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ABSTRACT 

 
 

PROPAGATION MODELS 

FOR HILLY TERRAIN BASED ON RAY OPTIC METHODS 

 

 

 

Yıldırım, Erkan Ersin 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Gülbin Dural Ünver 

 

September 2015, 127 pages 

 

In RF propagation path loss modeling, numerical methods may not be useful since 

they require very long computation times because electrically very large objects 

may be located in the terrain. Ray optic methods such as Geometrical Optics (GO) 

or Geometrical Theory of Diffraction (GTD) are more commonly used in 

propagation problems as well as the empirical models. Although ray optics methods 

are designed for very high frequency applications, they provide quite accurate path 

loss estimations in hilly terrain including electrically very large obstructions.  

In this thesis, ray optic methods are reviewed and applied to various different basic 

geometries. Computed results are compared with those obtained by the Longley-

Rice model which is based on the use of empirical data. Weak and strong features 

of both ray optic methods and empirical methods are discussed. Finally, by using 

the results obtained previously, how to optimize the receiver parameters in order to 

obtain the maximum EM signal radiated by a transmitter in the hilly terrain is 

discussed. 

Keywords: RF Propagation Path Loss Modeling, Terrain Elevation Modeling, Ray 

Optics, Geometrical Theory of Diffraction, Longley-Rice Model, Antenna 

Optimization, Received Signal Power Optimization
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ÖZ 

 
 

DAĞLIK ARAZİDE IŞIN BAZLI YÖNTEMLERE                                                      

DAYANAN YAYILIM MODELLERİ 

 

 

 

Yıldırım, Erkan Ersin 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülbin Dural Ünver 

 

Eylül 2015, 127 sayfa 

 

Elektromanyetik yayılım modellemede, dalga boyuna göre çok büyük engellerin 

bulunabileceği dağlık alanlarda, nümerik metotlar hesaplama zamanları açısından 

yetersiz hale gelebilmektedir. Deneysel modellerin yanı sıra, geometrik optik (GO) 

teori ya da geometrik kırınım teorisi (GTD) gibi ışın bazlı yöntemler de sıkça 

kullanılmaktadır. Bu yöntemler çok yüksek frekanslı dalgalar için tasarlanmış 

olmakla birlikte, dalga boyuna göre çok büyük engellerin olduğu dağlık alanlarda, 

VHF ve UHF banttaki yayılım modellemelerinde de yeterli doğrulukta çözümler 

sunmaktadır.  

Bu tezde, ışın bazlı metotlar incelenmiş ve çeşitli basit yapılara uygulanmıştır. Elde 

edilen sonuçlar deneysel olarak elde edilmiş olan Longley-Rice yayılım modeli 

sonuçlarla karşılaştırılmıştır. Hem teorik hem de deneysel metotların güçlü ve zayıf 

yönleri değerlendirilmiştir. Son aşamada ise, elde edilen bilgiler ışığında, dağlık bir 

alanda, alıcının vericiden yayılan EM dalgaları en verimli şekilde alabilmesi için; 

alıcı parametrelerinin nasıl seçilmesi gerektiği tartışılmıştır. 

ANAHTAR KELİMELER: Elektromanyetik Yayılım Modelleme, Dağlık Arazi 

Modelleme, Işın Bazlı Yöntemler, Geometrik Kırınım Teorisi (GTD), Longley-Rice 

Metodu, Anten Optimizasyonu, Alınan Sinyal Gücü Optimizasyonu 
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CHAPTER 1  

 

INTRODUCTION 

Communication is an inseparable part of the daily lives of today’s people. 

Depending on the increasing functionality of mobile devices, people desire to use 

the mobile devices everywhere. The mobile device can either be an old fashion 

analog handheld radio or a cellular phone that possesses the capacity to 

communicate by using 5G, making no difference in the sense that all the mobile 

devices use radio frequency (RF) signals to transmit or receive the voice or the data. 

Therefore to meet the communication needs of people, it is important to estimate 

the propagation characteristics of the RF signals. Communication has also a very 

important role about the public safety services like police, fire and rescue, 

ambulance and medical emergency all around the world. Having the capability to 

communicate in rural areas is as vital as in urban areas for these services.  

Although using the numerical electromagnetic methods such as Method of 

Moments (MoM) is feasible to estimate the field distribution in a small area, such as 

in the case of indoor coverage of a room, it is not possible for thousands of meters 

distances including mountains whose elevations may be in the order of thousands of 

meters. Therefore alternative techniques have to be developed in order to model the 

propagation characteristics of RF signals in terms of theoretical models, empirical 

models or combinations of them.  

First technique presented in this thesis to model the RF propagation uses 

electromagnetic theory, predominantly. One of the famous approaches mainly based 

on the theory is using ray optics models. Since these techniques are originally 



2 

 

developed in order to model the behavior of light, they are called as ray optics 

methods. Then it is realized that if the frequency is sufficiently high, they also 

provide acceptable outcomes for RF waves as well [1]. This thesis is mainly 

focused on geometrical optics (GO) and geometrical theory of diffraction (GTD) 

which is an extension of GO. It is first originated by Keller [2], [3] and 

Kouyoumjian and Pathak developed it in [4], [5], [6] and [7]. 

The second approach for modeling RF propagation utilizes the empirical data and 

measurements, predominantly. Although there are lots of empirical models, this 

thesis is focused on a famous and common one, Longley-Rice propagation model. It 

is mainly based on the RF levels measured at Gunbarrel Hill, Fritz Peak, North 

Table Mountain in U.S and repeated measurements in forests, flat areas etc. This 

model is offered by Longley and Rice in [26]. Also, there are other empirical 

propagation path loss models such as Hata, Okumura-Hata and COST-231 Hata 

which are not discussed in this thesis since they are mostly developed for urban 

areas. 

In this thesis study, GTD is studied in a detailed way to represent the ray models. 

Then a code is developed in MATLAB
®
 to simplify the complex calculations of 

GTD. Then for various types of terrain profiles that represent the real life examples 

are examined by this code. Similar terrain profiles are also studied by Longley-Rice 

propagation model. By comparing the GTD and Longley-Rice method results with 

the real life measurements, the strengths and weaknesses of both approaches are 

investigated. Then by taking into account the experiences gained by these studies, a 

receiver antenna height and location optimization is offered in order to improve the 

communication performance in a hilly terrain area. Finally, the comments, 

assumptions and the future works are described. Within this context, 

 In Chapter 2, first it is explained why traditional methods are not sufficient 

and numerical methods are not feasible for propagation problems and ray 

optics methods are necessary. Then the theoretical ray optics methods are 
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described in a detailed way. Especially, the GO and GTD methods are 

discussed. It is shown by examples that diffraction mechanisms in GTD 

improve GO results.  

 In Chapter 3, the terrain profiles that represent the real life propagation paths 

are studied by GTD and Longley-Rice models. Results of these two 

approaches are compared with the measured data from real life. And the 

strengths and weaknesses of both approaches are examined. 

 In Chapter 4, by the help of the obtained theoretical results, a receiver 

antenna height and location optimization is offered in order to improve the 

communication performance in a hilly terrain area. 

 In Chapter 5, overall results of this thesis are discussed. And also the 

expected and unexpected deviations are described and possible reasons of 

the deviations are investigated. Finally, the assumptions are the factors 

which are taken into account in thesis are emphasized. The possible future 

works about these assumptions and the parameters ignored are briefly 

described. 
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CHAPTER 2  

 

GEOMETRICAL THEORY OF DIFFRACTION 

2.1  INTRODUCTION 

To solve propagation problem in a propagation medium, it is necessary to solve 

field distributions in the medium. One of the sources of the total received field is 

directly propagated waves between transmitter and receiver. However, for the most 

of the situations in the real life, there may be scatterers between the source and the 

receiver; therefore, scattered fields should be taken into account in addition to the 

direct fields to calculate the total received field. To solve electromagnetic radiating 

and scattering problems, there are different approaches available in the literature. 

Image theory, modal techniques (MT), integral equations (IE), physical optics (PO), 

geometrical optics (GO) are some of the well-known approaches in order to analyze 

such electromagnetic problems. However, due to the restrictions of real life, it is not 

easy to apply these theoretical approaches to the solutions of practical problems [1]. 

The restrictions and deficiencies of the above approaches are given in the 

introduction part of this chapter and also it is explained why the diffraction theory 

is, one of the most powerful tools to analyze wave propagation. Diffraction theory 

that covers both physical theory of diffraction (PTD) and geometrical theory of 

diffraction (GTD) is discussed in detail in this chapter. 

The restrictions about image theory, model techniques (MT), integral equations 

(IE), physical optics (PO) and geometrical optics (GO) are given roughly in this 

part. 
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Well-known restrictions about image theory are assuming the scattering surface to 

be flat and infinite, at least, electrically very large, assuming the conductivity of the 

scattering surface is infinite. Some approximations should be made about the 

surface since there is not such a flat scattering surface in the real life. However, 

these approximations are not quite accurate and the solution is valid only above the 

interface. Therefore, although image theory can be useful to analyze some parts of 

the complex problems, it is clear that it is not enough to analyze the complete 

problem. 

In order to analyze electromagnetic characteristics of an object by using modal 

techniques (MT), it is necessary to represent the object and the environment by 

orthogonal curvilinear coordinate systems [1]. Orthogonality emphasizes the fact 

that all the unit vectors in a curvilinear coordinate system are perpendicular to one 

another. However, it is not possible to describe all the objects in nature by using 

orthogonal curvilinear coordinate systems. Moreover, in modal techniques the 

solution is found in the form of infinite series by the help of the boundary 

conditions. When the size of the object is larger than about a wavelength, 

convergence problems of the infinite series will be encountered. Therefore, in order 

to apply the modal solutions to an electromagnetic problem like scattering or 

propagating, approximate representations of the object or medium are generally 

used. Modal solution requires complex mathematical calculations that cannot be 

applied for large distances in terms of wavelength. For example, a typical GSM 

system transmits at 1 GHz and wavelength is smaller than 1 meter. However, the 

coverage area of a GSM base station is in the order of kilometers. Therefore, using 

modal techniques in real life propagation problems is almost impossible.  

Although assuming the objects are infinitely long makes the required calculations 

encountered in an electromagnetic scattering problem easier; in practice the sizes of 

the objects are always finite. Therefore, it is very useful to model real-life problem 

by some mathematical equations. Such a mathematical model is called integral 

equation (IE) technique. In this technique, the unknown induced current distribution 
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on an arbitrary shaped object is a part of the integral equation. Generally, integral 

equations are solved by using numerical techniques, such as Method of Moments 

(MoM). After solving the current density on an object, it is possible to analyze the 

scattering or radiating characteristics of that object. Although arbitrary shapes can 

be analyzed in this technique, the numerical computations require powerful 

computers. Furthermore, if the sizes of the objects are too many wavelengths, the 

memory capacities of the available computers are not sufficient to use this 

technique in order to solve electromagnetic scattering and radiating problems. 

Therefore, this technique is generally more useful for the design of electromagnetic 

devices whose dimensions are comparable with the operating frequency, for 

example, antennas or filters. This technique is not useful for propagation problems 

due to the given reasons. 

As mentioned above, there are some deficiencies of well-known methods; therefore, 

they may not be used to solve propagation problems. These deficiencies are based 

on the fact that the sizes of the objects at the earth surface like mountains are 

generally electrically large. That means the dimensions of these objects are greater 

than the wavelength of the operating frequency. Therefore, when the sizes of the 

objects are too many wavelengths like in the case of the propagation medium at the 

earth surface, another practical approach is necessary. Since it is harder to solve 

such problems mathematically, high-frequency asymptotic techniques can be used. 

The two most common techniques of analyzing the radiating or scattering 

characteristics of objects whose dimensions are too many wavelengths are 

geometrical theory of diffraction (GTD) and physical theory of diffraction (PTD).  

Although GTD and PTD are based on different electromagnetic theorems, in the 

applications, both give similar results. Another similarity between PTD and GTD is 

that both are improved versions of former theorems. GTD is first originated by 

Keller [2], [3] and Kouyoumjian and Pathak developed it in [4], [5], [6] and [7]. 

GTD improves classical geometrical optics (GO) theorem by introducing the 

diffraction mechanism. This chapter mainly discusses GO and GTD in detail, 
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however; for the sake of completeness, a brief description of PTD is also given in 

this chapter. 

Like GTD, the PTD, introduced by Ufimtsev in [8], [9] and [10]; includes some 

extensions additional to a classical electromagnetic theorem, physical optics (PO).  

In classical PO, the scattering of perfect electric conductor (PEC) obstacle is 

analyzed.  The original problem is given in Figure 2-1. If the obstacle is removed, 

the radiated fields would be    1 and     1. By using classical calculation methods, for 

example, by using auxiliary vector potentials      and   , it is assumed that both    1 and 

    1 can be found. The scattered fields are    S 
and     S

. Therefore the total field outside 

the obstacle (    and     ) is given as 

  = +1E E E
   s

   (2.1) 

         = +1H H H
   s

                                               (2.2) 

In Figure 2-1b, physical equivalent of the actual problem is given. Since this 

theorem aims to find the scattered fields from PEC and the scattering can only be 

observed outside the PEC, the fields inside the PEC are not important. Therefore, to 

simplify problem, the fields inside the PEC are taken as     1 and      1.  

 

Figure 2-1 Physical equivalent for scattering fields by a perfect electric conductor 

(PEC) (a) Actual problem (b) Physical equivalent (from [1]) 
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In the equivalent problem, the permittivity and permeability of both mediums 

(inside and outside of the PEC) are the same. It also simplifies the problem. Since 

PEC is removed at the equivalent problem; actually, there is no real boundary.  

Since PEC is removed, the source of the scattered fields is also removed. However, 

two fictitious sources are added to equivalent problems in order to obtain exactly 

the same scattered fields in the case of PEC exists. These two fictitious sources are 

magnetic and electric current densities over the boundary S1.  Magnetic current 

density      p and electric current density pJ


 are given In Figure 2-1b. By using 

boundary conditions, 

                ˆ ˆ ˆ = ) + ) 0p          s
1M n (E E n E n (E E

     
t

  (2.3) 

               ˆ ˆ ˆ =    ) =  + )p      s
1J n (H  H n H n (H H

     
t

  (2.4) 

In Eqn. (2.3) and Eqn. (2.4) ,     
t
 and    

t
 fields are zero, since the field inside the PEC 

is zero. Therefore, fictitious magnetic current density      p and electric current 

density pJ


 can be represented in terms of tangential component of total fields     and 

    . And these fictitious sources give exactly the same scattered field outside the 

boundary S1.  Another important point in these equations is that there is no need to 

define      p; in other words, pJ


 is enough according to the uniqueness theorem [1].  

The equivalent electric current density, pJ


, is also found in terms of an unknown 

quantity     , where      is the sum of     S
 and     1 (It is assumed that     1 is known). On 

the other hand, at the beginning of the problem, the aim was to solve unknown     S 

and    
S
.  Therefore, physical equivalent does not seem to simplify the problem. 

However, representing the problem as equivalent current densities provides to use 

some numerical methods, electric and magnetic field integral equations, called as 

EFIE and MFIE, respectively. Another advantage of physical equivalent is that the 
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equivalent permittivity and permeability are same everywhere. Therefore, using 

auxiliary vector potentials      and    is possible in Figure 2-1b, unlike Figure 2-1a.  

If the PEC is electrically very large and if it could be assumed as infinite, as it is 

given in Figure 2-2, tangential component of the scattered field,     S
, is equal to 

tangential component of the     1 field. The most important advantage of using 

physical equivalent lies in this assumption. 

 

Figure 2-2 Physical optics (PO) equivalent of a flat conducting infinite surface 

(from [1]) 

By using this assumption, one can rewrite Eqn. (2.4) as 

 ˆ ˆ ˆ =  + ) 2p     
s

1 1J n H n (H H n H
    

           (2.5) 

Therefore, the fictitious electric field current density is written is terms of a known 

field parameter,     1. However, it should be pointed out that the approximations and 

assumptions in PO theorem may cause wrong results due to the degree of 

complexity of scattering object. As mentioned before, Physical theory of diffraction 

(PTD) is a developed version of classical PO theorem which is discussed in this 

chapter. Ufimtsev examined that the fringing field calculated in classical PO 
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approach does not satisfy the reciprocity principle. Therefore, to overcome this 

problem, he suggested adding fringe currents into the classical PO approach to 

explain diffraction mechanism at edges of different types of objects like, wedge, 

disc, finite length cylinder etc [8]. The details of the studies made by Ufimtsev can 

be found in the literature; however, they are beyond the scope of this thesis. 

