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ABSTRACT

VISION-BASED DETECTION AND DISTANCE ESTIMATION OF MICRO
UNMANNED AERIAL VEHICLES

Gökçe, Fatih

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Göktürk Üçoluk

September 2015, 95 pages

In this thesis, we study visual detection and distance estimation of Micro Unmanned
Aerial Vehicles (mUAVs), a crucial problem for (i) intrusion detection of mUAVs in
protected environments, (ii) sense and avoid purposes on mUAVs or on other aerial
vehicles and (iii) multi-mUAV control scenarios such as environmental monitoring,
surveillance and exploration. The problem is challenging since (i) a real-time so-
lution is required, a burden when computational power is limited by the hardware
carried by an mUAV, (ii) non-convex structure of the mUAVs causes the bounding
box of mUAVs to include very different background patterns, (iii) background pat-
terns from indoor or outdoor are very complex with different characteristics and can
include moving objects, (iv) mUAVs tilt and rotate unavoidably resulting in very large
changes in their appearances, (v) when the camera is not stationary, motion blur is a
problem, and (vi) illumination direction and brightness changes cause different im-
ages. We evaluate vision algorithms for this problem, since other sensing modalities
limit the environment or the distance between the mUAVs. We test Haar-like features,
Local Binary Patterns (LBP) and Histogram of Gradients (HOG) using boosted cas-
caded classifiers. We also integrate a distance estimation method utilizing geometric
cues with Support Vector Regressors. We evaluated each method on indoor and out-
door videos collected systematically and on videos with motion blur. Our experiments
show that, using boosted cascaded classifiers with LBP, near real-time detection and
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distance estimation of mUAVs are possible in about 60 ms indoors (1032× 778 reso-
lution) and 150 ms outdoors (1280× 720 resolution) per frame, with a detection rate
of 0.96 F-Score. However, classifiers of Haar-like features lead to better distance esti-
mation since they position the bounding boxes on mUAVs more accurately. Our time
analysis yields that classifiers of HOG train and run faster than the other algorithms.

Keywords: micro UAV, computer vision, detection, distance estimation, cascaded
boosted classifiers, Haar-like features, LBP, HOG
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ÖZ

MİKRO İNSANSIZ HAVA ARAÇLARININ BİLGİSAYARLI GÖRME TABANLI
ALGILANMASI VE MESAFE KESTİRİMİ

Gökçe, Fatih

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Göktürk Üçoluk

Eylül 2015 , 95 sayfa

Bu tezde, mikro insansız hava araçlarının (mİHA) görsel olarak algılanması ve me-
safe kestirimi üzerinde çalıştık. Bu problem, korunması gereken alanlara izinsiz giren
mUAV lerin algılanması, mİHA lar veya diğer hava araçlarının algılama ve kaçınma
sistemleri ve çoklu mİHA kontrol senaryoları için önemlidir. Şu nedenler bu prob-
lemi zorlaştırmaktadır: (i) Gerçek zamanlı bir çözüm gerekmektedir. mİHA ların ta-
şıyabilecekleriyle kısıtlı donanımlar düşünüldüğünde bu oldukça zordur. (ii) mİHA
ların konveks olmayan yapıları sebebiyle, mİHA ları içine alan görüntü pencere-
sinde, değişik arka plan görüntüleri de bulunur. (iii) Arka plan görüntüleri karma-
şıktır ve hareketli nesne içerebilir. (iv) mİHA ların eğilmeleri ve dönmeleri görü-
nümlerini değiştirir. (v) Kamera sabit değilse, hareket bulanıklığı bir problemdir. (vi)
Aydınlatma yönündeki ve parlaklıktaki değişiklikler, görüntülerde büyük farklılıklara
sebep olur. Diğer yöntemler, ortam ve mesafeyi sınırlandırdığı için, problemimizin
çözümünde görsel verilerin kullanımını değerlendirdik. Bu amaçla, HAAR benzeri
öznitelikler, lokal ikili örüntü (LBP) ve yönlü gradyan histogramları (HOG) yöntem-
lerini kademeli sınıflandırıcılarla test ettik. Sistemimize aynı zamanda, mesafe kes-
tirimi için destek vektör regresörü tabanlı bir yöntemi ekledik. Herbir yöntemi, iç
ve dış ortamlarda sistematik şekilde topladığımız görüntülerle ve hareket bulanık-
lığı içeren görüntülerle test ettik. Testlerimiz, kademeli sınıflandırıcıların LBP ile
kullanımıyla gerçek zamanlı çalışmaya yakın hızda (iç ortam:60 ms@1032× 778,
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dış ortam:150 ms@1280× 720) ve yüksek hassasiyette (0.96 F-ölçütü) algılama ve
mesafe kestiriminin mümkün olduğunu göstermektedir. HAAR benzeri öznitelikle-
rin kullanımı, mİHA ların görüntü içerisinde bulunduğu alanı daha hassas şekilde
konumlandırdığı için, daha iyi mesafe kestirimi sağlamaktadır. Zaman analizlerimiz
HOG yönteminin öğrenme ve çalışma zamanları açısından diğer algoritmalardan daha
hızlı çalıştığını göstermektedir.

Anahtar Kelimeler: mikro İHA, bilgisayarlı görme, algılama, mesafe kestirimi, kade-
meli kuvvetlendirilmiş sınıflandırıcılar, Haar-benzeri öznitelikler, LBP, HOG
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tributions during MRC project of TAI. Sertaç Olgunsoylu, for installing and writing
software to make sure the indoor camera used in this study could capture frames. Os-
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CHAPTER 1

INTRODUCTION

Advances in the development of micro Unmanned Aerial Vehicles (mUAVs)1 have

led to the availability of highly capable, yet cheap flying platforms2. This has made

the deployment of mUAV systems in surveillance, monitoring and delivery tasks a

feasible alternative. The use of mUAVs in monitoring the state of forest fires where

the mission spreads over a large region, and flying over the fire is dangerous [106],

or in delivering packages in urban areas as a faster and cheaper solution [3] is being

explored. Moreover, the widespread interest in the public has also resulted in mUAVs3

showing up in places, such as the White House, where conventional security measures

are caught unprepared [42], or in traffic accidents or in fires where the presence of

mUAVs, flown by hobbyists or news channels to observe the scene, posed a danger

to police and fire-fighter helicopters, and resulted in delays in their deployment [65].

mUAVs have also been employed in swarm robotics research where the aim is to

exploit the availability of multiple robots to accomplish complex goals collectively,

faster and more efficiently than a single robot [20]. In all of these cases, the need for

the automatic detection4 and distance estimation of mUAVs, either from the ground

or from a flying platform (which can be another mUAV or a helicopter) against a

possibly cluttered background is apparent.

The main objective of this thesis is the evaluation of vision as a sensor for detection

and distance estimation of mUAVs. This problem poses a number of challenges: First,

1 mUAVs are UAVs less than 5 kg [18].
2 This chapter is partially published in [38].
3 which are often referred to as drones
4 In this study, detection is considered as both determining the presence of an mUAV and estimation of its

bounding box in the image when it is used in the context of computer vision.
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mUAVs are small in size and often do not project a compact and easily segmentable

image on the camera. Even in applications where the camera is facing upwards and

can see the mUAV against a rather smooth and featureless sky, the detection poses

great challenges [25, 26]. In multi-mUAV applications where each platform is re-

quired to sense its neighbors and in applications where the camera is placed on a

pole or on a high building for surveillance, the camera is placed at a height that is

the same or higher than the incoming mUAV, and the image of the mUAV is likely

to be blended against feature-rich trees and buildings, with possibly other moving

objects in the background, so the detection and distance estimation problem becomes

challenging. Moreover, in multi-mUAV applications, the vibration of the platform,

as well as the size, power, weight and computational constraints posed on the vision

system also need to be considered.

Within this thesis, we present our work towards the development of an mUAV de-

tection and distance estimation system. Specifically, we have created a system for

the automatic collection of data in a controlled indoor environment, proposed and

implemented the cascaded approach with different features and evaluated the detec-

tion performance and computational load of these approaches with systematic exper-

iments on indoor and outdoor datasets. We evaluated robustness of the approaches to

motion blur on a dataset created by artificially blurring the indoor dataset. We also

developed a method to estimate the distance of an mUAV using the size of the detec-

tion window. We performed indoor experiments to evaluate the performance of this

approach in terms of both distance and time-to-collision estimation.

The main contribution of this thesis is a systematic analysis on whether a mUAV can

be detected and its distance can be estimated using a generic vision system under

different motion patterns both indoors and outdoors. The tested indoor motion types

include lateral, approach-leave, up-down and rotational motions that are precisely

controlled using the physical platform that we constructed. In the outdoor experi-

ments, we tested the approaches on videos where the mUAV performs both “calm”

and “agile” motions. The effect of moving objects in the background is also ana-

lyzed with another outdoor test video. Moreover, the effect of motion blur is also

analyzed in a controlled manner. To the best of our knowledge, this is the first study

that presents comprehensive and systematical investigation of the computer vision
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for detection and distance estimation of mUAVs. We showed that using computer

vision near-real time detection and distance estimation of mUAVs is possible with

high accuracy. Furthermore, different from some earlier studies, whose details will

be given later, reducing the problem to circular ring detection [31, 50] or augmented

reality marker detection [71] by placing circular rings or markers on mUAVs, our ap-

proaches use the appearance of the mUAV itself without simplifying the problem via

such special objects.

As another contribution, we are making our dataset, which we prepared for this study,

publicly available. This is also crucial, since such datasets are very hard to prepare

and to the best of our knowledge, no dataset is currently available for working the

visual detection or distance estimation of mUAVs.

The thesis is organized as follows. In Chapter 2, we review the related literature.

Chapter 3 presents the details of cascaded methods we utilized. Experimental setups

and the details of our dataset is provided in Chapter 4. We present the results of

our experiments in Chapter 5. We conclude the thesis in Chapter 6 by providing our

conclusions, future works and related discussions.
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CHAPTER 2

RELATED STUDIES

In this chapter1, we review the relevant studies in two parts. In the first part, general

computer vision approaches related with object detection are reviewed. The second

part summarizes the efforts in the literature on detection and distance estimation of

mUAVs using various modalities.

2.1 Object Detection Approaches with Computer Vision

In Computer Vision and Pattern Recognition (CVPR), object detection has been ex-

tensively studied (see [4, 16] for comprehensive reviews), with applications rang-

ing from human detection, face recognition to car detection and scene classifica-

tion [10, 11, 23, 61, 85, 94]. The approaches to detection and recognition can be

broadly categorized into three: keypoint-based approaches, hierarchical approaches

and cascaded approaches.

2.1.1 Keypoint-based Approaches

In keypoint-based methods, CVPR usually detects salient points, called interest points

or keypoints, in the “keypoint detection” phase (See Figure 2.1). In this phase, regions

in the image that are likely to have important information content are identified. The

keypoints should be as distinctive as possible and should be invariant, i.e., detectable

under various transformations. Popular examples of keypoint detectors include Fast

1 This chapter is partially published in [38].
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corner cetection (FAST) [79, 88], Harris corner detection (HARRIS) [39], Maximally

Stable Extremal Region extractor (MSER) [66], Good Features To Track (GFTT) [86]

- see [90] for a survey of local keypoint detectors.

In the next phase of keypoint-based approaches, which is the “feature extraction”,

intensity information at these keypoints is used to represent the local information in

the image invariant to transformations, such as rotation, translation, scale and illu-

mination. Examples of the keypoint descriptors include Speeded-Up Robust Fea-

tures (SURF) [8], Scale Invariant Feature Transform (SIFT) [62], Binary Robust In-

dependent Elementary Features (BRIEF) [15], Oriented FAST and Rotated BRIEF

(ORB) [81], Binary Robust Invariant Scalable Keypoints (BRISK) [55], Fast Retina

Keypoint (FREAK) [92].

Extracted features are usually high dimensional (e.g., 128 in the case of SIFT, 64

in SURF, etc.), which makes it difficult to use distributions of features for object

recognition or detection. In order to overcome this difficulty, the feature space is first

clustered (such as using k-means), and the cluster labels are used instead of high-

dimensional features for example by deriving histograms of features for representing

objects. This approach, called the bag-of-words (BOW) model, has become very

popular in object recognition (see, e.g., [21, 70, 103]). In BOW, histograms of cluster

labels are used to train a classifier, such as a Naive Bayes classifier or a Support Vector

Machine [19], to learn a model of the object.

In the testing phase of BOW, a window is slid over the image, and for each posi-

tion of the window in the image, a histogram of the cluster labels of the features in

that window is computed and tested with the trained classifier. However, the scale

of the window imposes a severe limitation on the size of the object that can be de-

tected or recognized. This limitation can be overcome to only a certain extent by

sliding windows of different scales. However, this introduces a significant computa-

tional burden, making it unsuitable for real-time applications. Moreover, topological

information about the features are lost when the histograms are generated which is an

important piece of information for a learning system.
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Figure 2.1: Phases of the keypoint-based bag-of-words (BOW) approach for object

detection. Figure is adapted from [32] c© 2005 IEEE.
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2.1.2 Hierarchical Approaches

In these approaches, shape, texture and appearance information at different scales and

complexities is processed, unlike the regular keypoint-based approaches. Processing

at multiple levels has been shown to perform better than the alternative approaches

(see, e.g., [51]).

