
1

2

PARTICLE MCMC FOR A TIME CHANGED LÉVY PROCESS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYHAN YÜKSEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

FINANCIAL MATHEMATICS

OCTOBER 2015

Approval of the thesis:

PARTICLE MCMC FOR A TIME CHANGED LÉVY PROCESS

submitted by AYHAN YÜKSEL in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Department of Financial Mathematics, Middle
East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Ali Devin Sezer
Head of Department, Financial Mathematics

Assoc. Prof. Dr. Azize Hayfavi
Supervisor, Financial Mathematics, METU

Assoc. Prof. Dr. C. Coşkun Küçüközmen
Co-supervisor, International Trade and Finance,
İzmir University of Economics

Examining Committee Members:

Prof. Dr. Gül Ergün
Statistics, Hacettepe University

Assoc. Prof. Dr. Azize Hayfavi
Financial Mathematics, METU

Assoc. Prof. Dr. Ömür Uğur
Financial Mathematics, METU

Assoc. Prof. Dr. Yeliz Yolcu Okur
Financial Mathematics, METU

Assoc. Prof. Dr. Tolga Omay
Economics, Çankaya University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: AYHAN YÜKSEL

Signature :

v

vi

ABSTRACT

PARTICLE MCMC FOR A TIME CHANGED LÉVY PROCESS

Yüksel, Ayhan

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Assoc. Prof. Dr. C. Coşkun Küçüközmen

October 2015, 82 pages

For almost any type of financial modelling exercise, the most fundamental problem is
finding suitable stochastic processes that capture the observed behaviour of asset prices
well. Stochastic volatility models, and their extensions with jumps, are class of flexi-
ble models that can capture such empirical dynamics quite well. However this richer
modelling environment comes at the expense of estimation challenges. Estimation of
these flexible models involves some additional challenges that do not exist for simpler
ones.

In this thesis, motivated by models with stochastic volatility and jumps, simulation
based Bayesian inference methods are analyzed. First we discuss different Markov
Chain Monte Carlo (MCMC) approaches in detail, develop various algorithms and
implement them for a basic stochastic volatility model. Next we turn our attention
to on-line inference and analyze particle filtering methods. We begin with a simple
particle filter and then discuss methods to improve the basic filter. We also develop
Monte Carlo algorithms to implement particle filters for our stochastic volatility model.

More advanced financial models typically include many latent random variables and
complicated likelihood functions where standard MCMC methods may fail to effi-
ciently estimate them. As a more effective alternative, we discussed the Particle MCMC
methods recently proposed by C. Andrieu, A. Doucet, and R. Holenstein (Particle
Markov Chain Monte Carlo. Journal of the Royal Statistical Society: Series B 72
(3), 2010, pp 269-342). Particle MCMC methods combine two strands of simulation

vii

based Bayesian inference, namely, particle filtering and MCMC, and offer a powerful
tool for estimating complex financial models. The theoretical foundations for parti-
cle MCMC as well as various samplers proposed in the literature are analyzed in the
thesis.

In the final part of the thesis, we develop MCMC and particle MCMC methods for
a stock price model with a time changed Lévy process. We assume that the stock
price follows a Heston-type stochastic volatility plus variance-gamma jumps in returns.
Variance-Gamma process is an infinite activity finite variation Lévy process obtained
by subordinating an arithmetic Brownian motion with a Gamma process. The model is
quite flexible in its nature and can capture most of the observed characteristics of stock
prices.

Our main contribution to existing academic literature is the efficient particle MCMC
algorithms that are developed for the Lévy based model. We compare MCMC and
particle MCMC algorithms in an empirical implementation using S&P500 Index with
15 years of data. The results indicate that the particle MCMC algorithm is a more
efficient alternative to standard MCMC and typically gives smaller standard errors and
lower autocorrelations.

Keywords : bayesian estimation, markov chain monte carlo, particle filtering, sequen-
tial monte carlo, stochastic volatility, jump processes, Lévy processes

viii

ÖZ

ZAMAN DEĞİŞTİRİLMİŞ BİR LÉVY SÜRECİ İÇİN PARÇACIK MARKOV
ZİNCİRİ MONTE CARLO YAKLAŞIMI

Yüksel, Ayhan

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ortak Tez Yöneticisi : Doç. Dr. C. Coşkun Küçüközmen

Eylül 2015, 82 sayfa

Finansal modelleme çalışmalarında karşılaşılan en temel problemlerden biri varlık fiy-
atlarının gözlenen özeliklerine uygun rassal süreçlerin elde edilmesidir. Stokastik oy-
naklık modelleri ve bunların sıçrama süreçleri ile genişletilmiş versiyonları, bu tür am-
pirik dinamikleri yakalayabilecek esnek bir model sınıfını oluşturmaktadır. Ancak bu
zengin modelleme imkanı, modellerin tahmin edilmesine ilişkin çeşitli zorlukları da
beraberinde getirmektedir. Bu esnek modellerin tahmin edilmesi, daha basit modeller
için mevcut olmayan bazı ek zorluklar içermektedir.

Bu tezde, stokastik oynaklık ve sıçrama süreçlerinin esnek yapısından hareketle, söz
konusu modellerin tahmin edilmesinde kullanılmak üzere simülasyon bazlı Bayesci
tahmin yöntemleri incelenmektedir. Bu çerçevede, öncelikle Markov Zinciri Monte
Carlo (MZMC) yaklaşımları detaylı olarak incelenmiş ve basit bir stokastik oynaklık
modeli için farklı MZMC algoritmaları oluşturulmuş ve uygulanmıştır. Daha sonra
anlık tahmin yaklaşımları ele alınmış ve bu kapsamda parçacık filtresi yöntemleri
incelenmiştir. Basit bir parçacık filtresi ile başlanılmış ve sonrasında filtreleme yönteminin
geliştirilmesine ilişkin yaklaşımlar tartışılmıştır. Ayrıca incelenen stokastik oynaklık
modeli için çeşitli parçacık filtrelerini uygulamak amacıyla Monte Carlo algoritmaları
geliştirilmiştir.

İncelenen stokastik oynaklık modelinin aksine, daha gelişmiş finansal modeller genel-
likle gözlenemeyen birçok rastgele değişken ve karmaşık olabilirlik fonksiyonları içerebilmekte

ix

ve dolayısıyla standart MZMC yöntemleri bu tür modelleri etkin bir şekilde tahmin
etmekte yetersiz kalabilmektedir. Bu durumda daha etkin bir alternatif olarak kul-
lanılmak üzere parçacık MZMC yaklaşımları (Particle Markov Chain Monte Carlo.
Journal of the Royal Statistical Society: Seri B 72 (3), 2010, sayfa 269-342) yakın za-
manda literatürde önerilmiştir. Parçacık MZMC yaklaşımı, iki temel simülasyon bazlı
Bayesci tahmin yöntemi olan MZMC ve parçacık filtresi yöntemlerini birleştirmekte
ve karmaşık finansal modelleri tahmin etmek için güçlü bir yaklaşım sunmaktadır.
Tezde parçacık MZMC yaklaşımına ilişkin teorik çerçeve ile literatürde önerilen çeşitli
parçacık MZMC algoritmaları incelenmiştir.

Tezin son bölümünde, zaman değiştirilmiş Lévy süreçlerine dayalı bir hisse fiyat mod-
eli için MZMC ve parçacık MZMC algoritmaları geliştirilmiştir. Modelde hisse fiyat-
larının Heston türü bir stokastik oynaklık süreci izlediği ve ayrıca getirilerin varyans–
gama türü sıçrama süreçleri içerdiği varsayılmıştır. Varyans–gama süreci aritmetik
Brownian sürecinin gama süreci ile zaman değiştirilmesi yoluyla elde edilmekte olup,
sonsuz aktivite ve sonlu değişim içermektedir. Model bu yapısı ile oldukça esnektir
ve hisse senedi fiyatlarının gözlenen özelliklerinin çoğunu yakalayabilme özelliğine
sahiptir.

Tezde bu esnek model için MZMC ve parçacık MZMC algoritmaları geliştirilmiştir.
Tezin akademik literatüre ana katkısı Lévy tabanlı bu model için geliştirilen etkin
parçacık MZMC algoritmalarıdır. Model için geliştirilen MZMC ve parçacık MZMC
algoritmaları, 15 yıllık veri ile S&P500 endeksi üzerinde yapılan ampirik uygula-
malarda karşılaştırılmıştır. Sonuçlar parçacık MZMC yaklaşımının, standart MZMC
yaklaşımına göre daha etkin bir tahmin yöntemi olduğunu ve parçacık MZMC yaklaşımı
ile elde edilen standart hata ve otokorelasyonların daha düşük olduğunu göstermektedir.

Anahtar Kelimeler : bayesci tahmin yöntemleri, markov zinciri monte carlo yaklaşımı,
parçacık filtresi, ardışık monte carlo yöntemi, stokastik oynaklık, sıçrama süreçleri,
Lévy süreçleri

x

To my wife Dilek Yüksel whose constant love has always been a source of inspiration
and encouragement for me.

And to my little princess Aynur Lina Yüksel, the most precious gift I have ever
received.

xi

xii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr. Azize
Hayfavi for her valuable guidance and important suggestions during all stages of my
masters and doctoral studies at METU.

I am deeply grateful to my co–advisor and all–time–mentor Assoc. Prof. Dr. C.
Coşkun Küçüközmen whose precious support and encouragement always helped me
throughout my entire career.

I would like to thank all members and administrative staff of the Institute of Applied
Mathematics for their guidance and support.

I also gratefully commemorate Prof. Dr. Hayri Körezlioğlu for his guidance and en-
couraging me for doctoral studies.

Finally, I am thankful by heart to my wife Dilek Yüksel for her ever undying love,
enormous support and great patience. This thesis would not have been possible without
her unconditional and endless support and encouragement.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF FIGURES . xvii

LIST OF TABLES . xix

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Gaussian Assumption . 1

1.2 Stochastic Volatility Models 2

1.3 Jump Models . 4

1.4 Estimation Challenges and Bayesian Approach 5

1.5 Structure of the Thesis . 6

2 MARKOV CHAIN MONTE CARLO METHODS 7

2.1 A Simple Stochastic Volatility Example 7

2.2 Bayesian Approach to Inference 8

2.3 Markov Chain Monte Carlo Methods 10

xv

2.3.1 General Setup . 10

2.3.2 Gibbs Sampler 13

2.3.3 Random Walk (within Gibbs) Algorithm 18

2.3.4 Independence (within Gibbs) Algorithm 22

2.3.5 Block Sampling 25

3 PARTICLE FILTERING . 29

3.1 Sequential Importance Sampling (SIS) 31

3.2 Sequential Importance Sampling and Resampling (SISR) . . 33

3.3 Optimal Importance Distribution and Adapted Filtering . . . 34

3.4 Auxiliary Particle Filtering 37

4 PARTICLE MCMC . 43

4.1 Particle Independent Metropolis–Hastings Sampler 44

4.2 Particle Gibbs Sampler . 47

5 PMCMC FOR A TIME CHANGED LÉVY MODEL 51

5.1 A Time Changed Lévy Model 51

5.2 MCMC . 53

5.3 Particle Filtering . 58

5.4 PMCMC . 60

5.5 Empirical Implementation 61

5.6 Appendix . 68

6 CONCLUSION . 73

REFERENCES . 75

CURRICULUM VITAE . 81

xvi

LIST OF FIGURES

Figure 2.1 Envelope Function for Full Conditional Density 17

Figure 2.2 Simulated Log–Returns and Standard Deviations 19

Figure 2.3 Estimation Results for Gibbs Sampler 20

Figure 2.4 Fine Tuning for Random–Walk Sampler 21

Figure 2.5 Estimation Results for Hybrid Gibbs–Random Walk Algorithm . . 23

Figure 2.6 Estimation Results for Hybrid Gibbs–Independence Algorithm . . . 25

Figure 2.7 Estimation Results for Block Sampling Algorithm 27

Figure 3.1 SISR Filtering Results . 35

Figure 3.2 Results for Auxiliary Particle Filters 42

Figure 5.1 Simulated Variables from the Model 54

Figure 5.2 Density of Simulated Variables from the Model 55

Figure 5.3 Descriptive Plots For S&P500 Index 62

Figure 5.4 Simulated Values from the Model 66

Figure 5.5 Price Forecasts for S&P500 Index 67

Figure 5.6 MCMC Estimation Results 1 . 68

Figure 5.7 MCMC Estimation Results 2 . 69

Figure 5.8 PMCMC Estimation Results 1 . 70

Figure 5.9 PMCMC Estimation Results 2 . 71

Figure 5.10 ACF Plots for Latent Variables . 72

xvii

xviii

LIST OF TABLES

Table 1.1 Some Popular SV Models . 3

Table 1.2 Some Popular Poisson–based Jump Models 4

Table 2.1 Parameter Estimates from Gibbs Sampler 17

Table 2.2 Parameter Estimates from Hybrid Gibbs–Random Walk Algorithm . 22

Table 2.3 Parameter Estimates from Hybrid Gibbs–Independence Algorithm . 24

Table 3.1 Average ESS and Relative RMSE for Different APF Algorithms . . 41

Table 5.1 Unit Root Testing for S&P500 . 63

Table 5.2 ARCH LM Test for Residual Returns 63

Table 5.3 Parameter Estimates from MCMC and PMCMC 64

Table 5.4 Z statistics from Geweke convergence test 65

Table 5.5 Moments for Actual vs Simulated Returns 65

xix

xx

LIST OF ABBREVIATIONS

ACF Autocorrelation Function

APF Auxiliary Particle Filter

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARS Adaptive Rejection Sampling

ARSV Autoregressive Stochastic Volatility

ARMS Adaptive Rejection Metropolis Sampling

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GBM Geometric Brownian Motion

JD Jump Diffusion

LM Lagrange Multiplier

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MH Metropolis Hastings

OU Ornstein–Uhlenbeck

PF Particle Filtering

PG Particle Gibbs

PIMH Particle Independent Metropolis Hastings

PMCMC Particle Markov Chain Monte Carlo

PMMH Particle Marginal Metropolis Hastings

SDE Stochastic Differential Equation

SD Standard Deviation

SE Standard Error

SIS Sequential Importance Sampling

SISR Sequential Importance Sampling and Resampling

SMC Sequential Monte Carlo

SV Stochastic Volatility

VG Variance Gamma

xxi

xxii

CHAPTER 1

INTRODUCTION

For most quantitative finance problems, including asset allocation, risk estimation and
derivative pricing, the first step would be assuming some stochastic processes for asset
prices and other relevant variables. Once we determine the relevant stochastic pro-
cesses, the results of the subsequent steps critically depend on our initial assumption.
For instance pricing a derivative contract with a Gaussian model, while the underly-
ing assets have highly skewed and fat–tailed distribution, will give very poor results.
Therefore finding suitable stochastic processes that fits observed asset prices well is
the most fundamental problem in financial modelling.

The Gaussian model is typically the starting point for many quantitative models. How-
ever it typically cannot capture the many properties of observed asset prices and thus
we need more flexible processes for modelling.

1.1 Gaussian Assumption

Gaussian model is the most widely used assumption in financial modelling. Bachelier
[3] is the first one who introduce a stock price model driven by Brownian motion.
Samuelson [66] extended this by assuming geometric Brownian motion (GBM) for
stock prices. Using this assumption Black and Scholes [8] and Merton [53] derived the
famous Black-Scholes option pricing formula.

Although its simplicity, Gaussian assumption puts restrictions on the statistical prop-
erties of asset prices. The Black–Scholes model assumes that the stock price follows a
geometric Brownian motion, i.e.

dSt/St = µdt+ σdWt (1.1)

where St is the stock price at time t, µ and σ are constants, and Wt is a standard Brow-
nian motion. Using Itô’s lemma, the stochastic differential equation (SDE) has the
analytic solution St = S0 exp

((
µ− 1

2
σ2
)
t+ σWt

)
, for an arbitrary initial value S0.

And this implies that, over a time interval of length ∆t, log returns can be expressed as
log (St+∆t/St) =

(
µ− 1

2
σ2
)

∆t + σ (Wt+∆t −Wt), and has a Gaussian distribution,
i.e. log (St+∆t/St) ∼ N

((
µ− 1

2
σ2
)

∆t, σ2∆t
)
. The model implies that returns are in-

dependent and identically distributed, return distribution is symmetric and mesokurtic,

1

price paths are almost surely continuous and volatility (as captured by σ) is constant.

When we observe the actual asset prices, we see some common statistical properties,
called ‘stylized facts’. These properties are common across many instruments, markets
and time periods. When compared with these stylized facts, Gaussian assumption seem
to be very restrictive. Some of these stylized facts are as follows1:

• Linear autocorrelations of asset returns are often insignificant, except for very
small intraday time scales. This suggests that returns have independent innova-
tions.

• The unconditional distribution of returns have slight skewness (i.e. gains and
losses are asymmetric) and fat tails (tails have a power–law decay).

• The prices exhibit spikes. This suggests that price process has jump components

• The shape of the return distributions changes for different time scales and for
large time intervals become more like a normal distribution. This suggests a
central limit theorem effect.

• Conditional volatility is not constant over time. Conditional volatility exhibits
mean reversion and clustering.

• The residual returns corrected for volatility clustering still have fat tails. How-
ever, the tails are less heavy than in the unconditional distribution.

• There is a leverage effect, i.e. volatility is negatively correlated with returns.

• Autocorrelation of absolute returns have a long–range dependence. This sug-
gests that volatility has a long memory.

• The implied volatilities derived from market prices have volatility smiles and/or
skews. This suggests that the Black–Scholes model cannot capture observed
characteristics.

These stylized properties suggest that the Gaussian assumption is overly simplistic and
one should use more flexible models that can incorporate mean–reverting and cluster-
ing non–constant volatility, random jumps, leverage effects and can generate asym-
metric and heavy–tailed return distributions. There are two classes of models that aim
to capture these additional dynamics. These are stochastic volatility models and jump
models. The following sections outline some popular stochastic volatility and jump
models proposed in the literature.

1.2 Stochastic Volatility Models

Stochastic volatility models extends the simplistic constant volatility assumption of
Black–Scholes model. There are two types of non–constant volatility models proposed
in the literature.

1 For a detailed discussion of stylized facts see Cont [12] and Sewel [69].

2

The first type is the class of Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) models. GARCH models are parsimonious models that can capture
volatility clustering and generate skewed and heavy–tailed return distributions. The
volatility is assumed to be non–constant, but conditionally deterministic. For most
GARCH models there are no analytical solutions for the temporal aggregation prop-
erties and thus it is typically difficult to derive GARCH–based option pricing models.
For a recent survey on GARCH models see, for example, [1].

The second type is the class of stochastic volatility (SV) models. SV models are
typically built in continuous time and assume that the volatility itself follows certain
stochastic differential equations. The general setup2 for these models are as follows:

dSt/St = µdt+ σtdWt (1.2)
σt = f (Yt) (1.3)
dYt = α (Yt, t) dt+ γ (Yt, t) dBt (1.4)

where σt is the value of (stochastic) volatility at time t, f(·) is a positive function, Yt is
the stochastic process underlying the volatility, α(·, ·) and γ(·, ·) are functions of time
and Yt satisfying certain conditions so that the SDE admits a unique solution 3, Wt and
Bt are two standard Brownian motions with correlation d 〈W,B〉t = ρdt.

Typically f(·) is chosen in such a way that volatility is positive, the α(·, ·) and γ(·, ·)
are chosen in such a way that ensures volatility clustering and mean–reversion, and
ρ < 0 captures the leverage effects. With these choices, we can generate asymmet-
ric and heavy–tailed unconditional return distributions. Because of Brownian motion
assumptions, these models generate conditionally Gaussian return distributions. SV
models can capture volatility smiles or smirks. However, like Black–Scholes model,
SV models assume the continuity of price paths (i.e. no spikes). Some popular SV
model specifications are given in Table 1.1

Table 1.1: Some Popular SV Model Specifications

Author α(t, Yt) γ(t, Yt) f(Yt) ρ

Hull and White [38] αYt γYt
√
Yt ρ = 0

Scott [68] α(m− Yt) γ Yt, exp(Yt) ρ = 0
Wiggins [76] α(t, Yt) γYt Yt ρ 6= 0
Stein and Stein [71] α(m− Yt) γ |Yt| ρ = 0
Heston [36] α(m− Yt) γ

√
Yt

√
Yt ρ 6= 0

Ball and Roma [4] α(m− Yt) γ
√
Yt

√
Yt ρ = 0

Nelson [56] α(m− Yt) γYt
√
Yt ρ = 0

Heston [37] αYt(m− Yt) γY
3/2
t

√
Yt ρ 6= 0

Hagan, Kumar, Lesniewski and Woodward[32] 0 γYt Yt ρ 6= 0

2 Throughout this thesis, we are always interested in models for observed asset prices. Models for derivative
pricing is out of our research scope. Therefore all stochastic processes presented here are assumed to be under
real–world probability measure P .

3 For such conditions see Theorem 3.5.3, p.49 of [48]

3

1.3 Jump Models

Although SV models extends the Black–Scholes model in certain ways, they still can-
not capture some properties of observed asset prices. For instance, SV models assume
continuous price paths, conditionally Gaussian returns and a smooth volatility process.
To better replace these unrealistic assumptions, different jump models are proposed in
the literature.

The most widely used jump process is Poisson process. Extending our previous no-
tation, a Poisson jump model where jumps exist both in price and volatility has the
following form:

dSt/St = µdt+ σtdWt + Z1tdN1t (1.5)
σt = f (Yt) (1.6)
dYt = α (Yt, t) dt+ γ (Yt, t) dBt + Z2tdN2t (1.7)

where N1t and N2t represent the Poisson processes, Z1t and Z2t represent the jump
sizes for price and volatility processes, respectively.

