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ABSTRACT 

 

 

 

TARGET TRACKING AND SENSOR PLACEMENT FOR DOPPLER–ONLY 

 MEASUREMENTS  
 

 

 

Ayazgök, Süleyman 

 

M.S., Department of Electrical and Electronics Engineering 

 

     Supervisor : Assoc. Prof. Dr. Umut Orguner 

 

 

September 2015, 104 pages 

 

 

This thesis investigates the problems of target tracking and optimal sensor placement 

with Doppler-only measurements. First, a single point track initialization algorithm 

proposed in the literature is investigated for Doppler-only tracking. The initialization 

algorithm is based on separable least squares method and involves a grid-based 

optimization. Second, particle filters are considered for Doppler-only tracking and 

they are compared to an extended Kalman filter (EKF). It is shown that a classical 

bootstrap particle filter, rather surprisingly, is inferior to the EKF in a Doppler-only 

tracking scenario. The reasons for this strange behavior are discussed. Then, classical 

sequential Monte Carlo tools are investigated to improve the behavior of the 

bootstrap particle filter. In this regard, two new particle filters, namely, a sequential 

importance resampling particle filter with optimal proposal distribution and a Rao-

Blackwellized particle filter are derived and implemented. The results show that, 

although there are occasional improvements in the particle filter performance for 

some specific parameter selections, the improvement mechanisms employed are not 

sufficiently effective to make the particle filters beat EKF.   
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Finally the problem of optimal sensor placement is considered for Doppler-only 

tracking. A 1D target motion is considered on a road/line segment and the 

optimization criterion for sensor placement is selected to be the total position Cramer 

Rao Lower Bound (CRLB) over the road/line segment. The results obtained using 

numerical optimization tools are utilized to propose a simple sub-optimal sensor 

placement strategy with explicit formulae for the sensor positions. The proposed 

strategy is shown to have very close cost values to the optimal strategy.  

 

Keywords: Doppler-only, target tracking, track initialization, particle filter, EKF, 

sensor placement 
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ÖZ 

 

 

 

SADECE DOPPLER ÖLÇÜMLERİYLE HEDEF İZLEME VE SENSÖR 

YERLEŞTİRİMİ  
 

 

 

Ayazgök, Süleyman 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

 

                                   Tez Yöneticisi: Doç. Dr. Umut Orguner 

 

 

Eylül 2015, 104 sayfa 

 

 

Bu tez çalışması sadece Doppler ölçümlerinin kullanıldığı durumlar için hedef 

izleme ve sensör yerleştirimi problemleriyle ilgilenmektedir. Öncelikle sadece 

Doppler ölçümleriyle hedef izleme için literatürde önerilen tek noktalık bir iz 

başlatma algoritması incelenmiştir. Bu algoritma ayrık en küçük kareler yöntemini 

kullanmakta ve ızgara tabanlı bir eniyileme yöntemi içermektedir.  

Sadece Doppler ölçümleriyle hedef izleme için parçacık filtreleri düşünülmüş ve bu 

süzgeçler genişletilmiş Kalman filtresiyle (GKF) karşılaştırılmıştır. İlk önce klasik 

kendini yükselten parçacık filtresinin sadece Doppler ölçümlerinin alındığı bir hedef 

izleme problemi için şaşırtıcı bir biçimde GKF’den kötü çalıştığı gösterilmiştir. Bu 

garip davranışın nedenleri üzerinde tartışılmıştır. Sonra klasik sıralı Monte Carlo 

yöntemleriyle kendini yükselten parçacık süzgecinin bu davranışının iyileştirilmesi 

düşünülmüştür. Bu bağlamda iki yeni parçacık filtresi olan, eniyi öneri dağılımını 

kullanan sıralı önemlilik yeniden örnekleme parçacık filtresi ve Rao-Blackwell 

parçacık filtresi türetilmiş ve gerçeklenmiştir. Sonuçlarda her ne kadar özel bazı 

parametre seçimleri için parçacık filtresi performanslarında bazı iyileşmeler görülse 
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de burada kullanılan iyileştirme mekanizmalarının, parçacık filtrelerini GKF’den iyi 

yapmak için yeterli etkiye sahip olmadığı görülmüştür. 

Son olarak sadece Doppler ölçümleriyle hedef izleme için eniyi sensör yerleştirme 

problemi düşünülmüştür. Burada bir boyutta bir yol/doğru parçası üzerinde hareket 

eden bir hedef düşünülmüş, sensör yerleştirme eniyileştirme kriteri olarak da 

yol/doğru parçası üzerindeki toplam pozisyon Cramer-Rao alt sınırı seçilmiştir. 

Sayısal eniyileme yöntemleri kullanılarak elde edilen sonuçlar, sensör pozisyonları 

için açık formülleri olan basit eniyi-altı bir sensör yerleştirme stratejisi önermek için 

kullanılmıştır. Önerilen stratejinin eniyi sonuca çok yakın maliyetler elde ettiği 

gösterilmiştir.  

 

Anahtar Kelimeler: Doppler, hedef izleme, iz başlatma, parçacık filtresi, GKF, sensör 

yerleştirme 
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CHAPTER 1 

 

INTRODUCTION 

 

 

During the 19th century and at the beginning of the 20th century, researchers 

observed the spectrum of lights coming from the stars, galaxies and nebulas and it 

was observed that the color of these lights shifts to red. This observation was named 

as red shift. With the help of these observations, it was found that this shift was 

caused by the movement of the stars and it was the Doppler effect. The Doppler 

effect can be described briefly as: When an object transmits or reflects waves, which 

can be sound or electromagnetic waves/lights, the wave frequency is observed at a 

higher frequency than the transmission frequency if the object moves towards the 

observer, and at a lower frequency if the object moves away from the observer. The 

color of the stars shifts to red which is a lower frequency component of the spectrum. 

This was evidence that stars are moving away from earth, so it was considered as 

evidence for the expanding universe and the Big Bang theory. From this point of 

view, Doppler shift played an important role in understanding the universe.   

Doppler shift was again investigated in space research during the cold war. Doppler 

shift in radio waves from satellites were utilized to track satellites, [1]. This research 

was continued with acoustic band ocean applications, radar applications, and target 

tracking in passive sensor networks. These studies, especially in the tracking 

applications, are focused on two main areas, namely the estimator design and the 

optimum sensor placement. The estimator design which is also called as tracker in 

tracking applications, includes the initialization problem for the tracker. Literature 
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surveys for these two areas of study are given in Section 1.1. The aim of this thesis 

and the thesis outline are given in Section 1.2.                    

1.1. Literature Survey about Doppler Only Tracking 

1.1.1. Literature Survey about Track Initiation & Tracking with 

Doppler-Only Measurements   

An application example of Doppler-only tracking in space research was introduced in 

1970, by Salinger and Brandstatter [2], where the Doppler frequency shift of the 

signal transmitted by or reflected from a space vehicle was measured by multiple 

receivers on the earth to track the space vehicle trajectory. In [2], the dot product 

expression of the Doppler frequency shift was used. The dot product expression is 

linear with respect to the velocity, but it is nonlinear with respect to the position. Due 

to this, sequential estimation of the velocity and the position was proposed. This 

estimation procedure needs an initial guess of the position. Based on this sequential 

estimation procedure, two different approaches were proposed to estimate the 

trajectory. One of them is the global estimation with polynomials. In this method, the 

velocity vector is expressed as a linear combination of a set of orthonormal 

polynomials. For this purpose shifted Chebyshev polynomials were used. When the 

dynamics of the target is unknown, i.e., when the velocity cannot be expressed as a 

linear combination of polynomials, the second approach was proposed based on a 

Kalman Filter application.             

Schultheiss and Weinstein gave the derivation of Fisher Information Matrix and the 

variance bound for velocity and position estimation with coherent Doppler 

measurements as well as separate frequency measurements in [3]. For simplicity only 

the velocity is taken as an unknown. Here, three different signal models, namely, 

Gaussian shaped spectrum noise, narrowband noise and pure sinusoidal signals are 

investigated. Also two different measurement schemes, coherent and separate 

frequency measurements, are considered. In the coherent measurement scheme, 

measurements are Fourier transforms of the received signals. Measurements such as 

amplitude, phase and frequency components are also used in the estimation. The 
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separate frequency method measures only the frequency at each sensor and the 

differences between them are used as measurements.     

Webster introduced an exact trajectory solution from Doppler shift measurements in 

[4]. Single sensor and single target model are used in this solution. The sensor makes 

three consecutive Doppler shift measurements and calculates the ratio of these 

measurements. The complete derivation for constant target velocity in 2-D is given in 

[4]. Measurement noise was not taken into consideration in this solution. 

Chan and Towers proposed a localization and tracking algorithm with Doppler 

shifted frequency measurements in [5]. They addressed the need of five sensors or 

five measurements to estimate the target state. The state in their algorithm consists of 

position and velocity in two dimensions and the transmitted frequency. Since the 

measurement function of Doppler is nonlinear in terms of these states, estimation can 

only be made either iteratively or with grid-search. Here, Chan and Towers proposed 

an algorithm which needs only a three dimensional search instead of five, which 

would be required for brute force grid search.  

Chan and Towers proposed another estimation scheme for localization with Doppler 

shifted frequency measurements in [6]. In the method, Doppler measurement 

function is expressed as a linear transformation of the target velocity and the 

transmitter frequency using a matrix-valued nonlinear function of the target position 

with respect to sensor position. The proposed algorithm uses grid-search over target 

position. At each possible target position, target velocity is estimated linearly. The 

position which produces minimum cost is chosen. This algorithm for localization 

was used directly or indirectly in many Doppler-only measurement based tracking 

and localization applications such as the MIMO radar example given in [7].          

Chan and Towers also proposed a sequential version of their algorithm given in [6] 

for localization with passive Doppler-only measurements in [8] especially for 

underwater applications. Here, for sequential localization, each sensor is used 

independently to estimate intermediate parameters such as the magnitude of target 

velocity, range, the time for the closest point of the target. A grid-search algorithm 

for nonlinear least square estimation given in [5] is used to estimate the intermediate 
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parameters. Levenberg-Marquard nonlinear optimization algorithm is used to 

estimate the target position and velocity from the intermediate parameters.  

Chan proposed another initialization algorithm in [9]. The proposed algorithm uses 

the frequency derivative together with frequency measurements in the same way as 

in [5]. By using the derivative of frequency and the intermediate parameters, the grid 

search dimension can be reduced to one. At least three measurements in time are 

needed to initialize the algorithm. Grid search is done for the unknown transmitter 

frequency to estimate the target range with the help of Doppler shift and derivative 

measurement. The target position and velocity are estimated from the target range by 

using Levenberg-Marquard nonlinear optimization algorithm.  

In [10], Fucheng et al. presents a variant of Extended Kalman Filter (EKF) which can 

be used in nonlinear estimation applications such as passive localization based on 

time of arrival, direction of arrival, and Doppler frequency shift. The difference of 

EKF from a KF is that it uses the Jacobian matrix of nonlinear functions instead of 

linear state transfer functions or measurement matrix in the Kalman gain and state 

covariance matrix calculations. The proposed modification in [10] over EKF is that 

after the normal EKF routine, the Jacobian matrix was recalculated with the 

improved state estimate and the measurement update process was repeated with this 

new Jacobian matrix. An improvement of this algorithm over EKF was given with an 

example of Doppler-only tracking.     

Kusy et al. proposed an initiator algorithm and a tracking filter for Doppler based 

tracking in [11]. Doppler measurement model is used in the case of one transmitter 

and multiple receivers. Gaussian Newton algorithm was used to find the optimum 

solution for the initial state. Because of the possibility that the solution can be a local 

optimum, the author stated that more refinement is needed for the initiator. EKF was 

preferred to be used with this proposed track initiation algorithm. Since it is known 

that EKF has poor performance while the target is maneuvering, a maneuver 

detection algorithm and a correction method for the target state during the maneuver 

(with the proposed initiation algorithm) were proposed.  
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Ristic and Farina gave an application of Particle Filter (PF) for Doppler-Only 

tracking in [12]. They gave mathematical derivations of Cramer-Rao Lower Bound 

(CRLB) for Doppler-only tracking to evaluate the PF performance with respect to the 

lower bound of the estimation error. It was stated that the proposed particle filter has 

poor performance over the lower bound at the early stages of the tracking but it can 

achieve the lower bound after an initial delay. Here, the proposed filter was called as 

progressive correction particle filter (PC-PF) and it was developed to overcome the 

sample impoverishment problem that is quite common in PF implementations. In 

order to perform this, the weight distributions of the particles were modified 

progressively by a fraction of the measurement likelihood function. Even if the initial 

state uncertainty was high, the tracker overcomes the sample impoverishment and it 

converges to the true target position. It was also stated that the initialization of the 

filter is still an open issue for further research. 

A dual filter approach for Doppler-only tracking was proposed by Battistelli et al. in 

[13]. In this article, observability analysis of Doppler measurement was also made 

and it was stated that the range, the speed and the absolute value of the relative 

heading (angle between range vector and velocity vector of target) are observable, 

but the azimuth angle of the range vector in 2-D case is unobservable. The first phase 

of the proposed dual stage filter is the recursive estimation of the observable state 

with an Unscented Kalman Filter (UKF). This filter works at each sensor 

individually. At the sensor network center, the second stage of the dual filter is run 

such that another UKF is used to estimate the overall state in the Cartesian 

coordinates by using the estimates of the observable states from each sensor. For the 

initialization of the filters, a multiple hypothesis approach was proposed. 

Ristic and Farina implemented Bernoulli PF for Doppler-only tracking in multi-static 

case in [14]. In this article, the aim was to detect and track the target jointly by using 

the Doppler frequency shifts which are measured by multiple receivers which 

accompany a fixed single transmitter. It was stated that when false alarms exist and 

the detection probability of the target is less than one, optimal Bayes Filter for the 

detection and tracking of a target is the Bernoulli filter [15]. Bernoulli PF propagates 

the target state distribution and probability of existence of the target through the 
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prediction and estimation updates. Due to the nonlinear transformations of the 

random variables in prediction and estimation stages, the exact distributions cannot 

be calculated and therefore a PF was used to approximate the distributions. Ristic 

and Farina also proposed a method for the selection of active receivers in [16] to 

improve the information gathered from the sensors and to discard measurements 

from the sensors which are aligned with the target and the transmitter in the bi-static 

case. It was stated that receiver selection improves the track’s settling durations and 

steady-state error performance.  

Xiao et al. gave an analysis of observability and performance for bi/multi-static 

Doppler-only Radar in [17]. In this article, this analysis was made for a multi 

transmitter and one receiver case for simplicity. It was stated that this scenario can be 

extended to a multi transmitter and multi receiver case as well. For the single 

receiver case, observability analysis was made with the help of the Jacobian matrix 

of the Doppler measurements. In this approach, observability is checked by the rank 

of Fisher Information Matrix (FIM). For complete observability, FIM should be full 

rank. For performance analysis, the lower bounds for the position and velocity 

estimation were also derived. It was stated that CRLB became lower with less 

measurement error variance, high number of transmitters, long integration time and 

short transmitter wavelength. Simulation results were given by placing the 

transmitter and receivers at the vertices of a polygon. Besides the CRLB, GDOP 

(geometric dilution of precision) analysis and results were given.  GDOP is 

proportional to the square-root of the sum of the lower bounds for each axis. This 

analysis showed that when the target location is closer to the sensors, the estimates 

can have lower error variance. 

Liang et al. showed the usage of Bernoulli PF in the case of multi-target tracking 

with multi-static Doppler-Only measurements in [18]. The single target case for 

Bernoulli Filter implementation was discussed earlier in [14]. In this article, four 

different data fusion schemes are considered to merge information gathered from 

multiple receivers. The first one was the measurement fusion which uses all 

measurements in a one track-filter. The second one is the parallel update scheme 

which uses an N-track-filter with N measurements and merges the estimated states. 
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The third was a sequential update scheme which uses the estimates of one filter as an 

input to the next filter. The final fusion scheme was random update which chooses 

one random measurement to estimate the state. Because of the data association 

requirements in a cluttered environment, measurement fusion was not preferred. 

Simulation results with multi-Bernoulli filter for the remaining three fusion schemes 

were given and it was stated that the parallel update was the worst. For performance 

criteria, optimal sub-pattern assignment (OSPA) was used. Sequential and random 

update schemes have nearly the same performance for single target and multiple 

target cases. Because of the fact that instantaneous peaks in OSPA occurred in the 

random update scheme, sequential update was proposed for tracking multiple targets 

with multi-static Doppler-only measurements. In addition to the Bernoulli filter 

implementation, some comments are made for sensor placement in the multi-static 

case. It was stated that the maximization of the determinant of CRLB can be used for 

optimal sensor placement. 

