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ABSTRACT

BI-DIRECTIONAL EVOLUTIONARY ALGORITHM FOR VOLUME
CONSTRAINED TOPOLOGY OPTIMIZATION OF AXISYMMETRIC

SOLIDS

TİKENOĞULLARI, OĞUZ ZİYA

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Suha Oral

September 2015, 71 pages

In this thesis, topology optimization of axisymmetric solids is studied. Analysis

of the axisymmetric problem is performed by coding an axisymmetric finite

element formulation in association with the optimization code which is based on

Bi-Directional Evolutionary Optimization (BESO) method. The optimization

method used in this study includes recent improvements to the evolutionary

optimization algorithms. These are bi-directional evolution, sensitivity number

filtering and sensitivity-time averaging. In the optimization process, mean

compliance of the overall structure is minimized while gradually removing

material in order to reach volume constraint. Removal of the material is decided

according to the strain energy stored within the volume of the finite element. In

this study, hard-kill method is used for the element removal. Therefore removed

material has no contribution to the stiffness of the structure. In the analysis

of the structure, iso-parametric axisymmetric finite element formulation is used.
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Both the analysis and optimization codes are run in a successive manner. Sample

problems are chosen from the literature and solved with the present optimization

method. Results are compared and performance of the method is discussed.

Keywords: Bi-directional, Evolutionary, Topology, Structural, Axisymmetric,

Optimization
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ÖZ

EKSENEL SİMETRİK YAPILARIN HACİM KISITLAMALI ÇİFT YÖNLÜ
EVRİMSEL ALGORİTMALAR İLE OPTİMİZASYONU

TİKENOĞULLARI, OĞUZ ZİYA

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Suha Oral

Eylül 2015 , 71 sayfa

Bu tezde eksenel simetrik yapıların evrimsel optimizasyonu çalışılmıştır. Eksenel

simetrik optimizasyon probleminin çözümü, çift yönlü evrimsel optimizasyon

metodu (BESO) tabanlı optimizasyon yöntemi ile sonlu elemenlar yöntemi bir

arada kullanılarak gerçekleştirilmiştir. Bu çalışmada kullanılan optimizasyon

yöntemi son zamanlarda evrimsel optimizasyon yöntemi (ESO) üzerinde yapılan

iyileştirmeleri de kapsamaktadır. Bunlar; çift yönlü evrimin eklenmesi, duyarlılık

sayılarının filtrelenmesi ve duyarlılık sayılarının zamana göre ortalamasının

alınması yöntemleridir. Optimizasyon sürecinde tüm yapının hacmi adım adım

azaltılarak hedeflenen hacimsel orana ulaştırılırken yapının eşdeğer esnekliği

azaltmaya çalışılmaktadır. Malzemenin boşaltılmasındaki kriter olarak, sonlu

elemanın hacminde depolanan gerinim enerjisi kullanılmaktadır. Bu çalışmada

malzemenin boşaltılmasında tam boşaltma yöntemi kullanılmaktadır. Bu

sebepten, malzeme boşaltıldıktan sonra yapının rijitliği üzerinde hiç bir etkisi
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kalmamaktadır. Yapının analizinde eş-parametrik sonlu eleman formulasyonu

kullanılmaktadır. Optimizasyon ve analiz kodları, süreç bounca ardışık şekilde

çalışmaktadır. Literatürden seçilen problemler sunulan bu optimizasyon yöntemi

ile çözülmüştür ve sonuçlar literatürle karşılaştırılırken optimizasyon yönteminin

performansı hakkında yorumlamalar yapılmıştır.

Anahtar Kelimeler: Çift Yönlü, Evrimsel, Topoloji, Yapısal, Eksenel Simetrik,

Optimizasyon
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CHAPTER 1

INTRODUCTION

In structural engineering, optimization methods have a wide range of possible

applications and structural optimization gains popularity with the increasing

computational power. Optimization can be used in different steps of the

design process. Structural optimization can be separated into three classes; size

optimization, shape optimization and topology optimization. Size optimization

is the search for the optimum thickness of predefined members, whereas shape

optimization is the search for the optimum shape of the predefined boundaries

of members. Topology optimization is not constrained by predefined members

or boundaries; searches for the optimum shape and layout of cavities within

a structure (graphical illustration of three classes is given in figure 1.1).

Therefore topology optimization is the most challenging and the most rewarding

optimization class. Topology optimization is suitable for the early design phases.

It helps the designer to understand the design domain better and explore

the possible efficient design options. Generally in a design process, topology

optimization is followed by shape and size optimizations. Therefore, topology

optimization is not excepted to result in a final product, instead it is expected

yo give a rough idea about the most efficient topology.

In the recent years many topology optimization methods were developed

such as ESO/BESO (Xie and Steven, 1993 [42]; Huang and Xie, 2007 [16]),

homogenization method (Bendsøe and Kikuchi, 1988 [2]; Bendsøe and Sigmund,

2003 [4]), SIMP method (Bendsøe, 1989 [3]; Zhou and Rozvany, 1991 [45]; Rietz,

2001 [29]; Bendsøe and Sigmund, 2003 [4]) and level set method (Sethian and
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Figure 1.1: Visualization of classes of structural optimization [4] (Top to bottom:
Size optimization, shape optimization and topology optimization)

Wiegmann, 2000 [32]; Wang et al., 2003 [40]; Allaire et al., 2004 [1]; Wang

et al., 2004 [41]). Beyond these methods, evolutionary structural optimization

(ESO and later developed into BESO) method is one of the efficient and effective

methods. Following years of the establishment of the evolutionary optimization

algorithm, many studies and critics are made on this topic. These studies pointed

out some shortcomings of this method thus, lead to various improvements over

the original method. With these improvements BESO method has become even

more effective which is one of the reasons of this study.

In the literature there is a wide range of applications of topology optimization

methods. However, most of them focus on either 2D or 3D problems.

Applications of axisymmetric topology optimization are limited in the literature.

Therefore this is another motivation for the topic of this study.

Objective of this thesis is to apply Bi-directional Evolutionary Structural

Optimization method together with some of these important improvements in

order to solve optimization problem of an axisymmetric solid. For this purpose,

different case problems are solved and some are compared with the solutions

from literature.
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1.1 Problem Definition

In this study, topology of an axisymmetric solid is optimized. Optimization

procedure is based on the BESO method with slight modifications that are

discussed in the following chapters. In each iteration of the optimization

algorithm, a finite element analysis is performed. At the end of these

successive iterations the topology is expected to converge to an optimum. After

convergence, the resulting structure is accepted as the optimized structure.

In the process of seeking for the optimum, mean compliance of the structure

is minimized while structure gradually approaches to the volume constraint.

When the structure is brought to the final target volume, optimization process

continues until convergence of the mean compliance value is obtained. This

problem type is called the "Stiffness optimization with a volume constraint".

On the other hand, in some practical applications stress constraints may be

important. In this case the minimum volume (or mass) of the structure is

searched, while structure is able to withstand the defined loads. This is the

"Mass optimization with stress constraints".

Major topology optimization methods are originally based on mean compliance

minimization, which can be considered as the simplest type of formulation and a

natural starting point as its solution reflects many of the fundamental issues in

the field (Bendsøe and Sigmund, 2003[4]). Although stiffness optimization can

be chosen due to mathematical simplicity (Jouve, 2014[20]) or its computational

efficiency (Holmberg, 2013[15]); it is sufficient for the needs of topology

optimization for most of the applications. In practical problems, stiffness

optimization is used in order to identify the load paths. Stress constraints (and

other design constraints) are implemented in the shape and size optimization

steps (Krog et al., 2002[22]). Hence, stiffness minimization formulation is

intensively used in stress constrained industrial applications.

On the other hand, some researchers have applied topology optimization

methods to stress constrained mass minimization (e.g., Duysinx and Bendsøe,

1998[12]; Shim and Manoochehri, 1997[33]). These applications help the

3



designers achieve a conceptual design which is closer to the final design[15].

In this thesis, minimization of mean compliance subject to volume constraint

is studied. Stress constraints and mass minimization is out of the scope of this

study. However mass optimization with stress constraints is recommended for

future researches and discussed in section5.3.

Resulting optimized topologies do not completely define the final shape of the

optimized structure. Objective of the optimization process is to give a rough

idea about the optimum topologies. In order to obtain the well-defined shape

of a structure, results of the topology optimization may be converted into

CAD models and they can be further optimized by applying shape and size

optimization methods and they can be modified regarding the manufacturability

concerns. However, these issues are out of the scope of this study. In this thesis

objective is not to obtain an end product; instead, focus is only on the topology

optimization procedure.

1.2 Literature Survey

Beginning with the late ’80s, numerical methods for topology optimization

has been studied widely; as in the example of the paper of Bendsøe and

Kikuchi (1988)[2] where they presented the homogenization method. Similar

to homogenization method in some aspects, ESO has been first developed by

Xie and Steven[42] and they presented the first ESO method in the 1993 in their

paper. In the beginning, it was mostly criticized as an intuitive approach to

optimization, however its mathematical theory is explained later by Tanskanen

(2002[38]). In his study, BESO is considered to have a mathematical theory

and it is shown that this method minimizes mathematical expression of the

compliance-volume product .

