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ABSTRACT

NEW DIMENSION REDUCTION TECHNIQUE FOR BRAIN DECODING

Afrasiyabi, Arman

M.S., Department of Biomedical Engineering

Supervisor : Prof. Dr. Fatoş Tünay Yarman Vural

September 2015, 93 pages

A new architecture for dimension reduction, analyzing and decoding the discrimina-
tive information, distributed in function Magnetic Resonance Imaging (fMRI) data,
is proposed. This architecture called Sparse Temporal Mesh Model (STMM) which
consists of three phases with a visualization tool. In phase A, a univariate voxel se-
lection method, based on the assumption that voxels are independent, is used to select
the informative voxels among the whole brain voxels. For this purpose, one of feature
selection methods namely one way analysis of variance (ANOVA) or mutual infor-
mation (MI) is employed. Then, in phase B, a multivariate voxel selection method,
based on the multivariate form of the brain, known as recursive feature elimination
(RFE) is employed. The last phase, phase C, contains two parts. In phase C.1, a
local mesh with fix size around each voxel called seed voxel is formed. Next, the
relationships, called arc weights, between the seed voxel and the neighbouring voxels
are estimated. In phase C.2, ANOVA feature selection method is used to eliminate
the unnecessary arc weights. Additionally, a visualization tool known as t-Distributed
Stochastic Neighbor Embedding (tSNE) is used to analyse the effect of each phase.
The results indicate that STMM can successfully use for brain decoding purpose.

Keywords: Sparse Temporal Mesh Model (STMM), Brain Decoding, Univariate Voxel
Selection, Multivariate Voxel Selection, tSNE, fMRI
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ÖZ

BEYİN OKUMA İÇİN YENİ BİR BOYUT KÜÇÜLTME TEKNİĞİ

Afrasiyabi, Arman

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tünay Yarman Vural

Eylül 2015 , 93 sayfa

Bu çalışmada, Fonksiyonel Manyetik Rezonans Görüntüleme(fMRG) verileri üze-
rinde boyut küçültme, analiz ve ayrımcı bilgileri deşifre işlemlerini gerçekleştiren
yeni bir yapı önerilmiştir. Seyrek Zamansal Örgü Modeli (SZÖM) adı verilen bu yapı
üç aşama ve bir görselleme aracından oluşmaktadır. Yapının A aşamasında, voksel-
lerin birbirinden bağımsız olduğu varsayımına dayanarak, tüm voksellerin arasından
bilgilendirici olanları bulmayı amaçlayan tek değişkenli voksel seçim modeli kul-
lanılmıştır. Bu amaç için, tek yönlü varyans analizi (VA) veya karşılıklı bilgi (KB)
yöntemlerinden yararlanılmıştır. Daha sonra, B aşamasında, beynin çok değişkenli
yapısına dayanarak, Özyinelemeli Boyut Eliminasyon (ÖBE) olarak bilinen çok de-
ğişkenli voksel seçim yöntemi kullanılmaktadır. Son aşama olan C aşaması ise kendi
içerisinde iki alt aşamadan oluşmaktadır. C.1 alt aşamasında, belirlenmiş ve tohum
voksel adı verilmiş vokseller etrafında sabit boyutlu, bölgesel örgü modelleri kurul-
maktadır. Kurulan bölgesel örgü modeller neticesinde, tohum vokseller ile komşu
vokselleri arasında yay ağırlıkları adı verilen ilişkiler kestirilmektedir. C.2 alt aşama-
sında, VA özellik seçim yöntemi kullanılarak gereksiz yay ağırlıkları ortadan kaldı-
rılmaktadır. Çok aşamalı bu yapının yanısıra, t-Dağıtılmış Stokastik Komşu Gömme
(tSKG) isimli görüntüleme yöntemi her aşamanın etkisini analiz etmek için kullanıl-
matadır. Elde edilen sonuçlar, geliştirilmiş olan Seyrek Zamansal Örgü Modeli’nin,
beyin okuma amacı için başarılı bir şekilde kullanılabileceğini göstermektedir.
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ğişkenli Voksel Seçimi, Çok Değişkenli Voksel Seçimi, tSKG, fMRG.

vii
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Although the human brain seems to be far from a complete uncovering, some of

the abstract physiological and functional questions are partially answered about it.

The results of current studies are beheld to the previous curiosities about the brain.

Perhaps, the oldest interest backs to four century B.C. At that era, Aristotle considered

the brain as a place for spirit circulation and a secondary organ which provides cooling

and heating for the body. In one of his famous writings he says: ” There is nothing

in the intellect that is not in the senses ”. However, Alexandrian anatomists, such as

Rufus of Ephesus, worked on the general physical description, and they found some

basic building blocks of the brain such as pia and dura matters. Avicenna (980–1037),

the Islamic philosopher and medical writer, wrote in the early eleventh century that

human brain is housed in the “ faculty of fantasy ”, “ receiving all the forms which

are imprinted on the five senses ”.

Several centuries later, Gustav Theodor Fritsch (1838-1927) and Julius Eduard Hitzig

(1838-1907) were two German physiologists who are counted as the pioneers on the

mapping of the brain cortex with electrical stimulation of several animals, specially

that of dogs. This work inspired the British physician David Ferrier (1843-1928) to

stimulate the cortex of dogs and monkeys. The resulted map uncovered 29 func-

tionally different parts of the cortex. However, with the advent of new technologies

such as brain imagining, the researchers could be able to have a better understand-

ing of the brain. One of the latest evolved neuroimaging technologies is functional
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form of Magnetic Resonance Imaging (fMRI). fMRI provides sequential information

about brain volumes, and it contributes to the uncovering of the brain functions by

providing its images in high special resolution. Several characteristics of fMRI such

as non-invasiveness, generation of dimensional and high special resolution images,

bring popularity to fMRI, nowadays.

In order to examine the data acquired by fMRI, different approaches are proposed.

Among them the most popular one is the prediction of the brain states under the “

brain decoding ” or “ mind reading ” research area. The ultimate goal of this approach

is to predict what the subject thinks at the time of data acquisition using fMRI. It is

expected that the most of unknown brain functions will be understood by achieving

the ultimate goal of brain decoding. Additionally, decoding the brain would help sci-

ence to understand the branch from both neuroscientific and medical point of views.

On the one hand, brain decoding helps us to develop the effective methods which are

based on the brain. For instance, effective Artificial Intelligent (AI) algorithms with

high precision and speed can be developed by mimicking the brain functions. On the

other hand, based on the findings of brain decoding we can design and build effective

devices that provide comfortable life to diseased people.

The biggest challenge of brain decoding is the identification of the brain functions

during a cognitive task. In order to achieve this challenge, one possible solution is to

consider the voxels of brain as features, where they intensity values vary across dif-

ferent a cognitive stimuli. Then, a machine learning algorithm such as support vector

machine (SVM) can be trained using that voxels. In this case, the feature space is

formed by a set of voxels. Therefore, it is obvious that the selection of informative

voxels is critical in order to increase the power of brain decoding. Additionally, the

examination of all voxels (in the order of tens of thousands) to predict the brain states

(in the order of hundreds) seems inconvenient. The source of this inconvenience

stems from the fact that only limited parts of brain are responsible for a certain cog-

nitive task. Additionally, taking into count of all voxels increases the possibility of

incorrect prediction in machine learning methods. The source of this incorrectness is

the family of problems which fall into the sub-category of the main problem known

as “ curse of dimensionality ”.
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In order to reduce the effects of curse of dimensionality problem, several methods are

proposed in the literature under the voxel selection research area. In this work, two

different approaches have been used for voxel selection purpose. In the first type, the

voxels are considered to be independent from each other, and the selection is done by

considering each voxel as a independent random variable. These methods are called

univariate voxels selection methods. Two most popular univariate voxel selection

methods are analysis of variance (ANOVA) and mutual information (MI), and both

of them are used in this study. The other approach based on the examination of all

voxels to select the most discriminative ones. The methods in this sub category fall

into multivariate voxel selection group. Recursive Feature Elimination (RFE) is one

of the popular multivariate methods, and it is also employed in this thesis.

In addition to voxel selection, there is another problem with the classical brain de-

coding approaches. We know that voxels as the fMRI elements contain the neural

information of a group of neurons. Furthermore, it is obvious that neurons have a

strong interactions with each other. Therefore, considering only the intensity values

of voxels omits the relations among them. Therefore, building a robust model based

on the relationships among the voxels is required to represent the nature of brain. It is

expected that building a brain network could help us to find a brain decoding model

with a high accuracy. In this network, the voxels can be taken as vertices, and their

relationships can be considered as edges. Learning a mesh model is offered for the

first time by M. Ozay et al. [59], and it is developed under the network assumption.

Temporal mesh model (TMM), which is proposed by Onal et al. [67], is the later ver-

sion of learning mesh model. We used TMM in this study. Similar to its old version,

TMM estimates the edges between the voxels and use them instead of voxel intensity

for brain decoding purpose. These edges are called arch weights, and the number of

them is higher than the number of voxels. In other words, the new feature space is

made up of estimated arc weights in TMM, and this feature space is larger than the

previous one which is made up of voxel intensities. As a result, most probably, TMM

suffers from curse of dimensionality problem. The detailed information of the this

problem is given in Chapter 2.
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1.2 Proposed Reduced Dimension Network Architecture: Sparse Temporal Mesh

Model (STMM)

The proposed brain decoding architecture is called Sparse Temporal Mesh Model

(STMM). STMM is aimed to increase the precision of brain decoding by reducing

the curse of dimensionality problem using feature selection methods beside the use

of powerful brain decoding method known as temporal mesh model (TMM). In brain

decoding using fMRI recordings, the change in the intensity values of voxels are mea-

sured while brain is stimulated by watching a scene, remembering something, hearing

a piece music and etc. The features are considered to be the voxels, and the samples

are the time series obtained at each voxel during a stimulus. Therefore, during a

stimulus a set of brain volumes (voxels) are recorded for each sample. The number

of stimulus determines the number of samples in the set. This set of brain volumes

(voxels) and samples are used to train one of the machine learning classifiers. Then,

the trained classifier is tested by the samples which are not used for training purpose.

Unfortunately, there is a problem which lays in the nature of fMRI recordings. The

brain volumes captured in the fMRI recordings consist of 20,000 to 100,000 voxels,

and the brain stimulus is in the order of hundred. In machine learning literature, this

problem is known as curse of dimensionality . In order to reduce the dimension of the

feature space there are dozens of voxel selection methods in the literature for brain

decoding purpose [49], [30] and [31].

M. Ozay et. al, [59] illustrated that, when the peak intensity of voxels are replaced

with the estimated relationships among them which are called arc weights, then the

arc weights have more discriminative power compared to the peak intensity of vox-

els. Upon this finding, mesh learning model is proposed which estimates and replaces

each voxel called seed voxel by the relationships of that voxel with its nearest neigh-

bouring voxels. Later, Onal et. al, [67] developed the updated version of local mesh

model which uses the discrete form of voxel’s intensity changes instead of just single

peak value. In this thesis, the name temporal mesh model (TMM) implies Local Mesh

Model with Temporal Measurements (LMM-TM).

Due to the computational complexity and curse of dimensionality problem, the pre-

vious studies of using arc weights could only be applied in a predefined anatomical
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region. This approach omits the discriminative voxel from the ignored parts of the

brain. Furthermore, all of the voxels from the selected anatomical regions are con-

sidered which may cause of assumed to be achieved which results in considering

unnecessary and less discriminant features (voxels).

In order solve the above problems, an architecture called sparse temporal mesh model

(STMM) is proposed. STMM uses feature selection methods in the first and second

phases of proposed architecture (STMM) for voxel selection purpose. Mutual infor-

mation (MI) and one way analysis of variance (ANOVA) based voxel selection meth-

ods are used to select the most stimulus related features(voxels) among the whole

brain voxels. In this study, it is shown that both MI and ANOVA select nearly the

same voxels, and both methods take the voxels from the anatomical regions of brain

which are believed to be related with the experimental task. Recursive Feature Elim-

ination (RFE) is used in the second phase of the architecture. Contrary to the MI and

ANOVA feature selections that are univariate, RFE selects voxels by considering all

of them in the multivariate form. The purpose of this phase is to select voxels by

considering the multivariate nature of brain. The third phase consists of two parts:

implementation of temporal mesh model (TMM) and pruning the arc weights. Af-

ter voxels are selected as the output of the second phase, they feed to TMM for arc

weights estimation. In the second part of third phase, the arc weights are pruned

using discussed ANOVA feature selection methods. Finally, a visualization method

known as t-Distributed Stochastic Neighbor Embedding (tSNE) [32] is connected to

all of the previous phases to provide 2D map of the samples in the feature space and

visualize the effects of the phases on the feature space.

The fMRI dataset used in this work is a binary type visual stimulation of participant

while measuring the brain functions with fMRI. The stimulus are belonging to the

images of flowers and birds categories. During the experiment the subjects are asked

to recognize the category of presented stimulus. The experiment is done in six runs,

and each run contains 36 stimulations (samples) of participants.

In summary, a new architecture called sparse temporal mesh model (STMM) is pro-

posed. The architecture is made up three phases. The whole brain voxel inputs to the

architecture and the ones with high discriminative power are selected in the phases
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A and B. In phase C, after implementation of TMM on the selected voxels, the esti-

mated arc weights are pruned by using ANOVA feature selection method. The impact

of each phase on feature space is visualized using tSNE method. Additionally, SVM

and KNN are used to decode and predict the states of brain.

1.3 Contribution

• Previously, the implementation of TMM was limited to the extraction of few

anatomical regions of the brain which are responsible for generating cogni-

tive task of visualizing objects. One problem with this approach was that the

voxels outside of the region of interest (ROI) are ignored to consider for brain

decoding. Additionally, considering all of the voxels within the ROI was an-

other limitation of previous approach. Because, in Neuroscience literature, it

is shown that the specific anatomic regions do not fully active under a stim-

ulus. In other words, the selected predefined RIOs may have inactive voxels.

In this study, two univariate and a multivariate feature selection methods are

combined to select the most informative voxels in the entire brain. The results

indicate that although most of the selected voxels are from the functionally task

related regions of the brain, the selected voxels may fall the outside of the pre-

defined ROIs. Additionally, the performances of brain decoding get better by

the elimination of irrelevant feature (voxels) compared to the the whole brain

performances.

