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ABSTRACT 
 

 

 

TUNED VIBRATION ABSORBER DESIGN FOR A SUPPORTED HOLLOW 

CYLINDRICAL STRUCTURE 

 

 

 
Aksoy, Tuğrul 

M. S. Department of Mechanical Engineering 

Supervisor: Assist. Prof. Gökhan O. Özgen 

 

September 2015, 93 pages 

 

 

 

Supported hollow structural elements have a usage area in various types of structures 

or machines. They exhibit an oscillatory behavior under various excitations since 

their modal frequencies are quite low. This behavior results in vibrations which reach 

huge amplitudes especially at the tip of the structures. This situation may be harmful 

for the structural integrity of the structures and may reduce the service life. 

Moreover, these vibrations can distort the performance of the machines’ which 

involve the supported hollow structure. 

In this thesis study, a tuned vibration absorber (also called as tuned mass damper) 

design is proposed to suppress the vibrations of a supported hollow cylindrical 

structure under impulsive loading. Within the scope of this study, a tuned vibration 

absorber (TVA) designed and applied on a sample supported hollow cylinder 

structure. Then, the mitigation in vibration amplitudes as a result of this application 

is investigated. 

In order to see the effectiveness of the TVA application, a physical structure 

involving a supported hollow cylindrical structure is designed and manufactured. 

TVA is designed by considering the modal parameters of this physical structure and 

applied on it. Experiments are carried out in order to verify the effectiveness of the 

TVA application on the dynamics of the system. After then, dynamic test are carried 



vi 
 

out on the system and the mitigation in vibration levels is investigated as the result of 

the TVA application. 

 

 

 

Keywords: Supported hollow cylinder vibrations, tuned vibration absorbers, tuned 

mass dampers  
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ÖZ 
 
 
 

DESTEKLENMİŞ İÇİ BOŞ SİLİNDİRİK BİR YAPI İÇİN AYARLI TİTREŞİM 

EMİCİ TASARIMI 

 

 

 

Aksoy, Tuğrul 

Yüksek lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç Dr. Gökhan O. Özgen 

 

Eylül 2015, 93 sayfa 

 

 

 

Desteklenmiş içi boş yapısal elemanlar, çeşitli yapılarda ve makinalarda kullanım 

alanı bulmaktadırlar. Bu yapısal elemanlar, doğal frekanslarının oldukça düşük 

olması nedeniyle çeşitli tahrikler altında salınımlı davranış göstermektedirler. Bu 

davranış, özellikle yapıların uç kısımlarında yüksek genliklere ulaşan titreşimlere yol 

açabilmektedir. Bu durum, söz konusu yapıların yapısal bütünlüğü açısından zararlı 

olabilmekte ve servis ömürlerini azaltabilmektedir. Ayrıca bu titreşimler, 

desteklenmiş içi boş yapısal elemanları içeren makinaların performansını da 

bozabilmektedir. 

  

Bu tez çalışmasında, desteklenmiş içi boş bir silindirik yapının titreşim seviyelerini 

azaltmak için bir ayarlı titreşim emici (ayarlı kütle sönümleyici olarak da adlandırılır) 

tasarımı önerilmiştir. Çalışma kapsamında bir ayarlı titreşim emici (TVA) 

tasarlanmış ve örnek bir desteklenmiş içi boş silindirik yapının üzerine 

uygulanmıştır. Sonrasında, bu uygulama sonucunda titreşim büyüklüklerinde 

meydana gelen azalma incelenmiştir. 

 

TVA uygulamasının etkinliğini görebilmek amacıyla, desteklenmiş içi boş silindirik 

bir yapı içeren deneysel bir prototip tasarlanmış ve üretilmiştir. TVA tasarımı da bu 

deneysel prototipin modal parametreleri dikkate alınarak gerçekleştirilmiş ve 

prototipin üzerine uygulanmıştır. Sonrasında, sistem üzerinde dinamik testler 
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gerçekleştirilmiş ve TVA uygulaması sonucunda titreşim seviyelerinde meydana 

gelen azalma incelenmiştir. 

 

 

  

Anahtar kelimeler: Desteklenmiş içi boş silindir titreşimleri, ayarlı titreşim 

emiciler, ayarlı kütle sönümleyicileri  
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NOMENCLATURE 
 
 
 

TVA: tuned vibration absorber 

DVA: dynamic vibration absorber 

TMD: tuned mass damper 

SDOF: single degree of freedom 

MDOF: multiple degrees of freedom 

g: gravity acceleration 

Hz: hertz 

dB: decibel 

mm: milimeters 

M: mass of the main system 

m : mass of the vibration absorber 

K: stiffness of the main system 

k: stiffness of the  vibration absorber 

x1: response of the main system 

x2: response of the tuned vibration absorber 

a1: response amplitude of the main system 

a2: response amplitude of the vibration absorber 

P0: excitation amplitude 

ω: excitation frequency 

ωn: natural frequency 
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xst: static deflection 

µ: mass ratio 

ωa: natural frequency of the vibration absorber 

Ωn: natural frequency of the main system 

c: damping coefficient of the vibration absorber 

j: square root of minus one 

f: natural frequency ratio 

g: forced frequency ratio 

cc: critical damping coefficient 

fopt: optimum natural frequency of the vibration absorber 

ζ: damping ratio 

MAC: modal assurance criteria 

FFT: fast fourier Transform 

FRF: frequency response function 

PSD: power spectral density 

FEA: finite element analysis 
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           CHAPTER 1 

 

 

1. INTRODUCTION 
 
 

 

Tuned vibration absorbers (TVA) can be effectively used to suppress resonant and 

forced vibration response in mechanical structures. However, each tuned vibration 

absorber application will have to be handled as a standalone design project since 

there is quite a bit of variation in the types of vibration problems. Besides, tuned 

vibration absorbers have to be integrated to the structure of interest which does not 

necessarily have standardized mechanical interfaces. 

In this thesis study, design of a tuned vibration absorber to suppress the resonant 

vibration response of a supported hollow cylinder structure is investigated. The 

structure is a representative structure constructed to simulate a scenario where the 

beam like structures tip response is dominated resonant vibrations with main 

contribution coming from its lowest transverse vibration modes. The structure is 

modeled in 3 dimensions and lowest structural modes are transverse bending modes 

which are also very closely spaced. An SDOF tuned vibration absorber is designed to 

suppress the vibration response around these two lowest modal frequencies.  The two 

modes are in fact transverse modes that are almost orthogonal and the single tuned 

vibration absorber is to be integrated to be interacting with both modes which are one 

of the several design challenges of the particular application. Other challenges 

include the determination of the basic tuned vibration absorber parameters (mass, 

stiffness and damping ratio) and orientation of the TVA system on the structure. 

In the beginning of study, a literature survey is presented in the second chapter. This 

literature survey is divided into four parts. In the first part, fundamentals of the tuned 

vibration absorber theory are explained which is based on single degree of freedom 

tuned vibration absorber application on a single degree of freedom system. Second 

chapter is also divided into two sections. In the first section, the basic theory of 

undamped tuned vibration absorber is explained and the damped vibration absorber 

theory is presented in the second section. Second part of this chapter is allocated to 

the guidelines for suppressing resonant vibration problems in mechanical structures. 
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In the third part, tuned vibration absorber design works for the transverse vibrations 

of slender structures are presented. Various types of tuned vibration absorber 

applications are explained in the final part of this chapter. 

 

Third chapter is allocated for the description of the vibration control problem and this 

chapter is divided into three parts. In the first part, physical structure is described and 

analysis results are performed on the finite element model of this structure. The 

vibration control problem is explained with details in the second part.  In the third 

part of this chapter, experimental verification of the finite element model of the 

physical structure is explained. 

  

In the fourth chapter, design of the tuned vibration absorber is clarified. This chapter 

is also divided into three parts. In the first part, optimization study for the 

identification of the tuned vibration absorber parameters is explained with details. In 

the second part of the fifth chapter, the conceptual design solution for the realization 

of the tuned vibration absorber parameters is presented. Characterization tests 

performed to verify the tuned vibration absorber parameters are explained in the third 

part. 

  

In the fifth chapter, the tuned vibration absorber design is verified via experiments 

carried out on a physical structure. Experiments and main results are explained 

elaborately. 

 

In the final chapter, main results of the study are evaluated and the conclusion is 

presented. In addition, the predictions and suggestions about the future of this study 

are established. 
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       CHAPTER 2 

 

 

2. LITERATURE SURVEY 
 
 

 

Tuned vibration absorbers are frequently used systems for controlling and reducing 

the vibration amplitudes of structures and machines. They can be designed for 

absorption of vibrational energy at a single frequency. They can also be designed to 

be effective in a frequency bandwidth. 

A comprehensive literature research is performed in this thesis for the various types 

of TVA designs and applications. Report of the literature survey conducted for this 

thesis work is separated into four parts. In the first part of the literature survey report, 

fundamentals of the tuned vibration absorber theory are presented. Secondly, sources 

that give information about tuned vibration absorber design guidelines for the 

resonant vibration problems are presented. In the third part, various tuned vibration 

absorber design studies conducted for reducing the transverse vibrations of slender 

structures are examined. Various types of tuned vibration absorber design 

alternatives are presented with details in the final section of this chapter. 

2.1. BASIC THEORY OF TUNED VIBRATION ABSORBERS 
 

Machines and mechanical components are usually subjected to a steady alternating 

force which acts at constant frequency. This forcing (excitation) may result in 

excessive vibrations if the frequency of excitation is equal or close to a resonance 

frequency of structure. These vibrations may cause to the machines’ or structures’ 

damage or sudden failure. In order to eliminate this problem, the stiffness or mass 

properties of the systems’ can be altered. However, this is impractical for most cases. 

Therefore, the usage of tuned (dynamic) vibration absorbers is proposed to prevent 

the severe vibrations of the systems. The dynamic vibration absorber application is 

invented by Frahm in 1909 [1]. 

Tuned vibration absorbers basically consist of stiffness (K) and mass (M) elements. 

Depending on the requirement, damping element is introduced to the vibration 



4 
 

absorber. Especially, if the vibration absorption is required in a bandwidth, the 

damping element should be used within the vibration absorber and the damping 

amount is adjusted according to the bandwidth which vibration reduction is desired. 

Fundamentals of the tuned vibration absorber theory are examined in two parts of 

this section of literature survey. In the first part, undamped vibration absorber theory 

is explained. The damped tuned vibration absorber theory is presented in the second 

part. 

2.1.1. The Undamped Tuned Vibration Absorbers 

The simplest form of tuned vibration absorber is shown in Figure 2-1 and it consists 

of a stiffness element which has a spring constant and a mass. Natural frequency of 

the absorber is selected as equal to the excitation frequency ω. It will be proven that 

the vibration of main system is reduced since the absorber functions in a way that the 

spring force acts at opposite direction of excitation. In order to prove this statement, 

the equations of motion are written as follows [1]: 

𝑀𝑥̈1 + (𝐾 + 𝑘)𝑥1 − 𝑘𝑥2 = 𝑃0 sin(𝜔𝑡)   

𝑚𝑥2̈ + 𝑘(𝑥2 − 𝑥1) = 0                                                                                   (Eqn. 2.1) 

where 

M: mass of the main system 

K: stiffness of the main system 

m: mass of the tuned vibration absorber 

k: stiffness of the tuned vibration absorber 

x1: Response of the main system 

x2: Response of the tuned vibration absorber 

P0: Excitation amplitude 

ω: Excitation frequency 

t: Time 

The forced vibration of the system is in the following form: 

𝑥1 = 𝑎1 sin 𝜔𝑡  

𝑥2 = 𝑎2 sin 𝜔𝑡                                                                                                (Eqn. 2.2) 
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Where a1 is the amplitude of the response of main system and a2 is the amplitude of 

the response of tuned vibration absorber. 

