
GPU-ENABLED REAL-TIME PANORAMIC BACKGROUND SUBTRACTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR BÜYÜKSARAÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2015

Approval of the thesis:

GPU-ENABLED REAL-TIME PANORAMIC BACKGROUND

SUBTRACTION

submitted by SERDAR BÜYÜKSARAÇ in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Eng.

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Alptekin Temizel
Co-supervisor, Modeling and Simulation Dept., METU

Examining Committee Members:

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Alptekin Temizel
Modeling and Simulation Dept., METU

Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Hakkı Alparslan Ilgın
Electrical and Electronics Engineering Dept., Ankara Uni.

 Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last name : SERDAR BÜYÜKSARAÇ

 Signature :

iv

ABSTRACT

GPU-ENABLED REAL-TIME PANORAMIC BACKGROUND

SUBTRACTION

Büyüksaraç, Serdar
M.S., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. Gözde Bozdağı Akar
Co-Supervisor : Assoc. Prof. Dr. Alptekin Temizel

September 2015, 103 pages

Extraction of foreground objects using a Pan-Tilt camera is a challenging task for

various video surveillance applications. It requires several steps such as camera motion

extraction, image registration, panorama generation and background subtraction. All

these steps require significant computing power. While achieving this by using only

Central Processing Unit (CPU) is a challenging task, it might be enabled by efficient

parallelization of the algorithms to run on Graphics Processing Unit (GPU). In this

thesis an adaptive panoramic background generation and foreground object detection

algorithm is implemented on GPU/CPU to run in real-time.

Keywords: Background Subtraction, Panorama Extraction, Pan-Tilt Camera, Graphics

Processing Unit (GPU), Compute Unified Device Architecture (CUDA)

v

ÖZ

GPU KULLANILARAK GERÇEK ZAMANLI PANORAMİK ARKAPLAN

ÇIKARMA

Büyüksaraç, Serdar
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü
Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar
Ortak Tez Yöneticisi : Assoc. Prof. Dr. Alptekin Temizel

Eylül 2015, 103 sayfa

Yatayda ve düşeyde hareket edebilen bir kamera kullanarak ön plandaki nesnelerin

çıkarımı çeşitli video gözetim uygulamaları için zorlu bir görevdir. Bu iş kamera

hareketinin tespiti, görüntüde yapılan düzeltme, panorama oluşturulması ve arka plan

çıkarılması gibi birçok adım gerektirir. Bu adımlar önemli işlem gücü gerektirir.

Sadece Merkezi İşlem Birimi (CPU) kullanarak bu hedefe ulaşmak zor bir görev olsa

da, algoritmaların etkin bir biçimde paralelize edilmesiyle Grafik İşleme Birimi (GPU)

üzerinde çalışması sağlanabilir. Bu tezde uyarlanabilir panoramik arka plan oluşturan

ve ön plan nesnelerini çıkartan bir algoritma GPU ve CPU üzerinde gerçek zamanlı

olarak çalışması için uygulanmıştır.

Anahtar Kelimeler: Arka Plan Çıkartma, Panorama Oluşturma, Yatayda ve Düşeyde

Hareket Edebilen Kamera, Grafik İşleme Birimi, Birleşik Hesap Cihazı Mimarisi

vi

To My Family

vii

ACKNOWLEDGMENTS

I express my sincere appreciation to my thesis supervisor Prof. Dr. Gözde Bozdağı

Akar and co-supervisor Assoc. Prof. Dr. Alptekin Temizel for their guidance, insight

and elegant attitude throughout the research.

I wish to thank my parents Hatice and Metin Büyüksaraç and my sister Ayşenur

Büyüksaraç for their support, encouragement and confidence throughout the years of

my education.

I would like to thank to my company ASELSAN and my colleagues for their

understanding.

And of course I would like to express my greatest thanks to Buket for her love,

invaluable support, encouragement and patience.

viii

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ.. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

LIST OF SYMBOLS AND ABBREVIATIONS ... xiv

CHAPTERS

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Scope ... 2

1.3 Outline ... 2

2. LITERATURE REVIEW ... 3

2.1 Background Subtraction with Static Camera 3

2.1.1 Parametric Methods .. 3

2.1.2 Non-parametric Methods .. 8

2.2 Background Subtraction with Pan-Tilt Camera 12

3. FEATURE EXTRACTION AND MATCHING 21

3.1 Feature Extraction Algorithm ... 22

3.2 Feature Matching Algorithm ... 26

ix

3.3 Panorama Feature Extraction Method ... 27

3.4 Refining of Matching Results ... 30

3.5 Effect of Feature Points Distribution .. 31

4. IMAGE REGISTRATION AND BLENDING 33

4.1 Transformation Type ... 34

4.2 Elimination of Outliers .. 39

4.3 Homography Matrix Control ... 40

4.4 Blending Type ... 41

5. BACKGROUND SUBTRACTION ... 43

5.1 Background Subtraction Algorithm .. 45

5.2 Filtering According to First Seen Part... 46

5.3 Post Processing Operations ... 48

6. PORTING ALGORITHMS TO GPU .. 51

6.1 Introduction ... 51

6.2 GPU Architecture .. 52

6.2.1 Compute Unified Device Architecture (CUDA) 55

6.2.2 CUDA Memory Hierarchy .. 57

6.3 CUDA Implementation ... 59

6.3.1 Initialization... 61

6.3.2 Feature Extraction and Matching Part 61

6.3.3 Image Registration .. 62

6.3.4 Background Subtraction .. 62

6.4 Precision Difference between GPU and CPU 62

7. TEST RESULTS AND APPLICATIONS OF THE THEORY 65

x

7.1 Introduction ... 65

7.2 Evaluation Metrics .. 66

7.3 Comparison of CPU and GPU Results 67

7.4 Comparison with the Change Detection Algorithms 74

7.5 Comparison with [76] ... 77

7.5.1 Frame Sequence 1 ... 78

7.5.2 Frame Sequence 2 ... 83

8. CONCLUSIONS .. 89

REFERENCES ... 93

xi

LIST OF TABLES

TABLES

Table 1: Elements of Code Word ... 10

Table 2: Properties of Transformations [29] .. 37

Table 3: Evaluation Metrics ... 67

Table 4: Time Comparison ... 70

Table 5: CPU & GPU Outputs and Groundtruth .. 74

Table 6: Comparison with the Change Detection Algorithms 75

Table 7: Comparisons of Sequence 1 ... 81

Table 8: Errors for Sequence 1 ... 82

Table 9: Comparisons of Sequence 2 ... 86

Table 10: Errors for Sequence 2 ... 87

xii

LIST OF FIGURES

FIGURES

Figure 1: Steps for Pan-Tilt Camera Motion Detection System 17

Figure 2: State Chart of the Proposed Algorithm... 19

Figure 3: Original and Approximate Filters of SURF [9] .. 24

Figure 4: Algorithm State Chart of Image Registration and Blending Part 33

Figure 5: State Chart of Background Subtraction Part... 44

Figure 6: Foreground Mask without Counter Filtering .. 47

Figure 7: Foreground Mask with Counter Filtering ... 48

Figure 8: Architecture Difference between CPU and GPU [94] 52

Figure 9: Maxwell Streaming Multiprocessor [95] .. 54

Figure 10: Thread Organization [94] ... 55

Figure 11: Heterogeneous Programming [94] ... 57

Figure 12: CUDA Memory Hierarchy [17] ... 58

Figure 13: Partitions of the Proposed Algorithm on GPU and CPU.......................... 60

Figure 14: Change Detection ContinuousPan Image Sequence Samples 68

Figure 15: Some Frames of Sequence 1 ... 79

Figure 16: Panorama of Sequence 1... 83

Figure 17: Some Frames of Sequence 2 ... 84

Figure 18: Panorama of Sequence 2... 88

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

AMP : Accelerated Massive Parallelism

BRIEF : Binary Robust Independent Elementary Features

CB : Codebook

CPU : Central Processing Unit

CUDA : Compute Unified Device Architecture

CW : Code Word

CWSTR : Code Word Structure

DoF : Degrees of Freedom

DoG : Difference of Gaussians

EM : Expectation Maximization

FAST : Features from Accelerated Segment Test

FLANN : Fast Library for Approximate Nearest Neighbors

Fm : F-measure

FMA : The Fused Multiply-Add

FN : False Negative

FNR : False Negative Rate

FOV : Field of View

FP : False Positive

FPGA : Field Programmable Gate Array

FPR : False Positive Rate

FTSG : Flux Tensor with Split Gaussian

GMM : Gaussian Mixture Model

GPU : Graphics Processing Unit

IAGMM : Improved Adaptive Gaussian Mixture Model

IUTIS-3 : In Unity There Is Strength 3

KLT : Kanade Lucas Tomasi

xiv

LBSP : Local Binary Similarity Pattern

LMedS : Least Median of Squares

MBS : Multimode Background Subtraction

MRF : Markov Random Field

ORB : Oriented FAST & Rotated BRIEF

Pr : Precision

PWC : Percentage of Wrong Classifications

RANSAC : Random Sample Consensus

Re : Recall

RGB : Red-Green-Blue

SFU : Special Function Unit

SIFT : Scale Invariant Feature Transform

SOM : Self-Organizing Map

Sp : Specificity

SuBSENSE : Self-Balanced Sensitivity Segmenter

SURF : Speeded Up Robust Features

TN : True Negative

TP : True Positive

ViBe : Visual Background Extractor

xv

xvi

CHAPTER 1

CHAPTERS
INTRODUCTION

1.1 Motivation

Detection of the crime before occurring and interfering with it, are important for the

security of the society. Therefore, surveillance cameras are used in various places such

as metros, streets, borders, coasts etc. as a monitoring tool. However, in order to

analyze these videos, officers watch cameras all day and it requires enormous amount

of labor. In addition, the possibility of missing important details in a scene with naked

eye is very high, so surveillance systems should be able to detect suspicious events in

the scene automatically by using complex and efficient algorithms.

Most of the researches in literature, on moving object detection are based on static

cameras. However, Pan-Tilt cameras are also an important necessity in order to

increase coverage. Unfortunately, the algorithms that are designed for static cameras

do not perform well on Pan-Tilt cameras due to the motion. Pan-Tilt camera

background subtraction systems must have parts such as motion compensation, image

registration, panorama generation etc. in addition to static camera algorithms.

Due to the complexity of algorithms, successful background subtraction for the scenes

from Pan-Tilt cameras needs significant computing power. Using Central Processing

Unit (CPU) is not a sufficient way to deal with the tasks which requires to work in

real-time. By using Graphics Processing Unit (GPU) with efficient parallelization, this

problem can be solved.

There are studies in literature about background subtraction of a Pan-Tilt camera.

However, they are far from real-time working. We proposed a robust real-time

1

background subtraction on frames from the output of a Pan-Tilt camera by inspiring

[76].

1.2 Scope

In this thesis work, a method for moving object detection from Pan-Tilt cameras is

presented. The method is based on [76]. We assumed that objects in the scene are

sufficiently far away from the camera to be sure that the motion of all them does not

depend on the distance to camera. In order to make it work in real-time, the algorithm

is implemented on GPU and CPU.

The algorithm is partitioned in such a way that the algorithm parts that require much

computational power run on the GPU. Selection of these parts and transitions between

GPU and CPU are done wisely, which is explained in detail in Chapter 6.

1.3 Outline

In Chapter 2, previous studies on the background subtraction algorithms for both static

and Pan-Tilt cameras are explained. In Chapter 3, the methods used for feature

detection and matching are explained. Image registration and blending are examined

in Chapter 4. The third step in this study is background subtraction and it is explained

in Chapter 5. Chapter 6 provides methods, considerations and difficulties while porting

the algorithms to the GPU. In Chapter 7, the overall success rates of the system and

test techniques to evaluate the success of the system are explained. Finally in Chapter

8, the overall system is concluded and some future works to improve the system are

commented.

2

CHAPTER 2

LITERATURE REVIEW

Background Subtraction is one of the well-studied areas of computer vision over the

years. It is part of many video surveillance applications. Generating and keeping a

background model is the essential part of the process. Background subtraction of the

video sequences from static camera reached a steady state in different manners, but

foreground object detection of the frames from the Pan-Tilt camera is moderately a

new issue in literature [15], [24], [30], [48], [60], [76], [82] and [90] Traditional

background subtraction methods should be merged with compensation of camera

motion and registration operations for this purpose.

2.1 Background Subtraction with Static Camera

Background subtraction algorithms found in the literature for static camera can be

divided in two groups: parametric methods and non-parametric methods.

2.1.1 Parametric Methods

Parametric methods start with an assumption. The background does not have any kind

of movement; the reason of small movements in the scene is camera noise. Therefore,

the intensity value of each pixel can be modeled with a parametric distribution.

Gaussian distribution is one of these distributions. Wren et al. [80] proposed an

algorithm that uses Gaussian in a simple way. Mean and variance values are calculated

from the last n intensity value of pixels. They are updated with each new frame as

follows.

3

𝑃𝑃(𝑋𝑋𝑡𝑡) =
1

𝜎𝜎𝑡𝑡 √2𝜋𝜋
∗ 𝑒𝑒−

(𝑋𝑋𝑡𝑡− 𝜇𝜇)2
2 𝜎𝜎2 (1)

𝜇𝜇𝑡𝑡+1 = (1 − 𝛼𝛼) 𝜇𝜇𝑡𝑡 + 𝛼𝛼 𝑋𝑋𝑡𝑡+1 (2)

𝜎𝜎𝑡𝑡+12 = (1 − 𝛼𝛼) 𝜎𝜎𝑡𝑡2 + 𝛼𝛼 (𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑡𝑡+1) ∗ (𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑡𝑡+1)𝑇𝑇 (3)

Eq. (1) shows Gaussian probability. Eq. (2) and Eq. (3) are valid where Xt+1 is the

intensity value of related pixel, µ and σ are mean and variance values respectively.

Moreover, α is learning rate.

The decision of whether the pixel is in background or foreground is made by using the

following Eq. (4). If it is below threshold, the pixel is in background, and vice versa.

|𝜇𝜇𝑡𝑡+1 − 𝑋𝑋𝑡𝑡+1| < 𝑇𝑇 (4)

Although this model is quite fast and simple, it has difficulties with adapting to quick

changes such as fluctuation of illumination. Also, choosing correct α is crucial,

because wrongly chosen learning rate, causes unnecessary quick updates.

Kalman Filter based background detection algorithm [59] is another parametric

method. It is more robust to illumination change. It is based on thresholding the value,

which is result of the difference between background model and current frame

intensity. The algorithm calculates new prediction by using the difference between

current intensity and old prediction of the background model. This difference is added

or subtracted to model by weighing. Therefore, values that are matched with model

earn higher weight, but the others do not. After all, algorithm performance is limited

because it can represent the outer world by using only one model. Many patterns

cannot be modeled.

4

Real world cannot be modeled by using only one model. In order to go beyond this

limitation, Friedman and Russel propose an algorithm in the study which is about

traffic surveillance [26]. Algorithm includes three Gaussian models for each pixel. One

model that is the darkest one for shadows, another model that has largest variance for

cars and another one is for roads. It uses the Expectation Maximization (EM) algorithm

for initialization operation and EM is also used for decision mechanism.

Stauffer and Grimson [70] took these three Gaussian models and made it a more

generalized mixture of K Gaussians algorithm. Each pixel is modeled with K

Gaussians that may be foreground or background. The probability of each pixel

belongs to whether the background or foreground can be calculated by using Eq. (5)

and Eq. (6), where covariance matrix is in the form (7).

𝑃𝑃(𝑋𝑋𝑡𝑡) = �𝜔𝜔𝑖𝑖,𝑡𝑡 ∗ 𝜌𝜌(𝑋𝑋𝑡𝑡,𝜇𝜇𝑖𝑖,𝑡𝑡,𝛴𝛴𝑖𝑖,𝑡𝑡)
𝐾𝐾

𝑖𝑖=1

 (5)

𝑝𝑝(𝑋𝑋𝑡𝑡,𝜇𝜇,𝛴𝛴) =
1

(2𝜋𝜋)𝑛𝑛/2 |𝛴𝛴|1/2 ∗ 𝑒𝑒
−12(𝑋𝑋𝑡𝑡− 𝜇𝜇)𝛴𝛴−1(𝑋𝑋𝑡𝑡− 𝜇𝜇) (6)

𝛴𝛴𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡2 𝐼𝐼 (7)

K is the number of Gaussian; it is defined in the initialization step, according to

memory and computational power. It is defined between 3 and 5 in [70]. Equations

indicate the values for each pixel 𝑋𝑋𝑡𝑡. Weight and mean are shown with ω and µ

respectively. P is probability density function, Σ is standard deviation and 𝑝𝑝 is

Gaussian probability density function.

Evaluation of new pixel value starts with decision of corresponding Gaussians. First b

Gaussians weights are added to each other until they reach the T threshold value. These

5

b Gaussians are classified as background distributions and the remaining ones are

foreground. Eq. (8) is used for comparison.

𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏 �� 𝜔𝜔𝑖𝑖,𝑡𝑡 > 𝑇𝑇
𝑏𝑏

𝑖𝑖=1
� (8)

Then, matching Gaussian of new pixel value is obtained by using Eq. (9) where k is a

constant.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡�
𝑇𝑇

. 𝛴𝛴𝑖𝑖,𝑡𝑡−1. �𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡�� < 𝑘𝑘𝜎𝜎𝑖𝑖,𝑡𝑡
(9)

There are two possibilities for new pixel:

• If new pixel is matched with one of the Gaussians, it is classified according to

the matched Gaussian model. Weight, mean and variance of matching

Gaussian are updated by using the Eq. (10), (11) and (12), respectively. On the

other hand, mean and variance of unmatched Gaussians stay the same, only

their weights are re-arranged.

𝜔𝜔𝑖𝑖,𝑡𝑡+1 = (1 − 𝛼𝛼) 𝜔𝜔𝑖𝑖,𝑡𝑡 + 𝛼𝛼, where α is learning rate (10)

6

𝜇𝜇𝑡𝑡+1 = (1 − 𝜌𝜌) 𝜇𝜇𝑖𝑖,𝑡𝑡 + 𝜌𝜌 𝑋𝑋𝑡𝑡+1 (11)

𝜎𝜎𝑖𝑖,𝑡𝑡+12 = (1 − 𝜌𝜌) 𝜎𝜎𝑖𝑖,𝑡𝑡2 + 𝜌𝜌 �𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡+1��𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡+1�
𝑇𝑇
 (12)

where

𝜌𝜌 = 𝛼𝛼 . 𝜂𝜂 (𝑋𝑋𝑡𝑡+1, 𝜇𝜇𝑖𝑖,𝛴𝛴𝑖𝑖) (13)

• If there is no match, new pixel is classified as foreground pixel and Gaussian

that has the least weight is replaced with a new one. Variance of the new

member is initialized to a high value.

Gaussian Mixture Model (GMM) that is proposed by Stauffer and Grimson [70] is one

of the most important milestones for background subtraction algorithms. Because of

the fact that it has more than one model, the algorithm could deal with changing or

moving backgrounds and gradual illumination changes. Despite of this success, it has

some disadvantages unfortunately. Number of Gaussians is not adjustable on the fly.

This requires more computing power and memory.

In sixteen years, hundreds of studies are conducted in order to improve GMM. Original

paper proposed constant number for Gaussians. In order to improve performance

against a dynamic background, [16], [68] and [89] suggest variable number for the

number of Gaussians. This approach not only increases the performance, but also

decreases the computation time. [38] and [47] change the initialization mechanism. [4]

and [39] allow moving foreground items during training part. [79] and [85] modify the

learning rate. [43] are not contented with new learning rate and they make it adaptive

with time. [72] change the decision mechanism of foreground. While the original paper

uses the pixels, [56] use blocks and [10] uses clusters. Instead of intensity value of

Red-Green-Blue (RGB); [71], [81] prefer different color spaces or features such as

edge [32], [33], texture [75]. Even more than one feature similar to brightness,

neighborhood relation can be integrated in [86].

7

Furthermore, extra feature, which is Markov Random Fields, [65], can be added to the

original algorithm. Instead of taking data regularly, hierarchical approaches, [54] or

multi-level approaches [18], [33] are preferred. Result of the original paper is modified

in the final by some post-processing operations [55], [77].

The concern of the authors is not only to increase the performance, but also to decrease

the computation time. Studies were also conducted in this manner. Region of Interest

(ROI) concept, [6], [84], is applied in order to reduce burden. Instead of taking all data,

sampling strategies [40], [51], [66] are used. Another way of increasing speed is to use

the hardware implementation [5], [35] on powerful hardware.

Another aspect is that improving foreground detection with external support.

Statistical background disturbance [3] and color segmentation [23] are some examples.

Finding motion externally helps the algorithm. Motion can be found with optical flow

[88], block matching [31], texture models [41], [58] or consecutive frame difference

[83].

Guler et al. designed a real-time multi-camera video analytic system [27] which is

composed of four main parts. Background Subtraction is the first part; Camera

Sabotage Detection, Abandoned Object Detection and Object Tracking are the

following algorithm parts. In Background Subtraction part, GPU version of the

IAGMM [89] is used. When performance of both CPU and GPU implementations are

measured, there is a 75.00 speedup for the images with resolution of 1024 X 768. There

is a high performance increase with GPU usage because IAGMM [89] is very

appropriate for parallelization. Efficient parallelization and performance

measurements of a basic background subtraction algorithm can be examined in [73].

2.1.2 Non-parametric Methods

Parametric methods have a good success in modeling real life’s complex scenes, but

they have difficulties in adapting to changing environments [22]. This requires much

8

more attention for choosing parameters and leads to loose of generalization. In order

to deal with this problem, non-parametric methods can be used.

Elgammal et al. proposed an algorithm [22] that estimates probability density function

of each pixel. By using the Eq. (14), kernel Estimator “K” function can be used as

Gaussian function. After replacing of “K” with Gaussian Equation, it becomes Eq.

(15). In this structure 𝑥𝑥𝑡𝑡 represents consecutive intensity values

𝑃𝑃(𝑥𝑥𝑡𝑡) =
1
𝑁𝑁
� 𝐾𝐾(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
 (14)

𝑃𝑃(𝑥𝑥𝑡𝑡) =
1
𝑁𝑁
�

1
(2𝜋𝜋)𝑑𝑑/2|∑|1/2 𝑒𝑒

−12∗(𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖)𝑇𝑇∑−1(𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
 (15)

Background or foreground decision is made by comparing probability density function

with a threshold. If it is below threshold, it is classified as foreground, and vice versa.

After decision, an update of the model should be completed. Elgammal et al. [22]

designs the method with two background models, which are short term and long term.

As can be understood from the name, short term background model has a narrow

sample rate. Generally, this model consists of foreground objects. On the other hand,

the long term background model has a slow update mechanism so it usually hosts

background objects. Using two models at the same time, gives a chance to understand

that detection is really foreground or dynamic background object like a leaf on the

wind.

Support Vector Machine (SVM) is a classification method. Lin et al. [42] proposed a

method that uses SVM for background subtraction. Frames that do not have moving

objects are used for training. During training period, blocks are extracted from image

and some features like optical flow are calculated for each block. While new frames

9

are coming, new blocks are extracted and distances are calculated between old blocks

and new blocks. Using a threshold on these distances, a background / foreground

decision is done.

Maddalena and Petrosino [46] proposed Neural Network Background Modeling.

Background and foreground distribution is expressed by using weights of the neural

network. Neural network learns how to classify each pixel as background or

foreground. The background model generates a Self-Organizing Map (SOM) and this

map decides that a pixel is background or foreground.

The Codebook (CB) algorithm [37] implements a clustering method to construct the

background model. During the learning period each pixel is sampled and these values

are clustered into a set of Code Words (CW). The background is encoded pixel by

pixel. Codebook algorithm is based on keeping CWs for each pixel. Each CW has

seven data about this pixel. One data is RGB value and it is held in (V) and six data in

Code Word Structure (CWSTR).

Table 1: Elements of Code Word

Elements Meanings

𝑣𝑣𝑖𝑖 (𝑅𝑅𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖)

𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
Minimum and maximum brightness, respectively, which the CW

has occurred.

𝑛𝑛𝑖𝑖 The number of the CWs has occurred.

𝜆𝜆𝑖𝑖
The maximum negative run-length defined as the longest interval

during the training period that the CW has NOT recurred

𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖 The first and last access times, respectively, that the CW has

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑛𝑛𝑖𝑖 , 𝜆𝜆𝑖𝑖,𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖)

10

In the learning period each pixel is sampled with the six tuple format given in the Table

1, and the results are stored in the CB. In the CB, each pixel can have maximum five

CWs. If a pixel in the CB has the maximum number of CWs, before creating new CW,

the least used CW is deleted from the CB.

After the learning period, the background model is constructed and the rest of the

operation is straightforward. Each input pixel value is compared with the CWs of that

pixel and if the brightness and color distance are lower than the predetermined

threshold, that pixel is marked as foreground and the related variables of the matched

CW are updated.

Barnich and Droogenbroeck [8] proposed the algorithm VIsual Background Extractor

(ViBe) which is a universal background subtraction algorithm. Algorithm stores the

values of pixels over the frames. When a new frame comes, it compares the new value

and model for the pixels then, decides that pixel is background or foreground. If there

is a match, it updates the model. Many algorithms prefer deleting the oldest element

from the model in order to add new one but ViBe [8] chooses an element to remove

randomly.

Wang et al. [78] proposed an algorithm Flux Tensor with Split Gaussian models

(FTSG) that combines spatio-temporal tensor formulation, foreground/background

modeling and multi-cue appearance comparison. The system is formed of three

modules that are detection, fusion and classification. In detection module, algorithm

finds the foreground objects by using flux tensor based motion detection and Gaussian

models at the same time. Then, the results of two different detections are combined. In

the final part, edges of present foreground results and edges acquired from the original

image are compared. Classification operation is done by using edge matching results.

St-Charles et al. [69] proposed an approach based on the adaptation and integration of

Local Binary Similarity Pattern (LBSP). Name of the algorithm is Self-Balanced

SENsitivity SEgmenter (SuBSENSE). Firstly, spatio temporal information is extracted

from each pixel by using RGB values and LBSP features. Then, a sample consensus

11

approach like ViBe [8] is used for classification of binary features. Both algorithms

FTSG [78] and SuBSENSE [69] have satisfactory results. However, because of the

computation load of algorithms, making them to run in real-time seams hard.

2.2 Background Subtraction with Pan-Tilt Camera

Background subtraction with Pan-Tilt camera algorithms, which are based on image

information only, can be grouped under 2 approaches according to usage of offline

generated correspondence layer.

The algorithms of first group generate a layer map offline. Before an operation mode,

Pan-Tilt camera scans all areas by panning and tilting and key frames of the scene are

generated. During the operation mode algorithm uses these key frames for image

registration.

Second group includes algorithms that do not make any preparation operation offline.

Algorithms register images by using only the knowledge acquired during runtime.

The algorithms [48] and [82] are members of the first group. They generate key frames

at the beginning and take advantage of them during the image registration.

Xue et al. [82] introduced a method for background subtraction of Pan-Tilt-Zoom

(PTZ) cameras. In the beginning PTZ camera scans all area for all focal lengths.

During scanning, algorithm finds feature points by using Scale Invariant Feature

Transform (SIFT) [45] and then by using these feature points panorama is build up.

Panoramic frames are used to generate GMM of background. All these operations are

done offline. After completion of preliminary part; new frames are registered to

panorama by using SIFT and Speeded Up Robust Features (SURF) [9] algorithms.

Then, GMM operation is done in the normal fashion. There are some disadvantages of

this approach. First of all too much preliminary work have to be done before operation.

Taking frames for all areas and for all focal length requires too much time. Also,

working on videos taken without these constraints is not possible.

12

Monari and Pollok [48] proposed a method for background subtraction. This method

also uses offline training similar to the method [82]. Camera makes a full scan of the

area during initialization mode and generates a key frame map. Frame to frame

homography estimation may cause a little error. After some working time, these little

errors are getting bigger like an avalanche. Monari and Pollok [48] produced this key

frame structure in order to beat this weakness. Key frames are generated in

initialization mode. Then, in working mode new frames are put in the panorama with

the help of key frames. Later, background subtraction is done. When a new frame

comes, a search is started in key frames in order to match to the new frame. There may

be some overlap between key frames. These overlapping areas make it harder to find

a correct key frame. In order to speed search and make the result more reliable,

heuristic neighborhood ranking model is used for searching. Although, key frame

structure increases the performance of panorama generating, similar to [82], it requires

challenging initialization part. Moreover, the background subtraction part is

implemented for only proofing of concept. The attitude of the algorithm against

challenging circumstances, such as illumination change, dynamic background is

uncertain.

On the other hand, algorithms [15], [24], [30], [60], [76] and [90] prefer the second

approach. They register new frames without any prior knowledge.

Zou et al. [90] developed an algorithm that subtracts background for free moving

camera. It applies Harris Corner Detector [28] in order to find features for each frame.

Then, points that are in consecutive frames are matched by using a simple algorithm.

Candidate points are searched in the neighborhood of each point and absolute error is

calculated for all pairs. Result with a minimum error is admitted as matching. Later,

by using RANdom SAmple Consensus (RANSAC) [25] algorithm, homography is

estimated. The panorama is eliminated from foreground objects with a frame skipping

topology. Finally, background is subtracted with a technique based on Markov

Random Field (MRF) [1]. Assumption of small movement between successive frames

makes the approach to be unfeasible for real life applications. Other drawbacks of the

13

algorithm is because of the panorama generating style: The background model cannot

adapt itself according to changes in the outer world.

Ferone and Maddelena [24] take the algorithm [46] that examined before and modify

it in order to feed it with Pan-Tilt camera output. Decision of background or

foreground is based on weights of the neural network. Different to [46], SOM also

defuses the motion of the camera.

Ivanov described a background subtraction algorithm [30] for Pan-Tilt cameras

mounted on a mobile platform. Instead of generating a panorama, Ivanov made all

operations for current frame in its coordinate plane. There are two GMM [70] for

background. These background models and motion compensation part are coupled to

each other. First model is used for detection and the second one is for elimination of

errors. Feature points are extracted by using Features from Accelerated Segment Test

(FAST) [61] and descriptors are calculated by using Binary Robust Independent

Elementary Features (BRIEF) [14] for each frame. After matching of feature points,

homography is calculated by using RANSAC [128]. Background models are shifted

according to the found homography matrix. Even though the algorithm can find a

foreground object for static camera case by using high learning rates, it fails in

foreground subtraction during camera motion because algorithm [30] does not

generate panoramic model.

Rodriguez introduced a method [60] for background subtraction. It uses SURF [9]

similar to [82] in order to find feature points and calculate descriptors. Some changes

are made in the original SURF algorithm. The Brute Force Matching algorithm is

preferred for matching the feature points. Using these matches, homography is found

with the help of RANSAC [25] algorithm. Background model is found like a static

camera case then, it is shifted by using homography matrix. Instead of using panorama,

the author prefers to apply transformation to background model like [30]. It looks like

more simple way, but accuracy of this method is unfortunately low. Also, it generates

blank pixels. In order to fill empty pixels, Rodriguez prefers the interpolation

14

operation. Interpolation takes extra computation time and does not create sufficient

background subtraction results.

Chen proposed a method [15] for background subtraction of Pan-Tilt cameras. Points

are matched by using Kanade Lucas Tomasi (KLT) tracker [67]. Then RANSAC [25]

is applied to determine inliers. Finally, background is subtracted with Graph Cut

algorithm which is based on ViBe [8]. Author prefers it due to having fast initialization

and strength to noise. Regular points are used in [15] for matching but usage of some

feature points such as blobs or corners gives more accurate matching result. It also

causes a more reliable foreground mask. Furthermore, Chen [15] used affine

transformation instead of projective transformation. Affine transformation is

insufficient technique to model the real world. It will be explained in detail in Chapter

4.

Nguyen and Jeon described an application range limited Genetic Algorithm Search

[52] for background compensation by using GPU. Genetic Algorithm is a probabilistic

search method in continuous space to capture camera motion. Then, projection

histograms are used to determine backgrounds. However, computational power

requirement of the algorithm is too much. That brings solution to use the GPU. The

algorithm finds general camera motion and subtracts results over the histogram. It may

find objects instantly, but finding foreground objects over the time, adaptation of the

background model and marking dynamic background objects cannot be possible with

this system.

Doyle et al. developed a process [19] by using GPU. Optical flow background

estimation algorithm, which is especially created for unmanned air vehicles, finds a

foreground object and tracks them without generating background model or panorama

image. Camera motion is detected by using GPU based optical flow operation. Moving

objects are located by using the result of subtraction operation, which is done between

the result of the optical flow and background estimation. The Kalman filter is also

applied to filter the results. Although this algorithm detects and tracks some object in

15

the foreground, it cannot understand the changes or the movement in the scene totally,

because it does not have any background model.

Usage of omni-directional image instead of static camera may be another option to

increase the coverage area of camera. In [36], authors state that a parallel algorithm to

generate panoramic image by using omni-directional image. They create a significant

speedup by parallelization. After panorama generalization, operations such as

background subtraction, object tracking can be applied.

