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ABSTRACT 
 

 

GPU-ENABLED REAL-TIME PANORAMIC BACKGROUND 

SUBTRACTION 
 

 

 

 

Büyüksaraç, Serdar 
M.S., Department of Electrical and Electronics Engineering 
Supervisor : Prof. Dr. Gözde Bozdağı Akar  
Co-Supervisor : Assoc. Prof. Dr. Alptekin Temizel 

 
September 2015, 103 pages 

 

 

Extraction of foreground objects using a Pan-Tilt camera is a challenging task for 

various video surveillance applications. It requires several steps such as camera motion 

extraction, image registration, panorama generation and background subtraction. All 

these steps require significant computing power. While achieving this by using only 

Central Processing Unit (CPU) is a challenging task, it might be enabled by efficient 

parallelization of the algorithms to run on Graphics Processing Unit (GPU). In this 

thesis an adaptive panoramic background generation and foreground object detection 

algorithm is implemented on GPU/CPU to run in real-time.  

 

Keywords: Background Subtraction, Panorama Extraction, Pan-Tilt Camera, Graphics 

Processing Unit (GPU), Compute Unified Device Architecture (CUDA) 
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ÖZ 
 

 

GPU KULLANILARAK GERÇEK ZAMANLI PANORAMİK ARKAPLAN 

ÇIKARMA 

 

 

 

Büyüksaraç, Serdar 
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
Tez Yöneticisi  : Prof. Dr. Gözde Bozdağı Akar  
Ortak Tez Yöneticisi  : Assoc. Prof. Dr. Alptekin Temizel 

 
Eylül 2015, 103 sayfa 

 

 

Yatayda ve düşeyde hareket edebilen bir kamera kullanarak ön plandaki nesnelerin 

çıkarımı çeşitli video gözetim uygulamaları için zorlu bir görevdir. Bu iş kamera 

hareketinin tespiti, görüntüde yapılan düzeltme, panorama oluşturulması ve arka plan 

çıkarılması gibi birçok adım gerektirir. Bu adımlar önemli işlem gücü gerektirir. 

Sadece Merkezi İşlem Birimi (CPU) kullanarak bu hedefe ulaşmak zor bir görev olsa 

da, algoritmaların etkin bir biçimde paralelize edilmesiyle Grafik İşleme Birimi (GPU) 

üzerinde çalışması sağlanabilir. Bu tezde uyarlanabilir panoramik arka plan oluşturan 

ve ön plan nesnelerini çıkartan bir algoritma GPU ve CPU üzerinde gerçek zamanlı 

olarak çalışması için uygulanmıştır. 

 

Anahtar Kelimeler: Arka Plan Çıkartma, Panorama Oluşturma, Yatayda ve Düşeyde 

Hareket Edebilen Kamera, Grafik İşleme Birimi, Birleşik Hesap Cihazı Mimarisi 
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CHAPTER 1 

 

CHAPTERS 
INTRODUCTION 

 

 

 

1.1 Motivation 

Detection of the crime before occurring and interfering with it, are important for the 

security of the society. Therefore, surveillance cameras are used in various places such 

as metros, streets, borders, coasts etc. as a monitoring tool. However, in order to 

analyze these videos, officers watch cameras all day and it requires enormous amount 

of labor. In addition, the possibility of missing important details in a scene with naked 

eye is very high, so surveillance systems should be able to detect suspicious events in 

the scene automatically by using complex and efficient algorithms. 

Most of the researches in literature, on moving object detection are based on static 

cameras. However, Pan-Tilt cameras are also an important necessity in order to 

increase coverage. Unfortunately, the algorithms that are designed for static cameras 

do not perform well on Pan-Tilt cameras due to the motion. Pan-Tilt camera 

background subtraction systems must have parts such as motion compensation, image 

registration, panorama generation etc. in addition to static camera algorithms. 

Due to the complexity of algorithms, successful background subtraction for the scenes 

from Pan-Tilt cameras needs significant computing power. Using Central Processing 

Unit (CPU) is not a sufficient way to deal with the tasks which requires to work in 

real-time. By using Graphics Processing Unit (GPU) with efficient parallelization, this 

problem can be solved. 

There are studies in literature about background subtraction of a Pan-Tilt camera. 

However, they are far from real-time working. We proposed a robust real-time 
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background subtraction on frames from the output of a Pan-Tilt camera by inspiring 

[76]. 

1.2 Scope 

In this thesis work, a method for moving object detection from Pan-Tilt cameras is 

presented. The method is based on [76]. We assumed that objects in the scene are 

sufficiently far away from the camera to be sure that the motion of all them does not 

depend on the distance to camera. In order to make it work in real-time, the algorithm 

is implemented on GPU and CPU.    

The algorithm is partitioned in such a way that the algorithm parts that require much 

computational power run on the GPU. Selection of these parts and transitions between 

GPU and CPU are done wisely, which is explained in detail in Chapter 6. 

1.3 Outline 

In Chapter 2, previous studies on the background subtraction algorithms for both static 

and Pan-Tilt cameras are explained. In Chapter 3, the methods used for feature 

detection and matching are explained. Image registration and blending are examined 

in Chapter 4. The third step in this study is background subtraction and it is explained 

in Chapter 5. Chapter 6 provides methods, considerations and difficulties while porting 

the algorithms to the GPU. In Chapter 7, the overall success rates of the system and 

test techniques to evaluate the success of the system are explained. Finally in Chapter 

8, the overall system is concluded and some future works to improve the system are 

commented.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 
 

Background Subtraction is one of the well-studied areas of computer vision over the 

years. It is part of many video surveillance applications. Generating and keeping a 

background model is the essential part of the process. Background subtraction of the 

video sequences from static camera reached a steady state in different manners, but 

foreground object detection of the frames from the Pan-Tilt camera is moderately a 

new issue in literature [15], [24], [30], [48], [60], [76], [82] and [90] Traditional 

background subtraction methods should be merged with compensation of camera 

motion and registration operations for this purpose. 

2.1 Background Subtraction with Static Camera 

Background subtraction algorithms found in the literature for static camera can be 

divided in two groups: parametric methods and non-parametric methods. 

2.1.1 Parametric Methods 

Parametric methods start with an assumption. The background does not have any kind 

of movement; the reason of small movements in the scene is camera noise. Therefore, 

the intensity value of each pixel can be modeled with a parametric distribution.  

Gaussian distribution is one of these distributions. Wren et al. [80] proposed an 

algorithm that uses Gaussian in a simple way. Mean and variance values are calculated 

from the last n intensity value of pixels. They are updated with each new frame as 

follows. 
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𝑃𝑃(𝑋𝑋𝑡𝑡) =  
1

𝜎𝜎𝑡𝑡 √2𝜋𝜋
∗ 𝑒𝑒−

(𝑋𝑋𝑡𝑡− 𝜇𝜇)2
2 𝜎𝜎2  (1) 

𝜇𝜇𝑡𝑡+1 = (1 − 𝛼𝛼) 𝜇𝜇𝑡𝑡 +  𝛼𝛼 𝑋𝑋𝑡𝑡+1 (2) 

𝜎𝜎𝑡𝑡+12 = (1 − 𝛼𝛼) 𝜎𝜎𝑡𝑡2 +  𝛼𝛼 (𝑋𝑋𝑡𝑡+1 −  𝜇𝜇𝑡𝑡+1) ∗ (𝑋𝑋𝑡𝑡+1 −  𝜇𝜇𝑡𝑡+1)𝑇𝑇 (3) 

 

Eq. (1) shows Gaussian probability. Eq. (2) and Eq. (3) are valid where Xt+1 is the 

intensity value of related pixel, µ and σ are mean and variance values respectively. 

Moreover, α is learning rate. 

The decision of whether the pixel is in background or foreground is made by using the 

following Eq. (4). If it is below threshold, the pixel is in background, and vice versa. 

 

|𝜇𝜇𝑡𝑡+1 −  𝑋𝑋𝑡𝑡+1| < 𝑇𝑇 (4) 

 

Although this model is quite fast and simple, it has difficulties with adapting to quick 

changes such as fluctuation of illumination. Also, choosing correct α is crucial, 

because wrongly chosen learning rate, causes unnecessary quick updates. 

Kalman Filter based background detection algorithm [59] is another parametric 

method. It is more robust to illumination change. It is based on thresholding the value, 

which is result of the difference between background model and current frame 

intensity. The algorithm calculates new prediction by using the difference between 

current intensity and old prediction of the background model. This difference is added 

or subtracted to model by weighing. Therefore, values that are matched with model 

earn higher weight, but the others do not. After all, algorithm performance is limited 

because it can represent the outer world by using only one model. Many patterns 

cannot be modeled. 
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Real world cannot be modeled by using only one model. In order to go beyond this 

limitation, Friedman and Russel propose an algorithm in the study which is about 

traffic surveillance [26]. Algorithm includes three Gaussian models for each pixel. One 

model that is the darkest one for shadows, another model that has largest variance for 

cars and another one is for roads. It uses the Expectation Maximization (EM) algorithm 

for initialization operation and EM is also used for decision mechanism. 

Stauffer and Grimson [70] took these three Gaussian models and made it a more 

generalized mixture of K Gaussians algorithm. Each pixel is modeled with K 

Gaussians that may be foreground or background. The probability of each pixel 

belongs to whether the background or foreground can be calculated by using Eq. (5) 

and Eq. (6), where covariance matrix is in the form (7). 

 

𝑃𝑃(𝑋𝑋𝑡𝑡) =  �𝜔𝜔𝑖𝑖,𝑡𝑡 ∗ 𝜌𝜌(𝑋𝑋𝑡𝑡,𝜇𝜇𝑖𝑖,𝑡𝑡,𝛴𝛴𝑖𝑖,𝑡𝑡)
𝐾𝐾

𝑖𝑖=1

 (5) 

𝑝𝑝(𝑋𝑋𝑡𝑡,𝜇𝜇,𝛴𝛴) =
1

(2𝜋𝜋)𝑛𝑛/2  |𝛴𝛴|1/2 ∗ 𝑒𝑒
−12(𝑋𝑋𝑡𝑡− 𝜇𝜇)𝛴𝛴−1(𝑋𝑋𝑡𝑡− 𝜇𝜇) (6) 

𝛴𝛴𝑖𝑖,𝑡𝑡 =  𝜎𝜎𝑖𝑖,𝑡𝑡2 𝐼𝐼 (7) 

 

K is the number of Gaussian; it is defined in the initialization step, according to 

memory and computational power. It is defined between 3 and 5 in [70]. Equations 

indicate the values for each pixel 𝑋𝑋𝑡𝑡. Weight and mean are shown with ω and µ 

respectively. P is probability density function, Σ is standard deviation and 𝑝𝑝 is 

Gaussian probability density function. 

Evaluation of new pixel value starts with decision of corresponding Gaussians. First b 

Gaussians weights are added to each other until they reach the T threshold value. These 
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b Gaussians are classified as background distributions and the remaining ones are 

foreground. Eq. (8) is used for comparison. 