 

 

 

Figure 2-1: Addition of small k-m vibration absorber to the main K-M system 

[1] 

 

Combining (Eqn. 2.1) and (Eqn. 2.2) and eliminating sinωt terms results in following 

equations [1]: 

𝑎1(−𝑀𝜔2 + 𝐾 + 𝑘) − 𝑘𝑎2 = 𝑃0  

−𝑘𝑎1 + 𝑎2(−𝑚𝜔2 + 𝑘) = 0                                                                         (Eqn. 2.3) 

By performing some simplifications, (Eqn. 2.3) is simplified as in (Eqn. 2.4) [1] 

𝑎1

𝑥𝑠𝑡
=

1−
𝜔2

𝜔𝑎
2

(1−
𝜔2

𝜔𝑎
2)(1+

𝑘

𝐾
−

𝜔2

Ω𝑛
2)−

𝑘

𝐾

  

𝑎2

𝑥𝑠𝑡
=

1

(1−
𝜔2

𝜔𝑎
2)(1+

𝑘

𝐾
−

𝜔2

Ω𝑛
2)−

𝑘

𝐾

                                                                         (Eqn. 2.4) 

where 

xst = P0/K : static deflection of main system 

ωa
2 

= k/m : square of the natural frequency of the absorber 

Ωn
2
 =

 
K/M : square of the natural frequency of the main system 

µ = m/M : mass ratio 

P0sinωt 
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From (Eqn. 2.4) it can be clearly seen that the amplitude of a1 becomes zero if the 

absorber natural frequency (ωa) is equal to the excitation frequency (ω). It can also be 

found that the amplitude of absorber response (a2) is equal to P0/k which implies the 

fact that the absorber spring (k) applies a force equal and opposite to the excitation 

forcing (P0). 

If the natural frequency of the absorber is chosen as equal to the natural frequency of 

the main system 

 i.e. (ωa= Ωn or 
𝑘

𝑚
=

𝐾

𝑀
 or 

𝑘

𝐾
=

𝑚

𝑀
), the (Eqn. 2.4) becomes [1]: 

𝑎1

𝑥𝑠𝑡
=

1−
𝜔2

𝜔𝑎
2

(1−
𝜔2

𝜔𝑎
2)(1+µ−

𝜔2

ω𝑎
2)−µ

  

𝑎2

𝑥𝑠𝑡
=

1

(1−
𝜔2

𝜔𝑎
2)(1+µ−

𝜔2

ω𝑎
2)−µ

                                                                    (Eqn. 2.5a, b) 

It can be seen that the both of (Eqn 2.5a) and (Eqn. 2.5b) have the same denominator. 

This denominator is in quadratic form and of course has two roots. These roots 

represent the newly formed two resonance frequencies of the main system and can be 

calculated the ω from the following equation [1]: 

(
𝜔

𝜔𝑎
)

2

= (1 +
𝜇

2
) ∓ √𝜇 +

𝜇2

4
                                                                           (Eqn. 2.6) 

The relation between the mass ratio and the two resonance frequencies of the system 

is represented in Figure 2-2. According to this graph, it can be seen that the 

resonance frequencies shifts from the original natural frequency as the mass ratio 

increases. It means that as the absorber mass increases the separation between the 

two resonances also increases. 
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Figure 2-2: Change of the two resonance frequencies with respect to the mass 

ratio 

 

In Figure 2-3, the change in absolute vibration amplitude of main system is shown 

for with and without absorber cases. The newly formed two resonances as a result of 

absorber addition to the system can be clearly seen from the figure. These two peaks 

should be controlled if the vibration absorption is sought for a wide frequency band 

instead of a single target frequency. 

 

Figure 2-3: Vibration amplitudes of the main system with respect to various 

disturbing frequencies 
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2.1.2. The Damped Tuned Vibration Absorbers 

If a dashpot is adapted to the system in Figure 2-1 by placing between the main mass 

M and absorber mass m, the equations of motion become [1]: 

 

𝑀𝑥̈1 + 𝐾𝑥1 + 𝑘(𝑥1 − 𝑥2) + 𝑐(𝑥̇1 − 𝑥2)̇ = 𝑃0 sin 𝜔𝑡  

𝑚𝑥2̈ + 𝑘(𝑥2 − 𝑥1) + 𝑐(𝑥̇2 − 𝑥̇1) = 0                                                            (Eqn. 2.7) 

 

where c is the damping coefficient of the tuned vibration absorber. The responses 

would be in harmonic form with a phase difference and can be written as in Eqn. 2.8. 

The equations of motion can be rewritten as in Eqn. 2.9 by assuming these responses: 

 

𝑥1 = 𝑎1𝑒𝑗𝜔𝑡  

𝑥2 = 𝑎2𝑒𝑗𝜔𝑡                                                                                                    (Eqn. 2.8) 

 

−𝑀𝜔2𝑎̈1 + 𝐾𝑥1 + 𝑘(𝑎1 − 𝑎2) + 𝑗𝜔𝑐(𝑎̇1 − 𝑎2)̇ = 𝑃0  

−𝑚𝜔2𝑎2̈ + 𝑘(𝑎2 − 𝑎1) + 𝑗𝜔𝑐(𝑎̇2 − 𝑎̇1) = 0                                               (Eqn. 2.9) 

 

The response of the main mass M, which we are interested in, can be derived from 

Eqn. 2.9 as follows [1]: 

 

𝑎1 = 𝑃0√
(𝑘−𝑚𝜔2)2+𝜔2𝑐2

[(−𝑀𝜔2+𝐾)(−𝑚𝜔2+𝑘)−𝑚𝜔2𝑘]2+𝜔2𝑐2(−𝑀𝜔2+𝐾−𝑚𝜔2)2
        (Eqn. 2.10) 

 

It is logical to write the Eqn. 2.10 in dimensionless form in order to express the 

response more easily. By making some simplifications, Eqn. 2.10 is written as 

follows [1]: 

 

𝑎1

𝑥𝑠𝑡
= √

(2
𝑐

𝑐𝑐
)2+(𝑔2−𝑓2)2

(2
𝑐

𝑐𝑐
𝑔)2(𝑔2−1+𝜇𝑔2)2+[𝜇𝑓2𝑔2−(𝑔2−1)(𝑔2−𝑓2)]2

                            (Eqn. 2.11) 
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where 

µ=m/M                    (the mass ratio) 

Ωn
2
=K/M                  (natural frequency of the main system) 

ωa
2
=k/m                   (natural frequency of the absorber) 

g=ω/Ωn                    (forced frequency ratio) 

f=ωa/Ωn                   (natural frequency ratio) 

xst=P0/K                  (static deflection) 

cc=2mΩn                 (critical damping)                                                           

 

Figure 2-4 represents the dimensionless amplitudes of the main mass response as a 

function of the forced frequency ratio (g). In this plot, the mass ratio (µ) is taken as 

1/20, the natural frequency ratio (f) is taken as 1. From this figure, it can be seen that 

the response becomes as in Figure 2-3 when the damping ratio is zero and an SDOF 

system response is obtained when the damping ratio becomes infinity. If the other 

two values of damping (0.10 and 0.32) are examined, it is observed that the 

maximum response increases with increasing damping. Moreover, the target 

frequency which the response is desired to be minimized deviates from the resonance 

frequency with damping addition.  Therefore, it can be said that there should be an 

optimum damping value between zero and infinity which is effective in a broad 

frequency range. 
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Figure 2-4: Responses of the main mass with respect to various damping values  

 

From Figure 2-4, it is also observed that all of the curves pass through the same two 

points P and Q, regardless their damping values. Hence, the most effective response 

curve should also pass through these points and make a horizontal tangent with the 

higher one. Moreover, these points can be equalized by manipulating the target 

natural frequency ratio (f), thus there is also an optimum value for f. Performing 

some mathematical computations, this optimum value of the tuning can be found as a 

function of mass ratio as follows [1]: 

𝑓𝑜𝑝𝑡 =
1

1+𝜇
                                                (Eqn. 2.12) 

Likewise, the optimum damping ratio is calculated in terms of the mass ratio µ as the 

result of long calculations as follows [1]: 

𝑐

𝑐𝑐
= √

3𝜇

8(1+𝜇3)
                                           (Eqn. 2.13) 

Eqn. 2.12 and Eqn. 2.13 which are given above are found by Den Hartog who is the 

inventor of tuned vibration absorber theory and known as Den Hartog’s equations. 

This theory is valid for an SDOF vibratory system. However, design of tuned 

vibration absorbers for the vibrations of multi degree of freedom systems more 
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complicated studies and researches may be necessary. In Section 2.4, some examples 

of these types of studies are presented. 

2.2. TUNED VIBRATION ABSORBER DESIGN STUDIES FOR 

RESONANT VIBRATION PROBLEMS 
 

Resonant vibration problems are caused by the nature of the structure rather than the 

external excitation. In this type of problems, vibration reduction is usually desired in 

the natural frequencies or around the natural frequencies of the structure. In this 

section of the literature survey, some examples of tuned vibration absorber design 

studies that give information about the control of resonant vibration problems are 

given. 

In their studies, Özgüven and Çandır developed a method in order to find the 

optimum parameters of two SDOF dynamic vibration absorbers to suppress the first 

and second modes of a beam [2]. The main structure is taken as a cantilever beam 

with structural damping and two viscously damped vibration absorbers are proposed 

to minimize the vibration amplitudes of this beam which is excited by constant and 

frequency-squared harmonic forcing. The assumed-modes method is used to find the 

response of the beam. 

At the beginning, the first absorber is tuned to the first resonance of the beam while 

the second absorber is tuned to the second resonance of the beam, theoretically. Then 

the parameters of the second absorber are kept as constant and parameters of the first 

absorber are optimized so that the minimum response is obtained for the first 

resonance. After that, the second absorber parameters are optimized to minimize the 

second resonance while the first absorber parameters are kept fixed. This procedure 

is repeated successively until the stable values are reached for both of the two 

absorbers. The free end of the beam is determined as the location where the response 

is to be minimized, thus the absorbers are to be attached. The results proved that the 

first absorber parameters are affected by the existence of the second absorber 

whereas the second absorber parameters are not affected from the existence of first 

absorber so much. It is also observed that the effect of an absorber to the mode which 

it is not tuned to becomes significant with decreasing mass ratio of that absorber.  
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In their studies, Zuo and Nayhef employed the descent-subgradient algorithm in 

order to obtain the maximum minimal damping in a certain frequency range for a 

structure with a MDOF tuned mass damper or multiple SDOF tuned mass dampers 

[3]. Tuned mass damper parameters are calculated by using the minimax 

optimization approach based on the descent-subgradient method for a 2DOF system. 