• In previous researches on mesh learning model, the number of neighbours for

each voxels was either optimized or determined to be a fix number. In other

words, the mesh learning model were only examined by considering fix number

of arc weights for all of the voxels. Considering this assumption which all of the

voxels are connected to each other with the same degree may contradict with

the nature of brain. Most probably, the connectivity among the voxels can vary

depending on the cognitive process and the location of the voxels. On possible

solution for this problem is to optimize the number of related neighbours for

each voxel. Obviously, such optimization problem is unsolvable due to the

high number of voxels (in the order of tens of thousands) and different degree
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of unknown interactions. In this study, a pruning method for the arc weights is

proposed as an alternative solution. ANOVA feature selection method is used in

order to achieve this goal. The results declare that the feature selection methods

successfully capture and select the discriminative arc weights.

• In the literature, several dimension reduction techniques are used to visualize

the data points in the feature space. Among these methods, tSNE was shown to

have a better performance compared to the other methods in some cases such

as hand writing recognition. In this study, tSNE is used to visualize the sam-

ples in the feature space and see the effect of voxel selection methods, TMM

and discussed proposed solution in the previous paragraph. tSNE helps us to

have better knowledge about the feature space of each phase in the proposed

architecture and see its effect.

• The main goal of this study is to increase the power of brain decoding by using

the voxel selection methods and mesh learning model. The experimental results

of the proposed architecture showed that the results are repeatable, and the

proposed architecture is a promising technique for brain decoding task.

1.4 Outline of the Thesis

Chapter 2 covers a brief literature survey about the brain decoding and dimension

reduction techniques. After discussing the idea and basic fundamentals of fMRI,

two popular brain decoding methods known as MVPA and local mesh model are

overviewed. Next, one of the serious problems known as “curse of dimensionality”

and some of its effects are discussed. Then, several possible solutions are explained.

Finally, information about KNN and SVM classifiers are presented, which both of

them are used in this study.

Chapter 3 introduces the proposed new dimension reduction technique for brain de-

coding. This chapter contains the detailed information about the employed methods

in the architecture. In the first part of the chapter, two univariate voxel selection meth-

ods namely mutual information (MI) [30] and ANOVA [31] based feature selection
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methods are explained. Then, a multivariate voxel selection method known as Recur-

sive Feature Elimination (RFE) [49] is covered. The third section presents Temporal

Mesh Model (TMM) which estimates the arc weights as relationships between a seed

voxel and its local neighbours. Finally, the visualization of the feature space by tSNE

is provided.

Chapter 4 illustrates the analysis and experimental results of the voxel selection meth-

ods and proposed architecture. It consists of several analyses, such as the anatomical

location of selected voxels, degree of the connectivity for each voxel etc. Addition-

ally, the classification performance of proposed method and the other ones are dis-

cussed in the chapter.

Finally, in Chapter 5, the overall outcomes of the study and possible future works are

discussed.
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CHAPTER 2

BRAIN DECODING AND DIMENSION REDUCTION

TECHNIQUES FOR FMRI

In this chapter, an overview about the current state of art for “brain decoding” and

related problems are provided. After discussing fundamentals of functional Magnetic

Resonance Imaging (fMRI), the current state of art on brain decoding techniques are

covered which connects researchers from several discipline under the scope of fMRI

data analysis. Then, two different approaches for decoding the brain states are dis-

cussed namely Multi-Voxel Pattern Analysis (MVPA) and Mesh Learning model. In

MVPA, the brain states are estimated using the intensities of the voxels. On the other

hand, the estimated linear relations between voxels are replaced with the intensities

in the case of mesh learning model. Then, the problem known as “curse of dimen-

sionality” is provided that steams from the nature of high dimension and low sample

of fMRI datasets. Finally, some of the possible solutions in the literature for curse of

dimensionality is discussed.

2.1 functional Magnetic Resonance Imaging (fMRI) for data acquiring

One of the important physical phenomenon which has a huge impact on the science

was the discovery of Nuclear Magnetic Resonance (NMR). NMR was the result of

innovative and fundamental works of famous scientists such as Walter Gerlach (1889

– 1979), Otto Stern (1888 – 1969) and Isidor Rabi (1898–1988). In this event, the

nuclei absorb and consequently emit electromagnetic radiation in a strongly enough

magnetic field. In 1974, Paul C. Lauterbur and Peter Mansfield opened a new chapter
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in the history of science using this phenomenon. Although they worked separately

without the knowledge of each other, they were able to describe the application of

gradients of magnetic fields for spatial localization of NMR signals-which were un-

known before that time. This discovery called Magnetic Resonance Imaging (MRI)

technique which was great enough to persuade the committee of Noble Prize in Phys-

iology or Medicine to honor both scientists with the prize in 2003 [1].

The researches have been soared in MRI since 1970’s and leaded to discovery of

functional Magnetic Resonance Imaging (fMRI) by Seiji Ogawa[2]. fMRI is a neu-

roimaging technique which provides sequential information from the brain volumes

over time which helps us to understand and study the dynamic changes of brain. Ad-

ditionally, it is a technique which enables the researchers to study the brain activations

in non-invasive and in vivo manner either when the brain is in its rest status or stimu-

lated with a certain task. The sequential and 3D Magnetic Resonance Images (MRIs)

come together to make the fMRI data that is made up of the elements known as vox-

els. Voxels are the elements of uniformly spaced volume which contain the data of a

group of neural activities. A typical fMRI data is made up nearly 100,000 voxels that

each of them shows the spatial distribution of the nuclear spin density in the form of

intensity [4]. Without having an abstract knowledge of MRI as the base of fMRI, it

not be possible to have true understanding it. Four fundamental units of MRI proce-

dure are: magnet, gradient coils, radio frequency coils and computer system as shown

in the Fig 2.1 (a).

1. Magnet

A large magnet is employed by MRI machine that can produce a static magnetic

field in the range of 3 to 4 Tesla (magnetic flux density unit). This is a quite

high magnetic force compared to that of earth and even the polar field of sun

which are 0.00005(T) and 0.0002(T) respectively [6], and it is strong enough to

pick up a car. It is also strong enough to align the random spinning of hydrogen

nuclei or protons in the body at the direction of the field and bring them to a

status known as equilibrium state.
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2. Gradient Coils

Gradient Coils, electro-magnetic coils, are located in the middle layer of MRI

scanner and generate a loud noises. This part enables the technicians to change

the produced magnetic field by the first part (magnet) in the precise manner in

both spatial and temporal manner by altering the magnetic strength. The result

of this coil is the slice selection and localization ability in three dimensional

space which is called special coding of magnetic resonance images. There are

three coils which make this part, and each of them gives the three dimensional

imaging ability to MRI along the x, y and z axises.

3. Radio Frequency Coils

Radio frequency coils are the most inner part, and they are used to send a radio

frequency or focused form of RF pulses into the scanner chamber. These coils

are specifically designed for various parts of bodies such as knee, shoulder,

wrist and head. This specification is done in order to increase the signal to

noise ratio and have more diagnostic images. The introduced RF pulses to the

aligned protons causes to stimulation and spin out them from equilibrium state;

consequently, they forced against the magnetic field. At this time, a simply turn

off the pulse (RF) gives the chance for detectors to detect the energy produced

as the protons realign to the magnetic fields and back to their equilibrium state.

The realignment time changes with respect to environment and the chemical

nature of tissue.

4. Computer System

The analogue to digital conversion of RF signal is done by a computer. Addi-

tionally, the computer system performs several image processing techniques to

produce the final diagnostic images of the MRI.

While MRI techniques provide only the structural images of anatomical regions,

fMRI generates the image of metabolic functions. [5]. It provides information about

the neural activities that have the relationships with the physiological activities. In

other words, fMRI is not a directional neuroimaging technique; instead, it follows the

physiological changes in indirect way under the assumption of having correlations
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Figure 2.1: a) Three main components of Magnetic Resonance Imaging (MRI) b) the
model of Hemodynamic Response Function

with neural activities. Interestingly, the origin of fMRI backs to the 1936 before the

discovery of Nuclear Magnetic Resonance (NMR). In that year, Pauling and Coryell

at [8] discovered an important magnetic characteristic of hemoglobin which is used

as the base of later discovery of fMRI. In their research [9], they showed carbon-

monoxyhemoglobin and oxyhemoglobin does not have unpaired electrons. Addition-

ally, they found that ferrihemoglobin, the hemoglobin itself, contains four unpaired

electrons. The unpaired property of oxyhemoglobin, hemoglobin combined with oxy-

gen molecule, enables the molecule to have zero moment magnetic fields. On the

other hand, the four unpaired electrons in the oxidized hemoglobin during the decom-

position of the blood which is called ferrihemoglobin is paramagnetic. This means,

oxidized hemoglobin has huge magnetic moment compared to the previous one. In

1982, Thulbron et al. [10] showed the variations of relaxation rate (T2) under the

magnetic field of hemoglobin contained blood. However, the breakthrough discovery

comes from 1990’s when the measurable changes in blood oxygenation was detected

at magnetic resonance signals. Using gradient-echo and under the strong magnetic

fields (7 and 8.4 T), Ogawa et al. [11] [12] could produce the images of the mice

brain and illustrated the existence of variations in the blood oxygenation at the acti-

vated areas of brain. The primary suggestion was that deoxyhemoglobin is the cause

of increase by additional remove of oxygen from the blood during the activation of

the monitored region. However, further researches showed the opposite pattern which

was the decrease in the deoxyhemoglobin concentration with activation. The reason

of this phenomenon was the large variations in the local cerebral blood flow (CBF).
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This finding helps Turner et al. [14] to detect the small changes in MR signal which

were related to the blood oxygenation in the cat’s brain. The resulted small variation

in MR signal due to the changes in oxygen level of hemoglobin is called Blood Oxy-

genation Level Dependent or briefly BOLD effect.

However, the big question was still remained unanswered: "what exactly was the

causes of BOLD effect?" In fact, one should have enough knowledge of molecular and

cell biology to answer this question. In its equilibrium state, the inside potential of a

nerve cell is more negative compared to the outside of the cell membrane due to the

existence of highly concentrated sodium ion (Na+) at the outside of the membrane.

The activation process occurs when a neuron is stimulated by another one in a series

of chemical interactions. In fact, all of the exchanging processes in activation phase

are downhill thermodynamically; that is, no energy is needed. However, the uphill

processes are needed to back the molecules to their equilibrium state after the activa-

tion. Adenosine triphosphate (ATP) and adenosine diphosphate (ADP) are the main

source of free energy which is used by neurons to do their recovery. In ATP/ADP

system the glucose and oxygen molecules goes under the oxidative metabolism and

change to carbon dioxide and water. Due to the fact that the brain does not have en-

ergy storage mechanism, the blood vessels play important role by taking both glucose

and oxygen to the part of the brain which deals with a task. The neural activations

cause the formation of a bound between deoxyhemoglobin and oxygen molecules

[8]. The occurrences of this chemical bounding decrease ratio of deoxyhemoglobin

to oxygenated hemoglobin form in the blood [15]. This decrease has adverse effects

on the MR signals and leads to the increase of signals in the activated brain regions.

However, this contrast is captured by fMRI which is known as Blood Oxygenated

Level Dependent (BOLD) contrast.

Whole of exchange processes is done by Hemodynamic Response (HR) that is instan-

taneous delivery of blood-contained glucose and oxygen in this case- to the activated

neural region. Generally, the pick of BOLD signal remains up to 4-6 seconds after

the onset of neural activities, then it backs to its baseline within the 8 to 12 seconds

after the onset. The dynamic patterns of signal shown at the voxel level are known

as the voxel’s Hemodynamic Response Function, or HRF [17]. An important factor

in the fMRI studies relies on the estimation of HR by HRF [16]. A HRF example

is demonstrated in Fig 2.1 (b), and a common modelling of this would be a sum of
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two Gamma distributions. While one distribution models the initial peak, the other

models the undershooting of the BOLD signal [17].

2.2 Brain Decoding: Multi-Voxel Pattern Analysis

The advent of functional Magnetic Resonance Imagining (fMRI) which offers the

BOLD signal caused to exponentially growth of interest and curiosity among re-

searchers. Several scientific areas of studies come together to make multidisciplinary

research groups to understand and interpret the fMRI data. Perhaps, the major moti-

vation to us as engineers comes from the curiosity of building a model that can decode

the brain and predict its states accurately[29]. Finding such model does not just help

the neuroscientific society, but the others such as engineers as well. The model like

this, for instance, would help computer sciences to generate efficient Artificial In-

telligence (AI) algorithms that are based on the decoded brain. Although making a

perfect and complete model seems to be a fiction nowadays, the progress in this sub-

ject increases exponentially.

The starting point of interests in application of Artificial Intelligence (AI) algorithms

on brain data backs to 1990’s where some researches such as Kippenhan at [19] and

N. Morch at [20] applied neural network classifier on PET scan datasets. The major-

ity of early work is based on the detection and recognition of specific diseases such

as Alzheimer. However, after the discovery, fMRI has been providing new opportu-

nities for researchers by offering more precise data compared to techniques such as

electroencephalogram (EEG). The early work on fMRI is about following the mag-

nitude of the variations in the BOLD signal at different areas of brain with different

task paradigms, and these studies fall into voxel-wise analysis. In these studies, the

goal was not to extract the differences in the activation patterns of voxels [21]. Gen-

eral Linear Model (GLM) was the fundamental base of these studies, and the goal

was to recognize and find the meaningful variations of voxels by using the statistical

threshold and averaging. However, this approach had some limitations and needed to

be addressed. The major disadvantage of voxel-wise analysis was missing the useful

information and patterns in the relationship between the voxels. As an example, it

was impossible to decode the fMRI data obtained from the brain regions related to
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the visual cortex in the study shown by Kamitani and Tong [22]. The reason of this

was that the scale of orientation was very small compared to the number of voxels in

the fMRI data [21].

In order to solve the problems of uni-variate voxel analysis, the method known as

Multi-Voxel Pattern Analysis (MVPA) is proposed for analysis of data acquired by

(fMRI). Unlike the uni-variate voxel analysis which was based on the focusing on the

individual voxels, the idea of MVPA is to capture and decode multi-voxel patterns

in the fMRI data by implementation of advanced and powerful pattern classification

algorithms. This outstanding idea was the starting point in the understanding of the

most complex and unknown organ (the brain). One of the pioneered studies was done

by Haxby et al. [24]. In this study, which a part of it shown in Fig. 2.2, he could

distinguish the various cognitive states using MVPA, and he was able to illustrate the

different patterns among voxels within Ventral Temporal (VT) cortex. In the other

study, Tom M. Mitchell et al. [25] were able to train the classifiers to decode the

brain states in the fMRI data of subjects who had stimulated by looking to the pic-

tures or reading ambiguous or non-ambiguous words.