In the introduction part, the deficiencies of the classical theorems are explained and 

high frequency asymptotic techniques are suggested. These techniques are PTD and 

GTD. PTD was summarized with its earlier version PO up to this point in this 

chapter. Similar to PTD, GTD is also an extension of a classical approach, 

geometrical optics (GO). Since GTD is the main concern of this chapter, GTD and 

GO deserves a detailed discussion. 

2.2 GEOMETRICAL OPTICS 

As mentioned before, it is difficult to apply classical theorems when the objects in 

the problem are arbitrary shaped or electrically very large. Because arbitrary shaped 

objects cannot be easily represented by orthogonal curvilinear systems and the 

solution of scattering problem that involves electrically very large objects may not 

converge due to the fact that modal solutions are generally in the form of infinite 

series. Numerical studies might aid for the solution. For example, in integral 

equation (IE) method, the solution is generally achieved by using MoM. However, 

for large scaled problems like propagation in a terrain, this solution requires a lot of 

time and large computation memories. Therefore, when the object is electrically 

large, diffraction mechanism is quite useful. 

Diffraction at high frequency depends on: 

 Geometrical properties of the object at diffraction point  

 The properties of the incident field: the amplitude, phase and polarization 
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In ray optics, the phase of the field is the product of optical length measured from a 

reference point and the wave number of the medium. With the appropriate units, it 

can be written as, 

[rad] [m] [rad / m]Phase Optical lenght k      (2.6) 

Phase jumps due to the caustics should be taken into account in addition to Eqn. 

(2.6). The details of caustics will be discussed later in this chapter but it is simply a 

line or a point through that all the rays of a wave pass. Also when calculating the 

phase difference of a field according to a reference point, one can use a simple 

principle about rays. The rays follow a path that is always an extremum from one 

point to another point. A well-known fact, light travels in straight paths, is a result 

of this principle. However this is actually valid only if the medium is homogenous. 

In inhomogeneous medium, the ray is curved.  

Similar to the reflection coefficient, a diffraction coefficient is defined in the 

diffraction problems. Diffraction coefficient is a dyadic for electromagnetic 

scattering problems. Change in the value of the amplitude of the incident field can 

be calculated by using conservation of energy principle. Therefore, a dyadic 

diffraction coefficient and attenuation coefficient are defined for the field on a 

diffracted ray.   

The main concern of this chapter is to calculate attenuation and diffraction 

coefficients of a wedge shaped object. It is known that dealing with complex 

problems requires dividing the problem into some well-known canonical problems. 

From this point of view, wedge has priority at this study; because, landform which 

includes complex hills or mountains can be generally represented by using the 

wedge shaped objects. The final solution of these types of complex problems will 

also be the superposition of the well-known solutions of the wedge diffraction 

problems. Also, it is assumed that wedge surface is PEC. This is an acceptable 

assumption due to the fact that the surface of the earth behaves as PEC for the 
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frequency bands commonly used in practical communication systems such as VHF 

and UHF. 

2.2.1 Basics of Geometrical Optics 

Geometrical optics (GO) is also called as ray optics since it is based on ray 

phenomena. It is originally developed to analyze the propagation of light. It is 

shown that if the frequency is high enough, the wave nature of the light may not be 

taken into account. Therefore, it is assumed that the electromagnetic waves 

transport energy according to the rules of ray concept. It is shown that if the object 

is too large according to the operating frequency; GO approach gives sufficiently 

accurate results and does not require corrections.  

Since in GO theorem, electromagnetic fields is related to light; the summary of 

simple definitions and principles used in optics are given in the subsequent sections 

for the sake of completeness. 

2.2.1.1 Refractive Index 

Simply it can be said that the refractive index of a medium determines the 

propagation of light or any other radiation in that medium. The speed and 

wavelength of radiation is decreased by the amount of refractive index, n, if n is 

greater than 1. Vacuum has a refractive index of 1. Two well-known equations, 

=
c

n
v

   (2.7) 

 
0λ

λ=
n

          (2.8) 

where c is the speed of light in vacuum, v is the speed of light in the medium. 0λ is 

wavelength of light in vacuum and λ is wavelength of light in the medium. 
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2.2.1.2 Snell’s Law and Fresnel Equations 

Fresnel equations describe the behavior of light, when it travels between two media 

whose refractive indices are different. These equations were introduced by 

Augustin-Jean Fresnel, a French engineer and physicist, details are given in [11].  

 

Figure 2-3 Two media whose refractive indices are n1 and n2 (from [11]) 

When the light meets a medium, whose refractive index is different, some of the 

light is reflected and some of the light is refracted. The polarization of the incident 

light wave is one of the most important parameters to determine the behavior of the 

incident light wave. There are two different polarizations: s-polarization and p-

polarization. One can represent the polarization of any light wave by super 

positioning it in terms of the above two polarized light waves. The incident, 

reflected and refracted waves define a plane. If the incident light is perpendicular to 

this plane according to its electric field, the incident field is called as s-polarized. 

Otherwise, its electric field is parallel to this plane, and the incident wave is called 

as p-polarized. The notation is similar to the vertical and horizontal polarization 

widely used electromagnetic propagation problems. 

Very-well known angle relations given in Snell’s Law are: 

i r    (2.9) 
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2

1

sin

sin

i

t

n

n




   (2.10) 

Also the ratio of the reflected power to the incident power is called as reflectance R, 

and the ratio of the refracted power to the incident power is called as transmittance 

T. Unlike angle relations, the power relations depend on the polarization. 

The reflectance for s-polarized light is given as 

 

2

1 2
s

1 2

cos cos

cos cos
ti

ti

n n
R

n n

 

 





  (2.11) 

The reflectance for p-polarized light is given as 

 

2

1 2
P

1 2

cos cos

cos cos
t i

t i

n n
R

n n

 

 





 (2.12) 

It is not necessary to define transmittance since the sum of the reflectance and 

transmittance gives unity due to the conservation of energy.  

              1s sT R               (2.13) 

                                            1p pT R                     (2.14) 

Another important principle that is very useful to discover the geometrical optics is 

Fermat’s principle. 

2.2.1.3 Fermat’s Principle 

Fermat’s principle denotes that the light prefer to travel from point A to B in a path 

such that it takes the least time to travel among all other possible paths. If the 

medium is homogenous, the light travels in a straight path and it corresponds to the 
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shortest path and least time. Although this behavior of the light in the homogenous 

medium was described very well, how the light travels in an inhomogeneous 

medium had not known until Pierre de Fermat, a French mathematician. Actually, 

Fermat’s principle is not an independent approach; for example, it can be proved by 

using Huygens’ Principle. 

The mathematical expression of the Fermat’s principle is given in the following 

parts. An electromagnetic wave travels from point A to B at a time T, which can be 

expressed as: 

                 

1 1 1

0 0 0

B

A

1 1
n

t t t

t t t

c v c ds
T dt dt dt ds

c v c v dt c
         (2.15) 

 where c  is the speed of light in free space, ds  is an infinitesimal distance along 

path and v  is the speed of electromagnetic wave in that medium, which is equal to 

/ds dt . Also it was given in Eqn. (2.7) /n c v . 

Optical path length from A to B in a medium can be defined as multiplication of 

physical length from A to B and the refractive index of that medium. As a 

mathematical expression, the optical path length, S, can be written as 

                                                 

B

A

nS ds   (2.16) 

Combining Eqn. (2.15) and Eqn. (2.16) gives the relation between time and optical 

length which is given in Eqn. (2.17): 

                    S cT  (2.17) 
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Although the final version is not submitted by Fermat, modern Fermat’s principle 

says that: 

“The optical length of the path which is followed by a light from A to B, is an 

extremum (usually a minimum) and the optical length can be defined as the physical 

length multiplied by the refractive index of that medium.” 

By the help of the calculus of variations context, Fermat’s principle defined above 

can be summarized as 

          

2

1

 0

P

P

n(s) ds    (2.18) 

where   represents variational differential and the remaining part is simply optical 

length in Eqn. (2.18).  

The mathematical expression of Fermat’s principle in Eqn. (2.18) states that if the 

medium is homogenous, constantn(s)= n  , the paths are straight lines. In other 

words, Fermat’s principle states that in a homogenous medium the light can travel 

in the shortest time between P1 and P2 by only following a straight path. As 

mentioned above, the fact that the smallest length between point P1 and P2 is simply 

a straight line is one of the well-known axioms at math since ancient times. But the 

main contribution of Fermat’s principle to the literature is about inhomogeneous 

mediums, where the reflection and refraction mainly occur.  

Snell’s law can be proved by using Fermat’s principle. In Figure 2-4, the light 

travels from Medium1 to Medium 2. yz-plane at x=x separates Medium 1 and 2. 

According to the Fermat’s principle, the derivative of time with respect to x has to 

be zero as a result of Eqn. (2.18). 
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Let the velocity of the wave in Medium 1 be 1v and in Medium 2 be 2v . Therefore, 

1 1/v c n and 2 2/v c n  can also be written. 

 

Figure 2-4 yz-plane at x=x separates two different media 

Therefore, 

          
1 2( )

0
d T TdT

dx dx


   (2.19) 
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1 2
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x a b c x d
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   
   (2.20) 
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   
       (2.21) 
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     (2.22) 



19 

 

The same result is given in Eqn. (2.10). The relationship between these theorems 

can be summarized by the fact that Snell’s Law can be derived from Fermat’s 

principle, which is the mathematical requirement or mathematical representation of 

Huygens’ Principle. 

2.2.1.4 Eikonal Surfaces and Eikonal Equation 

Wave front is the set of points having the same phase. It represents a surface in 

wave propagation. For the propagation of electromagnetic wave in a homogenous, 

lossless and isotropic medium, primary and secondary wave fronts are connected by 

straight lines for all points, as shown in Figure 2-5. 

 

 Figure 2-5 Primary and secondary wave front of a radiated wave (from [1]) 

It should be noticed here that the power intensity between two points located at 

successive wavefronts should be constant due to the conservation of energy flux. 
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If it is possible to define the relationship between the secondary wave front and 

primary wave front, the same equation can also be used to find out the relationship 

between power density at the secondary wave front and primary wave front. 

The wave velocity is always perpendicular to wave front surfaces in both 

anisotropic and isotropic media.  However, energy flow direction which is 

determined by ray velocity is different than the direction of the wave velocity in 

anisotropic medium. 

In Figure 2-5, it is obvious that v t    and /v c n . Also previously the 

relationship between phase and optical length is defined in Eqn. (2.6). Therefore, 

              Phase Difference
c

t
c v v

 
  

 
      






 (2.23) 

Using Eqn. (2.7), Eqn. (2.24) can be written:   n





 (2.24) 

Also, it can be written 

                                                      (2.25) 

Substituting Eqn. (2.24) into Eqn. (2.25) gives 

      

2 2 2

2
( , , ) { } { } { }n n n

n x y z
x y z

  


  
  

  


2 ( )n s  (2.26) 

Eqn. (2.26) is known as eikonal equation. In [4], Kouyoumjian developed another 

approach to derive the eikonal equation. The wave equation for E field given in 

Eqn. (2.27) is solved by using the asymptotic solution of Maxwell’s equations and 

Luneberg-Kline asymptotic expansion for very large frequencies by Kouyoumjian.  

  
2 2 = 0kE+ E
 

  (2.27) 
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Also by the help of the Luneberg-Kline asymptotic expansion for very high 

frequencies, Kouyoumjian derives the same eikonal equation given in Eqn. (2.26). 

The eikonal equation relates the rays and eikonal surfaces one-to-one. Therefore, it 

is sufficient to deal with only one of them to solve GO problems. It is also proved 

that, this approach can be extended to the low frequencies. Therefore, if the 

propagating wave is planar, eikonal surfaces are planar and perpendicular to the 

direction of wave. If the propagating wave is cylindrical, the eikonal surfaces are 

cylindrical and perpendicular to the cylindrical radial vectors. If the propagated 

wave is spherical, the eikonal surfaces are spherical and perpendicular to the 

spherical radial vectors. Visualization of eikonal surfaces are given in Figure 2-6. 

 

Figure 2-6 Eikonal surfaces for plane (top-left), cylindrical (top-right) and spherical 

(bottom) waves (from [1]) 
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2.2.2 Amplitude Relations in Geometrical Optics 

Conservation of energy, one of the fundamental theorems in physics, is also valid in 

GO. If an electromagnetic wave or light emanates from a point source, and it is 

assumed that it travels along spherical areas whose cross sections are given in 

Figure 2-7. 

 

Figure 2-7 Cross sectional areas along the travel of a spherical wave radiating from 

a point source (from [1]) 

Since it is assumed that the electromagnetic waves propagate like straight rays, 

there is no ray such that it passes from 0dA ; however, it does not reach to dA . 

Therefore, conservation of energy is satisfied between 0dA and dA . The relationship 

between 
0

S , the radiation density at 0s  , and S , the radiation density at s  is 

given in Eqn. (2.28). 

            
0

0 0

0

( )

(0)

dAS s
S dA SdA

S dA
    (2.28) 
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As mentioned before, Eqn. (2.28) is only valid if there is no leakage field between 

0dA  and dA . Also the relation between the peak values of     field and radiation 

density S  at far-zone is given in Eqn. (2.29).  

2 21 1
( , , ) ( , , ) ( , , )

2 2
S r r r


     

 
 E E

 
                  (2.29) 

Since S  is proportional to the square of the magnitude of the     field, Eqn. (2.28) 

can be rewritten as Eqn. (2.30) 

                    

2

0

2

0

dA

dA


E

E



  (2.30) 

Eqn. (2.30) is a general formula valid for three cases: spherical, cylindrical and 

planar waves.  

For spherical waves, according to Figure 2-7, Eqn. (2.30) can be rewritten as in the 

Eqn. (2.31). 0dA  and dA  are pieces of a sphere; therefore, they should be 

proportional to radii of curvature of 0dA  and dA . Since wave fronts are spheres for 

this case, the radii of curvatures are simply the radius of sphere R0 and R1. R0 and R1 

correspond to 0 and 0 s  in Figure 2-7, respectively. 
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       (2.31) 

For cylindrical waves, Figure 2-7 does not perfectly fulfill the visualization since 

the wave front ratio proportional to R, not R
2
 as in the case of spherical waves. The 
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concept is similar. So, for cylindrical waves, Eqn. (2.30) can be rewritten as in the 

Eqn. (2.32). 
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2 /

2 /
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 (2.32) 

For planar waves, it is clear that Eqn. (2.30) can be simplified as Eqn. (2.33) 

  
0

1
E

E



  (2.33) 

Previously, Eqn. (2.30) is derived from the conservation of energy principle and 

Eqn. (2.31), (2.32) and (2.33) are three special cases for the wave fronts are 

spherical, cylindrical and planar. However, wave fronts do not have to be spherical, 

cylindrical or planar. Infinitely many different planes which include a line formed 

by a certain point on a sphere and the centre of the sphere can be selected. The 

intersections of these planes and sphere are circles. And the radii of these circles are 

all the same. In other words, the radius of curvature at a sphere is same for all 

planes. However, this is not valid for any eikonal surfaces. In Figure 2-8a, the 

wavefront or eikonal surface has the radius of curvature R1 in the x-z plane and R2 in 

the y-z plane. Since the wave front is not a partition of a sphere, 
1 2

R R  in this case. 

Since
1 2

R R , the rays passing through the four corners of the wave front do not 

intersect at a single point.  For example, rays 1 and 2 intersect at point P; rays 1 and 

2 intersect at point P’. Point P and P’ are not same points. This is called as 

astigmatic tube of rays. The lines PP’ and QQ’ lines are called caustics. 

If the wave front in Figure 2-8a, had been a partition of a sphere, the caustic would 

be a point. It would simply be the center of the sphere. The caustic is the focal point 

of all the rays passing through it. It may be a point like in the case of sphere, a line 

or a surface. 
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(a) 

 

(b) 

Figure 2-8 Astigmatic tube of rays (a) Eikonal surface (b) Caustic Lines (from [1])  

According to Figure 2-8b; Eqn. (2.31), Eqn. (2.32) and Eqn. (2.33) can be written in 

general as in the form of Eqn. (2.34) 

   
0 1 2

0 1 2
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dA s s

 

 
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The general formulation, given in Eqn. (2.34), actually turns into the 

 Eqn. (2.31) if the wave front is spherical (
1 2 0
    )    

 Eqn. (2.32) if wave front is cylindrical (
1 2 0 2 1 0

 ,  or  ,            ) 

 Eqn. (2.33) if the wave front is planar (
1 2
    )   

Eqn. (2.34) relates the magnitudes of a high-frequency electromagnetic wave at 

consecutive wave fronts. This relation is derived from conservation of energy 

principle and it is very significant. Although the relation is also valid at lower 

frequencies, two more parameters should be taken into account in order to obtain 

the complete picture of operation at lower frequencies: phase and polarization   

2.2.3 Phase and Polarization Relations in Geometrical Optics 

Eqn. (2.34) should be developed by using the Luneberg-Kline high frequency 

expansion in order to cover phase and polarization parameters. Luneberg [12] and 

Kline [13] introduced an approach to apply the ray techniques of geometrical optics 

to the electromagnetic wave propagation. 