In 1997 Xie and Steven [43] summarized the early developments of the ESO

method in their book. In the following years, a rapid development is observed

in this area. At the same time there was concerns about the effectivity of the

evolutionary methods. Different researchers pointed the shortcomings of the
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ESO in their studies. Most of the earlier studies about evolutionary methods

neglected those problems. Some of those problems were convergence, local

optimum, checkerboard and mesh dependency problems.

One major shortcoming of the ESO is that it is not able to recover prematurely

deleted elements. This may lead to local optimum solutions and makes it

necessary to use small evolutionary ratios. Therefore more number of iterations

are needed and computational cost increases. To overcome this problem,

bi-directional evolutionary method was introduced by Yang et al. (1999)[44].

However this method was using separate addition and removal ratios, which

makes the solution dependent on the selections of the parameters. In 2007,

Huang and Xie[16] introduced a new approach to BESO. In new BESO method,

both material addition and removal are treated together which increases the

overall performance of the method and makes the algorithm more logical.

Another problem was addressed by Sigmund (1997)[34] and Sigmund and

Peterson (1998)[35] by introducing the sensitivity number filtering scheme. This

method averages the sensitivity numbers of the elements using the nearby

elements as it is described in detail in the following sections. Assuming that

the filtering diameter is chosen correctly, this method helps eliminate mesh

dependency and checkerboard problems. Another solution to the checkerboard

problem was put forward by Li et al (2001)[23] which is the sensitivity number

smoothing scheme. However this method is not effective against the mesh

dependency problem. Therefore the filtering scheme is implemented to the

BESO method in this study.

Huang and Xie (2007)[16] has addressed the convergence problem later in their

study by applying history averaging to the elemental sensitivity numbers. The

convergence problem arises from the fact that the design variables are discrete,

therefore objective function encounters big jumps between the iterations leading

to chaotic convergence curves. In order to avoid this, sensitivity number changes

should be smoothened. This is achieved by averaging the current sensitivity

numbers with the ones from the previous iteration. In this way, a more stable

process is obtained and convergence is achieved.
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Another shortcoming of the ESO/BESO is the one shown by Zhou and Rozvany

(2001)[46] which is yet to be solved. In that example of low stressed elements

near the support are removed by the algorithm which leads to a much worse

design. In order to prevent this problem, a finer mesh should be used or mesh

refinement between the optimization steps can be a remedy. However, there

will be always a stress value that will lead to this problem (Rozvany 2009[30]).

Therefore one should be aware of this problem when using evolutionary

optimization methods. Evolution process is monitored in this study, order to

determine whether element removal leads to compliant structures.
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CHAPTER 2

OPTIMIZATION PROBLEM FORMULATION

In this chapter, a detailed explanation of the optimization method is made.

Firstly the general methodology of the BESO is given and in the following

chapters, its components are explained. Design parameters, objective function,

constraints and convergence criterion are explained in the way they are used

in this study. As discussed before, sensitivity number averaging and filtering

methods are implemented to the classical BESO method and they are explained

in detail regarding the mathematical aspects.

2.1 Bi-directional Evolutionary Structural Optimization

Xei and Huang (2010)[17] define the topology optimization procedure as to find

the topology of a structure by determining for every point in the design domain

if there should be material (solid element) or not (void element). Because it

is impossible to determine this condition for infinite number of points in the

structure, the design domain is discretized into finite elements and these elements

are determined to be solid or void. While determining material presence, we need

to change material from solid to void or from void to solid. In order to perform

such operations, in this study BESO is used as the optimization methodology.

Bi-directional Evolutionary Structural Optimization method (BESO) is a variety

of another topology optimization method known as Evolutionary Structural

Optimization method (ESO). It allows material addition and removal at the

same time, whereas in ESO only the material removal is allowed. By adding

7



material addition capability, BESO is obtained.

As discussed earlier, a few improvements are implemented in BESO and they

are used in this study also. They are sensitivity filtering scheme and sensitivity

number averaging. Together with these improvements, a generalized flowchart

of the BESO method can be represented as in the figure 2.1:

Figure 2.1: BESO flowchart
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2.2 Design Parameters

In the topology optimization, the objective is to determine if material is needed,

for every point in the design domain. Optimized structure is searched by

changing element presence for these points. Therefore, the design parameter

is the elements themselves. Depending on the topology optimization method,

design parameters can be continuous or discrete. Intermediate elements are used

in some topology optimization methods like SIMP (uses continuous intermediate

element properties) and soft-kill BESO (uses discrete intermediate element

properties). In these methods elements are not either solid or void but they

can have intermediate values. These values are usually obtained by multiplying

the element stiffness values by a penalty coefficient.

In this study, hard-kill BESO method is used where the design parameters are

discrete and can have two different values, either 0 or 1. Therefore there is no

intermediate elements or so called gray regions. However removing the elements

by simply changing the stiffness values to 0 may introduce some problems. These

zero elements may lead to free degree of freedoms therefore lead to singularities

while computing the displacements from force and stiffness matrices. In order

to prevent this problem, elements are removed by changing from 1 to 10−6 as

suggested by Hinton and Sienz (1995)[14]. The value of 10−6 is small enough and

close to zero, however it is large enough to get rid of the singularity problem

computationally. In the results, these elements are shown as they were zero

elements.

2.3 Objective Function

Mean compliance is chosen as the objective function in this study. Therefore

mean compliance is minimized throughout the optimization process. As the

element removal criterion, strain energy based sensitivity numbers are used. In

the following chapters these are explained regarding the mathematical aspects.
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2.3.1 Sensitivity Numbers

Initially, Evolutionary Structural Optimization method (ESO) was widely used

with removal ratios (RR) based on the stress levels. In this method, generally

the optimization continues until a desired uniform stress distribution is obtained

(for example, all stress values are within the 75% of the stress of maximum

stressed element). However, such a solution may or may not exist depending on

the problem. In BESO, generally removal and addition ratios are determined

according to the target volume of the corresponding step (not the maximum

stress). However element removal criterion (sensitivity numbers) may be based

on stress levels or strain energy levels. In this study, the sensitivity numbers

are based on the strain energy levels. However it should be noted that either

choosing the sensitivity numbers based on stress levels or strain energy levels

often lead to similar topologies (Huang and Xie 2010[17]). In this study,

sensitivity numbers are used as:

αei =
1

2
uTi Ki ui/Vi (2.1)

where αei represents the strain energy density of the ith element. Please note

that Vi (volume of the ith element) changes because of the varying radial

positions of the elements in the axisymmetric case. Also note that in order

to overcome some problems of BESO, the sensitivity numbers are not used as

they are found as above. Sensitivity numbers are manipulated by methods such

as sensitivity number filtering or history averaging which are discussed in the

following sections.

2.3.2 Mean Compliance

ESO was first introduced as a method that was inspired from the nature. It was

considered as an intuitive way to optimization by many researchers and criticized

for lacking mathematical foundations. Tanskanen (2002)[38] has shown the

mathematical theory behind the ESO method and shown that ESO minimizes

the mean compliance-volume product (C · V ) of the structure. However this
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minimization leads to zero volume for most of the structures (Rozvany 2002)[31].

In order to prevent this problem, formulation was changed to mean compliance

minimization by setting a target final volume (V ∗). In the new formulation,

the volume fraction of the structure is brought to a pre-defined value V ∗ while

keeping the mean compliance at minimum. Here the mean compliance is defined

as:

C =
1

2
fTu (2.2)

and it is the objective function in the new BESO method. In the above equation,

f is the global force vector and u is the global displacement vector.

2.4 Constraints

The only constraint imposed to the optimization problem is the equality

constraint of the volume fraction, that is V ∗. Depending on the optimization

problem, stress constaint may be applied in the optimization formulation.

Inclusion of stress constraints leads to a completely different formulation of

sensitivity numbers and handling stress constraints introduces various problems.

Because of these reasons, the work in this thesis is limited to volume constrained

optimization only.

In this study, initial volume fraction is chosen as 100% and volume fraction is

decreased gradually in each step. When the volume fraction (V ) is satisfied in

a particular step (k), it is decreased by the evolution ratio (ER) as given below

and process continues with the next iteration (k + 1).

Vk+1 = Vk (1− ER) (k = 1, 2, 3, . . .) (2.3)

These steps are applied successively until the V ∗ is reached. In this way, the

final volume fraction is set equal to the pre-defined value V ∗. Volume constraint

can be shown mathematically as:
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V ∗ −
N∑
i=1

Vixi = 0 (2.4)

In the equation2.4, Vi is the volume of the ith element and xi is the presence

value of the ith element that is, xi = 0 for void elements and xi = 1 for solid

elements.

One must note that equality constraints cannot be exactly satisfied for most of

the time. This brings the necessity to introduce a tolerance value or another

method that helps to accept a value which is close enough to the constraint.

In this study, the number of solid elements that exactly satisfies the volume

constraint is calculated. The calculated number would be a real number in

general. This number is rounded to the nearest integer and the actual number

of solid elements that roughly satisfies the volume constraint is found. Details

of this process is discussed in the section 2.7.

