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ABSTRACT 
 

 

 

MULTIMEDIA DATA MODELING AND SEMANTIC ANALYSIS BY  

MULTIMODAL DECISION FUSION 

 

Güder, Mennan 

Ph.D., Department of Computer Engineering 

Supervisor: Prof. Dr. Nihan Kesim Çiçekli 

 

October 2015, 102 pages 

 

In this thesis, we propose a multi-modal event recognition framework based on the 

integration of event modeling, fusion, deep learning and, association rule mining. 

Event modeling is achieved through visual concept learning, scene segmentation and 

association rule mining. Visual concept learning is employed to reveal the semantic 

gap between the visual content and the textual descriptors of the events. Association 

rules are discovered by a specialized association rule mining algorithm where the 

proposed strategy integrates temporality into the rule discovery process.  In addition 

to physical parts of video, the concept of scene segment is proposed to define and 

extract elements of association rules. Various feature sources such as audio, motion, 

keypoint descriptors, temporal occurrence characteristics and fully connected layer 

outputs of CNN model are combined into the feature fusion. The proposed decision 

fusion approach employs logistic regression to formulate the relation between 

dependent variable (event type) and independent variables (classifiers’ outputs) in 

terms of decision weights. The main motivation in this thesis is to construct a 

multimodal fusion system which detects events in video by examining feature and 

decision sources. Various feature sets such as audio, visual, motion and deep learning 

are investigated. The proposed system employs a decision fusion methodology as the 
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final step of semantic analysis. The main issues that are investigated throughout this 

study are robustness to uncertainty, better event recognition by use of multi-modal 

fusion, deep learning outputs, extracted rules, and flexibility in representation. 

 

 

Keywords:  Event modeling, event recognition, concept learning, convolutional 

neural network (CNN), decision fusion, association rule mining (ARM), semantic 

video analysis. 
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ÖZ 
 

 

 

ÇOKLU KARAR FÜZYONU İLE MEDYA VERİ MODELLEME 

VE ANLAMSAL BÖLÜMLEME 

 

Güder, Mennan 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli 

 

Ekim 2015, 102 sayfa 

 

Bu tezde, olay modelleme, füzyon, derin öğrenme ve ilişkisel kural çıkarımı üzerine 

kurulu,  olay tanımlama yeteneği olan bir uygulama çerçevesi önerilmekteyiz. Olay 

modelleme, görsel kavram öğrenmesi, sahne özetleme ve ilişkisel kural çıkarımı 

kullanılarak başarılmıştır. Görsel kavram öğrenmesi, görsel içerik ve metinsel 

tanımlama arasındaki anlamsal boşluğu gidermek için uygulanmıştır. İlişkisel 

kurallar, oluş zamanı gözeten özelleşmiş bir kural çıkarma yöntemi ile 

çıkarılmaktadır. Fiziksel video parçalarına ek olarak, kural elemanlarını çıkarabilmek 

için video kesit kavramı tanımlanmıştır. Ses, hareket, anahtar nokta tarif ediciler, 

zamansal oluş özellikleri ve konvolüsyonal yapay sinir ağlarının tam bağlantılı 

katmanlarının çıktıları özellik füzyonu ile birleştirilmiştir. Karar füzyonunda logistik 

regresyon kullanılarak, bağımlı değişken (olay tipi) ve bağımsız değişken 

(sınıflandırıcı çıktısı) arasındaki ilişki ağırlıklandırmalar üzerinden 

formülleştirilmiştir. Bu tez çalışmasında ana motivasyon kaynağı, farklı karar ve veri 

kaynaklarını kullanacak bir olay tanıma sistemi geliştirmektir. Ses, görsel, hareketsel, 

derin öğrenme gibi kaynaklardan sağlanan bilgiler tümleştirilmiş ve incelenmiştir. 

Önerilen yöntemde karar füzyonu son anlamsal analiz aşaması olarak uygulanmıştır. 
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Tanımsızlığa karşı direnç, modelleme esnekliği, çoklu şekil verileri, çıkarılan kural 

ve derin öğrenme sonuçları kullanılarak olayların daha iyi tanınabilmesi, önerilen 

sistemdeki ana odaklar olarak sıralanabilir. 

 

 

Anahtar Kelimeler: Olay Modelleme, Olay Tanıma, Konsept Öğrenme, 

Konvolüsyonel Sinir Ağları, İlişkisel Kural Çıkarma, Anlamsal Video Analizi. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

1.1 Motivation 

Tremendous amount of multimedia data is available especially on the Internet. 

There are various multimedia analysis applications such as video search, video 

indexing, surveillance, monitoring, computer games, video editing, and video 

event recognition. Video event recognition is a typical multi-modal video 

analysis task. Audio, motion, text, image and several other multimedia data 

sources and corresponding decisions could be fused to determine actions, 

activities and events in a video.  The fusion of features and corresponding 

decision sources enhance the accuracy of video event recognition. The 

integration of different multimedia data types on the same or related concepts 

is referred to as multi-modal fusion. Many features are designed and extracted 

for better event recognition performance. Extracted features are examined 

through various methodologies for achieving optimum accuracy. Early video 

event recognition proposals dealt with artificially constructed events with 

simple background and hand-designed characteristics. The state-of-the-art 

research focuses on representing, learning, searching and extracting 

unconstrained video events with miscellaneous characteristics.  

Our main motivation in this thesis is to construct a multi-modal fusion 

framework which detects high level semantic events in the multimedia data. 

 



 

 

 

 

2   

Recent research on multimedia analysis is centered on the discovery of the 

semantics of multimedia data by integrating information from multiple data 

and decision sources. Multiple data sources should be investigated in order to 

achieve high decision accuracy. Single data source analysis usually fails to 

make accurate decisions in case of any noise. Because neither low-level visual 

features such as color, texture, and shapes nor any other feature set are 

completely descriptive for multimedia data individually. Therefore multi-

modal fusion is a promising method to combine multiple sources of weak 

evidence. By implementing a multi-modal fusion strategy, greater efficiency, 

higher accuracy and better usability would be achieved in the decision process.  

1.2 Problem Definition 

The focus of this thesis is the recognition of events from video sequences. 

Instead of examining low-level events such as actions and activities we 

consider high-level, spatially and temporally structured video events. For 

instance, instead of modeling movements of human body and recognizing a 

human performing swaying action, we focus on detecting a dance show by 

examining motion, audio, scene characteristics and temporal object 

occurrences and interactions.  The illustration of the problem definition is 

given in Figure 1-1.  

Motion

Swaying

Running

Singing 

Audio Scene Characteristics

Temporal 
Object 

Ocurrence and 
Interactions

Dance Show

Marathon

Concert

Motion

+ + +

 

Figure 1-1: Illustration of the Problem Definition.  



 

 

 

 

3   

Instead of examining low level actions such as swaying, running and singing 

we aim to detect dance show, marathon and concert events. 

The literature either ignores temporal patterns within the video or mostly 

focuses on low-level events such as actions and activities. High-level video 

event recognition is open to enhancements. Especially the temporal 

characteristics within the videos should be investigated for better high-level 

video event recognition. Existing knowledge-based methods mostly propose 

hand-designed structures for event definitions [45]. There are also several 

promising approaches for eliminating hand-designed parts in multimedia 

analysis [26-28]. Event features, event representations and classifiers could be 

learned to eliminate hand-designed strict multimedia analysis strategies. Deep 

learning has achieved a considerable success in reducing dependency on hand-

designed features in image classification, and it is also applicable in video 

event recognition applications [26-28]. 

It is desirable to build a framework which fulfills the high-level, deep learning-

based and multi-modal video event recognition strategy that minimizes hand-

designed features, learning and representation requirements. The fusion of 

multiple modalities provides complementary information and enhances 

decision making process. New requirements such as different data format 

integration, processing time synchronization, correlation examination between 

modalities and confidence levels of the each modality would appear in the 

multi-modal data analysis.  In order to achieve the enhancements, some cost 

and complexity increase should be handled. 

Combining deep learning, computer vision and machine learning is the most 

promising strategy for multi-media analysis. Both pre-defined features through 

expert selection and learned features through deep learning should be 

employed and the most appropriate machine learning strategy should be 

employed.    
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1.3 The Proposed Approach 

In this thesis we present a multi-modal, adaptable and robust event recognition 

framework for videos. We propose novel video event modeling and fusion 

strategies in order to recognize long-term spatially and temporally structured 

events. Event models are constructed in terms of visual event descriptors and 

underlying feature-based event characteristics.  A different set of visual event 

descriptors are defined for each event of concern. A new event type can be 

integrated into the system simply by supplying visual event descriptors and 

some training data sets to the classifiers. Thus the proposed event modeling 

strategy is adaptable for extension. The visual event descriptors are learned by 

the proposed classifiers using the training image data for each event type. 

Spatial and temporal relations in the video are revealed through association 

rules between event descriptors.  

In order to achieve robustness and high precision, the proposed system 

integrates multi-modal feature and decision sources. The proposed multi-modal 

feature fusion strategy combines association rule-based, keypoint-based, 

convolutional neural network (CNN) based, audio and motion features. 

Keypoint-based feature extraction detects keypoints and constructs descriptors 

for each keypoint in an image.  

Association rules are mined and rule-based features are extracted from the 

discovered rules. After examining the literature and conducting experiments, 

we decided to employ Speeded-Up robust features (SURF), Binary robust 

independent elementary feature (BRIEF), Oriented fast and rotated BRIEF 

(ORB) and Binary robust invariant scalable keypoints (BRISK) descriptors [2-

5]. CNN, a deep hierarchical visual feature extractor, provides a feature 

extraction strategy from raw pixels based on the layer-wise stacking of the 

basic blocks. The employed CNN implementation [6] contains five 

convolutional layers followed by three fully connected layers. A feature vector 
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of 1024 is extracted for each image from the outputs of the last fully connected 

layer. FFmpeg audio filtering and decoding and MFCC are used in audio 

feature extraction. The state of the art motion features extracted through 

examination of local motion patterns around generated dense trajectories [7].  

Trajectory, HOG, HOF and MBH descriptors are extracted and final codebook 

of 4000 is constructed through training.  

Multi-modal decision fusion is employed to fuse multiple classifiers 

constructed on different feature sets. Fusing multiple classifiers promote the 

overall classification performance. Classifiers do not have identical 

performances thus a proper weighting of each classifier is determined. Most 

appropriate learners are employed with the most appropriate weights. We 

examine multiple kernel learning (MKL) to construct most appropriate kernel 

model for the classification task and achieve good accuracy. We also examine 

SVM and various other classifiers and employ the best performing classifier. 

When individual classifiers are constructed we employ logistic regression for 

weight determination and examine various classifiers to select the best fitting 

ones.  

1.4 Contributions 

In this thesis a framework is developed in order to detect semantic concepts 

and events on a selected subject domain. In order to fulfill the requirements of 

the multimedia analysis, a multi-modal fusion strategy is defined by 

considering the restrictions of the efficiency, accuracy and semantic coverage. 

A video analysis methodology capable of semantic separation, synchronization 

and integration of multiple information sources is developed. Different ways to 

structure and to analyze video data are investigated, summarized and linked to 

the entities. Video and audio feature sets are investigated in an integrated view 

of bag of visual words. Multi-modal decision fusion is used as the final 

decision strategy. 
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The proposed framework provides a robust video event recognition strategy 

which achieves promising performance evaluation results. The main 

contributions of the thesis can be summarized as follows: 

• Development of an adaptable, multi-modal fusion-based and high 

performance video event recognition framework.  

– Adaptability: new event types can be integrated to the system simply by 

supplying visual event descriptors and some training image and video 

to the classifiers. 

– Multi-modal fusion: multiple media, various feature types, different 

decision sources are integrated in order to achieve a robust system 

modeling.  

– Performance: promising MAP values are achieved especially in the 

recognition of events that can be represented with association rules.  

• Formalization of association rule mining and deep learning applications on 

video event recognition task.  

– Association rule mining (ARM): association rules are employed to 

discover temporal relations between occurrences of event descriptors in 

videos.  

– Deep Learning: Existing deep learning proposals are examined and an 

appropriate formalization is constructed for video event recognition 

task. 

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows:  

• Chapter 2 presents the related work on long-term event recognition, 

multimedia analysis, and feature selection. In addition, the methods 

for shot boundary detection and decision fusion are also reviewed. 



 

 

 

 

7   

• Chapter 3 introduces the overall multi-modal video event recognition 

framework proposed in this thesis. Also, since video decomposition is 

the first step in any video data analysis, the details of this step are 

presented in this chapter. 

• Chapter 4 presents the video event modeling approach that is utilized 

in the proposed framework. 

• Chapter 5 discusses the details of the proposed scene feature extractor 

construction strategy.  

• Chapter 6 discusses the video event recognizer construction strategy 

and corresponding decision fusion application.  

• Chapter 7 discusses the experimental results of the given approach.  

• Chapter 8 presents the conclusions and the future work.  
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CHAPTER 2 

 

 

2. RELATED WORK 

 

 

 

Event recognition is a challenging task since it requires the analysis of complex 

features such as motion, texture, and audio. Video analysis requires 

construction of representative event modeling and reasoning strategy. In any 

video analysis task, feature extraction is one of the key steps for every high 

precision event recognition system. In order to analyze any given video, video 

decomposition is applied initially. In this chapter, related work on physical 

video decomposition, feature extraction, video event recognition and modeling 

is presented and differences with the proposed approach are discussed. 

2.1 Physical Video Decomposition 

Video decomposition is the identification of frames, shots, and scenes in a 

video. A shot is a continuous sequence of frames that represents time and space 

continuity and it is generated by a single non-stop camera operation [8]. Shot 

Boundary Detection (SBD) is the reverse process of video production. In order 

to reveal underlying construction strategy, the frame transitions should be 

examined. The main steps of SBD process consist of the constructions of the 

feature set, distance metric and window size. 

