
 

USING SURVIVAL ANALYSIS TO INVESTIGATE  

THE PERSISTENCE OF STUDENTS IN AN INTRODUCTORY INFORMATION 

TECHNOLOGY COURSE AT METU 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS 

OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

BY  

 

 

OĞUZ OZAN KARTAL 

 

 

 
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF INFORMATION SYSTEMS 

 

 

 

 

SEPTEMBER 2015  



 



 

USING SURVIVAL ANALYSIS TO INVESTIGATE 

THE PERSISTENCE OF STUDENTS IN AN INTRODUCTORY INFORMATION 

TECHNOLOGY COURSE AT METU 

 
Submitted by Oğuz Ozan KARTAL in partial fulfillment of the requirements for the degree of 
Master of Science in Information Systems, Middle East Technical University by, 

Prof. Dr. Nazife Baykal     __________________________________  
Director, Informatics Institute 

Prof. Dr. Yasemin Yardımcı Çetin   __________________________________  
Head of Department, Information Systems  

Prof. Dr. Yasemin Yardımcı Çetin   __________________________________  
Supervisor, Information Systems, METU 

Assist. Prof. Dr. Tuğba Taşkaya Temizel  __________________________________  
Co-Supervisor Information Systems, METU 

Examining Committee Members 

Prof. Dr. Soner Yıldırım     __________________________________  
CEIT, METU 
  
Prof. Dr. Yasemin Yardımcı Çetin   __________________________________  
Information Systems, METU 

Assoc. Prof. Dr. Aysu Betin Can   __________________________________  
Information Systems, METU 

Assoc. Prof. Dr. Altan Koçyiğit    __________________________________  
Information Systems, METU 

Assoc. Prof. Dr. Tolga Esat Özkurt   __________________________________  
Medical Informatics, METU 

 

Date: 31.08.2015 

 

  



 



iii 
 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and presented in 

accordance with academic rules and ethical conduct. I also declare that, as required by 

these rules and conduct, I have fully cited and referenced all material and results that are 

not original to this work.  

 

 

 

 

 

 

 

Name, Last name: Oğuz Ozan Kartal  

Signature: _________________  

  



iv 
 

ABSTRACT 

 
USING SURVIVAL ANALYSIS TO INVESTIGATE THE PERSISTENCE OF 

STUDENTS IN AN INTRODUCTORY INFORMATION TECHNOLOGY 
COURSE AT METU 

 
 
 

Kartal, Oğuz Ozan 

M.S., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

Co-Supervisor: Assist. Prof. Dr. Tuğba Taşkaya Temizel 

September 2015, 51 pages  

 

The purpose of the study is investigating students’ persistence in the IS100 Introduction to 
Information Technologies and Applications course at the Middle East Technical University 
(METU). While this course is mandatory for all undergraduate students, its noncredit status allows 
the students to delay passing the course to upper classes. Hence, they cannot utilize the 
competencies the course would provide during their studies at METU. In the study, the attendance 
records of IS100 students are extracted for the fall and spring semesters between the years 2011 
to 2013. Survival analysis is used to investigate students’ persistence in the course based on 
different factors including their year, department, and semester information. Their weekly 
attendance records are used to evaluate their persistence. As a result of the study, it has been found 
that the survival rates of students do not depend on their year information, except for fourth year 
students who have a higher survival rate. In addition to this, the survival rate of students does not 
differ according to students’ department information. Except for Spring 2013, the students’ 
survival is similar to each other based on their semester information. In Spring 2013 semester, the 
students have the lowest survival rates among the terms from Fall 2011 to Spring 2013. We also 
see that the midterm exams have a negative effect on students’ survival. These findings are 
discussed and suggestions are made.   
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ÖZ 

 

ODTU’DE BİLGİLENDİRİCİ BİLGİ TEKNOLOJİSİ DERSİNDEKİ 
ÖĞRENCİLERİN DEVAMLILIGINI İNCELEMEK İÇİN HAYATTA KALMA 

ANALİZİ KULLANIMI 
 
 
 

Kartal, Oğuz Ozan 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

Tez Yardımcı Yöneticisi: Yrd. Prof. Dr. Tuğba Taşkaya Temizel 

Eylül 2015, 51 sayfa 

 

Çalışmanın amacı Orta Doğu Teknik Üniversitesi IS100 Bilgi Teknolojileri ve Uygulamalarına 
Giriş dersindeki öğrenci devamlılığını incelemektir. Bu ders tüm lisans öğrencileri için 
zorunluyken, kredisiz olması öğrencilere dersi üst sınıflarda geçmeyi ertelemeye izin verir. 
Bundan dolayı, öğrenciler ODTU’de çalışmaları boyunca, dersin sağladığı kabiliyetlerden 
faydalanamamaktadır. Çalışmada, IS100 öğrencilerinin 2011-2013 güz ve bahar dönemleri 
arasındaki katılım kayıtları çıkarılmıştır. Hayatta kalma analizi öğrencilerin devamlılığını, onların 
yıl, bölüm ve dönem bilgisini içeren farklı faktörlere göre incelemek için kullanılır. Onların 
haftalık katılım kayıtları, onların devamlılığını değerlendirmek için kullanılır. Çalışmanın 
sonucunda, öğrencilerin hayatta kalma oranlarının, dördüncü yıl öğrencileri hariç, onların yıl 
bilgisine bağlı olmadığı bulunmuştur. Buna ek olarak, hayatta kalma oranları, öğrencilerin bölüm 
bilgisine göre farklılık göstermemektedir. 2013 bahar dönemi hariç, öğrencilerin hayatta 
kalmaları, dönem bilgisine göre benzerdir. 2013 bahar döneminde, öğrenciler 2011 güz dönemi 
ve 2013 bahar dönemi arasında en düşük hayatta kalma oranına sahiptirler. Ayrıca, vizelerin 
öğrencilerin hayatta kalmalarına olumsuz bir etkisi olduğunu gördük. Bulgular tartışıldı ve 
önerilerde bulunuldu. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1. Background of the Study 
 
“Statistics is the science of learning from data, and of measuring, controlling, and communicating 
uncertainty; and it thereby provides the navigation essential for controlling the course of scientific 
and societal advances.”(Davidian and Louis, 2012) The learning from data, as specified above, is 
achieved via analyses by using domain specific methods. The survival analysis, an important 
branch of statistics, works on the lifetime of a “thing”. Its focus may be a machine breakdown, an 
end of an uptrend/a start of a downtrend of a marketing strategy and a prognosis of a human 
disease.  
 
 “The term survival analysis comes from medical researchers because the methods originate from 
biomedical interest in studying mortality, or patients’ survival times between the time of diagnosis 
of a certain disease or death. Indeed, the first survival analysis was conducted approximately 350 
years ago, when John Graunt derived the very first life table and published his famous paper 
‘Natural and Political Observations Made Upon The Bills of Mortality’ in 1662.”(Shenyang Guo, 
2009) The term “survival” is from medical research area whereas other analogues are “reliability” 
in engineering, “duration” in economics, and “event history” in sociology. 
 