The only constraint other than volume constraint, is used in case problem 3

(section) 4.3). In this problem design domain is constrained by preventing

removal of elements in specified regions. Details of this constraint and its method

of application is discussed in section 4.3.

2.5 Sensitivity Number Filtering

Evolutionary methods are used together with finite element analysis in general.

Finite element method bring many advantages to the optimization process and

it is suitable to the concept of topology optimization. However, the sensitivity

numbers of the low order finite elements can become discontinuous across the

element boundaries (Jog and Haber 1996[19]). These discontinuities cause the

problem named checkerboard problem. The reason for checkerboard problem

is that; in such a finite element discretization introducing more holes into the

structure makes the structure more efficient and the optimization algorithm ends

up with the so called checkerboard pattern.

In order to overcome the checkerboard pattern, various researchers have come
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up with different solutions over the years. Using polygonal elements (Pereira

et al 2010 [37]), perimeter control method (Jog 2002[18]), averaging sensitivity

numbers with neighboring elements (Li et al. 2001 [23]) and sensitivity number

filtering scheme (Sigmund and Petersson 1998[35]) are the examples of such

solutions.

In addition to checkerboard problem, in evolutionary methods the mesh

dependency problem is also encountered frequently. This problem is defined as

having a qualitatively different optimal topology as the mesh refinement changes.

If a correct methodology is followed, the same topology should be obtained with

a finer mesh, however only with more accurate definition of the boundaries.

Two of the above mentioned methods; namely, perimeter control method and the

sensitivity number filtering method are also shown to be able to solve the mesh

dependency problem. Because of the easy implementation advantage, sensitivity

number filtering scheme is preferred in order to implement into the BESO in this

study. With the help of this method, both the checkerboard problem and the

mesh dependency problem are overcome. The procedure of sensitivity number

filtering is performed in two steps:

1. Computing nodal sensitivity numbers

Each node is assigned a value by averaging the sensitivity numbers of the

elements those are connected to that node. Nodal values are calculated

according to the following formula:

αnj =
M∑
i=1

wiα
e
i (2.5)

where αnj is the nodal sensitivity number of the jth node and αei is the

sensitivity number of the ith element. M is the total number of elements

connected to the jth node. wi is the weight factor of each element and

calculated as follows:
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wi =
1

M − 1

1− rij
M∑
i=1

rij

 (2.6)

where rij is the distance between the center of ith element and the jth node.

In this study, the finite element discretization is made by uniform sized

mesh therefore nodes are in equal distance to the connected elements. For

example, if there are four elements connected to a node, the weight factor

(wi) simply becomes 0.25 for each element.

2. Projecting nodal sensitivity numbers back onto elements

After computing the nodal sensitivity numbers, they are used to gather

back elemental sensitivity numbers. For this purpose, firstly a filtering

radius is selected. This filtering radius can be visualized on a generic mesh

as given in the figure 2.2.

Figure 2.2: Visualization of sensitivity number filtering radius

Also note that this filtering radius (rmin) is independent of the mesh

size. Only the nodes within rmin distance to an element are used in
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the computation of the element sensitivity numbers. Additionally, closer

nodes have larger contribution to the related elements’ sensitivity numbers,

through imposed weight factors. This can be mathematically shown as

follows:

w(rij) = rmin − rij (j = 1, 2, . . . , K) (2.7)

where, K is the total number of nodes within rmin distance to the center

of ith element and rij is the distance between the center of ith element and

the jth node. w(rij) is the weight factor of a node. Negative weight factors

imply distant nodes which are not included in the computation. Finally,

elemental sensitivity numbers can be computed as follows:

αi =

K∑
j=1

w(rij)α
n
j

K∑
j=1

w(rij)

(2.8)

Using these sensitivity numbers in the addition and removal operations

help preventing the checkerboard pattern and mesh dependency problem.

2.6 Sensitivity Number Averaging

As discussed in the previous sections, the design parameters (element presence

conditions) are assumed to be able to have discrete values, which are either 1

or 0. Because of this reason sensitivity numbers of elements change suddenly

from one step to the other. Effects of this discrete nature can also been observed

from discontinuous trend of the objective function. An element removal-addition

operation results in sudden changes in sensitivity number and therefore leads

to dramatic changes in the topology in the next removal-addition process.

This gives way to a chaotic optimization process and negatively affects the

convergence to an optimum.

Against this problem, Huang and Xie (2007)[16] has suggested averaging

sensitivity numbers of the current step with that of the previous step as follows:
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αi =
αki + αk−1

i

2
(2.9)

Where αi is the averaged sensitivity numbers for the current iteration, αki is

the sensitivity numbers from the current analysis and αk−1
i is these sensitivity

numbers from the previous iteration. αki is the filtered sensitivity numbers, as

discussed in the filtering scheme section.

Using the mentioned methodology, sensitivity number contains the whole history

information from previous steps and therefore smoother sensitivity number

changes are obtained. Smoother sensitivity number history stabilizes the

optimization process and increase the speed of convergence. The effect of this

stabilization can be seen from the evolution of the objective function (i.e. mean

compliance). Convergence trend of the objective function is given in the figure

2.3, with and without the sensitivity number averaging method.

2.7 Element Addition-Removal

Element addition and removal process is the most important part of the

evolutionary process. Everything else is done in order to decide the elements to

be removed and the ones to be added. Having determined filtered and averaged

sensitivity numbers, addition-removal algorithm performs addition and removal

operations based on sensitivity numbers and also taking maximum addition ratio

(ARmax) and element volumes into account.

The algorithm follows the following steps:

1. All elements (solid and void elements together) are sorted according to

their sensitivity numbers. Choosing the ones with higher sensitivity

numbers, a design is composed which most closely approximates the

volume constraint. According to this design, the total volume of elements

needed to be added is calculated. If the ratio of this volume to the

total volume is less than the ARmax, the design is considered as valid

and addition/removal process concludes. If this ratio is higher than the
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Figure 2.3: Affect of sensitivity number averaging on the evolution of mean
compliances [16]
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ARmax, algorithm continues with the step 2.

2. Void elements with highest sensitivity numbers are turned into solid

elements until the volume of these elements reach the limiting volume

determined by the ARmax. At this point, the composed design has

excessive volume because only the element addition operation is performed.

3. After the step 2, element removal operation should be performed in order

to approximate the volume constraint (Vk of the kth iteration). For

this purpose, solid elements are sorted according to ascending order of

sensitivity numbers. Beginning with the ones with smallest sensitivity

values, solid element are turned into void until volume constraint is

reached. At the end of this step, addition-removal operations finalize and

a valid design is obtained.

Process given above includes differences from the method given by the Huang

and Xie (2010), they have based the addition-removal steps on so-called

threshold sensitivity numbers[17]. However, as a difference, an axisymmetric

solid is optimized in this study. Therefore addition-removal algorithm is

preferred as given above. Although both algorithms have the same underlying

idea, this method is considered as a more logical way when handling elements

with varying volumes. Additionally, a better performance is obtained from this

algorithm, in terms of approximating the volume constraint more closely.

2.8 Convergence Criterion

As the evolutionary process continues, target volume of specific iteration step

gradually approaches to the global volume constraint (V ∗). Once target

volume becomes equal to the volume constraint (Vk = V ∗), optimization

process continues for a number of iterations until convergence is achieved.

In this study, convergence is decided according to the value of the objective

function. Error value is computed by taking the N number of previous mean

compliances into account. If this error value becomes less than a prescribed
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value, convergence criterion is satisfied. Exact calculation of the error can be

presented mathematically as below:

error =

∣∣∣∣ N∑
i=1

Ck−i+1 −
N∑
i=1

Ck−N−i+1

∣∣∣∣
N∑
i=1

Ck−i+1

(2.10)

and convergence criterion is:

error ≤ τ (2.11)

This criterion requires the evolutionary process to reach a specific topology and

concentrate iterations around this topology. This is considered as a sign of

convergence.

As the above criterion is satisfied, the whole optimization process terminates

and the final design is taken as the optimum design.
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CHAPTER 3

FINITE ELEMENT FORMULATION

In the following chapters, finite element method is explained in detail as it is

used specifically in this study. The reasonings behind the selected methods are

discussed while mathematical aspects are explained in detail. In the following

sections, topics of element selection, element formulation, mesh generation and

integration methodology are explained.

3.1 Element selection

Elements used in the finite element analysis are selected regarding a few aspects.

Firstly, the elements should be axisymmetric elements (also known as ring

elements) because of the axisymmetric design domain assumption in this study.

Sketch of such an element is given in below (figure 3.1).

Secondly, the element shapes should be suitable for axisymmetric topology

optimization formulation. For this reason, quadrilateral element is chosen

because it is easy to formulate in cylindrical coordinates, application of boundary

conditions are simple and it is more suitable for the rectangular design domain

used in this study. Thirdly, iso-parametric formulation is used in the element

formulation. The advantage of the iso-parametric formulation is that it allows

use of the same shape functions in order to define displacements and the

geometries of the elements, therefore provides simplicity to the finite element

formulation. Lastly the shape functions are chosen to be linear as it is the case

for the most finite element applications and it is adequate for the purposes of
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Figure 3.1: Graphical representation of an axisymmetric quadrilateral ring
element

this study also.