Figure 2.2: a) brain response to house picture stimulus, b) brain response to human face
picture stimulus, c) brain response to shoes picture stimulus, d) brain response to chair
picture stimulus.
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MVPA does not have the averaging problem of uni-variate voxel methods; therefore,

it increases the sensitivity in the recognition of cognitive states. Additionally, MVPA

provides the examination of presence and absence of cognitive states upon the short

period of time (few seconds). This approach increases the temporal resolution in the

understanding of cognitive states. Additionally, MVPA gives the chance of vigorous

analyses in the representation of cognitive states within the specific regions of brain

[25].

Before any implementation of pattern-classification algorithms, there are two impor-

tant steps: experimental design and preprocessing. The experimental design is done

based on the physiological, neurological and psychological knowledge. Two gen-

eral form of experiments are resting-state and task-based. In the first one, the aim

is to find functional architecture of the brain when spontaneous low-frequency vari-

ations in BOLD signals are observed. Generally, this type of experiment is designed

to distinguish the difference in brain activation pattern between normal and diseased

people. In the task-based type, more common in brain decoding, the subject is stim-

ulated while the BOLD signal is recorded. The ultimate goal of task-based studies is

to uncover and predict the different states of brain [26]. However, the preprocessing

step which is done on the output of experimental fMRI data is crucial, and it has direct

impact on the later MVPA results. This step falls into three phases [27]:

1. Realignment of Images

In realignment phase, spatial transformation is implemented in order to align

the time series of images to correct the possible movement artifices during the

data acquisition.

2. Co-Registration

After realignment, the functional data co-registration to structural data in order

to maximize the mutual information between them.

3. Smoothing

Smoothing involves convolving the 3-dimensional fMRI signal by a low pass

Gaussian filter. Researchers disagree about this part. Some of them, such as

K. A. Norman et al. [25], states that smoothing may possibly decrease some

important spatial patterns and information. On the other hand, Kriegeskorte et
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al. [28] examine the effect of smoothing and states that a smoothing with right

parameters is a necessary for denoising and reducing the effect of salt paper

noise.

4. Anatomic Region Selection

This step of preprocessing is based on the experimental study of the brain. If

a researcher is interested to analyse the specific region(s) of the brain, then

toolboxes such as MARSBAR toolbox [29] can be used to select the region of

interests (ROI’s). In this thesis, the fMRI data is analysed by using wholistic

approaches.

Apart from the experimental design and preprocessing, in general, the Multi-Voxel

Pattern Analysis- MVPA falls into four steps: Feature Selection, Pattern Assembly,

Learning the Hypothesis and Validations [25]:

• Feature/Voxel Selection

Probably feature selection is the most important step in MVPA. Feature selec-

tion involves the search for the most discriminative voxels. The methods for

feature selection will be elaborated in the next section.

• Pattern Assembly-training and test matrices

In this step, the time series of voxels which are selected in the previous section

is concatenated to form the input vectors of a classifier. For example, two

matrices for training and test are formed were rows and columns indicate the

samples and voxels, respectively.

• Learning the Hypothesis-training the classifier

In this step, one of pattern-classification algorithms such as k-Nearest Neigh-

bors (KNN) or Support Vector Machines (SVM) is trained using the training

matrix and related label vector.

• Validation and Measuring the generalization performance

Finally, the validity of the trained classifier is measured using the test metrics

and related label vector. Additionally, the generalization performance which is

the ability of trained classifier to correctly predict the unseen is measured in

this phase.
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2.3 Brain Decoding: Mesh Model

For the first time, M. Ozay et al. [59] observed that changes in the intensity value

of neighbouring voxels are larger than the variation of row voxel intensities across

the classes. Based on this finding, a new learning method known as mesh learning

Model is proposed instead of MVPA. The goal of mesh learning Model is to over-

come the representation problem of brain patterns in MVPA of fMRI data sets. This

method is similar to searchlight which considers the BOLD signal of a voxel and its

neighbourhood. However, unlike searchlight which discriminative voxels are found

based on the combination of all voxels signal in the predefined region, Mesh Leaning

method models the neural activity of neighbouring voxels which subsequently fed to

the classifiers. In general, this approach falls in to five steps [59]:

1. The optimum number of neighbouring voxels, p-nearest neighbor, is found.

2. A star topology is made around the seed voxel and nearest p neighbor voxels.

3. Least square estimation method is used to compute the weights between the

seed voxels and its p nearest neighbours.

4. The new features are made by concatenation of weight vector which are called

Mesh Arc Descriptor (MAD). The size of MAD is N × p, where p is the size

of mesh and N is the number of active voxel.

5. Classification and validation are measured by some of well-known algorithms

such as Support Vector Machines (SVM), k Nearest Neighbors (KNN) or etc.

The first core of Mesh Learning Model which is developed by Ozay was called "Local

Mesh Model". In this model, voxel at time t and in location j are shown in the form

of v(ti, s̄j) where, j = 1, 2, ...,M and i = 1, 2, ..., N where N and M represents

the number of samples and voxels respectively. Therefore, around each seed voxel

v(ti, s̄j), a star mesh is formed which is shown by {v(ti, s̄j)}pk=1. Although, Ozay et

al. [59] used special metric to determine the neighbourhood, Firat et al. [60] used

functionality criteria for neighbourhood specification.

In the local mesh model case, the arc weights ai,j,k are the edges which connects the
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vertexes that are composed of p nearest neighbours and seed voxel. However, the goal

of local mesh model is to find out the arc weights ai,j,k. and linear regression equation

is used to estimate these arc weights as follows;

v(ti, s̄j) =
∑
s̄k∈ηp

ai,j,kv(ti, s̄k) + εi,j , (2.1)

where, εi,j is the estimation error of ai,j,k for the voxel v(ti, s̄j) of at time ti. Then,

Levinson Durbin recursion [66] is used to minimize the squared error of ε2
i,j as follow;

ε2
i,j =

(
v(ti, s̄j)−

∑
s̄k∈ηp

ai,j,kv(ti, s̄k)

)2

. (2.2)

The estimated arc weights for each voxel are concatenated to make a 1× p arc vector

in the form of;

āi = [ai,j,1, ai,j,1, ..., ai,j,p] ,

similarly, āi are concatenated to make the sample vector Ai in the form of;

Ai = [āi,1, āi,2, ..., ¯ai,M ] ,

Finally, the sample vectors are combined to each other to make the feature space F

which is equal to;

F = [AT1 , A
T
1 , ..., A

T
M ] .

which is in the format of N × (p×M) for each subject.

2.4 Curse of Dimensionality: Low Sample − High Dimension Obstacle

One of the fundamental problems in pattern recognition and machine learning is

analysing the feature space in high dimension. In this problem, the dimension of the

feature space is very high compared to the number of samples. Richard E. Bellman,

American mathematician [1920-1984] coined the term “curse of dimensionality" for

this problem [61], [62]. Although there are several approaches to solve this problem,
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finding a robust solution is not a trivial task. The problem manifest itself in our case,

where the number of samples is very low (in the order of hundreds) compared to

the number features or voxels (in the order of thousands). However, there are many

negative effects of "curse of dimensionality" which three well-known of them are:

computational complexity, overfitting and sparse volume problems.

2.4.1 Computational Complexity

Computational complexity of an algorithm is proportional to the dimension of feature

space, and it is determined by the number of mathematical operations such as addi-

tion and subtraction. In order to clarify, the complexity issue, Gaussian prior based

maximum likelihood estimation, bellow is analysed as follows [63];

g(x) = −1

2
(x− µ̂)t

∑̂−1

(x− µ̂)− d

2
ln2π − 1

2
ln|
∑̂
|+ lnP (w). (2.3)

In the above formulation, O would be,:

µ̂ = O(dn),∑̂−1
= O(nd2),

d
2
ln2π = O(1),

1
2
ln|∑̂| = O(d2n) and

lnP (w) = O(n).

where, d represents the dimension. Note that as dimension increases the time com-

plexity also increases.

2.4.2 Overfitting

In addition to the computational complexity, "curse of dimensionality" problem is

also the cause of another serious problem, called overfitting. In an overfitted model,

the space is divided according to the noise samples instead of real ones (shown in

the Fig. 2.3). Subsequently, the generalization performance which is defined as the

performance of a model on the unseen samples is decreasing, when it is overfitted.

[64].
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2.4.3 Sparse Volume

"Curse of dimensionality" problem is also the source of space sparsity which occurs

when most of feature space is empty. It means, as dimension increases, the amount of

obtained samples became small compared to the space volume. Therefore, the space

volume became sparse as a result of dimension increase [65].

Figure 2.3: a) the correct fitted predictive model, b) the overfitted model.

In order to solve the overfitting and sparsity problems, we require a robust dimension

reduction method. In fact the curse of dimensionality lays in the nature of fMRI

datasets where the number of samples (in couple of hundreds) is very low compared

to the dimension (couple of thousands). Therefore, finding a way to select the number

of effective voxels, is very important. In the following sections the popular dimension

reduction methods, will be overviewed.

2.5 Dimension Reduction using Feature Selection Methods

Designing a feature space with a set of discriminative samples is a very important

task in pattern recognition. There are a variety of ways to solve this problem. The

available methods are categorized in two main groups based on their output feature

space: feature selection and feature extraction methods. The goal of feature selection

methods is to maintain the original feature space while the elimination of less dis-

criminative features. For example, a popular feature selection method is the Recur-

sive Feature Elimination (RFE). On the other hand, mapping the original space into
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another space is done in the feature extraction methods. The classical method called

Principle Component Analysis (PCA) is considered in these group of methods. In an-

other categorization, the feature selection methods fall into two groups based on their

mechanism in the fMRI research. First, univariate feature selection methods, which

voxels are analysed independent of each other to determine their predictively power

[50]. They are based on different approaches such as univariate statistical tests and

information theoretic criteria. Second, multivariate voxel selection methods which

discards the voxels by analysing the group of them. In the following sub-sections we

provide a brief overview for these methods.

2.5.1 Analysis of Variance(ANOVA)

One-way ANOVA F-test is commonly used univariate statistical test as a feature se-

lection method [51]. This statistical test is used to distinguish and measure the impact

of an even such as stimulation of brain (which is shown in the class label vector) on

the intensity change of a voxel. The hypothesis is based on the meaningful variance

between the class label vector and a feature vector which both of them counts as in-

dependent random variables. Hypothesis is a statement or claim about a property of

an object, and hypothesis test is a procedure in standard format to test the claim about

that property. ANOVA based on the statistics between a feature and class label vector

which is computed by the equation [52];

F (vj) =
(Sum of Squares Between Groups)/(related degree of freedom)

(Sum of Squares Within Groups)/(related degree of freedom)
,

(2.4)

where F (vj) is the F-value of jth voxel. F-Value which is computed for all of the

voxels, is used to rank them and then select the most informative ones.

2.5.1.1 Mutual Information based Voxel Selection

Similar to ANOVA, Mutual Information (MI) based feature selection is the other

univariate method that can be used to rank voxels. In this case, the mutual information

of feature Vj is calculated with respect to class labels vector Y [31]. Generally, MI is

used to quantify the statistical dependency of two random variables. The assumption
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of this method is to consider each dimension and class label as two random variables.

Therefore, MI can be used to measure the statistical dependency of them. High value

of MI shows more information between the jth voxel (Vj) and class conditions Y or

label vector [54], [55], [56]. The mutual information between class label vector Y

and feature vector Vj is defined as;

MI(Y ;Vj) =
C∑
y=1

∫
Vj
p(y, vj) log

p(y, vj)

p(y)p(vj)
, (2.5)

where,

C is the number of class conditions, and C = 2 in our case.

p(y, vj), the short-handed of (Y ;Vj), is the joint distribution of variables of Y and Vj .

Here, the scoring function of MI based feature selection ranks voxels with respect to

their MI(y, x) values.

2.5.2 Recursive Feature Elimination as Multivariate Method

Contradict to the univariate approaches, the multivariate methods base on the con-

sideration of features dependency. Among the multivariate feature selection methods

Recursive Feature Elimination (RFE) is the most popular method [49]. RFE based

on Support Vector Machine (SVM) employs the generalized nature of SVM in order

to rank the voxels according to their contribution in the classifiers obtained model.

It also falls into the feature selection methods category known as wrapper methods

[48]. In this method, first, SVM is trained using a fMRI training set. Next, the ob-

tained model provides us a weights of features in the model’s hyperplane. Then, the

voxels are ranked according to their contributions in this weight vector obtained after

minimizing the objective function of SVM [49];

minimize J(w) =
1

2
wTw + a

l∑
ni

ζi , (2.6)

where, ζi, i = 1, ..., Ttrian, are slack variables that counts on the errors of training set

and a is a positive real constant. After ranking, the voxels are eliminated by using a

threshold. Next, the same discarded voxels from the training set are also eliminated

from the test set. Finally, the training and test sets are used to train and measure the

performance of the main classifier.
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2.6 Dimension Reduction using Feature Extraction Methods

As discussed above feature extractions methods can also be used to reduce the dimen-

sion. The feature selection methods which only to select the subset of features in the

original feature space, the feature extraction methods change the original d dimen-

sion feature space into the new feature space with dimension r, where r < d. In this

thesis, the dimension reduction technique called t−Distributed Stochastic Neighbor

Embedding (t−SNE) is used for dimension reduction purpose. By using tSNE, we

are interested to visualizing the feature space.

2.6.1 t-Distributed Stochastic Neighbor Embedding (tSNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a updated version of Stochas-

tic Neighbor Embedding (SNE) [32] which has several superiorities over it. It is easier

to optimize and decrease the problematic tendency of crowding points at the center

of final map. Additionally, it keeps the original structure of high dimensional data

in the low dimension map which resulted in better performance of both visualization

and dimension reduction [33] [34] [35].

Imagine objects x1, ..., xn in a very high dimension space like shown in the Fig. 2.4,

and we want to see the exact manifold or feel the true arrangement of objects. Per-

haps, making a two or three dimensional map of the high dimensional space is the

fundamental goal in visualization of the data. In other words, we want to build a

map of points y1, ..., yn such that the similar objects x′is in high dimensional space to

be represented by nearby points y′is in final map. To achieve this goal, the original

structure of data should keep in the final map, but this is not a trivial problem to be

solve. Almost all of the algorithms fail to keep the ideal structure. However, the idea

of t-SNE is to minimize an objective function to reach the goal of keeping original

structure. This objective function should be able to measure the discrepancy between

similarities of the objects in the original space and transferred space.