Tsinko introduced a method [76], which gets frame from Pan-Tilt camera and subtracts

the background from the panorama. The algorithm starts with finding feature points

by using SIFT [45], then descriptors are calculated. Matching of these feature points

is found in a straight way. An assumption is made that background objects have the

same speed as the camera makes pan and tilt; because the distance between them and

camera is sufficiently high. Considering this assumption, Hough Transform [7] is

applied to matching in order to eliminate points come from foreground object. Then,

homography matrix is created and a new frame is added to mosaic with new calculated

homography. Finally, background subtraction operation is done by using GMM [70],

KDE [22] and Codebook [37] algorithms separately. Most important qualification of

this algorithm is that it does not find feature points in mosaic every time because

finding feature points every time from panorama has two main drawbacks. First, it

requires extra computation time. Second, extracting feature points from processed

image is inaccurate. After homography operation, characteristic property of feature

points is damaged. A list of points is kept for mosaic. After each matching process,

feature points that do not match from new frame are added to the list. Before the

addition, their coordinates are adjusted according to homograph. On the other hand,

the algorithm has some drawbacks. First seen areas in panorama are wrongly classified

as foreground. In order to eliminate these false alarms, creation time of each pixel in

panorama can be kept and these results can be used for filtering.

16

We prefer second type method that does not need any prior knowledge for image

registration because it is more convenient. System is ready to detect moving objects

without any prior work. Also, it can be tested with any Pan-Tilt camera video because

algorithms from first group can generate correct outputs with only compatible videos,

which start with scanning of all area.

Motion detection from a Pan-Tilt camera is formed of three main parts as shown in

Figure 1. It starts with extraction and matching of feature points. Then, registration

and blending of new images to the panorama comes. Finally, background subtraction

operation is done.

Figure 1: Steps for Pan-Tilt Camera Motion Detection System

Feature Extraction
&

Matching

Image Registration
&

Blending

Background
Subtraction

17

In the following chapters, each part will be explained in detail. Before starting to first

chapter, feature extraction and matching, algorithm state chart of the whole process

can be seen in Figure 2.

In this state chart, three main parts of the algorithm is indicated with different colored

dashed lines. Moreover, algorithm part which is different from [76] is shown with

orange color. Finally, parts that only our algorithm has are shown with purple color.

18

Frame n

Convert to Grayscale

NO

InitilizationsYES

Convert Frame to Grayscale

First Frame?

Add First Frame to Panorama

Extract Feature Points
&

Generate Feature Point List L

Extract Feature Points

Match Feature Points

Find Minimum Distance of Matchings

Refine Matchings
&

Add Unmatched Ones to List L

Are
Feature Points

Sufficienty
Distributed?

Are There
More Than 3

Feature Points?
NO

Remove Added Feature
Points from List L

&
Skip the Frame

NO

Find Homography

YES

Is Found
Homography Matrix

Correlated with
Old Ones?

NO

Adjust Added Feature Points
According to Homography

YES

Add Frame to Panorama

Feed Background Model with
Panorama

Filter Result According to
Counter

Apply Post Processing Filters

Output
Foreground

Mask

YES

Feature
Extraction

&
Matching

Background
Subtraction

Image Registration
&

Blending

Figure 2: State Chart of the Proposed Algorithm

19

20

CHAPTER 3

FEATURE EXTRACTION AND MATCHING

Feature extraction and matching are the first parts of the system. The algorithm starts

with the first frame. Feature points of the image are extracted and all of them are put

in the feature point list L. Then, the image is located in the middle of the panorama.

Every time when new frame comes, these steps are repeated:

• Feature points are extracted from frame and matching is done with the feature

points from list L.

• The smallest value of distance is found.

• Distances of matching are compared with dynamic threshold to refine

matching.

• Unmatched feature points from the new frame are added to list L. The

coordinates of the feature points will be changed after the homography matrix

is calculated.

• Distribution of feature points is checked.

o If the result is false, added feature points are removed from list L and

this frame is skipped.

o If the result is true, the process continues.

Details of each part will we explained in following sub-sections.

21

3.1 Feature Extraction Algorithm

Feature extraction algorithms found in the literature can be grouped in three. These are

edge based, corner based and blob based. In image registration part, we need at least 4

matching points to calculate homography matrix. Due to this necessity, edge based

algorithms are not appropriate.

Harris Corner Detection [28] and Features from Accelerated Segment Test (FAST)

[61] are corner based feature extraction algorithms. Harris [28] is based on gradient

computation; it looks for significant gradient change in all directions because it is

possible only on corners. Similarly, FAST [61] searches changes in all directions, but

it uses templates instead of gradients. Algorithm placed a template around the

candidate pixel and controls the changes between center pixel and around ones. If there

are changes in all directions, this pixel is classified as corner.

Scale Invariant Feature Transform (SIFT) [45], Speeded Up Robust Features (SURF)

[9], Binary Robust Independent Elementary Features (BRIEF) [14] and Oriented

FAST & Rotated BRIEF (ORB) [63] are the most preferred feature extraction methods

based on blob detection in literature.

SIFT [45] is one of the most reliable and robust feature detection methods over the

years. Lowe proposed a method that starts with taking Difference of Gaussians (DoG)

for different pyramid sizes to find stable feature points. This process gives feature

points that are invariant to scale. All pixels in DoG images are compared with eight

neighbors. If the value of it is minimum or maximum, there is a candidate point. There

are many candidates, but some of them are non-reliable. In order to eliminate weak

ones and locate strong ones, interpolation is done with the Taylor expansion of the

DoG function as can be seen in Eq. (16). Then keypoints which have low contrast are

eliminated according to second order of Taylor expansion in Eq. (17).

22

𝐷𝐷(𝑥𝑥) = 𝐷𝐷 +
𝜕𝜕𝐷𝐷𝑇𝑇

𝜕𝜕𝜕𝜕
𝑥𝑥 +

1
2
𝑥𝑥𝑇𝑇

𝜕𝜕2𝐷𝐷
𝜕𝜕𝑥𝑥2

𝑥𝑥 (16)

𝐷𝐷(𝑥𝑥�) = 𝐷𝐷 +
1
2
𝜕𝜕𝐷𝐷𝑇𝑇

𝜕𝜕𝜕𝜕
𝑥𝑥� (17)

Bins are created around the each candidate point. According to the result of histogram,

rotation invariant descriptors are calculated.

Bay et al. proposed a method [9] that can find feature points with Hessian Matrix. It is

inspired from SIFT [45] but it is faster than SIFT [45]. Hessian Matrix is given in Eq.

(18), where L is the convolution of the Gaussian second order derivative.

𝐻𝐻 = �
𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎) 𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎)
𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎) 𝐿𝐿𝑦𝑦𝑦𝑦(𝑥𝑥,𝜎𝜎)� (18)

The authors stated that instead of calculating Gaussians, box filters which are created

by approximating Gaussians can be used. This approximation increases the speed of

the operation. In Figure 3, original and approximate filters can be seen. Furthermore,

these approximate filters are suitable for integral image that removes the dependency

on image size.

23

Figure 3: Original and Approximate Filters of SURF [9]

SURF [9] creates rotation invariant descriptors. Haar Wavelet responses in both

directions are calculated and weighted for each direction that is defined before. Then,

rotation invariant descriptors are calculated for each interest point.

Also up-righted version of the algorithm is available and it is faster than normal

version, but it is not invariant to rotate. SURF is faster than the SIFT due to the usage

of integral image that makes also operation speed invariant to image size. Moreover,

it is more appropriate to parallel operation because of Hessian image independency.

Unfortunately, some accuracy losses are possible, but the authors claim that it is

minimal and negligible.

BRIEF [14] is a feature descriptor calculation method that is very fast. Traditional

methods use a lot of memory for each feature vector. However, memory, which is used

by BRIEF [14], is nearly 4 % of the memory usage of SIFT [45] Instead of using float

numbers, it uses a binary descriptor. Low memory usage increases the speed of the

algorithm. The descriptors are created according to similarity of interest point with

neighbors. It takes a patch around the feature point and compares the value of center

pixel and the others. If the first value is smaller than the second one, it writes 1 on the

corresponding area in the descriptor, else it writes 0. Any extra operation is not done

against rotation. Therefore, the algorithm is not rotation invariant.

ORB [63] is an algorithm that is based on BRIEF [14] but it is rotation invariant. It

starts with finding feature points by using FAST [61]. Then, BRIEF [14] descriptors

24

are calculated. Both of the algorithms are not invariant to rotation. In order to beat this

weakness, ORB [63] weighted FAST [61] templates about rotation in order to detect

dominant orientation. Then rotation information is added to descriptors. The algorithm

does not require too much computation and it is very fast compared to SIFT [45] or

SURF [9]. Also, the authors claimed that it is successful as much as them.

In this study, feature points are required for matching to generate a panorama image.

Therefore, robustness is the first concern. If there is a matching error, panorama also

has this error. Then, background subtraction algorithm, classifies false matching part

wrongly. These false positive or false negative markings decrease the performance

unfortunately.

Floating point feature extractors like SIFT [45] and SURF [9] generate more robust

results. In order to speed up the process, methods with binary descriptors like FAST

[61], BRIEF [14], and ORB [63] ignore some performance loss. Therefore, their result

is less robust than floating point feature extractor algorithms’ result.

El-gayar et al. made a comparison [21] between feature detection algorithms.

According to the study [21], SIFT [45] and SURF [9] give better results than the others.

However, time consumption of the algorithms should be considered. Algorithms with

binary descriptor are faster 6 or 7 times with performance loss. If there is not enough

computation power these algorithms should be used, but if there is sufficient

computational power like the GPU, Field Programmable Gate Array (FPGA); using

robust and more reliable floating point feature extraction algorithms are preferable.

In our study, implementations are done for GPU so computational power is not a

bottleneck. In order to get desired results, always more robust solutions are used.

Therefore, using SIFT [45] or SURF [9] is reasonable.

Tsinko [76] preferred using SIFT [45] for feature extraction. Author stated the reason

behind this selection of the algorithm that durability against scale and rotation

25

distinctively. Moreover, SIFT algorithm has low sensitivity to affine changes less than

30° [45].

Xue et al. [82] used SIFT [45] and SURF [9] at the same time. Authors prefer SIFT

[45] during the initialization part in order to get more robust features. Then, SURF [9]

is used on-line registration part because of speed and robustness.

Rodriguez [60] stated some comparison results between SIFT [45] and SURF [9]. Both

algorithms are examined against change in rotation, scaling, illumination and Field of

View (FOV). Although SIFT [45] generate more feature points with a little bit better

matching results, SURF [9] algorithm is much faster and the result of it is robust

enough. Therefore, Rodriguez chose SURF [9] for feature extraction.

Principle of the SIFT [45] and SURF [9] algorithms are examined in detail. They both

follow the same pattern basically but SURF takes advantage by using an integral image

and Gaussian approximation. Panchal et al. proposed a comparative study [53] in order

to compare SIFT [45] and SURF [9]. According to its study, they give similar results.

Performance of SURF [9] is slightly below. However, SURF [9] is faster than SIFT

[45]. Most important feature of SURF [9] for our case is that it is more appropriate to

parallelize. Terriberry et al. [74] defined a translation for SURF [9] algorithm to the

GPU. SURF implementation [74] on this study runs real-time and 4 times faster than

SIFT implementation [74] on the GPU. Moreover, 82% of the matches that are created

by SURF [9] are classified as inliers by RANSAC algorithm [25]. SURF [9] is chosen

in the light of these results.

3.2 Feature Matching Algorithm

The feature matching process is the next step after feature extraction. Feature matching

can be done in 2 ways. First method is trying all possible matches. The second and

faster method is making this search operation by following some rules.

Brute-Force Matching uses the method that tries all possibilities. It is a very robust

method, but it consumes a high amount of time if the computation capability is limited.

26

On the other hand, there is a Fast Library for Approximate Nearest Neighbors

(FLANN) to speed up the operation. Tree Search is most common search technique.

Muja and Lowe generated FLANN [49], [50], [92] that can fast approximate nearest

neighbor search in high dimensional spaces. It chooses the best algorithm with

optimum parameters for data type and size. Most appropriate algorithm is chosen from

the algorithms that are K-Dimensional Tree, Randomized K-Dimensional Tree and

Hierarchical K-Means Tree. Then, best parameters are assigned by a method that finds

parameters with the grid search roughly and tune them with Nelder-Mead Downhill

Simplex method [34]. Unfortunately, it does not guarantee to get global minimum, but

experiments showed that it is very close to optimum. FLANN [92] gives faster results

than the direct linear search, with a little performance loss.

Both of the methods are used in studies. Their outputs are nearly the same. The

difference between them is the speed. FLANN [92] may be more appropriate for the

system that has the low computation capability. Zhang et al. [87] applied a Random

Tree algorithm for matching and Liu et al. [44] also employed KD-Tree algorithm

from FLANN [92] On the other hand, Rodriguez [60] preferred Brute-Force Matcher

because of its certainty.

In our study, robustness is the first concern as stated before. Because of the usage of

GPU, computational power is sufficient. Moreover, Brute-Force matching is more

appropriate for parallelization. Therefore, Brute-Force Matcher is employed for

feature matching process.

3.3 Panorama Feature Extraction Method

In order to create homography matrix, matching feature points are required between

each new frame and panorama. Finding feature points of the panorama is possible in

two ways. First one is finding feature points from background panorama repeatedly

for each cycle. Secondly, keeping a list of feature points in the panorama and updating

this list with each frame. Both methods have advantages and disadvantages.

27

The first method is extracting feature points from background panorama image after

every update of background mosaic. Most important advantage of this approach is that,

a number of feature points does not increase too much. Total count increases if only

new scenes are started to be visible. Moreover, after some working time, it stays

steady. Algorithm with this property works for long time period in limited memory.

Another advantage of this method is that it prevents developing of outliers. Algorithm

subtracts feature points from the background panorama image that contains only

background subjects. Therefore, features must be from real background and they will

match with the background object in the new frame.

The method has two shortcomings. Firstly, background panorama is generated from

warped, stretched and skewed images. Some parts of the background mosaic are

comprised of scenes with viewpoint angle that is larger than 30°. After this angle, SIFT

[45] feature points cannot match implicitly. Lowe stated that in the algorithm [45] bin

size is 30°. According to the author, this wide range makes possible matching of

feature points even geometric distortion occurs during the 3D viewpoint change up to

30°. Therefore, matching results with the angle of viewpoint change is greater than the

limit, are not robust. Another shortage of the method, background panorama has to be

generated for each cycle except normal panorama. It brings extra memory requirement

and extra operations. Furthermore, method couples the feature detection and

background subtraction parts. It obstructs evaluation of algorithm parts separately.

The second method is maintaining a list of feature points. All feature points of

panorama are kept in a list. When a new frame comes, feature points of it, are extracted

and added to the list. During this addition, the coordinates of the feature points are

changed according to homography.

28

There are different styles for addition:

• First, all feature points of new frame can be added to the list. It makes the size

of list enormous. Many unnecessary points, which are from background and

foreground objects, live in the list and these points decrease the performance

by creating outliers. Therefore, it is not useful.

• Another option is adding feature points that are matched with panorama. This

style is also not practical. All feature points come from scene of the first frame.

Feature points of the unseen parts of the panorama cannot be added.

• Last style is adding feature points that did not match with panorama. With this

style new scenes can be represented in a feature point list and size of the list is

acceptable.

Keeping a list of feature points and adding unmatched points, is the alternative method

to acquire panorama feature points. It solves both problems of feature point extraction

from panorama for every cycle. Even angle change is more than 30°; the algorithm

gives a good matching performance. Also, there is no need to sustain extra background

panorama.

However, the second method has also disadvantages. Firstly, unmatched feature points

are added to list without background/foreground knowledge. They may increase

outlier ratio a little. Secondly, addition never stops and causes enlargement in the list.

Tsinko [76] conducted an experiment to compare both methods. According to his

result, panorama image of the recalculation method contains visible artifacts. The

reason behind this artifact is excessive change in angle of viewpoint as stated before.

Author also examined a number of the feature points [76]. The number stays the same

for recalculation method, but increases with negative acceleration for list method.

Even though, a number of feature points for list method increases, speed of increase is

getting smaller with decreasing unseen part. Moreover, list method has better matching

performance. In order to get robust background subtraction, error free registration is

29

necessary and it is possible with successful matching. Therefore, feature points list

with addition of the unmatched points is chosen for this study.

3.4 Refining of Matching Results

Brute-Force Matcher is an exhaustive search. In other words, it passes over all

possibilities. The algorithm takes one element of the first set and finds the closest

element from the second set. Also, it generates a distance value for each pair to show

the success of the matching. The algorithm does not compare distances with any

threshold value. Every element of the first set is matched with the most similar element

from the second set even their similarity is too weak. Furthermore, two different

elements of first set can be paired with the same element of the second set. Barely, one

of that pairs or maybe both are wrong matches.

In order to eliminate wrong matches and increase the performance, refining operation

is necessary. Refining operation is based on comparison of matching distances. If the

distance of the matching is less than threshold, this pair should be eliminated.

However, choosing an appropriate threshold is a challenging task. Defining a constant

threshold value for every frame is not practical. A little change such as contrast, focus

between consecutive images impress all distances in the same way or changes in

external factors like illumination, increases all distances. Therefore, choosing a

threshold based on characteristic of each frame is more reasonable.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 < 𝑁𝑁 𝑥𝑥 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒 (19)

In our study, matches are filtered by using the Eq. (19). If the distance is higher than

the threshold, pair is removed. Minimum distance of all matches is found and

comparison is done with N times of it. Using this value as a reference adjusts the

30

threshold automatically. If most of the distance is small, threshold is also small, and

vice versa.

