

i

CHOICE AND DEVELOPMENT OF A PRECONDITIONER FOR

NEWTON-GMRES ALGORITHM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 YUNUS EMRE MUSLUBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE MASTER OF SCIENCE

IN

AEROSPACE ENGINEERING

SEPTEMBER 2015

ii

iii

Approval of the thesis:

CHOICE AND DEVELOPMENT OF A PRECONDITIONER FOR

NEWTON-GMRES ALGORITHM

submitted by YUNUS EMRE MUSLUBAŞ in partial fulfillment of the requirements

for the degree of Master of Science in Aerospace Engineering Department, Middle

East Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences ______________

Prof. Dr. Ozan Tekinalp

Head of Department, Aerospace Engineering ______________

Assoc. Prof. Dr. Sinan Eyi

Supervisor, Aerospace Engineering Dept., METU ______________

Examining Committee Members:

Prof. Dr. Yusuf Özyörük

Aerospace Engineering Dept., METU ______________

Assoc. Prof. Dr. Sinan Eyi

Aerospace Engineering Dept., METU ______________

Assoc. Prof. Dr. Burak Aksoylu

Dept. of Mathematics, TOBB ETU ______________

Assoc. Prof. Dr. Murat Manguoğlu

Dept. of Computer Engineering, METU ______________

Asst. Prof. Dr. Ali Türker Kutay

Aerospace Engineering Dept., METU ______________

Date: 07.09.2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last Name: YUNUS EMRE MUSLUBAŞ

 Signature :

v

ABSTRACT

CHOICE AND DEVELOPMENT OF A PRECONDITIONER FOR

NEWTON-GMRES ALGORITHM

Muslubaş, Yunus Emre

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Sinan Eyi

September 2015, 90 pages

This thesis consists of the choice, application and analysis of a preconditioner for a

supersonic flow solution through Newton-GMRES (generalized minimal residual)

Krylov subspace method and the comparison of the results with unpreconditioned

Newton-GMRES method and Newton’s methods. Three dimensional Euler equations

are used for the analysis. These Euler equations are discretized, then solved using

Newton’s method and the generalized minimal residual method is used to solve the

resulting linear system. The results and the computational time for this Newton-

GMRES method approach are then obtained to be compared with those for the same

method preconditioned using incomplete lower-upper factorization and the regular

Newton’s method. The calculation of the Jacobian matrix necessary for the

preconditioner and the Newton’s method is done analytically.

Keyword: Preconditioning, Newton-GMRES, Jacobian, Computational Times, Euler

Equations, Inexact Newton Methods

vi

ÖZ

NEWTON-GMRES ALGORİTMALARINDA ÖNŞARTLANDIRICI

SEÇİM VE GELİŞTİRMESİ

Muslubaş, Yunus Emre

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Eyi

Eylül 2015, 90 sayfa

Bu tez, Newton-GMRES (genel minimal kalıntı) Krylov altuzay metodu aracılığıyla

süpersonik akış çözümü için bir önşartlandırıcı seçimi, uygulaması ve analizi ve

buradan elde edilen sonuçların önşartlandırılmamış Newton-GMRES metodu ve

Newton metoduyla karşılaştırılmasını içermektedir. Analiz için üç boyutlu Euler

denklemleri kullanılmaktadır. Bu Euler denklemleri ayrıklaştırılmış, ardından Newton

yöntemiyle çözülürken elde edilen lineer sistemin çözümü için genel minimal kalıntı

metodu kullanılmıştır. Bu Newton-GMRES metodu yaklaşımı için sonuçlar ve

bilgisayar hesaplama zamanları elde edilmiş ve aynı metodun tamamlanmamış alt-üst

faktörizasyon kullanılarak önşartlandırılmış versiyonu ve Newton metodu ile elde

edilen sonuç ve zamanlarla karşılaştırılmıştır. Önşartlandırıcı ve Newton metodları

için gerekli olan Jacobian matrisinin hesaplanılması analitik olarak yapılmıştır.

Anahtar Kelimeler: Önşartlandırma, Newton-GMRES, Jacobian, Hesaplama

Zamanları, Euler Denklemleri

vii

To my patient and loving family

…and all those whose love keeps me going

viii

ACKNOWLEDGMENTS

I would, first of all, like to express my undying gratitude to my family who, no matter

what, supported me in all my decisions throughout my studies and has never uttered a

discouraging word.

I, as any other student of this beautiful university should, have to offer my thanks to

Middle East Technical University as a whole for making me a better person.

My deepest, most heartfelt thanks have to be offered to my advisor Assoc. Prof. Dr.

Sinan Eyi, who went far above and beyond the call of duty to help me in my work and

without whom this thesis would not be possible.

My friends and all those who love me and have supported me through this arduous

process, while I would not have the space here to mention every single one of you,

none of you are forgotten.

Lastly, special thanks have to be dedicated to those who have kept me company and

shared their wisdom with me every time I needed it, of whom the first ones that come

to mind are Engin Leblebici, Mehmet Harun Özkanaktı and Derya Kaya.

This study was supported by The Scientific and Technological Research Council of

Turkey (TÜBITAK) with the project number 112M129.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF SYMBOLS .. xvi

LIST OF ABBREVIATIONS .. xvii

 ... 1

1.INTRODUCTION .. 1

1.1. Background .. 1

1.2. Scope of the Thesis .. 3

1.3. Literature Research .. 4

1.4. Outline ... 6

2. PROBLEM DEFINITION ... 7

2.1. Euler Equations .. 8

2.2. Spatial Discretization ... 10

2.3. Flux Splitting ... 11

2.4. Boundary Conditions ... 13

3. SOLUTION METHODS ... 15

3.1. Newton’s Method .. 15

3.2. Newton-GMRES Method .. 17

3.2.1. GMRES Algorithm .. 18

3.2.2. Convergence of GMRES.. 19

3.2.3. Matrix-free Calculations .. 20

3.2.4. Components of GMRES .. 21

4. PRECONDITIONING ... 25

x

4.1. Reasons for Preconditioning .. 25

4.2. The Cost of Using Preconditioners .. 26

4.3. Types of Precondigioning .. 26

4.3.1. Left and Right Preconditioning .. 27

4.3.2. Preconditioning Methods ... 28

4.3.2.1. Jacobi Method... 29

4.3.2.2. Symmetric Successive Over-Relaxation Method 29

4.3.2.3. Incomplete Lower-Upper Factorization Preconditioners 30

4.3.3. Ordering ... 35

5. RESULTS ... 37

5.1. Sample Problem Solution and Comparisons .. 37

5.1.1. Grid Sizes, Shapes and Dependencies .. 38

5.1.2. Comparison of Results ... 41

5.1.2.1. Graphical Comparison for Different Grids at ηk=0.4 45

5.1.2.2. Numerical Comparison for Different Grids at ηk=0.4 55

5.1.2.3. Graphical Comparison for Different Grids at ηk=0.6 57

5.1.2.4. Numerical Comparison for Different Grids at ηk=0.6 64

5.1.2.5. Graphical Comparison for for Level of Fill=4 and ηk=0.6 66

5.1.2.6. Numerical Comparison for Level of Fill=4 and 5 and ηk=0.6 ... 70

5.1.3 Comparison of Second Order Discretized Solutions………………………71

 5.1.3.1 Graphical Comparisons for ηk = 0.4………………………………….72

 5.1.3.2 Numerical Comparisons for ηk = 0.4…………………………..……..77

 5.1.3.3 Graphical Comparisons for ηk = 0.6…………………………………..77

 5.1.3.4 Numerical Comparisons for ηk = 0.6…………………………………79

 5.1.3.5 Numerical Comparisons for all conditions……………………………81

6. CONCLUSION AND FUTURE WORKS .. 85

6.1. Conclusion ... 85

6.2. Future Works ... 86

xi

REFERENCES ... 89

xii

LIST OF TABLES

TABLES

Table 5-1 Grid Sizes ... 38

Table 5-2 CPU and Iteration Count comparisons for ηk=0.4 55

Table 5-3 Performance Comparisons for ηk=0.4……………………….……………56

Table 5-4 CPU and Iteration Count comparisons for ηk=0.6 64

Table 5-5 Performance Comparisons for ηk=0.6……………………….……………65

Table 5-6 Performance Comparisons for different ηk values..………….……………65

Table 5-7 CPU and Iteration Count comparisons for Level of Fill = 4 and 5 70

Table 5.8 CPU Time Comparisons for 1st and 2nd Order Discretization at ηk = 0.4………77

Table 5.9 CPU Time Comparisons for 1st and 2nd Order Discretization at ηk = 0.6………80

Table 5.10 Wall Clock Comparisons for All Conditions, Coarse Mesh …………………81

Table 5.11 Wall Clock Comparisons for All Conditions, Medium Mesh ………………82

Table 5.12 Wall Clock Comparisons for All Conditions, Fine Mesh ……………………83

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Control Volume………………………………………………………….11

Figure 2.2 All Boundaries .. 13

Figure 4.1 Preconditioner Solve for Ax=b and A=LU ... 31

Figure 4.2 Preconditioner Solve for Ax=b and A=(D+L)(I+D-1U) 31

Figure 5.1 The Coarse Grid .. 39

Figure 5.2 The Medium Grid ... 39

Figure 5.3 The Fine Grid .. 40

Figure 5.4 Grid Dependency of Preconditioned Newton-GMRES Method 41

Figure 5.5 Approximate Jacobian (Whole)………………………………………….42

Figure 5.6 Approximate Jacobian (Zoomed)………………………………………..43

Figure 5.7 Full Jacobian …………………………………………………………….43

Figure 5.8 Eigenvalue Distribution for ILU(0)..……………………………………..44

Figure 5.9 Eigenvalue Distribution for ILUT....……………………………………..44

Figure 5.10 Convergence History Comparison for Coarse Grid and ηk = 0.4 45

Figure 5.11 Convergence History Comparison for Medium Grid and ηk = 0.4 46

Figure 5.12 Convergence History Comparison for Medium Grid and ηk = 0.4 (Zoomed)

 .. 46

Figure 5.13 Convergence History Comparison for Fine Grid and ηk = 0.4 47

Figure 5.14 Convergence History Comparison for Fine Grid and ηk = 0.4 (Zoomed for

Comparison with Newton-GMRES ... 47

Figure 5.15 Convergence History Comparison for Fine Grid and ηk = 0.4 (Zoomed for

Comparison of Preconditioners .. 48

Figure 5.16 Iteration Count Comparison for Coarse Grid and ηk = 0.4…………….49

Figure 5.17 Iteration Count Comparison for Medium Grid and ηk = 0.4…………….49

Figure 5.18 Iteration Count Comparison for Fine Grid and ηk = 0.4………………..50

Figure 5.19 Mach Contour for Newton’s Method ... 51

Figure 5.20 Mach Contour for Preconditioned Newton-GMRES Method 51

xiv

Figure 5.21 Pressure Distribution for Newton’s Method ... 52

Figure 5.22 Pressure Distribution for Preconditioned Newton-GMRES Method 52

Figure 5.23 Temperature Distribution for Newton’s Method 53

Figure 5.24 Temperature Distribution for Preconditioned Newton-GMRES Method

 .. 53

Figure 5.25 Velocity Vectors for Newton’s Method .. 54

Figure 5.26 Velocity Vectors for Preconditioned Newton-GMRES Method 54

Figure 5.27 Convergence History Comparison for Coarse Grid and ηk = 0.6............ 57

Figure 5.28 Convergence History Comparison for Medium Grid and ηk = 0.6 58

Figure 5.29 Convergence History Comparison for MEdium Grid and ηk = 0.6

(Zoomed) .. 58

Figure 5.30 Convergence History Comparison for Fine Grid and ηk = 0.6................ 59

Figure 5.31 Convergence History Comparison for Fine Grid and ηk = 0.6 (Zoomed)

 .. 60

Figure 5.32 Convergence History Comparison for Fine Grid and ηk = 0.6 (Zoomed for

Comparison of Preconditioners) ... 61

Figure 5.33 Iteration Count Comparison for Coarse Grid and ηk = 0.6…………….62

Figure 5.34 Iteration Count Comparison for Medium Grid and ηk = 0.6…………….62

Figure 5.35 Iteration Count Comparison for Fine Grid and ηk = 0.6………………..63

Figure 5.36 Mach Contour for Lfil=4 .. 66

Figure 5.37 Mach Contour for Lfil=5 .. 66

Figure 5.38 Pressure Distribution for Lfil=4………………………………………..67

Figure 5.39 Pressure Distribution for Lfil=5………………………………………..67

Figure 5.40 Temperature Distribution for Lfil=4 ... 68

Figure 5.41 Temperature Distribution for Lfil=5 ... 68

Figure 5.42 Residual Histories for Lfil=4 and 5 .. 69

Figure 5.43 CPU Time Comparison for Lfil=4 and 5 .. 69

Figure 5.44 CPU Time Comparison for ILU(0) for Coarse Grid………………………...72

Figure 5.45 CPU Time Comparison for MILU(0) for Coarse Grid………………………73

Figure 5.46 CPU Time Comparison for ILU(1) for Coarse Grid………………………...73

Figure 5.47 CPU Time Comparison for ILUT for Coarse Grid………………………….74

Figure 5.48 CPU Time Comparison for ILU(0) for Medium Grid……………………….74

xv

Figure 5.49 CPU Time Comparison for MILU(0) for Medium Grid.................................75

Figure 5.50 CPU Time Comparison for ILU(1) for Medium Grid……………………….75

Figure 5.51 CPU Time Comparison for ILUT for Medium Grid………………………...76

Figure 5.52 CPU Time Comparison for MILU(0) for Fine Grid…………………………76

Figure 5.53 CPU Time Comparison of all 2nd Order Discretized Methods for Fine Grid...78

Figure 5.54 CPU Time Comparison of ILUT Methods on Fine Grid for 1st and 2nd Order

Discretizations…………………………………………………………………………..79

xvi

LIST OF SYMBOLS

F,G,H

Q

Flux Vectors

Flow Variable Vector

ρ Density

u, v, w Components of the Velocity Vector

p Pressure

et

γ

Total Energy Per Unit Volume

Specific Heat Ratio

U,V,W Contravariant Velocity Components

J Coordinate Transformation Jacobian

, ,

c

Curvilinear Coordinates

Speed of Sound

R Residual

A Matrix

M

M

Preconditioning Matrix

Mach Number

K Krylov Subspace

v Krylov Subspace Search Direction

ηk Relative Tolerance

m,n Iteration Counters, Matrix Sizes

H,h Hessenberg Matrix and Its Elements

z Preconditioned Search Direction

L,U Lower and Upper Matrices

D Diagonal of Matrix

l,u,d Elements of Lower, Upper and Diagonal Matrices

Lfil, lev Level of Fill

ρ,τ Level of Fill and Threshold for ILUT(ρ,τ)

xvii

LIST OF ABBREVIATIONS

BiCGSTAB

BC

CG

Biconjugate Gradient Stabilized

Boundary Condition

Conjugate Gradient

CFD Computational Fluid Dynamics

CPU

FVM

Central Processing Unit

Finite Volume Method

GMRES Generalized Minimal Residual Method

ILU

ILUT

JFNK

Incomplete Lower Upper Factorization

Incomplete Lower Upper Factorization with Thresholding

Jacobian-Free Newton-Krylov

MILU

MUSCL

Modified Incomplete Lower Upper Factorization

Monotonic Upstream Centered Scheme Conservation Law

SPAI Sparse Approximate Inverse

METU Middle East Technical University

3D Three Dimensional

1

INTRODUCTION

1.1 Background

Humanity has always been interested in explaining the matter that surrounds them.