 

𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏 �� 𝜔𝜔𝑖𝑖,𝑡𝑡 > 𝑇𝑇
𝑏𝑏

𝑖𝑖=1
� (8) 

 

Then, matching Gaussian of new pixel value is obtained by using Eq. (9) where k is a 

constant. 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡�
𝑇𝑇

.  𝛴𝛴𝑖𝑖,𝑡𝑡−1. �𝑋𝑋𝑡𝑡+1 − 𝜇𝜇𝑖𝑖,𝑡𝑡�� < 𝑘𝑘𝜎𝜎𝑖𝑖,𝑡𝑡 
(9) 

 

There are two possibilities for new pixel: 

• If new pixel is matched with one of the Gaussians, it is classified according to 

the matched Gaussian model. Weight, mean and variance of matching 

Gaussian are updated by using the Eq. (10), (11) and (12), respectively. On the 

other hand, mean and variance of unmatched Gaussians stay the same, only 

their weights are re-arranged.  

 

𝜔𝜔𝑖𝑖,𝑡𝑡+1 = (1 − 𝛼𝛼) 𝜔𝜔𝑖𝑖,𝑡𝑡 +  𝛼𝛼, where α is learning rate (10) 
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𝜇𝜇𝑡𝑡+1 = (1 − 𝜌𝜌) 𝜇𝜇𝑖𝑖,𝑡𝑡 +  𝜌𝜌 𝑋𝑋𝑡𝑡+1 (11) 

𝜎𝜎𝑖𝑖,𝑡𝑡+12 = (1 − 𝜌𝜌) 𝜎𝜎𝑖𝑖,𝑡𝑡2 +  𝜌𝜌 �𝑋𝑋𝑡𝑡+1 −  𝜇𝜇𝑖𝑖,𝑡𝑡+1��𝑋𝑋𝑡𝑡+1 −  𝜇𝜇𝑖𝑖,𝑡𝑡+1�
𝑇𝑇
 (12) 

where 

𝜌𝜌 = 𝛼𝛼 . 𝜂𝜂 (𝑋𝑋𝑡𝑡+1, 𝜇𝜇𝑖𝑖,𝛴𝛴𝑖𝑖) (13) 

 

• If there is no match, new pixel is classified as foreground pixel and Gaussian 

that has the least weight is replaced with a new one. Variance of the new 

member is initialized to a high value. 

Gaussian Mixture Model (GMM) that is proposed by Stauffer and Grimson [70] is one 

of the most important milestones for background subtraction algorithms. Because of 

the fact that it has more than one model, the algorithm could deal with changing or 

moving backgrounds and gradual illumination changes. Despite of this success, it has 

some disadvantages unfortunately. Number of Gaussians is not adjustable on the fly. 

This requires more computing power and memory.  

In sixteen years, hundreds of studies are conducted in order to improve GMM. Original 

paper proposed constant number for Gaussians. In order to improve performance 

against a dynamic background, [16], [68] and [89] suggest variable number for the 

number of Gaussians. This approach not only increases the performance, but also 

decreases the computation time. [38] and [47] change the initialization mechanism. [4] 

and [39] allow moving foreground items during training part. [79] and [85] modify the 

learning rate. [43] are not contented with new learning rate and they make it adaptive 

with time. [72] change the decision mechanism of foreground. While the original paper 

uses the pixels, [56] use blocks and [10] uses clusters. Instead of intensity value of 

Red-Green-Blue (RGB); [71], [81] prefer different color spaces or features such as 

edge [32], [33], texture [75]. Even more than one feature similar to brightness, 

neighborhood relation can be integrated in [86].  
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Furthermore, extra feature, which is Markov Random Fields, [65], can be added to the 

original algorithm. Instead of taking data regularly, hierarchical approaches, [54] or 

multi-level approaches [18], [33] are preferred. Result of the original paper is modified 

in the final by some post-processing operations [55], [77].  

The concern of the authors is not only to increase the performance, but also to decrease 

the computation time. Studies were also conducted in this manner. Region of Interest 

(ROI) concept, [6], [84], is applied in order to reduce burden. Instead of taking all data, 

sampling strategies [40], [51], [66] are used. Another way of increasing speed is to use 

the hardware implementation [5], [35] on powerful hardware.  

Another aspect is that improving foreground detection with external support. 

Statistical background disturbance [3] and color segmentation [23] are some examples. 

Finding motion externally helps the algorithm. Motion can be found with optical flow 

[88], block matching [31], texture models [41], [58] or consecutive frame difference 

[83]. 

Guler et al. designed a real-time multi-camera video analytic system [27] which is 

composed of four main parts. Background Subtraction is the first part; Camera 

Sabotage Detection, Abandoned Object Detection and Object Tracking are the 

following algorithm parts. In Background Subtraction part, GPU version of the 

IAGMM [89] is used. When performance of both CPU and GPU implementations are 

measured, there is a 75.00 speedup for the images with resolution of 1024 X 768. There 

is a high performance increase with GPU usage because IAGMM [89] is very 

appropriate for parallelization. Efficient parallelization and performance 

measurements of a basic background subtraction algorithm can be examined in [73]. 

2.1.2 Non-parametric Methods 

Parametric methods have a good success in modeling real life’s complex scenes, but 

they have difficulties in adapting to changing environments [22]. This requires much 
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more attention for choosing parameters and leads to loose of generalization. In order 

to deal with this problem, non-parametric methods can be used. 

Elgammal et al. proposed an algorithm [22] that estimates probability density function 

of each pixel. By using the Eq. (14), kernel Estimator “K” function can be used as 

Gaussian function. After replacing of “K” with Gaussian Equation, it becomes Eq. 

(15). In this structure 𝑥𝑥𝑡𝑡 represents consecutive intensity values 

 

𝑃𝑃(𝑥𝑥𝑡𝑡) =
1
𝑁𝑁
� 𝐾𝐾(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
 (14) 

𝑃𝑃(𝑥𝑥𝑡𝑡) =
1
𝑁𝑁
�

1
(2𝜋𝜋)𝑑𝑑/2|∑|1/2 𝑒𝑒

−12∗(𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖)𝑇𝑇∑−1(𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
 (15) 

 

Background or foreground decision is made by comparing probability density function 

with a threshold. If it is below threshold, it is classified as foreground, and vice versa. 

After decision, an update of the model should be completed. Elgammal et al. [22] 

designs the method with two background models, which are short term and long term. 

As can be understood from the name, short term background model has a narrow 

sample rate. Generally, this model consists of foreground objects. On the other hand, 

the long term background model has a slow update mechanism so it usually hosts 

background objects. Using two models at the same time, gives a chance to understand 

that detection is really foreground or dynamic background object like a leaf on the 

wind. 

Support Vector Machine (SVM) is a classification method. Lin et al. [42] proposed a 

method that uses SVM for background subtraction. Frames that do not have moving 

objects are used for training. During training period, blocks are extracted from image 

and some features like optical flow are calculated for each block. While new frames 
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are coming, new blocks are extracted and distances are calculated between old blocks 

and new blocks. Using a threshold on these distances, a background / foreground 

decision is done. 

Maddalena and Petrosino [46] proposed Neural Network Background Modeling. 

Background and foreground distribution is expressed by using weights of the neural 

network. Neural network learns how to classify each pixel as background or 

foreground. The background model generates a Self-Organizing Map (SOM) and this 

map decides that a pixel is background or foreground. 

The Codebook (CB) algorithm [37] implements a clustering method to construct the 

background model. During the learning period each pixel is sampled and these values 

are clustered into a set of Code Words (CW). The background is encoded pixel by 

pixel. Codebook algorithm is based on keeping CWs for each pixel. Each CW has 

seven data about this pixel. One data is RGB value and it is held in (V) and six data in 

Code Word Structure (CWSTR).  

 

 

Table 1: Elements of Code Word 

Elements Meanings 

𝑣𝑣𝑖𝑖 (𝑅𝑅𝑖𝑖 + 𝐺𝐺𝑖𝑖 +  𝐵𝐵𝑖𝑖) 

𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  
Minimum and maximum brightness, respectively, which the CW 

has occurred. 

𝑛𝑛𝑖𝑖 The number of the CWs has occurred. 

𝜆𝜆𝑖𝑖 
The maximum negative run-length defined as the longest interval 

during the training period that the CW has NOT recurred 

𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖 The first and last access times, respectively, that the CW has 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ( 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑛𝑛𝑖𝑖 , 𝜆𝜆𝑖𝑖,𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖) 
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In the learning period each pixel is sampled with the six tuple format given in the Table 

1, and the results are stored in the CB. In the CB, each pixel can have maximum five 

CWs. If a pixel in the CB has the maximum number of CWs, before creating new CW, 

the least used CW is deleted from the CB.  

After the learning period, the background model is constructed and the rest of the 

operation is straightforward. Each input pixel value is compared with the CWs of that 

pixel and if the brightness and color distance are lower than the predetermined 

threshold, that pixel is marked as foreground and the related variables of the matched 

CW are updated.  

Barnich and Droogenbroeck [8] proposed the algorithm VIsual Background Extractor 

(ViBe) which is a universal background subtraction algorithm. Algorithm stores the 

values of pixels over the frames. When a new frame comes, it compares the new value 

and model for the pixels then, decides that pixel is background or foreground. If there 

is a match, it updates the model. Many algorithms prefer deleting the oldest element 

from the model in order to add new one but ViBe [8] chooses an element to remove 

randomly.  

Wang et al. [78] proposed an algorithm Flux Tensor with Split Gaussian models 

(FTSG) that combines spatio-temporal tensor formulation, foreground/background 

modeling and multi-cue appearance comparison. The system is formed of three 

modules that are detection, fusion and classification. In detection module, algorithm 

finds the foreground objects by using flux tensor based motion detection and Gaussian 

models at the same time. Then, the results of two different detections are combined. In 

the final part, edges of present foreground results and edges acquired from the original 

image are compared. Classification operation is done by using edge matching results. 

St-Charles et al. [69] proposed an approach based on the adaptation and integration of 

Local Binary Similarity Pattern (LBSP). Name of the algorithm is Self-Balanced 

SENsitivity SEgmenter (SuBSENSE). Firstly, spatio temporal information is extracted 

from each pixel by using RGB values and LBSP features. Then, a sample consensus 
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approach like ViBe [8] is used for classification of binary features. Both algorithms 

FTSG [78] and SuBSENSE [69] have satisfactory results. However, because of the 

computation load of algorithms, making them to run in real-time seams hard. 

2.2 Background Subtraction with Pan-Tilt Camera 

Background subtraction with Pan-Tilt camera algorithms, which are based on image 

information only, can be grouped under 2 approaches according to usage of offline 

generated correspondence layer. 

The algorithms of first group generate a layer map offline. Before an operation mode, 

Pan-Tilt camera scans all areas by panning and tilting and key frames of the scene are 

generated. During the operation mode algorithm uses these key frames for image 

registration.  

Second group includes algorithms that do not make any preparation operation offline. 

Algorithms register images by using only the knowledge acquired during runtime.  

