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ABSTRACT

DISCRETE SYMMETRIES IN QUANTUM THEORY

TA�DAN, �SMA�L UFUK

M.S., Department of Physics

Supervisor : Prof. Dr. Nam�k Kemal Pak

September 2015, 98 pages

In this thesis, one of the most central problems of modern physics, namely the

discrete symmetries, is discussed from various perspectives ranging from classical

mechanics to relativistic quantum theory. The discrete symmetries, namely

charge conjugation (C), parity (P), time reversal (T), which are connected by

the so-called CPT Theorem are studied in detail. The anti-particles with a

view to matter-anti-matter symmetry is also addressed and the anti-unitarity

nature of the time reversal, as well as the CPT, is worked out in detail. Another

issue, which have been devoted special attention to, is the CP violation in the

context of neutral Kaon mixing and oscillations. Although there have been

recent discoveries of CP violation in the framework of other neutral systems, like

B and D mesons, this historical problem is taken up because of its simplicity

and beauty.

Keywords: Discrete symmetries in Quantum systems, CPT Theorem, matter-

anti-matter symmetry, Neutral K meson systems
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ÖZ

KUANTUM TEOR�S�NDE KES�KL� S�METR�LER

TA�DAN, �SMA�L UFUK

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Nam�k Kemal Pak

Eylül 2015 , 98 sayfa

Bu tezde, modern �zi§in en önemli problemlerinden biri olan kesikli simetriler

klasik mekanikten göreli kuantum teorisine uzanan geni³ bir perspektiften tar-

t�³�lm�³t�r. Kesikli simetrileri, yük e³leni§i (C), parite (P), ve zaman tersinmesi

(T), birbirine ba§layan CPT teoremi ayr�nt�l� bir biçimde çal�³�lm�³t�r. Madde-

antimadde simetrisi ba§lam�nda antiparçac�klar kavram�n�n incelenmesi odak-

lan�lan bir ba³ka konuyu olu³turmaktad�r. Bu ba§lamda, zaman tersinmesinin

anti-üniter do§as� ve CPT teoremine de özellikle dikkat çekilmi³tir. Çal�³mada

yo§unla³�lan bir ba³ka konu da, CP k�r�lmas�n�n yüksüz Kaon kar�³�mlar� ve

sal�n�mlar� çerçevesinde incelenmesidir. CP k�r�lmas�n�n B ve D mesonlar� gibi

di§er nötr sistemler üzerindeki etkilerini içeren yeni sonuçlar olmas�na ra§men,

bu tarihsel problem basitli§i ve estetik albenisi nedeniyle özellikle ele al�nm�³t�r.

Anahtar Kelimeler: Kuantum sistemlerinde kesikli simetriler, CPT Teorisi, madde-

antimadde simetrisi, nötr K meson sistemleri
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CHAPTER 1

INTRODUCTION

The aim in this thesis is to study the discrete symmetries in Quantum theory.

The two of them are inversions (reversals), concerning the space and time op-

erations, and have been around since the formulation of Classical Mechanics.

The third one is of totally di�erent nature; charge conjugation has emerged

with the advent of relativistic quantum mechanics and the antiparticles. The

classical version of space and time reversal symmetries gained new meanings in

the context of quantum theory, and eventually the combination of the three has

risen to a very central position in the context of Quantum Field Theory, via the

Charge-Parity-Time reversal (CPT) theorem [1].

Particularly the time reversal operation was shown to involve rather unusual

properties in the context of quantum theory, which carries itself to the CPT

transformation. This is not too surprising, since the time, unlike the space coor-

dinates, could not be associated with well-de�ned quantum operators. Therefore

at the stage of uni�cation of quantum theory with the theory of special rela-

tivity, which brings the space and the time coordinates to the same status, one

faces a serious di�culty with this asymmetry in the quantum descriptions of
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these entities [2].

Because of these peculiarities of time in the context of quantum theory, it may

be a useful exercise to review the historical evolution of the concept of time

brie�y. It is probably the oldest but least understood concept of science and

philosophy.

Indeed, the concept of time has been around since the antiquity. In the scienti�c

revolution period with the advancement of physics and philosophy, formally

more devoloped concepts of time have emerged [3]. There are presently di�erent

concepts of time, applied to di�erent sorts of physical situations, though they are

all called by the same name: Time in physics from Newton-Leibnitz to Einstein,

biological time, geologic time, and so on [3].

In ancient Greece, Aristotle de�ned the time as the potentiality for the motion of

matter. For him the reason for a thing to move was that it absorbed its motion

from an earlier motion, and the earlier motion was preceded by a still earlier

motion, and so on. By its very de�nition, this time had no beginning and no end.

This concept was criticized by medieval philosophers based on the theological

belief of a created universe. According to this belief, the moment of creation was

the beginning of every thing including the time. Modern cosmological discoveries

of the 20th century resolved all these issues yielding a complete understanding of

the universe, including its history. Ironically these discoveries put forward solidly

that the universe had a beginning, nowadays known as Big Bang. However

the time scale is large that it is beyond comparison to those of the theological

predictions [3].
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Newton de�ned time as an external and absolute parametric representation of

the spatial trajectory of a (point-like) material object. This concept of absolute

time changed radically with the advent of Einstein's theory of relativity. The

primary change in relation with time was that in the relativity theory the in-

teraction between material entities propagates at a �nite speed as compared to

instantaneous action-at-a-distance in Newton's framework. In relativity theory,

the space and time were put on the same footing. They are not absolute any

more, as the values measured depend on the observer [3].

There was another new concept of time emerged in the context of the second

law of thermodynamics in relation with the entropy of a system. Entropy is

a measure of disorder, and for closed systems increases with time. The time

de�ned by the direction of increasing entropy is radically di�erent than that of

Newton's. That is, the entropic time has an arrow, and is irreversible. Newton's

equations of motion instead, because of their very mathematical nature, are

insensitive to the reverting the direction of time [3].

Symmetry principles occupy special position in the formulation of physical laws.

For instance, the special theory of relativity was discovered by the observation

that the space-time symmetries possessed by two di�erent set of classical laws,

namely that of Newton's and Maxwell's, did not match. The resolution was

essentially to change the Newton's law instead of giving up the principal of

relativity so that it possessed the same symmetry as the Maxwell's equations

(along with many other fundamental changes like elevating the time to the same

status of space coordinates, etc.) [3, 4].

There was another very profound development in this respect at the begin-
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ning of the 20th century, relating the symmetries and the conservation laws

by Noether [5], in relation with continuous, analytic changes of the space and

time coordinates. Conservation laws follow by requiring that the laws of na-

ture must be covariant under these changes, or in the contemporary language,

should leave the action invariant. For instance, the energy is conserved if there

is invariance with respect to the continuous changes of time. And, invariance

of action under (continuous) space translations lead to conservation of momen-

tum. Furthermore, these conserved (constant) charges generate these symmetry

transformations. It should be underlined that this theorem does not apply to

any discrete transformations, and thus the invariance under these symmetries

does not lead to conserved charges as in the continuous cases.

With the advent of quantum theory in the �rst quarter of the twentieth century,

the discrete spatial symmetries like space inversion (P) and time reversal (T)

gained a new signi�cance. For instance, parity was introduced in quantum

physics in 1927, and the time reversal in 1932, both by Wigner [2]. To this group

of discrete space-time symmetries, a new quantum discrete symmetry of di�erent

nature, namely the particle-antiparticle symmetry or charge conjugation (C),

was added by Dirac in 1931 [6].

Then the relativistic quantum �eld theory was formulated for the description of

elementary-particle interactions. At the time the laws governing these interac-

tions were thought to posses these discrete C, P and T symmetries, in addition

to the Poincare symmetry. That these discrete symmetries were connected by

the so-called CPT theorem was demonstrated [7] in 1952, showing that the com-

bination of C, P, and T is a general symmetry of physical laws.
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Not long afterward, it was discovered that the weak interactions violated parity[8,

9]. The discovery of parity violation has opened a new avenue towards under-

standing the true nature of the weak interactions. Namely, the weak interactions

did not posses P and C symmetries; these were thought to be maximally broken,

in such a way that CP and T were still intact, up to 1964

In 1964 decays of neutral K mesons into two charged pi (π) mesons at rela-

tively long lifetimes indicated that CP symmetry was also broken in the weak

interactions [10].

CP violation[11], like the P violation is one of the most important discoveries in

particle physics, which had signi�cant consequences in particle physics, as well

as cosmology [11].

Experimental works focusing on all K0 decays in 1970's have revealed that,

although the T symmetry is largely violated in neutral K-oscillations, the CPT

symmetry is still valid, however. As this system is extremely simple, and o�ers

a beautiful setting on the quantum mechanical interference e�ects, a separate

section is devoted to this issue in this thesis.

This thesis is organized as follows: Parity is studied in Chapter 2, time reversal

in Chapter 3, charge conjugation in Chapter 4. Then, the CPT theorem which

connects the discrete symmetries is covered in Chapter 5. The consequences of

the CPT theorem, namely the equality of masses and lifetimes of particles and

anti-particles, are also discussed in this chapter. Next, in Chapter 6, the problem

of strangeness oscillations in the neutral Kaon system in the CP violating regime

is worked out. Finally, some of the technical details are given in the Appendices.
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CHAPTER 2

PARITY

The �rst discrete symmetry that will be considered is space inversion, which is

also known as parity. The parity operation, as applied to transformation on the

coordinate system, changes a right handed (RH) system into a left handed (LH)

one[12]. In other words, space re�ection transformation denoted by P changes

the position vectors x as follows1:

x
P→ x′ = −x. (2.1)

For systems described by the Hamiltonian H,

H(p,x) =
p2

2m
+ V (|x|), (2.2)

which corresponds to a special case, as it excludes the velocity dependent inter-

actions, the equation of motion under the parity transforms as:

1 One notes that any vector which transforms in this way is said to be odd under parity.
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mẍ = −dV (| − x|)
dx

. (2.3)

It is obvious that to ensure the parity invariance, the condition V (x) = V (−x)

is to be satis�ed (central force problems fall into this class).

Since time is unchanged by the parity transformation, the behavior of the mo-

mentum under parity follows from eq. (2.1),

p
P→ −p, (2.4)

which is also of odd parity. On the other hand, the angular momentum is of

even parity:

L = mr× p
P→ L. (2.5)

One notes that when electromagnetic interactions are included, the force entering

in the Newton's equation becomes the Lorentz Force involving both electric and

magnetic �elds. Therefore, the question of parity invariance at the level of

equations of motion necessitates to question the transformation of these �elds

as well. For this reason, one has to address the parity invariance issue at the

level of Maxwell Equations which are the governing equations of these �elds.

Applying the parity operation on the position coordinates only in the Maxwell

8



Equations, one gets;

∇ · E =4πρ
P→ −∇ · E′ = 4πρ′, (2.6)

∇×B− ∂E

∂t
= 4πj

P→ −∇×B′ − ∂E′

∂t
= 4πj′, (2.7)

∇× E = −∂B
∂t

P→ −∇×E′ = −∂B
′

∂t
, (2.8)

where the primed entities denote the parity transforms of these. One notes that

eqs. (2.6),(2.7) and (2.8) are invariant if and only if,

E′= −E, B′= B, ρ′ = ρ, j′ = −j. (2.9)

Thus, the Lorentz Force FL is transformed under parity as follows:

FL =q[E + v ×B]
P→ FL

′=q[(−E) + (−v)×B] = −FL. (2.10)

Clearly, this insures the invariance of the equations of motion of a charged

particle moving in an external electromagnetic �eld2.

