2 and V p

i,j =

Ψj(ri), ri ∈ Θ1. Then, interpolation matrix, Icp can be written as Icp = V cV −1

and f c = Icpf . It is clear that interpolation operator is local and in the size

of Nc × Np which reduces the interpolation operators to simple matrix-vector

multiplications in implementation.

The second problem is to interpolate the same function, fp ∈ PN1 defined on the

nodal set, Θ1 to the different order polynomials space, f c ∈ PN2 with N2 ≤ N1.

The cardinality of the expansions spaces are Nc = (N2+1)(N2+2)(N2+3)/6 and

Np = (N1 +1)(N1 +2)(N1 +3)/6. Θ1 is previously defined and Θ2 = {r1, · · · rNc}
is the nodal distribution for the PN2 . Let define two Vandermonde matrices,

V N2
i,j = Ψj(ri), ri ∈ PN2 , ∀j = 1, · · · , Nc

V N1
i,j = Ψj(ri), ri ∈ PN1 , ∀j = 1, · · · , Np

(2.67)
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The previous discussion follows directly,

f ci =

Np∑
k=1

(
V N2
i,k

)−1
V N1
j,k f

p
j =

(
V N1

(
V N2

)−1
)T

fp = IN2
N1
fp, (2.68)

Size of the IN2
N1

is Nc × Np and local, independent from the physical element.

Back transform can be obtained as IN1
N2

=
(
IN2
N1

)T
= V N1

(
V N2

)−1. These ma-

trices play an crucial role in designing the matrix-free multigrid preconditioner

discussed in Sec. 5.2.2.2.

Another important interpolation is related with the development of adaptive

mesh refinement strategy and also accurate post-processing algorithms. In this

interpolation problem, information between coarse and fine grids are trans-

formed. Let consider a triangular element with regular uniform refinement to

show the basic properties. Fig. 2.15 shows the regular refinement on the physical

element, Dk by splitting edges leading 4 new elements, D1
k, D

2
k, D

3
k, D

4
k and three

new vertices, V n
1 , V

n
2 , V

n
3 . The refinement can be represented in the reference

element, T 2 by the new elements T 1
2 , T

2
2 , T

3
2 , T

4
2 and the new vertices vn1 , vn2 , vn3 .

Figure 2.15: Sample uniform refinement on triangular element and correspond-
ing structure on the reference element for the interpolation.

Any nodal points on the new elements can be mapped to local coordinate frame
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as in the Fig. 2.15, using the coordinates of the new vertices,

rT 1
2

= −r + s

2
vn1 +

r + 1

2
vn2 +

s+ 1

2
vn3

rT 2
2

= −r + s

2
v1 +

r + 1

2
vn1 +

s+ 1

2
vn3

rT 3
2

= −r + s

2
v2 +

r + 1

2
vn2 +

s+ 1

2
vn1

rT 4
2

= −r + s

2
v3 +

r + 1

2
vn3 +

s+ 1

2
vn2

(2.69)

Vandermonde matrices for each element can be defined using the created nodal

sets on siblings such that,

VT 1
2 ,(i,j)

= Ψj(rT 1
2 ,i

), ∀i, j = 1, · · · , Np (2.70)

other three Vandermonde matrices can be computed similarly. Finally, interpo-

lation matrices from coarse to fine grid follows,

ID
1
k

Dk
= VT 1

2
V −1, ID

2
k

Dk
= VT 2

2
V −1, ID

3
k

Dk
= VT 3

2
V −1, ID

4
k

Dk
= VT 4

2
V −1 (2.71)

where V is the standard Vandermonde matrix defined on the T2. All interpola-

tion matrices are Np × Np in size and local. For the implementation point of

view , it is beneficial to combine them leading 4Np ×Np matrix. For the coars-

ening, where four sibling elements are connected to single element, interpolation

operators will be the inverse of the matrices defined above i.e. IDk

D1
k

= V V −1
T 1
2

with the same notation for other matrices.

Generalization of this strategy to tetrahedron is straight forward and can be

obtained by inspection. Regular refinement of the tetrahedral element results

with eight siblings by connecting middle point of edges. This will give eight

interpolation matrices having the same structure with triangular elements.

2.2.5 De-aliasing and Cubature Integration

Integration according to methodology presented in the previous section is exact

only the integrands belonging to polynomial space, P2N , as explained before.

If two functions, f, g ∈ PN and transformation Jacobian constant, (f, g)Dk
is

exact and does not lead the polynomial aliasing. However, quadratic and cubic

nonlinearities of the incompressible and compressible Navier-Stokes equations
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require to integrate functions belonging to P3N and P4N , respectively. This sit-

uation leads aliasing errors and even aliasing-driven instabilities especially in

marginally- and under-resolved problems. One way to reduce those errors and

instability is to choose sufficiently large number of nodes (and corresponding

weights) to integrate the higher-order polynomial functions. Cubature integra-

tion for volume inner products and Gauss quadrature rules for surface integrals

address this problem and will be covered in this section.

Implementation of the cubature integration can be achieved using the outputs

of previous section. Let consider two functions f, g both are approximated by

the fh, gh ∈ PN defined on a nodal set, Θp = {r1, · · · , rNp}. To perform the

cubature integration, both functions need to be interpolated to the cubature

nodes. Θc = {r1, · · · , rNc}. Weighted discrete inner product the interpolated

vectors will be computed using the cubature weights. Because, function fh

and corresponding interpolated function, fc span the same polynomial space,

interpolation matrix from standard node distribution to cubature nodes is as

given in Eq. 2.66. Also, let W = {w1, · · · , wNc} represents the collection of the

weights associated with the each cubature nodes. Discrete computation of the

mass matrix takes the following form for straight-sided tetrahedral element.

(fh, gh)Dk
= JDk

Nc∑
i=1

fc,iwigc,i (2.72)

Stiffness matrices on cubature nodes can be computed following the same ap-

proach. Because, only straight sided elements are considered here, metric iden-

tities, ∂r/∂x are also constant for the elements so only local derivative matrices,

Dr need to be evaluated to compute Dc
x. At cubature nodes,

Dc
r =

Np∑
n=1

∂Ψn(ri)

∂r
V −1
n,j , = V c

r V
−1

Dc
s =

Np∑
n=1

∂Ψn(ri)

∂s
V −1
n,j , = V c

s V
−1

Dc
t =

Np∑
n=1

∂Ψn(ri)

∂t
V −1
n,j , = V c

t V
−1

(2.73)

∀i = 1, · · · , Nc and ∀j = 1, · · · , Np. Then, differentiation on physical space can
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be written as,

Dc
x =

∂r

∂x
Dc
r +

∂s

∂x
Dc
s +

∂t

∂x
Dc
t

Dc
y =

∂r

∂y
Dc
r +

∂s

∂y
Dc
s +

∂t

∂y
Dc
t

Dc
z =

∂r

∂z
Dc
r +

∂s

∂z
Dc
s +

∂t

∂z
Dc
t

(2.74)

Entries of the discrete stiffness matrix, S = (∇fh,∇gh)Dk
are computed first

evaluating the differentiation , f c = Dc
xfh and gc = Dc

xgh, and then integrating

the interpolated functions such that,

SDk
= JDk

Nc∑
i=1

f ci wig
c
i (2.75)

Cubature nodes on the faces of a triangle reduce to Gauss quadratures on the

edges where surface integrals can be easily computed by following the same

procedure.

As seen in the previous discussion, implementation of a cubature rule does not

introduce any complexity and can be achieved locally similar to standard node

operations by defining the suitable interpolation operators. Main questions are

to decide when a cubature integration is needed, cubature order and hence the

number of integration nodes to obtain the aliasing-free numerical solution. Be-

cause, unnecessary increase in the number of integration nodes obviously create

computational burden and may destroy the efficiency of scheme. In fact, an-

swer of the first question is clear that cubature integration for the nonlinearities

are needed in under-resolved cases where aliasing adds high energy to modal

coefficients leading instability.

Non-linearities may occur in varying orders. Only quadratic nonlinearities aris-

ing from the convective terms of the incompressible Navier-Stokes equitations

are considered here. Galerkin type evaluation of the these non-linearities gives

P3N integrand. In this study, exact integration is used although many well-

known solvers utilize under-integration i.e. integrating exactly the linear terms,

P2N . Optimal cubature nodes for triangle and tetrahedron are given in [49, 48]

up to some cubature orders. If the required 3N cubature rule exists, nodes and

corresponding weights are extracted from the lookup table. If the required or-

der is larger then tabulated orders, tensor product of Gauss-Lobatto-Legendre
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distribution in r direction and Gauss-Radau-Jacobi distribution in s and t di-

rections are utilized using collapsed coordinate frame [92]. Although, this ap-

proach results with unsymmetrical nodal distribution with condensing nodes on

collapsed vertices, aliasing errors can be significantly reduced with enforcing con-

servation by keeping the mean mode untouched [96]. In this case, (3N + 3)/2

cubature nodes are used in each directions to exactly integrate the quadratic

non-linearities.

After setting the cubature integration rules for the d-dimensional simplexes,

efficient flux evaluation through the non-conformal face pairs can be constructed.

Let consider the non conformal discretization resulting from the one level local

refinement as illustrated in Fig. 2.16, to simplify the computation.

Figure 2.16: Evaluation of the flux function on non-conformal face pairs for one
level local refinement and N = 3.

Let say D1 and D2 are initially connected through their second,∂D2
1 and third,

∂D3
2 faces, respectively. Then, D1 is uniformly refined to the four sibling,

D1
1, D

2
1, D

3
1 and D4

1. Due to the refinement strategy implemented, the siblings

D3
1, D

4
1 are connected to the ∂D3

2 along the faces ∂D3,1
1 and ∂D4,3

1 , and obviously

∂D2
2 has a hanging node. Flux evaluation on this face needs special treatment to

handle the nonconformity. As seen in the figure, a dummy face pair is created

between the elements with different refinement levels. Dummy faces has the
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sufficient Gauss quadrature points to integrate the rational flux functions, Fh.

For the siblings, trace of field variables needs to be interpolated to the Gauss

quadrature points using the following local matrices

I3 = V3V
−1, V3 = Ψj(g

3
i ),

I1 = V1V
−1, V1 = Ψj(g

2
i ),

∀j = 1 · · ·Np, ∀i = 1 · · ·Ng (2.76)

where Ng and gf denote number of Gauss quadrature points and the corre-

sponding local coordinates on the given face, f , respectively. For the ∂D3
2,

interpolation operators should be defined for the two dummy faces,

I3,1 = V3,1V
−1, V3,1 = Ψj(g

3,1
i ),

I3,2 = V3,2V
−1, V3,2 = Ψj(g

3,2
i ),

∀j = 1 · · ·Np, ∀i = 1 · · ·Ng (2.77)

where g3,1
i and g3,2

i can be computed easily using the vertices on the standard

triangle and following the notation in Fig. 2.15.

g3,1 = 0.5 ((1− g3) v3 + (1 + g3) vn3 )

g3,1 = 0.5 ((1− g3) vn3 + (1 + g3) v1)
(2.78)

with these operators, all required information is obtained for the non-conformal

flux evaluation. It can be concluded that six local interpolation matrices should

be constructed. This approach can be generalized to the tetrahedron and/or

higher refinement levels. In the adaptive scheme, difference between the refine-

ment levels of elements are set to two to reduce the algorithmic and coding

complexity. In other words, if the refinement levels of two neighboring elements

differs more than two, additional refinement is used for the element having the

lower refinement level.

2.3 Massively Parallel Implementation

In DG discretizations, elements are only weakly connected to their first neigh-

bors with numerical fluxes, as previously stated. This property render element-

local computations and results with locality of memory access. In addition, the

high order approximation space used in DG methods, increase the amount of

computations per degree of freedom and hence, computational intensity. These
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features are all well-suited for the parallelization on many-core/multi-thread ar-

chitectures.

To show our massive parallel implementation, let consider a generic hyperbolic

equation,

∂Q

∂t
+∇ · F(Q) = 0 (2.79)

Multiplying the equation with smooth test functions, φ ∈ VN and integrating

part parts, we obtain(
φ,
∂Qh

∂t

)
Dk

= (∇φ · F(Qh))Dk
+ (φ,n · F(Qh))∂Dk

(2.80)

where Q is well approximated by Qh ∈ VN . F(Qh) is the flux function generally

appriximated by monotone, consistent numerical flux which is a function of

traces at element boundaries i.e. Q− and Q+ etc. The semi-discrete form can

be written in terms of matrix form using previously defined operators,

dQh

dt
=
M−1
T

JDk

Dc
r
T ·
(
∂r

∂x
wcJDk

Fc(Qh)

)
− M−1

T
JDk

M∂T · (J∂Dk
n · Fg(Qh)) (2.81)

with Fc(Qh) = Ic × F(Qh) and Fg(Qh) = Ig(FQ) are the volume and flux

functions defined on volume and surface cubature points, respectively. There

are three major computations required to solve the equation; volume integra-

tion, surface integration, and time-step update which are performed by Volume,

Surface and Update kernels respectively as shown in the following generic form.

dQ

dt︸︷︷︸
Update Kernel

= V(Qh)︸ ︷︷ ︸
Volume Kernel

+S(Q−h , Q
+
h )︸ ︷︷ ︸

Surface Kernel
(2.82)

In our parallel implementation, a work group computes the integrals of one (or

more) elements and a work item in the work group computes the contribution

from each integration node in the kernels as illustrated in Fig. 3.6. For each

element, contributions from volume and surface integrals are represented with

multiplication of a local dense matrix defined on the reference element and a

vector of volume terms and surface fluxes.
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Figure 2.17: A work group and a work item for 3D kernels.

2.3.1 Volume Kernel

Volume integrals are computed in this kernel. V(Qh) is in the size of Np on each

element Dk and can be written in the following generic form,

V(Q) = Pr × cF1 + Ps × cF2 + Pt × cF3 (2.83)

where Pr, Ps and the Pt are the projection operators defined on the reference

element with the size of Np ×Nc. Projection operators are pre multiplied with

inverse mass matrix and cubature weights to accelerate computations, such that

Pr = M−1
T × Dc

r
T × diag(wc)

Ps = M−1
T × Dc

s
T × diag(wc)

Pt = M−1
T × Dc

t
T × diag(wc)

(2.84)

cF1, cF2 and cF3 denote the numerical volume vector defined on the cubature

integration points of size Nc . These vectors for our generic equation read,

cF1 =
∂rc
∂x

F c
x(Q) +

∂rc
∂y

F c
y (Q) +

∂rc
∂z

F c
z (Q)

cF2 =
∂rc
∂x

F c
x(Q) +

∂rc
∂y

F c
y (Q) +

∂rc
∂z

F c
z (Q)

cF3 =
∂rc
∂x

F c
x(Q) +

∂rc
∂y

F c
y (Q) +

∂rc
∂z

F c
z (Q)

(2.85)
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First operation of kernel is to copy elemental field variables from global memory

to shared memory. Np work items are required for this operation. Then, stored

shared memory variables are interpolated to the cubature integration points.

This operation requires number of field variables matrix-vector multiplication

all using the same interpolation matrix like Ic ×Qh. Each work item multiples

one row of Ic with the vectors to avoid memory conflicts. Resulting nodal values

and geometric data are stored on the register memory for fast evaluation of

future computations. Nc work items are assigned for this operation.

Second step in the kernel is calculation of volume flux terms, cF1, cF2 and cF3,

using the previously obtained values stored on register memory. Volume flux

term is stored on the shared memory vector. Nc work items are used for this

operation.

Finally, volume terms are interpolated to interpolation nodes. This operation

involves three matrix-vector multiplication using three interpolation matrices

and three vectors stored previously on shared memory. Similar to the interpo-

lation to cubature points, each work item multiplies one vector of interpolation

matrices with the flux vector to prevent the memory conflicts. Np work item is

used for this operation.

Number of required work items change within the kernel by accomplishing the

tasks. To accommodate the number for work items required for the all computa-

tions, kernel request the Kv ×max(Nc, Np) work items where Kv is the number

of elements processed by single work group.

2.3.2 Surface Kernel

Surface contribution is computed in this kernel. S(Q−h , Q
+
h ) is vector of length

Np for each field on element Dk. Surface integral can be written in the following

generic form,

S(Q−h , Q
+
h ) = −LT × Fg

n(Q−h , Q
+
h ) (2.86)

where L is the lifting matrix [99] that interpolates the surface terms to inter-

polation nodes. The lifting operator is defined on the reference element and
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pre multiplied with inverse mass matrix and surface cubature weights. In our

hyperbolic equation system, the operator reads,

LT = −M−1
T ×M∂T × diag(wg) (2.87)

Fg
n(Q−h , Q

+
h ) represent the normal trace of flux function evaluated at surface

cubature points and multiplied with face scale ,i.e. J∂Dk
/JDk

.

First operation of the surface kernel storing elemental field variables on shared

memory. For internal degrees of freedoms, e.g. Q−h , a vector of size Np is used

for each variable. External field variables, e.g. are stored on the shared vector

in size of NS×Np where NS is the number of connection for the work group. For

conformal discretization and when single element processed by the work group,

NS denotes the number of faces i.e. 2 and 3 for triangle and tetrahedron. Np

work item is used for this operation.

Second operation is to interpolate the standard nodal values to surface cubature

points. This operation includes multiplication pre stored shared vectors with

the same interpolation matrix defined on the reference element, e.g. Ig × Qh.

Similar to volume kernel, each work item multiplies one row of Ig and the vec-

tors. Interpolated values and geometric data are stored on the register memory.

Then, flux function at cubature nodes, Fg
n(Q−h , Q

+
h ) is computed using previ-

ously obtained register memory values. Flux function is stored on the shared

memory vector of size Nf ×Ng which is equal to assigned number of work items

for this step.

Finally, flux function is lifted to the interpolation nodes. This step involves

the matrix - vector multiplication given in Eq. 4.29. Np work item is assigned

for this operation. To accommodate all different tasks, surface kernel request

KS ×max(Nf ×Ng, Np) work items where KS denote the elements processed by

the work group.

2.3.3 Update Kernel

Update kernel computes time integration step which involves the global vector

operations using computed right hand side vectors and some level of history
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depending the integration method. KU × Np work item is requested by the

kernel, KU represents the number of elements processed by each work group in

the kernel.

2.3.4 Kernel Tuning

Performance of the mentioned kernels are highly dependent to the hardware,

memory usage, tuning parameters etc. Some strategies for performance im-

provement are discussed below.

Coalescing: All elemental nodal values, solution field and geometric data, and

local operators are read from the global memory continuously to maximize the

bus utilization.

Unrolling: Loops are unrolled to reduce the number of instructions, end of

loop checks etc. to minimize the overhead in memory read/write.

Padding: The size of vectors holding elemental nodal values are increased with

the factor of 4 to align the access and minimize bank conflicts.

Memory Usage: All nodal values associated with the element and local pro-

jection/interpolation operators are stored on the shared memory vectors to ef-

ficiently reuse in the kernel. On the orher hand, shared memory is limited on

GPU architectures and excessive usage of this memory cause the reduction in

the number of active work groups. As a result, usage of shared-global memory

for the kernels requires an optimization study. In our implementation, shared

memory is used to hold local operators and nodal values for triangle but inter-

polation operators for tetrahedral elements are read from the global memory to

reduce the shared-memory usage.

Element Number/Block: Multiple elements are processed by a single work

group in the kernels to better align the data and utilize hardware resources.

Optimum number of elements per work group depend hardware, approximation

order and changes from kernel to kernel also. We use multiple elements only in

low order approximation of 2D tests. In, high order 2D and all 3D problems,

kernels uses single element per work group to reduce the shared memory usage.

Determining optimum element number is beyond the scope of this study because
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it is highly dependent to architectures and portability is our main concern for

now.
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CHAPTER 3

A GPU ACCELERATED ADAPTIVE

DISCONTINUOUS GALERKIN METHOD FOR LEVEL

SET EQUATION

This chapter presents a GPU accelerated nodal discontinuous Galerkin methods

for the solution of two and three dimensional level set equation on unstructured

adaptive meshes. Using local dynamic grid, computations are localized mostly

near the interface location to reduce the computational cost. Small global time

step size resulting from the local adaptivity is avoided by local time-stepping

based on a multi-rate Adams-Bashforth scheme. Platform independence of the

solver is achieved with an extensible multi-threading programming API as com-

mon kernel language that allows runtime selection of different computing de-

vices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and

OpenMP). Overall, a highly scalable, accurate and mass loss free numerical

scheme that preserves the simplicity of level set formulation is obtained. Effi-

ciency, performance and local high-order accuracy of the method are confirmed

through distinct numerical test cases.

3.1 Introduction

In free surface and multiphase flows, two commonly used approaches to dy-

namically represent the interface are interface tracking and capturing. Interface

tracking methods are Lagrangian or semi-Lagrangian, where the mesh explic-

itly represents the interface. On the other hand interface capturing methods
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are Eulerian, where the interface is represented by an implicit function defined

on a fixed mesh. Interface tracking methods are generally accurate and robust

but difficult to use when the interface encounters topological changes such as

merging and breaking up.