The algorithms [48] and [82] are members of the first group. They generate key frames 

at the beginning and take advantage of them during the image registration. 

Xue et al. [82] introduced a method for background subtraction of Pan-Tilt-Zoom 

(PTZ) cameras. In the beginning PTZ camera scans all area for all focal lengths. 

During scanning, algorithm finds feature points by using Scale Invariant Feature 

Transform (SIFT) [45] and then by using these feature points panorama is build up. 

Panoramic frames are used to generate GMM of background. All these operations are 

done offline. After completion of preliminary part; new frames are registered to 

panorama by using SIFT and Speeded Up Robust Features (SURF) [9] algorithms. 

Then, GMM operation is done in the normal fashion. There are some disadvantages of 

this approach. First of all too much preliminary work have to be done before operation. 

Taking frames for all areas and for all focal length requires too much time. Also, 

working on videos taken without these constraints is not possible. 
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Monari and Pollok [48] proposed a method for background subtraction. This method 

also uses offline training similar to the method [82]. Camera makes a full scan of the 

area during initialization mode and generates a key frame map. Frame to frame 

homography estimation may cause a little error. After some working time, these little 

errors are getting bigger like an avalanche. Monari and Pollok [48] produced this key 

frame structure in order to beat this weakness. Key frames are generated in 

initialization mode. Then, in working mode new frames are put in the panorama with 

the help of key frames. Later, background subtraction is done. When a new frame 

comes, a search is started in key frames in order to match to the new frame. There may 

be some overlap between key frames. These overlapping areas make it harder to find 

a correct key frame. In order to speed search and make the result more reliable, 

heuristic neighborhood ranking model is used for searching. Although, key frame 

structure increases the performance of panorama generating, similar to [82], it requires 

challenging initialization part. Moreover, the background subtraction part is 

implemented for only proofing of concept. The attitude of the algorithm against 

challenging circumstances, such as illumination change, dynamic background is 

uncertain. 

On the other hand, algorithms [15], [24], [30], [60], [76] and [90] prefer the second 

approach. They register new frames without any prior knowledge. 

Zou et al. [90] developed an algorithm that subtracts background for free moving 

camera. It applies Harris Corner Detector [28] in order to find features for each frame. 

Then, points that are in consecutive frames are matched by using a simple algorithm. 

Candidate points are searched in the neighborhood of each point and absolute error is 

calculated for all pairs. Result with a minimum error is admitted as matching. Later, 

by using RANdom SAmple Consensus (RANSAC) [25] algorithm, homography is 

estimated. The panorama is eliminated from foreground objects with a frame skipping 

topology. Finally, background is subtracted with a technique based on Markov 

Random Field (MRF) [1]. Assumption of small movement between successive frames 

makes the approach to be unfeasible for real life applications. Other drawbacks of the 
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algorithm is because of the panorama generating style: The background model cannot 

adapt itself according to changes in the outer world. 

Ferone and Maddelena [24] take the algorithm [46] that examined before and modify 

it in order to feed it with Pan-Tilt camera output. Decision of background or 

foreground is based on weights of the neural network. Different to [46], SOM also 

defuses the motion of the camera.  

Ivanov described a background subtraction algorithm [30] for Pan-Tilt cameras 

mounted on a mobile platform. Instead of generating a panorama, Ivanov made all 

operations for current frame in its coordinate plane. There are two GMM [70] for 

background. These background models and motion compensation part are coupled to 

each other. First model is used for detection and the second one is for elimination of 

errors. Feature points are extracted by using Features from Accelerated Segment Test 

(FAST) [61] and descriptors are calculated by using Binary Robust Independent 

Elementary Features (BRIEF) [14] for each frame. After matching of feature points, 

homography is calculated by using RANSAC [128]. Background models are shifted 

according to the found homography matrix. Even though the algorithm can find a 

foreground object for static camera case by using high learning rates, it fails in 

foreground subtraction during camera motion because algorithm [30] does not 

generate panoramic model.  

Rodriguez introduced a method [60] for background subtraction. It uses SURF [9] 

similar to [82] in order to find feature points and calculate descriptors. Some changes 

are made in the original SURF algorithm. The Brute Force Matching algorithm is 

preferred for matching the feature points. Using these matches, homography is found 

with the help of RANSAC [25] algorithm. Background model is found like a static 

camera case then, it is shifted by using homography matrix. Instead of using panorama, 

the author prefers to apply transformation to background model like [30]. It looks like 

more simple way, but accuracy of this method is unfortunately low. Also, it generates 

blank pixels. In order to fill empty pixels, Rodriguez prefers the interpolation 
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operation. Interpolation takes extra computation time and does not create sufficient 

background subtraction results. 

Chen proposed a method [15] for background subtraction of Pan-Tilt cameras. Points 

are matched by using Kanade Lucas Tomasi (KLT) tracker [67]. Then RANSAC [25] 

is applied to determine inliers. Finally, background is subtracted with Graph Cut 

algorithm which is based on ViBe [8]. Author prefers it due to having fast initialization 

and strength to noise. Regular points are used in [15] for matching but usage of some 

feature points such as blobs or corners gives more accurate matching result. It also 

causes a more reliable foreground mask. Furthermore, Chen [15] used affine 

transformation instead of projective transformation. Affine transformation is 

insufficient technique to model the real world. It will be explained in detail in Chapter 

4. 

Nguyen and Jeon described an application range limited Genetic Algorithm Search 

[52] for background compensation by using GPU. Genetic Algorithm is a probabilistic 

search method in continuous space to capture camera motion. Then, projection 

histograms are used to determine backgrounds. However, computational power 

requirement of the algorithm is too much. That brings solution to use the GPU. The 

algorithm finds general camera motion and subtracts results over the histogram. It may 

find objects instantly, but finding foreground objects over the time, adaptation of the 

background model and marking dynamic background objects cannot be possible with 

this system. 

Doyle et al. developed a process [19] by using GPU. Optical flow background 

estimation algorithm, which is especially created for unmanned air vehicles, finds a 

foreground object and tracks them without generating background model or panorama 

image. Camera motion is detected by using GPU based optical flow operation. Moving 

objects are located by using the result of subtraction operation, which is done between 

the result of the optical flow and background estimation. The Kalman filter is also 

applied to filter the results. Although this algorithm detects and tracks some object in 
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the foreground, it cannot understand the changes or the movement in the scene totally, 

because it does not have any background model. 

Usage of omni-directional image instead of static camera may be another option to 

increase the coverage area of camera. In [36], authors state that a parallel algorithm to 

generate panoramic image by using omni-directional image. They create a significant 

speedup by parallelization. After panorama generalization, operations such as 

background subtraction, object tracking can be applied. 

Tsinko introduced a method [76], which gets frame from Pan-Tilt camera and subtracts 

the background from the panorama. The algorithm starts with finding feature points 

by using SIFT [45], then descriptors are calculated. Matching of these feature points 

is found in a straight way. An assumption is made that background objects have the 

same speed as the camera makes pan and tilt; because the distance between them and 

camera is sufficiently high. Considering this assumption, Hough Transform [7] is 

applied to matching in order to eliminate points come from foreground object. Then, 

homography matrix is created and a new frame is added to mosaic with new calculated 

homography. Finally, background subtraction operation is done by using GMM [70], 

KDE [22] and Codebook [37] algorithms separately. Most important qualification of 

this algorithm is that it does not find feature points in mosaic every time because 

finding feature points every time from panorama has two main drawbacks. First, it 

requires extra computation time. Second, extracting feature points from processed 

image is inaccurate. After homography operation, characteristic property of feature 

points is damaged. A list of points is kept for mosaic. After each matching process, 

feature points that do not match from new frame are added to the list. Before the 

addition, their coordinates are adjusted according to homograph. On the other hand, 

the algorithm has some drawbacks. First seen areas in panorama are wrongly classified 

as foreground. In order to eliminate these false alarms, creation time of each pixel in 

panorama can be kept and these results can be used for filtering. 
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We prefer second type method that does not need any prior knowledge for image 

registration because it is more convenient. System is ready to detect moving objects 

without any prior work. Also, it can be tested with any Pan-Tilt camera video because 

algorithms from first group can generate correct outputs with only compatible videos, 

which start with scanning of all area. 

Motion detection from a Pan-Tilt camera is formed of three main parts as shown in 

Figure 1. It starts with extraction and matching of feature points. Then, registration 

and blending of new images to the panorama comes. Finally, background subtraction 

operation is done. 

 

 

 
Figure 1: Steps for Pan-Tilt Camera Motion Detection System  

 

 

Feature Extraction
& 

Matching

Image Registration
&

Blending

Background 
Subtraction

17 



  

In the following chapters, each part will be explained in detail. Before starting to first 

chapter, feature extraction and matching, algorithm state chart of the whole process 

can be seen in Figure 2. 

In this state chart, three main parts of the algorithm is indicated with different colored 

dashed lines. Moreover, algorithm part which is different from [76] is shown with 

orange color. Finally, parts that only our algorithm has are shown with purple color. 
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Figure 2: State Chart of the Proposed Algorithm 
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CHAPTER 3 

 

 

FEATURE EXTRACTION AND MATCHING 

 

 

 

Feature extraction and matching are the first parts of the system. The algorithm starts 

with the first frame. Feature points of the image are extracted and all of them are put 

in the feature point list L. Then, the image is located in the middle of the panorama.  

Every time when new frame comes, these steps are repeated:  

• Feature points are extracted from frame and matching is done with the feature 

points from list L. 

• The smallest value of distance is found. 

• Distances of matching are compared with dynamic threshold to refine 

matching. 

• Unmatched feature points from the new frame are added to list L. The 

coordinates of the feature points will be changed after the homography matrix 

is calculated. 

• Distribution of feature points is checked. 

o If the result is false, added feature points are removed from list L and 

this frame is skipped. 

o If the result is true, the process continues. 

Details of each part will we explained in following sub-sections. 

 

 

21 



  

3.1 Feature Extraction Algorithm 

Feature extraction algorithms found in the literature can be grouped in three. These are 

edge based, corner based and blob based. In image registration part, we need at least 4 

matching points to calculate homography matrix. Due to this necessity, edge based 

algorithms are not appropriate. 

Harris Corner Detection [28] and Features from Accelerated Segment Test (FAST) 

[61] are corner based feature extraction algorithms. Harris [28] is based on gradient 

computation; it looks for significant gradient change in all directions because it is 

possible only on corners. Similarly, FAST [61] searches changes in all directions, but 

it uses templates instead of gradients. Algorithm placed a template around the 

candidate pixel and controls the changes between center pixel and around ones. If there 

are changes in all directions, this pixel is classified as corner. 

Scale Invariant Feature Transform (SIFT) [45], Speeded Up Robust Features (SURF) 

[9], Binary Robust Independent Elementary Features (BRIEF) [14] and Oriented 

FAST & Rotated BRIEF (ORB) [63] are the most preferred feature extraction methods 

based on blob detection in literature. 