The survival analysis has been used in diverse fields from sociology to engineering. Annemette 
Sorensen and Aage Sorensen (1983) made their study in sociology field. Their objective was the 
analysis of the timing of the transition to marriage; they aimed to compare the transition among 
three Norwegian men cohorts from the years between 1939 and 1971. In economics domain; 
Etzioni, Feuer, Sullivan, Lin, Hu, and Ramsey (1998) study on survival analysis techniques for 
investigating that these techniques are appropriate for measuring the treatment costs in medical 
interventions or not. Another field that survival analysis is applied is the medical field. Simsek 
uses it to examine the impact of the three major breast cancer treatment types (Breast Conserving 
Surgery (BCS), Mastechomy, Breast Conservation Treatment (BCT), and other), age (groups of 
49 and under, 50-64, and 65 and over), and stage at diagnosis on the survival rates of breast cancer 
patients (Simsek, 2000). Besides comparing the groups, another type of usage of survival analysis 
is prediction. For example, an application to predict customer churn in the telecommunications 
industry is made to understand customer churn risk (Junxiang). In another study Electrical 
Submersible Pump Survival Analysis, Pflueger uses survival analysis in petroleum engineering 
field to characterize the average “life span” of wells and artificial lift types, to compare production 
conditions (which ones give better run life), as well as a measure of the performance of a given 
surveillance and monitoring program (improved surveillance and monitoring should extend run 
life)  (Pflueger, 2011). 
 
In this study, survival analysis is used in the education field for analyzing the students’ attendance 
behavior in the introductory information technologies course at METU. The general focus of 
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survival analysis in education is to analyze the tendency of students to drop out of the school. For 
example; Woldehanna, Jones, and Tefera (2006) analyze the determinants of students’ persistence 
and retention in primary education in Ethiopia. This social analysis has important implications 
for Ethiopian Poverty Reduction Strategy Paper because the results include students’ survival 
according to rural/urban and regional differences children live in, child characteristics, family 
characteristics, social capital, and community and school factors. In another survival analysis 
study, Plank, DeLuca, and Estacion (2008) perform their analysis in education field from 
economical perspective. They state that consequences of a student’s dropping out the school 
include a higher likelihood of unemployment, a greater chance of living below the poverty line 
and relying on public assistance, more frequent health problems, and increased criminal activity. 
Additionally, it is important for instructors to examine students’ persistence and dropping out 
because retention is increasingly important both for the student and the university today for 
economic reasons (Allarcon and Edwards, 2013).  
 
In education field, survival analysis studies focus on; 

 comparing of graders’ survival rates within the school and the nation; investigating the 
probabilities of graduation within a specific time (Mortenson, 1999) 

 identifying factors that impact a student’s ability to persist and graduate (Radcliffe, 
Huesman, and Kellog, 2006) 

 analyzing students’ school completion, dropping out rates (Woldehanna, Jones, and 
Tefera, 2006) 

 finding factors that affect students’ passing their first-year examination, such as their age 
group and gender (Bruinsma and Jansen, 2009) 

 investigating teachers’ retention according to their assignments and workload (Donaldson 
and Johnson, 2010) 

  
In this study, I aim to analyze the tendency of students’ dropping out of IS100- Introduction to 
Information Technologies and Applications course. The following part includes the purpose of 
the study and research questions. 

1.2. Purpose of the Study and Research Questions 
 
The course investigated in this study is IS100 (IS100 Website) whose aim is to equip students 
with basic computer skills to enable them to use these skills effectively in their subsequent 
courses. Therefore, IS100 course program includes lectures about operating systems, hardware, 
information resources, ethics, document processing, electronic presentations, data analysis and 
spreadsheets. It is a mandatory non-credit service course. Students are advised to take this course 
in their first year. However, as it is non-credit, some students tend to drop out of the course. 
 
The main purpose of this study is to use survival analysis to analyze students’ dropping out the 
course by using the students’ weekly attendance data to investigate their survivals according to 
factors of student’s year, faculty (aka school), and semester. 
 
We formulated the following hypotheses: 
H1: The survival rate of students in IS100 course is independent of their year information. 
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H2: The survival rate of fourth year students in IS100 course is higher than survival rate of other 
years’ students 
H3: The survival rate of students in IS100 course is independent of their school information. 
H4: The survival rate of students in IS100 course does not differ among semesters. 
H5: The midterm of IS100 course affects students’ attendance behavior.   

1.3. Significance of the Study 
  
Having information about the persistence of students will enable the instructors to gain insight 
about students’ needs and behavior. By examining the findings, policymakers and instructors may 
update their strategy to improve the outcomes of this course. Accordingly, the experience here 
may be applied to university base to identify factors that impact the student’s ability to persist and 
graduate. 

1.4. Definition of Terms 
 
IS100: Introduction to Information Technologies and Applications course. 
 
Survival: The mean of survival arises when someone or something continues to live or exist. It 
is used here for describing the students’ persistence/progression throughout the semester. If a 
student completes the course which means that the absenteeism record is less than 5, he/she is a 
survived student. Otherwise, that student is dropped out of the course. 
 
Cohort survival analysis:  Survival analysis on groups of people. 

Censored data:  Censored data is the data which relevant object’s event time is not measured. 
Censoring occurs when a subject (i.e. a patient in medical research, a thing in engineering, a 
student in educational research) leaves the study before experiences the event (i.e. death in 
medical research, breakdown in engineering, dropping out of the school in educational research), 
the research time ends before the event occurs, or the event is experienced before the research 
time begins. In this study, censoring may occur as the first alternative above. If a student does not 
drop out of the school until the semester ends, the event “failing the course” is not occurred, so 
such students’ data in the dataset is a censored data. 
 
Hazard ratio: It states the effect of parameter on objects’ survival. Small ratio means that the 
change in the parameter effects the survival, relatively less. The parameter in this study is 
students’ year, school, and semester information. Hazard ratio is defined in Section 2.1.2. 
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Significance level: It refers to criterion of judgment. While making a decision about validity of a 
hypothesis, significance level is used as a rejection point (0.05)  
 
Statistical significance: 

 p < 0.05 means statistically significant result. Denoted as *, 
 p < 0.01 means statistically highly significant result. Denoted **,  
as in Section 4 in this thesis. 

 
Drop-out rate: The rate is calculated for each week in the relevant semester. It is the number of 
students dropped out of the course for a week denominated by the students who do not drop out 
of the course until that week. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 
In this chapter, the literature review is presented. Firstly, the detail about survival analysis is 
given. Then, the usage of survival analysis in education field is introduced. These are explained 
in the following sections. 
 
2.1. Survival Analysis 
 
Survival analysis includes the set of methods that analyze the data on the duration until the 
occurrence of an event. It enables us to compare the effects of different treatments on the lifetime 
of objects. Figure 1 shows an example of survival analysis. It includes cumulative survivals of 
objects throughout the timeline. 

 
Figure 1: Survival Analysis Figure Including Comparisons of School of Arts and Sciences 

Students’ Survival Rates According to Their Year Information 

In Figure 1, the survival analysis of the school of arts and sciences students are displayed. The 
analysis is done according to their year information. As seen in the figure, fourth year students’ 
survival is highest. 

By using survival analysis techniques, researchers can not only extract the cumulative survival 
statistics of groups and compare the objects but also analyze the relationships between the 
variables in the data. 
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These methods are Kaplan-Meier and Cox Regression. The following sections, Section 2.1.1 and 
2.1.2, give their details. 
 
2.1.1. Kaplan Meier Method 
 
It is developed by Edward Kaplan and Paul Meier and published in a paper in the Journal of the 
American Statistical Association in June 1958. Kaplan Meier method is used for extracting 
cumulative survival rates and so, comparing the groups’ survival over time. 