Lindgren et al. presented a method based on parametrized motion models for the 

localization of an acoustic source in a network of Doppler shift sensors in [19]. Two 

different motion models, namely linear and circular, and associated Doppler shift 

measurement functions were introduced. In these measurement functions the 

retardation effect in acoustic propagation was taken into consideration. For these 

motion models, a nonlinear least square estimator based on Gaussian Newton 

variable projection technique was described and an algorithm for obtaining an initial 

estimate was proposed. Successful experimental results were presented for the 

estimator and the motion models.                

Guldogan et al. introduced the GM-PHD (Gaussian mixture-probability hypothesis 

density) filter usage for multi-target tracking with multi-static Doppler-Only 

measurements in [20]. The approach in [20], i.e., the PHD filter, is a practical 

Bayesian tracking algorithm which avoids the computationally costly data 

association process.  Experimental results of the application of this filter for Doppler-

only measurements in the acoustic band were given in [20] and it was stated that 

GM-PHD is successful to detect and track targets using multi-static Doppler-only 

measurements. In addition to this study, the sequential Monte Carlo implementation 
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of the PHD (SMC-PHD) for multi target tracking using Doppler-only measurements 

is proposed together with GM-PHD in [21]. Here, two implementations of the PHD 

filter were compared and it was stated that both PHD filter implementations are 

successful to track multiple targets but GM-PHD is more effective, efficient and easy 

to implement than the SMC-PHD filter.     

1.1.2. Literature Survey about Sensor Placement 

In addition to tracker design, sensor placement also plays an important role in the 

tracking performance. Optimum sensor placement for different kinds of sensors was 

studied by many researchers. Especially for range and bearing sensors, there are 

quite many research results to refer to, but there have been only a limited number of 

studies conducted on the optimum sensor placement problem for Doppler-only 

sensors. Moreover, many studies consider only localization, i.e., finding the position 

of the target only for a single time instant. As a result these studies all assume that 

the target or the object is static at all times or for a short frame of time. Nevertheless, 

the optimality criteria used for bearing and range measurements can give us an 

insight for the case of Doppler-only target tracking problem.  

Moreno et al. gave the optimal sensor placement results for bearings-only 

measurements in 3-D scenarios in [22]. They showed the optimality criteria which 

can be used for any sensor placement problem. It was stated that there are three main 

criteria to be used in optimal sensor placement which are A-optimality, D-optimality 

and E-optimality. A-optimality aims to minimize the average variance of the estimate 

by minimizing the trace of the CRLB (Cramer-Rao Lower Bound) matrix which can 

be calculated by taking the inverse of the FIM (Fisher Information Matrix). D-

optimality is achieved by maximizing the determinant of FIM and results in the 

minimum volume uncertainty ellipsoid for the estimate. Finally, E-optimality 

minimizes the length of the largest axis of the uncertainty ellipsoid for the estimate 

by minimizing the largest eigenvalue of the CRLB matrix. These criteria have some 

pros and cons with respect to each other. For range and bearing sensors, optimality 

comparisons are also made in [23]. Both Sim et al. [23] and Moreno et al. [21] chose 

A-optimality as the performance criterion. 
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In Abel’s study [24], the problem of optimal sensor placement for passive source 

localization was investigated and a closed-form solution was found. The same 

solution as Carter’s study [25] was reached for the optimum sensor placement on a 

line segment. The proposed solution was placing half of the sensors at one tip of the 

line segment and the other half at the other tip of the line segment. The theorem used 

to reach these results assumes that the received signal at the sensors is the time-

delayed and amplitude changed version of the transmitted signal from one source. 

Two dimensional solution for the optimum sensor placement was studied in [26] by 

Zhang. An optimality criterion was built on the error covariance matrix of the 

individual sensors. The cost function is chosen as the determinant of the combined 

error covariance matrix which is proportional to the harmonic mean (i.e., the inverse 

of the summation of the inverses) of the individual sensor error covariance matrices. 

With this cost function, the optimality is achieved by changing the orientation of the 

sensors with respect to the expected target location. This method is only valid under 

the condition that the covariance matrix is determined only by the orientation of the 

sensor with respect to the target such as in the case of range and bearing sensors. 

With this assumption, it was stated that the proposed sensor placement procedure 

yields minimum area of the uncertainty around the target for the 2-D case.           

Levanon investigates the case when the sensors are at the corners of a polygon and 

the target is at the center while using the lowest possible GDOP as the cost function 

for range measurements, [27]. GDOP is unitless and as mentioned earlier in the 

previous subsection, it is calculated as the square root of the summation of the 

diagonal elements of the CRLB matrix, and it is normalized with the measurement 

variance. From this point of view, it is a normalized and square rooted version of A-

optimality criterion used in [1]. It was stated that the normalized version of the 

GDOP can be used for bearing-only measurements. For bearing-only measurements, 

target position for the lowest GDOP is the center as in the case of range 

measurements when the number of sensors equals to three and when the sensors are 

located at the corners of the polygon. In the case that the number of the sensors is 

greater than three, minimum GDOP is not reached at the center but somewhere 
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inside the polygon. It was also stated that the lowest GDOP for bearing-only 

measurements is lower than that would be obtained for the range measurements.              

Martinez et al. studied optimal sensor placement and motion coordination for target 

tracking in [28]. In this study it was aimed to find optimal sensor placement for range 

sensors for dynamic target conditions. They restricted the placement such that all 

sensors are located on the concave bound of a region inside of which the target can 

move. As the cost criteria, maximum determinant of FIM, i.e., D-optimality was 

used. For a circle region, the proposed optimum sensor placement is equally spaced 

placement on the circle boundary. It was also stated that using the D-optimality can 

result in some sensors being placed at the same point for diagonal sensor error 

covariance matrices, (i.e., when the sensor measurement noises are independent).    

Another study for bearing-only measurements and time-of arrival based optimum 

sensor placement was presented in [29] and [30] respectively. In these papers, sensor 

measurement variances are assumed to be equal and noises are independent. Also the 

target is static, i.e., they have a localization problem. D-optimality was used as the 

performance criterion.  

Soysal et al. presented the information analysis in passive radar networks for target 

tracking in [31]. A-optimality was used as performance criteria. Measurements 

include not only range but also range dot, namely Doppler measurement. Total range 

and Doppler uncertainty were given for passive sensors which have one transmitter 

located at the center of the circle and multiple receivers on that circle. This scheme 

was repeated for the case where the transmitter is located outside of the circle. In 

addition to uncertainty levels, normalized coverage area was also calculated. 

Normalized coverage area determines the coverage performance for circle 

placement. Simulation results were presented dependent on the number of the 

sensors and the circle radii. 

Nguyen and Doğançay gave the optimum placement for moving sensors used for the 

localization of a static target [32]. Moving sensors was located on a circle at the 

center of which the target is located. Doppler frequency shift of the target echoes are 

measured by the sensors. D-optimality was used as the cost criterion. Determinant of 
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the FIM was written as a function of the angular speed, measurement noise variance 

values and the angle between velocity vector of the sensors and the distance vector 

between the sensors and the target. When the maximum angular speed of the sensors 

is used in the determinant equation, sensor angles are left as parameters to be 

searched for maximum determinant. Grid search algorithm was proposed for this 

search. Localization with consecutive measurements was simulated with active 

radars on UAVs (Unmanned Air Vehicles). From the results of the simulations, it 

was stated that, with the proposed optimality criterion, the movements of the UAVs 

are obtained in such a way that tangential velocities of the sensors are maximized. 

1.2. Thesis Outline 

As seen in the literature survey above, track initiation algorithm for a tracking filter, 

the tracking filter design and sensor placement issues are very important and open 

research areas for Doppler-only sensors.  

The initiation of a tracking filter for Doppler-only tracking plays a great role for 

successful tracking. Although some initiation algorithms are given in the literature, 

they mostly suffer from the latency in the initialization. A single-point initialization 

procedure which produces an initial estimate with a single measurement from several 

sensors is a strong candidate to lower the latency as much as possible. Such a single-

point method for Doppler-only measurements was given for a single transmitter and 

multiple receivers in [6] by using separable least squares estimation with a grid-

search algorithm. In the first part of this thesis, this track initiation method is going to 

be adopted for multiple transmitter-receiver pairs and a performance analysis with 

respect to grid spacing is given.  

Secondly, tracking filter design is still an open research area for the multi-sensor 

Doppler-only tracking. Since the Doppler-only measurements have a nonlinear 

relationship with the position in the Cartesian coordinates, the well-defined optimum 

tracking filters used for linear systems, i.e., Kalman Filter, cannot be used in 

tracking. For this nonlinear case, the nonlinear variants of the Kalman Filter such as 

EKF and UKF or sequential Monte Carlo methods such as Particle Filter can be good 
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candidates for tracking. In the second part of this thesis, first, EKF and the standard 

bootstrap particle filter will be compared for Doppler-only tracking. Surprisingly, it 

will be shown that the particle filter obtains much worse results than EKF. The 

reasons for this are going to be discussed. In order to see if the particle filter 

performance can be improved using standard sequential Monte Carlo tools, two other 

particle filters are going to be derived and implemented for Doppler-only tracking. 

These particle filters will be Sequential Importance Resampling (SIR) particle filter 

with optimal proposal distribution and a Rao-Blackwellized particle filter. In the SIR 

particle filter, the optimal proposal distribution will be obtained by using an EKF 

update. In the Rao-Blackwellized Particle Filter the nonlinear position states are 

going to be estimated using a particle filter whereas linear velocity states will be 

estimated with Kalman filters. The performances of the filters are going to be 

compared with the bootstrap particle filter and EKF on an example using different 

measurement noise variances.  

Finally, although the optimum sensor placement problem is studied in detail for 

range and bearing measurements, optimum sensor placement for the Doppler-only 

case, especially for the tracking applications, is still an open area of research. It is 

known that sensor placement is a critical design parameter for any multi-sensor 

tracking application. To gain insight for 2-D and 3-D sensor placement cases, in the 

third part of this thesis, an optimum solution for sensor placement for tracking a 

target with a 1-D constant velocity motion is studied in detail. The solution for the 

optimum sensor placement for this 1-D case is obtained and its relations with the 

target and measurement parameters are studied.   

The organization of the thesis is given as follows. A track initiation algorithm and its 

implementation details are given in Chapter 2. To evaluate the performance of the 

initiation algorithm, its implementation with an EKF is discussed. The successful 

results with EKF and comments on the required grid spacing for the grid-search are 

also given at the end of Chapter 2. In Chapter 3, alternative particle filters to 

bootstrap particle filter are derived and implemented. The results are compared with 

the bootstrap particle filter and EKF. A sensor placement problem for Doppler-only 

tracking is investigated and an optimum solution is obtained for 1-D case in Chapter 
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4. The parameters of the optimum solution are related to the problem parameters and 

closed form formulae are found for the sensor positions. Finally, in Chapter 5, 

overall comments, remarks and conclusions are given. 
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CHAPTER 2 

 

A SINGLE-POINT TRACK INITIATION ALGORITHM FOR 

DOPPLER-ONLY TRACKING 

 

 

In this chapter, a single-point track initiation algorithm to be used with a Doppler-

only tracking filter will be discussed. As seen in the literature survey in Chapter 1, 

different localization algorithms were proposed for Doppler-only measurements, [5, 

6, 8, 9]. Besides these localization algorithms which can be used as track initiators 

for a tracking filter, some initiation algorithms also exist in the literature, [11, 13]. 

The main disadvantage of these algorithms is that they are rather slow to calculate 

the initial estimate. A single-point initialization algorithm, which produces initial 

estimates using only a single measurement from several sensors, is a strong candidate 

for fast track initialization. In this thesis study, such a track initiation algorithm was 

designed at the beginning of the thesis study. However after more literature survey, it 

was seen that such an initiation algorithm had already been proposed in the literature. 

This single point initiation method for Doppler-only measurements was given for a 

single transmitter and multiple receivers in [6] and it uses separable least squares 

estimation with a grid-search algorithm. In this chapter, this method is adopted for 

multiple transmitter-receiver pairs and a performance analysis is made with respect 

to the grid spacing parameter used in the grid-search. For the grid-search, grid 

spacing is the main parameter which defines the performance and the computational 

cost. In this chapter, the effects of the grid spacing over the performance and the 
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possible ways to choose it are also discussed in addition to the derivation and the 

implementation of the method. 

The organization of the chapter is given as follows. First, the measurement and the 

target models are given in Section 2.1. In Section 2.2 the details of the initiation 

algorithm, which estimates the initial target state using separable least square 

estimation with a grid-search, are given. The performance of the single-point track 

initiation algorithm is shown using an EKF. In order to construct a baseline for the 

performance of the EKF, CRLB values are also shown. The equations for the EKF 

and the CRLB are given in Section 2.3. Finally, simulation results for the track 

initiation algorithm and EKF for a multi-sensor Doppler-only tracking scenario are 

illustrated along with CRLB values in Section 2.4. In Section 2.4, RMS error values 

for the track initiation algorithm with respect to the grid spacing parameter are also 

given along with some comments on the selection of the grid spacing parameter.  

2.1. Target Motion and Measurement Model    

Transmitted or reflected wave from moving objects encounter a frequency shift at the 

observer side and this is called as Doppler shift. At the observer side wave frequency 

is higher if the object moves towards the observer, lower if the object moves away 

from the observer. Doppler sensors basically measure the received signal frequency 

at the observer side. Received signal can be reflected or transmitted from the target. 

In the case of reflection there are two cases which are named as passive and active 

measurements. In the passive case, source of the reflected signal is actually used for 

another purpose and it is also located at a different place than receivers. On the other 

hand, in the active case, the transmission source is intentionally used with these 

receivers. The transmitter waveform is unknown in most scenarios for the passive 

case. In the active case, the transmitted signal frequency is known by the receiver 

side and the difference between the transmitted and the received signal frequency can 

be measured at the receiver side. For the passive case, transmitter frequency is 

unknown and only the differences of the measured frequencies between different 

Doppler sensors are used, and this is called as a differential Doppler measurement. 



17 

 

Doppler sensors can also be categorized into two like other sensor types with respect 

to receiver and transmitter locations such as bi-static and monostatic. In the case that 

the transmitter and receiver are located at different places, the Doppler measurements 

are said to be bi-static measurements. Otherwise they are called monostatic 

measurements. Monostatic and bi-static measurements are illustrated in Figure 1 and 

Figure 2 respectively. For the passive bi-static case, the signal source can be TV or 

FM radio transmission in an urban area. In the active bi-static case, the source is 

usually a dedicated transmitter. Multiple receivers and/or transmitters can be used for 

measurements. In this case, the measurements are called to be multi-static 

measurements. In the multi-static case, if one transmitter is used as shown in Figure 

3, all interactions of the receivers with this transmitter can be utilized. Moreover, if 

multiple transmitters are used, dedicated transmitter-receiver (mostly located at the 

same place) interactions can result in measurements as seen in Figure 4. On the other 

hand, in some applications measurements can be derived from the interaction of each 

receiver with all transmitters as seen in Figure 5.  

 

Figure 1 Monostatic measurement. 
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Figure 2 Bi-static measurements. 

 

 

Figure 3 Multi-Static measurements with one transmitter. 

 

 

Figure 4 Multi-Static measurements with independent multiple transmitters. 

 



19 

 

 

Figure 5 Multi-Static measurements with multiple Tx-Rx pairs. 

 

For Doppler sensors, the waveform choices can be different for different 

applications. Some possibilities are a single tone pulse, phase or frequency 

modulated pulse, frequency modulated continuous wave, phase modulated 

continuous wave or random bandlimited noise signals. Receiver processors and the 

accuracy of the Doppler measurements will be different for different signal 

(waveform) types and these signal-level issues are out of the scope for this thesis 

study. In the current work, when we consider a Doppler sensor, it is assumed to 

measure Doppler shift with a known measurement noise variance. 

The received signal frequency models for monostatic and bi-static cases are given in 

(2.1-2) and (2.1-6) respectively and the measurement geometries are shown in Figure 

6 and Figure 7. Here,  

 𝑓𝑡𝑥 represents transmitter frequency,  

 𝑓𝑟𝑥 represents received frequency,  

 𝑓𝑑 represents Doppler shift frequency,  

 𝜆 represents wavelength,  

 𝑣𝑡𝑥−𝑡, 𝑣𝑡−𝑡𝑥,  𝑣𝑟𝑥−𝑡 and 𝑣𝑡−𝑟𝑥 represent the radial velocity of the 

target/transmitter/receiver with respect to transmitter/receiver/target position,  

 |𝑣⃗𝑡𝑥| , |𝑣⃗𝑟𝑥| and  |𝑣⃗𝑡| represent transmitter, receiver and target speeds 

(magnitude of velocity vector),   
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 𝛼1,  𝛼2, 𝛼3 and 𝛼4 represent the angle between the velocity vector and the 

range vector for receiver-target pair and transmitter-target pairs respectively.  