Interface capturing methods can be classified as volume of fluid (VOF) [83] and

level set (LS) [133]. VOF methods have generally excellent conservation proper-

ties, but high order reconstruction of interface from volume fraction information

and obtaining geometry dependent properties such as surface normals and cur-

vature are difficult to compute. Due to this limitation VOF methods are usually

second order accurate at most. Details of VOF based methods, their strengths

and weaknesses are introduced in Sec. 1.1.2. LS methods address the problems

of VOF methods and are used extensively to study multiphase flows, computer

vision, material science, and biology ([159, 135] and references therein).

In the LS method an interface, Γ is represented as the zero LS of an at least

Lipschitz continuous function, φ [133]. Considering d-dimensional Cartesian

plane, the function φ(x, t) is positive in one region and negative in the other,

with zero level contour of φ(x, t) always representing the current location of the

interface Γ (t) = {x | φ(x, t) = 0}. Fig. 3.1 illustrates the level set function

for a circular interface problem. Γ is shown with red solid line and the level

set function takes negative and positive values above and below the interface,

respectively. φ is a Lipschitz continuous function having a kink point at center

of the circle.

If the motion of the interface is determined by the external velocity field u,

evolution of the interface is given with a first order hyperbolic equation as,

φt + u· ∇φ = 0 (3.1)

This implicit representation of interface motion offers many advantages, such as

straightforward extension from 2D to 3D, simple handling of topological changes

and easy calculation of geometric properties. The most popular traditional tech-

niques to solve Eq.(3.1) are high order finite difference Hamilton-Jacobi essen-

tially non-oscillatory (HJ-ENO) and weighted essentially non-oscillatory (HJ-

WENO) schemes [134, 204, 88]. But generalization of these finite difference
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Figure 3.1: Level set function for 2D circular interface problem.

schemes on unstructured meshes are quite complicated [204].

The level set interface modeling does not enforce the discrete mass conservation

as observed in Eq. 3.1. This problem is needed to be controlled especially in the

regions of high curvature and long, thin filamentary structures due to excessive

amount of numerical diffusion. Various techniques have been proposed to im-

prove the conservation properties of LS method. Frequently used ones are the

hybrid methods such as combining LS method with volume of fluid [180, 94], or

with a Lagrangian method resulting in particle LS method [56, 57] and applying

mass correction procedures [177, 178, 192]. Common to all these efforts is the

fact that simplicity of the original LS method is lost.

There are also efficient adaptive methods that keep the computational work

mainly in a small neighborhood of the interface. Sussman et al. [176] pre-

sented an adaptive LS approach for computing incompressible two-phase flows

in two and three dimensions. Strain [172, 173] proposed an adaptive mesh re-
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finement strategy by combining a tree structure with the LS method and a

semi-Lagrangian time-stepping scheme. Sochnikov and Efrima [166] presented

an algorithm using narrow band LS method on dynamically adaptive grids.

Losasso et al. [113] introduced a particle LS method using octree data struc-

ture for free surface flows. Min and Gibou [122] presented a LS method on

adaptive non-graded Cartesian grids using semi-Lagrangian scheme. Cecil et

al. [21, 22] proposed an ENO adaptive generalized binary tree method. Her-

rmann [78] introduced a balanced force-refined LS method for two-phase flows

on unstructured grids. Recently, a LS method for the motion of high codimen-

sional objects (e.g., curves in 3D) on two level uniform adaptive Cartesian grid

is presented by Wang and Xiang [191].

The discontinuous Galerkin (DG) method is a class of finite element methods

that make used completely discontinuous, piecewise polynomial approximations

for space discretization. Recently DG methods become highly attractive and

popular, mainly because they are high-order accurate, nonlinear stable, highly

parallelizable, can easily be used with complicated geometries and boundary

conditions, and are capable of capturing discontinuities without spurious oscil-

lations ([82] and references therein). The DG method can resolve the kinks with

discontinuous derivatives even for long time integrations due to low numerical

dissipation that can be achieved by the use of high order polynomial approxi-

mations [1]. Merchandise et al. [117] and Sussman et al. [179] showed that DG

method gives more accurate results and exhibits less mass loss compared with

the classical HJ-ENO/WENO schemes.

Increasing resolution near the interface substantially improves the conservation

properties of standard LS formulation even for DG discretizations, local spatial

mesh refinement reduces the allowable time step size when a global explicit time

integrator is used. Multi-rate schemes use various time step sizes that satisfy the

local CFL condition on different elements. Standard time integration schemes

are applied to bulk groups with local time step sizes in a way that computational

time can be drastically reduced. Different local time integration schemes are pro-

posed in the literature. For example, multi-rate Adams-Bashforth methods are

applied to electromagnetic wave propagation [74], damped wave problems [71]
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and shallow water equations [63]. Also, multi-rate Runge-Kutta (MRRK) time

steppers are proposed for general conservation laws [52, 47], geophysical flows

[157] and coastal ocean modeling [53]. Different from the previous studies, we

developed an efficient local time stepping strategy for the adaptive DG scheme

which does not require additional storage or computational effort and discuss

the efficient implementation on multi-threaded architectures.

Weak element connection and high-order approximation space in DG method

lead local memory access and high arithmetic intensity. These properties make

DG method well suited for multi-threaded architectures specially for GPUs. Re-

cently, performance of the nodal DG methods on massively parallel architectures

are demonstrated for several applications [63, 62, 123, 99]. Developed LS for-

mulation is further accelerated using modern GPUs and many-core CPUs. Plat-

form independence is achieved using OCCA [121] kernel language that abstracts

common multi-threading languages (OpenCL, CUDA, pThreads and OpenMP)

and offers flexibility to test the developed solver by choosing architecture and

programming language at runtime.

In this chapter, we introduce a highly scalable, mass-loss free, multi-rate dis-

continuous Galerkin method on adaptive unstructured grids which preserves the

simplicity of the level set formulation. The rest of the chapter is organized as

follows: Sec. 3.2 provides the mathematical formulation, discretization of level

set equation and basic properties adaptivity. In Sec. 3.2.2, multi-rate/multi-

level local time stepping scheme and its efficient implementation is introduced.

Then, parallelization of the method on many-core/multi-threaded architectures

is discussed in Sec. 4.3, Finally, numerical results that demonstrate the accuracy,

mass conservation and scalability of the method for two and three dimensional

tests are given in Section Sec. 3.4.
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3.2 Discretization

3.2.1 Level Set Equation

In this study, we mainly consider the externally known incompressible velocity

fields that satisfy, ∇·u = 0. Using the identity, ∇· (uφ) = φ∇·u+u ·∇φ, level
set equation can be written in conservative form as

∂φ

∂t
+∇ · (uφ) = 0 (3.2)

Then, multiplying Eq. 3.2 by a smooth test function, v ∈ PN(Dk) and applying

the divergence theorem leads to the following DG scheme in weak form

(
∂φ

∂t
, v)Dk

− (uφ,∇v)Dk
+ (Fn, v)∂Dk

= 0 (3.3)

where Fn is the normal trace of the flux function at element boundary. Value of

the numerical flux depends on the two values of approximate solutions, φ− and

φ+ at the common face. The numerical flux can be any two-point Lipschitz flux,

which is monotone, consistent with the flux function, n·uφ and conservative

such that only one flux is defined at ∂Dk. We choose the upwind flux which

is efficient in implementation on parallel architectures due to low conditional

statements,

Fn(φ−k , φ
+
k ) = (n·u)

φ−k + φ+
k

2
+
|n·u|

2
(φ−k − φ

+
k ) (3.4)

Non-homogeneous boundary conditions are imposed weakly by incorporating

boundary value in the numerical flux given in Eq. 3.4 as the external trace.

Then, semi-discrete form of the equation can be derived easily following the

outputs of the Sec. 2.2.

JDk

(
ITc · diag(wc) · Ic

) dφk
dt

= JDk

(
DT

r · diag(rxkwc) · Ic
)
ukφk

−
Nf∑
f=1

JDk,f

(
ITg · diag(wg) · Ig

)
Fn,f

(3.5)

where φk holds Np discrete nodal unknowns associated with element k. wc and

wg are the cubature weights for volume and surface integrations. rxk = ∂Ψ/∂r are

geometric factors related with the affine mapping, Ψ and JDk
= det(∂Ψ/∂r) is
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the Jacobian of the transformation which is constant for straight sided elements.

Also, each face of the physical element is mapped to reference element with

Jacobian, JDk,f . Then, defining local mass matrix, MT = ITc · diag(wc) · Ic and
inverting left side of the equation, we arrive,

dφk
dt

=M−1
T
(
DT

r · diag(rxkwc) · Ic(ukφk)
)
−

M−1
T

Nf∑
f=1

JDk,f

JDk

(
ITg · diag(wg) · Ig

)
Fn,f

(3.6)

Eq. 3.6 can be further simplified for efficient implementation on many-core par-

allel architectures. Details will be given in Sec. 4.3. For sake of clarity, we finally

rewrite the semi-discrete equations as the following abstract system,

dφk
dt

= Vk(φk) +

Nf∑
n=1

Sfk (φ−k , φ
+
k ) (3.7)

3.2.2 Local Time Stepping

To relax the time step restriction resulting from local adaptivity, a two rate

multi-step Adams-Bashforth (MRAB) scheme with different order base Adams-

Bashforth (AB) methods are designed for the adaptive DG-LS formulation. To

reduce complexity of the scheme, elements are grouped according to their refine-

ment levels. It is assumed that elements belonging to the same group have the

same characteristic time scale and each time scale differs by an integer ratio so

that two groups can be synchronized in the largest time-step. Elements in the

initial coarse level form the slow group, Gs and all refined elements (siblings)

form the fast group, Gf without checking the refinement levels. This grouping

strategy is reasonable because majority of the elements are in either coarsest

level or the finest level due to locality of the adaptive scheme.

To clarify basic features and coupling between the groups, let start designing

MRAB(m,l) scheme with m’th order base method and l sub-steps on the mesh

shown in Fig. 3.2. The mesh is obtained by lM level local refinement so that

time scales of the Gf and Gs have the relation, ∆ts = l∆tf . Communication

between the groups occur only through the second face of D2 and first face D3.

It is assumed that all the required history is known for all elements at t = n.
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Figure 3.2: One dimensional unstructured sample grid for the local time step-
ping. Fast group includes D0, D1 and D2, while slow group includes D3, D4 and
D5.

In the DG spatial discretization, elements are weakly connected with their first

neighbors by fluxes. Once an element evolves in time with a stable time step

size, it doesn’t require additional information from the other time scales. In

other words, coupling between the groups is also weak so that elements inside

the groups but away from the slow-fast interface can be evolved with the base

Adams-Bashforth integrator without any special treatment. We adapted fast is

first approach [67] in the computations so that element 1 can be advanced from

time level n to n+ l in l sub-steps with the time step size of ∆tf . For i = 1, · · · , l

φn+i
1 = φn+i−1

1 + ∆tf

m∑
j=1

βj(V(φn+i−j
1 ) + S(φn+i−j

1 , φn+i−j
0 )+

S(φn+i−j
1 , φn+i−j

2 ))

(3.8)

where βj’s denote the classical Adams-Bashforth coefficients. Similarly, element

4 is advanced to the same time level in a single step with ∆ts.

φn+l
4 = φn4 + ∆ts

m∑
j=1

βj(V(φ
n−(j−1)l
4 ) + S(φ

n−(j−1)l
4 , φ

n−(j−1)l
3 )+

S(φ
n−(j−1)l
4 , φ

n−(j−1)l
5 ))

(3.9)

The complexity of the MRAB comes from communication between the bulk

groups while ensuring the accuracy. Element 2 requires φn−1
3 to evolve from

time level n to n + 1 but it is not available because element 3 evolves in the

slow time scale. We adapt a simple coupling approach based on using the newest

available slow history [156]. This strategy results with the second order accuracy

at the slow-fast interface [85, 156] and doesn’t require any extra effort such as

additional storage and interpolation of the slow history such as used in [171]. In

our adaptive strategy, interface is always inside the finest level and away from
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the slow-fast coupling as this coupling approach doesn’t degrade the accuracy

at groups interface. Then, element 2 is evolved in l sub-steps. For i = 1, · · · , l

φn+i
2 = φn+i−1

2 + ∆tf

m∑
j=1

(βjV(φn+i−j
2 ) + S(φn+i−j

2 , φn+i−j
1 )+

S(φn+i−j
2 , φ

n−(j−1)l
3 ))

(3.10)

Finally, slow-fast coupling is integrated from n to n+ l in a single step.

φn+l
3 = φn3 + ∆tf

m∑
j=1

βj(lV(φ
n−(j−1)l
3 ) + lS(φ

n−(j−1)l
3 , φ

n−(j−1)l
4 )+

l∑
i=1

S(φ
n−(j−1)l
3 , φn+i−j

2 ))

(3.11)

A careful investigation of the 1D example reveals that the only extra effort com-

pared with the single step AB scheme is the doubled evaluation of the boundary

flux at faces located on the slow side of the coupling and it is minimal. Gener-

alization to higher-order dimensions are quite straight-forward such that there

are l = 2lM sub-steps by assuming that each uniform refinement reduce char-

acteristic length by half. Time step size of the Gf is defined, ∆tf = ∆ts/l

and ∆ts = min(Ch/|u|) is the stable time step size for the initial coarse grid.

C = 1/(2N + 1) is the Courant number which is selected similar to those given

in [46] for Runge-Kutta DG methods.

A sample buffer groups for 2D circular interface on lM = 2 grid are illustrated

in Fig. 3.3 showing pure slow (light gray elements), slow-fast buffer (medium

gray elements) and pure fast (white elements) components. For the efficient

implementation, only slow-fast buffer, where extra effort is required, is needed

to be known.

Explicit Adams-Bashforth methods, as the MRAB scheme, are not self starting

because they need m + 1 closest history. The initial values are provided with

(m + 1)l small time steps by Runge-Kutta methods which is one order higher

than the base AB method to ensure that the temporal errors are only introduced

by the MRAB scheme.

Efficiency of the two rate MRAB(m,l) scheme is approximated by assuming

that the work load for each element,WDk
is the same and dominates all the
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Figure 3.3: Multirate groups for an unstructured, locally refined grid (lM = 2)
for the circular interface problem.

computations. Also, it is assumed that slow-fast buffer is totally integrated with

the slow time scale although, surface contribution coming from the fast side is

computed in the fast time scale. Let the number of elements in the fast and slow

time scales are Kf and Ks respectively. Under these assumptions, workload of

the global single rate AB and MRAB time integrators for one synchronization

level can be given as

WAB = l ·K ·WDk
, WMRAB = l ·Kf ·WDk

+Ks ·WDk
(3.12)

and the speed up will be

Sth =
WAB

WMRAB

=
l

1 + (l − 1)Kf/K
(3.13)

This speed-up approximation can be considered as the upper bound because

of neglecting the extra flux computations at multi-rate interface and additional

update stages. Efficiency of the MRAB increases when the number of fast ele-

ments decrease and number of sub-steps increase. It is expected that speed-up

will be higher when the interface occupies a small portion of the problem and

localized with the adaptivity as our scheme achieves.
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3.2.3 Localizing Level Set Function

In most of the applications, the LS function are actually needed only near the

zero LS. Far from the interface, only the sign of LS function is important to

represent the interface dynamics. Therefore the LS function should be treated

accurately within |φ|< ε where ε is the band thickness. Focusing on the elements

in a band around the interface has advantages in both lowering the computa-

tional work, preventing discontinuities away from the interface and imposing

the boundary conditions. But errors at a distance slightly larger than ε may

degrade the solution within the band while evolving the LS function [70]. To

prevent this, LS function needs to be accurate in a slightly larger region, e.g.

1.5ε. Restricted LS function can be written as

φ =


φ for |φ|6 ε

Pε(φ) for ε < |φ|< 1.5ε

sgn(φ)1.25ε else

(3.14)

where Pε(φ) is a polynomial with N order continuous derivatives which provides

a smooth transition in the interval ε < |φ|< 1.5ε with a maximum value of

1.25ε. Fig. 3.4 shows the regularized LS function for circular problem on a 2D

computational domain and ε = 0.1. Here quite a large band thickness is used for

illustration purposes. In calculations, band thickness is selected slightly larger

than the minimum diameter of element in coarse level mesh unless otherwise is

stated.

3.2.4 Mesh Adaptivity

DG discretizations are less diffusive comparing with the standard finite difference

schemes, it is obvious that increasing resolution in the vicinity of the interface

improves the accuracy. Adaptive mesh refinement (AMR) strategies are based on

the conformal and non-conformal discretizations. In conformal discretizations,

each face is shared by two elements so that AMR algorithm should handle the

complicated mesh transition to make sure that mesh remains conformal after

adaptation. This approach results with computational burden in refinement
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Figure 3.4: Regularized level set function for the circle centred at (0.5, 0.5) with
radius of 0.3 on computational domain of [0, 1]2, (ε = 0.1, N = 3)

step with easy calculation of fluxes. On the other hand, adaptation step in

non-conformal AMR strategy can be simply obtained by dividing elements by

pre defined levels. Then, numerical fluxes should be evaluated at non-conformal

faces where more than two elements are connected. In this study, non-conformal

discretizations on unstructured simplex elements is selected which enable us to

get fast, more flexible and local adaptive grid.

In the adaptive scheme used here, the computational mesh consists of elements in

a range of predefined levels with l0 denoting initial coarse level and lM being the

maximum level. Refinement and coarsening are performed dynamically during

the solution. The level of refinement and the elemental dependencies are stored

in a hierarchical tree for efficient h type adaptivity.

Refinement is carried out in an isotropic way, i.e. a parent element is divided

into siblings by connecting the mid-edges resulting with 4 and 8 children for

triangle and tetrahedron, respectively. A threshold value,γ is selected to mark

the elements for refinement. There is a flexibility for choosing the threshold value

such as a predefined band width thickness or characteristic element length. If

the min |φk| 6 γ holds and refinement level of the element is smaller than the

predefined maximum refinement level (lk < lM), then the element is marked
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for refinement and the approximation on the parent element is projected onto

its siblings. If min |φk| > γ holds and refinement level of all four siblings are

larger than the initial coarse level, these elements are marked for coarsening

and combined by removing all siblings and their newly created vertices. Then,

solution of the siblings are projected to the parent element and level of refinement

information is updated. Projection from and to siblings is totally local operation

which can be achieved by local matrix, defined on reference element, and vector

multiplications.

The DG method supports arbitrary number hanging nodes per face but it is

restricted to decrease the computational complexity in flux evaluation. Adaptive

mesh is 3 : 1 and 2 : 1 balanced for triangular and tetrahedral elements. In other

words, a face of triangular and tetrahedral element can connect 4 and 3 elements

at most, respectively. Any 1 : 1 connection (conformal pair) is a member of 2 : 1

balanced grid and so on. Fig. 3.5 shows mesh balancing to obtain 3 : 1 grid.

The mesh adaptation strategy is a propagation problem and always performed

on CPU. Efficient, GPU accelerated adaptation is beyond the scope of this study

and will be covered in a future work.

(a) (b)

Figure 3.5: Mesh balancing for a triangular element. (a) Adaptation producing
a connection not a member of 3 : 1 balanced mesh. (b) Obtaining balanced grid
with an extra refinement.
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3.3 Parallel Implementation

Weak element connectivity of the DG discretizations enable element-local com-

putations resulting with locality of memory access. In addition, the high order

approximation space used, increase the amount of computations per degree of

freedom and hence, computational intensity. These features are all well-suited

for the parallelization on many-core/multi-threaded architectures.

The developed method is coded in C++ and OCCA [120] kernel language.

OCCA is a abstracted programming model used to encapsulate native languages

for parallel devices such as CUDA, OpenCL, Pthreads and OpenMP. Therefore,

OCCA allows customized implementations of algorithms for several computing

devices with a single code and offers flexibility to choose hardware architectures

and programming model at run-time.

In our parallel model, a work group computes the integrals of one element while

a work item in a work group computes the contribution from each integration

node in the kernels as shown in Fig. 3.6. There are three major computa-

Figure 3.6: A work group and work item for 3D kernel.

tions required to solve the equation; volume integration, surface integration,

and time-step update which are performed by Volume, Surface and Update ker-

nels respectively. Rest of the section, we introduce the parallel implementation

and basic performance improvement for the kernels.