Some popular Poisson–based jump model specifications are given in Table 1.2. SDE
specifications for the price process and for the volatility process are shown in the upper
and lower parts of the table, respectively.

Table 1.2: Some Popular Poisson–based Jump Model Specifications

Article Diffusive Jump Jump Jump
Part Frequency Size Intensity

Price Process
Merton [54] GBM Poisson Normal Constant
Kou [47] GBM Poisson Double Exponential Constant
Bates [6] GBM Poisson Normal Constant
Bates [7] GBM Poisson Normal Stochastic
Duffie, Pan and Singleton [19]* GBM Poisson Normal Constant

Volatility Process
Merton [54] - - - -
Kou [47] - - - -
Bates [6] Heston - - -
Bates [7] Heston - - -
Duffie, Pan and Singleton [19]* Heston Poisson Exponential Constant

*:There are two versions of this model: a) independent jumps in returns and volatility,
b) jumps are governed by the same Poisson process and the jump sizes are correlated.

Poisson process can only have finite number of (possibly large) jumps within a finite
time period. This restricts the flexibility of model. However the class of Lévy pro-
cesses, which also includes the Poisson process as a special case, has more flexibility
in designing jumps. For example, some Lévy processes have infinite activity, i.e can
have infinite number of jumps within a finite time period. These models can capture

4

both small and large jumps simultaneously. Infinite activity Lévy processes include the
inverse Gaussian model [5], the generalized hyperbolic class[20], the variance–gamma
model [52], generalized variance–gamma model (also known as CGMY model)[9]
and finite moment log–stable model[10]. Furthermore, by applying a stochastic time
change, it is also possible to add a stochastic volatility component to a Lévy process.
For instance we will discuss a stock price model with Heston type stochastic volatil-
ity and variance–gamma jumps in detail in Chapter 5. For a detailed discussion of
Lévy–based models in finance, see [13] and [67].

1.4 Estimation Challenges and Bayesian Approach

In model building, adding new features to an existing model may seem to be an easy
task at first sight. For instance, in previous sections, we discussed different models
(with increasing complexity) that can better capture the observed properties of asset
prices. Although these models give us a rich environment to work with, these models
typically introduce many latent variables and yield to complicated likelihood functions.
Therefore, the main challenge will be the estimation of these complex models. Most of
the time, the complexity of these models prevent us to use least–squares or likelihood
based estimation methods and necessitates a more advanced estimation method.

With the help of recent developments in Monte Carlo methods, simulation based Bayesian
approach become a powerful alternative for estimating these complex models with la-
tent variables. In a Bayesian setting, we first derive the posterior distribution for the set
of any unknown parameter and latent variable. Then with the help of Monte Carlo tech-
niques, we try to approximate this density using generated samples. Simulation based
Bayesian approach encompasses two main estimation methods, namely Markov Chain
Monte Carlo (MCMC) and particle filtering (a.k.a. Sequential Monte Carlo). MCMC
algorithms allow us to sample from the posterior distribution based on constructing a
Markov chain that has the posterior distribution as its equilibrium distribution. MCMC
algorithms are widely used in estimating models with unknown parameters as well as
latent variables. Particle filtering, on the other hand, assumes that the model param-
eters are known and approximates the conditional posterior of latent variables using
sequential implementation of a certain type of importance sampling. Particle filtering
is especially useful for filtering problems on non–linear non–Gaussian systems, where
more standard algorithms such as Kalman filter fail to handle.

Although the MCMC algorithms give us a flexible method for estimation, the per-
formance of the MCMC methods critically depend on finding good proposal distri-
butions used in designing the Markov chains. If the proposal distributions explore
the state space poorly and/or if highly correlated variables are updated independently,
then the resulting MCMC estimates will be poor. And finding good high–dimensional
proposals for the latent states, which typically have high dimensions, is not an easy
task. Very recently, Particle MCMC (PMCMC) methods are proposed by [2] that aim
to use particle filtering methods to build efficient high–dimensional proposals to be
used within an MCMC setting. PMCMC approach combines two strands of simula-
tion based Bayesian inference and offers a powerful approach for estimating complex

5

models.

In the literature there exist various papers that use MCMC algorithms for models
with stochastic volatility and jumps. For instance [40] and [45] develop MCMC al-
gorithms for an autoregressive stochastic volatility model. [41] provides algorithms
for stochastic volatility models with leverage and fat tails. Furthermore [49] uses
MCMC algorithms for different stock price models with stochastic volatility plus Pois-
son, variance–gamma and log–stable based jumps.

On the other hand, although PMCMC approach offers a compelling alternative to tra-
ditional MCMC and attracted a huge interest from the academic society, it is relatively
new and the literature on PMCMC for stochastic volatility and jump models is not
voluminous. In their original paper, [2] develops PMCMC algorithms for a stochastic
volatility model where the volatility process is driven a Lévy process. [39] uses PM-
CMC algorithm for Hull–White type stochastic volatility model. [21] and [33] develop
PMCMC algorithms for different autoregressive stochastic volatility models. There-
fore we aim to contribute to the existing literature by developing PMCMC algorithms
for a complex model with stochastic volatility and jumps.

1.5 Structure of the Thesis

In this thesis, after discussing MCMC and particle filtering methods, we will focus on
PMCMC approach and design efficient algorithms for a complex stock price model.
The model includes stochastic volatility and jumps that are governed by a time changed
Lévy process, and thus is quite flexible in its nature. The efficient PMCMC algorithms
designed for this model constitute the main contribution of the thesis to the existing
academic literature. The outline of the thesis is as follows: In chapter 2 we will intro-
duce the Bayesian framework and MCMC approach for inference, and implement var-
ious MCMC algorithms for a simple stochastic volatility model. Chapter 3 is devoted
to particle filtering where we compare different filtering algorithms and implement
them for the basic model. We will introduce PMCMC approach in Chapter 4 where
we discuss the theoretical foundations of PMCMC and different PMCMC samplers. In
Chapter 5, we will propose a flexible model with stochastic volatility and Lévy jumps
that can capture observed characteristics of stock prices. We will develop MCMC and
PMCMC algorithms for the model and compare them in an empirical study on S&P500
index. Chapter 5 concludes the thesis.

6

CHAPTER 2

MARKOV CHAIN MONTE CARLO METHODS

In this chapter, Bayesian approach and MCMC methods will be introduced as an in-
ference tool. A simple stochastic volatility model is used to illustrate ideas and algo-
rithms. First we will introduce the SV model and discuss challenges in estimating the
model. Then general framework for Bayesian approach will be introduced. Finally,
MCMC methods with different algorithms will be presented.

2.1 A Simple Stochastic Volatility Example

To illustrate the main ideas and algorithms, we will use the autoregressive stochastic
volatility (ARSV) model. In this model, log-volatility follows an Ornstein-Uhlenbeck
process (i.e. a continuous-time AR(1)):

dSt = µStdt+ eht/2StdWt (2.1)
dht = α̃ (m̃− ht) dt+ γdBt (2.2)

where the Brownian motions, Wt and Bt, are independent. First order Euler approxi-
mation over a unit time period gives the following discrete–time equivalent:

Yt = log(St/St−1) = µ+ eht/2εt (2.3)
ht = α + βht−1 + γηt (2.4)

where Yt is the continuously compounded log–return, ht is the log–volatility, εt and ηt
are i.i.d. N(0, 1), α = α̃m̃, β = 1−α̃ with |β| < 1 to make the process stationary. The
discrete–time version of this model is first used by [72] and its statistical properties are
analyzed by [73]. The model ensures the autoregressive mean reverting volatility with
no leverage effect.

This model is also an example of a non–linear Gaussian state–space model. For this,
we have the observation equation given as (2.3) and state evolution equation given as
(2.4). As we will discuss in later chapters, in the most general case, asset price models
can be stated as non–linear non–Gaussian state–space models.

7

2.2 Bayesian Approach to Inference

Now consider we want to estimate ARSV model. We observe log–returns, Y ={
Yt
}T
t=1

, and we want to infer latent log–volatility, h =
{
ht
}T
t=1

and the values of

parameters, Θ = (µ, α, β, γ2). To establish a consistent notation, let X =
{
Xt

}T
t=1

be
the collection all latent variables (i.e. states) in the model. In our simple model, the
only latent variable is the log–volatility, thus Xt = ht.

Bayesian approach assumes that anything we observe is fixed in value and for any
other unobserved variable, the uncertainty caused by not observing them is encoded
explicitly in a probability distribution1. For instance, in our problem, log–returns, Y ,
is observed, thus it is fixed. But for the value of parameters and the latent variables
we make probabilistic descriptions. Before observing some data, these descriptions
are called prior distributions, and after observing some data these descriptions are
called posterior distributions. For instance, in our case, the posterior distribution of
parameters and latent variables given observed log–returns, p(X,Θ|Y), captures our
probabilistic description about X and Θ after we observed the data. Using the Bayes
rule, we can express the posterior as:

p(X,Θ|Y) ∝ p(Y |X,Θ)p(X,Θ)

∝ p(Y |X,Θ)p(X|Θ)p(Θ) (2.5)

The first term on the right hand side of (2.5) is the full-information likelihood, the
second and third terms jointly express our prior beliefs and non–sample information
about the parameters and the latent variables.

ARSV model implies that:

Yt|ht,Θ ∼ N(µ, eht) (2.6)
ht|ht−1,Θ ∼ N(α + βht−1, γ

2) (2.7)

Additionally, to initialize the log–volatility we assume a Normal prior for the initial2

log–volatility, i.e. h0 ∼ N(m0, C0).

Thus the full–information likelihood, the first component of the posterior, is3:

L(X,Θ|Y) ∝ p(Y |X,Θ) =
T∏
t=1

N(Yt|µ, eht) (2.8)

Note that marginal likelihood for parameters is given as follows and is much compli-
cated than the full-information likelihood:

L(Θ|Y) ∝ p(Y |Θ) =

∫
p(Y, h|Θ)dh

1 For a more general discussion on Bayesian approach please refer to [24], [64], [11] and [30].
2 Log–volatility process can also be initialized by directly assuming a prior on h1.
3 For ease of notation we will useN(x|µ, σ2) to represent the density for the random variableX ∼ N(µ, σ2).

8

=

∫
p(Y |h,Θ)p(h|Θ)dh

=

∫ [T∏
t=1

p(Yt|Θ, ht)

]
p(h0)

[
T∏
t=1

p(ht|ht−1,Θ)

]
dh

=

∫ [T∏
t=1

N(Yt|µ, eht)

]

N(h0|m0, C0)

[
T∏
t=1

N(ht|α + βht−1, γ
2)

]
dh (2.9)

Note that since the first part involves eht terms, this marginal likelihood does not admit
a closed–form solution. This complicates the implementation of a classical maximum
likelihood approach.

The second component of the posterior distribution is the prior distribution for param-
eters and latent variables. Any non–sample information can be incorporated through
prior. This may include prior beliefs about a parameter obtained from previous studies.
Uninformative or diffuse prior distributions can be used if there isn’t any non–sample
information. Priors can also be used to impose certain statistical features like imposing
stationarity, or ruling out near unit-root behavior. For analytical tractability purposes,
it is common to use conjugate prior distributions.

In our example, we already assumed a prior for the initial log–volatility, h0. Addition-
ally, we also assume a prior for the parameters, p(Θ) = p(µ, α, β, γ2). Assume now,
as an example, we use the following conjugate priors:

p(γ2) = IG(γ2|a0, A0)

p(α, β|γ2) = N2(b0, γ
2B0)1[−1<β<1]

p(µ) = N(µ|d0, D0)

where IG represents the density function for inverse gamma4 distribution, N2 repre-
sents the density function for the bivariate Normal distribution and a0, A0, b0, B0, d0

and D0 are hyperparameters to be specified. A priori, we assume that, α and β jointly
have a bivariate Normal distribution with covariance matrix that depends on γ2. Our
choice of Normal–Gamma priors for α, β and γ2 is a common choice in Bayesian lin-
ear models. Having a joint prior for α and β is motivated from the fact that the form
of marginal likelihood for parameters yield a high posterior correlation between these
two parameters (see p. 92 of [29] for a discussion). We also truncate the prior for β to
make the log–volatility process stationary.

By combining state equation with priors for Θ and h0, we can obtain joint prior for

4 Gamma distribution has the density Ga(x|α, β) = 1
βαΓ(α)

xα−1 exp(−x/β), 0 < x,α, β and inverse

gamma distribution has the density IG(x|α, β) = βα

Γ(α)
x−α−1 exp(−β/x), 0 < x,α, β. If X ∼ IG(α, β) then

Y = 1/X ∼ Ga(α, 1/β) .

9

latent variables and parameters:

p(X,Θ) = p(Θ)p(h0)
T∏
t=1

p(ht|ht−1,Θ)

= p(µ)p(α, β|γ2)p(γ2)p(h0)
T∏
t=1

p(ht|ht−1,Θ)

= N(µ|d0, D0)N2(α, β|b0, γ
2B0)1[−1<β<1]IG(γ2|a0, A0)

N(h0|m0, C0)
T∏
t=1

N(ht|α + βht−1, γ
2)

Finally, combining this prior with the full information likelihood gives us the posterior:

p(X,Θ|Y) ∝ p(Y |X,Θ)p(X,Θ)

∝

[
T∏
t=1

N(Yt|µ, eht)

]
N(µ|d0, D0)N2(α, β|b0, γ

2B0)1[−1<β<1]IG(γ2|a0, A0)

N(h0|m0, C0)
T∏
t=1

N(ht|α + βht−1, γ
2) (2.10)

For latent variables, depending on the conditioning information used, we may focus on
different posterior distributions, given as follows:

Smoothing : p(Xt|Y T) t = 1, 2, . . . , T

Filtering : p(Xt|Y t) t = 1, 2, . . . , T

Forecasting : p(Xt+1|Y t) t = 1, 2, . . . , T

where Y t denotes the observed variables up to time t, i.e. Y t = Y1, Y2, . . . , Yt−1, Yt.
The smoothing problem is a static problem, solved once using all the data, but the fil-
tering and forecasting problems are inherently sequential. We will deal with smoothing
and filtering problems in more detail in the next chapters.

2.3 Markov Chain Monte Carlo Methods

2.3.1 General Setup

The main object for the Bayesian inference is the posterior obtained in (2.10). Optimal
estimators (in the mean–squared sense) can be obtained as the mean of marginal pos-
teriors that can be derived from this joint posterior. However, the main problem is that,
this posterior is quite complex, very high dimensional (T + 4 in our case), and does
not correspond to a standard distribution. Therefore we need to use sampling methods
for approximating this posterior. However because of its complexity, direct sampling

10

methods (e.g. inverse transform, auxiliary variables, rejection sampling) cannot be
used in this case and importance sampling is very inefficient.

MCMC methods5 are powerful sampling methods to generate samples from complex
high–dimensional distributions. In an MCMC method, we begin with a target density,
π(·), that we want to sample from. In our case, the target density is the joint posterior,
i.e. π(X,Θ) = p(X,Θ|Y). Then we design a Markov chain6 on the space of (X,Θ),{
X(g),Θ(g)

}G
g=0

, where the limiting distribution of the chain is our target distribution.
These samples do not form an i.i.d. sequence from the target distribution, however the
marginal distribution of these samples converges to the target distribution, as G→∞
.

Probabilistic structure of any Markov chain can be fully specified by specifying the
distribution of the initial states (for this we specify the value of the initial states, i.e. use
a degenerate distribution), p(X(0),Θ(0)), and for subsequent steps (i.e. g = 1, 2, . . .)
specifying a transition distribution, p(X(g+1),Θ(g+1)|X(g),Θ(g)) which determines the
evolution of the chain.

The critical point here is that we should select this transition distribution in a way
that the Markov chain will have our target distribution as its invariant (i.e. limiting)
distribution. Metropolis–Hastings algorithm [55, 35] is a general method to achieve
this. In this algorithm, we determine a proposal density, q(X(g+1),Θ(g+1)|X(g),Θ(g)),
which is different from the transition probability. We should select proposal density
such that we can easily sample from it. Then by sampling from this proposal den-
sity and using a certain type of accept/reject algorithm, a sequence of samples can be
generated from the Markov chain which at the end have the right transition probability
p(X(g+1),Θ(g+1)|X(g),Θ(g)) and thus have right invariant distribution. A full example7

for a generic Metropolis–Hastings algorithm is given in Algorithm 2.1.

Metropolis–Hastings acceptance probability given in (2.11) is calculated using the ra-
tios of target distribution (i.e. posterior) and the proposal distribution, evaluated at two
different points, (X(can),Θ(can)) and (X(g−1),Θ(g−1)). Thus although we do not need
to sample directly from the target distribution, we should be able to evaluate it at cer-
tain points. Additionally since the posterior is included in the formula as a ratio, we
can still use this MCMC algorithm even if we don’t know the integrating constant for
the posterior.

The specific form of Metropolis–Hastings acceptance probability ensures that our tar-
get distribution is always the invariant distribution for our Markov chain. To see this
we first need the following definition and theorem:

Definition 2.1. A Markov chain with transition distribution p(z, z′) satisfies the de-
tailed balance condition if there exist a function f satisfying f(z)p(z, z′) = f(z′)p(z′, z).

Theorem 2.1. If a Markov chain satisfies the detailed balance condition with respect
5 For a detailed treatment of MCMC methods we refer the reader to [65], [23] and [29]. Additionally, for

MCMC implementations in financial modeling, see [42].
6 A Markov chain is a stochastic process where the probability of the next state depends only on the current

state.
7 For more detailed MCMC algorithms and empirical implementations, see [77].

11

Algorithm 2.1 A Generic Metropolis–Hastings Algorithm
1: Initialize (X(0),Θ(0))
2: for g = 1 to G do
3: Sample (X(can),Θ(can)) ∼ q(X(can),Θ(can)|X(g−1),Θ(g−1))
4: Calculate acceptance probability as:

α
(

(X(g−1),Θ(g−1)), (X(can),Θ(can))
)

=

min

{
1,
π(X(can),Θ(can))

π(X(g−1),Θ(g−1))

q(X(g−1),Θ(g−1)|X(can),Θ(can))

q(X(can),Θ(can)|X(g−1),Θ(g−1))

}
(2.11)

5: Sample u ∼ U(0, 1)
6: if u < α

(
(X(g−1),Θ(g−1)), (X(can),Θ(can))

)
then

7: (X(g),Θ(g)) = (X(can),Θ(can))
8: else
9: (X(g),Θ(g)) = (X(g−1),Θ(g−1))

10: end if
11: end for

to f where f is a density function, then f is the invariant distribution of the chain.

Proof. See [65, p. 230].

Now we can prove our claim:

Theorem 2.2. Markov chain generated by Metropolis–Hastings algorithm satisfies
the detailed balance condition with respect to joint posterior, p(X,Θ|Y), and thus this
joint posterior is the invariant distribution of the chain.

Proof. Let z = (X(g),Θ(g)) and z′ = (X(g+1),Θ(g+1)) denote the state of the chain
at gth and g + 1th step. First note that the transition distribution of the chain can be
obtained as:

p(z′|z) = q(z′|z)α(z, z′) + 1[z=z′]

∫
q(z̃|z)[1− α(z, z̃)]dz̃

where the first component represents the case that a different state is proposed and
accepted while the second component represents the case that the new proposed state
is equal to the current state or a different state is proposed but rejected.

Note that detailed balance condition is always satisfied if chain does not move, i.e. if
z = z′ then f(z)p(z, z′) = f(z′)p(z′, z). Thus we only need to show that detailed
balance condition is satisfied (with respect to joint posterior π(X,Θ) = p(X,Θ|Y))
when a different state is proposed and accepted.

π(z)p(z′|z) = π(z)q(z′|z)α(z, z′)

= π(z)q(z′|z)min

{
1,
π(z′)q(z|z′)
π(z)q(z′|z)

}
12

= min {π(z)q(z′|z), π(z′)q(z|z′)}

= π(z′)q(z|z′)min
{

1,
π(z)q(z′|z)

π(z′)q(z|z′)

}
= π(z′)q(z|z′)α(z′, z)

= π(z′)p(z|z′)

2.3.2 Gibbs Sampler

The Metropolis–Hastings algorithm is a generic framework that encompasses differ-
ent samplers. One special sampler is the Gibbs sampler, which uses the results of
Hammersley–Clifford Theorem [34].

Theorem 2.3. The joint distribution associated with the conditional densities p1(·|·)
and p2(·|·) has the density:

p(x1, x2) =
p2(x2|x1)∫
p2(x2|x1)

p1(x1|x2)
dx2

if
∫
p2(y|x1)

p1(x1|y)
dy exists.

Proof. We can decompose any joint distribution using conditional and marginal distri-
butions:

p(x1, x2) = p1(x1|x2)p2(x2) = p2(x2|x1)p1(x1)

Thus:

p2(x2|x1)

p1(x1|x2)
=

p2(x2)

p1(x1)∫
p2(x2|x1)

p1(x1|x2)
dx2 =

∫
p2(x2)

p1(x1)
dx2 =

1

p1(x1)

p(x1, x2) = p2(x2|x1)p1(x1) =
p2(x2|x1)∫
p2(x2|x1)

p1(x1|x2)
dx2

The Hammersley–Clifford theorem allows us to characterize a joint distribution by
using its conditional distributions. Using this idea, we can characterize our target dis-
tribution, which is the joint posterior p(X,Θ|Y), by using the conditional distributions
given as p(X|Θ, Y) and p(Θ|X, Y). In Gibbs sampling, we generate samples from
the joint distribution by sequentially sampling from the full conditional distributions.