PCA as a traditional method finds the linear projection of the original data points

in the map such that the variance of projected data is maximized. However, most
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Figure 2.4: The goal of non-linear dimension reduction algorithm tSNE maintains the
original structure of the data in the mapped low dimension space.

of real world data have non-linear manifold. Therefore, PCA fail to preserve the

similarity of the original data. After understanding the problem, researchers come

up with some nonlinear techniques such as Isomap and Locally Linear Embedding

(LLE). Isomap maintains the global non-linear geometry of the data by preserving

the geodesic distance which is the shortest route between two points on the surface

of manifold [36]. LLE is another non-linear technique which collapses bunch of data

into a single point, but this is problem in the maintainers of similarity in the original

data[37]. Although, these techniques are better than PCA, they still are not well

enough in some cases. The general idea of tSNE is given in the following algorithm:

Algorithm 1: t-Distributed Stochastic Neighbor Embedding (tSNE)

1 for (all pairs of different objects i and j) do

2 Calculate the similarity of objects xi and xj using joint probability pi,j in

the high dimensional input space.

3 Measure the similarity of points yi and yj using qi,j in the output space.

4 Minimize the difference between pi,j and qi,j .
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tSNE measure the local similarity of objects in high dimensions within the nearby

points. Imagine the red point shown in the Fig. 2.4 to be an object in the high dimen-

sional space. Particularly, it tries to convert the high-dimensional Euclidean distance

between objects into the conditional probability which represents the similarity.

2.7 Classifiers

k-Nearest Neighbors (kNN) and Support Vector Machine(SVM) algorithms are used

for classification purpose in thesis. Although several other algorithms are also used

in the literature for brain decoding purpose, we choose SVM and kNN to measure

the performance of the implemented dimension reduction techniques. The reason of

this choice was the successfulness of SVM and KNN in the high dimensional feature

space.Similar to several other classifiers, kNN and SVM are shown to have reasonable

performances in high dimensional feature space [31]. In this section, we are going to

discuss these classifiers.

2.7.1 k-Nearest Neighbors(kNN)

kNN is a simple and very efficient classifier which is used in the most of the studies.

This algorithm is based on the Euclidean distances between samples. Imagine, there

is a m − dimensionl feature vector with an arbitrary sample s, and lets fr(s) be the

rth attribute of sample s as follow [44],[45];

< f1(s), f2(s), ..., fm(s) > ,

In this case the distance between s1 and s2 is defined as

dist(s1, s2) =

√√√√ m∑
r=1

(fr(s1)− fr(s2))2 . (2.7)

The sample is mapped to a class label in C where C = {c1, c2, ..., cn} using target

function f : Rm −→ C. The classification of new sample sq is done by Algorithm 1

which gives the class label.
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Algorithm 2: k Nearest Neighbors algorithm

1 for (sq does not classified) do

2 let s1, s2, ..., s3 be k nearest samples to the sq from the training examples

3 f̂(sq)←− max
v⊆V

(
∑k
i = δ(v, f(sq))) where δ(a, b) = 1 if a=b and δ(a, b) = 0

otherwise

2.7.2 Support Vector Machine (SVM)

SVM is anther well-known classifier. In this study, SVM architecture is used for the

Recursive Feature elimination (RFE) of fMRI data, where the weight vectors are used

to rank the voxels. Lets overview the basics of SVM as suggested by Vladimir Vapnik

[46].

Support Vector Machine (2 class case)

Support vector machine (SVM) is a supervised learning algorithm which finds the

hyperplane that maximizes the margin of the separating place between two classes.

Consider a binary linear classification problem with labels y{−1, 1} and features x.

Then, the problem is to find w and b parameter such that;

hw,b = g(wtx+ b) , (2.8)

where,

g(z) =

 +1 if z ≥ 0

−1 otherwise.

In order to, solve this problem, SVM employs both functional and geometric margin

information. The functional margin would be formalized as;

γ̂ = γ(i)(wtx+ b) . (2.9)

In the linear case, functional margin has a confidence problem because changing w

and b values will not effect hw,b, and it would only change the sign of hw,b. On

the other hand, geometric margin can be defined as the distance between decision

boundary and samples. It depends on w and b values, along with the vector w. The
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geometric margin can be formalized as follows;

γ̂ = γ(i)((
w

‖w‖
)tx(i) +

b

‖w‖
) . (2.10)

Given a training set,

S = {(x(i), y(i)) ; i = 1, 2, ...,m} .

In order to reach this goal, it is necessary to find smallest geometric margin with

respect to S. Therefore, the geometric margin is defined as,

γ̂ = minimize{ γ(i) ; i = 1, 2, ...,m} . (2.11)

As a result, geometric margin fits properly to the training data. Therefore, SVM

finds a decision boundary which maximizes the geometric margin to make a confident

classification. Under the assumption of linearly separable data set, the hyperplane

which partitions the samples into two regions can be formalized by optimal margin

classifier in the following form;

min
γ,w,b

1

2
‖w‖2 , (2.12)

With the following constraint;

y(i)(wtx(i) + b) ≥ 1 ; i = 1, 2, ...,m .

The points with the smallest margin αi (three points in the example below) are called

support vectors. It is expected that the number of support vectors is smaller than

the size of training set. The constraint can be reformulated to formalise the optimal

margin classifier as following;

gi(w) = y(i)(wtx(i) + b) + 1 ≤ 0 . (2.13)

In order to satisfy the above inequality, Lagrange multipliers are employed as follows;

L(w, b, a) =
1

2
‖w‖ − αi[y(i)(wtx(i) + b)− 1] . (2.14)

28



Equivalently, a dual optimization problem can be formulated as follow;

max
α

W (α) =
∑
i=1

αi −
∑
i,j=1

1

2
y(i)y(j) αi αi〈x(i), x(j)〉 , (2.15)

Subjected to the following constraints;

αi ≥ 0 ; i = 1, 2, ...,m,
m∑
i=1

αiy
(i) = 0 .

The algorithm of SVM for the linearly separable datasets satisfy eq.2.20. However,

the data can be non-separable where the dimension of the feature space is high. In

order to build the algorithm that can work for non-linearly separable datasets, we need

to change the algorithm as follows (considering functional margin less than 1);

max
γ,w,b

1

2
‖w‖2 + C

m∑
i=1

ξi, i = 1, 2, ...,m, (2.16)

Subjected to the following constraints;

y(i)(wtx(i) + b) ≥ 1− ξi, i = {1, 2, ...,m},

ξi ≥ 0, i = 1, 2, ...,m.

After solving the above set of equations, the SVM classifier predicts "1" ifwtx+b ≥ 0

and "-1" otherwise. The decision boundary is given by the line wtx+ b = 0.

2.8 Summary of the Chapter

In this chapter, first a brief fundamentals of functional Magnetic Resonance Imagin-

ing (fMRI) is discussed. Then, two well-known method known as multi-voxel pattern

analysis (MVPA) and mesh learning model are explained which are trying to model

the brain activities and function under the brain decoding concept. Next, the famous

problem of machine learning techniques in this research area known as "curse of di-

mensionality " and its effects on the fMRI analysis is overviewed. In order to solve

this problem and reduce the destructive effects of "curse of dimensionality", several

popular feature selection methods in machine learning is provided in the section 2.5

and 2.6. Finally, two well known classifiers which are used in this thesis, namely

kNN and SVM are explained in the last section .
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CHAPTER 3

A NEW DIMENSION REDUCTION ARCHITECTURE FOR

BRAIN DECODING

In the previous chapter, the need for dimension reduction in the fMRI data sets is

explained. Some feature selection methods are discussed to reduce the dimension

and solve the "curse of dimensionality" problem for brain decoding purpose. All of

the dimension reduction methods are almost subjective and situation based. In other

words, they work properly in the specific situations and conditions. As an example,

if the input feature space contains unnecessary features, then the output space map

would be less discriminative in the case of feature extraction methods such as tSNE.

Therefore, finding out a suitable and generic architecture which takes the advantages

of dimension reduction methods would be beneficial for brain decoding.

In this chapter, an architecture called Sparse Temporal Mesh Model(STMM) is pro-

posed which combines previously discussed methods. The schematic overview of

the proposed architecture is shown in Fig. 3.1. At the top layer of this architecture,

in phase A, a univariate feature selection method, is used to eliminate the noisy and

destructive voxels. The goal of this step is to eliminate the less informative voxels in

order to increase the accuracy and speed of the later phases. In phase B, the most dis-

criminative voxels are selected by using multivariate feature selection method which

considers the dependency of voxels on each others. Then, the temporal mesh model

(TMM) is applied on the selected voxels to estimate their relationships known as arc

weights. This phase is followed by a feature selection method to prune the "unneces-

sary" arc weights in terms of brain decoding. In each phase, the performance map is
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measured by using popular learning algorithms, namely SVM and KNN classifiers.

Additionally, in each phase, the data in the feature space is visualized in 2D using

tSNE.

Figure 3.1: The abstract scheme of the proposed architecture known as sparse tempo-
ral mesh model (STMM) as the backbone of the thesis. After elimination of the noisy
features in the phase A, a multivariate feature selection method is used to eliminate less
discriminative features/voxels in the phase B. Then, Temporal Mesh Model (TMM) is
applied to the selected voxels, and it is followed by pruning of useless arc weights in the
Phase C. Finally, tSNE is used to reduce the dimension in order to visualize the feature
space.

3.1 Phase A. Univariate Voxel Selection

It seems that there is a trade off in the application of univariate feature selection

methods for brain decoding purpose. On the one hand, we know that voxels interact

with each other in a cognitive task. This contradicts, with the nature of univariate

voxel selection methods. The source of this paradox comes from the hypothesis of

univariate methods which analyse voxels independently. On the other hand, it is

believed that only a fraction of the voxels contribute to the formation of a cognitive
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process. Therefore, the dependencies of voxels are limited, and a voxel is not affected

by all of the other voxels. Additionally, most of the advanced multivariate feature

selection and extraction methods fail to reduce the dimension properly in the case of

noisy input feature space. Furthermore, the advanced methods suffer from high time

complexity because of high dimensional input space. Therefore, univariate feature

selection methods could be effective as a initial step to increase the precision and to

speed up the further brain decoding processes. In this thesis, two types of univariate

methods; namely, analysis of variance (ANOVA) and mutual information (MI) based

feature selection methods, are used for voxel selection purpose.

Figure 3.2 shows the schematic overview of dataset obtained from fMRI. The dataset

is a M ×N matrix. M represents the the number of samples or brain response to the

stimulations. N represents the number of fMRI elements or voxels which considered

as features in brain decoding problem.

Figure 3.2: The abstract scheme of obtained dataset from fMRI machine which is used
for brain decoding purpose. The rows of matrix consists of samples, and the columns are
made of the voxels. The class label y is a vector which consists of the labels of samples.

3.1.1 Analysis of Variance (ANOVA) F-Test based feature selection

In one way analysis of variance ANOVA, F-test, both voxel vector vj and class label

vector y are considered as two independent random variables, and the impact of y on

the vi is measured by the F-value using Algorithm 3.

In summary, after calculation of individual sum of squares, the within group sum of

square (SSwg) is calculated for both class conditional class label vector yi and the jth
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voxel vj . Then, the total sum of square (SST ) is computed by concatenating of yi

and vj . Next, the between group (SSbg) sum of square is calculated by using both

within and total sum of squares. Mean square values of between and within groups

are obtained by diving both between and within sum of squares to the related degree

of freedoms. Finally, the F-value for vj is computed by the dividing the between

to within the mean squares. After calculating F-value for all of the voxels, they rank

according to their F-value. Finally, top ranked voxels are picked as the selected voxels

[30].

3.1.2 Mutual Information based feature selection

As the second univariate voxel selection method, mutual information (MI) between

the class label vector y where y = {1, ..., C} and the jth voxel vj is considered as a

feature selection criterion. Mathematically, MI(y;Vj) is defined as;

MI(y; vj) =
C∑
y=1

∫
Vj
p(y, vj) log

p(y, vj)

p(y)p(vj)
. (3.1)

where,

C is the number of different class conditions in label vector y.

p(y, vj) is the joint distribution of the random variables of y and vj .

In convenient form, p(y, vj) can be calculated using chain rule, as follow;

p(y, vj) = p(y)p(vj|y). (3.2)

p(vj|y) in equation (3.2) can be estimated by a kernel based technique, called Parzen-

Rosenblatt window method,

p̂(vj|y) =

(
M∑
j=1

δy(vj) κ
(vj − vij

w

))/(
w

M∑
j=1

δy(vj)

)
, (3.3)

where,

δy is the kronecker delta function in the form of;

δy(vj) =

 1 if x = y

0 otherwise
.
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Algorithm 3: ANOVA based Voxel Selection algorithm
Input: DATA matrix in the size of M ×N where N is the number of voxels, and

the number of voxels to be selected, Vno

1: for j = 1 to N do

2: vj ←− the jth voxel of DATA matrix

3: Calculate the squared sum (SS) of differences between each condition in (y)

and its mean as follow;

SSy ←−
∑

(yi − µy)2

where y is class label vector and y = {y1, ...yM}. µy represents the mean of

class label vector y.

4: Calculate the squared sum (SS) of differences between each sample in (vj)

and its mean µvj as follow;

SSvj ←−
∑

(vij − µvj)2

where vji is the ith sample of jth voxel.

5: Calculate the sum of squares within the group "SSwg"; SSwg = SSy +SSvj

6: Concatenate y and vj into a single vector X;

X ←− (y ; vj); where X = {x1, ..., xi, ..., x2M} and has 2×M elements.

7: Calculate the total sum of squares "SST ";

SST ←−
∑

(xi − µX)2

where µX is the mean of X.

8: Calculate sum of squares between the groups;

SSbg ←− SST − SSwg
9: Calculate the degree of freedoms "df" for total, between and within groups

(note: NT is the total number of observations in X and k is the number of

groups): dfT ←− NT ; dfbg ←− k − 1 ; dfwg ←− NT − k
10: Calculate the relative mean-square values for between and within groups:

MSbg ←− SSbg
dfbg

and MSwg ←− SSwg
dfwg

11: Calculate F Value as:

Fvj ←−
MSbg
MSwg

12: end for

13: Sort all of the voxels according to their corresponding F values

Dsort ←− SORTANO.(DATA)

14: return Matrix DATAsf with selected voxels in the size of N × k
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κ(.) is the kernel. Participially, κ(.) is chosen to be Gaussian kernel.

w is the bandwidth, and w is standard deviation in the case of Gaussian kernel.