The first step is the construction of feature set. The most commonly employed 

features are pixel intensity, color histogram, edge information, motion 
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information, transform coefficients and local keypoint descriptors [9].  One of 

the most commonly used features in SBD is color histogram because of its low 

computational cost. The edge information reveals many clues and information 

about the structural model of the frame. However, direct edge mapping 

between two frames is computationally complex and difficult to precisely 

determine. Thus alternative metrics are defined in the literature [9-11]. In [10], 

Zahib et al. propose edge change ratio (ECR). The main disadvantages of ECR 

based methods are their high computational cost, high noise sensitivity and 

high dimensionality [9]. Optical flow and motion vector are also used for frame 

transition motion modeling. However the complexity of motion estimation is 

always higher than visual discontinuity detection [8]. In [11], authors present a 

survey on the performance evaluation and characterization of SBD methods. In 

[12], it is given that complex features such as edge information cannot severely 

outperform basic color histogram. However there are certain cases where each 

feature is more precise than others. Therefore decision fusion is a promising 

strategy to be considered in shot boundary detection. Unlike decision fusion, 

decision cascade employs feature sources only if there is a decision conflict or 

an unsolvable case. Thus, decision cascade strategy could be used to minimize 

the computational requirements.   

The second step is the distance metric construction. The optimum distance 

metric should be insensitive to camera operations, flash effects, lightening, and 

physical content. It should also have a low computational cost and be able to 

discriminate different feature sets. Histogram metrics are always found to be 

more successful than the pixel metrics. In [13] the authors concluded that the 

chi-square test is the best performing histogram metric in the literature. They 

further optimized the metric by adding the normalization to the formula. Once 

the features and metrics are selected, the next step is to determine a similarity 

threshold. It is important to define a noise tolerant, video genre adaptable, 

context aware and case independent similarity threshold. The basic method is 
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to set a predetermined global threshold. In [14] multiple thresholds are used in 

the discontinuity detection steps. On the other hand in [15] a local variation 

independent method is described. In their research [16] Quenot et al. construct 

a threshold value as a function of some predefined fixed thresholds by 

maximizing the precision and recall. The authors in [17] define threshold as a 

function of mean and standard deviation of histogram differences between 

consecutive frames.  

Another step of SBD is the selection of window size, which should handle both 

gradual and abrupt transitions. Adaptive window size is a promising proposal 

for window size determination problem. With an adaptive window 

implementation, it is possible to deal with movies of diverse Average Shot 

Lengths (ASL). Even within the same movie, ASLs could be diverse as given 

in [18]. That observation reveals possible misleading effects of statistical data. 

After determining the features, metrics and parameters, the overall strategy can 

be constructed. SBD strategies could be classified into two main classes: 

threshold based and learning based. The threshold based approach computes 

differences between the color distributions of consecutive frames (or window 

of frames) and employs a threshold to detect transitions. Threshold based 

models have lower time complexities, but they are sensitive to illumination and 

motion changes. Recent works [10-19] commonly employ machine learning in 

SBD and they have achieved impressive results. A two class classifier (shot 

boundary or not) is implemented for frame similarity decision. SVM is the 

corresponding classifier for most of the cases. Mostly color features are used in 

training the selected classifiers. Lienhart [20] developed a neural network (NN) 

dissolve detector which uses color histograms, directional gradients and edge 

information as the features. Instead of one level decision, temporally sliced 

decisions are formed and decision fusion is applied in order to make the final 

classification.  
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According to Hanjalic [21], the success of a SBD algorithm depends on the 

detection performance for all types of shot boundaries and quality of the 

detection performance for any arbitrary sequence. Another performance 

indicator is the minimization of fine-tuning of parameters. Even if it is not 

mentioned in the Hanjalic’s paper, computational cost should also be 

considered in the SBD process. In [22] authors apply a random and rigid 

sampling strategy for the minimization of computational cost by down 

sampling the frame rate. However rigid sampling without any backtracking 

strategy would result in missing transitions. Thus a decision guided frame 

pruning strategy is required in order to achieve computational efficiency. In the 

literature, other computational enhancements are based on processing 

compressed videos, where instead of frames, decoding and segmentation 

results are examined [23]. 

SBD detection is a widely studied problem [21]. However, although cut 

transition can be detected with a high success, gradual transition cannot be 

detected with that high success [24]. And there is still room for computational 

improvements considering the increasing video broadcasting capacity. 

The applied shot and scene boundary detection algorithms [25] proposed in this 

thesis are specialized versions of the threshold-based strategy presented in [9]. 

In order to reduce time complexity, we employ a heuristic to prune the search 

space in determining the candidate shot boundary frames. The motivation 

behind the approach is the connection and similarity between frames that could 

be detected and modeled. Another motivation is the backtracking flexibility of 

SBD algorithms. 

2.2 Feature Construction 

Feature construction defines a mapping between the original representation and 

a more separable space. There are various studies in the literature in feature 

source selection [26-28]. Motion features, audio features, interest point 



 

 

 

 

13   

descriptors, and deep hierarchical visual features are the most commonly 

employed features in the literature. When the final set of individual feature 

sources is determined, feature encoding and feature fusion are employed as the 

final steps in feature set construction process.  

2.2.1 Motion and Audio Features 

Motion features are commonly used in object tracking and action recognition. 

Extracted motion features could reveal valuable knowledge about inter-frame 

flow characteristics such as motion direction and motion magnitude. In order to 

detect motion features of video, classical image features have been adapted. 

3D-SIFT [29], extended SURF [2], HOG3D [30] and dense trajectories [31] 

are the most common approaches for video motion feature extraction.   

3D-SIFT, extended SURF and HOG3D are extensions of SIFT, SURF and 

HOG descriptors through 3D gradients. Recently, dense trajectories are proved 

to result in most accurate performance on various datasets [31]. Extracting 

dense trajectories and computing trajectory-aligned descriptors are the steps of 

the dense trajectory based motion feature extraction. Firstly, the important 

points are extracted for each frame and optical flow is analyzed on selected 

points. Object motion patterns and edge motion patterns are examined and 

described with various descriptors in optical flow analysis [32].  

In [33], image segmentation and feature matching are integrated to extract 

camera motion pattern. In [34], authors apply a low-rank assumption to 

decompose feature trajectories into camera-induced and object-induced 

components. In [35], authors employ coarse scale optical flow to solve 

pedestrian and pose detection tasks. They employ weak stabilization to remove 

motion-based detection problems. In [36] motion and its sub-categories are 

examined to extract trajectories and corresponding trajectory descriptors. In 

[7], authors examined camera motion to improve performance of dense 
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trajectories. Authors examine SURF-based keypoints and dense optical flow to 

estimate camera motion. 

FFmpeg audio filtering and decoding utilities are commonly used in audio 

processing.  Mel-frequency cepstral coefficients (MFCCs) are most common 

audio features, they are employed to examine energy level of various frequency 

regions. The computations are done through 32ms time-windows with 50% 

overlap. Bag of words (BoW) is used to convert MFCC-based features from 

each scene into fixed dimensional vectors, using a vocabulary of audio 

codewords.  

We employed an advanced version of the described dense trajectories for 

motion feature extraction and MFCC for the audio feature extraction. 

2.2.2 Interest point descriptors 

Interest points are the most discriminative points of an image. When the 

interest points are determined, each point should be described in a way that 

intensity, rotation, scale and affine variation tolerance are satisfied. Interest 

point detectors construct abstractions of image information whereas feature 

extraction represents the detected interest points.  

Interest point descriptors result in promising representation ability for various 

vision tasks. They are commonly employed in various computer vision 

applications, such as object recognition, action recognition and video event 

detection.  

Interest point descriptors could not be used as a direct feature set because of 

their frame specific characteristics. Bag of visual words (BoVW) transforms 

local interest point descriptors into a feature set [37]. For each local descriptor, 

a codebook is learned from the results of clustering local descriptors. K-means 

algorithm is applied in the clustering process. Codewords are the labels of the 

cluster centers and the number of the clusters is the codebook size.  When the 
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codebook is constructed, feature fusion phase is employed. There are two main 

steps in feature fusion: feature coding and pooling. Coding is the process of 

interpolating features into codebook space. Each patch is represented in terms 

of codewords. Next step is the pooling process in which the coding matrices 

are aggregated into a final feature vector.  

Interest point descriptors provide compact and abstract representations of 

patterns in an image. Lowe [53] proposed a feature set which is scale invariant, 

rotation invariant, robust to viewport chance, robust to lightening chance and 

noise robust. The proposed feature set, Scale-Invariant Feature Transform 

(SIFT) is commonly used in the literature because those features are highly 

distinctive even for a large database of features from many images. SIFT [53] 

is one of the most commonly used feature sets and it is the most successful 

interest point descriptor detector. However SIFT is not applicable for time 

constraint applications because of its high dimensional descriptors. In SIFT, the 

image pyramid is constructed through Difference of Gaussian (DoG [38]). 

STIP [39] restates the common interest point definition in terms of temporal 

information.  This detector introduces space-time interest points, detects spatio-

temporal corners in the image. The detector is able to represent temporal 

information directly as the local feature set. ORB [3] is an alternative interest 

point descriptor detector which combines a modified version FAST [40] 

keypoint detector, orientation concerns, BRIEF [5] descriptors and rotation 

concerns. FAST is employed to find keypoints, and then n best descriptors 

among those are selected through Harris corner filter. ORB [3], is rotation 

invariant and resistant to noise and faster than SIFT, while performing as well 

in many situations.  The processing speed of ORB and BRISK is quite fast 

compared to SIFT.  Histogram of Oriented Gradients (HOG [41]) is based on 

occurrences frequency of gradient orientation in specific portions of an image. 

Unlike SIFT descriptors, HOG is computed on uniformly spaced cells and 
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improves the performance by employing overlapping local contrast 

normalization.  

According to the experimental studies, employing different descriptors for 

keypoint detection and description results in higher performance [42]. In [43], 

it is given that the ORB/ORB pairing outperforms the SURF/ORB pairing. 

SURF and BRISK keypoints are invariant to rotation and scale changes, thus 

they construct good keypoint detection and descriptor pairing [42]. In the 

original proposal of BRIEF [5], keypoint descriptors are also computed 

through SURF keypoint extraction.  In [44], various feature detector and 

descriptor pairs are examined to find the best combination for real time visual 

face tracking. The binary descriptors BRIEF and ORB perform well together 

with detectors like FAST and STAR. Even if the SURF detector has the lowest 

distance deviation, it takes almost double time compared to other detectors. 

Unlike SURF, FAST/BRIEF or ORB is suitable for real time applications. 

We examined the above literature and constructed a keypoint-based feature set 

accordingly. In the proposed approach, SURF detector is used for BRIEF, 

BRISK and SURF descriptors. ORB detector is used for ORB descriptor.  

2.2.3 Deep Hierarchical Visual Features 

In conventional feature extraction methods presented above, a vector of 

features is extracted and then it is classified. This approach performs very well 

if the features represent the essential information needed for the classification. 

However, constructing generic feature sets is difficult when features are hand-

designed.  

Feed-forward neural networks (NNs) are the starting point of deep learning. 

Feed-forward NNs with a single hidden layer apply optimization to construct 

both the feature extraction parameters and the classifiers. Various layers of 

deep networks have feature detection modules. Basic features are detected in 
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the initial layers and those features are converted into high-level features in the 

following layers. 

CNN is a feed-forward NN. The neurons of CNN are grouped for regions of 

image. Introduction of CNN-based deep visual features completely changed the 

research direction in multimedia analysis [8]. CNN is commonly employed to 

describe characteristics of images in various computer vision tasks and yielded 

surprisingly good performances [8, 26, 28]. The performance improvement 

achieved through deep learning in image classification task could be seen from 

the annual results given in Figure 2-1.  The first deep learning proposal 

achieved almost 10% increase in accuracy compared to the next best non-deep 

learning proposal. 

CNNs consist of multiple layers of neurons. The results of the neurons are 

floored to construct a translation tolerant representation of the original image. 

CNNs consist of combinations of pooling layers, convolutional layers and fully 

connected layers. Various kernels are employed in each layer to obtain the 

current level of features. Each kernel is employed over the entire image in 

order to extract uniform feature characteristics. The kernels employed in the 

first layers extract the low-level features, like edges, lines and corners. As the 

layer level increase, features become closer to the semantic level [45]. 

Integrating CNN-based features into BoW strategy or a probabilistic model is 

also a hot topic.  In [47] authors showed that, CNN-based features could fulfill 

the inadequacies of SIFT-based features and could also handle variations.  

In order to construct generic feature set, we employed a variation of the CNN 

model proposed in GoogleNet [48]. We examined the network structure and 

adapted the model into our proposal through fine-tuning and data augmentation 

strategies. The details of the deep learning, fine-tuning and data augmentation 

strategies are given in the Section 2.3.2.  
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Next Best 

(Non-DL): 

ISI 26.2%
Krizhevsky et. Al

(AlexNet)

16.4%

Clarifai 11.2%
GoogLeNet 6.7%

VGG 7.32%

MSRA 7.35%

 

Figure 2-1: Results of Image Classification Task on ImageNet Large-Scale 

Visual Recognition Challenge Source: [46]. 

2.2.4 Feature Encoding 

Feature encoding is the process of converting image descriptors into a feature 

set. BoVW and Fisher vector are the most common feature encoding strategies 

in the recent literature [49, 50]. Recently, Fisher Vector shows an improved 

performance over BoVW for vision based classification tasks [51, 52].  

BoVW transforms local image descriptors into a feature set [52]. For each local 

descriptor, a codebook is learned from the results of clustering local 

descriptors. K-means algorithm is applied in the clustering process. Codewords 

are the labels of the cluster centers and the number of the clusters is the 

codebook size.  

The Fisher Vector extends BoVW by adapting the Gaussian Mixture Model 

(GMM) and corresponding parameters according to the training data. Fisher 

Vector characterizes a sample of low-level image features by its deviation from 

the GMM distribution. The Fisher Kernel is commonly employed in 
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comparison of images. The Fisher Vector is normalized with power 

normalization in order to make the distribution of features in a given dimension 

less peaky around zero.  L2-Normalization is also employed to cancel 

dependence on the proportion of image specific information with respect to the 

proportion of background. In the literature, it is shown that employing Fisher 

Vectors improves BoVW. The improvement varies from dataset to dataset. 