13

This method allows us to reduce the dimension of the sampling problem. Sometimes it
is also possible to apply Hammersley–Clifford theorem more than once to further get
lower dimensional sampling.

In Gibbs sampling, after obtaining lower dimensional conditional distributions, we can
use any sampling method to sample from these distributions. If direct sampling meth-
ods are available for the distributions, then the algorithm is called a Gibbs algorithm.
On the other hand, if direct sampling methods are not available for the full condi-
tionals, then we should use other Metropolis–Hastings samplers to sample from full
conditionals. In this case the algorithm becomes a hybrid one, sometimes called as
Metropolis–Hastings within Gibbs algorithm.

In Gibbs sampling, the acceptance probability is always one. This means that the chain
always move, i.e. proposed values are always accepted. To show this, assume that we
are using p(X|Θ, Y) and p(Θ|X, Y) for sampling from the joint posterior. Then, given
that the current value of Markov chain is (X(g),Θ(g)), Gibbs sampling first proposes
(X(can),Θ(g)) where X(can) ∼ p(X(can)|Θ(g), Y) = π(X(can),Θ(g))

p(Θ(g))
. Thus the acceptance

probability is:

α
(
(X(g),Θ(g)), (X(can),Θ(g))

)
=

min

{
1,
π(X(can),Θ(g))

π(X(g),Θ(g))

π(X(g),Θ(g))/p(Θ(g))

π(X(can),Θ(g))/p(Θ(g))

}
= 1 (2.12)

For ARSV model a deterministic scan8 Gibbs algorithm is given in Algorithm 2.2.
The algorithm updates one full conditional at each step. One exception is for α and β.
Since the model yields high posterior correlations of these parameters, updating these
individually is an inefficient method [29, p.90]. Therefore these variables are jointly
updated9.

The full conditionals for ARSV model can be obtained using the posterior given in
(2.10). Any full conditional distribution is always proportional to the joint posterior.
Therefore, by treating any irrelevant multiplicative term in joint posterior as a constant,
we can obtain the full conditionals. The full conditionals are given as follows (details
of the derivations are not shown):

p(µ|X, Y) ∝

[
T∏
t=1

N(Yt|µ, eht)

]
N(µ|d0, D0)

∝ N(µ|d1, D1) (2.13)

d1 =
d0/D0 +

∑T
t=1 Yte

−ht

1/D0 +
∑T

t=1 e
−ht

, D1 =
1

1/D0 +
∑T

t=1 e
−ht

p(α, β, γ2|X) ∝ N2(α, β|b0, γ
2B0)1[−1<β<1]IG(γ2|a0, A0)

8 The algorithm updates each variable in turn. It is also possible to design a random scan algorithm where the
order of updating is chosen randomly.

9 For instance jointly updating highly correlated variables (e.g. ht) may improve the MCMC algorithm[29, p.
12]. [23] suggest that it is preferable to jointly update as much variable as possible, if we have a sampling method
for this. Following sections include a discussion on this blocking approach.

14

Algorithm 2.2 Gibbs Algorithm
1: Initialize (X(0),Θ(0))
2: for g = 1 to G do
3: Sample h(g)

1 ∼ p(h(g)
1 |h

(g−1)
0 , h

(g−1)
2 , h

(g−1)
3 , h

(g−1)
4 , . . . , h

(g−1)
T ,Θ(g−1), Y)

4: Sample h(g)
2 ∼ p(h(g)

2 |h
(g−1)
0 , h

(g)
1 , h

(g−1)
3 , h

(g−1)
4 , . . . , h

(g−1)
T ,Θ(g−1), Y)

5: Sample h(g)
3 ∼ p(h(g)

3 |h
(g−1)
0 , h

(g)
1 , h

(g)
2 , h

(g−1)
4 , . . . , h

(g−1)
T ,Θ(g−1), Y)

6:
...

7: Sample h(g)
T ∼ p(h

(g)
T |h

(g−1)
0 , h

(g)
1 , h

(g)
2 , h

(g)
3 , . . . , h

(g)
T−1,Θ

(g−1), Y)

8: Sample h(g)
0 ∼ p(h(g)

0 |h
(g)
1 , h

(g)
2 , h

(g)
3 , . . . , h

(g)
T ,Θ(g−1), Y)

9: Sample µ(g) ∼ p(µ(g)|α(g−1), β(g−1), γ2(g−1), X(g), Y)
10: Sample γ2(g) ∼ p(γ(g)|µ(g), α(g−1), β(g−1), X(g), Y)
11: Sample (α(g), β(g)) ∼ p((α(g), β(g))|µ(g), γ2(g), X(g), Y)

12: end for

T∏
t=1

N(ht|α + βht−1, γ
2)

∝ N2(α, β|b1, γ
2B1)1[−1<β<1]IG(γ2|a1, A1)

⇒ p(γ2|X) ∝ IG(γ2|a1, A1) (2.14)
⇒ p(α, β|γ2, X) ∝ N2(α, β|b1, γ

2B1)1[−1<β<1] (2.15)

X̃ =

1 h0
...

...
1 hT−1

 , Ỹ =

h1
...
hT


B1 =

[
B−1

0 + X̃ ′X̃
]−1

, b1 = B1

[
B−1

0 b0 + X̃ ′Ỹ
]

a1 = a0 + T/2 , A1 = A0 + 0.5
[
Ỹ ′Ỹ + b′0B

−1
0 b0 − b′1B−1

1 b1

]
p(h0|h1,Θ) ∝ N(h0|m0, C0)N(h1|α + βh0, γ

2)

∝ N(h0|m′0, C ′0) (2.16)

m′0 =
m0/C0 + β(h1 − α)/γ2

1/C0 + β2/γ2
, C ′0 =

1

1/C0 + β2/γ2

Since we used conjugate priors for the initial latent volatility and all parameters, we
obtained standard distributions for the full conditionals. However, this is not true for
other volatility states. The full conditional for the latent volatility states is given as:

p(ht|ht−1, ht+1,Θ, Yt) ∝ N(Yt|µ, eht)N(ht|α + βht−1, γ
2)N(ht+1|α + βht, γ

2)

∝ N(Yt|µ, eht)N(ht|mt, Ct) (2.17)

mt =
α(1− β) + β(ht−1 + ht+1)

1 + β2
, Ct =

γ2

1 + β2

and for t = T :

p(hT |hT−1,Θ, YT) ∝ N(YT |µ, ehT)N(hT |α + βhT−1, γ
2)

15

∝ N(YT |µ, ehT)N(hT |mT , CT) (2.18)
mT = α + βhT−1 , CT = γ2

Because of eht in the variance term, full conditionals do not correspond to standard
distributions. For non–standard distributions, common sampling algorithms include
ratio–of–uniforms method, accept–reject method and slice sampling (see p.78, [29]).

In simple rejection method, we need an envelope functionE(·) of the target distribution
such that E(ht) ≥ π(ht), ∀ht. Then we obtain a density proportional to E(·), sample
from it and accept the sample with probability π(ht)/E(ht). This procedure is repeated
until a draw is accepted. At the end, accepted values form an independent sample from
the target density π. In this method, it is important to have the E to be close to π in
order to increase acceptance probability and hence computational efficiency.

Therefore the critical issue with this approach is to find a tight envelope function. For-
tunately, efficient envelope construction methods are available for log–concave den-
sties10. Using tangents evaluated at certain points, [28] proposed an efficient method
of finding an envelope logE(·) to logarithm of a target density, log π(·). The full con-
ditional, π(ht) we obtained in (2.17) is also a log–concave density. The algorithm
begins with selecting a number of points and tangents to log π are constructed at these
points. Because of concavity, these tangent lines will always form an envelope to the
log target density. With our full conditional with selected parameters, this idea is illus-
trated in Figure 2.1. In this case, the envelope E is piecewise exponential which can
be easily integrated and sampled from. [28] also proposed an adaptive version called
adaptive rejection sampling (ARS). When a candidate value hcan is sampled from the
envelope, in order to complete the rejection step, π(hcan) should also be evaluated. At
this stage, the selected point (hcan, π(hcan)) can be used to update the envelope. This
adaptive approach improves the efficiency by obtaining a tighter envelope at each step.
The details of the algorithm can be found in [28] and section 2.4.2 of [65].

Using ARS, now we can fully specify our Gibbs algorithm for ARSV model. The steps
are given in Algorithm 2.3.

Example 2.1. We simulate 500 data points for latent volatility and logarithmic returns
using parameter values µ = 0, α = −0.4, β = 0.95 and γ2 = 0.04. Results are
shown in Figure 2.2. To infer the values of parameters and the latent log–volatility,
we implement Algorithm 2.3 with 10000 iterations. We use extremely diffusive priors
with hyperparameters a0 = 5, A0 = 0.1, b0 = (0, 0), B0 = I2,m0 = 0, C0 = 100,
where I2 is the two dimensional identity matrix. The chain is initialized at α = −0.5,
β = 0.5, γ2 = 0.01 and h(0)

t , t = 0, 1, . . . , T equal to logarithm of sample variance. In
obtaining estimates, we ignore the first 5000 iterations11.

Estimated posterior quantities are given in Table 2.1. Note that, in a simulation ex-
periment, due to sampling variability, the maximum likelihood estimates (MLE) of the
parameters can happen to be different than the true values. Therefore it is better to
compare the MCMC estimates with the MLE rather than the true values. MLE are

10 A density f(x) is log–concave if d
2 log f(x)

dx2
≤ 0.

11 This initial period, in which the samples are ignored, is called burn–in period.

16

−8.2 −8.15 −8.1 −8.05 −8 −7.95 −7.9 −7.85
−10

−8

−6

−4

−2

0

2

4

h
t

Figure 2.1: Envelope Function for Full Conditional. Red line represents the log of full
conditional, π(ht). Blue line represents log of envelope function E(ht). The dotted
lines represent the points at which tangents are drawn.

also given in the first line of Table 2.1. Estimation results are quite encouraging since
posterior means are quite close to the MLE values and MLE values are included in the
90% credible intervals.

Table 2.1: Parameter Estimates from Gibbs Sampler

α β γ2

True Values (MLE) -0.4070 0.9495 0.0405
Mean -0.4768 0.9412 0.0356
Mode -0.4607 0.9432 0.0337
Standard Deviation 0.1857 0.0230 0.0127
5th Percentile -0.8101 0.8995 0.0189
95th Percentile -0.2075 0.9743 0.0604

More detailed results are given in Figure 2.3. The top line graphs are the trace plots for
the parameters which show the values visited by the Markov chain. The chains (espe-
cially for α and β) quickly converges to the true MLE values and oscillate around these
values thereafter. The second line shows the autocorrelations for parameter chains.
Normally smaller autocorrelations in MCMC chains improves the estimation results.
The third line shows the posterior distributions obtained from MCMC samples (after
ignoring burn–in period). The red vertical lines are the MLE values. These graphs also
show that we obtained reasonable estimates for the parameters. The last line of graphs
show the results for latent volatility, ht. The first one is the trace plot for h250, as an ex-
ample. The second one shows the true and estimated (also with 90% credible interval)
standard deviations, i.e.

√
eht . The final graph shows the autocorrelations of ht for all

t = 1, . . . , T . Volatilities (especially adjacent ones) are highly correlated. And since
we are updating these highly correlated variables once at a time, the resulting chains

17

Algorithm 2.3 Gibbs Algorithm with ARS for Log–Volatility
1: Initialize (X(0),Θ(0))
2: for g = 1 to G do
3: for t = 1 to T do
4: Select some grid points from the support of p(ht).
5: Construct the envelope logE(ht) from the tangent lines to log p(ht) evaluated at initial grid

points.
6: repeat
7: Sample h(can)

t ∝ E(ht)

8: Accept it, h(g)
t = h

(can)
t , with probability min

{
1, p(h

(can)
t)/E(h

(can)
t)

}
9: Update the envelope using the new point (h

(can)
t , E(h

(can)
t))

10: until A draw is accepted
11: end for
12: Sample h(g)

0 ∼ N(m′0, C
′
0)

13: Sample µ(g) ∼ N(d1, D1)
14: Sample γ2(g) ∼ IG(a1, A1)
15: Sample (α(g), β(g)) ∼ N2(b1, γ

2(g)B1)

16: end for

have high autocorrelations. Though, the decay in autocorrelations is quick.

2.3.3 Random Walk (within Gibbs) Algorithm

Gibbs sampler is only a very special type of Metropolis–Hastings algorithm. Metropolis–
Hastings is a generic algorithm and (given some minor conditions) it is possible to use
any proposal distribution in the algorithm. Two popular Metropolis–Hastings sam-
plers are random walk sampler and independence sampler. In random walk sampler,
the sampled values depends only on the current chain value while in independence
sampler, new samples are generated independent of the current chain value.

In previous section, we used a componentwise approach where decompose the joint
posterior into smaller components and update the components in a deterministic or
random way. This approach can also be applied using other Metropolis–Hastings sam-
plers. In such a setting, we design each update in such a way that all have the same
joint posterior as their invariant distribution. Thus the combination of these updates
also forms a Markov chain with same invariant distribution12. In such a componen-
twise approach, if we combine Gibbs sampler with other Metropolis–Hastings sam-
plers, then such an algorithm is sometimes called a Metropolis–Hastings within Gibbs,
Gibbs within Metropolis–Hastings or simply a hybrid algorithm (p.211, [23]).

For our ARSV model, full conditional distribution for the log–volatility (2.17), is not
a standard distribution. For updating the volatility states, we will use random walk and
independence samplers in this and next sections. Updates for parameters will be same
as we did in Gibbs sampler (Algorithm 2.3).

12 Componentwise updating with a deterministic (random) scan will generate a transition probability which is a
convolution (mixture) of component transition probabilities. In both cases the resulting transition probability have
the correct invariant distribution. For more details see section 6.4.1 of [23] and Section 10.3.2 of [65].

18

0 50 100 150 200 250 300 350 400 450 500

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Lo
g−

re
tu

rn

Time

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

Time

S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 2.2: Simulated Log–Returns and Standard Deviations

Random walk sampler assumes a random walk model to derive the proposal distribu-
tion. For instance, for sampling ht in our model, we propose h(can)

t = h
(g−1)
t + ζ where

ζ has some distribution f . By this chain explores locally the neighborhood of the
current value, h(g−1)

t . Using our previous notation, the proposal distribution becomes
q(h

(can)
t |h(g−1)

t) = f(h
(can)
t − h(g−1)

t).

Typically, the distribution f is chosen such that it is symmetric around zero, i.e. f(x) =
f(−x) [55]. Most common choices are uniform, normal and student t distributions.
When f is symmetric around zero, acceptance probability becomes:

α(h
(g−1)
t , h

(can)
t) = min

{
1,
p(h

(can)
t)f(h

(g−1)
t − h(can)

t)

p(h
(g−1)
t)f(h

(can)
t − h(g−1)

t)

}

= min

{
1,
p(h

(can)
t)

p(h
(g−1)
t)

}

We can use a random walk sampler for sampling volatility in our ARSV model by
replacing the lines 3 to 10 in Algorithm 2.3 with the following Algorithm 2.4. We used
a Normal proposal with variance ϑ2.

In designing a random walk sampler, the dispersion (e.g. variance) of the proposal
f(·) has a critical role. Large variance values gives a better exploration of state space
but may yield very small acceptance rates. On the other hand, small values may give
high acceptance rates but the chain can only move points close to the current values.
Therefore there is a trade–off between exploration of parameter space and average ac-
ceptance rate for random walk sampler. This means that trying to maximize acceptance
probability is not an optimal solution[65, p. 295] and a balance between these should
be aimed. Regarding the optimal acceptance rates, a value around 0.25 is suggested in
the literature for some specific cases and widely employed as a rule of thumb. With

19

2000 4000 6000 8000 10000

−6

−4

−2

Trace Plot for α

2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

Trace Plot for β

2000 4000 6000 8000 10000

0.02
0.04
0.06
0.08
0.1

0.12

Trace Plot for γ2

0 20 40 60 80 100
0

0.5

1
ACF for α (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for β (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for γ2(After Burn−in)

−1.5 −1 −0.5 0
0

200

400
Posterior Distribution of α

0.8 0.85 0.9 0.95 1
0

200

400
Posterior Distribution of β

0 0.02 0.04 0.06 0.08 0.1
0

200

400
Posterior Distribution of γ2

0 2000 4000 6000 8000 10000
−10

−8

−6

−4
Trace Plot of h for t = 250

Iteration

h

100 200 300 400 500
0

0.02

0.04

0.06
True and Estimated Standard Deviation

Time
0 20 40 60 80 100

0

0.5

1
ACF Plots for h(After Burn−in)

Lag

Figure 2.3: Estimation Results for Gibbs Sampler

this rule of thumb, Algorithm 2.4 can be fine tuned by changing the variance ϑ2 to
achieve an optimal average acceptance rate. Indeed, our tuning exercise also yields an
optimal acceptance value around 0.25 as seen in Example 2.2 below.

Example 2.2. We performed 20 estimation studies with 20 different variance values
and chain length of G = 1000. For each estimation step, we calculate average accep-
tance probability, root mean squared error (RMSE) as an overall measure of fit and
average autocorrelation for ht up to lag 100 over all t = 1, 2, . . . , T . Our RMSE is

defined as RMSE =

√
1
T

∑T
t=1(
√
eĥt −

√
eht)2, where ĥt is our Bayes estimate. We

used ϑ2 = 10−i, i = −10, 9, . . . , 8, 9 as the variance. The results are shown in Fig-
ure 2.4. As seen from the graphs both average autocorrelations (an indicator for how
good the mixing is) and RMSE (main indicator for the goodness of fit) are minimized
when we have an average acceptance probability around 0.2. In our study, the optimum
value for variance is found as ϑ2 = 1 with average acceptance probability of 25.44%,
RMSE = 0.0045 and average autocorrelation of 0.2626.

Example 2.3. We implement Algorithm 2.4 with 30000 iterations. We use the same

20

Algorithm 2.4 MCMC Algorithm with Random Walk Sampler for Volatility (Replaces
lines 3 to 10 in Algorithm 2.3)

1: for t = 1 to T do
2: Sample h(can)

t ∼ N(h
(g−1)
t , ϑ2)

3: Accept h(g)
t = h

(can)
t with probability:

α(h
(g−1)
t , h

(can)
t) = min

{
1,
N(Yt|µ, eh

(can)
t)N(h

(can)
t |mt, Ct)

N(Yt|µ, eh
(g−1)
t)N(h

(g−1)
t |mt, Ct)

}

Otherwise set h(g)
t = h

(g−1)
t

4: end for

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5
x 10

−3

Average Acceptance Probability

R
M

S
E

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Acceptance Probability

A
ve

ra
ge

 A
ut

oc
or

re
la

tio
n

Figure 2.4: Fine Tuning for Random–Walk Sampler. Points show average autocorre-
lations and RMSE versus average acceptance probability. Lines represent fitted third
degree polynomials.

values (log–returns, hyperparameters, etc.) used in Example 2.1. Burn–in period is
equal to the half of the chain length. Estimated posterior quantities related to parame-
ters are given in Table 2.2. Although credible intervals include the true values, when
compared to Gibbs sampler (Table 2.1), the results are worse (i.e. higher credible in-
tervals with point estimates more distant from true values) in random–walk sampler.

Reasons for this can be seen from the more detailed graphs given in Figure 2.5. As
seen from the graphs, there is significant autocorrelation problem in this algorithm.
The autocorrelations for the log–volatility (shown in the third graph in bottom line)
are quite high and decaying very slowly. In random walk sampler, proposed value
for h(g)

t depends on its own current value h(g−1)
t which is a source of autocorrelation.

Additionally in random walk sampler there is significant probability that the chain
does not move. Because of these two differences, our hybrid Gibbs–random walk
algorithm produces higher correlations for volatility than the pure Gibbs algorithm
(see Figure 2.3 for a comparison). And this increased autocorrelations in volatility

21

Table 2.2: Parameter Estimates from Hybrid Gibbs–Random Walk Algorithm

α β γ2

True Values (MLE) -0.4070 0.9495 0.0405
Mean -0.5766 0.9290 0.0452
Mode -0.5316 0.9346 0.0416
Standard Deviation 0.2459 0.0305 0.0174
5th Percentile -1.0644 0.8686 0.0250
95th Percentile -0.2588 0.9681 0.0787

chains are transmitted to the parameter chains as well (shown in second line). These
also support our previous comment that parameter uncertainty has relatively smaller
effects on volatility estimation, but uncertainty in volatility may significantly worsen
parameter estimates.

2.3.4 Independence (within Gibbs) Algorithm

Independence sampler [74] is a Metropolis–Hastings algorithm in which proposal dis-
tribution does not depend on the current state of the chain. For instance if we are using
independence sampler for ht, then the proposal will have the form q(h

(g)
t |h

(g−1)
t) =

f(h
(g)
t) for some density function f . Then the Metropolis–Hastings acceptance proba-

bility reduces to:

α(h
(g−1)
t , h

(g)
t) = min

{
1,

π(h
(g)
t)q(h

(g−1)
t |h(g)

t)

π(h
(g−1)
t)q(h

(g)
t |h

(g−1)
t)

}

= min

{
1,
π(h

(g)
t)f(h

(g−1)
t)

π(h
(g−1)
t)f(h

(g)
t)

}

= min

{
1,

w(h
(g)
t)

w(h
(g−1)
t)

}
(2.19)

where π(ht) = p(ht|ht−1, ht+1,Θ, Yt) is the target distribution given in (2.17) and
w(ht) = π(ht)/f(ht) is the ratio of target and proposal densities.