In hierarchical approaches, such as the deep learning approaches [54], features of

varying scale are processed at each level: in lower levels of the hierarchy, low-level

visual information, such as gradients, edges etc. are computed, and with increasing

levels in the hierarchy, features of the lower levels are combined, yielding corners or

higher-order features that start to correspond to object parts and to objects. At the top

of the hierarchy, object categories are represented hierarchically. In the hierarchical

approaches, the information needs to be processed through all the levels for detection.

2.1.3 Cascaded Approaches

Cascaded approaches also keep a multi-level approach similar to hierarchical ap-

proaches but prune processing as early as possible if a detection does not seem likely.

Those approaches are inspired from ensemble learning approaches [27] in machine

learning, perform fast but coarse detection at early stages and pass only the candidate

regions resulting from earlier stages on to higher stages where finer details undergo

computationally-expensive detailed processing as illustrated in Figure2.2. These ap-

proaches benefit from speed ups by processing candidate regions that are highly likely

to contain a match [80].

A prominent study by Viola and Jones [94, 95] which builds cascades of classifiers

at varying complexities using Haar-like features and adopting the Adaboost learning

procedure [34] forms the basis of our study. Viola and Jones [94, 95] applied their

method to face detection and demonstrated high detection rates at high speeds. The

approach was later extended to work with multi-block Local Binary Patterns (MB-

LBP) for face detection [107], and Histogram of Oriented Gradients (HOG) for hu-

man detection [109], which are more descriptive and faster to compute than Haar-like

features.
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Figure 2.2: The stages of processing in a cascaded approach. At each stage, a decision

to reject or to continue processing is made. If all stages pass, then the method declares

the detection of the object. Figure is taken from [38].

2.2 Review on Relative Localization Systems for mUAVs

In this part of our review, we present studies from robotics literature including a

relative localization system for mUAVs, since these studies become relevant when we

consider detection and distance estimation of mUAVs. We should note that our aim in

this thesis is not to develop a full-fledged relative localization system. However, once

an mUAV is detected in an image, its relative bearing and elevation can be estimated

easily and combination of these bearing and elevation information with the distance

estimation results in a relative localization system.

We classify the literature on relative localization systems with respect to underlying

main modality employed as (1) radio signals, (2) infrared signals, (3) sound signals,

and (4) computer vision. Figure 2.3 provides the classification of these modalities

with their sub-categories and also includes relevant references in each category.

As mentioned earlier, the requirement for a relative localization system is three-fold:

(1) For intrusion detection purposes around non-public or private territories, (2) For

sensing and avoiding purposes of mUAVs or manned aerial vehicles such as airplanes

and helicopters, and (3) For using on mUAVs to develop swarms of mUAVs perform-

ing complex missions like environmental monitoring, surveillance and exploration.

Depending on the application where the relative localization system is used, the ex-

pected requirements of the system will change.
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In our review, the studies related to only 3D localization are included by excluding

the studies on 2D localization of ground robots, since they assume a planar work-

ing environment and non-tilting robots which are not valid for mUAVs navigating in

3D space. We preferred also to include mostly the studies employing real mUAVs,

however, there are some exceptions. We included these studies, since their eventual

objective is to develop systems to be used with mUAVs and their results are poten-

tially useful.

2.2.1 Radio Signals

One widely-used approach with radio signals is Global Positioning System (GPS).

GPS is the world-wide positioning system enabling a GPS module to locate itself on

the earth via receiving radio signals from the GPS satellites orbiting around the world.

In a cooperative scenario, each mUAV can be equipped with GPS receivers and share

their positions with other agents [40, 93, 105] or with a central control station via

wireless communication [14, 44, 75]. However, GPS signals could be affected by

weather, nearby hills, buildings, and trees. The service providers may also put limita-

tions on the availability and accuracy of the GPS signals. Moreover, the accuracy of

GPS signals is not sufficient for discriminating between close-by neighboring agents

unless a Real-Time Kinematic GPS (RTK-GPS) system is used [13, 41].

RTK is a solution to eliminate the errors in standard GPS and to get centimeter level

accuracy utilizing carrier-phase measurements. However, RTK needs a fixed base sta-

tion within 6-10 miles of operating area and a wireless communication link between

the base station and rover unit(s). Moreover, the initialization of RTK system requires

five common satellites to be tracked by base station and the rover(s) and takes around

30-40 minutes. Once initialization is completed four satellites should be continuously

tracked to get an RTK positioning. If the fixation is lost, a new initialization procedure

is needed.

Due to high costs of commercial RTK solutions, there are also attempts to develop

affordable products. Piksi2 and Reach3 are among these efforts. For high-security

2 http://www.swiftnav.com/piksi.html
3 http://www.emlid.com/reach/
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demanding applications such as military, development of RTK systems conforming

both Selective Availability Anti-Spoof Module (SAASM) feature and Size, Weight,

and Power (SWaP) constraints is critical since most of the current RTK products are

susceptible to spoofing and jamming. In [13], such a product from Rockwell Collins

Inc. is used for relative positioning small unmanned aircraft systems.

Radar is commonly used in planes, but currently no commercial product is available

satisfying SWaP constraints of mUAVs. In [68, 69], an X-band radar weighing only

230 gr is developed and tested on mUAVs. It is capable of detecting and identifying

mUAVs. Distance measurement is reported as possible with this radar, however no

test result is available. Patent rights of this radar is transferred to Integrated Robotics

Imaging Systems4 company. The company is aiming to integrate this radar to its

mUAV and than to make it available to the market.

Technologies such as ultra-wide band (UWB) and chirp spread spectrum (CSS) en-

able relative distance measurement based on time-of-flight measurement of radio sig-

nals. Due to beacon units requirement, onboard 3D relative positioning relying fully

on these technologies seems to be not possible. However, these technologies are very

appropriate to be integrated with other approaches as an aiding method. Although it is

in simulation, there is also effort to develop formation control algorithms depending

on only relative distances [17] which may eventually lead to real systems by utilizing

UWB and CSS technologies.

Received signal strength (RSS) information on receiver side depends on the distance

between the transmitter and the receiver. Hence, RSS allows to estimate the distance

between the transmitter and the receiver. However this approach has some limitations.

RSS does not change linearly with the distance and it is affected from alignment of

the antennas and from the objects in the environment. Therefore, an accurate distance

estimation is not feasible. Moreover, in order to be able to locate an mUAV, multiple

distance measurements obtained from different beacon receivers are required. Re-

quirement of multiple beacons limits the environment where such a system is used.

4 http://www.uav-alaska.com/
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2.2.2 Infrared Signals

Infrared (IR) is an electromagnetic radiation whose wavelength is longer than visible

light and ranges between 700 nm and 1 mm. IR travels at the speed of the light and is

invisible to human eyes.

The IR light emitted by IR LEDs at certain wavelengths can be converted to electric

current by photodiodes. As an approximation, the amount of electric current gener-

ated by a photodiode is inversely proportional to the square of distance between the

photodiode and the IR light source. Therefore, it is possible to estimate the distance

by measuring the output of photodiode as the received signal strength. A relative lo-

calization system could be developed by placing multiple IR LEDs and photodiodes

around an mUAV [76, 78, 99]. In such a system, the LEDs emit IR light by flick-

ering at a certain frequency and the output of photodiodes is filtered and amplified.

The level of amplified signal is used to estimate the distance. The relative bearing

and elevation can be estimated by inspecting which of the receivers on the mUAV get

the signal. In order to get an omni-directional and a highly precise coverage, large

number of IR LEDs and photodiodes should be placed on the mUAVs. This would

increase SWaP of the system. Moreover, to achieve an accurate system, LEDs and

photodiodes should be precisely mounted.

Use of modulated light and filtering reduces the interference with signals in the en-

vironment. If different frequencies are selected for each mUAV, then the interference

between the mUAVs can also be eliminated [99], however this increases the complex-

ity of the hardware. If the same frequency is used for all mUAVs then a time sharing

protocol is needed to ensure that only one mUAV is emitting IR light at a certain

time [78]. But in this case the update rate of the system will be affected. Consider-

ing that the speed of IR light is very high, obtaining a sufficient update rate can be

possible.

Environmental reflections can change the intensity of the signals received which

causes skews in the accuracy. Therefore, when the environment changes, the accu-

racy of the system can be affected if the reflectivity of the objects in the environment

is different from the ones used in calibration.

13



Once an mUAV emits IR light, the light can reflect back from obstacles making it

possible to measure distances to obstacles. In this way, the system can also be uti-

lized for navigation purposes with modifying only its software [78]. Communication

among mUAVs is also possible, however, the bandwidth would be very low [99].

RSS for a signal coming from far will be very low and a large gain amplifier will be

needed. However, this high gain would result in saturation of the signals for short

distances due to non-linear relation between RSS and distance. For solving this prob-

lem and get a larger and more linear dynamic range with increased signal-to-noise

ratio and resolution, cascaded filtering technique can be utilized [78]. In this tech-

nique, full distance is divided into complementary regions, where for each region, a

specific amplifier is used. Even with this enhancement, the distance estimation errors

increases with the increasing distance.

All of the studies mentioned above are operating indoors. Due to excessive IR com-

ponent in the sunlight, photodiodes may get saturated. AC coupling can be utilized to

overcome this problem [78]. This technique is very effective indoors even for large

ambient light changes, however, no result is available for outdoor. The operation in

the night or in dark environments would be much easier.

IR LEDs can also be used in combination with IR cameras where it is possible to de-

tect and localize an mUAV having IR LEDs mounted on it using vision methods. Due

to its more close relation to vision, this approach will be presented in Section 2.2.4.1.

2.2.3 Sound Signals

Sound signals, audible (20 Hz to 20 kHz) or ultrasound (above 20 kHz) travels at a

speed of 340.27 m/s in dry air at 15◦C. This slow propagation speed allows to mea-

sure Time of Flight (ToF) or Time Difference of Arrivals (TDoA) among multiple

receivers using simple microcontrollers to estimate distance. With single transmitters

and receivers mounted on each mUAV, only relative distances can be obtained. Mul-

tiple receivers mounted an mUAV can be used to localize other mUAVs carrying a

transmitter using (1) trilateration and (2) multilateration.

In trilateration, ToF measurements between the transmitter and each of the receivers
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are needed. A ToF measurement between the transmitter and a receiver gives the

distance between them. Having at least four such distances, 3D relative position of

the transmitter can be found by calculating the intersection of four spheres. To be able

to measure ToF of the sound signal, the time when the transmission begins should be

known at the receiver side. For this purpose, a wireless communication channel is

needed in trilateration through which the transmitter sends a message when it starts

the transmission.

Multilateration depends on TDoA measurements. Time differences between the ar-

rivals of the sound signal to different receivers can be measured without knowing

the start time of the signal. Therefore, no wireless communication is needed. Each

time difference gives an equation of hyperboloid, since for two receivers at known

positions and for a certain TDoA, the locus of possible transmitter locations forms a

hyperboloid. If there are at least four different TDoA measurements, relative position

of the transmitter can be calculated as the intersection of four hyperboloids.

Both trilateration and multilateration work accurately only if ToF and TDoA mea-

surements are accurate. However, it is not possible to measure these times exactly.

Moreover, the maximum distances between the receivers on an mUAV are very small

resulting in a poor geometry for Geometric Dilution of Precision (GDOP). Combined

with the errors in ToF and TDoA measurements, this poor geometry causes large er-

ror bound for the possible locations of the transmitter. These problems can be solved

by fusing TDoA measurements with inertial sensors and by applying some filtering

methods such as particle filtering [6, 7]. In this approach, TDoA measurements are

used to estimate relative bearing and elevation of other mUAV. Then, particle filtering

is utilized to robustly estimate relative position by fusing erroneous bearing and el-

evation estimations with the relative motion information of the mUAVs gathered via

the inertial measurement sensors and shared between the platforms through a com-

munication network.

Slow speed of sound limits achievable maximum update rate of a localization system.

In addition, since only one transmitter can be active at a given time, the update rate of

the system will decrease as the number of mUAVs in the swarm increases. Further-

more, sound signals are prone to reflections which complicate to identify incoming
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signals correctly.

Audible [6, 7] or ultrasound signals can be used to develop a relative localization sys-

tem with their own advantages and disadvantages. There are omnidirectional trans-

ducers in audible band, however, ultrasound transducers have narrower beam angles

which requires lots of sensors to develop an omnidirectional system. The systems

working in audible band are more susceptible to noise sources since most of the

sound signals in the environment are in audible band. In this respect, the sound of

the motors on mUAVs becomes the first and unavoidable disturbance source in the

system [6, 7].