Luneberg-Kline high frequency expansion is mainly based on the fact that      field 

can be represented by infinite series as the following 

 
0 ( )

0

( )
( , )

( )

j m

m
m

e
jw

 






 
R E R

E R


 
 

 (2.35) 

where  R


= position vector 

              β0 = phase constant for free-space 

Substituting Eqn. (2.35) into the following homogenous wave equation 

                        
2 2 = 0E + E
 

       (2.36) 
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and using the source-free Maxwell’s equation, 

              0E =
 
    (2.37) 

Luneberg [12] and Kline [13] proved that eikonal equation given in Eqn. (2.26) can 

be derived and the transport equation for first-order terms can be written in the 

following form 

     

2

0
0

1
= 0

2s n

  
 

  

E
E




  (2.38) 

Eqn. (2.38) is a functional relation used by Luneberg and Kline in order to obtain 

the     field at point s in terms of the     field at the reference point 0s   according to  

Figure 2-8b.  

         


0
(0) 1 2

0

1 2

PhaseSpatial attenuation
Field at reference

factor(divergence) factor
     point (s=0)

( ) (0)
j j s

s e e
s s

  

 


 

E E
 


  (2.39) 

where 

0

(0) = field amplitude at reference point ( = 0)

(0) field phase at reference point ( = 0)

s

s





E


  

It is possible to derive Eqn. (2.39) from Eqn. (2.34) by rewriting fields as vectors 

and adding a phase factor for the propagation wave from 0s   to s . However, 

Luneberg-Kline expansion approach is more elegant. Although Eqn. (2.39) is a 

high-frequency approximation, it gives reliable results at lower frequencies. It 

predicts the +π/2 phase jumps at caustics, 
1

s    and 
2

s   , since inside the root 

of the divergence factor changes sign at caustics and 
/2

1
j

j e


    is known. 
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Although Eqn. (2.39) has advantages, it also has deficiencies. At exact caustics 

points, 
1

s    and 
2

s   , the field goes to the infinity; therefore, it should not be 

used or it should be modified at caustics. Also omitting high-order terms causes 

some calculation errors. However, more efficient other tools are developed rather 

than modifying geometrical optics to overcome this problem because there is no 

way to remove the discontinuities at incident or reflection shadow boundaries even 

if the higher order terms are taken into account. 

2.2.4 Surface Reflection Mechanisms 

The principles of geometrical optics can be used not only to calculate amplitude 

relations of propagating field but also calculate amplitude relations of reflected field 

from a surface. Previously it is mentioned that a surface may has different radii of 

curvature at different planes which intersect the surface. 

 

                           (a)                             (b) 

Figure 2-9 Parameters that can be defined for a reflecting surface (a) Normal 

section curves and principal planes (b) Principle radii of curvature (from [1]) 

In Figure 2-9a, n̂ is the unit normal vector to the surface at an arbitrary point, QR. 

There are infinitely many planes that include the unit normal vector. Each of these 

planes intersects the surface. The intersection is a curve, called as normal section 
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curve. Each normal section curve has its own radius of curvature. However, two of 

them are special among infinitely many normal section curves. For a well behaved 

surface, at an arbitrary point, one of them has a maximum radius of curvature and 

the other one has the minimum radius of curvature. Two planes that include these 

two special normal section curves are called principal planes and they are 

perpendicular to each other [1], as shown in Figure 2-9a. 

In Figure 2-9b, the minimum and maximum radii of curvatures are represented by 

R1 and R2. ˆ 1u  and ˆ 2u  are tangential unit vectors to the reflecting surface at QR and 

they are in principle planes. Therefore, they are also perpendicular to each other. 

If an incident field hits a smooth surface, the reflection mechanism is mainly 

determined by Snell’s law, ri  . However, boundary conditions determined by 

Maxwell’s equations should also be taken into account. 

 

Figure 2-10 Reflection from a well-behaved surface (from [1]) 

In Figure 2-10; ˆ i
s , ˆr

s and n̂ are in the same plane. The incident and the reflected 

fields can be decomposed into the two components: parallel to this plane and 

perpendicular to this plane. ˆ
i

e  and ˆ
r

e are the unit vectors of parallel components of 

the incident or reflected fields, respectively. Similarly, ˆ i

e  and ˆ r

e  are the unit 

vectors of perpendicular components of the incident or reflected fields, respectively. 
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The main idea behind the concept of the reflection mechanism is the fact that 

tangential components of the total, incident plus reflected, fields should be zero. 

Both parallel and perpendicular components given above have the tangential fields. 

For instance, for a perfect conducting surface; the incident field is assumed to be, 

  0 0 0
ˆ ˆi i i i iE E  E e e 


   (2.40) 

then the reflected field can be obtained in Eqn. (2.41). 

0 0 0
ˆ ˆ ˆ ˆ( 0) ( ). ( ).[ ]r i i i r i r

R Rs Q Q     E E R E e e e e 

  
        (2.41) 

where  0 ( 0)r s E


 = the reflected field just after the reflection point 

0 ( )i

RQE


= the incident field at the reflection point 

R = dyadic reflection coefficient for PEC, 
1 0

0 1

 
 

 
  

Eqn. (2.41) is rewritten, by using the incident field terms given in Eqn. (2.40), as 

 0 0 0
ˆ ˆ( 0)r r i r is E E   E e e 


 (2.42) 

It is clear that dyadic reflection coefficient given above makes the tangential 

components of the total field (incident field given in Eqn. (2.40) plus reflected field 

given in Eqn. (2.42) ) zero. There are two assumptions here: 

 The reflecting surface is planar very near the QR point  

 The incident wave front is planar 

These two assumptions require high-frequencies; however, it is shown that this 

approach is also valid for many practical problems.  
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If Eqn. (2.39) is applied to the Eqn. (2.41), the general formula of a reflected field at 

the distance s can be found as in the following Eqn. (2.43). 

    

R

r 1 2

1 2

Dyadic Field at PhaseReflection Spatial attenuationreference factorCoefficient (divergence) factorpoint Q

( ) ( ) .
r r

i j

R r r

ss Q e
s s

 

 


 

E  E R
 




    (2.43) 

where 
1

r  and 
2

r  are principal radii of curvature of the reflected wave front at QR 

and they are defined in Figure 2-11. 

 

Figure 2-11 Astigmatic tube of rays and principal radii of curvature of reflected and 

incident waves at a curved surface (from [1]) 



32 

 

According to the [7], the principal radii of curvature of the reflected field wave 

front, 
1

r and
2

r , can be written in terms of the principal radii of curvature of the 

incident field wave front, 
1

i and
2

i , and focal distances. The relationship defined 

at [7] is given in Eqn. (2.44) and Eqn. (2.45).  

     
1 1 2 1

1 1 1 1 1

2r i i f  

 
   

 
  (2.44) 

     
2 1 2 2

1 1 1 1 1

2r i i f  

 
   

 
  (2.45) 

The focal distances, 1f  and 2f , formula includes a high-order matrix terms that can 

be calculated from incident and reflecting angles and also includes principal radii of 

the reflecting surface. Detailed formulas can be found in [7] and they are not 

covered in this thesis; however, it should be underlined that if the incident wave 

front is planar, then
1 2

i i   , and using Eqn. (2.44) and Eqn. (2.45), Eqn. 

(2.46) can be obtained. 

 
1 2

1 2

1 2 1 2 1 2

1 1 4

4

r r

r r

R R

f f R R
 

 
      (2.46) 

According to the Eqn. (2.46), for a planar incident wave front, the principal radii of 

curvature of the reflected wave approach to infinity if R1 and/or R2 is infinite. 

Therefore, if the incident wave front is planar, GO cannot determine the radii of 

curvature of reflected wavefront when the reflecting surface is planar or cylindrical 

since these surfaces have infinite radii of curvature. This is a weakness about GO. 

Another fundamental model in propagation problems is finding the total reflected 

field of a cylindrically reflected wavefront. Cylindrically shaped problems are 

important because 3-D problems can be represented in 2-D by the help of this type 
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of structures. It is mentioned before for a cylindrically reflected wavefront

1 2and r r r    . Therefore, Eqn. (2.43) can be rewritten as in Eqn. (2.47); 

however, 
r  is still unknown. 

 
r ( ) ( ) .

r
i j

R r

ss Q e
s








E E R
 

  (2.47) 

Cylindrical field may be radiated from an infinitely long line source located at a 

distance 0  from the reflecting surface. 2-D representation of this case is given in 

Figure 2-12.  

 

Figure 2-12 Reflection of a cylindrical field radiated from an infinite line (from [1]) 

If the reflection is like in Figure 2-12, according to [14], 
r  can be obtained by 

                 
0

1 1 1

cos
r

a i
  

    (2.48) 

where 0 is the distance of line source and a  is the curvature of reflecting surface. 
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A fundamental example guides the more complex problems given in the following 

Figure 2-13. 

 

Figure 2-13 An infinitely long z-directed, constant I0 current electric line source 

above a finite width, infinite length PEC strip (from [1]) 

According to [1], when there is no strip an infinitely long z-directed electric line 

radiates the field given in Eqn. (2.49) at a distance i , 

           
(2)

2

0
0 ( )

4

i

z i

I
E H





    (2.49) 

where (2)

0 ( )iH   is the Hankel function of zero order and of the second kind and 

i  is shown in Figure 2-13. In Eqn. (2.49), far-field approximation property of the 

Hankel function of the second kind of the zero order can be used. It is given in Eqn. 

(2.50) for n=0. 
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H j e
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where      2


 


  (2.51) 
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According to Eqn. (2.51), large   values can be obtained by large   values 

and/or small   values. Therefore, although the property given in Eqn. (2.50) is 

generally called as far-field or far-zone observation, it can be satisfied “near” field 

observations if the frequency is sufficiently high. 

 

Figure 2-14 Far-zone approximation of  (2)

0 ( )H    (real part) 

 

Figure 2-15 Far-zone approximation of  (2)

0 ( )H    (imaginary part) 
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Comparison of far-zone approximated values and actual values of (2)

0 ( )H   is 

given in terms of real and imaginary part in Figure 2-14 and Figure 2-15, 

respectively. It is clear that even for small /ρ λ  values, approximated values of 

(2)

0 ( )H   is quite close to actual values. If /ρ λ  is bigger than 10, the 

approximation is definitely consistent. Therefore, Eqn. (2.49) can be rewritten as 

                   0

ij

i

z

i

e
E E








          (2.52) 

where           

2

0

0 0
where

2
    

4 8

I j j
E I

  
 

   
       (2.53) 

Using Eqn. (2.47), Eqn. (2.48) with a    and Eqn. (2.52); the reflected field can 

be written as in Eqn. (2.54). r  is shown in Figure 2-16. 

                    0
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r

z

r

e
E E







 
  (2.54) 

                    

Figure 2-16 Infinitely long z-directed electric line with incident and reflected paths 

at far-field 
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It is obvious that the reflected field given in Eqn. (2.54) is in the same form as that 

radiates from a hypothetical image of the actual electric line source.  In the far-zone 

applications i  and r   can be written as 

 



sin
  for phase terms

sin

   for amplitude terms

i
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i r

h
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 
  (2.55) 

Using Eqn. (2.55), the incident field given in Eqn. (2.52) and reflected field given in 

Eqn. (2.54) can be rewritten as 
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  (2.56) 

Both incident and reflected fields are defined only in some particular regions given 

in Eqn. (2.56) . In the shadow regions, there are no incident and reflected fields. The 

  angle in Eqn. (2.56) is shown in Figure 2-17 and it depends on h and w.  

 

Figure 2-17 The   angle depends on h / w 
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Therefore, the total field can be written as 
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        (2.57) 

For 0.5h  , the normalized total E field pattern is plotted in Figure 2-18 for both 

the 2w   and w  cases. 

           

Figure 2-18 The total field distribution of an infinitely long electric line source 

given in Figure 2-13, calculated by the code developed in MATLAB
®
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According to Figure 2-17, for 2w   case, 
1tan (0.5 / ) 26.5       . The 

angle  indicates the incident and reflection shadow boundaries. In Figure 2-18, 

there are discontinuities at field distribution at shadow boundaries where 

180 26.5     and 360 26.5    . Even if the higher-order Luneberg-Kline 

expansion terms in Eqn. (2.35) are taken into account when calculating the GO 

terms, these discontinuities cannot be overcome.  

In general, the failures of GO method can be summarized as:  

 Singularities at the field calculations at or very closed to the caustics.  

 Field discontinuities at or very closed to the shadow boundaries. 

 Obvious field calculation errors due to the edges or surface discontinuities. 

 Not describing any diffracted fields in the shadow region. 

Although the GO method gives accurate results rarely, like w  case in Figure 

2-18, it is necessary to improve GO for most of the cases. Improvements result in 

more accurate results for discontinuities, singularities or calculation errors. 

However, even if a deeper analysis is done in the limits of GO method, the 

diffracted fields in shadow region can never be obtained. Therefore, another 

approach that introduces the diffraction mechanism into the classical geometrical 

optics method is necessary. This approach is called as Geometrical Theory of 

Diffraction (GTD). 

2.3 GEOMETRICAL THEORY OF DIFFRACTION 

In real life applications, the total field distribution of a very long electric line 

source, located over a 2w   strip, cannot be like in Figure 2-18, since there are 

discontinuities at shadow boundaries and there is no field at diffraction region. 

Therefore, classical GO is extended to Geometrical Theory of Diffraction (GTD) in 

order to contain diffraction fields additional to geometrical optics fields.  
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2.3.1 Amplitude, Phase and Polarization Relations in GTD  

By using a similar approach as GO, Eqn. (2.58) can be developed for GTD, [1].  

                        
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  (2.58) 

where   
(0 ) = diffracted field at the reference point, 0

observation distance from the reference point, 0

distance from the diffraction point to the reference point 0

distance from the second ca

d

c D

c

s

Q



 



 



E


ustic  the reference point 0to 

   

The parameters given in Eqn. (2.58) are shown in Figure 2-19. Figure 2-19 shows 

the general case for edge diffraction; because, the field is obliquely incident upon a 

curved edge. The normal incidence is a special case of oblique incidence 0( 90 )    

and straight edge is the infinite curvature case of curved edge.  Also it should be 

noted that the field in Eqn. (2.58) is defined from the reference point 0  not the 

diffraction point DQ . The point DQ is also the first caustic of diffracted field. 

 

Figure 2-19 Oblique incidence diffraction from a curved edge (from [1]) 
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After some mathematical manipulation and by carrying the reference point from 0   

to DQ , 

                      
d
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  (2.59) 

where = the incident field at the diffraction point, 

distance between the first caustic  (also the reference point, = 0) 

         and the second caustic of  the diffracted fields

( )i

D

c DQ s

Q

 

 E


  

The fields obtained from Eqn. (2.59) give the fields at the diffraction region and 

eliminates the discontinuities at the shadow boundaries at the same time.  

Eqn. (2.59) is the most general formula for diffraction since it covers both the 

curved and straight edges. Since the curved edge diffraction is beyond the scope of 

this thesis, a simpler form of Eqn. (2.59) can be used for the straight edge case 

given in Figure 2-20.  

 

Figure 2-20 Oblique incidence wedge diffraction from a straight edge (from [1]) 
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The simpler form of Eqn. (2.59) can be written as in the Eqn. (2.60) [1], 
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  (2.61) 

Actually Eqn. (2.61) can be derived from the A( , )
c

s  part of the Eqn. (2.59) by 

using c    for plane, conical and cylindrical waves and  c s   for spherical 

waves. 

This thesis is mainly focused on the straight edge diffraction when the field is 

normally incident upon a wedge. 

2.3.2 Straight Edge Diffraction of the Normally Incident Waves upon a Wedge 

The normal incidence means 0   , defined in Figure 2-20, is equal to 90 . One of 

simplest case for normal incidence can be defined as in Figure 2-21 or Figure 2-22. 

The line source is infinitely long and also wedge is infinitely long. This 2-D 

problem can be solved by the approximation of the normally incident wave upon a 

straight edge.  

Infinitely long line source generates cylindrical waves as mentioned before. 