 𝑆(𝑡𝑖) =  ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑡𝑖≤𝑡 . (1) 

The formula in Eq. (1) includes: 

 i: time 
 ti: time period 
 ni: number of subjects remaining in the cohort in ti 
 di: number of subjects who die in ti 

In each time interval, survival probability is the number of subjects living at the start of the interval 
divided by number of patients at risk (censored patients are not included in denominator because 
they are accepted as lost). The cumulative probability is to multiply all probabilities for a specific 
time with its preceding time’s probabilities. For example, in a clinic which has 50 patients for the 
same disease, there are 2 deaths in first month and 3 deaths in second month. 
Probability of survivors at the end of the first month is 1-(2/48) = 0.9583 and it is (1-(3/45)) x 
0.9583 = 0.8943 for the second month. 

2.1.2. Cox Regression 
 
It is also called Proportional Hazards Regression. The Cox model is developed by David Cox and 
published in a paper in the Royal Statistical Society (Cox, 1972). In 2009, Walters states that a 
Cox model is a statistical technique for exploring the relationship between the survival of a patient 
and several explanatory variables.  In survival analysis, Cox model is used in estimating the effect 
of parameters. 
 ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘. (2) 

The formula in Eq. (2) includes: 

 𝑘: number of coefficients 
 𝛽𝑖: Estimated coefficient for variable i  
 𝑥𝑖: Value of variable i 
 ℎ𝑖(𝑡): hazard function 
 ℎ0(𝑡): null hypothesis 

Explanatory variables in our dataset are year, school, and semester variables. 

 
𝐻𝑅 =  

ℎ1(𝑡)

ℎ2(𝑡)
=  

ℎ0(𝑡)𝑒𝛽𝑥1

ℎ0(𝑡)𝑒𝛽𝑥2
=  𝑒𝛽(𝑥1−𝑥2). (3) 
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By using hazard ratio formula in Eq. (3), the hazard rate describing the difference between the 
effects of two variables is found. For example, the result of the HR formula including 𝑥2= 2, 𝑥1 
= 1, and  β value for year = 0.089 means that the effect of year variable (for first and second year) 
on students’ survival is  𝑒0.089(2−1) = 1.093, which is the estimated hazard or risk of drop-out 
increases by 9.3% if a student becomes a second year student. 
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2.2. Related Studies 
 
Survival analysis has been applied in educational field from student, school and national 
perspectives. The results have been important for both policymakers and governments of the 
countries where the studies were conducted. The remaining part of this chapter is devoted to the 
studies so far in the educational field. 
 
 In 1995, a survival analysis is applied on specially admitted students by Han and Ganges. The 
aim is to investigate the persistence of students, year which students are most likely to leave, and 
factors that are effective on dropping out risk. The subjects used in this study are 1639 students 
from Northern Illinois University in 1986, 1987, 1988 and 1989. The dataset include each 
student’s gender, ethnicity, ACT sub-test and composite scores, high school percentile ranks, 
cumulative credit hours, GPA, and graduation date. They found that student’s gender, ethnicity, 
ACT groups (two groups including grade between 0-10 and 11-20) and high school rank groups 
(two groups including grade between 0-49 and 50-100) are most effective decisive attributes in 
the dataset. The semesters that are riskier are second, third and fourth semesters; and black 
students are more likely to leave the school in these periods. The student group which has ACT 
scores between 0-10 has a significant risk to leave school compared to the other group. Similarly, 
the group with HSR scores between 0-49 has a higher risk to leave school than the other group 
(Han and Ganges, 1995). 

 
Another survival analysis study (Mortenson, 1999) compared the persistence of the students of 
Kentucky public high schools to that of the USA. The study aimed to examine the rate at which 
fall 9th grade students in Kentucky's public high schools persisted in their enrollment to fall 10th, 
11th and 12th grade enrollments. The data consists of enrollment and regular high school graduate 
data. It includes all students of Kentucky public high school in period from 1977-78 through 1997-
98. Mortenson states that Kentucky ranked behind the nation on the probability of a ninth grader 
would eventually graduate from high school until the late 1980s. Its rank is nearly identical in 
years between 1987 and 1991, and it exceeds the nation’s rate in years after 1991. “Compared to 
national data, Kentucky's greatest gains in cohort survival rates have occurred between fall ninth 
and tenth grade enrollments, and again between fall eleventh and fall twelfth grade enrollments.” 
Tenth to eleventh grade survival is nearly identical to that of the general USA’s survival. 
 
The studies specified above compare semesters’ data in terms of students’ persistence. However, 
Hoverstad, Sylvester, and Voss applied survival analysis to search student’s lifetime for 
estimating the revenue impact of a student to his university. Their aim is to develop a model to 
find out the expected monetary value of a student (Hoverstad, Sylvester, and Voss, 2001). Their 
dataset includes the number of students in each semester; 508 students in first semester, 492 
students in second semester, and so on and finally 1 student in 13th semester. The subjects used in 
this study are the students admitted to the business school at a medium sized private university in 
the West of the United States from the fall semester of 1993 through the fall semester of 1999.  
They assume that the tuition per semester is $9000 for a private university. After applying survival 
analysis, this revenue is multiplied by the prior semester’s survival rate. 
By this calculation, the expected value of an individual student for the university is $54,370.36 
over 13 semesters. 
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A survival analysis was applied by using family attributes of students besides student 
characteristics. The study aims to investigate the impact of family attributes on student’s 
persistence/attrition during the primary and secondary school years in Vietnam (Belanger and 
Liu, 2008). The data includes individual characteristics (school status, duration of schooling, 
gender, working in past days, birth order), household context (household income level, size of 
household, number of adults in household, number of school years of household head, gender 
of household head, household type), and community context (human development level, 
available of any traditional occupations or handicrafts) to examine the effects of individual and 
household characteristics on children’s dropping out of school. The data is from Vietnam Living 
Standard Survey (VLSS) of 1992-93 and 1997-98 for 3301 children aged between 6 and 13. 
Their results include; 

 The probability of dropping out of school increases rapidly with age. 
 In all age groups, girls have a higher probability of dropping out of the 

school than boys. 
 Children involved in paid work are approximately four times more 

likely to drop out. 
 Birth order is not significant. 
 “Children in households where father is the household head are 26% 

more likely to leave school, compared with those living in households 
headed by females.” 

 “Children living in communes with a high human development level 
have a much higher survival rate than those living in communes with 
medium or low human development levels.”  (Belanger and Liu, 

2008) 
 
Another study aimed to investigate the time students passed their first year examination at a Dutch 
University (Bruinsma and Jansen, 2009). The period selected for investigation is 24 months from 
the beginning of the school. In this work, the dataset includes the students’ school, gender, age, 
prior achievement (measured in terms of grade point average in secondary education) and 
procrastination which is a measured by a set of questionnaire about the student’s motivation. The 
dataset includes 565 first-year students from the University of Groningen (Netherlands) in 1999.  
They found that 61% of the students passed their first year examination within 24 months; female 
students passed this earlier than male students; and students which have higher prior achievement 
passed their examination sooner. According to their investigation, school and gender are not 
significant variables. Students which have a lower tendency to procrastinate have higher chance 
of passing their first year examination within 12 months. 
 
Student attrition was also investigated in Vilnius Pedagogical University (Leonavicius and 
Grazvydas, 2009). Survival analysis was applied to the data including bachelor’s degree students 
in VPU. The aim is to reveal the factors that are effective on student’s persistence and attrition. 
The data includes gender and entrance grades of each student. According to their results, the 
gender is not a significant factor for students’ attrition. In addition to this, survival probabilities 
are not different among the groups of entrance grades.  Important predictors in this work are the 
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final assessment of Mathematical Analysis in Semesters 1 and 2, and the Theory of Probabilities 
and Statistics in Semester 4. 
 