SIFT [45] is one of the most reliable and robust feature detection methods over the 

years. Lowe proposed a method that starts with taking Difference of Gaussians (DoG) 

for different pyramid sizes to find stable feature points. This process gives feature 

points that are invariant to scale. All pixels in DoG images are compared with eight 

neighbors. If the value of it is minimum or maximum, there is a candidate point. There 

are many candidates, but some of them are non-reliable. In order to eliminate weak 

ones and locate strong ones, interpolation is done with the Taylor expansion of the 

DoG function as can be seen in Eq. (16). Then keypoints which have low contrast are 

eliminated according to second order of Taylor expansion in Eq. (17). 
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Bins are created around the each candidate point. According to the result of histogram, 

rotation invariant descriptors are calculated.  

Bay et al. proposed a method [9] that can find feature points with Hessian Matrix. It is 

inspired from SIFT [45] but it is faster than SIFT [45]. Hessian Matrix is given in Eq. 

(18), where L is the convolution of the Gaussian second order derivative. 

 

𝐻𝐻 = �
𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎) 𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎)
𝐿𝐿𝑥𝑥𝑥𝑥(𝑥𝑥,𝜎𝜎) 𝐿𝐿𝑦𝑦𝑦𝑦(𝑥𝑥,𝜎𝜎)� (18) 

 

The authors stated that instead of calculating Gaussians, box filters which are created 

by approximating Gaussians can be used. This approximation increases the speed of 

the operation. In Figure 3, original and approximate filters can be seen. Furthermore, 

these approximate filters are suitable for integral image that removes the dependency 

on image size. 
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Figure 3: Original and Approximate Filters of SURF [9] 

 

 

SURF [9] creates rotation invariant descriptors. Haar Wavelet responses in both 

directions are calculated and weighted for each direction that is defined before. Then, 

rotation invariant descriptors are calculated for each interest point.  

Also up-righted version of the algorithm is available and it is faster than normal 

version, but it is not invariant to rotate. SURF is faster than the SIFT due to the usage 

of integral image that makes also operation speed invariant to image size. Moreover, 

it is more appropriate to parallel operation because of Hessian image independency. 

Unfortunately, some accuracy losses are possible, but the authors claim that it is 

minimal and negligible. 

BRIEF [14] is a feature descriptor calculation method that is very fast. Traditional 

methods use a lot of memory for each feature vector. However, memory, which is used 

by BRIEF [14], is nearly 4 % of the memory usage of SIFT [45] Instead of using float 

numbers, it uses a binary descriptor. Low memory usage increases the speed of the 

algorithm. The descriptors are created according to similarity of interest point with 

neighbors. It takes a patch around the feature point and compares the value of center 

pixel and the others. If the first value is smaller than the second one, it writes 1 on the 

corresponding area in the descriptor, else it writes 0. Any extra operation is not done 

against rotation. Therefore, the algorithm is not rotation invariant. 

ORB [63] is an algorithm that is based on BRIEF [14] but it is rotation invariant. It 

starts with finding feature points by using FAST [61]. Then, BRIEF [14] descriptors 
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are calculated. Both of the algorithms are not invariant to rotation. In order to beat this 

weakness, ORB [63] weighted FAST [61] templates about rotation in order to detect 

dominant orientation. Then rotation information is added to descriptors. The algorithm 

does not require too much computation and it is very fast compared to SIFT [45] or 

SURF [9]. Also, the authors claimed that it is successful as much as them. 

In this study, feature points are required for matching to generate a panorama image. 

Therefore, robustness is the first concern. If there is a matching error, panorama also 

has this error. Then, background subtraction algorithm, classifies false matching part 

wrongly. These false positive or false negative markings decrease the performance 

unfortunately.   

Floating point feature extractors like SIFT [45] and SURF [9] generate more robust 

results. In order to speed up the process, methods with binary descriptors like FAST 

[61], BRIEF [14], and ORB [63] ignore some performance loss. Therefore, their result 

is less robust than floating point feature extractor algorithms’ result. 

El-gayar et al. made a comparison [21] between feature detection algorithms. 

According to the study [21], SIFT [45] and SURF [9] give better results than the others. 

However, time consumption of the algorithms should be considered. Algorithms with 

binary descriptor are faster 6 or 7 times with performance loss. If there is not enough 

computation power these algorithms should be used, but if there is sufficient 

computational power like the GPU, Field Programmable Gate Array (FPGA); using 

robust and more reliable floating point feature extraction algorithms are preferable.  

In our study, implementations are done for GPU so computational power is not a 

bottleneck. In order to get desired results, always more robust solutions are used. 

Therefore, using SIFT [45] or SURF [9] is reasonable. 

Tsinko [76] preferred using SIFT [45] for feature extraction. Author stated the reason 

behind this selection of the algorithm that durability against scale and rotation 
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distinctively. Moreover, SIFT algorithm has low sensitivity to affine changes less than 

30° [45]. 

Xue et al. [82] used SIFT [45] and SURF [9] at the same time. Authors prefer SIFT 

[45] during the initialization part in order to get more robust features. Then, SURF [9] 

is used on-line registration part because of speed and robustness. 

Rodriguez [60] stated some comparison results between SIFT [45] and SURF [9]. Both 

algorithms are examined against change in rotation, scaling, illumination and Field of 

View (FOV). Although SIFT [45] generate more feature points with a little bit better 

matching results, SURF [9] algorithm is much faster and the result of it is robust 

enough. Therefore, Rodriguez chose SURF [9] for feature extraction.  

Principle of the SIFT [45] and SURF [9] algorithms are examined in detail.  They both 

follow the same pattern basically but SURF takes advantage by using an integral image 

and Gaussian approximation. Panchal et al. proposed a comparative study [53] in order 

to compare SIFT [45] and SURF [9]. According to its study, they give similar results. 

Performance of SURF [9] is slightly below. However, SURF [9] is faster than SIFT 

[45]. Most important feature of SURF [9] for our case is that it is more appropriate to 

parallelize. Terriberry et al. [74] defined a translation for SURF [9] algorithm to the 

GPU. SURF implementation [74] on this study runs real-time and 4 times faster than 

SIFT implementation [74] on the GPU. Moreover, 82% of the matches that are created 

by SURF [9] are classified as inliers by RANSAC algorithm [25]. SURF [9] is chosen 

in the light of these results. 

3.2 Feature Matching Algorithm 

The feature matching process is the next step after feature extraction. Feature matching 

can be done in 2 ways. First method is trying all possible matches. The second and 

faster method is making this search operation by following some rules.     

Brute-Force Matching uses the method that tries all possibilities. It is a very robust 

method, but it consumes a high amount of time if the computation capability is limited.  
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On the other hand, there is a Fast Library for Approximate Nearest Neighbors 

(FLANN) to speed up the operation. Tree Search is most common search technique. 

Muja and Lowe generated FLANN [49], [50], [92] that can fast approximate nearest 

neighbor search in high dimensional spaces. It chooses the best algorithm with 

optimum parameters for data type and size. Most appropriate algorithm is chosen from 

the algorithms that are K-Dimensional Tree, Randomized K-Dimensional Tree and 

Hierarchical K-Means Tree. Then, best parameters are assigned by a method that finds 

parameters with the grid search roughly and tune them with Nelder-Mead Downhill 

Simplex method [34]. Unfortunately, it does not guarantee to get global minimum, but 

experiments showed that it is very close to optimum. FLANN [92] gives faster results 

than the direct linear search, with a little performance loss. 

Both of the methods are used in studies. Their outputs are nearly the same. The 

difference between them is the speed. FLANN [92] may be more appropriate for the 

system that has the low computation capability. Zhang et al. [87] applied a Random 

Tree algorithm for matching and Liu et al. [44] also employed KD-Tree algorithm 

from FLANN [92] On the other hand, Rodriguez [60] preferred Brute-Force Matcher 

because of its certainty. 

In our study, robustness is the first concern as stated before. Because of the usage of 

GPU, computational power is sufficient. Moreover, Brute-Force matching is more 

appropriate for parallelization. Therefore, Brute-Force Matcher is employed for 

feature matching process. 

3.3 Panorama Feature Extraction Method 

In order to create homography matrix, matching feature points are required between 

each new frame and panorama. Finding feature points of the panorama is possible in 

two ways. First one is finding feature points from background panorama repeatedly 

for each cycle. Secondly, keeping a list of feature points in the panorama and updating 

this list with each frame. Both methods have advantages and disadvantages.  
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The first method is extracting feature points from background panorama image after 

every update of background mosaic. Most important advantage of this approach is that, 

a number of feature points does not increase too much. Total count increases if only 

new scenes are started to be visible. Moreover, after some working time, it stays 

steady. Algorithm with this property works for long time period in limited memory. 

Another advantage of this method is that it prevents developing of outliers. Algorithm 

subtracts feature points from the background panorama image that contains only 

background subjects. Therefore, features must be from real background and they will 

match with the background object in the new frame.  

The method has two shortcomings. Firstly, background panorama is generated from 

warped, stretched and skewed images. Some parts of the background mosaic are 

comprised of scenes with viewpoint angle that is larger than 30°. After this angle, SIFT 

[45] feature points cannot match implicitly. Lowe stated that in the algorithm [45] bin 

size is 30°. According to the author, this wide range makes possible matching of 

feature points even geometric distortion occurs during the 3D viewpoint change up to 

30°. Therefore, matching results with the angle of viewpoint change is greater than the 

limit, are not robust. Another shortage of the method, background panorama has to be 

generated for each cycle except normal panorama. It brings extra memory requirement 

and extra operations. Furthermore, method couples the feature detection and 

background subtraction parts. It obstructs evaluation of algorithm parts separately.  

The second method is maintaining a list of feature points. All feature points of 

panorama are kept in a list. When a new frame comes, feature points of it, are extracted 

and added to the list. During this addition, the coordinates of the feature points are 

changed according to homography.  
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There are different styles for addition: 

• First, all feature points of new frame can be added to the list. It makes the size 

of list enormous. Many unnecessary points, which are from background and 

foreground objects, live in the list and these points decrease the performance 

by creating outliers. Therefore, it is not useful.  

• Another option is adding feature points that are matched with panorama. This 

style is also not practical. All feature points come from scene of the first frame. 

Feature points of the unseen parts of the panorama cannot be added. 

• Last style is adding feature points that did not match with panorama. With this 

style new scenes can be represented in a feature point list and size of the list is 

acceptable. 

Keeping a list of feature points and adding unmatched points, is the alternative method 

to acquire panorama feature points. It solves both problems of feature point extraction 

from panorama for every cycle. Even angle change is more than 30°; the algorithm 

gives a good matching performance. Also, there is no need to sustain extra background 

panorama. 

However, the second method has also disadvantages. Firstly, unmatched feature points 

are added to list without background/foreground knowledge. They may increase 

outlier ratio a little. Secondly, addition never stops and causes enlargement in the list.  

Tsinko [76] conducted an experiment to compare both methods. According to his 

result, panorama image of the recalculation method contains visible artifacts. The 

reason behind this artifact is excessive change in angle of viewpoint as stated before. 