After these simple essentially geometrical classical considerations, we now turn

our attention to the more complex case of quantum mechanics involving opera-

2 If one focuses only on the particle itself, by treating the electromagnetic �eld exclusively as
external, then this formulation is not parity invariant.
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tors and state vectors etc. in an in�nite dimensional Hilbert Space.

2.1 Parity in Non-Relativistic Quantum Mechanics

The parity operation can be de�ned by its action on the eigenket of the position

operator |x〉 as3:

P|x〉 = | − x〉. (2.11)

Here, | − x〉 represents the eigenket of the reverted position operator. The

application of the parity operator P twice yields:

P2|x〉 = P| − x〉 = |x〉. (2.12)

Since |x〉 is an arbitrary eigenket, one obtains:

P2 = I. (2.13)

It follows from eq. (2.13) that P is Hermitian as well as unitary, P† = P =

P−1. Denoting the eigenvalue of P as λP and its eigenket as |ϕ〉, the eigenvalue

equation can be de�ned as:

3 There are other equivalent approaches which actually start de�ning the parity operation in terms
of the transformation of the observables like X and P, and then moving in the opposite direction, to
construct its action on the eigenkets

10



P|ϕ〉 = λP |ϕ〉. (2.14)

Acting P on |ϕ〉 twice gives:

P2|ϕ〉 = PλP |ϕ〉 = λPP|ϕ〉 = (λP)2 |ϕ〉. (2.15)

Using eq. (2.13), one observes that the eigenvalues of P are:

(λP)2 = +1⇒ λP = ±1. (2.16)

That one obtains real eigenvalues is very natural, since P is Hermitian. Next, to

see how the position operator X transforms under P , namely to determine what

PXP equals to, one needs to act on |x〉 by PXP. Starting with eq. (2.11), and

considering this action, one gets,

PXP|x〉 = PX| − x〉 = P (−x) | − x〉 = (−x)P| − x〉, (2.17)

= (−x) |x〉, (2.18)

since, |x〉 is an arbitrary eigenket, from which it follows that:

PXP = −X. (2.19)

11



Next, we turn our attention to the behavior of momentum operator P under par-

ity. To analyse the parity operation on the eigenket of the momentum operator,

one has to express |p〉 in terms of |x〉4:

|p〉 = (2π)−3/2

∞̂

−∞

d3x eip·x|x〉. (2.20)

In constructing this expression, one takes into account of the fact that{|x〉}

and {|p〉} are complete orthonormal eigenkets of the Hermitian position and

momentum operators: That is, |p〉 can be written as |p〉 =
[´
d3x|x〉〈x|

]
|p〉.

Also, using P|x〉 = i ∂
∂x
|x〉, 〈x|p〉 can be determined as:

〈p|P|x〉 = i~
∂

∂x
〈p|x〉,

p〈p|x〉 = i~
∂

∂x
〈p|x〉. (2.21)

The solution of eq. (2.21) yields:

〈p|x〉∗ = 〈x|p〉 = Neip·x. (2.22)

Here, the normalization constant N = (2π)−3/2 is obtained by using the dirac

delta functions recipe.

Applying the parity operator on eq. (2.20), one gets

4 In this thesis, ~ = 1 = c natural unit system is used.
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P|p〉 = (2π)−3/2

∞̂

−∞

d3x eip·xP|x〉, (2.23)

= (2π)−3/2

∞̂

−∞

d3x eip·x| − x〉. (2.24)

Replacing x with −x inside the integral, the action of the parity operator on

the eigenket of the momentum operator can be found as:

P|p〉 = (2π)−3/2

−∞ˆ

∞

d3 (−x) eip·(−x)|x〉,

= (2π)−3/2

∞̂

−∞

d3xe−ip·x|x〉,

= | − p〉. (2.25)

One can also compute PPP|p〉 by using eq. (2.25),

PPP|p〉 = PP| − p〉 = P (−p) | − p〉 = (−p)P| − p〉, (2.26)

= (−p) |p〉, (2.27)

from which, for arbitrary |p〉, it follows that:

13



P̂PP̂ = −P. (2.28)

The transformation law for the angular momentum operator (Li = εijkXjPk)

under parity, can also be worked out as:

PLiP = P [εijkXjPk]P . (2.29)

Inserting identities I = P2 to the right hand side (RHS) of the eq. (2.29),

PLiP = εijk (PXjP) (PPkP) , (2.30)

and using eqs. (2.19) and (2.28), one �nally gets:

PLiP = Li. (2.31)

Therefore, angular momentum is invariant under parity. This property distin-

guishes it from other vectors like x. Indeed, vectors are the entities which are

de�ned through their behavior under space rotations:

Vi → V ′i = RijVj, (2.32)

with

14



RTR = I. (2.33)

Ordinary vectors like position, momentum etc. change sign under parity. How-

ever, there are other types of vectors which transform under space rotations like

x, but do not change sign under parity. These vectors are called axial vectors

or pseudo vectors. Thus, angular momentum is an axial vector.

As the orbital angular momentum is the generator of the space rotations it

follows from eq. (2.31) that space-re�ection and the space rotations commute.

It is natural to postulate that same relation holds for the general rotation, R(R)

[12]:

PR(R) = R(R)P . (2.34)

Denoting the generator of general rotation by J, it follows from eq. (2.34) that

[P ,J] = 0, (2.35)

or equivalently,

PJP = J. (2.36)

For the special case in which J = L + S, since the parity operator commutes

with both J and L, than it should also commute with S.

15



Finally, wave functions under parity transformations will be considered: If ψ(x)

is a wave-function of a spinless particle whose state ket is given by |ψ〉, it can

be represented as:

ψ(x) = 〈x|ψ〉. (2.37)

On the other hand, representing the wave function of a space inverted state by

the state ket P|ψ〉 and using the Hermiticity of the parity, and the eq. (2.11),

one gets:

〈x|P|ψ〉 = 〈−x|ψ〉 = ψ(−x). (2.38)

In the case where |ψ〉 is an eigenket of parity, since the eigenvalues of parity are

±1, one gets

P|ψ〉 = ±|ψ〉. (2.39)

Then the corresponding wave function will be,

〈x|P|ψ〉 = ±〈x|ψ〉, (2.40)

or equivalently

16



ψ(−x) = ±ψ(x). (2.41)

However, not all wavefunctions are in such a relationship with parity. For exam-

ple, a plane wave which is an eigenstate of momentum operator is not expected

to be a parity eigenstate, since momentum operator does not commute with the

parity operator.

An eigenket of orbital angular momentum is expected to be a parity eigenket

since L and P commute. To see how a common eigenket of L2 and Lz behaves

under parity, one can examine the properties of its wavefuntion 〈x̂|lm〉 which is

de�ned as,

〈x̂|lm〉 = Y m
l (θ, φ), (2.42)

under space inversion. Here Y m
l (θ, φ) represents the spherical harmonics, and x̂

is the unit vector. Starting from the explicit expression of Y m
l (θ, φ),

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφ(sinθ)−m

dm

d(cosθ)m
(sinθ)−2l, (2.43)

and using the transformation x̂→ −x̂, in spherical coordinates:

θ → π − θ and φ→ φ+ π, (2.44)

one gets,

17



Y m
l (π − θ, π + φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eim(φ+π)(sinθ)−m(−1)l−m

dl−m

d(cosθ)l−m
(sinθ)−2l,

= (−1)l

√
2l + 1

4π

(l −m)!

(l +m)!
eimφ(sinθ)−m

dm

d(cosθ)m
(sinθ)−2l,

= (−1)lY m
l (θ, φ). (2.45)

Therefore, it is concluded that for an integer m:

P|lm〉 = (−1)l|lm〉. (2.46)

This result cannot be generalized to general angular momenta, however. That

is, the parity of an angular momentum state, in general, is not determined by

its total angular momentum.

2.2 Parity in Relativistic Quantum Mechanics

The Dirac equation for an electron in an external electromagnetic �eld is ex-

pressed in the following form [1, 3]:

(/p− e /A−m)ψ(x, t) = 0. (2.47)

Here /p = γµi∂µ with the standart representation of the Dirac matrices5:

5 For the massive fermions (which are Dirac fermions) this is the standart representation for the
Dirac matrices. For Majorana fermions (neutral fermions) and Weyl fermions (massless fermions)
there are di�erent representations.
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γi =

 0 σi

−σi 0

 and γ0 =

 1 0

0 −1

 . (2.48)

One notes that in eq. (2.47) /A is de�ned as /A = γµA
µ, where Aµ = {Φ, A}

represents the four-vector-potential whose scalar and vector parts are Φ(x) and

A(x, t), respectively (Appendix A).

Under parity operator P , position 4-vector are transformed as:

xµ
P→ xµ

′
= (ΛP)µν x

ν , (2.49)

where (ΛP)µν is the space re�ection matrix in the 4-dimensional space-time, which

is given by:

(ΛP)µν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (2.50)

The corresponding transformation in the Dirac Spinor space is de�ned as:

ψ(x, t)
SP→ ψ′(x′, t) = SPψ(x, t). (2.51)

First focusing on the free particle equation, one can see that to ensure its co-

variance, the parity operator SP in the spinor space should satisfy the following
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equation [1]:

SPγµSP−1 = (ΛP)µν γ
ν . (2.52)

The solution to eq. (2.52) can easily be obtained as:

SP = eiϕγ0. (2.53)

Here, ϕ is a phase factor with the values of 0, π/2, π, 3π/2 . This is obtained by

requiring that four inversions is necessary to bring the spinor back to its original

value, in the same spirit as one needs a 4π spatial rotation for the same purpose.

Thus, SP should satisfy the equation,

SP4 = I, (2.54)

so that the phase eiϕ can take only four values of ±1 and ±i.

Next turning our attention on the interaction case, one has:

SP(/p− e /A−m)SP−1SPψ(x, t) = 0. (2.55)

Using eq. (2.52), eq. (2.55) takes the form,

[(ΛP)µν γ
ν (pµ − eAµ)−m]SPψ(x, t) = 0. (2.56)
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Covariance in the interaction case means this should be equivalent to

(/̃p− e /̃A−m)ψ′(−x, t) = 0, (2.57)

where p̃µ = (p0,−p). Then, one sees that the Dirac Equation, with electromag-

netic interaction is covariant, if and only if Aµ transforms as

Aµ → Ãµ = (A0,−A), (2.58)

which is in agreement with the results that we have obtained in the classical

case6.

Therefore under parity transformation, scalar potential and zeroth component

of the momentum keep its sign, whereas vector potential does not.

6 This is natural, since the Aµ entering in the Dirac Equation here is treated as an external �eld,
i.e. classical.
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CHAPTER 3

TIME REVERSAL

What is adapted in this thesis concerning the meaning of time reversal is the

reversal of motion. In other words, if one records some physical event and

watches this �lm backward, if it can not be understood whether the physical

event is taking place forward or backward, then the time reversal is said to be a

symmetry [3].