After estimation of conditional probability p̂(vj|y) using Parzen-Rosenblatt window

method, p(y) and p(vj) in equation (3.3) can be estimated by marginalizing out Xj as

follows;

p(y) =
∫
vj
p(y)p(vj|y). (3.4)

and

p(vi) =
C∑
i=1

p(y)p(vj|y). (3.5)

After calculating MI(Y ;Vj) where j ∈ {1, .., N} for the voxels, the voxels with high

mutual information are assumed to be most informative ones. Therefore, they are

selected as the output of this feature selection method. The pseudo code of discussed

MI based feature selection is given in the following Algorithm 4.

3.2 Phase B. Multivariate Voxel selection using

Recursive Feature Elimination (RFE)

After Phase A which employs the univariate voxel selection methods, the recursive

feature elimination (RFE) method selects voxels by examining all of the input feature

space. This method is a type of multivariate voxel selection methods. The schematic

overview of RFE is shown in the Fig. 3.3. The support vector machine (SVM) clas-

sifier is trained over the training set X = {x1, ...xn}, and the obtained weight vector

is used to rank the voxels.

For a linearly separable dataset SVM finds the following discriminative function with

a bias term b;

g(xi) = w.xi + b , (3.6)

and as discussed in the section 2.7.2 in binary case;

g(xi) =

 yi = +1 if g(xi) ≥ 0

yi = −1 otherwise.
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Algorithm 4: Mutual Information (MI) based Voxel Selection algorithm
Input: DATA matrix in the size of M ×N where N is the number of voxels.

Input: Number of voxels to be selected, Vno

1: for j = 1 to N do

2: Vj ←− the jth voxel of DATA

3: Estimate conditional probability p̂(vj |y) using Gaussian kernel based

Parzen-Rosenblatt Window method; p(vj |y) ←− p̂(vj |y).

4: Compute the probability of class condition p(y) by marginalizing V j;

p(y)←−
∫
Vj
p(y)p(vi|y)

5: Compute the probability of vi

p(xj)←− p(y)p(vi|y) for all classes
∑C
i=1 p(y) p(vi|y)

6: Compute the joint probability p(y, xj)

p(y, xj)←− p(y) p(vj|y)

7: Compute the MI between y and vj MI(y, vj)

by importing p(y, xj), p(c) and p(vj) in equation (3.1)

8: end for

9: Sort all of the voxels according to their corresponding MI values

Dsort ←− SORTMI(DATA)

10: DATAsf ←− Vno of Dsort

11: return Matrix DATAsf with selected voxels in the size of N × k.
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However, the slack variables ζi is added for the non-linear datasets, and the discrimi-

native function is changed to;

yi(w.xi + b) ≥ 1− ζi , (3.7)

where, ζi ≥ 0 and ζi calculates the deviation of data points from the optimal hyper-

plane (Vapnik, 1998). In order to achieve this task, SVM minimizes the following

cost function;

Φ(w, ζ) =
1

2
||w||2 + C

n∑
i=1

ζi , (3.8)

which is subjected to the constraint of (3.7).

At each step, RFE measures the weight vector w on the training set. This weight

vector is interpreted as the contribution of a specific feature/voxel for each class in

the obtained SVM model. However, the absolute value of the weight vectors w;

w ← |wc|; c = 1, ..., C,

is considered in the scoring function of ith voxel Svi for all classes C;

Svi =

∑
∀cw

C
.

Finally, the voxels with high value of Svi are selected in each iteration that is shown

in Figure (3.3) as RFE Loop.

Figure 3.3: The abstract scheme of combining SVM and RFE. Voxels are eliminated
iteratively through the process called recursive feature elimination (RFE) after they are
ranked by SVM classifier.The main classifier trained by the output of RFE and tested by
test set to obtain the performance maps.
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3.3 Brain Decoding Using Temporal Mesh Model

After selecting the informative voxels, temporal mesh model (TMM) proposed by

Onal et al. [60] is implemented on the selected voxels to increase the accuracy of

brain decoding. TMM changes the input feature space (voxels are features) to the

new one. The new features are defined as the linear estimation of a given voxel vi by

its neighboring voxels. The estimated new feature space by TMM is always larger

than the input feature space. This may cause to curse of dimensionality problem

due to the increase in the estimated feature space by TMM. Therefore, the use of

dimension reduction methods could again be useful which is discussed in the second

sub-section.

3.3.1 Temporal Mesh Model

As we discussed in the previous chapter, brain decoding using mesh model estimates

the arc weights and use them as features instead of voxel intensities. These arc

weights are estimated for each voxel by minimizing the objective function defined

over a local mesh around each voxel. For this purpose, the following squared error

ε2
i,j is minimized with respect to the arc weights ai,j,k:

ε2
i,j =

(
v(ti, s̄j)−

∑
s̄k∈ηp

ai,j,kv(ti, s̄k)

)2

. (3.9)

This model is developed on the discrete form of all hemodynamic response of a voxel

instead of getting only the pick value. Onal et al. [60] extended equation (3.9) to

define temporal mesh model (TMM).

In both case, however, one mesh is constructed around each voxel vj , and the voxel

vj at the center of mesh is known as seed voxel. Euclidean distance between seed

voxel and other local neighbouring voxels is used to define a Local Mesh Model with

Temporal Measurement (LMM-TM) which we briefly call it temporal mesh model

(TMM). Fig. 3.4 shows the red coloured seed voxel r̄(si, l̄j) at l̄j coordinate for the

sample si which is connected to its neighbouring voxels (shown with blue color).

r̄(si, l̄j) contains the values of voxel intensities in the form of a vector and defined as:

r̄(si, l̄j) = [v(si, t1, l̄j), v(si, t2, l̄j), ..., v(si, tτ , l̄j)]
T . (3.10)
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where, tτ represents the time at τ instance. Therefore, r̄(si, l̄j) ∈ Rτ is made up of

the voxel intensities that are measured at time tτ and w ∈ {1, ..., τ}. TMM based

on the assumption that the arc weights between seed voxel and its p-spatial nearest

neighbours can be estimated by a linear model in the form of:

r̄(sN , l̄j) =
∑
l̄b∈ηp

ai,j,kr̄(si, l̄b) + ε̄i,j , (3.11)

where the error vector ε̄i,j has the following forms;

ε̄i,j = (εi,1,j, εi,2,j, ..., εi,τ,j) ,

and each voxel has intensity components r̄(sN , l̄o). Additionally, the locally p nearest

neighbours of the seed voxel at coordinates l̄b is shown as r̄(si, l̄b) where l̄b ∈ ηp.

Similar to the previous form of mesh model, TMM estimates the arc weights by min-

imizing the following expected square error;

E
(
ε2
i,j

)
=

((
r̄(sN , l̄j)−

∑
l̄b∈ηp

ai,j,kr̄(si, l̄b) + ε̄i,j
)2
)
, (3.12)

where,

E(.) is the expectation function that is implemented on discrete form of

hemodynamic response that is related to a stimulus period τ .

ε̄i,j = (εi,1,j, εi,2,j, ..., εi,τ,j),

r̄(si, l̄j) =

(
v(si, t2, l̄j), v(si, t1, l̄j), ..., v(si, tτ , l̄j)

)T
, and

r̄(si, l̄b) =

(
v(si, t2, l̄b), v(si, t1, l̄b), ..., v(si, tτ , l̄b)

)T
.

TMM uses the ridge regression as (3.13) estimates the arc vector āi,j = [ai,j,1, ai,j,2, ..., ai,j,p]

, directly from the following closed form equation.

ai,j = (QT
i,jQi,j + λI)−1 QT

i,j r̄(si, l̄j). (3.13)
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Figure 3.4: The abstract overview of Temporal Mesh Model. The zoomed red voxel is
called seed voxel, and it is taken with its 4 neighbors (shown with the blue color). The
arc weights between seed voxel and neighbors are estimated using six discretized form
of hemodynamic responses

3.3.2 Pruning Edges

“Pruning Edges” is an important part of the proposed architecture (STMM). The

goal of this phase is to solve the problem of TMM. Note that, TMM changes the

input feature space. The dimension in the new space increases from N (number

of voxels) to p × N , where p is the number of considered neighbours around seed

voxel. For instance, if the similarity metric of mesh model were adjusted to examine

four neighbours (p=4, such as the example shown Fig. 3.4, then the dimension of

feature space would be increased four times. In the case where we select 500 voxels

as the output of feature selection, the new feature space would be 500 × 4 for the

given example. However, the approach has two problems. First, TMM accelerates

the “curse of dimensionality” problem. The reason of this is the mapped dimension

has higher number of dimensions compared to the input feature space. Furthermore,

counting a constant number of neighbours for all of the voxels is somehow “rough”

assumption, and the degree of relationships for voxels vi and vj could be different.

While some of the voxels are connected by high degrees to their neighbours, the

others may have lower degree of connections. In order to solve this problem, again,
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a feature selection method which is employed previously can be used to prune the

estimated arc weights.

Therefore, we used ANOVA based feature selection method in order to select the most

discriminative features. Contrary to the previous case which features were the voxels,

the features are the arc weights in this case. 3 is used to select the most discriminative

arc weights and prune the edges in the estimated network by TMM.

3.4 Dimension Reduction using

t-Distributed Stochastic Neighbor Embedding (tSNE)

Among the several of visualization methods such as PCA, LLE and Isomap, we

choose t-Distributed Stochastic Neighbor Embedding (tSNE) to visualize the feature

space. The reason of this choice was the superiorities of tSNE which are discussed

in the section 2.6.1. tSNE is the other part of the proposed STMM architecture (see

Fig. 3.1). tSNE enables us to map the output of different phases in the architecture

into the two dimensional feature space for visualization purpose, which we can feel

the data points and feature space.

The idea of tSNE is to calculate the local similarity in the original feature space by

the following steps:

1. A Gaussian kernel is fitted at the center of all objects in the original space.

2. The density over all the other points under this Gaussian is estimated.

3. Finally, the similarity is normalized by summation of the similarities of the

other points.

Mathematically, the similarity between xi and xj is defined by;

pij =
exp(−||xi − xj||2/2σ2)∑

k

∑
l 6=kexp(−||xk − xl||2/2σ2)

, (3.14)
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where pi,j is defined as the new similarity metric between point i and j . Intuitively,

if the point xi and xj are close together in the original high dimensional space, then

the value of pi,j would be large. Conversely, pi,j would be small in the case of large

distance between xi and xj .

However, there is a problem with this similarity measurement. Imagine the case

where all pairwise Euclidean distances ||xi − xj||2 are large when the Gaussian is

centered at xi. In this situation the values of all joint probabilities pij would be ex-

tremely small. As a result, the cost- function would not have significant impact on the

data points of the low-dimensional map.

In order to compensate the effect of this problem, the conditional probability pi|j is

computed by using the joint probability pij . The conditional probability has a dif-

ference with the joint one in the normalization part (denominator). It is not taken all

of the pair of points, but it only covers the pair points that involve the point xi. The

conditional probability pi|j is calculated as follows:

pi|j =
exp(−||xi − xj||2/2σ2)∑

j′ 6=k exp(−||xi − xj′||2/2σ2
i )
. (3.15)

This approach also provides to set different bandwidth σi for each point, and the band-

width is set in such a way that the conditional probability pi|j has a fixed perplexity. In

other words, the variance σ of Gaussian kernel is selected such that a fixed number of

points fall under the Gaussian function. This stems from the fact that different parts

of space may have different densities. However, the joint probability (the similarity

metric) is obtained by symmetrizing the obtained conditional probabilities of pi|j and

pj|i;

pi,j =
pi|j + pj|i

2N
. (3.16)

Up to now, the similarity in the original feature space is examined, particularly be-

tween each pair, xi and xj . Now, we turn our focus on the low dimensional space.

Similar to the original space, the problem of lower dimension is to find out the sim-

ilarity metric. The idea of tSNE is to use the same similarity metric in the output

feature space as follow;

qij =
(1 + ||yi − yj||)−1∑

k

∑
l 6=k1 + (||yk − yl||2)−1

. (3.17)
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Where, yi and yj are the corresponding low dimension data points of high dimensional

object xi and xj . Therefore, qij is the similarity metric of the pair data between yi and

yj in the final low dimensional map. Note that, the Gaussian kernel is replaced with

the student-t distribution with one degree of freedom in the computation of qij . This

distribution has longer heavy tails than the Gaussian one, and this gives an important

property to the tSNE. In the case where the data is intrinsically high-dimension, the

student t-distribution results to well separation of dissimilar points in the final map.

Remember the goal which was to keep the similarity between the data points in the

original space and final map. This goal can be achieved by minimizing the difference

between qij and pij . tSNE measures the difference between qij and pij using following

Kullback-Leibler Divergence;

C(ε) = KL(P ||Q) =
∑
i

∑
i 6=j

pijlog
pij
qij

. (3.18)

The above cost function should moves around in the final map such that theKL(P ||Q)

would be minimized. This objective function is non convex in the embedding ε, and

it is minimized by descending along the gradient (3.18):

∂C

∂yi
= 4

∑
i 6=j

(yi − yj)(pij − qij)(1 + ||yi − yj||2)−1. (3.19)

This equation enable us to move a single point yi in the final map to get lower value

of KL. Notice that the equation (3.19) is made up two terms. The first term, (yi− yj),

plays the role of a spring between a pair of points yi and yj in the final visualization

map. The second term,(pij − qij) controls the spring (first term). Particularly, if the

final map would be perfect, then (pij − qij) in the second term would be zero. In

this case, the effect on the spring or the first term would be zero. The summation

term (
∑
i 6=j) counts all of the effects from the points in the final map. In other words,

moving a point in the final map is controlled by all the other point.

In order to initialize the gradient descent, an isotropic Gaussian with small variance

is used to randomly sample the map points. Additionally, the gradient is added with

a relatively large momentum term α(t) in order to decrease the probability of poor
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local minima. Particularly, the sum of previous gradients,which are exponentially

decreasing, is added to the current gradient at each iteration in order to specify the

variations in the coordinates of y′s at the final map. Mathematically, the update of

gradient which contains the momentum term is in the following from;

γ(t) = γ(t−1) + η
δC

δγ
+ α(t)

(
γ(t−1) − γ(t−2)

)
. (3.20)

where,

γt is the solution at the tth iteration,

η is the learning rate, and

α(t) is the momentum at iteration t.