 𝑐 represents the wave speed and it is equal to the speed of light in 

electromagnetic wave applications, and the speed of sound in acoustic 

applications. 

𝑓𝑟𝑥 = 𝑓𝑡𝑥 + 𝑓𝑑 2.1-1 

𝑓𝑑 =
2(𝑣𝑡𝑥−𝑡 + 𝑣𝑡−𝑡𝑥)

𝜆
 2.1-2 

where 

𝑣𝑡𝑥−𝑡 = |𝑣⃗⃗⃗𝑡𝑥| 𝑐𝑜𝑠 𝛼1 2.1-3 

𝑣𝑡−𝑡𝑥 = |𝑣⃗⃗⃗𝑡| 𝑐𝑜𝑠  𝛼2 2.1-4 

𝜆 =
𝑐

𝑓𝑡𝑥
 2.1-5 

 

 

Figure 6 Monostatic measurement parameters 
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𝑓𝑑 =
(𝑣

𝑡𝑥−𝑡
+ 𝑣𝑡−𝑡𝑥) + (𝑣

𝑟𝑥−𝑡
+ 𝑣𝑡−𝑟𝑥) 

𝜆
 2.1-6 

where 

𝑣𝑡𝑥−𝑡   = |𝑣⃗⃗⃗𝑡𝑥| 𝑐𝑜𝑠 𝛼1 2.1-7 

𝑣𝑡−𝑡𝑥 = |𝑣⃗⃗⃗𝑡| 𝑐𝑜𝑠 𝛼2 2.1-8 

𝑣𝑟𝑥−𝑡   = |𝑣⃗⃗⃗𝑟𝑥| 𝑐𝑜𝑠 𝛼3 2.1-9 

𝑣𝑡−𝑟𝑥 = |𝑣⃗⃗⃗𝑡| 𝑐𝑜𝑠 𝛼4 2.1-10 

 

 

Figure 7 Bi-static measurement parameters 

 

Without loss of generality, from this point on, active monostatic case will be 

considered. As seen in (2.1-2) and (2.1-6), the bi-static case formulation can be 

derived easily from the monostatic case.  

In (2.1-2), the radial velocity is used to calculate the Doppler shift. The radial 

velocity can be expressed in terms of the inner product of the velocities of the 

transmitter and the target and the range vector between the target and the sensors in 

the monostatic case. When we define the radial velocity as such an inner product, 

this means that the Doppler shift is the projection of the target velocity vector onto 

range vector between the target and the sensor. Hence, (2.1-2) can be rewritten as in 
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(2.1-11). Here,  𝑟tx−t and 𝑟t−txrepresent the range vectors from the transmitter to the 

target and from the target to the transmitter respectively. The terms vt⃗⃗⃗⃗  and vtx⃗⃗⃗⃗⃗⃗  

represent velocity vector of the transmitter and the target respectively. 𝑝𝑡 and 

𝑝𝑡𝑥 represent the target and transmitter position vectors respectively. ‖𝑎⃗‖ denotes the 

magnitude of the vector of 𝑎⃗. 

𝑓𝑑 =
2

𝜆

𝑟⃗⃗tx−t.𝑣⃗⃗⃗𝑡𝑥 +𝑟⃗⃗t−tx.𝑣⃗⃗⃗𝑡

‖𝑟𝑡𝑥−𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗‖
 2.1-11 

where 

𝑟⃗⃗tx−t= 𝑝𝑡 − 𝑝𝑡𝑥     , 2.1-12 

𝑟t−tx = 𝑝
𝑡𝑥

− 𝑝
𝑡
. 2.1-13 

For simplicity, the transmitter is assumed to be stationary, so 𝑣⃗𝑡𝑥 is zero and (2.1-11) 

turns into (2.1-14).  

𝑓𝑑 =
2

𝜆

𝑟⃗⃗t−tx.𝑣⃗⃗⃗𝑡

‖𝑟⃗⃗t−tx‖
. 2.1-14 

For obtaining a more concise representation, the column vectors 𝑟t−tx and 𝑣⃗𝑡 are 

expanded in (2.1-15). Here, 𝑝𝑠 and 𝑝𝑡 are column vectors representing the position of 

the target and the sensor. 𝑣 is the column vector representing the target velocity. 

𝑓𝑑 =
2

𝜆

[𝑝𝑠 − 𝑝𝑡]
𝑇
[𝑣]

‖[𝑝𝑠 − 𝑝𝑡]‖
  2.1-15 

where 

 𝑝𝑠 = [𝑥𝑠 𝑦𝑠]
𝑇
, 2.1-16 

  𝑝𝑡 = [𝑥𝑡   𝑦𝑡]
𝑇 2.1-17 

    𝑣 = [𝑣𝑥 𝑣𝑦]𝑇. 2.1-18 

For the 𝑁 sensor case, the Doppler measurement vector can be written as in (2.1-19). 
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𝐹 =
2

𝜆

[
 
 
 
 
 
 
 [𝑝𝑠1 − 𝑝𝑡]

𝑇

‖[𝑝𝑠1 − 𝑝𝑡]‖.
.
.

[𝑝𝑠𝑁 − 𝑝𝑡]
𝑇

‖[𝑝𝑠𝑁 − 𝑝𝑡]‖]
 
 
 
 
 
 
 

 [𝑣] 

 

2.1-19 

As seen in (2.1-19), the first matrix in the multiplication is a function of only the 

target position and not the target velocity. From this point of view, the noisy Doppler 

measurement model for 𝑁 active sensors can be formulated as in (2.1-20).  

𝑦 =
2

𝜆
𝐻(𝑝𝑡)[𝑣] + 𝑒 2.1-20 

where 

𝐻(𝑝𝑡) = 

[
 
 
 
 
 
 
 [𝑝𝑠1 − 𝑝𝑡]

𝑇

‖[𝑝𝑠1 − 𝑝𝑡]‖.
.
.

[𝑝𝑠1 − 𝑝𝑡]
𝑇

‖[𝑝𝑠𝑁 − 𝑝𝑡]‖]
 
 
 
 
 
 
 

 2.1-21 

Here, 𝑒 represents the measurement noise which is a white Gaussian random vector. 

Since the position of the sensors are known, 𝐻(𝑝𝑡, 𝑝𝑠1, . . 𝑝𝑠𝑁) is rewritten as 𝐻(𝑝𝑡).   

Although we derived the measurement model only for the case of 𝑁-active sensors, 

multi-static case for multiple transmitters and multiple receivers can be 

straightforwardly derived as a linear transformation of the target velocity vector with 

the matrix nonlinear function of the target, receiver, and the transmitter positions as 

in (2.1-20). 

Until now, only the measurement model was given. Now the target model used in the 

tracking filter is given in (2.1-23). For the target motion, linear Gaussian nearly 

constant velocity model is used. Here 𝑋𝑘 is the target state where 𝑥𝑘, 𝑦𝑘 and 

 𝑣𝑥,𝑘, 𝑣𝑦,𝑘 are x-y positions and x-y velocities of the target respectively, 𝐴𝑘 is state 

transition matrix, 𝐵𝑘 is the noise gain matrix, and  𝑤𝑘~𝑁(𝑤; 0; 𝜎𝑝𝑟𝑜𝑐
2 𝐼) is the zero 
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mean white Gaussian process noise. 𝜎𝑝𝑟𝑜𝑐
2  is the process noise variance and 𝑄𝑘 is the 

process noise covariance matrix. ∆𝑇 is the sampling interval for the measurement 

process and the target motion.  

𝑋𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑣𝑥,𝑘, 𝑣𝑦,𝑘]
𝑇
 2.1-22 

            = 𝐴𝑘−1𝑋𝑘−1 + 𝐵𝑘−1𝑤𝑘−1 2.1-23 

where 

  𝐴𝑘 = [

1 0
0 1

∆𝑇 0
0 ∆𝑇

0 0
0 0

1  0
0  1

] , 2.1-24 

      𝐵𝑘 = [

0.5∆𝑇2 0
0 0.5∆𝑇2

∆𝑇        0
0       ∆𝑇

] , 2.1-25 

𝑤𝑘~𝑁(𝑤𝑘; 0; 𝜎𝑝𝑟𝑜𝑐
2 𝐼). 2.1-26 

2.2. Single-Point Track Initiation Algorithm 

In tracking applications, an initial state should be given to a tracking filter a priori. 

For instance, in most radar applications, a target acquisition radar or the tracking 

radar itself collects coarse target state information and this knowledge is given to the 

tracking radar to initialize target tracks. Although this initial state of the target does 

not have high accuracy, the designed filter loop eliminates the initial errors in a 

recursive manner during tracking and reaches a steady-state. If the initial state error 

is too large, especially for nonlinear measurements, the tracking filters either reach 

steady-state very slowly or they diverge. Therefore the initial target state 

determination plays a great role to start tracks properly and also to lower the tracking 

errors and settling time.    

Initial state determination problem can be defined as an estimation problem for the 

position and the velocity of the target in Cartesian coordinates with the measurement 

model given in (2.1-20). As seen in (2.1-20), measurement function is nonlinear with 

respect to the target kinematic variables and this prevents the usage of well-

established linear estimators. As seen in (2.1-21), Doppler measurement is linearly 
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dependent on the target velocity given the position variables.  Unfortunately there is 

a nonlinear relationship with respect to the range vector between the target and the 

sensors which is caused by the division with the magnitude of the range vector. 

When commonly used least square approach is preferred, this problem can be 

classified as the separable least square estimation problem, [33]. Separable least 

square estimation attempts to minimize the error between the measurements and the 

estimated measurements with respect to linearly dependent parameters analytically 

while the nonlinearly dependent parameters are optimized numerically. In our case, 

the linearly dependent parameter is the velocity of the target and nonlinearly 

dependent parameter is the position of target.  

Various researches based on separable least square estimation exist in the literature 

[1,5,6,8,9,11]. In [6], the problem is passive localization of a moving transmitter with 

several receivers. The transmitter frequency is assumed to be unknown at the 

receiver side. Since the measurements are linearly dependent on the transmitter 

frequency, the transmitter frequency is also included in the linearly dependent state 

like the velocity values. In this subsection, the separable least square estimation with 

grid-search method which is used in [6] is adapted to multi-static multiple 

transmitter-receiver pairs. In our scheme, the transmitter frequencies are assumed 

known for each transmitter-receiver pair, therefore the linear state consists of only 

the target velocity.                 

The separable least square estimation procedure we use can be described using the 

following steps: 

i. Choose a candidate position 𝑝𝑡 from an area of interest, and calculate 𝐻(𝑝𝑡) 

matrix in (2.1-20).  

ii. Linearly estimate the velocity using the least squares method. 

iii. Calculate the least squares cost function for this estimate and go back to step 

i for a new position candidate. 

This procedure is repeated for all points on a grid over the area of interest. After 

completion, the grid point that gives the minimum cost is taken to be the estimated 
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position. The estimated velocity at this position is taken to be the least square 

solution in step-ii which is used as the initial velocity estimate. 

The solution for the linear least square estimation problem solved in step-ii is given 

in (2.2-1), [33]. For simplicity, the argument 𝑝𝑡 of 𝐻(𝑝𝑡) is omitted below. 

𝑣̂  =
𝜆

2
(𝐻𝑇𝐻)

−1
𝐻𝑇𝑦 2.2-1 

The square-error calculated in step-iii is given in (2.2-2). 

𝐶(𝑝𝑡)  =  ‖𝑦 −
2

𝜆
𝐻𝑣̂‖

2

= ‖𝑦 − 𝐻(𝐻𝑇𝐻)
−1

𝐻𝑇𝑦‖
2

 2.2-2 

                 = [𝑦 − 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦]𝑇[𝑦 − 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦] 2.2-3 

By using the idempotent property (𝐼2 = 𝐼) of the matrix  𝐻(𝐻𝑇𝐻)−1𝐻𝑇 , the cost 

function can be simplified as in (2.2-4).  

𝐶(𝑝𝑡)  = [𝑦 − 𝐻(𝐻𝑇𝐻)
−1

𝐻𝑇𝑦]
𝑇

[𝑦 − 𝐻(𝐻𝑇𝐻)
−1

𝐻𝑇𝑦]  2.2-4 

= 𝑦𝑇𝑦 − 2𝑦𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦 + 𝑦𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦 2.2-5 

= 𝑦𝑇𝑦 − 2𝑦𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦 + 𝑦𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦                            2.2-6 

= 𝑦𝑇𝑦 − 𝑦𝑇 𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑦                                                                     2.2-7 

Since we consider the minimization of the cost function 𝐶(𝑝𝑡)  over the positions, we 

can discard the first term in (2.2-7) since it is a constant. The modified cost functions 

to be used in the grid-based optimization are given in (2.2-8) and (2.2-9). 

𝐶′
(𝑝𝑡)  = −𝑦𝑇 𝐻(𝐻𝑇𝐻)

−1
𝐻𝑇𝑦 = −

2

𝜆
𝑦

𝑇

 𝐻𝑣̂ 2.2-8 

𝐶′′(𝑝𝑡)  = −𝑦𝑇 𝐻𝑣                                                       2.2-9 

2.3. EKF and CRLB Formulation 

To evaluate the performance of the track initiation algorithm given in the previous 

section, it will be used with an Extended Kalman Filter. Kalman filter is the most 

common tracking filter used in the literature. For the linear Gaussian system case, 

Kalman filter is optimal. However, because of the nonlinearity in the measurement 

function given in (2.1-20), the Extended Kalman filter has to be used. For EKF 
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implementation, the target motion model given in (2.1-22) is used. A single step of 

EKF is composed of two steps, prediction and estimation updates like the Kalman 

filter as given below. 

Prediction Update                                                                                                                                                       

              𝑋̂𝑘|𝑘−1 = 𝐴𝑘−1𝑋̂𝑘−1|𝑘−1  

 

 2.3-1 

             𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
𝑇 + 𝑄𝑘−1 2.3-2 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑈𝑝𝑑𝑎𝑡𝑒                                                                                                                    

𝑋̂𝑘|𝑘 =  𝑋̂𝑘|𝑘−1 + 𝐾𝑘 (𝑦𝑘 − 𝑦̂𝑘|𝑘−1) 

 

2.3-3 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑆𝑘|𝑘−1𝐾𝑘
𝑇  2.3-4 

where 

 𝑦̂𝑘|𝑘−1 =  
2

𝜆
𝐹(𝑋̂𝑘|𝑘−1, 𝑝𝑠1. . . 𝑝𝑠𝑁),  2.3-5 

 𝑆𝑘|𝑘−1 = 𝐽𝑘𝑃𝑘|𝑘−1𝐽𝑘
𝑇 + 𝑅  2.3-6 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐽𝑘
𝑇𝑆𝑘|𝑘−1

−1
 2.3-7 

 𝑅 =  𝜎𝑚𝑒𝑎𝑠
2 𝐼 2.3-8 

 

 2.3-1) to (2.3-8). 𝑋̂𝑘|𝑘 and  𝑋̂𝑘|𝑘−1 represent the estimated and predicted states 

respectively. 𝑃𝑘−1|𝑘−1  and 𝑃𝑘|𝑘−1 represent the covariance matrix for the estimated 

and predicted states respectively. The definitions for 𝐴𝑘−1, 𝐵𝑘−1 and 𝑄𝑘−1 are given 

in (2.1-24) to (2.1-26). In the measurement update 𝐹(. ) represents the measurement 

function given in (2.1-20). 𝐾𝑘 is the Kalman gain and   𝑆𝑘|𝑘−1 is the innovation 

covariance. 𝐽𝑘 is the Jacobian of the measurement function and its details are given in 

(2.3-9) to (2.3-16), [12, 20]. 
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𝐽𝑘  =

[
 
 
 
 𝑗𝑘

1

..