In motion feature extraction step, Fisher Vectors are extracted through learning 

256 Gaussians and features are extracted accordingly. 

2.2.5 Feature Fusion 

When individual feature vectors are determined, an appropriate fusion strategy 

should be employed. In feature level fusion, various feature sources such as 

color histogram, texture, shape blobs, closed caption text, video optical 

character recognition results, motion direction, optical flows, zero crossing 

rates, volume standard deviation and metadata are sent to a single analysis unit. 

Feature fusion strategies have three main types such as early, late and 

intermediate level. 

The selection of the representative features depends on the domain and the 

content to be extracted. The success of the experiment conducted to analyze 

content of a video strongly depends on the feature set selection.  

In this thesis, we examine various features. We analyze the representative 

power of each feature, computational concerns of feature calculation, the effect 

of employing feature on decision accuracy and robustness. The proposed 

feature set is selected by an optimization procedure on the mentioned concerns. 
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2.3 Event Recognition 

The most common event recognition strategies in the literature are graphical 

and knowledge-based approaches, deep learning approaches, and classification 

and fusion-based approaches [54-55].  

2.3.1 Graphical and Knowledge-based Approaches 

Graphical approaches depend on probability and graph theory [56]. They are 

employed to discover hidden structure in sequential video data and to extract 

the corresponding graphical model. Hidden Markov Model (HMM) and 

Bayesian Networks (BNs) are the most commonly used algorithms in the 

modeling process [56, 57]. In [56], authors propose a semi-supervised HMM 

for unusual event detection in videos. There are also various HMM 

applications on human activity recognition [57,58]. Unlike HMM, BNs are 

able to model the interconnection between states of the concerned domain 

using conditional dependence. In [59], video events are modeled in terms of 

object trajectories through BNs. Dynamic Bayesian Networks (DBNs) offer 

temporal relation modeling enhancement. Huang et al. [60] employed DBNs 

for event recognition in soccer videos.  

Knowledge-based approaches use domain experts in order to devise prior event 

model. Constructed event models are employed in the event recognition 

process. There are various knowledge-based algorithms concerning rule 

representation, modality integration and uncertainty handling capabilities in the 

literature. Richardson and Domingos [61] proposed Markov Logic Networks 

(MLN) as a promising representation in which complex events are represented 

and detected through first-order logic. Both MLN and PTNs require prior 

definition of learning motifs and structures. This results in a restricted coverage 

in terms of event types.  
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Association rule mining, introduced by R. Agrawal [62] is an alternative 

knowledge-based approach to event recognition problem. Unlike MLN, 

association rule mining does not require a predefined system model. We 

employ association rule mining for automatic temporal video event modeling. 

There are various association rule mining proposals mainly concerned with 

computational optimization and accuracy improvement [63-65] in various 

fields, however to the best of our knowledge there is not any automatic 

temporal video event modeling proposal for video event recognition task. 

In [63] authors proposed a frequent pattern tree structure for storing frequent 

patterns. The number of generated candidate sets and database scans are 

reduced, and the search space is reduced by employing a partition-based 

divide-and-conquer method. In [64], authors propose a temporal support which 

enables static temporal rule mining process. Furthermore, in [65] authors 

propose a dynamic temporal rule miner which is capable of modifying frequent 

patterns according to the results of database updates. Multiple correspondence 

analysis is another association rule mining implementation for correlation 

detection between features and concept classes [66]. 

In the proposed framework, we combine visual features, temporal concerns and 

regular ARM strategy and propose a knowledge-based strategy for recognizing 

video events.  

2.3.2 Deep Learning (DL) Approaches 

In classical computer vision, experts select or develop domain specific 

features: SURF, HoG, SIFT etc.  Then a classifier is trained and employed for 

multi-class recognition. In DL, features are built automatically based on the 

training data. Experts only construct neural network topology and combine 

feature extraction and classification. DL proposes a domain independent 

strategy for training classifiers on features automatically. It is based on multi-

layer networks. DL is a machine learning strategy that challenges to model 
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high level data abstractions by employing complex structures or nonlinear 

transformations.  

Deep neural networks (DNNs), CNNs, deep belief network and recurrent 

neural networks (RNNs) are most commonly employed DL proposals. DNN 

offers promising results for image and audio representation and classification 

tasks [45, 67]. DNN-based features outperform traditional manually designed 

features significantly especially on the image classification task in ImageNet 

classification contest. DNNs gradually extract more semantic, meaningful 

features in higher layers. Thus they are promising proposals for large-scale 

multimedia data classification in terms of both accuracy and cost [68].  

CNN constructs a classification model with a large learning capacity from raw 

pixels of training data. CNN integrates weight sharing and pooling strategies 

into traditional Multi-layer Perceptron. It is able to extract multi-level image 

features directly from pixels. Eliminating hand-designed features, efficient 

dense feature extraction, and high representative power are the main 

advantages of CNN proposals [45]. Starting with Krizhevsky et al. [45], CNN 

features dominated state-of-the-art approaches by showing substantially higher 

image classification accuracy.  

 

Figure 2-2: Structure of the AlexNet Source: [45].  
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Krizhevsky et al. construct a CNN called AlexNet to classify images in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [45, 46]. A 

part of AlexNet [45], given in Figure 2-2, contains eight layers with weights. 

AlexNet employs five convolutional layers and three fully-connected layers. 

Outputs of all convolutional and fully-connected layers are going through a 

sigmoid normalization. Sigmoidal normalization transforms the output to 

interval [0, 1] to eliminate effect of outliers.   

There are also various successful DL applications in video classification task 

[102-70]. In [102], authors propose a two-stream CNN approach to extract 

features from static frames and motion optical flow respectively. In [69], 

authors propose an image categorization framework where they employ DNN 

to improve performance.  There are also CNN proposals that examine various 

feature sources and successfully learned spatio-temporal filters from video 

sequences [71-73]. However these proposals are either focus on learning a 

general time varying weighing or employ simply temporal pooling. On the 

other hand, RNNs propose a classification model with spatial and temporal 

layers to model temporal dynamics.  

In [74], authors propose a long-term RNN model for visual recognition and 

description task. They combine temporal recursion concept to model time-

based patterns of CNNs. However they focus on object recognition-based 

temporal modeling, thus the main focus is activity recognition and not able to 

generalize global video events and video categorization problem.  Although 

there are attempts to model temporal characteristics of the video event 

occurrences, to the best of our knowledge, all of the proposed classification 

models employ either a temporal averaging or assume a particular region of 

spatio-temporal field for sequential processing of video. Even the existing 

RNN-based proposals stuck into restricted action recognition task and cannot 

propose a high level temporal video modeling strategy.  
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Fine-tuning and data augmentation are commonly employed strategies in CNN 

network construction and learning phases. Fine-tuning examines a pre-trained 

network and adapts that network to a new classification problem. Firstly, one 

of the pre-defined layers is replaced with a new layer. Then a training phase is 

applied to the new network by assigning high learning rate to newly defined 

layer. Fine-tuning could improve final classification accuracy. For example in 

[67], authors show substantial improvements with fine-tuning on PASCAL 

detection: 44.7% to 54.2% MAP. 

Data augmentation is the strategy of improving the data by adding knowledge 

to the examination.  In image analysis domain, augmentation means 

transforming image into various forms that leave the underlying class 

unchanged in order to enlarge the sample space. Cropping and flipping are the 

most common and basic augmentation strategies [45, 75, 76]. The samples 

produced by augmentation are either employed directly or combined with a 

pooling strategy. Data augmentation could be applied to any kind of feature 

source [76]. 

Region-based CNN (R-CNN) [67] proposes a high-level data augmentation 

strategy. R-CNN determines important regions of image and employs CNN 

classifiers to identify object categories at determined regions. GoogLeNet [48] 

employs the Selective Search [77] in region selection and inception model as 

the region classifier.  

In the proposed framework, the above deep learning strategies are examined 

and a modified version of GoogleNet is adapted. We constructed the network 

model, by employing the pre-trained model given in [115]. We also employed 

a specific data augmentation strategy. Instead of random or pre-defined data 

augmentation we employed a keypoint based strategy. We examined various 

DL frameworks such as Lasagne, Caffe and Theano and we employed Caffe 

[6] framework in network construction and modification phases. The 
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constructed model is extracted from the Caffe [6] framework and employed as 

feature extractor. 

2.3.3 Other Classification-based Approaches 

Classification is another important event recognition strategy in which different 

classification techniques are used to recognize events. Recent classification-

based research focus on hierarchical classification and concept based 

recognition of complex events that are composed of multiple simple objects, 

audio patterns, textual labels and image features. SVM is the most commonly 

used supervised classification technique in event recognition [78-79]. 

In order to achieve high performance in multimedia analysis task, multi-modal 

fusion is a crucial strategy to employ.  Since different feature sources have 

different characteristics, each requires a specific similarity measure. Employed 

kernels determine the similarity measures thus kernel selection is an important 

aspect in SVM classifier construction. Constructing a single kernel that fulfills 

requirements of all feature sources is hard to achieve. Instead in MKL 

approach, existing kernels are combined and weights of kernels are constructed 

through a learning process [80].   

MKL learns weights of various kernels in SVM classifier construction phase 

and improve final classification accuracies [80].   MKL computes different 

kernel matrices for each feature and then finds the optimal weights to combine 

the kernel matrices. Finally it uses the combined kernel matrix to train a SVM. 

There are various promising applications of MKL to computer vision [81, 82]. 

The best performance on Pascal VOC 2010 object categorization challenge is 

achieved through a MKL approach to combine multiple sets of visual features 

[81].  In [82], authors employ MKL for determining weight for each kernel and 

achieved the best precision value. However each MKL formulation requires a 

corresponding specialized optimization algorithm. In [83], authors propose an 

optimization strategy for training a linear MKL regularized by the Bregman 
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divergence, using the Sequential Minimal Optimization (SMO) algorithm. The 

given MKL approaches are all limited to linear combination of kernels. 

Robustness to over fitting, generalization across domains and only employing 

linear combinations of kernels are open issues.  

We employed the generalized MKL formulation [84] which proposes a 

solution to these issues. Generalized MKL strategy constructs a final single 

kernel with generalized parameters. 

 

Figure 2-3: Hybrid Multi-modal Analysis Source: [1]. 

2.3.4 Decision Level Fusion 

Fusion, the process of integrating multiple sources into a final one, is also a 

promising trend for event recognition in videos. There are various applications 

of multi-modal fusion which are used in specific domains [86-87]. There are 

two main fusion levels; feature level and decision level. In decision level 

fusion many analysis decisions of individual classifiers are pooled using 

another learner. There is also hybrid fusion in the literature which can utilize 

the advantage of both fusion levels [88]. All of the three fusion levels are 

illustrated in Figure 2-3. 
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Kernel classifiers, graphical methods and knowledge based techniques are the 

most commonly used strategies for individual decision learners [1]. When the 

individual decision sources are constructed, the final decision process is 

employed. Rule-based fusion, estimation-based fusion, classification-based 

fusion, majority voting, weighted fusion, class ranking [89], and combining 

probabilistic outputs [90] are the most common methodologies to devise a final 

decision from different sources. Two main fusion strategies are given in the 

following sections. 

2.3.4.1 Rule-based Fusion 

Rule based methods are based on a variety of basic rules of combining 

information. Performance of rule-based methods depends on the accuracy of 

constructed weight model for integration of different fusion sources. Majority 

Voting, Linear Weighted and Custom Defined fusion are the representative 

rule based methods. The linear fusion is based on the calculation given in Eq. 

2-1 where          is a feature vector obtained from the     media source or 

    classification result. Linear fusion has less computational complexity 

compared to the other methods [88]. 

   ∑   

 

   

     (2-1) 

2.3.4.2 Classification-based Fusion 

Classification-based methods apply different classification techniques to solve 

the fusion problem.  

SVM is the most commonly used supervised learning strategy in fusion 

domain. Zhu et al. [91] developed a fusion-based multi-modal image 

classification framework. In [37], authors proposed an image classification 

proposal which employs BoW strategy on the low-level features. The results of 
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the BoW model and textual features are used in the SVM classification for 

modality fusion. 

In DBN the domain is represented as a graph where nodes represent 

observations of different types and edges denote their probabilistic 

dependencies. The DBNs are able to model inner dependencies and enables 

straightforward multi-modal integration [92]. Because of these utilities, DBNs 

are perfect classification candidates for various time-series multimedia analysis 

tasks.  Constructing most appropriate DBN model is the main drawback 

because of the requirement of the accurate system model development [93]. 

DBMs are commonly used in video shot classification, speech recognition, 

speaker localization, story segmentation and object tracking. HMM is one of 

the most commonly employed DBN proposals. It is applicable for temporally 

structured multimedia applications.  

We examined various decision fusion strategies and conducted experiments for 

selecting the most appropriate strategy. We employ classifiers for individual 

classification requirements and logistic regression for weight determination. 

Logistic regression is selected as the decision fusion strategy for the 

classification performance and robustness. 

2.4 Applications 

Image analysis is the starting point for any multimedia analysis task.  In [94], 

authors propose a system that extracts features densely from a multi-scale 

pyramid of images using a CNN. When they extract scene features, they 

propose a representation to capture texture, shape and contextual information. 

The CNN proposed in [45], constructs a framework that proposes state-of-the-

art error rates on large benchmark datasets consisting of 1.2 million images in 

image classification task. The state-of-the-art algorithms on CNN are given 

below: 
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 Sermanet et al. [95] proposed a CNN application on image 

classification, object localization and object detection tasks. They 

obtained state-of-the-art best performance on various datasets. 

 Razavian et al. [96] proposed a CNN application on image 

classification, scene recognition, attribute detection, image search tasks. 

They obtained state-of-the-art best performance on various datasets. 

 Zeiler et al. [75] proposed a CNN application on image classification 

task. They obtained state-of-the-art best performance on various 

datasets. 

 Donahue et al. [122] proposed a CNN application on image 

classification, domain adaptation, fine grained recognition, scene 

recognition tasks. They obtained state-of-the-art best performance on 

various datasets. 

 Girshick et al. [67] proposed a CNN application on image detection, 

and image segmentation tasks. They obtained state-of-the-art best 

performance on Pascal VOC 2007, 2010 and 2011 and ImageNet 

LSVRC 2013 datasets. 

 Oquab et al. [97] proposed a CNN application on image classification 

task. They obtained state-of-the-art best performance on Pascal VOC 

2007 and 2012 datasets. 