In independence sampler, proposal distribution f should be a good approximation to
the target distribution and additionally proposal should have fatter tails than the target
distribution. These conditions ensure that the ratio w(ht) is bounded and fairly stable
[74]. In independence sampler, the convergence rate is positively related with the
expected acceptance probability. Therefore, typically, once the functional form of the
proposal is determined, free parameters of it are tuned to achieve the highest average
acceptance rate.

Now we will use a hybrid Gibbs–independence algorithm for our model. First remem-

22

0.5 1 1.5 2 2.5 3

x 10
4

−8

−6

−4

−2

0
Trace Plot for α

0.5 1 1.5 2 2.5 3

x 10
4

0

0.2
0.4

0.6

0.8

Trace Plot for β

0.5 1 1.5 2 2.5 3

x 10
4

0.1

0.2

0.3

Trace Plot for γ2

0 20 40 60 80 100
0

0.5

1
ACF for α (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for β (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for γ2(After Burn−in)

−2 −1.5 −1 −0.5 0
0

200

400
Posterior Distribution of α

0.75 0.8 0.85 0.9 0.95 1
0

200

400
Posterior Distribution of β

0 0.05 0.1 0.15 0.2
0

200

400

600
Posterior Distribution of γ2

0 1 2 3

x 10
4

−10

−8

−6
Trace Plot of h for t = 250

Iteration

h

100 200 300 400 500
0

0.05

0.1
True and Estimated Standard Deviation

Time
0 20 40 60 80 100

0

0.5

1
ACF Plots for h(After Burn−in)

Lag

Figure 2.5: Estimation Results for Hybrid Gibbs–Random Walk Algorithm

ber that the full conditional for the log–volatility has the form:

p(ht|ht−1, ht+1,Θ, Yt) ∝ N(Yt|µ, eht)N(ht|mt, Ct)

The second component is Gaussian in ht. However the first component is non–standard
in ht. The logarithm of the first component is:

logN(Yt|µ, eht) = constant− 1

2
ht −

(Yt − µ)2

2
exp(−ht)

[45] explored the fact that exp(−ht) is a convex function and can be bounded by
a function linear in ht. Using the Taylor expansion of exp(−ht) around mt, i.e.
exp(−ht) ≈ exp(−mt) − (ht − mt) exp(−mt), we can obtain an upper bound for
this component:

logN(Yt|µ, eht) ≤ constant− 1

2
ht −

(Yt − µ)2

2
[exp(−mt)− (ht −mt) exp(−mt)]

= constant* + log g(ht)

23

where g(ht) = exp
{
−1

2
ht [1− (Yt − µ)2 exp(−mt)]

}
. Now we can use the following

density as our proposal density:

q(ht) ∝ g(ht)N(ht|mt, Ct)

∝ N(ht|m′t, Ct) (2.20)

where m′t = mt + 0.5Ct [(Yt − µ)2 exp(−mt)− 1] . This proposal density closely
approximates the target density and because of convexity the ratio of (unnormalized)
target to proposal is bounded, i.e. p(ht)/q(ht) ≤ c for some c. We can use this
independence sampler for sampling volatility in our ARSV model by replacing the
lines 3 to 10 in Algorithm 2.3 with the following Algorithm 2.5.

Algorithm 2.5 MCMC Algorithm with Independence Sampler for Volatility (Replaces
lines 3 to 10 in Algorithm 2.3)

1: for t = 1 to T do
2: Sample h(can)

t ∼ N(m′t, Ct)

3: Accept h(g)
t = h

(can)
t with probability:

α(h
(g−1)
t , h

(can)
t) = min

{
1,
N(Yt|µ, exp(h

(can)
t))N(h

(can)
t |mt, Ct)N(h

(g−1)
t |m′t, Ct)

N(Yt|µ, exp(h
(g−1)
t))N(h

(g−1)
t |mt, Ct)N(h

(can)
t |m′t, Ct)

}

Otherwise set h(g)
t = h

(g−1)
t

4: end for

Example 2.4. We implement Algorithm 2.5 with 30000 iterations. We use the same
values (log–returns, hyperparameters, etc.) used in Example 2.1 and burn–in period is
equal to the half of the chain length. Estimated posterior quantities related to param-
eters are given in Table 2.3 and Figure 2.6 includes detailed graphs. The results are
similar to random walk sampler, i.e. when compared to a pure Gibbs sampler these
hybrid algorithms both have poorer estimates. The autocorrelation problem for the
log–volatility also exists with the independence sampler. Average acceptance rate for
this algorithm is %99.62. This is quite a high rate and suggests that the chain converges
to the invariant distribution very fast.

Table 2.3: Parameter Estimates from Hybrid Gibbs–Independence Algorithm

α β γ2

True Values (MLE) -0.4070 0.9495 0.0405
Mean -0.5415 0.9333 0.0436
Mode -0.5049 0.9377 0.0391
Standard Deviation 0.2358 0.0290 0.0204
5th Percentile -0.9741 0.8799 0.0201
95th Percentile -0.2277 0.9721 0.0835

In Algorithm 2.5, we follow a model–specific approach in which given the specific
form of target distribution we design an efficient proposal. Although it is possible to

24

0.5 1 1.5 2 2.5 3

x 10
4

−6

−4

−2

Trace Plot for α

0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

Trace Plot for β

0.5 1 1.5 2 2.5 3

x 10
4

0.05

0.1

0.15

Trace Plot for γ2

0 20 40 60 80 100
0

0.5

1
ACF for α (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for β (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for γ2(After Burn−in)

−2.5 −2 −1.5 −1 −0.5 0
0

200

400

600
Posterior Distribution of α

0.7 0.8 0.9 1
0

200

400

600
Posterior Distribution of β

0 0.05 0.1 0.15 0.2
0

200

400

600
Posterior Distribution of γ2

0 1 2 3

x 10
4

−10

−8

−6

−4
Trace Plot of h for t = 250

Iteration

h

100 200 300 400 500
0

0.02

0.04

0.06
True and Estimated Standard Deviation

Time
0 20 40 60 80 100

0

0.5

1
ACF Plots for h(After Burn−in)

Lag

Figure 2.6: Estimation Results for Hybrid Gibbs–Independence Algorithm

find model–specific efficient proposals, there are also certain generic algorithms for
finding such proposals. Two popular methods for this are Adaptive Rejection Metropo-
lis Sampling (ARMS) (see [27]) and Griddy Gibbs Method (see [63]).

2.3.5 Block Sampling

As discussed in previous sections, blocking highly correlated variables and updating
them jointly may significantly improve the MCMC algorithms [29, p. 12]. In previous
algorithms we sequentially update each log–volatility ht one at a time. Since the joint
distribution p(X|Y,Θ) = p(h0, . . . , hT |Y,Θ) is a non–standard one, it is impossible
to directly sample from it. For this, [45] utilized an importance sampling idea using a
Gaussian approximation. They first transform the observation equation given in (2.3)
(assuming µ = 0) into:

log Y 2
t = ht + log ε2t (2.21)

25

where ε2t has a χ2
1 distribution and E[log ε2t] ≈ −1.2704 and V [log ε2t] = π/2 ≈ 4.935.

They approximate the disturbance term, log ε2t , with a seven component Gaussian mix-
ture. The approximating model is given by:

log Y 2
t = ht + zt (2.22)

f(zt) =
7∑
i=1

qiN(zt|mi − 1.2704, v2
i) (2.23)

where qi are the component probabilities, mi − 1.2704 are the component means and
v2
i are the component variances. They find the optimum values for the constants
{qi,mi, vi} that yields the best approximation to the exact density. Note that the mix-
ture density can also be written in terms of a component indicator variable st such
that:

zt|(st = i) ∼ N(mi − 1.2704, v2
i) with P [st = i] = qi (2.24)

With this approximation, new observation equation (2.22) and the original state equa-
tion (2.4) now define a conditionally linear Gaussian system. For such systems poste-
rior densities can be analytically calculated using Kalman filter recursions and all latent
states can be jointly sampled using Forward Filtering Backward Sampling (FFBS) [22]
algorithm13.

This mixture proposal gives a very accurate approximation to the true density. And it
is possible to correct the remaining small error by using an importance weighting. For
this, first note that the target density is given by:

p(hT |Y,Θ) = N(h0|m0, C0)
T∏
t=1

N(ht|α + βht−1, γ
2)N(yt|0, eht)

while we are sampling from the proposal density given by:

q(hT |Y,Θ) = N(h0|m0, C0)
T∏
t=1

N(ht|α + βht−1, γ
2)

[
7∑
i=1

qiN(log y2
t |ht +mi − 1.2704, v2

i)

]
Therefore the importance weights become:

p(hT |Y,Θ)

q(hT |Y,Θ)
=

T∏
t=1

N(yt|0, eht)∑7
i=1 qiN(log y2

t |ht +mi − 1.2704, v2
i)

Example 2.5. We implement the block sampling algorithm using the FFBS with 30000
iterations. We use the same values (log–returns, hyperparameters, etc.) used in Exam-
ple 2.1 and a burn–in period that is equal to the half of the chain length. Estimation
results are given in Figure 2.7.

Although the point estimates for parameters and latent volatilities are similar with
previous algorithms, block sampling approach yield very low autocorrelations for the

13 More information about Kalman filter, FFBS and other issues related to linear Gaussian systems can be found
in [75].

26

0.5 1 1.5 2 2.5 3

x 10
4

−4

−2

0
Trace Plot for α

0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

Trace Plot for β

0.5 1 1.5 2 2.5 3

x 10
4

0.05

0.1

0.15

Trace Plot for γ2

0 20 40 60 80 100
0

0.5

1
ACF for α (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for β (After Burn−in)

0 20 40 60 80 100
0

0.5

1
ACF for γ2(After Burn−in)

−3 −2 −1 0 1
0

200

400

600
Posterior Distribution of α

0.7 0.8 0.9 1
0

200

400

600
Posterior Distribution of β

0 0.05 0.1 0.15 0.2
0

200

400

600
Posterior Distribution of γ2

0 1 2 3

x 10
4

−10

−5

0

5
Trace Plot of h for t = 250

Iteration

h

100 200 300 400 500
0

0.02

0.04

0.06
True and Estimated Standard Deviation

Time
0 20 40 60 80 100

0

0.5

1
ACF Plots for h(After Burn−in)

Lag

Figure 2.7: Estimation Results for Block Sampling Algorithm

chains. The autocorrelations in volatility chains quickly converge to zero within first
ten lag and autocorrelations in parameter chains are smaller than what we obtained
in previous algorithms. This lower autocorrelation implies that we can obtain a low
estimator variance from the block sampling MCMC algorithm.

27

28

CHAPTER 3

PARTICLE FILTERING

In previous chapter, we introduced MCMC methods for inferring both latent states
and parameters for a state–space model. MCMC algorithms approximate the joint
posterior p(X,Θ|Y) with Monte Carlo samples. Now we will introduce a distinction
between off-line (static) analysis and on–line (dynamic) analysis. In off–line analysis,
all the data until a certain time T is observed and we estimate the parameters, Θ, and
all latent variables until time T , X1, . . . , XT . Thus the main objective is to estimate
the final time joint posterior p(x1:T ,Θ|y1:T). In this setting, obtaining the marginal
posterior distributions for the latent variables, i.e. p(xk|Θ, y1:T), k = 1, . . . , T , is called
the smoothing problem. This is a static problem that will be solved once.

On the other hand, there is also a dynamic version of this problem called filtering.
In filtering problem, as we sequentially observe data, y1, . . . , yt−1, yt, . . ., we want to
infer sequence of posterior distributions for latent variables. In this case, the target
distributions {p(x1:t|Θ, y1:t)}Tt=1 are called filtering distributions.

In this chapter, for performing filtering estimates, we introduce the particle filters
(a.k.a. sequential Monte Carlo methods)1. Throughout the chapter, we assume that
the parameters of the model, Θ, are known. We begin the chapter by introducing a new
notation and setting up the general framework. Afterwards we introduce sequential
importance sampling and then sequential importance sampling with resampling as the
simplest particle filtering algorithm. Then we consider the most popular extension to
the basic filter, namely the auxiliary particle filter.

We will now use the following new notation: Let µ(x1) denote the distribution of the
initial state, f(xt|xt−1,Θ) denote the state evolution density and g(yt|xt,Θ) denote the
observation density. In our setting f(·) and g(·) are time–homogeneous but in more
general cases they can be time–dependent. Parameters of the model are assumed to
be known. Thus we will drop Θ from the notation. Now, given a fixed time t, the
following distributions can be defined:

Joint Distribution: p(x1:t, y1:t) = µ(x1)
t∏

k=2

f(xk|xk−1)
t∏

k=1

g(yk|xk) (3.1)

1 There is a vast literature on particle filtering methods. For a textbook treatment see [15] and see [18] for a
complete recent survey.

29

Prior: p(x1:t) = µ(x1)
t∏

k=2

f(xk|xk−1) (3.2)

Likelihood: p(y1:t|x1:t) =
t∏

k=1

g(yk|xk) (3.3)

Marginal Likelihood: p(y1:t) =

∫
p(x1:t, y1:t)dx1:t (3.4)

Posterior: p(x1:t|y1:t) =
p(x1:t, y1:t)

p(y1:t)
=
p(x1:t)p(y1:t|x1:t)∫
p(x1:t, y1:t)dx1:t

(3.5)

One Step Forecast: p(yt+1|y1:t) =

∫
p(x1:t|y1:t)f(xt+1|xt)g(yt+1|xt+1)dx1:t+1

(3.6)

Our analysis will be sequential for each time t = 1, 2, . . . , T . Therefore we need
updating rules (from t − 1 to t) for these densities. Using simple probability rules
(especially Bayes rule) we can define updating equations as follows:

• Joint distribution of observations and states:

p(x1:t, y1:t) = p(x1:t−1, y1:t−1)f(xt|xt−1)g(yt|xt)

• Likelihood:

p(y1:t|x1:t) = p(y1:t−1|x1:t−1)
f(xt|xt−1)g(yt|xt)

p(xt|x1:t−1)

∝ p(y1:t−1|x1:t−1)f(xt|xt−1)g(yt|xt)

• Marginal Likelihood:

p(y1:t) = p(y1:t−1)

∫
p(x1:t−1|y1:t−1)f(xt|xt−1)g(yt|xt)dx1:t

• Filtering Recursions:

Posterior at t− 1: p(x1:t−1|y1:t−1) (given)
⇒Prior at t: p(x1:t|y1:t−1) = p(x1:t−1|y1:t−1)f(xt|xt−1)

⇒Forecast at t: p(yt|y1:t−1) =

∫
p(x1:t−1|y1:t−1)f(xt|xt−1)g(yt|xt)dx1:t

=

∫
p(x1:t|y1:t−1)g(yt|xt)dx1:t

⇒Posterior at t: p(x1:t|y1:t) =
p(x1:t|y1:t−1)g(yt|xt)

p(yt|y1:t−1)

∝ p(x1:t|y1:t−1)︸ ︷︷ ︸
Prior

g(yt|xt)︸ ︷︷ ︸
Likelihood

30

= p(x1:t−1|y1:t−1)
f(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)

∝ p(x1:t−1|y1:t−1)f(xt|xt−1)g(yt|xt)

In filtering problem, we want to (sequentially for each t) sample from the filtering
density p(x1:t|y1:t) given as:

p(x1:t|y1:t) =
p(x1:t, y1:t)

p(y1:t)

∝ p(x1:t, y1:t) = µ(x1)
t∏

k=2

f(xk|xk−1)
t∏

k=1

g(yk|xk)

which is typically complex, high–dimensional and does not correspond to a standard
distribution. Furthermore target density has an increasing dimension with time t.
Therefore direct sampling from this density is typically impossible. For these type
of problems, sequential importance sampling (see Chapter 14 in [65]) is proposed in
the literature.

3.1 Sequential Importance Sampling (SIS)

Assume that, we want to estimate the following integral:

I = Eh[ϕ(Z)] =

∫
ϕ(z)h(z)dz

for a function ϕ(·) and a density h(·). If we can sample from h(·), then we can approx-
imate the integral using Monte Carlo samples. However, if it is not possible to sample
from the target density h(·), then we can use an importance sampling approach. The
method is based on the following identity:

I =

∫
ϕ(z)h(z)dz =

∫
ϕ(z)

h(z)

h′(z)
h′(z)dz = Eh′ [ϕ(Z)

h(Z)

h′(Z)
]

where h′(·) is the proposal density with supp(h′) ⊃ supp(h · ϕ). Then the estimator
is given by Î = 1

N

∑N
i=1 ϕ(zi)

h(zi)
h′(zi)

where zi ∼ h′. Here w(Z) = h(Z)
h′(Z)

is called the
importance weight function.

Now assume a sequential filtering framework. At each time t, let pt(x1:t) = p(x1:t|y1:t)
denote our target density, γt(x1:t) = p(x1:t, y1:t) denote its unnormalized version and
qt(x1:t) denote our proposal density for the importance sampling given as:

qt(x1:t) = qt−1(x1:t−1)qt(xt|x1:t−1) (3.7)

= q1(x1)
t∏

k=2

qk(xk|x1:k−1) (3.8)

31

where each qt(xt|x1:t−1) is such that we can easily sample from it.

Given this structure, the importance weights at any time t, wt(x1:t), is given by:

wt(x1:t) =
γt(x1:t)

qt(x1:t)

=
γt−1(x1:t−1)

qt−1(x1:t−1)

γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)

which can be written as:

wt(x1:t) = wt−1(x1:t−1)αt(x1:t)

= w1(x1)
t∏

k=2

αk(x1:k)

where the incremental importance weight function αt(x1:t) is given by:

αt(x1:t) =
γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)
(3.9)

Steps of SIS algorithm is given in Algorithm 3.1.

Algorithm 3.1 SIS Algorithm
1: for t = 1, for each i = 1, . . . , N do
2: Sample Xi

1 ∼ q1(x1)
3: Compute unnormalized weights w1(Xi

1)

4: Normalize the weights, i.e. W i
1 =

w1(Xi1)∑N
j=1 w1(Xj1)

5: end for
6: for t ≥ 2, for each i = 1, . . . , N do
7: Sample Xi

t ∼ qt(xt|Xi
1:t−1)

8: Compute unnormalized weights wt(Xi
1:t) = wt−1(Xi

1:t−1)αt(X
i
1:t)

9: Normalize the weights, i.e. W i
t =

wt(X
i
1:t)∑N

j=1 wt(X
j
1:t)

10: end for

For each time t, SIS algorithm generates N weighted samples for the full path of the
states up to t, {X i

1:t}
N
i=1, with weights {W i

t }
N
i=1. Using these, we can approximate the

target density, pt(x1:t) with:

p̂t(x1:t) =
N∑
i=1

W i
t δXi

1:t
(x1:t)

and estimate its normalizing constant Zt := pt(x1:t)/γt(x1:t) with:

Ẑt =
1

N

N∑
i=1

wt(X
i
1:t)

32

And for expectation of any test function ϕt given by:

It(ϕt) := Ept [ϕt(x1:t)] =

∫
ϕt(x1:t)pt(x1:t)dx1:t

we have the following estimate:

Ît(ϕt) =

∫
ϕt(x1:t)p̂t(x1:t)dx1:t =

N∑
i=1

W i
tϕt(X

i
1:t)

SIS algorithm is a generic one that can be used in sequential problems. However as the
dimension of the target distribution increases, SIS algorithm gives increasingly inaccu-
rate estimation results. Indeed variance of importance weights and thus the estimator
variance increase (typically exponentially) with t2.

3.2 Sequential Importance Sampling and Resampling (SISR)

As we discuss in previous section, SIS algorithm has weight degeneracy problem. To
avoid this problem, we need to an additional resampling step. In this SISR setting, at
each t, after generating the particles {X i

1:t}
N
i=1 with corresponding weights {W i

t }
N
i=1,

we resample the particles according to these weights with replacement. This step en-
sures that low weight particles are eliminated and high weight particles survive and are
multiplied.

After the resampling step, the new particles
{
X
i

1:t

}N
i=1

have equal weights W
i

t =

1/N for all i = 1, . . . , N . However resampling step introduces a trade–off: with
resampling, we improve the estimates for the future time marginals, but at the same
time increase the immediate variance.

Algorithm 3.2 shows the steps of SISR algorithm. In SISR, since we reset the system
at each resampling step, the unnormalized weights are always equal to the incremen-
tal importance weights, αt(X i

1:t). This prevents weight accumulation over time and
therefore avoid weight degeneracy. For the resampling step, different resampling algo-
rithms are proposed in the literature. These include multinomial, systematic, residual
and stratified resampling3.

Deciding on the frequency of resampling step is also another important issue. Since
resampling step some additional noise to the system, it is not optimal to resample at
each iteration. For this problem, [51] proposed using a measure called Effective Sample
Size (ESS). ESS is based on the ratio of estimator variances for an importance sampling
as opposed to i.i.d. sampling. The ratio is (approximately) equal to:

1

1 + V ar [w(X)]

2 See [18] for details of such problem.
3 For details of resampling schemes, see [18],[14], [50] and [46].

33

Algorithm 3.2 SISR Algorithm
1: for t = 1, for each i = 1, . . . , N do
2: Sample Xi

1 ∼ q1(x1)
3: Compute unnormalized weights w1(Xi

1)
4: Normalize the weights, i.e. W i

1 ∝ w1(Xi
1)

5: Resample
{
Xi

1,W
i
1

}
to obtain N equally-weighted particles

{
X
i

1,
1
N

}
6: end for
7: for t ≥ 2, for each i = 1, . . . , N do
8: Sample Xi

t ∼ qt(xt|X
i

1:t−1) and set Xi
1:t ← (X

i

1:t−1, X
i
t)

9: Compute unnormalized weights wt(Xi
1:t) = αt(X

i
1:t)

10: Normalize the weights, i.e. W i
t ∝ wt(Xi

1:t)

11: Resample
{
Xi

1:t,W
i
t

}
to obtain N equally-weighted particles

{
X
i

1:t,
1
N

}
12: end for

where w(X) is the importance weights. Thus, using sampled particles and their corre-
sponding weights, ESS can be estimated as follows:

ESS =
1∑N

i=1(W i
t)

2
(3.10)

Typically, resampling is done if ESS is smaller than a threshold, which is generally
taken as N/2.