The pseudo code of discussed dimension reduction method (tSNE) is given in Algo-

rithm 5. Additionally, the two example of tSNE output is shown in Figure 3.5.

Algorithm 5: Pseudo code of t-Distributed Stochastic Neighbour Embedding
Input: DATA matrix in the size of M ×N where N is the number of voxels.

1: for All of the data pints do

2: Compute the pairwise conditional probabilities pi|j and pj|i using Eq. (3.14)

in the high dimension input space

3: pij ←− (pi|j + pj|i)/2n

4: γ(0) ←− {y1, y2, ..., yn} using isotropic Gaussian with small variance

5: for t = 1 to T do

6: Compute the pairwise similarities qi|j and qj|i by Eq. (3.17) in the final

map.

7: Compute gradient δC
δγ

using Eq. (3.19)

8: γ(t) ←− γ(t−1) + η( δC
δγ

) + α(t)(γ(t−1) − γ(t−2))

9: end for

10: end for

11: return The low-dimensional map γ(T ) of DATA.
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Figure 3.5: Two output example of 2D visualization using tSNE. a) an example of MVPA
visualization of fMRI data with binary class conditions , b) an example of visualizing the
output of STMM.

3.5 Chapter Summary

In this chapter, the architecture called STMM which aim to decode the brain states

have been proposed. In the first phase of the proposed architecture, the fMRI data

which contain tens of thousand voxels, are simplified by selecting only a proportion

of them. The main goal of this step is to discard the noisy voxels and reduce the

"curse of dimensionality" problem. This approach helps us to develop a powerful

brain decoding model with high accuracy and speed. As shown in Fig. 3.1, the model

uses both univariate and multivariate feature selection methods to select the infor-

mative voxels. After this step, the newly developed brain decoding method which

is called temporal mesh model (TMM) is applied on the selected voxels to estimate

the arc weights between the seed voxel and its neighbours. However, contrary to the

dimension reduction techniques, TMM increases the feature space, and again a fea-

ture selection method is used to solve this problem. Finally, the dimension reduction

technique called tSNE is applied to visualize the data points in the feature space of

the different phases in STMM.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, first, the details of data acquisition and fMRI recordings are explained.

Then, two analyses known as "Intersection" and "Anatomical" analyses are accom-

plished for evaluating the voxel selection methods. The goal of these analyses is to

show the consensus of the univariate and multivariate voxel selection methods. Next,

the classifier performance of employed voxel selection methods in the proposed ar-

chitecture are illustrated and discussed. After discussing the neighbourhood analysis

for Temporal Mesh Model (TMM), the results of proposed architecture are shown

and discussed in the following sections. Finally, 2D visualization results of tSNE are

presented in the last section.

4.1 Data Acquisition and fMRI Recordings

The data set which is used in this study is acquired by "Pattern Analysis of func-

tional Magnetic Resonance Imaging" group of Computer Engineering Department at

Middle East Technical University. This data set is task related, and the subjects are

stimulated during the fMRI recordings. The visually presented stimuli are images

which fall into two categories of birds and flowers. These images contain the pictures

of flowers or birds on the gray background. Fig. 4.1 shows the schematic setup of the

experiment performed during data recordings. First, the participants are stimulated

visually with an image up to four seconds. Then, a resting state is followed after stim-

ulation phase. The time of resting state varies randomly among 8, 10 or 12 seconds.

This resting state is designed in order to get back the stimulated brain to its baseline.
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During the experiment and after the stimuli, the subject is asked to detect the category

of the object. For example, if a flower image is followed by another flower image,

the participant is expected to say that these objects are from the same category. The

question is answered by pushing a bottom. Whole fMRI recordings is divided into

six parts that are called runs. In each run the participant is stimulated 36 times. This

means that we have 36 samples for each run and 216 samples for all runs combined.

The dataset is binary class type with 108 samples for each class.

Figure 4.1: The abstract overview of the experiment which data is gathered. 8, 10 or 12
seconds of resting without any stimulus follows the four seconds of visually stimulation
of brain.

Six subjects have been participated in this fMRI recordings. The first subject is used

to set the fMRI machine. Additionally, the fMRI data of fourth subject was ruined

during the recording. Therefore, the data of subjects 002, 003, 005 and 006 are used

in this study. The number of voxels is different among the subjects. Specifically, the

number of voxels for subjects 002, 003, 005 and 006 are 20177, 19962, 19311 and

19757 receptively.

4.2 Analysing Feature Selection Methods

As discussed in the previous chapter, the first and second phases of the proposed ar-

chitecture STMM are voxel selection methods. Before the use of them in STMM,

the consensus of them should be analysed. In order to measure the validity and ra-

tionality of the methods, two analyses are designed. In the first analysis, we examine
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whether the voxel selection methods select the same set of voxels or not. In fact, if

the employed methods are consensus, then we expect them to select the same voxels.

Therefore, the analysis called "Intersection", which is explained in the next subsec-

tion, is designed. In the second analysis, the anatomical regions of selected voxels are

examined. The purpose of this analysis is to show the existence of the relationships

between the anatomical locations of the selected voxels and neuroscientific informa-

tion. This analysis which we call it "Anatomical" analysis is done by examining the

experiment which fMRI data is recorded and the anatomical locations of selected

voxels which are represented by using CEREBRA toolbox [68].

4.2.1 Intersection Analysis

As we mentioned previously, the goal of voxel selection methods was to rank and

select the informative voxels. At the output of these methods, voxels are ranked from

high to low according to their discriminative power, then the low ranked voxels are

eliminated using a threshold. In order to find out the validity of the feature selection

methods, the analysis known as "Intersection" is designed. The purpose of this anal-

ysis is to find out whether the selected features in different methods are common or

not. The 3D coordinate of the voxels in the brain are used to specify the intersections

of the methods. The coordinates of the voxels consists of three elements which spec-

ify x,y and z axis in the brain. For example, if a voxel with [4, 70, 36] coordinate is

selected by the Mutual Information (MI) based feature selection, then another method

(such as ANOVA or RFE) is checked to see whether the same voxel is selected or not.

After checking all of the voxels the percentage of intersection is simply calculated by

dividing the number of commonly selected features to the total number of voxels.

The results of "Intersection" analysis are shown in Fig. 4.2. In this figure the x axis

shows the number of selected voxels, and y axis corresponds to the intersection per-

centage between the methods. The figures show that there is an increasing trend in

the intersection percentage as the number of voxels decreases up to a point. Addition-

ally, note that both of the univariate feature selection methods (MI and ANOVA) have

higher intersection percentage compared to the intersections between univariate with

multivariate (RFE). Therefore, the results of this analysis show that some features are
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detectable with more than one voxel selection methods, and this can be interpreted as

the validity of the methods.

4.2.2 Anatomical Analysis

In this analysis, the anatomical regions are examined to inspect the location of se-

lected voxels . The goal of this analyse is to track the anatomical location of elimi-

nated and selected voxels. Particularly, the analysis is done to check the relationships

between the anatomic regions and the location of selected voxels depending on the

nature of the experiment performed during the fMRI recording.

As we discussed in section 4.1, the subjects are stimulated visually by the images and

asked to remember the category of the images during the fMRI recording. From the

anatomical and functional neuroscientific information about the brain, we expect that

the active voxels to be in the anatomical parts of brain which are related to vision

and visual memory. In order to implement this analysis, the different number of

voxels were selected with different methods. Then, the anatomical regions of selected

voxels are visualized by using CEREBRA toolbox [68].The results of ANOVA and

RFE voxel selection methods for Subject 2 is shown in Fig. 4.4 and 4.5, and the

results of RFE and ANOVA for Subject 6 is shown in Fig. 4.10 and 4.11. However,

an abstract knowledge about the brain anatomy and function would be beneficial in

order to interpret the results.

Generally, brain is made of three parts: brain stem, cerebellum and cerebrum. Brain

stem is a bundle of nerve tissue at the base of the brain, and it is responsible for breath-

ing, body temperature, blood pressure, heart rate and hunger and thirst. Cerebellum,

on the other hand, is located in the back of the brain under the cerebrum. The func-

tions of cerebellum includes movement, posture, balance, reflexes, complex actions

(such as walking, talking), collecting sensory information from the body. However,

both of brain stem and cerebellum are not examined for brain decoding tasks. Cere-

brum is the only part which is examined for brain decoding purpose in this study. It

is the largest part of the brain which is divided in to two parts left and right cere-

bral hemispheres. A bridge of nerve fibers called corpus callosum connects these two
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Figure 4.2: The results of Intersection analysis between ANOVA, MI and RFE feature
selection methods in different number of selected voxels. The x axis represents the num-
ber of selected voxels, and the y axis shows the intersection percentage between methods.
a) the intersection between univariate methods (MI and ANOVA), b) the intersection be-
tween RFE and ANOVA and c) the intersection between RFE and MI.
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parts. Functionally, the cerebrum is divided into four regions: frontal (front), parietal

(top), temporal (side), and occipital (back) lobes (see Fig.4.3).

• Frontal lobe controls the body movement, speech, behaviour, memory, emo-

tions and intellectual functioning such as decision making.

• Parietal lobe is responsible for sensation such as touch, pain and etc.

• Temporal lobe controls hearing, memory, visual memory and emotion.

• Occipital lobe controls vision via functional visual areas.

Figure 4.3: The functional parts of brain. Four main parts of cerebrum which are labelled
by frontal, parietal, temporal, and occipital lobes and the other two brain parts which are
cerebellum and brain stem.

The result of the "Anatomical" analysis for Subjects 002, 003, 005 and 006 are shown

in Figures 4.4, 4.5,4.6, 4.7,4.8, 4.9 4.10 and 4.11. The rows of the figures show

different number of selected voxels, and columns illustrate the results of ANOVA and

RFE voxel selection methods. It is obvious that the tendency of both ANOVA and

RFE voxel selection methods is to select the voxels from occipital and temporal lobs

as the number of selected voxel decreases to below 1000 voxels.

As mentioned above, one of the the major functions of occipital lobe is vision control.

This matches with the results of this analysis shown in Figures 4.4, 4.5,4.6, 4.7,4.8,
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4.9 4.10 and 4.11. It is obvious that one of the brain regions which contains the

selected voxels (shown in red color) is occipital lobe. Additionally, the other brain

region which also contains the major number of selected voxels is temporal lobe. This

also complement with the function of temporal lobe which contains memory control.

Remember, that the subjects are asked to memorize the category of objects in the

fMRI recording experiment. The results of mutual information (MI) based feature

selection method is not shown in the figures. In fact, most of the selected voxels

with MI are also selected by ANOVA. This can be inferred from the "Intersection"

analysis (see Fig. 4.2). Therefore, the anatomical visualization of the selected voxels

with MI would be very similar to ANOVA, and the results of MI does not shown due

to similarity in the results of ANOVA and MI.
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Figure 4.4: The anatomical regions of the different number of selected voxels (5000,
2000, 1000) by ANOVA and RFE in Subject002. Column (a) shows the results of
ANOVA, and Column (b) shows the results of RFE voxel selection methods. The rows
illustrate the different number of voxels which are selected by ANOVA and RFE feature
selection methods.
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Figure 4.5: The anatomical regions of the different number of selected voxels (500, 150,
50) by ANOVA and RFE in Subject002. Column (a) shows the results of ANOVA, and
Column (b) shows the results of RFE voxel selection methods. The rows illustrate the
different number of voxels which are selected by ANOVA and RFE feature selection
methods.
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Figure 4.6: The anatomical regions of the different number of selected voxels (5000,
2000, 1000) by ANOVA and RFE in Subject003. Column (a) shows the results of
ANOVA, and Column (b) shows the results of RFE voxel selection methods. The rows
illustrate the different number of voxels which are selected by ANOVA and RFE feature
selection methods.
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Figure 4.7: The anatomical regions of the different number of selected voxels (500, 150,
50) by ANOVA and RFE in Subject003. Column (a) shows the results of ANOVA, and
Column (b) shows the results of RFE voxel selection methods. The rows illustrate the
different number of voxels which are selected by ANOVA and RFE feature selection
methods.
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Figure 4.8: The anatomical regions of the different number of selected voxels (5000,
2000, 1000) by ANOVA and RFE in Subject005. Column (a) shows the results of
ANOVA, and Column (b) shows the results of RFE voxel selection methods. The rows
illustrate the different number of voxels which are selected by ANOVA and RFE feature
selection methods.
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Figure 4.9: The anatomical regions of the different number of selected voxels (500, 150,
50) by ANOVA and RFE in Subject005. Column (a) shows the results of ANOVA, and
Column (b) shows the results of RFE voxel selection methods. The rows illustrate the
different number of voxels which are selected by ANOVA and RFE feature selection
methods.
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Figure 4.10: The anatomical regions of the different number of selected voxels (5000,
2000, 1000) by ANOVA and RFE in Subject006. Column (a) shows the results of
ANOVA, and Column (b) shows the results of RFE voxel selection methods. The rows
illustrate the different number of voxels which are selected by ANOVA and RFE feature
selection methods.
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Figure 4.11: The anatomical regions of the different number of selected voxels (500,
150, 50) by ANOVA and RFE in Subject006. Column (a) shows the results of ANOVA,
and Column (b) shows the results of RFE voxel selection methods. The rows illustrate
the different number of voxels which are selected by ANOVA and RFE feature selection
methods.
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4.3 Measuring the Effects of Feature Selection Methods on Brain Decoding

In this section, the impacts of discussed voxel selection methods (ANOVA, MI and

RFE) on the brain decoding are measured using classification performance of KNN

and SVM algorithms. The following steps are followed to measure the classification

performance for different selected voxel numbers in different subjects. The first step

is to divide the data into two parts namely training set and test set. As mentioned

in section 4.1, the fMRI data which is used in this research, contain six runs. We

divided this fMRI data set according to the runs. Three runs (Run1, Run3, Run5)

are used as the training sets, and the others (Run2, Run4, Run6) as the test sets. In

the second step, the voxel selection methods are implemented on the training sets to

rank and select the most informative voxels. Next, the 3D coordinates of the selected

voxels from the training set are used to select the same voxels with the same 3D

coordinates from the test set. Finally, KNN and SVM classifiers are trained using

training sets, and their classification performance is measured using test sets. The

classification performance is equal to the number of truly predicted labels divided by

the whole number of labels or class conditions. For instance, if the SVM classifier

truly predict 70 class conditions out of 108 ones during the testing of classifier, then

the classification performance or accuracy would be 0.65 in this example.