.
𝑗𝑘
𝑁
]
 
 
 
 

, 2.3-9 

𝑗𝑘
𝑖 = [

𝜕𝐹𝑘
𝑖

𝜕𝑥
 
𝜕𝐹𝑘

𝑖

𝜕𝑦
 
𝜕𝐹𝑘

𝑖

𝜕𝑣𝑥
 
𝜕𝐹𝑘

𝑖

𝜕𝑣𝑦
], 

 

2.3-10 

where 

𝜕𝐹𝑘
𝑖

𝜕𝑣𝑥
= −

2

𝜆

(𝑥𝑘 − 𝑥𝑖)

𝑑𝑘
𝑖

, 2.3-11 

𝜕𝐹𝑘
𝑖

𝜕𝑣𝑦
= −

2

𝜆

(𝑦
𝑘
− 𝑦𝑖)

𝑑𝑘
𝑖

, 2.3-12 

𝜕𝐹𝑘
𝑖

𝜕𝑥
= − 

2

𝜆
(
𝑣𝑥,𝑘. 𝑑𝑘

𝑖 − (𝑥𝑘 − 𝑥𝑖). 𝑑𝑘
𝑖̇

(𝑑𝑘
𝑖 )

2 ) , 2.3-13 

𝜕𝐹𝑘
𝑖

𝜕𝑦
= −

2

𝜆
(
𝑣𝑦,𝑘. 𝑑𝑘

𝑖 − (𝑦𝑘 − 𝑦𝑖). 𝑑𝑘
𝑖̇

(𝑑𝑘
𝑖
)
2

) , 2.3-14 

𝑑𝑘
𝑖 = √(𝑥𝑘 − 𝑥𝑖)2 + (𝑦𝑘 − 𝑦𝑖)

2
, 2.3-15 

 

𝑑𝑘
𝑖̇ = 

𝑣𝑥,𝑘(𝑥𝑘 − 𝑥𝑖) + 𝑣𝑦,𝑘(𝑦𝑘 − 𝑦𝑖) 

𝑑𝑘
𝑖

. 2.3-16 

CRLB is a common figure of merit to compare the estimators with, [33]. CRLB is 

the inverse of the Fisher information matrix which can be calculated by taking the 

derivatives of the measurement likelihood functions. CRLB for recursive estimation 

is given below [12].  

𝐶𝑅𝐿𝐵𝑘 = 𝐹𝐼𝑀𝑘
−1 2.3-17 

where 

                          𝐹𝐼𝑀𝑘 = (𝐴𝑘−1𝐹𝐼𝑀𝑘−1
−1 𝐴𝑘−1

𝑇 )−1 + 𝐽𝑘
𝑇𝑅−1𝐽𝑘. 2.3-18 
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Here, 𝐹𝐼𝑀 and 𝐶𝑅𝐿𝐵  represent the Fisher information and the Cramer-Rao Lower 

Bound matrices respectively. 𝐴𝑘 represents the target state transition matrix. 𝑅 

represents the measurement noise covariance matrix and 𝐽𝑘 represents the Jacobian 

matrix given in (2.3-9).     

Lower bounds for the RMS position errors, 𝐿𝐵𝑃𝑜𝑠,𝑘, and the RMS velocity errors, 

𝐿𝐵𝑉𝑒𝑙,𝑘, can be calculated from the CRLB matrices as follows. 

                         𝐿𝐵𝑃𝑜𝑠,𝑘 = √𝑑𝑖𝑎𝑔(𝐶𝑅𝐿𝐵𝑘, 1) +  𝑑𝑖𝑎𝑔(𝐶𝑅𝐿𝐵𝑘, 2) 2.3-19 

                          𝐿𝐵𝑉𝑒𝑙,𝑘 = √𝑑𝑖𝑎𝑔(𝐶𝑅𝐿𝐵𝑘, 3) +  𝑑𝑖𝑎𝑔(𝐶𝑅𝐿𝐵𝑘, 4) 2.3-20 

Here, 𝑑𝑖𝑎𝑔(𝐴, 𝑖) denotes the i
th

 diagonal element of the matrix 𝐴.  

2.4. Simulation results for initiator algorithm 

In this section EKF filter with the given initiator is simulated with five active 

Doppler sensors in a target tracking scenario. In [17], the sensors are placed on a 

circle and it was stated that as the number of the sensors increases, the error 

variances decrease significantly. However, the change in the error variance becomes 

minor if more than four sensors are used. Also in [6], it was stated that the initiator 

algorithm with five or six sensors does not produce ghost solutions. From these 

perspectives, it is preferred to use five sensors with four of them located on the 

vertices of square and one of them placed at origin. CRLB results show that the 

placement of one sensor at the origin or any point inside the area restricted by the 

sensors lowers the average error variance bound over the region of interest.  

The simulations are repeated for different initial positions and different moving 

directions of the target. Some starting points are chosen in the square surrounded by 

the sensor locations and the remaining initial positions are located outside this 

region. The simulated starting positions and target moving directions are shown in 

Figure 8. The sensors are named as S1, S2,…, S5 and the targets are named as T1, 

T2,…, T7. Target moving directions are illustrated with line segments which start 

from the starting points. The lengths of the line segments represent the target speeds. 
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As the speed of each simulated target is different, the lengths of the line segments are 

not equal to each other. Exact values for the target states are given in Table 1. 

Table 1 Target Initial States 

Initial Point Velocity(X,Y) m/s Position(X,Y) m  

T1 5 , 20 m/s -500, -1000 m 

T2 0, -10 m/s -1250, 0 m 

T3 -20, 5 m/s 750, 1000 m 

T4 20, 0 m/s 1500, 0 m 

T5 -20, -5 m/s 1500, 2500 m 

T6 5, 20 m/s -2500, -1000 m 

T7 0, -10 m/s -2500, 1000 m 

  

 

Figure 8 Sensor positions, initial target positions and moving directions. 

 

Simulations are conducted over a time period of 100 seconds. The measurements are 

taken every 1 second. Target motion is modeled using a nearly constant velocity 
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model as given in (2.1-23) with the process noise variance value of 𝜎𝑝𝑟𝑜𝑐
2 =

0.01 (𝑚/𝑠2)2. Measurement noise variance is chosen as 𝜎𝑚𝑒𝑎𝑠
2 = 6.25 𝐻𝑧2, [16]. 

The transmission frequency is 9 GHz which is standard for the classical X-band radar 

applications. So the wavelength value 𝜆 = 0.033 meters is used. The results of the 

initialization algorithm are used to initialize the state of the filters. The calculated 

CRLB for the initial positions is used as the initial state covariance matrix. In the 

initialization algorithm, the grid-search area is restricted between -3000 meters and 

3000 meters in both axes. A uniform grid spacing of 20 meters is used. The estimated 

and true target trajectories are given in Figure 9 to Figure 15.      
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a) 

 

b) 

Figure 9 True target positions and EKF position estimates for T1, a) whole trajectory, b) trajectory 

zoomed around the initial position. 
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Figure 10 True target positions and EKF position estimates for T2. 

 

Figure 11 True target positions and EKF position estimates for T3. 
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Figure 12 True target positions and EKF position estimates for T4. 

 

 

Figure 13 True target positions and EKF position estimates for T5. 
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Figure 14 True target positions and EKF position estimates for T6. 

 

Figure 15 True target positions and EKF position estimates for T7. 
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As seen in the figures, EKF with the initialization algorithm provides promising 

results. To compare the error performance to the lower bounds, the RMS and CRLB 

values for the position and the velocity errors are shown in Figure 16 to Figure 29. 

For RMS error calculations, Monte-Carlo simulations consisting of 100 runs are 

conducted. CRLB expressions given in (2.3-17) and (2.3-18) are valid when the 

variance of the target process noise is zero. So, in these simulations, target process 

noise is assumed to be zero.  

 

Figure 16 RMS and CRLB values for the position errors for T1. 
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Figure 17 RMS and CRLB values for the velocity errors for T1. 

 

Figure 18 RMS and CRLB values for the position errors for T2. 
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Figure 19 RMS and CRLB values for the velocity errors for T2. 

 

Figure 20 RMS and CRLB values for the position errors for T3. 
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Figure 21 RMS and CRLB values for the velocity errors for T3. 

 

Figure 22 RMS and CRLB values for the position errors for T4. 
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Figure 23 RMS and CRLB values for the velocity errors for T4. 

 

Figure 24 RMS and CRLB values for the position errors for T5. 
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Figure 25 RMS and CRLB values for the velocity errors for T5. 

 

Figure 26 RMS and CRLB values for the position errors for T6. 
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Figure 27 RMS and CRLB values for the velocity errors for T6. 

 

Figure 28 RMS and CRLB values for the position errors for T7. 
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Figure 29 RMS and CRLB values for the velocity errors for T7. 

 

As can be seen from the figures above, EKF has satisfactory performance near to 

CRLB when it is initialized with the initialization algorithm. Also with good 

initialization, the errors of the EKF can settle down in a short time. On the other 

hand, without using a good initial point, EKF may diverge from the true target 

trajectory or the track may continue with a large bias. In order to demonstrate the 

importance of initialization, the case of T4 above is repeated with faulty initial 

positions and velocities as shown in the Figure 30 and Figure 31. In Figure 30, the 

initial position and velocity are chosen as 𝑥 =  −1000 meters, 𝑦 =  500 meters, 

𝑣𝑥 = −20 m/s, 𝑣𝑦 =  0 m/s. In Figure 31 the initial position and velocity are 

chosen as 𝑥 =  1000 meters, 𝑦 =  1000 meters, 𝑣𝑥 = −20 m/s, 𝑣𝑦 =  0 m/s. 

EKF initial covariance matrix is selected to be diagonal with variances chosen as 

𝜎𝑥
2 = 𝜎𝑦

2 = 1𝑒4m2 and 𝜎𝑣𝑥
2 = 𝜎𝑣𝑦

2 = 225 (m/s)2. 
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Figure 30 True and estimated trajectories for T4 with wrong initial position and velocity. 

 

Figure 31 True and estimated trajectories for T4 with wrong initial position and velocity. 
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To observe the initialization algorithm error performance numerically, average 

(along time) RMS position and velocity errors are calculated using a Monte Carlo 

simulation with 50 runs for each initial position. CRLB values for the position and 

velocity errors are listed with Monte Carlo results in Table 2. Here, the grid spacing 

of 20 meters and the measurement noise variance of 6.25 Hz
2 

are used. 

Table 2 Average position and velocity CRLBs and corresponding average RMS errors with the initiator, 

grid spacing = 20 m, f = 9 GHz 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T1 7.1669 13.482 0.0391 0.0448 

T2 18.1868 19.108 0.0498 0.0608 

T3 12.9442 17.008 0.0535 0.0650 

T4 10.4130 12.888 0.0383 0.0388 

T5 19.7553 29.442 0.0962 0.1446 

T6 17.8058 22.656 0.0979 0.1163 

T7 36.384 39.313 0.099 0.107 

 

As seen in Table 2, average velocity errors are very close to the lower bound and the 

position errors are rather satisfactory.  Only T7 which is outside of the sensor region 

has large CRLB and RMS error values. To lower the initialization algorithm 

complexity, the grid spacing parameter can be chosen large, but with large grid 

spacing ghost targets can appear in the grid search. Average CRLB and RMS error 

results for the grid spacing of 100 meters are given in Table 3. Here, except T5 

which has an initial velocity pointing towards the outside of the region of interest, 

nearly linear increase (around 5 times larger) is observed in the average RMS 

position errors with 100m grid spacing (which is 5 times the original grid spacing of 

20m.).  
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Table 3 Average position and velocity CRLBs and corresponding average RMS errors with the initiator, 

grid spacing = 100 m, f = 9 GHz. 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T1 7.166 55.208 0.039 0.091 

T2 18.186 57.233 0.049 0.206 

T3 12.944 39.830 0.053 0.096 

T4 10.413 56.849 0.038 0.069 

T5 19.755 127.129 0.096 0.556 

T6 17.805 52.323 0.097 0.294 

T7 36.384 50.30 0.099 0.138 

 

It should be noted that CRLB values and the average RMS errors are not the same 

for each initial position and velocity value (direction and speed). This is caused by 

the highly nonlinear measurement function characteristics. As noted in [17], CRLB is 

dependent on the wavelength, measurement noise variance, sensor placement, target 

position and target velocity. Sensor placement is another major issue for research in 

Doppler-only tracking and localization, and it is going to be discussed in one of the 

forthcoming chapters. Here, the effects of the wavelength are aimed to be shown. 

Therefore, the average CRLB and average RMS position and velocity errors are 

obtained for the lower frequency (higher wavelength) 0.9 GHz. The results are 

presented in Table 4 for grid spacing of 20 meters and in Table 5 for grid spacing of 

100 meters. 

Table 4 Average position and velocity CRLBs and corresponding average RMS errors with the initiator, 

grid spacing = 20 m, f = 0.9 GHz. 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T1 71.669 74.836 0.391 0.411 

T2 181.868 183.624 0.498 0.509 

T3 129.442 136.371 0.535 0.600 
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Tablo 4 Continued 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T4 104.130 104.178 0.383 0.343 

T5 197.553 213.568 0.962 1.039 

T6 178.057 204.000 0.979 1.137 

T7 363.845 445.974 0.990 1.060 

 

Table 5 Average position and velocity CRLBs and corresponding average RMS errors  with the initiator, 

grid spacing  = 100 m, f = 0.9 GHz 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T1 71.669 83.533 0.391 0.3974 

T2 181.868 234.378 0.498 0.500 

T3 129.442 141.464 0.535 0.581 

T4 104.130 110.585 0.383 0.404 

T5 197.553 219.201 0.962 1.133 

T6 178.057 189.838 0.979 1.075 

T7 363.845 468.217 0.990 0.906 

 

As seen in Table 4 and Table 5, increase in the wavelength (decrease in frequency) 

causes an almost linear increase in the CRLB. This is due to the fact that the SNR is 

decreased when the wavelength is increased as can be seen in the measurement 

expression (2.1-20). Average position and velocity errors are close to the CRLBs for 

both 20 m and 100 m grid spacing. The results with the grid spacing of 250 meters 

are given in Table 6which shows significant increase in the RMS position errors 

compared to the results with the grid spacing 100 meters. 



48 

 

Table 6 Average position and velocity CRLBs and corresponding average RMS errors  with the initiator, 

grid spacing =  250 m, f = 0.9 GHz. 

Points 
Average Square-root 

position CRLB (m) 

Average RMS 

position error 

(m) 

Average Square-root 

velocity CRLB (m/s) 

Average RMS 

velocity error 

(m/s) 

T1 71.669 160.39 0.391 0.511 

T2 181.868 253.60 0.498 0.663 

T3 129.442 183.85 0.535 0.727 

T4 104.130 145.12 0.383 0.374 

T5 197.553 270.19 0.962 1.346 

T6 178.057 224.11 0.979 1.183 

T7 363.845 509.95 0.990 0.997 

 

An important result from the comparisons above is that, with the higher wavelength, 

the grid spacing of 20 meters has nearly the same error performance with grid 

spacing of 100 meters. Hence in this case, 100 meters is preferable due to its lower 

computational complexity. On the other hand when the grid spacing is increased to 

250 meters, a considerable increase is observed in the RMS errors. The reason which 

is thought to be behind these observations is that  

 the grid spacing of 100 meters is already smaller or around the (square root) 

CRLB values obtained for the higher wavelength . Hence an increase of the 

grid spacing from 20 meters to 100 meters does not make much of a 

difference for the EKF. 

 the grid spacing of 250 meters is much higher than the (square root) CRLB 

values obtained for the higher wavelength . Hence an increase of the grid 

spacing from 100 meters to 250 meters makes the performance of the EKF 

significantly worse. 

As a result, a rule of thumb for selecting the grid spacing parameter might be to 

choose it to be similar to the CRLB for the problem to optimize the performance and 

the amount of computations.  
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Another important issue that should be pointed out is that initial positions outside the 

region circumscribed by the sensors can produce more RMS errors as seen in Table 3 

when grid spacing is larger than the lower bound. This is caused by the ghost target 

positions produced by the grid search algorithm. This situation can be observed in 

Figure 32 which presents the cost function for the grid search for T5. In this case, the 

cost value of the real target position is actually lower than the ghost position, but the 

grid is too coarse to find the real target position and therefore the ghost position is 

chosen as the initial target position.  

 

Figure 32 Cost function values over x-y plane. 

 

From these results it can be said that CRLB can be thought of as a baseline for the 

grid spacing. The grid spacing can be increased within the tradeoff between the 

computational complexity and the initialization performance while keeping in mind 

that with large grid spacing, the performance will be decreased dramatically 

especially for a target located outside the region circumscribed by the sensors. CRLB 

depends on many parameters such as target position, velocity, sensor positions, 

wavelength and measurement noise variance. When the measurement noise variance, 

sensor placement and the wavelength are known a priori, for all possible initial target 
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position and velocity of interest, lower bounds can be calculated and the maximum 

or average values of these lower bounds can be considered. It should be stated that 

points outside of the region bounded by the sensors has larger lower bounds and they 

can produce large position errors compared to the inner points when the grid spacing 

is larger than the lower bound. In the lower bound, the linear effects of measurement 

noise variance and wavelength are clear. But the effects of the sensor placement are 

more ambiguous. To show this, circular sensor geometry is simulated in Figure 33. 

CRLB values for the same targets with this new sensor geometry are given in Table 

7. As seen in Table 7, the changes in the CRLB values are different for different 

initial positions and velocities. 

 

 

Figure 33 Circular sensor geometry and targets with 5 sensors. 
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Table 7 CRLB values for different sensor geometries. 