 Khan et al. [98] proposed a CNN application on shadow detection task. 

They obtained state-of-the-art best performance on UCF, CMU, and 

UIUC datasets. 

 Sander Dieleman [99] proposed a CNN application on image attributes 

task. They obtained state-of-the-art best performance on Kaggle Galaxy 

Zoo challenge dataset. 

In [100], authors focus on generating sentences to describe videos. They 

propose a graphical model for integrating statistical linguistic knowledge 

mined from large text corpora with noisy computer vision detections.  
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In order to reveal semantics for a given visual analysis task, effective 

representations should be constructed. The performance with DL methods has 

been impressive on visual analysis tasks through DL applications. Deep 

unsupervised models outperform the traditional hand-engineered 

representations in various domains. In [101], authors propose an unsupervised 

feature extraction strategy. The proposal extracts features directly from the 

image. Until that proposal, good features have not already been engineered. 

The previous work on the subject deals with adapting hand-designed local 

features from static images to the video domain.   

There are various CNN based proposals on dominant object category 

recognition task. CNN performs better on larger datasets such as 1000-category 

ImageNet [102] compared to small datasets such as Caltech-101 [103]. 

When input feature distributions change due to various factors such as noise 

and pose change, various image classification proposals fails. Learning 

domain-invariant visual representations and constructing corresponding 

classifiers are the main task of multi-media analysis. In [86], authors construct 

a linear transformation between the target domain features and the training 

domain features.  

We examined existing applications and selected the most appropriate features, 

fusion strategies, individual classifiers and CNN strategies. Each strategy is 

analyzed and compared to alternative strategies in terms of various concerns 

and the results are stated in the corresponding sections in the thesis.  
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CHAPTER 3 

 

 

3. MULTI-MODAL EVENT RECOGNITION 

FRAMEWORK 

 

 

 

In this section we describe the overall process of the proposed approach. We 

also describe the initial video decomposition module. 

3.1 Overall Process 

We propose a multi-modal video event recognition methodology to detect 

semantic events in video scenes. We propose a novel video event modeling 

together with promising event recognition strategies to recognize long-term 

spatially and temporally structured semantic events. The block diagram of the 

overall process is given in Figure 3-1. In order to analyze any given video, 

video decomposition is applied initially.  

Video event modeling is an offline task which includes event descriptor 

learning, video scene segmentation, association rule mining and scene feature 

extractor construction. An event descriptor is defined as a keyword matched 

with an image set. Event descriptor learning is an image classifier construction 

process. Once image classifiers are constructed, each frame in a video can be 

mapped to an event descriptor. Then a video event could be defined as a 

sequence of event descriptors. A video event model can be constructed if the 
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event types and the corresponding list of event descriptors are known, 

appropriate feature set is constructed and adequate training dataset is gathered.  
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Figure 3-1: Flow Diagram of Overall Process. 

Video scene segmentation module examines shot boundaries and hierarchical 

video structure among frames, shots and scenes, and concatenates successive 

event descriptor occurrences to convert a frame sequence into a sequence of 

event descriptors. When sequences of event descriptors are constructed, the 

results are fed into association rule miner as the training data to learn and 

represent the video event characteristics in terms of event descriptors. In the 

proposed system, the rule discovery training data includes (a sequence of event 

descriptors, event type) pairs so that association rules of the form “An event 

descriptor sequence  Event Type” can be discovered. 

Event occurrence in a scene is detected by examining scene features 

constructed by the scene feature extractor.  The scene feature extractor 

examines the discovered association rules, uses deep learning, fuses various 

multi-modal features, and constructs an integrated feature extraction strategy.  
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Video event recognizer construction is the final step, which employs the 

constructed scene classifiers to construct a learner for the video event 

recognition task. Scene classifiers are constructed through a learning phase on 

the extracted multi-modal feature sources. Logistic regression is employed in 

the decision fusion of scene classifiers and weights are assigned to each scene 

classifier for each event type. And finally, a single scene classifier is 

constructed for each event type through the proposed decision fusion. More 

than one event type could be assigned to the scene by different scene 

classifiers. When all scenes in the video are classified, the individual scene 

classification results could be combined to construct final Event recognizer to 

classify the whole video.  
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Figure 3-2: Flow Diagram of Video Decomposition. 

3.2 Video Decomposition 

Video decomposition deals with identifying frames, shots, and scenes in a 

video. Both shots and scenes are continuous sequences of frames that represent 

a time and space continuity. Shot is generated by a single non-stop camera 

operation and scene is generated by a location change [104]. We could define 

scene as a semantic unit enclosing an event that takes place in one location. 

The proposed video decomposition is described in Figure 3-2. At the end of 
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video decomposition, video is converted into a sequence of scenes, scenes are 

decomposed into a sequence of shots and shots are decomposed into frames. 

The main part of video decomposition is shot boundary detection. The applied 

shot boundary detection (SBD) algorithms [25] are specialized versions of the 

threshold-based strategy presented in [9]. When the shots are detected scenes 

are extracted by a threshold-based analysis. The employed test sets contain 

short, single scene video instances, thus scene detection part is eliminated. 

A shot is a continuous sequence of frames that represents a time and space 

continuity [22]. The frames in the same shot are strongly correlated to each 

other. Shots are the basic, meaningful, and primitive content units for semantic 

analysis, querying and any other video concern. Thus, SBD (detecting the 

boundaries between consecutive temporal segments) is the initial step for all 

semantic video analysis requirements to be fulfilled.  

The two main concerns of SBD are time complexity and accuracy. In order to 

reduce time complexity, we employ a heuristic to prune the search space in 

determining the candidate shot boundary frames. The motivation behind the 

approach is the connection and similarity between frames that could be 

detected and modeled. Another motivation is the backtracking flexibility of 

SBD algorithms. Since frame pruning could result in accuracy loss, a 

backtracking strategy should be integrated for error correction. The proposed 

approach employs multiple decision sources in the SBD process. The decision 

sources are employed in a cascaded manner in order to minimize the time 

complexity. When dynamic window size leads to a dead end or a contradiction 

in decision fusion, an update strategy is employed so that the error is fixed and 

a decision can be made. 

The contribution of the proposed strategy is the dichotomic search algorithm. 

The main concern is to reduce computational cost while preserving the 

decision accuracy. Dichotomic search is employed for computational concerns.  
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We integrate the threshold-based strategy presented in [9] and a dichotomic 

search on the boundary space. The core step of the proposed method is 

narrowing the shot boundary decision space as long as the accuracy is 

improved. Instead of the default sequential change detection, a dichotomic 

change strategy which is supervised with a SVM classifier is implemented to 

achieve high accuracy and less algorithmic complexity. In order to reduce 

computational complexity, we construct a shot boundary search heuristic for 

pruning the set of candidate shot boundary frames. We employ a SVM 

classifier in order to decide the size of the search space to be pruned for the 

purposes of improving computational efficiency. TRECVID 2006 and 2007 

data sets are used in the evaluation process and the performance results are 

given for both cuts and gradual transitions.  

3.2.1 Algorithm Flow 

The flow chart of the proposed approach is given in Figure 3-3. The core step 

of the proposed method is narrowing the shot boundary decision space as long 

as the decision sources agree. A dichotomic tree traversal based search is 

employed in order to simulate the adaptive sliding window values.  
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Figure 3-3 : SBD Flow Chart. 

3.2.2 Dichotomic Shot Boundary Search (DSBS) 

An hour long movie contains 1x60x60x24 frames. Processing each of these 

frames is a huge computational burden and therefore it is highly time 
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demanding. Down sampling is required to solve the time complexity problem. 

In order to diminish search space, a search heuristic should be developed. 

Histogram difference sequence is not sorted and uniformly distributed; thus we 

need a pruning and backtracking strategy based on not only the histogram 

differences but also other decision sources. Dichotomic search is implemented 

through binary tree construction in which the edges represent the local 

decisions and leaves represent current frame of consideration for pruning or 

backtracking [68]. DSBS selects next shot boundary candidate by examining 

two alternatives (backtrack or prune). The selection between the backtracking 

and pruning is handled by the help of a pre-trained SVM classifier. The 

selection is based on the pattern distribution on the boundary of the current 

window and the center of the next candidate. The Figure 3-4 compares the 

regular SBD strategy and proposed approach. 

Regular

Proposal

   

Figure 3-4 : Proposed Video Composition Modification. 

The initial step of DSBS is the tree construction. The constructed tree for SBD 

problem is given in Figure 3-5, where PS stands for pruning size. If the 

algorithm results in pruning decision, then the current window is shifted by the 

current pruning size and candidate shot boundary search is applied to the new 

window. The next step is the decision strategy to be implemented at each node 

of the tree. 
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PS 

Pruning Size = Initial Value

PS = PS - PS/2
PS = PS + PS/2

PS = PS + PS/4 PS = PS - PS/4 PS = PS + PS/4 PS = PS - PS/4

... ... ... ...

 

Figure 3-5 : Proposed Search Tree Illustration. 
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Figure 3-6: Best and Worst Case Simulations for Proposed SBD Algorithm. 

Dichotomic search avoids examining all of the video frames, therefore reduces 

the computational cost. The best case behavior (no backtracking, decision 

sources agree on pruning) and the worst case behavior (full back tracking, 

decision sources indicate missed shot boundary) of the algorithm are given in 

(1). Examples for the best case and worst case scenarios are given in Figure 

3-6, where     represents the     frame. Binary backtracking (PS/2, PS/4, 

PS/8…) is employed in order to achieve trade-off between the penalty for 

missing a boundary and the time for error recovery. Although an adaptable 

pruning size is proposed, an initial learning is employed on the 10% of 
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TRECVID 2007 SBD data set in order to assign an initial value. The applied 

backtracking strategy doesn’t result in any additional computations, because, 

the previous frame comparisons and pattern examinations are kept in a buffer. 

The size of the buffer is determined by the window size. 

3.3 Experimental Results and Discussion 

Content and case independent SBD with reduced parameter adjusting 

requirement is the concern of the literature. There are still items to be enhanced 

in SBD. Improvements on the representation of shot occurrences and 

computational efficiency are two important concerns of our approach. We used 

2006 and 2007 TRECVID shot boundary test video sets [72] for the evaluation 

of the algorithm. The details of these benchmark data sets are given in Table 

3-1. 

Table 3-1 : SBD Test Data Description [71]. 

Data Set 

TRECVID 
Hrs Files Size gb Frames Transitions 

Cut 

% 

Gradual 

% 

2006 7.5 13 4.24 597043 3,765  48.7 41.2 

2007 6 17 4.08 637805 2,317  89.5 6 

 

The evaluation strategy and the results of TRECVID participants are used in 

the evaluation process. Precision, recall and combination of these two measures 

called F-measure are the main performance metrics used in TRECVID. The 

calculation details for all of these metrics are given, Eq. 3-1 and Eq. 3-2. 

Computational results of the proposals are given as a percentage of real time 

processing.  
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       ( )   
                 

                       
       (3-1) 

  
          ( )   

                 

                        
      (3-2) 

3.3.1 Computational Evaluation 

The proposed computational enhancements in the literature focused on 

compressed-domain processing which applies decoding and decomposition 

[71]. Bradford submission achieves an 80% computation time enhancement 

compared to real-time video playing. The compressed domain applications are 

strongly encoding and low-level examination dependent. We propose an 

alternative approach to compressed domain concern. A frame trend analysis 

and dichotomic search based tree pruning is implemented for computational 

improvement.  

Frame skipping percentage, defined in Eq. 3-3 is used as the computational 

performance criteria. Worst case pruning percentage, defined in Eq. 3-4 is used 

in the best performance examinations. Throughout the SBD algorithm, pruned 

frame count is examined and the percentage is calculated from this data. The 

TRECVID 2006 and 2007 shot boundary test data sets are used in the 

evaluation process. On the average 9% (9% less frame comparisons) 

computational time improvement is achieved compared to pure uncompressed 

window based shot boundary detection algorithms [71].  2007 shots (ASL = 

275.3) are much longer than the 2006 shots (ASL = 157.7) [72], thus 

computational improvement is better in 2007 data set (11% versus 7%). 

3.3.2 Accuracy Evaluation 

Our main focus is computational improvement, and throughout this process we 

also need to fulfill the current accuracy concerns.  The camera operations 

detector and many decision sources are fused in a cascaded way in order to 
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obtain a successful shot boundary detector. The accuracy comparisons are 

handled according to the results on the benchmark TRECVID 2007 SBD test 

data. For cut detection, Bradford submission is labeled as the best performance, 

with the recall and precision rates of 97.3% and 98.2%, respectively. For 

gradual transition detection, AT&T has the best performing proposal. (95.6%, 

95.4%) from AT&T and (94.9%, 95.6%) from Tsinghua/Intel Chinese 

Research Centre, and (94.1%, 91.9%) are the overall best three recall and 

precision results. Bradford submission improved computations of SBD task 

compared to compressed-domain applications. Our algorithm results in 92.20% 

precision and 91.36% recall values; the results are in the range of top 10 

submissions. Pruning strategy has effect of less than 0.5% on precision and 

recall.  
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We implemented an adjustable pruning size. Any over pruning indication 

inferred from the frame transition sequence in the current window, results in 

examining previous frames for correction. Even if we employ an adjustable 

pruning size, when pruning size becomes larger than a threshold value (>96), 

recall and precision values become more dependent on size changes. Increasing 

pruning size results in missing some of the transitions thus recall values are 
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more affected by the changes. The effect of pruning size could be seen from 

Figure 3-7 and Figure 3-8.  

 

Figure 3-7: Average Precision vs Pruning Size Graph for Cut BD. 

 

 

Figure 3-8: Average Recall vs Pruning Size Graph for Gradual BD. 

 

Because of correction decisions, initial pruning size assignment doesn’t have 

strong correlation with the precision and recall values up to some threshold. If 
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the pruning size is too high, algorithm back propagates. However, since back 

propagation requirement is not always detectable, too high pruning size results 

in decrease in accuracy. Especially recall values are decreased because of the 

increasing missing rates. Too low pruning size results in low pruning and 

doesn’t affect the accuracy of the algorithm. When pruning size is zero the 

algorithm becomes the regular uncompressed SBD. 