2.2.4 Computer Vision

Electro-optic cameras capture frames by projecting the light (visible or not) incom-

ing to their lenses onto their imaging sensors. Imaging sensors have a number of

pixels and each pixel converts the light to a digital value so that we get digital image

frames. Various properties of the captured scene can be understood by processing

these frames. The literature reviewed under this section utilizes computer vision,

image processing and pattern recognition techniques on digital images to develop lo-

calization systems. We divided the literature of this section into four according to

the properties of the images utilized: (1) including active markers mounted on the

mUAVs, (2) including passive markers mounted on the mUAVs, (3) including the

surrounding scenes of the mUAVs to utilize environmental cues, and (4) including

mUAVs without any special markers to sense the mUAVs directly via their native

appearance.

2.2.4.1 Use of Active Markers

It is possible to attach active markers to pre-defined points on mUAVs and use them

for sensing. For being able to use these markers, one should first detect them in the

images. For making this detection easier, commonly IR LED markers and cameras

with day-light filter [30, 102] or power LEDs emitting visible light and standard cam-

eras with IR filter [24, 64, 101] are used. In this way, a dark image with bright points

16



indicating the markers can be obtained and a simple thresholding give blobs for the

markers. Then using a blob detection algorithm, pixel coordinates of the markers are

obtained. One other approach is to use IR LEDs with the camera detached from Wii

Remote which tracks up to four LEDs only [22, 29, 100].

Once the markers are located in the image, correspondences between 2D marker

positions and actual markers should be determined. Then relative position of the

mUAV can be calculated by solving the well known Perspective-n-Point (PnP) prob-

lem which is the estimation of the camera pose using a 3D-2D corresponding point

set. Here n defines the number of markers. At least three markers are required to

obtain a solution. It is appropriate to place more than three markers on the mUAVs

to increase the accuracy and to overcome any occlusion problem. Solution of PnP

provides also the attitude of other mUAVs which could be useful but not a crucial

requirement of a relative localization system.

Since the markers are active, the system can operate day and night. The system can

work with multiple mUAVs as long as the 3D point patterns on different mUAVs are

distinct. The accuracy of the system depends on the resolution of the camera and

decreases with the distance.

2.2.4.2 Use of Passive Markers

In this approach, the mUAVs are localized by detecting predefined passive markers

mounted on them. Since no power is required to activate markers, this approach is

advantageous over active marker usage in terms of power requirements, but sufficient

lightning is required for proper operation.

Different types of markers can be utilized. One type is planar markers which enable

the localization by detecting only a single marker. These markers can include planar

geometric shapes such as circular ring [31, 50, 82] or colored circle [89] or planar

augmented reality (AR) markers [71]. Distinctive nature of these markers due to their

simple geometric shape, color or pattern allows fast and easy detection. In case of

geometric shapes, the size and appearance of the markers enable bearing, elevation

and distance estimation, for example, by fitting an ellipse to the contour points of the
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detected shape in case of a certain size circular marker. AR markers allow to esti-

mate relative position of the camera with respect to the marker due to their inherent

properties. Maximum detection distance depends on the size of markers and the cam-

era resolution, and the accuracy decreases with distance. However, physical size and

payload capacity, and the processing power of the mUAV limits the marker size and

the camera resolution, respectively. Although detection of a single planar marker is

enough for localization, due to their planarity, multiple markers should be mounted

around the mUAV to obtain omni-directional coverage.

The problem due to size limitation of a single marker can be overcome by placing

multiple relatively small 3D objects like colored balls [47] on pre-defined points on

each mUAV. After detecting these objects in the image and finding their correspon-

dences, the problem becomes PnP similar to the case where active markers are used

(Section 2.2.4.1). Regarding the scalability to multiple mUAVs, occlusion and accu-

racy problems stated for active markers hold also for this method.

2.2.4.3 Sensing via Environmental Cues

mUAVs can also locate each other by sharing the visual information they obtain about

environment among themselves. For example, with monocular down looking cameras

mounted on the mUAVs, they can locate each other by sharing the images among each

other and utilizing inertial measurement units (IMU) [2]. In this method, camera

images on different mUAVs should have an overlapping region so that transformation

between two cameras are calculated using the corresponding feature points in this

region. But, this transformation is not in absolute scale. Absolute scale is estimated

using IMU data inside an Extended Kalman Filter (EKF) framework.

In another method, each mUAV builds partial map of the environment and localizes

itself on this map via Simultaneous Localization and Mapping (SLAM). Each mUAV

shares its local map and the image frames captured by its camera with a central global

mapping module (GMM). GMM can be either a ground station computer [33, 83] or

a computationally more powerful mUAV in the swarm. Although the latter is feasible

with current technology, no implementation is available in the literature. Collect-

ing images and local maps from each mUAV requires a communication channel with
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high bandwidth. This bandwidth requirement can be overcame by sharing only fea-

tures in some key frames with relative pose estimates [33]. GMM also demands high

processing power due to costly operations required for identifying loop closures and

path intersections of mUAVs.

2.2.4.4 Direct Sensing via Native Appearance of mUAVs

Unlike approaches placing predefined markers on the mUAVs and reducing the prob-

lem to the localization of those markers, this approach utilizes directly the native

appearance of actual mUAV. In this respect and also due to large appearance varia-

tions resulting from viewpoint changes, the problem becomes harder. Moreover, if the

mUAV is in concave structure, the varying background patterns inside the bounding

box encapsulating the mUAV also complicate the problem.

Object detection techniques in the literature can be applied to the problem. How-

ever, real-time requirements and processing power available on the platforms limit the

applicable techniques. Boosted cascaded classifiers are well suited for this purpose

since they achieve real-time performance with high detection rate[59, 95, 108]. These

classifiers are composed of multiple stages with increasing complexities. Candidate

bounding boxes passing all stages are considered as true detection, and any failure

at earlier stages results in pruning of the region. Therefore, most of the regions are

pruned with simpler checks performed at earlier stages. Only a small portion of the

regions is checked with more complex stages. In this way, these classifiers perform

faster than the classifiers having only single complex stage.

Training of cascaded classifiers requires mUAV and background images. Collection

of descriptive training image set is critical for the performance of the system. Differ-

ent feature extraction methods can be used such as Haar-like features (extensions of

Haar wavelets to images), Local Binary Patterns (LBP) and Histogram of Oriented

Gradients (HOG)5. Via boosting, most descriptive features are selected and used to

create classifier stages with increasing complexities.

The first use of cascaded classifiers for mUAV detection appears in [59] by Lin et
5 To the best of our knowledge, there is no study in the literature using LBP and HOG with cascaded classifiers

to sense mUAVs until this study. See Table 2.1.
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al. The authors demonstrated a leader-follower formation flight of two quadrotor

mUAVs in an outdoor environment. Relative localization is obtained via monocu-

lar vision using boosted cascaded classifiers of Haar-like features for detection and

Kalman filtering for tracking. In order to estimate distance, they used the width of

the leader with the camera model. They tested their vision-based formation algorithm

in a simulation and with real mUAVs. The results are provided where the follower

tries to keep 6 m distance from the leader flying up to a speed of 2 m/s. Their results

present only the relative distance of the mUAVs during a flight where the distance

information is obtained probably (not mentioned clearly) from GPS. Although the

tracking errors were claimed to converge to zero, the results indicate that errors in-

crease while the leader has a forward motion. Only when the leader becomes almost

stationary after 35 s of the total 105 s flight do the errors start to decrease.

In [108], Zhang et al. studied relative pose estimation problem by extending the

approach of Lin et al. [59] without modifying the mUAV detection method. They

utilize a set of previously collected images for different view angles whose roll, pitch

and yaw angles are recorded via a motion capture system. Once mUAV is detected via

a cascaded classifier, its contours are extracted and represented as a shape context [9].

The matching image from the previously collected image set (prototypes) for this

contour is found using a shape matching method based on Hungarian algorithm [52].

Once the matching prototype is found, the orientation of the mUAV with respect

to the prototype is estimated by computing the best fitting affine transformation via

least squares optimization. Their experimental results are not sufficient to deduce the

performance of pose estimation. Furthermore, they use the estimated pose to enhance

the relative distance estimation method applied in [59]. According to the results given

for only 50 frames, there seems to be an improvement; however, the error is still very

high (up to three meters for a 10 m distance with a variance of 1.01 m) and GPS is

taken as the ground truth whose inherent accuracy is not very appropriate for such an

evaluation.

Both studies [59, 108] mentioned above use boosted cascaded classifiers for mUAV

detection; however, they provide no analysis about the detection and computational

performance of the classifiers. The methods are tested only outdoors, and the results

for the tracking and pose estimation are poor for evaluating the performances of the
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methods. They use only Haar-like features directly without any investigation. More-

over, no information is available about the camera and processing hardware used. The

detection method is reported to run at 5 Hz.

In an earlier study, Petridis et al. [74] used cascaded classifiers also for detecting air-

crafts. Although we include mainly the literature proposed for mUAVs in this section,

such studies on aircraft detection are noteworthy, since they are potentially useful for

mUAVs, as long as the size, weight and power (SWaP) constraints of mUAVs are com-

plied with. Petridis et al. studied aircraft detection under the presence of heavily clut-

tered background patterns for collision avoidance purposes. They applied a modified

version of boosted cascaded classifiers using Haar-like features for detection. Tem-

poral filtering is also integrated with the system to reduce false positives by checking

the previous detections around a detection before accepting it as valid. Their method

does not estimate the distance. Experimental results presented on videos recorded via

a camera mounted on an aircraft and having a collision course and crossing scenarios

indicate a detection rate of around 80% with up to 10 false positives per frame. No

distance information is available between target and host aircrafts. Looking at the im-

ages, the distance seems to be on the order of some hundred meters. The performance

of the system in close distances is also critical, which is not clearly understood from

their experiments. They report that their method has a potential of real time perfor-

mance; however, no information is available about the frame size of the images and

the processing hardware.

In addition to cascaded classifiers, another method utilized in direct sensing approach

is morphological filtering. For example, Lai et al. [53] studied collision detection

problem for fixed-winged mUAVs using a morphological filter based on close-minus-

open (CMO) approach in preprocessing stage. CMO is a combination of top-hat and

bottom-hat filters which highlight the regions brighter and darker than background,

respectively. CMO merges the properties of these two filters. Since morphological

filters assume a contrast difference between the object and the background, once the

image is preprocessed, the resulting candidate regions should be further inspected to

get the final estimation. This is very crucial, as the morphological filters produce

a large amount of false positives, which have to be eliminated. For this purpose,

they combined the morphological filtering stage with two different temporal filtering
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techniques, namely Viterbi-based and Hidden Markov Model (HMM) based. The

impact of image jitter and the performance of target detection are analyzed by off-

board processing of video images on a graphical processing unit (GPU). For jitter

analysis, videos recorded using a stationary camera are used by adding artificial jitter

at three increasing levels, low, moderate and extreme. Both temporal filtering tech-

niques demonstrate poor tracking performances in the case of extreme jitter where

inter-frame motion is greater than four pixels per frame. Some failure periods are

also observed for the HMM filter in the moderate jitter case. Target detection per-

formance experiments are performed on videos captured during three different flights

with an onboard camera mounted on a UAV. Two of these include head-on maneu-

vers, and in the third one, UAVs fly at right angles to each other. A detection distance

between 400 and 900 m is reported allowing one to estimate a collision before 8−10 s

to the impact.

In [25, 26], Dey et al. presented another morhological filtering based study for air-

craft detection for sensing and avoiding purposes. They propose a detection method

without distance estimation consisting of three stages, which are: (1) morphological

filtering, (2) Support Vector Machine (SVM) based classification of the areas found

by stage 1, and (3) tracking based on the similarity likelihoods of matching candidate

detections. They tested the method on videos recorded using stationary cameras of

various imaging sensor, lens and resolution options. These videos include aircraft

flying only above the horizon; therefore the background patterns are less challenging

than the below horizon case, which is not investigated in the study. A detection rate

of 98% at five statute miles with one false positive in every 50 frames is reported with

a running time of 0.8 s for 4 megapixel frame.

Our approach in thesis thesis also fits into this category. Table 2.1 summarizes the

studies in this section in terms of various aspects and compares the studies in the

literature with our study. Looking at this comparison table and above explanations,

our study fills a void with regard to the comprehensive and systematical analysis of

cascaded methods with videos including very complex indoor and outdoor scenes

providing also an accurate distance estimation method. Moreover, our study is also

remarkable, since it investigates also the use of LBP and HOG, to the best of our

knowledge for the first time, with cascaded classifiers for mUAV detection.
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CHAPTER 3

A CASCADED APPROACH TO MUAV DETECTION

In this chapter, we describe the details of our methods. We will first introduce the

three different feature description methods, namely Haar-like features, local binary

patterns and histogram of oriented gradients, which will be later utilized to construct

three different cascaded classifiers. We will also introduce integral images and in-

tegral HOG methods utilized to compute the features in a computationally efficient

manner. After that, we will present AdaBoost learning procedure and explain how

a strong classifier can be created by selecting the best performing weak classifiers

from a large weak classifier set and then linearly combining them. We will later de-

scribe the construction procedure of a cascaded classifier. The chapter will end by

explaining our distance estimation method.

This chapter is partially published in [38].