Tables 4.1 and 4.2 show the classification performances of KNN and SVM classifiers

in different number of selected voxels. The results of Multivariate Pattern Analysis

(MVPA) on whole brain are obtained without any voxel selections and shown in the

third row of the tables. The number of selected voxels are shown in the first column

of tables (from 15000 to 500 ). These number of voxels are selected so that the cor-

responding classification performance changes as much as possible. In other words,

in order to avoid repetition and similarity of performances, only the specific range

of selected voxels (from 15000 to 500) are shown in the tables. Additionally, the

performances of low voxel numbers (bellow the 500) are not shown due to the same

reason. In this study, the kernel of SVM classifier is linear, and the C parameter of

the classifier is optimized by grid search. In KNN classifier, the euclidean distance is

used, and the K parameter is optimized by k fold cross validation in the training set.
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Notice, an increasing classification performance trend exists up to a specific number

of voxels for each method in each subject. For example, the KNN performance of

ANOVA (ANO.) at subject 006 increases from 15000 to 1000 number of voxels, and

it reaches to its optimal point 0.87 when 1000 voxels are selected using ANOVA.

Then, it starts to decrease as the number of voxels decreases. However, the results

show the contribution of the voxel selection methods in the performances of classi-

fiers. Additionally, it is notable that the SVM performances surpass the KNN ones in

subjects 003, 005 and 006.

4.4 "p" value analysis for TMM

After the first and second phases which select the voxels, the third phase of sparse

temporal mesh model (STMM) architecture (see Fig. 3.1), is the implementation of

TMM. As Onal et al. [67], and [44] showed finding the optimum number of local

neighbours (p) for each subject is critical in order to reach the optimum classification

performance. As mentioned in Chapter 3, TMM estimates the arc weights between

the seed voxel and its locally neighbouring voxels. However, the important question in

TMM is: "How many neighbouring voxels must be chosen?". One possible solution is

to examine a range of the number of neighbours or p’s and then estimate the optimum

number of neighbours p̂ based on the classification performance.

In this section, the effect of different number of neighbouring voxels p on the classifi-

cation performance is examined. In this analysis, the selected voxels at the output of

second phase in the proposed architecture are given to the TMM. In other words, after

RFE (in the second phase of STMM) selected the most discriminative voxels among

the previous selected voxels by the first phase (MI or ANOVA) in the STMM, they

used as the input of Temporal Mesh Model (TMM) in the third phase.

Of course, the other important issue which must be consider here is how many vox-

els should be selected in the first and second phases of STMM. In other words, the

critial question is how many voxels should be selected in the univariate voxel selec-

tion phase (phase A), and how many of them should be selected in the multivariate

voxel selection phase (phase B) In order to answer this question, different combina-
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tion of voxels for the first and second phase of the architecture are examined. These

combinations were selected to be near 1000 voxels which the feature selection meth-

ods have shown the maximum performances (see Tables 4.1 and 4.2). Fortunately, the

examined combinations had similar classification performances, so only one combi-

nation of results are used to show in this section. Particularly, first 1000 voxels are

selected using ANOVA, then 500 voxels are chosen among them using RFE in the

second phase. Plots of next page shows KNN and SVM classification performances

of subjects as the number of neighbouring voxels changes.

The classification performances of KNN and SVM classifiers for the range of p ∈
{2, 4, 6, ..., 110} are plotted in Figures 4.12, 4.13, 4.14,4.15. As the figures show,

generally, the accuracy increases as the number of neighbours (p) increase up to a

specific point for each subject.

As figures show, the optimal number of neighbouring voxels p’s varies among the

subjects. For example, while the optimal classification performance for Subject 002

is near the 80’s, the optimal classification performance is near 90’s for Subject 003.

Due to the fact that all of the subjects do not show meaning full changes in the clas-

sification performances near 100 neighbours, we determined to set the number of

neighbours to be fix in this study. Therefore, we choose to work in the fix p, where

p = 100. It is important to note that the number of neighbouring voxels (p) is rela-

tively high with respect to previous studies such as [67], and [44]. The cause of this

phenomena may have one or both of the following reasons. Firstly, voxel selection

losses somehow the locality information of voxels, and this may cause to high con-

nection of the seed voxel its neighbourhood voxels. The other reason may come from

the nature of discriminative voxels. None of previous studies were applied TMM on

the selected voxels. Therefore, one possible reason could be that the discriminative

selected voxels have high degree of relations with each others.
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Figure 4.12: SVM and KNN classification performances of (TMM) at the phase C.1 of
STMM for different number of neighbours p in subject 002.
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Figure 4.13: SVM and KNN classification performances of (TMM) at the phase C.1 of
STMM for different number of neighbours p in subject 003.
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Figure 4.14: SVM and KNN classification performances of (TMM) at the phase C.1 of
STMM for different number of neighbours p in subject 005.
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Figure 4.15: SVM and KNN classification performances of (TMM) at the phase C.1 of
STMM for different number of neighbours p in subject 006.

4.5 Sparse Temporal Mesh Model (STMM) Results

As mentioned in the Chapter 3, Sparse Temporal Mesh Model (STMM) is made up

of three phases. The first phase of STMM is a univariate voxel selection method (MI

or ANOVA). This phase is followed by a multivariate voxel selection method (RFE)

in the second phase. The selected voxel as the output of second phase is given to

the third phase which consists of two steps, formation of the Temporal Mesh Model

(TMM) and pruning the edgesof the TMM (see Fig. 3.1).

This section covers the classification performances of KNN and SVM for all the over-

all STMM architecture. One important fact is that the first phase has direct impact on

the second and third phases. In other words, the features/voxels of first phase cho-

sen by ANOVA or MI are used in the following phases. Therefore, we tested both

ANOVA and MI to select the most discriminative voxels to see the effects of them on

the classification performance.

Let’s start with discussing the first univariate method where ANOVA is used, then

RFE is implemented on the selected voxels by ANOVA. Finally, TMM and pruning

edges have been implemented on the selected voxels at the output of RFE. Fig 4.16

shows the results of KNN classifier for the subjects, and Fig. 4.17 illustrates the re-

sults of SVM algorithm. As the results of the tables 4.1 and 4.2 show, the optimum

performances are obtained when 2000 or less voxels are selected for all subjects.

Therefore, the first phase of architecture (in this path ANOVA) is set to select 2000

or low number of voxels. On the other hand, we need to specify the a rang for the
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second phase. In other words, the number of voxels that are going to select in the

multivariate voxel selection method by RFE must be specified. One obvious way to

reduce the number of voxels iteratively by specific range. For example, after choos-

ing 2000 voxels by one of the univariate methods in the phase A, we can iteratively

eliminate 5 voxels in each iteration by RFE in the phase B. However, tens of thou-

sands classification performances would be examine by following this approach, and

the time complexity of STMM would increase. Additionally, the purpose multivariate

voxel selection method, RFE, in the phase B is not the selection of voxels directly.

Instead,it is designed to select the most discriminative voxel by examining the out-

put of univariate voxel selection methods in the multivariate form. Therefore, the

number of voxels to be eliminated in the second phase of architecture is set to be 25

percent of the numbers of selected voxels in the first phase. We choose five combi-

nations of numbers of selected voxels for ANOVA/RFE, and these combinations are

(2000/1500), (1500/1125), (1200/900), (1000/700) and (850/640) to measure the

performance of the proposed architecture (STMM).

The results of first and second phases of first path (first ANOVA, then RFE) are shown

in the first and second column of Fig. 4.16 and 4.17. It is observed that there is no

significant performance improvement in the second phase over the first one.

The third column in Figures 4.16 and 4.17 shows the results of Temporal Mesh Model

(TMM). Due to the reason which is discussed in the previous section, 100 local neigh-

bours are considered for the seed voxel. Except few increases, the classifier perfor-

mances decreases in most of the cases in TMM compared to the first two phases.

The performance decrease may have two reasons. On the one hand, the dimension

of feature space increases 100 times by TMM due to consideration of estimated arc

weight as new features instead of voxels. For instance, in our case, the dimension of

input space (the output of second phase) increases from 1500 to 150000 in the case

of 2000/1500 combination of voxels for ANOVA/RFE, which causes curse of dimen-

sionality problem. On the other hand, although Onal et al. [44] optimized the number

of neighbours for each voxel in the classical local mesh model, but TMM estimates

the arc weights under the assumption of fix number of neighbours for all voxels. As

mentioned previously, this may contradict with the natural functioning of the brain

which the connections between the voxels can vary.
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In order to obtain a sparse representation, ANOVA based feature selection is used to

select and prune the most valuable and discriminative arc weights among all of the

estimated ones. Particularly, this is called "Pruning Edges" in proposed architecture

(STMM) (see Phase C.2 in Fig. 3.1). The results are shown in the right part (from

the 5th column to the last column) of Fig. 4.16 and Fig. 4.17 under the "ANOVA on

TMM" label.

The number of whole brain voxels which are used in this study for each subject is

nearly 20000 voxels. We used the univariate and multivariate voxel selection methods

in phase A and phase B to select voxel in order to reduce the dimension. However,

the TMM in the phase C.1 increases the dimension 100 times, because the number of

neighbours is set to be 100. Due to the fact that we had originally about 20000 voxels

or dimensions, therefore, the arc weights are pruned in specific ranges less than the

20000 which are shown in the figures.

However, the optimal performance of the pruned edges (presented under the "ANOVA

on TMM") are shown in the fourth column under the "Max" label which represents the

optimum performance of STMM. "Max" is simply taken to be highest performance in

overall ANOVA/RFE voxel number combinations. This is done in order to compare

the classification performance of ANOVA, RFE, TMM and STMM. Almost in all of

the cases, the "Max" surpass TMM’s performances, and this shows the effectiveness

of feature selection after the implementation of TMM. Furthermore, the results of

KNN classifier (that is presented in Fig. 4.16 ) show that except the Subject005 (S5)

which is nearly equal, "Max" passes the performances of first and second phases in

Subject002, Subject003 and Subject006. However, the similar classification perfor-

mance trend is shown in the case of SVM at Fig. 4.17.

As you noticed, there are hundreds of classification performances in this study. There-

fore, we choose the bar plot to represent the performances. But, the quantitative

illustration of the results could be beneficial in order to examine and see the advan-

tage of the proposed architecture (STMM). The MVPA and obtained optimum results

of both classifiers (KNN and SVM) for all subjects up to this point are summarized

in Table 4.3. The optimum performances of MI, ANOVA and RFE are chosen to

be the maximum performances of feature selection methods in Tables 4.1 and 4.2.
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Additionally, the right side of the table (under the ANOVA/RFE title) show the op-

timal performance of ANOVA feature selection on the TMM, and the maximum of

these performances are shown under the "Max(Opt)" label which are calculated by

simply taking the maximum performances of five ANOVA/ RFE combinations. The

"Max(Opt)", the optimal performance of STMM, surpass the feature selection meth-

ods and MVPA results.

Up to now, we present only the STMM performances by using ANOVA to specify the

TMM method. We accomplish similar results for the by MI in the Phase A of STMM,

in Figures 4.18 and 4.19. Additionally, like the first path, the summary results of

second path are shown in Table 4.4. However, it is notable that the optimal number

of features (shown in Tables 4.3 4.4 inside the parenthesis under the label of "Opt

ANO. on TMM") for SVM are higher than KNN. In other words, it seems that SVM

gives its optimal results in the higher dimension compared to KNN. We will survey

this phenomena in the next section (Visualizing with tSNE).

4.6 Visualizing with tSNE

2D maps of the data points from the high dimensional feature space (in the order

of thousands) is not a trivial task. Maaten et al. [33] and [34] showed that t-

distributed Stochastic Neighbor Embedding (tSNE) properly can visualize the high

dimensional feature space in 2D maps. In this section, the results of implementation

of tSNE on different phases of proposed architecture , STMM, is presented. Figures

4.20,4.21,4.22 and 4.23 contains the 2D visualization of whole brain MVPA and the

results of three phases when the optimal classification performances are obtained for

different subjects. It is notable that tSNE is an unsupervised methods, and the color

and label of data are added to the output of tSNE to have detectable images.

The images labelled with (a) in Figures 4.20, 4.21, 4.22 and 4.23 show the results

of MVPA for different subjects. It seems that the data points are randomly and non

linearly distributed in the whole brain MVPA feature space. Most probably, this hap-

pens due to the noise caused by redundant features/voxels. However, the data points

after voxel selection are somehow more separated from each other compared to the
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Figure 4.16: The KNN Performance using ANOVA as univariate voxel selection in the
Phase A. Five different voxel combinations are used for Phase A and Phase B which are
shown in different colors and labelled under the Subjects (S*) label on the right side of
figures. The first, second and third columns show the KNN classification performances
of Phase A,B and C.1 (See Fig. 3.1). The results of Phase C.2 ("Pruning Edges") are
shown in the column 5 to the last one (under the label of "ANOVA on TMM") which
each column shows different number of selected arc weights (from 20000 to 1000) using
ANOVA. The optimum results of "ANOVA on TMM" is shown in the fourth which is
labelled as "Max".
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Figure 4.17: The SVM Performance using ANOVA as univariate voxel selection in the
Phase A. Five different voxel combinations are used for Phase A and Phase B which are
shown in different colors and labelled under the Subjects (S*) label on the right side of
figures. The first, second and third columns show the SVM classification performances
of Phase A,B and C.1 (See Fig. 3.1). The results of Phase C.2 ("Pruning Edges") are
shown in the column 5 to the last one (under the label of "ANOVA on TMM") which
each column shows different number of selected arc weights (from 20000 to 1000) using
ANOVA. The optimum results of "ANOVA on TMM" is shown in the fourth which is
labelled as "Max".
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Figure 4.18: The KNN Performance using MI as univariate voxel selection in the Phase
A. Five different voxel combinations are used for Phase A and Phase B which are shown
in different colors and labelled under the Subjects (S*) label on the right side of the
figures. The first, second and third columns show the KNN classification performances
of Phase A,B and C.1 (See Fig. 3.1). The results of Phase C.2 ("Pruning Edges") are
shown in the column 5 to the last one (under the label of "ANOVA on TMM") which
each column shows different number of selected arc weights (from 20000 to 1000) using
ANOVA. The optimum results of "ANOVA on TMM" is shown in the fourth which is
labelled as "Max".
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Figure 4.19: The SVM Performance using MI as univariate voxel selection in the Phase
A. Five different voxel combinations are used for Phase A and Phase B which are shown
in different colors and labelled under the Subjects (S*) label on the right side of the
figures. The first, second and third columns show the SVM classification performances
of Phase A,B and C.1 (See Fig. 3.1). The results of Phase C.2 ("Pruning Edges") are
shown in the column 5 to the last one (under the label of "ANOVA on TMM") which
each column shows different number of selected arc weights (from 20000 to 1000) using
ANOVA. The optimum results of "ANOVA on TMM" is shown in the fourth which is
labelled as "Max".
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whole brain data. This is shown in the sub-images labelled with (b) and (c) in the

figures. The labelled images with (b) show the result of tSNE on the optimum results

of first phase (univariate voxel selection particularly ANOVA) which is obtained at

1000 voxels. The (c) sub-images illustrate the optimum results of RFE obtained by

selection of 25 percent of 850 voxels which had been selected by ANOVA.