Example 3.1. For ARSV model, we simulate 100 data points with parameters µ =
0, α = −0.4, β = 0.9 and γ = 1. The prior for states, p(x1:t) as given in (3.2),
is used as the proposal density. With this choice, incremental importance weights
becomes proportional to the likelihood, αt(x1:t) ∝ g(yt|xt). We used N = 5000
particles. For resampling, we used multinomial and systematic resampling schemes
and we resample only ifESS < N/2. The results obtained with systematic resampling
are shown in Figure 3.1. We obtain very similar results for multinomial resampling as
well. Contrary to the SIS algorithm, there is no weight degeneracy problem. The
improvement over SIS algorithm as captured by ESS is shown in the last graph.

3.3 Optimal Importance Distribution and Adapted Filtering

In previous examples, we used the prior distribution for the states, p(x1:t) as our im-
portance distribution, qt(x1:t) = p(x1:t), i.e. q1(x1) = µ(x1) and qt(xt|x1:t−1) =
f(xt|xt−1) for t > 1. However we can also choose any other distribution (that meets
certain criteria). Choosing an importance distribution is the most important step in
a SISR framework and optimization criterion for this is choosing a proposal density
such that, given x1:t−1 and y1:t, it minimizes the variance of the importance weights
(see [17]):.

Proposition 3.1. For SISR algorithm, the optimal importance proposal (3.8) that min-
imizes the variance of the importance weights at time t, given x1:t−1 and y1:t is given
by qt(xt|x1:t−1) = p(xt|xt−1, yt).

34

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

2

Time

SISR Filtering Estimates

True
Filter Mean
+/− StDev

0 2 4 6

x 10
−4

0

200

400

600

800

1000

1200
t=2

Normalized Weights

P
ar

tic
le

 C
ou

nt

0 0.5 1 1.5

x 10
−3

0

500

1000

1500

2000

2500
t=50

Normalized Weights

P
ar

tic
le

 C
ou

nt

0 50 100
0

1000

2000

3000

4000

5000
ESS

Time

SIS
SISR

Figure 3.1: SISR Filtering Results. First graph shows true and estimated log–
volatilities. Next two graphs show the histograms for normalized weights for different
time periods. The last graph shows the ESS for SIS and SISR.

Proof. In SISR algorithm, given x1:t−1 and y1:t, new particles are sampled from qt(xt|x1:t−1)
and weighted proportional to the incremental importance weights αt(x1:t). Therefore
we want to minimize the conditional variance of these incremental weights (given
x1:t−1 and y1:t) calculated with respect to qt.

V arqt [αt(x1:t)] = V arqt

[
γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)

]
= Eqt

[
γ2
t (x1:t)

γ2
t−1(x1:t−1)q2

t (xt|x1:t−1)

]
−
{
Eqt

[
γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)

]}2

Second term does not depend on qt. Therefore we only need to minimize the first term.
From Jensen’s inequality:

Eqt

[
γ2
t (x1:t)

γ2
t−1(x1:t−1)q2

t (xt|x1:t−1)

]
≥
{
Eqt

[
γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)

]}2

=

{∫
γt(x1:t)

γt−1(x1:t−1)
dxt

}2

which provides a lower bound independent of qt. This lower bound is attained by

35

choosing:

qt(xt|x1:t−1) =
γt(x1:t)

γt−1(x1:t−1)
=

γt(x1:t)∫
γt(x1:t)dxt

=
p(x1:t, y1:t)∫
p(x1:t, y1:t)dxt

=
p(x1:t, y1:t)

p(x1:t−1, y1:t)
= p(xt|x1:t−1, y1:t)

= p(xt|xt−1, yt) =
g(yt|xt)f(xt|xt−1)

p(yt|xt−1)
∝ g(yt|xt)f(xt|xt−1) (3.11)

where the last line uses the Markov assumption for the states and conditional inde-
pendence of observations. If we can use this optimal proposal, then the conditional
variance of the incremental importance weights will be zero, which means equal incre-
mental weights for all particles.

Except for only limited number of cases, it is generally not possible to sample from
this optimal proposal, p(xt|xt−1, yt). However, we should always aim to approximate
it4 by choosing a proposal as close to the optimal one as possible. Furthermore, if
we use the optimal proposal, then incremental weights become proportional to the
predictive likelihood, i.e. αt(x1:t) = p(yt|xt−1) =

∫
f(xt|xt−1)g(yt|xt)dxt. In some

cases, evaluating this density analytically can also be not possible.

When compared to our initial proposal distribution, optimal proposal has some impor-
tant distinctions. First, contrary to our original proposal, optimal proposal uses new
observation yt when generating new particles. This allows us to generate new parti-
cles around regions of high probability mass. Such a filter is called adapted filter (see
[60]). Second, the new weights wt(x1:t) = αt(x1:t) do not depend on sampled states
xt. This allows us to perform a resample–then–sample filtering and can improve the
filter’s approximation since it provides a greater number of distinct particles for the
approximation. This also allows obtaining i.i.d. samples. [60] call particle filters that
generates i.i.d. samples from the target and therefore does not need resampling after
sampling new states, as fully adapted filters.

The optimal proposal for ARSV model is:

p(xt|xt−1, yt) ∝ f(xt|xt−1)g(yt|xt) = N(xt|α + βxt−1, γ
2)N(yt|0, ext) (3.12)

This density is not a standard one and thus it is not possible to sample from it using
standard methods. Since it is log–concave, we can implement a rejection algorithm for
sampling from it. However, incremental importance weights should also be calculated.
They are given as:

αt(X
i
t−1) = p(yt|X i

t−1) =

∫
f(xt|X i

t−1)g(yt|xt)dxt

=

∫
N(xt|α + βX i

t−1, γ
2)N(yt|0, ext)dxt (3.13)

which cannot be evaluated analytically. Therefore, for ARSV model, we cannot im-
plement a fully adaptive filter.

4 For example, using Extended or Unscented Kalman Filters or using local approximation techniques, as
suggested in the literature ([16, 18]).

36

3.4 Auxiliary Particle Filtering

As we discussed previously, typically, we cannot sample from the optimal proposal
distribution and/or calculate the importance weights. Despite this, it is generally ben-
eficial to use current observation yt in both resampling and propagation steps. Pitt and
Shephard utilizes this idea in their Auxiliary particle filter (APF) [60]. Contrary to
the original bootstrap filter which is a sample–resample filter, APF is an example of
resample–sample filter. In APF, we use p̂(yt|xt−1), which is an approximation to the
true predictive likelihood p(yt|xt−1) =

∫
f(xt|xt−1)g(yt|xt)dxt, for reweighting old

particles and propagate new ones by using q(xt|xt−1), which is an approximation to
the optimal proposal, p(xt|yt, xt−1) ∝ f(xt|xt−1)g(yt|xt). APF algorithm5 is given in
Algorithm 3.3 6

Algorithm 3.3 APF Algorithm
1: for t = 1, for each i = 1, . . . , N do
2: Sample Xi

1 ∼ q1(x1)

3: Weight the particles W i
1 ∝

g(y1|Xi1)µ(Xi1)

q1(Xi1)

4: end for
5: for t ≥ 2, for each i = 1, . . . , N do
6: Reweight old particles W̃ i

t−1 ∝W i
t−1 × p̂(yt|Xi

t−1)

7: Resample
{
Xi

1:t−1, W̃
i
t−1

}
to obtain N equally-weighted particles

{
X̃i

1:t−1,
1
N

}
8: Sample Xi

t ∼ qt(xt|X̃i
t−1) and set Xi

1:t ← (X̃i
1:t−1, X

i
t)

9: Weight new particles W i
t ∝

g(yt|Xit)f(Xit |X
i
t−1)

p̂(yt|Xit−1)qt(Xit |Xit−1)

10: end for

Johansen and Doucet [43] showed that the APF algorithm is just a special case of SISR
algorithm with a specific target distribution. With this representation, in order to ob-
tain an efficient APF algorithm, we should use good approximations q(xt|xt−1) and
p̂(yt|xt−1) to optimal proposal and predictive likelihood, respectively. Additionally, in
order to ensure a finite estimator variance, we should select p̂(yt|xt−1)qt(xt|xt−1) with
thicker tails than g(yt|xt)f(xt|xt−1) (with respect to xt−1:t), e.g. selecting p̂(yt|xt−1)
with thicker tails than p(yt|xt−1) and selecting qt(xt|xt−1) with thicker tails than p(xt|yt, xt−1).

As we discussed before, for ARSV model, we cannot implement a fully adapted filter
using optimal proposal predictive likelihood. In this section we will implement APF
algorithms for ARSV model. Five different algorithms will be compared in a simula-
tion study. For all the algorithms we use, we choose an approximation ĝ(yt|xt, xt−1)
to the true likelihood g(yt|xt) for defining the following densities:

p̂(yt|xt−1) =

∫
ĝ(yt|xt, xt−1)f(xt|xt−1)dxt (3.14)

qt(xt|xt−1) ∝ ĝ(yt|xt, xt−1)f(xt|xt−1) (3.15)

5 For more detailed particle filtering algorithms and empirical implementations, see [77].
6 The original algorithm in [60] uses a mixture of distributions argument and samples an auxiliary variable

which corresponds to the index of particles. However it is represented as a resample–then–sample filter here. This
version of the algorithm generally outperforms the original representation [61, 18].

37

and calculating the following second stage weights:

W i
t ∝

g(yt|xt)f(xt|xt−1)

ĝ(yt|xt, xt−1)f(xt|xt−1)
=

g(yt|xt)
ĝ(yt|xt, xt−1)

(3.16)

Approximation 1)

In the original APF article [60], likelihood evaluated at a certain value µt, i.e. ĝ(yt|xt, xt−1) =
g(yt|µt) is used as an approximation. µt can be chosen as the mean, mode, etc for the
density f(xt|xt−1), and thus µt is a function of xt−1 and not xt. Common choice in the
literature is the mean.

The prior mean for ARSV model is µt = α + βxt−1 and thus:

p̂(yt|xt−1) =

∫
g(yt|µt)f(xt|xt−1)dxt = g(yt|µt) = N(yt|0, exp(µt))

qt(xt|xt−1) ∝ g(yt|µt)f(xt|xt−1) ∝ f(xt|xt−1) = N(xt|µt, γ2)

where the second stage weights are given as:

W i
t ∝ exp

{
−xt − µt

2
− y2

t

2

[
e−xt − e−µt

]}

In this filter, we reweight particles using the likelihood evaluated at prior mean, and
also second stage weights depend on (in a non–linear fashion) the distance to µt, e.g. if
xt = µt then W i

t ∝ 1. This filter has an adapted reweighting step, but the propagation
is blind. Furthermore, the importance weights are not bounded, which means that for
some parameter values and sampled particles the algorithm may yield infinite weights.

Approximation 2)

ARSV model has a likelihood which is log–concave in xt. Using this, we can use
a first–order Taylor expansion of log–likelihood around prior mean, as suggested by
[60]:

log ĝ(yt|xt, µt) = log g(yt|µt) + (xt − µt)
∂ log g(yt|µt)

∂xt

ĝ(yt|xt, µt) ∝ exp

{
−xt

2
− y2

t

2
exp(−µt) [1− (xt − µt)]

}
Log–concavity7 ensures that we have (for all xt) ĝ(yt|xt, µt) ≥ g(yt|xt). This filter
yields:

p̂(yt|xt−1) ∝ exp

{
µ∗2t − µ2

t

2γ2
− y2

t

2
exp(−µt)(1 + µt)

}
where µ∗t = µt −

γ2

2

[
1− y2

t exp(−µt)
]

7 For a concave function f(x), for any x0, we have f(x) ≤ f(x0) + (x − x0)f
′(x0), where the right hand

side of the inequality is the first order Taylor series expansion of f(x) around x0.

38

qt(xt|xt−1) ∝ N(xt|µ∗t , γ2)

W i
t ∝ exp

{
−y

2
t

2

[
e−xt − e−µt(1− xt + µt)

]}

Because of log–concavity, estimator variance is bounded in this filter. Additionally
both the reweighting and propagation steps are adapted.

Approximation 3)

For ARSV model, it is also possible to use a second–order Taylor expansion of log–
likelihood around the prior mean. This choice gives a second order polynomial ap-
proximation and yields a Gaussian approximation (in xt) for the likelihood:

log ĝ(yt|xt, µt) = log g(yt|µt) + (xt − µt)
∂ log g(yt|µt)

∂xt
+

1

2
(xt − µt)2∂

2 log g(yt|µt)
∂x2

t

ĝ(yt|xt, µt) ∝ exp

{
−xt

2
− y2

t

2
exp(−µt)

[
1− (xt − µt) +

1

2
(xt − µ2

t)

]}

And thus:

A =
y2
t

2
exp(−µt), B = A+ 1/γ2

C = −0.5 + A(1 + µt) +
µt
γ2
, D = A(1 + µt) +

Aµ2
t

2
+

µ2
t

2γ2

p̂(yt|xt−1) ∝ 1√
B

exp

{
C2

2B
−D

}
qt(xt|xt−1) ∝ N

(
xt|
C

B
,

1

B

)
W i
t ∝ exp

{
y2
t

2
exp(−µt)

[
1

2
(xt − µt)2 − (xt − µt)

]}

This filter also has adapted steps both for weighting and propagation, but estimator
variance is unbounded.

Approximation 4)

We can also use a second–order Taylor expansion of log–likelihood around MLE, as
suggested by [70]. The approximation is:

log ĝ(yt|xt, µt) = log g(yt| log y2
t) + (xt − log y2

t)
∂ log g(yt| log y2

t)

∂xt

+
1

2
(xt − log y2

t)
2∂

2 log g(yt| log y2
t)

∂x2
t

ĝ(yt|xt, µt) ∝
1

yt
N
(
xt| log y2

t , 2
)

39

i.e. which is a Gaussian approximation with MLE as the and a variance of 2.

Note that this approximation is proportional to (as a density for yt) N(log y2
t |xt−1, 2).

Thus, by using Extended Kalman Filter method, we use the following linear Gaussian
system to build our proposal:

log y2
t = xt − 1 + vt, vt ∼ N(0, 2)

xt = α + βxt−1 + wt, wt ∼ N(0, γ2)

which yields:

A =
1

2
+

1

γ2
, B =

log y2
t

2
+
µt
γ2
, µ̃t =

B

A

p̂(yt|xt−1) ∝ exp

{
µ̃2
t

4
+
µ̃2
t − µ2

t

2γ2

}
qt(xt|xt−1) ∝ N

(
xt|µ̃t,

1

A

)
W i
t ∝ exp

{
−xt

2
− y2

t

2
exp(−xt) +

(xt − log y2
t)

2

4

}

This filter also has adapted steps both for weighting and propagation, but estimator
variance is unbounded.

Approximation 5)

Approximation 4 has a fixed variance of 2 and thus there is no guarantee it dominates
the likelihood for all possible values of yt. This problem can be solved by using a
more diffuse Gaussian distribution. The variance of the distribution can be set to a
larger number to increase the possibility of bounded estimator variance. In an offline
analysis it is also possible to calculate a value for σ2 large enough to ensure that the
density dominates the likelihood for all observed values of yt in the sample.

This filter yields:

A =
1

σ2
+

1

γ2
, B =

log y2
t

σ2
+
µt
γ2
, µ̃t =

B

A

p̂(yt|xt−1) ∝ exp

{
µ̃2
t

2σ2
+
µ̃2
t − µ2

t

2γ2

}
qt(xt|xt−1) ∝ N

(
xt|µ̃t,

1

A

)
W i
t ∝ exp

{
−xt

2
− y2

t

2
exp(−xt) +

(xt − log y2
t)

2

2σ2

}
Example 3.2. We implemented the aforementioned five different APF algorithms.
Since γ2 (i.e. signal–to–noise ratio) critically affects the efficiency of filters, we use
two different values, γ = 0.3 and γ = 1. We use α = −0.4, β = 0.9 and σ2 = 20 for

40

the last filter. With these parameter values, we implement 100 simulation and filtering
with a time period of T = 100 and with N = 5000 particles. Systematic resam-
pling is done if ESS is below N/2. As expected, these five filters require very similar
computational time.

For each APF algorithm, we calculate the average ESS and gross root mean squared

error defined as RMSE =
√

1
100T

∑100
m=1

∑T
t=1(X̂m

t −XTrue
t)2, where X̂m

t is the fil-
tering estimate of Xt at mth implementation. The results are shown in Table 3.1 and
selected filtering examples are given in Figure 3.2.

Table 3.1: Average ESS and Relative RMSE for Different APF Algorithms

γ = 0.3 γ = 1
Relative RMSE Average ESS Relative RMSE Average ESS

Approximation 1 1.0154 3759 1.0000 3171
Approximation 2 1.0825 3831 1783.6 3839
Approximation 3 1.8332 3599 2.1106 2208
Approximation 4 1.0162 3470 1.0196 2573
Approximation 5 1.0000 3706 1.0666 3331

So, given the values of parameters and simulated log–returns, the estimation results
suggest the following conclusions:

• In some cases we obtain better results with an unbounded weight function as
compared to a bounded weight function. Such cases may occur if, a) pro-
posal density decays fast enough that makes weight variance finite despite an
unbounded weight function, b) weight function takes bounded values for the
specific value of parameter and observed variables. However, there is always a
possibility for a filter with unbounded weight function to fail at any moment for
some other values of parameters and observations.

• For low signal–to–noise ratio (i.e. γ = 0.3), all except the third algorithm yield
similar results. For high signal–to–noise ratio (i.e. γ = 1), first and fourth
algorithms give better results and second algorithm yield extremely bad results.

• The second algorithm has a bounded weight function. However the variance
of weights increases with γ. Therefore second algorithm performs the best for
γ = 0.3, while we have a poor result for γ = 1.

• We used similar approximations in the last two algorithms and only the last
algorithm has a bounded weight function. However the results favor the fourth
algorithm over the fifth one.

• Average ESS and RMSE have not a monotonic relation. This confirms that ESS
cannot be used as a measure for estimator variance if the filter is not providing a
reasonable approximation.

• Finally, as expected, increasing the state variance γ2 yields higher RMSE values.

41

0 20 40 60 80 100
−6

−4

−2

0 20 40 60 80 100
0

5000

0 20 40 60 80 100
−6

−4

−2

0 20 40 60 80 100
0

5000

0 20 40 60 80 100
−10

−5

0

0 20 40 60 80 100
0

5000

0 20 40 60 80 100
−6

−4

−2

0 20 40 60 80 100
0

5000

0 20 40 60 80 100
−6

−4

−2

0 20 40 60 80 100
0

5000

Figure 3.2: Results for Five Different Auxiliary Particle Filters. The graphs on the left
show, the true values of latent variable (red), filtering estimate (blue) and +/- 1 standard
deviation band (green). The graphs on the right show the ESS for each APF algorithm.

42

CHAPTER 4

PARTICLE MCMC

In previous chapters, we discussed particle filtering methods to infer latent states, un-
der the assumption that model parameters are known. However in real life, we need
to estimate both the parameters and the latent states. At first sight we may think of
extending the state with the unknown parameters Zt = (Xt,Θ) and then using par-
ticle filtering to estimate the sequence of posterior distributions {p(Z1:t|y1:t)}Tt=1 by
using an initial density p(θ1)µθ1(x1) and transition density fθt(xt|xt−1)δθt−1(θt), i.e.
θt = θt−1. However this means that the parameter space would only be explored at the
initialization of the algorithm. As a result of the successive resampling steps, after a
certain time t, the approximation p̂(θ|y1:t) will only contain a single unique value for
Θ. Although some methods (e.g. resample–move algorithm) are proposed in the liter-
ature to partially solve this inevitable degeneracy problem, this is a difficult problem
and it cannot be considered to have been solved in full generality [44, 18]. For a survey
of SMC methods for parameter estimation, see [44].

On the other hand, we also discussed MCMC methods that directly aim to estimate
both the parameters and the latent states. However, the performance of the MCMC
methods critically depend on finding good proposal distributions that approximate the
posterior or, more commonly, some lower dimensional components of it. If the pro-
posal distributions explore the state space poorly and/or if highly correlated variables
are updated independently, then the resulting MCMC estimates will be poor. In the
previous chapter we also saw that, although finding good proposals for full conditional
distributions of parameters, p(Θ|X, Y), may be easier, finding good high–dimensional
proposals for full conditionals of the latent states, p(X|Θ, Y), is not an easy task.

Very recently, Particle MCMC methods are proposed by [2] that aim to use SMC meth-
ods to build efficient high–dimensional proposal distributions to be used within an
MCMC setting. To illustrate this idea, now assume an MCMC setting in which we
sequentially sample from the full conditional of parameters and latent states. Typically
sampling from p(Θ|X, Y) is easy. For p(X|Θ, Y), we can use a Metropolis–Hastings
algorithm by proposing new states from a proposal distribution1, q(X(g)|Θ(g), Y) at it-
eration g, and then accepting it with the corresponding acceptance probability. At this
stage, since the parameter values are fixed, we may think of using SMC to sample from
p̂(X|Θ, Y) which can be an efficient approximation of p(X|Θ, Y). Although SMC

1 This density can also depend on X(g−1), as in random–walk samplers.

43

algorithms allow us to sample from this approximation, to calculate the acceptance
probability, we also need to evaluate this density which is not available analytically.