From philosophy to chemistry to physics, scientists and great thinkers of their times

have tried to understand and make known the mystery of how things work. The

collection of all the data and the studies done has led those thinkers to a point that

today one can explain most that goes on around them. From how things burn to how

our cardiovascular system works, almost every physical or chemical phenomenon can

be explained. To achieve that purpose, modern scientists use a plethora of different

methods that might be as simple as submerging an object in water to see how much

water it displaces or as complex as creating a particle collider with a circumference of

27 kilometers. From amongst an endless variety of subjects, one of the most interesting

is how air or water or any other type of matter that behaves like a fluid moves. That

particular area of interest is covered by fluid mechanics, especially with its

subdiscipline, fluid dynamics. This subdiscipline is concerned with the flow of fluids,

from the movement of water in a pipe to how air behaves when passing over the wing

of an aircraft at supersonic speeds. It offers the scientists the tools they need to analyze

systems and solve practical problems by extending them the help of empirical and

semi-empirical laws [1]. These tools, when applied to a certain area of interest such as

aircraft design, lets one understand what their design will face under real conditions,

which leads to immense savings, negating the need to build prototypes that would fail

and waste time and resources or conduct experiments that would take a great amount

of work. Thus, to eliminate or at least largely reduce the necessity for such efforts,

computational fluid dynamics (CFD) is being used as an essential part of aircraft

2

design. This type of tool, as the name suggests, uses the relatively cheap computational

power of resources that mankind has made available to themselves through algorithms

that are generally called flow solution algorithms or flow solvers. These flow solvers

use computers to perform the calculations required to simulate the interaction of

liquids and gases with surfaces defined by boundary conditions through the application

of routines that were too tedious to complete using ordinary human resources.

In contrast to earlier times, the advancement of computational capabilities in modern

machines and the development and upgrades of pre-existing solvers or solution

algorithms enable the solution of larger linear systems of equations than was possible

before. In addition to this, the stiffness of problems to be evaluated in aeronautical

practices necessitates careful bounding of errors to maintain stability. This

combination leads to more widespread usage of implicit algorithms that have a

tendency to obtain more stability and lower residuals while utilizing a low number of

iterations compared to those of explicit algorithms. The subject of this thesis,

supersonic flows, having the characteristics of high Mach number, high enthalpy and

strong entropy gradients, are more unpredictable and harder to model than their

subsonic counterparts, requiring a larger number of species and reaction equations. To

combat the necessity to use impractically small time steps to obtain numerical stability

via explicit methods, implicit methods, while harder to implement, are utilized. These

implicit methods lead to stronger convergence in relation to their alternatives.

Newton’s method, with its quadratic convergence, is one such that is used for the

solution of non-linear equations [2]. The pitfall of this method is the necessity to obtain

and solve a Jacobian matrix that becomes larger and more complex as the problem

chosen to be analyzed gets more complex. The evaluation of this Jacobian matrix is

done through the derivation of the residual vector with respect to flow variable vector.

While the accuracy of this method is outstanding, if a proper initial solution is not

provided, the convergence of the Newton’s method may become improbable. Thus, to

remove the problem of divergence while keeping the accuracy of this method, other

methods are being implemented. The Jacobian-free Newton-Krylov methods are

combinations of Newton methods for the solution of nonlinear equations and the

Krylov subspace methods for the solution of Newton correction equations. One of

these JFNK methods is the Jacobian-free Newton-GMRES method that is used in this

3

thesis and in various CFD areas, some of which can be observed in the works of Knoll

and Keyes [3]. The GMRES method, developed by Saad and Schultz, still needs

adequate preconditioning to be successfully applied to the problem at hand as with all

other Krylov methods [4]. The application of this preconditioning can differ in method,

sometimes necessitating the approximation of the Jacobian to be viable. For this thesis,

right preconditioning is aimed to be achieved via incomplete lower-upper

factorization.

In this thesis, the performances of Newton’s and preconditioned Newton-GMRES

method are compared for supersonic flow analysis. For flow analysis, a cell centered

finite volume code is developed by using the three dimensional Euler equations. The

fluxes are computed using Van-Leer upwind scheme [5]. Flow equations are solved

implicitly by Newton and Newton-GMRES methods. The Jacobian matrix needed for

Newton’s method is evaluated analytically by differentiating Van Leer fluxes for both

first and second order discretization. In contrast to this, the Jacobian needed for the

preconditioner used in Newton-GMRES method is based on the first order

discretization and only its main block-diagonal is kept. This allows for computational

efficiency without losing accuracy. In Newton method, the sparse system with the full

Jacobian matrix is solved using UMFPACK and PARDISO sparse matrix solver. The

boundary conditions are implemented implicitly [6, 7, 8].

1.2 Scope Of The Thesis

As was mentioned in the previous section, flow solvers are very varied in types and

applications. The object of this study is to focus on a solver that is being used by many

of my peers for various purposes and make it better through the application of a

suitable preconditioner. The solver that is chosen for that purpose is the Newton-

GMRES solver. The Newton-GMRES solver is widely regarded to be efficient, but

has been overcome in terms of speed as other solvers’ efficiencies increase. The

preconditioning of this solver is aimed to be achieved to lower computational times in

its usage for larger problems. For that purpose, an appropriate preconditioner selection

is the first step. After the preconditioning process is successfully done, the

preconditioned method is to be applied to a problem that takes noticeable time to be

solved to better see the difference it makes. The validation of this process is to be done

4

through the comparison of the results and CPU times with two methods that have been

proven successful in previous works, namely the Newton and Newton-GMRES

methods [9].

1.3. Literature Research

To provide an understanding to the reader about what has been done in the past

regarding the subject of this thesis, a short reminder about the closely related history

of CFD will be included here. The beginning point of such an endeavor should be

located at the late eighties and early nineties when CFD was gaining favor in terms of

implicit methods. These methods allowed researchers to combine the necessary

equations of their respective areas with flow equations. Newton’s method was one

such method that gave results in a lower number of iterations; thus making it less

computationally greedy with higher convergence. This led to its implementations in

numerous 3D applications. Yet, this usage was later found to be not as useful as

previously thought, which Venkatakrishnan demonstrated in his work on solution of

transonic flows over an airfoil [10]. While the Newton’s method was successfully

employed in his work, he stated that a mixture of appropriate preconditioning and

Jacobian freezing was necessary to overcome immensely taxing CPU necessities. This

was further complicated by the fact that with growing systems the CPU power needed

was growing to unreachable points by the technology of that time. This led to an

increase in interest towards quasi-Newton methods.

Quasi-Newton method is the collective name given to any method that replaces the

exact Jacobian calculated in Newton’s method with any approximation. They combine

the Newton’s method with a linear solver to be applied to the Newton equations that

are created in each step of the solution. The convergence of these methods is almost

always inferior to Newton’s method, yet quasi-Newton methods make for more

efficient solvers due to the lack of a Jacobian matrix calculation and storage at every

iteration. Instead of the calculation of a Jacobian matrix, quasi-Newton methods

simplify or approximate that Jacobian, making the calculations much less demanding

on the hardware. One such quasi-Newton method family is Newton-Krylov methods

which employ Krylov subspaces. These Krylov subspace methods work through the

creation of a sequence of successive matrix powers times the initial residual [11]. Then

5

this subspace that has been created is used to minimize the residual. These Krylov

subspace methods have three prevalent uses in conjugate gradient method, biconjugate

gradient method and generalized minimum residual method invented by Yousef Saad

in 1986, just when the implicit solvers were coming into more widespread use [12].

The convergence of GMRES method is often well as the method itself works by

creating spaces smaller than the matrix that would normally be constructed and

checking if the residual is within acceptable limits. This process starts with the creation

of the smallest possible space and with each iteration of the inner loop, the space is

grown larger to contain the previous space. The combination of this and a clever

subspace creation algorithm allows the user to achieve a minimum residual within a

manageable number of steps without ever needing to form up a matrix that is equal in

size to a full Jacobian necessitated by the Newton’s method. While this is true in most

practical cases, works of A. Greenbaum, V. Ptak and Z. Strakos if stated in simple

terms tell us that for every monotonically decreasing sequence (as with residuals in

Krylov methods), one can find a matrix A such that there is a need to calculate residuals

equal times in number to the matrix dimensions to find zero residuals [13]. Thus, to

alleviate the problem of a possible slow convergence before it arises or to generally

make GMRES algorithm faster, less memory-intensive and more robust,

preconditioning is done. Yet, the preconditioning process itself is not without its

expenses. There is the need to calculate or approximate and store at least one Jacobian

matrix for the problem to be used as the basis of a preconditioning matrix. While

preconditioning without the explicit computation of any matrix elements can be done

through directional derivatives or other more complex methods can be done as

suggested by R. Choquet or Y. Chen and C. Shen’s works, these preconditioners are

always case-dependent and not interchangeable according to the problem at hand [14,

15]. Thus, the usage of the more widespread incomplete lower-upper factorization,

ILU methods in preconditioning are seen to be viable as suggested by the studies of

several authors on the effects of preconditioning methods on convergence of matrix-

free GMRES [16, 17, 18].

6

1.4. Outline

The first chapter consists of the introductions of the background of the study area, the

scope of the thesis and literature research, through the examination of which the reader

can understand what has led to the choice of this particular branch of research and the

usage of these methods.

The second chapter introduces the flow model and the governing equations. The

applied boundary conditions are described. The specifics regarding the usage of the

Newton’s method are explained.

The third chapter introduces the solution algorithms of Newton and Newton-GMRES

methods and explains both in detail.

The fourth chapter focuses on the preconditioning of Newton-GMRES method. The

reasons for preconditioning and the choice and application of a suitable preconditioner

are discussed.

The fifth chapter compares the Newton’s method with preconditioned and regular

Newton-GMRES methods in terms of CPU times and convergence histories.

The last chapter provides the reader with a conclusion and future work possibilities.

7

CHAPTER 2

PROBLEM DEFINITION

The sample problem that was solved in order to showcase the properties of the

Newton’s, Newton-GMRES and preconditioned Newton-GMRES methods is defined

in this chapter. To begin with, the reasoning behind the problem selection should be

summarized. In modern day engineering, it is possible to take two distinct paths when

dealing with an issue, let’s say the design of an aircraft part. One approach is to design

depending on previously successful theories and design experience and then test the

part under a variety of conditions before usage. This approach is a fairly successful

one, especially considering it has been applied for decades until humanity reached a

higher form of sentience through the invention of computing machines. Yet, it is also

an expensive approach as some parts and their models can be extremely taxing on

research funds. Another approach is to apply the same test conditions to the part in a

computerized environment to avoid most of the costs included in a real life test

situation. When all the problems with the part have been detected, manufacturing a

much more prototype to be tested in real life conditions will always be cheaper and

much more intelligent. Thus, there is a need to create those test environments where

aircraft parts or anything else for that matter can be thoroughly tested. That means we

need to take the part, for example a supersonic nozzle and simulate what it will go

through while working or in fact, what will go through it! Of course, the answer is

“some type of flow” and that brings us to the topic of defining that flow and its

characteristics. While modeling this flow, one has to consider the sizes of the grids

they want to use, the boundary condition types and of course, how they want to

discretize the equations with respect to time. Extremely detailed grids will cost a lot to

compute as will extremely detailed equations describing the flow. So, making some

small sacrifices without losing too much accuracy is a primary concern in flow

modelling. These sacrifices here are using Euler Equations instead of Navier-Stokes

8

equations in the flow model and trying to achieve good accuracy when possible with

smaller grids, which will be obvious to the reader while reading the results. This leads

to the elaboration of Euler Equations in the first section.

2.1 Euler Equations

Euler Equations, chosen as they are simpler than Navier-Stokes Equations and thus

easier on the computational power needed, are derived from conservation of mass,

momentum and energy in a specified control volume. The 3D Euler Equations with

steady inviscid flow can be described as below in Cartesian Coordinates:

∇ ∙ 𝑭 = 0

 (1)

With

𝑄 =

[

𝜌
𝜌𝑢1

𝜌𝑢2

𝜌𝑢3

𝜌𝑒𝑡]

and 𝑭 =

[

𝜌𝑢1 𝜌𝑢2 𝜌𝑢3

𝜌𝑢1
2 + 𝑝 𝜌𝑢1𝑢2 𝜌𝑢1𝑢3

𝜌𝑢1𝑢2 𝜌𝑢2
2 + 𝑝 𝜌𝑢2𝑢3

𝜌𝑢3𝑢1 𝜌𝑢3𝑢2 𝜌𝑢3
2 + 𝑝

(𝜌𝑒𝑡 + 𝑝)𝑢1 (𝜌𝑒𝑡 + 𝑝)𝑢1 (𝜌𝑒𝑡 + 𝑝)𝑢1]

 (2)

Which, written with more manageable terms of u,v and w becomes:

∂F(Q)

∂x
+

∂G(Q)

∂y
+

∂H(Q)

∂z
= 0

 (3)

𝑄 =

[

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒𝑡]

 𝑎𝑛𝑑 𝐹 =

[

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝜌𝑒𝑡 + 𝑝)𝑢]

 𝐺 =

[

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑤𝑣

(𝜌𝑒𝑡 + 𝑝)𝑣]

 𝐻 =

[

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
(𝜌𝑒𝑡 + 𝑝)𝑤]

 (4)

9

Where vector Q defines the flow variables and F,G and H are the flux vectors. u, v and

w are the velocity components in x,y and z directions. ρ is the density, p is pressure

and et is total energy per unit volume.

The pressure p is obtained from ideal gas relations:

𝑝 = (𝛾 − 1)𝜌(𝑒𝑡 −
𝑢2 + 𝑣2 + 𝑤2

2
)

 (5)

Where 𝛾 is specific heat ratio.

Here, we can convert the Cartesian Coordinates into generalized coordinates using the

curvilinear coordinates ξ, η and ζ to work easier. After the transformation, the equation

(3) can be written as:

∂F̂(Q̂)

∂ξ
+

∂Ĝ(Q̂)

∂η
+

∂Ĥ(Q̂)

∂ζ
= 0

 (6)

And equation system (4) becomes:

𝑄̂ =
1

J

[

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒𝑡

]

 and 𝐹̂ =
1

𝐽

[

𝜌𝑈
𝜌𝑢𝑈 + ξ𝑥𝑝
𝜌𝑣𝑈 + ξ𝑦𝑝

𝜌𝑤𝑈 + ξ𝑧𝑝
(𝜌𝑒𝑡 + 𝑝)𝑈]

 𝐺̂ =
1

𝐽

[

𝜌𝑉
𝜌𝑢𝑉 + 𝜂𝑥𝑝
𝜌𝑣𝑉 + 𝜂𝑦𝑝

𝜌𝑤𝑉 + 𝜂𝑧𝑝
(𝜌𝑒𝑡 + 𝑝)𝑉]

 𝐻̂ =
1

𝐽

[

𝜌𝑊
𝜌𝑢𝑊 + ζ𝑥𝑝
𝜌𝑣𝑊 + ζ𝑦𝑝

𝜌𝑤𝑊 + ζ𝑧𝑝
(𝜌𝑒𝑡 + 𝑝)𝑊]

 (7)

Where J is the transformation Jacobian:

J = 𝑑𝑒𝑡 [

ξ𝑥 ξ𝑦 ξ𝑧

𝜂𝑥 𝜂𝑦 𝜂𝑧

ζ𝑥 ζ𝑦 ζ𝑧

]

 (8)

And U, V and W are the contravariant velocities:

𝑈 = ξ𝑥𝑢 + ξ𝑦𝑣 + ξ𝑧𝑤

𝑉 = 𝜂𝑥𝑢 + 𝜂𝑦𝑣 + 𝜂𝑧𝑤

𝑊 = ζ𝑥𝑢 + ζ𝑦𝑣 + ζ𝑧𝑤

 (9)

10

2.2 Spatial Discretization

The method of spatial discretization used is Finite Volume Method (FVM). The flow

domain is distributed onto cells in the center of which are the flow variables. The cell

faces store the fluxes while the grid points occupy the same space as the cell corners.