Differing from the studies focusing on persistence of students, Leonaviciene and Terese analyzed 
the migration rate among universities in Lithuania and in Vilnius Pedagogical University. They 
stated that migration rate is increasing and it is critical to know the reasons (Leonaviciene and 
Terese, 2009). The aim is to find out the significant factors resulting the migration, and risky 
semesters. In this study, 578 Mathematics and Informatics students who were entered the VPU in 
between 2002-2004 are selected. The data consists of gender and entrance grade of each student. 
Leonaviciene and Terese found that the tendency of girls to persist is twice as that of boys’. The 
survival rate is the lowest among the students whose entrance marks are low. The persistence of 
boys and girls who have the lowest grade in their gender is not different.  
 
Another survival analysis concentrating on students’ dropping out is applied by Bowers (2010). 
The aim is to investigate the dropping out rates in between Grade 1 to 12 in United States. In the 
graduating classes of 2006, 193 students from West Oak and South Pine were selected. The 
enrollment histories and mean noncumulative GPAs for each grade level of these two cohorts 
were analyzed. The researcher found that; Grade 7, Grade 8 and 11 are the riskiest grades in 
students’ schooling for dropping out. The students in the lowest GPA group are more likely to 
drop out of the school. 
 
While most of the studies focus on gender, scores, demographic and parental information of each 
student, another study investigated the dropping out tendency of students according to their 
mental disorders (Borges, Icaza, Benjet, Lee, Lane and Breslau, 2011). The study works on the 
dataset including students who have one of 16 DSM-IV (Diagnostic and Statistical Manual of 
Mental Disorders, Fourth Edition) mental disorders and their degree on four educational 
milestones which are primary school completion, high school graduation, college entry, and 
college termination. The dataset assessed from Composite international Diagnostic Instrument 
(CIDI) during fieldwork in 2001-2002 in Mexico includes 2362 students. They found that students 
with impulse control disorders and substance use disorders have higher risk for dropping out of 
school, secondary school dropping out and college entrance. In addition to this, students with 
anxiety disorders are associated with lower risk for dropping out, especially at secondary school 
and primary school. 
  
In 2003, an education reform called Quality Reform was realized in Norway. Survival analysis 
methods were applied to investigate dropping out and transfer rate in university undergraduate 
education (Hovdhaugen, 2011). The dataset includes each student’s parent’s education level, 
gender, and geographical background. It includes two cohorts of first-time entrants to higher 
education among all students who entered undergraduate program of humanities, social science 
and science in 1999 and 2003 autumn terms. As a result, Hovdhaugen stated that there is a 
significant reduction in transfer rate after the reform, but the dropping out rate is not significantly 
affected by the reform, which is that there were 18730 students who dropped out of the school 
and 11485 students who were transferred to another school before the reform while there were 
16554 students who dropped out of the school and 10681 students who transferred to another 
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school after the reform. Additionally, parental education level affects student persistence 
positively. 
 
Alarcon and Edwards investigated students’ survival from ability and motivation perspectives. 
They aimed to find out decisive factors of college students’ retention in their first-year (Alarcon 
and Edwards, 2013). The data consists of each student’s ACT test score (ability); 
conscientiousness, affectivity or retention (motivation); parent’s education, and gender. It 
includes 584 freshman students enrolled to a Midwestern university in Unites States. As a 
consequence; gender, ACT scores, and conscientiousness are significant predictors of students’ 
university retention, but parent’s education is not a significant predictor. 
 
The studies which apply survival analysis in education field generally use dataset including 
student’s gender, parental education, mean cumulative GPAs, ACT scores and so on. However, 
Zuilkowski and Jukes investigated schooling by relating it with early childhood malaria in 
Gambia (Zuilkowski and Jukes, 2014). According to their references, malaria is linked to 
absenteeism in school age because it effects cognitive development negatively. Their aim is to 
find whether Intermittent Preventive Treatment (IPT) reduces the drop-out rate and changes 
survival in later grades while cognitive demands of schooling increase. To investigate the impacts 
of IPT treatment on student’s persistence, they worked on the data consisting of 562 youth born 
between 1981 and 1986. It includes the variables; student’s gender, student’s grade, whether 
student’s cohort was eligible for government mass treatment program or not, and the student 
attended government school or madrassa. They state that government school drop-out rate is 
lower than madrassa’s rate; attrition is lower in government school in each grades up to the 
completion of ninth grade; students’ drop-out is highest in third, fifth and sixth grades for 
madrassa students. 
 
Another study is “Cause analysis of students’ dropout rate in higher education study program” 
(Paura and Arhipova, 2014). The aim is to find out decisive factors of the first year students’ 
dropping out of the school. The dataset consists of each student’s gender, secondary school scores, 
the priority of the program to study, and its financial source (government-financed or self-
finance). Priority means that “According to the Latvian enrolment rules all potential students may 
choose several programs during the application process. Students must indicate the priority for 
each program separately (first, second, third etc.)”  (Paura and Arhipova, 2014). The dataset 
includes 677 students enrolled in 2011-2012 at the Latvia University of Agriculture. The results 
indicated that, a male student’s dropping out rate is 1.5 times higher than female student’s rate; 
area of study is a decisive factor on survival; the students in the Faculty of Information 
Technology and Food Technology schools are more risky to drop out of the school; the finance 
source and priority are not statistically significant variables; and students who have scores lower 
than 25 are in the most risky score group to drop out. 
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CHAPTER 3 
 

RESEARCH METHODOLOGY 
 

 
In this chapter, the research methodology is applied in this thesis is given. The design of the study 
is explained in detail. 
 
3.1. Design of the Study 
 
The aim of this study is to investigate persistence of students for IS100 course. In order to do that, 
the dataset includes the absenteeism information of all students on a weekly basis. If a student’s 
total absenteeism reaches 5 weeks, he or she is considered as a student who dropped out of the 
course. The details about the content of the dataset are given in Section 3.2 Design of the Data. 
The survival analysis is applied according to year, school, and semester information of the 
students. In order to apply survival analysis, R Software is used (see Appendix C). It is an open 
source software environment for statistical computing and graphics. 
In this study, Middle East Technical University students who were enrolled in the course in the 
fall and spring semesters between 2011 and 2013 are selected. 
  

3.2. Design of the Data 
 
The dataset of this study is provided by Informatics Institute of Middle East Technical University. 
It includes id, name, surname, class, section, school; final, midterm, and assignment grades; and 
absenteeism records of each student. Absenteeism records include participation information of 
the student for 13 weeks in corresponding semester. 
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This data is then processed for being used in the software. The new version of the dataset 
consists of the following variables:  

 status: the binary variable that shows whether the student dropped out of the course or 
not. 0 stands for a censored data. 

 time: the variable that shows the week when dropping out is realized. All semesters have 
13 weeks except for Fall 2013 term. It includes 12 weeks. 

 school: the variable shows the school of the student. Students in the dataset are grouped 
under four schools: FAS, FEA, FED, and FEN. 

 year: the variable shows the year of the student. The year in the dataset is from 1 to 4. 
 
The design of the data is decided according to input the software requires. The data are analyzed 
by using R software and survival analysis is applied to observe the survival difference of student 
groups according to their year, school (dept), and semester information. Table 1 depicts a sample 
R software input. 
 