3.1 Haar-like Features

Haar-like features [58, 73, 94, 95] are similar to Haar wavelet family, which is a

rescaled function sequence [96, 97]. Similar to Haar wavelets, Haar-like features are

defined for images in the form of various configurations of + and − regions in an

image window. Figure 3.1 depicts simplest Haar-like feature prototype with one +

region and one − region, and its application on an image. The value of the feature at

a given position in the image is calculated by subtracting the sum of intensities in −
region from the sum of intensities in + region.
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Haar-like 
feature 

prototype
Sum of intensities in:

+  region → A 
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Value of 
the feature: 
h = A - B

Figure 3.1: Simplest Haar-like feature prototype and its application on an image.

- +

- +

- +

- +

- +
- +

Figure 3.2: A Haar-like feature prototype can be applied to an image by changing

location, size and aspect ratio resulting in different features associated with each con-

figuration.

Different features can be calculated by locating the feature prototype inside an image

at different locations and also by changing the size and aspect ratio of the prototype,

as shown in Figure 3.2.

Various Haar-like feature prototypes can be defined for different configurations of +

and − regions. A basic prototype set is defined and used with cascaded classifiers

by Viola and Jones [94, 95] which is later extended by Lienhart and Maydt [58].

Figure 3.3 illustrates the feature prototypes used in our study.

If we consider an image window with 40 × 22 pixel size (This is the size of our

training images as will be presented in Section 4.2.), when we apply our feature pro-

totypes on this image window for all possible locations, sizes and aspect ratios, we

get 587408 different associated features. The number of associated features for each

feature prototype are given in Table 3.1 .
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(i) (ii) (iii) (iv)

(a)

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

(b)

(c) (d)

Figure 3.3: Haar-like feature prototypes used: (a) edge features, (b) line features,

(c) center surround feature and (d) diagonal feature. Tilted features are rotated 45◦.

Edge features have two regions and line features contain three or four regions. Center

surround and diagonal features are composed of nine and four regions, respectively.

Each region in a feature have the same size and shape. The total areas of + (black)

and − (white) regions are equal in a feature except for the features with three and

nine regions. In order to compensate the area inequalities in these two features, sum

of the intensities in black regions are multiplied by two and eight, respectively for the

features with three and nine regions, before subtracting the sum of intensities in white

regions. Figures are adapted from [58] c© 2002 IEEE.
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Table 3.1: Number of associated features for Haar-like feature prototypes given in
Figure3.3 when they are applied to an image window of 40 × 22 pixel size for all
possible locations, size and aspect ratio.

Feature type # of features

a

i 101200
ii 99220
iii 23705
iv 23705

b

i 65780
ii 48070
iii 63140
iv 45100
v 14539
vi 9995
vii 14539
viii 9995

c 20020
d 48400

TOTAL 587408

3.2 Local Binary Patterns

In LBP [72], a window is placed on each pixel in the image, and within which the in-

tensity of the center pixel is compared against the intensities of the neighboring eight

pixels. During this comparison, larger intensity values are taken as one and smaller

values as zero, and an integer number is calculated by concatenating the binary ones

and zeros. To describe it formally, for a window Ω(xc, yc) at pixel (xc, yc) in image

I , LBP pattern Lp is as Lp(xc, yc) = ⊗(x,y)∈Ω(xc,yc)σ(I(x, y)− I(xc, yc)), where ⊗ is

the concatenation operator, and σ(.) is the unit step function:

σ(x) =

 0 if x < 0

1 otherwise
(3.1)

The concatenation of 1’s and 0’s can be converted to a decimal number, representing

the local intensity distribution around the center pixel with a single number:

L2(xc, yc) =

|Ω(xc,yc)|∑
i=0

2i × Lip(xc, yc). (3.2)
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𝐼1 𝐼2 𝐼3

𝐼8 𝐼𝑥 𝐼4

𝐼7 𝐼6 𝐼5

 𝐼1  𝐼2  𝐼3

 𝐼8  𝐼𝑥  𝐼4

 𝐼7  𝐼6  𝐼5

3 × 3 9 × 9

Figure 3.4: In basic LBP, the center pixel is compared to its eight neighbors in a

3 × 3 window (left). In the multi-block version, average intensities in the blocks are

compared instead (right). Figure is taken from [38].

Figure 3.5: Different MB-LBP features can be associated on an image by changing

the location size and aspect ratio of the blocks.

The cascaded approach of Viola and Jones [94, 95] has been extended by Zhang et

al. [107] to use a multi-block version of LBP (MB-LBP) features [57]. In multi-block

LBP, instead of comparing the intensities of pixels, the average intensities of blocks

in the window are compared to the central block; see Figure 3.4. Although the blocks

in Figure 3.4 are square with 3 × 3 size, the aspect ratio and size of the blocks can

be changed preserving that the nine blocks have the same size and shape. Similar to

Haar-like features, various MB-LBP features can associated on an image by changing

the location size and aspect ratio of the blocks, as shown in Figure 3.5.

Since our training image size is 40 × 22 pixels, as will be explained in Section 4.2,

we used MB-LBP features with 3 × u, 3 × v pixels sizes1, where u = 1, ..., 13 and

v = 1, ..., 7. When we consider all possible locations for different sized features in-

side 40× 22 pixels image window, we obtain 20020 different feature associations.
1 u = 1 and v = 1 case corresponds to the original LBP in [72].
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Figure 3.6: Calculation of a HOG feature vector on an image patch. (The direction

of the gradients and corresponding histograms are imaginary and for illustrative pur-

poses only.)

3.3 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) computes a histogram of gradient occur-

rences in local grid cells [23]. HOG of an image patch P is defined as follows:

HOG(k) =
∑
p∈P

δ

( ⌈
θp

L

⌉
− k
)
, (3.3)

where δ(·) is the Kronecker delta which evaluates to one if and only if its input is

zero, L is a normalizing constant and θp is the image gradient orientation at point p.

HOG(k) is the value of the k-th bin in a K-bin histogram. In the experiments, we set

K to 9 which makes the value of L equal to 180/K = 20 [23].

Figure 3.6 illustrates the calculation of a HOG feature vector on an image patch. In

original HOG proposed by Dalal and Trigs [23], image patch is divided into cells of

8× 8 pixels. For each cell, a histogram of nine bins according to the gradient angles

at each pixel is computed. A HOG feature vector is then calculated for four cells (one

block) as shown in Figure 3.6. There is a 50% overlap between the blocks since the

step-size between the blocks is eight pixels.

HOG has been demonstrated to be very successful in human detection and tracking.

Zhu et al. [109] extended HOG features so that the features are extracted at multiple

sizes of blocks at different locations and aspect ratios. This extension enables the

definition of an increased number of blocks on an image patch as compared to the
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original HOG. We utilized this extension approach and allowed to define blocks with

(1:1), (1:2) and (2:1) aspect ratios and four pixels step-size. However, we kept the

smaller dimension of a cell in the blocks constant at eight pixels which resulted in

blocks with 16× 16 and 32× 16 pixels for an image patch of 40× 22 pixels. Consid-

ering the four pixels step-size, we obtained 20 different feature associations for this

image patch size.

3.4 Integral Images and Integral HOG

Haar-like and MB-LBP features need the summations of intensities inside various

regions in an image patch. If these summations are made for every feature separately,

this will require a high amount of processing time. In order to speed up the processing,

the computation of each feature in a window is performed utilizing the integral images

technique. In this method, for a pixel (i, j), the intensities of all pixels that have a

smaller row and column number are accumulated at (i, j):

II(i, j) =
i∑

c=1

j∑
r=1

I(c, r), (3.4)

where I is the original image and II the integral image. Note that II can be calculated

incrementally from the II of the neighboring pixels more efficiently.

Given such an integral image, the sum of intensities in a rectangular window can be

calculated easily by accessing only four values. See Figure 3.7(a) for an example:

The sum of intensities in window A can be calculated as II4 + II1− (II2 + II3) [94].

With this way, the sum of intensities in different regions of the features are calculated

efficiently. Note that the integral image is calculated only once an utilized multiple

times to calculate the features.

Equation 3.4 and Figure 3.7(a) assumes a non-tilted window. However, we need also

tilted integral image representation for some of the Haar-like features. Similar to

non-tilted integral image approach, we can generate a tilted integral image IIT as

follows [58]:

IIT (i, j) =
∑

c≤i,c≤i−|j−r|

I(c, r). (3.5)

31



A

II1

II3 II4

II2

(a)

II3
T

II4
T

II2
T

B
II1

T

(b)

Figure 3.7: The method of integral images for the efficient computation of sums

of intensities in image windows: (a) non-tilted and (b) tilted version. The sum of

intensities in window A and B can be calculated as II4 + II1 − (II2 + II3) and

IIT4 + IIT1 − (IIT2 + IIT3 ), respectively. Figure in (a) is taken from [38].
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Figure 3.8: Utilization of integral images method for calculating integral HOG on an

imaginary 6× 3 pixels image window.

Once we calculate a tilted integral image, we can calculate the sum of intensities

in a window as shown in Figure 3.7(b) by accessing only four values as follows:

IIT4 + IIT1 − (IIT2 + IIT3 ).

Integral image technique can also be utilized to efficiently calculate histograms as

required during the calculation of HOG features. This approach is illustrated in

Figure 3.8 for a 6 × 3 pixels image window. Once the gradients are calculated for

each pixel, they are labeled according to the nine bins. For each histogram bin, an

integral image is calculated such that only corresponding labels of the current bin are

considered during this computation. These nine integral images, which corresponds

to integral HOG, can then be utilized to calculate the histogram inside a rectangular

window similar to the calculation of intensity summation in Figure 3.7(a). However,

the computation of a nine bin histogram will require accessing to 4 × 9 = 36 array

references.

3.5 Feature selection via Adaptive Boosting (AdaBoost)

The features extracted by the feature description methods are utilized to construct

weak classifiers. The combination of multiple weak classifiers produces strong clas-

sifiers. However, the set of features extracted by the feature description methods,
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therefore, the set of weak classifiers are generally overcomplete. For this reason,

most meaningful set of the weak classifiers are needed to be selected to create the

strong classifiers. In the method proposed by Viola and Jones [94, 95], the AdaBoost

learning (see Algorithm 1) is used to select and combine weak classifiers at each stage

to capture an aspect of the problem to be learned. A weak classifier, hf (x), simply

learns a linear classification for feature f with a threshold θf :

hf (x) =

 1 if pf(x) < pθf

0 otherwise
(3.6)

where p is the polarity indicating the inequality direction. The best performing weak

classifiers are combined linearly to derive a stronger one (one stage of the cascade).

In our study, weak classifiers are implemented as decision trees and Gentle Ad-

aBoost algorithm [35] is used which calculates the error of classification (εf in Al-

gorithm 1) as the sum of weighted squared errors and updates the weights with

wt+1,i = ŵt,ie
−lihf (xi) equation where li = 1 for positive and li = −1 for negative

samples.

3.6 Training of a Cascaded Classifier

Cascaded classifiers are composed of multiple stages with different processing com-

plexities [58, 94, 95]. Instead of one highly complex single processing stage, cas-

caded classifiers incorporate multiple stages with increasing complexities, as pre-

sented in Figure 2.2.

Each of the stages in a cascaded classifier is a strong classifier. The early stages

of the cascaded classifier have lower computational complexities and are applied to

the image to prune most of the search space quickly (early pruning). The regions

classified as mUAV by one stage of the classifier are passed to the higher stages. As

the higher level of stages are applied, the classifier works on a smaller number of

regions at each stage to identify them as mUAV or background. At the end of the last

stage, the classifier returns the regions classified as mUAV.

In the approach of Viola and Jones [94, 95], the AdaBoost algorithm is used to learn

the stages (strong classifiers) in the cascade of classifiers in an iterative manner, as
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Algorithm 1: AdaBoost Learning (Adapted from [95]).
input : The training samples: {(xi, li)}, i = 1, ..., N , where li = 1 for positive

and li = 0 for negative samples. N = m+ o, where m and o are the

number of positive and negative samples, respectively.

output: Strong classifier, h(x), as a combination of T weak classifiers.

1 - Initialize the weights for samples:

w1,i = 1
2m

for positive samples and w1,i = 1
2o

for negative samples.

2 for t = 1 to T do

3 - Normalize weights so that wt add up to one:

ŵt,i =
wt,i∑n
j=1wt,j

. (3.7)

for each feature f ∈ F , the set of all features do

4 - Train a weak classifier hf for learning from only feature f .

5 - Calculate the error of classification:

εf =
n∑
i=1

ŵt,i|hf (xi)− li|. (3.8)

6 - Among the weak classifiers, hf , ∀f ∈ F , choose the one with the lowest

error (εt):

ht = arg min
f∈F

εf . (3.9)

- Update the weights:

wt+1,i = ŵt,i

(
εt

1− εt

)ei
, (3.10)

where ei = 1 if xi is classified correctly and zero if it is not.