74



3.3.1 Volume Kernel

Volume integrals are computed in this kernel. V(φk) is in the size of Np on each

element and can be written in the following generic form,

V(Q) = Pr · cF =
d∑
i=1

Pri × cFi (3.15)

where Pri are the projection operators of size of Np×Nc defined on i’th direction

of reference element. Projection operators are obtained pre multiplying local

derivative matrices with inverse mass matrix and cubature weights to accelerate

computations. cFi denote the numerical volume vector defined on the cubature

integration points. In terms of the previously defined operators,

Pri = M−1
T × Dri

T × diag(wc), cFi =
d∑
j=1

∂ri
∂xj
× Ic × (ujφk) (3.16)

First operation of kernel is to copy elemental field variables from global memory

to shared memory i.e. obtaining uk, φk vectors. Np work items are required for

this operation. Then, stored shared memory variables are interpolated to the

cubature integration points with matrix-vector multiplication all using the same

interpolation matrix, Ic × (ujφk). Each work item multiples one row of Ic with

the vectors to avoid memory conflicts. Resulting nodal values and geometric

data, ∂ri/∂xj are stored on register memory for fast evaluation cFi . Nc work

items are assigned for this operation. After this operation, volume flux terms are

computed and stored on the shared memory vectors. Nc work items are used for

this operation. Finally, volume terms are interpolated to interpolation nodes,

i.e. Pri × cFi operation which involves d matrix-vector multiplication performed

similarly previous one to prevent the memory conflicts. Np work item is used

for this operation. Number of required work items change within the kernel to

perform individual tasks. To accommodate the number for work items required

for the all computations, kernel request max(Nc, Np) work items.
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3.3.2 Surface Kernel

Surface contribution is computed in this kernel. S(φ−k , φ
+
k ) is vector of length Np

for each field on element. Surface integral term can be written in the following

generic form,

S(φ−k , φ
+
k ) = Pg × F g

n(φ−k , φ
+
k ) (3.17)

where Pg is the projection operator of Np × (Nf × Ng) that interpolates the

surface terms to interpolation nodes. Pg is defined on the reference element and

pre multiplied with inverse mass matrix and surface cubature weights such that,

Pg = −M−1
T × Ig × diag(wg) (3.18)

F g
n(φ−k , φ

+
k ) represent the normal trace of flux function evaluated at surface cu-

bature points and multiplied with face scale, J∂Dk
/JDk

.

First operation of the surface kernel storing elemental field variables on shared

memory. For internal degrees of freedoms, e.g. φ−k , u
−
k , a vector of size Np is

used for each variable. External field variables, e.g. φ+
k , u

+
k are stored on the

shared vector in size of Nf ×Np where Nf is the number of connection for the

work group. For conformal discretization Nf denotes the number of faces i.e. 3

and 4 for triangle and tetrahedron. Np work item is used for this operation.

Second operation is to interpolate the standard nodal values to surface cubature

points. This operation includes multiplication pre stored shared vectors with

the interpolation matrix defined on the reference element, e.g. Ig × uk. Similar

to volume kernel, each work item multiplies one row of Ig and the vectors. Inter-

polated values and geometric data are stored on the register memory. Then, flux

function at cubature nodes, F g
n(φ−k , φ

+
k ) is computed using previously obtained

register memory values. Flux function is stored on the shared memory vector of

size Nf ×Ng which is equal to assigned number of work items for this step.

Finally, flux function is lifted to the interpolation nodes. This step involves

the matrix - vector multiplication given in Eq. 4.29. Np work item is assigned

for this operation. To accommodate all different tasks, surface kernel request

max(Nf ×Ng, Np) work items.
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3.3.3 Update Kernel

Update kernel computes local time integration step which involves the global

vector operations using computed right hand side vectors and required level of

history depending the order of integration method. Np work item per element

is requested by the kernel.

Performance of the kernels are highly dependent to the hardware, memory usage,

tuning parameters etc. Some basic strategies for performance improvement are

discussed below. Please note that these are not the only tuning strategies and

many other method can be used such as multiple elements per work group,

hardware dependent padding etc. which require an optimization study and will

not covered here.

Coalescing: All elemental nodal values, solution field and geometric data, and

local operators are read from the global memory continuously to maximize the

bus utilization.

Unrolling: Loops are unrolled to reduce the number of instructions, end of

loop checks etc. to minimize the overhead in memory read/write.

Padding: The size of vectors holding elemental nodal values are increased with

the factor of 4 to align the access and minimize bank conflicts.

Memory Usage: All nodal values associated with the element and local pro-

jection/interpolation operators are stored on the shared memory vectors to effi-

ciently reuse in the kernel.

3.4 Numerical Tests

We solved the LS evolution for 2D and 3D test problems on parallel CPU-GPU

platforms. To evaluate the mass conservation of numerical scheme, volume is

computed according to following formula,

V =
K∑
k=1

∫
Dk

H(φ)dx, (3.19)

where H(φ) is a indicator function with H(φ) = 1 if φ > 0 and H(φ) = 0

otherwise. In all of the numerical experiments, MRAB scheme is used for the
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m = 2lM sub-steps with the second order base method if otherwise stated.

3.4.1 2D Zalesak’s Rotating Disk

Zalesak [202] proposed a test to demonstrate how well the interface capturing

method transports the interface. This problem is a good indicator of diffusion

errors of the schemes and used frequently in the literature. Problem initial data

is a slotted disk centered at (0.5, 0.75) with a radius of 0.15, a width of 0.05

and a slot length of 0.25 in the computational domain of [0, 1]2. The constant

vorticity field to transport Γ is given by

u1 = −2π(x2 − 0.5), u2 = 2π(x1 − 0.5) (3.20)

so that the notched disk completes one revolution in 1s.

Accuracy of the present numerical method in terms of area loss (or gain) is

tested on the fixed grid. Numerical test are performed in two different mesh

resolution with characteristic length of h = 1/20 and h = 1/25 where K = 898

and K = 1400 and notched disk is approximately represented by 40 and 55

elements respectively. Table. 3.1 compares the present numerical solutions with

widely used fifth order HJ-WENO level set (LS) and semi-Lagrangian particle

level set (PLS) solutions reported by Enrigth et al. [56, 57]. For the comparison

with the other methods, degree of freedom for N = 3 and N = 5 elements are 10

and 21, respectively so that third order discretization leads total degree of free-

dom of 8980 and 14000 for h = 1/20 and h = 1/25 grids which approximately

corresponds to h = 1/95 and h = 1/120 rectangular grid. Similarly N = 5 dis-

cretization approximately corresponds to h = 1/138 and h = 1/170 rectangular

grids. Results show that area loss problem is solved even in relatively unresolved

cases.

Effect of different refinement levels for the area loss after one revolution is pre-

sented in Table 3.2. h = 1/20 is used as initial coarse grid. Then, mesh is

dynamically adapted so that zero level set contour always lies inside the finest

level elements. Both N = 3 and N = 5 results are presented. Dynamic grid

improved area loss problem significantly and very accurate results are obtained
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Table 3.1: Area loss/gain for 2D Zalesak’s disk problem on fixed mesh.

Method N h Area Area Loss %

Present

3 1/20 0.05777 0.771
3 1/25 0.05800 0.369
5 1/20 0.05813 0.158
5 1/25 0.05819 0.053

LS [56, 57] - 1/200 0.05791 0.540
PLS [56, 57] - 1/200 0.05810 0.200

Exact - - 0.05822 -

with increasing refinement level.

Table 3.2: Area loss/gain in Zalesak’s disk problem for different maximum re-
finement levels and order of approximations.

lM
N 0 1 2 3

Area 3 0.057771 0.058292 0.058232 0.058222
5 0.058189 0.058202 0.058216 0.058220

% Area Loss 3 0.7713 -0.1242 -0.0211 -0.0032
5 0.0529 0.031 0.007 -0.0005

Fig. 3.7(a-c) show the initial coarse level representation of the interface, Lagrange

interpolation of the initial data to lM = 1 grid and interface after one full

rotation for N = 3. Fig. 3.7(d) illustrates zoomed view of upper right corner

of notched disk for N = 3, lM = 0 - N = 3, lM = 1 - N = 3, lM = 2 and

N = 5, lM = 2 cases. Spacing between the minor ticks are given as 5 × 10−3.

Increasing mesh resolution near the interface and high order of approximation

significantly reduce the dissipation and smearing the high radius of curvature

regions. There is no visible difference between the initial and final interface

shapes of N = 5, lM = 2 solution. Our coarsest (N = 3, lM = 0) and finest

(N = 5, lM = 3) solutions after one full revolution are illustrated in Fig. 3.8(a).

High radius of curvature regions (lower and upper corners of the notched disk)

are smeared out as expected due to low resolution in coarsest level. Fig. 3.8(b)

shows zoomed view of lower right corner of notched disk for N = 3, lM = 0 -

N = 3, lM = 1 and N = 5, lM = 3 cases. The figure illustrates that smeared

out corners are quarter circles with different radius. Our results confirmed by

the theoretical work of Ainsworth [1] about diffusive and dispersive properties of

high-order DG methods. Radius of quarter circles scale like πh
4N+2

so that radius
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(a) (b)

(c)

Figure 3.7: Interfaces for Zalesak’s disk (a) Initial coarse level (b) Interpolated
initial data (c) after one full rotation for (N = 3, lM = 1) (d) comparison of
N=5 and N=3 solution for lM = 1.

of circles are reduced by a factor of 2 and 11/7 with each refinement level and

increasing the order from 3 to 5, respectively.

To study the performance of MRAB scheme, 2 different initial mesh is used

starting with the characteristic element length of h = 1/20. h/2 grid is generated

with uniform global refinement. Number of elements in each group, size of sub-

steps and distribution of elements, i.e. size of the slow-fast buffer are expected

to effect predicted speedups. Using different initial grid enable us to obtain
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Figure 3.8: (a) Interfaces for N = 3, lM = 0 and N = 5, lM = 3 cases (b)
Zoomed view of the lower right corner for N = 3, lM = 0 - N = 3, lM = 1 and
N = 5, lM = 3 cases from inside to outside, respectively.

various proportions of the fast elements with the same refinement strategy. For

the calculation of theoretical speedup, time average of the fast group percentage

is used. Numerical experiments shown in Table 3.3, reach the theoretical values

computed according to the Eq. 4.27 for both N = 3 and N = 5. This is because

all the fast elements are located together leading small slow-fast buffer size where

it’s workload contribution is neglected in the theoretical speedup calculations.

Table 3.3: Multi-rate time-stepping speedups for Zalesaks’s disk test at different
refinement levels and order of approximations.

lM
1 2 3

k S Sth %Ĝf S Sth %Ĝf S Sth %Ĝf

h
3 1.38 1.40 43 1.33 1.37 64 1.17 1.20 81
5 1.36 1.40 43 1.33 1.36 65 1.19 1.21 80

h/2
3 1.50 1.53 31 1.51 1.56 52 1.31 1.37 69
5 1.52 1.53 31 1.46 1.49 56 1.26 1.29 74

Finally, we present the parallel performance of kernels on different architectures

and multi-threading models. Fig. 3.9 shows the achieved GFLOPs of volume and

surface kernels on NVIDIA Tesla C2075 GPU when kernels are cross-compiled

with OpenCL and CUDA and on Intel Xeon E5-2670 CPU when kernels are

compiled with OpenMP. Figure also illustrates the speedup of each model rela-

81



tive to serial CPU implementation. All performance numbers are obtained using

the wall clock time from the beginning of one time step to the next one and av-

eraged over a few hundred samples to minimize the timing transients. Similar

performance between CUDA and OpenCL models are observed for both sur-

face and volume kernels on GPU. GPU outperforms the CPU in all polynomial

orders by a factor ranging from 25 to 100.

3.4.2 Vortex in a box

Single vortex in a box problem is solved to show the ability of present numerical

scheme for resolving stretching interfaces. The problem initial data is a circle

centered at (0.5, 0.75) with a radius of 0.15. The deformation velocity field to

transport the interface is given by

ux = sin2(πx)sin(2πy)g(t), uy = − sin2(πy)sin(2πx)g(t) (3.21)

The function, g(t) = cos(πt/T ) is used to reverse the flow field so that initial

data should be recovered after one period, T . This makes the error analysis

simple although flow field is quite complicated. Here T = 8 is used and interface

reaches its most deformed form at half period, t = 4. To compare the numer-

ical experiments, area loss as in Zalesaks disk problem and L1 error, which is

numerically evaluated by calculating initial data on very fine (N = 5, lM = 5)

grid and interpolating the computed H(φ) to the same fine grid, is used.

Table. 3.4 represents the area loss/gain and L1 errors for different order of ap-

proximations and refinement levels for h = 1/20 initial mesh with fifth order

HJ-WENO, LS and PLS solutions given in [56, 57] for h = 128. Results indicate

that local high-order approximation and refinement significantly improves the

area loss and interface shape even in the relatively unresolved solutions without

any special treatment.

Ability of the present method to maintain thin filaments for different refinement

levels is illustrated in Fig. 3.10. Contours in Fig. 3.10(a)-(c), show deformed

interfaces for N = 5 at half period where maximum deformation occurs. Also

recovered interfaces after one full rotation for different refinement levels and
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Figure 3.9: Single precision GFLOPs and speedups of volume and surface kernels
vs polynomial order on CPU and GPU using different multi-threading models.
Speedups are computed according to serial CPU implementation.

N = 3 is represented in Fig. 3.10(d) where only lM = 0 and lM = 1 are shown

because lM = 2 solution nearly indistinguishable from the exact solution.

Similar to Zalesak’s disk problem, 2 different initial mesh configurations, h =

1/20 and h/2 is used for the speedup tests. Computing the theoretical speedups

for this case is not straightforward because element numbers change considerably
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Table 3.4: Area loss/gain and L1 Error for vortex in box problem

Method N lM Area Area Loss% L1 Error

Present

3
0 0.06830 3.37 2.5e−3

1 0.07023 0.64 4.8e−4

2 0.07027 0.58 4.3e−4

5
0 0.07056 0.19 1.5e−4

1 0.07076 -0.10 7.1e−5

2 0.07067 0.02 1.8e−5

LS [56, 57] - - 0.0425 39.8 3.1e−2

PLS [56, 57] - - 0.0702 0.71 1.0e−3

Exact - - 0.0707 - -

during the analysis due to dynamic grid. Per time theoretical speedups are

computed in each time-step and then time averages are calculated to get the

global values. Numerical experiments confirm the theoretical upper bound but

differences are slightly larger than the Zalesak’s disk problem. Fast and slow

groups are not compact unlike the previous problem which leads high fast-slow

buffer region resulting slight deviation from the theoretical speedups.

Table 3.5: Speedups for Zalesaks’s disk for different refinement levels for
MRAB(3,m) with m = 2lM

lM
1 2

N S Sth % Gf S Sth % Gf

h
3 1.33 1.40 43 1.31 1.40 62
5 1.34 1.41 42 1.31 1.38 63

h/2
3 1.45 1.54 30 1.55 1.64 48
5 1.47 1.54 30 1.54 1.60 50

3.4.3 3D Deformation Field

Three-dimensional deformation field problem [106] is solved to show the ability

of present numerical scheme for resolving stretching interfaces. The problem

initial data is a sphere centered at (0.35, 0.35, 0.35) with a radius of 0.15. The

deformation velocity field to transport the interface is given by

u1 = 2 sin2(πx1) sin(2πx2) sin(2πx3)g(t)

u2 = − sin(2πx1) sin2(πx2) sin(2πx3)g(t)

u3 = − sin(2πx1) sin(πx2) sin2(πx3)g(t)

(3.22)
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(a) (b)

(c)

Figure 3.10: Vortex in a box problem deformed interfaces (a) lM = 0 and (b)
lM = 1 and for N = 5 and at t = T/2 (c) recovered interfaces, exact solution
(solid), lM = 0 (dash-dot) and lM = 1 (dashed) for N = 3 and at t = T

The function, g(t) = cos(πt/T ) is used to reverse the flow field so that initial

data should be recovered after one period, T . This makes the error analysis

simple although flow field is quite complicated. Here, T = 3s is used as the

interface reaches its most deformed form at half period, t = 1.5s.

Ability of the adaptive method to maintain thin filaments is illustrated in

Fig. 3.11. We start with coarse grid with characteristic length of h = 1/5

(K = 930). An under-resolution is obvious in the fixed grid even at early times
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of the simulation. Only one level refinement substantially improves the interface

representation. The figure also shows how the non-conformal refinement leads

locally refined grid where K = 1280 at that instanuskint.

Y

Z

X

Phi

0

(a) lM = 0

(b) lM = 1

Figure 3.11: Interface and mesh structure of fixed and one level locally refined
grid for N = 5 at t = 0.2 s. Left: Domain part for x < 0.35. Right: Zoomed
view of interface.

Fig. 3.12 shows evolution of the interface at times, 0, 0.4, 0.8, 1.2, 1.8, 2.2, 2.6

and 3s for lM = 2 and N = 3 starting with h = 1/5 coarse grid. Because

flow is reversed at t = 1.5s, interface shape at time t should be the identical

to the shape at 3 − t. Slight under-resolution starts to be visible at t = 1.2

where filament became too thin. Comparing the LS and particle LS [56] and

quadrature-free DG [117] solutions, our method well preserves the interface on

relatively coarser grids. Note that even we use uniform refinement which gives
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h = 1/20 (K ≈ 60000), our resolution much lower then the previous solutions.

Figure 3.12: 3D deformation test case interfaces at t = 0, 0.4, 0.8, 2.2, 2.6, 3.0s
for two level local adaptivity on h = 1/5 initial grid and N = 3.

Fig. 3.13 presents the floating point operations and speedups for 3D volume and

surface kernels when cross-compiled with CUDA and OpenCL on Tesla C2075

GPU and with OpenMP on Intel Xeon E5-2670 CPU. Speedups are computed

according to serial CPU implementation on the same machine. Volume kernels

at polynomial orders of 1 and 2 give lower performance due to lower computa-

tional load. Surface kernel performs well at all orders due to good vectorization

of upwinding flux on u. Because CUDA ptx compiler can be hardware opti-

mized, CUDA outperforms OpenCL on NVIDIA GPU specially at higher-order

polynomial approximations. Very high speedups factors, around two orders of

magnitude, are obtained on the GPU comparing the serial CPU code . For the

practical order of approximations, N = 3, 4 speedup factors reach 100 and 150

for the volume and surface kernels, respectively.

Fig. 3.14 shows percentage of time spent for the main parts of the solver for

polynomial orders 1,3 and 5 on one level adaptive grid starting with h = 1/10

initial mesh. Update kernel is not included in the figure due to its very low

computational time. Adaptation time includes all mesh refinement/coarsening

operations and data transform between CPU and GPU. As the polynomial order

increases, percentage of time spent for the volume kernel increase while fraction

of adaption step time decrease due to increased computational load. Resulting

from the complexity of non-conformal flux evaluation, surface kernel dominates

the all computations with a decreasing fraction as the polynomial order increases.
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Figure 3.13: Single precision GFLOPs and speedups of volume and surface ker-
nels vs polynomial order on CPU and GPU using different multi-threading mod-
els. Speedups are computed according to serial CPU implementation.

3.5 Conclusion

Numerical results for the solution of the level set equation by high-order nodal

discontinuous Galerkin methods on fully unstructured adaptive meshes are pre-

sented. Refinement and coarsening of the grid is performed only near the inter-
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(a) N = 1 (b) N = 3 (c) N = 5

Figure 3.14: Percentage of time spent for the main parts of the solver at different
orders.

face location to localize the computational effort. A two-rate multi-step Adams-

Bashforth time integration is adopted for the method to avoid the severe time

restriction resulting from the local refinement. Efficiency and high-order accu-

racy of the method for level set advection are confirmed by distinct test prob-

lems. Numerical results indicate that mass is well conserved without applying

any special procedures. The numerical results indicate that the mass loss prob-

lem is not related with the level set formulation, but the numerical discretization

scheme.
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CHAPTER 4

A GPU ACCELERATED LEVEL SET

REINITIALIZATION FOR AN ADAPTIVE

DISCONTINUOUS GALERKIN METHOD

In this chapter, we consider a GPU accelerated high order reconstruction of

signed distance functions in the level set formulation. The flow based reinitial-

ization equation is discretized in space by using a nodal discontinuous Galerkin

method on dynamic unstructured grids. An artificial diffusion approach with a

modal decay rate based regularity estimator is used to damp out high frequency

solution components near kinks where mesh adaptivity is applied. A multi-

rate Adams-Bashforth time integrator is designed to avoid time step restrictions

resulting from artificial diffusion stabilization and local mesh refinement. Plat-

form independence of the solver is achieved with an extensible multi-threading

programming API as common kernel language that allows runtime selection of

different computing devices (GPU and CPU) and different threading interfaces

(CUDA, OpenCL and OpenMP). Overall, a highly scalable numerical scheme

which preserves the simplicity of the original level set method is obtained. Ef-

ficiency, performance and local high order accuracy of the method to construct

signed distance function on highly disturbed initial data with smooth and non-

smooth interfaces are confirmed through distinct two and three dimensional

numerical test cases.
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4.1 Introduction

In free surface and multiphase flows, level set (LS) methods [133] are commonly

used to represent surface dynamics. Evaluation of LS equations in time often

distorts the scalar LS function such that it generates flat or steep gradients near

the interface. Reinitialization replaces LS function with the signed distance

function, which has many advantages such as being regular and having uniform

gradients. Basic algorithms for reinitialization can be categorized as fast sweep-

ing [187] and fast marching [158] methods which are based on the solution of

static boundary value problems, and flow based methods [181] which are based

on defining an artificial flow to obtain signed distance function in steady-state.

Flow based methods are more flexible, accurate and easier to parallelize. The

most popular flow based reinitialization equation is a pseudo time first order

partial differential equation given by

∂φ

∂t
+ sgn(φ0)(|∇φ|−1) = 0, φ(x, 0) = φ0 (4.1)

In principle, interface location remains unchanged because sgn(φ0) = 0, zero

contour of φ and φ0 are the same. Away from the interface, |∇φ| converges
to 1 without explicitly locating the interface location. Except for the signum

term, Eq. 4.1 is a Hamilton-Jacobi (HJ) equation. The general approach is

to smear the signum term in a narrow band and treat Eq. 4.1 as a standard

HJ equation with a smooth Hamiltonian. Finite difference Essentially Non-

Oscillatory (ENO) and Weighted ENO (WENO) schemes have been developed

to solve this equation on Cartesian grids [134, 88]. Although these schemes have

been adapted to unstructured grids [204], they are complicated to implement

and computationally inefficient. Additionally, these schemes result in mass loss

problems in interface capturing applications [56].