Table 1: The Example of R Software Input 

time status dept class 
1 1 4 3 
1 1 4 3 
1 1 4 2 
6 0 2 4 
2 0 4 3 
1 1 2 3 
9 1 2 1 
6 0 4 2 
3 1 1 1 

 
The dept column stands for the school of the student, and 

 1 stands for FAS 
 2 stands for FEA 
 3 stands for FED 
 4 stands for FEN. 

Seventh record in Table 1, for instance, corresponds to a first year student who is from FEA and 
drops out of the course in ninth week. Additionally, fifth record represents a third year student 
who is from FEN does not drop out of the course and this student results in censored data. 
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CHAPTER 4 
 

DATA ANALYSIS 
 

 
All hypotheses of this study are stated in Section 1.2 Purpose of the Study and Research Questions 
and the following parts display relationships of those and the results of data analysis. 
 
4.1. Survival Rate Analysis of Students According to Their Year 
Information 
 
In order to investigate the survival rate according to students’ year groups - first year, second year, 
third year, and fourth year – we use their year information in the dataset. In Section 2.2 Related 
Studies, it was stated that Bowers (2010) has searched for the riskiest grades in students’ 
schooling for dropping out while Han and Ganges have studied on risky semesters (1995). 
Actually, we assume that fourth year students’ survival rate is more than the rates of other years’ 
students, but it is also important for us to search the difference of the persistence of first, second 
and third year students. Therefore, in this section, we aim to figure out the following hypotheses: 
the survival rate of students in IS100 course is independent of their year information (H1) and the 
survival rate of fourth year students in IS100 course is higher than the survival rate of other years’ 
students (H2). 
Figure 2 shows their cumulative survival rate throughout weeks. 
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Figure 2: Survival Analysis According to Students' Year 

 

In Figure 2, it is clearly seen that fourth year students’ survival is highest among the groups and 
first, second, and third year have close survival rates throughout the semester. 

Table 2: Proportional Hazard Rates, p-values, and Sample Sizes of Year Group Comparisons 

  Year 1-2 Year 1-3 Year 1-4 Year 2-3 Year 2-4 Year 3-4 
HR 1.116 1.061 0.86 1.01 0.76 0.56 
HR 
(95% C.I) 0.921-1.352 0.961-1.169 0.786-0.940 0.808-1.261 0.658-0.879 0.425-0.761 

p-value 0.26 0.24 **0.00094 0.93 **0.0002 **0.000015 
N 763-377 763-345 763-234 377-345 377-234 345-234 
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In Table 3, the statistical information about survival analyses is included. The hazard ratios (effect 
of the change in the year parameter) between survival of first and second students, first and third 
year students, and second and third year students are close to one, which means that these 
students’ survival in IS100 course are similar to each other.  However, as in the Figure 2 and 
Table 3, we can observe that discrepancy between fourth year students’ survival and others is 
higher and HR values of years 1-4, 2-4, and 3-4 are farther than others according to 1. 

The p-values in Table 3 show statistical significance of the results. p-values of survival analysis 
between first and second year students(1.116, 95% CI, 0.921-1.352, p = 0.26), first and third year 
students (1.061, 95% CI, 0.961-1.169, p = 0.24), and second and third year students (1.01, 95% 
CI, 0.808-1.261, p = 0.93) are high, so the difference between first, second and third year students’ 
survival comparisons are not statistically significant. Therefore, they retain the hypothesis that is 
the survival rates of students in IS100 course are independent of their year information (H1). 
However, this is not the case for the fourth year students; in survival analysis, fourth years’ 
students’ survival analysis compared to others rejects the null hypothesis (H1) because p-values 
of survival analysis of first and fourth years students (0.86, 0.786-0.940, **p = 0.00094), second 
and fourth years students (0.76, 95% CI, 0.658-0.879, **p = 0.0002), and third and fourth years 
students (0.56, 95% CI, 0.425-0.761, **p = 0.000015) are less than our significance criteria (0.05). 
Therefore, fourth year students retain the hypothesis that the survival rate of fourth year students 
in IS100 course is higher than survival rate of other years’ students (H2). 
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4.2. Survival Rate Analysis of Students According to Their School 
Information 
 

Another important parameter of the study is students’ school information, which consists of FAS, 
FEA, FED, and FEN. In Section 2.2 Related Studies, there is a study which finds the most risky 
school about students’ drop-out (Paura and Arhipova, 2014) and it is important also for us to see 
whether the students of any school are riskier than others between Fall 2011 to Spring 2013 
semesters. Therefore, in this section, we aim to investigate the following hypothesis: the survival 
rate of students in IS100 course is independent of their school information (H3).  Figure 3 shows 
their cumulative survival rate throughout weeks. 

 

Figure 3: Survival Analysis According to Students' School 

It is seen that the persistence of students in IS100 course is similar to each other based on their 
school information.  
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Table 3: Proportional Hazard Rates, p-values, and Sample Sizes of School Parameter 
Combinations 

  
Arts&Sciences 

Economics 
Arts&Sciences 

Education 
Arts&Sciences 

Engineering 
Economics 
Education 

Economics 
Engineering 

Education 
Engineering 

HR 1.06 1.066 1.043 1.068 1.035 1.004 
HR 
(95% C.I) 0.846-1.328 0.924-1.23 0.973-1.118 0.816-1.397 0.943-1.135 0.778-1.294 
p-value 0.612 0.378 0.228 0.629 0.464 0.976 
N 343-476 343-185 343-715 476-185 476-715 185-715 

 

It can be seen from Table 4 that the proportional hazard ratios are close to one. Additionally, all 
p-values in the Table 4 are higher than the 5% significance level (0.05). Therefore, we retain the 
hypothesis that the survival rate of students in IS100 course is independent of their school 
information (H3).  
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4.3. Survival Rate Analysis of Students According to Their Semester 
Information  
 
The dataset also includes semester information of each student. Survival analysis according to 
students’ semester provides us a general insight about the change of students’ attendance to the 
course throughout years. Therefore, in this section, we aim to investigate the following 
hypothesis: the survival rate of students in IS100 course does not differ among semesters (H4).  
 Figure 4 shows survival rates of students from Fall 2011 to Spring 2013 semester.

 

Figure 4: Survival Analysis According to Students' Semester Information 
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It is seen that students’ survival is similar to each other, but the discrepancy between Spring 2013 
semester students and others is more pronounced. In the figure, survivals of students of each 
semester are generally close to each other in each week. Therefore, it is beneficial to separate 
them into two graphs to make the visualization of the analysis clearer. In addition to Figure 4, 
Figure 5 and 6 show the survival rates of students of fall and spring semester. 