3.3.3 Discussion 

We presented a shot boundary decision fusion strategy where the 

computational efficiency is the main concern of the algorithm. The proposed 

algorithm employs dichotomic search, a cascaded decision fusion and dynamic 

pruning strategies. Computational improvement is achieved through the 

candidate shot boundary pruning process.  

Instead of basic sequential pattern examination, supervised dichotomic change 

detection strategy is employed. Multiple decision sources are also employed in 

the cascaded decision fusion phase in order to minimize false shot boundary 

alarms and over-pruning. We constructed a noise tolerant, video genre 

adaptable; context aware and case independent similarity threshold adaptation 

strategy by means of cascaded decision fusion. Algorithm achieved a 9% 

improvement in computational time compared to uncompressed domain 

applications. At the same time the accuracy is among the best ten proposals in 

the literature and the difference to the best performance is around 3%. The 

effect of employing the proposed pruning strategy is negligible, the overall 

precision and recall decrease only by 0.46% and 0.39%. The developed SBD 

strategy is integrated into video event recognition framework. 

The rest of the thesis presents the details of all components given in Figure 3-1 

together with the explanation of the data flow among them.   
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CHAPTER 4  

 

 

4. VIDEO EVENT MODELING 

 

 

 

Video event modeling is the process of representing a video event as a feature 

vector constructed by combining different feature sources. Event modeling is 

achieved by combining the results of event descriptor learning, association rule 

mining and audio, visual and motion scene feature extraction.  

 

Figure 4-1: User Defined Event Descriptor to Visual Event Descriptor 

Mapping Example: Fire Source: [45]. 
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In the proposed framework, there are 20 event types which are obtained from 

Columbia consumer video (CCV) dataset and 12 event types in Hollywood2 

dataset [105, 106] (see Table 7.2 and Table 7-4). Each event type is defined 

with the corresponding set of event descriptors, and each event descriptor is a 

keyword associated with an image set. Event types are user defined labels of 

video scenes, and each event type is represented as a sequence of event 

descriptors. User defines event descriptors for event types and constructs an 

image set for each event descriptor. Event descriptors and corresponding 

training image sets are determined by using WordNet [107], LSCOM [108], 

LabelMe [109], ImageNet [45] and Google search API [110]. The image 

results for event descriptor “Fire” are given in Figure 4-1.  

In the proposed framework, there are 362 event descriptors (302 for CCV event 

classes and 60 for Hollywood2 action classes). For instance, the event 

descriptors for basketball event type are basketball audience, basketball ball, 

basketball coach etc. The event descriptors for basketball event type are given 

in Figure 4-2. The images corresponding to an event descriptor are sample 

images which describe the general visual characteristics of that event 

descriptor. For each event descriptor, the given set of images is used to learn 

visual characteristics. An SVM classifier is constructed on CNN-based and 

keypoint-based features to learn event descriptors.  

In order to convert each video scene into a sequence of event descriptors, video 

scene segmentation is applied on the results of video decomposition. First, all 

frames are mapped to event descriptors. Then corresponding event descriptors 

of shots are determined hierarchically from the labels of the frames by majority 

voting strategy. The label of the shot is assigned to the most common event 

descriptor among its frames.  Then consecutive shot label repetitions are cut to 

two and the final scene segment is constructed from the labels of the shots.  
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Figure 4-2: Event Types and Video Event Descriptors. 

Association Rule Mining is applied to discover interesting patterns of event 

descriptors within the video. In the proposed ARM strategy event descriptors 

correspond to items and video scenes containing the event descriptors 

correspond to transactions of the classical apriori algorithm [62].  After each 

scene is converted into a sequence of event descriptors, ARM is applied to the 

constructed sequence. The discovered rules are in the form of {Event 

Descriptor1, Event Descriptor2,…, Event Descriptor3}            . 

Discovered association rules and the fusion of various other multi-modal 

features are employed in the final scene feature extraction process. 

In the following, the steps of event modeling are explained in more detail. 

4.1 Event Descriptor Learning 

In video decomposition, a video scene is converted into a sequence of frames. 

However frames cannot be used as items of association rules because of the 
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diversity. We construct frame classifiers and assign an event descriptor to each 

shot. Thus, each scene is described as a sequence of event descriptors. The 

proposed ARM strategy examines the sequence of event descriptors. The 

ultimate aim of ARM is to associate each scene with an event label. 

In order to convert a scene into a sequence of event descriptors, we categorize 

images into event descriptor classes. An event descriptor is a textual label 

associated with a set of images. For each event descriptor, the given set of 

images is used to learn visual characteristics. Therefore, learning an event 

descriptor is an image classification process.  

Image classification is a well-studied topic; there are successful proposals and 

implementations [111]. Some of those methods apply precise pixel-based 

geometric constraints on feature locations [111]. On the other hand, there are 

also applications ignoring locations of features and employ a bag of features 

strategy. Classifier selection is an optimization issue in the literature. Nearest 

neighbor classifier, SVM, Bayesian classifiers and CNNs are most commonly 

employed classifiers [111-112]. Employing CNN-based features is the state-of-

the-art image categorization strategy [45].  

In order to select most appropriate classifier, we constructed a training set of 40 

images and a testing set of 10 images for each of 262 event descriptor on the 

average, a total of 18100 images. We examined three classifiers, ANN, SVM 

(linear and Gaussian kernel) and CNN. ANN and SVM were trained on the 

keypoint-based and CNN-based features. The details of feature extraction are 

given in Chapter 5. L2-Normalization is applied to both keypoint-based and 

CNN-based features. SVM outperformed CNN and ANN. As a result, SVM is 

selected as the corresponding image classifier. SVM with Gaussian kernel 

outperformed other classifiers. The parameters of the Gaussian kernel, γ = 6 

and C = 0.01, are determined to be the best values through 10-fold cross 
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validation. A narrow kernel can separate the training points better, but it is 

more prone to overfitting.  
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Figure 4-3: The Flow of Video Scene Segmentation. 

4.2 Video Scene Segmentation 

Without considering the video structure, wrong frame labeling caused by 

outliers would abruptly decrease the modeling power. Repetitive event 

descriptor occurrences would also increase computational load and dominate 

rule extraction. The aim of video scene segmentation is to convert each video 

scene into a shorter sequence of event descriptors. The flow diagram of video 

scene segmentation is given in Figure 4-3. 
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Video scene segmentation is a hierarchical process which starts with mapping 

each frame to an event descriptor. After all frames are mapped to event 

descriptors, the event descriptor of a shot is determined as the most common 

event descriptor among the frames in that shot. After each shot is mapped to an 

event descriptor, segments are constructed.  Shot to event descriptor mapping 

is illustrated in Figure 4-4.  

 

Figure 4-4: The Flow of the Shot to Event Descriptor Mapping. 

We define a video segment as a collection of consecutive shots labeled with the 

same event descriptor. Thus, the boundaries of a video segment are the 

boundaries between two different event descriptors. Video scene segmentation 

is cutting the number of repeating event descriptors within a video segment 

into two.  Figure 4-5 illustrates the mapping of a sample scene to a sequence of 

event descriptors through scene segmentation.  
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  Figure 4-5: Sample of the Video Scene to Sequence of Event 

Descriptors Mapping. 

The scene contains 9 segments each of which corresponds to an event 

descriptor. For instance Segment1 contains 4 frames extracted from consecutive 

shots labeled as basketball game, Segment2 contains the frame of a single shot 

labeled as basketball player, Segment3 contains the frame of a single shot 

labeled as basketball referee, etc. Through video scene segmentation, Segment1 

is converted into a sequence of only two event descriptor labels by eliminating 

the third repetitive label. This elimination strategy not only keeps the 

recurrence information of labels for rule extraction but also helps the heavy 

computations in association rule mining. 
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4.3 Association Rule Mining 

Association rules are powerful abstraction tools for domain knowledge 

representation. The construction of association rules does not require a prior 

graphical or network modeling of the domain. Through association rules, the 

flexibility of probabilistic learners is achieved and domain model is learned 

from the training dataset. In the proposed rule extraction approach, association 

rules are discovered from the sequences of event descriptors. Frequent itemset 

generation and rule construction are the phases of ARM.  

ARM is applied on the dataset obtained from CCV video data [105]. The 

training data consists of a sequence of event descriptors and the corresponding 

event type for each video scene. The data about a single video scene can be 

considered to correspond to the data about transactions in the classical apriori 

algorithm [62]. The event descriptors for each scene can be considered as the 

items in the transactions. Then, the frequent itemsets and hence the association 

rules for each video event type can be computed in a way similar to the 

classical apriori algorithm. Association rules are mined through frequent 

itemset generation and rule construction [62]. Instead of traditional support and 

confidence measures, time-based support constraint is proposed. 

The proposed frequent itemset generation algorithm for a single event type E is 

a version of apriori itemset generation described in [62]. The algorithm is 

employed separately for each event type and a different set of frequent items 

are constructed for each event type. In generating the frequent itemsets, 

   subsets of k candidate items should be examined and the sets satisfying 

minimum support constraint should be selected. We employ the most common 

methodology in the generation of the frequent itemsets [62]. The algorithm 

starts with the generation of candidate itemsets of length 1, CFI1. The frequent 

itemsets of length 1, FI1, are generated from CFI1 by pruning out the itemsets 

not satisfying the support constraint. Frequent itemset generation is based on 
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the rule that a subset of a frequent itemset must be a frequent itemset. Thus, 

itemsets of length k+1 are generated from the itemsets of length k through 

joining and pruning steps. In each pass candidate itemsets of length k not 

satisfying the predefined support constraint are eliminated. The algorithm is 

given in  

Figure 4-6. The employed pruning measures are defined in Eq. 4-1, Eq. 4-2 and 

Eq. 4-3. 

For each Event type E in Examined Event Types do 

Final Frequent Itemsets  (FFI)    {} 

Initialize the CFI1 (Candidate Frequent Itemset of Pass 1)   {} 

Initialize the FI1 (Frequent Itemset of Pass 1) with the supported single 

descriptor { } itemsets of Event Type E 

Initialize i to 1 

while FIi is not empty do 

 Join Step: Generate CFIi+1 by joining FIi with FIi-1 

 Prune Step: Prune i-itemsets that are not temporally supported  

 FIi+1 = Not Pruned candidates in CFIi+1  

  i++; 

 FFI       ⋃    

End  

Return FFI 

  Figure 4-6: Frequent Itemset Generation Algorithm, Adapted from [62]. 

 

In the proposed approach, instead of a sliding window, we employ a temporal 

support constraint in rule mining. Temporal support proposes a closeness check 

between items, which is calculated by use of distance matrices. A distance 

matrix is constructed for each scene. Each element of a distance matrix 

represents the closeness value between two event descriptors in the scene.  The 

closeness is calculated by using the absolute value of the distance from one 
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event descriptor to the other in terms of the number of other event descriptors 

occurring between them. The details of constructing the distance matrix are 

given below, but first we define the temporal support constraint. 

In the proposed time-based support constraint, the occurrence time, occurrence 

pattern and recurrence are all taken into consideration. Temporal support of a 

two-itemset with items X and Y for event type E is given in Eq. 4-2. The 

distance between items X and Y is calculated for each scene in the training set 

and stored in the distance matrix constructed for that scene. Temporally close 

items should imply high temporal support; therefore the distance is subtracted 

from 1. The average distance between X and Y is calculated by taking into 

consideration distance matrices of all scenes labeled with event type E in 

temporal support calculation.  
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Association rules are constructed from the generated frequent itemsets. In 

classical association rule mining algorithm, minimum confidence criterion is 

applied to all nonempty subsets of frequent items and strong associations are 

detected between the items of the frequent itemsets. In the proposed approach, 

association rules are of the form                             , thus subset 

construction is eliminated. Global confidence of each possible rule is not 
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examined either, only the temporally supported frequent itemsets are examined 

with the corresponding event types. Confidence of a rule is calculated as in 1.b 

in which basic support calculation is employed.         ({      } ) is the 

proportion of transactions in which X, Y and E occurs.  
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The event descriptor sequences should be parsed to check temporal support 

criterion. Instead of multi-pass string parsing, the sequence is parsed once and 

converted into a distance matrix (DM). Each element of the DM is calculated 

according to the occurrence patterns of literals in the string representation of 

the scene. The number of elements between successive     and     literals in 

    scene is examined and an occurrence pattern string is formed for each 

possible pairs of literals. The algorithm is described in 4-4. Each digit of the 

Occurrence Pattern String (OPS) represents the number of literals between the 

current occurrence of     and     literals for the given scene. If at least one of 

the literals does not exist in the current scene, then occurrence pattern is 

assigned to -1.  Average Distance (AD) is the average of the appended numbers 

which is normalized by the scene length. The calculation of AD is given in Eq. 
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4-5. DM is constructed from the average distance calculations. The calculation 

details of distance matrix of     scene for n literals are given in Eq. 4-5. 

The construction of the DM for eventi is illustrated in Figure 4-7 using an 

example sequence A-A-B-C-A-A-B-C-D.  Here A, B, C, D and E are literals 

representing five different event descriptors (only A, B, C and D occur in 

eventi). For each possible event descriptor pair, the distance is calculated in 

terms of the number of event descriptors between them in the given eventi. For 

instance, AA pair occurs 3 times in the given sequence.  

A-A-B-C-A-A-B-C-D => 00

A-A-B-C-A-A-B-C-D => 020AA

AB

A-A-B-C-A-A-B-C-D

A-A-B-C-A-A-B-C-D => 11AC

A-A-B-C-A-A-B-C-D => 2AD

=> -1AE

A-A-B-C-A-A-B-C-D => 3

A-A-B-C-A-A-B-C-D => 1BA

BB

A-A-B-C-A-A-B-C-D => 00BC

A-A-B-C-A-A-B-C-D => 1BD

=> -1BE

A-A-B-C-A-A-B-C-D => 2

A-A-B-C-A-A-B-C-D => 0CA

CB

A-A-B-C-A-A-B-C-D => 3CC

A-A-B-C-A-A-B-C-D => 0CD

=> -1CE

DA DB DC DD DE

EA EB EC ED EE

(2/3)/9 = 0.073

(0/2)/9  = 0

(2/2)/9  = 0.11

(2/1)/9  = 0.22

(1/1)/9  = 0.11

(3/1)/9  = 0.33

(0/2)/9  = 0

(1/1)/9  = 0.11

(0/1)/9  = 0

(2/1)/9  = 0.22

(3/1)/9  = 0.33

(0/1)/9  = 0

=> -1

Scene Length = 9 frame 
Normalize

Distance Matrix ("AABCAABCD") =

 
 
 
 
 
0.073   0     0.11   0.22   1
 0.11
   0  
 1
 1

   0.33

  
 0.22
 1
 1

      0        0.11  1

 
      0.33      0    1
     1       1     1
     1       1     1 

 
 
 
 

 

 

 Figure 4-7: Distance Matrix Construction Example. 