Choosing correct N multiplying factor is another issue. Choosing N is relevant that

how many percent of matches are meaningful. Rodriguez [60] conducted some

experiments on choosing N value. After trials between 2 to 7, authors stated that small

N values are more preferable and 2 is the most appropriate value for N because of

following results:

• Multiplying factor does not affect performance ratio of matching significantly,

it affects final panorama registration [60].

• Even for no filter case, registration is done properly except some artifacts

because homography is generated by using RANSAC [25] that is also a good

filter for outliers [60].

• If N number increases, also matching count increases. However, a small

number of well distributed feature points are better than a high number of

feature points [60].

• Although filtering does not affect too much matching performance, it

influences the time requirement of RANSAC [25]. Small N values eliminate

most of the outliers so RANSAC [25] needs less time. Using 4 for N instead of

no filter case, speeded up the RANSAC [25] more than 3 times in Rodriguez

test case [60].

3.5 Effect of Feature Points Distribution

After eliminating wrong matches, reliable feature points of the new frame are obtained.

Before calculating homography, last control should be done. The distribution of the

feature points should be controlled.

The distribution of the feature points over image has an influence on calculated

homography matrix. If feature points are equally distributed over the image, they can

31

give more accurate a homography matrix, but if they are not, the calculated

homography matrix has errors.

The main reason behind this problem is based on small misalignment of feature points.

When matched points are too close to each other, the small error of their position leads

to the significant error of homography matrix. On the other hand, if points are far away

from each other; small errors are negligible and it is still possible to get accurate

homography matrix.

In order to be sure that the distribution of the feature points over the image is sufficient,

there is a control mechanism in the system. For each frame, the variance of the feature

points’ locations is calculated and this variance is compared with a threshold. If the

value is lower than the threshold, this frame is skipped and homography matrix is not

calculated for it. On the other hand, if the variance of points is higher than the

threshold, process continues.

32

CHAPTER 4

IMAGE REGISTRATION AND BLENDING

Feature points of the images are extracted, points are matched and refined. After this

point, a transformation matrix that represents one frame by using another frame can be

generated. Homography matrix between the new image and panorama can be

estimated by using isometry transformation, similarity transformation, affine

transformation or projective transformation [29]. The main difference of them is the

number of the Degrees of Freedom (DoF) that takes in the consideration. Homography

matrix, which corresponds to the transformation type, is calculated by using the Direct

Linear Transformation (DLT) [2] algorithm.

State chart of the algorithm for only this part can be seen in Figure 4. This part starts

with the calculation of homography by using the matching of feature points.

Remove Added Feature
Points from List L

&
Skip the Frame

Find Homography

Is
Found

Homography Matrix
Correlated with

Old Ones?

NO
Adjust Added Feature Points

According to HomographyYES

Add Frame to Panorama

Figure 4: Algorithm State Chart of Image Registration and Blending Part

33

As stated before, feature points of panorama are kept in a list L. When there is a

mismatch between the feature point of new frame and any feature point in the list, this

feature point is added to list but its coordinates is changed according to homography.

Additions have already done to the list L. However, their coordinates cannot be

changed because there is no homography matrix. At this point, homography matrix is

calculated.

The calculated homography matrix is compared with the mean of last five homography

matrices. Change in each eight element of the matrix is examined and they are

compared with own threshold.

o If even one of changes is more than own threshold, added feature points

are removed from list L and this frame is skipped.

o If it is not, the process continues. All newly added feature points are

adjusted to be compatible with the coordinate system of the panorama by

using homography matrix H.

The pixels from the new image are transformed to panorama. The operation is not done

directly. Pixels are placed with blending.

Moreover, a counter for each pixel is increased if this pixel is updated. This counter

image is used to filter background subtraction results. Details of it will be explained in

Chapter 5.

Panorama image is obtained after these steps and now it is ready for background

subtraction.

4.1 Transformation Type

There are many different types of transformations with different features. Even though

all transformations can use 3x3 transformation matrices with nine elements, only

projective transformation has eight DoF. Each element represents one of freedom and

34

last element is always equal to 1. On the other hand, other transformations make some

elements to equal to 0 for simplification. It reduces the number of DoF.

Isometry transformation is Euclidean transformation. In other words, it is a form of

translation and rotation. Isometry transformation has got three DoF. These are rotation,

translation in vertical direction and translation in horizontal direction. Transformation

is invariant to length and angle. Matrix representation of transformation can be seen in

the Eq. (20).

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝜖𝜖 cos 𝜃𝜃 − sin𝜃𝜃 𝑡𝑡𝑥𝑥
𝜖𝜖 sin𝜃𝜃 cos𝜃𝜃 𝑡𝑡𝑦𝑦

0 0 1
� �
𝑥𝑥
𝑦𝑦
1
� (20)

Similarity transformation is combining of isometry transformation and scaling. “s” in

Eq. (21) represents the scaling factor. Similarity transformation has got four DoF.

Three of them is coming from isometry and scaling is added. This extra DoF makes

the transformation invariant to scale. Matrix representation of transformation can be

seen in the Eq. (21).

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝑠𝑠 cos 𝜃𝜃 −𝑠𝑠 sin 𝜃𝜃 𝑡𝑡𝑥𝑥
𝑠𝑠 sin𝜃𝜃 s cos 𝜃𝜃 𝑡𝑡𝑦𝑦

0 0 1
� �
𝑥𝑥
𝑦𝑦
1
� (21)

Affine Transformation has two degrees of rotation and two degrees of scaling in

contradistinction to similarity transformation with one of each as a degree of freedom.

Transformation can preserve the ratio of the scaling. Unfortunately, it lost the

preservation of distance ratio and angle between lines but new preservations are

gained. Parallel lines will be still parallel with correct length ratio and area ratio, after

35

transformation. Affine transformation has got six DoF. Each one is represented by one

element in a matrix than can be seen in the Eq. (22).

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝑎𝑎11 𝑎𝑎12 𝑡𝑡𝑥𝑥
𝑎𝑎21 𝑎𝑎22 𝑡𝑡𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
� (22)

Projective Transformation is a non-singular linear transformation of homogeneous

coordinates. Transformation adds two more DoF. Its invariance is different from an

affine transform. The cross ratio of lengths of a line is invariant instead of a ratio of

lengths. Four point matches are required to compute projective transformation. Matrix

representation of transformation can be seen in the Eq. (23). Each element represents

a DoF. All transformation types can be seen in Table 2 which is retrieved from [29].

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑋𝑋 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑋𝑋
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑌𝑌 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑌
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑋𝑋 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑌𝑌 1

� �
𝑥𝑥
𝑦𝑦
1
� (23)

36

Table 2: Properties of Transformations [29]

Isometry and similarity transformations are too inadequate to model the real world.

Isometry has three and similarity has four DoF. They do not have invariance in

parallelism and ratio of the areas. Therefore, using affine or projective transform is

more rational.

If affine and projective transformations are reviewed, it is clear that a projective

transformation has two more DoF. Transformation conserves ratio of ratios for lengths

instead of ratios. Moreover, there is one more big difference between affine and

projective transformations.

Hartley et al. defined key difference between these two transformations in the book

“Multiple View Geometry in Computer Vision” [29]. Affine transformation can be

seen in Eq. (24) and projective in Eq. (25). Ideal point is modeled to ideal point again

for Eq. (24). In other words, ideal point is at infinity. However, Eq. (25) showed that

model of ideal point can be located to a finite point. Therefore, projective

37

transformations can model vanishing point that is the intersection point of the parallel

lines.

� 𝐴𝐴 𝑡𝑡
0𝑇𝑇 1� �

𝑥𝑥1
𝑥𝑥2
0
� = �𝐴𝐴 �

𝑥𝑥1
𝑥𝑥2�
0

� (24)

� 𝐴𝐴 𝑡𝑡
𝑉𝑉𝑇𝑇 𝑈𝑈� �

𝑥𝑥1
𝑥𝑥2
0
� = � 𝐴𝐴 �

𝑥𝑥1
𝑥𝑥2�

𝑈𝑈1𝑥𝑥1 + 𝑈𝑈2𝑥𝑥2
� (25)

Projective transform has the ability to model ideal points. Also, it has two more DoF.

The invariance concept of projective transformation is better than affine transform to

model the real world. In the light of these results, the projective transformation model

is chosen for this study.

Homography with eight DoF between images can be estimated by using four pairs

[29]. DLT [2] is a simple linear algorithm to calculate homography matrix. There is a

pair 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖′. In order to find an H homography matrix Eq. (26) can be written. Eq.

(27) is also full version of it.

𝑋𝑋𝑖𝑖′ = 𝐻𝐻.𝑋𝑋𝑖𝑖 (26)

�
𝑥𝑥𝑖𝑖′

𝑦𝑦𝑖𝑖′

𝑧𝑧𝑖𝑖′
� = 𝐻𝐻 �

𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖
� where 𝐻𝐻 = �

ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

� (27)

38

If there are four points, homography matrix can be generated by using a DLT algorithm

[2] but in most cases there are more than four pairs. Also, some of these pairs are

mismatched that are outliers. There are algorithms such as RANSAC [25] in literature

to eliminate outliers and get inliers.

4.2 Elimination of Outliers

Four pairs are enough to construct a homography between two scenes, but for the most

cases there are too many pairs. Unfortunately, some of them are mismatches. This

circumstance causes a necessity to eliminate false matches. RANSAC [25], Least

Median of Squares (LMeds) [62] are the most preferred algorithms for elimination of

outliers and calculation of homography.

RANdom SAmple Consensus (RANSAC) [25] prefers using a small set of initial data

instead of using much of the data possible. The algorithm starts with picking up four

pairs randomly and calculating homography H matrix by using them. Then, each other

pair is classified as inlier or outlier by using the H matrix. This operation is done may

times. Finally, iteration that has the largest number of inliers is selected. Then,

homography matrix H is recalculated according to all inliers from this iteration. There

are two important issues about this algorithm. First one is the threshold to decide if it

is outlier or inlier. Second thing is the iteration count of the algorithm. If it is small,

the algorithm may not find all inliers. If it is high, computation time takes much.

Deciding on iteration count is based on probabilistic calculation.

LMedS [62] is another method. Algorithm deals with outliers as a minimization

problem. It finds distances for all matches. Least median of the distances for all data

is selected. Without ant settings or pre-work elimination is done. Then, transformation

can be found by using DLT.

RANSAC [25] is the most popular solution for the homography problem. It is the

milestone on robust estimation. LMedS [62] is the second popular algorithm.

RANSAC [25] dominates the homography estimation area and also LMedS [62] can

be seen in some studies. The most important advantage of the RANSAC [25] over the

39

LMedS [62] is the performance for the case that has outliers more than half [20]

because outliers more than 50% affects median in a bad way. Hartley et al. stated that

“The RANSAC algorithm is able to cope with a large proportion of outliers.” [29].

RANSAC [25] finds inliers that are even a minority. Because of its robustness, [15],

[30], [60] [76], [82] and [90] all prefer RANSAC [25]. Therefore, we also prefer

RANSAC [25] algorithm for homography estimation in this study.

4.3 Homography Matrix Control

Homography matrices of each frame should be compatible with each other. Elements

of the matrix are related to corresponding elements of the other matrices. The reason

behind this relation is the nature of the Pan-Tilt camera because jumping from one

scene to another scene is not possible. The camera should be rotated to a new position

via other scenes.

In order to detect weak homography matrix, a comparison between elements of the

matrix and reference matrix is held. Each element of the homography matrix has

different meanings as stated in Eq. (23) according to the projective transform. These

are moving, size, skew and stretch. The value of each one is in different intervals.

First of all, a reference homography matrix should be generated by using recent

homography matrices. The average value of each element of the matrix is calculated.

Reference matrix is necessary for comparison operations.

Change in homography matrix from one frame to another frame is so predictable

because changes between corresponding elements are in apparent interval. For

example, change in “size” value is in the neighborhood 10−1. It maybe be 2𝑥𝑥10−1 or

7𝑥𝑥10−1, but not around 10−2. Similarly, this range is 10−2 for “skew” and 10−3 for

“stretch”. New homography matrix and reference homography matrix are compared

and even if one of the results are higher than the corresponding ranges, frame is

skipped and the process goes on with new frame. The comparison operation starts from

40

base values that are 10−1, 10−2 and 10−3 for size, skew and stretch respectively. Then,

they are increased with each skipped frame until they reach the upper limit.

This property is a little different for move element of the homography matrix.

Comparing with only value is not sufficient because it varies in high range. When the

camera rotates slowly it can be 3 pixels. When the camera rotates faster, 30 pixels are

possible. Therefore, its threshold is not only a constant value. It is a multiplication of

average reference value and a constant.

4.4 Blending Type

After homography calculation, the position of the new scene is defined. Putting of new

pixels over the interested area in the panorama is another step. Without any extra

process, changing old pixels with new pixels is possible but better results can be made

with little effort or complex algorithms. Also, blending covers up registration errors

moderately.

Blending techniques can be simple or complex as stated before. Alpha Blending [57]

is the most appropriate one to get good result in brief time. Also more methods are

created with the help of signal domain. Pyramid Laplacian Blending [13] and 2-band

Blending [12] are the most famous and successful ones. However, they require much

time.

In order to use signal domain based blending, an extra transformation label should be

created. Each pixel from new image is taken and it has to be placed in the blank

transformation image. Then, blending operation can be done between panorama and

transformation image. As can be seen clearly, methods require extra an image, also

extra time and memory. Another disadvantage of these method for our case,

parallelization of them is not as easy as Alpha Blending [57]. Extra libraries and

operations are required.

On the other hand, Alpha Blending [57] is a simple method that does not require any

extra label. Pixels from new image can be put in directly into a new position on the

41

panorama after some addition and division operations. It is naturally appropriate for

parallelization. While all pixels are being passed in panorama, blending can also be

applied. Because of the reasons above, Alpha Blending [57] is used in this study.

All channels of a pixel can be calculated by using the Eq. (28) from [57]. It is applied

to channels red, green and blue, respectively. The value of the 𝛼𝛼 is set to 0.5. The

reason behind the blending is mostly visualization. Therefore, 0.5 is a good constant

because half comes from history and the other half comes from the new image.

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛼𝛼 .𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + (1 − 𝛼𝛼).𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (28)

42

CHAPTER 5

BACKGROUND SUBTRACTION

Background subtraction is the last part of the main process. After new frame addition

to panorama, panorama is ready for background subtraction. Background subtraction

is done on an area that is much larger than the image size. The panorama and the

background model of panorama cover the whole area in the FOV of the camera.

In our study, background model is generated by using panorama. In other words,

background is subtracted in the normal fashion from mosaic. Camera motion is

compensated and new image is registered to panorama. The situation can be examined

like a static camera case similar to [15], [48], [60], [76] and [82].

The process will be explained in detail for background subtraction part. Moreover,

state chart of the algorithm for only this part can be seen in Figure 5.

43

Feed Background Model
with Panorama

Filter Result According to Counter

Apply Post Processing Filters

Output
Foreground

Mask

Figure 5: State Chart of Background Subtraction Part

The new frame is added to the panorama and it is ready for background subtraction.

The background subtraction algorithm is fed with panorama image. It starts with the

first image and continues until the last image.

The background subtraction algorithm generates black and white foreground mask

image. In order to remove false positive labels because of first seen parts, each pixel

in the foreground mask image is modified according to the comparison result between

corresponding pixels in counter image and threshold. If it is lower than the threshold,

value of the foreground mask pixel is set to zero, else no modification is done.

After the filter operation morphological part should be completed. In order to get rid

of pepper and salt noises consecutive one closing and one opening operation are

applied.

44

5.1 Background Subtraction Algorithm

There are different kinds of algorithms to subtract background. Basically, it can be

grouped in two categories: Parametric methods and non-parametric methods.

Parametric ones try to fit the background model for parametric distribution. On the

other hand, non-parametric methods follow counts and statistics about pixels.

In order to model background, usage of GMM is the most preferred method in

parametric ones and also in all methods. Wren et al. [80] suggested using Gaussians

for background modeling in 1997. Friedman and Russel [26] improved this idea one

point more and they use three Gaussians for modeling. Then, Stauffer and Grimson

[70] generalized the method. Algorithm transformed to the K Gaussians algorithm. K

is the number of Gaussians which is defined in initialization step.

Study of Stauffer and Grimson [70] is the very big step for background subtraction

because the algorithm is successful to handle dynamic backgrounds, gradual

illumination changes and many things. However, the constant Gaussian count is a

drawback. It can waste computational power and time by using many Gaussian models

for very basic patterns than can be modeled with only one Gaussian. Many variants

have been designed for sixteen years. Algorithms have taken [70] as a base and

improved it in many ways.