Moreover, H2 and H∞ optimization methods, which require disturbance inputs on the 

system and outputs from the system, are employed to solve the same problem and the 

performances of these three methods are compared. 

The minimax optimization method is also used by aiming to damp the first three 

flexural modes of a free-free beam [3]. Parameters of 3 DOF viscously damped 

TMD, 3 DOF hysteretically damped TMD and 3 SDOF viscously damped TMDs 

that are applied on 39-DOF discretized free-free beam are optimized by minimax 

method. Moreover, the three tuned mass damper parameters are calculated separately 

for the first three modes by using the classical Den Hartog method. The 

performances of these four methods are compared by considering the modal damping 

ratios achieved. It is observed that the 3DOF TMD with viscous damping provided 

the best damping performance. 

An experiment is performed with a 2-DOF TMD designed by minimax optimization 

in order to damp the first two flexural modes of a free-free steel beam which the 

movement in the longitudinal direction is constrained. Optimized 2-DOF TMD is 

realized by flexures whose stiffness and damping values are adjustable. Tension of 

the blades is altered by adjusting screw to obtain the desired stiffness. Damping is 

provided by the fluid between cup and plunger and the damping coefficient is 

adjusted by moving the cup in vertical direction. The experiment is done by an 

impact hammer and force to acceleration transfer function is derived from the 

response at the tip of the beam. As a result of the experiment, the predicted damping 

for the first modes of the beam is approximated sufficiently. 

In their study, Snowdon et al. [4] proposed the use of cruciform dynamic vibration 

absorber for vibrating structures and systems. The cruciform dynamic absorber 

consists of two beams having masses at their free ends and connected from their 

centers at right angles. It would be attached to the vibrating system from the junction 
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point of two beams. One of the branches is tuned to the first natural frequency of the 

vibratory structure while the second branch can be tuned to the second or third 

natural frequency or to the operating frequency of a machine exciting the vibratory 

structure. As a result, the cruciform vibration absorber can be used for the cases 

where the combined action of two absorbers is needed. Viscoelastic layer damping 

treatment can be applied to the beams of the absorber, thus the usage of viscous fluid 

damper is not necessary. This makes the absorber compatible for any orientation on 

the vibratory structure. 

The cruciform dynamic absorber is theoretically applied to a simple mounting 

system, a centrally driven clamped-clamped beam and a clamped circular plate 

driven from its midpoint. For the simple mounting system, firstly both branches of 

the absorber are tuned to first resonance of the system and damped identically by 

considering three absorber mass ratios. Then one of the branches is remained as 

undamped and tuned to fourth, tenth and twenty-fifth multiples of the first resonance 

for three different mass ratios. Transmissibility graphs of these two cases shown that 

the resonance of the system is suppressed sufficiently, however new peaks arose in a 

narrow frequency band for the second case. For the clamped-clamped beam excited 

from its center, the absorber is proposed to be attached to the center of the clamped-

clamped beam. One of the branches of the absorber is tuned to the first resonance 

while the other branch is tuned to second and tuned resonance respectively. It is seen 

that the transmissibility values at tuned frequencies is decreased efficiently. 

Moreover, the second branch is tuned to twice of the second resonance as the last 

case of clamped-clamped beam analysis. As the result, the first beam resonance 

again suppressed sufficiently and the newly formed peak due to the second tuning 

frequency is not significant. For the clamped circular plate driven by a sinusoidal 

excitation, the absorber is planned to attach to the excitation point since the 

vibrations are expected to be the highest here. The two branches of the absorber are 

damped and tuned to first and second, first and third, second and third resonances of 

the circular plate respectively. Finally, one of the branches is damped and tuned to 

the first resonance of the circular plate while the other branch is remained as 

undamped and tuned to 1.5 times the second resonance. 
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Vakakis and Paipetis [5] examined the effect of a viscously damped dynamic 

vibration absorber (VDDA) on a multi-degree of freedom vibratory system. They 

used the method of Aq polynomials, which is developed by them, in order to 

investigate the dynamic behavior of a multi-degree of freedom linear system which 

the upper half is connected to a viscously damped dynamic vibration absorber. 

The method of fixed points, which assumes that certain frequencies exist for which 

the response of the system is independent of damping if the vibratory system has 

only one damping element between two of its positions, is employed for the 

optimization of VDDA and used within the expression derived for the force 

transmitted to the ground when a harmonic excitation is applied on the upper mass of 

the MDOF system. By means of this optimization procedure, the minimization of 

transmissibility is aimed. For that purpose, the parameters of absorber’s natural 

frequency ratio to the main system (α=ωa/ω0) and absorber damping ratio 

(ζ=ca/2(Kama)
1/2

) is used.  

Firstly α parameter is optimized in the range of 0.1-1.5 for mass ratio of µ=0.5 and in 

the paths followed by three fixed points. The optimum value of α is obtained as equal 

to 0.463 for which the transmissibility ratios of three fixed points reach the possible 

minimum values combination. Moreover it is derived that the optimum value of α 

can be approximated by the relation of αopt=(6+5µ+ µ
2
)/(10+15 µ+7 µ

2
+ µ

3
) for a 

two degrees of freedom system with one VDDA.  Secondly, the damping ratio of 

absorber (ζ) is determined for the mass ratio of µ=0.5 and absorber frequency ratio of 

α=0.463. Optimization procedure of damping ratio results in two damping values. 

First optimum damping ratio is ζ=0.326 and it targets the maximum values of first 

two fixed points. The second appropriate damping ratio is found as ζ=0.5246 and this 

ratio makes the maximums of the responses at low and high frequencies equal. 

For the application of this analysis, an anti-vibration mounting is designed in order to 

isolate the ground from the vibrations of the rotating machinery that are caused by its 

potential unbalance. Due to symmetry reasons the dynamic absorber is split to two 

parts with parameters of ma/2, Ka/2 and ca/2. Damping is provided by a silicone-filled 

cylinder with a piston moving inside. The mass of absorber (ma) is connected to this 

piston. The upper mass of the main system (m) is the mass of the machine and its 
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base, the lower mass is also equal to m. Lower and upper masses are connected with 

springs with constant K and also the whole system is supported on the springs with 

constant K via steel rods. 

Pombo and Laura [6] investigated the usage of two dynamic vibration absorbers for a 

laboratory model where the forcing excitation is in the form of F(t) =

∑ Fi cos ωit
2
i=1 . Here, the forcing frequencies ω1 and ω2 are almost equal to the 

lowest natural frequencies of the system. 

A gear mechanism driven by an electric motor produces sinusoidal forces with 

frequencies of f1=5.45 Hz and f2=8.85 Hz. Two steel disks enable the variation of 

two lowest natural frequencies of the system. This system yield in two modes; first is 

the translational mode along y-axis with natural frequency of 5.45 Hz and the second 

is the rotational mode around the vertical axis with a natural frequency of 8.85 Hz. 

As a result of experiments, four new natural frequencies arise because of the DVAs. 

In addition, two peak amplitudes of 1.2 mm and 0.53 mm decrease to 0.31 mm and 

0.02 mm due to the presence of two dynamic vibration absorbers. 

2.3. TVA DESIGN STUDIES FOR SLENDER STRUCTURES 
 

Since their natural frequencies are quite low, slender structures exhibit vibratory 

behavior under any type of excitation. Their oscillatory behavior is usually caused by 

the transverse modes. In this part of the literature survey, TVA design studies 

performed to overcome the transverse vibrations of the slender structures are 

examined. 

First study of this section is about the TVA application on a gun barrel which suffers 

from the oscillatory behavior due to firing event. Kathe et al. [7] investigated the 

effect of mounting a vibration absorber to a gun barrel’s muzzle brake. In this study, 

a model is created via MATLAB
©

 software for the plain gun barrel, then it is verified 

with the aid of modal impact testing that is performed on the real gun barrel. 

MATLAB model and modal impact test results are summarized in Table 2-1: 
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Table 2-1: Modal test and MATLAB results for the plain gun barrel [7] 

Mode Magnitude 

(Test) 

Natural 

Frequency (Test) 

Coherence 

(Test)  

Natural Frequency 

(MATLAB model)  

 dB(g/lbf) (Hz)  (Hz) 

1 -10.87 60.25 0.9990 59.03 

2 -24.71 167.25 0.9543 168.34 

3 -10.008 304.5 0.9306 322.62 

4 -24.71 448.25 0.9314 518.79 

 

After the plain barrel is modeled and tested, a vibration absorber is modeled and 

tested in order to see its effect on the frequency response of the barrel. The vibration 

absorber basically consists of a 1,831 kg mass which is suspended from spring rods 

that are attached to a collar. This collar is press-fitted onto the muzzle brake. The 

spring rods are 6,35 mm in diameter and 147,32 mm in length. 

Four-rod and eight-rod vibration absorber combinations are modeled and run via 

MATLAB. Meanwhile, modal impact testing is applied for eight rod, four rod and 

two rod versions. Modal test and MATLAB model results for the gun barrel with 

these vibration absorber configurations are presented in Table 2-2 (Full: eight-rod; 

half: four-rod; quarter: two-rod). According to these results, it is observed that the 

first two modes are shifted to higher frequency while the other modes do not change 

at all. Besides, the two-rod version yields the maximum reduction in the response 

magnitude (3 dB reduction). 
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Table 2-2: Modal impact testing results with vibration absorber [7] 

Full Vibration Absorber 

Mode Magnitude 

(Test) 

Natural 

Frequency (Test) 

Coherence 

(Test) 

Natural 

Frequency 

(MATLAB model) 

 dB(g/lbf) (Hz)  (Hz) 

1 -28.642 38.5 0.9937 35.19 

2 -10.614 71.25 0.9991 72.64 

3 -29.886 168.5 0.9887 169.95 

4 -9.323 307.0 0.9139 319.01 

5 -9.513 456.25 0.8915 499.48 

Half Vibration Absorber 

Mode Magnitude 

(Test) 

Natural 

Frequency (Test) 

Coherence 

(Test) 

Natural 

Frequency 

(MATLAB model) 

 dB(g/lbf) (Hz)  (Hz) 

1 -27.683 31.25 0.9998 29.28 

2 -10.793 64.5 1.0000 65.04 

3 -27.711 169.75 0.9993 169.27 

4 -6.541 304.0 0.8724 322.43 

5 -6.054 460.75 0.8821 516.28 

Quarter Vibration Absorber 

Mode Magnitude 

(Test) 

Natural 

Frequency (Test) 

Coherence 

(Test) 

 

 dB(g/lbf) (Hz)   

1 -29.94 25.5 0.9996  

2 -13.033 62.5 0.9995  

3 -24.251 169.5 0.9777  

4 -8.395 304.75 0.8640  

5 -6.412 458.5 0.8528  
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The US Patent 6167794 comprises two types of vibration absorber for gun barrels 

[8]. First vibration absorber type simply consists of a mass-spring device and it is 

attached to a location on the gun barrel where the vibration activity is the most 

important. Here, the TVA is attached to the tip of the gun barrel since the vibration 

amplitudes are the highest. Ground ended compression springs are used for this 

vibration absorber which are at pre-compressed state. In the second type of TVA 

discussed in US Patent 6167794 thermal shrouds of the gun barrel are used as the 

inertia elements. Stiffness elements of the vibration absorber are the springs that 

connect the free end of the thermal shroud to the gun barrel. The vibration absorber 

includes a dynamically tunable spring collar which is fixed to the end of the shroud 

and it enables the relative motion between the muzzle ends of the thermal shroud and 

gun barrel. The springs are pre-compressed to provide the concentricity of thermal 

shroud and gun barrel centerlines and maintain the contact between barrel muzzle 

and spring collar. 