Denoting the time reversal operation by T , one observes that

dnx

dtn
T→ dnx

d(−t)n
= (−1)n

dnx

dtn
. (3.1)

Thus, velocity picks a minus sign under time reversal, whereas position and

acceleration do not. As a result, every element in mathematical equations de-

scribing the physical event that has a linear velocity part is odd under time

reversal.

This, for instance, brings in a subtlety at the classical level in the presence of

electromagnetic interactions, since the Lorentz force involves a linear term in

velocity. To see how this issue is resolved, one needs to study the time-reversal
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problem for the Maxwell's equations. Indeed, applying time reversal operation,

on the time variable only, in the Maxwell's Equations, one gets[12];

∇ · E =4πρ
T→ ∇·E′=4πρ′, (3.2)

∇×B− ∂E

∂t
= 4πj

T→ ∇×B′ − ∂E′

∂(−t)
= 4πj′, (3.3)

∇× E = −∂B
∂t

T→ ∇× E′ = − ∂B′

∂(−t)
, (3.4)

where the primed entities denote the transformed values of the corresponding

entities, under time reversal transformation. It can be noted that eqs. (3.2)-(3.4)

are invariant if and only if,

E′= E, B′= −B, ρ′ = ρ, j′ = −j, andv′ = −v. (3.5)

These total set of transformations given in eq. (3.5) leave the Lorentz Force FL

invariant under time reversal:

FL =q[E + v ×B]
T→ FL

′=q[E + (−v)× (−B)] = FL. (3.6)

On the other hand, the action of time reversal on angular-momentum operator

L = X×P gives,
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L = X×P
T→ X× (−P) = −L. (3.7)

Generalizing this result to total angular momentum J, one gets

J
T→ −J. (3.8)

3.1 Time Reversal in Non Relativistic Quantum Mechanics

Starting with the schrödinger Equation which describes velocity independent

interactions,

i
∂Ψ(x, t)

∂t
=

[
− 1

2m
∇2 + V (x)

]
Ψ(x, t), (3.9)

one notes that, if Ψ(x, t) is a solution, Ψ(x,−t) is not, due to the �rst order

nature of time-derivative. In fact, replacing ”t” by ”− t” in eq. (3.9) gives

− i∂Ψ(x,−t)
∂t

=

[
− 1

2m
∇2 + V (x)

]
Ψ(x,−t). (3.10)

However, if one takes complex conjugation of the new inverted equation, one

gets Ψ∗(x,−t) is the solution of the conjugated equation.

i
∂Ψ∗(x,−t)

∂t
=

[
− 1

2m
∇2 + V (x)

]
Ψ∗(x,−t). (3.11)
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which is the same as the original equation. Thus, if Ψ(x, t) is the solution to

schrödinger equation so isΨ∗(x,−t). Given the fact that the physically meaning-

ful quantities are the expectation values of the observables, which involve both

Ψ(x, t) and Ψ∗(x,−t), then one should think of the eq. (3.9) together with its

conjugate to have a complete physical description.

To support the argument presented above one can consider the stationary-state

solutions with positive energy:

Ψ(x, t) = ψ(x)e−iEnt, Ψ∗(x,−t) = ψ∗(x)e−iEnt. (3.12)

This together with the above observation shows that time reversal operation

involves complex conjugation.

However in the presence of electromagnetic �elds one needs to be more careful.

The new schrödinger equation for this case is given as [13],

i
∂Ψ(x, t)

∂t
=

1

2m

[
(−i∇− qA)2 + eA0

]
Ψ(x, t), (3.13)

The above recipe, namely, if Ψ(x, t) is a solution so is Ψ∗(x,−t), does not seem

to work, without an additional condition imposed on the potentials. Namely, to

ensure the recipe, one has to further transform the vector potential A without

touching scalar potential A0, according to A
T→ −A and A0 T→ A0, as in the

classical case. That is if there is only electric �elds in the medium the time

reversal invariance is intact. However, in the presence of magnetic �eld in order

not to violate T-reversal one has to make further arrangements.
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Because of the entry of the complex conjugation operation in reverting the time

in the schrödinger equation, the �rst issue to settle is how to de�ne the time

reversal operator, which acts on the states of the Quantum Hilbert Space.

In classical mechanics, the states are de�ned by specifying the set of positions

and momenta at each instant of time. If the time is reversed, the elements of

the state set transform as x
T→ x, p

T→ −p. Based on this classical observation,

one can postulate that the quantum mechanical time reversal operator obeys

the following operator transformation laws for the position and momentum op-

erators:

TXT −1 = X, T PT −1 = −P. (3.14)

The postulated transformation law T PT −1 = −P deserves extra attention.

Because, a �straightforward� application of this law, together with the TXT −1 =

X, to the basic commutator of the quantum mechanics leads to an inconsistency.

Indeed, if one considers

[Xi,Pj] = iδij, (3.15)

and applies the time reversal transformation on it, one gets:

T [Xi,Pj] T −1 = T iδijT −1. (3.16)

Inserting identities T T −1 = I, and using eq. (3.14), the LHS of eq. (3.16)

27



yields:

(LHS)T̂ =
[
TXiT −1, T PjT −1

]
,

= [Xi,−Pj] = − [Xi,Pj] = −LHS.

Computing the RHS is more subtle however, as it involves �i� in the light of

the above discussion concerning complex conjugation. Therefore, one needs to

decide on the mathematical nature of T �rst. Namely, if T is chosen to be a

unitary operator, T † = T −1, then one gets for the RHS of the eq. (3.16) as,

(RHS)T̂ = T iδijT −1 = iδij = RHS, (3.17)

which obviously is a contradiction, given the fact that LHS has changed sign.

The solution proposed byWigner [14] to remedy this contradiction is to take T as

an anti-unitary operator, so that T i T −1 = −i, and thus, the RHS also behaves

in line with the LHS, by changing sign, and the contradiction is removed1.

In computing the LHS of eq. (3.15), the postulated transformation law eq.

(3.14) for P, which overlooks this anti-unitarity issue, is used: One would have

faced with the same kind of contradiction, if the explicit form of the P operator

in x-representation, namely P = −i ∂
∂x
, is used. Indeed, focusing on,

1 The general properties of the anti-linear unitary operators are discussed in detail in the Appendix
B.
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T PT −1 = T
(
−i ∂
∂x

)
T −1, (3.18)

one notes that if T̂ is unitary, since it does not a�ect the space variable, then

RHS of eq. (3.18) becomes

T
(
−i ∂
∂x

)
T −1 = −i ∂

∂x
= P, (3.19)

which contradicts the postulated transformation law given by eq. (3.14). To

overcome this di�culty, T̂ is to be taken as anti-unitary (Appendix B), then eq.

(3.18) becomes,

T PT −1 = T
(
−i ∂
∂x

)
T −1,

= T (−i) T −1 ∂

∂x
,

= i
∂

∂x
= −P,

which is in full agreement with eq. (3.14).

As the above discussion shows, how to represent T explicitly is a very subtle

issue. One can convince oneself that this representation depends on the physical

system under consideration.
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To illustrate this, for instance, one can consider the eigenket systems of posi-

tion and momentum operators. It can be demonstrated that for these speci�c

examples, T is the simple complex conjugation operation.

Indeed, considering the eigenvalue equation of the position operator, acted upon

by T , one gets:

T Xi|xi〉 = T (xi|xi〉) = xi (T |xi〉) (3.20)

Inserting the identity T −1T = I in the LHS, and also using eq. (3.14), one gets

for the LHS;

T XiT −1T |xi〉 = Xi (T |xi〉) , (3.21)

which together with eq. (3.20) means,

T |xi〉 = |xi〉. (3.22)

Similarly, starting with Pi|xj〉, using eq. (3.14), and inserting T −1T = I , it

follows that:

T (Pi|xj〉) = T PiT −1T |xj〉 = −Pi (T |xj〉) . (3.23)

Further, using eq. (3.22), one gets:
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T (Pi|xj〉) = −Pi|xj〉. (3.24)

Recalling Pi|xj〉 = i ∂
∂xi
|xj〉, it is seen that T is simply the complex conjugation

operator T = K, because KPiK−1 = −Pi. Thus, for the spinless systems, one

can simply take T as K.

To complete the discussion, the time evolution equation, namely the schrödinger

equation will be considered:

i
d

dt
|Ψ(t)〉 = H|Ψ(t)〉. (3.25)

In this discussion, it will be assumed that H is invariant under time reversal,

that is, it commutes with T : [T , H] = 0.

It will be demonstrated that, if |Ψ(t)〉 is a solution to eq. (3.25), so is |Ψ′(t)〉 ≡

T |Ψ(−t)〉. To see this, starting from,

i
d

dt
|Ψ′(t)〉 = i

d

dt
(T |Ψ(−t)〉) , (3.26)

replacing d
dt

by − d
dτ
, and remembering that T is assumed not to depend on t

explicitely, one gets
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i
d

dt
|Ψ′(t)〉 = −i d

d(−τ)
(T |Ψ(τ)〉) ,

= iT d

dτ
|Ψ(τ)〉.

At this point, using the above-proven fact that T is anti-unitary meaning −i T =

T i (see, Appendix B),

i
d

dt
|Ψ′(t)〉 = T

(
i
d

dτ
|Ψ(τ)〉

)
, (3.27)

is obtained. Using the schrödinger equation, for the generic variable τ in the

RHS of eq. (3.27), one gets:

i
d

dt
|Ψ′(t)〉 = T (H|Ψ(t)〉) . (3.28)

Taking into account of the starting assumption, that H commutes with T , it

can be shown that,

i
d

dt
|Ψ′(t)〉 = H (T |Ψ(t)〉) = H|Ψ′(t)〉, (3.29)

which completes the proof.

It would be useful to add further observations on the rather non-trivial nature

of the time reversal transformation in the context of quantum mechanics by

introducing a new perspective in the classical �eld theory framework. First let
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us note that schrödinger equations can be obtained as Euler-Lagrange equations

starting from a classical �eld lagrangian (which is discussed in detail in the

Appendix C).

L(x) =
i

2

[
ψ∗(x)

∂ψ(x)

∂t
− ∂ψ∗(x)

∂t
ψ(x)

]
− 1

2m
∇ψ∗(x) · ∇ψ(x). (3.30)

Transforming t→ −t′, L changes as

L(x,− t′) =
i

2

[
ψ∗(x,−t′)∂ψ(x,−t′)

∂ (−t′)
− ∂ψ∗(x,−t′)

∂ (−t′)
ψ(x,−t′)

]
− 1

2m
∇ψ∗(x,−t′) · ∇ψ(x,−t′), (3.31)

L(x,−t′) =
i

2

[
∂ψ∗(x,−t′)

∂t′
ψ(x,−t′)− ψ∗(x,−t′)∂ψ(x,−t′)

∂t′

]
(3.32)

− 1

2m
∇ψ∗(x,−t′) · ∇ψ(x,−t′).