 

Figure 5: Students’ Survival in Fall Terms 
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Figure 6: Students’ Survival in Spring Terms 

Table 4: Proportional Hazard Rates, p-values, and Sample Sizes of Semester Parameter 
Combinations 

 
Fall 2011 

Spring 2011 
Fall 2011 
Fall 2012 

Fall 2011 
Spring 2012 

Fall 2011 
Fall 2013 

Fall 2011 
Spring 2013 

Spring 2011 
Fall 2012 

Spring 2011 
Spring 2012 

Spring 2011 
Fall 2013 

HR 1.071 1.04 1.02 1.056 1.078 1.014 0.992 1.045 
HR 
(95% 
C.I) 

0.827- 
1.384 

0.920- 
1.175 

0.928- 
1.121 

0.992- 
1.124 

1.026- 
1.133 

0.784- 
1.312 

0.8572- 
1.15 

0.9571- 
1.14 

p- 
value 0.602 0.529 0.673 0.086 *0.0029 0.914 0.921 0.328 

N 372-274 372-332 372-201 372-290 372-250 274-332 274-201 274-290 
 

Table 5: (Cont.) Proportional Hazard Rates, p-values, and Sample Sizes of Semester Parameter 
Combinations 

  
Spring 2011 
Spring 2013 

Fall 2012 
Spring 2012 

Fall 2012 
Fall 2013 

Fall 2012 
Spring 2013 

Spring 2012 
Fall 2013 

Spring 2012 
Spring 2013 

Fall 2013 
Spring 2013 

HR 1.08 0.977 1.08 1.108 1.161 1.179 1.181 
HR 
(95% C.I) 

1.011- 
1.152 

0.736- 
1.297 

0.952- 
1.225 

1.02- 
 1.204 

0.8706-  
1.547 

1.022-  
1.36 

0.9166- 
1.522 

p-value *0.021 0.873 0.23 *0.015 0.31 *0.024 0.198 

N 274-250 332-201 332-290 332-250 201-290 201-250 290-250 
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By looking at the proportional hazard ratios, the difference between Spring 2013 and others is a 
little more than other hazard rates.  

p-values in Tables 5 and 6 show that it is retained that the survival rate of students in IS100 course 
does not differ among semesters (H4) except for Spring 2013 semester. p-values of  Fall 2011 and 
Spring 2013 (1.078, 95% CI,  1.026- 1.133, *p=0.0029), Spring 2011 and Spring 2013 (1.08, 95% 
CI, 1.011- 1.152, *p=0.021), Fall 2012 and Spring 2013 (1.108, 95% CI, *p=0.015), and Spring 
2012 and Spring 2013 (1.179, 95% CI, 1.022- 1.36, *p=0.024) which means students’ survival in 
Spring 2013 is different and it has the least survival rate according to students’ semester 
information. 
  

4.4. Attendance Behavior Investigation Based on Midterm Date 
 

In this study, we also investigate the absenteeism records in all terms to see whether the midterm 
results have an effect on students’ attendance behavior. In this section, we aim to investigate the 
following hypothesis: the midterm of IS100 course affects students’ attendance behavior (H5). It 
is important to see drop-out rates per week to see whether the midterms have an effect on students’ 
attendance behavior. 

Table 6: Drop-out Rates Per Week for All Terms 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2011 20.43 5.06 2.13 2.54 1.49 2.27 1.93 3.55 0.4 

Spring 2011 20.43 9.63 3.55 2.1 2.15 3.29 3.97 0.59 0 

Fall 2012 17.77 6.95 3.54 2.85 5.88 3.12 3.22 1.42 1.44 

Spring 2012 17.91 5.45 5.76 4.08 6.38 4.54 0 1.58 0 

Fall 2013 24.82 8.71 2.01 4.1 1.6 3.8 3.38 0 0 

Spring 2013 25.2 10.69 4.79 5.03 7.28 2.85 4.41 0.76 0 
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Figure 7: Drop-out Rates per Week In All Terms 

  

The midterm is at the end of 8th week in almost all terms. In Figures 7-13, we see that the drop-
out rates until 8th week are decreasing continually, but after that week, they are generally increase 
or they are steady, so it is seen that midterm results affect students’ attendance behavior in a 
negative way in IS100 course.  

Students’ drop-out rates in Spring 2011, Fall 2012, Spring 2012, and Spring 2013 are decreasing 
until 8th weeks. In Fall 2013 semester, the midterm is held at the end of 9th week and the same 
attendance behavior is also valid for that term. The Figures 8-13 and Tables 8-13 include the drop-
out rate in all semesters and display the midterm effects on students’ attendance behavior. 
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Table 7: Drop-out Rates in Fall 2011 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2011 20.43 5.06 2.13 2.54 1.49 2.27 1.93 3.55 0.4 
 

 

 

Figure 8: Drop-out Rates in Fall 2011 
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Table 8: Drop-out Rates in Spring 2011 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Spring 2011 20.43 9.63 3.55 2.1 2.15 3.29 3.97 0.59 0 
 

 

 

Figure 9: Drop-out Rates in Spring 2011 
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Table 9: Drop-out Rates in Fall 2012 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2012 17.77 6.95 3.54 2.85 5.88 3.12 3.22 1.42 1.44 
 

 

 

Figure 10: Drop-out Rates in Fall 2012 
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Table 10: Drop-out Rates in Spring 2012 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Spring 2012 17.91 5.45 5.76 4.08 6.38 4.54 0 1.58 0 
 

 

 

Figure 11: Drop-out Rates in Spring 2012 
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Table 11: Drop-out Rates in Fall 2013 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2013 24.82 8.71 2.01 4.1 1.6 3.8 3.38 0 0 
 

 

 

Figure 12: Drop-out Rates in Fall 2013 
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Table 12: Drop-out Rates in Spring 2013 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Spring 2013 25.2 10.69 4.79 5.03 7.28 2.85 4.41 0.76 0 
 

 

 

Figure 13: Drop-out Rates in Spring 2013 

 

To see whether the change of attendance behavior just after the midterm week depends on the 
students’ midterm results or not, the students are grouped under two cohorts which are the 
students who get 0-49 and 50-100. Appendix A includes drop-out rates of two cohorts on a weekly 
basis in all terms from Fall 2011 to Spring 2013. The results show us that students in midterm 
groups have the similar attendance behavior with behavior of all students in Figures 7-13. This 
means that the midterm affects the students’ persistence to attend the course and the effect 
depends on the midterm but not the midterm result. 
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CHAPTER 5 
 

DISCUSSION AND CONCLUSION 
 
 

5.1. Discussion and Conclusion 
  
When reviewing the literature, we see that several investigations are made in order to apply 
survival analysis in education field. These studies generally focus on persistence of students in 
their education and schooling. They compare the graders’ survival rates within the school and 
nation, identify the factors affecting student’s persistence and graduation, analyze students’ drop-
out rates, and find effects of age and gender of students on survival and so on. In the papers, we 
see that their results and recommendations are important for the policymakers of schools and 
governments. These studies and their results all motivate us throughout our study. 
  
In this study, we aim to analyze students’ survival for the course IS100. It is a common course 
for almost all students at METU, so it is worthwhile to conduct an investigation. Before starting 
the analysis, we acquire our dataset. It includes year, school, semester, and absenteeism records 
of each student in all terms from Fall 2011 to Spring 2013. In total, our dataset includes 1719 
records. 
 
Firstly, we transform our dataset into an acceptable input for R software. We generate the figures 
that show the cumulative survival rates for each week. Secondly, we find out proportional hazard 
ratios (i.e. hazard rates between first and second year in years analysis or hazard rates between 
FAS and FED) between of all factors. Then, in order to test the hypotheses, we calculate the p-
values to determine the significance of the results. 
 
There are 9 weeks in the timeline of survival analysis graphs even if a semester includes 13 weeks 
because there is no drop-out in those times. Therefore, all graphs have the same curve in first 4 
weeks and survival rate is on 1.0 cumulative survival point and so, we do not put them in graphs 
and the timeline is started with week 5. In this study, we evaluate all data including 1 to 13 weeks 
in data analysis for all semesters. 
 