The (d) sub-images show the 2D visualization after the implementation of Temporal

Mesh Model on the selected voxels at the second phase. Again, the results are shown

according to the optimal classification performances. The presented results are ob-

tained when 700 voxels are selected by RFE among the previously 1000 selected

voxels by ANOVA. However, clearly, it can be seen the negative effect of increase in

the feature space by TMM in the (d) sub-images. The last two sub-images (e) and (f)

show the 2D visualization of data points after the pruning of TMM’s arc weights (see

phase C.2 "Pruning Edges" at Fig. 3.1). In fact these two sub-images are the output

of the proposed architecture. The 2D maps are obtained at the optimal performance

which is the maximum classification performance of SVM and KNN classifier. It

is clear that the data points are almost linearly separable, and the distance between

classes (flowers and birds) is higher than previous ones. Additionally, it is clear that

a classifier such as KNN or SVM will not suffer the problem of "curse of dimension-

ality" to classify the classes. As you note, SVM classifier has higher classification

performances compared to KNN, and their difference is high in some cases. For ex-

ample, the results of SVM on TMM in Table 4.3 are higher than the results of KNN.

This also manifest itself in the summary Table 4.4.

Except the (e) and (f) sub-images of Figures 4.20,4.21,4.22 and 4.23 the data is not

separable. Therefore, one reason of high SVM performance can be the prosperity of

SVM over KNN in the non-linear feature space of fMRI data sets. Secondly, although

the classification performances are obtained as the result of testing the classifiers, but

they obtained in subjective based condition where the number of samples are small.

Therefore, the classifiers may be over-fitted. However, the proposed architecture de-

creases second reason by two facts. The first fact is that the architecture changes the

feature space to almost linearly separable space this is shown by the tSNE visualiza-

tion of the feature space at the (e) and (f) sub-images. Additionally, the differences

between the results KNN and SVM classifiers are lower than compared to STMM.
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Figure 4.20: tSNE visualization of Subject 002. a) 2D visualization of whole brain mul-
tivariate pattern analysis (MVPA). b) tSNE result of phase A in the proposed architec-
ture when optimal classification performance is obtained. At 1000 voxels selected by
ANOVA. c) The 2D map of second phase at the optimal performance. The optimal perfor-
mance of second phase is obtained when 640 voxels are selected by RFE from the previ-
ously selected 850 voxels with ANOVA voxel selection method. d) tSNE implementation
of the first part of phase C which is TMM. This result is obtained at the optimal classifica-
tion performance when 1000/700 number of voxels are selected in ANOVA/RFE at A/B
phases respectively. e) the 2D map of after ANOVA is used to prune the less informative
arc weights of TMM. This result is obtained when optimal number of arc weights (1000
is shown on top of (e)) are chosen on the optimal TMM which is shown in (d). f) the tSNE
2D map of the overall optimal point of the "Pruning Edge" which is obtained when: first
1000 voxels are selected with ANOVA, then, 700 out of that voxels are selected using
RFE, and, finally, 1000 arc weights are chosen using ANOVA feature selection method.
Note that the results of part e) and f) are similar for this subject, because both maps are
obtained in the optimal 1000/700/1000 combination feature numbers for phases A/B/C2,
respectively.
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Figure 4.21: tSNE visualization of Subject 003. a) 2D visualization of whole brain mul-
tivariate pattern analysis (MVPA). b) tSNE result of phase A in the proposed architec-
ture when optimal classification performance is obtained. At 1000 voxels selected by
ANOVA. c) The 2D map of second phase at the optimal performance. The optimal perfor-
mance of second phase is obtained when 640 voxels are selected by RFE from the previ-
ously selected 850 voxels with ANOVA voxel selection method. d) tSNE implementation
of the first part of phase C which is TMM. This result is obtained at the optimal classifica-
tion performance when 1000/700 number of voxels are selected in ANOVA/RFE at A/B
phases respectively. e) the 2D map of after ANOVA is used to prune the less informative
arc weights of TMM. This result is obtained when optimal number of arc weights (2500
is shown on top of (e)) are chosen on the optimal TMM which is shown in (d). f) the
tSNE 2D map of the overall optimal point of the "Pruning Edge" which is obtained when
first 1000 voxels are selected with ANOVA, then, 700 out of that voxels are selected using
RFE, and, finally, 2500 arc weights are chosen using ANOVA feature selection method.
Note that the results of part e) and f) are similar for this subject, because both maps are
obtained in the optimal 1000/700/2500 combination feature numbers for phases A/B/C2,
respectively.
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Figure 4.22: tSNE visualization of Subject 005. a) 2D visualization of whole brain mul-
tivariate pattern analysis (MVPA). b) tSNE result of phase A in the proposed architec-
ture when optimal classification performance is obtained. At 1000 voxels selected by
ANOVA. c) The 2D map of second phase at the optimal performance. The optimal perfor-
mance of second phase is obtained when 640 voxels are selected by RFE from the previ-
ously selected 850 voxels with ANOVA voxel selection method. d) tSNE implementation
of the first part of phase C which is TMM. This result is obtained at the optimal classifica-
tion performance when 1000/700 number of voxels are selected in ANOVA/RFE at A/B
phases respectively. e) the 2D map of after ANOVA is used to prune the less informative
arc weights of TMM. This result is obtained when optimal number of arc weights (2500
is shown on top of (e)) are chosen on the optimal TMM which is shown in (d). f) the
tSNE 2D map of the overall optimal point of the "Pruning Edge" which is obtained when
first 1000 voxels are selected with ANOVA, then, 700 out of that voxels are selected using
RFE, and, finally, 1500 arc weights are chosen using ANOVA feature selection method.
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Figure 4.23: tSNE visualization of Subject 005. a) 2D visualization of whole brain mul-
tivariate pattern analysis (MVPA). b) tSNE result of phase A in the proposed architec-
ture when optimal classification performance is obtained. At 1000 voxels selected by
ANOVA. c) The 2D map of second phase at the optimal performance. The optimal perfor-
mance of second phase is obtained when 640 voxels are selected by RFE from the previ-
ously selected 850 voxels with ANOVA voxel selection method. d) tSNE implementation
of the first part of phase C which is TMM. This result is obtained at the optimal classifica-
tion performance when 1000/700 number of voxels are selected in ANOVA/RFE at A/B
phases respectively. e) the 2D map of after ANOVA is used to prune the less informative
arc weights of TMM. This result is obtained when optimal number of arc weights (7000
is shown on top of (e)) are chosen on the optimal TMM which is shown in (d). f) the
tSNE 2D map of the overall optimal point of the "Pruning Edge" which is obtained when
first 1000 voxels are selected with ANOVA, then, 700 out of that voxels are selected using
RFE, and, finally, 10000 arc weights are chosen using ANOVA feature selection method.

82



4.7 Discussion

This chapter covers the experiments that are designed to measure the performances of

proposed architecture known as sparse temporal mesh model (STMM) and compared

it to popular feature selection methods given in Chapter 2.

The first group of experiment include the analysis namely: "Intersection", "Anatomi-

cal" and "p value analysis for TMM". The result of "Intersection" and "Anatomical"

analyses show that ANOVA, MI and RFE feature selection methods can be consider

as the valid methods for voxel selection. This validity comes from two facts. Firstly,

the results of "Intersection" analysis show that most of the selected voxels are com-

mon between the voxel selection mehtods, and the second fact is that the results of

"Anatomical" analysis shows the relationships between fMRI recordings and neuro-

scientific findings. In other words, we expected that the active and discriminative

voxel would be in occipital and temporal lobs based on the fMRI recordings. This is

observed where the voxel selection methods selected the voxels from these lobs (see

Figures 4.4,4.5, 4.10 and 4.11)

In the second set of experiments, the impact of voxel selection methods on "brain de-

coding" problem is measured by the accuracy performance of two well known clas-

sifiers, namely KNN and SVM. This experiment illustrates the effectiveness of voxel

selection methods on "brain decoding". All three voxel selection methods, ANOVA,

MI and RFE, increase the performance of the classifiers by eliminating the less infor-

mative voxels.

The performance of proposed architecture, STMM, is measured in the third set of

experiments.KNN and SVM classifiers are used for brain decoding purpose. This

experiment consists of measuring the performance of classifiers in the various phases

of STMM. It is shown that the classification performances of final phase in STMM,

phase C.2 "Pruning Edges", commonly higher than the performances of other phases

and the results of second types of experiments. Finally, the 2D maps of all three

phases in STMM are examined to see the effect of each phase in the feature space.

The result of this experiment shows the effectiveness of phase A over MVPA, and it

also illustrates the effectiveness of phase C.2 over all phases and MVPA.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In the first part of this chapter, the overall outcomes of the proposed architecture,

STMM, is discussed. In the next part, the possible future developments of proposed

architecture is covered to increase the accuracy of brain decoding.

5.1 Discussion on STMM architecture

In this study, a new architecture called sparse temporal mesh model (STMM) is pro-

posed which consists of three phases based on univariate and multivariate analysis and

a mesh model. STMM employs several feature selection methods and temporal mesh

model (TMM) to increase the accuracy of brain decoding. The proposed new tech-

nique uses feature selection methods to select the voxels, then it implements TMM on

the selected voxels in order to estimate the relationships between them. Additionally,

it prunes the estimated arc weights of TMM in order to solve the problem of TMM.

In order to visualize the effect of each phase on the feature space, the method known

as t-distributed Stochastic Neighbor Embedding (tSNE) is used in STMM.

STMM is based on TMM which is proposed by Onal et al. [67]. TMM considers

the discretized form of voxel’s hemodynamic responses for estimation purpose. The

purpose of this work is to increase the performance in brain decoding by decreasing

the possible effects of “curse of dimensionality” problem. In order to testify the ar-

chitecture, the data set which contains the visually stimulation of four participants are

used. The results indicate the necessary of dimension reduction in the decoding of

cognitive states.
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STMM is composed of three phases A, B and C. In phases A and B the most dis-

criminative voxels are selected using both univariate and multivariate voxel selection

methods. One of the univariate methods (MI or ANOVA) is used to select the most

discriminative features or voxels among the whole brain voxels (which are in the or-

der of tens of thousands). In phase B, following the first one, a multivariate voxel

selection method known as RFE is used to eliminate unnecessary voxels among the

output of first phase. This is done by examination of all feature space in the multivari-

ate form. The aim of this phase is to consider the multivariate nature of brain during

the voxel selection. Phase C consists of the implementation of TMM and pruning

the edges. After the estimation of arc weights (which represents the relationships be-

tween voxels) using TMM, ANOVA feature selection method (used in the first phase)

again used to prune and discard the useless features or arc weights. Each of discussed

phases are connected to the visualization method known as tSNE, in order to have an

idea about the change in the feature space.

The analyses of voxel selection methods showed that they are successful to find the

informative voxels from both neuroscientific and brain decoding point of views. Due

to the visual stimulation of participants in the fMRI recordings, it was expected that

both occipital and temporal lobes to have relations with the recordings. This expec-

tation comes from the functions of these two lobs where occipital deals with vision

and temporal lobe contains visual memory function. Additionally, the analysis called

“Intersection” showed us that all of the discussed feature selection methods can com-

monly select the same voxels.

The performance of STMM is compared to previous brain decoding methods known

as MVPA and TMM. The classification performances indicate the successfulness of

the architectures over the MVPA in all of the cases. The reason of increase in the clas-

sification performance of STMM over MVPA is due to the two main reasons. First,

the most discriminative voxels are identified in the phase A and B. In other words, the

noisy voxels or features are eliminated and the feature space become more separa-

ble. Second, it uses the temporal mesh model (TMM) and estimates the relationships
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between the voxels. On the other hand, the reason of increase in the classification

performances of STMM compared to the TMM is that the estimated arc weights are

pruned in the phase C.2. The pruning edges again helps to have more informative and

separable feature space.

In the first path, ANOVA feature selection method is used as univariate voxel selection

method. In this path, the average KNN and SVM accuracies (for four participants)

showed that the performances of STMM pass the whole brain MVPA (with out voxel

selection) by 32% in the case of KNN and 13% in the cause of SVM. However, in

the second path where MI is used in phase A, the STMM average KNN and SVM

performances of four subjects pass the average performances of whole brain MVPA

by 34% and 12% respectively (see Tables 4.3 and 4.4).

Apart from the classification performances, the visualization results of tSNE, as a part

of STMM, indicate the necessity of voxel selection or generally dimension reduction

in brain decoding. The 2D maps of STMM outputs show that the feature space is

more separable compared to the classic MVPA. Additionally, the arc weight selec-

tion using a feature selection method would result in the change of non-linear feature

space into linearly one which the distance between class distributions increases. As a

result, it decreases the possibility of generating an overfitted model.

5.2 Future Work

In this work, recursive feature elimination (RFE) is used in phase B of STMM in

order to eliminate unnecessary voxels among the ones which are selected in phase A.

However, a new multivariate voxel selection method can be designed based on the

functioning of the brain. For instance, the new multivariate voxel selection method

can also count the locality of voxels during their elimination because neuroscientific

information shows us that the locally near voxels have strong relationships.

In this thesis, STMM examines only the spatially local neighbouring voxels. Mean-

ing that, the neighbouring voxels of the seed voxel are determined spatially, and the

neighbourhood voxels are selected to be the ones which are spatially closer to the seed
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voxel. However, Firat et al. [60] illustrated that counting on the functionally nearest

neighbours of the seed voxel increases the predictability accuracy of brain decoding.

The idea of functional neighbouring voxels which have higher correlations with the

seed voxel can be used as an alternative to the spatially local neighbouring voxels

used in TMM.

Finally, it seems that more advanced graph based algorithms can be used to prune the

arc weights in phase C.2 ("Pruning Edges") of STMM. Therefore, the examination of

popular graph based algorithm or proposing such an algorithm would be beneficial in

the case of arc weight pruning.
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