7 - The final classifier is then the combination of all of the weak ones found

above:

h(x) =


1 if

T∑
t=1

αtht(x) ≥ 1

2

T∑
t=1

αt

0 otherwise

, (3.11)

where αt = log 1−εt
εt

.
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given in Algorithm 2. The method constructs the cascade by simply training a new

strong classifier via AdaBoost algorithm and adding it as a new stage when the current

cascade does not yield the desired false positive and detection rates. The method uti-

lizes same positive samples (P) at every iteration, however, a different set of negative

samples (N ) are used to train each stage. First set of negative samples is randomly

selected from negative images. Subsequent sets are generated by running the cur-

rent (intermediate) cascaded detector on negative images and putting false negative

windows, namely the windows falsely classified as positive, into subsequent set of

negative samples. With this way, following stages are trained using a harder set of

negative samples. This result in simpler stages in earlier ones and more complex

stages as the number of stages increases.

In this study, three different cascaded classifiers are trained and used utilizing three

different feature description methods described above, namely Haar-like features,

multi-block local binary patterns and histogram of oriented gradients. These clas-

sifiers will be referred as C-HAAR, C-LBP and C-HOG in order in the rest of the

thesis.

3.7 Detection with Cascaded Classifiers

A trained cascaded classifier is utilized as a cascaded detector by running at multiple

scales and locations on images as illustrated in Figure3.9. Sliding window approach

is employed for detecting an mUAV in an image such that a fixed size detection win-

dow is slid over the image at its original scale and also over images obtained by

downscaling the original image.

The amount of downscale is defined by a scale factor such that, for each image scale,

the size of the image is reduced with this factor until getting an image smaller than

the size of detection window. Since the detection window size is fixed, features are

used without rescaling.

Once a detection occurs at an image scale, the size of detection window at original

scale is calculated by multiplying the detection window size with the current scale.

Therefore, use of downscaled images with fixed size detection window effectively
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Algorithm 2: Learning a Cascade of Classifiers (Adapted from [95]).
input : Positive and negative training samples: P = {x+

1 , x
+
2 , ..., x

+
L},

N = {x−1 , x−2 , ..., x−M}
output: The cascade of classifiers

1 initialize:

i = 0 : The stage number

Fi = 1.0 : False positive rate of the current cascaded classifier

Di = 1.0 : Detection rate of the current cascaded classifier

Ni = N : Negative samples for the current cascaded classifier

f : User defined maximum acceptable false positive rate per layer

d : User defined minimum acceptable detection rate per layer

while Fi > Ftarget do

2 i← i+ 1

3 ni = 0

4 Fi ← Fi−1

5 while Fi > f × Fi−1 do

6 ni ← ni + 1

7 - Train a classifier hni
on P and Ni with ni features using AdaBoost

(see Algorithm 1)

8 - Determine Fi and Di using the current cascaded detector

9 - Decrease threshold θi for hni
until Di > d×Di−1

10 if Fi > Ftarget then

11 - Run the current cascaded detector with θi on negative images

12 - Put any false negative windows into Ni+1
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Figure 3.9: The cascaded detectors run in multiple scales and locations on an image.

Image is downscaled until the size of detection window. Fixed size detection window

is slid over the images.

corresponds to increasing the size of detection window at each scale. The location of

the detection window at original scale is also calculated by upscaling.

This sliding window approach running in multiple scales and locations leads to mul-

tiple detections in the image for the same object. These detections are merged by

looking at the amount of overlap between them, as a post-processing stage.

We should note that due to early pruning property of the cascaded classifiers,

most of the detection windows are pruned with simple and fast checks in the ear-

lier stages. Therefore, the number of windows processed through all of the stages are

very low. For this reason, sliding window approach does not cause a computational

cost problem as it is the case for keypoint-based approaches (Section 2.1.1).

3.8 Distance Estimation

Once an mUAV is detected with its bounding box, there are two important information

to deduce the distance of the mUAV to the camera. These are width and height of

the detection box. Use of camera model with some geometric calculations can be

considered at first hand as the approaches presented in [59, 108]. However, since the

mUAV tilts and rotates during its motion, its bounding box could be quite different in

size for the same distance and such approaches do not provide an accurate estimation.

Therefore, a different approach is needed.
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Figure 3.10: Training and testing stages of our distance estimation method.

In this study, we propose to incorporate a Support Vector Regressor (SVR - [84]) for

the estimation of mUAV distance, as depicted in Figure 3.10. We collect a training

set of {(wi, hi), di}, where wi, hi are the width and the height of the mUAV bounding

box, respectively, and di is the known distance of the mUAV. Having such a training

set, we train a Support Vector Regressor (SVR - [84]) to estimate the non-linear rela-

tion between width and height of the mUAV and its distance. Using the trained SVR,

we can estimate the distance of the mUAV once its bounding box is estimated.
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CHAPTER 4

EXPERIMENTAL SETUP AND DATA COLLECTION

In this chapter, we will introduce our experimental setups for indoor and outdoor

environments, the extraction procedures of ground truth data, training and testing

datasets and the method we utilized to add artificial motion blur to indoor test videos.

This chapter is partially published in [38].

We used the setups shown in Figure 4.1 for collecting systematic data. These setups

consist of the following components:

• mUAV: We used a quadrotor platform shown in Figure 4.2(a). Open-source

Arducopter [1] hardware and software are used as the flight controller. The

distance between the motors on the same axis is 60 cm. The plastic cover of

the quadrotor has twelve markers attached to define a rigid body. Figure 4.2(a)

illustrates the body coordinate frame of the quadrotor. The forward and right

directions of the quadrotor correspond to the xQ-axis and yQ-axis, respectively.

The zQ-axis points downwards with respect to the quadrotor.

• Camera: We use two different electro-optic cameras for indoors and outdoors

due to varying needs in both environments. For indoors, the synchronization

property of the camera is vital, since we have to ensure that the 3D position

data obtained from the motion capture system and the captured frames are syn-

chronized in time. Complying with this requirement, we use a camera from

Basler ScoutTM (capturing 1032×778 resolution videos at 30 fps in gray scale)

mounted on top of the motion capture system. It weighs about 220 g, including

its lens, whose maximum horizontal and vertical angle of views are 93.6◦ and
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68.9◦, respectively. The power consumption of the camera is about 3 W, and it

outputs the data through a Gigabit Ethernet port. The body coordinate frame of

the camera is centered at the projection center. The xC-axis is towards the right

side of the camera; the yC-axis points down from the camera; and the zC-axis

coincides with the optical axis of the camera lens, as depicted in Figure 4.2(b).

Due to difficulties in powering and recording of the indoor camera outdoors, we

used a Canon R© PowerShot A2200 HD to capture outdoor videos. This camera

is able to record videos at 1280× 720 resolution at 30 fps in color.

However, we use gray scale versions of the videos in our study.

Although we needed to utilize a different camera outdoors due to logistic issues,

we should note that our indoor camera is suitable to be placed on mUAVs in

terms of SWaP constraints. Moreover, alternative cameras with similar image

qualities compared to our cameras are also available in the market, even with

less SWaP requirements.

• Motion capture system (used for indoor analysis): We use the VisualeyezTM

II VZ4000 3D real-time motion capture system (MOCAP) (PhoeniX Technolo-

gies Incorporated) that can sense the 3D positions of active markers up to a rate

of 4348 real-time 3D data points per second with an accuracy of 0.5 ∼ 0.7 mm

RMS in ∼ 190 cubic meters of space. In our setup, the MOCAP provides the

ground truth 3D positions of the markers mounted on the quadrotor. The sys-

tem provides the 3D data as labeled with the unique numbers of the markers. It

has an operating angle of 90◦, (±45◦) in both pitch and yaw, and its maximum

sensing distance is 7 m at minimum exposure. The body coordinate frame of

the MOCAP is illustrated in Figure 4.2(c).

• Linear rail platform (used for indoor analysis): We constructed a linear mo-

torized rail platform to move the camera and the MOCAP together in a con-

trolled manner to capture videos of the quadrotor only with single motion types,

i.e., lateral, up-down, rotational and approach-leave motions. With this plat-

form, we are able to move the camera and MOCAP assembly on a horizontal

line of approximately 5 m up to a 1 m/s speed.
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Figure 4.1: (a) The setup used in indoor experiments. The rail was constructed in

order to be able to move the camera with respect to the quadrotor in a controlled

manner. This allows analyzing the performance of the methods under different motion

types. Figure is adapted from [38]. (b) Outdoor experimental setup. The quadrotor

is flown manually with a remote control and a fixed camera is used for recording the

videos.
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Figure 4.2: (a) The quadrotor used in our study and its body coordinate frame. There

are 12 markers mounted roughly 30◦ apart from each other on the plastic cup of the

quadrotor. (b) The body coordinate frame of the camera is defined at the projection

center. (c) The VisualeyezTM II VZ4000 motion capture system and its body coor-

dinate frame. (d) The calibration tool used to obtain 3D-2D correspondence points

needed to estimate the transformation matrix, TCM , between the motion capture system

(MOCAP) and the camera coordinate systems. Circles and the triangle indicate the

MOCAP markers and the center of the chess pattern, respectively. Figures are taken

from [38].
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4.1 Ground Truth Extraction

In the indoor experimental setup, the MOCAP captures the motion of active markers

mounted on the quadrotor and supplies the ground truth 3D positions of those mark-

ers. We synchronized the MOCAP and the camera so that 3D position data and the

captured frames belongs to the same time instance. For our purposes, we need the

ground truth bounding box of the quadrotor and the distance between the quadrotor

and the camera for each frame.

In order to determine a rectangular ground truth bounding box encapsulating the

quadrotor in an image, we need to find a set of 2D pixel points (P ′
Qi)

1 on the bound-

aries of the quadrotor in the image. These 2D points correspond to a set of 3D points

(PQi) on the quadrotor. In order to find P ′
Qi, PQi should first be transformed from the

body coordinate frame of the quadrotor to the MOCAP coordinate frame, followed

by a transformation to the camera coordinate frame. These two transformations are

represented by the transformation matrices TMQ and TCM , respectively, and are applied

as follows:

PMi = TMQ PQi for all i, (4.1)

PCi = TCMPMi for all i, (4.2)

where PMi and PCi are the transformed coordinates in the MOCAP and the camera

coordinate frames, respectively. After these transformations, we project the points in

PCi to the image plane as:

P
′

Qi = PcPCi for all i, (4.3)

where Pc is the camera matrix and get P ′
Qi. Then, we can find the bounding box of

the quadrotor by calculating the rectangle with the minimum size covering all of the

points in P ′
Qi as follows:

xr = min(xi), (4.4)

yr = min(yi), (4.5)

wr = max(xi)−min(xi), (4.6)

hr = max(yi)−min(yi), (4.7)

1 In our derivations, all points in 2D and 3D sets are represented by homogeneous coordinate vectors.
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where (xi, yi) ∈ P
′
Qi, (xr, yr) is the upper left pixel position of the rectangle and wr

and hr are the width and height of the rectangle, respectively.

It is not possible to place a marker on the quadrotor for every point in PQi. Therefore,

we define a rigid body, a set of 3D points whose relative positions are fixed and remain

unchanged under motion, for 12 markers on the quadrotor. The points in PQi are then

defined virtually as additional points of the rigid body.

A rigid body can be defined from the positions of all markers obtained at a particular

time instant while the quadrotor is stationary. However, we wanted to obtain a more

accurate rigid body and used the method presented in [36, 37] with multiple captures

of the marker positions. Taking 60 different samples, we performed the following

optimization to minimize the spatial distances between the measured points Mi and

the points Ri in the rigid body model.

arg min
Ri

∑
i

‖Mi −Ri‖2, (4.8)

where ‖.‖ denotes the calculation of the Euclidean norm for the given vector.

Once the rigid body is defined for the markers on the quadrotor, if at least four mark-

ers are sensed by the MOCAP, TMQ can be estimated. Since the MOCAP supplies the

3D position data as labeled and the rigid body is already defined using these labels,

there is no correspondence matching problem. Finding such a rigid transformation be-

tween two labeled 3D point sets requires the least squares fitting of these two sets and

is known as the “Absolute Orientation Problem” [43]. We use the method presented

in [36, 91] to solve this problem and calculate TMQ . Note that TMQ transformation ma-

trix should be calculated whenever the quadrotor and the camera moves with respect

to each other.

There is no direct way of calculating TCM , since it is not trivial to measure the dis-

tances and the angles between the body coordinate frames of the MOCAP and the

camera. However, if we know a set of 3D points (PT i) in the MOCAP coordinate

frame and a set of 2D points (P ′
T i) which corresponds to the projected pixel coor-

dinates of the points in PT i, then we can estimate TCM as the transformation matrix

that minimizes the re-projection error. The re-projection error is given by the sum

of squared distances between the pixel points in P ′
T i as in the following optimization
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criterion:

arg min
TC
M

∑
i

‖P ′

T i − TCMPT i‖2. (4.9)

We prepared a simple calibration tool shown in Figure 4.2(d) for collecting the data

points in PT i and P ′
T i. In this tool, there is a chess pattern and two MOCAP markers

mounted on the two edges of the chess pattern. The 3D position of the chess pattern

center, shown inside the triangle in Figure 4.2(d), is calculated by finding the geo-

metric center of the marker positions. We obtain the 2D pixel position of the chess

pattern center using the camera calibration tools of the Open Source Computer Vision

Library (OpenCV) [12]. We collect the data needed for PT i and P ′
T i by moving the

tool in front of the camera. Note that, since the MOCAP and the camera are attached

to each other rigidly, once TCM is estimated, it is valid as long as the MOCAP and the

camera assembly remain fixed.