Then, the flux balance across a cell will result in the spatial derivatives of the flux

vectors:

𝛿ξ𝐹̂ = 𝐹̂
𝑖+

1
2
,𝑗,𝑘

− 𝐹̂
𝑖−

1
2
,𝑗,𝑘

 𝛿𝜂ξ𝐺̂ = 𝐺
𝑖,𝑗+

1
2
,𝑘

− 𝐺
𝑖,𝑗−

1
2
,𝑘

𝛿ζ𝐻̂ = 𝐻̂
𝑖,𝑗,𝑘+

1
2
− 𝐻̂

𝑖,𝑗,𝑘−
1
2

 (10)

Where the cell faces are described by i±1/2, j±1/2, k±1/2 and which turns Equation (6)

into:

∂F̂

Δξ
+

∂Ĝ

Δη
+

∂Ĥ

Δζ
= 0

 (11)

Which can be written as follows:

(𝐹̂
𝑖+

1
2
,𝑗,𝑘

− 𝐹̂
𝑖−

1
2
,𝑗,𝑘

) + (𝐺̂
𝑖,𝑗+

1
2
,𝑘

− 𝐺̂
𝑖,𝑗−

1
2
,𝑘
) + (𝐻̂

𝑖,𝑗,𝑘+
1
2
− 𝐻̂

𝑖,𝑗,𝑘−
1
2
) = 0

 (12)

Interpolating from the flow variables in the cell centers, flow variables in the cell faces

can be obtained. Then with those variables, flux can be obtained.

Now, 𝐹̂
𝑖±

1

2
,𝑗,𝑘

, 𝐺
𝑖,𝑗±

1

2
,𝑘
 𝑎𝑛𝑑 𝐻̂

𝑖,𝑗,𝑘±
1

2

 can be rewritten with L being left and R being

right:

𝐹̂
𝑖±

1
2
,𝑗,𝑘

= [𝐹̂+ (𝑄̂
𝑖±

1
2
,𝑗,𝑘

𝐿) + 𝐹̂− (𝑄̂
𝑖±

1
2
,𝑗,𝑘

𝑅)]

𝐺̂
𝑖,𝑗+

1
2
,𝑘

= [𝐺̂+ (𝑄̂
𝑖,𝑗±

1
2
,𝑘

𝐿) + 𝐺̂− (𝑄̂
𝑖,𝑗±

1
2
,𝑘

𝑅)]

𝐻̂
𝑖,𝑗,𝑘±

1
2

= [𝐻̂+ (𝑄̂
𝑖,𝑗,𝑘±

1
2

𝐿) + 𝐻̂− (𝑄̂
𝑖,𝑗,𝑘𝑖±

1
2
,

𝑅)]

(13)

11

And Q variables can be written in shorter terms via equating variables at cell faces to

their counterparts at the nearest cell centers:

𝑄̂
𝑖+

1
2
,𝑗,𝑘

𝐿 = 𝑄̂𝑖 , 𝑄̂
𝑖,𝑗+

1
2
,𝑘

𝐿 = 𝑄̂𝑗 , 𝑄̂
𝑖,𝑗,𝑘+

1
2

𝐿 = 𝑄̂𝑘

𝑄̂
𝑖+

1
2
,𝑗,𝑘

𝑅 = 𝑄̂𝑖+1 , 𝑄̂
𝑖,𝑗+

1
2
,𝑘

𝑅 = 𝑄̂𝑗+1 , 𝑄̂
𝑖,𝑗,𝑘+

1
2

𝑅 = 𝑄̂𝑘+1

 (14)

Figure 2.1 Control Volume

2.3 Flux Splitting

After 𝐹̂
𝑖±

1

2
,𝑗,𝑘

 , 𝐺
𝑖,𝑗±

1

2
,𝑘

 and 𝐻̂
𝑖,𝑗,𝑘±

1

2

 have been formed in terms of 𝐹̂+, 𝐹̂−, 𝐺̂+, 𝐺̂−, 𝐻̂+

and 𝐻̂−, they can be found via flux splitting. Here, Van Leer method is used for that

purpose. The fluxes are split w.r.t. contravariant Mach number, M as follows:

𝐹̂
𝑖+

1
2
,𝑗,𝑘

 𝐹̂
𝑖−

1
2
,𝑗,𝑘

𝐺̂
𝑖,𝑗−

1
2
,𝑘

𝐺̂
𝑖,𝑗+

1
2
,𝑘

 𝐻̂
𝑖,𝑗,𝑘+

1
2

𝐻̂
𝑖,𝑗,𝑘−

1
2

12

Subsonic Case

𝐹± = 𝜌𝑐
(𝑀 + 1)2

4
(𝑘̃1 + 𝑘̃2 + 𝑘̃3)

[

1

(
−𝑈̃ ± 2𝑐

𝛾
) 𝑘̃1 + 𝑢

(
−𝑈̃ ± 2𝑐

𝛾
) 𝑘̃2 + 𝑣

(
−𝑈̃ ± 2𝑐

𝛾
) 𝑘̃3 + 𝑤

(
−𝑈̃ ± 2𝑐

𝛾 + 1
) 𝑈̃ +

2𝑎2

𝛾2 − 1
+

𝑢2 + 𝑣2 + 𝑤2

2]

 (15)

With

𝑈̃ =
𝑢𝜉𝑥 + 𝑣𝜉𝑦 + 𝑤𝜉𝑧

√𝜉𝑥
2 + 𝜉𝑦

2 + 𝜉𝑧
2

𝑘̃1 =
𝜉𝑥

√𝜉𝑥
2 + 𝜉𝑦

2 + 𝜉𝑧
2

𝑘̃2 =
𝜉𝑦

√𝜉𝑥
2 + 𝜉𝑦

2 + 𝜉𝑧
2

𝑘̃3 =
𝜉𝑧

√𝜉𝑥
2 + 𝜉𝑦

2 + 𝜉𝑧
2

 (16)

Here, 𝛾 is the specific heat ratio and c is the speed of sound. The same can be done for

𝐺± and 𝐻±by substituting 𝜂 and ζ for 𝜉.

For the Supersonic Case,

𝐹+ = 𝐹 𝑖𝑓 𝑀 ≥ 1

𝐹+ = 0 𝑖𝑓 𝑀 ≤ 1

𝐹− = 0 𝑖𝑓 𝑀 ≥ 1

𝐹− = 𝐹 𝑖𝑓 𝑀 ≤ 1

 (17)

This should be followed by the boundary conditions section.

13

2.4 Boundary Conditions

The boundary conditions can be seen in Figure 2.1.

The problem is solved on one quarter of the problem as the same solution can be

applied to the other three quarters. As can be seen in the following figure, this means

we have 2 symmetry conditions, 2 wall conditions, 1 inlet and 1 outlet condition. The

boundary conditions (BCs) are implemented through the usage of reserved ghost cells

being introduced to the edges of the flow.

Figure 2.2 All Boundaries

To start with, the symmetry BCs should be discussed. As the solution is the same at

every quarter of the geometry according to symmetry planes, the variables to each side

of symmetry BCs are taken as equal. Only the normal velocities w.r.t. symmetry planes

are reversed according to the dictate of the symmetry planes. This case is valid as long

as the entering flow has no angle of attack, which makes it applicable for this thesis.

14

Next, wall BCs should be elaborated. At the walls, the total energy, density and

velocity components are taken from the center of the neighboring interior cells while

the normal components of the velocity are equated to zero as there is no mass leak out.

For the rest:

(𝜌𝑢)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = (𝜌𝑢)𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜌𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑈𝑛𝑛𝑥

(𝜌𝑣)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = (𝜌𝑣)𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜌𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑈𝑛𝑛𝑦

(𝜌𝑤)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = (𝜌𝑤)𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜌𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑈𝑛𝑛𝑧

n is the unit normal at wall surface.

Next are the inlet BCs. As the inlet flow is subsonic flow, pressure is taken from the

inside while total pressure, total temperature, density and Mach number are gotten

from the outside. The flow is only in u direction. Then,

𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = (𝛾 − 1)𝜌𝑖𝑛𝑠𝑖𝑑𝑒(𝑒𝑡 −
𝑢2 + 𝑣2 + 𝑤2

2
)𝑖𝑛𝑠𝑖𝑑𝑒

𝜌𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
1

2
(𝛾𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + √(𝛾𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)

2
+ 2(𝛾 − 1)(𝜌𝑢)2

(𝜌𝑒𝑡)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝛾 − 1
+

(𝜌𝑢)2

2𝜌

Lastly, for the outlet BCs, as the flow is supersonic at this point, all parameters will be

taken from the preceding cells.

15

CHAPTER 3

SOLUTION METHODS

As has been discussed in the introduction in chapter 1, there are various methods to

perform flow solutions depending on the desired convergence rate, accuracy, flow

type, the computational power at hand and there are even more ways to modify these

methods, replacing a part with another or including whatever is deemed necessary for

specific needs. For the purpose of this thesis, two solvers have been used to solve the

same problem. The Newton’s method and Newton-GMRES method are the two

solvers, the usage of Newton-GMRES method and its appropriate preconditioning

being the focus. The calculation of the Jacobian for each step of the Newton’s method

is done analytically while the calculation of the first Jacobian for the preconditioning

matrix needed for the Newton-GMRES is done analytically and compared to

numerical calculation. The numerical and analytical calculations are found to be

equivalent which is why the analytical solution is selected due to its far superior speed.

The problem is as stated in chapter 2. Detailed explanation of Newton and Newton-

GMRES methods follow.

3.1 Newton’s method

The spatial discretization of the problem given above give rise to a nonlinear system

of equations. Newton’s method is the first method we use to solve this system of

equations and the method itself can be described as follows:

Starting with an initial guess to a root of a function, a tangent line to the function can

be created to achieve an approximation of the function. Then, this tangent line is

lengthened to find where it intercepts the x-axis and the process is repeated with the x-

intercept that has been obtained. The obtained x-intercept is almost always a better

guess for the root of that function and thus, as the process is repeated, better

approximations can be obtained. Then, the following can be shown [19]:

16

Supposing f : [a,b] → R is a differentiable function defined on the interval [a,b] with

real values. If an initial approximation to a root, say, xn is obtained, the next

approximation to the root can be done through

𝑦 = 𝑓′(𝑥𝑛)(𝑥 − 𝑥𝑛) + 𝑓(𝑥𝑛)

 (18)

Where f’ is the derivative of the function f. Then, the mentioned x-intercept of this line

would be the next value to be used as initial guess, that is, xn+1. Setting y = 0 and x =

xn+1 to obtain a guess at the root results in

0 = 𝑓′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) + 𝑓(𝑥𝑛)

 (19)

Solving this to obtain xn+1 results in

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

 (20)

Which forms the basis for Newton method. Now, if we were to write these in familiar

terms, the main loop that brings forth the solution would be:

𝑄̂𝑘+1 = 𝑄̂𝑘 + ∆𝑄̂𝑘

 (21)

For which, one would need to find ∆𝑄̂𝑘 to be able to proceed. Thus, the residual

mechanism is introduced. The residual is a vector that will be equal to zero when the

exact solution is found, but until then will be as follows:

𝑅̂(𝑄̂) =
∂F̂(𝑄̂)

δξ
+

∂Ĝ(𝑄̂)

δη
+

∂Ĥ(𝑄̂)

δζ

 (22)

Then, this system of nonlinear equations can be transformed into linear equations

through a Taylor series expansion keeping only the lowest order term:

𝑅̂(𝑄̂𝑘+1) = 𝑅̂(𝑄̂𝑘) + (
𝛿𝑅̂

𝛿𝑄̂
) Δ𝑄̂𝑘

 (23)

Then, if one assumes iteration will result in zero residual, the residual becomes:

17

(
𝛿𝑅̂

𝛿𝑄̂
)Δ𝑄̂𝑘 = −𝑅̂(𝑄̂𝑘)

 (24)

Hence, the famous linear Ax=b problem that we need to solve is obtained, where A is

a matrix and x and b are vectors. Here, (
𝛿𝑅̂

𝛿𝑄̂
) is the Jacobian matrix, which can be

calculated analytically or numerically. The numerical calculation takes far longer due

to the size of the Jacobian matrix and thus the analytical way is applied. In Newton’s

method without any fast linear system solvers, UMFPACK is used to solve the Ax=b

equality.

3.2 Newton-GMRES Method

When using Newton’s method to solve the systems of nonlinear equations that define

our problem, there arises the necessity to solve linear systems where the coefficient is

the Jacobian matrix at every step. This creates the problem of computational

inefficiency due to repetition of an expensive operation to obtain a large amount of

accuracy. The high accuracy is desirable, yet a better method that can achieve an

accuracy close to that of Newton’s with less computational load is sought for. That is

where Krylov subspace methods are needed. The need to avoid computations

involving expensive matrix operations leads to the alternative of doing matrix-vector

operations and working with the resulting vectors. Those vectors create subspaces

called Krylov subspaces. In algebraically understandable terms, if one has a vector b

and a matrix A, the first vector in the Krylov subspace would be the multiplication of

A0 with b, the second vector A1b, the third A2b and so on. Here, the powers of A

represent the times A has been multiplied by itself, that is, A2=AA. Then, the Krylov

subspace of order m that is created using an n-by-n matrix A and a vector b of

dimension n would be as follows:

𝐾𝑚(A, 𝑏) = 𝑠𝑝𝑎𝑛{𝑏, A𝑏, A2𝑏,… , A𝑟−1𝑏}

 (25)

This subspace can then be used to perform operations that involve large matrices

without explicitly forming the matrices themselves. The obvious benefit of this is

apparent; one could efficiently take the large numbers of linear equations created by

18

the Newton’s method and solve them at each step of the Newton iterations using

Krylov subspaces without ever having to do a matrix-matrix operation. This allows us

to take a shortcut through Newton’s method and use a Newton-Krylov method instead.

The most widely used Krylov subspace methods include Conjugate Gradient (CG),

BiConjugate Gradient Stabilized (BiCGSTAB) and Generalized Minimum Residual

(GMRES) methods. The method we use in this thesis is the GMRES method coupled

with Newton’s method. The reason for the choice of GMRES over a method such as

BiCGSTAB is due to the latter’s increased possibility of termination without

convergence. CG, on the other hand, necessitates a symmetric matrix which our matrix

is not.