Author also examined a number of the feature points [76]. The number stays the same 

for recalculation method, but increases with negative acceleration for list method. 

Even though, a number of feature points for list method increases, speed of increase is 

getting smaller with decreasing unseen part. Moreover, list method has better matching 

performance. In order to get robust background subtraction, error free registration is 
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necessary and it is possible with successful matching. Therefore, feature points list 

with addition of the unmatched points is chosen for this study. 

3.4 Refining of Matching Results 

Brute-Force Matcher is an exhaustive search. In other words, it passes over all 

possibilities. The algorithm takes one element of the first set and finds the closest 

element from the second set. Also, it generates a distance value for each pair to show 

the success of the matching. The algorithm does not compare distances with any 

threshold value. Every element of the first set is matched with the most similar element 

from the second set even their similarity is too weak. Furthermore, two different 

elements of first set can be paired with the same element of the second set. Barely, one 

of that pairs or maybe both are wrong matches. 

In order to eliminate wrong matches and increase the performance, refining operation 

is necessary. Refining operation is based on comparison of matching distances. If the 

distance of the matching is less than threshold, this pair should be eliminated. 

However, choosing an appropriate threshold is a challenging task. Defining a constant 

threshold value for every frame is not practical. A little change such as contrast, focus 

between consecutive images impress all distances in the same way or changes in 

external factors like illumination, increases all distances. Therefore, choosing a 

threshold based on characteristic of each frame is more reasonable. 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 < 𝑁𝑁 𝑥𝑥 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒 (19) 

 

In our study, matches are filtered by using the Eq. (19). If the distance is higher than 

the threshold, pair is removed. Minimum distance of all matches is found and 

comparison is done with N times of it. Using this value as a reference adjusts the 
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threshold automatically. If most of the distance is small, threshold is also small, and 

vice versa. 

Choosing correct N multiplying factor is another issue. Choosing N is relevant that 

how many percent of matches are meaningful. Rodriguez [60] conducted some 

experiments on choosing N value. After trials between 2 to 7, authors stated that small 

N values are more preferable and 2 is the most appropriate value for N because of 

following results: 

• Multiplying factor does not affect performance ratio of matching significantly, 

it affects final panorama registration [60]. 

• Even for no filter case, registration is done properly except some artifacts 

because homography is generated by using RANSAC [25] that is also a good 

filter for outliers [60]. 

• If N number increases, also matching count increases. However, a small 

number of well distributed feature points are better than a high number of 

feature points [60].  

• Although filtering does not affect too much matching performance, it 

influences the time requirement of RANSAC [25]. Small N values eliminate 

most of the outliers so RANSAC [25] needs less time. Using 4 for N instead of 

no filter case, speeded up the RANSAC [25] more than 3 times in Rodriguez 

test case [60]. 

3.5 Effect of Feature Points Distribution 

After eliminating wrong matches, reliable feature points of the new frame are obtained. 

Before calculating homography, last control should be done. The distribution of the 

feature points should be controlled. 

The distribution of the feature points over image has an influence on calculated 

homography matrix. If feature points are equally distributed over the image, they can 
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give more accurate a homography matrix, but if they are not, the calculated 

homography matrix has errors. 

The main reason behind this problem is based on small misalignment of feature points. 

When matched points are too close to each other, the small error of their position leads 

to the significant error of homography matrix. On the other hand, if points are far away 

from each other; small errors are negligible and it is still possible to get accurate 

homography matrix. 

In order to be sure that the distribution of the feature points over the image is sufficient, 

there is a control mechanism in the system. For each frame, the variance of the feature 

points’ locations is calculated and this variance is compared with a threshold. If the 

value is lower than the threshold, this frame is skipped and homography matrix is not 

calculated for it. On the other hand, if the variance of points is higher than the 

threshold, process continues. 
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CHAPTER 4 

 

 

IMAGE REGISTRATION AND BLENDING 

 

 

 

Feature points of the images are extracted, points are matched and refined. After this 

point, a transformation matrix that represents one frame by using another frame can be 

generated. Homography matrix between the new image and panorama can be 

estimated by using isometry transformation, similarity transformation, affine 

transformation or projective transformation [29]. The main difference of them is the 

number of the Degrees of Freedom (DoF) that takes in the consideration. Homography 

matrix, which corresponds to the transformation type, is calculated by using the Direct 

Linear Transformation (DLT) [2] algorithm. 

State chart of the algorithm for only this part can be seen in Figure 4. This part starts 

with the calculation of homography by using the matching of feature points. 

 

 

Remove Added Feature 
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&
Skip the Frame

Find Homography
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Found
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Adjust Added Feature Points 
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Figure 4: Algorithm State Chart of Image Registration and Blending Part 
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As stated before, feature points of panorama are kept in a list L. When there is a 

mismatch between the feature point of new frame and any feature point in the list, this 

feature point is added to list but its coordinates is changed according to homography. 

Additions have already done to the list L. However, their coordinates cannot be 

changed because there is no homography matrix. At this point, homography matrix is 

calculated. 

The calculated homography matrix is compared with the mean of last five homography 

matrices. Change in each eight element of the matrix is examined and they are 

compared with own threshold.  

o If even one of changes is more than own threshold, added feature points 

are removed from list L and this frame is skipped.   

o If it is not, the process continues. All newly added feature points are 

adjusted to be compatible with the coordinate system of the panorama by 

using homography matrix H. 

The pixels from the new image are transformed to panorama. The operation is not done 

directly. Pixels are placed with blending.  

Moreover, a counter for each pixel is increased if this pixel is updated. This counter 

image is used to filter background subtraction results. Details of it will be explained in 

Chapter 5. 

Panorama image is obtained after these steps and now it is ready for background 

subtraction.  

4.1 Transformation Type 

There are many different types of transformations with different features. Even though 

all transformations can use 3x3 transformation matrices with nine elements, only 

projective transformation has eight DoF. Each element represents one of freedom and 
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last element is always equal to 1. On the other hand, other transformations make some 

elements to equal to 0 for simplification. It reduces the number of DoF. 

Isometry transformation is Euclidean transformation. In other words, it is a form of 

translation and rotation. Isometry transformation has got three DoF. These are rotation, 

translation in vertical direction and translation in horizontal direction. Transformation 

is invariant to length and angle. Matrix representation of transformation can be seen in 

the Eq. (20). 
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Similarity transformation is combining of isometry transformation and scaling. “s” in 

Eq. (21) represents the scaling factor. Similarity transformation has got four DoF. 

Three of them is coming from isometry and scaling is added. This extra DoF makes 

the transformation invariant to scale. Matrix representation of transformation can be 

seen in the Eq. (21). 

 

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝑠𝑠 cos 𝜃𝜃 −𝑠𝑠 sin 𝜃𝜃 𝑡𝑡𝑥𝑥
𝑠𝑠 sin𝜃𝜃 s cos 𝜃𝜃 𝑡𝑡𝑦𝑦

0 0 1
� �
𝑥𝑥
𝑦𝑦
1
� (21) 

 

Affine Transformation has two degrees of rotation and two degrees of scaling in 

contradistinction to similarity transformation with one of each as a degree of freedom. 

Transformation can preserve the ratio of the scaling. Unfortunately, it lost the 

preservation of distance ratio and angle between lines but new preservations are 

gained. Parallel lines will be still parallel with correct length ratio and area ratio, after 
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transformation. Affine transformation has got six DoF. Each one is represented by one 

element in a matrix than can be seen in the Eq. (22). 
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Projective Transformation is a non-singular linear transformation of homogeneous 

coordinates. Transformation adds two more DoF. Its invariance is different from an 

affine transform. The cross ratio of lengths of a line is invariant instead of a ratio of 

lengths. Four point matches are required to compute projective transformation. Matrix 

representation of transformation can be seen in the Eq. (23). Each element represents 

a DoF. All transformation types can be seen in Table 2 which is retrieved from [29]. 
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Table 2: Properties of Transformations [29] 

 

 

 

Isometry and similarity transformations are too inadequate to model the real world. 

Isometry has three and similarity has four DoF. They do not have invariance in 

parallelism and ratio of the areas. Therefore, using affine or projective transform is 

more rational. 

If affine and projective transformations are reviewed, it is clear that a projective 

transformation has two more DoF. Transformation conserves ratio of ratios for lengths 

instead of ratios. Moreover, there is one more big difference between affine and 

projective transformations. 

Hartley et al. defined key difference between these two transformations in the book 

“Multiple View Geometry in Computer Vision” [29].  Affine transformation can be 

seen in Eq. (24) and projective in Eq. (25). Ideal point is modeled to ideal point again 

for Eq. (24). In other words, ideal point is at infinity. However, Eq. (25) showed that 

model of ideal point can be located to a finite point. Therefore, projective 
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transformations can model vanishing point that is the intersection point of the parallel 

lines.  
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Projective transform has the ability to model ideal points. Also, it has two more DoF. 

The invariance concept of projective transformation is better than affine transform to 

model the real world. In the light of these results, the projective transformation model 

is chosen for this study. 

Homography with eight DoF between images can be estimated by using four pairs 

[29]. DLT [2] is a simple linear algorithm to calculate homography matrix. There is a 

pair 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖′. In order to find an H homography matrix Eq. (26) can be written. Eq. 

(27) is also full version of it. 
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If there are four points, homography matrix can be generated by using a DLT algorithm 

[2] but in most cases there are more than four pairs. Also, some of these pairs are 

mismatched that are outliers. There are algorithms such as RANSAC [25] in literature 

to eliminate outliers and get inliers. 

4.2 Elimination of Outliers 

Four pairs are enough to construct a homography between two scenes, but for the most 

cases there are too many pairs. Unfortunately, some of them are mismatches. This 

circumstance causes a necessity to eliminate false matches. RANSAC [25], Least 

Median of Squares (LMeds) [62] are the most preferred algorithms for elimination of 

outliers and calculation of homography. 

RANdom SAmple Consensus (RANSAC) [25] prefers using a small set of initial data 

instead of using much of the data possible. The algorithm starts with picking up four 

pairs randomly and calculating homography H matrix by using them. Then, each other 

pair is classified as inlier or outlier by using the H matrix. This operation is done may 

times. Finally, iteration that has the largest number of inliers is selected. Then, 

homography matrix H is recalculated according to all inliers from this iteration. There 

are two important issues about this algorithm. First one is the threshold to decide if it 

is outlier or inlier. Second thing is the iteration count of the algorithm. If it is small, 

the algorithm may not find all inliers. If it is high, computation time takes much. 

Deciding on iteration count is based on probabilistic calculation. 

LMedS [62] is another method. Algorithm deals with outliers as a minimization 

problem. It finds distances for all matches. Least median of the distances for all data 

is selected. Without ant settings or pre-work elimination is done. Then, transformation 

can be found by using DLT. 

RANSAC [25] is the most popular solution for the homography problem. It is the 

milestone on robust estimation. LMedS [62] is the second popular algorithm. 