Discontinuous Galerkin (DG) methods are a class of finite element methods that

make use of completely discontinuous, piecewise polynomial approximations for

spatial discretization and have excellent properties to overcome the problems

mentioned above. DG can resolve kinks with discontinuous derivatives even

over long time integrations due to the low numerical dissipation achieved by
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the use of local high order polynomial approximations [1]. For these reasons,

DG for LS advection gives more accurate results compared with standard HJ-

ENO/WENO finite difference schemes [117, 179]. However it is rarely used in

reinitialization, because the HJ equations can not be written in conservative

form and it is hard to define suitable numerical fluxes in DG framework.

The first DG method for the solution of the general HJ equations is introduced

in [84]. Accuracy and stability properties of this method are analyzed in [104]

and reinterpreted for a simplified implementation with reduced computational

cost in [107], though this method seems to have made the algorithm indirect,

complicated and not optimal for reinitialization [179]. Then, the local discon-

tinuous Galerkin (LDG) approach, which is first developed to discretize second

order operators, is extended to solve HJ equations directly [199]. Recently, the

DG method has found an application in multiphase-flow simulations with level

set interface modeling in which reinitialization is required to maintain regular-

ity of the LS function. In [70], LS function is reinitialized using a standard

LDG method with an adaptive filtering and stream line diffusion approach for

stabilization, but both the filter strength and diffusion coefficients remained as

user defined parameters. In [179], a high order DG method for the reinitializa-

tion is introduced based on finding the closest distance between a constructed

height function and a point thus, their algorithm is applicable only to struc-

tured cartesian grids and hard to implement in 3D. A fully implicit coupled DG

scheme is used to solve unsteady incompressible multi-phase flow problems in

[141]. They used a geometric reinitialization based on recursive contouring to

localize the zero-level set but this simple reinitialization technique leads noise

in interface and important mass losses without increasing the recursion level,

hence the computational cost, significantly.

High order DG methods, like many other high-order methods, produce oscilla-

tions when the approximation space is inadequate to resolve the main features of

the exact solution, such as kinks in the LS formulation. Different methods have

been proposed to stabilize high-order DG discretizations. A successful approach

is limiting, which is based on reducing polynomial order near discontinuous re-

gions [44] or high order WENO type polynomial reconstruction [147]. On the
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other hand, artificial diffusion, which relies on explicitly adding viscous terms to

the governing equations in order to smooth solution near discontinuities, offers

a stabilization mechanism for high-order discretizations. The amount and the

region where viscosity should be added to avoid oscillations without excessive

smearing requires sophisticated discontinuity detectors. An artificial viscosity

stabilization for high-order DG method is introduced in [140] which resolves

shocks on a sub-cell level. Their shock detector relies on the magnitude of

the highest-order coefficients in an orthonormal representation of the solution.

Later, this method is further improved in [98] by introducing a reliable and

scaled smoothness detector that uses information from all modes instead of only

the highest-order one.

Weak element connection and high-order approximation space in DG method

lead local memory access and high arithmetic intensity. These properties make

DG method well suited for multi-threaded architectures specially for GPUs. Re-

cently, performance of the nodal DG methods on massively parallel architectures

are demonstrated for several applications [63, 62, 123, 99]. Developed LS for-

mulation is further accelerated using modern GPUs and many-core CPUs. Plat-

form independence is achieved using OCCA [121] kernel language that abstracts

common multi-threading languages (OpenCL, CUDA, pThreads and OpenMP)

and offers flexibility to test the developed solver by choosing architecture and

programming language at runtime.

Although the DG has become attractive for solution of multiphase flows prob-

lem with level set interface formulation, it is never used for constructing signed

distance functions. In this chapter, we present a GPU accelerated explicit, flow

based reinitialization scheme on unstructured dynamic meshes using high order

nodal DG space discretization. An artificial diffusion mechanism with a reliable

troubled cell detector is adapted to damp out the high frequency solutions. A

multi-rate time integrator is designed to avoid the time step restriction result-

ing from the high order mesh dependent parameters. It is believed that this

procedure can be effectively used in interfacial flow dynamics problems. The

rest of the chapter is organized as follows: Sec. 4.2 provides mathematical for-

mulation starting with the regularization of signum function and discretization
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of reinitialization equation. Then, an artificial diffusion scheme, including ir-

regularity detector, is given. This section is finished by introducing the time

integrator and mesh adaptation strategy. Finally, in Sec. 4.4, numerical results

that demonstrate the accuracy and flexibility of the method are given.

4.2 Mathematical Formulation

4.2.1 Regularize Sign Function

The general approach for solving Eq. 4.1 is to smear the signum term in a narrow

band in the vicinity of the interface. Without regularization of the sign function,

characteristics of the equation are emanating from the interface in the normal

direction with the unit speed. However, the speed changes with the sgnα(φ0)

term that selection of the regularization affects the steady state solution and the

convergence rate/accuracy of the scheme.

Generally, regularized signum term is selected as sgnα(φ0) = φ0/
√
φ2

0 + α2,

where α is the amplitude parameter chosen as a small, non-zero value related to

the characteristic mesh size, h. Classical low order methods require to choose

α at least to the order of characteristic mesh size, α = O(h). Due to the high

order interpolation of the DG method, variations can be resolved and integrated

stably in the smaller distance of α = O(h/N). Our numerical tests show that

α = 2h/N offers sharp but smooth profile with good integrability of the reini-

tialization equation.

Regularization with only considering the mesh size, creates small coefficients

resulting in small characteristic speeds, when the LS function becomes too flat

near the interface. Also if the LS is too steep, it may change sign and lead

to artificial movement of the interface position [138]. In this study, hyperbolic

tangent function with modified amplitude parameter is used to regularize the

signum term such as,

sgnα(φ0) = tanh(
πφ0

α
) (4.2)

where α = 2|∇φ0|h/N , is scaled with the gradient of the initial level set function
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to overcome the distorted initial data problem. This regularization function

smooths the discontinuous coefficients in 2α neighborhood of the zero LS and

offers smooth but sharp profile. Different regularization choices are compared

in Sec. 4.4 in terms of convergence rate and accuracy on a problem with highly

distorted initial data.

4.2.2 Discretization of Hamiltonian

After regularizing the signum term, the reinitialization equation can be written

as the following standard HJ equation with smooth coefficients.

∂φ

∂t
+H(

∂φ

∂x
) = 0, φ(x, 0) = φ0 (4.3)

where x = (x1, ·, xd) are the Cartesian coordinates and Hamiltonian, H(∂φ
∂x

) de-

notes sgnα(φ0)(|∇φ|−1) with t being the fictitious time variable. Solving Eq. 4.3

requires an accurate approximation of solution derivatives which is calculated

following the Local Discontinuous Galerkin (LDG) method [199]. The LDG for-

mulation requires to define two new variables for each derivative component.

Let plxi and p
r
xi

be auxiliary variables used to approximate ∂φ
∂xi

when the fluxes

are chosen from the left and right upwinding sides, respectively. Then, for the

ith component, we have two equations, such that

pl,rxi −
∂φ

∂xi
= 0 (4.4)

Let φ is approximated by φh ∈ VN . Multiplying Eq. 4.4 with test functions,

vh ∈ VN , integrating over element domain and performing integration by parts

leads to the following upwind DG scheme for in weak form,

(pl,rxi , vh)Dk
+ (φh,

∂vh
∂xi

)Dk
− (φl,rxi nxi , vh)∂Dk

= 0 (4.5)

left and right upwind fluxes can be defined as,

φlxi =

φ− for nxi > 0

φ+ for nxi < 0
and φrxi =

φ+ for nxi > 0

φ− for nxi < 0
(4.6)

It is obvious that volume terms are the same and only flux functions differ

between the directional derivative approximations of each component. Finally,
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Eq. 4.3 is integrated over the cell Dk to get,

(
∂φh
∂t

, vh)Dk
+
(
H̄(plx, p

r
x), vh

)
Dk

= 0 (4.7)

H̄(plx, p
r
x) is a monotone and consistent numerical Hamiltonian approximating

H(∂φ
∂x

). We use the Godunov Hamiltonian given below because it is efficient,

easy to program and leads pure upwind scheme.

H̄(plx, p
r
x) = sgnα(φ0)



(
d∑
i=1

max((pl,mxi )2, (pr,pxi )2)

)1/2

− 1, if sgnα(φ0) > 0(
d∑
i=1

max((pl,pxi )2, (pr,mxi )2)

)1/2

− 1, else

(4.8)

In Eq. 5.30, positive and negative parts of the approximate directional derivatives

are defined as pl,pxi = max(plxi , 0) and pl,mxi = −min(plx, 0).

It is important to mention that when the solution is smooth, plxi is very close to

prxi while they differ significantly near the discontinuities. Thus, at discontinuous

regions, (plxi , p
r
xi
) can capture the complete information of ∂φ

∂xi
. For a piecewise

constant approximation, this scheme is monotone and converges to the entropy

solution. However, stabilization is needed for higher order approximations. The

use of artificial diffusion and regularity detector is discussed next.

4.2.3 Artificial Diffusion

Limiting prevents the oscillations near discontinuities by reducing the order of

the approximation space and is used as a standard approach for stabilizing DG

methods. Limiting can also be interpreted as introducing diffusion by explicitly

omitting high order terms of the expansion basis and reconstructing the solution

with lower degree polynomials. Reducing the order of the interpolating polyno-

mial space degenerates the solution not only in elements having kinks but also in

a wide surrounding region by adding diffusion of O(h). It is also computationally

expensive due to the reconstruction of the solution especially in non-conformal

discretizations. Instead, we developed a fast and efficient artificial diffusion sta-

bilization mechanism that introduces dissipation of O(h/N) and resolves the
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kinks in an element length. By adding the diffusion term, Eq. 4.1 can be recast

into following form,

φt + sgnα(φ0)(|∇φ|−1) = ∇ · (ν∇φ) (4.9)

where ν denotes the artificial diffusion coefficient. How much and where the

viscosity should be added to avoid oscillation without excessive smearing out

requires reliable and scalable troubled element detectors.

Klockner et.al. [98] introduced a modal regularity detector as an improvement to

the method proposed in [140] by taking into account the all modes of expansion

space for high-order DG solution of 1D transport equations. We generalized

this approach to 2D simplex element which is challenging due to dependency

on the adjacency of modal coefficients. Fig. 4.1 illustrates the dependency of

the all modal coefficients in triangular element for the approximation order,

N = 3. First, we grouped the same order modal coefficients and then obtain

Figure 4.1: Relation of the modal coefficients for 2D and corresponding 1D
polynomial expansions, N = 3

the corresponding 1D expansion space using a quadratic mean,

qn = (
N∑
n=0

q2
(i,j))

1/2 for i+ j = n, i, j ∈ {0, · · · , N} (4.10)

where double and single indexes show the 2D and computed 1D modal coef-

ficients respectively. The coefficients in the expansion space are expected to

decay fast for the smooth solutions. Rate of decay is decelerated when the solu-

tion is non-smooth. Thus, smoothness information can be approximated using

a Fourier analogy, |qn|∼ cn−s. Taking the logarithm of the relation leads to

log(|qn|) ∼ log(c)− s log(n) (4.11)
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The modal decay exponent, s and the coefficient, log(c) can be recovered from a

least squares fitting. Analysis of Fourier mode decay reveals that s ≈ 1 if solution

is discontinuous, s ≈ 2 if φ ∈ C0, s ≈ 3 if φ ∈ C1 and so forth. However, in

some circumstances, such as odd-even effect on modal coefficients, least squares

fits mislead decay exponent. The skyline pessimization [98] recovers this issue

by creating a new modal set, q̄n such as

q̄n = max
i∈{min(n,N−1),...,N}

|qi| for n ∈ {1, 2, . . . , N} (4.12)

In the new modal set, each modal coefficient is increased up to a higher-numbered

coefficient, keeping the largest numbered coefficient larger than the second largest

numbered one to eliminate non-monotone decay.

To show the performance of the detector, consider the signed distance function

for the circle centered at origin with radius of 1.0. In this case, LS function is

given as φ0 =
√
x2 + y2 − 1 which is a non-differentiable C0 function with a

kink located at (0, 0). In Fig. 4.2, the modal portrait, skyline cut procedure and

fitted decay curves with and without skyline pessimization are investigated on

the element including center point for N = 3 and N = 5. The expected decay

exponent is 2 and it is approximated as 1.97 and 2.01 for N = 3 and N = 5,

respectively. Even in the low order case where only 3 modal coefficients exist to

approximate decay rate, the modal indicator accurately predicts the smoothness

information for triangular elements.
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Figure 4.2: Modal portrait and approximated modal decay profile for computed
1D expansion on an element having kink.
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Having shown that modal decay fit with skyline pessimization is a robust and

accurate smoothness indicator, we can construct the activation function, ν(s)

which determines the magnitude of elemental artificial viscosity according the

decay exponent. We prefer not to modify C1 solutions similar to [140] and

consider a smooth transition between C1 and discontinuous solutions as follow,

ν(s) = νmax


1 s ∈ (−∞, 1),

1

2
(1 + sin(−π(s− 2)

2
)) s ∈ [1, 3],

0 s ∈ (3,∞).

(4.13)

The activation function returns the maximum viscosity, νmax if s ≤ 1 and zero

if s ≥ 3. νmax should be chosen as a function of discretization resolution to

localize discontinuity in an element length. Local characteristic velocity analysis

reveals that νmax = λmax
h
N

propagates information the same distance as with

the hyperbolic part of the equation. λmax is the maximum characteristic speed

of Eq. 4.1 and can be approximated as 1 although, it is slightly lower than 1

because of the regularization of the sign function.

The artificial viscosity is constant in each element, and possibly locally vanish-

ing and discontinuous through the elements. The numerical solution of diffusion

equations with discontinuous coefficients requires special attention especially

with high order discretizations. To overcome this complexity, a diffusion equa-

tion is solved to smooth viscosity in time and space in [8] but this method is not

suitable for explicit time integration and is computationally expensive. In [98],

a post-processing technique is proposed to obtain globally continuous viscosity

by using linear interpolation of vertex maximums. This approach may cause

spreading of diffusivity to a stencil of the selected element and it is hard to

implement on h nonconforming discretizations.

In this study, we use a direct approach to discretize the diffusion operator with

discontinuous coefficients. The symmetric interior penalty method (SIP) with

weighted averages, [54] is adapted to handle discontinuous and locally vanishing

diffusivity directly. Introducing a new vector function, σ , diffusion operator can

be re-written in the following mixed form,

∇ · (ν∇φ) = ∇ · σ, σ = ν∇φ (4.14)
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Then multiplying the mixed formulation of Eq. 4.9 with test functions, vh ∈ VN
and ψh ∈ VdN and integrating by parts leads the following local form,

(
∂φh
∂t

, vh)Dk
+ (H̄(plx, p

r
x), vh)Dk

= −(σ,∇vh)Dk
+ (n · σ∗, v)∂Dk

(σ, ψ)Dk
= −(νφh,∇ · ψ)Dk

+ (νφ∗,n · ψ)∂Dk

(4.15)

Numerical fluxes that approximates the scalar and vector valued flux functions

in the boundary contributions are given as,

φ∗ = {φh}, σ∗ = {ν∇φh}ω − τ [φh] (4.16)

with average and jumps operators of,

{φ}ω = ω−φ−h + ω+φ+
h , [φ] = n−φ−h + n+φ+

h
(4.17)

The viscosity weighted averages are introduced by defining double valued scalar

function in internal faces,such as

ω− =
ν+

ν− + ν+
ω+ =

ν−

ν− + ν+
(4.18)

where weights satisfies, ω− + ω+ = 1 and ω−, ω+ ≥ 0 . Here, the ν− + ν+ =

0 case is not introduced because diffusion is only computed on the selected

elements (s < 3) and on their first neighbors due to locality of artificial viscosity

and compactness of discretization. By setting ω− = ω+ = 1/2, the regular

average operators are recovered and subscripts are dropped. The penalty factor,

τ plays an important role for the stability of the scheme and should be selected

sufficiently large to enforce coercivity. We use the following definition of the

penalty parameter,

τ k =
2ν−ν+

ν− + ν+
N(N + 1)

h∂Dk

min(hDk,− , hDk,+)
(4.19)

Here, h∂Dk
and hDk

denote the surface area and volume of the element, re-

spectively. On the non-conformal faces with hanging nodes, where more than

two elements are connected, γ is computed using the collection of all adjacent

elements which guarantees the coercivity [160]. Boundary conditions for the

artificial diffusion equation are only needed on the troubled elements lying on

the global boundary. In those cases, symmetry conditions are imposed by intro-

ducing exterior ghost states.
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4.2.4 Mesh Adaptivity

Although, artificial diffusion is favorable in terms of the magnitude of dissipation

to resolve kinks, it is obvious that using h adaptivity in the vicinity of troubled

region is crucial to recover the accuracy. In the adaptive scheme used here, the

computational mesh consists of elements in a range of predefined levels with

l0 denoting initial coarse level and lM being the maximum level. Refinement

and coarsening are performed dynamically during the solution. The level of

refinement and the elemental dependencies are stored in a hierarchical tree for

efficient and fast h type adaptivity.

Refinement is carried out in an isotropic way, i.e. a parent triangle is divided

into four siblings by connecting the mid-edges. Elemental decay exponent, s

is used as a threshold value to mark the elements for refinement. If s 6 3,

which indicates non-zero elemental viscosity, and refinement level of the element

is smaller than the predefined maximum refinement level, then the element is

marked for refinement and the approximation on the parent triangle is projected

onto its four siblings.

For coarsening, elements are checked in two steps. In the first step, if s > 3 and

refinement level of all four sibling elements are larger than the initial coarse level,

these elements are marked for coarsening. The marked elements are temporarily

combined by removing the center element and its three vertices. Solution of the

sibling elements are projected onto the parent element. Then, a second check

is performed on the temporarily combined element. If s 6 3 for this element,

we keep siblings untouched otherwise they are combined and level of refinement

information is updated.

The DG method supports arbitrary number hanging nodes per face but it is

restricted to decrease the computational complexity in flux evaluation. Adaptive

mesh is 4 : 1 and 2 : 1 balanced for triangular and tetrahedral elements. In other

words, a face of triangular and tetrahedral element can connect 4 and 3 elements

at most, respectively. Any 1 : 1 connection (conformal pair) is a member of 2 : 1

balanced grid and so on as illustrated previously in Fig. 3.5.
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4.2.5 Local Time Stepping

The spatial discretization of the pseudo time reinitialization equation with ar-

tificial diffusion is discussed in the previous sections. The semi-discrete form of

the equation can be written in the following general form.

dφk
dt

= V(φk) +

Nf∑
n=1

Sf (φ−k , φ
+
k ) = L(φk, t) (4.20)

where L(φ, t) is the linear operator coming from the spatial discretization given

in Eq. 4.15. Explicit time integration schemes are conditionally stable and time

step size is limited by Courant-Friedrichs-Lewy (CFL) criterion as,

dt ≈ 1

λmax
N2

hmin
+|ν|L∞ N4

h2min

(4.21)

For global time stepping, the smallest element length and approximation order

determine the overall time step size. Explicit time integration schemes require to

take into account an extension of imaginary axis of stability region responsible

for convective scale, hmin/(λmaxN
2). Also it requires an extension in negative

real axis responsible for the diffusive scale, h2
min/(|ν|L∞N4) which leads to very

small allowable time step size due to high order mesh dependent parameters

when a standard global explicit integration is used.

In this section, we adopted the previously developed two rate multistep Adams-

Bashforth (MRAB) scheme to reinitialization problem with artificial diffusion

stabilization. Developed Adams-Bashforth (AB) method using different order

base methods and substeps is modified to relax the time step restriction and to

efficiently integrate this adaptive high-order DG level set reinitialization formu-

lation. Theoretically, each element can be integrated with its time step size in

a local time stepping technique but grouping the elements satisfying the local

CFL condition in each group are required to obtain computationally efficient

scheme.

In the MRAB scheme, elements are grouped according to their refinement levels

if the maximum refinement depth is larger then zero. It is assumed that elements

belonging to the same group have the same characteristic time scale and each
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time scale differs by an integer ratio so that two groups can be synchronized in

the largest time-step. Elements having smooth solution or in the initial coarse

level form the slow group, Gs. All troubled or refined elements and their siblings

form the fast group, Gf without checking the refinement levels. This grouping

strategy is reasonable because in the adaptive scheme, troubled elements that

artificial diffusion is required to stabilize, are in the highest level. The other

refined elements having smooths solution include the very small proportion of

the grid. So grouping those elements and increasing the rate number does not

introduce any computational gain in our case. In Fig. 4.3, fast group that are

marked for the stabilization, form the fast group and all other elements belong

the slow group. The first slow neighbors of the fast group form the slow-fast

buffer which need to be known for efficient implementation.