Zivkovic proposed another GMM algorithm [89]. It is one of the successful ones.

Algorithm is named with Improved Adaptive Gaussian Mixture Model (IAGMM). The

algorithm uses a variable number of Gaussians. The number is defined and changed

automatically, similar to [16], [68]. A distinguishable feature that [89] has but [16],

[68] do not have is about OpenCV [98]. OpenCV has both CPU and GPU

implementations of [89].

On the other hand, there are non-parametric methods. SuBSENSE [69] is an algorithm

based on LBSP. The performance of the algorithm is high, but because of much work

load, it works slowly. Moreover, Flux-Tensor method [78] is also good subtracter but

45

its speed should be attended. Codebook [37] background subtraction algorithm is a

clustering method. It samples the pixels. Then, data from pixels are clustered into code

words. Every code word contains seven data. Data usage of each pixel is very high.

Unfortunately, this data load affects negatively the parallelism of the algorithm. It

decreases Shared Memory usage that will be explained in Chapter 6 in detail.

Parametric methods, especially GMM are appropriate for parallelization because in

parametric methods each pixel is taken and it is fitted to a distribution. In other words,

the same operation is done for all pixels. Also, the data size of each pixel is in

acceptable size so parallelization optimizations such as Shared Memory usage can be

applied.

In order to get robust background subtraction results with highly efficient

parallelization, a variant of GMM algorithm is used similar to [30], [48], [60], [76] and

[82] in this study. [89] is preferred from many GMM algorithms because of its useful

contribution to original paper [70]. Furthermore, the presence of the algorithm in

OpenCV [98] affects our decision.

5.2 Filtering According to First Seen Part

The background subtraction operation is applied to panorama after each new frame is

added to the panorama. When the camera is turned to an area that has not been seen

before, pixels which correspond to that area in the panorama are changed from black

to a new value. Because of this dramatic change, background subtraction algorithm

classifies this kind of areas as foreground object, even they are part of the background.

In order to cope with this problem a filtering can be applied to result of background

subtraction.

A counter is kept for each pixel and this counter image is updated, when new frame is

added to the panorama. Size of counter image is the same with a panorama in width

and height. Counter image is initialized to 0 at the beginning. After first frame is

46

located in the middle of panorama, pixels in the middle of the counter image is set to

1. Then, value of counters is updated with each new frame added to the panorama.

Consecutive frames are taken while the camera is being rotated to the left. As you can

see in the Figure 6, left side of the output marked with a red label as foreground. For

this case, any filtering operation is not applied. Also filter applied result can be seen

in Figure 7.

After background subtraction completes its work, filtering can be applied to results of

the background subtraction algorithm. The value of the counter is compared with

threshold for each pixel of foreground objects. If the value is lower than the threshold,

that pixel is removed from the foreground by setting its value to 0. Else, nothing is

done about it.

Figure 6: Foreground Mask without Counter Filtering

47

Figure 7: Foreground Mask with Counter Filtering

The value of the threshold is connected with learning rate of the background

subtraction algorithm. Small learning rates require higher thresholds, and vice versa.

There is an inverse proportion between them.

5.3 Post Processing Operations

The result of the background subtraction algorithm is not perfect. Some false positive

and false negative classifications are possible because of many reasons. Camera noise,

registration errors are extrinsic reasons. Performance defects of the background

subtraction algorithm are intrinsic reasons. Performance defects may occur because of

challenging circumstances, such as dynamic background, illumination changes.

The image may contain pepper and salt type noises. These noises may be bigger than

one pixel. There might be some unrelated objects in the background. Another

possibility is foreground objects have black impurities inside. In order to remove them

48

and increase the performance of the algorithm, morphological operations should be

applied.

First of all closing operation should be applied to foreground mask image in order to

remove noise. 3x3 square kernel is enough for low resolution images and 5x5 is

appropriate for images with higher resolution. Closing is a dilation followed by an

erosion with the same kernel. The boundary of the image is enlarged with dilation.

Holes, which are named as pepper noise, smaller than kernel are filled. After erosion,

boundaries take their old forms but holes still stay as filled.

Secondly, opening is applied to the image which is the result of the closing. 3x3 square

kernel is used. Again 5x5 is better for high resolution images. Opening is an erosion

followed by a dilation with the same kernel. Opening removes foreground pixels

smaller than the kernel. Erosion clears undesirable foreground objects, which are

named as salt noise then dilation repairs the other parts of the image.

49

50

CHAPTER 6

PORTING ALGORITHMS TO GPU

6.1 Introduction

Real-time background subtraction of images from Pan-Tilt cameras is a challenging

task. The algorithm has to deal with camera motion, image registration, panorama

generation, background subtraction and final supplementary operations. In order to

achieve this task, significant computation power is necessary. Supplying this

computational power is possible by using not only the CPU but also the GPU.

Background subtraction of the scenes from Pan-Tilt camera history may not be long,

but background subtraction on static cameras is one of the well-studied areas of

computer vision. Moreover, many algorithms have been parallelized on GPU and

shown to have promising performance results. Feature extraction, feature matching,

and image registration are also have been accelerated using GPUs.

CPU and GPU have different architectures; while CPUs are good at executing serial

code and branching, GPUs are good at highly parallel and throughput oriented parts.

On the other hand, some problems are suitable for parallelization and the others are

not. Therefore, in order to get efficient, heterogeneous solution, both CPU and GPU

should be used. In such a heterogeneous solution, parts of the algorithm are run on

CPU and GPU.

51

6.2 GPU Architecture

GPUs were initially designed for graphics rendering. It has started with 2D followed

by 3D graphics rendering. Because of their multi-thread multiprocessors, GPUs

process images, videos, and graphics efficiently in parallel.

The high performance of the GPUs received attention from the programmers and

GPUs have started to be used for general purpose computation. Then, Ian Buck and

his team generated a programming model by extending the C with data-parallel

constructs in 2003. Afterwards, NVIDIA hired Ian Buck and started developing

Compute Unified Device Architecture (CUDA) to provide a convenient solution for

general purpose programming on GPUs. The first solution for general computing on

GPUs was unveiled in 2006 [99].

One of the anchor points of GPU performance is its floating point capability. The GPU

is specialized for compute-intensive, highly parallel computation so this architecture

contains more transistors for data processing rather than data caching and flow control

[94]. This architecture difference is illustrated in Figure 8 [94]. Corresponding parts

are showed with the same color for both architecture.

Figure 8: Architecture Difference between CPU and GPU [94]

52

The same program runs in parallel to apply the same operation on many data. Instead

of focusing on the flow control, GPUs are designed to increase arithmetic intensity and

memory bandwidth.

GPU architectures evolve in type and NVIDIA’s GPUs are named according to their

architecture. The architectures are called Tesla (2006), Fermi (2010), Kepler (2012)

and Maxwell (2014) in historical order. Maxwell is the latest and the most advanced

one. Moreover, new architecture Pascal is announced by NVIDIA. In Figure 9 [95],

Maxwell Streaming Multiprocessor from GeForce GTX 980 can be seen. There are 16

stream multiprocessors in GTX 980. Each multiprocessor has 128 cores partitioned

into four distinct 32-CUDA core processing blocks [95]. 32 LD/ST units are used for

loading and storing operations in each multiprocessor. 32 Special Function Units

(SFU) are used for acceleration of the functions like sin(), cos(), log(). Furthermore,

there are different types of memory blocks in the multiprocessor.

While there are a number of different parallel computing frameworks for general

purpose computation on the GPU, the most prominent ones are CUDA and OpenCL

[97]. CUDA has been developed by NVIDIA and it is specific to NVIDIA GPUs.

CUDA uses C based language with some extensions [94]. On the other hand, OpenCL

is an open source parallel programming platform and it was designed to allow

programming different GPUs as well as other platforms like FPGA. It was initially

developed by Apple and now maintained by AMD, INTEL, IBM and NVIDIA [97].

Its progress is moderately slow because it is a general framework and designed to run

on a variety of different hardware. They both have different advantages and

disadvantages over each other. Performance of the CUDA more convincing than the

OpenCL because compatibility of hardware and software is higher for CUDA. Also,

CUDA has a user-friendly language. However, CUDA obligates the user to use

NVIDIA cards. On the other hand, any GPU card can be used with OpenCL. In this

study, CUDA is preferred for GPU programming because performance of CUDA more

satisfactory and it provides an easy to use C based language.

53

Figure 9: Maxwell Streaming Multiprocessor [95]

54

6.2.1 Compute Unified Device Architecture (CUDA)

The GPU is named as “device” and the CPU is named as “host” in CUDA

programming. “Kernel” is the main CUDA function that is called from the host and it

works on device in parallel. Each thread executes this kernel. Threads are organized

in blocks and blocks are organized in a grid. Threads in the same block work in

coherence. They can cooperate by using shared memory [94]. Thread organization can

be seen in Figure 10.

Figure 10: Thread Organization [94]

55

The number of blocks in a grid and the number of threads in a block are not constant.

They are defined by users at kernel execution time. In order to achieve the optimal

performance, they should be adjusted carefully for the specific hardware. There is no

certain rule to choose number of threads in a block. It is usually chosen by tuning.

Values are tried in order to maximize occupancy. During this trial, hardware

constraints should be taken into account. When the same program run on different

hardware, same experiments and definitions should be repeated to get actual

performance of that hardware.

CUDA allows asynchronous operations on a heterogeneous CPU-GPU architecture. It

means that during kernel execution on the GPU, the rest of the program can execute

on the CPU as can be seen in Figure 11. Moreover, memories of the device and the

host are separate, and the device makes its own allocations. Data transfers between

host and device needs to be designed to allow asynchronous operation [94].

56

Figure 11: Heterogeneous Programming [94]

6.2.2 CUDA Memory Hierarchy

CUDA device has its own memory as mentioned before. Different kinds of memory

types exist. These are register, shared, global, constant and texture. Their hierarchy

can be seen in Figure 12.

57

Figure 12: CUDA Memory Hierarchy [17]

• Registers belong to a thread. Only one thread can access one register and life time

of the data is limited with one thread execution.

• Shared memory is matched with a block. All threads from a block can access to it.

Threads can share data with the other threads from the same block via shared

memory. Accessing to shared memory is as fast as accessing to the registers.

Application can be speeded up with efficient shared memory usage. Its lifetime is

related to the block. It is deallocated when the block ends.

• Global memory can be accessed from both the host and the device. It is explicitly

allocated and exists until explicit deallocation. Its access speed is significantly low

compared to shared memory and registers.

• Constant memory is a read only memory. It is optimized for broadcasting. It is also

accessible from both the host and the device until the termination of the code.

58

• Texture memory is similar to global memory and constant memory. However, it is

optimized for 2D data. Address calculation is done externally on hardware.

Therefore, access to texture memory is faster than access to global memory.

6.3 CUDA Implementation

CPUs and GPUs have different architectures so they both have different advantages

and disadvantages over each other. In order to get an effective solution they must be

used together because the GPU is good for some kind of problems and the CPU is

good for the others.

In this study, heterogeneous programming is followed. Some algorithm steps work on

the CPU, and the other parts run on the GPU. Firstly, CPU implementation of the

whole study was completed and performance of each part was analyzed. Then, proper

parts for parallelization are identified.

GPU parts of the process are handled in two ways. GPU versions of algorithms like

SURF [9], Brute-Force Matching, IAGMM [89] are already available in OpenCV [98].

These functions have been used from library directly. On the other hand, algorithm

parts such as panorama generation, blending, filtering according to counter have been

designed and implemented for this study.

State chart of the whole process can be seen in Figure 13. In this figure, left side shows

the CPU part, right side is for the GPU part and the middle area is for transfers.

Moreover, colors show the group of each part.

59

Convert to Grayscale

Initilizations

YES

Convert Frame to Grayscale

Add First Frame to Panorama

Extract Feature Points
&

Generate Feature Point List L

Extract FeaturePoints

Match Feature PointsFind Minimum Distance of
Matchings

Refine Matchings
&

Add Unmatched Ones to List L

Are
Feature Points

Sufficienty
Distributed?

Are There
More Than 3

Feature Points?
NO

Remove Added Feature
Points from List L

&
Skip the Frame

NO

Find
Homography

YES

Is
Found

Homography Matrix
Correlated with

Old Ones?

NO

Adjust Added Feature Points
According to Homography

YES

Add Frame to Panorama

Feed Background Model with
Panorama

Filter Result According to
Counter

Apply Post Processing Filters
Output

Foreground
Mask

YES

Copy Frame To DeviceNO

Copy Feature Points and
Descriptors to Host

Copy List L and
Homography Matrix to

Device

Copy Foreground Mask
to Host

Copy Frame To Device

Copy Feature Points and
Descriptors to Host

Frame n First
Frame?

GPUCPU Transfer

Figure 13: Partitions of the Proposed Algorithm on GPU and CPU

60

6.3.1 Initialization

When algorithm starts, firstly memory is allocated on both CPU and GPU. After

memory allocations, a new frame is taken and it is copied into the device memory.

Then, the processing is passed onto the GPU as shown in Figure 13.

Adding the first frame to panorama operation is done on the GPU because panorama

is kept in the GPU memory and background subtraction is also done on the GPU.

Feature points of first frame are extracted and panorama features point list is generated.

Method of feature point will be explained in detail in next chapter.

6.3.2 Feature Extraction and Matching Part

Every time a new frame comes, it is copied into the device memory with

“cudaMemcpy” function. Then, features are extracted. The process can be seen in

Figure 13.

SURF feature points are extracted from the frame by using OpenCV

“gpu::SURF_GPU” function. Processing this part on the GPU is very important for an

effective implementation because finding feature points of the image with size

704x480 takes 106 ms on the CPU. However, on GPU it takes only 2.87 ms with 39.93

speedup.

The matching operation of new feature points and feature points from the list is

completed on the GPU side with the OpenCV function “gpu::

BruteForceMatcher_GPU_base”. Similar to SURF case there is a nearly 48 times

speedup for GPU. Execution times on CPU, GPU and speedup values in are

summarized Table 4.

Following parts (refining feature points and controlling distribution of feature points)

take less than 1 ms so these operations are done on the CPU side. Feature points and

descriptors are copied to CPU to complete these steps.

61

6.3.3 Image Registration

When feature points are matched and refined, it is time for homography calculation.

Finding homography by using RANSAC is also not challenging for CPU. It takes 0.72

ms in average so it is decided to complete RANSAC on CPU side.

The new frame is added to the panorama on the GPU side. As stated before, panorama

image is kept in GPU memory. The operation is done by a custom kernel function

developed for this study. Each thread of this kernel takes one pixel from the new image

and adds to the panorama after blending it with the current value of the panorama.

There is a 174 times speedup for GPU. In this operation each task has low complexity,

but number of tasks is too many. Therefore, it is suitable for parallelization.

6.3.4 Background Subtraction

After panorama update, background subtraction is applied by using OpenCV

“gpu::MOG2_GPU” function. For this case speedup is equal to 42.77 times for GPU.

On the CPU side, the corresponding CPU OpenCV function is used.

Filtering according to first seen part is the responsibility of the kernel which is

developed for this study. Each thread of kernel compares the counter value with a

threshold and according to result corresponded pixel from the foreground mask is

modified. Execution time of this operation is 29.61 ms for CPU and 0.9 ms for GPU.

Morphological operations (opening and closing) are also available in OpenCV:

"gpu::dilate" and "gpu::erode" functions. These functions are more than 20 times faster

than their CPU OpenCV counterparts.

6.4 Precision Difference between GPU and CPU

Execution time of GPU and CPU are different because of their computational power.

Moreover, they do not produce the same results. There are three main reasons behind

this difference.

62

The handling of floating point numbers is different for CPU and GPU. The GPU has

a better approach about floating point numbers [96]. GPU uses The Fused Multiply-

Add (FMA) approach [96]. The basic principle of the approach is decreasing the

number of rounding operations by merging operations. FMA usage may increase the

accuracy. Therefore, GPU floating point operations may be more accurate than CPU

operations [96].

The second reason is about conservation of performance. Some parts of the algorithms

that are not appropriate for parallel processing. It is not possible to transfer them to the

GPU side directly without any modifications. Unfortunately, these modifications cause

some differences between CPU and GPU results. Insisting to port algorithms exactly

may generate performance penalty and a balance should be sustained between

accuracy and performance.

For example, descriptors that are calculated by using SURF [9] with CPU and GPU

are different even if their feature points are the same. “SURF” function uses inter area

interpolation on the CPU. On the other hand, “gpu:: SURF_GPU” function uses

bilinear interpolation for better performance as it is more suitable for parallel

computation.

Lastly, optimizations in GPU codes may cause different outputs for each runtime.

Return point or exit point of the code may differ for different runs. Because of this

reason, there may be a difference between not only GPU and CPU results, but also in

two GPU runs. For example “gpu::SURF_GPU” calculates different descriptors for

the same set of feature points at consecutive runs.