RANSAC [25] dominates the homography estimation area and also LMedS [62] can 

be seen in some studies. The most important advantage of the RANSAC [25] over the 
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LMedS [62] is the performance for the case that has outliers more than half [20] 

because outliers more than 50% affects median in a bad way. Hartley et al. stated that 

“The RANSAC algorithm is able to cope with a large proportion of outliers.” [29]. 

RANSAC [25] finds inliers that are even a minority. Because of its robustness, [15], 

[30], [60] [76], [82] and [90] all prefer RANSAC [25]. Therefore, we also prefer 

RANSAC [25] algorithm for homography estimation in this study. 

4.3 Homography Matrix Control 

Homography matrices of each frame should be compatible with each other. Elements 

of the matrix are related to corresponding elements of the other matrices. The reason 

behind this relation is the nature of the Pan-Tilt camera because jumping from one 

scene to another scene is not possible. The camera should be rotated to a new position 

via other scenes. 

In order to detect weak homography matrix, a comparison between elements of the 

matrix and reference matrix is held. Each element of the homography matrix has 

different meanings as stated in Eq. (23) according to the projective transform. These 

are moving, size, skew and stretch. The value of each one is in different intervals. 

First of all, a reference homography matrix should be generated by using recent 

homography matrices. The average value of each element of the matrix is calculated. 

Reference matrix is necessary for comparison operations.  

Change in homography matrix from one frame to another frame is so predictable 

because changes between corresponding elements are in apparent interval. For 

example, change in “size” value is in the neighborhood 10−1. It maybe be 2𝑥𝑥10−1 or 

7𝑥𝑥10−1, but not around 10−2. Similarly, this range is  10−2 for “skew” and 10−3 for 

“stretch”. New homography matrix and reference homography matrix are compared 

and even if one of the results are higher than the corresponding ranges, frame is 

skipped and the process goes on with new frame. The comparison operation starts from 
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base values that are 10−1, 10−2 and 10−3 for size, skew and stretch respectively. Then, 

they are increased with each skipped frame until they reach the upper limit. 

This property is a little different for move element of the homography matrix. 

Comparing with only value is not sufficient because it varies in high range. When the 

camera rotates slowly it can be 3 pixels. When the camera rotates faster, 30 pixels are 

possible. Therefore, its threshold is not only a constant value. It is a multiplication of 

average reference value and a constant. 

4.4 Blending Type 

After homography calculation, the position of the new scene is defined. Putting of new 

pixels over the interested area in the panorama is another step. Without any extra 

process, changing old pixels with new pixels is possible but better results can be made 

with little effort or complex algorithms. Also, blending covers up registration errors 

moderately.  

Blending techniques can be simple or complex as stated before. Alpha Blending [57] 

is the most appropriate one to get good result in brief time. Also more methods are 

created with the help of signal domain. Pyramid Laplacian Blending [13] and 2-band 

Blending [12] are the most famous and successful ones. However, they require much 

time. 

In order to use signal domain based blending, an extra transformation label should be 

created. Each pixel from new image is taken and it has to be placed in the blank 

transformation image. Then, blending operation can be done between panorama and 

transformation image. As can be seen clearly, methods require extra an image, also 

extra time and memory. Another disadvantage of these method for our case, 

parallelization of them is not as easy as Alpha Blending [57]. Extra libraries and 

operations are required. 

On the other hand, Alpha Blending [57] is a simple method that does not require any 

extra label. Pixels from new image can be put in directly into a new position on the 
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panorama after some addition and division operations. It is naturally appropriate for 

parallelization. While all pixels are being passed in panorama, blending can also be 

applied. Because of the reasons above, Alpha Blending [57] is used in this study. 

All channels of a pixel can be calculated by using the Eq. (28) from [57]. It is applied 

to channels red, green and blue, respectively. The value of the 𝛼𝛼 is set to 0.5. The 

reason behind the blending is mostly visualization. Therefore, 0.5 is a good constant 

because half comes from history and the other half comes from the new image. 

 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝛼𝛼 .𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  +  (1 −  𝛼𝛼 ).𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (28) 

 

 

 

 

 

 

 

 

 

 

 

 

42 



  

CHAPTER 5 

 

 

BACKGROUND SUBTRACTION 

 

 

 

Background subtraction is the last part of the main process. After new frame addition 

to panorama, panorama is ready for background subtraction. Background subtraction 

is done on an area that is much larger than the image size. The panorama and the 

background model of panorama cover the whole area in the FOV of the camera. 

In our study, background model is generated by using panorama. In other words, 

background is subtracted in the normal fashion from mosaic. Camera motion is 

compensated and new image is registered to panorama. The situation can be examined 

like a static camera case similar to [15], [48], [60], [76] and [82]. 

The process will be explained in detail for background subtraction part. Moreover, 

state chart of the algorithm for only this part can be seen in Figure 5. 
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Figure 5: State Chart of Background Subtraction Part 

 

 

The new frame is added to the panorama and it is ready for background subtraction. 

The background subtraction algorithm is fed with panorama image. It starts with the 

first image and continues until the last image.  

The background subtraction algorithm generates black and white foreground mask 

image. In order to remove false positive labels because of first seen parts, each pixel 

in the foreground mask image is modified according to the comparison result between 

corresponding pixels in counter image and threshold. If it is lower than the threshold, 

value of the foreground mask pixel is set to zero, else no modification is done. 

After the filter operation morphological part should be completed. In order to get rid 

of pepper and salt noises consecutive one closing and one opening operation are 

applied.  
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5.1 Background Subtraction Algorithm 

There are different kinds of algorithms to subtract background. Basically, it can be 

grouped in two categories: Parametric methods and non-parametric methods. 

Parametric ones try to fit the background model for parametric distribution. On the 

other hand, non-parametric methods follow counts and statistics about pixels. 

In order to model background, usage of GMM is the most preferred method in 

parametric ones and also in all methods. Wren et al. [80] suggested using Gaussians 

for background modeling in 1997. Friedman and Russel [26] improved this idea one 

point more and they use three Gaussians for modeling. Then, Stauffer and Grimson 

[70] generalized the method. Algorithm transformed to the K Gaussians algorithm. K 

is the number of Gaussians which is defined in initialization step.  

Study of Stauffer and Grimson [70] is the very big step for background subtraction 

because the algorithm is successful to handle dynamic backgrounds, gradual 

illumination changes and many things. However, the constant Gaussian count is a 

drawback. It can waste computational power and time by using many Gaussian models 

for very basic patterns than can be modeled with only one Gaussian. Many variants 

have been designed for sixteen years. Algorithms have taken [70] as a base and 

improved it in many ways.  

Zivkovic proposed another GMM algorithm [89]. It is one of the successful ones. 

Algorithm is named with Improved Adaptive Gaussian Mixture Model (IAGMM). The 

algorithm uses a variable number of Gaussians. The number is defined and changed 

automatically, similar to [16], [68]. A distinguishable feature that [89] has but [16], 

[68] do not have is about OpenCV [98]. OpenCV has both CPU and GPU 

implementations of [89]. 

On the other hand, there are non-parametric methods. SuBSENSE [69] is an algorithm 

based on LBSP. The performance of the algorithm is high, but because of much work 

load, it works slowly. Moreover, Flux-Tensor method [78] is also good subtracter but 
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its speed should be attended. Codebook [37] background subtraction algorithm is a 

clustering method. It samples the pixels. Then, data from pixels are clustered into code 

words. Every code word contains seven data. Data usage of each pixel is very high. 

Unfortunately, this data load affects negatively the parallelism of the algorithm. It 

decreases Shared Memory usage that will be explained in Chapter 6 in detail. 

Parametric methods, especially GMM are appropriate for parallelization because in 

parametric methods each pixel is taken and it is fitted to a distribution. In other words, 

the same operation is done for all pixels. Also, the data size of each pixel is in 

acceptable size so parallelization optimizations such as Shared Memory usage can be 

applied. 

In order to get robust background subtraction results with highly efficient 

parallelization, a variant of GMM algorithm is used similar to [30], [48], [60], [76] and 

[82] in this study. [89] is preferred from many GMM algorithms because of its useful 

contribution to original paper [70]. Furthermore, the presence of the algorithm in 

OpenCV [98] affects our decision. 

5.2 Filtering According to First Seen Part 

The background subtraction operation is applied to panorama after each new frame is 

added to the panorama. When the camera is turned to an area that has not been seen 

before, pixels which correspond to that area in the panorama are changed from black 

to a new value. Because of this dramatic change, background subtraction algorithm 

classifies this kind of areas as foreground object, even they are part of the background. 

In order to cope with this problem a filtering can be applied to result of background 

subtraction. 

A counter is kept for each pixel and this counter image is updated, when new frame is 

added to the panorama. Size of counter image is the same with a panorama in width 

and height. Counter image is initialized to 0 at the beginning. After first frame is 
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located in the middle of panorama, pixels in the middle of the counter image is set to 

1. Then, value of counters is updated with each new frame added to the panorama.  

Consecutive frames are taken while the camera is being rotated to the left. As you can 

see in the Figure 6, left side of the output marked with a red label as foreground. For 

this case, any filtering operation is not applied. Also filter applied result can be seen 

in Figure 7. 

After background subtraction completes its work, filtering can be applied to results of 

the background subtraction algorithm. The value of the counter is compared with 

threshold for each pixel of foreground objects. If the value is lower than the threshold, 

that pixel is removed from the foreground by setting its value to 0. Else, nothing is 

done about it. 

 

 

 

Figure 6: Foreground Mask without Counter Filtering 
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Figure 7: Foreground Mask with Counter Filtering 

 

 

The value of the threshold is connected with learning rate of the background 

subtraction algorithm. Small learning rates require higher thresholds, and vice versa. 

There is an inverse proportion between them.  

5.3 Post Processing Operations 

The result of the background subtraction algorithm is not perfect. Some false positive 

and false negative classifications are possible because of many reasons. Camera noise, 

registration errors are extrinsic reasons. Performance defects of the background 

subtraction algorithm are intrinsic reasons. Performance defects may occur because of 

challenging circumstances, such as dynamic background, illumination changes.  

The image may contain pepper and salt type noises. These noises may be bigger than 

one pixel. There might be some unrelated objects in the background. Another 

possibility is foreground objects have black impurities inside. In order to remove them 

48 



  

and increase the performance of the algorithm, morphological operations should be 

applied. 

First of all closing operation should be applied to foreground mask image in order to 

remove noise. 3x3 square kernel is enough for low resolution images and 5x5 is 

appropriate for images with higher resolution. Closing is a dilation followed by an 

erosion with the same kernel. The boundary of the image is enlarged with dilation. 

Holes, which are named as pepper noise, smaller than kernel are filled. After erosion, 

boundaries take their old forms but holes still stay as filled.  

Secondly, opening is applied to the image which is the result of the closing. 3x3 square 

kernel is used. Again 5x5 is better for high resolution images. Opening is an erosion 

followed by a dilation with the same kernel. Opening removes foreground pixels 

smaller than the kernel. Erosion clears undesirable foreground objects, which are 

named as salt noise then dilation repairs the other parts of the image.  
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CHAPTER 6 

 

 

PORTING ALGORITHMS TO GPU 

 

 

 

6.1 Introduction 

Real-time background subtraction of images from Pan-Tilt cameras is a challenging 

task. The algorithm has to deal with camera motion, image registration, panorama 

generation, background subtraction and final supplementary operations. In order to 

achieve this task, significant computation power is necessary. Supplying this 

computational power is possible by using not only the CPU but also the GPU. 