One observes that eq. (3.32) is the same as (C.1), for the identi�cations ψ∗(x, t)←→

ψ(x,−t) and ψ∗(x,−t)←→ ψ(x, t) . Namely,

ψ(x, t)
T→ ψτ (x, t) ≡ ψ(x,−t) = ψ∗(x, t). (3.33)

and
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ψ∗(x, t)
T→ ψ∗τ (x, t) ≡ ψ∗(x,−t) = ψ(x, t). (3.34)

Thus the action S (also L) stays invariant under time reversal,

S =

bˆ

a

Ldt T→
aˆ

b

L(−dt) =

bˆ

a

Ldt = S. (3.35)

3.1.1 Time Reversal and Angular Momentum

Next, the attention can be turned on the behaviour of the angular momentum

operator under time reversal: From eq. (3.14), it follows automatically that, the

orbital angular-momentum operator L = X×P, transforms as:

T LT −1 = −L. (3.36)

This transformation law can be generalized to all kinds of angular-momentum-

like operators (interpreted as the generators of the generalized rotations) such

that:

T JT −1 = −J. (3.37)

3.1.1.1 Time Reversal for Spinless System

One can now formulate how the common eigenkets of {L2,Lz} transform under

T . First noting that, since [T ,L2] = 0, from eq. (3.36), then, using this fact for
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L2, and eq. (3.36) for Lz, one gets:

L2 (T |l,m〉) = l(l + 1) (T |l,m〉) , (3.38)

Lz (T |l,m〉) = −m (T |l,m〉) , (3.39)

which means

T |l,m〉 = (constant)|l,−m〉. (3.40)

As it is observed above that time reversal operation involves complex conju-

gation, then one needs �rst to consider the transformation properties of the

wave function 〈x̂|l,m〉 = Y m
l (θ, φ), de�ned above in equation eq. (2.42) under

complex conjugation:

〈x̂|l,m〉 = Y m
l (θ, φ)

K→ Y m∗
l (θ, φ) = (−1)mY −ml (θ, φ), (3.41)

= (−1)m〈x̂|l,−m〉.

Finally, one gets;

T |l,m〉 = (−1)m|l,−m〉. (3.42)
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Applying time reversal operator once more, eq. (3.42) yields:

T 2|l,m〉 = (−1)2m|l,m〉. (3.43)

This gives

T 2 = I, (3.44)

because for the case in hand, m's are integer.

3.1.1.2 Time Reversal for half-integer Spin Systems

Spin being an angular momentum (angular momentum in the rest frame of the

particle) satis�es the usual angular momentum commutation relations. There-

fore, the consistency with the commutation relations requires that it should

transform under time reversal as,

T ST −1 = −S, (3.45)

where S is spin operator de�ned by S = 1
2
σ for spin 1/2 systems.

Since T is anti-unitary, namely T = T0K where T0 is unitary part, one can

rewrite eq. (3.45) as:

(T0K)S (T0K)−1 = −S. (3.46)
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Therefore,

1

2
T0

(
KσK−1

)
T −1

0 = −1

2
σ, (3.47)

so,

T0 σ
∗
i T −1

0 = −σi. (3.48)

From eq. (3.48), one can deduce that T0 should commute with σ2 and anti-

commutes with σ1 and σ3. The only operator which satis�es these properties in

the 2-dimensional Pauli Spin Space is σ2: T0 = cσ2 where c is a complex number

[13]. Next, to determine c we will make use of the unitarity property of the T0:

T †0 T0 = |c|2σ†2σ2 = |c|2 = I, (3.49)

one sees that c is a pure phase. With the de�nition c = −iη, T0 can be expressed

as;

T0 = −iησ2, (3.50)

which can also be rewritten as:

T0 = ηe−iSyπ. (3.51)
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Using the de�nition T = T0K, one �nally gets:

T = T0K = ηe−iSyπK. (3.52)

To evaluate the action of the T 2 on the spin-1/2 system, one can for instance

consider the basis of the {S2,Sz} system which is de�ned as (suppressing the

s = 1/2 quantum number in the de�nition of the eigenstates),

S2|m〉 =
3

4
|m〉, (3.53)

Sz|m〉 = m|m〉, (3.54)

with m = ±1
2
. So T acts on |m〉 as:

T |m〉 = −iησ2K|m〉 = −iησ2|m〉. (3.55)

Using eq. (3.45), one gets:

Sz (T |m〉) = −m
2

(T |m〉) . (3.56)

It follows from eq. (3.56) that T |m〉 is an eigenstate with eigenvalue −m :

T |m〉 = c| −m〉 (3.57)
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Here c is a pure phase because of normalization. Next, using the explicit form

of T0 in eq. (3.50) (basis vectors are real under K) on the individual |m〉, one

gets:

T |+〉 = −iησ2|+〉 = η|−〉, (3.58)

T |−〉 = −iησ2|−〉 = −η|+〉. (3.59)

One notes that, eqs. (3.58) and (3.59) enable to determine the pure phase c in

eq. (3.57), as c = (−1)m, provided that the formerly undetermined pure phase

η is choosen as η = i. Namely,

T |m〉 = (−1)m| −m〉, (3.60)

wh�ch means that T0 becomes T0 = σ2.

Next, acting by T = −iησ2K on |m〉 once more, one gets:
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T 2|m〉 = T (−iησ2|m〉) ,

= (−iησ2) (iη∗σ∗2) |m〉,

= |η|2σ2σ
∗
2|m〉,

= −σ2
2|m〉,

= −|m〉. (3.61)

Thus, one obtains on the spin-1/2 systems,

T 2 = −I (3.62)

independent of the phase η (which means it is totally arbitrary).

3.1.1.3 Generalizations to arbitrary half-integer spin systems

To determine the action of T on arbitrary half-integral spin system one starts

with eq. (3.37). The �rst step is to see how T acts on the basis formed by the

common eigenstates of {J2, Jz} which is de�ned as:

J2|j,m〉 = j(j + 1)|j,m〉, (3.63)

Jz|j,m〉 = m|j,m〉. (3.64)
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Following the steps adapted in the spin-1/2 system, one can de�ne T for this

system as:

T = ηe−iJyπ. (3.65)

As J2 commutes with any components Ji, one sees that T commutes with J2.

Thus, on acting |j,m〉, T does not change the value of j.

Next, to determine the action of T on |j,m〉, one has to �rst determine the

transformation property of Jz under T . Carrying out some algebra one �rst

gets:

eiπJyJze
−iπJy = −Jz. (3.66)

Using eq. (3.66) one gets:

Jz
(
e−iπJy |j,m〉

)
= e−iπJy (−Jz|j,m〉) ,

= (−m) e−iπJy |j,m〉. (3.67)

Thus, one sees that, e−iπJy |j,m〉 should be an eigenstate of |j,−m〉

e−iπJy |j,m〉 = ξ1|j,−m〉. (3.68)
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Here, ξ1 is a pure phase because of the normalization.

Using this expression, one can attempt to determine the action of T 2 on |j,m〉:

T |j,m〉 = ηe−iJyπK|j,m〉. (3.69)

Acting once more, one gets:

T 2|j,m〉 = ηe−iJyπK
(
ηe−iJyπK|j,m〉

)
,

= |η|2e−i2πJy |j,m〉,

= e−i2πJy |j,m〉. (3.70)

To determine the action of e−i2πJy on |j,m〉, one has to repeat the above proce-

dure used in eq. (3.66). With some algebra one gets:

ei2πJyJze
−i2πJy = +Jz. (3.71)

Using eq. (3.71),

Jz
(
e−i2πJy |j,m〉

)
= e−i2πJyJz|j,m〉,

= m
(
e−i2πJy |j,m〉

)
. (3.72)

42



One sees from eq. (3.72) that the state e−i2πJy |j,m〉 is an eigenstate |j,m〉;

e−i2πJy |j,m〉 = ξ2|j,m〉, (3.73)

where ξ2 is also a pure phase because of the normalization.

One may be inclined to choose this phase ξ2 as (−1)2j based on the experience

attained on spin-1/2 system, by noting that (−1)2s = −1, for s = 1/2.

It was noted [12] that for a general half-integer spin-j, the state |j, j〉 can be

interpreted as being constructed from 2j spin-1/2 particles with each individual

spins in the up direction, as far as the transformation properties under rotations

are conserved. With the purpose of determining the pure phase ξ2 explicitly,

one can adapt this point of view, and take the time reversal operator for this

general half-integer spin-j system as a tensor product (involving 2j-terms) of

the individual time reversal operators for each spin-1/2 component:

Tj = T1 ⊗ T2 ⊗ ...⊗ T2j, (3.74)

on

|j,mj〉 = |m〉1 ⊗ |m〉2 ⊗ ...⊗ |m〉2j, (3.75)

each Ti acting on the corresponding partner |m〉i in the tensor product composite

state, producing a pure phase factor −1. Thus, the cumulative e�ect on the
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composite state is (−1)2j:

T 2
j |j,m〉 = (−1)2j|j,m〉. (3.76)

Next, to determine the phase ξ1which appeared in eq. (3.68) one needs to repeat

the same analysis. That is we have to consider an arbitrary half integer spin as

a composite of 2j spin-1/2 as in eqs. (3.74) and (3.75). Then using eqs. (3.60),

(3.74),(3.75), for each individual spin system, one gets:

T |j,m〉 =

[∏
i

(−1)mi

]
|j,−m〉. (3.77)

Then using m =
∑2j

i mi one �nally gets:

T |j,m〉 = (−1)m|j,−m〉. (3.78)

3.1.2 Kramers Degeneracy

An interesting consequences of eq. (3.62) is the so called Kramers Theorem

which was �rst discovered in the context of schrödinger equation, Wigner reached

this degeneracy as a result of time-reversal symmetry [12]. To demonstrate this

theorem, one considers a Hamiltonian which commutes with T . Then acting

on the energy eigenvalue equation by T one gets:

H (T |ψn〉) = T H|ψn〉 = T En|ψn〉 = En (T |ψn〉) . (3.79)
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Here, |ψn〉 is the energy eigenket with the energy value En. One sees that, the

states T |ψn〉 and |ψn〉 have the same energy. If they are the same states, they

should di�er only by a phase factor eiα:

T |ψn〉 = eiα|ψn〉. (3.80)

Acting time reversal operator once more gives,

T |ψn〉 = T eiα|ψn〉 = e−iαT |ψn〉 = e−iαeiα|ψn〉 = +|ψn〉, (3.81)

which is consistent only for bosonic systems. However, for the half-integer spin

systems, in the light of eq. (3.62), T |ψn〉 and |ψn〉 should represents di�erent

systems with the same energy. Namely, these states are degenerate.

This is true, not only for a single electron, but also for a system of an odd

number of electrons, in the light of construction (of the general half-integral

spin-j systems in terms of the spin-1/2 ones) and discussion presented in section

3.1.3.

Furthermore, this is also true for a system with an odd total number of fermions,

e.g., electrons, protons, and neutrons. In this respect, this theorem has inter-

esting implications for the atomic systems. For instance, a system constructed

with odd number of electrons under external electric �eld, each energy level has

to be at least twofold degenerate independent of the nature of the electric �eld.
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3.2 Time Reversal in Relativistic Quantum Mechanics

As in the non-relativistic case, one can de�ne time reversal operator as ST =

UTK where UT is some unitary matrix, such that the free Dirac equation is

covariant [1, 13].