Newton-GMRES method is used to solve the nonlinear systems that are the implicit

discretizations of a system of equations. This is done through the linearization of the

system at each step of the outer loop which is the Newton’s method loop and the

iterative solution of the linear system in the inner loop using GMRES. The next step

of the outer loop starts with the solution of the previous step. The GMRES algorithm

is the composition of four processes: initialization, Krylov subspace orthogonalization,

solving a least squares problem and updating the solution. The initialization and update

steps are done once each at the beginning and the end of the algorithm while the

orthogonalization and least squares solution steps are repeated for every iteration as

the Krylov subspace grows.

3.2.1 GMRES Algorithm

The basic GMRES algorithm for the solution of Ax = b is as follows:

Algorithm 1 GMRES

1. Initialization: 𝑥0 is chosen, 𝑟0 = 𝑏 − A𝑥0 and 𝑣1 = 𝑟0/𝛽 where 𝛽 = ‖𝑟0‖ is

computed.

2. Iteration: For m = 1,2,…

The search direction vector 𝑣𝑚, if applicable, is preconditioned and the next

Krylov subspace search direction 𝑣𝑚+1 is created by the Arnoldi

19

orthogonalization. Then the next column of the Hessenberg matrix, Hm is

formed:

𝑤𝑚 = A𝑣𝑚

 ℎ𝑖,𝑚 = 𝑤𝑚
𝑇 𝑣𝑖, ∀ 𝑖 = 1,2, … ,𝑚

 𝑣𝑚+1 = 𝑤𝑚 − ∑ℎ𝑖,𝑚𝑣𝑖

𝑚

𝑖=1

 ℎ𝑚+1,𝑚 = ‖𝑣𝑚+1‖2

 𝑣𝑚+1 = 𝑣𝑚+1/ℎ𝑚+1,𝑚

3. The least squares problem is solved:

 𝑦𝑚 = argmin
𝑦

‖𝛽𝑒1 − Ĥ𝑦‖
2

where the minimum value is ym and e1 is the first column of the identity matrix

of dimension m+1, (1,0,0,0,…,0)T. Here, the function that is being minimized is

actually the residual, ‖𝑟𝑚‖2. To solve the minimization problem, Hm can be

converted into an upper triangular form, making the solution relatively

inexpensive and this is done here with QR factorization.

If
y𝑚

‖𝑟0‖2
≤ 𝜂𝑘, exit the loop, where 𝜂𝑘 is an arbitrary definition of relative

tolerance.

4. Update the solution: 𝑥𝑚 = 𝑥0 + Vm𝑦𝑚

3.2.2 Convergence of GMRES

The first concern in the application of GMRES is its convergence. The method, as we

have discussed, creates a Krylov subspace that grows with every step in size, each

iteration containing the subspace before itself. These subspaces are each used to

minimize their related residuals, which monotonically decrease as for every new

iteration of the algorithm the previous subspace is utilized. In general terms, for a

matrix of size m, the method would arrive at an exact solution with zero residuals at m

iterations, but that would be an extreme use of computational power and excessive

inefficiency. Instead, an arbitrary term for relative tolerance to satisfy, 𝜂𝑘 is defined as

shown above (Alg. 1), which leads to the GMRES algorithm to converge to a

20

satisfactory residual (around 10-17) in a manageable number of steps (downwards of

1000 steps for 3-D Euler equations for a medium sized grid). This arbitrary term can

be chosen between the values of 0 and 1. The value itself translates into a relation

between the number of GMRES iterations and Newton iterations necessary to satisfy

convergence boundaries. These can be further supported by Trefethen and Bau’s work

stating [20]:

‖𝑟𝑛‖ ≤ (1 −
𝜆𝑚𝑖𝑛

2 (0.5(AT + A))

𝜆𝑚𝑎𝑥(A𝑇A)
)

𝑛/2

‖𝑟0‖

 (26)

For any positive definite matrix A with smallest eigenvalue 𝜆𝑚𝑖𝑛 and largest

eigenvalue 𝜆𝑚𝑎𝑥 which pretty much means that for any problem that can at all be

solved by a Newton-Krylov method, the solution will be obtained in a smaller number

of iterations than solving its full-scale matrix counterpart.

With the resolution of the convergence concerns for GMRES, its main desirability is

described next in the form of Jacobian-free calculations.

3.2.3 Matrix-free calculations

Any iterative solution containing the calculation of a Jacobian for a nontrivial system

such as 3D Euler equations will face the problem of creation and storage of that

Jacobian matrix. The creation of such a Jacobian will be expensive in computational

power terms while its storage will cause inefficiency in the solver even when done in

sparse matrix form. Fortunately, for unpreconditioned GMRES, no Jacobian formation

or storage is necessitated. Instead, first order finite difference approximation can be

used to circumvent the process of creating a matrix A to find the product of A with a

vector v which is necessary as can be seen in Algorithm 1, step 2. The approximation

is as follows with R being the discretized residual vector and Q the flow variables:

A𝑣 = (
𝜕𝑅

𝜕𝑄̂
+

1

∆𝑡
𝐼) 𝑣 ≈

𝑅(𝑄̂ + 𝜖𝑣) − 𝑅(𝑄̂)

𝜖
+

1

∆𝑡
𝑣

 (27)

Where 𝜖 is a value which can be derived through

𝜖 =
𝜖𝑚

‖𝑣‖2
2

21

 (28)

And used to perturb the flow variables with 𝜖𝑚 as machine zero. Yet, the definition of

𝜖 needn’t be derived through (28) and can be user defined as long as the round off and

truncation errors in finite difference approximation can be kept to a minimum. In our

calculations, 𝜖 is taken to be 10-7 with satisfying results as the result of a trial and error

process. This leads to the unpreconditioned GMRES being truly matrix free,

eliminating a high work load.

3.2.4 Components of GMRES

While showing the algorithm, describing convergence and explaining how GMRES is

useful are important, the most important part of this section of chapter 3 is to relay the

information on how the components of GMRES work individually and together. As

we have explained before, the GMRES is the sum of four steps: initialization, Krylov

subspace orthogonalization, solving a least squares problem and update. These four

steps are explained below.

Initialization

To solve any Ax = b linear equation system using definite or indefinite Newton

methods, one needs a good starting point of x0. At the initialization step, this x0 is

chosen after which the first residual 𝑟0 = 𝑏 − 𝐴𝑥0 and 𝑣1 = 𝑟0/𝛽 is computed with

𝛽 = ‖𝑟0‖2 . In terms of a flow solution with R as the discretized residual vector and Q

as the flow variables, ∆𝑄̂𝑘
𝑚 at m=0 would be our 𝑥0 with m signifying the GMRES

iteration step and k signifying Newton iteration step and the first residual would turn

into:

𝑟𝑘
0 =

𝜕𝑅̂

𝜕𝑄̂𝑘

∆𝑄̂𝑘
0 − 𝑅̂(𝑄̂𝑘)

 (29)

The next step would be carrying out the Arnoldi iteration.

Arnoldi iteration

To find the largest eigenvalue of an m-by-m matrix A, one can use the power iteration.

Taking a random vector v as the beginning point, one computes Av, A2v, A3v, and so

22

on while recording the resultant vector on v at each iteration. The iteration at some

point converges to the eigenvector representing the largest eigenvalue of the matrix A.

If one was to instead keep the Avm products at each iteration instead, a Krylov subspace

would be generated. The one minor problem with that subspace would be that the

columns of this subspace (kept in matrix form) would not be orthogonal. The Krylov

subspace being created without proper orthogonalization would lead to linear

dependency between the subsequent subspaces that each contain the previous

subspace. A method such as Gram-Schmidt Orthogonalization could be used to create

an orthogonal basis that we need but that would have the problem of instability. To

alleviate this problem, the Arnoldi iteration is done instead at every iteration m of

GMRES and an orthonormal basis for the Krylov subspace is created. This Krylov

subspace will then be used to search for solutions that minimize the residuals. These

solutions are generally found within an acceptable number of iterations without

needing to create a subspace as big as the matrix that we need to solve for. If we were

to have an m-by-n matrix An and a nonzero vector x that is m-long, the Arnoldi iteration

creates a Krylov subspace that is characterized by:

Col span (V) = span (x,Ax,A2x,...,Am-1x)

The Arnoldi iteration amounts to the following:

For each m of the GMRES iteration until the expected residual value is reached, the

vector vm called the search direction is taken (and preconditioning is applied if

available), the corresponding column of the upper Hessenberg matrix Hm is found and

the next search direction vm+1 is created by the Arnoldi orthogonalization. Here, it

becomes necessary to introduce the reader to Hessenberg matrices to continue. If Vn

is the m-by-n matrix with the columns being the orthonormal basis {v1, v2, …,vn}, then

Hn ≡ Vn
TAVn with the entries hi,j that are created by the Arnoldi algorithm is the upper

n-by-n Hessenberg matrix. This Hessenberg matrix can be seen to be the representation

in the basis formed by the Arnoldi vectors of the orthogonal projection of A onto the

Krylov subspace K. A sample upper Hessenberg matrix would be:

23

H =

[

ℎ1,1 ℎ1,2 ℎ1,3 …ℎ1,𝑛

ℎ2,1 ℎ2,2 ℎ2,3 … ℎ2,𝑛

0 ℎ3,2 ℎ3,3 … ℎ3,𝑛

… … … … …
 0 … 0 ℎ𝑛,𝑛−1 ℎ𝑛,𝑛]

After next search direction is created, the next column of the Hessenberg matrix is

formed.

𝑤𝑚 = A𝑣𝑚

 ℎ𝑖,𝑚 = 𝑤𝑚
𝑇 𝑣𝑖 , ∀ 𝑖 = 1,2, … ,𝑚

 𝑣𝑚+1 = 𝑤𝑚 − ∑ℎ𝑖,𝑚𝑣𝑖

𝑚

𝑖=1

 ℎ𝑚+1,𝑚 = ‖𝑣𝑚+1‖2

 𝑣𝑚+1 = 𝑣𝑚+1/ℎ𝑚+1,𝑚

Then the least squares problem is faced.

Least Square Problem

The vm vector and the H̅m matrix, which is Hm with one extra row that has hm+1,m as its

only nonzero element satisfy the following equation:

AVm = Vm+1H̅m

 (30)

Then, the least square problem that is

min
𝑝

‖𝑟0 − A𝑝‖

Needs to be solved. If 𝑝 = Vm𝑦𝑚 is set, then the problem to be minimized can be turned

into

min
𝑉𝑚𝑦𝑚

‖𝛽𝑣1 − AVm𝑦𝑚‖

 (31)

With 𝛽 = ‖𝑟0‖. Then, using (30), one can turn (31) into

min
𝑉𝑚𝑦𝑚

‖Vm+1(𝛽𝑒1 − H̅m𝑦𝑚)‖

 (32)

24

Where e1 is {1,0,0,…,0}T with the dimension of m+1. As Vm+1 is known to be

orthonormal, the problem becomes:

min
𝑦𝑚

‖(𝛽𝑒1 − H̅m𝑦𝑚)‖

 (33)

Here, QR factorization obtained with a Givens Rotation is used to obtain the needed

ym as QR factorization is both computationally light and easy to implement with a

Hessenberg matrix as our upper Hessenberg matrix is close to an upper triangular

matrix. To minimize ym in ‖(𝛽𝑒1 − H̅m𝑦𝑚)‖ through a QR factorization, one needs to

write H̅m as H̅m = QR where Q is an orthonormal matrix and R is a triangular matrix.

Through this factorization, ym is obtained and used to update the current GMRES

iteration for the next step.

Update

If the ρm value obtained as the result of Eqn. 33 in the previous step is lesser than the

determined threshold, that is,
ρ𝑚

‖𝑟0‖2
≤ 𝜂𝑘, the inner loop is exited to update the solution

using it:

𝑥𝑚 = 𝑥0 + Vm𝑦𝑚

 (34)

Or in terms of a discretized flow solution:

∆𝑄̂𝑘
𝑚 = ∆𝑄̂𝑘

0 + Vm𝑦𝑚

 (35)

The inner loop that is the summation of all these parts is done until the residual vector

obtained can satisfy stopping criteria, which can be a limited number of iterations if

swift convergence can’t be obtained or a predetermined threshold such as

‖𝑟𝑘
𝑚‖ ≤ 𝜂𝑘‖𝑅̂(𝑄̂𝑘)‖

 (36)

With the GMRES algorithm fully detailed, preconditioning process can now be

explained.

25

CHAPTER 4

PRECONDITIONING

Preconditioning is the process of transforming a poorly formed problem into a form

that can more easily be solved using numerical methods. Generally in doing this, one

takes a system of equations that can as in our case be stored in matrix form such as a

Jacobian and applies a “preconditioning matrix” M to those equations. This application

takes the form of matrix operations. While using a method that boasts of its matrix-

free property, it is very important that these matrix operations be easy to do, store and

the matrices easy enough to create. The preconditioning is done to speed up

calculations and decrease computational loads on hardware and yet if it is not done

properly, the reverse of that can happen. That is why the choice and implementation

of a preconditioning method is of utmost importance when using an iterative method.

In the following sections, how preconditioners work, what they cost, what their types

are, what we have chosen to implement and why will be explained in detail.

4.1. Reasons for Preconditioning

It is known that iterative methods have convergence rates that depend on the problem

they are trying to solve, such as the properties of a coefficient matrix like a Jacobian.

This means that if one could transform those matrices into matrices that have better

properties with the same solutions, the convergence rates could be improved. The

matrices that we call the “preconditioners” are effectively how those transformations

are introduced into our iterative solvers. For example, if one was trying to solve the

generic linear system Ax = b where A is the matrix with unfavorable properties, the

following transformation could be done:

𝑀−1A𝑥 = 𝑀−1𝑏

 (37)

26

With which the solution of Ax = b would remain unchanged while computations done

using 𝑀−1A could be more efficient. Many iterative solvers, especially those that use

inexact Newton methods as their basis need preconditioning to be truly effective given

their inclination to converge slower if a poor starting point is selected. When creating

a preconditioner, there are two methods of going about this business: One is finding a

matrix M that would have more favorable properties than A while successfully

imitating A in terms of solution obtained and finding its inverse or the mathematical

equivalent of its inverse after. The other is to find a matrix 𝑀 that approximates A−1

while still having more favorable properties than A and not having to calculate an

inverse for M. Most preconditioners do the first as the process of inverting the

preconditioning matrix can be mostly circumvented at least in classical terms via the

usage of intelligent manipulation.

4.2 The Cost of Using Preconditioners

As the reasoning behind the usage of preconditioners is first and foremost to lower

computational times, the amount of computational power lost in using those

preconditioners in the first place is a primary consideration. The two main aspects of

“the cost” of these preconditioners come in terms of setting up a preconditioner and

applying it at every iteration. If the convergence time gained in the usage of such a

process is larger than the time lost for its application, ceteris paribus the

preconditioning is considered successful. While some preconditioners such as an

SSOR preconditioner may not need a setup phase at all, most preconditioners such as

incomplete factorizations involve a large amount of work to be used. The return for

the time and power used for this process can be harvested through its usage over

iterations or the preconditioner itself can be used in various different linear systems

after being formed.