3.2 Element Formulation

In order to use finite elements in the analysis of the structures, behavior of

these elements should be determined by element formulation. This formulation

is performed considering that the element is quadrilateral iso-parametric ring

element with linear shape functions. Formulations below are compiled mostly

from Felippa’s (2004)[13] lecture notes.

The formulation should begin with defining the shape functions. Because a

quadrilateral element has four nodes, four different linear shape functions should

be defined which satisfy the following relation at any point in the element

domain.

1 =
4∑
i=1

N e
i (3.1)

Here the index i represents node number and takes values up to 4 because there

are 4 nodes in a quadrilateral element. Keeping in mind that the shape functions

should be linear, these can be expressed in terms of ξ and eta as follows:
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N e
i = 1

4
(1− ξ)(1− η) (3.2)

N e
i = 1

4
(1 + ξ)(1− η) (3.3)

N e
i = 1

4
(1 + ξ)(1 + η) (3.4)

N e
i = 1

4
(1− ξ)(1 + η) (3.5)

As previously stated in section 3.1, these shape functions define both element

geometries and displacement of any point on that element. That means, these

relations can be written together with equation 3.1 as follows:



1

r

z

ur

uz


=



1 1 1 1

r1 r2 r3 r4

z1 z2 z3 z4

ur1 ur2 ur3 ur4

uz1 uz2 uz3 uz4




N e

1

N e
2

N e
3

N e
4

 (3.6)

Where rn, zn, urn, uzn are the nodal position and displacement values. In

our case n = 4 because there are 4 nodes in the quadrilateral elements. As

an alternative to the equation 3.6, displacement relations can be written with

another form of shape function matrix (N) and nodal displacements matrix (ue)

as follows:

u = Neue (3.7)

where,

Ne =

N e
1 0 N e

2 0 N e
3 0 N e

4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

 (3.8)

and

ue =
[
ur1 uz1 ur2 uz2 ur3 uz3 ur4 uz4

]T
(3.9)
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from the displacements found, strains can be obtained using the following

relations:

err =
∂ur
∂r

ezz =
∂uz
∂z

eθθ =
ur
r

2erz =
∂ur
∂z

+
∂uz
∂r

(3.10)

Alternatively, strain-displacement relations can be shown in a matrix form:

e =


err

ezz

eθθ

2erz

 = Bue (3.11)

Where, matrix B is obviously composed of gradients of the shape functions.

B =


∂Ne

1

∂r
0

∂Ne
2

∂r
0

∂Ne
3

∂r
0

∂Ne
4

∂r
0

0
∂Ne

1

∂z
0

∂Ne
2

∂z
0

∂Ne
3

∂z
0

∂Ne
4

∂z

Ne
1

r
0

Ne
2

r
0

Ne
3

r
0

Ne
4

r
0

∂Ne
1

∂z

∂Ne
1

∂r

∂Ne
2

∂z

∂Ne
2

∂r

∂Ne
3

∂z

∂Ne
3

∂r

∂Ne
4

∂z

∂Ne
4

∂r

 (3.12)

Manipulation of the weak form gives us the following equation (Reddy, 1993[28]):

0 = Keue − f e (3.13)

In the above equation, Ke is the element stiffness matrix and f e is the element

force vector. They can be expressed mathematically as:

Ke =

∫
Ωe

rBTEB dΩ (3.14)

and

f e =

∫
Γe

rNT t̂ dΓ (3.15)
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In the equation 3.14, E is called the stiffness matrix and it contains information

about material properties. In this study, isotropic material is assumed, therefore

E matrix can be formed as follows:

E =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1
2
− ν

 (3.16)

In the above equation, E is the Young’s modulus and ν is the Poisson’s ratio.

Please note the difference between the material stiffness matrix E and the

constant E. For the purpose of this study, ν = 0.3 is assumed in the following

case studies.

As it is discussed in the section 3.4, Jacobian matrix is needed in order to convert

integration into summation. For this purpose, Jacobian matrix is defined as

follows:,

J =

 ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

 =

∂Ne
1

∂ξ

∂Ne
2

∂ξ

∂Ne
3

∂ξ

∂Ne
4

∂ξ

∂Ne
1

∂η

∂Ne
2

∂η

∂Ne
3

∂η

∂Ne
4

∂η



x1 y1

x2 y2

x3 y3

x4 y4

 (3.17)

In the case of quadrilateral elements above equation3.17 becomes:

J =
1

4

η − 1 1− η 1 + η −η − 1

ξ − 1 −ξ − 1 1 + ξ 1− ξ



x1 y1

x2 y2

x3 y3

x4 y4

 (3.18)

Determinant of the Jacobian matrix (|J|) is simply,

|J| = J11J22 − J21J12 (3.19)
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3.3 Mesh generation

Meshing of the design domain determines the size of the elements, therefore

it determines the accuracy of the analysis and affects the topology of the

optimized structure. Hence, in this study finer meshes are used as much as

the computational power allowed. Generally, the total number of elements in

the design domain is chosen to be between 5000-7000 in this study.

As it is the case for most topology optimization practices, the cross section of the

design domain is assumed to be rectangular. Therefore the mesh is generated in

the form of a solid rectangle. It is divided into uniform smaller squares forming

each element. An example of this meshing is given in the below figure 3.2 with

4400 elements.

Figure 3.2: An example of discretization of the design domain by 55× 80 mesh

Even though the mesh is uniform in the cross sectional plane; that does not mean

each element is the same in three-dimensional space. Due to the differences in

radial positions of the ring elements they have different volumes. Therefore,

even if the mesh is considered to be uniform; volume differences between the

elements should be taken into account while determining sensitivity numbers or

formulating element removal-addition processes.
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BESO has the advantage of using the same mesh throughout the whole

optimization process. That is, initially formed mesh remains unchanged after

each element addition-removal operation. Keeping the same mesh throughout

the process, results in rougher boundaries due to the relatively coarse initial

mesh. However it saves computational effort of generating mesh in each iteration

and at the end of the optimization process it still gives idea about the optimal

topology. Additionally, it should be noted that ultimate goal of the topology

optimization is not to obtain a well-defined structure but to obtain a rough

understanding of the optimal topology of the structure.

3.4 Integration Rule

Stiffness matrix of an element is found in the form of an integration as follows:

Ke =

∫
Ωe

rBTEB dΩ (3.20)

and the force vector is found as follows:

f e =

∫
Γe

rNTt̂ dΓ (3.21)

where Ω denotes the element domain, Γ denotes the element boundaries and t̂

is the traction vector. For these integrations, an efficient numerical integration

method needs to be chosen. Because linear shape functions are assumed in the

element formulation, 2 point Gauss quadrature integration method is sufficient.

This method gives exact result for polynomials up to order of 3, therefore it is

quite an efficient method for the needs of this study. 2 point Gauss quadrature

can be summed up as follows:

1∫
−1

f(x) dx = c1f(x1) + c2f(x2) (3.22)

where
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c1 = 1, c2 = −1, x1 =
−1√

3
, x2 =

1√
3

(3.23)

for one dimensional case. For the integration of the force vector, one dimensional

Gauss rule is used on the element boundary that the traction is applied. On the

other hand, for the integration of the stiffness vector, 2 dimensional Gauss rule

should be used on the element domain. In that case, weights and integration

points change as follows:

c1 = c2 = c3 = c4 = 1 (3.24)

x1 =

(
1√
3
,

1√
3

)
, x2 =

(
−1√

3
,

1√
3

)
, x3 =

(
1√
3
,
−1√

3

)
, x4 =

(
−1√

3
,
−1√

3

)
(3.25)

After the Gauss quadrature rule is applied, the stiffness matrix integration

becomes a simple summation in the form of:

Ke =
2∑

k=1

2∑
l=1

wk wlB
T(ξk, ηl)E B(ξk, ηl) r(ξk, ηl) JΩ(ξk, ηl) (3.26)

and the force vector integration becomes:

f e =
2∑

k=1

wkN
T(ξk, ηk) t̂(ξk, ηk) r(ξk, ηk) JΩ(ξk, ηk) (3.27)

In the equations 3.26 and 3.27, upper limits of summations are 2 because 2-point

Gauss rule is applied. In these equations, w denotes the weight factor, ξ and η

denote the integration points and the JΩ is the determinant of the Jacobian at

the integration points. In equation 3.26, two indices indicate four summation

points that is, (ξk, ηl) has four different values. on the other hand, equation 3.27

has one index because there are only 2 integration points that is, (ξk, ηk) has

two different values.
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In finite element analysis, singularities may emerge when the B matrix is

evaluated near the symmetry axis (r becomes close to zero) due to axisymmetric

formulation of the B matrix. In order to prevent this problem, one should not

choose the Gaussian integration points near the symmetry axis (Clayton and

Rencis 1999)[10]. In this study, this problem is avoided by choosing the Gaussian

points at the inner region of the element, therefore integration points can never

be on the symmetry axis.
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CHAPTER 4

CASE STUDIES

In the previous sections, an optimization methodology is presented. Algorithm

of this methodology and mathematical formulations are given in detail. In

order to validate presented methodologies, two different structural optimization

problems from literature are selected to be solved. First one of these problems

is the dome optimization in zero gravity taken from the study of Cherkaev and

Palais (1996)[7]. Secondly the turbine disk optimization problem is solved and

compared to the solution found in the study of Liu et al. (2005)[25]. One

additional problem is prepared in accordance with Prof. Dr. Suha Oral; and

solution to this problem is presented. Details of these problems are explained in

the following chapters.