Particle MCMC methods circumvent this problem by considering target distributions
on an extended space which includes all the random variables that are produced by
the SMC algorithm. Using this idea, [2] propose three novel algorithms called parti-
cle independent Metropolis–Hastings (PIMH) sampler, particle marginal Metropolis–
Hastings sampler (PMMH) and particle Gibbs (PG) sampler. We will summarize the
particle independent Metropolis–Hastings and particle Gibbs samplers here.

4.1 Particle Independent Metropolis–Hastings Sampler

To illustrate the ideas we need to work on an extended space just like we did in block
sampling section. But now we will use a slightly different notation as our main focus
in this section is the ancestral lineages as opposed to how many times a particle is
resampled. We will represent a generic resample–sample filtering algorithm with the
following steps:

• At time t = 1

– Sample X i
1 ∼ q1(·)

– Weight w1(X i
1) and W i

1 ∝ w1(X i
1)

• For time t ≥ 2

– Resampling step is equivalent to selecting an index Ait ∈ {1, . . . , N} for
each particle according to its weight W i

t−1. For this, different schemes
(e.g. multinomial, systematic) can be used. This step can be represented as
sampling indices from a generic discrete distribution:

(A1
t , . . . , A

N
t) ∼ r(·|W 1

t−1, . . . ,W
N
t−1)

or with a more compact notation ~At ∼ r(·| ~Wt−1).

– Propagate X i
t ∼ qt(·|X

Ait−1

1:t−1) and set X i
1:t ← (X

Ait−1

1:t−1, X
i
t), i.e. we are only

extending the paths for the particles that survive the last resampling step.
– Weight wt(X i

1:t) and W i
t ∝ wt(X

i
1:t)

At the end of the SMC algorithm, we can obtain the usual approximation for the target
distribution as:

π̂(x1:T) =
N∑
i=1

W i
T δXi

1:T
(x1:T) (4.1)

and for the integrating constant as:

ẐT =
T∏
t=1

1

N

N∑
i=1

wt(X
i
1:t) (4.2)

44

This representation clearly shows that the joint distribution of all particles (~X1, . . . , ~XT),
where ~Xt = (X i

t , . . . , X
N
t), and all indices (~A1, . . . , ~AT−1) is given by:

ψ(~x1, . . . , ~xT ,~a1, . . . ,~aT−1) =

[
N∏
i=1

q1(xi1)

]
T∏
t=2

{
r(~at−1|~wt−1)

N∏
i=1

qt(x
i
t|x

ait−1

1:t−1)

}
(4.3)

where ~wt−1 are the realized values of normalized importance weights.

Now we need to introduce one more notation to represent the ancestral lineages. First
note that each X i

t is generated from its ancestors X
Ait−1

1:t−1, not from X i
1:t−1. Therefore

we need to keep track of ancestral lineages. After performing the SMC algorithm until
time T , we will have N final time particles {X i

T}
N

i=1. For each final time particle
Xk
T , k ∈ {1, . . . , N}, we have an associated path that includes all ancestors of Xk

T .
To represent this path, let Bk

t denote the index of the ancestor of Xk
T at time t. This

yields Xk
1:T = (X

Bk1
1 , X

Bk2
2 , . . . , X

BkT
T) where we have Bk

T = k by definition. Bk
1:T =

(Bk
1 , . . . , B

k
T) represents the ancestral lineage of the particle Xk

T .

SMC methods allows us to obtain samples from a distribution qΘ(x1:T |y1:T) which is
an approximation to the exact full conditional pΘ(x1:T |y1:T). In order to use the SMC
within an independence Metropolis–Hastings algorithm, we need to do two things:
First we need to sample from the proposal qΘ(x1:T |y1:T) and then we need to analyti-
cally evaluate this density to calculate the Metropolis–Hastings acceptance probability.

Sampling From the Proposal Distribution:

After implementing the SMC algorithm, using the realized values of the particles and
the weights we obtain the empirical measure:

π̂(x1:T) =
N∑
i=1

W i
T δXi

1:T
(x1:T)

which is just a realization of a random measure approximating the exact full condi-
tional. Sampling a path X∗1:T from this approximation is straightforward:

• Sample an index K ∼ F (·|W 1
T , . . . ,W

N
T) where:

F (k|W 1
T , . . . ,W

N
T) ∝ W k

T (4.4)

• Given K = k, select X∗1:T = Xk
1:T = (X

Bk1
1 , X

Bk2
2 , . . . , X

BkT
T).

Evaluating the Proposal Distribution:

To calculate the acceptance probability, we need the law of X∗1:T . Conditional on the
output of an SMC (i.e. for a specific realization (~x1, . . . , ~xT ,~a1, . . . ,~aT−1)), the law
of this path is given by π̂(x1:T) generated by the SMC algorithm. However, we need the

45

unconditional law of this path, i.e. law over all possible values of (~X1, . . . , ~XT , ~A1, . . . , ~AT−1).
This law is given by:

qΘ(x1:T |y1:T) = Eψ[π̂(x1:T)]

where the expectation is taken with respect to the joint distribution ψ(·) given in (4.3),
since this is the data generating process for the SMC algorithm. Unfortunately this
distribution is not available from the output of the SMC algorithm.

To circumvent this problem, [2] suggest to work on the extended space which is the
space of (K, ~X1, . . . , ~XT , ~A1, . . . , ~AT−1). Combining (4.3) and (4.4), we can obtain
the proposal density on this extended space as:

q̃(k, ~x1, . . . , ~xT ,~a1, . . . ,~aT−1) = wkTψ(~x1, . . . , ~xT ,~a1, . . . ,~aT−1) (4.5)

The extended target suggested by [2] is given by:

π̃(k, ~x1, . . . , ~xT ,~a1, . . . ,~aT−1) =
π(xk1:T)

NT

ψ(~x1, . . . , ~xT ,~a1, . . . ,~aT−1)

q1(x
bk1
1)
∏T

t=2 r(b
k
t−1|~wt−1)qt(x

bkt
t |x

bkt−1

t−1)
(4.6)

where xk1:T is the realized value for the sampled path X∗1:T and the factor 1/NT corre-
sponds to the uniform distribution on the set {1, . . . , N}T for the variables (K,A

BK2
1 , . . . , A

BKT
T−1).

This extended distribution has two important properties. First it admits our target distri-
bution of interest as its marginal, i.e. if we generate samples (K, ~X1, . . . , ~XT , ~A1, . . . , ~AT−1) ∼
π̃(·), then XK

1:T has marginally the distribution π(·).

Second, working with these extended target and proposal distributions allows us to
avoid the need for direct evaluation of qΘ(x1:T |y1:T). This is obtained by the following
important result (see proof of theorem 2 in [2]):

π̃(k, ~x1, . . . , ~xT ,~a1, . . . ,~aT−1)

q̃(k, ~x1, . . . , ~xT ,~a1, . . . ,~aT−1)
=
ẐT
ZT

(4.7)

where ẐT is the estimate of the integrating constant and ZT is the true value of it. ẐT
can easily be calculated from the output of the SMC algorithm as given in (4.2).

Implementing Particle Independent Metropolis–Hastings Sampler :

Now, by combining the above results, we can fully define particle independent Metropolis–
Hastings sampler to sample from pΘ(x1:T |y1:T). For this, at each iteration of the
MCMC algorithm, we run an SMC which gives the realized values for

M := (K, ~X1, . . . , ~XT , ~A1, . . . , ~AT−1)

the sampled path XK
1:T and estimate for the normalizing constant ẐT as its output. The

algorithm iterates as follows: Assume that we are at iteration g and from the previous
iteration, the valuesM(g−1), the sampled pathXK

1:T (g−1) and ẐT (g−1) are available:

46

• Sample M∗ ∼ q̃(·) and given M∗ obtain XK∗
1:T and calculate Ẑ∗T . This means

that we run an SMC algorithm, obtain the empirical measure π̂(x1:T), sample
from this measure X∗1:T ∼ π̂(x1:T), and calculate Ẑ∗T using the output of SMC
algorithm.

• Calculate the Metropolis–Hastings acceptance probability as:

p = min

{
1,
π̃(M∗)q̃(M(g − 1))

π̃(M(g − 1))q̃(M∗)

}
= min

{
1,

π̃(M∗)/q̃(M∗)

π̃(M(g − 1))/q̃(M(g − 1))

}
= min

{
1,

Ẑ∗T/Z

ẐT (g − 1)/Z

}
= min

{
1,

Ẑ∗T

ẐT (g − 1)

}
(4.8)

• Set:

(XK
1:T (g), ẐT (g)) =

{
(XK∗

1:T , Ẑ
∗
T) with probability p

(XK
1:T (g − 1), ẐT (g − 1)) with probability 1− p

(4.9)

[2] showed that, under certain conditions, this algorithm creates a Markov chain whose
invariant distribution is the extended target π̃(·). Therefore, as the number of iterations
goes to infinity, G → ∞, the marginal distribution of the sampled paths XK

1:T (G)
converges to the correct conditional posterior distribution pΘ(x1:T |y1:T).

Above result shows that, by using an SMC algorithm, it is possible to efficiently sample
from the full conditional distribution of latent states given the known values of param-
eters. This is a powerful method that allows us to sample the latent states as a block
even in non–trivial problems such as non–linear non–Gaussian state–space models.
Additionally it reduces the problem of finding efficient proposals that directly approx-
imate pΘ(x1:T |y1:T) to designing efficient SMC algorithms that targets pΘ(x1:T |y1:T),
which only requires designing low dimensional proposal distributions that will be used
sequentially within SMC algorithm. Now we can fully define a particle independent
Metropolis–Hastings sampler to sample from p(X|Θ, Y), as given in Algorithm 4.1.
[2] showed that this algorithm admits p(Θ, X|Y) as invariant density.

4.2 Particle Gibbs Sampler

In a standard MCMC algorithm with Gibbs sampler, we sequentially sample from
the conditional posteriors p(Θ|X, Y) and p(X|Θ, Y). In most cases, sampling from
p(Θ|X, Y) is relatively straightforward if full conditionals turn out to be standard dis-
tributions. However sampling from p(X|Θ, Y) as a block is much more challenging.
As a naive method, if we replace sampling from p(X|Θ, Y) with sampling from the
empirical measure of an SMC output, then the resulting Markov chain does not admit
the relevant posterior as the invariant distribution.

Using the extended space framework that we discuss in previous section, [2] proposed
Particle Gibbs sampler in which we sample from p(X|Θ, Y) as a block using a specific

47

Algorithm 4.1 Particle Independent Metropolis–Hastings Sampler
1: Initialization:

• Given Θ, run an SMC targeting pΘ(x1:T |y1:T)

• Sample from the empirical measure X(0)
1:t ∼ p̂Θ(x1:T |y1:T)

• Calculate Ẑ(0)
t from the SMC output

2: for g = 1 to G do
3: Run an SMC targeting pΘ(x1:T |y1:T)

4: Sample from the empirical measure X(can)
1:t ∼ p̂Θ(x1:T |y1:T)

5: Calculate Ẑ(can)
t from the SMC output

6: Calculate the acceptance probability as p = min
{

1, Ẑ
(can)
t /Ẑ

(g−1)
t

}
7: Set (X

(g)
1:t , Ẑ

(g)
t) = (X

(can)
1:t , Ẑ

(can)
t) with probability p, otherwise set (X

(g)
1:t , Ẑ

(g)
t) =

(X
(g−1)
1:t , Ẑ

(g−1)
t).

8: end for

type of SMC algorithm. They introduced an SMC algorithm with conditional SMC
update, where a specified path X1:T with ancestral lineage B1:T is ensured to survive
all the resampling steps, whereas the remaining N − 1 particles are generated by usual
SMC iterations. A generic particle Gibbs algorithm is given in Algorithm 4.2.

48

Algorithm 4.2 Particle Gibbs Sampler
1: Initialization:

• Initialize Θ(0)

• Run an SMC targeting pΘ(0)(x1:T |y1:T)

• Sample from the empirical measure X(0)
1:T ∼ p̂Θ(0)(x1:T |y1:T), thus implicitly select B(0)

1:T

2: for g = 1 to G do
3: Sample Θ(g) ∼ p(Θ|x(g−1)

1:T , y1:T)

4: Run a conditional SMC targeting pΘ(g)(x1:T |y1:T) conditional on X(g−1)
1:T using the following

steps:

• For t = 1:

– For k 6= B
(g−1)
1 sample Xk

1 ∼ qΘ(g)(x1|y1)

– For i = 1, 2, . . . , N compute weights w1(xi1)

– For i = 1, 2, . . . , N normalize weights W i
1 ∝ w1(xi1)

• For t = 2, . . . , T :

– For k 6= B
(g−1)
t sample Akt−1 ∼ F (·|

−→
W t−1)

– For k 6= B
(g−1)
t sample Xk

t ∼ q(xt|yt, x
Akt−1

t−1)

– For i = 1, 2, . . . , N compute weights wt(xi1:t)

– For i = 1, 2, . . . , N normalize weights W i
t ∝ wt(xi1:t)

5: Sample X(g)
1:T ∼ p̂Θ(g)(x1:T |y1:T), thus implicitly select B(g)

1:T

6: end for

49

50

CHAPTER 5

PMCMC FOR A TIME CHANGED LÉVY MODEL

MCMC approach offers a flexible estimation method for models that include stochastic
volatility and jumps. Accordingly, following the early paper of Jacquier, et. al. [40],
an abundance of MCMC algorithms are proposed in the literature for such complex
models. For instance [40] and [45] develop MCMC algorithms for an autoregressive
stochastic volatility model. [41] provides algorithms for stochastic volatility models
with leverage and fat tails. Furthermore [49] uses MCMC algorithms for different
stock price models with stochastic volatility plus Poisson, variance–gamma and log–
stable based jumps.

On the other hand, although PMCMC approach offers a compelling alternative to tra-
ditional MCMC and attracted a huge interest from the academic society, it is relatively
new and the literature on PMCMC for stochastic volatility and jump models is not
voluminous. In their original paper, [2] develops PMCMC algorithms for a stochastic
volatility model where the volatility process is driven a Lévy process. [39] uses PM-
CMC algorithm for Hull–White type stochastic volatility model. [21] and [33] develop
PMCMC algorithms for different autoregressive stochastic volatility models. There-
fore we aim to contribute to the existing literature by developing PMCMC algorithms
for a complex model with stochastic volatility and jumps in this chapter.

5.1 A Time Changed Lévy Model

In this chapter we will develop MCMC and PMCMC algorithms for a stock price
model that includes stochastic volatility and jumps driven by a time changed Lévy
process. Lévy processes are continuous time stochastic processes with stationary and
independent increments. Brownian motion and compound Poisson are two popular
examples of Lévy processes. However the family of Lévy processes is a rich one
that encompasses many other processes that offers more flexible modelling. Lévy pro-
cesses are quite flexible such that they allow discontinuous sample paths, non-Gaussian
increments and more flexible jump structures that may have infinite activity.

Lévy processes can have finite or infinite activity. In the latter case, we have an infinite
number of jumps within any finite time interval. In this case the sample path of the
process may have finite or infinite variation. In the infinite variation case, the sum of

51

absolute increments is infinite over a finite time interval.

We can apply a stochastic time change to a Lévy process by allowing the time governed
by an increasing stochastic process. This allows us to obtain a time inhomogeneous
process which matches the observed characteristics of asset prices. An example of
time changed Lévy process is a variance Gamma process, proposed by Madan, et. al.
[52]. It is obtained by subordinating an arithmetic Brownian motion with drift by an
independent Gamma process. That is:

V G(t) = ϕΓt + ψWΓt

where ϕ and ψ are the drift and volatility of the arithmetic Brownian motion, and Γt is
an independent Gamma process with unit mean rate and variance rate λ. With this time
change, we turn the original diffusion process into a jump process. The process is an
infinite activity, but finite variation model. Thus the process incorporates finitely many
large jumps as well as infinitely many small jumps. Empirically, the variance Gamma
process captures stock market dynamics better than finite activity jump models (e.g.
Poisson models).

In general, estimation of Lévy processes can be quite challenging since for some Lévy
processes we do not know the probability distribution in closed form and higher order
moments do not exist. This rules out likelihood or moment based estimation methods.
On the other hand, simulation based Bayesian estimation methods fits this problem
well. We will use MCMC and PMCMC methods for estimating a time changed Lévy
process from discretely observed data.

A second component that we use in our model is a Heston [36] type stochastic volatility
process. Here, the variance ν is modelled by a square root process given by:

dνt = κ(θ − νt)dt+ γ
√
νtdWt

where κ is the mean reversion rate, θ is the long run average variance γ is the volatil-
ity of volatility and Wt is a Brownian motion. In this model volatility is stochastic,
auto regressive and mean reverting. This feature allows volatility clustering as well
as kurtosis in stock returns. It is also possible to add leverage effect to the model by
using correlated Brownian motions for the stock price and the volatility process. The
transition density is a non-central Gamma distribution.

By combining stochastic volatility and jump parts, we assume the following model for
the stock price:

d log(St) = µdt+
√
νtdW

1
t + dV Gt (5.1)

dνt = κ(θ − νt)dt+ γ
√
νtdW

2
t (5.2)

dV Gt = ϕdΓt + ψdZΓt (5.3)

where W 1 and W 2 are two correlated Brownian motions with cor(dW 1
t , dW

2
t) = ρ.

Z is also another Brownian motion, independent from others, and Γt is a Gamma
process with dΓt ∼ Ga(1/λ, λ). With this structure, the model incorporates both
mean reverting stochastic volatility and infinite activity jumps in returns. This allows

52

us to capture any volatility clustering, fat tailed returns, leverage effect and jumps that
may be in the actual price process that is modelled.

First order Euler approximation over a unit time period gives the following discrete
time equivalent for log returns as defined by Yt = log(St)− log(St−1):

Yt = µ+
√
νt−1εt + Jt (5.4)

νt = νt−1 + κ(θ − νt−1) + γ
√
νt−1εt (5.5)

Jt = ϕGt + ψ
√
Gtηt (5.6)

where εt ∼ N(0, 1), εt ∼ N(0, 1), cor(εt, εt) = ρ, ηt ∼ N(0, 1) andGt ∼ Ga(1/λ, λ).
For the jump part we used the property of Brownian motion that, conditional on dΓt,
dZΓt ∼ N(0, dΓt). The model defines a state–space form where the first equation is
the observation equation and the other two equations define the state evolution. The
latent states, that are latent volatility, jumps and background Gamma variate, are non–
Gaussian. Conditional on latent states, returns are conditionally Gaussian. Therefore
the system is a non–linear non–Gaussian system.

A simulation of the model is given in Figure 5.1 and Figure 5.2.

5.2 MCMC

In this section we develop an MCMC algorithm for the above mentioned model. For
this we need to derive the posterior distribution of parameters and latent states. The
model includes eight parameters Θ = (µ, κ, θ, γ, ρ, ϕ, ψ, λ) and three latent variables
X = (ν, J,G).

The posterior is given by:

p(Θ, ν, J,G|Y) ∝ p(Y,Θ, ν, J,G) (5.7)
= p(Θ)p(ν0)p(G|Θ)p(J |G,Θ)p(Y, ν|J,Θ)

= p(Θ)p(ν0)
T∏
t=1

Ga(Gt|1/λ, λ)N(Jt|ϕGt, ψ
2Gt)

N2(Yt, νt|(µ+ Jt, νt−1 + κ(θ − νt−1)), (1, γρ; γρ, γ2))

where N(.|.),N2(.|.) and Ga(.|.) represent the density functions for normal, bivariate
normal and Gamma distributions.

In setting priors for parameters and the initial variance, we select conjugate prior dis-
tributions if possible, and use parameters that lead to uninformative/difuse prior dis-
tributions. As proposed by [49], we transform (ρ, γ) to (φ = ργ, w = γ2(1 − ρ2)) to
make posteriors tractable. The priors are given as:

p(µ) ∝ N(a0 = 0, A0 = 1)

p(κ) ∝ N(b0 = 0, B0 = 1)1(κ>0)

p(θ) ∝ N(c0 = 0, C0 = 1)1(θ>0)

53

−
3

−
1

1
3

Y
0.

2
0.

6
1.

0

ν
−

2
0

1
2

J

0 50 100 150 200 250

0
5

10
15

G

Figure 5.1: Simulated values of Yt, νt,Jt and Gt from the model, using parameters
(µ = 0.05, κ = 0.015, θ = 0.8, γ = 0.1, ρ = −0.4, ϕ = −0.01, ψ = 0.4, λ = 3)

p(w) ∝ IG(d0 = 2, D0 = 200)

p(φ) ∝ N(e0 = 0, wE0 = w/2)

p(ϕ) ∝ N(p0 = 0, P0 = 1)

p(ψ2) ∝ IG(q0 = 2.5, Q0 = 5)

p(λ) ∝ IG(r0 = 10, R0 = 1/10)

p(ν0) ∝ 1(ν0>0)

With this priors, the full conditional posteriors become as follows1:

p(µ|.) ∝ N(
a1

A1

,
1

A1

)

1 Variables with an index 0 represents the corresponding parameters for the prior distribution. Detailed deriva-
tions are skipped.