Although it does not seem a general case, by the help of the reciprocity theorem, 

this approach plays an important role in calculating the unique unknown parameter, 

D, in Eqn. (2.60). 
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Figure 2-21 Regions of a wedge diffraction 

 

Figure 2-22 Regions of a wedge diffraction in coordinate system 
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In Figure 2-21, two important boundaries are shown. These are Reflection Shadow 

Boundary (RSB) and Incident Shadow Boundary (ISB). These boundaries 

emphasize that the incident and reflected fields cannot be existed after ISB and 

RSB, respectively. These boundaries and wedge divide the coordinate system into 

the four regions. While all the fields, direct, reflected and diffracted fields, exist in 

Region I; there is no reflected field in Region II since it is on the other side of the 

RSB. And in Region III, there are only diffracted fields. Region IV is the PEC 

wedge; therefore, there is no field there. The existing fields are given in Table 2-1. 

Table 2-1 Existence of fields in Figure 2-22 

Existence of Fields 

  Diffracted Direct Reflected 

Region I + + + 

Region II + + - 

Region III + - - 

Region IV - - - 

2.3.3 The Total Field Scattered by a PEC Wedge 

To find the total field scattered by a PEC wedge, when the source is an infinitely 

long line; first, the radiated field of an infinitely long line in the absence of the 

wedge should be found. 

 

Figure 2-23 Infinitely long line source shown in coordinate system 
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The E-field radiated from the infinitely long electric line shown in Figure 2-23a is 

given in Eqn. (2.49) previously. Recall the Eqn. (2.49):  
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When the line source is at the origin, at far field, TEM  is satisfied; therefore, E z  

or H  can be obtained from the other one. Similar formula is valid for the offset 

electric line case given in Figure 2-23b: 
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However, this time TEM  is not satisfied since H  is not zero anymore due to the 

circumferential angle is different than  . Eqn. (2.63) is also gives the H z  for the 

magnetic line source by using the duality principle: 
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Eqn. (2.63) and Eqn. (2.64) are the field distribution in the absence of conducting 

wedge. Some principles should be used to calculate the total field in the existence of 

wedge [1]:  

 Total field (incident plus scattered fields) must vanish at the boundaries of 

the PEC wedge  

 Reciprocity principle should be satisfied in the total field equation (   ) 

   variations must be represented by standing wave functions 
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Also by using the Fourier series for a current impulse [15], it is possible to represent 

the total field in the form of an infinite series of Bessel and sinusoidal functions. 

After some mathematical manipulations, the total field of both electric and magnetic 

line sources can be represented by only one formula [1]. For the infinitely long line 

source and wedge given in Figure 2-24, the total field is given in Eqn. (2.65). 

 

Figure 2-24 Infinitely long line source and PEC wedge 
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In Eqn. (2.66), for electric line, TMz , minus (-) sign is used; for magnetic line, 

TEz , plus (+) sign is used between cosine terms. Electric line case is also called as 

soft polarization while magnetic line case is called hard polarization. The function 

G is called as Green’s Function. 

Eqn. (2.65) and Eqn. (2.66) give the exact total field scattered by a PEC wedge. 

Although equations are exact, they are not useful to calculate the unknown 

diffraction coefficient, D; since, Eqn. (2.66) is poorly convergent for the large 

arguments of the Hankel or Bessel functions. The improvement is mainly discussed 

for the first part of the Eqn. (2.66) in this thesis. In other words, plane wave 

incidence is primary concern of this thesis. While    corresponds to the plane 

wave incidence,    corresponds to the cylindrically wave incidence and far-

zone observation. Although plane wave incidence will be discussed in a detail way 

in this thesis, cylindrically wave incidence case can be easily found by using the 

reciprocity principle ( )   and ( )  . 

In [16], Hutchins suggests first obtaining an integral form of modal solution of 

plane wave incidence given in Eqn. (2.66); then, dividing this integral into the GO 

(incident and reflected) and GTD (incident and reflected) parts. 

If the source is very far away from the diffraction point, the incident field upon the 

wedge is assumed as plane wave. For the offset orientation shown is Figure 2-23b 

and plane wave incidence ( )   case and by using the asymptotic expansion of 

the Hankel function of the second kind of order m n , Eqn. (2.67) can be written, 
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( )F   in Eqn. (2.67) can also be used to find total H z  for a magnetic line source 

by only replacing the minus sign (-) between cosine terms with the plus sign (+). It 

should be noted that wedge angle is taken into account in Eqn. (2.67) since n 

depends on the wedge angle  ( 2 )WA n   . However Eqn. (2.67) does not take 

into account the fact that there is no field inside the PEC wedge. 

Since   is very far away from the diffraction point, the incident wave is plane 

wave. Therefore ( )F   in Eqn. (2.67) gives total (diffracted + incident + 

reflected) field at  ( , )   when a unity amplitude plane wave is incident upon a 

wedge with an angle of   . In other words, Eqn. (2.67) corresponds to the case in 

Figure 2-25a. In Figure 2-25b, source is not at infinity and incident wave is 

cylindrical wave; but this time, observation is made at a distance very far away 

from the diffraction point, almost infinity. For the case Figure 2-25b, the total field 

at observation point, P, can easily be found by applying the reciprocity principle to 

the ( )F   in Eqn. (2.67). In other words, by replacing   with  ,  with   and 

  with  , ( )F   can be found from Eqn.  (2.67).   exchanges do not make any 

sense since cosine is an even function. 

 

Figure 2-25 (a) Plane wave incidence (b) Cylindrical wave incidence 

For the case of Figure 2-25a, the total E and H field is given in Figure 2-26 and in 

Figure 2-27 when the source is electric line (soft-polarization) and magnetic line 

(hard-polarization) for 30 ,      , respectively.  
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Figure 2-26 The variation  of the total E-field at    when the unity amplitude 

plane wave radiated from an electric line-source 30    is incident upon a wedge 

                     

Figure 2-27 The variation  of the total H-field at   when the unity amplitude 

plane wave radiated from an magnetic line-source 30    is incident upon a wedge 
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2.3.4 The Diffraction Coefficient in GTD 

Previously, the exact modal solution given in Eqn. (2.65) and Eqn. (2.66) 

transformed into high-frequency asymptotic solution given in Eqn. (2.67). As 

mentioned before, when the incident wave is unity plane wave, the total field can be 

represented by ( )F   given in Eqn. (2.67). By rewriting the ( )F   part of the 

Eqn. (2.67), 
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Infinite series given in Eqn. (2.68) is poorly convergent for large arguments ( )  

of Bessel function. Therefore, ( )F   has to be written in the form of inverse 

powers of   to overcome the convergence problem [1]. To obtain this form, 

conventional method of steepest descent is used.  However in order to apply this 

method to Eqn. (2.68), Eqn. (2.68) which is in the form of an infinite series of 

modal solution should be converted into the integral form [16]. The Watson 

transformation (details can be found in [4], [17] and [18]) can be used for this 

modification. 

After some mathematical manipulation Eqn. (2.68) can be written as, 
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  (2.69) 

1( )F   and 2 ( )F   correspond to the incident and reflected fields, respectively. 



51 

 

By using the method of steepest descent (details are given in [5] and [19]), 1( )F   

can be written as in the Eqn. (2.70) and similar procedure is valid for 2 ( )F  . 

Since +π -πSDP SDPTC C C      ; 
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  (2.70) 

Then by using the residue calculus from [20], 
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If the observation is far away from the incident shadow boundary for 1( )F  , 

conventional steepest descent method can be used for the remaining part of 1( )F  , 

±π
1 SDP
( )F   . 
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Approximately, Eqn. (2.72) can be written as in the Eqn. (2.73)  
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It should be noted that when      (at ISB) Eqn. (2.73) has singularity. 
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Using the same notation 2( )
TC

F   and 
±π

2 SDP
( )F   can be written as, 
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Like the deficiency of 
±π

1 SDP
( )F   at ISB, 

±π
2 SDP
( )F   has deficiency at RSB 

( )     since the denominator of Eqn. (2.75) is zero at RSB. Therefore 

conventional method of steepest descent is need to be modified. The modified 

method is called as Pauli-Clemmov modified method of steepest descent ([5] and 

[20]).  

Pauli-Clemmov modified method of steepest descent adds a transition function 

multiplied with the each cotangent term in Eqn. (2.72). The transition function 

removes the deficiency of 
±π

1 SDP
( )F   at ISB and the deficiency of 

±π
2 SDP
( )F   

at RSB. When going away from the shadow boundaries transition function is almost 

unity and Pauli-Clemmov modified method of steepest descent turns into the 

conventional steepest descent method.  

The generalized form of the transition function is the Eqn. (2.76).  And g 
 is 

defined in Eqn. (2.77). 
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 is selected as  for incident field,  for reflected field

where ,  is the closest integer that satisfies the following equation:
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For the transition function in Eqn. (2.76), the following approximations can be used 

([23], [24]). For the X values between 0.3 and 5.5, linear interpolation is used [1]. 
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Although, up to now, generally mathematical derivations of  ( )F   are covered in 

this part, there are physical meanings of the mathematical equations ([21], [22]).  

To sum up, first, ( )F   is divided into the two parts and each part is divided into 

the two integrals.  
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Since ( )F   represents the total field when the unity amplitude plane wave 

incident upon a 2-D wedge, diffraction part of the ( )F   is related to diffraction 

coefficient. In order to obtain diffraction coefficient, ( )F   should be divided into 

GO and diffracted parts: 

      ( ) ( ) ( )GO DiffF F F      (2.79) 

Then the relation between incidence diffraction fields and incidence diffraction 

coefficient can be defined as in the Eqn. (2.80). 
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Similarly the relation between reflected diffraction fields and reflection diffraction 

coefficient can be defined as in the Eqn. (2.81). 
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Therefore soft and hard polarized functions can be written as in the Eqn. (2.82). 
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Soft diffraction coefficient,
softD  and hard diffraction coefficient, hardD are given in 

Eqn. (2.83) and Eqn. (2.84), respectively. These coefficients are called as Keller’s 

diffraction coefficients. It should be noted that Keller’s diffraction coefficients have 

singularities at reflection and incident shadow boundaries. 
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Keller’s diffraction coefficients: 
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Uniform theory of diffraction (UTD) coefficients: 
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  (2.86) 

UTD coefficients in Eqn. (2.85) and Eqn. (2.86) reduces to the Keller’s diffraction 

coefficients, when transition functions are removed (i.e., they are assumed unity). 
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UTD coefficients include all the terms in Keller’s formula; besides, they also have 

Fresnel transition functions. By the help of these transition functions, singularities 

near the incident shadow boundary (ISB) and reflected shadow boundary (RSB) 

could be eliminated.  

For instance, assume the source angle 30    in Figure 2-25a when the incident 

wave is unity plane wave upon a half-plane conducting wedge ( 2)n  . In this case, 

ISB occurs at 210  and RSB occurs at 150 . The incident diffracted field 

magnitude calculated by the code developed in MATLAB
®
 is given in Figure 2-28. 

It can be seen Keller’s diffraction approach has singularity at ISB, 210 . 

Especially, when the observation is made at near-field ( )   errors may occur 

even though   is far away from ISB. 

 

Figure 2-28 Incident diffracted field of plane wave upon a half-plane wedge 

Similarly, the reflected diffracted field magnitude is given in Figure 2-29. For this 

case, Keller’s diffraction approach has singularity at RSB, 150 . 
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Figure 2-29 Reflected diffracted field of plane wave upon a half-plane wedge 

2.4 ADVANTAGES OF GTD COMPARED TO GO 

As mentioned before, Geometrical Theory of Diffraction (GTD) fields can be 

divided into the two parts: Geometrical Optics (GO) fields and Diffracted fields. 

Therefore, GTD includes GO. Besides, by the aid of the additional diffraction 

mechanisms, GTD is able to overcome the discontinuities around shadow 

boundaries and to predict the field distribution in diffraction region.  

 

Figure 2-30 Plane wave incidence with an angle of 30°  upon a half-plane wedge 
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Previously, for a half–plane wedge given in Figure 2-30, the exact normalized E-

field distribution is given in Figure 2-26. This pattern is calculated by using the 

modal solutions.  

By the help of the soft polarized GO fields given in Eqn. (2.87) 

               1 2( ) ( )
T TC C

F F    (2.87) 

The code developed in MATLAB
®
 gives GO fields as in Figure 2-31. It should be 

noted that this result is consistent with image theory. However, there is no field in 

diffraction region and there are discontinuities at boundaries. 

 

Figure 2-31 Normalized GO fields pattern for Figure 2-30 

The GDT contribution says that there are also incident diffracted fields 

 
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1 SDP
( )F   and reflected diffracted fields  

±π
2 SDP
( )F  . If these fields are 

taken into account in the developed, the fields can be calculated as in Figure 2-32. 
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Figure 2-32 GO, diffracted and total (GTD) fields for Figure 2-30 

Normalized polar plot of total field whose linear plot is given in Figure 2-32 is 

given in Figure 2-26. Figure 2-32 demonstrates the contribution of GTD, clearly. 

 Although there is no GO fields after 210 , ID and RD exist there. 

 ID is dominant at ISB and RD is dominant at RSB. 

 Discontinuities of GO at ISB and RSB is removed by adding ID and RD. 

Another example that can be used for GTD and GO comparison is given in Figure 

2-33. The geometry was discussed in GO part of this theses and its GO field 

distribution is given in Figure 2-18, previously for 0.5h   and 2w  .  ISB and 

RSB are determined by   defined in Figure 2-34. Since 26.5   , discontinuities 

in Figure 2-18 exist at 0 26.5   and 180 26.5  . 

1 1tan ( ) tan (0.5) 26.5
2

h

w
       

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

 

 

Total Field

Geometical Optics(GO)

 Incident diffracted (ID)

 Reflected diffracted (RD)



60 

 

         

Figure 2-33 An infinitely long line source above widthw  finite strip  

 

Figure 2-34 Angle definitions on the strip 

When calculating diffracted fields it is important to define angles correctly. For 

Edge #1 the observation angle and GTD angle defined from the surface of wedge 

are same: 1  . However for Edge #2, these two angles are complementary. By 

using the geometry given in Figure 2-34 it can be written: 

2,1 1

2,2 2

180 , for Case 1

540 , for Case 2

 

 

 

 
 

Also far-field approximations for amplitude and phase terms should be used. 
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Figure 2-35 Normalized total diffracted field of an infinitely long line source above 

widthw  finite strip given in Figure 2-33 ( 0.5h   and 2w  ) 

                 

Figure 2-36 Total GO field and total (Diffracted + GO) field of for the geometry 

presented in Figure 2-33 
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By using the incident diffracted field  
±π

1 SDP
( )F   and reflected diffracted field 

 
±π

2 SDP
( )F   concepts, total diffracted field can be calculated by the code 

developed in MATLAB
®

. Normalized total diffracted field is given in Figure 2-35. 

It should be noted that total diffracted field has discontinuities where the GO field 

has also discontinuities. Therefore, diffracted field is able to compensate the 

discontinuities at GO fields. The total GTD (GO + diffracted) field is given Figure 

2-36. By the diffraction mechanism of GTD, the discontinuities of GO field that 

exist at 0 26.5   and 180 26.5  are compensated. Also the field distribution in the 

diffraction region (206.5 333.5(180+26.5) (360 - 26.5))     could be calculated. 

To sum up, Geometrical Theory of Diffraction (GTD) fields are composed of 

Geometrical Optics (GO) fields and Diffracted fields. Therefore, GTD extends the 

GO approach.  

By the aid of the additional diffraction mechanisms [1], GTD 

 calculates the field distribution in the diffraction region, 

 removes the discontinuities of GO near the ISB and RSB, 

 handles the edge and surface discontinuities, 

 provides fields even at caustics. 

A good illustration of this comparison can be seen in Figure 2-36.  

When calculating the diffracted fields of GTD, Fresnel transition functions in UTD 

may make the calculation steps more complex. Therefore, if the observation angle is 

far away from the incident shadow boundary (ISB) and reflected shadow boundary 

(RSB), Keller’s diffraction approach can be used instead of UTD in calculations, for 

the sake of simplicity. 
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CHAPTER 3  

 

EVALUATION OF GTD BASED PROPAGATION MODELS 

In this chapter, after reviewing formulations of GTD, some real life propagation 

problems will be discussed by using GTD. In order to do that, simplified 

representations of terrain profiles are used. Although GTD is a high-frequency 

method, it provides quite acceptable results in real life propagation problems even 

for VHF due to the fact that the mountains, hills and ridges are electrically very 

large according to the operating wavelength [25]. For a typical public safety VHF 

communication system, operating frequency is 150 MHz and corresponding 

wavelength is 2 meters. It is very very small according to the elevation of 

mountains, generally hundreds or thousands of meters. 