In order to calculate the ground truth distance between the quadrotor and the camera,

we use TMQ and TCM as follows:

p
′

c = TCMT
M
Q pc, (4.10)

where pc is the 3D position of the quadrotor center in the quadrotor coordinate frame

and p′
c is the transformed coordinates of the quadrotor center to the camera coordinate

frame. pc is defined as the geometric center of four points where the motor shafts

and the corresponding propellers intersect. Once p′
c is calculated, the distance of the

quadrotor to the camera (dQ) is calculated as:

dQ = ‖p′

c‖. (4.11)

4.2 Data Collection for Training

Indoors: In order to prepare the quadrotor training image set, we recorded videos of

the quadrotor by moving the MOCAP and the camera assembly around the quadro-

tor manually while the quadrotor is hanged at different heights from the ground and

stationary with its motors running. From these videos, we automatically extracted

8876 image patches, including only the quadrotor using the bounding box extraction

method described in Section 4.1 without considering the aspect ratios of the patches.
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The windows sizes and aspect ratios of these extracted images are different from each

other. The distribution of the aspect ratios for these images is given in Figure 4.3 with

a median value of 1.8168. Since the training of cascaded classifiers requires image

windows with a fixed window size, we first equalized the aspect ratios of the extracted

images. For this purpose, we enlarged the bounding boxes of these 8876 images by

increasing their width or height only, according to the aspect ratio of the originally

extracted image window to ensure they all have a fixed aspect ratio of approximately

1.81682. We preferred enlargement to fix the aspect ratios, since this approach keeps

all relevant data of the quadrotor inside the bounding box. The images were then

resized to 40× 22 pixels to be used in training.

For background training image set, we captured videos of the indoor laboratory en-

vironment without the quadrotor in the scene. From these videos, we extracted 5731

frames at a resolution of 1032 × 778 pixels as our background training image set.

See Figures 4.4(a) and 4.4(b) for sample quadrotor and background images captured

indoors.

Outdoors: We used a fixed camera to record the quadrotor while it is flying in front

of the camera using remote control. Since the MOCAP is not operable outdoors, the

ground truth is collected in a labor-extensive manner: By utilizing the background

subtraction method presented in [48], we are able to approximate the bounding box

of the quadrotor in these videos as long as there are not any moving objects other than

the quadrotor. Nevertheless, it is not always possible to get a motionless background.

Therefore, the bounding boxes from background subtraction are inspected manually,

and only the ones that bound the quadrotor well are selected. Both the number and

aspect ratio of the outdoor training images are the same as the indoor images. Similar

to indoor quadrotor training images, these images are also resized to 40× 22 pixels.

For outdoor background training images, we have recorded videos at various places

on the university campus. These videos include trees, bushes, grass, sky, roads, build-

ings, cars and pedestrians without the quadrotor. From these videos, we have ex-

tracted frames as the same number of indoor background training images at

1280× 720 resolution. See Figures 4.5(a) and 4.5(b) for sample images collected

2 Due to floating point rounding, aspect ratios may not be exactly 1.8168.
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Figure 4.3: Box-plot (Left) and histogram (Right) representation for the aspect ratios

of 8876 quadrotor images automatically extracted from the training videos. In this

figure and the subsequent box-plot figures, the top and bottom edges of the box and

the line inside the box represent the first and third quartiles and the median value,

respectively. The bottom and top whiskers correspond to the smallest and largest

non-outlier data, respectively. The data inside the box lie within the 50% confidence

interval, while the confidence interval of the data in between the whiskers is 99.3%.

Here, the median value is 1.8168, which defines the aspect ratio of the training images

used. Figure is taken from [38].

outdoors.

Looking at the training image sets, the following observations can be deduced, which

also represent the challenges in our problem: (i) Changes in camera pose or quadrotor

pose result in very large differences of in the quadrotor’s visual appearance. (ii) The

bounding box encapsulating the quadrotor contains a large amount of background

patterns due to the structure of the quadrotor. (iii) Vibrations in the camera pose and

the agile motions of the quadrotor cause motion blur in the images. (iv) Changes in

brightness and the illumination direction yield very different images. (v) Motion in

the image can also be induced by the motion of the camera or the motion of back-

ground objects (e.g., trees swinging due to wind, etc.).
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(a)

(b)

Figure 4.4: Example images from indoor (a) quadrotor and (b) background training

image sets. Mostly the challenging examples are provided in the quadrotor images.

Figures are taken from [38].
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(a)

(b)

Figure 4.5: Example images from outdoor (a) quadrotor and (b) background training

image sets. The images are colored; however, their grayscale versions are used in

the training. For quadrotor images, mostly the challenging examples are included.

Figures are taken from [38].
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4.3 Data Collection for Testing

Indoor and outdoor environments are significantly different from each other, since

controlled experiments can only be performed indoors by means of motion capture

systems. On the other hand, outdoor environments provide more space, increasing the

maneuverability of the quadrotor and causing many challenges that need to be evalu-

ated. These differences directed us to prepare test videos of different characteristics

indoors and outdoors.

In order to investigate the performance of the methods (C-HAAR, C-LBP and

C-HOG) systematically, we defined 4 different motion types, namely lateral, up-

down, yaw and approach-leave, for the indoor test videos. Please note that maneuvers

in a free flight are combinations of these motions, and use of these primitive motions

is for systematic evaluation purposes. The recording procedure of each motion type

is depicted in Figure 4.6 for two different views, the top view and the camera view.

Each motion type has different characteristics in terms of the amount of changes in

the scale and appearance of the quadrotor, as well as the background objects as shown

in Table 4.1. The details of each motion type are as follows:

Table 4.1: Properties of motion types in terms of the amount of changes in the
scale and appearance of the quadrotor, and the background objects. Table is taken
from [38].

Lateral Up-Down Yaw Approach-Leave
Scale Moderate Moderate Small Large
Appearance Moderate Large Large Large
Background Large No Change No Change Moderate

• Lateral: The camera performs left-to-right or right-to-left maneuvers while

the quadrotor is fixed at different positions, as illustrated in Figure 4.6. As

seen in the top view, the perpendicular distance of the quadrotor to the camera

motion course is changed by 1 m for each of 5 distances. For each distance,

the height of the quadrotor is adjusted to 3 different (top, middle and bottom)

levels with 1 m apart, making a total of 15 different position for lateral videos.

Left-to-right and right-to-left videos collected in this manner allow us to test

the features’ resilience against large background changes.
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Figure 4.6: Graphical representation for indoor test videos. There are 4 motion types,

namely lateral, up-down, yaw and approach-leave. Each of them is illustrated with

the top and camera views. Dashed gray thick lines represent the motion of the camera

or the quadrotor along the path with the given length. Dashed black thin lines are

used to represent dimensions. Figure is taken from [38].

In each video, the camera is moved along an approximately 5 m path. However,

when the perpendicular distance is 1 m and 2 m and, the quadrotor is not fully

visible in the videos for the top and bottom levels. Therefore, these videos are

excluded from the dataset, resulting in 22 videos with a total of 2543 frames.

• Up-Down: The quadrotor performs a vertical motion from the floor to the ceil-

ing for the up motion and vice versa for the down motion. The motion of the

quadrotor is performed manually with the help of a hanging rope. The change

in the height of the quadrotor is approximately 3 m in each video. During the

motion of the quadrotor, the camera remains fixed. For each of the 5 different

positions shown in Figure 4.6, one up and one down video are recorded, result-

ing in 10 videos with a total of 1710 frames. These videos are used for testing

the features’ resilience against large appearance changes.
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• Yaw: The quadrotor turns around itself in clockwise or counter clockwise di-

rections, while both the camera and the quadrotor are stationary. The quadrotor

is positioned at the same 15 different points used in the lateral videos. Since

the quadrotor is not fully present in the videos recorded for the top and bottom

levels when the perpendicular distance is 1 m and 2 m, these videos are omit-

ted from the dataset. Hence, there are 22 videos with a total of 8107 frames

in this group. These videos are used for testing the features’ resilience against

viewpoint changes causing large appearance changes.

• Approach-Leave: In these videos, the camera approaches the quadrotor or

leaves from it while the quadrotor is stationary. There are 9 different positions

for the quadrotor with a 1 m distance separation, as illustrated in Figure 4.6. The

motion path of the camera is approximately 5 m. Approach and leave videos

are recorded separately and we have 18 videos with a total of 3574 frames for

this group. These videos are used for testing whether the features are affected

by large scale and appearance changes.

We should note that the yaw orientation of the quadrotor is set to random values

for each of 50 videos in the lateral, up-down and approach-leave sets, although the

quadrotors in Figure 4.6 are given for a fixed orientation. There are cases where the

MOCAP can give the wrong or insufficient data to extract the ground truth for some

frames. These frames are not included in the dataset.

For outdoor experiments, we prepared four different videos with distinct characteris-

tics. In all videos, the quadrotor is flown manually in front of a stationary camera.

In the first two videos, a stationary background is chosen. These two videos differ

in terms of agility, such that in the first video, the quadrotor performs calm maneu-

vers, whereas in the second one, it is flown in an agile manner. In the third video,

the background includes moving objects, like cars, motorcycles, bicycles and pedes-

trians, while the quadrotor is flown in a calm manner. The fourth video is recorded

to test the maximum detection distances of the methods. In this video, the quadrotor

first leaves from the camera and then comes back, flying on an approximately straight

110 m path. We will call these videos (i) calm, (ii) agile, (iii) moving background and

(iv) distance in the rest of the thesis. These videos have 2954, 3823, 3900 and 2468
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frames respectively. The ground truth bounding boxes for each frame of calm, agile

and moving background videos are extracted manually. For the distance video, only

the ground truth distance of the quadrotor to the camera is calculated.

Finding the ground truth distance is a problem outdoors. GPS is not a good solution

due to its inherent 3−5 m accuracy. For this reason, we recorded a simultaneous video

of the flight using a side view camera as seen in Figure 4.7(a) at 1080p resolution. We

computed the ground truth distance with some geometrical calculations by utilizing

the poles at known locations in the experiment area. We extracted pixel position of

the quadrotor center manually for each frame, and also the pixel positions of the poles

only once since the camera is static. We measured d1, d2 and d3 shown in Figure 4.7(a)

and the distances between real poles. We calculated the distances between virtual

poles on the flight path of the quadrotor by using the similarities of the triangles.

Here, we assumed that the quadrotor flew on a straight path. Please also note that

the pixel positions of real poles and virtual poles are same on the images captured

by side view camera. We interpolated a function between the x-coordinate of the

pixel positions of the virtual poles and the distances between the virtual poles, as

illustrated in Figure 4.7(b). Then, we calculated the ground truth distances of the

quadrotor to the detection camera by evaluating this function with the pixel locations

of the quadrotor, extracted manually as stated earlier, and adding d3 offset.

We should note that the scenes used in testing videos are different from the ones

included in the training datasets for both indoors and outdoors.

Our dataset is available at the following link: http://kovan.ceng.metu.edu.

tr/~fatih/sensors/.

4.4 Generation of Blurred Videos

For the evaluation of the methods against motion blur in the images, we created test

videos by adding artificial motion blur to indoor test videos. Since we do not expect

a difference between the effects of motion blur in indoor and outdoors, for the sake

of simplicity, blurry videos are generated for indoor dataset only.
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Figure 4.7: (a) Top view graphical illustration for the placements of the cameras,

flight path of the quadrotor and pole locations during the recording of distance video.

(b) Interpolation of a distance function for the distances between virtual poles with

respect to the x-coordinate of the positions of the virtual poles in the video recorded

by the side view camera.
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(a) (b)

(c)

Figure 4.8: Example images for blurry images. Same image is applied with three

different amounts of motion blur: (a) σ = 0, (b) σ = 10 and (c) σ = 25. The

quadrotor is present around the center of the upper half of the images.

57



We utilized a linear motion blur similar to the one used in [77, 87]. A motion-blurred

version of an image I is generated by convolving it with a filter k (i.e., Ĩ = I ∗ k)

which is defined as:

k(x, y) =

 1 if y = d/2,

0 otherwise,
(4.12)

where d is the dimension of the kernel (blur length), determining the amount of mo-

tion blur, sampled from a Gaussian distribution N(µ = 0, σ), with µ and σ being the

mean and the standard deviation, respectively. We applied this kernel to the video

images after a rotation of θ radian (blur angle) chosen from a uniform distribution

U(0, π). For each frame of a video, a new kernel is generated in this manner, and

it is applied to all pixels in that frame. Using this motion blur model, we generated

blurred versions of all indoor test videos for five different values of σ, namely, 5, 10,

15, 20 and 25.