 
Students’ survival can be affected by a number of factors. First of all, IS100 is a non-credit course 
and a student can take the course in any year. Secondly, in this course, the students are given basic 
and fundamental lectures to learn information systems and to use the learned instruments in other 
courses of the university and in social life. However, the students may think that they have already 
known the required technology and they see the course as a waste of time. Therefore, it is needed 
to find out their drop-out rates on weekly basis to see their attendance behavior from the beginning 
to the end of the week in a term and it is also important to see that being non-credit and having 
basic supplements for the course have a negative effect on students’ motivation to participate to 
the course, especially for the first and second year students. Additionally, another candidate that 
students’ attendance behavior needs to be investigated is students’ school. Students select their 
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school according to their ability and capability, and also success on university selection exam. It 
is also crucial to see whether their educational background has an impact on their survival. Finally, 
it needs to be taken into consideration that how students’ attendance behavior changes throughout 
years. To compare survival rates as years goes on may provide us to see general inclination of 
students to the course. 
 
When we examine statistics of the analyses in Section 4 Data Analysis and then interpret them, 
we find the following results. 
Survival rates of first, second and third year students are close to each other on weekly basis. 
Their HR values are close to 1, and the differences of their survival are not statistically significant. 
On the other hand, fourth year students’ survival is different from others, the highest among all 
year groups. This difference is statistically significant, and it can be clearly seen from the Figure 
2. It is seen that a student can postpone passing the course unless he or she is not a fourth year 
students. A fourth year student has to pass the course in order to graduate from the university, so 
s/he attends more to the lectures. In addition to this, it is stated above that IS100 course is non-
credit and its basic and fundamental structure is not seen critically important by the students 
(except for fourth year students), this points to the case why first, second, and third year students’ 
survivals are similar to each other. 
 
Different schools need different abilities from the students. However, the analyses show us that 
students’ survival does not depend on their educational background because p values are high on 
their survival difference investigation. It can be seen from Figure 3 and HR values that their 
survivals are close to each other, which means that their difference is not statistically significant 
according to their school information. Students may give more importance to their field specific 
lectures because they have at least 3-4 credits and these lectures are generally prerequisite course 
of another lecture, which is that the student has to pass a course to enroll another course in the 
next term. Therefore, this situation removes the effect of the type of school and its requirements 
on students. In addition to fundamentals of the course, having high number of credit also affects 
students’ motivation. A high-credit course is more attractive than non-credit course for students. 
These factors are important to indicate why students from different schools show similar survival 
for the course. 
 
In addition to work on survival of students, we study on students’ attendance behavior on a weekly 
basis. Therefore, we examine drop-out rates of all students in all terms between 2011 and 2013. 
A student drops out of the course if he/she does not attend to the lectures as five times. Tables 7-
13 and Figures 7-13 show that the fifth week has the highest drop-out rate and the rate decreases 
up to eight weeks. After that week, the drop-out rate increases or it is steady for a while. This is 
the week when the midterm is held in IS100 course, and the results are announced in a few days. 
This means that, midterm results increases the rate of dropping out of the course and not only the 
students whose midterm result is not good but also the students whose motivation is low drop out 
the course. In addition to midterm, social proof and social circle are also important factors causing 
the drop-out of students (Temizel T, Alkış N, 2014). In the paper, it is stated that friends of the 
students and class environment are leading factors in education context. Students may not persist 
to attend to the class and this affects others in the same way because of following the lead of 



33 
 

others and this happens mostly at the beginning of the term. After midterm results, the students 
who continue to attend the lectures have the highest motivation among all students. 
 
Another important case in students’ survival investigation is to analyze them according to their 
semester information. As years goes on, if the survival rate of all students decreases continually, 
it is critically crucial to be aware of this for the policymakers. Therefore, one of the aims of this 
study is to see whether this case exists or not. Figure 5-6 show that 2013 terms have the lowest 
survival rates in both fall and spring terms. Additionally, Spring 2013 has the least survival rate 
among all semesters and this is statistically significant. This means students’ attendance decreases 
by time; social proof and social circle affects students more, and students give less importance to 
the lecture as a whole. 
 
The causes what make survival analysis crucial for education field are two major methods: 
Kaplan-Meier method and Cox regression model. By using cox regression, a researcher can show 
the relationship between the survival of a student and several explanatory variables. Eventually, 
the effects of each variable on students’ survival are found.  
 
Another important step in survival analysis is Kaplan-Meier method that handles the case of lost 
students, which results in censored data. Censored data exists when a student leaves the study. If 
a researcher starts to work on students’ real-time data since the beginning of the term and a few 
students leave the study, s/he removes them from the dataset and s/he makes his/her analyses from 
the scratch. Campbell at al., (2014) investigated students’ behavior week by week. They created 
the first smartphone sensing system that provided them information including the impact of the 
students’ stress, mood, workload, sociability, sleep and mental well-being on their educational 
performance. As a result, they presented correlations between sensor data from smartphones and 
mental well-being and academic performance outcomes. Their results are important for providing 
awareness of students’ behavior during the term and causes of those behaviors. However, by using 
survival analysis, one could find the effects on depression level on students’ survival by finding 
hazard rate of depression variable (low, moderate, high) on students’ behavior by using Cox 
model, in addition to correlations (i.e. negative correlation between sleep duration and 
depression). By finding the hazard rates of all factors, the policymakers and other researchers in 
education field may decide priorities of the results. Moreover, they could have compared the 
students’ attendance behavior for all students’ activities, conversation, sleep, and location 
information gathered during the term by using Kaplan-Meier method. Recall that, this method 
takes into consideration of censored data so it can be advantageous to use in that study. Because 
they stated that seven students dropped out of the study and five dropped the class in the term in 
which they have studied, so they removed their data from their dataset. It is clear that survival 
analysis can make important contributions to the research above and all researches in education 
field. 
 
It is seen that first, second and third year students may tend to drop out of the course to pass it in 
another term(s). What’s more, they give more importance to their field specific and credit-
course(s). Therefore, firstly, policymakers and instructors are informed with this study. Secondly, 
students’ must be motivated to get it in their first year and they are told in detail that this lecture 
has basic and important supplements to help them in their other courses and in social life; IS100 
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course provides them working well in their assignment, projects and challenges in their social 
life. Additionally, instructors make the students known what are social proof, its effect, and its 
results. In this way, they reduce the drop-out risk in first four weeks. We see in semester analysis 
that the survival rate decreases continually in years, so instructors and policymakers may change 
the structure of the course and/or revise the assignments and topics in the course. 
 
To sum up, we investigate on students’ attendance behavior in our study. We compare students’ 
survival according to their information (year, school, and semester) and compare their survivals. 
Additionally, we examine their schooling week by week by extracting their drop-out rates. This 
study has an importance to see decisive factors on students’ survival, how students’ attendance 
behavior change over time and what reasons have an effect on the results. 
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5.2. Limitations and Further Research 
 
The study has some limitations. Firstly, our actual sample size is one of the limitations in this 
study. It is important to have a larger dataset for a more comprehensive research. Actual sample 
sizes and expected sizes of the study are included in Appendix B. For the further research, more 
semesters and students can be added to the dataset of the study. 
 
Another one is the demographic parameter diversity. Persistence of students in the course can also 
be investigated based on students’ gender, GPA, entrance grade to the school, parental 
information, and geographical background. To do so, the data set needs to be enlarged for further 
studies. Besides the demographic data, smart devices can be used to get real-time data about 
students’ behavior like the study of Campbell at all. (2014). 
 
For the further research, a survey can be conducted to see the reasons of the students for dropping 
out of the course. They can be asked why they do no attend the course in the first four weeks and 
why they drop out of the course after the week in which midterm results are announced. 
 