54

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Y

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

ν

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

J

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

G

Figure 5.2: Density plots of Yt, νt,Jt and Gt from the model, using parameters (µ =
0.05, κ = 0.015, θ = 0.8, γ = 0.1, ρ = −0.4, ϕ = −0.01, ψ = 0.4, λ = 3)

a1 =
a0

A0

+
1

1− ρ2

T∑
t=1

1

νt−1

(Yt − Jt − ρ
A2,t

γ
)

A1 =
1

A0

+
T∑
t=1

1

νt−1(1− ρ2)

A2,t = νt − νt−1 − κ(θ − νt−1)

p(κ|.) ∝ N(
b1

B1

,
1

B1

)1(κ>0)

b1 =
b0

B0

+
1

(1− ρ2)γ

T∑
t=1

(θ − νt−1)

νt−1

[
νt − νt−1

γ
− ρ(Yt − µ− Jt)]

B1 =
1

B0

+
1

γ2(1− ρ2)

T∑
t=1

(θ − νt−1)2

νt−1

p(θ|.) ∝ N(
c1

C1

,
1

C1

)1(θ>0)

55

c1 =
c0

C0

+
κ

γ(1− ρ2)

T∑
t=1

1

νt−1

[
κνt−1 + νt − νt−1

γ
− ρ(Yt − µ− Jt)]

C1 =
1

C0

+
κ2

γ2(1− ρ2)

T∑
t=1

1

νt−1

p(w|.) ∝ IG(d1, D1)

d1 = d0 + T/2

D1 = D0 +
e2

0

2E0

+
T∑
t=1

(νt − νt−1 − κ(θ − νt−1))2

2νt−1

− e2
1

2E1

p(φ|.) ∝ N(
e1

E1

,
w

E1

)

e1 =
e0

E0

+
T∑
t=1

(Yt − µ− Jt)(νt − νt−1 − κ(θ − νt−1))

νt−1

E1 =
1

E0

+
T∑
t=1

(Yt − µ− Jt)2

νt−1

p(ν0|.) ∝ 1(ν0>0)
1

ν0

exp(−f1

ν0

) exp(−F1ν0)

f1 =
(Y1 − µ− J1)2

2(1− ρ2)
− ρ(Y1 − µ− J1)(ν1 − κθ)

γ(1− ρ2)
+

(ν1 − κθ)2

2γ2(1− ρ2)

F1 =
(κ− 1)2

2γ2(1− ρ2)

p(νt|.) ∝ 1(νt>0)
1

νt
exp{M1

νt
+M2νt −M3ν

2
t }

M1 =
1

γ(1− ρ2)
{ρ(Yt+1 − µ− Jt+1)(νt+1 − κθ)−

γ

2
(Yt+1 − µ− Jt+1)2 − (νt+1 − κθ)2

2γ
}

M2 =
1

γ(1− ρ2)
{ρ(Yt − µ− Jt)

νt−1

− (κ− 1)2

2γ
+
κθ + (1− κ)νt−1

γνt−1

}

M3 =
1

2γ2νt−1(1− ρ2)

p(νT |.) ∝ N(h1, H1)1(νT>0)

h1 = νT−1 + κ(θ − νT−1) + ργ(YT − µ− JT)

H1 = (1− ρ2)γ2νT−1

p(ϕ|.) ∝ N(
p1

P1

,
1

P1

)

p1 =
p0

P0

+
1

ψ2

T∑
t=1

Jt

P1 =
1

P0

+
1

ψ2

T∑
t=1

Gt

56

p(ψ2|.) ∝ IG(q1, Q1)

q1 = q0 +
T

2

Q1 = Q0 +
T∑
t=1

(Jt − ϕGt)
2

2Gt

p(λ|.) ∝ [
1

λ1/λΓ(1/λ)
]Tλ−r0−1[

T∏
t=1

Gt]
1/λ exp{−1

λ
(R0 +

T∑
t=1

Gt)}

p(Jt|.) ∝ N(
r1

R1

,
1

R1

)

r1 =
ϕ

ψ2
+

1

(1− ρ2)νt−1

(Yt − µ−
ρ(νt − νt−1 − κ(θ − νt−1))

γ
)

R1 =
1

ψ2Gt

+
1

(1− ρ2)νt−1

p(Gt|.) ∝ G
1/λ−3/2
t exp{−Gt(

1

λ
+

ϕ2

2ψ2
)− 1

Gt

J2
t

2ψ2
}

All posteriors except the ones for ν0, νt, λ and Gt turn out to be standard distributions,
which are easy to sample from. However, in order to implement a Gibbs algorithm, we
also need to effectively sample from these non–standard distributions as well. For this
we will use Adaptive Rejection Metropolis Sampling (see [27]).

ARMS is an extension to ARS method (see Algorithm 2.3). The main idea of ARMS
is to use the envelope function generated by adaptive rejection sampling method (see
Figure 2.1) even if the target density is not log–concave. Here the idea is illustrated
using the notation of Algorithm 2.3. In this case the envelope generated by tangent
lines may not provide an upper bound for the target density, i.e. G(ht) ≥ π(ht) does
not always hold. Therefore G should be called as a pseudo–envelope. If we imple-
ment the usual accept–reject sampling using this pseudo–envelope, then the resulting
samples will have the density f(ht) ∝ min(G(ht), π(ht)), not π(ht) as we had in
log–concave case. However to correct this, ARS step can be incorporated within a
Metropolis–Hastings algorithm using f(ht) as the proposal density. The implementa-
tion2 of ARMS for our ARSV model of Chapter 3 is given in Algorithm 5.1 (replaces
lines 3 to 10 in Algorithm 2.3).

Using the posterior densities we previously obtain and with the help of ARMS method
for sampling from non–standard densities, our full MCMC algorithm is defined as in
Algorithm 5.2.

2 We implement ARMS using the R package HI [57].

57

Algorithm 5.1 MCMC Algorithm with ARMS for Volatility
1: for t = 1 to T do
2: Construct the pseudo–envelope G(ht) using ARS methods
3: repeat
4: Sample h(can)

t ∝ G(ht)

5: Accept it with probability min
{

1, p(h
(can)
t)/G(h

(can)
t)

}
6: Update the pseudo–envelope using the new point (h

(can)
t , G(h

(can)
t))

7: until A draw is accepted
8: Accept h(g)

t = h
(can)
t with probability

α(h
(g−1)
t , h

(can)
t) = min

1,
p(h

(can)
t)min

{
p(h

(g−1)
t), G(h

(g−1)
t)

}
p(h

(g−1)
t)min

{
p(h

(can)
t), G(h

(can)
t)

}


Otherwise set h(g)
t = h

(g−1)
t

9: end for

5.3 Particle Filtering

For implementing PMCMC, we need a particle filtering algorithm for the model. First
note that for our model, the optimal proposal that minimizes the variance of the impor-
tance weights (as defined in Proposition 3.1) is given as:

q(Xt|Xt−1, Yt) = p(Xt|Xt−1, Yt)

= Ga(Gt|
1

λ
, λ)N(Jt|

m̃j

s̃2
j

,
1

s̃2
j

)N(νt|m̃ν , s̃2
ν)

m̃j =
ϕ

ψ2
+
Yt − µ
νt−1

s̃2
j =

1

ψ2Gt

+
1

νt−1

m̃ν = νt−1 + κ(θ − νt−1) + ργ(Yt − µ− Jt)
s̃2
ν = (1− ρ2)γνt−1

The optimal proposal includes standard distributions and thus can be sampled. How-
ever the incremental importance weights for optimal proposal, which is equal to the
predictive likelihood, is given as:

αt = p(Yt|Xt−1) =

∫
p(Yt, Xt|Xt−1)dXt

=

∫
p(Jt)︸ ︷︷ ︸

Variance Gamma

p(Yt|Jt, νt−1)︸ ︷︷ ︸
Normal

dJt

This integral cannot be evaluated analytically. Thus we will use an approximation to
the predictive likelihood in the second stage weights of the particle filter. The approx-
imation is obtained by evaluating likelihood at prior mean of conditioning variables.

58

Algorithm 5.2 MCMC Algorithm For The Model
1: Initialize (X(0),Θ(0))
2: for g = 1 to G do
3: Sample µ(g) ∼ N(a1A1

, 1
A1

)

4: Sample κ(g) ∼ N(b1B1
, 1
B1

)1(κ>0)

5: Sample θ(g) ∼ N(c1C1
, 1
C1

)1(θ>0)

6: Sample w(g) ∼ IG(d1, D1)
7: Sample φ(g) ∼ N(e1E1

, wE1
)

8: Sample ϕ(g) ∼ N(p1P1
, 1
P1

)

9: Sample ψ2(g) ∼ IG(q1, Q1)

10: Sample λ(g) ∼ [1
λ1/λΓ(1/λ)

]Tλ−r0−1[
∏T
t=1Gt]

1/λ exp{− 1
λ (R0 +

∑T
t=1Gt)} using ARMS

11: Sample ν(g)
0 ∼ 1(ν0>0)

1
ν0

exp(− f1ν0) exp(−F1ν0) using ARMS
12: for t = 1 to T − 1 do
13: Sample ν(g)

t ∼ 1(νt>0)
1
νt

exp{M1

νt
+M2νt −M3ν

2
t } using ARMS

14: Sample J (g)
t ∼ N(r1R1

, 1
R1

)

15: Sample G(g)
t ∼ G

1/λ−3/2
t exp{−Gt(1

λ + ϕ2

2ψ2)− 1
Gt

J2
t

2ψ2 } using ARMS
16: end for
17: for t = T do
18: Sample ν(g)

T ∼ N(h1, H1)1(νT>0)

19: Sample J (g)
T ∼ N(r1R1

, 1
R1

)

20: Sample G(g)
T ∼ G

1/λ−3/2
T exp{−GT (1

λ + ϕ2

2ψ2)− 1
GT

J2
t

2ψ2 } using ARMS
21: end for
22: end for

First note that the prior means of the latent variables are given as:

E[νt|νt−1] = νt−1 + κ(θ − νt−1)

E[Jt] = E[E[Jt|Gt]] = E[ϕGt] = ϕE[Gt] = ϕ

Therefore likelihood evaluated at these values is given as:

p̂(Yt|Xt−1) = N(Yt|µ+ E[Jt] +
ρ

γ
(E[νt|νt−1]− νt−1 + κ(θ − νt−1)), (1− ρ2)νt−1)

= N(Yt|µ+ ϕ, (1− ρ2)νt−1)

In an auxiliary particle filtering setting, these choices leads to second stage weights
given as:

Wt =
g(Yt|Xt, Xt−1)f(Xt|Xt−1)

p̂(Yt|Xt−1)q(Xt|Xt−1)

=
N(Yt|mY , s

2
Y)N(νt|mν , s

2
ν)Ga(Gt| 1λ , λ)N(Jt|mjs2j ,

1
s2j

)

N(Yt|m̃Y , s̃2
Y)N(νt|m̃ν , s̃2

ν)Ga(Gt| 1λ , λ)N(Jt| m̃j
s̃2j
, 1

s̃2j
)

=
N(Yt|mY , s

2
Y)N(νt|mν , s

2
ν)N(Jt|mjs2j ,

1
s2j

)

N(Yt|m̃Y , s̃2
Y)N(νt|m̃ν , s̃2

ν)N(Jt| m̃j
s̃2j
, 1

s̃2j
)

59

mY = µ+ Jt +
ρ

γ
(νt − νt−1 − κ(θ − νt−1))

s2
Y = (1− ρ2)νt−1

m̃Y = µ+ ϕ

s̃2
Y = (1− ρ2)νt−1

mj =
ϕ

ψ2

s2
j =

1

ψ2Gt

mν = νt−1 + κ(θ − νt−1)

s2
ν = γ2νt−1

The full APF algorithm with these choices is given in Algorithm 5.3.

Algorithm 5.3 APF Algorithm For The Model
1: for t = 1, for each i = 1, . . . , N do
2: Sample Xi

1 ∼ q1(x1) as follows:

• Sample Gi1 ∼ Ga(1
λ , λ)

• Sample J i1 ∼ N(
m̃j

s̃2j
, 1

s̃2j
)

• Sample νi1 ∼ N(m̃ν , s̃2
ν)

3: Weight the particles W i
1 ∝

N(Y1|mY ,s2Y)N(ν1|mν ,s2ν)N(J1|
mj

s2
j

, 1

s2
j

)

N(ν1|m̃ν ,s̃2ν)N(J1|
m̃j
˜
s2
j

, 1
˜
s2
j

)

4: end for
5: for t ≥ 2, for each i = 1, . . . , N do
6: Reweight old particles W̃ i

t−1 ∝W i
t−1 ×N(Yt|m̃Y , s̃2

Y)

7: Resample
{
Xi

1:t−1, W̃
i
t−1

}
to obtain N equally-weighted particles

{
X̃i

1:t−1,
1
N

}
8: Sample Xi

t ∼ qt(xt|X̃i
t−1) as follows:

• Sample Git ∼ Ga(1
λ , λ)

• Sample J it ∼ N(
m̃j

s̃2j
, 1

s̃2j
)

• Sample νit ∼ N(m̃ν , s̃2
ν)

9: Set Xi
1:t ← (X̃i

1:t−1, X
i
t)

10: Weight new particles W i
t ∝

N(Yt|mY ,s2Y)N(νt|mν ,s2ν)N(Jt|
mj

s2
j

, 1

s2
j

)

N(Yt|m̃Y ,s̃2Y)N(νt|m̃ν ,s̃2ν)N(Jt|
m̃j
˜
s2
j

, 1
˜
s2
j

)

11: end for

5.4 PMCMC

Now we can fully define the particle Gibbs algorithm for our model. For this we
can use the findings of previous sections: the conditional posterior for parameters,

60

p(Θ|X1:T , Y1:T), is obtained in Section 5.2, the auxiliary particle filter algorithm is
defined in Section 5.3 and the steps for conditional SMC update is defined in Algo-
rithm 4.2. Full implementation of particle Gibbs algorithm for our model is given in
Algorithm 5.4.

Algorithm 5.4 Particle Gibbs Sampler for the Model
1: Initialization:

• Initialize Θ(0)

• Run an SMC targeting pΘ(0)(x1:T |y1:T) using Algorithm 5.3

• Sample from the empirical measure X(0)
1:T ∼ p̂Θ(0)(x1:T |y1:T), thus implicitly select B(0)

1:T

2: for g = 1 to G do
3: Sample Θ(g) ∼ p(Θ|x(g−1)

1:T , y1:T) using the following steps:

• Sample µ(g) ∼ N(a1A1
, 1
A1

)

• Sample κ(g) ∼ N(b1B1
, 1
B1

)1(κ>0)

• Sample θ(g) ∼ N(c1C1
, 1
C1

)1(θ>0)

• Sample w(g) ∼ IG(d1, D1)

• Sample φ(g) ∼ N(e1E1
, wE1

)

• Sample ϕ(g) ∼ N(p1P1
, 1
P1

)

• Sample ψ2(g) ∼ IG(q1, Q1)

• Sample λ(g) ∼ [1
λ1/λΓ(1/λ)

]Tλ−r0−1[
∏T
t=1Gt]

1/λ exp{− 1
λ (R0 +

∑T
t=1Gt)} using ARMS

• Sample ν(g)
0 ∼ 1(ν0>0)

1
ν0

exp(− f1ν0) exp(−F1ν0) using ARMS

4: Run a conditional SMC targeting pΘ(g)(x1:T |y1:T) using Algorithm 5.3, but conditional on
X

(g−1)
1:T as defined in Algorithm 4.2

5: end for

5.5 Empirical Implementation

In this section we will implement the model introduced in previous sections using
S&P500 Index data. First we will discuss the descriptive statistics of the data. Then
we will estimate the model using MCMC and PMCMC methods defined previously
and compare the estimation results.

We use S&P500 Index log-returns in our estimations. The S&P500 is a free-float
capitalization-weighted index of the prices of 500 large-cap common stocks actively
traded in the United States. The stocks included in the S&P 500 are those of large pub-
licly held companies that trade on either of the two largest US stock market exchanges;
the NYSE Euronext and the NASDAQ OMX. We use 15 years of data (from 2000 to
2015; totally 3914 observations) to estimate the model.

Figure 5.3 show the empirical density, probability plot and autocorrelations for the

61

returns and squared returns. Returns exhibit significant kurtosis with a slight skew-
ness. Thus empirical distribution is highly non-Normal. At first sight this may suggest
modeling the data as an i.i.d. sequence from a non-Normal distribution. However last
two graphs show that the return series have linear and non-linear dependence through
time. For returns, there are significant autocorrelations at the first two lags. More im-
portantly, squared returns have a very slowly decaying autocorrelation structure which
can be taken as an informal evidence of non-constant volatility.

Figure 5.3: Descriptive Plots For S&P500 Index: Index level, log returns, empirical
density for log returns, normal Q-Q plots for log returns, autocorrelations for log re-
turns and squared log returns.

We first performed a unit root test for the S&P500 Index and its log returns. The
augmented Dickey–Fuller test3 results, as presented in Table 5.1 show that the index
has a unit root while the log returns do not. Since the S&P500 Index have significant
linear autocorrelations at first two lags, we apply an autoregressive filter to raw returns
in order to remove linear dependence in conditional mean. For this, we first fit a second
order autoregressive model given as:

Yt = π0 + π1Yt−1 + π2Yt−2 + ζt (5.8)

and then use the residuals ζt in our estimation. This linear filtering step is commonly
used in time series modeling (e.g. [40]). We also test whether the residuals series has
any ARCH effect or not using Lagrange Multiplier (LM) test4. The test statistics and

3 Unit root tests are performed using R package urca [59].
4 LM tests are performed using R package FinTS [31].

62

corresponding p–values with different lags up to 12 are given in Table 5.2. The results
indicate that the residual return series has significant ARCH effect which should be
modeled using a non–constant volatility model.

Table 5.1: Unit Root Testing for S&P500

Test Statistics Critical Levels
0.01 0.05 0.10

S&P500 Index 0.55 -2.58 -1.95 -1.62
Log Returns -67.96 -2.58 -1.95 -1.62

Table 5.2: ARCH LM Test for Residual Returns

Lag Test Statistics p–value
1 146.9755 < 2.2e–16
2 690.4289 < 2.2e–16
3 722.7191 < 2.2e–16
4 806.9449 < 2.2e–16
5 958.5190 < 2.2e–16
6 1020.0392 < 2.2e–16
7 1056.6099 < 2.2e–16
8 1057.9222 < 2.2e–16
9 1068.2387 < 2.2e–16
10 1079.3840 < 2.2e–16
11 1144.6060 < 2.2e–16
12 1156.1017 < 2.2e–16

We fit our time changed Lévy model using MCMC and PMCMC methods. In both
methods, we run MCMC chains for G = 100.000 iterations and ignore the first half,
i.e. a burn-in period of M = 50.000. We use relatively diffusive priors as defined in
previous sections to initialize the chains. The ARMS algorithm is implemented using
the codes given in [58]. For the particle filtering algorithm, we use 5.000 particles and
use systematic resampling if ESS < N/2. The estimation results are presented in
Table 5.3 below and in figures 5.6 to 5.10 in the appendix.

In both methods, the parameter chains quickly converge to regions around certain val-
ues. This can be seen from figures in the appendix which show chain values after
burn-in period, along with histogram of chain values. These graphs also show that au-
tocorrelations in parameter chains has a fast decay. Exception to this is the parameter
γ, for which we have a slower decay in the autocorrelations.

For the latent variables autocorrelations for the log-volatility have also slower decays.
This is somewhat expected since for the volatility process, νt−1 appears both in the
mean and variance of νt and the volatility variables are highly correlated posteriori.
Furthermore autocorrelations for the Gamma variate also have a slow decay.

When we compare the MCMC and PMCMC estimation results, we see that the es-
timates are not so distinct from each other. However the standard deviations and

63

Table 5.3: Parameter Estimates from MCMC and PMCMC

MCMC PMCMC
Mean SD MC SE Mean SD MC SE

µ 0.000 0.012 0.009 0.000 0.014 0.008
κ 0.014 0.006 0.011 0.008 0.011 0.006
θ 0.763 0.212 0.253 0.642 0.150 0.138
ρ -0.378 0.005 0.157 -0.423 0.022 0.129
γ 0.127 0.011 0.045 0.131 0.020 0.013
ϕ 0.009 0.005 0.012 0.007 0.004 0.017
ψ2 0.392 0.023 0.156 0.425 0.014 0.235
λ 3.785 0.064 1.245 3.287 0.068 1.768

Table includes posterior mean and standard deviation, as well as Monte Carlo standard
errors for each parameter.

Monte Carlo errors5 are generally narrower in PMCMC. The main difference appears
in the autocorrelations for the parameter γ and the latent variables, especially for the
volatility process νt. The decay rate for the autocorrelations are faster in PMCMC
when compared with MCMC. This finding is in accordance with the different updating
structures used in MCMC and PMCMC algorithms. In MCMC algorithms we use a
sequential approach to update each volatility one-at-a-time. On the other hand, PM-
CMC algorithm uses particle filtering to jointly update the latent variables and thus
uses a block sampling approach. As discussed in previous chapters, blocking highly
correlated components and updating them jointly may significantly improve the per-
formance of MCMC algorithms (see p. 12 of [29]). [23] suggest that we should block
as much as possible whenever we have a sampling method to jointly update the com-
ponents.