Figure 4.8 presents three sample images to show the effect of σ on the amount of

motion blur. We should note that in a blurry video prepared for a certain value of σ,

different frames may include different amount of motion blur, since dimension of the

kernel, d is sampled from a Gaussian distribution. Larger σ will increase the chance

of sampling larger d values.
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CHAPTER 5

RESULTS

We implemented the methods introduced in Section 3 using cascaded classifier and

detector implementations based on Haar-like features, MB-LBP and HOG, and SVR

implementation available in OpenCV [12], and evaluated them on the indoor and out-

door datasets. We trained indoor and outdoor cascade classifiers separately using the

corresponding training datasets with the following parameters: For an image window

of 40× 22 pixels size, which is also the size of quadrotor training images, C-HAAR

extracts 587408 features, whereas C-LBP and C-HOG yield 20020 and 20 features,

respectively. 7900 positive (quadrotor) and 10000 negative (background) samples

were used for indoors and outdoors. We trained the classifiers with 11, 13, 15, 17 and

19 stages (the upper limit of 19 is due to the enormous time required to train C-HAAR

classifiers, as will be presented in Section 5.6.1). During our tests, the classifiers per-

formed multi-scale detections for a minimum object size of 80×44 and enlarging the

detection window size by multiplying it with 1.1 at each scale.

This chapter is published in [38].

5.1 Performance Metrics

We use precision-recall (PR) curves to evaluate the detection performance of the clas-

sifiers. Precision is defined as:

Precision =
tp

tp+ fp
, (5.1)
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where tp is the number of true positives (see below) and fp is the number of false

positives. The performance increases as the precision approaches to 1. Recall is

defined as:

Recall =
tp

tp+ fn
, (5.2)

where fn is the number of false negatives. Similar to the precision, a closer recall

value to 1 is the indication of a better performance.

A detected bounding box (BD) is regarded as a true positive if its Jaccard index (J)

[46], calculated as follows, is greater than 60%:

J(BD, BG) =
|BD ∩BG|
|BD ∪BG|

, (5.3)

where BG is the ground truth bounding box. Otherwise, BD is regarded as a false

positive. If there are multiple detections in a frame, each BD is evaluated separately

as a tp or fp. If no BD is found for an image frame by the classifier, then fn is

incremented by one.

The PR curves are drawn by changing the threshold of the classifiers’ last stages from

−100 to +100, as performed by [94, 95]. For each threshold, a precision and recall

pair is calculated and represented as a point in a PR curve. The precision and recall

pairs for all thresholds constitute the PR curve. Note that each stage of the cascaded

classifiers has its own threshold determined during the training, and that decreasing

the threshold of a stage S to a low value such as−100 results in a classifier with S−1

many stages at the default threshold.

A widely-used measure with PR curves is the normalized area under the curve. If a

PR curve, p(x), is defined at the interval [rmin, rmax], where rmin and rmax are the

minimum and maximum recall values, respectively, the normalized area Ap under

curve p(x) is defined as:

Ap =
1

rmax − rmin

∫ rmax

rmin

p(x) dx. (5.4)

We use also F-Score in our evaluations calculated as follows:

F -Score = 2× Precision×Recall
Precision+Recall

. (5.5)
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Figure 5.1: Precision-recall (PR) curves showing the performance of (a) C-HAAR,

(b) C-LBP and (c) C-HOG for different numbers of stages on all indoor test videos.

(d) Normalized areas under the PR curves in (a), (b) and (c). Figures are taken

from [38].

5.2 Indoor Evaluation

We tested the classifiers trained with the indoor training dataset on indoor test videos

having 15934 frames in total with four different motion types, namely lateral, up-

down, yaw and approach-leave, as presented in Section 4.3. We evaluated the classi-

fiers for five different numbers of stages to understand how they perform while their

complexity increases. Figure 5.1 shows the PR curves, as well as the normalized area

under the PR curves for each method and for different numbers of stages. In Table 5.1,

the maximum F-Score values and the values at default thresholds are listed.
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Figure 5.2: PR curves for (a) lateral left-to-right and right-to-left, (b) up and down,

(c) yaw clockwise and counter-clockwise, (d) approach and leave, and (e) all motion

types. Figures are taken from [38].
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The performances of C-HAAR and C-LBP are close to each other in terms of max-

imum F-Scores (Table 5.1) and the normalized area under the curve (Figure 5.1(d)),

except for a decrease on stage 15 of C-HAAR, and they both perform better than

C-HOG in all aspects. The lower performance of C-HOG is due to the low number

of features it extracts from a training window. Even with the extension of Zhu et

al. [109], only 20 features are extracted from a 40 × 22 pixels training image. For

AdaBoost to estimate a better decision boundary, more features are required. The

difference between the number of features used by C-HAAR and C-LBP, however,

does not result in a considerable performance difference.

We observe a slight difference between C-HAAR and C-LBP in terms of the low-

est points that PR curves (Figure 5.1) reach. This is related to the performance

differences between the methods at their default threshold. As mentioned earlier,

decreasing the threshold of a classifier’s latest stage, S, to a very low value results

in a classifier with a stage number of S − 1. Therefore, since the performances of

C-LBP classifiers at their default thresholds are greater than the default performances

of C-HAAR classifiers, we observe PR curves ending at higher points in the case of

C-LBP.

For all methods, training with 19 stages outperforms training with less stages. There-

fore, taking 19 as the best stage number for all methods, we present their perfor-

mances on different motion types in Figure 5.2 with their overall performances on all

motion types. The performance of C-HAAR is slightly better than C-LBP on lateral,

up-down and yaw motions, since it has PR curves closer to the rightmost top corner

of the figures. C-HOG gives the worst performance in all motion types.

When we look at the performances of each method individually for each motion type,

C-HAAR performs similar on lateral, up-down and yaw motions; however its per-

formance diminishes on approach-leave, which is the most challenging motion in the

indoor dataset. C-LBP has a performance degradation on lateral motion, showing

that it is slightly affected by the large background changes. Other than this, the per-

formance of C-LBP is almost equal for other motion types. C-HOG performs better

on lateral than other motions. Notable performance degradation is observed for the

approach-leave motion.
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5.3 Outdoor Evaluation

We evaluated the classifiers trained with the outdoor training dataset using all outdoor

motion types, namely calm, agile and moving background. For each motion type and

for overall performance, we present the resulting PR curves and the normalized area

under the curves in Figure 5.3 and Figure 5.4, respectively. The F-Score performances

are listed in Table 5.2.

We notice that the performances of C-HAAR and C-LBP are remarkably better than

C-HOG in all experiments. When comparing C-HAAR and C-LBP, C-HAAR gives

slightly better results in terms of all measures. Under the agile maneuvers of the

quadrotor, C-LBP and C-HOG display a performance degradation, while C-HAAR’s

performance is hardly affected. This suggests that C-HAAR is more robust against

appearance changes due to the rotation of the quadrotor. Slight performance decreases

are observed in moving background video for C-HAAR and C-LBP.

When compared to the indoor evaluation, C-HAAR classifiers with low stage num-

bers perform better outdoors. The performance of C-HOG decreases in outdoor tests.

In terms of the F-Score, the best performing stage numbers differ for C-HAAR and

C-HOG. Unlike indoors, the performances of the C-LBP and C-HAAR classifiers at

their default thresholds are close to each other, resulting in PR curves reaching to

closer end points when compared to indoor results.

In order to determine the maximum distances at which the classifiers can detect the

quadrotor successfully, an experiment is conducted with distance test video using the

best performing classifiers on the overall according to the F-Scores in Table 5.2. In

this experiment, the minimum object size is set to 20 × 11. The resulting maximum

detection distances are 25.71 m, 15.73 m and 24.19 m, respectively, for C-HAAR,

C-LBP and C-HOG.

5.4 Performance under Motion Blur

We tested the best performing classifiers having 19 stages and giving the maximum

F-Scores in Table 5.1 on the blurred and original videos. The results depicting the
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(a) Performances for calm test video.
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(b) Performances for agile test video.
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(c) Performances for moving background test video.
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Figure 5.3: PR curves for outdoor evaluation (Best viewed in color). Figures are

taken from [38].
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(b) Stationary background agile flight
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(c) Moving background calm flight
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(d) All outdoor flights combined

Figure 5.4: Normalized area under curves for outdoor evaluation. Figures are taken

from [38].
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changes in F-Score, precision and recall against the amount of motion blur are given

in Figure 5.5.

We see that C-HAAR and C-LBP display a more robust behavior compared to C-

HOG, since the decreasing trend in their F-Score and recall values is slower than C-

HOG. C-LBP performs better than C-HAAR in terms of F-Score and recall. However,

the precision of C-HAAR and C-HOG increases slightly with the increasing amount

of motion blur. The reason for this increase is the decrease in the number of false

positives, since they start to be identified as background by C-HAAR and C-HOG

when there is more noise. However, this trend has a limit, since, at some point, the

noise causes a major decrease in the number of true positives. Here, σ = 25 is the

point where the precision of C-HAAR and C-HOG starts to decrease.

In the case of C-LBP, precision values are continuously decreasing due to an increas-

ing number of false positives. However, this degradation in precision is not so rapid.

Moreover, the decreasing trend in the recall of C-LBP is slower than other methods.

This slow decline rate in the recall is resulting from a high number of correct detec-

tions and a low number of incorrect rejections.

5.5 Distance Estimation

This section presents the experimental evaluation of the methods in terms of distance

estimation and time to collision estimation.

In order to train the distance estimator described in Section 3.8, we prepared a training

set of 35570 pairs of {(wi, hi), di}, where wi, hi are the width and the height of the

mUAV bounding box, respectively, and di is its known distance, acquired using the

motion capture system (see Chapter 4 for the details).

Support Vector Regressor (SVR - [84]) inside the distance estimator has been trained

on the training set with the Radial Basis Function (RBF) kernel. The values of the

parameters are optimized using a grid-search and five-fold cross-validation, yielding

the following values: ν = 0.09, C = 0.1 and γ = 0.00225. With these values,

a training error of 6.44 cm as the median is obtained. The distribution of distance
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Figure 5.5: Performance of methods under motion blur. (a) F-Score, (b) Precision,

and (c) Recall. To better illustrate the unexpected changes in precision and recall,

they are plotted separately. σ = 0 corresponds to original videos without motion blur.

Figures are taken from [38].
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Figure 5.6: (a) Training error distribution for distance estimation. (b) Distribution of

distance estimation error for each method. (c) Distance estimations during a leave

motion followed by an approach. Figures are taken from [38].

estimation errors over the training set is shown in Figure 5.6(a).

Since there is no ground truth distance information at hand for the outdoor dataset the

distance estimation has been evaluated by means of indoor videos only.

As in motion-blur analysis, we tested the best performing classifiers having 19 stages

resulting in maximum F-Scores tabulated in Table 5.1. The resulting distance estima-

tion distributions are displayed in Figure 5.6(b).

We see that the performance of C-HAAR is slightly better than C-LBP. The medians

of the error for C-HAAR and C-LBP are 18.6 cm and 20.83 cm, respectively. The

performance of C-HOG is worse than the other two methods with a median error of

43.89 cm and with errors distributed over a larger span.

In Figure 5.6(c), we plot estimated and actual distances for a leave motion followed by

an approach. These plots are consistent with the results provided with Figure 5.6(b)

such that the performances of C-HAAR and C-LBP are close to each other and better

than C-HOG.
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5.5.1 Time to Collision Estimation Analysis

We have analyzed the performance of the methods in the estimation of time to colli-

sion (TTC). In order to estimate TTC, the current speed (vc) is estimated first:

vc =
dc − dp

∆t
, (5.6)

where dc is current distance estimation, dp is a previous distance estimation and ∆t is

the time difference between two distance estimations. dp is arbitrarily selected as the

90− th previous distance estimation to ensure a reliable speed estimation. Once vc is

calculated, TTC can be estimated as:

TTC =
dc
vc
. (5.7)

Note that depending on the values of dc and dp, it is possible that vc also may take

negative values or be zero which makes TTC negative or∞, respectively. TTC < 0

means that the quadrotor is leaving away. TTC =∞ corresponds to a case where the

quadrotor is stationary. In both cases, no collision is in question.

Using this approach, we have evaluated the methods on indoor approach videos. Fig-

ure 5.7(a) shows the resulting box-plots for errors in estimating TTC. Figure 5.7(b)

illustrates the estimated and actual TTC’s for a single approach video. The perfor-

mances of C-HAAR and C-LBP are close to each other with a smaller median error

for C-LBP. C-HOG performs worse than C-HAAR and C-LBP as a result of its low

performance in distance estimation.

5.6 Time Analysis

The training and testing time of the methods are analyzed in detail for the indoor and

outdoor datasets on a computer with an Intel R© CoreTM i7-860 processor clocked at

2.80-GHz and 8 GB DDR3-1333MHz memory, running Ubuntu 14.04. Currently,

processors with similar computational power are available for mUAVs [5, 45].
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Figure 5.7: Indoor time to collision predictions of the methods for (a) all approach

motions and (b) a single approach motion. In (a), there are outliers also outside the

limits of the y-axis. However, in order to make differences between the methods

observable, y-axis is limited between −5 and 25. In (b), the y-axis is in log-scale,

and no estimation is available until the 90th frame. The missing points after the 90th

frame are due to negative or infinite time to collision estimations. Figures are taken

from [38].