Under time reversal operator T , position 4-vector are transformed as:

xµ
T→ xµ

′
= (ΛT )µν x

ν , (3.82)

with the time-reversal matrix (ΛT )µν in 4-dimensional space-time:

(ΛT )µν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.83)

The corresponding transformation in the Dirac Spinor space is de�ned as:

ψ(x, t)
ST→ ψ′(x, t′) = ST ψ(x, t) (3.84)

where ST is the time reversal operator in the spinor space.

In this case the covariance of the free Dirac equation is not a simple one, as

it should be between the ψ and ψ∗ equations. One starts with the free Dirac

equation:
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(iγµ∂µ −m)ψ(x, t) = 0. (3.85)

where ∂
′
µ = (−∂0,∇). Next, one needs to complex conjugate eq. (3.85) �rst, and

act on it by the unitary part of time reversal operator UT in the spinor space:

UT (−iγµ∗∂µ −m)ψ∗(x, t) = 0. (3.86)

After inserting identities U−1
T UT = I, one gets:

(
−iUTγµ∗U−1

T ∂µ −m
)
UTψ

∗(x, t) = 0. (3.87)

Then requiring covariance, eq. (3.87) should be matched against:

(
iγµ∂

′

µ −m
)
UTψ

∗(x, t) = 0. (3.88)

For this, ∂µ in eq. (3.87), should be converted to ∂
′
µ in eq. (3.88), which yields;

(
−iUTγµ∗U−1

T (ΛT )νµ ∂
′
ν −m

)
UTψ

∗(x, t) = 0, (3.89)

where ∂
′
ν = (−∂0,∇). Comparing eqs. (3.88) and (3.89), one gets:

UTγ
µ∗U−1

T = −
(
Λ−1
T
)ν
µ
γν . (3.90)
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Noting that γ2 is complex, and the others (γ0,1,3) are real, from eq. (3.90) one

obtains:

[
UT , γ

0,2
]

= 0 and
{
UT , γ

1,3
}

= 0. (3.91)

The solution to (3.91) is given as

UT = cγ1γ3. (3.92)

That is, the Dirac equation stays form-invariant, if and only if ST ψ(x, t) =

UTψ
∗(x, t) with UT chosen as UT = iγ1γ3. Therefore ψ′(x,−t) can be de�ned

as,

ψ′(x,−t) ≡ ST ψ(x, t) = UTψ
∗(x, t). (3.93)

Moreover, to see the e�ect of time reversal on electromagnetic �eld, one can

consider the interacting Dirac equation with minimal coupling and arrives at:

[(
UTγ

µ∗U−1
T

) (
p∗µ − eAµ

)
−m

]
(UTψ

∗(x, t)) = 0. (3.94)

The covariance of the Dirac equation requires,

(/̃p− e /̃A−m)ψ′(x,−t) = 0, (3.95)
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where p̃µ = (p0,−p) and Ãµ = (A0,−A) as de�ned in Chapter 2.

Thus, under time reversal transformation, the scalar potential keeps its sign

whereas the vector potential is reverted.
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CHAPTER 4

CHARGE CONJUGATION

After some unsuccessful e�orts on what to do with the negative energy solutions

of the Dirac equation, it was soon realized that those solutions can be interpreted

as the positive energy antiparticles of those described by the positive energy

solutions, �rst by Dirac and later by Stueckelberg and Feynman independently

in a di�erent context [13]. In Dirac's version, which is known as the �hole

theory�, he �lles up the negative energy states with electrons, in line with the

Pauli exclusion principle [1]. The vacuum state becomes a state with all negative-

energy states are occupied whereas all positive-energy states are empty.

If, one of the electrons in negative energy sea absorbs a photon, it gets excited

to positive energy state. Then, the result is a positive-energy electron and a

hole in negative-energy sea. The absence of an electron with negative energy

interpreted as a particle of positive energy and opposite charge.

In Stuckelberg and Feynman [15, 16] version, they associated the negative-energy

solutions of the Dirac equation with the positive energy physical particles moving

backward in time. In the following discussion this subject will be taken up in the

context of discrete symmetry, charge conjugation. With the judicious choice of
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identical mass, and opposite charge for the positron, it becomes a straightforward

analysis.

This will be done by trying to construct the charge conjugated positive energy

Dirac equation for the positron from the negative energy one for the electron. In

this discussion it will be assumed that the particle and the anti-particle have the

identical masses (an issue which will be discussed in detail in the consequences

of CPT theorem) and opposite charges.

First one starts with the Dirac equation for the electron in an external electro-

magnetic �eld expressed as:

(/p− e /A−m)ψ(x, t) = 0. (4.1)

The next step is to change the sign in front of the electric charge e in eq. (4.1).

That is one proposes that the wave function of positron ψc(x, t) should satisfy

the following equation:

(/p+ e /A−m)ψc(x, t) = 0, (4.2)

Here the masses of the electron and positron are taken to be equal 1.

It is clear that this sign change of electric charge can be achieved by taking

complex conjugation of eq. (4.1), since /p and /A di�er by the imaginary factor

inside /p.

1 To be proven later in the context of CPT theorem
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As Aµ is real (treated classically), one gets:

(iγµ∂µ)∗ = −iγµ∗∂µ, (4.3)

(γµAµ)∗ = γµ
∗
Aµ. (4.4)

Eq.(4.1), after complex conjugation becomes,

(−iγµ∗∂µ − eγµ
∗
Aµ −m)ψ∗(x, t) = 0. (4.5)

Therefore, introducing a unitary operator Uc, and acting on eq. (4.5), leads to:

Uc
[
−γµ∗ (i∂µ + eAµ)−m

]
U−1
c Ucψ

∗(x, t) = 0. (4.6)

By requiring that,

Ucγ
µ∗U−1

c = −γµ, (4.7)

one obtains

[γµ (i∂µ + eAµ)−m]Ucψ
∗(x, t) = 0, (4.8)

or equivalently,
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(/p+ e /A−m)ψc(x, t) = 0, (4.9)

where the de�nition ψc(x, t) ≡ SCψ(x, t) = Ucψ
∗(x, t) is introduced to describe

the Dirac spinor corresponding to the positron.

Recalling the explicit expression for the γµ matrices, one observes that (4.7)

reduces to (as γ2 is the only complex one),

[
Uc, γ

2
]

= 0, (4.10)

{
Uc, γ

0,1,3
}

= 0. (4.11)

The solution to eqs. (4.11) and (4.10) are obtained as Uc = iγ2. Thus the charge

conjugation operation becomes SC = UcK = iγ2K.

To illustrate all these on a simple example, one can consider the spin-up negative-

energy �rest solution�, ψ3
R(t), of the free Dirac equation:

ψ3
R(t) = N



0

0

1

0


e+imt. (4.12)

Acting on ψ3
R(t) by the SC operator, one gets;

54



SCψ3
R(t) = SCN



0

0

1

0


e+imt,

= −N



0

1

0

0


e−imt,

which corresponds to the rest-solution of spin-down positive energy spinor. Now,

associating the negative energy solution with anti-particles, it is seen, in this sim-

ple case of rest solution, that the absence of a spin-up negative energy electron

at rest corresponds to the existence of a spin-down positive energy positron at

rest, and vice versa (provided that the masses are assumed to be equal).
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CHAPTER 5

THE CPT SYMMETRY

5.1 CPT Theorem and its Consequences

The combined action of all the discrete symmetries on the wave-function of

electron, by using eqs. (2.53), (4.9) and (3.93) yields[1];

ψCPT (x, t) ≡ SCSPST ψ(x, t) = iγ5ψ(x, t) = ψc(−x,−t), (5.1)

where γ5 =

 0 I

I 0

 is in the Dirac representation and ψCPT (x, t) represents a

positron moving backward in space-time. In other words, an electron wave func-

tion multiplied by iγ5 and moving backward in space-time represents a positron

moving forward in space-time.

The CPT theorem is one of the most important characteristics of Relativistic

Quantum Field Theory. It is built on three assumptions: Locality, Lorentz

Invariance, and the Hermiticity of the Hamiltonian. If CPT is violated, the

implications would be very serious. Because, this would mean that at least one

of the above three assumptions would not be valid [17].
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The most important physical implications of the CPT symmetry is that the

masses and the lifetimes are equal for particles and anti-particles. These issues

are discussed in the following sections.

5.1.1 Equality of Masses of Particles and Anti-particles

A particle state may be represented as the common eigenstate of a Hamiltonian

H (which includes all the relevant interactions), J2 and Jz. The mass of the

particle is de�ned as the expectation value of the Hamiltonian H in its rest

frame, this may be denoted as |P;mj〉 where P represents the particle and mj is

the 3rd component of spin (because it is in the rest frame). That is, the mass of

the particle MP is given by:

MP = 〈P;mj|H|P;mj〉. (5.2)

If H is Hermitian (which is necessary for the validity of the CPT theorem), and

does not depend on mj explicitly, then MP is real:

MP = 〈P;mj|H|P;mj〉∗ = 〈P;mj|H|P;mj〉. (5.3)

Before attempting to the de�ne the action of the combined Θ = CPT on |P;mj〉,

one has to �rst review the action of individual operators P , T and C on |P;mj〉.

Paying attention that |P;mj〉 is an eigenstate of {J2,Jz} (or {S2,Sz} in the rest

frame), and using eq. (3.78), one �rst gets:
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PT |P;mj〉 = (−1)j+m|P;−mj〉. (5.4)

Denoting the antiparticle of P by P̄, one can de�ne the charge conjugation op-

eration as:

C|P;mj〉 = |P̄;mj〉. (5.5)

Therefore, the combined P , T and C operations can be represented as;

Θ|P;mj〉 = (−1)j+m|P̄;−mj〉, (5.6)

where Θ = CPT . Inserting the identities, I = Θ−1Θ to both sides of H, in

equation (5.2), one obtains:

MP = 〈P;mj|Θ−1ΘHΘ−1Θ|P;mj〉. (5.7)

Using the CPT invariance of the Hamiltonian, ΘHΘ−1 = H, eq. (5.7) yields:

MP =
(
〈P;mj|Θ−1

)
H (Θ|P;mj〉) . (5.8)

Next, taking into account of eq. (5.6), eq. (5.8) results in the following form:
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MP = (−1)2(j+m)〈P;−mj|H|P;−mj〉,

= 〈P̄;−mj|H|P̄;−mj〉. (5.9)

One notes that the right hand side of (5.9) is nothing but the expectation value

of the Hamiltonian H̄ ≡ HCPT = H in the rest frame of the antiparticle, namely

the mass of the anti-particle. Thus, we �nally get the result what we have aimed

to prove:

MP = MP̄. (5.10)

5.1.2 Equality of Lifetimes (and the masses) of Particles and Anti-

particles

The purpose here is to show that the lifetimes of the decays P→ f and P̄→ f̄

are equal. These decays are governed by the weak part of the Hamiltonian

H = Hst + Hwk. Both parts are invariant under combined Θ = CPT , and the

strong part of the Hamiltonian Hst is also invariant under individual P , T and C

symmetries. One also notes that P and P̄ decay into di�erent products because

they are oppositely charged.

a) For proving the equality of lifetimes, eq. (B.14) of the Appendix B will be

used. With the choices A = Θ = CPT , O = H, |α〉 = |P;mj〉, |β〉 = |f〉 (where

f denotes the �nal decay products of P), eq. (B.14) becomes:

60



(
〈f̃ |
)
Hwk

(
|P̃;mj〉

)
= 〈P;mj|Hwk|f〉. (5.11)

This can be reduced to

〈f̄ |Hwk|P̄;−mj〉 = 〈P;mj|Hwk|f〉,

= 〈f |Hwk|P;mj〉∗, (5.12)

which means that the decay rates are equal: ΓP→f = ΓP̄→f̄ . As the lifetime τ is

de�ned as τ = 1/Γ, it follows that lifetimes are equal.

b) For the choice |α〉 = |β〉 = |P;mj〉, eqs. (5.6) and (B.14) yield:

〈P̄;−mj|H|P̄;−mj〉 = 〈P;mj|H|P;mj〉, (5.13)

which is nothing but the equality of masses of the particles and the anti-particles.
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CHAPTER 6

NEUTRAL KAON MIXING & OSCILLATIONS

Neutral K-meson has two states which are called as K0 and K̄0 in the context

of strong interactions. Strangeness is conserved in strong interactions but, not

in weak interactions.