 

The sequence starts with A and it is followed immediately by another A. There 

is no other event descriptor between this first AA pair. Then two different 

event descriptors B and C occur before the next A. Thus the second pair of 

AAs has 2 different event descriptors in between. Next another A occurs 
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forming the third AA pair. Again there are no other event descriptors between 

these two. Hence the distance between AA pairs is recorded as 020. The 

average distance is computed as ((0+2+0)/3)/9 since there are 3 pairs and the 

length of the scene is 9. The distance matrix is constructed by computing the 

average distance between each possible event descriptor pair.  
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CHAPTER 5 

 

 

5. SCENE FEATURE EXTRACTOR CONSTRUCTION 

 

 

 

Scene feature extraction is the final step in video event modeling. When all 

scene features are extracted, scene classifiers build the video event model in 

terms of various multi-modal feature sources such as association rules between 

event descriptors, keypoint-based features, motion features, audio features and 

CNN based features.  

The two phases of the proposed scene feature extraction strategy are extracting 

various sources of audio, visual, motion and deep learning features in addition 

to the association rules, and fusing multi-modal feature sources. The feature 

extraction from a frame in terms of five different modalities is described in the 

following subsections. Once individual feature sets are extracted for each 

frame, the corresponding scene features are constructed through feature fusion 

which is descried in Section 5.6.  

5.1 ARM-based Features 

At the end of rule mining, 3042 rules are extracted for our dataset. Then PCA 

is employed and 2445 of those rules are selected. Once final rule sets are 

discovered for all event types, a scene could be represented with a rule feature 

vector. The size of the rule feature vector is equal to the number of rules in the 

system. In order to construct the rule feature vector for a scene, all rules are 
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checked on the scene and the rule(s) applicable to that scene is (are) 

determined. If the rule is satisfied in the current scene, the corresponding index 

of the rule feature vector is assigned to 1; otherwise it is assigned to 0.   

5.2 Keypoint-based Features 

Keypoint-based feature extraction for a scene is achieved through extracting 

individual keypoint-based features for each frame and constructing 

corresponding scene features through feature fusion. 

The first step in keypoint-based feature extraction is partitioning images into 

regions. Two most common partitioning strategies, 1x1 and 2x2, are examined 

in the proposed approach. a x b represents partitioning image into axb regions 

with a rows and b columns. Image partitioning strategy depends on the feature 

construction strategy and generalization ability of the classifier. When the 

number of partitions increases, feature dimension and computational load also 

increase. The representation ability decreases with the occurrence of an object 

in a region boundary; therefore the number of partitions should also be 

minimized to satisfy the smallest number of overlaps. If partitioning achieves 

effective separation, the generalization ability of the event descriptor classifier 

may increase. The partitioning strategy for the proposed event descriptor 

learning and event recognition is determined as 1x1 through an optimization 

process. 

Keypoint-based feature extraction from an image is a two-step process; 

detecting keypoints and describing the sample region of image patch around 

the key points.  Firstly keypoints are detected for each keypoint, and then 

corresponding descriptors are extracted. Keypoint descriptors are not examined 

as raw values; instead bag-of-words strategy is adapted for keypoint 

descriptors. Then keypoint descriptor features are projected onto a subset 

called vocabulary. Elements of that subset are called words.  The size of the 

vocabulary is also an optimization parameter. The optimization should consider 
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two criteria: similar keypoints should be mapped to the same word and 

dissimilar keypoints should be mapped to different words. When the 

vocabulary size is determined, the occurrence of the detected words are 

calculated for each image region and either supplied as features to the event 

descriptor classifier or supplied to the scene feature construction. 

The performance (description and matching), speed and memory requirements 

are the important aspects in feature extraction process. The performance is 

measured by MAP values and speed is measured by the average computation 

time per image. There are two main descriptor categories; real valued and 

binary. We examine SIFT and SURF as the corresponding real valued 

descriptors. SURF has descriptors of 64 bits and SIFT has descriptors of 128 

bits for each interest point. SURF is faster than SIFT in interest point detection 

and matching because of the integral images and smaller feature vector size. 

Filters and integral images are used to approximate Hessian matrix and 

gradients in SURF [2].  There are various recently proposed real valued 

descriptors such as LIOP, MYRID and MROGH [113]. Even if these 

descriptors outperform SURF in terms of precision and recall, the computation 

time of those recent algorithms are very high [113]. 

Binary descriptors use the hamming distance similarity measure instead of 

Euclidean distance since bits in the descriptor are independent. BRIEF, ORB 

and BRISK are the most promising binary descriptors in the literature [113]. 

ORB [3], compares pixels on a ring centered at an interest point and computes 

orientations based on the intensity centroid moment. ORB has dramatically 

lower computational complexity compared to SIFT and SURF. High 

dimensional descriptors require high computational resources therefore they 

are not suitable for real time multimedia tasks. Binary descriptors like ORB 

and BRIEF extract corresponding features with faster computations and lower 

memory requirements since they have only 32 bits. These descriptors are also 

comparable with SURF and SIFT in terms of MAP values [113].  
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According to the experimental studies, employing different descriptors for 

keypoint detection and description results in higher performance [42]. In the 

proposed approach, SURF detector is used for BRIEF, BRISK and SURF 

descriptors. Since ORB descriptor requires keypoint orientation, ORB detector 

is used for ORB descriptor. In [43], it is given that the ORB/ORB pairing 

outperforms the SURF/ORB pairing. SURF and BRISK keypoints are invariant 

to rotation and scale changes, thus they construct good keypoint detection and 

descriptor pairing [42]. In the original proposal of BRIEF [5], keypoint 

descriptors are also computed through SURF keypoint extraction. We examine 

SURF/BRIEF, SURF/BRISK, SURF/SURF and ORB/ORB keypoint detection 

and descriptor pairs. In our proposed approach, vocabulary sizes are 

determined as 500 for ORB/ORB, 1300 for SURF/SURF, 1200 for 

SURF/BRISK and 1200 for SURF/BRIEF through an optimization process.  

Spatial 
Layout 1

Spatial 
Layout 2

Spatial 
Layout 3

Spatial 
Layout 4

iPatch

qImage

Spatial 
Layout 5

 

 Figure 5-1: Illustration of 2x2 Image Partitioning. 

1x1 and 2x2 partitioning strategies are also examined. 2x2 partitioning, 

illustrated in Figure 5-1, extracts 5 times more descriptors thus requires 5 times 

more computations for descriptor construction and matching. However 

applying 2x2 partitioning is not reflected as the accuracy improvement on the 

final fusion results. By examining these results 1x1 partitioning is selected as 

the partitioning strategy. 
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Feature vector of a scene is constructed by averaging the coding vectors of all 

frames in the scene. SURF/BRIEF, SURF/BRISK, SURF/SURF and 

ORB/ORB keypoint and keypoint descriptor pairs are examined and a single 

keypoint descriptor feature vector is constructed for each scene. PCA is 

employed and final keypoint descriptor feature set of 3562 is obtained. 

1x1 and 2x2 partitioning strategies are analyzed for the event descriptor 

learning and event recognition performance. Optimization calculations show 

that 1x1 partitioning gives the best result when the speed and performance 

issues are examined together. The results are given in the evaluation. Figure 

5-2 shows the flow diagram of the keypoint-based feature extraction from an 

image.  

Interpolating Features Into Codebook Space  (Coding)

Aggregate Coding VectorsAggregate Coding Vectors

qImage

Represent each patch as a vector 

Learn 
codebook 

Learn 
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 Cluster into 
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Training 
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Training 
Image Set

For all patches 

in the image

Extract Local 
descriptors 
(Patches)

Extract Local 
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Image FeaturesImage Features

 

Figure 5-2:  Flow Diagram of the Keypoint-based Feature Extraction from an 

Image. 

Prior to feature extraction, local descriptors are extracted and four codebooks 

(for ORB/ORB, SURF/SURF, SURF/BRIST and SURF/BRIEF) are learned 
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from the training data set. When codebooks are learned, patch vectors could be 

interpolated into codebook space. Keypoint extraction algorithms are applied 

and patches are detected with features for each layout. Patch coding vector is 

constructed for each patch in the image. The j
th

 element of the patch coding 

vector of the i
th 

patch is 1 only if the patch is of type the j
th

 word of the 

codebook. When all patch coding vectors are constructed, the layout feature 

vector is the aggregation of the patch feature vectors. Feature vector of an 

image is constructed from the aggregation of the coding vectors obtained for 

the patches in the image.   

5.3 Audio Features 

FFmpeg audio filtering and decoding utilities are used in audio processing. 

Bag-of-words is used to convert MFCC features from each scene into fixed 

dimensional vectors, using a vocabulary of 4000 audio codewords. No spatial 

or temporal partitioning is utilized. Average silence length and silence interval 

repetition values are also extracted as the complementary audio features by 

using FFmpeg audio filtering and decoding utilities. Together with the last two 

audio features, the size of the audio feature set becomes 4002. 

5.4 Motion Features 

Event recognition task could be handled through powerful CNN-based, 

keypoint-based, basic trajectory-based and audio-based features. However, 

actions are more atomic and require more systematic motion description. The 

state of the art motion features are extracted through the examination of local 

motion patterns around the generated dense trajectories [7]. In [114], authors 

propose an algorithm that gradually reduces the frame rate and stacks features 

extracted using a family of differential filters parameterized with multiple time-

skips. Improved dense trajectory features [7] employ camera motion 

stabilization and RootSIFT normalization. Trajectory, HOG, HOF, MBH 
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descriptors are extracted. MIFS [114] and other conventional methods differ in 

feature point extraction strategy. MIFS [114] extracts feature points different 

scales and stack all of those extracted keypoints before encoding. They map 

raw descriptors into a 256 Gaussian, GMM. The employed GMM is 

constructed through training on a randomly sampled 256000 data points. In 

fusion of various types of descriptors Power and L2-Normalizations are 

employed. MIFS features are extracted through the implementation given in 

[114]. The dimension of MIFS-based feature set is 256; where each value is 

obtained from the corresponding Gaussian. 

Whenever MIFS-based motion features [114] are not available we employ pure 

dense trajectory-based features. Trajectory, HOG, HOF and MBH descriptors 

are extracted and final codebook of 4000 is constructed through training.  

5.5 CNN-based Features 

In CNN-based feature extraction, it is crucial to employ the most appropriate 

network structure, data augmentation, fine-tuning, normalization and training 

model construction for the accuracy of the final representation. The flow of the 

proposed CNN-based feature extraction strategy is given in Figure 5-3. 
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Figure 5-3:  The flow of the CNN-based Feature Extraction Strategy. 
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After examining experimental results and the literature, we have employed a 22 

layer CNN structure that GoogleNet proposed in [48].  In [48], image size is 

restricted to 224x224 pixels. The details of the employed structure are given in 

Table 5-1.  

Table 5-1: The Employed CNN Structure Source [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to extract CNN-based features, an appropriate CNN architecture 

should be constructed. We examined the literature and the CNN models in 

Caffe model zoo [6]. We select the model proposed in [76] as the most 

appropriate model for our task. The classes trained in [76] were not identical to 

Type Patch Size/Stride Output Size 

convolution 7x7 / 2 112x112x64 

max pool 3x3 / 2 56x56x64 

convolution 3x3 / 1 56x56x192 

max pool 3x3 / 2 28x28x192 

inception (3a)  28x28x256 

inception (3b)  28x28x480 

max pool 3x3 / 2 14x14x480 

inception (4a)  14x14x512 

inception (4b)  14x14x512 

inception (4c)  14x14x512 

inception (4d)  14x14x528 

inception (4e)  14x14x832 

max pool 3x3 / 2 7x7x832 

inception (5a)  7x7x832 

inception (5b)  1x1x1024 

avg pool 7x7 / 2 1x1x1024 

dropout (40%)  1x1x1024 

linear  1x1x1000 

softmax  1x1x1000 

convolution 7x7 / 2 112x112x64 
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our case. We needed to either train a new CNN or employ a fine-tuning 

strategy for adapting the predefined models. Even 1.2 million data could result 

in overfitting as stated in [46]. Therefore we decided to employ fine-tuning on 

the model constructed in [76]. The model proposed in [76] works well for 

object category classification. In order to reflect the success of that model, we 

adapt the architecture for our event descriptor classifier. The illustration of the 

employed fine-tuning strategy is given in Figure 5-4. 
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Figure 5-4:  Illustration of the Employed Fine-Tuning Strategy. 

 

We have only 14480 images for training and 3620 images for testing, thus an 

augmentation strategy should be employed to solve overfitting problem. In 

[48], image size is restricted to 224x224 pixels. We employ data augmentation 

accordingly. We resize each image to 256x256 pixels [48]. Then patches of 

224x224 pixels (depending on the input image size of CNN architecture) are 

extracted from the corners and the center of the image. When the patches are 

sampled, flipped versions are constructed per image [48]. We also extract 

another set of patches centered at the extracted keypoints for the image.  

Keypoints are extracted using SURF keypoint extraction strategy. 5x10 (crop 

count x flipping count) patches and 1000 (keypoint count) patches are 

extracted per image. The keypoint-based cropping strategy extracts 224x224 

pixels centered at the extracted keypoints as given in Figure 5-5.  
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112 pixels

Keypoint

112 Pixels

256x256

112 pixels 112 pixels

 

Figure 5-5:  The keypoint-based Cropping Window and Sample. 