4.1 Problem 1

In order to evaluate the performance of the presented BESO method , firstly

the dome optimization problem is solved. This problem and its solution is taken

from the study of Cherkaev and Palais (1996)[7]. This problem is basically the

optimization problem of an axisymmetric plate. It is a long studied problem, by

researchers like Cheng and Olhoff (1981)[6] and Kirsch (1989)[21]. The study of

Cherkaev and Palais in some sense decides this two decade long discussion.

This problem has a square shaped design domain in 2D. One side of this domain

is coincident with the axis of symmetry (r = 0) and other side coincident with

the line r = 1. That is, cross section of the design domain is 1 unit in length
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Figure 4.1: Graphical illustration of boundary conditions on the meshed domain

and 1 unit in height. Applied force is a distributed force acting vertically at

the upper boundary of the design domain. Applied force has the intensity of

0.02 units and it acts on the nodes between the lines r = 0 and r = 0.125. On

the other hand, support is at the lower boundary of the design domain. The

lowermost nodes between the lines r = 0.875 and r = 1 are fixed in both vertical

direction and horizontal direction. In the figure 4.1, boundary conditions are

shown graphically on the 2-dimensional finite element mesh. Young’s modulus

is assumed as 1000 and Poisson’s ratio is assumed as 0.3. As stated In earlier

chapters, in this study BESO starts from the full design; that is , all the elements

are solid initially.

For the solution of this problem, some parameters should be decided on in order
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Figure 4.2: Evolving structure at volume fraction of 50%

to have the best performance out of the optimization process. These parameters

are; evolutionary ratio (ER), convergence criterion (τ), maximum addition ratio

(ARmax), final volume ratio (V ∗) and sensitivity number filtering radius (rmin).

Chosen values of those parameters are as follows:

ER = 0.01 rmin = 0.05 ARmax = 0.05

V ∗ = 0.2 τ = 10−4
(4.1)

With these chosen parameters, optimization process has been started with 80×80

mesh (i.e. with 6400 elements). Algorithm has started with removing the upper

right elements as expected, because these elements have lowest energy levels and

they have the highest volumes. An intermediate step is given in the figure 4.2

where volume fraction is 0.50. The elements that are removed in early steps can

be seen as black in this figure.

At the end of the process, optimized structure is found as in the figure 4.3:
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Figure 4.3: Optimized structure at final volume ratio of 0.2

Results of the optimization shows that the optimum structure has a cone-like

shape in three-dimensions. It is thicker at the region where the traction is

applied; and it is thinner at the radially outer regions because of larger volume

of outer elements.

This result can be considered as the stiffest structure topology to carry the

given load with given support conditions. However this solution is specific to

the previously defined, final volume fraction V ∗. Obviously, this topology would

differ if another volume fraction was specified to the final design.

Evolution of the objective function can be seen in the figure 4.4. It can be seen

that it has a fairly smooth trend. It increases up to around 80th iteration because

volume fraction constantly decreases. Around the 80th step, volume fraction

reaches V ∗ and it stays constant. Beyond this point, only a slight decrease in

the objective function is seen, however this does not lead to a dramatical change

in topology. This phase would continue longer if a smaller τ was chosen. In this
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Figure 4.4: Evolution and convergence of the objective function

case, it took up to 97th iteration for the structure to converge to an optimum.

When the solution (figure 4.3) is compared to the solution of Cherkaev and Palais

(figure 4.5), a similar topology is observed. However, much coarser mesh in the

study of Cherkaev and Palais is obvious. Thanks to the finer mesh in figure 4.3,

boundary definitions and details like rounded corners are observed much better.

Another difference between these solutions is the use of gray elements (elements

with intermediate mechanical properties). In the BESO method there is no gray

element assumption, therefore each element is either solid or void. This leads

to the difference in interpretation of the optimum structures in figure 4.3 and

figure 4.5.
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Figure 4.5: Results found by Cherkaev and Palais [7]

4.2 Problem 2

For the performance evaluation of the presented optimization method, the

second problem to be solved is the optimization problem of a turbine disk.

This problem has an importance of being a practical industrial design problem.

Because of being used in many critical applications, turbine disk optimization

have been studied for a long time. Considering the study of Donath (1912)[11],

this problem is more than one century old. Some of the following studies on this

topic are the ones of Stodola(1927)[36], Bhavikatti and Ramakrishnan, (1980)[5],

Luchi et al.(1980)[26], Cheu(1989)[8] and Cheu (1990)[9]. In 2005, Liu et al.[25]

has addressed this problem by applying Metamorphic Development method.

They have considered this problem as a shape/topology optimization problem

and they have adapted their method accordingly. The manipulations made on

the BESO method are discussed later.

This problem has one axis of symmetry and one plane of symmetry. It is

axisymmetric around the z-axis and it is considered to be symmetric about

the r-axis. These symmetry conditions can be seen in detail in the figure
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4.6. Because of axisymmetry, structure is modeled in two-dimensions with

axisymmetric elements. In addition, because of r-symmetry, only the upper half

of the disk is modeled and lowermost nodes are constrained in the z-direction.

Finite element model of structure is in rectangular shape with left side is

coincident with r = 20 line and right side is coincident with r = 120 line; lower

boundary is on z = 0 line and upper boundary is on z = 40 line. Therefore

it is 100mm wide and 40mm high. In their work; Liu et al. have considered

three different loading conditions of the turbine disk. Those are thermal loads,

body forces and blade loadings. For simplicity, only the blade loading case is

taken from their study. Therefore the only loading is the distributed load acting

outwards on the right hand side boundary (p = 200MPa).

Figure 4.6: Boundary conditions of the optimization problem[25]

There are also constraints of the design domain that is, not all the elements

are allowed to be removed. Firstly, the elements laying at the left of the lines

z = 115 − 3r and z = 59 − r are excluded from the element addition-removal

operations. Additionally, the elements that are to the right of r = 115 and below

the z = 20 lines are excluded from the element addition-removal. All elements

are initiated as solid elements, therefore constrained elements stay as solid ones

during the whole optimization process. Those elements are also excluded from

the volume fraction calculations, that is, the volume fraction term is valid only

for the non-constrained elements. Mentioned constraints on the design domain

can be seen from the figure 4.7.

As stated above, the turbine disk optimization is considered like a shape
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Figure 4.7: Constraints on the design domain of the problem[25]

optimization problem by Liu et al.. For the same reason, BESO method

was manipulated by excluding the elements below the z = 5 line from the

addition–removal operations. In this way, cavities occurring inside of the turbine

disk are suppressed. As it can be seen from the results (figure4.9), this constraint

does not interfere with the surface of the disk. Therefore it does not affect the

shape of the disk.

In order to determine which side the elements belong, element center points are

taken as reference. If an element center lies exactly on the constraint line, it is

taken as a constrained element.

In this problem, a 48× 120 mesh (i.e., 5760 elements) is used for discretization

of the analysis domain. Young’s modulus is taken as 180.36GPa and Poisson’s

ratio is assumed as 0.3. Parameters of optimization are taken as follows:

ER = 0.01 rmin = 10 ARmax = 0.05

V ∗ = 0.1 τ = 10−3
(4.2)

Optimization process has been started with the set-up mentioned above.

Upper-right elements are removed in the earlier steps. Element removal

gradually reached the constrained elements and curvature becomes visible at

the mid-section of the disk structure (figure 4.8). Final structure can be seen

from the figure 4.9.
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Figure 4.8: Evolving structure at volume fraction of 50%
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Figure 4.9: Optimum structure of the turbine disk found by BESO method

Results show that optimum disk has a constant thickness mid-section and a thin

flange at the region of application of distributed loads. Joining these two, there

is a fillet; possibly because of stress concentrations and resulting high strain

energies. Topology of the inner region is completely defined by the constraints

therefore one cannot talk about the effect of optimization procedure in this

region. It should be noted that this resulting optimum structure is obtained at

volume fraction of 0.10, which means 10% of the volume has been used when

the constrained elements are excluded. If the volume fraction is calculated by

including all elements (constrained and non-constrained ones) the final volume

fraction is found as 30%. However this value is not used in the optimization

process as a parameter.