In Büyükcivelek’s thesis study, gun barrel vibrations which are caused by the ground 

excitation are taken into consideration [9]. In order to reduce the vibration levels of 

the longer gun barrel to the short gun barrel, tuned vibration absorber design is 

proposed. In the design process, verified finite element model of the gun barrel and 

PSD data of the ground excitation are used as inputs and tip displacement of the gun 

barrel is chosen as output. From the PSD data, it is found that the first resonance of 

barrel dominates the response of gun barrel, thus the tuning frequency of the TVA is 

chosen around the first mode of the barrel. Firstly, harmonic analyses are run on the 

FE model of the gun barrel in order to examine the TVA mass effect. Then, spectrum 

analyses are run by applying the input PSD data in order to optimize the mass and 

damping parameters of TVA. After the identification of TVA parameters, conceptual 

TVA design solutions are researched that would satisfy these parameters. A spring-

mass-damper type of TVA is selected as the best alternative solution. In this solution, 

two helical springs are used as the stiffness elements and a dashpot is employed as 

the damping element of TVA. 
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Bonsel, Fey and Nijmeijer [10] applied a linear dynamic vibration absorber (i.e. 

tuned vibration absorber) to a piecewise linear beam system to suppress its first 

resonance. This system consists of a steel beam which is supported by leaf springs 

and a second beam at the middle of the beam. A pin is attached to this second beam 

and it contacts with the main beam when it has a negative deflection. As a result it 

behaves as one-sided spring. There exists rotating machinery at the middle of the 

beam which produces an excitation at 60 Hz. The tuned vibration absorber which 

consists of two cantilever beams and two masses of 0.5 kg at its ends is applied on 

the beam system. By moving the masses along the beam the stiffness of TVA can be 

tuned precisely. The eigenfrequency of TVA is tuned to 19 Hz which is the first 

harmonic resonance of the beam system. Firstly, undamped TVA is applied to the 

piecewise beam system and anti-resonance is observed at this resonance frequency 

whereas new resonances arise around this anti-resonance. After that, certain amount 

of damping is added to the TVA system and it is seen that the newly formed 

resonances are also suppressed. 

Gu, Chang and Xiang proposed the use of tuned mass dampers in their studies, in 

order to increase the flutter wind speed of a long-span bridge [11]. They derived the 

equations of motion of the bridge with TMDs and employed the Routh-Hurwitz 

stability criterion to examine the aerodynamic instability of the bridge. For the 

experimental study, a sectional model of Tiger Gate Bridge, which is a steel box 

deck suspension bridge in China, is tested in a wind tunnel and the numerical results 

are verified by this way. The effects of structural damping of the bridge, the 

frequency and mass inertial moment inertia ratios of the tuned mass dampers to the 

bridge are examined to see how they are effective on the flutter control of bridge. 

Two identical tuned mass dampers are located at the two sides of the cross section at 

the center of the bridge. In this way, the TMDs can yield counter moment to suppress 

torsional vibrations. The TMD frequencies are tuned as very close to the flutter 

frequency so that the critical flutter wind speed increase. TMDs consist of two 

springs, two mass blocks and a pendulum-container system as the damping device. 

The upper plates of TMDs are rigidly connected to the bridge. 
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Ten sets of TMD parameters (ratio of mass moment of inertia, frequency ratio and 

damping ratio) are investigated.  Moreover, three different structural damping ratios 

(%0.7, %2.13 and %4.05) for the bridge are examined. It is seen that the TMDs 

having the mass moment of inertia ratio between %5.6 and %10 can increase the 

flutter speed significantly. It is also concluded that the tuned mass dampers are more 

effective on flutter speed when the structural damping of the bridge is low. Finally, it 

is found that the frequency ratio of TMDs to the bridge and the damping ratio of 

TMDs affect the flutter speed control, however, the frequency ratio is more effective 

than the damping ratio. 

2.4. VARIOUS TYPES OF TVA APPLICATIONS 
 

There are several types of tuned vibration absorber applications which have different 

constructions, use various damping types, stiffness elements etc. In this section of the 

literature survey of various types of TVA applications found from the field research 

are presented. 

In their studies, Hill, Snyder and Cazzolato designed a dogbone vibration absorber in 

order to suppress several modes of vibration rather than single target frequency [12].  

In other words, the vibration absorber is developed to facilitate the vibration 

absorption at multiple resonance frequencies. This type of vibration absorber is also 

called as “dual mass absorber”. It consists of two rods supporting two masses at the 

ends. One of these rods is smooth and the other rod is threaded. The threaded rod is 

rotated with a motor to move the masses, thus the TVA resonances are altered by this 

movement. 

The first six mode shapes of TVA are obtained via finite element analysis and it is 

observed that the mode pairs 1-2, 3-4 and 5-6 have similar motion characteristics. 

However, the masses move in phase in the modes 1,3,5 and out of phase in the 

modes 2,4,6. The close proximity of these mode pairs are also seen from the modal 

frequencies. This relation between the pairing modes is important for expanding the 

bandwidth of the absorber.  

In his study, Dr. Lamb [13] sought to design a tuned vibration absorber in order to 

suppress the vibrations of the control room of a CaCl2 plant which the working staff 
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suffers. For this purpose, firstly the power spectrum of the vibration data is obtained 

considering the sources of peak amplitudes. According to this power spectrum, the 

main reason of discomfort is the motion occurring at around 3.5 Hz (sway mode) and 

it should be reduced by %70. According to the frequency response for the motion of 

control room, it is seen that the sway motion is magnified by factor of 85 relative to 

foundation motion. 

A cantilever type tuned vibration absorber is found as appropriate for this structure. 

Three locations are selected on the columns of frame for the TVA application. In 

order to achieve a desired mitigation in a narrow band of 1 Hz, the optimum tuned 

vibration absorber mass found as 1500 lbm. This value is computed by considering 

the optimum damping ratio. Various combinations of TMD flexure bar lengths and 

constrained–layer viscoelastic damping materials are investigated in order to find the 

best combination. SBR Rubber layers and a flexure bar of 950 mm are found as the 

best combination which provides %12 damping ratio. 

Vibration levels in the control room are measured and compared with the vibration 

levels before TMD application. It is seen that the vibration amplitudes are reduced 

below 0,005 g limit which results in a significant improvement of staff’s comfort.  

Mirsanei et al. [14] developed an adaptive tuned dynamic vibration absorber (DVA) 

based on a slider crank mechanism. This DVA design is applied to reduce the 

vibration amplitudes of a vibratory resonant beam. The base structure is selected as a 

simply supported beam including a motor with rotary disc. The beam is fixed with a 

fixed joint from one end and a roller joint from another end. The motor is connected 

to a speed control unit in order to change the speed of rotation so that the vibration 

force can be varied. The masses attached to the links of mechanism are moved by 

means of a servo motor until the system is tuned. 

As a result of the experiments, it is seen that the adaptive tuned DVA could decrease 

the rate of vibration in every forces acting by changing the speed of motor and rotary 

disc. However with DVA which is not adaptive and tuned to one excitation 

frequency, the primary system becomes two DOF. Therefore, if the machine operates 
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at other frequencies or if the forcing on the machine has several frequencies the 

vibration amplitudes may become large. 

Maly and Napolitano [15] proposed the design of a magnetic tuned-mass damper to 

suppress the airfoil vibrations (i.e. buffet) of an aircraft which are caused by vortex 

flow during the high angle-of-attack maneuvers. Buffeting of twin vertical tails of the 

aircraft excites the bending and torsional modes. Therefore the TMD’s are decided to 

place at the top of the vertical tails. Analysis shown that 10-pound TMD is required; 

however, because of the space limitations due to the TMD motion, the TMD is 

divided into ten parts each weighing one pound. For damping mechanism, rare-earth 

magnet configuration is selected since the viscoelastic materials would not stand to 

the dynamic environment of the aircraft and highly affected from the temperature 

variations. 

Fundamental natural frequencies of the structure are predicted via finite element 

analysis as 15 Hz for the bending mode and 43 Hz for the torsion mode. It is seen 

that the buffet pressure PSD peaks in the frequency range of 10-50 Hz. Therefore the 

15-Hz bending mode is targeted for the design of TMD.  

A prototype TMD is designed which consist of mechanical springs, a mass and 

magnets moving relative to a conductor, thus provide damping. Firstly the 

transmissibility of TMD is measured in order to measure the natural frequency and 

damping of the TMD. Then a cantilever beam is employed as a base structure which 

the bending mode frequency approxiately equal to the bending frequency of the 

aircraft vertical tail and frequency responses are found for with and without TMD 

cases. A 48”×4”×1” aluminum beam which has a bending frequency of 13,5 Hz at 

cantilevered condition is used and the TMD is bolted to the beam. Random excitaton 

is applied to the beam from the attachment point of TMD. It is seen that the original 

13,5 Hz mode is separated into two modes at 10,9 Hz and 15,7 Hz. Moreover the 

amplitude of the response is reduced by 20 times. 

Sayyad and Gadhave [16] investigated the effect of a magnetic vibration absorber on 

a cantilever beam which is subjected to harmonic excitation whose frequencies are 

varying. The vibration suppression is tried to achieve by changing the position of 
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magnetic vibration absorber along the beam. Magnetic vibration absorber is made 

from three magnets with two poles facing each other set in front of each other. The 

intermediate magnet acts as mass element and the repelling forces acting on it acts as 

the restoring force. 

Stiffness and natural frequency of the absorber change according to the distance 

between magnets. The main system which the absorber will be applied is a cantilever 

beam whose the first natural frequency is 42,6 Hz. Therefore, magnetic absorber is 

tuned to change the natural frequency from 0,8 fn (34,08 Hz) to 1,2 fn (51,12 Hz), so 

the distance between magnets is chosen as 70 mm. 

The experimental studies are performed with a cantilever beam which is clamped to a 

rigid support and the absorber is clamped to the free side of the beam. The cantilever 

beam is excited by means of an exciter and the excitation frequency is gradually 

increased. For each frequency the vibration amplitude of the main system is 

measured. Then the position of the absorber along the beam is changed and the 

excitation frequency is increased again. This procedure is repeated for a number of 

positions of absorber along the beam. As a result of these experiments, it is observed 

that the amplitude of vibrations is reduced from 2390 microns to 260 microns with 

the magnetic vibration absorber addition. 