Background subtraction of the scenes from Pan-Tilt camera history may not be long, 

but background subtraction on static cameras is one of the well-studied areas of 

computer vision. Moreover, many algorithms have been parallelized on GPU and 

shown to have promising performance results. Feature extraction, feature matching, 

and image registration are also have been accelerated using GPUs.  

CPU and GPU have different architectures; while CPUs are good at executing serial 

code and branching, GPUs are good at highly parallel and throughput oriented parts. 

On the other hand, some problems are suitable for parallelization and the others are 

not. Therefore, in order to get efficient, heterogeneous solution, both CPU and GPU 

should be used. In such a heterogeneous solution, parts of the algorithm are run on 

CPU and GPU. 

51 



  

6.2 GPU Architecture 

GPUs were initially designed for graphics rendering. It has started with 2D followed 

by 3D graphics rendering. Because of their multi-thread multiprocessors, GPUs 

process images, videos, and graphics efficiently in parallel. 

The high performance of the GPUs received attention from the programmers and 

GPUs have started to be used for general purpose computation. Then, Ian Buck and 

his team generated a programming model by extending the C with data-parallel 

constructs in 2003. Afterwards, NVIDIA hired Ian Buck and started developing 

Compute Unified Device Architecture (CUDA) to provide a convenient solution for 

general purpose programming on GPUs. The first solution for general computing on 

GPUs was unveiled in 2006 [99].  

One of the anchor points of GPU performance is its floating point capability. The GPU 

is specialized for compute-intensive, highly parallel computation so this architecture 

contains more transistors for data processing rather than data caching and flow control 

[94]. This architecture difference is illustrated in Figure 8 [94]. Corresponding parts 

are showed with the same color for both architecture. 

 

 

 

Figure 8: Architecture Difference between CPU and GPU [94] 
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The same program runs in parallel to apply the same operation on many data. Instead 

of focusing on the flow control, GPUs are designed to increase arithmetic intensity and 

memory bandwidth. 

GPU architectures evolve in type and NVIDIA’s GPUs are named according to their 

architecture. The architectures are called Tesla (2006), Fermi (2010), Kepler (2012) 

and Maxwell (2014) in historical order. Maxwell is the latest and the most advanced 

one. Moreover, new architecture Pascal is announced by NVIDIA. In Figure 9 [95], 

Maxwell Streaming Multiprocessor from GeForce GTX 980 can be seen. There are 16 

stream multiprocessors in GTX 980. Each multiprocessor has 128 cores partitioned 

into four distinct 32-CUDA core processing blocks [95]. 32 LD/ST units are used for 

loading and storing operations in each multiprocessor. 32 Special Function Units 

(SFU) are used for acceleration of the functions like sin(), cos(), log(). Furthermore, 

there are different types of memory blocks in the multiprocessor.  

While there are a number of different parallel computing frameworks for general 

purpose computation on the GPU, the most prominent ones are CUDA and OpenCL 

[97]. CUDA has been developed by NVIDIA and it is specific to NVIDIA GPUs. 

CUDA uses C based language with some extensions [94]. On the other hand, OpenCL 

is an open source parallel programming platform and it was designed to allow 

programming different GPUs as well as other platforms like FPGA. It was initially 

developed by Apple and now maintained by AMD, INTEL, IBM and NVIDIA [97]. 

Its progress is moderately slow because it is a general framework and designed to run 

on a variety of different hardware. They both have different advantages and 

disadvantages over each other. Performance of the CUDA more convincing than the 

OpenCL because compatibility of hardware and software is higher for CUDA. Also, 

CUDA has a user-friendly language. However, CUDA obligates the user to use 

NVIDIA cards. On the other hand, any GPU card can be used with OpenCL. In this 

study, CUDA is preferred for GPU programming because performance of CUDA more 

satisfactory and it provides an easy to use C based language.  
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Figure 9: Maxwell Streaming Multiprocessor [95] 
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6.2.1 Compute Unified Device Architecture (CUDA) 

The GPU is named as “device” and the CPU is named as “host” in CUDA 

programming. “Kernel” is the main CUDA function that is called from the host and it 

works on device in parallel. Each thread executes this kernel. Threads are organized 

in blocks and blocks are organized in a grid. Threads in the same block work in 

coherence. They can cooperate by using shared memory [94]. Thread organization can 

be seen in Figure 10. 

 

 

 
Figure 10: Thread Organization [94] 
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The number of blocks in a grid and the number of threads in a block are not constant. 

They are defined by users at kernel execution time. In order to achieve the optimal 

performance, they should be adjusted carefully for the specific hardware. There is no 

certain rule to choose number of threads in a block. It is usually chosen by tuning. 

Values are tried in order to maximize occupancy. During this trial, hardware 

constraints should be taken into account. When the same program run on different 

hardware, same experiments and definitions should be repeated to get actual 

performance of that hardware. 

CUDA allows asynchronous operations on a heterogeneous CPU-GPU architecture. It 

means that during kernel execution on the GPU, the rest of the program can execute 

on the CPU as can be seen in Figure 11. Moreover, memories of the device and the 

host are separate, and the device makes its own allocations. Data transfers between 

host and device needs to be designed to allow asynchronous operation [94]. 
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Figure 11: Heterogeneous Programming [94] 

 

 

6.2.2 CUDA Memory Hierarchy 

CUDA device has its own memory as mentioned before. Different kinds of memory 

types exist. These are register, shared, global, constant and texture. Their hierarchy 

can be seen in Figure 12. 
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Figure 12: CUDA Memory Hierarchy [17] 

 

 

• Registers belong to a thread. Only one thread can access one register and life time 

of the data is limited with one thread execution.  

• Shared memory is matched with a block. All threads from a block can access to it. 

Threads can share data with the other threads from the same block via shared 

memory. Accessing to shared memory is as fast as accessing to the registers. 

Application can be speeded up with efficient shared memory usage. Its lifetime is 

related to the block. It is deallocated when the block ends.  

• Global memory can be accessed from both the host and the device. It is explicitly 

allocated and exists until explicit deallocation. Its access speed is significantly low 

compared to shared memory and registers. 

• Constant memory is a read only memory. It is optimized for broadcasting. It is also 

accessible from both the host and the device until the termination of the code. 
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• Texture memory is similar to global memory and constant memory. However, it is 

optimized for 2D data. Address calculation is done externally on hardware. 

Therefore, access to texture memory is faster than access to global memory. 

6.3 CUDA Implementation 

CPUs and GPUs have different architectures so they both have different advantages 

and disadvantages over each other. In order to get an effective solution they must be 

used together because the GPU is good for some kind of problems and the CPU is 

good for the others. 

In this study, heterogeneous programming is followed. Some algorithm steps work on 

the CPU, and the other parts run on the GPU. Firstly, CPU implementation of the 

whole study was completed and performance of each part was analyzed. Then, proper 

parts for parallelization are identified. 

GPU parts of the process are handled in two ways. GPU versions of algorithms like 

SURF [9], Brute-Force Matching, IAGMM [89] are already available in OpenCV [98]. 

These functions have been used from library directly. On the other hand, algorithm 

parts such as panorama generation, blending, filtering according to counter have been 

designed and implemented for this study. 

State chart of the whole process can be seen in Figure 13. In this figure, left side shows 

the CPU part, right side is for the GPU part and the middle area is for transfers. 

Moreover, colors show the group of each part. 
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Figure 13: Partitions of the Proposed Algorithm on GPU and CPU 
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6.3.1 Initialization 

When algorithm starts, firstly memory is allocated on both CPU and GPU. After 

memory allocations, a new frame is taken and it is copied into the device memory. 

Then, the processing is passed onto the GPU as shown in Figure 13. 

Adding the first frame to panorama operation is done on the GPU because panorama 

is kept in the GPU memory and background subtraction is also done on the GPU.  

Feature points of first frame are extracted and panorama features point list is generated. 

Method of feature point will be explained in detail in next chapter. 

6.3.2 Feature Extraction and Matching Part 

Every time a new frame comes, it is copied into the device memory with 

“cudaMemcpy” function. Then, features are extracted. The process can be seen in 

Figure 13. 

SURF feature points are extracted from the frame by using OpenCV 

“gpu::SURF_GPU” function. Processing this part on the GPU is very important for an 

effective implementation because finding feature points of the image with size 

704x480 takes 106 ms on the CPU. However, on GPU it takes only 2.87 ms with 39.93 

speedup. 

The matching operation of new feature points and feature points from the list is 

completed on the GPU side with the OpenCV function “gpu:: 

BruteForceMatcher_GPU_base”. Similar to SURF case there is a nearly 48 times 

speedup for GPU. Execution times on CPU, GPU and speedup values in are 

summarized Table 4. 

Following parts (refining feature points and controlling distribution of feature points) 

take less than 1 ms so these operations are done on the CPU side. Feature points and 

descriptors are copied to CPU to complete these steps. 
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6.3.3 Image Registration 

When feature points are matched and refined, it is time for homography calculation. 

Finding homography by using RANSAC is also not challenging for CPU. It takes 0.72 

ms in average so it is decided to complete RANSAC on CPU side. 

The new frame is added to the panorama on the GPU side. As stated before, panorama 

image is kept in GPU memory. The operation is done by a custom kernel function 

developed for this study. Each thread of this kernel takes one pixel from the new image 

and adds to the panorama after blending it with the current value of the panorama. 

There is a 174 times speedup for GPU. In this operation each task has low complexity, 

but number of tasks is too many. Therefore, it is suitable for parallelization. 

6.3.4 Background Subtraction 

After panorama update, background subtraction is applied by using OpenCV 

“gpu::MOG2_GPU” function. For this case speedup is equal to 42.77 times for GPU. 

On the CPU side, the corresponding CPU OpenCV function is used. 

Filtering according to first seen part is the responsibility of the kernel which is 

developed for this study. Each thread of kernel compares the counter value with a 

threshold and according to result corresponded pixel from the foreground mask is 

modified. Execution time of this operation is 29.61 ms for CPU and 0.9 ms for GPU.  

Morphological operations (opening and closing) are also available in OpenCV: 

"gpu::dilate" and "gpu::erode" functions. These functions are more than 20 times faster 

than their CPU OpenCV counterparts. 

6.4 Precision Difference between GPU and CPU 

Execution time of GPU and CPU are different because of their computational power. 

Moreover, they do not produce the same results. There are three main reasons behind 

this difference. 
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The handling of floating point numbers is different for CPU and GPU. The GPU has 

a better approach about floating point numbers [96]. GPU uses The Fused Multiply-

Add (FMA) approach [96]. The basic principle of the approach is decreasing the 

number of rounding operations by merging operations. FMA usage may increase the 

accuracy. Therefore, GPU floating point operations may be more accurate than CPU 

operations [96].  