When the evolution of objective function is investigated, a smooth trend is
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observed. the slope of the objective function gets steeper as the evolution

proceeds. This means more stiffness is sacrificed in the later steps, for the

same amount of volume removal. Reason to this is, higher strained elements are

left towards the end of the process. After the volume fraction reaches a steady

state at around 90th, convergence is obtained relatively quickly, in around 10

iterations. This is highly dependent on the pre-selected value of τ . If a smaller

τ was selected, convergence criterion would get tighter and more iterations

would be needed until convergence is obtained. The whole optimization process

concludes in 102 iterations. Related figure can be seen below (figure4.10)
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Figure 4.10: Evolution of the objective function and volume fraction

When the results are compared to that of Lui at al.[25], a close resemblance

is observed. However actual sizes are different because of the difference in the

methods used. In addition, boundary definitions are different in two results. In

figure 4.11, boundaries are fairly smooth, because boundary element method is

used as the analysis method. On the other hand in figure 4.9, rough boundaries

are observed. Reason to that is the shape of quadrilateral elements. As the

40



mesh resolution increases, the boundary definitions improve however the basic

topology stays the same.

Figure 4.11: Optimum structure of the turbine disk found by Liu et al.[25]

4.3 Problem 3

Third problem in this study is the optimization of a thick walled cylinder. In

this problem, design domain is assumed to be in rectangular shape. It represents

a hollow cylinder with thick walls therefore design domain is offset from the

symmetry axis. Inner diameter is assumed to be 20mm and outer diameter is

50mm. Therefore design domain is 15mm wide and 60mm high while its inner

boundary is 10mm offset from the z-axis. Distributed force is assumed to be

applied from the inner boundary, therefore it is shown to be acting from the left

hand side of the design domain in two-dimensional mesh. Distributed force is

decreasing linearly in the increasing z-direction. It decreases to half of its value

at the uppermost point, namely, it has the value 10N/mm at z = 0 and has

5N/mm at z = 60. The values in between are linear. This problem is symmetric

only around the z-axis (axisymmetry). It has no symmetry about r-axis because

load distribution is assumed to be variable, which breaks symmetry condition

about r-axis.

In the problem definition there are no displacement constraints. However this

not applicable in finite element formulation. Without any constraints, a rigid
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Figure 4.12: Graphical illustration of boundary conditions on the design domain

body motion is introduced in the z-direction. This redundant degree of freedom

makes it impossible to find a solution. In order to avoid this problem, a

z-direction constraint is applied at the lower left corner of the design domain.

With the help of this constraint, structure is prevented from moving freely in

space. This constraint could be applied at any point of the domain, the only

reason is to eliminate the rigid body motion in z-direction. Dimensions and

conditions defining the problem can be found in the figure 4.12.
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Figure 4.13: Analysis of fully solid design domain

As stated before, solution of this problem is not compared to that of another

study from the literature. At this point, based on the previous analytical

work of Timoshenko and Goodier (1951)[39] and Liang et al.(2008)[24], stress

distribution can be expected to be higher at the inner boundary. Due to the

proportionality of strain energy and stresses (equation 4.3), inner elements have

higher strain energies and sensitivity numbers. This expectation is supported

by the finite element analysis of the solid design domain (figure 4.13).

W =
1

2
σ : ε (4.3)

In this problem, a mesh of 160 × 40 is used therefore elements are square

shaped in two dimensional mesh. In total there are 6400 elements and they are

uniform throughout the design domain. In this case, Young’s modulus is taken

as 1000MPa and Poisson’s ratio as 0.3. The parameters of the optimization
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method can be given as below:

ER = 0.01 rmin = 3 ARmax = 0.05

V ∗ = 0.3 τ = 10−4
(4.4)

20 40

20

40

60

80

100

120

140

160

Figure 4.14: Evolving structure at volume fraction of 70%

When the optimization is started from the full design, element removal begins

form the upper-right corner as expected. The outer elements are strained less

therefore they have smaller sensitivity numbers. In addition, at the upper regions

the load is less and upper elements are strained less. Therefore upper right

elements are removed first and structure evolves near inner boundary as expected

(figure 4.14).

Resulting optimum structure can be seen in the figure 4.15. It is seen that

optimum structure is concentrated near the inner boundary and it gets gradually

thinner as the load decreases in z-direction. This result agrees with expectations
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Figure 4.15: Optimum structure of the finite length thick walled cylinder

based on analytical results, as stated earlier.

Optimization process has taken 84 iterations in total. Evolution of the volume

fraction is completed in 70 iterations. In this phase evolution trend of the

objective function is very smooth without any discontinuities or jumps. This

is because the evolving topology stays as a one-piece solid topology through

the process and material removal at the outer boundaries resulted in a gradual

increase in mean compliance. After V ∗ is reached, topology has converged to the

optimum in 14 iterations, again without any oscillations in objective function.

Evolution of the objective function and the volume fraction of the structure can

be found in the figure 4.16.
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Figure 4.16: Evolution of the objective function and volume fraction
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CHAPTER 5

SUMMARY AND CONCLUSION

In this chapter, summary of this study and the work done is presented.

Following that, this study is concluded and final remarks are given. Lastly,

recommendations are made for the possible future studies in this area.

5.1 Summary

This study is started by defining the problem and mentioning important studies

from the literature. At this point focus was mostly kept on the optimization

procedure. Historical development of BESO is explained and some further

improvements on this method are mentioned.

In the chapter2, the outline of the methodology is given. BESO methodology is

explained in detail and mentioned improvements are added to it. Total algorithm

is presented clearly in figure 2.1. Steps of this algorithm are presented in separate

sections while mentioning case problems solved later. At the end, reader has a

complete picture of the optimization method used in this study.

In chapter 3, the details about the analysis procedure are given. Reasons of

selecting specific methods are explained and mathematical backgrounds lying

underneath are presented. A satisfactory explanation was aimed to be given in

this section. However, giving a complete explanation about the finite element

method is beyond the scope of this study. Therefore, in this section the focus

is kept on reasoning the selected parameters and methods while mentioning

mathematical roots without detailed derivations.
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Up to this point, a complete methodology was built. Lastly, in chapter 4,

performance of this methodology is evaluated by applying three different case

problems. Two of these problems were chosen from the literature while one

scenario was created specially for this study. Solutions to these problems are

found and two of solutions are compared to those from literature.

This complete optimization methodology is applied through MATLAB code.

Code is modified and it is different for each case problem, however methodology

is common for each case. MATLAB code used in the solution of turbine disk

problem is given in appendix A as the representative code.

5.2 Conclusion

In this study, new BESO method investigated and applied to various problems.

From the solution of these problems, it is concluded that BESO method is an

effective and efficient optimization method. It is used with volume ratios around

30%. However, optimization process can sometimes get unstable with lower

volume fractions. Stability is also dependent on other optimization parameters

such as evolutionary ratio, sensitivity averaging weights and sensitivity filtering

radius. Therefore, extra attention should be given to optimization parameters

in order to have the best out of the BESO method. Apart from some stability

issues, BESO performs quite well. It has found the optimum topologies quite

accurately. It is different than some of the optimization methods in a sense

that it is an easy method to understand and implement. Therefore it is possible

to modify it according to the needs of a specific problem. In this study, a

finite element code is embedded into the optimization code and both of them

are written specifically for this study. However, yet another advantage of the

BESO is that it is easy to combine with commercial finite element programs.

It does not require regeneration of the mesh, only the change of the element

properties would be sufficient for element removal. Therefore it would be quite

straightforward even if it is used with commercial FEM programs. BESO

method is an intuitive way while having quite strong theoretical background,

which makes it a powerful method. To conclude, the new BESO method is
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even more effective with the recent developments and it sets a benchmark for

structural topology optimization methods.

5.3 Recommendations for Future Work

For the future studies and upcoming studies, some recommendations can be

given. The researcher who are planning to work with BESO method can focus

their studies on the following topics:

• Although the focus is on compliance minimization in most studies, in

practical applications stress constraints may be needed to be implemented

into topology optimization process. Some researchers have implemented

stress constraints into optimization methods like SIMP (Duysinx and

Bendsøe, 1998[12] and Pereira et al., 2004[27]) and Simulated Annealing

(Shim and Manoochehri, 1997[33]). In the future studies, researchers

can focus on applying a similar stress constraint formulations to BESO

methodology.

• Checkerboard problem can be addressed by using higher order finite

elements therefore preventing discontinuities between element boundaries.

Therefore, there will be no need for a separate subroutine against

checkerboard problem.

• Multi-objective optimization may be applied using two or more objective

functions.

• The optimization code can be manipulated accordingly and a GUI can

be designed for the code in order to have a user friendly and flexible

optimization tool.
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APPENDIX A

MATLAB CODE USED IN THE PROBLEM 2

The m-scripts used as the optimization and analysis code are given in the

following pages.

A.1 Main Function ESO.m

% --------------------ESO----------------------

clc

clear all

close all

imgpath=’C:\Users\Oguz\Dropbox\tez\fortran-dislin\axis

symmetric\matlab-’...