Harris F.A. investigated the use of one 2-DOF vibration absorber and two SDOF 

vibration absorbers for the control of structural vibration of a mock payload cylinder 

[17]. For this study, a scaled cylindrical model of a payload fairing is used. Target 

frequencies are chosen as 62 Hz and 139 Hz by considering the frequency response 

data obtained experimentally. A large separation between two target frequencies is 

sought due to the high damping of the foam used in DVAs as stiffness and damping 

elements. 

Firstly two 1DOF DVA design parameters are specified in order to achieve the 

closest resonance frequencies. Then stacked 2DOF DVA parameters are developed 

so as to achieve the equal impedance with two SDOF design by considering the 

limitations specified above. DVAs consist of foam blocks which are used as the 

spring-damper elements and steel plates which are used as the mass elements. 
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Besides, small nuts are added to the top plate for tuning the DVAs to resonant 

frequencies to within 2-3 Hz of the targeted frequencies. 

After designing the DVAs as explained above, they are attached to interior of the 

cylinder radially. Totally 4 kg of DVAs are added to the cylinder which is 1/20 of the 

total mass of cylinder. A shaker is used to excite the system and totally 30 

accelerometer are used to measure the structural vibrations. As a result of the 

experiments, the average of the squared transfer functions of all 30 accelerometer 

measurements in velocity per input force to the cylinder are obtained. According to 

these results, it is observed that the peaks around the target frequencies 62 Hz and 

139 Hz are reduced by 19 dB and 9 dB respectively. 
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CHAPTER 3 
 
 

3. DESCRIPTION OF THE VIBRATION CONTROL PROBLEM 
 
 
 

In this chapter, the representative physical structure under consideration which 

involves a supported hollow cylindrical component is described and the dynamics of 

this structure is explored.  

In Section 3.1, the physical design and the finite element model constructed for this 

structure are explained with details. Vibration problem of this structure and its main 

causes are presented in Section 3.2. In the last section, experimental verification of 

the finite element model is presented. 

3.1. DESCRIPTION OF THE PHYSICAL STRUCTURE 
 

A sample physical structure which includes a supported hollow cylindrical 

component is designed as shown in Figure 3-1. In this model, supported hollow 

cylindrical structure is called as the ‘tube’ part. Tube part stands on two legs and an 

interface part is attached to tip of the tube in order to excite the structure from there. 

Legs are connected to the foot plate parts which are fixed to the ground. 
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Figure 3-1: CAD model of the sample physical structure 

 

Foot plates are made of thin metal sheets in order to make the structure flexible so 

that it can be easily excited. Firstly, the back and front foot plates are estimated to 

have the same dimensions. However, it is seen that the natural frequencies of the two 

transverse modes are very close to each other. Therefore, the length of back foot 

plate is increased so that a certain amount of difference between the two transverse 

modes can be obtained and they can be suppressed together. Final optimized 

dimensions of the back and foot plates are presented in Figure 3-2. As seen in this 

figure, lengths of the back and front foot plates are different while the other 

dimensions are the same. Thickness of the foot plates is adjusted to 1 mm and the 

material of foot plates are selected as St-37 steel. 
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Figure 3-2: Optimized dimensions of the back and front foot plates 

 

A prototype of the physical structure is fabricated as demonstrated in Figure 3-3. 

Foot plates are shown in red boxes in this figure and they are fixed to the ground 

with four M8x20 bolts. In the assembly, leg parts are welded to the foot plate and 

clamp parts. Impact interface part is glued to the tube. Clamps are tightened on the 

tube with two screws located on two sides of the clamps. Thin rubber layers are 

placed between the clamps and tube in order to spread the tightening force. Details of 

the connection between clamps and the tube are shown in Figure 3-4. 

 

 

 

Figure 3-3: General view of the fabricated structure 
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Figure 3-4: Clamp-tube connection detail 

 

Modal analyses are performed using the finite element model of the physical 

structure prepared in ABAQUS
©

 software. These modal analyses are done with the 

Lanczos eigensolver option of the ABAQUS. Lanczos method is the default 

eigenvalue extraction method of the ABAQUS since it has the most general 

capabilities [18]. The eigenvalue extraction problem for an undamped finite element 

model can be stated as follows: 

                                                  (−𝝎𝟐𝑴𝑴𝑵 + 𝑲𝑴𝑵)𝝋𝑵 = 𝟎                       (Eqn. 3.1) 

where M
MN

 denotes the mass matrix, K
MN

 denotes the stiffness matrix and φ
N
 is the 

eigenvector. M and N denotes the degrees of freedom [18]. 

Finite element model of the physical structure consists of 47073 nodes, 38227 

elements and a total of 230133 degrees of freedom. All parts are modelled using shell 

elements since their thicknesses are small with respect to other dimensions. The S4 

(four-node doubly curved general-purpose shell) elements in the ABAQUS element 

library are used while the mesh structure is built. General mesh structure can be seen 

in Figure 3-5. 
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Figure 3-5: General mesh structure of the physical structure 

 

All mechanical connections between the different parts of the structure are modelled 

with the ‘TIE CONSTRAINT’ option of the ABAQUS. With this option, the parts 

are connected from all degrees of freedoms. These connections are shown in Figure 

3-6. For simplicity, screws on the clamps and bolts on the foot plates are not in 

involved in the finite element model. The model is fixed from the foot plates by 

using the ‘ENCASTRE’ boundary condition option of ABAQUS as shown in Figure 

3-7. 
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Figure 3-6: Tie constraints between the parts of physical structure 

 

Figure 3-7: Fixed boundary condition regions 

 

Mode shapes of the structure which are calculated using the FEA model are given in 

the Figure 3-8, Figure 3-9 and Figure 3-10. In these figures mode shapes are 

presented with deformed and undeformed cases. Modal frequencies corresponding to 

each of the modes are also presented in Table 3-1. 
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Figure 3-8: 1
st
 mode (tip-off) of the prototype (FEA result) 

 

 

Figure 3-9: 2
nd

 mode (side-off) of the prototype (FEA result) 
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Figure 3-10: 3
rd

 mode of the prototype (FEA result) 

Table 3-1: Modal analysis results obtained from FEA 

 Modal frequency (Hz) 

Mode 1 (tip-off) 9,320 

Mode 2 (side off) 10,860 

Mode 3 18,026 

 

 

3.2. DEFINITION OF THE VIBRATION PROBLEM 

 

The vibration response of the physical structure which are targeted to be reduced, are 

expected to be caused by an impulsive loading applied in normal direction through 

the impact interface. Due to the impulsive loading, the system is excited over a wide 

range of frequencies up to a certain frequency level. For that reason, vibratory 

response of the cylindrical component of the structure is expected to be dominated by 

the response around the natural frequencies of system; and the vibration problem 

under consideration is essentially a resonant vibration problem. As a result, two 

dominant transverse modes of the physical structure are targeted for vibration 

suppression using a tuned vibration absorber. 
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For this structure, main contribution to vibrational deformation pattern of the two 

transverse vibration modes is the flexibility of the supporting foot plates rather than 

the bending of the tube. Therefore, rigid body-like motion of the tube is more 

dominant on these two transverse modes rather than the structural (bending) motion. 

From the modal analysis results, it is observed that these two transverse modes are 

almost perpendicular to each other (See Figure 3-8 and Figure 3-9). Moreover, modal 

displacements are at their maximum at the tip of the structure for both modes. 

Therefore, tuned vibration absorber design is performed by aiming to minimize the 

tip response of the structure for each the two transverse modes. Target vibration 

reduction metric is chosen as the magnitude of harmonic displacement value at the 

tip of the structure. This value will be computed from the resultant of harmonic 

displacement results obtained in three degrees of freedoms. 

 

3.3. VALIDATION OF THE FINITE ELEMENT MODEL OF THE 

STRUCTURE 

 

In order to validate the finite element model of the physical structure, experimental 

frequency response measurements are carried out on the physical prototype and 

modal parameters are identified experimentally to be compared with analysis results. 

These tests are performed in laboratory environment. Accelerometers used during 

modal tests are numbered and located on the physical structure as shown in Figure 

3-11. As it can be seen from this figure, a total of 13 accelerometers are used during 

modal tests. 
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Figure 3-11: Accelerometer locations on the physical structure 

 

Modal tests are performed by means of an impact hammer using a suitable tip which 

is capable of applying an excitation force up to 500 Hz (See Figure 3-12). Technical 

specifications of this impact hammer are presented in Appendix B: Technical 

Specifications of the Impact Hammer [20]. Hammer strikes are applied from the tip of 

the physical structure as shown in Figure 3-13. Sample force-time data obtained 

during the modal tests is shown in Figure 3-14. 
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Figure 3-12: Impact hammer used in the modal tests 

 

 

Figure 3-13: Excitation location 
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Figure 3-14: Sample force-time data obtained during modal tests 

 

LMS hardware is used during the tests and ‘IMPACT TESTING’ module of the 

LMS Test LAB software is employed. The LMS equipment used during the test is 

shown in Figure 3-15. 

 

 

 

Figure 3-15: LMS hardware used in the modal tests 
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Triaxial ICP
®

 type accelerometers produced by the PCB Piezotronics company are 

used. Technical specifications of these accelerometers are presented in Appendix A: 

Technical Specifications of the Accelerometers [21]. An example of these accelerometers 

can be seen in Figure 3-16. A sample acceleration-time data obtained from the 

accelerometer located at driving point is demonstrated in Figure 3-17. 

 

 

 

Figure 3-16: PCB accelerometers 

 

 

Figure 3-17: Sample acceleration-time data obtained during modal tests 

 

Modal tests are performed with 400 Hz sampling frequency and 0.097656 Hz 

frequency resolution. As a result of the modal tests, the mode shapes shown in Figure 

3-18, Figure 3-19 and Figure 3-20 are identified. Modal frequencies are presented in 

red boxes of the figures.  
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Figure 3-18: 1
st
 mode (tip-off) of the prototype (test result) 

 

Figure 3-19: 2
nd

 mode (side-off) of the prototype (test result) 
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Figure 3-20: 3
rd

 mode of the prototype (test result) 

 

Sample coherence function and the corresponding frequency response function 

obtained from the driving point accelerometer (See Figure 3-21) are shown in Figure 

3-22 and Figure 3-23, respectively. According to Figure 3-22, it can be concluded 

that the spectral data is reliable since the coherence values are very close to unity. 
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Figure 3-21: Driving point input and response directions 

 

 

Figure 3-22: Coherence data obtained from the driving point 

 

13 
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Figure 3-23: FRF data obtained from the driving point 

 

In Table 3-2, modal test results are presented for the first three modes which have 

been clearly identified at the end of the tests. By examining the participation factors 

given in Table 3-2, it can also be said that the first two modes are the dominant 

modes for the dynamics of physical structure. 