 Square Root Position CRLB (m) 

Target 
Square Sensor  

Geometry 

Circular Sensor  

Geometry 

T1 71.669 78.33 

T2 181.868 246.54 

T3 129.442 125.22 

T4 104.130 74.09 

T5 197.553 1743.4 

T6 178.057 1110.5 

T7 363.845 735.5 

 

Finally, it can be said that separable least square estimation with a grid search can be 

used to initialize a nonlinear Doppler-only tracking filter such as EKF.  For the 

choice of grid spacing, the position CRLB constitutes a baseline. There is a trade-off 

between the computational complexity and the performance. With large grid spacing, 

performance will be decreased dramatically, especially when the target is located 

outside the region circumscribed by the sensors. It is important to note that the CRLB 

values can be different for different target position/velocity values and sensor 

geometry.  
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CHAPTER 3 

 

PARTICLE FILTERS FOR DOPPLER ONLY MEASUREMENTS 

 

 

In this chapter, the use of particle filters for Doppler-only tracking is investigated. 

The organization of the chapter is given as follows. In Section 3.1, it is shown that 

for a simple Doppler-only tracking problem, the classic bootstrap particle filter (a 

sequential importance resampling (SIR) particle filter using state transition 

density 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖)) as its proposal distribution) performs poorly compared to EKF. 

The reasons for this surprising behavior are discussed in Section 3.1. In the following 

sections, different types of particle filters are derived and implemented for the same 

problem with the aim of improving the bootstrap particle filter’s performance. In 

Section 3.2, the Sequential Importance Resampling (SIR) particle filter using optimal 

proposal density is derived. The optimal proposal density is obtained by making EKF 

updates in the filter. In Section 3.3, a Rao-Blackwellized particle filter is given for 

Doppler-only tracking. In the Rao-Blackwellized particle filter, the linear velocity 

states are estimated using Kalman filters whereas a particle filter estimates the 

position states. The simulation results for these particle filters are presented in 

Section 3.4 along with a discussion on the results.   

3.1. Bootstrap Particle Filter 

In this section, the so-called bootstrap particle filter for Doppler-only tracking is 

discussed. Bootstrap particle filter is the first particle filter method to be proposed by 

Gordon et al., [34]. The bootstrap particle filter holds the target state particles and 
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weights shown as  𝑋𝑘|𝑘
(𝑖)

 , 𝜋𝑘|𝑘
(𝑖)

 for 𝑖 = 1,… ,𝑁𝑝 where 𝑁𝑝 is the number of particles. 

The main difference of the bootstrap particle filter from the other particle filters is 

that, the bootstrap particle filter uses the state transition density as the proposal 

density in the prediction update as discussed below. 

Firstly, the target and measurement model used in the derivation of the bootstrap 

particle filter are given as follows: 

𝑋𝑘 = 𝐴𝑘−1𝑋𝑘−1 + 𝐵𝑘−1𝑤𝑘−1 3.1-1 

𝑦𝑘 = 𝐹(𝑋𝑘) + 𝑒𝑘 3.1-2 

where 

𝐴𝑘 = [

1 0
0 1

𝑇 0
0 𝑇

0 0
0 0

1  0
0  1

]  𝐵𝑘 = [

0.5𝑇2 0
0 0.5𝑇2

𝑇        0
0       𝑇

] 3.1-3 

Here, 𝑋𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑣𝑥,𝑘, 𝑣𝑦,𝑘]
𝑇
  represents the target state, 𝑦𝑘 represents the 

measurements and 𝐹(. ) is the measurement function given in (2.1-19). 

𝑤𝑘 ~ 𝑁(𝑤𝑘; 0, 𝜎𝑝𝑟𝑜𝑐
2 𝐼2) represents the target’s unknown acceleration, i.e., the process 

noise,  and 𝑒𝑘 ~ 𝑁(𝑤𝑘; 0, 𝜎𝑚𝑒𝑎𝑠
2 𝐼2) represents the measurement error, i.e., the 

measurement noise. 𝜎𝑝𝑟𝑜𝑐
2  and 𝜎𝑚𝑒𝑎𝑠

2  are the variances of the process noise and 

measurement noise respectively. 𝐼𝑛 denotes an identiy matrix of size 𝑛 x 𝑛. 

The matrix 𝐵𝑘 is not dependent on time and the unknown acceleration term can be 

expressed as a single term as follows: 

𝑋𝑘 = 𝐴𝑘−1𝑋𝑘−1 + 𝑙𝑘−1 3.1-4 

where  

𝑙𝑘 ~ 𝑁(𝑙𝑘; 0, 𝑄), 3.1-5 

𝑄 = 𝜎𝑝𝑟𝑜𝑐
2 𝐵𝑇𝐵. 3.1-6 
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By using the target and the measurement model given above, the steps of the 

bootstrap particle filter for Doppler-only tracking are given below. A single iteration 

of the Bootstrap particle filter for Doppler-only tracking has the following steps: 

 Prediction Update: In this step, the particles 𝑋𝑘+1
(𝑖)

 , 𝑖 = 1,… ,𝑁𝑝 are 

propagated to obtain the predicted particles by using (3.1-4) as follows: 

 𝑋𝑘+1|𝑘
(𝑖)

= 𝐴𝑋𝑘|𝑘
(𝑖)

+ 𝑙𝑘
(𝑖)

 3.1-7 

 where 

𝑙𝑘
(𝑖)

~ 𝑁(𝑙𝑘
(𝑖)

; 0, 𝑄). 3.1-8 

 The weights remain the same at this step and they are shown as follows: 

𝜋𝑘+1|𝑘
(𝑖)

= 𝜋𝑘|𝑘
(𝑖)

. 3.1-9 

Note that since 3.1-9 is used to obtain the new particles, the proposal density 

is implicitly set to the state transition density 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖)), i.e., 

𝑋𝑘+1|𝑘
(𝑖)

~ 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖)). 

 Measurement Update: In this step, the predicted particles are directly taken 

as the estimated particles as follows: 

𝑋𝑘+1|𝑘+1
(𝑖)

= 𝑋𝑘+1|𝑘
(𝑖)

 3.1-10 

Particle weights are updated as follows: 

𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘|𝑘
(𝑖) 𝑝(𝑦𝑘+1|𝑋𝑘+1

(𝑖) )𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖))

𝐺(𝑋𝑘+1
(𝑖) |𝑋0:𝑘

(𝑖) , 𝑦0:𝑘+1)
, 3.1-11 

𝜋𝑘+1|𝑘+1
(𝑖)

=
𝜋̂𝑘+1|𝑘+1

(𝑖)

∑ 𝜋̂𝑘+1|𝑘+1
(𝑖)𝑁

𝑖

 . 
3.1-12 

Here 𝐺(𝑋𝑘+1
(𝑖) |𝑋0:𝑘

(𝑖) , 𝑦0:𝑘+1) represents the proposal (or sometimes called the 

importance) distribution. In the bootstrap particle filter, as mentioned above, 
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the state transition density 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖)) is used as the proposal and hence the 

weight update is simplified as follows: 

𝐺(𝑋𝑘+1
(𝑖) |𝑋0:𝑘

(𝑖) , 𝑦0:𝑘+1) =  𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖)), 3.1-13 

𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘+1|𝑘
(𝑖) 𝑝(𝑦𝑘|𝑋𝑘+1|𝑘+1

(𝑖)
). 3.1-14 

As a result, the weight update in the bootstrap particle filter can be expressed 

as follows. 

𝜋𝑘+1|𝑘+1
(𝑖)

=
𝜋̂𝑘+1|𝑘+1

(𝑖)

∑ 𝜋̃𝑘+1|𝑘+1
(𝑖)𝑁

𝑖=1

 3.1-15 

where 

𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘+1|𝑘
(𝑖) 𝑝(𝑦𝑘|𝑋𝑘+1|𝑘+1

(𝑖)
). 3.1-16 

 At the final stage, the estimated state and its covariance are calculated as 

follows: 

𝑋̂𝑘+1|𝑘+1 = ∑ 𝜋𝑘+1|𝑘+1
(𝑖)

𝑁

𝑖=1
𝑋𝑘+1|𝑘+1

(𝑖)
, 3.1-17 

𝑃𝑘|𝑘 = ∑ 𝜋𝑘+1|𝑘+1
(𝑖)𝑁

𝑖=1 (𝑋𝑘+1|𝑘+1
(𝑖)

-𝑋̂𝑘+1|𝑘+1) (𝑋𝑘+1|𝑘+1
(𝑖)

− 𝑋̂𝑘+1|𝑘+1)
𝑇 . 3.1-18 

Resampling is made at the end of the each iteration to avoid the sample 

impoverishment problem. In the resampling algorithm, the particles with high 

weights are replicated according to their weight value and the particles which have 

low weights are deleted. 

To compare the performance of the Bootstrap particle filter with EKF for Doppler-

only tracking, these filters are used for tracking a target with four Doppler sensors. 

Here, the sensors are active similar to the measurement model used in Chapter 2. The 

sensor positions and the target trajectory are shown in Figure 34. 



57 

 

 

Figure 34 Sensor positions and target trajectory for Bootstrap PF-EKF comparison 

   

Here, the constant velocity model is used while the unknown acceleration has unity 

variance, i.e., 𝜎𝑝𝑟𝑜𝑐
2 = 1. Measurements are taken with a wavelength value of 

𝜆 = 0.033 m and the measurement noise variance of 𝜎𝑚𝑒𝑎𝑠 = 10 𝐻𝑧  is used. For 

the bootstrap PF, 1000 particles are used. With this configuration the target motion is 

continued for 50 seconds. To compare the performance, RMS position and velocity 

errors are calculated over 100 Monte-Carlo runs for both filters. Bootstrap PF 

particle positions are shown in Figure 35 where it is seen clearly that the particle 

filter has a large bias. RMS errors are shown in Figure 36 and Figure 37. 
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a) 

 

b) 

Figure 35 True target and Bootstrap PF particle positions a) whole trajectory b) zoomed around initial 

position. 
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Figure 36 RMS position errors of EKF and Bootstrap PF for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎 𝑯𝒛. 

 

Figure 37 RMS velocity errors of EKF and Bootstrap PF for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎 𝑯𝒛. 
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As seen in the figures, even if the number of particles is as high as 1000, the 

Bootstrap particle filter has worse performance than EKF especially for position 

estimation. The main reason for this is that the measurements contain more 

information about the velocity rather than the position and therefore the position 

variables are very weakly observable. This can for example be observed from the 

sample Jacobian matrix of the measurement function with respect to the state 

elements given in the Table 8. 

 

Table 8 Jacobian matrix of the measurement function at time instant of 34 seconds 

           Partial Derivative 

Sensor 

𝜕𝐹𝑘
𝑖

𝜕𝑥
(
𝐻𝑧

𝑚
) 

𝜕𝐹𝑘
𝑖

𝜕𝑦
(
𝐻𝑧

𝑚
) 

𝜕𝐹𝑘
𝑖

𝜕𝑣𝑥
(

𝐻𝑧

𝑚/𝑠
) 

𝜕𝐹𝑘
𝑖

𝜕𝑣𝑦
(

𝐻𝑧

𝑚/𝑠
) 

S1 0.1066 -0.2957   -57.0178 20.5443 

S2 -2.4213    -0.5294 12.9461 59.2072 

S3 -0.6499    -1.6717 -56.4870 21.9615 

S4 -0.3660     0.1874 -27.6185 -53.9473 

 

In the Jacobian matrix, the derivatives of the measurements with respect to velocity 

states are very high in comparison to the derivative of the measurements with respect 

to position states. The ratio of the derivatives observed in this scenario is about 50. 

By using the analytical Jacobian matrix, EKF can extract the very small amount of 

information from the measurements using the correlation information in the 

covariance matrix. On the other hand, this type of small correlations and small 

amount of information is very difficult for a particle filter to hold and propagate even 

with a high number of measurements. Therefore, although the particle filter can 

extract information about the velocity, the small amount of information about the 

position cannot be extracted from the measurements using random sampling. As a 

result, the information about the position is not handled properly using a reasonable 

number of the particles in the particle filter and the position estimates of the particle 

filter always has bias. 
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It would be interesting to see if the particle filter’s estimation capability for the 

position states can be increased by using standard sequential Monte Carlo tools like 

optimal proposal distributions and Rao-Blackwellization. In the following sections, 

these ideas will be investigated to propose and implement two different particle 

filters for Doppler-only tracking.    

3.2. SIR Particle Filter with Optimal Proposal Density 

In this section, the SIR  particle filter with optimal proposal density for Doppler-only 

tracking is derived. The SIR particle filter, similar to a bootstrap particle filter, holds 

the particles and their weights. The particles and the weights are denoted as  𝑋𝑘|𝑘
(𝑖)

 , 

𝜋𝑘|𝑘
(𝑖)

 for 𝑖 = 1,… , 𝑁𝑝, where 𝑁𝑝 is the number of particles. Contrary to the bootstrap 

particle filter, the optimal proposal density 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖), 𝑦𝑘+1) is used in the 

prediction step instead of the state transition density 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖)).  

In the derivation of the SIR particle filter with optimal proposal density, the target 

and the measurement model presented in Section 3.1 are used. A single iteration of 

the SIR particle filter with optimal proposal density for Doppler-only tracking has 

the following steps: 

 Prediction Update: In this step, the particles 𝑋𝑘+1
(𝑖)

 , 𝑖 = 1,… , 𝑁𝑝 are first 

propagated to obtain the intermediate predicted particles by using (3.1-4) as 

follows: 

𝑋̅𝑘+1|𝑘
(𝑖)

= 𝐴𝑋𝑘|𝑘
(𝑖)

. 3.2-1 

The intermediate predicted particles need to be updated for obtaining optimal 

the proposal density  𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖), 𝑦𝑘+1)  to obtain the final predicted 

particles. To do this, EKF measurement update steps are used. Firstly, the 

predicted measurements are obtained for each particle as follows: 

𝑦̂𝑘+1
(𝑖),𝑒𝑘𝑓

=  𝐹(𝑋𝑘+1|𝑘
(𝑖)

) 3.2-2 
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where the measurement function 𝐹(. ) is given in (2.1-19). 

Now, the intermediate predicted particles are updated by using the 

measurement as follows: 

𝑋𝑘+1|𝑘+1
(𝑖),𝑒𝑘𝑓

= 𝑋𝑘+1|𝑘
(𝑖)

+ 𝐾𝑘+1
(𝑖),𝑒𝑘𝑓

(𝑦𝑘+1 − 𝑦̂𝑘+1
(𝑖),𝑒𝑘𝑓

) 3.2-3 

where 

𝐾𝑘+1
(𝑖),𝑒𝑘𝑓

=  𝑄(𝐽𝑘+1
(𝑖),𝑒𝑘𝑓

)𝑇(𝑆𝑘+1
(𝑖),𝑒𝑘𝑓

)−1, 3.2-4 

𝑆𝑘+1
(𝑖),𝑒𝑘𝑓

= 𝐽𝑘+1
(𝑖),𝑒𝑘𝑓

𝑄(𝐽𝑘+1
(𝑖),𝑒𝑘𝑓

)𝑇 + 𝑅. 3.2-5 

Here, 𝐽𝑒𝑘𝑓
(𝑖)

 represents the Jacobian of the measurement function 𝐹(. ) 

evaluated at the i
th

 intermediate predicted particle. 𝑄 and 𝑅 represent the 

covariance of the process noise and measurement noise respectively. The 

covariance of the updated particles can be obtained as follows: 

𝑃𝑘+1
(𝑖),𝑒𝑘𝑓

=  𝑄 − 𝐾𝑘+1
(𝑖),𝑒𝑘𝑓

𝑆𝑘+1
(𝑖),𝑒𝑘𝑓

(𝐾𝑘+1
(𝑖),𝑒𝑘𝑓

)𝑇 3.2-6 

The final predicted particles are drawn from the optimal proposal distribution. 

The distribution is approximated by the normal distribution given below. 

𝑋𝑘+1|𝑘
(𝑖) ~ 𝑁(𝑋𝑘+1|𝑘+1

(𝑖) ; 𝑋𝑘+1|𝑘+1
(𝑖),𝑒𝑘𝑓

, 𝑃𝑘+1
(𝑖),𝑒𝑘𝑓

). 3.2-7 

The weights remain the same at this step and they are shown as follows: 

𝜋𝑘+1|𝑘
(𝑖)

= 𝜋𝑘|𝑘
(𝑖)

. 3.2-8 

 Measurement Update: : In this step, the final predicted particles are directly 

taken as the estimated particles as follows. 