Then the propagation path loss values obtained by using GTD are compared with 

the results of another popular propagation path loss estimation tool: the Longley-

Rice method. It is based on the electromagnetic theory and empirical data ([26], 

[27]). The model has common usage for most practical engineering problem due to 

its accurate estimations about the propagation path loss. There are lots of input 

parameters such as terrain profile, frequency, antenna heights, distance, the 

electrical properties of the ground (conductivity, permittivity), surface refractivity, 

etc. The details of Longley-Rice method is given in this chapter; however, for a 

more closer look at its theoretical background and for investigating the 

measurements that are the basis of Longley-Rice method; [26], the report proposed 

by Longley and Rice, can be analyzed.  

Finally, the comparison between the propagation path losses (calculated by GTD 

and Longley-Rice method) and measured data is examined in order to find out the 

weaknesses and strengths about the approaches. 
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3.1 TERRAIN PROFILES ANALYZED BY USING GTD 

In this part various types of terrain profiles are defined and analyzed by using GTD. 

Preferred terrain profiles are the capable of representing real life propagation paths 

between transmitter and receiver. The propagation path used for GTD is described 

by transforming the actual path into the 2-Dimensions (2-D). In other words, 2-D 

path is simply a plane defined on the Earth that includes both the transmitter and 

receiver antennas.   

In brief, Geometrical theory of Diffraction (GTD), whose details are given in the 

previous chapter, enables to calculate the total field distribution for all propagation 

regions. The total field offered by GTD can be divided into four parts and their 

contribution to the total field is given in Eqn. (3.1). (-) is used for soft (electric line) 

polarization and (+) is used for hard (magnetic line) polarization in Eqn. (3.1). 

           
( )

( )

Total Field Incident GO Fields Reflected GO Fields

Incident Diffracted Fields Reflected Diffracted Fields

 

 
  (3.1) 

Incident and reflected geometrical optics fields are defined in the regions where the 

direct path and specular reflection path is available between transmitted and 

receiver. They can be formulated for a half-plane wedge as in Eqn. (3.2). 
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  (3.2) 

Unit step function in Eqn. (3.2) determines where the fields are defined with 

nonzero values. The field equations above are offered by Hutchins in [16]; however, 

they can also be calculated by the classical GO defined in the previous chapter. 

Eqn. (3.3) gives the diffraction part of GTD and the diffracted field is defined 

everywhere except in the PEC wedge. 
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where ( ) defines the incident field to the diffraction point, 
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Diffraction coefficient in Eqn. (3.3) is calculated by the code developed in 

MATLAB
®
, which is based on the uniform theory of diffraction, for both soft 

(electric line) and hard (magnetic line) polarization in this thesis. However, D can 

be calculated by using the Keller’s diffraction approach, if the observation angle is 

far away the ISB or RSB. 

Also ( , ), spatial attenuation factor,A s s  in Eqn. (3.3) is given by [1] as 

        0
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  (3.4) 

3.1.1 A Mountain Modeled as a PEC Half-plane 

PEC half-plane is also a wedge with a wedge angle of 0 . Therefore, the equations 

obtained for wedge diffraction is also valid for this example. Although there is no 

mountain in the natural that can be modeled as a half-plane as shown in Figure 3-1, 

it is preferred because it is a good starting point to represent more complex 

structures in the same way. Also some of the sharp mountains can be modeled as 

half-planes with some tolerable error. The transmitter antenna and the receiver 

antenna are located at either side of the mountain. Diffraction occurs at the top of 

the mountain. Antennas in Figure 3-1 are assumed as isotropic antennas and they 

are ideally matched. Gains and losses due to the antennas or cables can easily be 

added to the results.  
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Figure 3-1 Transmitter and receiver antennas on either side of a mountain modeled 

as PEC Half-Plane Wedge 

First, the “path loss over free space loss” is calculated. The “path loss over free 

space loss” states the additional loss due to presence of the obstacle between 

transmitter and receiver with respect to the line-of-sight case. In other words, free 

space loss always exists between transmitter and receiver due to the distance and it 

is not calculated in this section of this thesis in order to focus on obstruction loss. It 

also can be easily added to results like antenna gains/losses.  

The path loss over free space loss is calculated by using and, , ,Tx Rx Tx Rxd d h h h as 

input parameters. It should be noted that frequency is not an input parameter, 

because GTD assumes frequency is always sufficiently “high”. Therefore, 

providing the same path loss for all the frequencies is one of the deficiencies of 

GTD since propagation path loss more or less depends on the frequency in real life. 

In order to guarantee the validity of the developed MATLAB
®
 code based on UTD, 

the obstruction loss is calculated by both Keller’s diffraction formula and the code 

developed in MATLAB
®

, then the results are compared. 

To calculate obstruction loss with Keller’s diffraction approach Eqn. (3.3) is used. 
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Eqn. (3.3) and parameters are given in Eqn. (3.5) 

                         

   

d
(s) ( ) .

( ) ,
Tx

Rx

i j

D

D

s

j r
j ri j

Tx

Tx

Rx Tx Rx

s

Q A(s ,s)e

Q
e

e e
r

rs
A(s ,s)

s s s r r r













 


  

  

E E D

E

 



  (3.5) 

Diffraction coefficients for soft and hard polarization can be found by using Eqn. 

(2.83) and Eqn. (2.84) with n=2. In the absence of obstacle, received field would be, 
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By combining all these equations, obstruction loss is found as in Eqn. (3.7). 
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  (3.7) 

For the 05 andTx Rx Txd d h h    case, obstruction loss is calculated by both 

Keller’s diffraction formula and the code developed in MATLAB
®
. Loss versus 

,Rxh  receiver antenna height, is plotted in Figure 3-2 and in Figure 3-3, for soft and 

hard polarization, respectively. 
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Figure 3-2 Comparison between obstruction loss values by using Keller’s method 

and the UTD code developed in MATLAB
®
 (soft polarization) 

 

Figure 3-3 Comparison between obstruction loss values by using Keller’s method 

and the UTD code developed in MATLAB
®
 (hard polarization) 
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For the 05 andTx Rx Txd d h h    case given in Figure 3-4, by using the 

basic trigonometry, it can be seen that incident shadow boundary (ISB) coincides 

with the receiver antenna when 10Rxh   since Keller’s method fails around ISB, it 

has singularity at 10Rxh  , as expected. Besides having the singularity, Keller’s 

method has negative loss around ISB. It can be considered that negative loss 

corresponds to gain; therefore, Keller’s method results do not make sense. 

However, the code developed in MATLAB
®

 compensates the singularities since it 

is based on UTD. Therefore, Figure 3-2 and Figure 3-3 may be seen as the 

verification of the code developed in MATLAB
®
.  

Before examining another case for the geometry given in Figure 3-1, an important 

matter should be pointed about the obstruction losses given in Figure 3-2 and Figure 

3-3. When the receiver antenna height exceeds 10 , receiver antenna passes the 

incident shadow boundary. This is given in Figure 3-4. Therefore, besides the 

diffracted fields, incident GO fields also exist. It seems that the loss decreases, 

when the receiver antenna height exceeds 10  in Figure 3-2 and Figure 3-3; 

however, the total field increases due to the incident GO fields. A similar situation 

is given in Figure 2-35. In Figure 2-35, the ISB occurs at 206.5  and the maximum 

diffracted field is at the ISB and then it decreases when going to the 0 ; however, 

the total field is increasing. 

 

Figure 3-4 Incident shadow boundary for the case 05 andTx Rx Txd d h h     
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Another case for the geometry in Figure 3-1 can be described as varying the 

, andTx Rxd d h  values for the fixed receiver and transmitter antenna heights. Let 

the fixed antenna heights be 0 to compare the previous case. Loss versus

, andTx Rxd d h , in terms of  , is plotted in Figure 3-5 and in Figure 3-6, for soft 

and hard polarization, respectively.  

For this case, the symmetry in Figure 3-1 is conserved and the effect of 

, andTx Rxd d h  is analyzed for both polarization when 0Tx Rxh h  . In other 

words, the losses in Figure 3-5 and in Figure 3-6 can be considered as the 

enlargement effect of Figure 3-1. It should be noted that for the case 

5Tx Rxd d h     in Figure 3-5 and in Figure 3-6, the path losses are 38 dB and 

22 dB, respectively. These values are consistent with the loss values given in Figure 

3-2 and in Figure 3-3.  

Unlike Figure 3-2 and Figure 3-3, in Figure 3-5 and Figure 3-6 there is no 

difference between Keller’s method and the UTD code developed in MATLAB
®
. 

Because when 0Tx Rxh h  , regardless of the , andTx Rxd d h  values, the receiver 

antenna is always far away from the ISB. According to the results obtained by 

comparing Figure 3-2 and Figure 3-3 and also by comparing Figure 3-5 and Figure 

3-6, it is clear that the MATLAB
®
 code based on UTD covers the Keller’s 

diffraction formula. Therefore, there is no need to use Keller’s diffraction formula 

any more, only the UTD code developed in MATLAB
®
 will be used after this point 

of this thesis. 

Up to now, all obstruction loss values are calculated by using 

, , , andTx Rx Tx Rxd d h h h as input parameters. However, according to the reciprocity 

principle, there is no need to investigate the effect of these parameters 

independently [1].  Since the path loss would be the same when the transmitter and 

receiver are interchanged, changing the transmitter antenna height or changing the 

transmitter antenna height has the same effect on path loss. 
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Figure 3-5 Obstruction loss calculated by both Keller’s method and the code 

developed in MATLAB
®

 (soft polarization) 

 
Figure 3-6 Obstruction loss calculated by both Keller’s method and the code 

developed in MATLAB
®

 (hard polarization) 
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The first symmetry mentioned above is about the antenna heights. The 

configuration to investigate the antenna height symmetry is given in Figure 3-7.   

The distances and heights of antennas and obstruction are also defined in Figure 

3-7.  The obstruction loss is calculated for both of the cases.  

 

Figure 3-7 Configuration to examine the antenna height symmetry  

 

Figure 3-8 Obstruction loss for both of the cases given in Figure 3-7 (soft pol.) 
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Obstruction loss calculated for soft polarization is given in Figure 3-8. It can be 

seen from Figure 3-8, for both of the cases, obstruction loss is exactly same; 

therefore, varying Tx or Rx antenna heights has the same effect on obstruction loss. 

The second symmetry mentioned above is about the antenna distances, Txd  and 

Rxd . The configuration to investigate the antenna distance symmetry is given in 

Figure 3-9 .  The obstruction loss is calculated for both of the cases. 

 

Figure 3-9 Configuration to examine the antenna distance symmetry 

For both of the cases given in Figure 3-9, obstruction loss is calculated for soft 

polarization by using the UTD code developed in MATLAB
®
 and the Keller’s 

method. They are given in Figure 3-10 and in Figure 3-11, respectively. In Figure 

3-10, there is a slight difference between the calculated obstruction losses. The 

difference is in the order of 0.01 dB; therefore, it can be neglected. Actually, even 

the receiver is far away from the ISB or RSB, still UTD Fresnel transition function 

has still a very slight effect on loss calculation. There is no such a transition 

function effect in Figure 3-11, Keller’s formula; therefore, both are exactly same. 

Since 0.01 dB is very very small and the fact that it is a result of transition function 

in UTD, the difference can be neglected. Therefore, distance symmetry is satisfied. 
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Figure 3-10 For Figure 3-9, loss calculated by UTD based MATLAB
®
 code 

 

Figure 3-11 For Figure 3-9, loss calculated by Keller’s formula 

750 800 850 900 950 1000 1050 1100 1150 1200 1250
16.6

16.8

17

17.2

17.4

17.6

17.8

18

Antenna distances (in terms of )

O
b
s
tr

u
c
ti
o
n
 l
o
s
s
 (

d
B

)

 

 

Case1: Obstruction loss for variable d
Tx

 (d
Rx

= 1000)

Case2: Obstruction loss for variable d
Rx

 (d
Tx

= 1000)

750 800 850 900 950 1000 1050 1100 1150 1200 1250
16.6

16.8

17

17.2

17.4

17.6

17.8

18

Antenna distances (in terms of )

O
b
s
tr

u
c
ti
o
n
 l
o
s
s
 (

d
B

)

 

 

Case1: Obstruction loss for variable d
Tx

 (d
Rx

= 1000)

Case2: Obstruction loss for variable d
Rx

 (d
Tx

= 1000)



75 

 

To sum up, although it seems that the obstruction loss depends on 5 independent 

input parameters ( , , , and )Tx Rx Tx Rxd d h h h , due to the reciprocity principle 

demonstrated in Figure 3-8, Figure 3-10 and Figure 3-11, the obstruction loss 

depends on 3 different parameters: , andRx Rxd h h  . As mentioned before, this does 

not mean the transmitter antenna distance or height is not important. They should be 

also taken into account when calculating the obstruction loss; however, the effects 

of parameters of the transmitter side are exactly same with the parameters of the 

receiver side. Also both in the real life and solving the optimization problems, one 

of the transmitter or receiver is accepted as fixed located and the other one is 

optimized by using this information. In this thesis, the transmitter side is accepted 

as fixed in terms of both distance and antenna height. Optimization will be made at 

the receiver side.  

Before examining the effect of altering receiver side parameters, another important 

parameter, the height of the obstruction, should be discussed about Figure 3-1. The 

obstruction loss values calculated by using the UTD code developed in MATLAB
®

 

given in Figure 3-13 and in Figure 3-14 for soft and hard polarization, respectively. 

Parameters other than the obstruction height are chosen as in Figure 3-12.  As 

expected, loss increases when the obstruction height increases. Obstruction height 

starts with 26  in order to ensure that receiver is at the diffracted region. The 

difference between polarizations is very significant for large h values. 

 

Figure 3-12 Other parameters when investigating the effect of obstruction height 
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Figure 3-13 Loss calculated by the code developed in MATLAB
®
 (soft pol.) 

 

Figure 3-14 Loss calculated by the code developed in MATLAB
®
 (hard pol.) 
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The remaining parameters are about the receiver side. They are Rxd  and Rxh . 

While the other parameters ( , and )Tx Txd h h  are fixed, the effects of these two 

parameters on the obstruction loss will be analyzed. The values of the 

, andTx Txd h h  parameters and the design in order to analyze the effect of varying 

Rxd  and Rxh  are shown in Figure 3-15. 

 

Figure 3-15 Configuration to examine the effect of receiver parameters, andRx Rxhd   

In Figure 3-16 and Figure 3-17, the obstruction loss values calculated by using the 

UTD code developed in MATLAB
®

 is given for soft and hard polarization, 

respectively. Some important results should be discussed about Figure 3-16 and 

Figure 3-17. First of all, when Rxd  is small, there is a significant difference 

between soft and hard polarizations for the same Rxd ; however, the difference 

becomes smaller for large Rxd  values. Another important result is that when Rxd  

increases, the obstruction loss decreases. It is an acceptable result because, as 

always emphasized, the calculated obstruction loss is the loss over free space loss. 

Therefore, it is reasonable that the effect of the obstruction decreases, when the 

receiver goes far away from the obstruction. In other words, the receiver avoids the 

“shadowing effect” of the obstruction. 
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Figure 3-16 Obstruction loss vs. Rxd  calculated by MATLAB

®
 (soft pol.) 

 
Figure 3-17 Obstruction loss vs. Rxd  calculated by MATLAB

®
 (hard pol.) 
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However, decreasing obstruction loss does not mean the total loss is also 

decreasing, since the total loss includes both free space and obstruction losses. The 

free space loss starts with a constant value when the receiver is very close to 

obstruction and it increases almost linearly when the distance between the 

obstruction and receiver increases. Therefore, it is possible to make an optimization 

by the help of the sudden decline of obstruction loss given in Figure 3-16 and 

Figure 3-17. In Figure 3-18, the total loss is calculated for both of the polarizations 

of case-1 given in Figure 3-15. 

 
Figure 3-18 Receiver antenna distance optimization for the case-1 given in Figure 

3-15 in order to minimize the total loss 

In Figure 3-18, it can be seen that receiver antenna distance from the obstruction 

should be approximately 450  for hard polarization and 500  for soft polarization 
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The second parameter about the receiver is Rxh . It varies as Case-2 shown in 

Figure 3-15. In Figure 3-19 and Figure 3-20, the obstruction loss values calculated 

by using the UTD code developed in MATLAB
®
 is given for soft and hard 

polarization, respectively.  

 

Figure 3-19 Obstruction loss vs. Rxh  calculated by MATLAB
®
 (soft pol.) 
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For soft polarization case, the obstruction, free space and total losses are plotted in 

Figure 3-21. It is clear that free space loss has an effect as adding a constant value 

to the obstruction loss.  
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Figure 3-20 Obstruction loss vs. Rxh  calculated by MATLAB
®

 (hard pol.) 