4.3 Types of Preconditioning

There are multiple ways to precondition a problem and to classify the process of

preconditioning, two main avenues must be specified: Whether it is left or right

preconditioning and the method of preconditioning used, such as a Jacobi

preconditioner or an ILU factorization.

27

4.3.1. Left and Right Preconditioning

The transformation of the linear system Ax = b into another linear system M−1A𝑥 =

M−1𝑏 is not the only transformation that is available for use. In fact, if that were the

case, many iterative solvers that use the benefits of preconditioning would become

obsolete due to the forced removal of properties that are inherent in the matrices they

use. For example, the symmetricity of a matrix could be lost with any kind of

preconditioning application, which would lead to the usefulness of a specific method

being eliminated. Instead, one could modify Ax = b by splitting the preconditioning

matrix into two parts; a right and a left preconditioner. The transformation of the

preconditioning matrix M into M1M2 would transform the above equation system as

follows:

M1
−1AM2

−1(M2𝑥) = M1
−1𝑏

 (38)

Then, with M1 named the left preconditioner and M2 named the right preconditioner,

one could insert simple steps in their algorithm enabling the use of one or the other as

long as the preconditioning matrix M is nonsingular. For a right preconditioned

system, the two steps necessary would be the implementation of:

1- The solution of the system using a new vector y,

M2
−1A𝑦 = 𝑏

2- The rollback step from y to x,

𝑥 = M2
−1𝑦

And for a left preconditioned system, one would be solving

M1
−1(A𝑥 − 𝑏) = 0

While the right preconditioning looks a little harder to implement, it has the added

bonus of never modifying the residual of the linear system r = b – Ax, which means

the stopping criteria for the preconditioned solver do not need to be redefined or based

on relative convergence. In this thesis, right preconditioning is applied for that reason.

Here, the algorithm for right-preconditioned GMRES is given.

28

Algorithm 2 GMRES

1. Initialization: 𝑥0 is chosen, 𝑟0 = 𝑏 − A𝑥0 and 𝑣1 = 𝑟0/𝛽 where 𝛽 = ‖𝑟0‖ is

computed.

2. Iteration: For m = 1,2,…

The search direction vector 𝑣𝑚 is preconditioned via multiplication with the

right preconditioning matrix and the next Krylov subspace search direction

𝑣𝑚+1 is created by the Arnoldi orthogonalization. Then the next column of

the Hessenberg matrix, 𝐻𝑚 is formed:

 𝑧𝑚 = 𝑀−1𝑣𝑚

𝑤𝑚 = 𝐴𝑧𝑚

 ℎ𝑖,𝑚 = 𝑤𝑚
𝑇 𝑣𝑖, ∀ 𝑖 = 1,2, … ,𝑚

 𝑣𝑚+1 = 𝑤𝑚 − ∑ ℎ𝑖,𝑚𝑣𝑖
𝑚
𝑖=1

 ℎ𝑚+1,𝑚 = ‖𝑣𝑚+1‖2

 𝑣𝑚+1 = 𝑣𝑚+1/ℎ𝑚+1,𝑚

3. The least squares problem is solved:

 𝑦𝑚 = argmin
𝑦

‖𝛽𝑒1 − 𝐻̂𝑦‖
2

where the minimum value is ym and e1 is the first column of the identity matrix

of dimension m+1, (1,0,0,0,…,0)T.

If
y𝑚

‖𝑟0‖2
≤ 𝜂𝑘, exit the loop, where 𝜂𝑘 is an arbitrary definition of relative

tolerance.

4. Update the solution: 𝑥𝑚 = 𝑥0 + 𝑀−1𝑉𝑚𝑦𝑚

The two steps necessary for the right preconditioning can be seen above. With the

question of preconditioning side answered, the preconditioning methods can be

examined.

4.3.2. Preconditioning Methods

By Saad’s words, “a preconditioner is any form of implicit or explicit modification of

an original linear system which makes it easier to solve by a given iterative method”

29

[21]. As such, one could use any variety of commonly used preconditioning methods

as well as any other method that they could derive from their knowledge of the physical

problem at hand and call it their own. In this section, information regarding the

common methods for preconditioning of large sparse matrices will be conveyed.

4.3.2.1. Jacobi Method

Jacobi preconditioner, also known as the diagonal preconditioner is the simplest

preconditioner that can be created. The preconditioning matrix is selected to be the

main diagonal of the linear system to be preconditioned. It is useful when dealing with

matrices that are diagonally dominant. Also, for matrices that are more complex, yet

are still mainly dominant near the diagonal such as with problems with more than one

variable per node, a block version of this method can be applied. As is obvious, the

Jacobi preconditioners are applicable to none but the simplest linear systems.

4.3.2.2 Symmetric Successive Over-Relaxation Method

The symmetric successive over-relaxation (SSOR) method is close to Jacobi

preconditioners in terms of calculation necessary to compute a preconditioning matrix.

It also necessitates the presence of a symmetrical matrix to be preconditioned. If one

was to decompose matrix A as shown:

A = D + L + LT

 (39)

With its diagonal, lower and upper triangular submatrices, then the SSOR matrix

definition would be:

M = (D + L)D−1(D + L)T

 (40)

Which can be parameterized using ω:

M(𝜔) =
1

2 − 𝜔
(
1

𝜔
D + L) (

1

𝜔
D−1)(

1

𝜔
D + L)𝑇

 (41)

The optimal value of this parameter ω can be computed using spectral information

from the original matrix but the process of this computation makes the method

30

unreasonably expensive. The SSOR preconditioning matrix is factorized as can be

observed above, which makes it similar to the other factorization based methods in

those terms. This takes us to the discussion of ILU factorization preconditioners.

4.3.2.3. Incomplete Lower-Upper Factorization Preconditioners

Using a large sparse matrix A, the incomplete lower-upper factorization of that matrix

would yield two sparse matrices, a lower triangular sparse matrix L and an upper

triangular sparse matrix U. The difference of the factorized matrices and the original

matrix A, R=LU-A has to satisfy specific constraints, such as mimicking the zero

pattern of the original matrix A, that is, having zeroes at the same locations as A. There

are many types of these factorizations, in fact without a specification one could

construct an infinite number of factorizations for a matrix. Thus, there are many types

of ILU preconditioners used in ILU preconditioning. This section will discuss these in

detail.

ILU factorizations, in contrast to the previous preconditioners we have discussed,

necessitate computations that are complex and as such, they are prone to breakdowns

due to zero pivots (zero entries in the main diagonal) and can result in indefinite

matrices due to negative pivots. In these cases, the substitution of a user-selected

positive number can be an effective solution. As we have discussed before,

preconditioning is almost always a costly process and with the ILU factorization

computations, the cost can be equal to an iteration of the solver. This cost may be

depreciated through the usage of the preconditioner for more than one linear system,

such as in successive time steps or if the solver takes several iterations to converge and

the number of those iterations can be lowered.

Incomplete factorizations can be done in many different forms. The original matrix A

can be factorized as A = LU in which case the problem can be solved normally (Figure

4.1). The factorization can also be done as A = (D + L)D−1(D + U) with D diagonal

and L and U triangular matrices. This case can be solved with a slightly altered

approach (Figure 4.2) [22].

31

Figure 4.1: Preconditioner solve for Ax = b and A = LU

Figure 4.2: Preconditioner solve for Ax = b and A = (D + L)(I + D−1U)

As can be seen in figure 4.2, A = (D + L)D−1(D + U) can be shortened into two

specific forms:

1- (D+L) z = b, (I+D-1U) x = z and

2- (I+L D-1) z = b, (D+U) x = z

In both forms, the diagonal is used two times and in both, only divisions are done using

D. This leads to the storage of D-1 being the easiest option in memory terms, yet is also

the cause for the zero pivot breakdowns.

Having shown how preconditioner solves for factorizations are done, information

about how they are calculated should be relayed. The most widespread incomplete

factorizations are done through the preservation of a set of physical positions on the

original matrix and using this set of positions through the factorization to produce

matrices with all zero entries excluding the set. This set of positions is generally chosen

Let A = LU where Ax = b

for i=1,2,…

𝑧𝑖 = 𝑙𝑖𝑖
−1(𝑏𝑖 − ∑ 𝑙𝑖𝑗𝑧𝑗𝑗<𝑖)

for i=n,n-1,…

𝑥𝑖 = 𝑢𝑖𝑖
−1(𝑧𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗𝑗>𝑖)

Let 𝐴 = (D + L)(I + D−1U) where Ax = b

for i=1,2,…

𝑧𝑖 = 𝑑𝑖𝑖
−1(𝑏𝑖 − ∑ 𝑙𝑖𝑗𝑧𝑗𝑗<𝑖)

for i=n,n-1,…

𝑥𝑖 = 𝑧𝑖 − 𝑑𝑖𝑖
−1 ∑ 𝑢𝑖𝑗𝑥𝑗𝑗>𝑖

32

to be the nonzero pattern of the original matrix. Any position that is zero in A but filled

with an entry in the factorization is called fill-in. According to the complexity of the

factorization, these fill-in’s can be discarded or kept. If all fill-in is discarded, the result

of the factorization is called ILU(0) factorization. If the fill-in caused by the original

matrix is kept, the factorization would be an ILU(1) factorization. As such, if the fill-

in caused by level k of the factorization is kept (as in, from ILU(k)), the factorization

would be named ILU(k+1). This number, k+1, is called the level of fill. The

incomplete factorization process with a set S of predefined locations, can be described

as follows:

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑖, 𝑗 > 𝑘: 𝑎𝑖,𝑗 ← {
𝑎𝑖,𝑗 − 𝑎𝑖,𝑘𝑎𝑘,𝑘

−1𝑎𝑘,𝑗 𝑖𝑓(𝑖, 𝑗) ∈ 𝑆

𝑎𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In terms of storage space, ILU(0) takes at maximum the same amount of storage space

as the original matrix does. With each increasing level of fill, the storage necessity

increases. SPARSKIT by Youssef Saad offers the following algorithm for the usage

of ILU(p) for any p, as shown by John Gatsis [23], [24]:

Algorithm 3 SPARSKIT ILU(p) factorization algorithm

Define a shifted level of fill-in: 𝑝̂ = 𝑝 + 1

for i = 1; n do

 for k = 1; i-1 do

 if 𝑙𝑒𝑣𝑖𝑘 ≤ 𝑝̂ then

 𝜙 𝑎𝑖𝑘/𝑎𝑘𝑘
 for j = 1,n do

 𝑙𝑒𝑣𝑖𝑗
∗ = 𝑙𝑒𝑣𝑖𝑘 + 𝑙𝑒𝑣𝑘𝑗

 if 𝑙𝑒𝑣𝑖𝑗 = 0 then

 % Fill is unassigned

 if 𝑙𝑒𝑣𝑖𝑗
∗ ≤ 𝑝̂ then

 𝑎𝑖𝑗 = −𝜙𝑎𝑘𝑗

 𝑙𝑒𝑣𝑖𝑗 = 𝑙𝑒𝑣𝑖𝑗
∗

 end if

 else

 % Existing fill

 𝑎𝑖𝑗 ← 𝑎𝑖𝑗 ← 𝜙𝑎𝑘𝑗

 𝑙𝑒𝑣𝑖𝑗 ← min (𝑙𝑒𝑣𝑖𝑗, 𝑙𝑒𝑣𝑖𝑗
∗)

 end if

 end for % Index j

33

 end if

 end for % Index k

end for % Index i

While higher levels of fill do indeed require a higher amount of computational power

and storage space to be expended, they are generally better than their lower level of

fill counterparts. An optimization relating the computational power lost due to the level

of fill and accuracy gained can be done. There is no “fixed” optimal level of fill for

ILU(p) factorization preconditioners, every problem has its own optimal

preconditioner.

Modified ILU (MILU) preconditioners add another step to the process their ILU

counterparts use. With MILU, at the end of the discard step for every row, the

discarded entries are summed and this sum is added to the diagonal entry. This way,

the row sums of the LU matrix are equal to those of A. This leads to the MILU

preconditioners being especially useful when considering PDEs. When considering

other problems, MILU preconditioners are not much different than their ILU cousins.

The ILU(p) factorizations, that is, ILU factorizations with only level of fill

considerations, do not consider numerical properties of the entries they are dropping.

The entries that are being dropped can be important to the solution of the system and

thus another factor when considering dropping entries should be decided upon. One

such factor can be creating a threshold for values that are to be dropped, such as the

relatively small elements. Also, a strategy for defining the number of elements to be

kept in each row can also be introduced. The combination of these two would create

the ILUT, ILU with threshold. This strategy can be seen on the next algorithm.

34

Algorithm 4 ILUT algorithm

for i = 1; n do

 𝑤 = 𝑎𝑖∗

 for k = 1; i-1 and 𝑤𝑘 ≠ 0 do

 𝑤𝑘 = 𝑤𝑘/𝑎𝑘𝑘

 Apply dropping rule to 𝑤𝑘

 𝑖𝑓 𝑤𝑘 ≠ 0 𝑡ℎ𝑒𝑛

 𝑤 = 𝑤 − 𝑤𝑘𝑢𝑘∗
 Endif

 Enddo

 Apply dropping rule to row w

 𝑙𝑖,𝑗 = 𝑤𝑗 𝑓𝑜𝑟 𝑗 = 1, … , 𝑖 − 1

 𝑢𝑖,𝑗 = 𝑤𝑗 𝑓𝑜𝑟 𝑗 = 1,… , 𝑛

 𝑤 = 0

Enddo

Here, for a factorization with considerations for a value size drop threshold and a value

count drop threshold, ILU(ρ,τ) would use the two guidelines:

1- First, if an element of the matrix, 𝑤𝑘 is under a tolerance limit τ that has been

obtained through the multiplication of τ and the original norm of its row, the

element is dropped.

2- At the next application, the elements that are under the tolerance limit are

dropped again. In addition to that, the algorithm keeps the ρ largest elements

of the lower matrix and ρ largest elements of the upper matrix of each row in

addition to the diagonal. This allows for the control of number of elements in

each row according to the user’s desires.

This approach is one of the best when the numerical values themselves are more

important than the number of values.

If a pivoting strategy such as picking the entry with the largest value in a row to be the

diagonal element in that row is applied, the method turns into ILUTP (ILUT with

pivoting).

If the linear system is made up of blocks of data instead of randomly filled, block fill

ILU (BFILU) methods can be used. Here, this was tried but ultimately not used due to

the amount of data that was being discarded consistently lead to divergence.

35

If the factorizations are set aside and the inverse of the original matrix A is directly

approximated, this type of method is called an approximate inverse method (or sparse

approximate inverse if used with sparse matrices). While useful, the computational

power necessary for this method offsets its efficiency in our use.

4.3.3 Ordering

Preconditioners that use incomplete factorization, such as those that are used in this

study, depend on the ordering of the equations that are being solved. Using ordering

can improve stability of the preconditioner or enable the utilization of parallelization.

Yet, the disadvantage of ordering is that it can result in elements with low numerical

quality, affecting the convergence. For the purpose of this thesis, the popular Reverse

Cuthill McKee ordering has been investigated and decided not to be used as the

historical data regarding ordered preconditioners is not completely decisive. Both

positive and negative results have been collected from ordered preconditioners. Still,

historical data suggests that for a nonsymmetric problem, RCM can be highly

beneficial and thus, this is part of the future work that is to be investigated.