It is also important to observe students’ attendance behavior in response to different triggers they 
receive from their instructors. Methods applied by instructors may affect students’ persistence or 
withdrawal from the course. Different triggers may be mails/messages sent to students at different 
times and pop-up quizzes. They might affect students’ survival throughout the term in different 
ways. In addition to the survey above, these triggers can be applied in order to observe the 
students’ attendance behavior. 
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APPENDICES 

Appendix A: Dropout rates of Students in Semesters 
 

Table 13: Drop-out Rates of Students whose Midterm Result is Less Than 50 in All Terms 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2011 47.61 19.48 9.67 8.92 5.88 10.41 4.65 9.75 2.70 

Spring 2011 44.06 30.30 15.21 10.25 5.71 15.15 7.14 3.84 0.00 

Fall 2012 47.50 30.15 18.18 19.44 27.58 23.80 31.25 9.09 10.00 

Spring 2012 41.86 20.00 22.50 16.12 30.76 33.33 0.00 16.66 0.00 

Fall 2013 56.19 30.18 10.81 21.21 11.53 21.73 16.66 0.00 0.00 

Spring 2013 52.54 35.71 13.04 18.42 22.58 12.50 19.04 0.00 0.00 
 

  

 

Figure 14: Drop-out Rates of Students whose Midterm Result is Less Than 50 in All Terms 
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Table 14: Drop-out Rates of Students whose Midterm Results are Higher Than or Equal to 50 in 
All Terms 

Term week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

Fall 2011 2.66 0 0 0.91 0.46 0.462 1.39 2.35 0 

Spring 2011 2.54 0.65 0 0 1.31 0.66 3.35 0 0 

Fall 2012 0.93 0 0.47 0 2.85 0.98 0.99 1 1.01 

Spring 2012 0.84 0 0 0.84 0.85 0 0 0 0 

Fall 2013 2.87 1.77 0 0.602 0.606 1.21 0.61 0.62 0 

Spring 2013 0.75 0 1.52 0.77 3.12 0.8 1.62 0.82 0 
 

 

 

Figure 15: Drop-out Rates of Students whose Midterm Result is Higher Than or Equal to 50 in 
All Terms 
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Table 15: Drop-out Rates of Students According to Their Midterm Result in Fall 2011 Semester 

Fall 2011 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 47.61 19.48 9.67 8.92 5.88 10.41 4.65 9.75 2.70 

> 50 2.66 0.00 0.00 0.91 0.46 0.46 1.39 2.35 0.00 
 

 

 

Figure 16: Drop-out Rates of Students According to Their Midterm Result in Fall 2011 
Semester 
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Table 16: Drop-out Rates of Students According to Their Midterm Result in Spring  
2011 Semester 

Spring 2011 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 44.06 30.3 15.21 10.25 5.71 15.15 7.14 3.84 0 

> 50 2.54 0.65 0 0 1.31 0.66 3.35 0 0 
 

 

 

Figure 17: Drop-out Rates of Students According to Their Midterm Result in Spring 2011 
Semester 
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Table 17: Drop-out Rates of Students According to Their Midterm Result in Fall 2012 Semester 

Fall 2012 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 47.5 30.15 18.18 19.44 27.58 23.8 31.25 9.09 10 

> 50 0.93 0 0.47 0 2.85 0.98 0.99 1 1.01 
 

 

 

Figure 18: Drop-out Rates of Students According to Their Midterm Result in Fall 2012 
Semester 
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Table 18: Drop-out Rates of Students According to Their Midterm Result in Spring 2012 
Semester 

Spring 2012 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 41.86 20 22.5 16.12 30.76 33.33 0 16.66 0 

> 50 0.84 0 0 0.84 0.85 0 0 0 0 
 

  

 

Figure 19: Drop-out Rates of Students According to Their Midterm Result in Spring 2012 
Semester 
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Table 19: Drop-out Rates of Students According to Their Midterm Result in Fall 2013 Semester 

Fall 2013 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 56.19 30.18 10.81 21.21 11.53 21.73 16.66 0 0 

> 50 2.87 1.77 0 0.602 0.606 1.21 0.61 0.62 0 
 

 

 

Figure 20: Drop-out Rates of Students According to Their Midterm Result in Fall 2013 
Semester 
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Table 20: Drop-out Rates of Students According to Their Midterm Result in Spring 2013 
Semester 

Spring 2013 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13 

< 50 52.54 35.71 13.04 18.42 22.58 12.5 19.04 0 0 

> 50 0.75 0 1.52 0.77 3.12 0.8 1.62 0.82 0 
 

 

 

Figure 21: Drop-out Rates of Students According to Their Midterm Result in Spring 2013 
Semester 
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Appendix B: Actual and Expected Sample Sizes that Survival Analysis needs 
 

Year Parameter 

Table 21: Data Sample Size of Year Parameter in Dataset 

  Year 1 Year 2 Year 3 Year 4 
Data Sample Size 763 377 345 234 

 

 

Table 22: Calculated Sample Size with Given 5% Significance Level and 80% Power 

Expected 
Size Year 2 Year 3 Year 4 

Year 1 3913/1935 14879/6730 4585/1407 
Year 2  345140/316062 909/564 
Year 3   220/150 
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School Parameter 

 

Table 23: Data Sample Size of School Parameter in Dataset 

 FAS FEA FED FEN 
Data Sample Size 343 476 185 715 

 

 

Table 24: Calculated Sample Size with Given 5% Significance Level and 80% Power 

Expected Size FAS FED FEN 

FAS 8756/12161 11908/6423 13988/29203 

FEA  14139/5498 23770/35744 

FED   1353673/5246793 
 

 

Semester Parameter 

 

Table 25: Data Sample Size of Semester Parameter in Dataset 

 Fall 2011 Spring 2011 Fall 2012 Spring 2012 Fall 2013 Spring 2013 
Data Sample 

Size 372 274 332 201 290 250 
 

 

Table 26: Calculated Sample Size with Given 5% Significance Level and 80% Power 

Expected Size Spring 2011 Fall 2012 Spring 2012 Fall 2013 Spring 2013 
Fall 2011 9152/6745 23549/21026 137519/74335 12770/9961 6508/4374 

Spring 2011  162552/197032 697823/511976 16661/17649 5182/4728 
Fall 2012   93614/56702 5956/5206 3235/2436 

Spring 2012    1193/1722 9341161 
Fall 2013     1116/962 
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Appendix C: R Software and Its Methods Used In Survival Analysis 
R Software and relevant information can be found in https://www.r-project.org/. It is an open 
source software including statistical computing methods. 

The methods used in this study are Surv, coxph, survfit, and ssizeCT. ssizeCT is in 
‘powerSurvEpi’ package and others are included in ‘survival’ package. 

Surv method is used for creating a survival object. 

coxph method is used for fitting proportional hazards regression model. It gives p-values and 
hazard rate. 

survfit method is used for estimating Kaplan-Meier survival curves. 

ssizeCT method is used for sample size calculation for the comparison of survival curves 
between two groups. 

‘survival’ package information can be found at  
https://cran.r-project.org/web/packages/survival/survival.pdf  
 
‘powerSurvEpi’ package can be found at  
https://cran.r-project.org/web/packages/powerSurvEpi/powerSurvEpi.pdf  

https://www.r-project.org/
https://cran.r-project.org/web/packages/survival/survival.pdf
https://cran.r-project.org/web/packages/powerSurvEpi/powerSurvEpi.pdf