63

64

CHAPTER 7

TEST RESULTS AND APPLICATIONS OF THE THEORY

7.1 Introduction

Steps of Pan-Tilt camera background subtraction algorithm are described in Chapter

3, Chapter 4 and Chapter 5. Then, porting this system to the GPU is explained in

Chapter 6. Both CPU and GPU - CPU implementations of the system have been

completed and GPU and CPU results have been compared with the groundtruths. In

addition, GPU results have been compared with the results of Change Detection [93]

algorithms and Tsinko’s result [76] respectively.

Two frame sources are used for the tests. First one is Change Detection [93] and the

second one is Tsinko [76]. ContinuousPan frame sequence is used from Change

Detection [93]. Resolution of the frames is 704 x 480. Six different videos are listed

in Tsinko’s web page [91]. Resolution of them is 160 x 131.

All experiments have been done on a PC with Intel i5 3.3 GHz. CPU. There are two

GPUs used for the test. First one is NVIDIA GeForce GTX 560 (GPU 1) and the other

one is NVIDIA Tesla K40 (GPU 2).

Although, our CPU implementation runs on quad-core processer, it is single thread

application. Its performance can be increased by using Accelerated Massive

Parallelism (AMP). All performance comparison between GPU and CPU in our study

should be evaluated by considering that our CPU implementation runs on only one

core of the Intel i5 processer.

65

7.2 Evaluation Metrics

In order to build a reliable and robust real-time system, the speed of the algorithm is

considered to be the most important performance criteria. Therefore the speed is the

first evaluation metric to evaluate the system. In this thesis work, the execution times

of each individual part of the algorithm and the overall processing time measured in

milliseconds.

Measuring the ability to extract foreground pixels accurately and moving object

detection have been challenging tasks over the years. Change Detection [93] deals with

this problem by bringing seven different performance metrics in literature together.

Before explaining them, four detection types should be examined. True Positive (TP)

is used for the pixels that are correctly identified. False Positive (FP) means that the

pixel is incorrectly identified. True Negative (TN) is suitable for correctly rejected

pixels. Finally, False Negative (FN) is used for incorrectly rejected pixels. Evaluation

metric of Change Detection [93] can be seen in Table 3.

66

Table 3: Evaluation Metrics

Number Name Abbrev. Equation

1 Recall Re
𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

2 Specificity Sp
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

3 False Positive Rate FPR
𝐹𝐹𝐹𝐹

FP + TN

4 False Negative Rate FNR
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

5

Percentage of

Wrong

Classifications

PWC 100 ∗
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

TP + FN + FP + TN

6 Precision Pr
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

7 F-measure Fm 2 ∗
𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅

7.3 Comparison of CPU and GPU Results

The results are compared with each other in two ways. Firstly, the speeds of the

implementations are compared for each part and the whole process. Secondly,

foreground masks of the implementations are compared with the groundtruths.

ContinuousPan frame sequence from Change Detection [93] is used for this test.

Resolution of the image is 704 x 480. In this frame sequence, the area is very wide so

the camera is rotated too much horizontally. In order to get the overall area, size of the

panorama is defined as 11 x 3 times of the frames. Therefore, resolution of the

panorama is 7744 x 1440.

67

The video has a very good texture, therefore Hessian threshold is adjusted to more than

5000, in order to reduce the number of feature points and increase their quality. 6000

is used for this test. Some frames of the image sequence can be seen in Figure 14.

Figure 14: Change Detection ContinuousPan Image Sequence Samples

Parameters of the background subtraction algorithm are used mostly the same with

default values. However, history is set to 100 instead of 500 because motion starts

before reaching frame 500. Background ratio is changed from 0.9 to 0.8 and minimum

variance value is increased from 0.4 to 0.5 in order to increase sensitivity of the

algorithm. Also, learning rate is set to 0.01 similar to [76]. 60 is chosen for threshold

to filter according to first seen part. The threshold has an inverse relation with learning

rate; small threshold value can be used for higher learning rate, and vice versa.

68

Both CPU and GPU implementations are processed with this video and execution time

of each algorithm is measured separately. Also, time of the whole process is measured.

Measurements are done for each frame and averaged. In order to get reliable results,

the operation is repeated 10 times using the same data and averaged. The results can

be compared as in Table 4.

Operations like “Get Frame” and “Find Homography” are completed by the CPU.

Moreover, there are 2 copy operations between CPU and GPU. These operations are

done by the CPU. The CPU writes data to GPU memory or reads from there. For only

CPU case, there is no corresponding operation. It is shown with a hyphen on the table.

69

Table 4: Time Comparison

CPU

(ms)

GPU 1

(ms)

GPU 2

(ms)

Speed Up

GPU 1

Speed Up

GPU 2

Get Frame 0.57 (by CPU) - -

Copy Frame to GPU - 0.32 (by CPU) - -

Feature Extraction 106 15.89 2.87 6.67 36.93

Feature Matching 41.59 2.21 0.85 18.82 48.93

Copy Feature Points

and Descriptors to CPU
- 0.15 (by CPU) - -

Refine Matching 0.01 (by CPU) - -

Feature Point

Distribution Control
0.07 (by CPU) - -

Find Homography 0.72 (by CPU) - -

Homography Matrix

Control
0.01 (by CPU) - -

Arrange Added Points 0.01 (by CPU) - -

Copy List L and

Homography Matrix to

GPU

- 1.27 (by CPU) - -

Addition of Frame to

Panorama
95.71 0.68 0.55 140.75 174.02

Background

Subtraction
200.17 12.53 4.68 15.98 42.77

Filtering According to

First Seen Part
29.61 0.94 0.91 31.5 32.54

Post Processing 149.59 7.45 5.52 20.08 27.10

Copy Results to CPU - 0.35 (by CPU) - -

TOTAL 624.06 43.18 18.86 14.45 33.09

70

The CPU reads the frame in less than 1 ms. The frame is ready for CPU to process, but

for GPU to process, it has to be copied to the GPU. Copying is completed by CPU in

less than 1 ms. Feature extraction and feature matching are the next steps where the

advantage of the GPU can be observed. The CPU needs 106 ms but GPU 2 requires

only 2.87 ms to extract the features. As stated before SURF [9] is a robust algorithm,

but it is slower than binary feature extractors. By using GPU disadvantage of the SURF

[9] is defused. There are 6.67 and 36.93 speedups for GPU 1 and GPU 2 respectively.

After extraction, feature matching operation is applied. It has better speedup results of

18.82 and 48.93 respectively for GPU 1 and GPU 2. There is an important issue about

feature matching. As stated in Chapter 3, feature points of panorama are kept in the

list L. When there is no match between a feature point of the new frame and feature

points from L, unmatched feature point is added to L. Therefore, the size of the list

increases with new frames. Because of this increase in size, feature matching time also

increases. For example, GPU 2 requires 0.01 ms at the beginning of the sequence for

feature matching but at the end 1.65 ms is necessary for this operation. Feature

matching time consumption values in the table are average values that are calculated

with the values from all the frames.

Results of the feature extraction and matching are transferred to the CPU in 0.15 ms.

Then, Refine Matching, Feature Point Distribution Control, Find Homography and

Homography Matrix Control operations are completed respectively in nearly 1 ms. All

of them combined takes less than 1ms so porting them to the GPU is unnecessary.

Then, updated feature points list L is copied to GPU for the next matching operation

and also found homography matrix is copied to GPU. Both require 1.27 ms. Similar to

feature matching, duration of this copy depends on the size of list L. It is increasing

with time. In order to prevent this increase, list L can be kept in both sides and only

newly added feature points can be transferred.

Addition of frame to the panorama has the highest speedup with 140.75 and 174.02

because of the nature of the operation. The computational load of each task is low and

71

the number of tasks is high. These properties make it convenient to be parallelized.

The pixels are read from the new frame and placed into new positions according to the

homography matrix in the panorama. Each thread processes 1 pixel and the operation

completed in a very brief time.

Filtering According to First Seen Part is very similar to addition of frames. Each thread

makes comparison of 1 pixel. The operation takes less than 1ms and speedup is

approximately 30 for both GPUs.

Background subtraction is the most time consuming part of CPU side with 200.17 ms

duration. GPUs reduce this processing time to 12.53 and 4.68 ms. Speedups are 15.98

and 42.77 for GPU 1 and GPU 2 respectively. Panorama image has more than 10

million pixels, so background subtraction on this image requires significant

computational power. Therefore, GPU usage has results in significant speedup.

Post processing is consecutive closing and opening operations. They take 149.59 ms

on the CPU side. It is also the second most time consuming part of the CPU side. GPU

usage accelerates the operation to 20.08 and 27.10 times for GPU 1 and GPU 2,

respectively.

Finally, the foreground mask result is transferred to the CPU and the process is

completed. The total process takes 624.06, 43.18 and 18.86 ms for CPU, GPU 1 and

GPU 2 respectively. There are 14.45 speedup for GPU 1 and 33.09 speedup for GPU

2. Implementation of background subtraction with panorama model to run in real-time

with only CPU is not possible with 624.06 ms process time for each frame. However,

GPU makes possible running in real-time with high frame rates. Tsinko [76] stated

that Phyton implementation of his algorithm requires 40 seconds to process one frame

with resolution of 160 X 131 on Intel i5 2.66 GHz. CPU. Our C++ implementation

works on frames with higher resolution with higher performance on both CPU and

GPU.

72

If the results of GPU 1 and GPU 2 are compared, it can be seen that GPU 2 is faster

than GPU 1 nearly three times. GPU 1 is NVIDIA GeForce GTX 560. It has 336

CUDA cores and Fermi architecture with CUDA Compute Capability 2.1. On the other

hand, GPU 2 is NVIDIA Tesla K40. It has 2880 CUDA cores and Kepler architecture

with CUDA Compute Capability 3.5. GPU 2 has higher number of CUDA cores [100]

and most of the speed difference can be attributed to this. It has also a more optimized

architecture. Moreover, CUDA Compute Capability of GPU 2 is higher than GPU 1.

Compute capability is an indicator of GPU’s abilities.

Outputs of the CPU and GPU are also compared. Foreground masks of them are

compared to the groundtruths and their similarities are calculated by checking each

pixel.

As stated before in Chapter 6.4, GPU results of the same software on the same device

may differ from one runtime to another. Therefore, tests on the GPU are completed

more than one times and then averaged.

Both CPU and GPU implementations were run on six different videos from videos of

Tsinko [76] and one video from Change Detection [93] for 10 times and their outputs

are compared with groundtruths. Comparison was done by comparing each pixel and

calculating F-measure (Fm), Fm creates a chance to understand their similarity in an

objective way because Fm is composed of Precision (Pr) and Recall (Re). In other

words, Fm is ratio of the similarities to all detections.

Average similarity between GPU outputs and groundtruths is 0.73. This value is 0.71

for the CPU comparison. Values are very close to each other. CPU, GPU outputs and

Groundtruth of Frame 442 in Sequence 2 from [76] can be seen in Table 5. Outputs

look like very similar. GPU usage does not cause any notable performance loss. Small

differences seem unimportant beside a contribution of the GPU. Without considerable

loss, GPU usage increases speed by using parallel high computational power.

73

Table 5: CPU & GPU Outputs and Groundtruth

 Average Fm Values
 1.00 0.73 0.71

Example

Original Frame
Groundtruth GPU Result CPU Result

7.4 Comparison with the Change Detection Algorithms

In [93], a dataset for Change Detection challenge organized by IEEE Computer

Society. The dataset includes videos and their groundtruths under 11 different

categories. The best performing algorithm results are also published in website of the

challenge.

Although, algorithms in the competition are designed for the sequences of static

camera, they made their experiments by adjusting some parameters to detect motion

of the scenes from Pan-Tilt camera and their results are published on the web page

[93].

We conduct two experiments on this data. First, only background subtraction part [89]

of our study is applied to ContinuousPan frame sequence similar to other

implementations. IAGMM [89] is preferred for background subtraction part of our

study as stated before. Then, full version of our study is applied to the video and then

performances are compared. Comparison is done between five results. These are

74

background subtraction part [89] of our study, our normal study and the first three rank

algorithm of the PTZ category. Results can be seen in Table 6.

GPU/CPU comparison is given in the previous section, so only GPU results are used

for this comparison. Performance ratios are calculated for each frame and their average

is taken. In order to get more stable measurements, this operation is repeated 10 times

and the average is taken again.

Table 6: Comparison with the Change Detection Algorithms

Algorithms

Our Study
IAGMM

[89]

MBS

[64]

IUTIS-3

[11]

SuBSENSE

[69]

M
et

ric
s

Re 0.6074 0.6697 0.5973 0.6644 0.8306

Sp 0.9575 0.9238 0.9963 0.9868 0.9629

FPR 0.0425 0.0762 0.0037 0.0132 0.0371

FNR 0.3224 0.2065 0.4027 0.3356 0.1694

PWC 6.0918 7.9980 0.5850 1.5649 3.8159

Pr 0.4534 0.1623 0.5400 0.3474 0.2840

Fm 0.5088 0.1978 0.5520 0.3921 0.3476

75

When Recall (Re) values are compared, our study has similar performance with the

other algorithms. The reason behind that the static camera algorithms have high Re

performance is about definition of Re. It is not related to moving or static camera.

When the camera moves, background model of static camera algorithm becomes

incompatible and algorithm classifies many pixels as foreground. This increases true

positive (TP) and false positive (FP) at the same time. This is the reason of static

camera algorithms have high Re performance, especially [69].

Specificity (Sp) result of our algorithm is relatively lower. However, it is still very

close to the other results. The reason of small differences between our both results and

the other results is shadow. We do not do anything to prevent the classification of

shadows as a foreground but they do. Shadows cause an increase in FP and a decrease

in TN. Therefore, Sp has lower value.

Similarly, Our False Positive Rate (FPR) results are higher than the others because of

shadows and registration errors which cause some FPs. Another reason of higher FPs

is modifications in other algorithms [11], [64] to decrease FPs. These modifications

will be explained in the next section.

False Negative Rate (FNR) of the Change Detection [93] algorithms is high because

the algorithms are designed for static camera. However, in order to process Pan-Tilt

video [11] and [64] made some modifications on the parameters. The purpose of these

modifications is decreasing the FP because normally when the camera moves,

background model becomes incompatible and the algorithm classifies everywhere as

foreground. After some modifications like increasing learning rate, the algorithms

prevent these FPs and FPRs. As stated before, they have very low FPR. Disadvantage

of these modifications is high False Negative (FN) because real foreground objects are

also cannot be labeled. Only some parts of them classified as foreground. On the other

hand, IAGMM [89] and SuBSENSE [69] give lower result because there is not any

modifications to decrease FPs. Therefore, when the camera moves, [69] and [89]

76

classify everywhere as foreground and count of FNs is small. This is also the reason

for highest FPR.

Percentage of Wrong Classifications (PWC) shows the percentage of errors to all

detections. The reason behind high PWC of our study is again shadow and registration

errors. RANSAC [25] algorithm creates a homography with one or two pixel error.

These errors cause a misalignment between panorama and background model.

Therefore, all registration errors are classified as foreground. Reason of the high PWC

of IAGMM [89] is different. When the camera moves, it classifies everywhere as

foreground with a high FPR, therefore its PWC is also high.

Last two metrics are Precision (Pr) and F-measure (Fm). They are very important

indicators of the performance. Our algorithm gets the second best place among the

algorithms. In our study, we subtract background after eliminating the effects of Pan-

Tilt camera so we do not need an extra effort to clear FPs because of camera motion.

[11] and [64] make some modifications to reduce FPs so TPs are also decreasing.

Because of this reason, [11] and [64] have lower TP so their Re and Pr are also low.

On the contrary, our study has high Re and Pr. Furthermore, IAGMM [89] has the

lowest Pr and Fm because of labeling everywhere as foreground.

To sum up, our algorithm has persuasive performance with high Re, Pr and Fm rates.

Performance of IAGMM [89] is increased with our camera motion elimination

process. On the other hand, FPR should be decreased. The main reason of high FPR is

classification of shadows and registration errors as a foreground. Moreover, if our

background subtraction part is replaced with a more successful algorithm, performance

of our study will increase automatically. If all scores are considered, our algorithm has

convincing performance among Change Detection [93] algorithms.

7.5 Comparison with [76]

As stated before, the scope of our study and study of Tsinko [76] are very similar to

each other. Same approaches are followed in both theses. Our implementation is

77

operated with the videos of Tsinko [76]. The videos are accessible on his web page

[91].

In study [76], three different background subtraction algorithms are given. One of

these algorithms is GMM [70]. We compare our algorithm with GMM implementation

of [76] in this section. Since GPU/CPU comparison is given before, we only use GPU

results in this section.

The outputs were taken from six videos in [76]. Half of the videos are outdoors and

the others are indoor videos. Four frames are chosen from each video and groundtruths

are available for these frames. Number of FN and FP were counted on each of these

four frames. Also, ratio of these calculated FN and FP values to the number of all

pixels in the frame was calculated. Our algorithm was also operated with two videos.