Figure 4.3: Multi-rate groups for the circular interface problem. Grey elements
form the fast group, Gf and other elements form the slow group, Gs. Dark
elements show the slow-fast buffer.

The features and coupling between the groups of the MRAB(l,m) scheme with

base method of order l and sub-steps number of m is introduced in ??. In the

DG method, elements are weakly connected with their first neighbors by fluxes.

Once an element evolves in time with a stable time-step size, it doesn’t require

additional information from the other time scales. In other words, coupling

between the groups is also weak so that elements inside the groups but away from

the slow-fast interface can be evolved with the base Adams-Bashforth integrator
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without any special treatment. Previously adapted fastest first approach [67] is

used in the computations so that fast elements away from the coupling interface

can be advanced from time tn to tn+m in m substeps with the fast side time-step

size, ∆tf as follow

φn+i
f = φn+i−1

f + ∆tf

l∑
j=1

βjL(φn+i−j
f ) for i = 1 · · ·m (4.22)

where β denotes the corresponding single rate AB coefficients. Similarly, pure

slow components can be advanced to the same time level in a single step with

the time step size of m∆tf .

φn+m
s = φns +m∆tf

l∑
j=1

βj
(
L(φn−(j−1)m

s )
)

(4.23)

The complexity of the MRAB comes from communication between the bulk

groups while satisfying the conservation and accuracy. Efficient coupling of the

bulk group is explained in ?? . Only steady state solution of the reinitialization

equation is needed, so that this coupling approach does not degrade the global

accuracy. Fast elements at the transition region is evolved as follow,

φn+i
f = φn+i−1

f + ∆t
l∑

j=1

βjL(φn+i−j
f , φn−(j−1)m

s ) (4.24)

Slow-fast buffer is integrated in a single step by adding the known sub-level fast

side flux contribution to the slow side.

φn+m
s = φns + ∆t

l∑
j=1

βj

(
m∑
i=1

L(φn+i−j
f , φn−(j−1)m

s )

)
(4.25)

It is obvious that the only extra effort compared with the single step AB scheme

is the doubled evaluation of the flux function at the face located on the slow

side of the buffer region so it is minimal. When the number of the sub-levels

increase, elements in fast side and size of slow-fast buffer decrease, efficiency of

the local time stepper increase. Number of sub-levels can be easily driven from

the Eq. 4.21 such that m = 1 + N × 2lM by using λmax = 1 and |ν|L∞ = h\N
and assuming characteristic mesh size is reduced by half with each isotropic

refinement level. AB methods are not self starting because they need l + 1
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closest history. The initial values are provided with (l + 1)m small time-steps

by Runge-Kutta methods which is one order higher than the base AB method

to ensure that the temporal errors are only introduced by the MRAB scheme.

Finally, the efficiency of the local time stepper is estimated similar to ?? by

assuming that the work load for each element, L̄Dk
is the same and dominates all

the computations. Also, it is assumed that slow-fast buffer is totally integrated

with the slow time scale although fluxes through the fast side are computed in

the fast time scale. Let the number of elements in the fast and slow time scales

are KGf
and KGs respectively. Under these assumptions, workload, W of the

global single rate AB and MRAB time integrators for one synchronization level

can be given as

WAB = mKL̄Dk
, WMRAB = mKGf

L̄Dk
+KGsL̄Dk

(4.26)

and the theoretical speed up will be

Sth =
WAB

WMRAB

=
m

1 + (m− 1)KGf
/K

(4.27)

Again, this theoretical speedup calculation can be considered as an upper bound

due to omitting additional workload such as residual update and buffer region

computations. In the reinitialization scheme, only small portion of the grid

form the fast group and they are located together leading small slow-fast buffer

size so that efficiency of the local time stepping is expected to be high. At this

point, locality of the mesh refinement is important to prevent the number of fast

elements grow rapidly which is achieved with the non-conformal mesh adaptivity

by letting the number of hanging nodes per face arbitrary.

4.3 Parallel Implementation

Weak element connectivity of the DG discretizations enable element-local com-

putations resulting with locality of memory access. In addition, the high order

approximation space used, increase the amount of computations per degree of

freedom and hence, computational intensity. These features are all well-suited

for the parallelization on many-core/multi-threaded architectures.
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The developed method is coded in C++ and OCCA [120] kernel language.

OCCA is a abstracted programming model used to encapsulate native languages

for parallel devices such as CUDA, OpenCL, Pthreads and OpenMP. Therefore,

OCCA allows customized implementations of algorithms for several computing

devices with a single code and offers flexibility to choose hardware architectures

and programming model at run-time.

In our parallel model, a work group computes the integrals of one element while

a work item in a work group computes the contribution from each integration

node in the kernels. There are three major computations required to solve

the equations; volume and surface integration, and time-step update which are

performed by Volume, Surface and Update kernels in solve and stabilization

steps.

4.3.1 Volume Kernel

Volume integrals are computed in this kernel. V(φk) is in the size of Np on each

element and can be written in the following generic form,

V(Q) =
d∑
i=1

Pri × cFi (4.28)

where Pri is the local projection operators of size of Np × Nc defined on i’th

direction of reference element. Projection operators are obtained pre multiply-

ing local derivative matrices with inverse mass matrix and cubature weights to

accelerate computations. cFi denote the numerical volume terms defined on the

cubature integration points.

First operation of kernel is to copy elemental field variables from global memory

to shared memory such as φk vector. Np work items are required for this oper-

ation. Then, stored shared memory variables are interpolated to the cubature

integration points with matrix-vector multiplication all using the same inter-

polation matrix. Each work item multiples one row of cubature interpolation

matrix with the vector to avoid memory conflicts. Resulting nodal values and

all required geometric data, i.e. metric identities and Jacobian of local to global

transformation, are stored on register memory for fast evaluation cFi. Nc work

107



items are assigned for this operation. After this operation, volume flux terms are

computed and stored on the shared memory vectors. Nc work items are used for

this operation. Finally, volume terms are interpolated to interpolation nodes,

i.e. Pri × cFi operation which involves d matrix-vector multiplication performed

similarly previous one to prevent the memory conflicts. Np work item is used

for this operation. Number of required work items change within the kernel to

perform individual tasks. To accommodate the number for work items required

for the all computations, kernel request max(Nc, Np) work items.

4.3.2 Surface Kernel

Surface contribution is computed in this kernel. S(φ−k , φ
+
k ) is vector of length Np

for each field on element. Surface integral term can be written in the following

abstract form,

S(φ−k , φ
+
k ) = Pg × F g(φ−k , φ

+
k ) (4.29)

where Pg is the local projection operator ofNp×(Nf×Ng) which is pre multiplied

with inverse mass matrix and surface cubature weights. F g(φ−k , φ
+
k ) represent

the flux function evaluated at surface cubature points.

First operation of the surface kernel storing elemental field variables on shared

memory. For internal degrees of freedoms, e.g. φ−k , a vector of size Np is used for

each variable. External field variables, e.g. φ+
k are stored on the shared vector

in size of Nf×Np where Nf is the number of connection for the work group. For

conformal discretization Nf denotes the number of faces i.e. 3 and 4 for triangle

and tetrahedron. Np work item is used for this operation.

Second operation is to interpolate the standard nodal values to surface cubature

points. This operation includes multiplication pre stored shared vectors with

the cubature interpolation matrix defined on the reference element. Similar to

volume kernel, each work item multiplies one row of interpolation matrix and

the vectors. Interpolated values and geometric data are stored on the register

memory. Then, flux function at surface cubature nodes, F g(φ−k , φ
+
k ) is computed

using previously obtained register memory values. Flux function is stored on the
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shared memory vector of size Nf×Ng which is equal to assigned number of work

items for this step.

Finally, flux function is lifted to the interpolation nodes. This step involves the

matrix - vector multiplication i.e. Pg × F g(φ−k , φ
+
k ). Np work item is assigned

for this operation. To accommodate all different tasks, surface kernel request

max(Nf ×Ng, Np) work items.

4.3.3 Update Kernel

Update kernel computes local time integration step which involves the global

vector operations using computed right hand side vectors and required level of

history depending the order of integration method. Np work item per element

is requested by the kernel.

Performance of the kernels are highly dependent to the hardware, memory usage,

tuning parameters etc. Here, we only use coalescing and unrolling which are very

basic ways to improve the performance of kernels. Please note that these are not

the only tuning strategies and many other method can be used such as multiple

elements per work group, hardware dependent padding etc. which require an

optimization study and will not be covered here.

4.4 Numerical Tests

Reinitialization tests are solved for both smooth and non-smooth interface prob-

lems. To evaluate the accuracy of the numerical scheme, the L1 and L∞ norms

are determined according to the following relation,

L1 =
1

NT

∑
n=n1···nNT

hn|φn − φen|, L∞ = max
n=n1···nNT

(hn|φn − φen|) (4.30)

where hn represent the characteristic length of the element that node, n belongs

and NT denotes total number of nodes in the computational grid or in the prede-

fined band thickness, ε depending on the location where the error is computed.

φe denotes the exact solution or very accurate approximation of the exact solu-
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tion if it is not explicitly known. Although local time stepper is formulated for

the arbitrary orders, we used second order base methods if otherwise stated in

the computations.

4.4.1 Circle

In the first test case, the reinitialization problem proposed by [178] is solved.

The interface of interest is a circle centered at the origin with radius of 1.0. The

signed distance function in a computational domain of [−2, 2]2 is perturbed into

the following initial level set function

φ0 = ((x1 − 1)2 + (x2 − 1)2 + 0.1)(
√
x2

1 + x2
2 − 1) (4.31)

The initial LS has a smooth interface with widely changing gradients which cre-

ates flat and steep regions in the vicinity of the interface. Fig. 4.4 shows the

measured order of accuracy for N = 3, 4, 5 using L∞ and L1 error estimates.

In panel (a), errors are measured near the interface with condition of ε = 0.1

such that kink point at (0, 0) is excluded. Panels (b) and (c) shows globally

measured L∞ errors including the kink region. Computations are performed on

the sequence of meshes by dividing the initial coarse level grid having charac-

teristic length of h = 0.4 and element number of K = 226 in panels (a) and (b).

Locally adapted grid with different refinement depths are used for the errors in

panel (c). Optimal N+1 convergence rate is obtained near the smooth interface

region while second order global accuracy is obtained due to the kink point, as

expected. Comparison of (b) and (c) reveals that non-uniform local and uni-

form global refinements give very close errors and convergence rates indicating

the efficiency of local refinement strategy.

As mentioned in Sec. 4.2.1, the regularization of the signum term has an impact

on the accuracy and convergence of the scheme. To test the behavior of regu-

larization, sgnα(φ0) = φ0/
√
φ2

0 + (|∇φ0|h)2 [138] is compared with sgnα(φ0) =

φ0/
√
φ2

0 + |∇φ0|h [26]. Also, our selection of the normalized hyperbolic tangent

function, sgnα(φ0) = tanh( πφ0
2|∇φ0|h), which is also C∞ continuous over the do-

main, is used. Fig. 4.5 shows the local L1 error decay for these regulated signum
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Figure 4.4: Accuracy of the scheme at constructing signed distance function for
smooth circle test.

terms. The hyperbolic tangent function is sharp and leads to fast convergence

but gives slightly larger errors in steady state. For the regularization given in

[26], more accurate results can be obtained by sacrificing the speed substantially.

The regularization proposed in [138] offers a mid point between accuracy and

convergence speed. Hyperbolic tangent function gives very fast convergence and

used rest of the papers.

Fig. 4.6 illustrates the time evolution of the level set function for lM = 2 dy-

namic grid starting from the initial mesh with characteristic length of h and

N = 5. A good recovery of the signed distance function is obtained for highly

disturbed initial data and relatively coarse grid. Note that, proposed method

does not cause the artificial movement of the interface and that its location
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Figure 4.5: Speed of local L1 error decay for different regulated signum terms
at grid h and N = 3.

remains unchanged after reinitialization.

To study the speedup, initial mesh configurations with the characteristic ele-

ment lengths of h is used. Number of elements in each group, size of substeps

and distribution of elements, i.e. size of the slow-fast interface are expected

to effect predicted speedups which changes with the depth of refinement. For

the calculation of theoretical speedup, time average of the fast group percent-

age is used in adaptive studies. Numerical experiments shown in Table 4.1,

reach the theoretical values computed according to the Eq. 4.27 for both N = 3

and N = 5. This is because all the fast elements are located together leading

small slow-fast buffer size where its workload contribution is neglected in the

theoretical speedup calculations.

Table 4.1: Speedups for circle test case for different refinement levels and order
of approximations.

lM = 0 lM = 1 lM = 2
N S Sth %KGf

S Sth %KGf
S Sth %KGf

3 3.85 3.89 0.89 5.29 5.36 5.11 6.48 6.54 8.23
5 5.72 5.75 0.89 7.23 7.28 5.11 7.89 7.94 8.23
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Figure 4.6: Reinitialization of level set function for circle test for grid h/2 and
N = 5. Drawn are contour levels from −0.9 to 0.9 with step size 0.1.

4.4.2 Ellipse

The signed distance function is computed from the reinitialization of ellipse

starting with the following initial LS function,

φ0 = ((x1 − x1,0)2 + (x2 − x2,0)2 + 0.1)(

√
x2

1

A2
+
x2

2

B2
− 1) (4.32)

with A = 1,B = 0.5, x1,0 = 0.875 and x2,0 = 0. Similar to the circle test,

initial LS has both small and large gradients near the interface with extended

kink region between the line segment (−A,A) on the x1 axis. The closed form

of the exact signed distance function is not known for the ellipse so it is accu-
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rately approximated by creating a finite number of points on the interface with

coordinates,

x1,p = A cos(2πp/Np) and x2,p = B sin(2πp/Np) (4.33)

where p and Np are the index and total number of the points inserted on the

interface respectively. Then, the approximated distance function is defined as

φe(x1,i, x2,i) = min(
√

(x1,i − x1,p)2 + (x2,i − x2,p)2)sgn(φ0(x1,i, x2,i)) (4.34)

The same initial mesh configuration with the circle test case is used. Fig. 4.7

illustrates reinitialization of highly perturbed LS function at different solution

times for h/2 grid and N = 5. As seen in the figure, the signed distance function

is recovered from the initial data at both smooth and non-smooth regions. Also

the position of the interface is well preserved leading to the small L∞ errors near

the interface.

Fig. 4.8 shows the marked troubled elements, the mesh structure and LS contours

at the final time of 1.0s. The irregularity detector successfully picks elements

and adaptivity substantially improves the solution near the kink region. Away

from the kink, the scheme achieves full convergence rate similar to the circle

test. Also, pollution caused by the artificial diffusion does not spread out and

degrade the solution outside of the kink.

Similar to circle problem, initial mesh of h = 0.4 is used for the speedup tests.

Numerical experiments confirm the theoretical upper bound but differences are

slightly larger than the circle test. In this case, fast and slow groups are not

as compact as the previous problem which leads comparatively high fast-slow

buffer region resulting slight deviation from the theoretical speedups as given in

Table 4.2.

Table 4.2: Speedups for ellipse test case for different refinement levels and order
of approximations.

lM = 0 lM = 1 lM = 2
N S Sth %KGf

S Sth %KGf
S Sth %KGf

3 3.29 3.41 5.75 3.85 3.96 12.74 3.34 3.47 22.87
5 4.64 4.74 5.31 4.75 4.84 12.74 3.68 3.77 22.87
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Figure 4.7: Reinitialization of LS function for ellipse at grid h/2 and N = 5.
Drawn are contour levels from −0.45 to 0.45 with step size 0.05. Only part of
the domain is shown.

4.4.3 Intersecting Circles

In this test, reinitialization of two intersecting circles of radii r centered at

(±a, 0) and 0 < a < r is considered. Because 0 < a < r holds, the circles

intersect and the interface of interest is the union of the two circles. The signed

distance function to the interface is given as,

d(x1, x2) =


min(

√
x2

1 + (x2 ±
√
r2 − a2)2) if a−x1√

(a−x1)2+x22
>
a

r
and a+x1√

(a+x1)2+x22
> a

r

min(
√

(x1 ± a)2 + x2
2 − r) else

(4.35)
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Figure 4.8: Marked elements and LS contours of the ellipse test case at the final
time of 1.0s for different refinement levels, grid h and N = 3. In second column,
only part of the domain is shown.

This test is more critical because the signed distance function has kinks on the

whole x2 axis and line segment [−a, a] on the x1 axis. The problem is solved for

r = 1 and a = 0.7 on a computational domain of [−2, 2]2. Similar to the previous

tests, the initial LS function is defined by multiplying the signed distance with

a perturbation function to create highly varying gradients near the interface as

follows,

φ0 = ((x1 − 1)2 + (x2 − 1)2 + 0.1)d(x1, x2) (4.36)

Adaptive mesh structure, activated elements and LS contours are shown in

Fig. 4.9 for N = 3 and h = 0.2. Good recovery of the signed distance func-

tion from the perturbed initial LS data is obtained. Local refinement narrows
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the kink region and improves the solution substantially.
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Figure 4.9: Marked elements and LS contours at different refinement levels for
intersecting circle test, h = 0.2 and N = 3. Contours levels are drawn from
−0.9 to 1.0 with step size 0.1. In third row, only part of the domain is shown.

4.4.4 Square

Constructing signed distance function is considered for a square inside the com-

putational domain of [−2, 2]2 starting with following initial LS function,

φ0(x1, x2) = max(|x1 − x1,c|−w/2, |x2 − x2,c|−w/2) (4.37)

For w = 2, x1,c = x2,c = 0, initial LS creates concentric squares centered at

the origin with zero contour level of width 2. Obviously, φ0 is not a signed
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distance function and includes kinks along the diagonals of the domain. Exact

distance function is approximated similar to the ellipse test and has kinks at the

diagonals but only for φ ≤ 0. The LS function is reinitialized well for smooth

and non-smooth regions with sharp corners increasing the local refinement level

as illustrated in Fig. 4.10.
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Figure 4.10: Marked elements and LS contours at different refinement levels for
square test, h = 0.4 and N = 3. Contours levels are drawn from −0.9 to 1.0
with step size 0.1. In second column, only part of the domain is shown.

Parallel performance of kernels on different architectures and multi-threading

models are shown in Fig. 4.11 in terms of achieved GFLOPs of HJ volume and

surface kernels on NVIDIA Tesla C2075 GPU when cross-compiled with OpenCL

and CUDA and on Intel Xeon E5-2670 CPU when compiled with OpenMP. Sim-

ilar performances are obtained for the stabilization volume and surface kernels
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and not included. Figure also illustrates the speedup of each model relative to

serial CPU implementation. All performance numbers are obtained using the

wall clock time from the beginning of one time step to the next one and averaged

over a few hundred samples to minimize the timing transients. Similar perfor-

mance between CUDA and OpenCL models are observed for both surface and

volume kernels on GPU. GPU outperforms the CPU in all polynomial orders

by a factor ranging from 25 to 125 and reach almost peak performance of the

hardware.

4.4.5 3D Smooth Interface

Circular interface problem is extended to three dimension by considering the

following initial level set function in the domain of [−2, 2]3,

φ0 = ((x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 + 0.1)(
√
x2

1 + x2
2 + x2

3 − 1) (4.38)

which gives a highly perturbed spherical interface. Fig. 4.12 shows the initial

and final level set functions for N = 3 on the domain part of z < 0. Initial grid

characteristic length is h = 0.4 where K ≈ 7000. One level refinement depth is

used to recover accuracy near the kink point i.e. center of the sphere. Similar

to the 2D test cases, good recovery of the signed distance function is obtained.

Performance of HJ volume and surface on number of single precision floating

point operations are illustrated in Fig. 4.13 using different multi-threading mod-

els and the same hardware with the previous test case. Speedups factors are

computed according to the serial CPU implementation. Similar performances

are obtained for CUDA and OpenCL implementation on GPU. GPU outper-

forms CPU in all cases with speedup factors ranging between 20-80 for volume

kernel and 50-150 for surface kernel. Higher speedups are obtained at higher

order approximation due to increasing computational intensity. OpenCL seems

to be more efficient on GPU except N = 4 for volume kernel and N = 5 for

surface kernel where CUDA slightly outperforms OpenCL on NVIDIA GPU

when the number of work items per work group are multiplicity of 8. So that
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Figure 4.11: Single precision GFLOPs and speedups of 2D volume and surface
kernels vs polynomial order on CPU and GPU using different multi-threading
models.

padding the number of work items with the factor of 8 could certainly improve

the performances at all orders and multi-threading models.

Table. 4.3 represents the global performance of the solver using different models.

Wall clock times are computed for h = 0.4, (K ≈ 7000), lM = 1 and 1 s total

analysis time where signed distance function is obtained on the whole domain. In
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(a) t = 0 (b) t = 1.0

Figure 4.12: Reinitialization of level set function for spherical interface test.
Drawn are contour levels from −0.8 to 2.4 with step size of 0.4. ( h = 0.4,
lM = 1, N = 3 )

OpenMP model, 16 threads are used with the hyper-threading capacities of the

8-core processor. In all cases, percentage of stabilization time is low compared to

the actual computation time indicating the efficiency of stabilization technique

used. Update stage has a negligible cost thanks to performance of local time

stepper which almost does not require any extra effort comparing single-rate

counterpart. Although, OpenCL is slightly more efficient, similar performance

of OpenCL and CUDA on GPU can be seen in overall simulation time. Also,

percentage of stabilization time in GPU is higher then the CPU implementations

because of the data transform between GPU and CPU in adaptation step.