𝑋𝑘+1|𝑘+1
(𝑖)

= 𝑋𝑘+1|𝑘
(𝑖)

. 3.2-2 

Particle weights are updated as follows.  
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𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘|𝑘
(𝑖) 𝑝(𝑦𝑘+1|𝑋𝑘+1

(𝑖) )𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖))

𝐺(𝑋𝑘+1
(𝑖) |𝑋0:𝑘

(𝑖) , 𝑦0:𝑘+1)
, 3.2-3 

𝜋𝑘+1|𝑘+1
(𝑖)

=
𝜋̂𝑘+1|𝑘+1

(𝑖)

∑ 𝜋̂𝑘+1|𝑘+1
(𝑖)𝑁

𝑖

 . 3.2-4 

Here 𝐺(𝑋𝑘+1
(𝑖) |𝑋0:𝑘

(𝑖) , 𝑦0:𝑘+1), as before,  represents the proposal density. The 

optimal proposal distribution 𝑝(𝑋𝑘+1|𝑋𝑘
(𝑖), 𝑦𝑘+1) is employed as the proposal 

density. By using the Bayes’ rule, optimal proposal distribution can be 

expressed as follows. 

𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖), 𝑦𝑘+1) =  
𝑝(𝑦𝑘+1|𝑋𝑘+1

(𝑖) )𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖))

𝑝(𝑦𝑘+1|𝑋𝑘
(𝑖))

 . 3.2-5 

When the optimal proposal distribution is used in the weight update equation, 

it can be simplified as follows. 

𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘|𝑘
(𝑖) 𝑝(𝑦𝑘+1|𝑋𝑘+1

(𝑖) )𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖))

𝑝(𝑋𝑘+1
(𝑖) |𝑋𝑘

(𝑖), 𝑦𝑘+1)
, 3.2-6 

=  𝜋𝑘|𝑘
(𝑖)

𝑝(𝑦𝑘+1|𝑋𝑘
(𝑖)

).                       3.2-7 

Finally, the weight update can be expressed as follows: 

𝜋𝑘+1|𝑘+1
(𝑖)

=
𝜋̂𝑘+1|𝑘+1

(𝑖)

∑ 𝜋̂𝑘+1|𝑘+1
(𝑖)𝑁

𝑖=1

 3.2-8 

where 

𝜋̂𝑘+1|𝑘+1
(𝑖)

= 𝜋𝑘|𝑘
(𝑖) 𝑝(𝑦𝑘+1|𝑋𝑘|𝑘

(𝑖)
). 3.2-9 

Here, 𝑝(𝑦𝑘+1|𝑋𝑘|𝑘
(𝑖) ) is equal to the normal distribution with mean value 

𝜇 = 𝑦̂𝑘+1
(𝑖),𝑒𝑘𝑓

 and covariance matrix 𝐶 = 𝑆𝑘+1
(𝑖),𝑒𝑘𝑓

. 
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At the final stage, the estimated state and its covariance are calculated as 

follows. 

𝑋̂𝑘+1|𝑘+1 = ∑ 𝜋𝑘+1|𝑘+1
(𝑖)

𝑁

𝑖=1
𝑋𝑘+1|𝑘+1

(𝑖)
, 3.2-10 

𝑃𝑘|𝑘 = ∑ 𝜋𝑘+1|𝑘+1
(𝑖)𝑁

𝑖=1 (𝑋𝑘+1|𝑘+1
(𝑖)

-𝑋̂𝑘+1|𝑘+1) (𝑋𝑘+1|𝑘+1
(𝑖)

− 𝑋̂𝑘+1|𝑘+1)
𝑇 . 3.2-11 

Resampling is made at the end of the each step to avoid the sample impoverishment 

problem as in the bootstrap particle filter. 

3.3. Rao-Blackwellized Particle Filter for Doppler-only Tracking 

In this section, the derivation of a Rao-Blackwellized particle filter for Doppler-only 

tracking is given. This filter is based on the fact that the nonlinear states and linear 

states in the target and the measurement model can be handled separately in a 

particle filter to increase the overall performance of the filter. The nonlinear states, in 

such a case, can be estimated using a reduced order particle filter. For the linear 

states, on the other hand, Kalman filters might be utilized to improve the estimation 

performance. The target motion model given in (2.1-23) is repeated here by giving 

the dynamics of the velocity and position states separately.  

𝑝𝑘+1 = 𝑝𝑘 + 𝑇𝑣𝑘 +
𝑇2

2
𝑤𝑘 3.3-1 

𝑣𝑘+1 = 𝑣𝑘 + 𝑇𝑤𝑘 3.3-2 

𝑦𝑘 = 𝐶(𝑝𝑘)𝑣𝑘 + 𝑒𝑘 3.3-3 

where the measurement model given in (2.1-2) is used. 

Here, 𝑝𝑘 = [𝑥𝑘 , 𝑦𝑘] represents the target position in 2D, 𝑣𝑘 = [𝑣𝑥,𝑘, 𝑣𝑦,𝑘] represents 

the target velocity in 2D, 𝑤𝑘~𝑁(𝑤𝑘; 0, 𝑄)  represents the unknown accelerations of 

the target, i.e., the process noise, and 𝑒𝑘~𝑁(𝑤𝑘; 0, 𝑅)  represents the measurement 

errors, i.e., the measurement noise. 𝐶(𝑝𝑘) =  
2

𝜆
𝐻(𝑝𝑡)  represents the measurement 

matrix where 𝐻(𝑝𝑡) is given in (2.1-20).  
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Note that in the model given above, given the position states 𝑝𝑘, the model is linear 

with respect to the velocity states 𝑣𝑘. The dependence of the model on the position 

states is, on the other hand, highly nonlinear. The Rao-Blackwellized particle filter 

we consider here estimates the nonlinear states, i.e., the position variables, using a 

reduced-order particle filter and given the position state particles, estimates the 

velocity states using Kalman filters.  Hence, the Rao-Blackwellized particle filter 

holds the nonlinear position particles and weights shown as  𝑝𝑘
(𝑖)

 , 𝜋𝑘|𝑘
(𝑖)

 and linear 

velocity estimates 𝑣𝑘|𝑘
(𝑖)

 and covariances 𝑃𝑘|𝑘
(𝑖)

 for 𝑖 = 1, … , 𝑁𝑝, where 𝑁𝑝 is the 

number of particles. The particles {𝑝𝑘
(𝑖)

}
𝑖=1

𝑁𝑝

 are propagated using a reduced-order 

particle filter while the estimates 𝑣𝑘|𝑘
(𝑖)

 and covariances 𝑃𝑘|𝑘
(𝑖)

  are propagated using 

Kalman filters. A single iteration of the Rao-Blackwellized particle filter has the 

following steps. 

 Particle Filter Prediction Update: In this step, the particles 𝑝𝑘+1
(𝑖)

 , 𝑖 =

1,… ,𝑁𝑝   are obtained. These particles 𝑝𝑘
(𝑖)

 , 𝑖 = 1, … , 𝑁𝑝  are predicted using 

(3.3-1). In order to be able to use (3.3-1) for this purpose, 𝑣𝑘|𝑘
(𝑖)

 is substituted 

into 𝑣𝑘 on the right hand side. When this is done, 𝑝𝑘+1 can be expressed as 

follows: 

𝑝𝑘+1 = 𝑝𝑘 + 𝑇𝑣𝑘|𝑘
(𝑖) + 𝑤̅𝑘 +

𝑇2

2
𝑤𝑘 3.3-4 

          =  𝑝𝑘 + 𝑇𝑣𝑘|𝑘
(𝑖) + 𝑤̃𝑘               3.3-5 

where 𝑤̃𝑘 ≜ 𝑤̅𝑘 +
𝑇2

2
𝑤𝑘  and 𝑤̃𝑘~𝑁(𝑤̅𝑘, 0, 𝑇2𝑃𝑘|𝑘

(𝑖)
 )  represents the error 

introduced into (3.3-1) by making the substitution. Using (3.3-1), 𝑝𝑘+1
(𝑖)

 can be 

predicted as follows:  

𝑝𝑘+1
(𝑖)

= 𝑝𝑘
(𝑖)

+ 𝑇𝑣𝑘|𝑘
(𝑖) + 𝑤̃𝑘

(𝑖)
 3.3-6 

where  
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𝑤̃𝑘
(𝑖)

~ 𝑁 (𝑤̃𝑘
(𝑖); 0, 𝑇2𝑃𝑘|𝑘

(𝑖) + 
𝑇4

4
𝑄). 3.3-7 

 Kalman Filter Pseudo-Measurement Update:  As soon as 𝑝𝑘+1
(𝑖)

 is known, 

this new information can be used to update the estimate 𝑣𝑘|𝑘
(𝑖)

 and the 

covariance 𝑃𝑘|𝑘
(𝑖)

. The reason can be seen by substituting 𝑝𝑘+1
(𝑖)

 and 𝑝𝑘
(𝑖)

 into 

the original model given in (3.3-1) as follows:  

𝑝𝑘+1
(𝑖)

 −𝑝𝑘
(𝑖)

= 𝑇𝑣𝑘 +
𝑇2

2
𝑤𝑘 3.3-8 

which is written as 

 𝑧𝑘
(𝑖)

= 𝐻 [
𝑣𝑘

𝑤𝑘
] 3.3-9 

where 

zk
(i) ≜ 𝑝𝑘+1

(𝑖)
 – 𝑝𝑘

(𝑖), 3.3-10 

𝐻 ≜ [𝑇𝐼2
𝑇2

2
𝐼2]. 3.3-11 

Here, 𝐼𝑛 denotes an identiy matrix of size 𝑛 x 𝑛, where 𝑛 =  2 in this case. 

As observed above, the quantity 𝑧𝑘
(𝑖)

 behaves as a pseudo-measurement for 𝑣𝑘 

and 𝑤𝑘. Note that if the dynamics of 𝑣𝑘 did not involve 𝑤𝑘,  𝑧𝑘
(𝑖)

 would be 

considered as a pseudo-measurement of only 𝑣𝑘, and then 𝑤𝑘 would be just a 

measurement noise term not to be estimated. However, since 𝑤𝑘 appears in 

the dynamics of both 𝑝𝑘 and 𝑣𝑘, the information coming from 𝑧𝑘
(𝑖)

  about 𝑤𝑘 

must be taken into account. The information about 𝑣𝑘 and 𝑤𝑘 can be 

summarized as below. 

[
𝑣𝑘

𝑤𝑘
] ∼ 𝑁 ([

𝑣𝑘

𝑤𝑘
] ; [

𝑣𝑘|𝑘
(𝑖)

0
] , [

𝑃𝑘|𝑘
(𝑖)

02

02 𝑄
]).  3.3-12 
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Here 0𝑛 denotes a zero-matrix of size 𝑛 x 𝑛, where 𝑛 =  2 in this case. Now, 

the information about 𝑣𝑘 and 𝑤𝑘 can be updated using a Kalman filter 

measurement update with the pseudo-measurement 𝑧𝑘
(𝑖)

. 

First, the calculation of the innovation covariance 𝑆𝑘
𝑧,(𝑖)

 for 𝑧𝑘
(𝑖)

 is given as 

follows. 

𝑆𝑘
𝑧,(𝑖) = 𝐻 [

𝑃𝑘|𝑘
(𝑖) 02

02 𝑄
]𝐻𝑇 , 3.3-13 

                                     = [𝑇𝐼2
𝑇2

2
𝐼2] [

𝑃𝑘|𝑘
(𝑖) 02

02 𝑄
] [

𝑇𝐼2
𝑇2

2
𝐼2

], 3.3-14 

       = 𝑇2𝑃𝑘|𝑘
(𝑖) + 

𝑇4

4
𝑄 .   3.3-15 

The Kalman gain is then given as follows. 

𝐾𝑘
𝑧,(𝑖) = [

𝑃𝑘|𝑘
(𝑖) 02

02 𝑄
]𝐻𝑇(𝑆𝑘

𝑧,(𝑖))
−1

, 3.3-16 

                   = [
𝑃𝑘|𝑘

(𝑖) 02

02 𝑄
] [

𝑇𝐼2
𝑇2

2
𝐼2

] (𝑆𝑘
𝑧,(𝑖))

−1

, 3.3-17 

= [
𝑇𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑇2

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1 ]. 3.3-18 

The updated information about 𝑣𝑘 and 𝑤𝑘 are given as follows: 

[
𝑣𝑘|𝑘

𝑧,(𝑖)

𝑤̂𝑘|𝑘
𝑧,(𝑖)

] = [𝑣𝑘|𝑘
(𝑖)

0
] + 𝐾𝑘

𝑧,(𝑖) (𝑧𝑘
(𝑖) − 𝐻 [𝑣𝑘|𝑘

(𝑖)

0
]), 3.3-19 
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                                     = [𝑣𝑘|𝑘
(𝑖)

0
] + [

𝑇𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

𝑇2

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1 ] (𝑧𝑘

(𝑖) − 𝐻 [𝑣𝑘|𝑘
(𝑖)

0
]), 3.3-20 

                                 =

[
 
 
 
 𝑣𝑘|𝑘

(𝑖) + 𝑇𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝐻 [𝑣𝑘|𝑘

(𝑖)

0
])

𝑇2

2
𝑄(𝑆𝑘

𝑧,(𝑖))

−1

(𝑧𝑘
(𝑖) − 𝐻 [𝑣𝑘|𝑘

(𝑖)

0
])

]
 
 
 
 

. 3.3-21 

Now, the pseudo-measurement updated information can be written as  

follows:  

𝑣𝑘|𝑘
𝑧,(𝑖) = 𝑣𝑘|𝑘

(𝑖) + 𝑇𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) ),   3.3-22 

𝑤̂𝑘|𝑘
𝑧,(𝑖) =

𝑇2

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) ).   3.3-23 

The updated covariance is given as: 

            [
𝑃𝑘|𝑘

𝑣𝑣,(𝑖) 𝑃𝑘|𝑘
𝑣𝑤,(𝑖)

𝑃𝑘|𝑘
𝑤𝑣,(𝑖) 𝑃𝑘|𝑘

𝑤𝑤,(𝑖)
] = [

𝑃𝑘|𝑘
(𝑖) 02

02 𝑄
] − 𝐾𝑘

𝑧,(𝑖)𝑆𝑘
𝑧,(𝑖)(𝐾𝑘

𝑧,(𝑖))
𝑇

,  3.3-24 

  

              = [
𝑃𝑘|𝑘

(𝑖) 02

02 𝑄
] − 

                 [

𝑇𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

𝑇2

2
𝑄(𝑆𝑘

𝑧,(𝑖))

−1 ] 𝑆𝑘
𝑧,(𝑖) [𝑇(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) 𝑇2

2
(𝑆𝑘

𝑧,(𝑖))

−1

𝑄], 

3.3-25 

  = [
𝑃𝑘|𝑘

(𝑖) 02

02 𝑄
] −

[
 
 
 𝑇2𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑃𝑘|𝑘
(𝑖) 𝑇3

2
𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑄

𝑇3

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) 𝑇4

4
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑄 ]
 
 
 

    , 3.3-26 
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=

[
 
 
 𝑃𝑘|𝑘

(𝑖) − 𝑇2𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) −

𝑇3

2
𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑄

−
𝑇3

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) 𝑄 −

𝑇4

4
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑄]
 
 
 

        ,  3.3-27 

 

 Kalman Filter Prediction Update: After the information about 𝑣𝑘 and 𝑤𝑘 

are updated with the pseudo measurement, the velocity dynamics given in 

(3.3-2) can be used to make the prediction for the Kalman filter estimate and 

covariance. It can be seen from (3.3-2) that  

𝑣𝑘+1 = 𝐹 [
𝑣𝑘

𝑤𝑘
]   3.3-28 

 where 

𝐹 ≜ [𝐼2 𝑇𝐼2].   3.3-29 

Hence, 𝑣𝑘+1|𝑘
(𝑖)

 and its covariance 𝑃𝑘+1|𝑘
(𝑖)

 are given as follows. 