Table 3-2: Results for the first three modes of the physical structure 

Mode 

number 

Modal 

frequency 

(Hz) 

Damping 

ratio 

(%) 

Coherence 

(%) 

Modal participation 

factors (%) 

1 9.26 1,77 99.23 40.64 

2 10.78 1,06 99.90 38.24 

3 16.24 4,05 96.16 8.89 

 

In order to verify the finite element model of the physical structure, modal test and 

analysis results are correlated via LMS Virtual.LAB 13
©

 software. In Figure 3-24, 

Figure 3-25 and Figure 3-26, first three mode shapes obtained from test and analysis 

models are compared visually. From these figures, it can be observed that the first 

three mode shape results are compatible. 
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Figure 3-24: Test-analysis comparison for the 1
st
 (tip-off) mode 

 

Figure 3-25: Test-analysis comparison for the 2
nd

 (side-off) mode 
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Figure 3-26: Test-analysis comparison for the 3
rd

 mode 

 

In order to compare the mode shapes obtained from the modal test and finite element 

analysis quantitatively, Modal Assurance Criteria (MAC) study is performed over the 

LMS Virtual.LAB 13
© 

software. MAC number is a measure for the consistency of 

eigenvectors obtained from different methods. If the MAC number is equal to unity, 

it indicates that the mode shapes are absolutely consistent. If the MAC number is 

equal to zero, modal vectors are completely inconsistent. In practice, a MAC number 

value near to unity is considered as an indication of consistency. MAC number can 

be calculated from the following formula [22]: 

𝑀𝐴𝐶 =
|{𝜓𝑡,𝑖}𝑇{𝜓𝑎,𝑗}|

2

({𝜓𝑡,𝑖}
𝑇

{𝜓𝑡,𝑖})({𝜓𝑎,𝑗}𝑇{𝜓𝑎,𝑗})
                             (Eqn. 3.2) 

In this formula, ψt,i denotes the i
th

 mode shape obtained from the experimentally 

whereas ψt,j denotes the j
th

 mode shape obtained from the FEA study. As a result of 
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the MAC study, MAC number matrix is obtained as shown in Figure 3-27. From this 

figure, it can again be seen that the first two modes obtained from the experimental 

and FEA studies are consistent. 

 

 

 

Figure 3-27: MAC number matrix for the comparison of experimental and FEA 

models 

In Table 3-3, natural frequency results are presented and compared for the first three 

mode results of the modal test and finite element analysis. It is observed that the first 

two modal frequencies are almost the same. However, the 3
rd

 modal frequencies are 

slightly different, but this mode’s effect on the system’s motion is very little.  

 

 

Table 3-3: Comparison of the natural frequency and mode shape results 

 Modal Test 

(Hz) 

FE Analysis 

(Hz) 

Difference 

(Hz) 

MAC value 

1
st
 mode (tip-off) 9.263 9.320 0.057 0.931 

2
nd

 mode (side-off) 10.784 10.860 0.076 0.914 

3
rd

 mode 16.243 18.026 1.763 0.647 
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In addition to the modal frequency and mode shape comparisons, FRF results 

obtained using finite element analysis and experimental works are also compared. 

For comparison purposes, accelerance FRF’s are in three axes from the 

accelerometer shown in Figure 3-28 are used.  

 

Figure 3-28: Location of the FRF measurement accelerometer 

 

Accelerance FRF results obtained from the experiments and finite element analysis 

are plotted together in Figure 3-29, Figure 3-30 and Figure 3-31. From these figures, 

it can be observed that the peaks at the first two modes are comparable whereas the 

third mode peaks slightly deviate from each other. This is probably caused by the 

fact that the rubber layers between the clamps and tube are not precisely modelled 

since their material properties are not exactly known. In addition, leakage problem 

may arise due to the time data used during the modal data extraction (See Figure 

3-17). This may also be a reason for the imprecise determination of the damping 

values from the experimental data. 
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Figure 3-29: FRF comparison in x-axes 

 

Figure 3-30: FRF comparison in y-axes 
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Figure 3-31: FRF comparison in z-axes 
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          CHAPTER 4 

 

 

4. DESIGN OF TVA 
 
 
 

Tuned vibration absorber design process can be divided into three steps: 

I. Identification of the TVA parameters  

II. Realization of the TVA design 

III. Experimental characterization of the TVA parameters 

 

In the first step, mass, stiffness and damping of the TVA are identified. FEA method 

is employed in order to compute these TVA parameters as in the case of physical 

structure design instead of using the analytical expressions. That’s why the physical 

structure is a complex system, thus the equations given for the TVA design in 

Chapter 2.1 may be insufficient since they are valid for an SDOF system. Therefore 

the TVA parameters are optimized with finite element analysis method on ABAQUS 

software. 

 

Next, the TVA parameters specified in Section 4.1 are sought to be materialized in 

Section 4.2. Several design solutions are investigated and the most appropriate 

design for the physical structure is selected in such a way that the specified TVA 

parameters can be satisfied. In Section 4.3, realized and fabricated TVA system is 

characterized experimentally in order to see whether it satisfies the optimized TVA 

parameters. 

4.1. DETERMINATION OF THE TVA PARAMETERS 

 

Determination of the TVA parameters involves the identification of the mass, 

stiffness and damping coefficient values of the TVA. If the mass of TVA is defined, 

the stiffness determination can be replaced by the tuning frequency determination. 

Likewise, determination of the damping coefficient can be replaced by the 

determination of damping ratio if the mass and stiffness (or tuning frequency) values 

of the TVA are defined. If the TVA is supposed to be designed as multi degree of 
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freedom or multiple TVA design is desired, these parameters are identified as 

multiple. 

For a TVA design, vibration reduction can be targeted for either the resonance 

frequencies of main system or the excitation frequency. If the forcing acting on the 

system is in random excitation type, PSD graph of the excitation is extracted and the 

dominant frequency on this PSD graph can be chosen as target frequency. In this 

study, excitation is impulsive which resembles to a half-sine pulse. Therefore, there 

is no dominant excitation frequency and this type of forcing excites a spectrum up to 

a certain frequency level [23]. Hence, the response of the system is shaped by the 

nature of the system. As a result, the dominant resonance frequencies of the physical 

structure are targeted for vibration suppression. 

TVA design process is conducted via finite element analysis method as mentioned 

before. For that purpose, harmonic analyses are run on the physical structure FEA 

model. Harmonic analyses are performed with the subspace based steady-state 

dynamics analysis option of the ABAQUS software which is a mode-based analysis 

procedure. In other words, modal analysis is required prior to this analysis. In this 

procedure, harmonic response is calculated based on the system’s eigenfrequencies 

and modes [18]. Subspace based steady-state dynamics procedure allows the usage 

of dashpot type damping while the other steady-state dynamics procedure does not. 

For that reason, this type of procedure is selected so that the damping of TVA could 

be modelled. Beside this, the damping of main system is modelled with Rayleigh 

damping. Coefficients of Rayleigh damping are determined by depending on the 

damping results obtained from the modal tests. Rayleigh damping includes the mass 

proportional and stiffness proportional terms. The damping ratio is expressed in 

terms of frequency as [18]: 

                                                           𝜁 =
𝛼

2𝜔
+

𝛽𝜔

2
                                      (Eqn. 4.1) 

Since the impulsive excitation on the prototype is effective on a certain frequency 

range as mentioned before, this situation is reflected via harmonic analysis by 

sweeping a certain frequency range. In the harmonic analyses, forcing is applied 

from the impact interface part as shown in the Figure 4-1. This forcing is applied as a 
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point load at unit magnitude and in the direction perpendicular to the impact 

interface. From the Figure 4-1, it can be seen that the forcing location has an offset 

between the axes of the tube. By this way of forcing, the case causing to the 

maximum vibration amplitudes could be simulated. 

 

 

 

Figure 4-1: Forcing location on the prototype model 

 

For the harmonic analyses, frequency range is selected between 1-20 Hz. The forcing 

shown in the Figure 4-1 is applied in unit magnitude and the total harmonic 

displacement response is read from the location shown in Figure 4-6. Total harmonic 

displacement value is calculated as a resultant of the harmonic displacements in three 

degrees of freedoms. After that, the frequency range is adjusted as between 1-100 Hz 

and the harmonic response is obtained as shown in Figure 4-3. It is seen that the 

peaks in the harmonic responses are distinct in 1-20 Hz frequency range. Therefore, 

this frequency range is found as sufficient in harmonic analyses in order to save the 

computation time and effort. 
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Figure 4-2: Harmonic displacement response at the tip of prototype (0-20 Hz) 

 

 

Figure 4-3: Harmonic displacement response at the tip of prototype (0-100 Hz) 

 

From the modal analyses results presented in Section 3.1, the difference between first 

and second modal frequency (side-off) is calculated as about 1.56 Hz. It means that 

there is an about %16.7 difference between the first two dominating modal 

frequencies of the prototype. Therefore, it is concluded that the natural frequencies of 
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the dominating first two modes of the physical structure are very close to each other. 

By considering this situation, an SDOF tuned vibration absorber design is approved 

rather than the MDOF or multiple tuned vibration absorber design. That’s why, an 

SDOF tuned vibration absorber would satisfy the vibration suppression requirement 

with an appropriate selection of the TVA parameters (mass, stiffness and damping) if 

the difference between the two modes are sufficiently low. 

TVA parameters are identified through the ABAQUS finite element analysis 

software. For that purpose, the SDOF tuned vibration absorber is modelled as a 

combination of discrete mass, stiffness and damping elements and attached on the 

FEA model of the physical structure as shown in Figure 4-4.  As seen in the Figure 

4-4, two reference points are created and one of these points are connected to the 

tube with continuum distributing coupling (RBE3) option of the ABAQUS. 

Concentrated mass is located to the second reference point and the spring/dashpot 

feature of the ABAQUS is assigned to the line between these reference points in 

order to reflect the stiffness and damping properties of the TVA. These two reference 

points are constrained with the kinematic coupling (RBE2) option as shown in Figure 

4-5. With this constraint, motion of the concentrated mass is allowed in only axial 

direction of the spring/dashpot feature while the other degrees of freedoms are 

restrained. 

 

 

 

Figure 4-4: TVA modelling on the FEA model 
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Figure 4-5: Constraint between two points of the spring/dashpot feature 

 

In order to identify the optimum TVA parameters, a set of mass, natural frequency 

and damping values are established. The mass values are adjusted in a way that the 

maximum mass is about %10 of the total mass of the physical structure. 

Measurements revealed that the total mass of the prototype is 5.2 kg. Therefore, it is 

desired that the mass of TVA should not exceed 0.5 kg in order to reach a 

meaningful design in mass term. On the other side, the tuning frequency values are 

arranged around the first and second modal frequencies of the prototype since these 

modes are the most effective modes over the dynamics of prototype. For the damping 

ratio parameter, five values are selected and the maximum of them is specified as 

equal to 1.0 in order to have a feasible damping. All of these TVA parameters are 

tabulated in Table 4-1: 
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Table 4-1: Selected TVA Parameters 

Mass (grams) Tuning Frequency (Hz) Damping Ratio 

100 8.5 0.1 

200 8.7 0.3 

300 8.9 0.5 

400 9.1 0.7 

500 9.3 1.0 

 9.5  

 9.7  

 9.9  

 10.1  

 10.3  

 

As observed in Table 4-1, 5 values for the mass parameter, 10 values for the tuning 

frequency parameter and 5 values for the damping ratio parameter are selected. 

Therefore, totally 250 harmonic analyses (5x10x5=250) are run in order to sweep the 

combination of these parameters entirely. 