 
Figure 3-21 Total loss for the case-2 given in Figure 3-15 for soft polarization 
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3.1.2 A Mountain Modeled as a Wedge with a Nonzero Angle 

The second case studied in this thesis is a wedge with a nonzero angle given in 

Figure 3-22. It is clear that the model examined in this part reduces to the previous 

model with, wedge angle, WA=0. 

 

Figure 3-22 Transmitter and receiver antennas on either side of a mountain that can 

be modeled as a wedge that has a nonzero wedge angle 

If the main formulas of GTD, that explain the diffraction mechanism for the case 

given in Figure 3-22, are rewritten in Eqn. (3.8). If the diffraction mechanisms of 

half-plane wedge which is given in Figure 3-1 and the nonzero angle wedge which 

is given in Figure 3-22 are compared by using the Eqn. (3.8). It is noted that the 

incident field ( ) ,i

DQE


 spatial attenuation term A(s ,s)  and phase term j se   are the 

same for both of the cases. Therefore, the only different term in Eqn. (3.8) is D, 

diffraction coefficient, calculated by using the code developed in MATLAB
®
. 
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The MATLAB
®

 code has five input parameters. These are observation distance, 

source and observation angles, incident field angle to the wedge (it is always 90  

for point to point 2-D propagation) and wedge angle. Since wedge angle, WA, is 

always zero for the PEC wedge case, it is not defined as an input parameter in the 

previous part. Naturally, it should be taken into account for the general case. Also 

the source and observation angles are modified. In Figure 3-22, the old and new 

values of and    are shown by the red and green, respectively. It is clear that the 

difference between the old and new values of and    is equal to / 2WA . And n 

can be written as in the following Eqn. (3.9) 

       
360

180

Wedge Angle
n


   (3.9) 

Another intuitive method to find out the / 2WA decrease in the angles is that 

imagine that PEC wedge is spread out from the x axes  . It seems that for this case, 

angles are decreased by an amount of WA ; however, in order to conserve system 

orientation both source and receiver should be rotated by / 2WA  . Therefore, Eqn. 

(3.10) can be written. 

    
2 2

new old old

WA WA
WA         (3.10) 

Throughout this thesis, all formulations are given for exterior wedge, not for interior 

wedge. Since the exterior wedge can be used the modeling mountains. 
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In the half-plane wedge case, it was shown that some of the parameters given in 

Figure 3-22 have the same effects on the obstruction loss. Details of the previous 

work will not be covered in this part and the “independent” parameters in the sense 

of receiver optimization which are , andRx Rxd h h  will be discussed here.  

Before examining the receiver side parameters, for the sake of completeness, the 

effect of the obstruction height, h , will be discussed. In a similar manner with the 

half plane wedge case, it is expected that the obstruction loss increases when the 

height of the obstruction increases.  However, there is a significant difference in 

comparison with the half plane wedge case. The height of the obstruction should 

exceed Tx Rxord d , since the input parameters are  andWA h , the size of the 

obstruction is determined by these parameters. Therefore for a fixed WA, increasing 

the height of the obstruction enlarges the obstruction in horizontal axes. Then, as a 

mathematical error, the transmitter or receiver may be located on the mountain. 

Therefore, varies from 26 to 950 h   in this case.  

 

Figure 3-23 Configuration to investigate the effect of obstruction height 

The WA values are selected 0°, 30°, 60°and 90°. Parameters other than the 

obstruction height are chosen as in Figure 3-23.  The obstruction loss values 

calculated by using the UTD code developed in MATLAB
®
 given in Figure 3-24 

and in Figure 3-25 for soft and hard polarization, respectively. 
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Figure 3-24 Loss calculated by MATLAB
®
 vs. h for different WA (soft pol.) 

 

Figure 3-25 Loss calculated by MATLAB
®
 vs. h for different WA (hard pol.) 

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Obstruction height in terms of 

O
b
s
tr

u
c
ti
o
n
 l
o
s
s
 (

d
B

)

 

 

Obstruction loss vs. h with WA=0

Obstruction loss vs. h with WA=30

Obstruction loss vs. h with WA=60

Obstruction loss vs. h with WA=90

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Obstruction height in terms of 

O
b
s
tr

u
c
ti
o
n
 l
o
s
s
 (

d
B

)

 

 

Obstruction loss vs. h with WA=0

Obstruction loss vs. h with WA=30

Obstruction loss vs. h with WA=60

Obstruction loss vs. h with WA=90



86 

 

As expected, loss increases when the obstruction height increases. Obstruction 

height starts with 26  in order to ensure that receiver is at the diffracted region. 

WA determines the effect of height increment on horizontal enlargement. For 

example, for WA=90° case, the obstruction is closer to the antennas than the case 

WA=60°. Therefore for large values of obstruction height, the loss increases rapidly. 

Due to reason discussed above, it is more detectable for large WA.  

Another difference between the polarizations is that for the same obstruction height, 

loss is proportional to WA for soft polarization; however, it is inversely proportional 

to WA for hard polarization. Although for large obstruction heights, the 

explanations above are quite correct and sufficient, for small obstruction heights 

comparable to antenna heights, for example 50h  , the plots given in Figure 3-24 

and Figure 3-25, the relationship between WA and obstruction loss is not clear. To 

investigate this relationship, the configuration given in Figure 3-26 is used. It is 

similar to the Figure 3-23. 

 

Figure 3-26 All height values are fixed only WA angle differs 

The WA starts from 0° to 90°. Parameters other than WA are fixed and given in 

Figure 3-26. The obstruction loss values calculated by using MATLAB
®

 code are 

given in Figure 3-27 and in Figure 3-28 for soft and hard polarizations, respectively. 

For small heights, similar to the large heights, loss is proportional to WA for soft 

polarization; however, it is inversely proportional to WA for hard polarization. 
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Figure 3-27 Loss calculated by MATLAB

®
 vs. WA for Figure 3-26 (soft pol.) 

 
Figure 3-28 Loss calculated by MATLAB

®
 vs. WA for Figure 3-26 (hard pol.) 

It can be seen that, from Figure 3-24, Figure 3-25, Figure 3-27 and Figure 3-28; WA 

variation from 0° to 90° results in approximately 0.5 dB obstruction loss difference 

when 50h  . However, same WA variation results in almost 5 dB difference 

when 600h  .  These values are for 1000 and 25Tx Rx Tx Rxh hd d      . 
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Only the parameters about the receiver side are not discussed up to now for a 

nonzero angle wedge. These are Rxd  and Rxh . While the other parameters 

and( , )Tx Tx hd h  are fixed, the effects of these two parameters on the obstruction 

loss will be analyzed. The values of the ,, andTx Tx hd h WA parameters and the 

design in order to analyze the effect of varying Rxd  and Rxh  are shown in Figure 

3-29. 

 

Figure 3-29 Configuration to examine the effect of andRx Rxhd with 45° wedge 

Unlike the half-plane wedge case, Rxd  starts from 100  instead of 5 due to the 

nonzero width of the wedge. It is expected from the half-plane wedge case that 

when Rxd  increases, the obstruction loss decreases. It was explained in the half-

plane wedge case as the fact that the receiver avoids the “shadowing effect” of the 

obstruction. The obstruction loss for the case-1 in Figure 3-29 is plotted in Figure 

3-30 for both soft and hard polarizations. The result is consistent with the result of 

half plane wedge.  

The relationship between WA and h was previously discussed. Similarly the 

relationship between WA and receiver antenna distance, Rxd , will be discussed. 
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Figure 3-30 Soft and hard obstruction loss vs. Rxd  with WA=45° 

The relationship between WA and receiver antenna distance, Rxd , is given in  

Figure 3-31 and Figure 3-32 for both soft and hard polarizations, respectively. It can 

be concluded from Figure 3-31 and Figure 3-32 that when the transmitter 
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, and( , )Tx Tx Rx hd h h  fixed, the WA variation from 0° to 90° results in 

approximately 0.3 dB obstruction loss difference when Rxd  is large. Furthermore, 

same WA variation results in almost 1.5 dB difference when Rxd  is small. These 

values are obtained for 1000Txd  , 25Tx Rxh h   , 50h  .  

Consequently, the polarization and wedge angle have no significant effect on the 

obstruction loss for all values of Rxd for Figure 3-29. 
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Figure 3-31 Soft polarization obstruction loss vs. Rxd  with WA=0° and 90°  

 

Figure 3-32 Hard polarization obstruction loss vs. Rxd  with WA=0° and 90° 
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The second case (Figure 3-29) is about the receiver antenna height. The obstruction 

loss is examined when the Rxh  varies from 0 to 50 . In Figure 3-33 and Figure 

3-34, the obstruction loss values calculated by using the UTD code developed in 

MATLAB
®
 are given for soft and hard polarizations, respectively. When the 

receiver antenna height increases, the obstruction loss decreases.  

Because free space loss is determined almost entirely by the Tx Rxd d  distance 

which is independent from Rxh  and constant, free space loss is nearly a constant 

value. For soft polarization case, the obstruction, free space and total losses are 

plotted in Figure 3-35. Previously the relationships between WA and h and also WA 

and Rxd  were analyzed. The relationship between the last independent parameter 

Rxh  and WA is given in Figure 3-36. It can be observed in Figure 3-36 that the 

effect of WA increment up to 100° is almost zero. However, when WA approaches 

to the 150°, the effect increases but still it is limited to approximately 1.5 dB. 

Up to this point in this chapter, it is shown that, 

 UTD includes Keller’s formula. Besides that, it is more powerful at shadow 

boundaries. 

 The code developed in MATLAB
®

 based on UTD runs properly. 

 Changing the Tx parameters ( , )Tx Txh d  or Rx parameters ( , )Rx Rxh d  has the 

same effect on obstruction loss so the receiver side is focused.            

Indeed, one of the Tx or Rx side should be fixed to optimize the other side. 

 Increasing the obstruction height ( )h  increases obstruction loss for both zero 

and nonzero angle wedges, as expected. 

 Increasing the distance between receiver and obstruction ( )Rxd  decreases 

loss for both zero and nonzero angle wedges (“shadowing effect”). 

 Increasing the receiver antenna height ( )Rxh  decreases loss for both zero 

and nonzero angle wedges. 

These results are obtained for the 1000 , 25 and 50Tx Rx Tx Rxh h hd d        . 
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Figure 3-33 Obstruction loss vs. Rxh  for the case-2 given in Figure 3-29 (soft pol.) 

 
Figure 3-34 Obstruction loss vs. Rxh  for the case-2 given in Figure 3-29 (hard pol.) 
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Figure 3-35 Total loss for the case-2 given in Figure 3-29 for soft polarization 

 

Figure 3-36 Obstruction loss vs. Rxh  for the case-2 given in Figure 3-29 for 

different wedge angles for soft polarization 
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Another important conclusion obtained up to this point is the effect of wedge angle. 

It is shown that, 

 While all other parameters like , andRx Rxh d h  are fixed, increasing the WA 

increases the obstruction loss for soft polarization but it decreases loss for 

hard polarization. However these effects given in Figure 3-27 and Figure 

3-28 are negligible ( 0.5Loss dB  for 1000 & 25Rx Rxd h   ). 

 The effect of increasing the WA and its proportionalities with polarizations 

given above are valid for all 
Rxd  values; however, for small 

Rxd  values loss 

increases but still it is small ( 1.5Loss dB  for 100 & 25Rx Rxd h  

from Figure 3-31 and Figure 3-32). 

 Increasing the WA increases the obstruction loss for soft polarization, as 

mentioned above, is valid for all 
Rxh  values. As it can be seen from Figure 

3-36, same amount of increment of WA has the same effect ( 0.1Loss dB ) 

on obstruction loss for almost all 
Rxh  values. Also it should be noted that 

when WA approaches to 180°, loss increases rapidly but still it is very small 

( 1Loss dB  for 150WA  ). 

for 1000 , 25 and 50Tx Rx Tx Rxh h hd d         case given in Figure 3-26. 

3.2 LONGLEY-RICE MODEL IN HILLY TERRAIN 

In the previous part, the use of GTD in the modeling of propagation path loss is 

described in a detailed way.  Since GTD is totally based on physical theories, it is 

difficult to take into account some kind of daily parameters that can affect the 

propagation path loss. For example, weather conditions can affect electromagnetic 

wave propagation or vegetation on a hill may also make difficult to obtain receive 

fields. If one can succeed to model for a specific region of the Earth, for example 

deserts; the parameters may affect the propagation path loss in the equatorial 

conditions very differently, or the model for the buildings of a city may not be 

useful for another urban area. Also as can be seen the previous part, the terrain 

profile has also be defined for each propagation medium.  
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Although, GTD is the most powerful tool in order to estimate the path loss; due to 

the reasons given above, some engineers started to face some practical methods. 

These methods are generally based on empirical data. The formulation of the 

measured data provides to estimate the propagation path loss for different input 

parameters. 

One of the common methods, based on measured data, is Longley-Rice model. 

Besides Longley-Rice model is based on measured data, it also uses the 

electromagnetic wave theory [27]. The Longley-Rice model described by A. G 

Longley and P. L. Rice in a technical report, given in [26], under the control of U.S 

Department of Commerce, Environmental Science Services Administration (ESSA) 

in 1968. Some modification to improve the performance of the model is applied in 

the later years. The Longley-Rice model is also known as ITS model since the 

authors worked with the Institute for Telecommunication Sciences (ITS).  

The Longley-Rice model can be applied a very wide frequency spectrum, from 20 

MHz to 20 GHz. It is based on the measurements reported by again ESSA in 1968. 

The measurements are given in the appendix of [26], the details of these 

measurements are not covered in this thesis. However, it is assumed that the 

measurements are provides sufficient data to proper operation of the model, except 

known deficiencies.  

3.2.1 Input Parameters and the Details of Longley-Rice Model 

First of all, the Longley-Rice model requires the terrain profile data, naturally. The 

interface programs based on Longley-Rice model, like Radio Mobile, can obtain the 

elevation data of the terrain from the open web sources. Since 90’s, SRTM and 

DTED elevation data of the all over the world are sharing by the relevant intuitions. 

Nowadays, it is available 1-arc second SRTM for US and 3 arc-second SRTM for 

the remaining of the world. Actually, the Longley-Rice model is not strictly 

dependent on the terrain data, unlike GTD. A good approximation of data is 



96 

 

sufficient for the Longley-Rice model. The other input parameters and range are 

given in Table 3-1. 

Table 3-1 The Longley-Rice model parameters (from [27]) 

 

The terrain between the transmitter and receiver is defined by a 2-D plane in the 

Longley-Rice model. Therefore, reflections from the other obstructions which are 

not located in the same plane are not taken into account. After defining the terrain, 

the model decides propagation mode between the transmitter and receiver by using 

the antenna heights and obstruction heights. There are three different path loss 

calculation zones is the Longley-Rice model.  

First one is the line-of-sight propagation mode. In this mode, transmitter and 

receiver directly “see” each other. In this mode, propagation path loss is assumed to 

be the free-space loss. However, if the terrain profile between receiver and 

transmitter satisfies the specular reflection conditions, also reflected filed should be 

taken into account, besides direct field. ITS model takes into account the reflected 

field if the path length difference between direct and reflected waves is smaller than 

/ 4 [25]. If the reflection exists, the reflection coefficient which is a function of 

ground electrical parameters and terrain irregularities is calculated by the ITS 

model. 

Second propagation mode is the diffraction mode. In this mode, as expected, the 

receiver is located over the incident shadow boundary. In the transition region from 

The Longley-Rice model parameters and ranges

Climate Conditions Modeled up to 7

Reliability Level 0.1% to 99.9%

Path Distance 1 m to 2000 km

Surface refractivity 250 to 400

Polarization Vertical / Horizontal

Parameter Range

Frequency 20 MHz to 20 GHz

Antenna Heights 0.5 m to 3000 m
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the line-of-sight mode to diffraction mode, the weighting functions are used to 

satisfy the field continuity. The algorithm of diffraction region is given in [27], 

which are based on measurement data. In the diffraction region, knife-edge 

diffraction mechanisms are used. If necessary, double knife-edge diffraction is also 

used. However, diffraction by more than two edges is neglected by ITS model. 

If the receiver is located lower than a predetermined height, the last region called as 

scattering mode. Again the algorithm is not covered here, the details can be found 

in [27]. Weighting functions are used to satisfy the field continuity between 

diffraction and scattering modes. 

 The Longley-Rice model provides both area coverage and point-to-point path loss 

estimation. Actually, area coverage is the simply moving a mobile receiver all 

around the coverage area and then coloring the map according the strength of the 

received signal power.  