One video is from outdoor videos and the other one is from indoor videos. These

videos are available on the web page [91].

Used parameters are mostly the same with the previous part. Only Hessian threshold

of SURF [9] is adjusted to a small value such as 30, because videos are in low

resolution 160 x 131 and their textures are not so much. Therefore, in order to increase

the number of feature points, a small Hessian threshold value is used.

7.5.1 Frame Sequence 1

Sequence 1 is formed of 1090 frames. It is also named as Sequence 1 in [76]. The

recorded area is a lawn with a small pathway. There are buildings behind. Some trees

are on the right. They are swaying with the wind. It is a good moving background

challenge. There is a significant change in the illumination on the scene. This is also a

good challenge. During camera motion, a person comes from the right in frame 584

and after a small walk he stops in frame 657. He stays there for a while. Later, he

continues in frame 800 and leaves the camera’s field of view in frame 981. Some

frames of the image sequence can be seen in Figure 15.

78

Figure 15: Some Frames of Sequence 1

Comparison results are gathered in two tables. Table 7 shows the foreground labels.

On the other hand, Table 8 contains numbers and ratios of FP, FN and their total.

In Frame 625, our algorithm detects the person, but some parts of the upper body are

not detected. The reason is the color of the t-shirt. It is very similar to the dark trees

behind. Therefore, the algorithm cannot distinguish it from the background. When

some parts of a foreground object has the same color with background, IAGMM [89]

generally classifies it wrongly because background IAGMM models may match with

this object. This drawback of the IAGMM [89] increases the FN. Another point is the

shadow of the person. Our algorithm labels it as a foreground because we do not make

any operation to detect shadows. This situation increases the FP. The results are nearly

same for Tsinko [76]. Due to the morphological filters at the end, the result of our

study is more preferable and better than the others, also these filters prevent the noise.

Frame 657 is the start point of the person standing. When the frame count is equal to

720, he has been standing on the same location since 63 frames. Therefore, our

79

algorithm learns it. He is classified as background and he causes 10.73 % FN ratio.

Algorithm of the Tsinko [76] responds with 10.4 % similarly. All GMM algorithms

except the algorithms with zero learning rate, learn and classify foreground objects

that stay in the scene without moving as a background after some time. On the left

side, there are some FP points. The reason is the illumination change. The grasses in

the frames appears to be brighter now because the sky is clearer.

Frame 850 has a similar result with Frame 625. It finds the person with some missing

parts because of t-shirt color. These missing parts cause some FN points. On the left

side, there are some illumination change false detections and in the middle, some parts

of the shadows are classified as foreground. Both of them cause FP points. However,

the result is satisfying with 5.44 % FP + FN ratio. It is nearly half of [76]. There is a

problem with background model of [76] because it finds two people. After a long

duration of the appearance of the person in scene, algorithm of [76] learned the person

and classified as background similar to our study. However, after person leaves from

that position, the algorithm did not adapt itself quickly. This time, it classified the

absence of the person as a foreground object. This problem may be solved with higher

learning rates. In GMM algorithms, when stationary foreground object moves, it is

classified again foreground object but this time, absence of it perceived as a change in

background for a while. This causes FPs.

In Frame 930, our algorithm works with a very small FN ratio, but a high FP ratio.

There are two reasons of high FP ratio. First one is the shadow and the second one is

illumination change on the left side as stated before. While the camera is facing to the

right side, the sky of the left side comes to a clearer state, but still our performance is

better than [76]. There is another problem on [76]. It has no control for first seen areas.

All left side is classified as foreground by [76]. In order to hinder this situation our

algorithm has a control mechanism.

80

Table 7: Comparisons of Sequence 1

 Frame 625 Frame 720 Frame 850 Frame 930
Fr

am
es

G
ro

un
dt

ru
th

s

O
ur

 R
es

ul
ts

R
es

ul
ts

 o
f

Ts
in

ko

81

Table 8: Errors for Sequence 1

Frame

625

Frame

720

Frame

850

Frame

930
Total

Our
Results

FP
Count 713 908 723 2220 4564

Ratio
(%)

3.40 4.33 3.45 10.59 5.44

FN
Count 771 2250 417 314 210

Ratio 3.68 10.73 1.99 1.5 4.48

FP + FN
Count 1484 3157 1140 2534 8315

Ratio
(%)

7.08 15.06 5.44 12.09 9.92

Results
of

Tsinko

FP
Count 667 128 1778 4701 7274

Ratio
(%)

3.18 0.61 8.48 22.43 8.68

FN
Count 860 2181 485 317 3843

Ratio
(%)

4.10 10.4 2.31 1.51 4.58

FP + FN
Count 1527 2309 2263 5018 11117

Ratio
(%)

7.28 11.01 10.79 23.94 13.26

82

Our algorithm gets frame and puts them in panorama before background subtraction

process. In the Figure 16 panorama of the Sequence 1 can be seen.

Figure 16: Panorama of Sequence 1

7.5.2 Frame Sequence 2

Sequence 2 is formed of 454 frames. It is named as Sequence 6 in [76]. The recorded

area is in the inside of the building. The camera sweeps the area by panning and tilting.

There is a plant on the left of the scene. There are walking people in the scene. During

camera motion, a person appears on the right side in frame 200 and he starts to walk

83

towards to the camera. Then, another person appears in frame 345 and he also starts to

walk towards to the camera. First person leaves the field of view in frame 419. In the

end, the camera rotates to right and second person also disappears. Some frames of the

image sequence can be seen in Figure 17.

Figure 17: Some Frames of Sequence 2

Comparison results are gathered in two tables. Table 9 shows foreground labels. On

the other hand, Table 10 contains numbers and ratios of FP, FN and their total.

In frame 239, our algorithm detects the person with a satisfactory FN ratio that is only

0.28 but FP ratio of the result is a little bit higher. There are two reasons behind the

fact that FP ratio is equal to 2.65. First one is that, the area on the left side has sunlight.

The algorithm classified it as a foreground. Another reason is the detection of the

shadow. As stated before, our system does not cover any operation to understand

84

shadows. These both situations cause false alarms so FP ratio increases. On the other

hand, the FP ratio of the Tsinko [76] is very low, but it does not mean that the

performance of [76] is better than our performance because the foreground area of

frame 239 is already small. Moreover, our study has better FN ratio.

Frame 314 is one of the frames that the person walks through to the camera. Our

outputs are better than the results of [76] in both aspects. Walking person is classified

as foreground with 2.20 FP + FN ratio. However, [76] has higher error ratios. The first

problem of [76] is classification of some body parts as background because of the

clothes’ color. Another and more important problem is the absence of the control for

the first seen areas. Some regions on the left side are classified as foreground by [76].

In order to prevent this kind of false alarms, a counter is kept for each pixel and without

reaching a threshold; this pixel is not classified as foreground.

Frame 406 has a similar result with frame 314 because very small area is labeled as a

foreground by [76]. Therefore, the FP ratio of [76] is small but the FN ratio of it is

nearly two times of our result. On the other hand, our FP ratio is 4.53 because of the

presence of the plant. The algorithm classifies some parts of the plant as foreground

because of the similarities between its color and the person’s t-shirt color.

In Frame 442, [76] finds nearly nothing again, in comparison our algorithm detects the

person with satisfactory ratios. On the right side, there are some false alarms because

of the registration errors. In order to increase the performance of our algorithm,

registration errors of output should be decreased.

85

Table 9: Comparisons of Sequence 2

 Frame 239 Frame 314 Frame 406 Frame 442

Fr
am

es

G
ro

un
dt

ru
th

s

O
ur

 R
es

ul
ts

R
es

ul
ts

 o
f

Ts
in

ko

86

Table 10: Errors for Sequence 2

Frame

239

Frame

314

Frame

406

Frame

442
Total

Our
Results

FP
Count 555 317 950 239 2061

Ratio
(%)

2.65 1.51 4.53 1.14 2.46

FN
Count 37 145 853 113 1148

Ratio 0.28 0.69 4.07 0.54 1.40

FP + FN
Count 592 462 1803 352 3209

Ratio
(%)

2.93 2.20 8.60 1.68 3.85

Results
of

Tsinko

FP
Count 134 964 99 725 1922

Ratio
(%)

0.64 4.60 0.47 3.46 2.29

FN
Count 158 341 1833 346 2678

Ratio
(%)

0.75 1.63 8.75 1.65 3.19

FP + FN
Count 292 1305 1932 1071 4600

Ratio
(%)

1.39 6.23 9.22 5.11 5.48

87

Overall, our implementation has more satisfactory error ratios. One of the reasons is

better adaptation of our algorithm. Frame 850 of Sequence 1 is the proof of it. After a

long stay of foreground object, our algorithm can cover his model and classify the

object correctly. Second, our study can handle first seen parts similar to Frame 930 of

Sequence 1 and Frame 314 of Sequence 2. First seen parts are always the problem of

Pan-Tilt camera background subtraction. Because of insufficient time, they are

classified as foreground automatically. However, our algorithm can deal this problem.

Our algorithm gets frame and puts them in panorama before background subtraction

process. In Figure 18 panorama and foreground mask of the Sequence 2 can be seen.

Figure 18: Panorama of Sequence 2

88

CHAPTER 8

CONCLUSIONS

In this thesis, we proposed a method for background subtraction of frames recorded

by Pan-Tilt cameras. In order to compensate camera motion, features in each frame

are extracted with SURF [9] and matching is found between features of new frame and

features of panorama by using Brute-Force Matching. RANSAC algorithm [25] is used

to calculate homography by using these feature pairs. Then new frame is added to

panorama according to the homography matrix. Finally, IAGMM [89] is applied to the

panorama image to generate the foreground mask.

Robust real-time background subtraction on frames from the output of Pan-Tilt camera

requires remarkable computational power. This computational power is provided by

not only the CPU, but also GPU by using a heterogeneous programming model in this

thesis.

Pan-Tilt camera background subtraction algorithms, which are based on only image

information, are divided into two groups according to the usage of offline generated

map. First group needs a scanning operation in the beginning but the second group

does not need. Our algorithm is from second group, it does not require any prior

knowledge. In other words, there is no need to scan all areas before operation mode.

In this study, feature points of the panorama are kept in a list instead of extracting them

each time. Keeping a list provides more qualified feature points in shorter time.

The algorithm uses two methods in order to get more accurate homography matrix.

First one is the checking the distribution of the feature points. Homography matrix is

not created for the feature points that are not distributed sufficiently, because when

89

feature points are close to each other, even small errors cause serious mistakes. The

second method is controlling of generated homography matrices. Matrices are

compared with reference homography matrix and the matrix, which has excessive

difference, is eliminated because the changes in homography matrices must be little.

The whole process of the algorithm is implemented for both only CPU case and GPU-

CPU hybrid case. Their performance and outputs are compared. Processing of one

frame takes 624.06, 43.18 and 18.86 ms for CPU, GPU 1 and GPU 2, respectively.

There are 14.45 speedup for GPU 1 and 33.09 speedup for GPU 2. Our study makes

panoramic background subtraction to run in real-time with the help of the GPU.

Similarity between groundtruths and outputs of GPU - CPU hybrid case and only CPU

case are measured as 0.73 and 0.71 respectively. Measurements are done by running

the algorithm on many times and averaging the results. Both implementations of our

study generate nearly the same result. GPU usage increases the speed of the algorithm

without any remarkable performance loss.

In Pan-Tilt camera background subtraction algorithms, there is a possibility to classify

the first seen part as a foreground because of the inadequate learning. In order to beat

this weakness in our study, a counter is kept for each pixel and foreground detection

is prevented until the counter reaches a threshold value.

Our algorithm is compared with Change Detection algorithms [93] by using their

performance metrics. It produces impressive performance with high Re, Pr and Fm

rates. On the other hand, FPR needs an improvement. Decreasing the misalignment

errors of panorama generation will also decrease the FPR. As stated before, parts of

our system are not coupled to each other. Each of them can be replaced with another

algorithm. If our background subtraction part is changed with another algorithm such

as the successful algorithm from Change Detection [93] that has higher performance,

overall performance of our system will increase.

90

Our method is based on [76]. Similar operations are applied in same order with some

differences. In order to extract features SURF [9] is preferred instead of SIFT [45]

because SURF is more appropriate for parallelization. Furthermore, two extra methods

are used to get more robust homography matrix and eliminate weak ones. These

methods are checking distribution of feature points and controlling coherence of

consecutive homography matrices. Our last contribution is preventing false alarms

from first seen parts.

Results of our study and [76] are compared. Phyton implementation of [76] processes

a single frame of the sequence with resolution 160 x 131 in 40 seconds. On the other

hand, our GPU + CPU hybrid C++ implementation processes a single frame with 704

x 480 resolution in 33.09 ms. There is a huge speedup. Moreover, our implementation

generates better FP and FN ratios because of the more robust homography matrices.

One of the advantages of our study is that our algorithm adapts itself faster than [76]

to change in the background of the scene. Secondly, [76] does not have any control for

the first seen areas so it labels them as a foreground. However, our algorithm keeps a

count in order to prevent false alarms from the first seen parts.

As a future work, zoom feature can be added to the system. By using interpolation,

frames with different FOV can be processed. Another feature which will be useful if

it is added to the system is detection of shadows. Now, shadows are classified as

foreground. Detection of them will increase the performance by means of decreasing

the rate of false positives.

91

92

REFERENCES

[1] T. Aach and A. Kaup, "Bayesian algorithms for adaptive change detection in image
sequences using markov random fields", Signal processing: Image Communication,
Vol. 7, pp. 147-160, 1995.

[2] Y. Abdel-Aziz and H. Karara, “Direct linear transformation from comparator
coordinates into object space coordinates in close-range photogrammetry”,
Proceedings of the Symposium on Close Range Photogrammetry, American Society of
Photogrammetry, pp. 1-18, 1971.

[3] A. Al-Mazeed, M. Nixon and S. Gunn, “Classifiers Combination for Improved
Motion Segmentation”, ICIAR 2004, pp. 363-371, 2004.

[4] M. Amintoosi, F. Farbiz, M. Fathy, M. Analoui and N. Mozayani, “QR
decomposition-based algorithm for background subtraction”, ICASSP 2007, 2007.

[5] K. Appiah and A. Hunter, “Single-Chip FPGA Implementation of Realtime
Adaptive Background Model”, IEEE Conference on Field-Programmable Technology
(FPT 2005), December 2005.

[6] P. Atrey, V. Kumar, A. Kumar nad M. Kankanhalli, “Experiential sampling based
foreground/background segmentation for video surveillance”, ICME 2006, pp. 1809-
1812, July 2006.

[7] D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes”,
Pattern Recognition, Vol. 13, No. 2, pp. 111-122, 1981.

[8] O. Barnich and M. Van Droogenbroeck, "ViBe: A Universal Background
Subtraction Algorithm for Video Sequences", IEEE Transactions on Image
Processing, Vol. 20, No. 6, pp. 1709-1724, June 2011.

93

[9] H. Bay, and T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust Features”,
9th European Conference on Computer Vision, 2006.

[10] H. Bhaskar, L. Mihaylova and S. Maskell, “Automatic Target Detection Based on
Background Modeling Using Adaptive Cluster Density Estimation”, 3rd German
Workshop on Sensor Data Fusion: Trends, Solutions, Applications, September 2007.

[11] S. Bianco, G. Ciocca and R. Schettini, "How far can you get by combining change
detection algorithms?", Submitted to IEEE Transactions on Image Processing, 2015.

[12] M. Brown and D. G. Lowe, "Recognising panoramas”, International Conference
on Computer Vision (ICCV 2003), pp. 1218-1225, October 2003.

[13] P. J. Burt and E. H. Adelson, "The Laplacian Pyramid as a Compact Image Code",
IEEE Transactions on Communications, Vol. 31, No. 4, pp. 532-540, April 1983.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust
Independent Elementary Features”, 11th European Conference on Computer Vision
(ECCV), September 2010.

[15] Y. Chen, "A background subtraction algorithm for a pan-tilt camera", M.S. thesis,
Dept. Comput. Sci., University Of Alberta, 2014.

[16] J. Cheng, J. Yang, Y. Zhou and Y. Cui, “Flexible background mixture models for
foreground segmentation”, Image and Vision Computing, Vol. 24, pp. 473-482, 2006.

[17] M. Chouchene, F. E. Sayadi, Y. Said, M. Atri and R. Tourki, “Efficient
implementation of Sobel edge detection algorithm on CPU, GPU and FPGA”, Int. J.
Advanced Media and Communication, Vol. 5, No. 2/3, pp.105-117, 2014.

[18] M. Cristani and V. Murino, “A spatial sampling mechanism for effective
background subtraction”, VISAPP 2007, Vol. 2, pp. 403-410, March 2007.

94

[19] D. D. Doyle, A. L. Jennings, J. T. Black, "Optical flow background subtraction
for real-time PTZ camera object tracking," Instrumentation and Measurement
Technology Conference (I2MTC), 2013 IEEE International, pp. 866-871, May 2013.