Table 4.3: Overall timings for the solver on different multi-threading models and
approximation orders.

Solve Stabilize Update
Model N Speedup Total Time (s) % Time (s) % Time (s) %

CUDA (GPU)

3

204 2.00E0 1.76E0 87.96 2.35E-1 11.76 5.60E-3 0.28
. OpenCL (GPU) 207 1.97E0 1.70E0 86.13 2.61E-1 13.26 1.21E-2 0.61
OpenMP (CPU) 15 2.70E1 2.45E1 90.79 2.34E0 8.69 1.41E-1 0.52

Serial (CPU) - 4.08E2 3.70E2 90.73 3.66E1 8.96 1.24E0 0.30
CUDA (GPU)

5

218 3.81E1 3.61E1 94.96 1.90E0 4.99 1.73E-2 0.05
OpenCL (GPU) 210 3.95E1 3.77E1 95.47 1.75E0 4.44 3.53E-2 0.09
OpenMP (CPU) 15 5.46E2 5.26E2 96.19 1.97E1 3.60 1.12E0 0.21

Serial (CPU) - 8.30E3 7.98E3 96.12 3.07E2 3.71 1.39E1 0.17
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Figure 4.13: Single precision GFLOPs and speedups of 3D volume and surface
kernels vs polynomial order on CPU and GPU using different multi-threading
models.

4.5 Conclusion

A GPU accelerated discontinuous Galerkin algorithm on unstructured adaptive

meshes is presented for high-order solution of two and three dimensional level

set reinitialization. An artificial diffusion approach with a reliable irregularity
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detector is used to stabilize the system. The stabilization mechanism does not

reduce accuracy to first-order directly, does not prevent spreading of diffusion

over the elements and is highly scalable in multi-threading architectures. The

presented method is further accelerated with a multi-rate Adams-Bashforth time

stepping to prevent severe time step sizes resulting from the explicit treatment

of artificial diffusion stabilization. Accuracy of the solution is recovered by using

local non-conformal adaptivity in troubled regions. Platform independence of

the solver is achieved with an extensible multi-threading programming API as

common kernel language. The developed solver is highly scalable on many-

core architectures and considerable speedups factors are obtained comparing

the serial CPU implementation.
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CHAPTER 5

A DISCONTINUOUS GALERKIN LEVEL SET

METHOD FOR INCOMPRESSIBLE MULTIPHASE

FLOWS

This chapter focuses on the development of a high-order discontinuous Galerkin

method for the solution of unsteady incompressible multiphase flows with level

set interface formulation. Nodal discontinuous Galerkin discretization is used

for incompressible Navier-Stokes, level set advection and reinitialization equa-

tions on adaptive unstructured elements. Implicit systems arising from the

semi-explicit time discretization of the flow equations are solved with a matrix-

free p-multigrid preconditioned conjugate gradient method which minimizes the

memory requirements and increases overall runtime performance. Computation

is localized mostly near the interface location in the adaptive method to reduce

computational cost without sacrificing the accuracy. Efficiency, local high-order

accuracy and mass conservation of the method are confirmed through distinct

numerical test cases of sloshing, dam break and Rayleigh-Taylor instability.

5.1 Introduction

Multiphase flows occur in many areas of practical importance such as flow-

structure interaction, air-water interfacial dynamics, phase change problems,

reacting flows etc. Numerical prediction of the deformable interfaces in these

complex flows are challenging due to discontinuity in the material properties,

varying topology and range of scales.
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Numerous numerical methods are proposed to represent the phase dynamics

in incompressible flows. These methods can be classified as interface tracking

and interface capturing. The former group are Lagrangian or semi-Lagrangian,

where the mesh explicitly represents the interface [190] or particles define the

interface by their locations (MAC) [76]. Interface tracking approaches are gen-

erally accurate and robust but difficult to use when the interface encounters

topological changes. Interface capturing methods, Volume of Fluid (VOF) [83]

and level set (LS) [133], are Eulerian i.e. an implicit function defined on a fixed

grid represents the interface. Specifically, VOF methods are widely used in mul-

tiphase flow simulations due to its natural conservation properties and efficiency,

but reconstruction of the interface from the volume fraction data and obtain-

ing geometry dependent properties, such as interface normal and curvature, are

difficult to compute.

LS method addresses the problems of interface tracking and VOF methods.

In the LS method, an interface between the phases is represented as the zero

contour of a continuous function which is positive in one region and negative in

the other. This implicit representation of the interface offers many advantages

such as straightforward extension from 2D to 3D, simple handling of topological

changes and easy calculation of geometric properties. The main difficulty with

use of the LS method is the need to control mass loss present in the method.

Various techniques have been proposed to improve the conservation properties of

the original method. Popular ones are combining LS method with VOF method

[180, 174, 193, 108, 200] or with semi-Lagrangian particle method [56, 57, 109,

66, 100] and applying some additional mass correction procedures [177, 192].

Common to all these approaches is the fact that simplicity and computational

efficiency of the original LS method are partly lost. Another modified approach

is the Conservative Level Set (CLS) method [131, 132] based on replacing the

signed distance function of the original LS formulation with sharp hyperbolic

function and altering the equations appropriately. Although mass conservation

can be improved with CLS method, geometric properties may not be computed

as accurate as the LS method due to sensitivity of the normal calculation to

small spurious errors [205]. In fact, the mass loss problem with the LS method
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is more inherent in the discretization scheme used than the formulation itself

[117].

The discontinuous Galerkin (DG) methods ([82] and references therein) are a

class of finite element methods that make use of completely discontinuous spatial

discretization. The DG methods have excellent dissipation properties achieved

by local high-order polynomial approximations to overcome mass loss problem

of the LS formulation. For this reason, DG for LS advection gives more accurate

results compared with the widely used essentially non-oscillatory (ENO) type

finite difference schemes [179]. DG level set modeling is also applied in incom-

pressible multiphase flow simulations i.e. it is combined with stabilized finite

element [118, 116] and conservative finite difference [136] flow solvers. These

hybrid methods require interpolation of the velocity field obtained from the

lower order flow solver to higher order discontinuous polynomial space and back

interpolation of LS function to flow solver grid in each time step. Fine grids

are needed for the lower-order flow solver which may became computationally

inefficient when high-order interpolation orders are used for LS advection.

Multiphase flows are generally highly dynamic in such a way that location and

topology of the interface change considerably during the simulation. Resolution

should be increased in the whole domain, which creates unnecessary burden in

computational time to capture the full physics of the interface. Adaptive mesh

refinement (AMR) techniques decrease the computational effort by increasing

the resolution in the vicinity of the interface with keeping coarse grid at less

dynamic regions. There are some adaptive LS methods for multiphase flows

based on the low order finite difference/volume schemes on structured Cartesian

grid and tree type data structures [176, 175, 112]. Unstructured anisotropic mesh

refinement is also coupled with the low order finite element flow - high order

DG interface modeling [118]. These types of refinement strategies are based

on the conformal discretization that each face can be shared by two elements.

AMR algorithm should handle the complicated interpolation between grids and

mesh transition to ensure the conformity [102]. Global re-meshing or iteratively

optimized local modifications may become inefficient when frequent adaptation

is needed as in the multiphase flow simulations. Due to relaxed strong elemental
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connectivity, DG methods can be easily used on unstructured elements with

hanging nodes [59, 102] enabling the fast adaptation with accurate interpolation

between grids.

In this chapter, we present a high order fully discontinuous Galerkin method

for immiscible, incompressible multiphase flows on adaptive unstructured grids.

In the dynamically adapted grid, no restriction introduced on the number of

hanging nodes per face to avoid complicated remeshing and interpolation steps.

Computational complexity coming from the flux evaluation on non-conformal

faces are handled with precomputed local operators according to the prede-

fined maximum refinement level. Multiphase flow equations are discretized in

time with a semi-implicit splitting scheme which enable to use equal order ap-

proximation for velocity and pressure. Divergence free constraint is explicitly

enforced by interpolating the intermediate velocity to exact divergence free poly-

nomial space. Implicit systems arising from the splitting scheme are solved in

matrix-free form with efficient, matrix-free p-multigrid preconditioner to reduce

the memory requirements and costly assembly procedures. Time evolution of

interface is achieved with discontinuous Galerkin local level set method having

the same other with flow solver that avoids the interpolation of solution fields

to different polynomial spaces in each time step. To reinitialize the distorted

level set function to signed distance function, a stabilized, local scheme based

on the local discontinuous Galerkin method is proposed. To the best knowledge

of authors, this is the first adaptive, fully discontinuous Galerkin method for

multiphase immiscible flows. The proposed method allows to capture interface

topology accurately in simulating wide range of flow regimes with high den-

sity/viscosity ratios and offers good mass conservation even in relatively coarse

grids while keeping the simplicity of the level set interface modeling.

The outline of this chapter is as follows: the governing equations of the problem

and notation used in the numerical scheme are described in Sec. 5.2. Then, time

and high order discontinuous Galerkin spatial discretizations and matrix-free

solution techniques are presented. At the end of the section, local interface model

and reinitialization of the level set function are described. Sec. 5.2.4 is dedicated

to adaptive mesh refinement strategy and computation of flux functions on non-
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conformal faces. Finally, Sec. 5.3 gives distinct numerical test cases to show the

accuracy and mass conservation of the method.

5.2 Numerical Method

5.2.1 Governing Equations

Incompressible, laminar flow of two immiscible, non-reacting fluids is governed

by the Navier-Stokes equations defined on the domain Ω = Ω1 ∪ Ω2 ⊂ R2.

Here, subscripts 1 and 2 denote to sub-domains of the first and second fluids,

respectively. Domain boundary is represented by ∂Ω while the Γ = Ω1 ∩ Ω2

denotes the interface separating the fluid phases. Problem domain, Ω is fixed

but two fluid domains, Ω1 and Ω2 and the interface, Γ change in time.

The non-dimensional incompressible Navier-Stokes and the continuity equations

on the global domain, Ω can be written as,

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+

1

Reρ
∇ · (2µS) +

eg

Fr2 +
κnΓ

We
, ∇ · u = 0, ∀x ∈ Ω

(5.1)

where u denotes the velocity field, p is the static pressure, ρ is the density, µ is

the dynamic viscosity, S = 1
2

(
∇u +∇uT

)
is the deformation rate tensor, eg is

the direction where gravitational acceleration acts, nΓ is the unit normal of Γ

and κ = ∇ · nΓ is the local curvature of the interface. Following parameters are

used to get dimensionless quantities,

x =
x∗

LR
, t =

t∗

LR/UR
, u =

u∗

UR
, p =

p∗

ρRU2
R

, ρ =
ρ∗

ρR
, µ =

µ∗

µR
, eg =

g

|g|
(5.2)

where superscript * denotes the dimensional parameter, the subscript R refers

to corresponding reference value. The non-dimensional Reynolds, Froude and

Weber numbers in the Eq. 5.1 are defined as Re = ρRURLR/µR, Fr = UR/
√
gLR

and We = ρRURLR/σR, respectively. Hereafter, F = eg
Fr2 is used for the non-

dimensional body force term.

Interface continuum condition, i.e. no mass transfer between phases and kine-

matic condition i.e. jump in the normal component of stresses are balanced with
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the surface tension forces so that the net stress vanishes along Γ, are implicitly

included in the equation. Surface tension forces are neglected in this study but

the method still governs many practical, large scale problem where curvature is

too small to contribute to governing equations.

In the level set method, interface between the phases is represented by at least

a Lipschitz continuous function, φ which is positive in one fluid domain and

negative in the other. The zero contour of the implicit LS function, ie. φ(x, t) =

0 defines the current location of interface. Using this definition, ρ and µ can be

globally defined.

ρ(φ) = ρ1H(φ) + ρ2 (1−H(φ))

µ(φ) = µ1H(φ) + µ2 (1−H(φ))
(5.3)

where H(φ) is the classical Heaviside step function. Time evolution of the in-

terface can be obtained by simple advection of the level set function with the

known velocity field .
∂φ

∂t
+ u· ∇φ = 0 (5.4)

In the interface model, LS is kept as signed distance function such that |∇φ| = 1

is fulfilled. Unfortunately, evaluation of LS equation destroys the regularity of

LS function and creates very large or small gradients near the interface. Reini-

tialization replaces the distorted LS with more desired signed distance function

to enhance the accuracy of interface representation. The details of the high-order

reinitialization solution is given in Sec. 5.2.3.3.

5.2.2 Discretization

A high-order splitting scheme [93] is used for the temporal discretization of the

flow equations. The scheme is semi-implicit, in which non-linear term is inte-

grated explicitly and linear term is treated implicitly. We adopted second order

backward differentiation for unsteady term and second order extrapolation for

non-linear term. With this implementation, Eq. 5.1 can be advanced from time

levels, tn to tn+1 by solving the following semi-discrete equations decomposed
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into three fractional steps for u.

û− α0u
n − α1u

n−1

∆t
= β0 ((un · ∇)un + Fn) + β1

((
un−1 · ∇

)
un−1 + Fn−1

)
(5.5a)

ˆ̂u− û

∆t
= − 1

ρ(φ)
∇pn+1 (5.5b)

γ0u
n+1 − ˆ̂u

∆t
=

1

ρ(φ)Re
∇ · µ(φ)∇un+1 (5.5c)

The coefficients, α,β and γ correspond to second order stiffly stable scheme

and their values can be found in [93, 92]. In the splitting scheme, pressure is

decoupled from velocity which avoids spurious pressure modes and enable to use

equal order approximations for both flow fields.

In the first step, nonlinear terms and body forces are advanced explicitly by

second order stiffly stable (SS) extrapolation scheme. Then, incompressibility

constraint is enforced in Eq. 5.5(b) by requiring that the second intermediate

velocity field, ˆ̂u is divergence-free. Finally, a modified Helmholtz equation is

solved for the viscous terms to obtain next time level velocities. In [72], it is

demonstrated that the splitting scheme presented preserves the optimal second

order accuracy.

5.2.2.1 Nonlinear Treatment

The first step of the splitting scheme requires the approximation of nonlinear

term which is written in divergence form i.e. (u · ∇)u = u · ∇u + u∇ · u = ∇ ·
(u⊗ u) where u⊗v = uivj, i, j = 1, · · · , d. Let u is approximated by uh ∈ V d

N .

Multiplying the nonlinear term with a test function, vh ∈ V d
N , integrating over

element domain and performing integration by parts, we obtain the following

local statement.

(∇ · (uh ⊗ uh) ,vh)Dk
= − (uh ⊗ uh,∇ · vh)Dk

+ (n · Juh ⊗ uhK,vh)∂Dk
(5.6)

Due to the discontinuous approximation space, the flux function, n · Juh ⊗ uhK,

in the boundary contribution is not uniquely defined and hence replaced with
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the local Lax-Friedrich numerical flux, F̃c,

F̃C = n · {uh ⊗ uh}+
1

2
Λ∂Dk

JuhK (5.7)

Here, Λ∂Dk
denotes the maximum eigenvalue of the flux Jacobian in absolute

value which reads, Λ∂Dk
= maxu |n · ∂(uh⊗uh)

∂uh
|. The first term of the flux func-

tion denotes central part and and the second one is the dissipative contribution.

Λ∂Dk
determines the required artificial diffusion to stabilize the system. This

flux choice leads to compact stencil size such that the degrees of freedom of an el-

ement couple only its immediate neighbors. Dirichlet boundary conditions is ap-

plied weakly by defining a exterior ghost state where average jump operators be-

come {uh⊗uh}∂Dk∩ΩD
= 0.5 (uh ⊗ uh + uD ⊗ uD) and JuhK∂Dk∩ΩD

= (uh − uD).

Explicit treatment of nonlinear terms introduces a Courant-Friedrichs-Lewy

(CFL) type restriction on the time step size. CFL estimate for high order meth-

ods gives ∆t ≈ O(h/UN2) as reported in [92] for advection model problem.

Here, U and h refer the characteristic velocity and mesh size, respectively.

5.2.2.2 Implicit Treatment

The time splitting scheme requires the solution of implicit pressure Poisson

eqution for velocity projection and modified Helmholtz equation for velocity

correction. Specifically, Poisson equation needs to special attention due to poor

conditioning of the system for the efficient solution and obtaining divergence free

velocity field for long term stability. In this section, we start with discretiza-

tion and solution of velocity projection step and then give the details of the

Helmholtz equation discretization based on the ideas developed in the first part.

Incompressibility constraint is enforced by taking the divergence of Eq. 5.5(b)

which leads to the following variable density pressure Poisson equation.

∇ ·
(
− û

∆t

)
= ∇ ·

(
− 1

ρ(φ)
∇pn+1

)
(5.8)

Boundary conditions of this Neumann problem can be derived from the original

equation. To preserve the temporal accuracy and fulfill the compatibility condi-

tion, Neumann boundary conditions have to be approximated to the same order
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with time discretization scheme, which requires extrapolation of the Neumann

boundary data,

n ·
(

1

ρ
∇p
)n+1

= n ·
[
β0

(
∂u

∂t
+ (u · ∇)u− 1

ρRe
∇ · (2µS)− F

)n
+

β1

(
∂u

∂t
+ (u · ∇)u− 1

ρRe
∇ · (2µS)− F

)n−1 ] (5.9)

There are different DG methods developed for the discretization of the equations

with second (or higher) order operators generally based on the mixed formula-

tion i.e. writing the equations in first order systems by defining new auxiliary

variables (Please refer to [4] for the detailed analysis). In this study, Symmetric

Interior Penalty (SIP) [3] method is preferred due to its simplicity, computa-

tional efficiency and compact stencil size. Let pressure, p is approximated by

ph ∈ VN and vh ∈ VN be the test functions. SIP discretization of the Eq. 5.8 for

an elemental domain reads as follow,(
1

ρ
∇ph,∇vh

)
Dk

−
(
n · {1

ρ
∇ph}, vh

)
∂Dk\ΩN

−
(

JphK,n ·
1

ρ
∇vh

)
+

(γJphK, vh)∂Dk\ΩN
=

(
−∇ · û

∆t
, vh

)
Dk

−
(
pD,n ·

1

ρ
∇vh

)
∂Dk∩ΩD

+

(γpD, vh)∂Dk∩ΩD
+ (pN , vh)∂Dk∩ΩN

(5.10)

where γ is the penalty parameter, pD and pN are Dirichlet and derived Neumann

boundary conditions. In the equation, we dropped time dependence of the pres-

sure for clarity. Penalty parameter plays an important role for the stability of

the scheme and should be selected sufficiently large to enforce coercivity. On

the other hand, selecting arbitrarily large γ values increases condition number of

the system and degrades the performance of linear solvers. We use the following

definition of the penalty parameter.

γ∂Dk
=

1

2
(N + 1)(N + 2) max

(
h∂D−k

ρ∂D−k
hD−k

,
h∂D+

k

ρ∂D+
k
hD+

k

)
(5.11)

Here, h∂Dk
and hDk

denote the surface area and volume of the element, re-

spectively. On the non-conformal faces with hanging nodes, where more than

two elements are connected, γ is computed using the collection of all adjacent

elements which guarantees the coercivity of the bilinear form [160].
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Solution of projection step is challenging and time consuming due to construc-

tion of global system matrices in each time step. Also, discretization matrix

of the Poisson problem is poorly conditioned in high density ratio flows even

with optimum penalty parameter selection. To show the spectral properties of

resulting discretization matrices, condition numbers are computed in a compu-

tational domain of [0, 1]2 with 62 triangular elements using MATLAB built-in

function cond() for the circular, triangular and two intersecting circular shape

of the same characteristic lengths. We observed that condition number is highly

sensitive to the density ratios not to interface shape and topology. Condition

numbers are of the same order of magnitude for different interface topologies

but grow rapidly with increasing density ratio as seen in Table 5.1. Special care

should be considered to solve pressure Poisson problem, efficiently.

Table 5.1: Condition numbers of Pressure Poisson operator with SIP discretiza-
tion for different interface topologies and density ratios. (N = 3, K = 62).

Density Ratio
Interface 1 10 100 1000

Circle
7.03× 103

1.31× 104 1.33× 105 5.15× 107

Triangle 1.51× 104 4.70× 105 8.37× 107

Intersecting Circles 2.78× 104 2.43× 105 7.08× 107

The pressure system arises from the SIP discretization can be written in the

generic form, Ax = b where b and x are the right hand side and unknown

vectors, A is the symmetric and positive definite coefficient matrix so that the

system can be solved efficiently with preconditioned conjugate gradient (PCG)

method. To avoid costly set-up time and minimize the memory requirements, we

newer construct the global matrices in CG solver instead matrix vector multipli-

cations are performed explicitly by doing the calculations per-element as given

in Eq. 5.17. Because the system is poorly conditioned in high-density ratio flows,

efficient preconditioners are required to converge the system within small itera-

tion numbers. Multigrid as the preconditioner for the CG method offers faster

solutions on badly conditioned problems then full multigrid or incomplete LU

preconditioners [182]. Among the other multigrid methods algebraic multigrid

(AMG) requires only entries of the corresponding matrices. AMG methods have

set-up and solve phases. Set-up phase includes construction of hierarchical grids
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by aggregating fine grid nodes to coarse grid node and defining restriction and

interpolation operators to transform data between fine to coarse and coarse to

fine grids, respectively. Hierarchy of the different grids can be computed at the

beginning of analysis and stored for fixed grid and constant coefficient problems

where sparsity pattern and spectral properties of the matrix does not change

in time. But this is not the case for dynamic problems as the pressure Poisson

problem where set-up of the preconditioner creates computational burden and

may suppress the actual solution time.