If two patches from two keypoints overlap, we eliminate the overlapping 

patches. The cropping given in Figure 5-5 by yellow window covers all 

keypoints in the red area. Therefore only one cropping is extracted for all of 

those keypoints. 

Even 1.2 million data could result in overfitting. Therefore we decided to 

employ fine-tuning on the model constructed in [115]. We examined the 

literature and the CNN models in Caffe model zoo [115]. We select the model 

given in [115] as the most appropriate base model for our fine-tuning task. 

Fine-tuning is achieved through Caffe interface [6]. We provide the Caffe train 

command with the weights and the model. Both pre-trained weights and the 

network architecture are loaded into our model, matching layers by name. 

Because we are predicting 362 classes instead of 1000 classes, we need to 

change the last layer in the model. Therefore, we change the name of the last 

layer and initiate learning which begins training with random weights for the 

new layer. We also decrease the overall learning rate in order to have the rest 

of the model change very slowly with new data, but let the new layer learn fast 

[6].  

When the final model is constructed, it extracts the layer pool5/7x7_s1 after 

processing each image. This is the last layer before the final layer, and it 
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contains 1024 elements. From the outputs of that layer, a 1024 dimensional 

feature vector is extracted for each patch of the current frame. We examine 

max, sum and stacking for pooling and select sum as the corresponding pooling 

strategy by considering precision. We apply L2-Normalization on features 

extracted from the CNN model.  

5.6 Feature Fusion 

In order to achieve accurate and representative event modeling, we employ a 

multi modal feature extraction and fusion strategy. Feature fusion is achieved 

by aggregating the coding vectors obtained for different feature sources.  

Keypoint-based features, association rule features, CNN-based features, audio 

and motion features are the features examined in the proposed approach. L2-

Normalization is applied to each feature vector. Different combinations of 

feature sources are also examined to detect the best strategy for scene 

modeling. Five different feature sets are constructed at the end of the feature 

fusion phase, leading to feature sets MIFS, Rule, Keypoint Descriptor, CNN 

and All. The feature set All is constructed by concatenating all feature sources. 

In order to achieve a feasible fusion strategy, compact and representative 

feature sets should be constructed. In the constructions of All feature set, Rule 

feature set and keypoint-based feature set, PCA [116] is employed to transform 

correlated observations into uncorrelated variables. The flow diagram of the 

scene feature extraction strategy is given in Figure 5-6. 
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Figure 5-6: Flow Diagram of the Feature Extraction from a Scene. 
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CHAPTER 6 

 

 

6. VIDEO EVENT RECOGNIZER CONSTRUCTION 

 

 

 

When a video is examined for event recognition in scenes, firstly the video is 

decomposed into underlying frames, shots and scenes. Then frames are 

detected and corresponding feature sets are constructed for each scene in the 

video. Constructed scene classifiers are applied to each scene and event type 

labels are determined by each classifier.  

SVM SVM SVM
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Figure 6-1:  Flow Diagram of the Proposed Decision Fusion Strategy. 
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The final step in event recognition is the fusion of the decisions of scene 

classifiers. Through the decision fusion process, an event recognizer is 

constructed for each event type based on the scene classifiers. The flow chart 

of the proposed event recognizer construction strategy is given in Figure 6-1.  

In order to reflect the characteristics of each event type, a logistic regression-

based learner is utilized to estimate the corresponding weight model. Logistic 

regression equation formulates the relation between dependent variable (event 

type) and independent variables (classifiers’ outputs) in terms of decision 

weights.     is the weight vector of      event type, where   
  is the weight of 

    classifier in decision fusion of     event type.  When the weights are 

obtained, event type assignment is just a weighted average of the individual 

decisions of decision sources. 

Five different classifiers are constructed for each event type on 5 feature sets 

and the resulting classifiers are employed as decision sources. Types of 

individual classifiers and the final decision fusion strategy are examined 

according to accuracy and computational performance measures. Individual 

classifier selection is important for the final event recognition performance.  k-

NN, ANN,  SVM and MKL classifiers are examined to select the best 

performing classifiers. The classifier is selected according to performance 

measures, experiments and the results of literature review. SVM classifiers are 

selected as the classification algorithm for Rule, Keypoint-based and CNN-

based features. Different optimum γ and C values are determined for each 

event type, and for each feature source. 

CNN classifier finds only local optimum values in classifier model 

construction, thus alternative classifiers are examined for better performance. 

Extracting features that CNN builds internally and feeding them into an 

advanced classifier produce better results. SVM or its multi-kernel version 

MKL is good at finding global maximum.  Thus we examine SVM, k-NN and 
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MKL on features obtained from CNN. However SVM with Gaussian kernel 

outperformed other classifiers in all event types.  

On a dataset of mixed modalities and heterogonous characteristics, MKL has 

the advantage of selecting appropriate kernel for each modality. We employed 

MKL on feature fusion results and obtained better performance compared to 

other classifiers.  As a result, we construct separate MKL-based classifiers for 

each video event type. We also construct 20 SVM classifiers for CCV data set 

and 12 SVM classifiers for Hollywood2 dataset for each of other the four 

feature sets. For each classifier, an optimization process is employed to 

determine the best fitting parameters. All the feature vectors are normalized to 

have the unit L2-norm, which is the most commonly employed and successful 

normalization in MKL applications [81]. 

When five classifiers are constructed, we need to fuse their decisions to 

determine the event type for the video scene.  Different scene classifiers offer 

complementary information, and fusing multiple classifiers promote the overall 

performance of event recognition. In order to achieve a feasible fusion strategy, 

best fitting learners should be employed and the results of decision sources 

should be combined accurately. Since scene classifiers do not have identical 

performance results in the classification of different event types, basic majority 

voting strategy would fail. A proper weighting of each classifier can be 

considered to improve the performance and robustness of event classification. 

The most common methodologies in the literature are equal fusion weights, 

adaptive fusion weights optimized for different concepts and weight 

calculation from training set through logistic regression or discriminant 

analysis [117].  

In order to reflect the characteristics of each event type, a logistic regression 

based learner is utilized to estimate the corresponding weight model. Logistic 

regression equation formulates the relation between dependent variable event 
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type and independent variables classifier outputs in terms of decision weights. 

     weight vector of      event type is given in Eq. 6-2 where   
  is the weight 

of     classifier in decision fusion of     event type.  When the weights are 

obtained, event type assignment is just a weighted average of the individual 

decisions of decision sources. 

Assume there are n classifiers to be fused, and   ( ), given in Eq. 6-1, is a 

decision vector of the     classifier for sample x where C is the number of 

event types.    
 ( )        represents the probability of a given sample x is of 

event type   according to     classifier. In terms of logistic regression, 

  
  given in Eq. 6-3 is the regression coefficient (decision weights) and  (   ) 

is the regression equation. The regression coefficients reflect the amount by 

which event types change on the average when one classifier output changes by 

one unit and all other classifier outputs remain constant. In terms of graphical 

representation weights define the regression slope (steepness of curve) and    

defines the regression constant (moves curve left and right).  (    )   given 

in Eq. 6-5, is the estimated probability that sample x is of event type  . The 

regression coefficients are estimated using the maximum likelihood estimation 

[70]. An iterative computing process is initiated with arbitrary regression 

coefficients. The algorithm reiterates until log likelihood is maximized and 

error converges. The defined logistic regression scheme solves single class 

problems, and it should be enhanced to multiclass problem. The solution is 

running C independent binary logistic regression models for C possible event 

types, and then making final decision by examining individual logistic 

regression results.  Final event type assignment is just combining all 

assignments into a single assignment vector.  

 



 

 

 

 

73   

  
 ( )  [  

 ( )   
 ( )     

 ( )]  
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CHAPTER 7  

 

 

7. EXPERIMENTAL RESULTS 

 

 

 

In this section, we evaluate the performance of the proposed framework by 

comparing it with ten state of the art algorithms on CCV dataset and three state 

of the art algorithms on Hollywood2 database for the video event recognition 

problem. In the evaluation of the proposed event recognition strategy, we 

employ Mean Average Precision (MAP). MAP is the AUC value of PR curve. 

The calculation of MAP is based on threshold shifting and examining the 

corresponding precision and recall values.  

When compared with the state of the art algorithms, the proposed strategy 

achieves the highest accuracies on both CCV and Hollywood2 datasets. We 

employ best fitting combinations of tools from computer vision, deep learning 

and association rule mining to achieve video event recognition successfully. 

7.1 Performance Evaluation on CCV dataset 

In this section, CCV [105] dataset is used in the evaluation of the proposed 

approach. It contains 9317 videos with average length of 80 seconds. There are 

20 semantic categories in the CCV dataset. The test and train labels are 

obtained from CCV community, and videos are gathered from YouTube with 

the given tags.  
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Table 7-1 shows the comparison of the proposed approach with other baseline 

applications and possible configurations of our proposal on the CCV dataset. 

The constructed configurations are selected and implemented to investigate 

different parts of the proposed system and their compositions.  

Table 7-1: Overall Evaluation of the Proposed Approach on CCV Dataset. 

   Features Details MAP (%) 

Overall 

Difference  

MAP (%) 

GRLF 

[118] 

SIFT, STIP and MFCC 

Rank optimization method 

to fuse the predicted 

confidence scores of 

multiple models 

60.61 15.05 

RADM 

[119] 

A learning algorithm for 

robust score-level fusion 
63.05 12.61 

SSLF 

[120] 

Learning the optimal 

sample specific fusion 

weights from the 

supervision information 

68.20 7.46 

rDNN 

[69] 

CNN, MFCC, sgSIFT 

and Motion 

Exploits the feature and 

class relationships by 

imposing regularizations in 

the learning process of a 

DNN 

73.50 2.16 

SVM1 

[105] 

SIFT (5000), STIP 

(5000), MFCC (4000)  
SVM on early fusion  

59.54 16.12 

SVM2 
Keypoint (4200), 

MFCC (4000)  
60.50 15.16 

MKL1 
 Keypoint, MFCC, and 

Motion 

 MKL on Early Fusion  

62.20 13.46 

MKL2 
CNN, MFCC, and 

Motion  
71.30 4.36 

MKL3 
CNN, Keypoint, 

MFCC, and Motion   
72.00 3.76 

MKL4 All 74.10 1.56 

Proposal All 
Both feature and decision 

level fusion 
75.66 
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We construct and run MKL1, MKL2, MKL3 and MKL4 configurations to 

evaluate individual contributions of our feature sources and to compare the 

results with the literature. SVM1 and SVM2 configurations are examined to 

evaluate the success of our keypoint-based features. The compared approaches 

are selected from the best state of the art algorithms in the literature. We obtain 

the best performance with a MAP 75.66. There are three main differences 

between our approach and the state-of-the-art algorithms: feature set 

construction, feature fusion and decision fusion strategies. 

We improved almost the entire feature sources employed in the existing 

approaches by examining the best performing state-of-the-art feature 

modalities. Keypoint-based features are extracted by investigating the best 

performing keypoint detector descriptor pairs. CNN-based features, the state-

of-the-art best performing features in computer vision, are adapted into the 

proposed approach for better precision. Existing CNN models are fine-tuned 

and modified for enhanced accuracy in event recognition. Motion and audio 

features are also extracted through the examination of the current literature. 

The employed rule-based features are unique to our proposal and aim to model 

temporal characteristics of video. 

The most significant difference between our proposal and the algorithms 

proposed in [105, 118, 119, 120] is the feature construction phase. All of those 

algorithms employ SIFT, STIP and MFCC features. Even without any decision 

fusion process, employing MKL2 and MKL3 configurations, outperforms all 

of these algorithms.  MKL2 and MKL3 just employ MKL on subsets of the 

proposed feature sources. 

Adding keypoint-based features to the feature set given in MKL2 results in 

0.70% improvement in MKL3. However adding CNN-based features to the 

feature set given in MKL1 results in 9.7% improvement. Thus we conclude 

that, CNN-based features are capable of modeling visual characteristics better 
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than keypoint-based descriptors. Employing CNN-based features not only 

improved video event recognition precision but also improved the precision of 

assigning event descriptor labels to frames. Thus it also improves the quality of 

the extracted association rules.  

We construct SVM1 and SVM2 configurations to evaluate the success of our 

keypoint-based feature source. In [105], authors proposed SVM1 as a 

classification on early fusion of SIFT and STIP keypoint descriptors and 

MFCC features. The only difference between SVM1 and SVM2 is the 

keypoint-based features. The SVM2 constructs a model on lower number of 

features compared to SVM1. Yet SVM2 improves the performance in SVM1 

by 1%. The results show that, the necessity for high dimensional descriptors 

could be eliminated by fusing multiple descriptors and combining different 

feature sources. The descriptors and corresponding pairs are selected according 

to the recent literature and experimental results. 

We achieved the up-to-date best performance on CCV dataset by adding rule-

based features, fine-tuning and modifying existing CNN models and by 

employing MKL to the fusion of all features as given in MKL4. Even if the 

configuration given in MKL4 has the ability to extract relationships in feature 

space, we need further examination to extract relationships between different 

feature modalities in decision space.  

Constructing best feature source cannot fulfill the performance concerns, and 

fusion always outperforms single feature source on CCV dataset.  We 

investigated various hierarchical decision fusion and feature fusion models, and 

the strategy given in Figure 6-1 outperformed all others. The given hierarchy 

employs both early fusion and late fusion, thus, it is able to extract 

relationships in both feature space and decision space. 

In [69], authors proposed an algorithm to exploit both feature and class 

relationships in video categorization. Compared with our implementation, they 
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employ similar feature sets except our rule-based and keypoint-based feature 

sets. Our proposal outperforms the algorithm given in [69] with the 

implementation of rule-based features, keypoint-based features and proper 

decision fusion strategy. Our proposal produces more precision enhancement 

(2.7%) in video categories that have temporal characteristics.  The results 

indicate that characteristics of temporally structured event types are 

represented successfully through the association rules, feature fusion and 

regression-based decision fusion. The proposed approach also outperforms the 

best precision value [69] by 1.9% for the event types that are not temporally 

structured (not rule-based). This means we have improved not only the 

recognition precision of temporally structured events but also the overall 

performance. In CNN-based feature extraction, we integrate keypoint detectors 

and CNN training in data augmentation phase. The results show that the 

proposed CNN model is a successful proposal for video event recognition. 