’turbine disk - true’; % path of the images to be saved

%----------STEP 1 DEFINE FE MESH

n=6 %6 max

xel=20*n; yel=8*n;

left=ones(yel,xel*3/20);

middle=ones(yel,xel*15/20);

right=vertcat(zeros(yel/2,xel*2/20),ones(yel/2,xel*2/20));

solid=horzcat(left,middle,right);

%----------STEP 2 DEFINE BESO PARAMETERS
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tau=0.0001% convergence criterion

error=1; %only before the loops begin

ARmax=0.05; %maximum element addition ratio

ER=0.01;%evolutionary ratio

N=5; % error < tau in the last N steps

Vstar=0.1;%final volume fraction

V=1; %this depends on the initial config

flag=0;

k=0;

while ( (error > tau) || ((V-ER) >= Vstar) )

k=k+1;

%----------STEP 3 FEA

[C(k), sens_num_mat, sens_num_arr, Vi, element_pos,felems]

=analysis(solid);

%----------STEP 4 SENS AVERAGING

if (flag==0)

sens=sens_num_arr;

flag=1;

end

sens=sens.*0.5+sens_num_arr.*0.5;

%----------STEP 5 CALC TARGET VOLUME

V=max(V-ER,Vstar);

%----------STEP 6 ADD-DELETE

[solid,solid_arr]=addel(V,ARmax,sens,solid,Vi, element_pos,

felems);

%----------STEP 6 plot

figure(1)

colormap(gray)
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imagesc((solid)) %pcolor draws upside down

pbaspect([20,8,1]) % set the asepct ratio of the plot

drawnow

if (abs(V-0.5)<0.001)

saveas(gcf,fullfile(imgpath,’turbine_midstep’), ’epsc’)

end

%----------STEP 6 error calculation

if (V-Vstar < 0.001)

error= abs( sum(C(k-(1:N)+1)) - sum(C(k-N-(1:N)+1)) )

/(sum(C(k-(1:N)+1)));

end

Vhist(k)=sum(Vi(:).*solid_arr(:))./sum(Vi(:));

Vhist(k)

V

C(k)

end

saveas(gcf,fullfile(imgpath,’turbine_son’),’epsc’)

figure(2)

x=1:k;

[ax,Cline,Vhistline]=plotyy(x,C,x,Vhist);

set(Cline,’LineStyle’,’:’);

set(Vhistline,’LineStyle’,’-’);

ylabel(ax(1),’Objective function’) % label left y-axis

ylabel(ax(2),’Volume fraction’) % label right y-axis

xlabel(ax(2),’Iteration count’) % label x-axis

saveas(gcf,fullfile(imgpath,’turbine_objective’), ’epsc’)

disp(’FIN’)
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A.2 Function addel.m

function [ solid_mat , solid_all] = addel( Vfrac, ARmax, sens,

...

solid_mat,Vi, element_pos,felems)

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

% clc

% clear all

% close all

% load(’C:\Users\Oguz\Desktop\matlab.mat’)

% Vfrac=0.5;

% ARmax=0.1;

% solid_mat=[ 0 1 1 1 0 ; 1 1 0 1 1 ; 1 1 1 1 1 ];

% sens= [ 18;13;19;15;3 ; 8;19;17;15;13 ; 3;6;1;14;8 ];

% Vi= [ 2;3;4;5;6 ; 2;3;4;5;6 ; 2;3;4;5;6 ];

%solid matrix is turned into array

[yel,xel]=size(solid_mat);

solid_all=[];

for i=yel:-1:1

solid_all=horzcat(solid_all,solid_mat(i,:));

end

[~,elnum]=size (solid_all);

element_numbers(:,1)=1:elnum;

%calculate constraints

const1(:,1)=3*element_pos(:,1)+element_pos(:,2)-115;

const2(:,1)=element_pos(:,1)+element_pos(:,2)-59;
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%find the constrained elements

j=1;

for i=1:elnum

if ((const1(i)<=0)||(const2(i)<=0) || (element_pos(i,2)<5)

|| ...,

(element_pos(i,1) >115 && element_pos(i,2)<20))

const_elem(j,1)=i;

j=j+1;

end

end

const_elem=unique(const_elem);

element_numbers(const_elem)=[];

sens(const_elem)=[];

solid=solid_all; solid(const_elem)=[];

Vi(const_elem)=[];

[~,elnum]=size (solid);

% sort senstitivity numbers and element numbers accordingly

[~, index] = sort(sens,’descend’);

element_numbers=element_numbers(index);

solid = solid(index);

Vi= Vi(index);

total_vol=sum(Vi);

V=total_vol*Vfrac;

%-----step 1

%calculate treshold sens number

for i=1:elnum

sumVi(i)=sum(Vi(1:i));

end

[~,th_el_seq] = min(abs(sumVi-V));
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void_seq=find(~solid);

added_elems_seq=void_seq(find(void_seq <= th_el_seq));

added_volume=sum(Vi(added_elems_seq));

AR=added_volume/total_vol;

%if armax is not violated, make solid-void transformations

according to

%sensitivity number order

if (AR<ARmax)

solid(:)=0;

solid(1:th_el_seq)=1;

% solid_const_unsorted(element_numbers(:))=solid(:);

end

%if ARmax is violated first calculate elements to be added, then

remove

%elements to satisfy volume constraint.

if (AR>ARmax)

%calculate; up to which void element the addition will be

performed.

added_volume=total_vol*ARmax; %volume to be added according

to ARmax

void_Vi=Vi(void_seq);

[~,voidnum]=size(void_seq);

void_sumVi=0;

for i=1:voidnum

void_sumVi=void_sumVi+void_Vi(i);

if (void_sumVi >= added_volume)
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voidtosolid=i-1;

break

end

end

solid(void_seq(1:voidtosolid))=1;

% calculate the volume to be removed.

removed_volume=sum(solid.*transpose(Vi))-V;

[~,solidnum]=size(find(solid));

solid_seq=find(solid);

solid_Vi=Vi(solid_seq);

solid_sumVi=0;

for i=solidnum:-1:1

solid_sumVi=solid_sumVi+solid_Vi(i);

if (solid_sumVi >= removed_volume)

solidtovoid=i+1;

break

end

end

solid(solid_seq(solidtovoid:solidnum))=0;

% solid_const_unsorted(element_numbers(:))=solid(:);

end

solid_all(element_numbers(:))=solid(:);

solid_temp=solid_all;

for i=yel:-1:1

solid_mat(i,:)=solid_temp(1:xel);

solid_temp(1:xel)=[];

end

end
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A.3 Function analysis.m

function [ mean_comp , sens_matrix_fil, sens_array_fil, Vi,

element_pos,...

felems ] = analysis( Solid_old )

% UNTITLED Summary of this function goes here

% Detailed explanation goes here

% clc

% clear all

% close all

% n=1

% xel=20*n; yel=8*n;

% Solid_old=ones(yel,xel) ;

% Solid_old(1:4,4:20)=0;

E=180.36*1000;

nu=0.3;

xmin=1e-10;

Solid_old(Solid_old==0)=xmin; %zeros are changed to xmin, in

order to

% prevent unconstrained dofs

% ---------I-I-I-INPUT---------------%

[yel,xel]=size(Solid_old);

a=20; b=120; d=40; p=10;

felems=[xel:xel:(xel*yel/2) ]; % force applied at elements: f

mat

%integration i da duzenle

fxdnodes=[ 2:2:((xel+1)*2) ]; %fixed degree of freedoms
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trac=[p ; 0]; % this can be a 2 dim matrix as elem num increases

theta=1; % angle of revolution of the axisymmetric cross section

% (full rev.: 2*pi)

rmin=10; %sensitivity number filtering radius

% ---------I-I-I-INPUT---------------%

% ---------solid void info is changed into array form

solid=[];

for i=yel:-1:1

solid=horzcat(solid,Solid_old(i,:));

end

% ---------solid void info is changed into array form

elnum=yel*xel;

sens_array=zeros(elnum,1);

dx=(b-a)/xel; dy=d/yel;

xnode=xel+1; ynode=yel+1;

nodenum=xnode*ynode;

freenodes=1:2*nodenum; freenodes(fxdnodes)=[];%non-fixed degree

of freedoms

Disp=zeros(2*nodenum,1); disp=zeros(8,elnum);

Kmat=zeros(2*nodenum); Fmat=zeros(2*nodenum,1); % global f and k

matrices

fmat=zeros(8,elnum); % elemnt force vector

elem_nodecoor=zeros(4,2,elnum);

cmat=(E/((1+nu)*(1-2*nu)))*[1-nu, nu, nu, 0; nu, 1-nu, nu, 0; nu,

nu, ...

1-nu, 0; 0, 0, 0, (1/2-nu)];

ksi=[-1/sqrt(3) 1/sqrt(3)];

eta=[-1/sqrt(3) 1/sqrt(3)];

%element-node connectivities and
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%element number-node coordinates informations are calculated

for j=1:yel

for i=1:xel

% nodes are numbered in ccw direction

% numbering starts from bottom left, x-direction first,

y-dir later

elem_nodecoor(:,:,((j-1)*xel)+i)=[

((i-1)*dx+a),((j-1)*dy) ; ...