A p-multigrid preconditioner is designed for the dynamic pressure Poisson sys-

tem to reduce the computational time and memory requirements. We avoid to

construct full matrix and related hierarchical levels. Required residuals are com-

puted with the matrix-free approach starting from the approximation order of

N until reaching first order coarse system. Restriction operator, Iqp that projects

the errors from the polynomial space of order p, to a space of order q for p > q

are easily constructed due to discontinuous interpolating functions,

Iqp = (M q)−1M qp (5.12)

where corresponding mass matrices can be computed in index notation as,

Mp
i,j = (vpi , v

q
j )R and Mpq

i,j = (vpi , v
q
j )R (5.13)

Note that the restriction operator is defined on the reference element and can

be applied element-wise through the whole domain without considering the non-

conformal face pairs, curved elements etc. The prolongation operator that trans-

forms the state vectors from the low order polynomial space to higher one can

be defined similarly leading Ipq = (Iqp)
T . With the use of Lagrange basis space,

these operators are full but small matrices in the size of dimension of polyno-

mial spaces, Np×Nq implying the required matrix-vector multiplication can be

performed efficiently for an element. Because residuals are computed in matrix-

free form, we don’t need to define residual restriction/prolongation operators

where they can be different from the state vectors’ operators. Instead, residual

functions handling different approximation orders are constructed. Geometric

mappings and metric identities are constant for straight sided elements enable

to compute residuals without storing extra information.
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After reducing approximation order to the first order, q = 1, the system matrix

are assembled and related hierarchical grids are constructed at this level bases on

the recently introduced aggregation (AMG) method [64]. One pre- and one post

smoothing step, Sl are used to remove high frequency errors at the corresponding

level, l. Damped Jacobi smoother given below is utilized due to its comparatively

low set-up cost.

x = x+ ωD−1 (b− Ax) , ω =
4

3

1

%(D−1A)
(5.14)

where D is the diagonal of A and %(D−1A) is the spectral radius of the matrix

D−1A estimated from the Arnoldi iterations. K-multigrid cycles are used as a

preconditioner for the CG iterations as illustrated in Algorithm 1. Number of

coarse level iterations increases with K-cycles but it is required to achieve grid

independent convergence and improving overall runtime performance. Note that

combining matrix-free p-multigrid with aggregation (AMG) reduce the storage

and computational effort significantly. If the system is solved with matrix form,

NN × NN × (1 +Nf ) non-zero entries have to be stored for an element only

at the highest level, where Nf stands for the total face connection pairs. This

requirement is reduced to N1 × N1 × (1 +Nf ) so that matrix free approach

becomes more effective in non-conformal discretizations, 3D problems and high

orders.

After obtaining the next time level pressure, pn+1
h second intermediate velocity

field is computed with the use of Eq. 5.5(b). Required pressure gradient, G =

∇pn+1
h is evaluated in the weak form,

(G, vh)Dk
= −

(
pn+1
h ,∇vh

)
Dk

+
(
n · {pn+1

h }, vh
)
∂Dk

(5.15)

where the flux function in the surface integral contribution is replaced with the

numerical central flux.

In the splitting scheme, divergence-free constraint is enforced only in weak and

local sense by projecting the second intermediate velocity field to approximately

divergence free space with setting ∇ · ˆ̂u = 0. This may cause compressibility

artifacts at the element boundaries for long term, slightly viscous, undamped

problems [169]. Numerical test demonstrated that deviation of the velocity field

136



Algorithm 1 K-Cycle Matrix-free p-Multigrid Preconditioner
1: xl,p ← K-Cycle((l, p), bl,p, xl,p)

2: Input: initial guess x0, order n, level l

3: Output: Updated Solution xNl
4: if q ≥ 1 then { Operations in Matrix-free Form }

5: xp ← Sp(bp, Ap, xp) { pre-smoothing }

6: rq ← bq − Aqxq { compute residual for 1 < n ≤ N }

7: rq ← Iqprq { restrict residual to coarse-grid }

8: xq ← K-Cycle(q, rq, xq) { inner CG iteration }

9: else { Operations in Matrix Form }

10: xl ← Sp(lp, Al, xl) { pre-smoothing }

11: rl ← bl − Alxl { compute residual in matrix form }

12: rl+1 ← I l+1
l rl { restrict residual to coarse-grid }

13: if l + 1 = L then { coarsest grid exact solution }

14: xl+1 ← A−1
l+1rl+1

15: else

16: cl+1 ← K-Cycle(l + 1, rl+1, xl+1) { inner CG iteration }

17: vl+1 ← Al+1cl+1, a1 ← cTl+1vl+1

18: α1 ← cTl+1rl+1, r̃l+1 ← rl+1 − α1

a1
vl+1

19: if ‖r̃l+1‖ ≤ TOL‖rl+1‖ then
20: xl+1 ← α1

a1
cl+1

21: else

22: dl+1 ← K-Cycle(l + 1, r̃l+1, xl+1) { inner second CG iteration }

23: wl+1 ← Al+1dl+1, γ ← dTl+1vl+1

24: β ← dTl+1wl+1, α2 ← dTl+1r̃l+1, a2 ← β − γ2

a1

25: xl+1 ←
(
α1

a1
− γα2

a1a2

)
cl+1 + α2

a2
dl+1

26: if l 6= 0 then {Operations in Matrix Form }

27: rl ← I ll+1rl+1 { prolongate }

28: rl ← rl − Alxl { compute residual }

29: xl ← Sp(rl, Al, xl) { post-smoothing }

30: else {Operations in Matrix-Free Form }

31: rp ← Ipq rp { prolongate }

32: rp ← rp − Apxp { compute residual }

33: xp ← Sp(rp, Ap, xp) { post-smoothing }
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from incompressibility is more severe at high density ratio flows in under-resolved

cases and lead unphysical movement of the interface and numerical instability at

long term analysis. To overcome the problem, a local post-processing technique

is used to obtain exactly divergence free velocity field from the ˆ̂u by projecting

it to non-divergent space. A vector basis function, ψ is constructed such that

ψ = ∇×vh where vh ∈ VN are members of the N th order orthogonal polynomial

basis used. By construction, ∇ · ψ = 0 is fulfilled in the machine precision.

Then, divergence-free velocity field, ˆ̂u is expanded using the new basis space,
ˆ̂u =

∑Nd

i=1 ciψi. Required coefficients and hence the divergence-free velocity

field can be recovered by the Galerkin projection on the reference element, T

once the weakly divergence-free velocity field, ˆ̂u is transformed to local element

coordinate frame, i.e. (ψ, ψ)T c =
(
ψ, ˆ̂u

)
T
. This operation is completely local

and can be carried out element-by-element fashion.

Finally, time discretization of the flow equations are completed by applying

viscous correction through the solution of a modified Helmholtz equation given

in Eq. 5.5(c) which can be recast into following form,
γ0ρRe

∆t
un+1 −∇ · µ∇un+1 =

ρRe

∆t
ˆ̂u (5.16)

Actually, the equation is composed of scalar Helmholtz equations for each ve-

locity component closed with the appropriate velocity boundary conditions at

time, tn+1. For the scalar form, this system is very similar to pressure Poisson

equation with additional scaled un+1 term on the left side. Let u is a component

of the velocity vector approximated by uh ∈ VN and vh ∈ VN be the test func-

tions. Similar to the pressure equation, SIP discretization of the for an elemental

domain can be written as,(
γ0ρRe

∆t
uh, vh

)
Dk

+ (µ∇uh,∇vh)Dk
− (n · {µ∇uh}, vh)∂Dk\ΩN

−

(JuhK,n · µ∇vh) + (γJuhK, vh)∂Dk\ΩN
=

(
ρRe

∆t
ˆ̂u, vh

)
Dk

− (uD,n · µ∇vh)∂Dk∩ΩD
+

(γuD, vh)∂Dk∩ΩD
+ (uN , vh)∂Dk∩ΩN

(5.17)

where penalty parameters and boundary conditions are as defined before. The

system is symmetric, positive definite and solved with CG method in matrix-

free form. Because, solution of the velocity system is considerably easier then
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the pressure equation due to scaled mass matrix, block-Jacobi preconditioner is

used to reduce the computational effort and increase the runtime performance.

5.2.3 Interface Modeling

5.2.3.1 Discontinuous Fluid Properties

Discontinuous fluid properties are avoided by smoothing their variations in the

vicinity of the interface with thickness of size, ε. There are many definitions of

smoothing functions, such as piecewise continuous [70] or continuous trigonomet-

ric [176]. Here, hyperbolic tangent function is used as the regularized Heaviside

function,

Hε(φ) = tanh(
πφ

ε
) (5.18)

which smooths the variations over the distance 2ε. The Heaviside function is

infinitely differentiable and more appropriate for high-order discretizations.

The interface thickness, ε should be selected as small as possible to get a sharp

profile for accuracy but large enough to capture variations and to stabilize the

system. Classical low order methods require to choose ε at least to the order

of characteristic mesh size, ε = O(h). Due to the high order interpolation of

the DG method, variations can be resolved and integrated stably in the smaller

distance of ε = O(h/N). Our numerical tests show that ε = 2h/N offers sharp

but smooth profile with good integrability of the equations.

After defining the smoothed Heaviside function, discontinuous material prop-

erties can be replaced with globally defined continuous counterparts. For the

isothermal, incompressible flows only density and viscosity are to be smoothed

such that,

ρ(φ) =
1

2
ρ1 (1 +Hε(φ)) +

1

2
ρ2 (1−Hε(φ))

µ(φ) =
1

2
µ1 (1 +Hε(φ)) +

1

2
µ2 (1−Hε(φ))

(5.19)

which gives, ρ(φ) = ρ1 for φ < 0 and ρ(φ) = ρ2 for φ > 0 with smooth transition

around φ = 0. Level set function has to be symmetric to the zero level set to

accurately represent the material properties, which requires constant gradient
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at least around the ε-neighborhood of the interface which is achieved by the use

of signed distance function.

5.2.3.2 Level Set Advection

In this study, exactly divergence-free flow field, that satisfy ∇·u = 0, is obtained

by the local post-processing. Using the identity, ∇· (uφ) = φ∇·u+ u· ∇φ, level
set equation can be written in the conservative form leading the following linear

advection equation,

φt +∇· (uφ) = 0 (5.20)

Similar to previous section, let φ is approximated by φh ∈ VN and vh ∈ VN

are the smooth test functions. Weak form of the Eq. 5.20 can be obtained by

integration by parts,

(
∂φh
∂t

, vh)Dk
− (uhφh,∇vh)Dk

+ (F̃L, vh)∂Dk
= 0 (5.21)

where F̃L(φh,uh) is the numerical flux to approximate the normal trace of non-

uniquely defined flux function,n · JuhφhK. For F̃L, we choose the upwinding on

the value of φh on ∂Dk, such that

F̃L(φh,uh) = (n·uh){φh}+
1

2
|n·uh|JφhK (5.22)

The level set equation, hence the interface location is evolved in time with a

explicit TVD Runge-Kutta (RK) method. Stability region of the RK method is

slightly larger than the Adams-Bahforth method used in the explicit integration

of the flow equations. This guarantees the stability of the LS advection under the

time-step restriction of the semi-explicit flow solution. DG method has excellent

mass conservation properties due to the low numerical dissipation achieved by

the use of local high-order polynomial approximations [1, 117]. The formulation,

presented here enables to obtain accurate interface presentation without using

any special treatments or modifications of the original LS formulation
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5.2.3.3 Reinitialization

While evolving the Eq. 5.21 in time, level sets adjacent to interface may move

with velocities different from the zero level set which distorts the scalar LS

function. Loosing the regularity and symmetry of the LS function around the

interface may cause numerical instabilities, errors in the computation of fluid

properties and precisely locating interface location. Thus, LS function should

be reinitialized to signed distance having the property of |∇φ| = 1 at least

around the interface. But, it is not required to apply reinitialization at the end

of each time step to improve the mass loss unlike the standard level set methods

[181, 126, 165], due to high-order, conservative interface modeling. In this study,

LS function is reinitialized only when it produces too step or flat profile near

the interface based on the indicator relying |∇φ|.

There are several ways to reinitialize level set function such as fast marching

[187], fast sweeping [158] and flow based method [181]. The flow based reinitial-

ization is used here due to its flexibility and accuracy.

∂φ

∂τ
+ sgn(φ0)(|∇φ|−1) = 0, φ(x, 0) = φ0 (5.23)

where τ is the pseudo time which is not related with the physical time, t. Eq. 5.23

defines an artificial flow to obtain signed distance function in steady-state. In

principle, interface location remains unchanged because sgn(φ0) = 0, zero con-

tour of φ and φ0 are the same. Away from the interface, |∇φ| converges to 1

without explicitly locating the interface location. The general approach for solv-

ing Eq. 5.23 is to regularize the signum term in a narrow band in the vicinity

of the interface instead of using sharp signum function. A careful investigation

of the equation reveals that characteristics are emanate from the interface in

normal direction with a speed of 1 without regularization term. However, the

speed changes with the sgnα(φ0) term that selection of the regularization affects

the steady state solution and the convergence rate/accuracy of the scheme [91].

We choose to regularize sign function similar to Heaviside function,

sgnε(φ0) = tanh(
πφ0

|∇φ0|ε
) (5.24)
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where band thickness, ε has the same value with the previous section. Because,

LS function is not reinitialized in each time step, it is not exactly signed distance

function in the whole computation time. The scaling factor, |∇φ0| is added to

avoid very small coefficients resulting in small characteristic speeds, when the

LS function becomes flat or to improve the accuracy when the LS function is

step around the interface.

After regularizing the signum term, the reinitialization equation can be written

as the following Hamilton-Jacobi form with smooth coefficient,

∂φ

∂τ
+H(∇φ,x) = 0, φ(x, 0) = φ0 (5.25)

where the Hamiltonian, H(∇φ,x) denotes sgnε(φ0)(|∇φ| − 1). In [91], we in-

troduced a direct, adaptive, high-order DG method for the LS reinitialization

with local time stepping and artificial diffusion stabilization which preserves the

optimal accuracy . Here, this technique is modified for accounting the local

interface modeling for efficient multiphase flow simulations. Solution of the HJ

equation requires accurate approximation of derivatives. We followed the local

DG scheme [199] to approximate ∇φ by defining two new variables for each

derivative component and applied the standard upwind DG method. Let p1
x and

p2
x be auxiliary variables used to approximate ∂φ

∂x
when the fluxes are chosen

from the left and right upwinding sides, respectively.

p1
x − φx = 0 and p2

x − φx = 0 (5.26)

which gives the following upwind DG scheme in weak form,

(p1,2
x , vh)Dk + (φh,

∂vh
∂x

)Dk − (F 1,2
R nx, vh)∂Dk = 0 (5.27)

the left, F 1
R and right, F 2

R upwind fluxes are defined as

F 1
R =

φ+ for nx > 0

φ− for nx < 0
and F 2

R =

φ− for nx > 0

φ+ for nx < 0
(5.28)

Auxiliary variables p1
y and p2

y, which are used to approximate ∂φ
∂y
, can be com-

puted in similar way. To complete the discretization, Hamiltonian given in

Eq. 5.25 is replaced with monotone and consistent numerical Hamiltonian,Ĥ
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and integrated over the element Dk to get

(φt, v)Dk + (Ĥ(p1
x, p

2
x, p

1
y, p

2
y), v)Dk = 0 (5.29)

In this study, following Godunov Hamiltonian is used because it is easy to im-

plement, efficient and pure upwind scheme,

Ĥ(p1
x, p

2
x, p

1
y, p

2
y) =

 signα(φ0)(

√
max((p1,m

x )2, (p2,p
x )2) + max((p1,m

y )2, (p2,p
y )2)− 1), signα(φ0) > 0

signα(φ0)(

√
max((p1,p

x )2, (p2,m
x )2) + max((p1,p

y )2, (p2,m
y )2)− 1), signα(φ0) < 0

(5.30)

where p1,p
x = max(p1

x, 0) and p1,m
x = −min(p1

x, 0) with the same notation for all

other variables. For a piecewise constant approximation, this scheme is mono-

tone and converges to the entropy solution. However, stabilization is needed

for higher order approximations. An artificial diffusion approach is utilized to

damp out the high frequencies in the solution. Different from the limiting tech-

niques, the artificial diffusion method does not directly reduce the accuracy to

first order and avoids to reconstruction operations which is costly especially in

non-conformal discretizations. How much and where the diffusion should be

added to avoid oscillation without excessive smearing out requires reliable and

scalable detectors. We used regularity detector based on the modal decay rate.

For details, we refer to our recent work [91].

Characteristic velocities of the reinitialization equation, as mentioned before,

point outwards from the interface in the direction of normals. In other words,

LS function is reinitialized to signed distance starting from the interface. Mul-

tiphase flows requires the LS function to be signed distance function around the

interface only. This means that we don’t need to solve reinitialization equation

to steady state over the hole domain instead over the small neighborhood of the

interface. We kept the signed distance function on the thickness of 2ε which

requires approximately 2ε/∆τ time steps. Because characteristic speed slightly

lower than 1 due to regularization of the signum function, we use more time

steps than estimated value. Numerical tests shown that ten percent extra time

step is satisfactory to obtain the signed distance function in the band thickness.

Constant level set function is used on the outside the interface band. In practice,

a few explicit RK step is satisfactory to get the signed distance function around

the interval so that the reinitialization does not create any computational burden
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in the total simulation time.

5.2.4 Mesh Adaptivity

Although, DG discretizations are less diffusive comparing with the standard

schemes, it is obvious that increasing resolution with adaptivity in the vicin-

ity of the interface improves the accuracy. Adaptive mesh refinement (AMR)

strategies are based on the conformal and non-conformal discretizations. In

conformal discretizations, each face is shared by two elements so that AMR al-

gorithm should handle the complicated mesh transition to make sure that mesh

remains conformal after adaptation. This approach results with computational

burden in refinement step with easy calculation of fluxes because of the con-

formity. On the other hand, adaptation step in non-conformal AMR strategy

can be simply obtained by dividing elements. Then numerical fluxes should be

evaluated at non-conformal faces where more than two elements are connected.

In this study, non-conformal discretizations on unstructured triangular elements

is selected. Although, it seems that added complication and cost related with

the flux computation at non-conformal faces are more than creating conformal

grid, this approach enable us to use more flexible and local adaptive grid.

In the adaptive scheme used here, the computational mesh consists of elements in

a range of predefined levels with l0 denoting initial coarse level and lM being the

maximum level. Refinement and coarsening are performed dynamically during

the solution. The level of refinement and the elemental dependencies are stored

in a hierarchical tree for efficient h type adaptivity.

Refinement is carried out in an isotropic way, i.e. a parent triangle is divided

into four siblings by connecting the mid-edges. A threshold value,γ is selected to

mark the elements for refinement. There is a flexibility for choosing the threshold

value such as a predefined band width thickness or characteristic element length.

If the min |φk| 6 γ holds and refinement level of the element is smaller than the

predefined maximum refinement level (lk < lM), then the element is marked for

refinement and the approximation on the parent triangle is projected onto its

four siblings.
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If min |φk| > γ holds and refinement level of all four sibling elements are larger

than the initial coarse level, these elements are marked for coarsening. Marked

elements are combined by removing center element and its three vertices. Then,

solution of the siblings are projected to the parent element and level of refinement

information is updated. The DG method supports arbitrary number hanging

nodes per face so it is not restricted in order to keep the adaptive scheme flexible

and local.

5.3 Numerical Tests

Verification problems are solved to investigate convergence properties and mass

conservation of the our numerical framework in multiphase flows with varying

density/viscosity ratios and interface topology. All numerical results presented

here are obtained using high order fully DG method on locally adaptive trian-

gular grids in two spatial dimensions.

5.3.1 Sloshing in Rectangular Tank

In this test case, water column oscillates in a rectangular tank. The driving forces

are gravitational acceleration and viscous dissipation causing the water column

eventually reach its lowest potential energy level from the initially perturbed

shape which is given by the following sinusoidal function,

Γ = d+ a0 sin (π(0.5d− x)) (5.31)

where d = 1 is the mean water depth, a0 is the amplitude of initial wave.

This test case is good indicator to show the ability of numerical scheme to

transfer potential energy into kinetic energy and the mass loss introduced by

the discretization.