Gell-Mann and Pais [17] analyzed theK0-K̄0 system as a quantum mechanical 2-

state system, with the basis states chosen as |K0〉 and |K̄0〉 which are eigenstates

of the strangeness operator S. Since the weak interactions violate strangeness,

they mix these states together.

K0 and K̄0 with the quark structures sd̄ and s̄d with strangeness values +1 and

−1, respectively, and transform to each other via second-order weak interaction

which in the modern notation (Standart Model) represented by the box diagrams

given in Figure 6.1.

Any state |ψ〉 of the neutralK0 system can be described by giving the amplitudes

in either basis state [19].
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Figure 6.1: Feynman diagrams contributing to K0 ↔ K̄0
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|ψ(t)〉 = c1|K0〉+ c2|K̄0〉 .= c1

 1

0

+ c2

 0

1

 , (6.1)

where

 1

0

 and

 0

1

 represent |K0〉 and |K̄0〉, respectively.

The next step is to construct the Hamiltonian H including the weak interaction.

Since the Weak interactions is CP-conserving, one can write the most general

form of Hamiltonian in the 2-dimensional state space as,

H = H0 +H1, (6.2)

where H0 is the diagonal strong part, re�ecting the equality (degeneracy) of the

K0 and K̄0 masses, and H1 is the CP-conserving weak part.

Before focusing on the solution of the eigenvalue equation of H eq. (6.2), one

needs to understand how the decay process is described in quantum mechanics.

The time evolution of the state ψ of a stable particle with mass m in its rest

frame is governed by the schrödinger equation

i
dψ(t)

dt
= HRψ(t) = mψ(t), (6.3)

with the solution

ψ(t) = Ne−imt. (6.4)
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The simple eq. (6.3) is however not su�cient for describing the decay processes.

As decaying of a particle means to disappear (or to get lost), one needs an

additional non-Hermitian piece denoted by iΓ
2
in the Hamiltonian to describe the

decay process where Γ is the total decay width. Thus, the modi�ed schrödinger

Equation in the rest frame, becomes1;

i
dψ

dt
= Heffψ =

(
m− iΓ

2

)
ψ, (6.5)

with the solution

ψ(t) = e−imt−
1
2

Γt. (6.6)

Working out the continuity equation, one gets;

d|ψ(t)|2

dt
= −Γ|ψ(t)|2 6= 0, (6.7)

implying an average life-time for the decay, τ = 1/Γ.

Next, the representations of strangeness S, parity P and CP operators in the 2-

dimensional neutral K-state space need to be constructed. As, the K0-K̄0 states

were chosen as the initial basis, in order to represent these discrete operators in

this basis, one needs to work out their actions on these states �rst:

i) The K0, K̄0 particles carry ±1 values of strangeness, namely:

1 Although Hweak is Hermitian, the Heff is taken to be non-Hermitian to describe the decay,
following Breit-Wigner[19].

66



S|K0〉 = |K0〉, (6.8)

S|K̄0〉 = −|K̄0〉. (6.9)

Thus, in the |K0〉 and |K̄0〉 basis, S can be represented as:

S = |K0〉〈K0| − |K̄0〉〈K̄0| .=

 1 0

0 −1

 = σ3. (6.10)

ii) K-mesons are pseudoscalars, thus the parity operator act on them as,

P|K0〉 = −|K0〉, (6.11)

P|K̄0〉 = −|K̄0〉. (6.12)

Thus in the K-state space, P is represented as the negative identity matrix:

P = −I =

 −1 0

0 −1

 . (6.13)

This is an expected result, as the strong interactions is invariant under P .

iii) K0 and K̄0 are anti-particles of each other: Thus the charge conjugation
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operator should convert them into each other:

C|K0〉 = |K̄0〉, (6.14)

C|K̄0〉 = |K0〉. (6.15)

iv) So that, the combined CP operator should act on |K0〉 and |K̄0〉 as:

CP|K0〉 = −|K̄0〉, (6.16)

CP|K̄0〉 = −|K0〉. (6.17)

Therefore, in the K-state space it can be represented as:

CP = −
(
|K0〉〈K̄0|+ |K̄0〉〈K0|

) .
=

 0 −1

−1 0

 = −σ1. (6.18)

In the light of these, the total (strong+weak) CP-conserving Hamiltonian can be

constructed by adding to H0 the only CP-conserving term in the 2-state space,

namely σ1:

H = m0I + δσ1. (6.19)
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The eigenstates of this total CP-conserving Hamiltonian will be the eigenstates of

the σ1-operator, this is because as the strong part is proportional to the identity

matrix (guaranteeing the degeneracy of the masses of strangeness eigenstates of

K0 and K̄0 )2.

These new eigenstates of the full Hamiltonian, the CP eigenstates (the eigen-

states of σ1), can be expressed in the σ1-basis as

|+〉x =
1√
2

 1

1

 and |−〉x =
1√
2

 1

−1

 . (6.20)

Calling |+〉x and |−〉x as |K0
1〉 and |K0

2〉 , respectively, one can write;

|K0
1〉 =

1√
2

(
|K0〉+ |K̄0〉

)
, (6.21)

|K0
2〉 =

1√
2

(
|K0〉 − |K̄0〉

)
, (6.22)

with the corresponding eigenvalues:

λ0
1 = m0 + δ, (6.23)

λ0
2 = m0 − δ. (6.24)

2 An important note is in order here: The H0 is just the identity operator which commutes with
any operator in 2-state space. Thus one can choose its eigenstates freely, physics leads the way in this
choice, and they are taken as the eigenstates of the strangeness operator S = σ3.
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To summarize, the starting point was the strangeness eigenstates, |K0〉 and

|K̄0〉, with equal masses. This is natural due to the CPT theorem, as K0 and

K̄0 are the anti-particles of each other. In the presence of weak interactions, the

eigenstates |K0
1〉 and |K0

2〉 emerge with di�erent masses. Note that for the full

Hamiltonian H = H0 +H1, strangeness is no more conserved:

[H,S] = [m0I + δσ1, σ3] = −iδσ2. (6.25)

It is further to be re-iterated that; Hweak = δσ1 term mixes strange particle with

opposite strangeness; and δ is real (due to CP-symmetry, imaginary part of δ is

forbidden by CP)

The CP properties of these new eigenstates |K0
1〉 and |K0

2〉 are given by:

CP|K0
1〉 = (+1)|K0

1〉, (6.26)

CP|K0
2〉 = (−1)|K0

2〉. (6.27)

Here, |K0
1〉 and |K0

2〉 are the actual decaying states of the neutral K-system. In

fact, two di�erent decay modes were observed: A short-lived KS meson, which

decays into 2π, and a long-lived KL meson which decays into 3π (among other

things). The KS meson was identi�ed as being the CP = +1 state (K0
1). The

KL was identi�ed with CP = −1 state (K0
2), due 3π �nal state has CP = −1.

This �t very well into the simple framework described above, until the discovery
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in 1964 [10], that the long-lived KL, decayed also into 2π's. In 1964, Fitch

and Cronin showed that there was 45 number of 2π events out of 22,700 events

(nearly 1 in 500) at the end of the beam. Therefore, some of the long lived meson

should also decayed into 2π state which was the evidence for CP-violation.

This should be due to the fact that the decaying states, KS and KL have an

admixture of the �opposite type of CP's�.

This means that one has to modify the Hamiltonian given in eq. (6.19) by adding

a CP-violating term. CP-violating term, in principle could be a superposition

of σ2 and σ3, as both of these do not commute with σ1, and thus with the old

CP-conserving Hamiltonian given in eq. (6.2).

However CPT theorem forbids a σ3-type breaking. Indeed, as will be demon-

strated later, CPT requires that in Heff the diagonal terms should be same,

implying equality of the masses of particles and anti-particles3.

Thus, only σ2 type breaking is left to be considered for the purpose of break-

ing CP-invariance. Here, the requirement of Hermiticity has to be relaxed to

allow decay. Therefore, one can take the general, non-Hermitian, CP-violating

Hamiltonian as;

H =

 A B/z

Bz A

 , (6.28)

with complex A, B, and z. Notice that in eq. (6.28) one recovers the CP-

conserving Hamiltonian, for z = 1. Thus any deviation of z from 1, will be a
3 Furthermore, one can show that this type of breaking does not induce an admixture of wrong

CP-components to lowest order, to the CP-eigenstates.
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measure of CP-violation.

The eigenvalues λ1,2 of eq. (6.28) can be determined as:

λ1,2 = A±B. (6.29)

As H is not Hermitian, λ1,2 are not to be real anymore. Similarly the corre-

sponding eigenstates would not be necessarily orthogonal.

The normalized eigenstates, corresponding to λ1,2 can be determined and ex-

pressed in the K0-K̄0 basis as

|K1〉 = N

 1

z

 , and |K2〉 = N

 1

−z

 , (6.30)

where N = 1/
√

1+|z|2 is the normalization constant. This requires some clari�ca-

tion: As one gets the CP-conserving Hamiltonian in the limit z → 1, one should

recover the corresponding CP-eigenstate K0
1 , K0

2 also in this limit. That this is

indeed the case can be seen from eq. (6.30). As the expressions for K0
1 , K0

2 are

given in the K0 , K̄0 basis in eqs. (6.21) and (6.22), so the new expressions are

also to be in the same (original) K0 , K̄0 basis.