From theory of Markov chains, we expect our MCMC and PMCMC chains to eventu-
ally converge to the stationary distribution, which is also our target distribution. How-
ever, there is no guarantee that we can achieve this convergence for a finite number of
iterations. As discussed previously, quick convergence of chains to regions around cer-
tain values and decaying autocorrelation plots may constitute visual evidences for the
convergence to a stationary distribution. Besides we also apply Geweke [25] conver-
gence diagnostic to statistically test the convergence to target distribution. In Geweke
convergence diagnostic, for each variable, the MCMC chain is divided into two parts
containing the first 10% and the last 50% of the iterates. If the whole chain is station-
ary, the means of the values early and late in the sequence should be similar. Geweke’s
approach involves calculation of the sample mean and asymptotic variance in each
window, the latter being determined by spectral density estimation. His convergence
diagnostic Z is the difference between these two means divided by the asymptotic stan-
dard error of their difference. The values of Z statistic which fall in the extreme tails
of a standard normal distribution suggest that the chain was not fully converged early
on. The Geweke statistics6 calculated for each parameter chain (after burn–in period)

5 Monte Carlo standard errors are calculated using R package mcmc [26].
6 Tests are performed using R package coda [62].

64

are given in Table 5.4. In principle, convergence diagnostics cannot guarantee that the
chains have converged. Nonetheless these visual and statistical tests show no sign of
non–convergence.

Table 5.4: Z statistics from Geweke convergence test

MCMC PMCMC
µ 0.23 0.50
κ 0.37 0.19
θ 0.29 -0.85
ρ -0.79 -0.30
γ 1.32 0.94
ϕ 0.13 -0.36
ψ2 -0.75 -0.38
λ 0.89 0.23

One more difference between the two methods is the computational time required to
simulate a Markov chain with the same length. In our estimation study, we used the
same chain lengths for MCMC and PMCMC. However, in PMCMC we run a parti-
cle filter at each iteration, whereas in standard MCMC the sampling scheme is much
faster to sample from. As a result of this PMCMC method required 4.3 times more
computation time than the standard MCMC.

To compare the fitted model with the actual data, we also performed a simulation study.
The actual data we used spans a 15–year period. We generate 1000 different samples,
each having a return series spanning 15 years, using our model with parameter values
that are obtained using PMCMC. Figure 5.4 includes simulated and actual prices and
returns. The left figure includes 1000 simulated paths of stock price (on a logarithmic
scale) along with the actual price series used in estimation. Furthermore Table 5.5
includes the various moments calculated using the actual and simulated data. The real-
ized path of stock prices are within the bounds of simulated paths and the distribution
of returns are close to each other. However the actual returns exhibit higher levels of
skewness and kurtosis. These findings show that the model is a reasonable approxi-
mation to the actual data used. On the other hand there also exists some further room
to improve goodness of fit using a different model to capture the excess skewness and
kurtosis observed in the actual data.

Table 5.5: Moments for Actual vs Simulated Returns

Actual Returns Simulated Returns
5% Mean 95%

Mean 0.00 -2.00 0.01 3.47
Standard Deviation 1.26 0.90 1.03 1.20
Skewness -0.32 -0.21 0.03 0.25
Kurtosis 10.64 5.13 6.15 7.40
First Order Autocorrelation 0.00 -0.03 0.00 0.03

65

Figure 5.4: The left figure includes simulated paths of stock price from the model, as
well as the actual path used in estimation. Both are shown in logarithmic scale. The
right figure shows the empirical density of simulated and actual returns.

The estimation results show that PMCMC is a flexible estimation method to infer the
parameters and latent variables of a complex model such as our Lévy based model.
Once we are able to estimate the model, we can use the findings in different applica-
tions. One example is forecasting. Assume that we have data for time t = 1, 2, . . . , T
and are interested in the next day return, YT+1. Then we can estimate the model using
the available data up until time T . Since the density of YT+1 is not available in closed
form, we can use simulations to make inferences on it. Such an exercise is shown in
Figure 5.5. The figure shows the last 20 values for S&P500 index that are used in
estimation step. After estimating the model, we simulate 1000 samples for YT+1 using
the model with estimated parameters and latent variables, and then incorporate these
returns in the second order autoregressive model given in 5.8 to simulate S&P500 in-
dex for time period T + 1. The simulated values for S&P500 index are shown as blue
dots and their empirical density is plotted in red in the figure. The latest observation of
S&P500 index that is used in estimation has a value of 2079.65. The forecasted values
have a mean of 2080.99 with a standard deviation of 22.52. The 90% confidence in-
terval for the point forecast is (2045.47, 2119.45). The daily value–at–risk for a 99%
confidence level is estimated as -2.46%.

66

Figure 5.5: The figure includes latest 20 prices for S&P500 index, one day ahead
forecasts using the Lévy model and their corresponding density.

67

5.6 Appendix

Figure 5.6: MCMC output for the model.

68

Figure 5.7: MCMC output for the model.

69

Figure 5.8: PMCMC output for the model.

70

Figure 5.9: PMCMC output for the model.

71

Figure 5.10: ACF plots for latent variables from MCMC and PMCMC methods.

72

CHAPTER 6

CONCLUSION

Finding suitable stochastic process is the starting point and the most fundamental step
of any financial modelling exercise. The inefficiency of Gaussian models in capturing
observed behavior of stock prices yields to the emergence of a vast literature on more
advanced models that include stochastic volatility and jumps. This ever increasing
complexity of models rules out the use of traditional estimation methods for inferring
model parameters and necessitates more advanced estimation techniques. Thus the
main objective of this research was to develop efficient algorithms for estimating a
stock price model that is flexible enough to capture the different characteristics of
observed data.

Therefore we resort to simulation based Bayesian estimation techniques. We begin
with MCMC approach, discuss the theoretical underpinnings of this approach and de-
velop various algorithms and implement them for a basic stochastic volatility model.
MCMC approaches offers a flexible method for estimating unknown parameters and la-
tent variables of a model by approximating the posterior distribution with Monte Carlo
samples. However, our analysis confirm that the efficiency of an MCMC algorithm
critically depends on the selection of good proposal distributions for latent variables
and jointly updating highly correlated variables may significantly improve the MCMC
algorithm.

Then we turn our attention to on–line estimation and discuss particle filtering meth-
ods in which the model parameters are assumed to be known and the latent states are
dynamically inferred as we sequentially observe new data. Using auxiliary particle fil-
tering, we test various algorithms for the stochastic volatility model and compare them
in a simulation study.

Next we discuss the recently proposed particle MCMC methods that uses particle filters
to build efficient high–dimensional proposal distributions to be used within an MCMC
setting. With this enhancement, particle MCMC methods circumvent the main chal-
lenge of traditional MCMC methods and offer a powerful estimation technique for
many complex models.

We develop MCMC and particle MCMC algorithms for a stock price model with a time
changed Lévy component. We assume that the stock price process includes Heston–
type stochastic volatility plus variance–gamma jumps in returns. Variance–Gamma

73

process is an infinite activity finite variation Lévy process obtained by subordinating
an arithmetic Brownian motion with a Gamma process. The model is quite flexible
in its nature and can capture most of the observed characteristics of stock prices. We
developed MCMC and particle MCMC algorithms for the model and compare them in
an empirical study using S&P500 Index with 15 years of data. The results indicate that
the particle MCMC algorithm is a more efficient alternative to standard MCMC and
typically gives smaller standard errors and lower autocorrelations.

The literature on Bayesian estimation of financial models includes various research
papers that implement MCMC algorithms for models with stochastic volatility and
jumps. However particle MCMC approaches are relatively new and thus research on
these methods is not voluminous. We contributed to the existing literature by devel-
oping efficient particle MCMC algorithms for the first time for a complex model with
stochastic volatility and Lévy based jumps. We see our new contribution as an exam-
ple for the application of particle MCMC methods in different real life problems and
expect to see this trend to continue in the future.

Simulation based inference is not an exact science and there always exists room for
further improvement. For instance, although we obtain better estimation results in our
particle MCMC algorithm than the standard MCMC, theoretically, it is still possible to
obtain a more efficient algorithm that may yield much faster decay in autocorrelations
and thus smaller standard errors. Therefore this research may serve as a starting step
in searching for efficient estimation methods for complex financial models and as a
stimulus for further research in this area.

74

REFERENCES

[1] T. G. Andersen, R. A. Davis, and J. Kreiβ, Handbook of Financial Time Series,
Springer, 2009.

[2] C. Andrieu, A. Doucet, and R. Holenstein, Particle Markov chain Monte Carlo
methods, Journal of the Royal Statistical Society: Series B, 72(3), pp. 269–342,
2010.

[3] L. Bachelier, Théorie de la spéculation, Annales Scientifiques de l’École Normale
Supérieure, 3(17), pp. 21–86, 1900.

[4] C. A. Ball and A. Roma, Stochastic volatility option pricing, The Journal of Fi-
nancial and Quantitative Analysis, 29(4), pp. 589–607, 1994.

[5] O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and
Stochastics, 2(1), pp. 41–68, 1998.

[6] D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in
deutsche mark options, Review of Financial Studies, 9(1), pp. 69–107, 1996.

[7] D. Bates, Post–87 crash fears in s&p futures options, Journal of Econometrics,
94(1-2), pp. 181–238, 2000.

[8] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal
of Political Economy, 81(3), pp. 637–659, 1973.

[9] P. Carr, H. Geman, D. Madan, and M. Yor, The fine structure of asset returns: an
empirical investigation, Journal of Business, 75(2), pp. 305–332, 2002.

[10] P. Carr and L. Wu, Finite moment log stable process and option pricing, Journal
of Finance, 58(2), pp. 753–777, 2003.

[11] P. Congdon, Bayesian Statistical Modelling, John Wiley & Sons, Ltd., 2001.

[12] R. Cont, Empirical properties of asset returns: stylized facts and statistical issues,
Quantitative Finance, 1, pp. 223–236, 2001.

[13] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman &
Hall/CRC, 2004.

[14] C.-O. Douc, R. and E. Moulines, Comparison of resampling schemes for particle
filtering., in 4th International Symposium on Image and Signal Processing and
Analysis (ISPA), 2005.

[15] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo methods in
practice, 2001.

75

[16] A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling
methods for bayesian filtering, Statistics and Computing, 10, pp. 197–208, 2000.

[17] A. Doucet, N. J. Gordon, and V. Krishnamurthy, Particle filters for state estima-
tion of jump Markov linear systems, IEEE Transactions on Signal Processing,
49(3), pp. 613–624, 2001.

[18] A. Doucet and A. M. Johansen, The Oxford Handbook of Nonlinear Filtering,
chapter A tutorial on particle filtering and smoothing: Fiteen years later, Oxford
University Press, 2010.

[19] D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine
jump–diffusions, Econometrica, 68(6), pp. 1343–1376, 2000.

[20] E. Eberlein, U.Keller, and K. Prause, New insights into smile, mispricing, and
value at risk: the hyperbolic model, Journal of Business, 71(3), pp. 371–405,
1998.

[21] T. Flury and N. Shephard, Bayesian inference based only on simulated likelihood:
Particle filter analysis of dynamic economic models, Econometric Theory, 27, pp.
933–956, 2011.

[22] S. Fruhwirth-Schnatter, Data augmentation and dynamic linear models, Journal
of Time Series Analysis, 15, p. 183–202, 1994.

[23] D. Gamerman and H. F. Lopes, Markov Chain Monte Carlo: Stochastic Simula-
tion for Bayesian Inference, Chapman & Hall/CRC, second edition, 2006.

[24] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis,
Chapman & Hall, 2003.

[25] J. Geweke, Bayesian Statistics 4, chapter Evaluating the Accuracy of Sampling
Based Approaches to the Calculation of Posterior Moments, pp. 169–193, Oxford
University Press, 1992.

[26] C. J. Geyer and L. T. Johnson, MCMC: Markov Chain Monte Carlo, 2015.

[27] W. Gilks, N. Best, and K. Tan, Adaptive rejection Metropolis sampling within
Gibbs sampling, Applied Statistics, 44, pp. 455–472, 1995.

[28] W. Gilks and P. Wild, Adaptive rejection sampling for Gibbs sampling, Applied
Statistics, 41, pp. 337–348, 1992.

[29] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo
in Practice, Chapman & Hall, 1996.

[30] J. Gill, Bayesian Methods: A Social and Behavioral Sciences Approach, Chap-
man & Hall/CRC, 2008.

[31] S. Graves, FinTS: Companion to Tsay (2005) Analysis of Financial Time Series,
2014.

[32] P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, Managing smile
risk, Wilmott Magazine, Sep, pp. 84–108, September 2002.

76

[33] J. Hallgren, Calibration of stochastic volatility models using particle Markov
chain Monte Carlo methods, in Bachelier Finance Society 7th World Congress,
2012.

[34] J. M. Hammersley and M. S. Clifford, Markov fields on finite graphs and lattices,
1970, unpublished.

[35] W. K. Hastings, Monte carlo sampling methods using markov chains and their
application, Biometrika, 57, pp. 97–109, 1970.

[36] S. Heston, A closed–form solution for options with stochastic volatility with ap-
plications to bond and currency options, Review of Financial Studies, 6, pp. 327–
343, 1993.

[37] S. Heston, A simple new formula for options with stochastic volatility, 1997,
working Paper.

[38] J. Hull and A. White, The pricing of options on assets with stochastic volatility,
Journal of Finance, 42(2), pp. 281–300, 1987.

[39] F. L. J. Dahlin and T. Schon, editors, Second Order Particle MCMC for Bayesian
Parameter Inference, Proceedings of the 19th IFAC World Congress, 2014.

[40] E. Jacquier, N. Polson, and P. Rossi, Bayesian analysis of stochastic volatility
models, Journal of Business and Economic Statistics, 12(4), p. 371–417, 1994.

[41] E. Jacquier, N. Polson, and P. Rossi, Bayesian analysis of stochastic volatility
models with fat-tails and correlated errors, Journal of Econometrics, 122(1), p.
185–212, 2004.

[42] M. Johannes and N. Polson, MCMC methods for continuous-time financial
econometrics, 2003, working Paper.

[43] A. Johansen and A. Doucet, A note on auxiliary particle filters, Statistics and
Probability Letters, 78(12), pp. 1498–1504, 2008.

[44] N. Kantas, A. Doucet, S. Singh, and J. Maciejowski, An overview of sequential
monte carlo methods for parameter estimation in general state-space models, in
15th IFAC Symposium on System Identification, SYSID 2009, 6-8 July 2009, 2009.

[45] S. Kim, N. Shephard, and S. Chib, Stochastic volatility: Likelihood inference
and comparison with ARCH models, Review of Economic Studies, 65, pp. 361 –
393, 1998.

[46] G. Kitagawa, Monte-carlo filter and smoother for non-Gaussian nonlinear state
space models, Journal of Computational and Graphical Statistics, 1, pp. 1–25,
1996.

[47] S. Kou, A jump diffusion model for option pricing, Management Science, 48(8),
pp. 1086–1101, 2002.

[48] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to fi-
nance, Chapman & Hall, 1996.

77

[49] H. Li, M. T. Wells, and C. L. Yu, A bayesian analysis of return dynamics with
Lévy jumps, The Review of Financial Studies, 21(5), pp. 2345–2378, 2008.

[50] J. Liu and R. Chen, Sequential Monte-Carlo methods for dynamic systems, Jour-
nal of the American Statistical Association, 93, p. 1032–1044, 1998.

[51] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, 2001.

[52] D. Madan, P. Carr, and E. C. Chang, The variance gamma process and option
pricing, European Finance Review, 2, pp. 79–105, 1998.

[53] R. Merton, The theory of rational option pricing, Bell Journal of Economics and
Management Science, 4(1), pp. 141–183, 1973.

[54] R. Merton, Option pricing when the underlying stock returns are discontinuous,
Journal of Financial Economics, 3(1-2), pp. 125–144, 1976.

[55] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
Equations of state calculations by fast computing machines, Journal of Chemical
Physics, 21, pp. 1087–1092, 1953.

[56] D. B. Nelson, ARCH models as diffusion approximations, Journal of Economet-
rics, 45(1-2), pp. 7–38, 1990.

[57] G. Petris and L. T. original C code for ARMS by Wally Gilks., HI: Simulation
from distributions supported by nested hyperplanes, 2013.

[58] G. Petris and L. Tardella, HI: Simulation from distributions supported by nested
hyperplanes, 2013, r package version 0.4.

[59] B. Pfaff, Analysis of Integrated and Cointegrated Time Series with R, Springer,
2008.

[60] M. Pitt and N. Shephard, Filtering via simulation: Auxiliary particle filter, Journal
of the American Statistical Association, 94(446), pp. 590–599, 1999.

[61] M. K. Pitt and N. Shephard, Sequential Monte Carlo Methods in Practice, chapter
Auxiliary variable based particle Filters, pp. 271–293, Springer-Verlag, 2001.

[62] M. Plummer, N. Best, K. Cowles, and K. Vines, CODA: Convergence diagnosis
and output analysis for MCMC, R News, 2006.

[63] C. Ritter and M. A. Tanner, Facilitating the Gibbs sampler: The Gibbs stopper
and the griddy-Gibbs sampler, Journal of the American Statistical Association,
87(419), pp. 861–868, 1992.

[64] C. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to Com-
putational Implementation, Springer, 2001.

[65] C. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, 2004.

[66] P. Samuelson, Rational theory of warrant pricing, Industrial Management Review,
6, pp. 13–31, 1965.

78

[67] W. Schoutens, Lévy Processes in Finance, John Wiley & Sons, Ltd., 2003.

[68] L. O. Scott, Option pricing when the variance changes randomly: Theory, esti-
mation, and an application, The Journal of Financial and Quantitative Analysis,
22(4), pp. 419–438, 1987.

[69] M. Sewell, Characterization of financial time series, http://finance.
martinsewell.com/stylized-facts/characterization.pdf,
2008.

[70] J. Smith and A. A. Santos, Second-order filter distribution approximations for fi-
nancial time series with extreme outliers, Journal of Business & Economic Statis-
tics, 24, pp. 329–337, 2006.

[71] E. M. Stein and J. C. Stein, Stock price distributions with stochastic volatility:
An analytic approach, The Review of Financial Studies, 4(4), pp. 727–752, 1991.

[72] S. J. Taylor, Time Series Analysis: Theory and Practice 1, chapter Financial Re-
turns Modelled by the Product of Two Stochastic Processes: A Study of Daily
Sugar Prices, 1961–79, North-Holland Publishing Company, 1982.

[73] S. J. Taylor, Modelling Financial Time Series, John Wiley, 1986.

[74] L. Tierney, Markov chains for exploring posterior distributions (with discussion),
The Annals of Statistics, 22(4), pp. 1701–1762, 1994.

[75] M. West and J. Harrison, Bayesian Forecasting and Dynamic Models, Springer,
1997.

[76] J. B. Wiggins, Option values under stochastic volatility: Theory and empirical
estimates, Journal of Financial Economics, 19(2), pp. 351–372, 1987.

[77] A. Yuksel, Markov Chain Monte Carlo and Particle Filtering Methods for
Stochastic Volatility Models, Master’s thesis, Department of Statistics, Warick
University, 2010.

79

http://finance.martinsewell.com/stylized-facts/characterization.pdf
http://finance.martinsewell.com/stylized-facts/characterization.pdf

80

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yüksel, Ayhan
Nationality: Turkish
Date and Place of Birth: 1978, Ankara

EDUCATION

Degree Institution Year
Ph.D. Financial Mathematics, METU 2015
M.S. Statistics, Warwick University 2010
M.S. Financial Mathematics, METU 2007
B.S. Business Administration, Bilkent University 2000

PROFESSIONAL CERTIFICATES

Certificate Year
FRM Financial Risk Manager 2007
PRM Professional Risk Managers 2008
CFA Chartered Financial Analyst 2010
CMAL Capital Market Activities Licenses 2011

PROFESSIONAL EXPERIENCE

Year Place Title
2015 - To Date Finans Invest Senior Vice President
2010 - 2015 Finans Asset Management Vice President
2000 - 2010 BRSA Banking Expert
2000 Vakıfbank Assistant Internal Auditor

81

RESEARCH AND PUBLICATIONS

• Bayesian Inference for Stochastic Volatility Models: An Empirical Implemen-
tation, Financial Engineering Conference, Oct 2011, Izmir University of Eco-
nomics.

• Markov Chain Monte Carlo and Particle Filtering Methods for Stochastic Volatil-
ity Models, MSc Thesis in Department of Statistics, Warwick University, Sep
2010.

• Credit Risk Modelling with Stochastic Volatility, Jumps and Stochastic Interest
Rates, MSc Thesis in Department of Financial Mathematics, METU, Dec 2007.
Published as a book by Lambert Academic Publishing AG in Aug 2010.

• A Macro-econometric Credit Risk Model for Stress Testing Credit Portfolio,
paper presented at 13th Annual Conference of Multinational Finance Society,
University of Edinburgh, UK, in June 2006.

• Credit Risk Modelling in Banking, Thesis, BRSA, Dec 2005.

• Potential Impacts of Basel-II on SME Loans, Working Paper, BRSA, Aug 2005.

• Basel-II Quantitative Impact Study Assessment Report, Research Report, BRSA,
Dec 2004.

82

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	Gaussian Assumption
	Stochastic Volatility Models
	Jump Models
	Estimation Challenges and Bayesian Approach
	Structure of the Thesis

	MARKOV CHAIN MONTE CARLO METHODS
	A Simple Stochastic Volatility Example
	Bayesian Approach to Inference
	Markov Chain Monte Carlo Methods
	General Setup
	Gibbs Sampler
	Random Walk (within Gibbs) Algorithm
	Independence (within Gibbs) Algorithm
	Block Sampling

	PARTICLE FILTERING
	Sequential Importance Sampling (SIS)
	Sequential Importance Sampling and Resampling (SISR)
	Optimal Importance Distribution and Adapted Filtering
	Auxiliary Particle Filtering

	PARTICLE MCMC
	Particle Independent Metropolis–Hastings Sampler
	Particle Gibbs Sampler

	PMCMC FOR A TIME CHANGED LÉVY MODEL
	A Time Changed Lévy Model
	MCMC
	Particle Filtering
	PMCMC
	Empirical Implementation
	Appendix

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