In this work, unordered ILU preconditioners ILU(0), ILU(1), MILU(0), ILU(ρ,τ) have

been used with the specifics as given in the results. ILU(p) with p>1 was tried and

found to constantly diverge so it was discarded and the computational expense of and

our inexperience with SPAI lead to us not being able to use it.

36

37

CHAPTER 5

RESULTS

This chapter collects all the results obtained through the usage of different methods

and compares these results. The Newton’s method, unpreconditioned Newton-

GMRES method and Newton-GMRES method with block-diagonal Jacobian matrix

modified with incomplete factorization as the preconditioning matrix have been

applied to the problem at hand. Their separate and average CPU times, iteration counts

and relative residual histories have been showcased here. The parameters affecting

Newton-GMRES and the preconditioner algorithms are discussed. The meshes used

and the dependence of the algorithm on the meshes are analyzed.

The Newton-GMRES algorithm used is developed through manipulation of the one

used in [9]. The preconditioning algorithm used is developed through the mixing of

Newton-GMRES algorithm and the routines used in SPARSKIT and their

manipulation [23]. Both are developed in Fortran77 and run with ifort. The machine

specifics used are as follows: AMD OpteronTM Processor 6378 at 2400 MHz with 2048

kB cache and 8 cores, using 1 out of 64 available nodes with a total of 256 GB available

RAM.

5.1 Sample Problem Solution and Comparisons

The sample problem to be used in comparing preconditioned and unpreconditioned

algorithms is as stated in problem definition in chapter 2, the solution of 3D Euler

equations for supersonic flow on a nozzle. This selection is done with ease of access

to results, ease of convergence and definitive difference between convergence times

in mind. The algorithm could be applied with some effort to other problems, which is

one of the intended future projects.

For different 𝜂𝑘 values that regulate the relation of GMRES iterations and Newton

iterations and different grid sizes, the CPU times, iterations needed for convergence

38

and relative residual histories are shown. It should be stated that the results from here

to the last section are based on the CPU times for one trial done for each grid type and

forcing factor done on the same server with no other running processes. In the last

section of this chapter, all references to CPU times refer to average CPU times obtained

through multiple trials (ranging from 3 to 10 trials according to variability of results).

The effect of level of fill and threshold value used in the preconditioner is showcased.

All spatial discretizations for Newton-GMRES methods are done in first order as the

main focus is on drawing attention to the amount of computational efficiency that can

be gained while keeping the same accuracy and as that order increases, the efficiency

decreases with very little accuracy gain. At the end of the results section, some samples

of second order discretization are given to prove this statement. The relative residual

of all methods including Newton’s and Newton-GMRES methods are converged down

to 10-14. Newton-GMRES method allows far more convergence, yet the Newton’s

Method becomes prohibitively time-consuming if further convergence is aimed. It

must be said here that this residual is normalized, as in, the residuals shown are based

on the original calculated residual. From this point on, all references to residuals refer

to relative residuals based on the original residuals.

5.1.1 Grid Sizes, Shapes and Dependencies

The grid sizes and shapes are given in Table 5.1.

Table 5.1 Grid sizes

Coarse Grid 17x5x5 = 425

Medium Grid 33x9x9 = 2673

Fine Grid 65x17x17 = 18785

The most important problem that was faced in this study was declaring array sizes for

different uses. Creating a high number of arrays and storing them until the end of each

GMRES iteration was inefficient, yet storing data in arrays that were not going to be

used again would lead to array size mismatch errors in the algorithm. The algorithm

would crash at mesh sizes larger than 65x17x9 due to that. This problem was detected

and solved by a trial-and-error process to find why this was happening and the grid

size is not a problem now, yet it can be seen as a warning indicator that the same

39

problem could be faced if the algorithm is applied to a much larger grid. For the

purpose of this study, however, all intended processes have been applied successfully.

The grid shapes used with the sizes as shown in Table 5.1 follow in Figures 5.1 through

5.3.

Figure 5.1 The Coarse Grid (17x5x5)

Figure 5.2 The Medium Grid (33x9x9)

40

Figure 5.3 The Fine Grid (65x17x17)

Next, the dependency of the results on the meshes should be shown before comparing

the results with each other.

The dependency is showcased for first order discretization on preconditioned Newton-

GMRES method on Figure 5.4. Mach number versus location in normalized position

on grid is plotted for this purpose, which could in fact be replaced by any number of

variables determined by the solution. It is selected merely for the ease of inspection it

provides.

41

Figure 5.4 Grid Dependency of Preconditioned Newton-GMRES Method

It can be seen in Figure 5.4 that the algorithm is clearly dependent on the mesh used.

As the fineness of the mesh increases, the necessary computational power to converge

to a result increases but the accuracy also increases. Yet, it can be observed that the

difference between fine and medium mesh solutions is lower than that of medium and

coarse mesh solutions and that all solutions overlap for a significant amount of the

plot. This means that with an even finer mesh, the results will not differ very much

from those obtained with the fine mesh.

5.1.2 Comparison of Results

The results for the solution of the problem are as indicated in the following pages.

They include CPU time, iteration and residual history comparisons for Newton’s

method, Newton-GMRES method and Newton-GMRES method with ILU(0), ILU(1),

MILU(0) and ILUT(ρ,τ) factorized block-diagonal first order approximated Jacobian

preconditioner. Average Wall clocks and CPU times for all methods are included in

the end to enable comparison. ILU(k) with higher values of k lead to non-convergence

due to memory issues. The results are shown for different values of ηk at 0.4 and 0.6

for one trial. Deviation from these values can achieve higher or lower convergence

42

times but what is important is that the trend of superiority between preconditioned vs.

unpreconditioned solver results stay the same at all values of ηk. The results are also

analyzed according to grid sizes. For the ILUT(ρ,τ) preconditioner, the level of fill is

selected to be 5 due to the block-diagonal characteristic of the computed Jacobian

while the threshold for dismissing values is selected to be 0.0001 so as to keep all

significant values. Increasing the threshold further results in the loss of important

values and a loss of convergence and thus that value is not changed. The effect of

changing the level of fill to a lower value of 4 and through this, removing parts of the

Jacobian is showcased. Increasing the level of fill does not make a difference in this

problem as the Jacobian does not have more elements. The block-diagonal format of

the Jacobian matrix for fine grid can be seen in Figure 5.5 and 5.6.

Figure 5.5 Approximate Jacobian (Whole)

43

Figure 5.6 Approximate Jacobian (Zoomed)

Figure 5.7 Full Jacobian

44

In Figure 5.7, the full Jacobian for a coarse grid can be seen for comparison with Figure

5.5, where only the block diagonal is kept. The distribution of data in the matrices for

coarse, medium and fine meshes have the same pattern. It can easily be seen that a

large portion of the full Jacobian has been removed for easy calculation. This of course

leads to a preconditioner that is not as good as it could be if the full Jacobian was used

as the basis, yet the results show that the current implementation of the method was

still satisfactory for the purpose of this study. The following figures, 5.8 and 5.9 show

the eigenvalue distributions before and after preconditioning for matrix A using

ILU(0) and ILUT methods, respectively.

Figure 5.8 Eigenvalue Distribution for ILU(0)

Figure 5.9 Eigenvalue Distribution for ILUT

45

The eigenvalue distributions in Figures 5.8 and 5.9 represent the clustering of

eigenvalues after preconditioning. The spread-out eigenvalues, shown with circles

from 1.6 to 13 in both figures represent the matrix before preconditioning is applied.

The clustered eigenvalues to the left from 0.1 to 0.4 in both figures represent the matrix

after preconditioning takes place. Also, it is difficult to observe from the figures, but

the imaginary parts of unpreconditioned eigenvalues are far smaller than their

preconditioned counterparts. Ideally, the eigenvalue distribution would be much closer

to 1, yet even under the current circumstances the preconditioned clusters are still

much closer overall to unity. This leads to a better overall convergence for the linear

solver, GMRES. It was also found that the condition number improves by around 103

after preconditioning, that is, the problem becomes well-conditioned with a condition

number κ ≈ 23 for coarse grid and similar for the other grids.

5.1.2.1 Graphical Comparison for Different Grids at ηk = 0.4

Figure 5.10 Convergence History Comparison for Coarse Grid and ηk = 0.4

46

Figure 5.11 Convergence History Comparison for Medium Grid and ηk = 0.4

Figure 5.12 Convergence History Comparison for Medium Grid and ηk = 0.4

(Zoomed)

47

Figure 5.13 Convergence History Comparison for Fine Grid and ηk = 0.4

Figure 5.14 Convergence History Comparison for Fine Grid and ηk = 0.4

(Zoomed for Comparison with Newton-GMRES)

48

Figure 5.15 Convergence History Comparison for Fine Grid and ηk = 0.4

(Zoomed for Comparison of Preconditioners)

The convergence history of Newton’s method for fine grid in Figure 5.13 could

especially have been excluded due to its unwieldy nature. While its Newton-GMRES

counterparts converge in approximately five minutes in worst case scenarios,

Newton’s method takes more than an hour to converge and thus does not represent a

viable method in solving a problem with an extremely large matrix. Otherwise, it

follows the trend of previous grid types.

In Figures 5.11, 5.12 and 5.14, it can easily be seen that the CPU times of

preconditioned Newton-GMRES methods always are as expected the lowest among

methods used. It can also be stated that MILU(0) outperforms its counterparts by a

small margin from Figure 5.10 and 5.11 (as shown in the tables 5.2 and 5.3 under the

next header). The only trend that doesn’t fit this description is the one seen in fine grid,

in Figure 5.15. This is at part due to CPU load at the time of running the algorithm, as

it affects the results, albeit at a miniscule level. The other reason is ILU(1) factorizing

the obtained matrix one more time than the other methods used, leading to a better

49

Jacobian matrix in general. The iteration counts that relate to these methods can be

seen in the following Figures; 5.16, 5.17 and 5.18.

Figure 5.16 Iteration Count Comparison for Coarse Grid and ηk = 0.4

Figure 5.17 Iteration Count Comparison for Medium Grid and ηk = 0.4

50

Figure 5.18 Iteration Count Comparison for Fine Grid and ηk = 0.4

One can conclude from the comparison of these iteration count graphs and the CPU

time graphs given before that iteration counts do not directly relate to the speed

differences of individual iterative methods. While Newton’s method always converges

in sub-twenty iterations in given grids, it can take hours to converge. Similar to that,

ILU(0) preconditioned Newton-GMRES method has the highest needed amount of

iterations to converge while it is also among the fastest methods to converge. In

addition to these, it can be seen that preconditioned and unpreconditioned Newton-

GMRES methods have a similar trend of iterations needed to be completed.

The Mach contour, pressure distribution, temperature distribution and velocity vector

comparisons between Newton and preconditioned Newton-GMRES methods are

given for fine mesh in Figures 5.19 through 5.26:

51

Figure 5.19 Mach Contour for Newton’s method

Figure 5.20 Mach Contour for Preconditioned Newton-GMRES Method

52

Figure 5.21 Pressure Distribution for Newton’s method

Figure 5.22 Pressure Distribution for Preconditioned Newton-GMRES Method

53

Figure 5.23 Temperature Distribution for Newton’s method

Figure 5.24 Temperature Distribution for Preconditioned Newton-GMRES Method

54

Figure 5.25 Velocity Vectors for Newton’s method

Figure 5.26 Velocity Vectors for Preconditioned Newton-GMRES Method

55

Section 5.1.2.2 will elaborate on the computational power differences.

5.1.2.2 Numerical Comparison for Different Grids at ηk = 0.4

The comparison of CPU times and outer (Newton) iteration counts can be seen as

tabulated below:

Table 5.2 CPU and Iteration Count Comparisons for ηk = 0.4

Coarse Medium Fine

CPU
Time

(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

Newton’s method 2,18 8 70,05 10 8710,52 17

Newton - GMRES 1,76 635 21,51 703 450,12 720

ILU(0)
Preconditioned

Newton- GMRES
1,31 644 14,45 760 245,37 850

MILU(0)
Preconditioned

Newton- GMRES
1,26 628 14,40 704 246,07 710

ILU(1)
Preconditioned

Newton- GMRES
1,36 629 14,65 700 239,89 711

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,27 634 14,46 705 253,01 721

Here in Table 5.2, it can much more clearly be seen that preconditioned Newton-

GMRES algorithm is superior to its Newton’s method and unpreconditioned Newton-

GMRES method counterparts. With a level of fill of 5, value threshold of 0.0001 and

an ηk value of 0.4, the ILUT preconditioned algorithm performs around 38.58% better

than its unpreconditioned counterpart with a coarse mesh, again 48.75% better with a

medium mesh and around 77.91% better with a fine mesh. As is expected, the

preconditioner results in a small amount of gain in coarse and medium meshes while

its benefit in usage with larger meshes can easily be seen, effectively halving the

computational time used. The outer iteration count also can be seen to decreasingly

increase for every type of mesh applied, which is the result of the inner iterations

56

giving better approximations than their unmodified counterparts. Another interesting

fact that can be obtained from the table is that there is not a single best preconditioner

to be applied under every condition. Instead, preconditioners should be chosen

according to each specific application. However, if every small performance increase

is not being considered, ILU based preconditioners can be said to perform in a uniform

manner. It can be deduced that here the calculation and usage of the first partial

Jacobian for the preconditioning purpose takes a negligible amount of time in contrast

to the amount of time it returns to the user. One concern here is that if the grid was to

get much larger and the number of iterations be likewise increased, the Jacobian

freezing that we apply would become insufficient as a preconditioning matrix and the

need for the calculation of another Jacobian would arise. This could still be bounded

by a preset number of total new Jacobian calculations and so regulated to be

manageable. Table 5.3 sums the performance gain in each preconditioner used, using

a performance factor defined as the preconditioned algorithm CPU time divided by the

Newton-GMRES CPU time; meaning values closer to zero display better performance.

Table 5.3 Performance Comparisons for ηk = 0.4

Method
Coarse Medium Fine

CPU
time (s)

Perf.
Factor

CPU time
(s)

Perf.
Factor

CPU time
(s)

Perf.
Factor

Newton - GMRES 1,76 1 21,51 1 450,12 1

ILU(0)
Preconditioned

Newton- GMRES
1,31 0,744 14,45 0,671 245,37 0,545

MILU(0)
Preconditioned

Newton- GMRES
1,26 0,715 14,4 0,669 246,07 0,546

ILU(1)
Preconditioned

Newton- GMRES
1,36 0,772 14,65 0,681 239,89 0,532

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,27 0,721 14,46 0,672 253,01 0,562

Best performances are underlined.

57

5.1.2.3 Graphical Comparison for Different Grids at ηk = 0.6

Figure 5.27 Convergence History Comparison for Coarse Grid and ηk = 0.6

In Figure 5.27, it can be observed that the preconditioned Newton-GMRES is

following the trend created by its predecessors in terms of residual history. As the grid

is coarse and the calculations are extremely fast, convergence time differences between

methods are expectedly small. Yet, it can be seen that ILU(0) and MILU(0) methods

have a small amount of superiority over their competitors in this smaller grid. Still, the

differences are so small that conclusions such as definitively stating ILUT is always

slower than other ILU based preconditioners tested here in regards to coarse grids

would be wrong.