(i*dx+a),((j-1)*dy) ; (i*dx+a),(j*dy) ;

((i-1)*dx+a),(j*dy) ];

% in conn() rows contain node numbers for the element

that has the

%same number as that row

% conn (element number, node numbers)

conn(((j-1)*xel)+i,:)=[(j-1)*xnode+i, (j-1)*xnode+i+1,

...

j*xnode+i+1, j*xnode+i];

end

end

%node number- node coordinates info

for i=1:nodenum

[row,col]=find(conn==i);

nodecoor(i,:)=elem_nodecoor(col(1),:,row(1));

end

for i=1:elnum

element_pos(i,:)= mean(elem_nodecoor(:,:,i));

end

for i=1:elnum

Vi(i,1)= element_pos(i,1)*theta;

end
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% ------------------------------STIFFNESS MAT

CALC-----------------------

for i=1:elnum

% kmat * 2 pi eklenecek

kmat1=theta.*transpose(bmat(ksi(1), eta(1),

elem_nodecoor(:, :, i))) ...

*cmat*bmat(ksi(1), eta(1), elem_nodecoor(:, :,

i)).*det(Jcb(ksi(1), ...

eta(1), elem_nodecoor(:, :, i))).*rpos(ksi(1), eta(1),

...

elem_nodecoor(:, :, i));

kmat2=theta.*transpose(bmat(ksi(1), eta(2), elem_nodecoor(:,

:, i))) ...

*cmat*bmat(ksi(1), eta(2), elem_nodecoor(:, :,

i)).*det(Jcb(ksi(1), ...

eta(2), elem_nodecoor(:, :, i))).*rpos(ksi(1) , eta(2),

...

elem_nodecoor(:, :, i));

kmat3=theta.*transpose(bmat(ksi(2), eta(1), elem_nodecoor(:,

:, i))) ...

*cmat*bmat(ksi(2), eta(1), elem_nodecoor(:, :,

i)).*det(Jcb(ksi(2), ...

eta(1), elem_nodecoor(:, :, i))).*rpos(ksi(2), eta(1),

...

elem_nodecoor(:, :, i));

kmat4=theta.*transpose(bmat(ksi(2), eta(2), elem_nodecoor(:,

:, i))) ...

*cmat*bmat(ksi(2), eta(2), elem_nodecoor(:, :,

i)).*det(Jcb(ksi(2), ...

eta(2), elem_nodecoor(:, :, i))).*rpos(ksi(2), eta(2),

...

elem_nodecoor(:, :, i));

kmat(:,:,i)=kmat1+kmat2+kmat3+kmat4;
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kmat(:,:,i)=kmat(:,:,i).*solid(i);

end

% ------------------------------STIFNESS MAT

CALC-----------------------

% ------------------------------TRACTION FORCE MAT

CALC-------------------

%--------------------set the boundary(ksi (x) or eta (y)) of

applied force

%-----------------------------also, the direction from the

jacobian. i.e.

%-----------------------------2,2 or 1,1

for i=1:size(transpose(felems))

fjcb1=Jcb(1,eta(1),elem_nodecoor(:,:,felems(i)));

frpos1=rpos(1,eta(1),elem_nodecoor(:,:,felems(i)));

fjcb2=Jcb(1,eta(2),elem_nodecoor(:,:,felems(i)));

frpos2=rpos(1,eta(2),elem_nodecoor(:,:,felems(i)));

%!!!!! fmat theta ile carpilacak mi? (angle of revolution)

fmat(:,felems(i)) =transpose(Nmat(1,eta(1))) *trac

.*fjcb1(1,1) .*frpos1;

fmat(:,felems(i)) =transpose(Nmat(1,eta(2))) *trac

.*fjcb2(1,1)...

.*frpos2+fmat(:,felems(i));

end

% ------------------------------TRACTION FORCE MAT

CALC------------------

% ---------------------SCATTERING-----------------------

for i=1:elnum

map_seq=[ 2*conn(i,1)-1, 2*conn(i,1), 2*conn(i,2)-1,

2*conn(i,2), ...
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2*conn(i,3)-1, 2*conn(i,3), 2*conn(i,4)-1, 2*conn(i,4) ];

for j=1:8

for k=1:8

Kmat(map_seq(j),map_seq(k)) =kmat(j,k,i)

+Kmat(map_seq(j),...

map_seq(k));

end

Fmat(map_seq(j)) =fmat(j,i) +Fmat(map_seq(j));

end

end

% ----------------------SCATTERING-----------------------

% ------------------SOLVING-----------------------

kfree=Kmat; kfree(fxdnodes,:)=[];kfree(:,fxdnodes)=[];

ffree=Fmat; ffree(fxdnodes)=[];

ufree=kfree\ffree;

Disp(freenodes)=ufree;

% ---------------------SOLVING-------------------------

% ------------------------------SENS NUMBER

CALC-------------------------

for i=1:elnum

map_seq=[ 2*conn(i,1)-1, 2*conn(i,1), 2*conn(i,2)-1,

2*conn(i,2),...

2*conn(i,3)-1, 2*conn(i,3), 2*conn(i,4)-1, 2*conn(i,4) ];

disp(:,i)=Disp(map_seq);

sens_array(i) =(1/2*transpose(disp(:,i)) *kmat(:,:,i)

*disp(:,i))./Vi(i);

end

% ------------------------------SENS NUMBER

CALC-------------------------

67



% ------------------------------SENS NUMBER

FILTERING--------------------

%finding nodal sensitivity numbers

nodal_sens_array=zeros(nodenum,1);

for i=1:nodenum

[connected_elems, ~ ]= find(conn==i);

[connected_elem_num,~]=size(connected_elems);

w=1/connected_elem_num;

for j=1:connected_elem_num

nodal_sens_array(i)=w*sens_array(connected_elems(j)) ...

+nodal_sens_array(i);

end

end

%finding filtered elemental sensitivity numbers

for i=1:elnum

for j=1:nodenum

w(j)=rmin-sqrt((nodecoor(j,1)-element_pos(i,1))^2+...

(nodecoor(j,2)-element_pos(i,2))^2);

end

w(w<0)=0;

sens_array_fil(i,1)=(w*nodal_sens_array)/sum(w);

end

% ------------------------------SENS NUMBER

FILTERING------------------

sens_temp=sens_array_fil; sens_matrix_fil=zeros(yel,xel);

for i=yel:-1:1

sens_matrix_fil(i,:)=sens_temp(1:xel);
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sens_temp(1:xel)=[];

end

mean_comp=1/2*transpose(Fmat)*Disp;

end

A.4 Function bmat.m

function [ bmat ] = bmat(ksi, eta, nodecoor)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

J=Jcb(ksi,eta, nodecoor);

J11=J(1,1); J12=J(1,2); J21=J(2,1); J22=J(2,2);

detJ=J11*J22-J12*J21;

ngrad(1,:)=1/4*[eta-1, 0, 1-eta, 0, 1+eta, 0, -1-eta, 0];

ngrad(2,:)=1/4*[ksi-1, 0, -1-ksi, 0, 1+ksi, 0, 1-ksi, 0];

ngrad(3,:)=1/4*[0, eta-1, 0, 1-eta, 0, 1+eta, 0, -1-eta];

ngrad(4,:)=1/4*[0, ksi-1, 0, -1-ksi, 0, 1+ksi, 0, 1-ksi];

bmat=(1/(detJ)).*[J22, -J12, 0, 0; 0, 0, -J21, J11; 0, 0, 0, 0;

-J21,...

J11, J22, -J12]*ngrad;

denom= (1-ksi)*(1-eta)*nodecoor(1,1)+ (1+ksi)* (1-eta)*

nodecoor(2,1)+ (1+ksi)...

*(1+eta)*nodecoor(3,1)+ (1-ksi)*(1+eta)*nodecoor(4,1);

alp9=(1-ksi)*(1-eta)/denom;

alp10=(1+ksi)*(1-eta)/denom;

alp11=(1+ksi)*(1+eta)/denom;

alp12=(1-ksi)*(1+eta)/denom;
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bmat(3,:)=[alp9, 0, alp10, 0, alp11, 0, alp12, 0];

end

A.5 Function Jcb.m

function [ jcb ]= Jcb(ksi, eta, nodecoor)

ngrad=[eta-1, 1-eta, 1+eta, -eta-1;ksi-1, -ksi-1, 1+ksi, 1-ksi];

jcb=1/4.*ngrad*nodecoor;

end

A.6 Function Nmat.m

function [ Nmat ] = Nmat( ksi, eta )

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

N1=(1-ksi)*(1-eta)*1/4;

N2=(1+ksi)*(1-eta)*1/4;

N3=(1+ksi)*(1+eta)*1/4;

N4=(1-ksi)*(1+eta)*1/4;

Nmat=[N1, 0, N2, 0, N3, 0, N4, 0; 0, N1, 0, N2, 0, N3, 0, N4];

end

A.7 Function rpos.m

function [ rpos ] = rpos( ksi, eta, nodecoor )
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%UNTITLED Summary of this function goes here

% Detailed explanation goes here

N1=(1-ksi)*(1-eta)*1/4;

N2=(1+ksi)*(1-eta)*1/4;

N3=(1+ksi)*(1+eta)*1/4;

N4=(1-ksi)*(1+eta)*1/4;

rpos=nodecoor(1,1)*N1+nodecoor(2,1)*N2+ nodecoor(3,1)*N3+

nodecoor(4,1)*N4;

end
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