𝑣𝑘+1|𝑘
(𝑖) = [

𝑣𝑘|𝑘
𝑧,(𝑖)

𝑤̂𝑘|𝑘
𝑧,(𝑖)

],                                                                            3.3-30 

= [𝐼2 𝑇𝐼2] [
𝑣𝑘|𝑘

𝑧,(𝑖)

𝑤̂𝑘|𝑘
𝑧,(𝑖)

],                                           3.3-31 

= 𝑣𝑘|𝑘
(𝑖) + 𝑇𝑤̂𝑘|𝑘

𝑧,(𝑖),                                                                   3.3-32 

                   =  𝑣𝑘|𝑘
(𝑖) + 𝑇𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) )  

                                +  
𝑇3

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) ), 

3.3-33 

                  = 𝑣𝑘|𝑘
(𝑖) + 𝑇 (𝑃𝑘|𝑘

(𝑖) +
𝑇2

2
𝑄) (𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) ). 3.3-34 
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             𝑃𝑘+1|𝑘
(𝑖)

= 𝐹 [
𝑃𝑘|𝑘

𝑣𝑣,(𝑖) 𝑃𝑘|𝑘
𝑣𝑤,(𝑖)

𝑃𝑘|𝑘
𝑤𝑣,(𝑖) 𝑃𝑘|𝑘

𝑤𝑤,(𝑖)
] 𝐹𝑇 ,                                                                   3.3-35 

                       = [𝐼2 𝑇𝐼2] [
𝑃𝑘|𝑘

𝑣𝑣,(𝑖) 𝑃𝑘|𝑘
𝑣𝑤,(𝑖)

𝑃𝑘|𝑘
𝑤𝑣,(𝑖) 𝑃𝑘|𝑘

𝑤𝑤,(𝑖)
] [

𝐼2
𝑇𝐼2

] ,     3.3-36 

                       = 𝑃𝑘|𝑘
𝑣𝑣,(𝑖) + 𝑇𝑃𝑘|𝑘

𝑣𝑤,(𝑖) + 𝑇𝑃𝑘|𝑘
𝑤𝑣,(𝑖) + 𝑇2𝑃𝑘|𝑘

𝑤𝑤,(𝑖),    3.3-37 

                       =  𝑃𝑘|𝑘
(𝑖) − 𝑇2𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑃𝑘|𝑘
(𝑖)  −

𝑇4

2
𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑄,       

                               −
𝑇4

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) + 𝑇2 (𝑄 −

𝑇4

4
𝑄(𝑆𝑘

𝑧,(𝑖) )
−1

𝑄).          

3.3-38 

 Now, predicted velocity and its covariance are obtained as follows. 

𝑣𝑘+1|𝑘
(𝑖) = 𝑣𝑘|𝑘

(𝑖) + 𝑇 (𝑃𝑘|𝑘
(𝑖) +

𝑇2

2
𝑄)(𝑆𝑘

𝑧,(𝑖))
−1

(𝑧𝑘
(𝑖) − 𝑇𝑣𝑘|𝑘

(𝑖) ),     3.3-39 

        𝑃𝑘+1|𝑘
(𝑖) = 𝑃𝑘|𝑘

(𝑖) − 𝑇2𝑃𝑘|𝑘
(𝑖)(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖)  −

𝑇4

2
𝑃𝑘|𝑘

(𝑖)(𝑆𝑘
𝑧,(𝑖))

−1

𝑄       

−
𝑇4

2
𝑄(𝑆𝑘

𝑧,(𝑖))
−1

𝑃𝑘|𝑘
(𝑖) + 𝑇2 (𝑄 −

𝑇4

4
𝑄(𝑆𝑘

𝑧,(𝑖) )
−1

𝑄),  

3.3-40 

where 

𝑧𝑘
(𝑖) = 𝑝𝑘+1

(𝑖)
 – 𝑝𝑘

(𝑖), 3.3-41 

𝑆𝑘
𝑧,(𝑖) = 𝑇2𝑃𝑘|𝑘

(𝑖) + 
𝑇4

4
𝑄.    3.3-42 

 

 Particle Filter Measurement Update: The particle weights 𝜋𝑘|𝑘
(𝑖)

 should be 

updated with the measurement 𝑦𝑘+1 using (3.3-3). In order to do this, 𝑣𝑘+1|𝑘
(𝑖)

 

is substituted for 𝑣𝑘+1 into (3.3-3) to obtain the following equations. 

𝑦𝑘+1  = 𝐶(𝑝𝑘+1)𝑣𝑘+1|𝑘
(𝑖) + 𝑒̅𝑘+1 + 𝑒𝑘+1 3.3-43 
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=  𝐶(𝑝𝑘+1)𝑣̂𝑘+1|𝑘
(𝑖) + 𝑒̃𝑘+1 3.3-44 

where 𝑒̃𝑘+1 ≜ 𝑒̅𝑘+1 + 𝑒𝑘+1 and 𝑒̅𝑘+1 ∼ 𝑁(𝑒̅𝑘+1; 0, 𝐶(𝑝𝑘+1)𝑃𝑘+1|𝑘
(𝑖) 𝐶𝑇(𝑝𝑘+1)) 

represents the error introduced into (3.3-3) by making the substitution. 

Notice that the new measurement noise term 𝑒̃𝑘+1 has distribution 𝑒̃𝑘+1 ∼

𝑁(𝑒̅𝑘+1; 0, 𝐶(𝑝𝑘+1)𝑃𝑘+1|𝑘
(𝑖) 𝐶𝑇(𝑝𝑘+1)) . This gives the weight update as 

follows: 

      𝜋𝑘+1|𝑘+1
(𝑖)  ∝ 𝑝(𝑦𝑘|𝑝𝑘+1

(𝑖) )𝜋𝑘|𝑘
(𝑖)  

        = 𝑁(𝑦𝑘; 𝐶(𝑝𝑘+1
(𝑖) )𝑣𝑘+1|𝑘

(𝑖) , 𝐶(𝑝𝑘+1
(𝑖) )𝑃𝑘+1|𝑘

(𝑖) 𝐶𝑇(𝑝𝑘+1
(𝑖) ) + 𝑅)𝜋𝑘|𝑘

(𝑖)
. 

3.3-45 

 Kalman Filter Measurement Update: The final step in the Rao-

Blackwellized particle filter iteration is the update of the predicted estimates 

𝑣𝑘+1|𝑘
(𝑖)

  and covariances 𝑃𝑘+1|𝑘
(𝑖)

  with the measurement 𝑦𝑘+1. This is carried 

out once again using (3.3-3). Given the position particle 𝑝𝑘+1
(𝑖)

, (3.3-3) can be 

written as follows. 

𝑦𝑘+1 = 𝐶(𝑝𝑘+1
(𝑖)

)𝑣𝑘+1 + 𝑒𝑘+1 3.3-46 

which is linear in 𝑣𝑘+1. Hence a standard Kalman filter measurement update 

can be used to update 𝑣𝑘+1|𝑘
(𝑖)

 and 𝑃𝑘+1|𝑘
(𝑖)

 with 𝑦𝑘+1 as follows: 

𝑣𝑘+1|𝑘+1
(𝑖) = 𝑣𝑘+1|𝑘

(𝑖) + 𝐾𝑘+1
𝑦,(𝑖)

(𝑦𝑘+1 −  𝐶(𝑝𝑘+1
(𝑖) )𝑣𝑘+1|𝑘

(𝑖) ) 3.3-47 

𝑃𝑘+1|𝑘+1
(𝑖) = 𝑃𝑘+1|𝑘

(𝑖) − 𝐾𝑘+1
𝑦,(𝑖)

𝑆𝑘+1
𝑦,(𝑖)

(𝐾𝑘+1
𝑦,(𝑖)

)
𝑇

 3.3-48 

where 

𝑆𝑘+1
𝑦,(𝑖)

= 𝐶(𝑝𝑘+1
(𝑖) )𝑃𝑘+1|𝑘

(𝑖) 𝐶𝑇(𝑝𝑘+1
(𝑖) ) + 𝑅, 3.3-49 

𝐾𝑘+1
𝑦,(𝑖)

= 𝑃𝑘+1|𝑘
(𝑖) 𝐶𝑇(𝑝𝑘+1

(𝑖) )(𝑆𝑘+1
𝑦,(𝑖)

)
−1

. 3.3-50 
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3.4. Simulation Results of Particle Filters for Doppler-only 

Tracking 

In this section, the simulation results of the particle filters for Doppler-only tracking 

are presented. Moreover, some remarks and comments for these simulation results 

are made. Three different particle filters were derived in Section 3.1, 3.2 and 3.3. 

Also, the details of EKF are given in Chapter 2. These filters are compared by using 

them to track a target with multiple Doppler-only sensors. Here, the multiple active 

Doppler sensors measurement model and the constant velocity target motion model 

are used. The details of these models are given in Section 2.1. The sensor positions 

and target trajectory are shown in Figure 38. In all of the filters, the track 

initialization algorithm of Chapter 2 is utilized. 

 

Figure 38 Sensor positions and target trajectory for tracking filters comparison. 

 

In the simulations, RMS position errors and velocity errors are obtained for each 
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taken with a period of 1 second. In these simulations, the unknown target 

acceleration (process noise) has a variance value of 𝜎𝑝𝑟𝑜𝑐
2 = 1 (𝑚/𝑠2)2. We evaluate 

the RMS position and velocity errors with different measurement noise variances. 

For this purpose, Monte Carlo simulations which include 100 runs are repeated for 

seven different measurement noise standard deviation values 

𝜎𝑚𝑒𝑎𝑠 = 10, 50 ,100, 150, 200, 250, 300 𝐻𝑧. The RMS position and velocity errors 

of four tracking filters with different measurement noise variance values are given in 

Figure 39 to Figure 52. 

 

Figure 39 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎 𝑯𝒛.  
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Figure 40 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎 𝑯𝒛. 

 

Figure 41 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟓𝟎 𝑯𝒛.  
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Figure 42 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟓𝟎 𝑯𝒛. 

 

Figure 43 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎𝟎 𝑯𝒛.  
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Figure 44 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟎𝟎 𝑯𝒛. 

 

Figure 45 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟓𝟎 𝑯𝒛 . 
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Figure 46 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟏𝟓𝟎 𝑯𝒛. 

 

Figure 47 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟐𝟎𝟎 𝑯𝒛 . 
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Figure 48 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟐𝟎𝟎 𝑯𝒛. 

 

 

Figure 49 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟐𝟓𝟎 𝑯𝒛 . 
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Figure 50 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟐𝟓𝟎 𝑯𝒛. 

 

Figure 51 RMS position errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟑𝟎𝟎 𝑯𝒛 . 
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Figure 52 RMS velocity errors for 𝝈𝒎𝒆𝒂𝒔 = 𝟑𝟎𝟎 𝑯𝒛. 
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proposal density dependent on these noisy measurements makes things worse. For 

high measurement noise standard deviation case, Rao-Blackwellized particle filter 

has the lowest RMS errors among other particle filters. 

In this chapter, although it has been seen that the performance of the particle filters 

used for Doppler only tracking might be improved a little for some specific 

scenarios, the overall performance of the improved filters could still not beat EKF. 

Therefore, it has been understood that more intelligent improvement techniques has 

to be utilized for this purpose. In the literature, the failure of the bootstrap particle 

filter for this problem is usually attributed to the initialization of the filters. On the 

other hand, in this chapter, a successful track initialization algorithm was utilized in 

all simulations and the bad performance was still observed. Therefore, it should be 

clear that the problem of the particle filters with Doppler-only tracking problem is 

not about initialization; rather it is about very low observability of the position 

variables compared to the velocity variables. 
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CHAPTER 4 

 

OPTIMUM SENSOR PLACEMENT FOR DOPPLER-ONLY 

TRACKING 

 

 

In multi-static applications, it is well known that sensor placement and/or the 

directions of the sensors with respect to the target play a crucial role on the 

performance. Effective sensor placement strategies are very important to gain as 

much information about the target as possible out of the sensors. This fact is 

confirmed by the vast number of theoretical studies on the subject in the tracking and 

localization applications. In the literature, many researchers have investigated the 

sensor placement problem for different sensor and measurement types, such as time 

of arrival and angle of arrival, [21, 24, 28, 29 and 30]. For Doppler-only 

measurements, the solution to the optimal sensor placement problem is available 

only for a localization application (i.e., a static parameter estimation problem), [32]. 

For tracking applications, the relationship between the number of the sensors and 

error performance is analyzed in [17]. But, in this study, sensors are located on the 

vertices of the regular polygon and the optimality of this placement is not discussed. 

With this motivation, in this chapter an optimum sensor placement strategy for 

tracking with Doppler-only measurements is also studied in this thesis.  

The organization of this chapter is given as follows. The sensor placement problem 

definition is given in Section 4.1. Here the sensor placement problem in the case of 

Doppler only tracking is defined after a discussion about the optimality criteria used 

in the general sensor placement problem. To gain insight for the sensor placement 
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problem in the Doppler only case, only 1D target motion is considered. The objective 

function for the sensor placement is selected to be the integral of the position CRLB 

over a road segment of a specified length and the optimum sensor placement for this 

criterion is found by using the optimization routines in MATLAB. Inspired by the 

numerical results which are presented in Section 4.2, in Section 4.3, a suboptimum 

sensor placement strategy is proposed which 

 is much simpler compared to the optimum  placement (which requires 

numerical optimization) with explicit expressions for the sensor positions;  

 has very close performance to the optimum sensor placement strategy.       

4.1. Sensor Placement Problem Definition for Doppler Only 

Measurement 

In the optimum sensor placement problem, the aim is to increase the information 

about the target contained in the measurements as much as possible. For this purpose, 

generally lower bounds, specifically CRLBs, for the corresponding estimation 

problem are minimized. From this perspective, an optimization based approach is 

proposed based on the CRLB matrices. There are two problems associated with the 

CRLB based sensor placement approaches. The first problem is that CRLB is a 

matrix valued quantity and therefore a single scalar value should be extracted from 

this matrix to be used in the optimization routine. The second problem is that CRLB 

is dependent on many parameters other than the sensor positions such as the target 

position, target velocity, wavelength, variance of the measurement noise etc.  

In the literature, sensor placement approaches use three different objective functions 

extracted from the CRLB matrix as optimization criteria and each has a different 

physical meaning. These criteria are listed as follows. 

 A-Optimality: The trace of the CRLB matrix is minimized. Hence, an 

approach based on this criterion aims to minimize the total variance of the 

estimated quantities.   

 D-Optimality: The determinant of the FIM is maximized which is equivalent 

to the minimization of the determinant of the CRLB matrix. An approach 
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based on this criterion aims to minimize the area of the uncertainty ellipse 

around the estimate. 

 E-Optimality: The largest eigenvalue of the CRLB matrix is minimized. An 

approach based on this criterion aims to keep the largest axis of the 

uncertainty ellipsoid as small as possible. 

These criteria can also have the following drawbacks. A-optimality, by considering 

only the trace of the CRLB matrix, hence only the diagonal elements of the CRLB 

matrix, does not take the correlations between the estimated quantities into account. 

Hence, an uncorrelated but large uncertainty case might be preferred to a correlated 

but small uncertainty case. In D-optimality, there is a risk of obtaining a very thin 

uncertainty ellipsoid which may result in significantly large errors on the major axis 

of the uncertainty ellipsoid.  

CRLB matrix is dependent on the target position and velocity as well as the sensor 

positions for the Doppler-only measurement case. Therefore different sensor 

placement solutions can be obtained for different target positions and velocities. In 

tracking applications, a track can start from and pass through any point with any 

velocity in a region of interest. These facts make the sensor placement for the 

specific aim of target tracking (using Doppler only measurements) quite a difficult 

problem to solve. Considering this issue, in this chapter, we constrain the target 

movements to 1D so that the optimization problem is simplified and meaningful and 

insightful results are obtained. The target we consider can move on a straight 

path/road with any velocity value. By taking into account the fact that the velocity 

errors are small compared to position errors with Doppler measurements, we aim to 

optimize only the position error CRLB in 1D. Since the target can be on any point on 

the straight path/road at any time instant during tracking, we consider the integral of 

the CRLBs for position as the cost function for the sensor placement. 

The visualization of the 1D target scenario is given in Figure 53. Here, the target can 

move in both directions on the path/road of length 𝐿 with any velocity. Optimal 

sensor placement is to be made in the 2D area excluding the path itself. 
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Figure 53 Sensor placement scenario considered in the thesis. 

Without loss of generality, the road is chosen on the x-axis for simplicity and 

therefore, the target motion is constrained to the x-axis. The leftmost tip of the road 

segment is assumed to be the origin. Hence, only the target position on the x-axis in 

the interval [0, 𝐿] is of interest. The target state is chosen to consist of the target 

position and target velocity on the x-axis as follows. 

𝑋 = [𝑥, 𝑣𝑥]
𝑇 4.1-1 

The calculation of the CRLB matrix for the target state is described as follows.    

𝐶𝑅𝐿𝐵 = (𝐽𝑇(𝑋)𝑅−1𝐽(𝑋))−1
  4.1-2 

             = 𝜎𝑚𝑒𝑎𝑠
2 (𝐽𝑇(𝑋)𝐽(𝑋))−1 4.1-3 

where 𝑅 =  𝜎𝑚𝑒𝑎𝑠
2 𝐼𝑁 represents the measurement noise covariance and 𝐼𝑁 denotes an 

identity matrix of size 𝑁 x 𝑁 where 𝑁 is the number of the Doppler sensors. Note 

that with this form of the measurement noise covariance, we assume that all Doppler 

sensors collect independent and identically distributed Doppler information. The 

Jacobian matrix 𝐽(𝑋) is given as 

                                                       𝐽(𝑋) =

[
 
 
 
 𝑗

1(𝑋)
..
.