58

Figure 5.28 Convergence History Comparison for Medium Grid and ηk = 0.6

In Figure 5.28, we can see that the preconditioning process results in noticeable

difference over the unpreconditioned version. If we were to inspect Figure 5.29

closely:

Figure 5.29 Convergence History Comparison for Medium Grid and ηk = 0.6

(Zoomed)

59

We would be able to see that ILUT performed slightly better than its competitors in

this grid. In contrast, ILU(0) was the slowest this time around.

Figure 5.30 Convergence History Comparison for Fine Grid and ηk = 0.6

Again, for display purposes, we include the CPU time plot without extracting

Newton’s method in Figure 5.30. The following Figures, 5.31 and 5.32 are magnified

to show the Newton-GMRES process results:

60

Figure 5.31 Convergence History Comparison for Fine Grid and ηk = 0.6

(Zoomed)

In Figure 5.31, it can easily be observed that the performance increase brought by

preconditioning. The residual drops faster than preconditioned residual in Newton-

GMRES until it reaches a certain amount, after which it slows its search in the Krylov

subspace. One more magnification to this plot can tell which methods are the fastest

in this grid.

61

Figure 5.32 Convergence History Comparison for Fine Grid and ηk = 0.6

(Zoomed for Comparison of Preconditioners)

In Figure 5.32, it can be seen that ILU(0) and ILU(1) are the fastest preconditioners

for our system at ηk = 0.6 value and the largest grid. It is an interesting observation that

the preconditioners result in even closer CPU times this time around. In fact, ILU(0)

and ILU(1) take almost exactly the same amount of time. One can also observe that

the Newton-GMRES algorithm stalls around 10-14. This passes a few more seconds

later but is a rather interesting observation. The exact reasoning behind it is open to

interpretation, yet it is known that iterative solvers are prone to this kind of behavior

when operating at residuals this low.

The related iteration counts are displayed as follows in Figures 5.33 through 5.35 for

reference:

62

Figure 5.33 Iteration Count Comparison for Coarse Grid and ηk = 0.6

Figure 5.34 Iteration Count Comparison for Medium Grid and ηk = 0.6

63

Figure 5.35 Iteration Count Comparison for Fine Grid and ηk = 0.6

The residual history in this case of ηk = 0.6 behaves in the same way as before in ηk =

0.4 with the one change being in that the residual for Newton’s method cannot even

be manipulated enough to reach 10-14 level. Still, the Newton-GMRES methods can

converge down to 10-17 level with ease. The scale for the residual has been kept

constant throughout the plots between 1 and 10-14 to enable easier comparison with

Newton’s method and all the curves are known to follow their shown trends below that

value. The contours given in the previous sections will not be repeated here so as not

to fall to duplicity.

64

5.1.2.4 Numerical Comparison for Different Grids at ηk = 0.6

The comparison of CPU times and outer (Newton) iteration counts can be seen as

tabulated below in Table 5.4:

Table 5.4 CPU and Iteration Count Comparisons for ηk = 0.6

Coarse Medium Fine

CPU
Time

(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

Newton’s method 2,18 8 70,05 10 8710,52 17

Newton - GMRES 1,32 1046 12,80 855 259,11 968

ILU(0)
Preconditioned

Newton- GMRES
1,14 969 10,45 1050 191,51 1290

MILU(0)
Preconditioned

Newton- GMRES
1,16 1045 10,35 854 195,61 967

ILU(1)
Preconditioned

Newton- GMRES
1,24 1056 10,41 854 191,49 969

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,46 1048 10,29 853 193,31 967

In Table 5.4, the data is consistent with the case of ηk = 0.4 at least in terms of

preconditioning generally speeding up the algorithm. Yet, there is one case where

performance increase was not seen. In the case of ILUT preconditioner coupled with

a coarse grid, the solver actually took longer than it would left unpreconditioned. That

is due to the value of ηk which determines the relation of the outer and inner iterations.

If the iterations are left to be less reliant on the linear solver and more on the Newton

step, the positive effect of the preconditioner can become negligible in relation to its

negative effect. With that exception in mind, the preconditioning process speeds up

the convergence across all grid sizes, this being more apparent the larger the grid

grows. It can also be seen that increasing the forcing term has sped up the algorithm

for all grid sizes. The optimization of this forcing term coupled with the right

preconditioner for your grid size can lead to optimized routines. The following Table

5.5 will clarify the table above in terms of performance between preconditioners:

65

Table 5.5 Performance Comparisons for ηk = 0.6

Method
Coarse Medium Fine

CPU
time (s)

Perf.
Factor

CPU time
(s)

Perf.
Factor

CPU time
(s)

Perf.
Factor

Newton - GMRES 1,32 1 12,8 1 259,11 1

ILU(0)
Preconditioned

Newton- GMRES
1,14 0,863 10,45 0,816 191,51 0,739

MILU(0)
Preconditioned

Newton- GMRES
1,16 0,878 10,35 0,808 195,61 0,754

ILU(1)
Preconditioned

Newton- GMRES
1,24 0,939 10,41 0,813 191,49 0,739

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,46 1,106 10,29 0,803 193,31 0,746

Lower performance factor means better performance. Best performances are

underlined. If these results are compared to those obtained from ηk = 0.4:

Table 5.6 Performance Comparisons of different ηk values

Method
Coarse Medium Fine

ηk = 0.4 ηk = 0.6 ηk = 0.4 ηk = 0.6 ηk = 0.4 ηk = 0.6

Newton - GMRES 1 1 1 1 1 1

ILU(0)
Preconditioned

Newton- GMRES
0,744 0,863 0,671 0,816 0,545 0,739

MILU(0)
Preconditioned

Newton- GMRES
0,715 0,878 0,669 0,808 0,546 0,754

ILU(1)
Preconditioned

Newton- GMRES
0,772 0,939 0,681 0,813 0,532 0,739

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
0,721 1,106 0,672 0,803 0,562 0,746

It can be seen that the ILU(1) preconditioner is the fastest in both values of ηk when

considering larger grids. As the grid gets smaller, the choice becomes harder, generally

leaning towards simpler preconditioners (ILU(0) and MILU(0)). Both parts of result

is to be expected. The only unexpected part is the low convergence rate of ILUT, which

we expected to be higher. The simplest reason for that can be a problem in choosing

66

the level of fill or threshold for that preconditioner. The following section relays a

simple test to determine the viability of using a lower level of fill. Before concluding,

it can also be stated that a higher value of ηk results in a generally faster algorithm.

5.1.2.5 Graphical Comparison for Level of Fill = 4 and 5 and ηk = 0.6

For the purpose of showcasing the difference level of fill makes for the ILUT

preconditioner, the results of the flow solution at level of fill = 4 with a medium grid

is compared to the flow solution at level of fill = 5 with the same grid. The graphical

comparison is as follows through Figures 5.36 to 5.43:

Figure 5.36 Mach Contours for Lfil = 4

Figure 5.37 Mach Contours for Lfil = 5

67

Figure 5.38 Pressure Distribution for Lfil = 4

Figure 5.39 Pressure Distribution for Lfil = 5

68

Figure 5.40 Temperature Distribution for Lfil = 4

Figure 5.41 Temperature Distribution for Lfil = 5

69

Figure 5.42 Residual Histories for Lfil = 4 and 5

Figure 5.43 CPU Time Comparison for Lfil = 4 and 5

70

Here, it can be seen that lowering the value of level of fill on medium grid does not

have any significant effects on residual histories iteration count-wise or with respect

to CPU time.

5.1.2.6 Numerical Comparison for Level of Fill = 4 and 5 and ηk=0.6

The comparison of CPU times and outer (Newton) iteration counts can be seen as

tabulated below in Table 5.7:

Table 5.7 CPU and Iteration Count Comparisons for Level of Fill = 4 and 5

 Coarse Medium Fine

CPU
Time

(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

CPU Time
(seconds)

Outer
iteration

Count

Level of Fill = 4 1,35 1055 11,51 1162 - -

Level of Fill = 5 1,46 1048 11,55 1151 193,31 967

As can be seen from Table 5.7, decreasing the level of fill results in a somewhat faster

convergence in medium and coarse meshes while the algorithm does not achieve

convergence on a fine mesh. The non-convergence and the computational speed

improvement are due to the same reason. As the mesh fineness increases, the number

of elements the threshold algorithm drops increases. For a coarse mesh, the dropped

number of elements will be low which in turn will speed up the overall solution while

not affecting convergence whereas for a fine mesh, the dropped number of elements

will be higher which can result in a matrix that cannot be solved. This means the level

of fill carries great importance when improving matrix sizes and mesh fineness. Also,

it was observed that while the algorithm with level of fill 4 reaches 10-14 residual level

in just a few steps after the level of 10-12, the algorithm with level of fill 5 lingers for

a long time at 10-12 residual level, which is the main cause for its time loss. For a real

engineering problem, a residual level that low would almost never be necessary, which

would mean the convergence times would be much closer to each other. This in turn

leads to a higher level of fill in ILUT being more useful with the tendency of a low

level of fill preconditioner to lead to less dependable results kept in mind. Still, a lower

level of fill can be useful if the problem is very simple. Before going into conclusions,

the last piece of comparative information should be included in the form of second

order discretization in the following section.

71

5.1.3 Comparison of Second Order Discretized Solutions

In addition to the first order discretization done in chapter 2, it was stated in this thesis

that second order discretization simply slows the algorithm by a large amount, thus

making its comparison with its first order counterpart somewhat misguiding. That

being taken into account, one still can draw some conclusions from its analysis. In this

section, we will submit the results obtained from that approach and make a few

remarks on their comparison. The discretization itself is done using MUSCL

(Monotonic Upstream Centered Scheme Conservation Law) scheme interpolation by

Van Leer. The flow variables on cell faces are found using the flow variables at cell

centers of the four neighboring cells. The scheme and its application will be included

here in summarized form instead of being in chapter 2 to avoid any misconceptions

while reading all the previous chapters. As an alternative to equation (14) at page 11,

the following is valid here:

𝑄̂
𝑖+

1
2

𝐿 = 𝑄̂𝑖 +
1

4
{𝛷(𝑟)[(1 − 𝐾)∇ + (1 + 𝐾)∆]}

𝑄̂
𝑖+

1
2

𝑅 = 𝑄̂𝑖+1 −
1

4
{𝛷(𝑟)[(1 + 𝐾)∇ + (1 − 𝐾)∆]}𝑖+1

(42)

Where

𝑟𝑖 =
∆𝑖

∇𝑖
 , ∆𝑖= 𝑄̂𝑖+1 − 𝑄̂𝑖 , ∇𝑖= 𝑄̂𝑖 − 𝑄̂𝑖−1

Here, K defines the order of the differencing. It is taken 0 to be used with Van Albada

limiter function. The limiter function we mentioned would be 𝛷(𝑟), used to limit

oscillations and prevent artificial solutions where high gradients are found.

This transforms (42) into (43):

𝑄̂
𝑖+

1
2

𝐿 = 𝑄̂𝑖 + 𝛿
𝑖+

1
2

𝐿

𝑄̂
𝑖+

1
2

𝑅 = 𝑄̂𝑖+1 − 𝛿
𝑖+

1
2

𝑅

(43)

Then, with K = 0,

𝛿 =
(𝑎2 + ε)b𝑖 + (𝑏2 + 𝜀)𝑎

𝑎2 + 𝑏2 + 2𝜀

𝑎𝐿 = ∆𝑖 , 𝑏𝐿 = ∇𝑖 , 𝑎𝑅 = ∇𝑖+1 , 𝑏𝑅 = ∆𝑖+1

72

As the limiter is used to prevent oscillations and artificial solutions at high gradient

areas, a small value of 𝜀 = 0.0008 is added to the δ formula. Formulation done with,

we can move on to graphical and numerical comparisons.

5.1.3.1 Graphical Comparisons for ηk = 0.4

To start with, it must be stated that second order discretizations have a tendency to

diverge at lower ηk values. This makes it impossible to reliably compare the results of

unpreconditioned Newton-GMRES with first order discretization at those values for

ηk = 0.4 level. The preconditioned algorithm performs better at that level, enabling

some comparisons. As a change of pace to enable easier inspection, the comparisons

will be done one by one instead of all-in-one, as in ILU(0) preconditioned for first

order discretization being compared to the same for second order discretization only

and so on. Without further ado, the results are as follows from Figure 5.44 through

5.52 in terms of CPU times:

Figure 5.44 CPU Time Comparison for ILU(0) for Coarse Grid

73

Figure 5.45 CPU Time Comparison for MILU(0) for Coarse Grid

Figure 5.46 CPU Time Comparison for ILU(1) for Coarse Grid

74

Figure 5.47 CPU Time Comparison for ILUT for Coarse Grid

Figure 5.48 CPU Time Comparison for ILU(0) for Medium Grid

75

Figure 5.49 CPU Time Comparison for MILU(0) for Medium Grid

Figure 5.50 CPU Time Comparison for ILU(1) for Medium Grid

76

Figure 5.51 CPU Time Comparison for ILUT for Medium Grid

Figure 5.52 CPU Time Comparison for MILU(0) for Fine Grid

As can be seen from Figures 5.44 through 5.52, the second order results are always

slower than the first order results. In addition to that, none of the algorithms except for

MILU(0) preconditioned algorithm can reliably converge at this level for the fine grid

77

(that is, not have inconsistent CPU times). The explanation for that is the discarded

element conservation property of MILU(0) algorithm. The problem solution obtained

with second order discretization are the same with Newton’s method and first order

discretization.

5.1.3.2 Numerical Comparisons for ηk = 0.4

Here, the CPU times can be inspected more closely in comparison to their first order

counterparts in Table 5.8:

Table 5.8 CPU Time Comparisons for 1st and 2nd Order Discretization at ηk = 0.4

Method

Coarse Medium Fine

First

Order

Second

Order

First

Order

Second

Order

First

Order

Second

Order

Newton - GMRES 1,76 - 21,51 - 450,12 -

ILU(0)
Preconditioned

Newton- GMRES
1,31 1,36 14,45 15,83 245,37 -

MILU(0)
Preconditioned

Newton- GMRES
1,26 1,35 14,4 15,94 246,07 291,01

ILU(1)
Preconditioned

Newton- GMRES
1,36 1,37 14,65 15,83 239,89 -

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,27 1,28 14,46 15,73 253,01 -

The results are as stated before, the algorithm is always slower when using second

order discretization. ILUT generally seems to show the best performance with this

method when smaller grids are used; but one should take a look at other forcing factors

to draw a more solid conclusion.

5.1.3.3 Graphical Comparisons for ηk = 0.6

To do away with repetitive clutter, only the graphical result for fine grid will be

included here. The results for medium and coarse grids mimic the fine grid and the

numerical data for all will be included in the next part. At this level of ηk, the algorithm

converges for all methods applied.

78

Figure 5.53 CPU Time Comparison of all 2nd Order Discretized Methods for Fine

Grid

In Figure 5.53, one can easily see the performance difference preconditioned methods

make. Apart from that, ILUT preconditioning approach is seen to be the fastest among

its counterparts. The Newton method takes far longer than is appropriate to show on

the plot as was with the previous results. To further visually demonstrate the first and

second order difference, we can use the ILUT preconditioned algorithm result as

follows in the next plot.