[20] E. Dubrofsky, “Homography Estimation”, M.S. thesis, Dept. Comput. Sci., The
University Of British Columbia, 2009.

[21] M. M. El-Gayar, H. Soliman and N. Meky “A comparative study of image low
level feature extraction algorithms”, Egyptian Informatics Journal 14, pp. 175-181,
2013.

[22] A. Elgammal, D. Harwood and L. Davis, “Non-parametric Model for Background
Subtraction”, ECCV 2000, pp. 751-767, June 2000.

[23] X. Fang, W. Xiong, B. Hu B and L. Wang, “A Moving Object Detection
Algorithm Based on Color Information, Journal of Physics, Vol. 48, pp. 384-387,
2006.

[24] A. Ferone, L. Maddalena, "Neural Background Subtraction for Pan-Tilt-Zoom
Cameras", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44,
No. 5, pp. 571-579, May 2014.

[25] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography”,
Communications of the ACM, Vol. 24, No. 6, pp. 381-395, 1981.

[26] N. Friedman and S. Russell, “Image Segmentation in Video Sequences: A
Probabilistic Approach”, Proceedings of the Thirteenth conference on Uncertainty in
Artificial Intelligence, pp. 175-181, 1997.

[27] P. Guler, D. Emeksiz, M. Teke, A. Temizel and T. Taskaya Temizel, "Real-time
Multi-Camera Video Analytics System on GPU", Journal of Real-Time Image
Processing, March 2013.

[28] C. Harris and M. Stephens, “A combined corner and edge detector”, Proceedings
of the Alvey Vision Conference, pp. 147-151, 1988.

95

[29] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”,
Cambridge University Press, 2004.

[30] O. N. Ivanov, “Adaptation of Known Background Subtraction Methods in the
Case of a Moving PTZ Camera Mounted on a Mobile Platform”, Pattern Recognition
and Image Analysis, Vol. 24, No. 2, pp. 318-323, June 2014.

[31] P. Jaikumar, A. Singh and S. Mitra, “Background Subtraction in Videos using
Bayesian Learning with Motion Information”, BMVC 2008, pp. 615-624, September
2008.

[32] V. Jain, B. Kimia and J. Mundy, “Background modelling based on subpixel
edges”, ICIP 2007, Vol. 6, pp. 321-324, September 2007.

[33] O. Javed, K. Shafique and M. Shah, “A Hierarchical Approach to Robust
Background Subtraction using Color and Gradient Information”, WMVC 2002, pp. 22,
December 2002.

[34] Y. Jia, J. Wang, G. Zeng, H. Zha, and X. S. Hua, “Optimizing kdtrees for scalable
visual descriptor indexing,” Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 3392-
3399, 2010.

[35] H. Jiang, H. Ardo and V. Owall, “Hardware accelerator design for video
segmentation with multi-modal background modeling”, ISCAS 2005, Vol. 2, pp. 1142-
1145, May 2005.

[36] E. Kepucka, I. Gurcan and A. Temizel, "Fast Omnidirectional Image Unwrapping
on GPU", Euromicro International Conference on Parallel, Distributed and Network-
Based Computing (WIP), February 2012.

[37] K. Kim, T. Chalidabhongse, D. Harwood and L. Davis, "Background modeling
and subtraction by codebook construction" International Conference on Image
Processing, Vol. 5, pp. 3061-3064, October 2004.

[38] D. Lee, “Online Adaptive Gaussian Mixture Learning for Video Applications”,
ECCV Workshop on Statistical Methods for Video Processing, May 2004.

96

[39] A. Lepisk, “The use of Optic Flow within Background Subtraction”, M.S. thesis,
Royal Institute of Technology, 2005.

[40] Y. Liang, Z. Wang, X. Xu and X. Cao, “Background Pixel Classification for
Motion Segmentation using Mean Shift Algorithm”, ICMLC 2007, pp. 1693-1698,
2007.

[41] C. Lien, C. Hua, Y. Jiang and L. Jang, “Large Area Video Surveillance System
with Handoff Scheme among Multiple Cameras”, MVA 2009, May 2009.

[42] H. Lin, T. Liu and J. Chuang, "A probabilistic SVM approach for background
scene initialization", ICIP 2002, Vol. 3, pp. 893-896, September 2002.

[43] J. Lindstrom, F. Lindgren, K. Ltrstrom, J. Holst and U. Holst, “Background and
Foreground Modeling Using an Online EM Algorithm”, ECCV 2006, May 2006.

[44] N. Liu, H. Wu, and L. Lin, "Hierarchical Ensemble of Background Models for
PTZ-Based Video Surveillance", IEEE Transactions on Cybernetics, Vol. 45, No.1,
pp. 89-102, January 2015.

[45] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”,
International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.

[46] L. Maddalena and A. Petrosino, “A self organizing approach to background
subtraction for visual surveillance applications”, IEEE Transactions on Image
Processing, Vol. 17, No. 7, pp 1729-1736, 2008.

[47] V. Morellas, L. Pavlidis P. Tsiamyrtzis, “DETER: detection of events for threat
evaluation and recognition”, Machine Vision and Applications, Vol. 15, pp. 29-45,
June 2003.

[48] E. Monari and T. Pollok, "A Real-Time Image-to-Panorama Registration
Approach for Background Subtraction Using Pan-Tilt-Cameras", 8th Intern. Conf.
AVSS, pp. 237-242, 2011.

97

[49] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration”, International Conference on Computer Vision Theory and
Application VISSAPP’09, pp. 331-340, 2009.

[50] M. Muja, D. G. Lowe, "Fast Matching of Binary Features," 2012 Ninth
Conference on Computer and Robot Vision (CRV), pp. 404-410, May 2012.

[51] L. Niu and N. Jiang, “Moving Objects Detection Algorithm Based on Improved
Background Subtraction”, ISDA 2008, Vol. 03, pp. 604-607, 2008.

[52] T. T. Nguyen and J. W. Jeon, “Real-Time Background Compensation for PTZ
Cameras Using GPU Accelerated and Range-Limited Genetic Algorithm Search” in
Advances in Image and Video Technology, Vol. 7087, Y. S. Ho, Berlin, Springer
Berlin Heidelberg, 2011.

[53] P.M. Panchal, S.R. Panchal and S.K. Shah, “A Comparison of SIFT and SURF”,
International Journal of Innovative Research in Computer and Communication
Engineering, Vol. 1, No. 2, April 2013.

[54] J. Park, A. Tabb and A. Kak, “Hierarchical Data Structure for Real Time
Background Subtraction”, ICIP 2006, pp. 1849-1852, October 2006.

[55] D. Parks and S. Fels, “Evaluation of Background Subtraction Algorithms with
Post-processing”, AVSS 2008, September 2008.

[56] D. Pokrajac and L. Latecki, “Spatiotemporal Blocks-Based Moving Objects
Identification and Tracking”, VS-PETS 2003, pp. 70-77, October 2003.

[57] T. Porter and T. Duff, “Compositing digital images”, Acm Siggraph Computer
Graphics, Vol. 18, No. 3, pp. 253-259, July 1984.

[58] Z. Qu, M. Yu and J. Liu, “Real-time traffic vehicle tracking based on improved
MoG background extraction and motion segmentation”, ISSCAA 2010, pp. 676-680,
June 2010.

98

[59] C. Ridder, O. Munkelt and H. Kirchner, “Adaptive background estimation and
foreground detection using kalman-filtering”, Proceedings of International
Conference on recent Advances in Mechatronics, pp. 193-199, 1995.

[60] R. Rodriguez, “Background Subtraction with PTZ Cameras”, M.S. thesis, Dept.
Elect. and Comput. Sci., Technical University of Berlin, 2012.

[61] E. Rosten, R. Porter and T. Drummond, “Faster and better: a machine learning
approach to corner detection”, IEEE Transaction Pattern Analysis and Machine
Intelligence, Vol 32, pp. 105-119, 2010.

[62] P. J. Rousseeuw, “Least median of squares regression”, Journal of the American
Statistical Association, Vol. 79, No. 388, pp. 871-880, March 2012.

[63] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient
alternative to SIFT or SURF," IEEE International Conference on Computer Vision
(ICCV), pp. 2564-2571, Novemberr 2011.

[64] H. Sajid and S. Cheung, "Universal Multimode Background Subtraction",
Submitted to IEEE Transactions on Image Processing, 2015.

[65] K. Schindler and H. Wang, “Smooth Foreground-Background Segmentation for
Video Processing”, ACCV 2006, Vol. 3852, pp. 581-590, January 2006.

[66] Z. Sheng and X. Cui, “An adaptive learning rate GMM for background
extraction”, Optoelectronics Letters, Vol. 4, No. 6, pp. 460-463, November 2008.

[67] H. Shi and C. Tomassi, “Good Features to Track”, 9th IEEE Conference on
Computer Vision and Pattern Recognition, pp. 593-600, 1994.

[68] A. Shimada, D. Arita and R. Taniguchi. “Dynamic Control of Adaptive Mixture-
of Gaussians Background Model”, AVSS 2006, pp. 5, November 2006.

99

[69] P. L. St-Charles, G. A. Bilodeau and R. Bergevin, R, "SuBSENSE: A Universal
Change Detection Method With Local Adaptive Sensitivity", IEEE Transactions on
Image Processing, Vol. 24, No.1, pp. 359-373, January 2015.

[70] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for
real-time tracking”, IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Vol. 2, pp. 246-252, 1999.

[71] G. Stijnman and R. Van den Boomgaard, “Background estimation in video
sequences”, Technical Report 10, Intelligent Sensory Information Systems Group,
University of Amsterdam, January 2000.

[72] Y. Sun, “Better Foreground Segmentation for Static Cameras via New Energy
Form and Dynamic Graph-cut”, ICPR 2006, 2006.

[73] A. Temizel, T. Halici, B. Logoglu, T. Taskaya Temizel, F. Omruuzun and E.
Karaman, "Experiences on Image and Video Processing with CUDA and OpenCL" in
NVIDIA GPU Computing Gems, Vol. 1, W. Hwu, Elsevier, 2011.

[74] T. Terriberry, L. French, and J. Helmsen, “GPU accelerating speeded-up robust
features”, 4th International Symposium on 3D Data Processing, Visualization and
Transmission, 2008, pp. 1–8.

[75] Y. Tian and A. Hampapur, “Robust Salient Motion Detection with Complex
Background for Real-time Video Surveillance”, CVPR 2005, Vol. 2, pp. 30-35,
January 2005.

[76] E. Tsinko, “Background Subtraction with a Pan/Tilt Camera”, M.S. thesis, Dept.
Comput. Sci., The University Of British Columbia, 2010.

[77] D. Turdu and H. Erdogan, “Improved post-processing for GMM based adaptive
background modeling”, ISCIS 2007, pp. 1-6, November 2007.

100

[78] R. Wang, F. Bunyak, G. Seetharaman, K. Palaniappan, "Static and Moving Object
Detection Using Flux Tensor with Split Gaussian Models", Computer Vision and
Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference, pp. 420,424, June
2014.

[79] B. White and M. Shah “Automatically Tuning Background Subtraction
Parameters Using Particle Swarm Optimization”, ICME 2007, pp. 1826-1829, 2007.

[80] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, “Pfinder: Real-Time Tracking
of the Human Body”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 19, No. 7, pp. 780-785, July1997.

[81] M. Xu and T. Ellis, “Illumination-invariant motion detection using color mixture
models, BMVA 2001, pp. 163-172, September 2001.

[82] K. Xue, Y. Liu, G. Ogunmakin, J. Chen, J. Zhang, “Panoramic Gaussian Mixture
Model and large-scale range background substraction method for PTZ camera-based
surveillance systems”, Machine Vision and Applications, Vol. 24, No. 3, pp. 477-492,
April 2013.

[83] S. Xuehua, C. Yu, G. Jianfeng and C. Jingzhu, “A Robust Moving Objects
Detection Algorithm Based on Gaussian Mixture Model”, ITSC 2009, Vol. 1, pp. 566-
569, 2009.

[84] Q. Yan, Y. Xu, X. Yang nad L. Traversoni, “Real-Time Foreground Detection
Based on Tempo-Spatial Consistency Validation and Gaussian Mixture Model”, IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB 2010), pp. 1-4, March 2010.

[85] Q. Zang and R. Klette, “Evaluation of an Adaptive Composite Gaussian Model in
Video Surveillance”, CITR Technical Report 114, Auckland University, August 2002.

[86] H. Zheng, Z. Liu and X. Wang, “Video Segmentation Method with Integrated
Multi-features Based on GMM”, International Conference on Digital Image
Processing (DIP 2009), pp. 62-66, March 2009.

101

[87] J. Zhang, Y. Wang, J. Chen and K. Xue, "A framework of surveillance system
using a PTZ camera", IEEE International Conference on Computer Science and
Information Technology (ICCSIT), Vol. 1, pp. 658-662, July 2010.

[88] D. Zhou and H. Zhang, “Modified GMM background modeling and optical flow
for detection of moving objects”, IEEE International Conference on Systems, Man and
Cybernetics, pp. 2224-2229, October 2005.

[89] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background
subtraction”, International Conference Pattern Recognition, Vol. 2, pp. 28-31, 2004.

[90] X. Zou, X. Zhao, Z. Chi, "A robust background subtraction approach with a
moving camera", Computing and Convergence Technology (ICCCT), 2012 7th
International Conference, pp. 1026-1029, December 2012.

[91] Egor Tsinko's Thesis, [Online], Available: http://www.cs.ubc.ca/nest/lci/
thesis/etsinko/, [Accessed: Sep. 01, 2015].

[92] FLANN - Fast Library for Approximate Nearest Neighbors: FLANN, [Online],
Available: http://www.cs.ubc.ca/research/flann/, [Accessed: Sep. 01, 2015].

[93] IEEE Change Detection Workshop, [Online], Available: http://changedetection.
net, [Accessed: Sep. 01, 2015].

[94] Nvidia Corporation, “CUDA C Programming Guide v7.0”, [Online], Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide, [Accessed: Sep. 01, 2015].

[95] Nvidia Corporation, “GeForce GTX 980 Whitepaper”, [Online], Available:
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_G
TX_980_Whitepaper_FINAL.PDF, [Accessed: Sep. 01, 2015].

[96] Nvidia Corporation, “Precision And Performance: Floating Point And Ieee 754
Compliance for Nvidia Gpus - Nvidia White Paper”, [Online], Available:
http://docs.nvidia.com/cuda/floating-point/index.html, [Accessed: Sep. 01, 2015].

102

[97] OpenCL - The open standard for parallel programming of heterogeneous systems,
[Online], Available: https://www.khronos.org/opencl/, [Accessed: Sep. 01, 2015].

[98] OpenCV, [Online], Available: http://opencv.org/, [Accessed: Sep. 01, 2015].

[99] Parallel Programming and Computing Platform, [Online], Available:
http://www.nvidia.com/object/cuda_home_new.html, [Accessed: Sep. 01, 2015].

[100] Visual Computing Leadership from NVIDIA, [Online], Available:
http://www.nvidia.com/page/home.html, [Accessed: Sep. 01, 2015].

103

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	1.1 Motivation
	1.2 Scope
	1.3 Outline

	LITERATURE REVIEW
	2.1 Background Subtraction with Static Camera
	2.1.1 Parametric Methods
	2.1.2 Non-parametric Methods

	2.2 Background Subtraction with Pan-Tilt Camera

	FEATURE EXTRACTION AND MATCHING
	3.1 Feature Extraction Algorithm
	3.2 Feature Matching Algorithm
	3.3 Panorama Feature Extraction Method
	3.4 Refining of Matching Results
	3.5 Effect of Feature Points Distribution

	IMAGE REGISTRATION AND BLENDING
	4.1 Transformation Type
	4.2 Elimination of Outliers
	4.3 Homography Matrix Control
	4.4 Blending Type

	BACKGROUND SUBTRACTION
	5.1 Background Subtraction Algorithm
	5.2 Filtering According to First Seen Part
	5.3 Post Processing Operations

	PORTING ALGORITHMS TO GPU
	6.1 Introduction
	6.2 GPU Architecture
	6.2.1 Compute Unified Device Architecture (CUDA)
	6.2.2 CUDA Memory Hierarchy

	6.3 CUDA Implementation
	6.3.1 Initialization
	6.3.2 Feature Extraction and Matching Part
	6.3.3 Image Registration
	6.3.4 Background Subtraction

	6.4 Precision Difference between GPU and CPU

	TEST RESULTS AND APPLICATIONS OF THE THEORY
	7.1 Introduction
	7.2 Evaluation Metrics
	7.3 Comparison of CPU and GPU Results
	7.4 Comparison with the Change Detection Algorithms
	7.5 Comparison with [76]
	7.5.1 Frame Sequence 1
	7.5.2 Frame Sequence 2

	CONCLUSIONS

	REFERENCES