Another important feature of ITS model is that it offers alternatives about reliability 

percentages in terms of time, locations and situations. Therefore, according to the 

deserved performance of the designed network, these margins are adjustable. Thus, 

it is able to remain in the safe side at propagation problems by using higher 

percentages. ITS model determines the additional losses by using the results of the 

lots of measured data. Therefore, they are assumed reliable and sufficient. 

The detailed formulations and performance optimization of the Longley-Rice 

method is not the aim of this thesis. The results of ITS model are used to compare 

the GTD results. And tolerate the deficiencies of GTD by using the Longley-Rice 

method, if necessary. However, for the sake of completeness, the propagation loss 

estimation of the Longley-Rice model is briefly analyzed. The relationship between 

the propagation path loss and system parameter like 
., andRx Rx obsh d h  will be 

investigated. 
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3.2.2 Propagation Path Loss Calculations of the Longley-Rice Model 

The terrain profile data required to Longley-Rice model is created by using the code 

developed in MATLAB
®

 and XVI32 hex editor. Hex editor is useful because digital 

elevation data is in the form of 16-bit signed integer. The created elevation data file 

is embedded to the interface program based on Longley-Rice model. The elevation 

data file type as known as SRTM (Shuttle Radar Topography Mission). In real life 

applications the SRTM files are available free, with low resolutions. In this thesis, 

pseudo SRTM files are created with maximum resolution, 1 arc-second. 1 second 

corresponds to approximately 30m around equator.  

In this thesis, Radio Mobile
®
 is used as the interface program to simulate the 

Longley-Rice ITS model. However, different programs can also be used, such as 

“Pathloss 5
®
” or “SPLAT!

 ®
”.   The simulation interface is given in Figure 3-37.  

 
Figure 3-37 Interface of the Longley-Rice based propagation modelling program 
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The transmitter power is selected as 0 dBm in order to make the received signal 

(dBm) to the path loss (dB) equal in scalar sense.  Similar to GTD, the effect of the 

propagation parameters , andRx Rxh d h  is examined in the Longley-Rice model. 

However, different than GTD, the parameters are in terms of meter instead of 

wavelength. 

First, the obstruction height effect on obstruction loss is discussed for the 

configuration given in Figure 3-37. While the heights of the transmitter and receiver 

antennas are fixed to 50m and the distance between the transmitter and receiver is 

6200m, the obstruction loss is given in  Figure 3-38 for f=150 MHz for vertical 

polarization. As expected, there is a direct proportionality between them. 

 

Figure 3-38 Obstruction loss vs. obstruction height (h) for Figure 3-37 

The relationship between the receiver antenna distance and obstruction loss is given 

in Figure 3-39. Receiver antenna distance, 
Rxd  , corresponds to distance between 

the receiver and the obstruction, not the transmitter. Therefore, as can be seen from 

Figure 3-39, when 
Rxd  decreases, the obstruction loss increases since receiver is 
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very close to obstruction. When 
Rxd  increases, the obstruction loss decreases 

because the receiver avoids the “shadowing effect” of the obstruction. 

 

Figure 3-39 Obstruction loss vs. receiver antenna distance for Figure 3-37 

The last parameter is receiver antenna height, 
Rxh . Again it is expected that loss and 

receiver antenna height is inversely proportional to each other as it can be seen in 

Figure 3-40. 

 
Figure 3-40 Obstruction loss vs. receiver antenna height for Figure 3-37 

0 500 1000 1500 2000 2500 3000 3500
5

10

15

20

25

30

35

40

45

50

d
Rx

 (m)

O
b
s
tr

u
c
ti
o
n
 L

o
s
s
 (

d
B

)

 

 

Longley-Rice obstruction loss vs d
Rx

 values

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

h
Rx

 (m)

O
b
s
tr

u
c
ti
o
n
 L

o
s
s
 (

d
B

)

 

 

Longley-Rice obstruction loss vs h
Rx

 values



101 

 

It is shown that GTD and Longley-Rice model gives the similar responses to the 

similar variations in propagation parameters. However, especially for small 

distances, even the parameter variations have the similar effect on obstruction loss; 

there are magnitude differences. Therefore, comparing the GTD and Longley-Rice 

Model by the real-life measurements is necessary in order to find out the weak and 

strong aspects of these methods. As mentioned before, this thesis does not focused 

on the Longley-Rice Model optimization. The Longley-Rice Model is useful for 

evaluation of GTD by comparing two approaches. Thus, following Longley-Rice 

model results may be improvable by using some other tools or parameters. 

3.3 COMPARISON OF MEASURED DATA AND RESULTS OF MODELS  

In the previous parts, the results of GTD and the Longley-Rice models are given. 

Both GTD and the Longley-Rice method gives similar responses to the parameter 

variations. However, still, it is necessary to refer another data source in order to 

comment about the differences of two approaches. 

The measured data in this thesis is obtained from [29], by McQuate, Harman and 

Barsis, which provides data about spot measurement at the environment of 

Colorado plains at [29]. They are called phase-2 measurements since phase-1 was 

obtained in 1967. 

In this thesis, two of the terrain profiles are digitalized in order to compare GTD 

and the Longley-Rice ITS models with each other. One of the selected terrain 

profiles is within the line-of-sight and the other one is beyond the line-of-sight. 

Therefore, it is possible to evaluate both cases. Since the real terrain profile cannot 

be exactly modeled, piecewise linearization is used. Again the elevation data is 

converted to a hex file to represent the elevation data by 16-bit signed integer 

SRTM “.hgt” file. This is done by using the code developed in MATLAB
®
 and 

XVI32 hex editor. It should be noted that there are some rounding errors due to the 

fact that SRTM includes only integers and some linearization errors. 
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3.3.1 Profile R1-0.5-T1 (Planar, Line-of-Sight Sloping Terrain) 

The elevation data for terrain profile at [29] is given in Table 3-2. It is observed that 

it is a short range profile, 550m, and the maximum elevation difference throughout 

the path is around 20m.  

Table 3-2 The original identification of R1-0.5-T1 made by McQuate (from [29]) 

 

For profile R1-0.5-T1, simple linearization by using the first and last datum is 

sufficient. It can be seen from Figure 3-41, the exact and linear form of elevation 

data are match. Besides its simplicity, profile R1-0.5-T1 has another advantage due 

to the fact that there is no edge in the terrain. Therefore, GTD reduces to GO for 

this case. Otherwise, both GO and diffraction mechanisms play role the propagation 

path loss and it would be difficult to decide whether the error occurs due to the GO 

part or diffraction part. After determining the error due to GO, it would be possible 

0'5R1T1.PFL      LAT       LON    

TX CNTRY US     40.0944  254.8811 

RX CNTRY US     40.0939  254.8745 

DATE PROFILE TAKEN:          1967 

SOURCE MAP- SCALE: 1:       24000 

SOURCE DTBS-RES.(km):             

First Point TX or RX: R           

Tot. Path Length(km):         .55 

Number of Points:               7 

----------------------------------

 -Distance-  Gnd Hgt  Coverage    

 fm first pt a.m.s.l. Code        

    (km)       (m)      (0-99)    

-------.-----------.--------------

       .00     1589.  

       .10     1585.  

       .19     1582.  

       .27     1579.  

       .39     1576.  

       .45     1573.  

       .55     1570.  
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to apply this error to other case in order to find out the error due to the only by the 

diffraction mechanism. 

 

Figure 3-41 Exact and linear elevation data for profile R1-0.5-T1 

The transmitter is located at 550m and receiver at 0 m according to the distance axis 

given in Figure 3-41. At [29], measurements are made at 7 different frequencies: 

230 MHz, 410 MHz, 751 MHz, 910 MHz, 1846 MHz, 4595 MHz and 9190 MHz. 

At [29], the only difference between different frequencies, for profile R1-0.5-T1, is 

the transmitter antenna height [29]. Transmitter antenna height is 6.6m for 751 MHz 

and below, 7.3m for 910 MHz and above. It is not necessary to analyze all 7 

frequencies in a detailed way; therefore, two of them are selected. In order to obtain 

low and high frequency characteristics, 230 MHz and 1846 MHz are chosen. 

3.3.1.1 Operating Frequency 230 MHz, Terrain Profile R1-0.5-T1 

For this case, since the simulation interface program based on Longley-Rice Model 

requires the conductivity and relative permittivity. Conductivity is selected as 0.005 

S/m and relative permittivity is selected as 15.0 which are average ground electrical 

constants. Also local surface roughness, clutter effects, is not taken into account for 

both GTD and Longley-Rice models. 
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The measured data obtained from [29], is plotted in Figure 3-42. Since, in [29], the 

data are measured when the Rx antenna height starts with 1 goes to 13, GTD and 

Longley-Rice model calculations are made similarly. Rx antenna height starts with 

1m, increases to 13m with 0.5m intervals; so, there are 25 points in the graph. 

 

Figure 3-42 Path losses vs. receiver antenna height at 230 MHz for R1-0.5-T1 

The horizontal polarization is used for the Longley-Rice model. It can be observed 

from Figure 3-42, that there is a good agreement between GTD and measured data. 

The maximum error is around 2 dB. Longley-Rice model path loss again predicts 

the measured path loss with around 3 dB average error. This is also acceptable but it 

is clear that GTD is much more inconsistent with the measured data.  

In general, the differences between the measured data and the data obtained from 

models are acceptable. From the point of view of GTD, local roughness and also 

finite conductivity are not taken into account; therefore, the difference is acceptable. 

From the point of view of Longley-Rice model, again local roughness effect (clutter 

effect) is not taken into account and its calculation method is almost entirely 
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empirical; therefore, the error versus speed trade off is quite acceptable also for 

Longley-Rice model. Indeed, there are lots of parameters which are impossible to 

take into account in the empirical models, such as reflection from other sources or 

unwanted signal source that creates with the interference with the desired signal.  

3.3.1.2 Operating Frequency 1846 MHz, Terrain Profile R1-0.5-T1 

Again for this case, conductivity is 0.005 S/m and relative permittivity is 15.0 and 

polarization is horizontal for the Longley-Rice Model. However, for 1846 MHz, 

transmitter antenna is 7.3 instead of 6.6. 

 

Figure 3-43 Path losses vs. receiver antenna height at 1846 MHz for R1-0.5-T1 

It is clear that Longley-Rice model fails to predict the path loss. The reason is that 

Longley-Rice model does not take into account the reflected waves [25]. Therefore, 

it gives simply free space loss. The Longley-Rice method calculates the reflected 

field if the path length difference between the direct and reflected rays is smaller 
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than one-quarter wavelength. At 1846 MHz, the wavelength is 16 cm and one-

quarter wavelength is 4 cm. It is exceeded by all the receiver antenna heights in this 

case.  

In Figure 3-43, the GTD path loss values are calculated correctly; however, there is 

a “delay” between the measured data and the calculated one. According to [25], this 

“delay” is due to the terrain surface roughness which may also be called as clutter 

effect. Trees, stones and plants at the terrain cause such an effect. Therefore, GTD 

results are modified by multiplying reflection coefficient with a roughness factor; 

however, this is another concept that is beyond the scope of this thesis. It should 

also be noted that such delay errors are correctable. Even with the roughness factor, 

still, there would be some differences due to the finite conductivity or 

environmental effects. Not the environmental effects but the finite conductivity 

effect can be modified in GTD. However, it is again beyond the scope of this thesis. 

Also it should be expected that, Longley-Rice model is more successful to modeling 

the environmental effects since it is based on statistical data that already cover the 

environmental effects. 

Beyond the line-of-sight terrain profile will be discussed in the next part, after 

analyzing the line-of-sight profile, R1-0.5-T1, in this part. 

3.3.2 Profile R1-5-T5A (Abrupt Terrain, Beyond the Line-of-Sight) 

The elevation data for R1-5-T5A terrain profile at [29] is given in Table 3-3. 

Table 3-3 The original identification of R1-5-T5A made by McQuate (from [29]) 

 

005R1A5.PFL      LAT       LON    ----------------------------------        .69     1591.        3.57     1551.  

TX CNTRY US     40.1036  254.8167  -Distance-  Gnd Hgt  Coverage           .92     1591.        4.20     1554.  

RX CNTRY US     40.0939  254.8745  fm first pt a.m.s.l. Code              1.34     1597.        4.96     1558.  

DATE PROFILE TAKEN:          1967     (km)       (m)      (0-99)          1.61     1597.        5.04     1558.  

SOURCE MAP- SCALE: 1:       24000 -------.-----------.--------------       2.04     1579.  

SOURCE DTBS-RES.(km):                    .00     1589.        2.14     1582.  

First Point TX or RX: R                  .23     1591.        2.22     1582.  

Tot. Path Length(km):        5.04        .43     1591.        3.25     1545.  

Number of Points:              17        .55     1588.        3.36     1545.  
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It is seen that R1-5-T5A is a longer than R1-0.5-T1, it is 5040 m and the maximum 

elevation difference throughout the path is around 30m. The exact terrain profile 

data of R1-5-T5A given in [29] and its piecewise-linear version is given in Figure 

3-44. Since there exists lots of roughness at the terrain, it is not possible to linearize 

by the start and end points of the plot; therefore, piecewise linearization is 

preferred. 

 

Figure 3-44 The exact R1-5-T5A terrain profile and linearization of terrain 

The transmitter is located at 5040 m distance and 1558m height. The receiver is at 0 

m distance and basically located at 1589m elevation.  In order to find diffracted 

fields by GTD, it is necessary to find diffraction coefficient. Again since the 

measurements are taken in [29], when height of the receiver antenna starts 1m and 

goes to 13m with 0.5m intervals, GTD and Longley-Rice calculations use the same 

method. In order to find source and observation angle and distance, the linear 

version of R1-5-T5A given in Figure 3-44 is located a coordinate system, which is 

given in Figure 3-45 .  
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Figure 3-45 Coordinate system and coordinates of linear terrain 

At [29], measurements are made at 7 different frequencies: 230 MHz, 410 MHz, 

751 MHz, 910 MHz, 1846 MHz, 4595 MHz and 9190 MHz.  The only difference 

between different frequencies, for profile R1-5-T5A, is the transmitter antenna 

height. Transmitter antenna height is 6.6m for 751 MHz and below, 7.3m for 910 

MHz and above. In order to obtain low and high frequency characteristics, 230 

MHz and 4595 MHz are selected. 

Also profile R1-5-T5A, converted to digital elevation SRTM file using the code 

developed in MATLAB
®

 and XVI32 hex editor. In Figure 3-46, it can be seen that 

the antenna locations and the embedded elevation data at the interface of the Radio 

Mobile program, based on the Longley-Rice model.  It is clear that the embedded 

elevation data is almost same with the linear version of the terrain profile R1-5-

T5A. Figure 3-46 is given for the operating frequency is 230 MHz, but elevation 

data valid also for 4595 MHz since terrain profile does not change with frequency.  

3.3.2.1 Operating Frequency 230 MHz, Terrain Profile R1-5-T5A 

For this case conductivity and relative permittivity are 15.0 and 0.005 S/m, 

respectively, as in the previous case. Also local surface roughness and clutter effects 

are not taken into account for both GTD and Longley-Rice models. 
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Figure 3-46 Embedded terrain profile R1-5-T5A at the interface of the program 

The measured data obtained from [29], is plotted in Figure 3-47. Again there are 25 

points for GTD and Longley-Rice models in the graph; since Rx antenna height 

starts with 1m, increases to 13m with 0.5m intervals.  

It is clear that, similar to the previous path, in Figure 3-47, GTD estimates the path 

loss closer to the measured values than the Longley-Rice method. According to the 

[29], R1-5-T5A is very rough surface. Therefore, the difference between the 

estimated path loss by GTD and measured path loss may be result of the rough 

surface, because GTD method described in this thesis does not take into account the 

clutter effect. As mentioned before, clutter effect may be added to the GTD by 

modifying the reflection coefficient by a roughness factor; however, that is beyond 

the scope of this thesis. In a similar way, clutter sources at the terrain may be 

responsible for the difference between the estimated and measured path loss in 

Longley-Rice method. To solve this problem, clutter data available at the market 

may be added the results of such simulation programs. 
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Figure 3-47 Path losses vs. receiver antenna height at 230 MHz for R1-5-T5A 

3.3.2.2 Operating Frequency 4595 MHz, Terrain Profile R1-5-T5A 

Polarization, conductivity and relative permittivity are selected as the same with the 

previous ones. The measured data obtained from [29], the estimated path losses by 

GTD and Longley-Rice Model are plotted in Figure 3-48. As expected, it is similar 

to the Figure 3-47. Still GTD estimates the propagation path loss better than 

Longley-Rice method; however, the error in GTD estimation increases from 2 dB to 

7 dB approximately with the frequency increasing. Increasing in the error may be 

the result of the surface roughness, not taken into account in this thesis. Because 

when the frequency is increased, wavelength is decreased and the fixed size 

roughness parameters become bigger than due to the operating wavelength 

decreasing. Therefore, negligible roughness in the previous case now may have a 

noticeable effect on the path loss. Therefore, it may be concluded that roughness 

factor should be taken to account at GHz propagations in GTD applications. 
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Figure 3-48 Path losses vs. receiver antenna height at 4595 MHz for R1-5-T5A 

To sum up, GTD estimates the path loss better than the Longley-Rice method for 

the short terrain profiles analyzed up to now in this thesis. However, long terrain 

profiles, it may be expected that Longley-Rice gives more accurate results than 

GTD. Because GTD does not take into account Tropospheric effects; however, as 

mentioned before one of the input parameters of the Longley-Rice model is surface 

refractivity; therefore, it calculates the effective earth radius and Tropospheric 

scattering.  