79

Figure 5.54 CPU Time Comparison of ILUT Methods on Fine Grid for 1st and 2nd

Order Discretizations

The CPU time difference can easily be seen in Figure 5.54. A more detailed analysis

of the numerical values can be observed in section 5.1.3.4.

5.1.3.4 Numerical Comparisons for ηk = 0.6

Table 5.9 will summarize all differences found between first and second order

discretizations.

80

Table 5.9 CPU Time Comparisons for 1st and 2nd Order Discretization at ηk = 0.6

Method

Coarse Medium Fine

First

Order

Second

Order

First

Order

Second

Order

First

Order

Second

Order

Newton - GMRES 1,32 1,76 12,8 21,46 259,11 518,36

ILU(0)
Preconditioned

Newton- GMRES
1,14 1,37 10,45 14,45 191,51 279,96

MILU(0)
Preconditioned

Newton- GMRES
1,16 1,27 10,35 14,57 195,61 274,01

ILU(1)
Preconditioned

Newton- GMRES
1,24 1,28 10,41 15,01 191,49 244,89

ILUT(0.0001,5)
Preconditioned

Newton- GMRES
1,46 1,32 10,29 14,59 193,31 242,74

In Table 5.9, it can be seen that MILU(0) keeps the trend of being the fastest method

in the coarse grid. ILU(0) performs best in the medium grid and ILUT(0.0001,5) gives

the best results for the fine grid as opposed to how the preconditioners behaved at ηk

= 0.4. Putting internal comparison aside, one can easily see that first order

discretization performs better under all conditions when the residual level is kept the

same and the same solutions for the problem are obtained.

This leads into the final section of this thesis, which consists of all the tables of

comparison for wall clocks at all forcing factors and orders.

81

5.1.3.5 Numerical Comparisons for all conditions

In this last section of this chapter, the average Wall Clock times are displayed. The averages are calculated using between 3 and 10 trials

(3 for Coarse mesh, 5 for Medium and 10 for Fine mesh cases as the least amount of difference is seen in Coarse and highest amount of

difference is seen in Fine meshes). In second order results, the averages for fine mesh at the lowest forcing term are less reliable due to a

wider range of results obtained for that case. All results are showcased in the following tables. Best results for each case is grayed.

Table 5.10 Wall Clock Comparisons for All Conditions, Coarse Mesh

Method

Coarse

First Order Second Order

ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7 ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7

Newton - GMRES 1,724 1,721 1,752 1,734 219,655 2,313 1,96 2,187

ILU(0) Preconditioned Newton- GMRES 1,306 1,223 1,346 1,471 1,569 1,569 1,921 1,498

MILU(0) Preconditioned Newton- GMRES 1,222 1,25 1,603 1,39 1,539 1,545 1,471 1,75

ILU(1) Preconditioned Newton- GMRES 1,263 1,503 1,442 1,774 1,513 1,657 1,663 1,386

ILUT(0.0001,5) Preconditioned Newton- GMRES 1,398 1,433 1,607 1,482 1,495 1,53 1,674 1,6

Table 5.10 shows results consistent with the expectation that all preconditioned methods should be faster than unpreconditioned versions.

It also shows that ILU(0) and MILU(0) are simpler and as such, more efficient methods when applied to simpler problems in comparison

to somewhat more complex ILUT and ILU(1) methods. Still, it can be said that the difference is not extreme in most cases. It can be seen

here that the best case scenario for unpreconditioned Newton-GMRES for a Coarse mesh is 1,721 seconds at ηk = 0.5 and first order while

the best case scenario for a preconditioned approach is 1,222 seconds with MILU(0) with ηk = 0.4 and first order. The decrease in time is

0,5 seconds, which is significant enough to legitimize the usage of a preconditioner.

82

Table 5.11 Wall Clock Comparisons for All Conditions, Medium Mesh

Method

Medium

First Order Second Order

ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7 ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7

Newton - GMRES 16,403 15,766 16,279 17,378 754,228 22,938 24,486 22,098

ILU(0) Preconditioned Newton- GMRES 14,177 12,628 12,161 13,047 17,910 15,745 17,172 17,042

MILU(0) Preconditioned Newton- GMRES 13,222 12,509 11,984 13,706 19,736 16,041 15,227 15,737

ILU(1) Preconditioned Newton- GMRES 12,809 11,801 11,536 11,828 16,697 16,911 16,197 16,022

ILUT(0.0001,5) Preconditioned Newton-
GMRES

12,406 12,818 12,305 12,894 16,843 15,341 15,113 14,629

Table 5.11 shows the wall clock comparisons for all tested conditions for the medium mesh. As an example, the CPU time for ILUT

preconditioned Newton-GMRES for first order and ηk = 0.4 is 12,221 seconds, which makes the difference between CPU time and wall

clock negligible. The preconditioned algorithm is faster than its unpreconditioned counterparts as expected again. A trend can be seen in

terms of the faster preconditioning method with ILU(1) and ILUT preconditioners being the fastest with the medium mesh.The fastest

convergence achieved with unpreconditioned Newton-GMRES is at ηk = 0.5 with 15,766 seconds while the fastest convergence with a

preconditioned method is at ηk = 0.6 with 11,536 seconds. The improvement in performance at a level of 33% when the best convergences

are compared is satisfactory. Also, one can say that the more complex ILU(1) and ILUT methods are performing better at somewhat larger

mesh sizes, but if that conclusion can hold up to further testing for larger meshes is up to debate.

83

Table 5.12 Wall Clock Comparisons for All Conditions, Fine Mesh

Method

Fine

First Order Second Order

ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7 ηk = 0.4 ηk = 0.5 ηk = 0.6 ηk = 0.7

Newton - GMRES 328,296 440,908 453,77 343,038 738,619 696,399 554,129 463,801

ILU(0) Preconditioned Newton- GMRES 332,763 174,616 167,049 170,183 754,317 275,395 250,051 265,826

MILU(0) Preconditioned Newton- GMRES 176,762 168,392 165,925 173,772 391,593 291,111 271,382 330,077

ILU(1) Preconditioned Newton- GMRES 175,313 167,505 166,733 171,497 893,925 289,566 274,674 427,655

ILUT(0.0001,5) Preconditioned Newton-
GMRES

174,091 166,944 166,268 170,568 - 350,389 354,157 279,004

Table 5.12 shows the performances of all methods in terms of wall clocks for fine mesh. Again for comparison, the average CPU time for

ILUT preconditioned Newton-GMRES at ηk = 0.4 for first order is 173,997 seconds, making CPU time and wall clocks be almost equal.

Here, the previous assumption that ILU(1) and ILUT works better for more complex meshes can be nullified, as in fact, the best results

are obtained using ILU(0) and MILU(0). This brings forward the need to further study different problems to gain a better understanding.

Here, the improvement in efficiency is far better, which is to be expected as preconditioning is always better when applied to larger

problems in general. The best convergence for unpreconditioned Newton-GMRES is obtained at ηk = 0.4 for first order with 328,296

seconds while the best convergence for a preconditioned method is at ηk = 0.6 for first order with MILU(0), which is 165,925 seconds. The

improvement in performance is almost 100% with 157 seconds reduction in average wall clock time.

84

85

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

Throughout this thesis, Newton, Newton-GMRES and preconditioned Newton-

GMRES methods have been implemented in the solution of a sample problem of 3-D

Euler equations on a supersonic nozzle geometry. The Newton’s method made use of

Van Leer Upwind scheme and a second order discretization. The calculation of the full

Jacobian for the Newton’s method was done analytically. UMFPACK was used to

solve the system resulting from Newton’s method.

The Newton-GMRES method was used next for the solution of the same problem, to

see if faster convergence was possible without losing accuracy. Here, satisfactory

results with respect to Newton’s method were obtained. These results were compared

to Newton’s method. Different approaches to Newton-GMRES algorithm were tried

in terms of the forcing term ηk, non-dimensionalization of the algorithm and ε. The

effect of ηk on different approaches is showcased.

The main concern of this thesis was next inspected. The necessity, cost, usage, types

and choice of a preconditioner for Newton-GMRES algorithm were explained. A

variety of ILU based preconditioners were chosen and inspected. ILU(0), ILU(1),

MILU(0) and ILUT(ρ,τ) preconditioners were compared and the level of fill and

threshold values were determined for the last preconditioner. The mentioned

preconditioners were applied to the same problem as before under the same conditions

as Newton’s and unpreconditioned Newton-GMRES methods. The results were found

to be satisfactory in the speeding of the algorithm, saving CPU time. No accuracy loss

was detected with the desired parameters. The effect of the level of fill was determined

to be critical in the usage of ILUT(ρ,τ) preconditioner. The preconditioning matrix

86

used was created only from the block-diagonal terms of the first order Jacobian. The

preconditioning matrix M was frozen at the first iteration and used all through the

process. A full Jacobian was created to be used as the preconditioning matrix but

proved extremely costly with little gain in CPU time, so the idea was discarded. The

preconditioned Newton-GMRES turned out to be superior to both Newton’s and

Newton-GMRES methods in all aspects but one; as the grid size grows larger than

those investigated here, the increasing number of variables can cause a memory

segmentation fault which could lead to constant undesirable debugging.

In the solution of the problem, all methods have been applied on coarse, medium and

fine grids. The residuals of Newton-GMRES and preconditioned Newton-GMRES

methods have been converged to 10-17 just to prove they can do that while the residual

of Newton’s Method was converged to 10-14 due to the unwieldiness of further

convergence (it takes a large amount of time). These results have of course been

compared at identical convergence points, that point being 10-14. The effect of

changing level of fill and the threshold in the preconditioner has been discussed. No

samples for the threshold change was given, as the matrix that is being formed only

has values of similar orders of magnitude and tightening the threshold for dropping

values affects the preconditioning process extremely adversely. Yet, if the same

algorithm is applied to a different, wilder problem, this threshold will gain higher

importance again. First and second order discretizations were compared for

perspective gain. It was found that using different preconditioners for different grid

sizes is necessary to obtain best results for each case. It was seen that simpler methods

such as ILU(0) and MILU(0) have a general tendency to get the best results. Overall,

the results were as expected and satisfactory.

6.2 Future Works

Some of what has been in mind to be implemented in the first few months of this study

had to be discarded mostly due to time concerns. The parallelization of the whole

solver is one useful idea that can be achieved with much more time. The application

of the solver to a variety of different problems is the most important future work that

can be done as it enables other researchers to obtain their results faster and further

87

validates the results of this thesis. While routines like the simple Jacobi have been

found wanting in the general analysis of preconditioners, sparse approximate inverse

matrix preconditioners could not be tried and is an area of high interest. The update of

the preconditioner through a variety of means to further improve it is also a great idea,

for which Broyden’s “Good” method, restarting GMRES or simply the recalculation

of the Jacobian using the previous Jacobian as some sort of basis at every fixed amount

of steps can be helpful. Using Navier-Stokes equations instead of Euler equations can

lead to more realistic results; but this will also lead to a high amount of processing

power necessity. If parallelization efforts are successful, Navier-Stokes equation usage

will be more approachable.

An absolutely matrix-free preconditioner would be the end purpose, but that would be

art as much as science.

88

89

REFERENCES

[1]. Eckert, M. (2006). “The Dawn of Fluid Dynamics: A Discipline Between

Science and Technology.” Wiley. p. ix. ISBN 3-527-40513-5.

[2]. Arfken, G. (1985) “Mathematical Methods for Physicists”, 3rd ed. Orlando, FL:

Academic Press, pp. 963-964

[3]. Knoll, D.A. and Keyes, D.E. (2004) “Jacobian-free Newton-Krylov Methods: A

Survey of Approaches and Applications” J. Computat Phys, Vol.193 pp. 357-

397

[4]. Saad, Y., and Schultz, M. H. (1986) “GMRES: A Generalized Minimal Residual

Algorithm for Solving Nonsymmetric Linear Systems,” SIAM Journal on

Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp.856-869.

[5]. Van Leer, B. (1982, September) “Flux Vector Splitting for the Euler Equations”,

ICASE Report 82-30

[6]. Davis, T. A. (2003) UMFPACK Version 4.1 User Manual, University of Florida,

Florida

[7]. Schenk, O. and Gärtner, K. (2004) “Solving Unsymmetric Sparse Systems of

Linear Equations with PARDISO”, Journal of Future Generation Computer

Systems, 20(3):475—487

[8]. Eyi, S., and Muslubaş, Y.E. (2015) “Performances of Newton and

Preconditioned Newton-GMRES Methods in Hypersonic Flow Solutions”,

AIAA Paper

[9]. Yildizlar, B. (2014) “Performance Comparison of Newton and Newton-GMRES

Methods in 3-D Flow Analysis” Master thesis, Middle East Technical University

[10]. Venkatakrishnan, V. (July, 1989) “Newton Solution of Inviscid and Viscous

Problems”, AIAA Journal, Vol. 27, pp. 885-891.

[11]. Saad, Y. (1996) “Iterative Methods for Sparse Linear Systems, 1st Edition”

90

[12]. Saad, Y. and Schultz, M.H. (1986) "GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat.

Comput., 7:856-869, doi:10.1137/0907058

[13]. Greenbaum, A., Ptak, V. and Strakos, Z. (1996) Any nonincreasing convergence

curve is possible for GMRES, SIAM J. Matrix Anal. Appl., v 17, pp. 465–469

[14]. Choquet, R. (June, 1995) “A matrix-free preconditioner applied to CFD”,

Rappport de recherché, Institut National de Recherche en Informatique et en

Automatique

[15]. Chen, Y. and Shen, C. (August, 2006) “A Jacobian-Free Newton-GMRES(m)

Method with Adaptive Preconditioner and Its Application for Power Flow

Calculations”, IEEE Transactions on power systems, Vol. 21, No. 3

[16]. Barth, T. J. and Linton, S. W. (1995) “An Unstructured Mesh Newton Solver for

Compressible Fluid Flow and Its Parallel Implementation”, AIAA Conference

Paper 95 0221

[17]. Blanco, M and Zingg, D. W. (1997) “A Fast Solver for the Euler Equations on

Unstructured Grids Using a Newton-GMRES Method”, AIAA Conference

Paper 97-0331

[18]. Delanaye, M., Geuzaine Ph. And Essers, J.A. (1997) “Compressible Flows on

Unstructured Adaptive Grids”, AIAA Conference Paper, 97-2120

[19]. Householder, A. S. (1953) “Principles of Numerical Analysis” New York:

McGraw-Hill, pp. 135-138

[20]. Trefethen, L. N. and Bau, D. (1997) III, “Numerical Linear Algebra” Society for

Industrial and Applied Mathematics

[21]. Saad, Y. (1996) “Iterative Methods for Sparse Linear Systems, 1st Edition”, p.

297

[22]. Dongarra, J. et al. (1994) “Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods”, pp. 35-45

[23]. Saad, Y., (1994) “SPARSKIT: a basic tool kit for sparse matrix computations,"

Tech. rep., http://www.cs.umn.edu/ Research/ arpa/ SPARSKIT/ sparskit.html

[last accessed on: 10.09.2015]

[24]. Gatsis, J., (2013) “Preconditioning Techniques for a Newton-Krylov Algorithm

for the Compressible Navier-Stokes Equations”, Doctoral Thesis