The new eigenstates are not indeed orthogonal:

〈K1|K2〉 =
1− |z|2

1 + |z|2
. (6.31)

Next, the CP-violation in K decays to pions, and the oscillation problem will
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be discussed:

To set the stage, one needs to invert the expressions (6.30), and express K0, K̄0

in terms of K1 and K2:

|K0〉 =
1

2N
(|K1〉+ |K2〉) , (6.32)

|K̄0〉 =
1

2zN
(|K1〉 − |K2〉) . (6.33)

To discuss the oscillation, one can start with an initial state |ψ(t = 0)〉 = |K0〉

and follow, how it evolves in time:

|ψ(t)〉 = U(t)|ψ(t = 0)〉. (6.34)

Here U(t) is the time evolution operator for the Hamiltonian given in eq. (6.28):

U(t) = e−iHt. (6.35)

To compute the action of U(t) on |K0(t = 0)〉, one has to use eqs. (6.32) and

(6.33), expressing K0 in terms of the eigenstates of Hamiltonian:

|K0(t)〉 = U(t)|K0(t = 0)〉 =
1

2N
e−iHt (|K1〉+ |K2〉) , (6.36)
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=
1

2N

(
e−itλ1 |K1〉+ e−itλ2|K2〉

)
. (6.37)

Converting |K1〉 and |K2〉 back to |K0〉, |K̄0〉 again one gets the time evolved

|K0(t)〉 in terms of |K0〉 and |K̄0〉:

|K0(t)〉 =
1

2N

(
e−itλ1N

(
|K0〉+ z|K̄0〉

)
+ e−itλ2N

(
|K0〉 − z|K̄0〉

))
, (6.38)

|K0(t)〉 =
1

2

[(
e−itλ1 + e−itλ2

)
|K0〉+ z

(
e−itλ1 − e−itλ2

)
|K̄0〉

]
. (6.39)

Thus, �nally one gets the probability amplitude of the surviving K0-component

or K̄0-component after a time t,

〈K0|K0(t)〉 =
1

2

(
e−itλ1 + e−itλ2

)
, (6.40)

〈K̄0|K0(t)〉 =
z

2

(
e−itλ1 − e−itλ2

)
. (6.41)

The same analysis can be repeated for an initial K̄0 beam:

〈K̄0|K̄0(t)〉 =
1

2

(
e−itλ1 + e−itλ2

)
, (6.42)
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〈K0|K̄0(t)〉 =
1

2z

(
e−itλ1 − e−itλ2

)
. (6.43)

It should be noted that,

〈K0|K0(t)〉 = 〈K̄0|K̄0(t)〉, (6.44)

which is not unexpected. This is a consequence of the CPT theorem, as the

Hamiltonian is chosen to be CPT invariant.

As one possible test of CP-violation, one may calculate the following asymmetry,

using the eqs. (6.41) and (6.43):

ACP =
|〈K̄0|K0(t)〉|2 − |〈K0|K̄0(t)〉|2

|〈K̄0|K0(t)〉|2 + |〈K0|K̄0(t)〉|2
≈ 2Re(ε) +O(ε3). (6.45)

Here z is parametrized as z = 1 + ε, where ε is the small CP-violating complex

parameter.

Setting z = 1, or equivalently ε = 0 one gets, ACP = 0, as one should. Thus, by

measuring this asymmetry, one can determine the real part of the CP-violating

complex phase.

Next, we turn our attention to the π decays. First, one notes that the mass

di�erences, namely the available decay energies in the CP = +1 channel and

CP = −1 channels are di�erent:

75



mK − 2mπ ≈ 220MeV (6.46)

mK − 3mπ ≈ 80MeV (6.47)

That is, there is more phase space available for the 2π decay. Thus using a rough

uncertainty argument, one expects that 2π decay should go faster than the 3π.

The actual explanation however requires a detailed phase space analysis.

Indeed, K0
1 's mostly decay in a few centimeters, on the other hand K0

2 's can live

through many meters. In fact, the lifetimes of K0
1 and K0

2 are found as:

τ1 = 0.895× 10−10 seconds, (6.48)

τ2 = 5.11× 10−10 seconds. (6.49)

That is why they are called short-lived, and long-lived, respectively. As they are

not anti-particle of each other, they have di�erent masses however small they

may be. Indeed the tiny mass di�erence ∆m is given as:

∆m = m2 −m1 = 3.48× 10−6 eV. (6.50)

To �nd the probabilities of decaying in the 2π and 3π �nal states for KS and
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KL in the CP-violating case, one �rst needs to express these states in terms of

the CP-eigenstates:

|KS〉 = N
(
|K0〉+ z|K̄0〉

)
=

N√
2

(
(1 + z) |K0

1〉+ (1− z) |K0
2〉
)
, (6.51)

|KL〉 = N
(
|K0〉 − z|K̄0〉

)
=

N√
2

(
(1− z) |K0

1〉+ (1 + z) |K0
2〉
)
. (6.52)

These two sets of eigenstates |K1,2〉 and |K0
1,2〉 are indeed the same in the z → 1

limit (in the CP-symmetric limit).

Thus, to see the CP-violating e�ects, one should observe the decay products

towards the end of K-beam4:

〈2π|KS〉 =
1 + z√

2 (1 + |z|2)
〈2π|K0

1〉, (6.53)

〈3π|KL〉 =
1− z√

2 (1 + |z|2)
〈3π|K0

2〉. (6.54)

Thus, choosing 〈2π|K0
1〉, 〈3π|K0

2〉 real for simplicity; one obtains

|〈3π|KS〉|2

|〈2π|KS〉|2
=
|1− z|2

|1 + z|2
|〈2π|K0

1〉|2

|〈3π|K0
2〉|2
≈ 1

4
|ε|2 |〈2π|K

0
1〉|2

|〈3π|K0
2〉|2

. (6.55)

Similarly, repeating the same analysis for KL, one gets

4 If CP was conserved, all the KS = K0
1 would have decayed out by the time they reach to the

end of tube, which was about 17m long in the Fitch-Cronnin[10] experiment.
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〈2π|KL〉 =
1− z√

2 (1 + |z|2)
〈2π|K0

S〉, (6.56)

〈3π|KL〉 =
1 + z√

2 (1 + |z|2)
〈3π|K0

L〉, (6.57)

and, from the ratio of these, one obtains,

|〈2π|KL〉|2

|〈3π|KL〉|2
=
|1− z|2

|1 + z|2
|〈2π|K0

1〉|2

|〈3π|K0
2〉|2
≈ 1

4
|ε|2 |〈2π|K

0
1〉|2

|〈3π|K0
2〉|2

, (6.58)

that the equality of these two CP-violating measures is very satisfying.

One can repeat the decay analysis for an initial K0-state, and to see how the 2π

and 3π decay modes follow in an oscillating sequence. To obtain this, starting

by expressing the |K0(t)〉 as given in eq. (6.39), in terms of the CP -eigenstate

|K0
1〉 and |K0

2〉, one gets:

|K0(t)〉 =
1

2
√

2

[(
e−itλ1 + e−itλ2

) (
|K0

1〉+ |K0
2〉
)]

+
z

2
√

2

[(
e−itλ1 − e−itλ2

) (
|K0

1〉 − |K0
2〉
)]
, (6.59)

K0(t)〉 =
1

2
√

2

[
(1 + z) e−itλ1 + (1− z) e−itλ2

]
|K0

1〉

+
[
(1− z) e−itλ1 + (1 + z) e−itλ2

]
|K0

1〉. (6.60)
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Thus, the decay probability amplitudes are:

〈2π|K0(t)〉 =
1

2
√

2

[
(1 + z) e−itλ1 + (1− z) e−itλ2

]
〈2π|K0

1〉, (6.61)

〈3π|K0(t)〉 =
1

2
√

2

[
(1− z) e−itλ1 + (1 + z) e−itλ2

]
〈3π|K0

2〉. (6.62)

In the CP-symmetric limit, eqs. (6.61) and (6.62) reduce to the following form:

〈2π|K0(t)〉 =
e−itλ1√

2
〈2π|K0

1〉, (6.63)

〈3π|K0(t)〉 =
e−itλ2√

2
〈3π|K0

2〉. (6.64)

Again, choosing as before the 〈2π|K0
1〉, 〈3π|K0

2〉 real, one can get for the prob-

ability ratio of the CP = +1 and CP = −1 decay channels, by de�ning

λ0
1,2 = m0

1,2 − i
2
Γ0

1,2

|〈2π|K0(t)〉|2

|〈3π|K0(t)〉|2
= e−(Γ0

1−Γ0
2)t |〈2π|K

0
1〉|2

|〈3π|K0
2〉|2

. (6.65)

The main purpose of this section is just to illustrate and discuss the beautiful

phenomenon of quantum mechanical interference. Therefore we do not enter

into a detailed discussion of the phenomenology of the CP-violation in neutral

K-meson system, which is quiet involved, because it involves six parameters.
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CHAPTER 7

CONCLUSION

In physics, symmetry plays a key role in gaining an understanding of the physical

laws governing the structure and the behavior of matter. It provides a short-

cut for getting at some of Nature's innermost secrets. For instance, the laws

of conservation of energy and momentum emerge because the laws of physics

are the same at any time, translational symmetry in time, and any location,

translational symmetry in space. In addition to these continuous symmetries,

there are also discrete symmetries which play a particularly important rule in

the context of quantum theory, namely space and time reversals, and the charge

conjugation.

Time probably is the oldest but also the least understood concepts in physics.

It involves rather special philosophical and mathematical peculiarities, like the

anti-unitarity of the corresponding operators in the quantum space. Thus, spe-

cial attention is devoted to address those peculiarities in detail in this thesis.

The combination of these three discrete symmetries has risen to a very central

position in the context of Relativistic Quantum Field Theory, namely the CPT

theorem. In the present level of our understanding, there are solid reasons for
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expecting that nature has CPT symmetry; that is laws of physics stay the same

after reversing charge, space, and time all together. Recently there is also intense

research going on in relation with the correlations between possible violations of

CPT and the Lorentz symmetries. This problem is interesting, because one of

the inputs which goes into the proof of CPT theorem is the Lorentz invariance.

Because of its primary implication concerning the equality of masses of particles

and antiparticles, the violation of the CPT symmetry would have signi�cant

physical consequences.

Therefore, if CPT is a symmetry of nature, CP symmetry implies time-reversal

invariance. Conversely, violation of one implies the violation of the other. Given

the fact that we live in a matter dominated universe, the explanation of the lack

of matter-antimatter symmetry, or equivalently the CP violation is one of the

challenging problems awaiting for a solution.

Neutral K meson system was the �rst physical system in which CP violation

was discovered. Eventually this was extended to other neutral meson systems

like the B and D mesons. Presently the only viable theoretical framework which

introduces some sort of CP violating mechanism in the standard model of micro

world is the CKMmechanism. However this also did not prove to be the ultimate

explanation, because this violation is too small to explain the cosmological CP

violation, namely the matter-antimatter asymmetry of the universe.