Another important result obtained in this chapter is that the error between measured 

data and GTD estimated path loss is increasing with the frequency. This is an 

expected result by taking into the consideration the terrain profile surface 

roughness. Modeling the clutter effect on path loss requires an in-depth study which 

is not the aim of this thesis. However, it should be noted that, at low frequencies 

since the wavelength is large, lots of the surface roughness are negligible. While 
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increasing the frequency, even the small objects become electrically very large 

according to small operating wavelength. Therefore, roughness correction should be 

applied to the GO reflection coefficient especially at GHz propagation.  For the 

Longley-Rice model based simulation programs, clutter data that defines effect of 

clutter on path loss is available at the market. 

Also it is shown that, when the surface roughness has no series influence on path 

loss, there is a good match between GTD results and measured data. This indicates 

that the average ground electrical parameters like conductivity and permittivity are 

sufficient to modeling the ground by GTD as PEC.  

Multiple diffraction mechanisms of GTD are not included in this thesis. 

Finally, although the performance of GTD is better than the performance of the 

Longley-Rice model for terrain profiles analyzed here, Longley-Rice model may 

give accurate results than GTD by some modification and improvements. In other 

words, comparison made in this chapter is not final analysis since Longley-Rice 

improvements may be applicable.  Longley-Rice method is utilized in this thesis 

just to test the performance of GTD by comparing with it. 
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CHAPTER 4  

 

OPTIMIZATION OF AN ANTENNA SYSTEM LOCATED ON A HILLY 

TERRAIN IN TERMS OF RECEIVER SIDE 

In this chapter, by using the results obtained in previous chapters, as a case study, 

including optimization of an antenna system located on hilly terrain is performed by 

selecting the proper receiver parameter, we mainly focused on receiver side, 

because in real life applications transmitters serve more than for one user, for 

example a GSM site may transmits signal thousands of user mobile phone at the 

same time, or a television system similarly provides services may be hundreds of 

thousands of people at the same time. Therefore, in real life experiences, it may not 

be possible the parameter optimization of a transmitter because there are lots of 

receivers. Therefore, in this chapter, receiver parameter optimization is carried out 

for such a system given in Figure 4-1. 

 

Figure 4-1 A simple antenna system where the receiver in diffraction region 
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Some of the important parameters which are given in Figure 4-1 or not given can be 

listed as, 

 Polarization (vertical or horizontal), 

 Minimum and maximum operating frequency, 

 Transmitter antenna height, antenna type and antenna gain, 

 Receiver antenna height, antenna type and antenna gain, 

 Input power to the transmitted antenna after cable losses, 

 Transmitter and receiver polarizations, 

 Height and location of the obstruction, 

 Angle of the wedge that represents the obstruction, 

 The distance between the obstruction and transmitter and receiver , 

 System topology (voice, data), 

 System reliability parameter in terms of time, location and situation. 

Some other parameters may be added to the list given above, such as climate 

conditions. 

First, the polarization effect will be discussed. However, it should be noted that the 

polarization term in this chapter refers another phenomena according to the 

previous chapter. In previous chapter, the polarization is called as soft or hard and 

tit corresponds to whether wave is radiated from an electric or magnetic line source, 

respectively.  However, in this chapter polarization may be horizontal or vertical 

and it is determined according to the position of the antenna. 

GTD is derived from the structure that includes a wedge and a line source which is 

parallel to edges of wedge. That corresponds to the horizontal polarization. This is 

shown in Figure 4-2. In order to compare the same polarizations; in this thesis, the 

horizontal polarization is used in the Longley-Rice model. 
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Figure 4-2 Representation of parallel polarization of an antenna and 3-D hill 

In real life applications, it is important that selecting all the polarizations same since 

cross polarization losses are important. If there is no way to know the receiver 

polarization, transmitter polarization should be selected as circular. 

The second parameter is minimum and maximum operating frequency. Since there 

are more than one transmitter channels in a transmitter site and they share the same 

antenna system, optimization should take into account all of them. Generally, the 

frequency can be selected as the arithmetic average of the operating frequencies. 

GTD is a high frequency technique; therefore, the frequency does not change the 

diffraction losses. However, free space loss depends on frequency also the phase 

difference between direct and reflected waves are important for the GO part. 

Therefore, overall GTD results are dependent to the frequency. 

As can be seen from Figure 3-47 and Figure 3-48, if the frequency is larger than 1 

GHz the surface roughness has an important effect on GTD results. Therefore, if the 

terrain has lots of roughness that cause clutter effect, operating frequency should be 

selected below 1 GHz in order to guarantee the GTD estimation about path loss. 

The third item in the list is transmitter antenna height, type and gain. However, the 

optimization of transmitter site is not discussed in this thesis. Since in real life 

applications, one transmitter serves lots of users at the same time; therefore, it is not 
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possible to determine a reference receiver in order to make optimization, as 

discussed before.  

Next one is the receiver antenna height, type and gain. The antenna type should be 

selected in accordance with the desired performance and physical constraints. Gain 

should be selected high as possible as; however, if the gain of a practical antenna is 

high, the antenna pattern will be narrower. Therefore, gain should be selected high 

but at the same time pattern should includes the desired angles. Receiver antenna 

height effect on obstruction loss for half-plane wedge is given in Figure 3-19 and in 

Figure 3-20. If the wedge angle is not zero, antenna height vs. obstruction loss plots 

given in Figure 3-30, Figure 3-31 and Figure 3-32 . It is not necessary to give these 

plots here again, since it is clear that higher receiver antenna as much as possible is 

desirable to make the obstruction loss smaller, as expected. 

Not only the calculated GTD results but also measured data show that higher 

receiver antenna height should be preferred. According to the measurement given in 

Figure 3-42 for R1-0.5-T1 and the measurements given in Figure 3-47 and Figure 

3-48 for R1-5-T5A indicate that there is an inverse proportionality between the 

receiver antenna height and obstruction loss. The only exception is measurements 

given in Figure 3-43 for the line of sight terrain profile R1-0.5-T1. Since it provides 

some important results, it is given in Figure 4-3 again, without free space loss plot.  

As can be seen from Figure 4-3, when there is line-of-sight between the transmitter 

and receiver, the Longley-Rice model generally does not takes into account the 

reflected waves for high frequencies. Because quarter-wavelength path difference 

between direct and reflected waves is exceeded for high frequencies. If it is 

exceeded, the Longley-Rice model does not take into account the reflection 

mechanism. Therefore, the model provided by GTD should be reliable. 
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Figure 4-3 Path losses vs. receiver antenna height at 1846 MHz for R1-0.5-T1 

The “delay” between the measured and GTD results are discussed before, it is due 

to the surface roughness; not the antenna height. However, at some intervals, 

although the height of the receiver antenna increases the path loss does not 

decrease. Because, the terrain profile does not include any diffraction edge, the 

diffraction mechanism of GTD does not exist; therefore, there are only GO fields. 

The phase difference between the direct and reflected waves are important in GO, 

as discussed before. There, due to the out of phase direct and reflected waves the 

received power may be decreases. Therefore, if the frequency is high and there is 

line of sight between receiver and transmitter, antenna height should be selected by 

taking into account the GO field effects.     

The last parameter in the list should be discussed is the distance between the 

obstruction and receiver antenna. The other items in the list are fixed or 

unchangeable. For example, height and location of a mountain cannot be changed. 

Similarly the wideness of the mountain cannot be changed so wedge angle is fixed. 
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When 25 , 100050 andTx Rx Txh h h d    , the obstruction loss vs. the 

distance between the obstruction and receiver antenna, are given in Figure 4-4.  It 

can be seen that there is a sharp decrease near the obstruction and when Rxd  

increases loss still decreases but smoothly. Another important point is that the 

obstruction loss given in Figure 4-4 is the loss over free space. Since the free-space 

loss does not increase so rapidly after the obstruction, due to the distance between 

the transmitter and obstruction; it is possible to make an optimization about the 

distance between the obstruction and receiver antenna.   

 

Figure 4-4 Loss vs. Rxd  when 25 , 100050 andTx Rx Txh h h d      

When 25 , 100050 andTx Rx Txh h h d    , the total loss is given in Figure 

4-5. It can be seen that maximum field obtained at the distance 500  after the 

obstruction. When all other parameters are same but Txd  is decreased to 500 and 

increased to 1000 , the total losses are given in Figure 4-6 and Figure 4-7. 
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Figure 4-5 Total loss vs. Rxd  for 25 , 100050 andTx Rx Txh h h d      

 

Figure 4-6 Total path loss vs. Rxd  for 25 , 50050 andTx Rx Txh h h d     
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Figure 4-7 Total path loss vs. Rxd  for 25 , 200050 andTx Rx Txh h h d     

From Figure 4-5, Figure 4-6 and Figure 4-7, it can be concluded that the maximum 

received field can be achieved after the obstruction with a distance, half of the 

distance between the transmitter and obstruction, 
2

Txd
 . 

 To sum up, in this chapter, the parameters are described for an antenna system 

located on a hilly terrain. After discussing the general constraints about the 

parameters, the study focused on the receiver site. The other parameters are 

assumed constant or configurable according to the receiver. 

Two important parameters about the receiver side are receiver antenna height and 

location.  

About the first parameter, antenna height, it is shown that, although for many 

practical cases the higher receiver antenna corresponds to higher received field, 

some exceptional cases are discussed like in Figure 4-3. The reason of this 

exceptional case is the reflected waves in GO and explained in a detailed way in 
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this chapter. If there is a line-of-sight between transmitter and receiver and also the 

operating frequency is high, the receiver antenna height should be determined 

carefully due to the phase difference between the direct and reflected waves in GO. 

Especially, if there is no edge at the terrain, then due lack of diffracted fields, the 

GO fields may dominate and the effect described above would become more 

noticeable. 

About the second parameter, antenna distance, it is shown that the receiver antenna 

should be located far away from the obstruction in order to avoid shadowing effect 

of the obstruction and reduce the obstruction path loss. However, moving away 

from the obstruction means moving away from the transmitter at the same time. 

Therefore free space path loss also increases. Therefore an optimization is offered 

in this thesis about Rxd , Rxd   should be selected as 
2

Txd
  or a little smaller than it. 

Here Txd  corresponds the distance between the obstruction and transmitter. Also,  

Rxd  corresponds the distance between the obstruction and receiver. 
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CHAPTER 5  

 

CONCLUSION 

Main goal of this thesis work is modeling the propagation path loss for hilly terrain 

by using ray optic methods. To do this, first, the field variations of various types of 

structures are examined by Geometrical Optics. Due to the failures of GO, 

diffraction mechanisms of GTD are inserted the classical GO theorem. GTD 

diffraction coefficients are obtained by analyzing the wedge diffraction fields when 

a field is incident upon the wedge.  The structure is selected as wedge due to the 

fact that in real life, the mountains and hills can be represented by a wedge. Then a 

code developed in MATLAB
®
 in order to apply diffraction mechanisms to the 

problems practically. Also the code is applied to the problems that cannot be solved 

by Geometrical Optics, the results proved that the code and GTD mechanisms work 

properly. 

Then simplified models of real life propagation environments are analyzed by using 

GTD. To do that, the mountains located between the transmitter and receiver is 

represented by a wedge. And the diffraction phenomena in the real life are 

simulated by the coefficients obtained from the wedge diffraction. The relationship 

between propagation path loss and lots of propagation environment parameters are 

discussed. The models are analyzed for both soft and hard polarization. The 

discussions about GTD can be summarized as, 

 Varying the transmitter and the receiver parameters has the same effect on 

the obstruction loss. Therefore, only the receiver side is analyzed.  
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 Increasing the height of the obstruction increases the obstruction path loss, 

as expected. 

 Increasing the distance between the obstruction and receiver antenna, while 

all other parameters are same, decreases the obstruction path loss. Since 

receiver avoids the “shadowing effect” of the obstruction. 

 Increasing the height of the receiver antenna decreases the obstruction path 

loss, as expected. 

 While all other parameters are the same, loss is proportional to wedge angle 

for soft polarization and inversely proportional to hard polarization. 

However, the effect of wedge angle is limited to 1.5 dB, even the wedge 

angle varies from 0° to 90°. 

Also, the Longley-Rice model is applied to same structures by using a simulation 

program, Radio Mobile
®
, which is based on Longley-Rice method. The elevation 

data used by the program is modified by using a code developed in MATLAB
®
 and 

XVI Hex editor. Therefore, it is possible to analyze any type of the structure by the 

program.  

Then the Longley-Rice model results are compared with GTD results. It is observed 

that varying the same parameter has the similar effect on obstruction loss in both 

GTD and the Longley-Rice models. But the magnitude of the effect is different. For 

example, increasing the receiver antenna distance decreases the obstruction loss for 

both GTD and Longley-Rice model; however, the amount of decrease is different.  

Measured data is used in the comparison of the GTD and Longley-Rice models as 

reference. To do the data measured at Colorado plains by McQuate, Harman and 

Barsis.  Although different terrain profiles are available two of them are selected: 

one lie-of-sight and one beyond the line-of-sight. Line-of-sight profile, R1-0.5-T1 is 

analyzed by GTD and the Longley-Rice one low (230 MHz) and one high (1846 

MHz) frequency. The beyond the line-of-sight profile, R1-5-T5A is analyzed by 
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GTD and the Longley-Rice one low (230 MHz) and one high (4595 MHz) 

frequency, similarly. 

The results can be summarized as, 

 GTD provides better estimation on propagation path loss according to the 

Longley-Rice model for the short range terrain profiles analyzed in this 

thesis. 

 Although GTD always provides results with an acceptable error, the amount 

of the error is increasing with the frequency. For example, in R1-5-T5A 

terrain profile, the error increased from 2 dB to 7 dB. This is a result of the 

decreasing wavelength with increasing frequency. For fixed size clutter 

sources such as plants, stones, become more noticeable for the propagated 

waves when the wavelength is small. Therefore, especially, after 1 GHz 

GTD results should be modified by roughness factor. 

 In line-of-sight propagation medium, the Longley-Rice model neglects the 

reflected wave and gives only free space loss for high frequencies. 

In Chapter 4, by taking into account the results above, the parameters of an antenna 

system located on a hilly terrain is discussed. Although increasing the height of the 

receiver antenna generally increases the received field, there are some exceptions in 

line-of-sight propagation medium. The example of this exception is given in the 

measured and GTD data for line-of-sight profile, R1-0.5-T1 and it is emphasized 

that this effect should be taken into account in determining the receiver antenna 

height. The other changeable receiver antenna parameter in an antenna system is 

antenna location. As mentioned before, if the distance between the obstruction and 

the receiver antenna increases, obstruction loss decreases. However, in this case, 

receiver goes far away from the transmitter source and the free space loss increases. 

Therefore, an optimal distance is offered to minimize the total loss, and it 
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corresponds to approximately half of the distance between transmitter and 

obstruction (
2

Tx

Rx

d
d   ). 

Although throughout this thesis, GTD and Longley-Rice models are compared, it 

should be noted that the performance of the Longley-Rice model may be improved. 

However, that is not an aim of this thesis. And it would be a future work based on 

this thesis. In order words, a future work improves Longley-Rice model and then it 

may be useful than GTD. Since Longley-Rice is an empirical model, it may tolerate 

the clutter errors better than the GTD. One another advantage of Longley-Rice 

model is also useful for very long propagation distances since the earth curvature 

and Tropospheric effects are taken into account in Longley-Rice method. By the 

help of this advantages, a future work make Longley-Rice better than GTD. 

Another future work may be taking into account the roughness factor and finite 

conductivity effects. Finite conductivity does not cause series errors; however, as 

mentioned before, after 1 GHz, GTD is needed to improve by roughness factor. 

The performances of GTD and the Longley-Rice model are compared for only line-

of-sight case and one diffraction case in this thesis. A future work similar to this 

thesis study may analyze the multiple diffraction performance of these two 

approaches.  
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