The problem is first solved in the computational domain of [0, d]× [0, 2d] for the

small amplitude, a0 = 0.01 where an analytical solution based on the linearized

Navier-Stokes equations is reported by Wu et.al. [197]. The fixed grid used in

this simulation is obtained starting with the coarse grid of characteristic element
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Figure 5.1: Sloshing problem for the small amplitude case, (a) Computational
grid and initial interface shape for lM = 4 (b) Zoomed view near the left wall.
(c) Comparison of the computed wave amplitude with analytical solution [197].
(ρl/ρg = 100, µl/µg = 100, Re = 100, Fr = 1, N = 3, a0 = 0.01 )

length, h = 1/3, (K = 50). Then, high resolution near y = 1 is obtained with

lM = 4 local refinement as shown in Fig. 5.1(a-b). Slip boundary condition

are assigned to the bottom and side walls while zero pressure is imposed at the

top wall. Zero velocities and hydrostatic pressure distribution are used as the

initial condition. The superimposed fluids have the density and viscosity ratios

of 1/100. The non-dimensional Froude and Reynolds numbers are taken as 1

and 100, respectively. Fig. 5.1(c) illustrates the normalized wave elevation, η/a0

against the time for computed and analytical solutions. The numerical results
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match well with the analytical solution.

Fig. 5.2 illustrates the lM = 3 locally adapted mesh structures and interfaces

at different simulation times for the high initial amplitude, a0 = 0.2 and local

polynomial order of 5 for the same parameters with the previous case. Time

integration is carried out until t = 40 where water column comes to rest. Mesh

adaptivity used here always keeps interface in the highest level elements. Letting

number of hanging nodes per face unconstrained, enable us to get local mesh

structure.
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Figure 5.2: Standing wave problem lM = 3 locally adapted grid and the interface
at different simulation times. (ρl/ρg = 100, µl/µg = 100, Re = 100, Fr = 1,
N = 5, a0 = 0.2 )

Table. 5.2 shows the maximum area fluctuations introduced by the scheme for

long term analyses. Different refinement levels and order of approximations

are used in the numerical experiments. Similar problem parameters and initial

mesh configurations with small amplitude case are used. Mass fluctuations are

computed very accurately by the adaptive contouring algorithm and with the

formula, Af = 100 × (max(At) −min(At))/Aexact, where At is the time history

of the total area of the liquid. Mass is well conserved for this long integration

time and increasing resolution in the vicinity of interface significantly improves

the mass loss problem.
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Table 5.2: Percentage mass fluctuations in sloshing in a rectangular tank prob-
lem for different refinement levels and order of approximations.

lM
N 0 1 2

% Mass Fluctuation
3 4.52× 10−1 1.11× 10−1 2.12× 10−2

4 1.51× 10−1 8.27× 10−2 6.60× 10−3

5 6.33× 10−2 1.55× 10−2 2.01× 10−3

5.3.2 Dam Break Problem

Dam break problem consists of sudden collapse of a rectangular liquid column

into a horizontal plane under the action of gravitational acceleration. Flow

field is highly unsteady and interface encounters strong deformations. Due to

viscosity, water column eventually comes to rest and occupy the bottom of the

tank. Measurements of the exact interface shape and analytical solution for the

viscous case are not available but some secondary data such as column height

reduction and wave front speeds are reported in literature.

All computations are conducted on the [0, 1.5a] × [0, 6a] domain with a = 1.

Square water column with the length of a is released at t = 0. Slip boundary

conditions are applied to the bottom and side walls of the tank. Similar to the

experimental study, top wall is modeled as open boundary with zero atmospheric

pressure and zero normal gradients on the velocities. Water and air properties

are assigned to the liquid and gas phases as ρl = 1000 kg m−3, ρg = 1 kg m−3

and µl = 10−3 Pa s, µg = 10−5 Pa s. Selecting the characteristic length,

LR = 0.05715 m and using the properties given, corresponding non-dimensional

Reynolds and Froude numbers are 42792 and 1, respectively.

Fig. 5.3 shows the comparison between the numerically computed surge front

position and water column height and experimental results reported by Martin

and Moyce [119]. Initial coarse grid has the characteristic length, h = 1/4 which

gives K = 172. Local polynomial order of 3 is used in all simulations. Increas-

ing the adaptive level, non-dimensional height of the water column corresponds

very well with the experimental data. Numerical results show that surge front

position moves faster when the resolution near the interface increased. A thin

fluid layer forms at the bottom wall just in front of the bulk flow and adaptive
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Figure 5.3: Comparison of the present numerical method with different refine-
ment levels and experimental results fromMartin and Moyce [119]. (Re = 42792,
Fr = 1, N = 3)

contouring algorithm accurately locate the position of the front according to the

thin layer. Difficulty to determine the exact location of the leading edge posi-

tion is confirmed in experimental study [119] and the same tendency is shown

in other numerical works [188, 95].

Fig. 5.4 illustrates the interface shapes and mesh structures. (a) and (b) show

initial coarse grid and interface for K = 242, N = 3 and Lagrange interpolation

of the initial data to lM = 2 locally adapted grid, respectively. (c-d) represents

the interface at t = 2.5 for adaptive simulation and 2 level globally refined fixed

grid. A careful investigation of the figure reveals the consistency of adaptive

simulation where varying mesh resolution and non-conformal discretization do

not degenerate the accuracy near the interface. It is worthwhile to mention that

total number of elements in fixed grid is 3904 and adaptive grid has 610 elements

at that instant. Computational effort is significantly reduced to obtain the same

accuracy with fixed grid.
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Figure 5.4: Dam break problem interface locations and mesh structures. (Re =
42792, Fr = 1, N = 3)

5.3.3 Rayleigh-Taylor instability

Rayleigh-Taylor instability is a common test problem to show to performance of

the numerical methods in complex flows. In the problem, a heavy fluid overlies

a layer of light fluid. Instability arises when the initial interface is perturbed.

Due to vertical gravitational field, fluids start penetrating into each other with

increasing amplitude in time.

Problem is solved in rectangular domain of [0, d/2]×[0, 4d]. Boundary conditions
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are slip at side walls, no-slip at bottom wall and prescribed zero pressure at top

wall. Initial conditions are taken as zero velocity field and hydrostatic pressure

distribution. Interface between the fluids is initially perturbed with a cosine

function of amplitude 0.1 , η = 2.0 + 0.1 cos(2πx). Dynamic viscosity of the

fluids are equal and density difference is represented by the Atwood ratio, At =

(ρl−ρg)/(ρl +ρg). To use the same notation with [186], reference time is chosen

as tr =
√
d/(Atg).
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Figure 5.5: Tip positions of the rising and dropping fluids for Rayleigh Taylor
instability. (Re = 42792, At = 0.5, N = 3)

Non-dimensional tip position of the rising and dropping fluid columns, xt are

represented in Fig. 5.5 for Re = ρld
3/2g1/2/µl = 3000 and At = 0.5. Numeri-

cal results are carried out for fixed grid having characteristic length, h = 1/3

(K = 212) and lM = 2 locally adapted grid. For the comparison, results ob-

tained by the Lagrangian-Eulerian vortex method [186] and the variable density

finite element projection method [73] are also included. Inspection of the figure

reveals that present results compare well with the previous works and increasing

resolution near the interface improves the accuracy.

Fig. 5.6 illustrate the interface shapes for lM = 2 locally adapted grid at dif-

ferent simulation times. Numerical results compare well with those reported

by Puckett et al. [145], Popinet and Zaleski [142] and Xie et al.[198]. Coarse

grid, lM = 1 and lM = 2 solutions at t = 1.163 are also shown in Fig. 5.7 .

Comparison of the figure reveals that the present numerical approach with local

151



(a) (b) (c) (d) (e)

Figure 5.6: Interface evolution for the Rayleigh-Taylor instability for lM = 2
adaptive solutions at t = 0, 1.28, 1.71, 2.18, 2.70. (Re = 3000, At = 0.5, N = 5,
Only a part of the domain is shown.)

unstructured adaptivity can capture complex interfaces efficiently without in-

creasing the number of elements significantly. At that instant, element numbers

in lM = 2 and lM = 1 grids are 425 and 305, respectively.

Percentage mass fluctuations in Rayleigh-Taylor instability is summarized in

Table 5.3. Mass loss is computed as in the sloshing problem. Starting with the

same initial coarse grid , simulations are conducted for different order of ap-

proximations and refinement levels up to 2. Results obtained for the same prob-

lem with front tracking method [142], VOF [145] and stabilized finite element-

discontinuous level set formulation (FEM-DG-LS) [118] are also included in the

table. In adaptive simulations, time average of the element numbers are used

for the comparison with the other methods. Dynamic grid improved the mass

loss problem significantly and very accurate results are obtained with increasing

refinement level. It is worthwhile the mention that degree of freedom for the

finest solution (lM = 2, N = 5) is very close to reference works but lower mass
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(a) (b) (c)

Figure 5.7: Interface shapes for the Rayleigh-Taylor instability at (a) fixed grid
(b) lM = 1 and (c) lM = 2 locally adapted grids. (t = 1.63, Re = 500, At = 0.5,
N = 3, Only a part of the domain is shown.)

loss is achieved.

5.3.4 3D Dam Break with Obstacle

To show the ability of numerical method on 3D, complex interface problems,

a dam break problem with rectangular obstacle is solved. For direct compar-

ison with the experimental study of Maritime Research Institute Netherlands

(MARIN) [168], computational domain is described with the size of 3.22 m ×
1 m× 1 m. Rectangular obstacle having the dimensions of 0.161 m× 0.403 m×
0.161 m is placed 2.476 m downstream the water column. Rectangular water

column with height and width of 0.55 m and 1.228 m is released at t = 0. Rect-

angular liquid column collapses under the action of gravitational acceleration

which creates highly unsteady flow field and complex interface deformations.

Fig. 5.8 illustrates the problem geometry and initial configuration.
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Table 5.3: Percentage maximum mass fluctuations in Rayleigh-Taylor instability
for different refinement levels and order of approximations.(Re = 500, At = 0.5)

Method lM N Element Number % Mass Loss

Present Method

0

3 212 0.259
5 212 0.148
3 836 0.093
5 836 0.032

1
3 296 0.096
5 294 0.037

2
3 490 0.025
5 482 0.0091

Front Tracking [142] - - 32× 265 0.14
FEM-DG-LS [118] - 1 32× 265 0.17

Figure 5.8: Problem domain and initial water column for 3D dam break test.

Slip boundary conditions are applied to the bottom and side walls of the do-

main. Top wall is modeled as open boundary with zero normal gradients on the

velocities. Water and air properties are assigned to the liquid and gas phases as

ρl = 1000 kg m−3, ρg = 1 kg m−3 and µl = 10−3 Pa s, µg = 10−5 Pa s. Prob-

lem is solved on fixed tetrahedral grid with characteristic length of 0.1 where

K ≈ 40000.

Fig. 5.9 shows snapshots of interface at different solution times. The figure illus-

trates capability of the present numerical method in capturing highly deformable

interfaces having strong topological changes.

In Fig. 5.10 interface shape at t = 0.56 s, just after first impact with the obstacle,

is shown. For the qualitative comparison, volume of fluid solution [97] and
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(a) t = 0.0 (b) t = 0.35

(c) t = 0.5 (d) t = 0.8
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(g) t = 1.6 (h) t = 2.0

(i) t = 3.6 (j) t = 4.4

Figure 5.9: Snopshots of interface topolgy for 3D broken dam problem for N = 3
and h = 0.1.

experimental snapshot at the same instant of time are also included. There

is a good agreement between present study and the reference works in terms
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of interface shape and impact time. In the VOF solution, however, there are

some ripples, which are not shown in the present study and experiment. This is

probably due to low order reconstruction scheme used in the VOF formulation

of the reference work [97].

(a) Present solution.

(b) Kleefsman’s VOF solution [97].

(c) Experiment [168].

Figure 5.10: Comparasion of interface shape with Kleefsman’s VOF solution [97]
and experimental study [168] at t = 0.56 s.

In the experimental work of MARIN [168], pressure histories on the rectangular

obstacle are measured by eight sensors, four located on the front wall and four on

the top wall . Please refer to [168], for the details of experimental setup. Fig. 5.11
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presents computed pressure history on the first and third sensor location. The

instant that water wave hits the obstacle is measured as t = 0.4 s which is

well approximated by the numerical method. Simulation and the experiment

show very good agreement except the magnitude of impact pressure which is

under-predicted by the numerical method. This difference is observed in other

simulations using different numerical techniques such as VOF [97] and Smooth

Particle Hydrodynamics (SPH) [103].
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Figure 5.11: Comparasion of computed pressure histories with experimental
results [168].

Fig. 5.12 presents double precision floating point operations for 3D advection

step kernels when cross-compiled with CUDA and OpenCL multi-threading

models on Tesla C2075 GPU. Advection step includes volume, surface, source

and time step update computations which are computed with corresponding

kernels. All performance numbers are obtained using the wall clock time from

the beginning of one time step to the next one and averaged over a few hundred

samples to minimize the timing transients. Main computational load of advec-

tion step comes from the volume and surface term computations. All kernels at

polynomial order of 1 gives lower performance due to lower computational load.

Similar performance results are obtained for both multi-threading models and

for all kernels.
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Figure 5.12: Double precision GFLOPs of advection step kernels vs polynomial
order on Tesla C2075 GPU using CUDA and OpenCL multi-threading models.

Fig. 5.13 shows double precision floating point operations for pressure step ker-

nels including volume, surface, right-hand side and update computations. Simi-

lar to the advection step, kernels are compiled with CUDA and OpenCL multi-

threading models on Tesla C2075 GPU. Volume kernel at polynomial order of 1

gives low performance due to low computational load. Surface and right-hand

side kernels perform well in all orders due to higher computational load. OpenCL

slightly outperforms CUDA on update kernel for all orders.

Finally, performance of velocity step kernels are illustrated in Fig. 5.14. Struc-

ture of velocity step computations are similar to pressure step leading to com-

parable kernel performances. Computational load of the velocity volume kernel

is higher than the pressure volume kernel due to additional scaled mass matrix.
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Figure 5.13: Double precision GFLOPs of pressure step kernels vs polynomial
order on Tesla C2075 GPU using CUDA and OpenCL multi-threading models.

CUDA seems to be more efficient on volume kernel unlike the pressure step.

Because CUDA ptx compiler can be hardware optimized, CUDA outperforms

OpenCL on NVIDIA GPU specially at higher-order polynomial approximations.

5.4 Conclusion

We presented a high-order, fully discontinuous Galerkin method for the incom-

pressible multiphase flows on unstructured adaptive meshes. With the proposed

numerical framework, the mass is well conserved even in the coarse grid solu-

tions without introducing any special treatment or modification of the level set

formulation. Velocity, pressure and interface modeling uses the same high order
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Figure 5.14: Double precision GFLOPs of velocity step kernels vs polynomial
order on Tesla C2075 GPU using CUDA and OpenCL multi-threading models.

polynomial space preventing the interpolation of the field variables and increase

the efficiency. All implicit systems are solved with a matrix-free, p-multigrid

approach which reduces the memory requirements. In the adaptive method, the

computation is localized mostly near the moving objects; thus, the computa-

tional cost is significantly reduced compared with the uniform mesh over the

whole domain with the same resolution. Platform independence of the solver

is achieved with an extensible multi-threading programming API as common

kernel language. The developed solver is highly scalable on many-core architec-

tures.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

This study focuses on development of high-order discontinuous Galerkin methods

for the solution of incompressible multiphase flows with sharp interfaces. Devel-

oped methods are designed for efficient solutions on massively parallel modern

architectures, namely many-core CPUs and multi-threaded GPUs. Accuracy

and efficiency of the method is further increased using a local non-conformal

adaptivity combined with a multi-rate time integration.

In multiphase flows, most of the complexities are encountered around the inter-

face. Rapid fluid property changes lead to spurious velocity oscillations. Strong

vorticity is concentrated in the vicinity of interface. Under-resolution in the in-

terface model may lead to unphysical mass loss. Those problems become more

critical when density/viscosity ratios are high and the interface has topologi-

cal changes. To overcome the mentioned problems, an adaptive local interface

model is presented based on discontinuous elements. Transient adaptivity uses

non-conformal discretizations which enable to get fast refinement/coarsening

operations in a truly local manner where parallelization follows. Another im-

portant property of the adaptive scheme is to preserve high-order accuracy in

interpolation of field properties between coarse to fine and fine to coarse grids.

It is well known that, this is one of the main drawbacks of conformal and

anisotropic refinement methods. Also, forcing conformity and optimizing mesh

after adaptation increases computational time and decreases parallelization i.e.

these operations require propagation of local information through the domain.

However, non-conformal refinement shifts computational load from adaptation
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step to solver by increasing the complexity in flux evaluations. An efficient and

local non-conformal flux evaluation technique is also developed which decreases

computational time substantially.

Level set method is very powerful to represent interface dynamics due its im-

plicit nature. However, evolution of level set equations in time often distorts the

scalar level set function and generates flat or steep gradients near the interface.

Losing the regularity of level set function may lead to numerical instabilities,

large errors in evaluation of material properties and geometric information etc.

, so that level set function has to be replaced with more regular functions.

This process is called as reinitialization and plays an important role in level set

interface modeling. In this study, a high-order, fully explicit level set reinitial-

ization algorithm is introduced. Stabilization of the system is achieved with

artificial diffusion mechanism which does not directly reduce the approximation

to first order. Stabilization technique uses constant, possibly discontinuous and

locally vanishing viscosity through elements. Diffusion equation is discretized

directly and handles discontinuous viscosity without introducing any regulariza-

tion. This treatment accelerates the computations and requires no additional

information. For the detection of troubled elements that stabilization is needed

for, the modal coefficient based regularity detector proposed in [98] is generalized

to higher-order dimensions. Numerical test shows that this detector is quite suc-

cessful in tetrahedron and triangle even for the low order approximations where

small number of modes exist to predict the regularity within an element. Pro-

posed reinitialization algorithm preserves the optimum convergence rates. More

specifically, (N + 1)th and 2nd order accuracy are achieved for smooth and non-

smooth solutions for the N order discontinues approximation space. The main

advantage of the proposed scheme relies on its potential of parallelization on

multi-threaded architectures.

It is clear that increasing resolution near the interface improves the capability of

model even for high-order and well resolved problems. Artificial diffusion stabi-

lization offers a stable and local mechanism to damp out the oscillations around

troubled regions. But, both local adaptivity and artificial diffusion restrict time

step size of the method when a global explicit integrator is used. To avoid this

162



strict time limitation, a multi-rate Adams-Bashforth time integrator is designed

for the explicit treatment of level set advection and reinitialization equations.

The local time-stepper does not require extrapolation of field histories and any

additional storage requirements unlike many other proposed methods in litera-

ture. All these properties make the scheme fast, memory efficient and suitable

for multi-threaded architectures. Numerical tests have shown that scheme pre-

serves the base Adams-Bashforth order away from the multi-rate coupling and

second order accuracy at groups interface.

A fully discontinuous Galerkin level set based multiphase flow solver on adap-

tive triangular/tetrahedral grids are proposed. A semi-implicit method is used

for time discretization which decouples velocity and pressure fields. Numerical

test and eigenvalue analysis indicates that standard discretization schemes do

not enforce discrete incompressibility for high density ratios. Divergence-free

velocity field is obtained by projecting intermediate velocity to H(div) polyno-

mial space. This enables getting a stable numerical scheme even in the very

high material property ratios up to 1000. Another important aspect of the fully

discontinuous scheme is to solve bad conditioned implicit pressure system. Con-

dition numbers are highly dependent to density ratios between the fluids, not

to interface topology. This complex system is solved efficiently with a devel-

oped matrix-free algebraic multigrid scheme derived from the full matrix based

method proposed in [64]. The most important contribution of the multigrid

method is reducing memory requirement and set-up cost considerably which are

critical for the efficient implementation on GPUs for highly dynamic problems

where spectral properties of the pressure system changes fast. Combined with

the local adaptivity and previously developed interface model, a mass loss free

numerical scheme preserving the simplicity and efficiency of level set formulation

is obtained without using any special treatment or tricks.

All numerical algorithms mentioned so far are trivially parallelizable on mod-

ern CPU and GPU architectures. Developed solver is coded in C++ and OCCA

multi-threading API. OCCA is an abstracted programming model used to encap-

sulate native languages for parallel devices such as CUDA, OpenCL, Pthreads

and OpenMP. Therefore, OCCA allows customized implementations of algo-
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rithms for several computing devices with a single code and offers flexibility to

choose hardware architectures and programming model at run-time. It is shown

that the developed solver is highly scalable on all platforms and programming

models, and reach almost peak performances of hardwares. Speedups factors

reaching two-order of magnitude are obtained comparing the serial CPU imple-

mentations.

As future works, efficient adaptation techniques on GPUs will be considered to

accelerate refinement-coarsening time and to avoid the data transfer between

host and device. Generally speaking, multiphase flows need finer grids for the

interface model and coarser resolution for flow solver. An ungraded dual grid

method based on separating fluid and interface grids will be developed to in-

crease accuracy of the interface representation without using finer grids for flow

equations and/or mesh adaptation. This method may also utilize different nu-

merical techniques for the discretization of flow and interface equations such

as continuous spectral or finite elements for flow evolution and discontinuous

Galerkin for interface evolution with different approximation orders. Accurate

high-order computation of surface tension forces on discontinuous framework

will also be a future work.
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