Because of its extreme beauty and simplicity, the neutral K meson system both

in the CP conserving and the violating cases, is taken up in this thesis in the

framework of quantum mechanical 2-state problem.
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APPENDIX A

RELATIVISTIC NOTATION

In the relativistic case, space and time are on the same footing and are described

by a contravariant four-vector xµ, which is de�ned as:

xµ =
(
x0, x1, x2, x3

)
, (A.1)

where x0 = t is the time, and xis are the 3 dimensional space components,

respectively. Here, i runs from 1 to 3, and µ from 0 to 3. Since the space-time

is �at in Special Relativity, the metric gµν is chosen as:

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.2)

With the help of this metric, one can pass from the contravariant entities to

the covariant ones: Namely gµν and gµν play the role of raising and lowering

operators, respectively. Therefore, one can construct the covariant position and
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momentum vectors (as well as the similar entities, like gradients etc.) as:

xµ = gµνx
ν =

(
x0,−x1,−x2,−x3

)
, (A.3)

∂µ =
∂

∂xµ
=

(
∂

∂x0

,
∂

∂xi

)
=

(
∂

∂t
,−∇

)
, (A.4)

pµ = i∂µ = i

(
∂

∂t
,−∇

)
. (A.5)

One notes that the contravariant four-momentum vector and the can be easily

described in terms of the energy and momentum as:

pµ = (E, p) , (A.6)

whereas the four-potential of the electromagnetic �eld is given by,

Aµ =
(
A0, A

)
. (A.7)

In eq. (A.7), A0(x) and A(x, t) are scalar and vector potentials respectively.
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APPENDIX B

ANTI-UNITARY OPERATORS

If there exists an operator A a�ecting transformation between two arbitrary

vectors of a Hilbert Space |α〉 and |β〉:

|α〉 → |α̃〉 = A|α〉 and |β〉 → |β̃〉 = A|β〉, (B.1)

with the property

A(c1|α〉+ c2|β〉) = c∗1A|α〉+ c∗2A|β〉, (B.2)

then, A is said to be anti-linear [14]. Furthermore, if it satis�es the following

additional property

〈β̃|α̃〉 = 〈β|α〉∗ = 〈α|β〉, (B.3)

then, A is said to be anti-unitary. Any anti-unitary operator A can be repre-

85



sented as

A = UK, (B.4)

where U is a unitary operator, and K is the complex conjugation operator in

some given basis. K satis�es the following,

Kc|α〉 = c∗K|α〉, (B.5)

and if eq. (B.5) multiplied by K once more, one gets

K2c|α〉 = Kc∗K|α〉 = cK2|α〉, (B.6)

which means

K2 = I. (B.7)

That is,

K−1 = K. (B.8)

One can show that anti-unitary A satis�es the antilinearity condition:
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A(c1|α〉+ c2|β〉) = UK(c1|α〉+ c2|β〉),

= c∗1UK|α〉+ c∗2UK|β〉,

= c∗1A|α〉+ c∗2A|β〉. (B.9)

In the litreature there is a controversy concerning the de�nition of the adjoint

for the anti-linear operators. Some authors take positive standing, some not.

Authors like Weinberg1 [18], and Messiah [20] de�ne and proceed with adjoint

conjugate. Sakurai is one of those who is against the introduction of the adjoint.

Therefore, in this thesis, in order to avoid taking part in the polemics, Sakurai's

approach will be adopted and followed.

In the following some interesting properties of the anti-unitary operators will be

presented, for completeness.

Before reviewing the properties of the anti-unitary operators, one needs to �rst

note that the complex conjugation operation does not a�ect the base kets |κ〉,

as they are composed of real parameters:

K|κ〉 = (|κ〉)∗ = |κ〉. (B.10)

In order to avoid the introduction of the adjoint one has to �rst investigate

how the bra's are e�ected by the action of anti-unitary operators A. This will

be done by �rst considering the action on the kets and then taking the dual

1 Weinberg de�nes the adjoint of an anti-unitary operator A as 〈α|A†β〉 ≡ 〈Aα|β〉∗ = 〈β|Aα〉.
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correspondence of the kets, as summarized below:

|α〉 A→ |α̃〉 = A
∑
α′

|α′〉〈α′|α〉,

=
∑
α′

(〈α′|α〉)∗A|α′〉,

=
∑
α′

(〈α′|α〉)∗ UK|α′〉,

=
∑
α′

(〈α′|α〉)∗ U |α′〉, (B.11)

where {|α′〉} and {|α′′〉} are arbitrary base kets. Repeating the same for the ket

|β〉, and taking the dual correspondence of the transformed |β〉 one gets:

〈β̃| =
∑
α′′

(〈α′′|β〉) 〈α′′|U †. (B.12)

Then by using eqs. (B.11) and (B.12), one can form the inner product 〈β̃|α̃〉:

〈β̃|α̃〉 =
∑
α′′

∑
α′

〈α′′|β〉〈α′′|U †U |α′〉〈α|α′〉, (B.13)

=
∑
α′

〈α|α′〉〈α′|β〉 = 〈α|β〉,

= 〈β|α〉∗.

Next, an important property will be demonstrated:

〈β̃|AOA−1|α̃〉 = 〈α|O†|β〉. (B.14)
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where O is an arbitrary linear operator .

To demonstrate this identity, �rst B.11 and B.12 will be used, to express |α̃〉

and 〈β̃|, and the reality of the basis:

〈β̃|AOA−1|α̃〉 =

(∑
α′′

(〈α′′|β〉) 〈α′′|U †
)(
AOA−1

)(∑
α′

(〈α′|α〉)∗ U |α′〉

)
=

∑
α′′

∑
α′

〈α′′|β〉〈α′′|U †
(
AOA−1

)
U |α′〉〈α|α′〉,

=
∑
α′′

∑
α′

〈α′′|β〉〈α′′|U †
(
UKOK−1U−1

)
U |α′〉〈α|α′〉,

=
∑
α′′

∑
α′

〈α′′|β〉〈α′′|
(
KOK−1

)
|α′〉〈α|α′〉,

=
∑
α′′

∑
α′

〈α′′|β〉〈α′′| (O)∗ |α′〉〈α|α′〉,

=
∑
α′′

∑
α′

〈α′′|β〉 (〈α′′|O|α′〉)∗ 〈α|α′〉,

=
∑
α′′

∑
α′

〈α|α′〉
(
〈α′|O†|α′′〉

)
〈α′′|β〉.

Using the completeness of the bases {|α′〉} and {|α′′〉}, one �nally obtains eq.

(B.14).

This identity can also be proven in a more compact manner. De�ning:

|χ〉 ≡ O|α〉, (B.15)

and taking the dual correspondence one gets:

|χ〉 DC→ 〈χ| = 〈α|O†, (B.16)
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Then, 〈α|O†|β〉 becomes:

〈α|O†|β〉 = 〈χ|β〉. (B.17)

By using eq. (B.13), one gets;

〈α|O†|β〉 = 〈β̃|χ̃〉. (B.18)

Using eq. (B.15), |χ̃〉 becomes,

|χ̃〉 = A|χ〉 = AO|α〉. (B.19)

Thus, eq. (B.18) becomes,

〈α|O†|β〉 = 〈β̃|χ̃〉,

= 〈β̃|AO|α〉. (B.20)

Inserting identity I = A−1A, in the RHS of eq. (B.20),

〈α|O†|β〉 = 〈β̃|AOA−1A|α〉,

= 〈β̃|AOA−1|α̃〉, (B.21)
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which is the identity intended to be proven.

In the following further properties will be brie�y summarized:

i) The product of two anti-unitary operators are unitary: Labelling them as

A1 ≡ U1K and A2 = U2K, one can construct the product:

A1A2 = U1KU2K = U1U
∗
2K

2 = U1U
∗
2 . (B.22)

To demonstrate that the RHS of eq. (B.22) is indeed unitary one can proceed

as:

(U1U
∗
2 ) (U1U

∗
2 )† = U1U

∗
2U
∗†
2 U

†
1 = U1

(
U2U

†
2

)∗
U †1 = U1U

†
1 = I. (B.23)

ii) The product of anti-unitary operator A and linear operator L gives anti-linear

operator:

AL (c1|α〉+ c2|β〉) = A (c1L|α〉+ c2L|β〉)

= c∗1AL|α〉+ c∗2AL|β〉

iii) The product of a number of anti-unitary operators A and linear operators L

gives:
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A1...AmL1...Ln =


Linear form is even

anti− Linear form is odd

 . (B.24)

iv) Moreover, from eq. (B.3), it can be seen that anti-unitary operators preserve

the norm:

|〈β|α〉∗| = |〈α|β〉|. (B.25)
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APPENDIX C

SCHRÖDINGER FIELD THEORY

The schrödinger formulation of quantum mechanics can be reinterpreted as a

classical �eld theory, treating the quantum wave function as a classical �eld.

The Lagrangian density for this classical �eld theory is given by1:

L(x) =
i

2

[
ψ∗(x)

∂ψ(x)

∂t
− ∂ψ∗(x)

∂t
ψ(x)

]
(C.1)

− 1

2m
∇ψ∗(x) · ∇ψ(x).

An immediate observation one should make is that this lagrangian density is not

relativistic. Because it involves �rst derivative in time and second derivatives

in space. However, it obeys Galilean invariance. To �nd the Euler-Lagrange

equations, one can start from the variation of the action,

δS = δ

ˆ t2

t1

dt

ˆ
V

d3xL, (C.2)

1 The classical �eld is denoted by ψ, as in the case of quantum mechanical wavefunction.

93



which yields;

δS =

ˆ t2

t1

dt

ˆ
V

d3x

(
∂L
∂ψ

δψ +
∂L
∂ψ̇

δψ̇

)
, (C.3)

δS =

ˆ t2

t1

dt

ˆ
V

d3x

[(
∂L
∂ψ
− d

dt

∂L
∂ψ̇

)
+

(
∂L
∂ψ∗
− d

dt

∂L
∂ψ̇∗

)]
δφ, (C.4)

where δψ(x, t1) = δψ(x, t2) = 0 is used in the last step. Since;

δS = 0, (C.5)

from the least action principle, Euler-Lagrange equation for classical �eld can

be derived as,

δL
δψ
− d

dt

δL
δψ̇

= 0, (C.6)

and,

δL
δψ∗
− d

dt

δL
δψ̇∗

= 0. (C.7)

From (C.6), one gets the equation of motion in the following form:

− i

2

(
∂

∂t
ψ∗
)

+
1

2m
∇2ψ∗ =

i

2

(
∂

∂t
ψ∗
)
, (C.8)
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i
∂

∂t
ψ∗ = [

∇2

2m
]ψ∗, (C.9)

and similarly (C.7) yields;

i

2

(
∂

∂t
ψ

)
+

1

2m
∇2ψ = − i

2

(
∂

∂t
ψ

)
, (C.10)

i
∂

∂t
ψ = [−∇

2

2m
]ψ. (C.11)

An interesting feature in this new classical �eld theoretical framework is that

one can understand the conservation of probability as a conserved charge related

to the phase invariance of the schrödinger lagrangian in the context of Noether

Theorem.

Namely, it can be seen that Lagrangian density given in eq. (C.1) is invariant

under the space independent transformations ψ → ψ′ = e−iαψ ≈ (I− iδα)ψ and

also its conjugate ψ∗ → ψ′∗ = eiαψ∗ = (I + iδα)ψ∗ for arbitrary parameter α.

This symmetry leads to a conserved current via Noether Theorem, and is given

by:

δjµ =
∂L

∂ (∂µψ)
δψ + δψ∗

∂L
∂ (∂µψ∗)

,

δαjµ =
∂L

∂ (∂µψ)
(−iδα)ψ + iδα ψ

∂L
∂ (∂µψ∗)

.
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Therefore, using

jµ = −i
[

∂L
∂ (∂µψ)

ψ − ψ∗ ∂L
∂ (∂µψ∗)

]
, (C.12)

,

one can construct the constant charge as:

Q =

ˆ
d3xj0 =

ˆ
d3x (−i)

[
∂L

∂ (∂0ψ)
ψ − ψ∗ ∂L

∂ (∂0ψ∗)

]
,

=

ˆ
d3x

1

2
[ψ∗ψ + ψ∗ψ] =

ˆ
d3x|ψ|2.

It is seen that the conservation of total probability is obtained from the Noether

theorem, as the conserved charge associated with phase symmetry of the schrödinger

�eld theory.
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