In the analyses, stiffness parameters of the TVA are calculated from the undamped 

natural frequency values presented in Table 4-1 by using the Eqn. 4.2a. Similarly the 

damping coefficient parameters are calculated from the damping ratio values in the 

Table 4-1  by using the Eqn. 4.2b: 

                                                        𝑘 = 𝑚. 𝜔𝑛
2                                            (Eqn. 4.2a) 

                                                    𝑐 = (2√𝑘. 𝑚). 𝜁                                        (Eqn. 4.2b) 

The main motivation behind the TVA design is to minimize the response of the 

prototype. For that purpose, a point is selected from the tip of the prototype as shown 

in Figure 4-6 and the harmonic displacement of this point is read from the harmonic 

analysis results. Then the TVA parameter set is searched among the combination of 

parameters given in Table 4-1 that would minimize this harmonic displacement 

value. 
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Figure 4-6: Harmonic displacement reading point 

 

As a result of the harmonic analyses those are run with 200 different combinations, 

the best combination of parameters is found as follows: 

Mass: m=400 grams  

Tuning frequency: ωn=9.3 Hz 

Damping ratio: ζ=0.3 

Variation of the harmonic responses with respect to different TVA masses, damping 

ratios and tuning frequencies are presented in Figure 4-7, Figure 4-8 and Figure 4-9, 

respectively. In these figures, results are shown for the optimum combination of the 

parameters except the variable parameter. By observing these figures, it can be said 

that the mass and damping ratio parameters significantly affect the harmonic 

response magnitudes whereas the tuning frequency parameter is not so effective. 

This situation can also be observed from the Figure 4-10, Figure 4-11 and Figure 

4-12 which show the variation of maximum harmonic response amplitudes with 

respect to TVA mass, tuning frequency and damping ratio, respectively.  
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Figure 4-7: Harmonic responses for different TVA masses (ωn= 9.3 Hz; ζ=0.3) 

 

 

Figure 4-8: Harmonic responses for different damping ratios (m=400 grams; 

ωn= 9.3 Hz) 



58 
 

 

Figure 4-9: Harmonic responses for different tuning frequencies (m=400 grams; 

ζ=0.3) 

 

 

Figure 4-10: Maximum harmonic response amplitudes with respect to different 

TVA masses 
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Figure 4-11: Maximum harmonic response amplitudes with respect to different 

tuning frequencies 

 

 

Figure 4-12: Maximum harmonic response amplitudes with respect to different 

damping ratios 
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After the optimization of TVA parameters, orientation of the TVA is sought to be 

determined. In order to determine the angular orientation of the TVA, 5 different 

values are selected for the angle α shown in the Figure 4-13 and harmonic analyses 

are run with the optimum parameter combination for these 5 different angular 

orientations. The maximum harmonic response amplitudes obtained from these 5 

analyses are presented in Table 4-2 and Figure 4-14 and the harmonic responses are 

shown in Figure 4-15. From Table 4-2 and Figure 4-14, it can easily be observed that 

the minimum response is obtained from 30° angle orientation. 

 

 

 

Figure 4-13: Angular orientation of the TVA on the FEA model 

 

Table 4-2: Maximum harmonic response amplitudes for different angular 

orientations of the TVA 

Angle Displacement 

(mm) 

25° 4.496 

30° 3.965 

35° 4.179 

40° 4.727 

45° 5.535 
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Figure 4-14: Maximum harmonic response amplitudes for different angular 

orientations of the TVA 

 

 

Figure 4-15: Harmonic responses for different angular orientations of the TVA 

 

Another issue that should be considered in the TVA design process is the additional 

mass effect. This effect causes some amount of deviation in the modal frequencies of 

the structure. For that purpose, a simple part is designed which has a total mass equal 
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to 1/5 of the prototype mass. After then, this part is attached to the tube of the 

prototype model in such a way that the mass center would be on the mass center of 

the tube (See Figure 4-16). The harmonic analyses are run on this mass added FEA 

model for the unmodified case and modified with the optimized TVA case. The 

unmodified harmonic displacement responses are shown in Figure 4-17 and modified 

harmonic displacement responses are presented in Figure 4-18. In these figures, the 

results can be compared for the mass added and without mass cases. 

 

 

 

Figure 4-16: Additional mass part and its location on the FEA model  
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Figure 4-17: Harmonic responses for the unmodified cases 

 

Figure 4-18: Harmonic responses for the modified with optimized TVA cases 

 

From the Figure 4-17 and Figure 4-18, it can be seen that the mass part cause a slight 

difference in the harmonic responses. In order to obtain a feasible TVA design, peaks 

of the harmonic responses shown in Figure 4-18 is tried to be equalized. For that 

purpose, iterations are carried out by playing with the optimized TVA parameter 

combination. At the end of several iterations the TVA parameter combination given 

in the Table 4-3 is obtained. The harmonic displacement responses obtained for the 
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mass added and without mass cases with this TVA parameter combination are 

presented in Figure 4-19. 

 

 

Table 4-3: The final TVA parameter combination 

m (grams) 380 

ωn (Hz) 8.7 

ζ 0.32 

 

 

Figure 4-19: Harmonic responses obtained with the final TVA parameter 

combination 

 

4.2. REALIZATION OF THE TVA DESIGN 

 
After the determination of TVA parameters, the design solutions which realize these 

TVA parameters are investigated. The most appropriate TVA alternative is selected 

as a magnetically damped spring-mass system. This system is similar to the TVA 

proposed for gun barrels in US Patent 6167794 [8]. From the available damping 

types, magnetic damping is chosen since the damping ratio can be easily adjusted. 

Moreover, magnetic damping is not affected by temperature effects. 
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By considering the matters mentioned above, TVA system is designed as 

demonstrated in Figure 4-20. As observed from this figure, TVA mass consist of an 

aluminum block (60*40*15 mm) and two copper plates (60*50*5 mm). In TVA 

assembly, two helical springs are used to operate as the stiffness elements. In order to 

constrain the motion of TVA to one degree of freedom, two linear bearings are 

placed into the aluminum block and two shafts are passed through these bearings and 

helical springs. Rare-earth magnets are placed in parallel to the copper plates. The 

motivation behind this positioning is to satisfy the damping requirements of the TVA 

with the eddy-current effect that is induced within the copper plates. Copper material 

is selected due to its low resistivity so that the damping ratio can be enhanced. 

 

 

 

Figure 4-20: CAD model of the TVA assembly 

 

The TVA design is fabricated as shown in Figure 4-21. Linear bearings of LME8 UU 

type are selected and fastened to the aluminum block from the holes drilled on the 

block. Two shafts (Ø8 mm) were passed through these bearings and welded to the 

TVA interface. Helical springs are glued to the linear bearings and TVA interface. 

Copper plates are attached to two sides of the aluminum block symmetrically. 

http://sahinrulman.com/site/images/stories/3D_katalog/induksiyonlu-Miller/induksiyonlu-taslanmis-miller/cap-8/cap-8.IGS
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Magnets are attached to the L shaped magnet plates which are made off 1 mm 

thickness steel plates and these plates are fastened to the TVA interface by means of 

bolts fixed over the slots under the magnet plates. 

 

 

 

Figure 4-21: Fabricated TVA assembly and components 

 

According to the experiments, eddy-current damping is similar to viscous damping 

and results in a dissipating force proportional to the velocity. The damping 

coefficient induced because of the eddy-current damping cannot be calculated by 

analytical methods easily; however, the following relation is estimated for this type 

of damping [24]: 

                                                  𝑐 = 𝑘
𝐵2𝜗

𝜌
                                                (Eqn. 4.3) 

In this relation, B represents the magnetic flux density, ϑ is the conductor volume 

inside the magnetic flux, ρ is the resistivity of the conductor and k is a dimensionless 

constant. Copper is a suitable material for this purpose since its resistivity is too low. 

According to this relation, it can be stated that the only variable is the magnetic flux 
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density (B) in order to manipulate the damping coefficient. This can be done by 

adjusting the distance between the copper plates and magnets or putting additional 

magnets under the main magnet. For that purpose, the plates which the magnets are 

attached on are designed with slots as can be seen in Figure 4-22. The distance 

between the magnets and copper plates can be adjusted by sliding the magnet plates 

on the slots and these plates are fixed by means of bolts at the desired position. 

 

 

 

Figure 4-22: Slotted configuration of the magnet plates 

 

As a result of the optimization study performed with finite element analysis, the 

optimum TVA parameters are determined as presented in Table 4-3. Firstly the mass 

requirement of the TVA is verified by weighing on a scale as inspected in Figure 

4-23.  
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Figure 4-23: Measurement of the TVA mass 

 

Having known the target tuning frequency and the mass of TVA, stiffness of the 

TVA is calculated and the appropriate helical spring dimensions is determined via 

following equation [25]: 

                                                           𝑘 =
𝐺.𝑑4

8.𝑁.𝐷3                                            (Eqn. 4.4) 

where 

G: Modulus of rigidity of the spring material 

d: Wire diameter of the spring 

D: Outer diameter of the spring 

N: Number of active coils of the spring 

From the available helical spring options of the catalogues, a helical spring made of 

steel and having the following properties is chosen as appropriate: 

d = 1 mm; D = 12 mm; N = 10; G =78000 MPa 
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By inserting these values into the Eqn. 4.4, stiffness of the springs is found as 

follows: 

𝑘 =
(78000). (14)

8. (10). (123)
= 0,5704 𝑁/𝑚𝑚 

Since two helical springs are used in parallel, this value should be multiplied by two: 

𝑘 = 2. (0,5704) = 1,1407
𝑁

𝑚𝑚
 

Then the tuning frequency of TVA is calculated as follows: 

𝜔𝑎 = √
𝑘

𝑚
= √

(1,1407 𝑁
𝑚𝑚⁄ )

(0,382 𝑘𝑔)
= 54,79

𝑟𝑎𝑑

𝑠
= 𝟖, 𝟕𝟐 𝑯𝒛 

After the target mass and target tuning frequency of the TVA is verified, target 

damping ratio of the TVA should be satisfied. Since there is no available analytical 

solution to calculate the damping ratio that would be induced due to the eddy-current 

effect, the damping ratio is verified experimentally. 

 

4.3. EXPERIMENTAL VERIFICATION OF THE TVA PARAMETERS 

 

In order to characterize the TVA design, sine-sweep tests performed by means of a 

modal shaker on the TVA assembly as demonstrated in Figure 4-24. Technical 

specifications of the modal shaker are given in Appendix C: Technical Specifications of 

the Modal Shaker [26]. Sine sweep tests are performed with 0.01 Hz/s sine sweep rate 

and totally 501 frequency lines are extracted from the frequency range between 5-10 

Hz.  Experiments are carried out by manipulating the distance between the copper 

plates and the magnets in order to provide the target damping ratio. Two averages are 

taken for each case. As a result of the sine-sweep tests, frequency response functions 

are extracted from the accelerometers shown in Figure 4-24, by selecting the 1
st
 

accelerometer as the reference channel. 
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Figure 4-24: Modal shaker and accelerometer locations on the TVA assembly 

 

Sine-sweep tests are carried out on the TVA assembly for 4 different distances and 

no magnet case. Frequency response functions obtained for these 5 different cases 

are plotted in logarithmic scale in Figure 4-25. From these FRF results, it can easily 

be observed that the damping of TVA increases as the distance between the magnets 

and copper plates decrease. Moreover, resonance of the TVA is found as 8,4 Hz 

which is 0,3 Hz lower than the target tuning frequency (8,7 Hz). This difference is 

probably caused by the uncertainty of spring stiffness. 
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Figure 4-25: FRF results obtained for different magnet-copper plate distances 

 

In order to calculate the damping from the FRF results, the analytical expression 

given below is used [27]: 

                                                                                                             (Eqn. 4.5) 

In this expression, r represents the frequency ratio (ω/ωn) and ζ denotes the damping 

ratio. This equation is inserted into the MATLAB
©

 software and the FRF graphs are 

obtained. Then, these FRFs are plotted with the FRFs obtained from the test results. 