Decision fusion strategy has an important effect on the final classification 

performance. k-NN, SVM and logistic regression classifiers are examined for 

the construction of the final decision fusion.  The MAP is calculated for each 

classifier. k-NN classifier has the worst classification precision, 61.6 is the 

corresponding MAP value. k-NN could not handle the complexity of the 

distribution patterns of the event types in the feature space. However SVM 

classifier performs better (MAP = 75.52) compared to k-NN because of RBF 

kernel representation ability. And logistic regression outperforms all employed 

classifiers with a MAP of 75.66. The evaluation of different decision fusion 

strategies (average, majority voting, and regression) is also conducted. Logistic 

regression based weighted decision fusion outperforms average and majority 

voting fusion strategies. 

 

 

 



 

 

 

 

80   

Table 7-2: Per-event Evaluation Results on CCV Dataset. 

  

  

  

  

Benchmark 

Application 

[105]  

MAP (%) 

Ye et al. 

[118] 

GRLF 

MAP 

(%) 

RADM 

[119] 

MAP 

(%) 

Liu et al. 

[120] 

SSLF 

MAP 

(%) 

rDNN 

[69] 

MAP 

(%) 

Proposed 

Approach 

MAP (%) 

1 Basketball 74.40 75.63 77.21 80.10 82.45 86.91 

2 Baseball 54.80 48.84 56.30 66.30 74.99 76.37 

3 Soccer 57.50 64.33 64.40 67.00 69.90 72.53 

4 Ice-skating 82.10 83.10 87.46 85.10 90.44 92.68 

5 Skiing 73.30 76.30 77.83 80.20 87.20 89.61 

6 Swimming 74.80 69.95 76.29 80.20 88.77 89.85 

7 Biking 49.80 47.05 48.79 60.00 66.50 66.51 

8 Cat 44.20 50.27 49.81 60.00 69.15 68.39 

9 Dog 45.10 43.47 46.91 60.00 70.06 69.84 

10 Bird 35.50 35.10 36.10 46.00 60.08 59.60 

11 Graduation 48.30 50.86 55.59 60.50 66.79 66.20 

12 Birthday 57.50 57.10 60.05 66.00 67.67 72.96 

13 
Wedding 

Reception 
31.60 33.00 34.33 40.50 38.64 41.74 

14 
Wedding 

Ceremony 
64.40 70.91 72.09 71.00 68.65 72.62 

15 
Wedding 

Dance 
65.50 63.39 67.75 73.00 75.78 80.27 

16 Music P. 70.40 75.67 75.49 80.00 79.36 86.64 

17 
Non-Music 

P. 
69.50 65.93 67.22 70.20 71.13 76.40 

18 Parade 66.30 69.92 70.74 70.80 84.65 83.84 

19 Beach 69.00 71.18 74.96 80.00 84.23 86.75 

20 Playground 56.80 60.24 61.58 67.00 73.37 73.40 

Rule-

based  
MAP 68.91 68.79 72.46 75.99 81.36 84.03 

Not 

Rule-

based   

MAP 55.28 56.72 58.67 64.64 69.25 71.15 

Overall MAP 59.54 60.61 63.05 68.20 73.49 75.66 
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The per-event performances of different applications are given in Table 7-2.  

We can see that the proposed approach outperforms the other 5 video event 

recognition models in classifying 15 out of 20 classes on CCV dataset. For 

certain categories such as Basketball, Baseball, Soccer, Ice-skating, Skiing, 

Swimming and wedding dance, our algorithm outperforms the classification 

performance of the other categories. The common properties of these 

categories are their appropriate characteristics to temporal modeling.  

For example basketball video instances has repetitive occurrences of 

descriptors such as referee, player, hoop, ball, floor etc. and occurrences of 

those items are in interaction with each other.  However, videos of cat category 

contain random cat occurrences without any extractable occurrence and 

interaction patterns. In order to model temporal aspects of cat occurrence, deep 

object detection and modeling strategies should be employed. The bird video 

event occurrence is accomplished by examining the related sound occurrences. 

We obtained better performance compared to [120] which proposes an audio-

visual correlation analysis.  However videos of bird category are also 

challenging for our algorithm because of object-based low-level modeling 

requirements. 

7.2 Performance Evaluation on Hollywood2 dataset 

The Multimedia Event Detection (MED) [121] data set is the other appropriate 

dataset for evaluating our proposal. However the data set is not yet public to 

non-participants. Therefore, we examined alternative public datasets and 

selected Hollywood2 dataset for the evaluation of the proposed framework. 

The Hollywood2 dataset [106] contains 12 action classes and 1707 video clips. 

We use MAP and the standard training and test data splits in the evaluation 

[106]. Hollywood2 dataset is an action dataset. Instead of high level events, 

low-level video action occurrences are examined. The results of the evaluation 

of the proposed approach on Hollywood2 data set is given in Table 7-3. The 
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proposed approach achieves state-of-the-art best performance through the 

employed MIFS-based features.  

Table 7-3: Overall Evaluation of the Proposed Approach on Hollywood2 

Dataset. 

 

  Features Details MAP (%) 

Overall 

Difference 

MAP (%) 

Wang et al. 

[7] 

Improved 

Trajectory 

Features 

Improved Dense 

trajectories 
64.3 4.59 

MIFS [114] MIFS Trajectory Features 67.99 0.9 

rDNN [69] CNN + Motion + Audio 65.1 3.79 

MKL1 

All except 

Rule-based 

features 

Feature level 

fusion 
68.41 0.48 

MKL2 All 
Feature level 

fusion 
68.64 0.25 

Proposal All 

Both feature and 

fusion level 

fusion 

68.89 - 

 

 

When the result of MKL2 is examined, it is observed that adding rule-based 

features to MKL1 configuration has almost no effect on MAP. Therefore, 

employing rule-based features does not have contribution for action 

recognition tasks. Action recognition requires revealing interaction between 

object parts. However our rule-based features represent occurrence relations 

between event descriptors. All features except the rule-based features perform 

almost identically for each action type. Therefore, per-action results also have 

the same trend with the overall MAP values and rule-based features do not 

have any considerable contribution to overall MAP values. 

The only difference between Wang et al. [7] proposal and rDNN proposal is 

the CNN-based features. The improvement achieved from CNN-based feature 
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employment is 0.7%. Therefore CNN-based features are not as significant as 

features extracted from MIFS on action recognition task either. 

The per-event performances of different applications are given in Table 7-

4.  

Table 7-4: Per-event Evaluation Results on Hollywood2 Dataset. 

 

  
Baseline [106] 

MAP (%) 

MIFS [114] 

MAP (%) 

Proposal 

MAP (%) 

 Answer Phone  32.10 42.72 43.39 

 Drive Car    89.27 96.48 97.00 

Eat 60.64 73.83 74.83 

Fight Person 71.01 82.09 83.29 

Get Out Car 55.36 63.03 64.70 

Hand Shake 37.37 49.14 49.97 

Hug Person 41.74 58.15 58.85 

Kiss 63.45 65.12 66.82 

Run 70.90 86.10 87.19 

Sit Down 77.08 81.68 82.38 

Sit Up 25.22 36.51 36.91 

Stand Up 74.45 80.99 81.40 

MAP 58.22 67.99 68.89 

 

The performance of the proposed approach yields the best results and 

outperforms the state-of-the-art best performances slightly. However there is 

not a significant improvement in any of the action types. The only difference 

between the proposal in [114] and our approach is the integration of rule-based, 

CNN-based and audio features. Therefore, none of these features could 

significantly enhance the accuracy of action recognition on Hollywood2 

dataset in the existence of MIFS-based features. 
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7.3 Computational Evaluation 

The main computational parts of the proposed approach are video 

decomposition [9], feature construction [27], association rule mining [62] and 

decision fusion [86-87]. All of the employed algorithms are computationally 

well analyzed. Feature extraction is the most critical computational part of the 

proposed framework. Feature count and characteristics determine the 

computational load of feature extraction, classifier construction and event 

recognition phases. Feature fusion improves the performance of scene and 

video classification.  However there is a trade-off between the classification 

performance and the computational complexity. Thus the selection of feature 

sources is crucial for both accuracy and computational concerns. FFmpeg 

audio filtering and decoding and MFCC are used in audio feature extraction. 

The state of the art motion features extracted through the examination of local 

motion patterns around generated dense trajectories [7]. We optimize keypoint-

based feature selection in terms of the overall MAP value, the computational 

load and memory requirement. CNN-based features are extracted from the 

Caffe [6] implementation. Integration of MIFS-based features, CNN-based 

features and rule-based features constructs a promising and powerful 

recognition framework for both video event recognition and action recognition. 

In the proposed framework we examined various keypoint detection and 

descriptor extraction strategies and selected SURF, BRIEF, BRIST and ORB 

as the corresponding keypoint descriptors. In keypoint descriptor selection, 

representation ability, speed and combination performance with other 

descriptors are all examined in the selection process.  We decreased both the 

number and the dimension of keypoints. In [105], SIFT and STIP are employed 

which have keypoint descriptor dimensions of 128 and 144 respectively. We 

employed SURF, BRISK, ORB and BRIEF which have 64, 64, 32 and 32 

respectively. We improved both the computational complexity and memory 
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requirement for keypoint extraction and description almost 7 times compared 

to [105].  

Decision fusion strategy employs classifiers for individual classification 

requirements and logistic regression for weight determination. In the literature 

average fusion is employed as an alternative fusion strategy since it requires 

minimum computational cost. However we employed logistic regression for 

the classification performance and robustness.  
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CHAPTER 8  

 

 

8. CONCLUSION 

 

 

 

We propose a high-level video event recognition framework that integrates 

video segmentation, event modeling, association rule mining, feature fusion 

and decision fusion. Employed techniques are well known strategies; we adapt 

and combine various techniques to construct a system for high-level video 

event recognition task.   

We showed that, uncompressed video decomposition could be enhanced in 

terms of computational concerns by employing a pruning strategy. 

We demonstrated that none of the employed features could significantly 

enhance the accuracy of action recognition in the existence of MIFS-based 

features. For low-level event types CNN-based features are not as significant as 

features extracted from MIFS. Employing rule-based features also does not 

have significant contribution for action recognition tasks.  

We have also showed that characteristics of temporally structured event types 

could be represented successfully through the association rules, feature fusion 

and regression-based decision fusion. However, in order to model temporal 

aspects of low-level object occurrence-based events such as cat occurrence, 

deep object detection and modeling strategies should be employed. The 
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proposed framework is open to addition of new learners and object detectors, 

thus low-level video event could also be achieved by modifying the proposal. 

We have further demonstrated that the necessity for high dimensional 

descriptors could be eliminated by fusing multiple descriptors and combining 

different feature sources. We proposed an optimized feature extraction and 

fusion model for better video event recognition accuracy and computational 

concerns.  

Moreover, we demonstrated that CNN-based features are capable of modeling 

visual characteristics better than keypoint-based descriptors.  

Finally, we show that video event recognition task could be enhanced by fusing 

features and decisions of deep learning, association rule mining, trajectory-

based motion analysis and various other feature source extraction strategies.  

8.1 Discussion 

The proposed video event recognition framework has the following 

distinguishing strategies compared to the literature: 

 Video Decomposition: The proposed video decomposition strategy 

employs a frame pruning strategy to decrease computational load. 

Regular, video decomposition proposals calculate a time series of 

discontinuity feature values for each frame. They measure the 

dissimilarity between consecutive frames and select the boundary 

positions based on some threshold techniques. In our proposal we 

employ window-based pruning and backtracking strategies to 

eliminate the examination of all frames. We prune predefined size of 

features and examine the next frames. In case of any backtracking 

indication, the algorithm examines the skipped frames and corrects the 

decision. 
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 Rule-based Event Representation: Unlike existing hand-designed 

knowledge-based proposals, we proposed a learning-based event 

representation strategy. We employ association rule mining to 

eliminate hand-designed event representations. The integrated rule-

based event representation capability is promising for general-purpose 

event recognition proposals. Embedded association rules are also 

capable of modeling temporal occurrence characteristics of descriptors 

in videos. The proposed event representation strategy could be further 

extended into an active event descriptor database that provides 

interface to WordNet and ImageNet.  

 Multi-modal Fusion:  The proposed multi-modal fusion framework 

improves the current proposals by examining a wide range of feature 

and decision sources for learning models. The fusion strategy is 

constructed by examining many video events with wide-ranging 

characteristics. The final proposal is able to recognize both high-level 

and low-level video events accurately. Various feature sources and 

learners are examined in the construction of the proposed framework. 

Multi-modal fusion is integrated into both feature and decision level to 

devise a robust and an accurate event recognition strategy. The 

experiments showed that the fusion strategy constructs a promising 

event and action recognition model. The fusion strategy has the ability 

to reflect the best characteristics of each fused feature and decision 

source. Motion features are proved to be useful in action recognition 

and CNN-based features are proved to be useful in high level event 

recognition task and rule-based features are proven to be useful in high 

level temporal event recognition task. The fusion results are also open 

to new fusion source integrations for further improvements. 

Adaptability for extension is a promising contribution of the proposed 

fusion strategy.  
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8.2 Future Work 

We construct a video event recognition framework with promising 

performance. There are various improvements that could be performed on the 

proposed framework.  

 Non-Text Descriptors: Embedding non-text descriptors into 

association rules such as audio and actions could be promising for 

better video event representation. Current rule literals are only visual 

descriptors; other descriptors could also be embedded into association 

rules. Temporal occurrence and interaction patterns of actions could 

reflect semantics of the video events better than image-based 

examinations. 

 Pooling Strategy: The quality of the extracted video features directly 

depends on the employed pooling strategy. A specific pooling strategy 

could be defined for video. 

 Text Semantics: Adding semantic details and examination into text 

features could enhance the association rule quality.  The current text 

features are just user defined descriptors where semantic details are 

not considered.  

 Active Learning: User feedback can also be integrated into the video 

event type assignment and decision fusion strategy can be transformed 

into an active learning strategy. That would result in iterative learning 

and better classification accuracies.  

 Event and descriptor hierarchy: An event type hierarchy and 

corresponding descriptor hierarchy can be constructed for better event 

recognition. A root video label could be assigned to the video.  
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