5.6.1 Training Time Analysis

Figure 5.8 shows the amount of time required to train each stage of the classifiers,

and Table 5.3 lists the total training times needed for the training of all 19 stages (the

upper limit of 19 has been imposed due to the excessive time required for training

C-HAAR). We observe that C-HAAR is the most time consuming method, which is

succeeded by C-LBP and C-HOG. It is observed that C-HAAR requires on the order

of days for training, whereas C-LBP and C-HOG finish in even less than an hour.

The main reason behind the differences in the training times of the methods is the

number of features extracted by each method from an image window. As mentioned

previously, the ordering among the methods is C-HAAR, C-LBP and

C-HOG, with the decreasing number of associated features with an image window

of 40 × 22 pixels. The increase in the number of features amounts to an increase in

training the cascaded classifier to select the subset of good features via boosting.

We also observe a significant difference between indoor and outdoor training times
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Figure 5.8: (a) Indoor and (b) outdoor training times consumed for each stage in the

cascaded classifier. The y-axes are in log-scale. Figures are taken from [38].

Table 5.3: Training times for the cascaded classifiers having 19 stages in hours. Table
is taken from [38].

Feature Type C-HAAR C-LBP C-HOG
Indoor 98.31 22.94 13.53
Outdoor 177.59 0.87 0.52

for each method. For the outdoor dataset, C-HAAR is twice slower than on the in-

door dataset, where C-LBP and C-HOG are 26-times faster. The reason for this is

the fact that the outdoor background images are more distinct, enabling C-LBP and

C-HOG to find the best classifier in each stage more quickly. However, this effect

is not observed in C-HAAR, since Haar-like features are adversely affected by the

illumination changes, which are observed substantially in our outdoor dataset.

5.6.2 Testing Time Analysis

We have measured and analyzed the computation time of each method in two different

aspects: i) on a subset of the indoor videos, we measured the computation time by

changing the distance of the quadrotor to understand the effect of the distance; and (ii)

we analyzed the average running times needed to process indoor and outdoor frames,

with respect to the number of stages and the thresholds.

For the first experiment, we have selected five videos from the yaw motion type for 1-,

73



Distance [m]
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

T
im

e 
[m

s]

50

55

60

65

70

75

80

85

90 C-HAAR
C-LBP
C-HOG

Figure 5.9: Change of computation time required to process one video frame with

respect to the distance of the quadrotor. Figure is taken from [38].

2-, 3-, 4- and 5-m distances for middle level height. In total, there were 1938 frames

in these videos. We tested the performance of the classifiers having 19 stages at

their default thresholds, as shown in Figure 5.9, with respect to the distance between

the quadrotor and the camera. Although there are fluctuations, the time required to

process a single frame shows an inverse correlation. This is so because as a quadrotor

gets further away, its footprint in the image will decrease, and hence, the bigger scale

detectors will reject the candidate windows faster, which will yield a speed up in the

overall detection.

In our second experiment, we tested the running time performance of the classifiers

with respect to the number of stages. This has been performed both for the classifiers

at their default threshold, as well as with thresholds giving the maximum F-Score

(See Table 5.1 and Table 5.2).

For indoor experiments, a subset of the indoor dataset consisting of videos from ap-

proach, down, lateral left-to-right and yaw-clockwise motion types containing 1366

frames in total was used. For the outdoor experiments, a total of 1500 frames from

all motion types, namely calm, agile and moving background, were used. Figure 5.10

displays the resulting time performance distributions.

When we compare indoor and outdoor results, we observe that all three methods

require more time to process outdoor frames. This increase reaches up to three times

for C-HAAR and C-LBP. Outdoor frames are bigger than indoor frames by a factor

of 1.15. This accounts partially for the increase in the processing time. However, the
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(c) Outdoor tests with default thresholds
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(d) Outdoor tests with maximum F-Score thresholds

Figure 5.10: Analysis of time required to process one frame of (a-b) indoor and (c-

d) outdoor videos. In (a) and (c), the classifiers are tested with their default thresholds,

whereas in (b) and (d) the thresholds yielding maximum F-Score are used. Figures

are taken from [38].
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main reason is the higher complexity of outdoor background patterns, which manage

to pass the early simple processing stages of the cascades more; thus, they consume

more time before being identified as background.

When the results at the default thresholds and the maximum F-Score thresholds are

compared, we observe an increase in the time spent on the lower stages of C-HAAR

and C-LBP. This is due to the increasing number of candidate bounding boxes that are

later merged into the resulting bounding boxes. Both detection and merging of these

high number of candidate bounding boxes causes the processing time to increase.

For the maximum F-Score thresholds, processing time increases with the number of

stages. This is an inherent result due to the increase in the number of stages.

The scatter plots in Figure 5.11 display the distribution of F-Scores with respect to

the mean running times both for indoors and outdoors. The classifiers used in these

plots are the ones giving maximum F-Scores. The F-Score values for C-HAAR and

C-LBP are close to each other and higher than C-HOG. For C-HAAR, the F-Score

values are spread over a larger range for indoors, while the deviations in its mean time

requirement increase for outdoors. The distributions observed for C-LBP for indoors

and outdoors are similar to each other. The F-Score values of C-HOG decrease and

disperse over a wide range for outdoors, but the spread of its mean time requirement

is very similar for indoors and outdoors.

5.7 Sample Visual Results

In Figure 5.12, we present samples of successful detection and failure cases. These

images are obtained using only the best performing C-LBP classifiers for the sake of

space. C-LBP is remarkable among the three methods, since its detection and distance

estimation performance is very high and close to that of C-HAAR. Furthermore, it is

computationally more efficient than C-HAAR, both in training and testing. Three

videos1 are also available showing the detection performance of C-LBP on video

sequences from the indoor and outdoor test datasets.

1 Available at: http://www.kovan.ceng.metu.edu.tr/~fatih/sensors/
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Figure 5.11: (a) Indoor and (b) outdoor scatter plots for F-Score and mean running

times. Each F-Score value corresponds to a different classifier with different number

of stages at the threshold resulting in maximum F-Score. Figures are taken from [38].
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(a) Successful detec-

tions from indoor ex-

periments.

(b) Successful

detections

from outdoor

experiments.

(c) Failures from

indoor and outdoor

experiments.

Figure 5.12: Successful detection and failure examples from indoor and outdoor ex-

periments obtained using best performing classifiers of C-LBP (only C-LBP results

are provided for the sake of space). Figures are taken from [38].
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The images in Figure 5.12(a) display the performance of the detector in an indoor

environment that has extensive T junctions and horizontal patterns. The performance

of the detector under motion blur is also displayed. Outdoor images in Figure 5.12(b)

exemplify the outdoor performance of the detector where there are very complex

textures, including also moving background patterns (pedestrians and various types

of vehicles). When we look at the failures in Figure 5.12(c), we observe that the

regions including T junctions, horizontal patterns and silhouettes very similar to the

quadrotor’s are the confusing areas for the algorithms.
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CHAPTER 6

CONCLUSIONS

In this thesis, we have studied whether an mUAV can be detected and its distance

can be estimated with a camera through cascaded classifiers using different feature

types1. In order to demonstrate this in a systematic manner, we performed several

experiments indoors and outdoors. For indoor evaluations, a motion platform was

built to analyze the performance of the methods in controlled motions, namely in

lateral, up-down, rotational and approach-leave motions. For outdoor evaluations, on

the other hand, the methods were evaluated for the cases where the mUAV was flown

in a calm manner, an agile manner or with other moving objects in the background.

The maximum detection distances of the methods are also analyzed with an outdoor

experiment.

We evaluated the detection performance of three methods, namely C-HAAR, C-LBP

and C-HOG, where, in each method, a different feature extraction approach is com-

bined with the boosted cascaded classifiers and with a distance estimator utilizing

SVR. Our experiments showed that near real-time detection and accurate distance es-

timation of mUAVs are possible. C-LBP becomes prominent among the three meth-

ods due to its: (1) high performance in detection and distance and time to collusion

estimation; (2) moderate computation time; (3) reasonable training time; and (4) more

robustness to the motion blur. When it comes to distance estimation, C-HAAR per-

forms better, since it positions the bounding boxes more accurately compared to the

other methods. On the other hand, our time analysis reveals that C-HOG is the fastest,

both in training and testing.

1 This chapter is partially published in [38].

81



We have demonstrated that an mUAV can be detected in about 60 ms indoors and

150 ms outdoors in images with 1032× 778 and 1280× 720 resolutions, respectively,

with a detection rate of 0.96 for the F-score, both indoors and outdoors. Although

this cannot be considered real time, a real-time performance with cascaded classifiers

is reachable, especially considering that the implementations are not optimized. We

also showed that distance estimation of mUAVs is possible using simple geometric

cues and the SVR; even the change in the pose of the quadrotor or the camera results

in different bounding boxes for the same distance between mUAV and the camera.

The performance of detection can be improved significantly when combined with

tracking methods. Such methods limit the search space of the detector in the next

frame(s) by using the properties of the current and previous detections. This can

improve both the detection performance and the running time substantially. Various

tracking methods are studied in the literature for object tracking (See [56, 63, 104]

for reviews.). Since we have a detector, the tracking problem here fits into detection

based tracking category [63]. Once mUAV is detected, visual properties inside the de-

tection window such as intensity and color (if available) could be utilized to determine

most prominent locations for the detection window in a next frame. However, since

mUAVs tilt and rotate during their motions, the appearance of them could change in

subsequent frames and this should be considered along with the non-convex structure

of the mUAVs. Optical flow can be also utilized for the same purpose. The motion of

the mUAV can be estimated from previous detections by also integration the distance

estimation. Kalman filter [49, 98] or particle filtering [60, 67] approaches can be em-

ployed for this purpose. In a swarm study, if there is a communication link between

the mUAVs, they can share their inertial navigation information with their neighbors.

This information can be used to enhance their motion estimations.

Cascaded approaches are known to generalize rather well with the increase of the

number of objects. By looking at simple, fast, yet effective features at multiple stages

to minimize false positives and to maximize detection rates, successful applications

on complex and challenging datasets with many exemplars of the same class have

been reported [28, 107, 109]. These indicate that, for mUAV detection, cascaded

approaches are very suitable, even if many mUAV variants with appearance charac-

teristics are included.
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cation. In E. Şahin and W. Spears, editors, Swarm Robotics, volume 3342 of
Lecture Notes in Computer Science, pages 10–20. Springer Berlin Heidelberg,
2005.

[21] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual cat-
egorization with bags of keypoints. In Workshop on Statistical Learning in
Computer Vision, ECCV, pages 1–22, 2004.

[22] M. Cutler, B. Michini, and J. How. Lightweight infrared sensing for relative
navigation of quadrotors. In Unmanned Aircraft Systems (ICUAS), 2013 Inter-
national Conference on, pages 1156–1164, May 2013.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
1:886–893, 2005.

[24] M. B. Darling. Autonomous close formation flight of small uavs using vision-
based localization. Master’s thesis, California Polytechnic State University,
San Luis Obispo, 2014.

84



[25] D. Dey, C. Geyer, S. Singh, and M. Digioia. Passive, long-range detection of
aircraft: Towards a field deployable sense and avoid system. In In Proceedings
of Field and Service Robotics. Cambridge, MA, 2009.

[26] D. Dey, C. Geyer, S. Singh, and M. Digioia. A cascaded method to de-
tect aircraft in video imagery. International Journal of Robotics Research,
30(12):1527 – 1540, October 2011.

[27] T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier
systems, pages 1–15. Springer, 2000.

[28] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An eval-
uation of the state of the art. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 34(4):743–761, 2012.

[29] W. Etter, P. Martin, and R. Mangharam. Cooperative flight guidance of au-
tonomous unmanned aerial vehicles. In CPS Week Workshop on Networks of
Cooperating Objects (CONET), CPS Week 2011, Chicago, 2011.

[30] M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza. A monocular pose
estimation system based on infrared leds. In IEEE International Conference
on Robotics and Automation (ICRA), pages 907–913, 2014.

[31] J. Faigl, T. Krajnik, J. Chudoba, L. Preucil, and M. Saska. Low-cost embed-
ded system for relative localization in robotic swarms. In IEEE International
Conference on Robotics and Automation (ICRA), pages 993–998, May 2013.

[32] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural
scene categories. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 2, pages 524–531 vol.
2, June 2005.

[33] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza. Collaborative monocular
slam with multiple micro aerial vehicles. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 3962–3970, Nov
2013.

[34] Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In Computational learning theory,
pages 23–37. Springer, 1995.

[35] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

[36] A. Gaschler. Real-time marker-based motion tracking: Application to kine-
matic model estimation of a humanoid robot. Master’s thesis, Technische Uni-
versität München, Germany, 2011.

85



[37] A. Gaschler, M. Springer, M. Rickert, and A. Knoll. Intuitive robot tasks with
augmented reality and virtual obstacles. In IEEE International Conference on
Robotics and Automation (ICRA), June 2014.
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