Damping ratio in the Equation 5.5 is adjusted so that the theoretical (MATLAB 

result) and experimental FRF results agree with each other visually. As an example, 

theoretical and experimental FRF’s are plotted in Figure 4-26 for the no magnet case. 

𝑋

𝑌
=

√1+(2𝜁𝑟)2

√(1−(𝑟)2)2+(2𝜁𝑟)2
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Figure 4-26: Sample FRF comparison for the damping ratio identification 

 

By using the method mentioned above, damping ratios are determined as in Table 

4-4. By observing these damping values, 3 mm magnet-copper plate distance is 

selected as the most appropriate position since the target damping ratio (ζ = 0,32) is 

almost achieved with this condition. 

 

Table 4-4: Damping ratios with respect to various magnet positions 

 Damping ratio (ζ) 

No magnet 0,018 

5 mm 0,091 

4 mm 0,18 

3 mm 0,35 

2 mm 0,41 
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CHAPTER 5 

 

 

5. CHARACTERIZATION OF THE VIBRATION CONTROL 

PERFORMANCE OF TVA 

 
 

In order to verify the performance of TVA system on the physical structure, modal 

tests are carried out on the prototype for the unmodified (without TVA) and modified 

(with TVA) cases. During modal tests, prototype is excited from the location 

demonstrated in Figure 3-13 such that the forcing in the analysis model is replicated. 

TVA is attached on the prototype at an inclined position as shown in Figure 5-1. 

TVA assembly is settled to the main structure from the interface part which has a 

cylindrical groove conforming to the outer face of the tube. This interface part is 

fastened to the structure by means of two threaded U-shaped rods and tightening 

them with the aid of four M4 nuts as demonstrated in Figure 5-2. 

 

 

 

Figure 5-1: TVA location on the physical structure 
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Figure 5-2: Fastening of the TVA assembly 

 

Modal tests are performed for the two cases of prototype: 

1- Without mass (free) case 

2- Mass added case 

Experimental results are presented and compared for both two cases. Finally, total 

reductions in the FRFs obtained from the analysis and experimental models are 

compared. 

5.1. COMPARISON FOR THE WITHOUT MASS CASE 

 

In this section, modal test results for the free (without mass) case of the prototype are 

presented. In addition, the FRFs obtained from the analysis and test studies are 

compared for the modified (with TVA) case. 

Experimental FRF results are plotted together for the unmodified and modified cases 

which are obtained from the accelerometer demonstrated in Figure 3-28. In Figure 

5-3, Figure 5-4 and Figure 5-5, the FRF results obtained in three axes are compared. 
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Figure 5-3: Without mass case - Comparison of the test FRF results (x-direction) 

 

Figure 5-4:  Without mass case - Comparison of the test FRF results (y-direction) 
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Figure 5-5: Without mass case - Comparison of the test FRF results (z-direction) 

Between Figure 5-6 and Figure 5-8, experimental and analysis FRF results are 

compared which are obtained for the modified case. It can be observed that the peak 

values are compatible; however, there is a little amount of deviation between the 

peak frequencies. 

 

 

Figure 5-6: Analysis-test FRF comparison for the modified case (x-axes) 
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Figure 5-7: Analysis-test FRF comparison for the modified case (y-axes) 

 

Figure 5-8: Analysis-test FRF comparison for the modified case (z-axes) 

 

 

5.2. COMPARISON FOR THE MASS ADDED CASE 
 

Experiments are repeated by adopting a mass to the structure which is equal to 1/5 to 

the total mass of the structure as mentioned in Section 4.1. In this section, 

experimental results for the mass added case of the prototype are presented. 

Additional mass is attached to the tube as revealed in Figure 5-9. Verification tests 
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are repeated with this mass added case and the obtained FRF results for the 

unmodified and modified cases are compared between Figure 5-10 and Figure 5-12. 

 

 

Figure 5-9: Attachment of the additional mass on the physical structure 

 

 

Figure 5-10: Mass added case – Comparison of the test FRF results (x-direction) 
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Figure 5-11: Mass added case - Comparison of the test FRF results (y-direction) 

 

 

Figure 5-12: Mass added case - Comparison of the test FRF results (z-direction) 

 

As a result of the FRF comparisons, it is observed that the vibration amplitudes again 

reduced; however, FRFs are slightly different than the without mass case. 
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5.3. TOTAL ANALYSIS-TEST COMPARISON 
 

In order to evaluate the TVA design study which is performed over the finite element 

analysis, total vibration reductions obtained from the analysis and experiment are 

compared. Since the optimized and realized TVA parameters are different, total 

vibration reductions obtained from the analysis for the realized and optimum TVA 

parameters are presented separately. In Table 5-1, optimized and realized TVA 

parameters are compared. 

 

 

Table 5-1: Comparison of the optimum and realized TVA parameters 

 Optimized Realized Difference (%) 

Mass (g) 380 382 0,5 

Tuning frequency (Hz) 8,7 8,4 3,4 

Damping ratio 0,32 0,35 8,6 

 

Comparisons of the total harmonic displacement results obtained via finite element 

analysis for the unit load are presented in Figure 5-13 and Figure 5-14. If the Figure 

5-13 and Figure 5-14 are compared, it can be seen that the realized TVA results in 

some amount of mistuning. 
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Figure 5-13: Total harmonic displacement comparison for the optimized TVA 

(Analysis) 

 

 

Figure 5-14: Total harmonic displacement comparison for the realized TVA 

(Analysis) 

 

Since the experimental results are in terms of acceleration, they should be converted 

to displacement. Therefore, following expression is used to convert the accelerance 

FRF to the receptance FRF [28]: 
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|𝛼(𝜔)| = |
𝐴(𝜔)

𝜔2
|                                    (Eqn. 5.1) 

In this expression, α(ω) denotes the receptance and A(ω) denotes the accelerance 

FRFs. By making this conversion, experimental total harmonic displacement results 

are obtained as in Figure 5-15. 

 

 

 

Figure 5-15: Total harmonic displacement comparison (Experimental) 

 

Finally, peak values of the total harmonic displacements and the reductions in the 

peak values are presented in Table 5-2. From this table, it can be seen that the target 

reduction for the optimum TVA design is reached with % 85,8 success in realized 

TVA design. Experimentally, total reduction is achieved by % 68,3 rate with respect 

to the realized TVA design. As a result, target reduction is satisfied by %58,6 rate 

with the experiments. This rate can be considered as low. However, there is some 

amount of difference between the peaks of the FEA and experimental model results 

for the unmodified case as shown in Figure 5-16 which can account for this low 

achievement. This difference can be explained with the insufficient estimation of the 

damping of main structure. Another reason can be considered as the mistuning 

caused by the difference between the realized and optimum TVA parameters. 
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Table 5-2: Comparison of the maximum harmonic displacements and total 

reductions 

 Unmodified (mm) Modified (mm) Reduction (dB) 

FEA-optimized 14,01 3,96 10,96 

FEA-realized 14,01 4,74 9,40 

Experimental 10,87 5,19 6,42 

 

 

Figure 5-16: Comparison of the harmonic displacements for unmodified case 

 

 

Figure 5-17: Comparison of the harmonic displacements for modified case 
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        CHAPTER 6 

 

 

6. CONCLUSION AND FUTURE WORK 
 
 
 

Supported hollow cylinder structures exhibit oscillatory behavior due to any 

excitation. In this thesis work, a representative structure that includes a supported 

hollow cylinder structure is constructed. Main contribution to this structure’s 

dynamics comes from the two transverse modes of the supported hollow cylinder 

structure. These modes are mainly caused by the rigid body movement rather than 

the structural modes. In case of impulsive excitation, dynamics of this structure is 

shaped by its two dominant vibration modes. In order to reduce the vibration levels 

of the structure, a TVA design is proposed by targeting the first two dominant 

transverse modes simultaneously. 

A physical structure is fabricated and finite element model of the structure is 

constructed on ABAQUS software. This finite element model is verified by 

experiments. TVA design is carried out on this verified finite element model. 

Since the excitation on the system is impulsive, vibration control problem is a 

resonant vibration problem. Therefore, vibration reduction is desired around the 

resonances of the structure. Experiments show that the first two transverse modes are 

dominant in the dynamics of system for the excitation under consideration; thus, 

TVA is designed by targeting these two modes. Since two target modal frequencies 

are close to each other, an SDOF TVA design is proposed. Basic dynamic parameters 

(mass, tuning frequency, damping ratio) of the TVA that would minimize the 

harmonic response of the structure are determined over the verified model of the 

structure. TVA is designed and fabricated according to these optimum dynamic 

parameters. Characterization tests are performed on this realized TVA system in 

order to verify the dynamic parameters of TVA.  

TVA system is tested on the physical structure in order to characterize the vibration 

reduction performance. Experiments are repeated by adding an equivalent mass to 

the structure in order to investigate the mass effect on the vibration reduction levels 
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due to the TVA modification. Analysis and test results are compared in terms of 

accelerance FRFs. It is observed that the first two mode results are compatible; 

however, there is a little amount of shift between the third mode results. Besides, 

peak values of the FRFs obtained from the analysis and test models are somewhat 

different. These differences arise due to the insufficient damping estimation obtained 

from experiments for the finite element model of the physical structure. They can 

also be caused by the reason that the connections between parts of the prototype are 

not elaborately detailed in the finite element model and some simplifications are 

made. Modified case (with TVA) results have shown that there is a shift between the 

peaks of the analysis and test results. This can be interpreted with the mistuning 

effect of the TVA due to the fact that there is a little amount of difference between 

the designed and measured parameters (target damping ratio and target tuning 

frequency) of the TVA. For the mass added case test results, it is observed that the 

FRF’s are again reduced. However, the vibration reduction levels are somewhat 

different than the without mass case. 

As a future work, application of the tuned vibration absorber system at different 

angular orientations is suggested. By this way, the optimum orientation that would 

minimize the response of the structure can be detected. Furthermore, reductions of 

the oscillations should be examined in the time domain in order to measure the TVA 

performance in a more realistic way. 
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APPENDICES 
 
 
 

Appendix A: Technical Specifications of the Accelerometers 

 

 

Figure 0-1 
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Appendix B: Technical Specifications of the Impact Hammer 

 

 

 

Figure 0-2 
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Appendix C: Technical Specifications of the Modal Shaker 

 

 

Figure 0-3 

 

 