𝑗𝑁(𝑋)]
 
 
 
 

   4.1-4 

where the rows 𝑗𝑖(𝑋) are given as 
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𝑗𝑖(𝑋) = [
𝜕𝐹𝑖

𝜕𝑥
(𝑋)  

𝜕𝐹𝑖

𝜕𝑣𝑥
(𝑋) ] 4.1-5 

for 𝑖 = 1,… ,𝑁. The functions 𝐹𝑖 for the Doppler measurements are given as 

𝐹𝑖(𝑋) =
2

𝜆

(𝑥 − 𝑥𝑖)𝑣𝑥

𝑑𝑖
 4.1-6 

where  

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦𝑖)2. 4.1-7 

Here, 𝑥𝑖 and 𝑦𝑖 represents 𝑖th
 sensor position in x axis and y axis, respectively.  The 

partial derivatives 
𝜕𝐹𝑖

𝜕𝑥
 and  

𝜕𝐹𝑖

𝜕𝑣𝑥
 can be calculated as follows. 

 
𝜕𝐹𝑖

𝜕𝑥
= − 

2

𝜆
(
𝑣𝑥. 𝑑

𝑖 − (𝑥 − 𝑥𝑖). 𝑑̇𝑖

(𝑑𝑖)2
) , 4.1-8 

= −
2

𝜆

𝑣𝑥 − 𝑣𝑥𝑝𝑥
𝑖 𝑝𝑥

𝑖

𝑑𝑖
,       4.1-9 

= −
2

𝜆

𝑣𝑥 (1 − (𝑝𝑥
𝑖 )

2
)

  𝑑𝑖
.    4.1-10 

 
𝜕𝐹𝑖

𝜕𝑣𝑥
= −

2

𝜆

(𝑥 − 𝑥𝑖)

𝑑𝑖
,                                    4.1-11 

= −
2

𝜆
𝑝𝑥

𝑖 .                                      4.1-12 

where 

𝑝𝑥
𝑖 =

(𝑥 − 𝑥𝑖)

𝑑𝑖
, 4.1-13 

                     𝑑̇𝑖 = 
𝑣𝑥(𝑥 − 𝑥𝑖) 

𝑑𝑖
= 𝑣𝑥𝑝𝑥

𝑖 . 4.1-14 

When Jacobian matrix 𝐽 is substituted into (4.1-3), the CRLB matrix can be 

expressed as follows. 

        𝐶𝑅𝐿𝐵 = 𝜎𝑚𝑒𝑎𝑠
2 (𝐽𝑇𝐽)−1    4.1-15 
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               = 𝜎𝑚𝑒𝑎𝑠
2

𝜆2

4

[
 
 
 
 
 
   𝑣𝑥

2 ∑(
(1 − (𝑝𝑥

𝑖 )2)

𝑑𝑘
𝑖

)

2𝑁

𝑖=1

𝑣𝑥 ∑𝑝𝑥
𝑖
(1 − (𝑝𝑥

𝑖 )2)

𝑑𝑘
𝑖

𝑁

𝑖=1

𝑣𝑥 ∑𝑝𝑥
𝑖
(1 − (𝑝𝑥

𝑖 )2)

𝑑𝑘
𝑖

𝑁

𝑖=1

∑(𝑝𝑥
𝑖 )

2
𝑁

İ=1

        
]
 
 
 
 
 
−1

. 4.1-16 

When the inverse is calculated,  𝐶𝑅𝐿𝐵(1,1), i.e., the first column, first row element 

of the CRLB matrix which corresponds to the CRLB of the target position, can be 

expressed as follows. 

𝐶𝑅𝐿𝐵(1,1)

= 𝜎𝑚𝑒𝑎𝑠
2

𝜆2

4𝑣𝑥
2
 

∑ (𝑝𝑥
𝑖 )

2𝑁
İ=1

∑ (𝑝𝑥
𝑖 )

2𝑁
İ=1 ∗ ∑ (

(1 − (𝑝𝑥
𝑖 )2)

𝑑𝑘
𝑖 )

2

𝑁
𝑖=1 − (∑ 𝑝𝑥

𝑖 (1 − (𝑝𝑥
𝑖 )2)

𝑑𝑘
𝑖

𝑁
𝑖=1 )

2

 

. 4.1-17 

The quantity 𝐶𝑅𝐿𝐵(1,1) represents the uncertainty in the position estimation. As 

seen in the expression above, it is dependent on the target position, velocity, signal 

wavelength and measurement noise covariance as well as the sensor positions. Note 

that the dependences on the target velocity 𝑣𝑥, wavelength 𝜆 and measurement noise 

variance 𝜎𝑚𝑒𝑎𝑠
2  are all in the form of a positive scaling constant. Therefore, the result 

of an optimization of 𝐶𝑅𝐿𝐵(1,1) with respect to sensor positions will not be affected 

by these parameters. On the other hand, the dependence on the target position cannot 

be neglected. In this study, we select to get rid of the effect of this dependence on the 

target position by integrating out the target position from 𝐶𝑅𝐿𝐵(1,1). Hence, the 

cost function used in this study for sensor placement is given as follows. 

𝐶𝑜𝑠𝑡 = ∫ 𝐶𝑅𝐿𝐵(1,1)𝑑𝑥
𝑥=𝐿

𝑥=0
 4.1-18 

which is given in explicit form as below. 

 

𝐶𝑜𝑠𝑡

=
𝜎𝑚𝑒𝑎𝑠

2 𝜆2

4 𝑣𝑥
2

∫  
∑ (𝑝𝑥

𝑖 )
2𝑁

İ=1

∑ (𝑝𝑥
𝑖 )

2𝑁
İ=1 ∗ ∑ (

(1 − (𝑝𝑥
𝑖 )2)

𝑑𝑘
𝑖 )

2

𝑁
𝑖=1 − (∑ 𝑝𝑥

𝑖 (1 − (𝑝𝑥
𝑖 )2)

𝑑𝑘
𝑖

𝑁
𝑖=1 )

2

 

𝐿

𝑥=0

𝑑𝑥. 4.1-19 
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The cost function given above represents the total position uncertainty over the road 

segment considered in the sensor placement problem. The aim is to minimize this 

total uncertainty by considering a predefined number of Doppler sensors with respect 

to sensor positions. The minimization of the overall uncertainty over the whole road 

can be thought of as the tracking aspect of the cost considered here and it ensures 

that the tracks of a tracker would be in good quality over the whole road segment.   

4.2. Simulation Results  

The cost function to be optimized for the optimum sensor placement was given in the 

previous section. It is difficult to evaluate the cost function because the integral in 

(4.1-19) is impossible to take analytically. Therefore, the integral is taken 

numerically on a uniform grid over the x-axis with grid spacing of 0.04 m. The road 

length is taken to be 100 meters. The minimization task is achieved using the Matlab 

function fmincon(.) for different numbers of sensors. The optimum sensor 

placements obtained for different numbers of sensors, 𝑁, are shown in Figure 54 to 

Figure 57. 
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Figure 54 Optimum sensor placement for 𝑵=3, 5, 7, 9. 

   

Figure 55 Optimum sensor placement for 𝑵=11, 13, 15, 19. 
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Figure 56 Optimum sensor placement for 𝑵 =25, 45, 75, 125. 

 

Figure 57 Optimum sensor placement for 𝑵=4, 8, 12, 20, 40. 
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It is seen in the figures that the y-values of the optimally placed sensors are close to 

each other. As the number of sensors increases, the optimally placed sensors get 

closer to the road segment considered and vice versa. For both even and odd numbers 

of sensors, the optimal sensor placement is symmetric with respect to the line 𝑥 =

50, i.e., with respect to the orthogonal bisector of the road segment.   

4.3. An Explicit Simple-Form Suboptimal Sensor Placement 

Strategy  

In this thesis, by observing the figures of the previous section, it has been discovered 

that the optimally placed sensors have some characteristic features which can be 

summarized as follows. 

 y-positions are concentrated around a single y-value which is equal to the 

division of the road length by two times the number of sensors. For example, 

for the 5 sensor case, y positions of the sensors are around 10 meters. For the 

25 sensor case, y-positions of the sensors are around 2 meters. These 

examples can be extended to all of the cases shown in the figures. As seen in 

the figures above, as the sensors get closer to the beginning and the end of the 

road segment, they deviate slightly from the characteristics described above. 

Especially the left-most and the right-most sensors have slightly lower y-

positions than the other sensors.  

 x-positions are located along the road in a symmetrical manner. The x-axis 

distance between all adjacent sensors is approximately equal to the division 

of the road length by the number of sensors. The x-position of the left-most 

sensor is approximately half of the distance between the adjacent sensors. For 

example, in the case when there are 5 sensors, the sensors are located such 

that the distances between adjacent sensors are approximately 20 meters and 

the x-position of the left-most sensor is approximately 10 meters. For the 25 

sensor case, the distance between the adjacent sensors is around 4 meters and 

the x-position of the left-most sensor is around 2 meters. Again these 

examples can be extended for all other cases presented in the figures.  
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In view of the observations described above, in this section, we present a suboptimal 

sensor placement strategy.  The proposed suboptimal sensor placement strategy is 

described below.  

Explicit Sensor Positions for the Proposed Sub-Optimal Strategy: Suppose that 

we would like to place 𝑁 Doppler sensors optimally with respect to the cost function 

given in (4.1-19). 

 

Figure 58 The proposed simple sensor placement strategy. 

We first define the critical parameter  

𝑑 =
𝐿

2𝑁
 4.3-1 

where 𝐿 is the length of the road segment considered. 

The proposed sub-optimal sensor positions are then given as 

𝑥𝑖 = 𝑑 + (𝑖 − 1)2𝑑 

𝑦𝑖 = 𝑑 
4.3-2 

for 𝑖 = 1, 2, … ,𝑁. 

The proposed suboptimal sensor placement strategy is illustrated in Figure 58. As 

seen in the figure, y-positions of all sensors are selected to be equal to 𝑑. The x-

distance between the adjacent sensors is selected to be 2𝑑 and the x-position of the 

first sensor is equal to 𝑑. With the proposed sensor placement strategy, when the 

number of sensors is odd, the x-position of the (𝑁 + 1)/2’th sensor is in the middle 

of the road segment as in the optimal sensor placement strategy. This gives us the 

opportunity to compare the y-positions of the sensors in the middle for the 
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suboptimal and optimal sensor placement strategies. Figure 59 illustrates the y-values 

of the sensor in the middle for the optimal and sub-optimal sensor placement 

strategies when the number of sensors is odd. In Figure 60, in a similar way, x-

positions of the left-most sensor are shown for the optimal and sub-optimal sensor 

placement strategies.  As seen in these figures, the position values for the proposed 

suboptimal sensor placement strategy are very close to those of the optimal strategy. 

 

Figure 59 y-axis position of the sensor in the middle of the array. 
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Figure 60 x-axis position of the left-most sensor of the array. 

 

In order to describe the performance of the proposed strategy in a more physically 

meaningful manner, average position CRLB of the proposed strategy and optimum 

placement are compared. Average position CRLB is obtained by taking square-root 

of the total cost (which is the total position CRLB) divided by the road length as in 

(4.3-3). Here the term 𝐶𝑜𝑠𝑡 is given in (4.1-19) and 𝐿 is the length of the road 

segment.  

 

Average position CRLB that would be obtained for the optimal and the proposed 

strategies for different numbers of sensors are shown in Figure 61. Also the ratios of 

the average position CRLB obtained by the proposed strategy to that obtained by the 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑅𝐿𝐵 = √
𝐶𝑜𝑠𝑡

𝐿
 4.3-3 
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optimal strategy for different numbers of sensors are shown in Figure 62. The 

parameter values used for obtaining these figures are given as follows.  

 Wavelength is 𝜆 = 0.33 meters. 

 Target speed is 𝑣𝑥 = 5 m/s  

 Measurement noise variance is 𝜎𝑚𝑒𝑎𝑠
2 = 1 Hz

2
.  

It should also be noted that these parameters do not affect the argument of the 

optimization but they just scale the average position CRLB. As seen in the figures, 

the average position CRLB difference is very small or even negligible for the sub-

optimal strategy compared to the optimal one. Moreover, as the number of sensors 

gets larger, the difference becomes more and more negligible.  

 

Figure 61 The average position CRLB for the optimum and the proposed sensor placement strategies for 

different number of sensors. 
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Figure 62 The ratio of the average position CRLB that are obtained by the optimum and proposed 

suboptimal sensor placement strategy for different number of sensors.  
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been obtained using just intuition without any cost function minimization by arguing 

that sensors should be distributed almost uniformly along the road segment for good 

performance. On the other hand, it would be difficult to discover the y-position of the 

sensors in the proposed strategy intuitively. To evaluate the effect of the y-position 

of the sensors in the proposed strategy, a simulation study is performed. On a target 

tracking example with EKF, average RMS x-position errors are obtained for different 

sensor y-positions.  

Average RMS values are calculated using 1000 Monte Carlo runs. In this simulation, 

five sensors are used. x-positions of the sensors are chosen as in the proposed 

strategy. y-positions of the sensors are changed between 4 meters and 20 meters with 

2 meters steps. In this simulation the selected parameters for the true target trajectory 

and measurements are given as follows. 

 Measurement noise variance is 𝜎𝑚𝑒𝑎𝑠
2 = 1 𝐻𝑧2.  
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 EKF initial covariance matrix is selected to be diagonal with variances 

chosen as 𝜎𝑥
2 = 1𝑒2m2 and 𝜎𝑣𝑥

2 = 225 (m/s)2.  

 The target trajectory is constrained on the road segment. The trajectory starts 

at 𝑥 = 0 𝑚 and ends at 𝑥 = 100 𝑚 .The constant target speed is 𝑣𝑥 = 5 𝑚/𝑠.  

 True initial state of target is used as the initial state of EKF.  

 

Average RMS x-position errors obtained for different sensor y-positions are shown 

in Figure 63. As seen in the figure, as expected, the minimum average RMS error 

occurs at y position of 10 meters which is y-position of the sensors in the proposed 

sensor placement strategy. The RMS errors increase rather sharply if the sensors are 

placed closer to the road segment than the proposed y-position. The error increase is 

milder if the sensors are placed further to the road segment than the proposed y-

position. 

 

 

Figure 63 Average RMS x-position errors for different y-position of the sensors. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this thesis, we have considered three important problems in Doppler-only target 

tracking. First, we have adapted a localization algorithm for Doppler-only 

measurements proposed in the literature to a single point track initialization 

algorithm for Doppler-only tracking. This method was based on the separable least 

squares method. The implemented track initialization algorithm has been shown to 

work successfully with EKF. It has been seen that EKF obtains very close results to 

CRLB when it is initialized with the track initialization procedure proposed and it, 

most of the time, diverges without such a procedure. The most important parameter 

for the track initialization algorithm considered is the grid spacing parameter. Using 

various simulation results it has been seen that, for selecting grid spacing parameter, 

CRLB values for the problem of interest can serve as a baseline as also observed in 

the literature before. It was shown that for grid spacing values lower than or equal to 

the CRLB of the problem, the performance difference for EKF is minor. On the other 

hand, for grid spacing much larger than the CRLB, there is significant performance 

degradation for EKF. Therefore, as was done in the literature, it is suggested to check 

the CRLB for a problem before designing a tracking filter and to select the grid 

spacing around this value to optimize both the amount of computations and the 

initialization performance. 

Secondly, in the thesis, we have shown that the bootstrap particle, which can easily 

beat EKF in many nonlinear state estimation problems, fails to do so for Doppler-

only tracking. We have discussed the reasons for this behavior and concluded that 
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the cause is the weaker observability of the position variables compared to the 

velocity variables. In order to see whether standard sequential Monte Carlo tools can 

improve the behavior of the bootstrap filter for this problem, we have derived a SIR 

particle filter with optimal proposal distribution and a Rao-Blackwellized particle 

filter for Doppler-only tracking. The evaluation of the performances of these filters 

has shown that these improved filters still fail to beat EKF although there are 

occasional improvements over the bootstrap particle filter for some specific 

parameter selections. As a final remark, it is said that more clever and problem 

specific improvement strategies has to be devised in order to increase the 

performance of particle filters for Doppler-only tracking.  

The final contribution of this thesis is in the area of sensor placement. Although there 

are many sensor placement studies in the literature for e.g., range or bearing 

measurements, the case of Doppler-only measurements seem to lack detailed 

research. In this thesis, for the 1D target motion case, sensor placement problem has 

been solved for minimizing the total position CRLB/uncertainty over a line/road 

segment. Based on the numerical results, an explicit and simple sensor placement 

strategy has been proposed. The resulting strategy has been shown to have quite 

close results to the optimal sensor placement strategy.   

The invention of the new ways to improve the particle filter performance for 

Doppler-only tracking would be a fruitful research in the future. The generalization 

of the sensor placement methodology proposed in the thesis to 2D target motion and 

the investigation of different criteria for sensor placement for Doppler-only 

measurements are also left as future research topics. 
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