The second reason is about conservation of performance. Some parts of the algorithms 

that are not appropriate for parallel processing. It is not possible to transfer them to the 

GPU side directly without any modifications. Unfortunately, these modifications cause 

some differences between CPU and GPU results. Insisting to port algorithms exactly 

may generate performance penalty and a balance should be sustained between 

accuracy and performance. 

For example, descriptors that are calculated by using SURF [9] with CPU and GPU 

are different even if their feature points are the same. “SURF” function uses inter area 

interpolation on the CPU. On the other hand, “gpu:: SURF_GPU” function uses 

bilinear interpolation for better performance as it is more suitable for parallel 

computation.  

Lastly, optimizations in GPU codes may cause different outputs for each runtime. 

Return point or exit point of the code may differ for different runs. Because of this 

reason, there may be a difference between not only GPU and CPU results, but also in 

two GPU runs. For example “gpu::SURF_GPU” calculates different descriptors for 

the same set of feature points at consecutive runs. 
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CHAPTER 7 

 

 

TEST RESULTS AND APPLICATIONS OF THE THEORY 

 

 

 

7.1 Introduction 

Steps of Pan-Tilt camera background subtraction algorithm are described in Chapter 

3, Chapter 4 and Chapter 5. Then, porting this system to the GPU is explained in 

Chapter 6. Both CPU and GPU - CPU implementations of the system have been 

completed and GPU and CPU results have been compared with the groundtruths. In 

addition, GPU results have been compared with the results of Change Detection [93] 

algorithms and Tsinko’s result [76] respectively. 

Two frame sources are used for the tests. First one is Change Detection [93] and the 

second one is Tsinko [76]. ContinuousPan frame sequence is used from Change 

Detection [93]. Resolution of the frames is 704 x 480. Six different videos are listed 

in Tsinko’s web page [91]. Resolution of them is 160 x 131.  

All experiments have been done on a PC with Intel i5 3.3 GHz. CPU. There are two 

GPUs used for the test. First one is NVIDIA GeForce GTX 560 (GPU 1) and the other 

one is NVIDIA Tesla K40 (GPU 2).  

Although, our CPU implementation runs on quad-core processer, it is single thread 

application. Its performance can be increased by using Accelerated Massive 

Parallelism (AMP). All performance comparison between GPU and CPU in our study 

should be evaluated by considering that our CPU implementation runs on only one 

core of the Intel i5 processer. 
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7.2 Evaluation Metrics 

In order to build a reliable and robust real-time system, the speed of the algorithm is 

considered to be the most important performance criteria. Therefore the speed is the 

first evaluation metric to evaluate the system. In this thesis work, the execution times 

of each individual part of the algorithm and the overall processing time measured in 

milliseconds. 

Measuring the ability to extract foreground pixels accurately and moving object 

detection have been challenging tasks over the years. Change Detection [93] deals with 

this problem by bringing seven different performance metrics in literature together. 

Before explaining them, four detection types should be examined. True Positive (TP) 

is used for the pixels that are correctly identified. False Positive (FP) means that the 

pixel is incorrectly identified. True Negative (TN) is suitable for correctly rejected 

pixels. Finally, False Negative (FN) is used for incorrectly rejected pixels. Evaluation 

metric of Change Detection [93] can be seen in Table 3. 
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Table 3: Evaluation Metrics 

Number Name Abbrev. Equation 

1 Recall Re 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

2 Specificity Sp 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

3 False Positive Rate FPR 
𝐹𝐹𝐹𝐹

FP +  TN
 

4 False Negative Rate FNR 
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

5 

Percentage of 

Wrong 

Classifications 

PWC 100 ∗
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

TP +  FN +  FP +  TN
 

6 Precision Pr 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

7 F-measure Fm 2 ∗
𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅

 

 

 

 

7.3 Comparison of CPU and GPU Results 

The results are compared with each other in two ways. Firstly, the speeds of the 

implementations are compared for each part and the whole process. Secondly, 

foreground masks of the implementations are compared with the groundtruths. 

ContinuousPan frame sequence from Change Detection [93] is used for this test. 

Resolution of the image is 704 x 480. In this frame sequence, the area is very wide so 

the camera is rotated too much horizontally. In order to get the overall area, size of the 

panorama is defined as 11 x 3 times of the frames. Therefore, resolution of the 

panorama is 7744 x 1440.  
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The video has a very good texture, therefore Hessian threshold is adjusted to more than 

5000, in order to reduce the number of feature points and increase their quality. 6000 

is used for this test. Some frames of the image sequence can be seen in Figure 14. 

 

 

 
Figure 14: Change Detection ContinuousPan Image Sequence Samples 

 

 

Parameters of the background subtraction algorithm are used mostly the same with 

default values. However, history is set to 100 instead of 500 because motion starts 

before reaching frame 500. Background ratio is changed from 0.9 to 0.8 and minimum 

variance value is increased from 0.4 to 0.5 in order to increase sensitivity of the 

algorithm. Also, learning rate is set to 0.01 similar to [76]. 60 is chosen for threshold 

to filter according to first seen part. The threshold has an inverse relation with learning 

rate; small threshold value can be used for higher learning rate, and vice versa. 
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Both CPU and GPU implementations are processed with this video and execution time 

of each algorithm is measured separately. Also, time of the whole process is measured. 

Measurements are done for each frame and averaged. In order to get reliable results, 

the operation is repeated 10 times using the same data and averaged. The results can 

be compared as in Table 4. 

Operations like “Get Frame” and “Find Homography” are completed by the CPU. 

Moreover, there are 2 copy operations between CPU and GPU. These operations are 

done by the CPU. The CPU writes data to GPU memory or reads from there. For only 

CPU case, there is no corresponding operation. It is shown with a hyphen on the table. 
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Table 4: Time Comparison 

 
CPU  

(ms) 

GPU 1 

(ms) 

GPU 2 

(ms) 

Speed Up 

GPU 1 

Speed Up 

GPU 2 

Get Frame 0.57 (by CPU) - - 

Copy Frame to GPU - 0.32 (by CPU) - - 

Feature Extraction 106 15.89 2.87 6.67 36.93 

Feature Matching 41.59 2.21 0.85 18.82 48.93 

Copy Feature Points 

and Descriptors  to CPU 
- 0.15 (by CPU) - - 

Refine Matching 0.01 (by CPU) - - 

Feature Point 

Distribution Control 
0.07 (by CPU) - - 

Find Homography 0.72 (by CPU) - - 

Homography Matrix 

Control 
0.01 (by CPU) - - 

Arrange Added Points 0.01 (by CPU) - - 

Copy List L  and 

Homography Matrix to 

GPU 

- 1.27 (by CPU) - - 

Addition of Frame to 

Panorama 
95.71 0.68 0.55 140.75 174.02 

Background 

Subtraction 
200.17 12.53 4.68 15.98 42.77 

Filtering According to 

First Seen Part 
29.61 0.94 0.91 31.5 32.54 

Post Processing 149.59 7.45 5.52 20.08 27.10 

Copy Results to CPU - 0.35 (by CPU) - - 

TOTAL 624.06 43.18 18.86 14.45 33.09 
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The CPU reads the frame in less than 1 ms. The frame is ready for CPU to process, but 

for GPU to process, it has to be copied to the GPU. Copying is completed by CPU in 

less than 1 ms. Feature extraction and feature matching are the next steps where the 

advantage of the GPU can be observed. The CPU needs 106 ms but GPU 2 requires 

only 2.87 ms to extract the features. As stated before SURF [9] is a robust algorithm, 

but it is slower than binary feature extractors. By using GPU disadvantage of the SURF 

[9] is defused. There are 6.67 and 36.93 speedups for GPU 1 and GPU 2 respectively.  

After extraction, feature matching operation is applied. It has better speedup results of 

18.82 and 48.93 respectively for GPU 1 and GPU 2. There is an important issue about 

feature matching. As stated in Chapter 3, feature points of panorama are kept in the 

list L. When there is no match between a feature point of the new frame and feature 

points from L, unmatched feature point is added to L. Therefore, the size of the list 

increases with new frames. Because of this increase in size, feature matching time also 

increases. For example, GPU 2 requires 0.01 ms at the beginning of the sequence for 

feature matching but at the end 1.65 ms is necessary for this operation. Feature 

matching time consumption values in the table are average values that are calculated 

with the values from all the frames. 

Results of the feature extraction and matching are transferred to the CPU in 0.15 ms. 

Then, Refine Matching, Feature Point Distribution Control, Find Homography and 

Homography Matrix Control operations are completed respectively in nearly 1 ms. All 

of them combined takes less than 1ms so porting them to the GPU is unnecessary. 

Then, updated feature points list L is copied to GPU for the next matching operation 

and also found homography matrix is copied to GPU. Both require 1.27 ms. Similar to 

feature matching, duration of this copy depends on the size of list L. It is increasing 

with time. In order to prevent this increase, list L can be kept in both sides and only 

newly added feature points can be transferred.  

Addition of frame to the panorama has the highest speedup with 140.75 and 174.02 

because of the nature of the operation. The computational load of each task is low and 
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the number of tasks is high. These properties make it convenient to be parallelized. 

The pixels are read from the new frame and placed into new positions according to the 

homography matrix in the panorama. Each thread processes 1 pixel and the operation 

completed in a very brief time. 

Filtering According to First Seen Part is very similar to addition of frames. Each thread 

makes comparison of 1 pixel. The operation takes less than 1ms and speedup is 

approximately 30 for both GPUs. 

Background subtraction is the most time consuming part of CPU side with 200.17 ms 

duration. GPUs reduce this processing time to 12.53 and 4.68 ms. Speedups are 15.98 

and 42.77 for GPU 1 and GPU 2 respectively. Panorama image has more than 10 

million pixels, so background subtraction on this image requires significant 

computational power. Therefore, GPU usage has results in significant speedup. 

Post processing is consecutive closing and opening operations. They take 149.59 ms 

on the CPU side. It is also the second most time consuming part of the CPU side. GPU 

usage accelerates the operation to 20.08 and 27.10 times for GPU 1 and GPU 2, 

respectively. 

Finally, the foreground mask result is transferred to the CPU and the process is 

completed. The total process takes 624.06, 43.18 and 18.86 ms for CPU, GPU 1 and 

GPU 2 respectively. There are 14.45 speedup for GPU 1 and 33.09 speedup for GPU 

2. Implementation of background subtraction with panorama model to run in real-time 

with only CPU is not possible with 624.06 ms process time for each frame. However, 

GPU makes possible running in real-time with high frame rates. Tsinko [76] stated 

that Phyton implementation of his algorithm requires 40 seconds to process one frame 

with resolution of 160 X 131 on Intel i5 2.66 GHz. CPU. Our C++ implementation 

works on frames with higher resolution with higher performance on both CPU and 

GPU. 
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If the results of GPU 1 and GPU 2 are compared, it can be seen that GPU 2 is faster 

than GPU 1 nearly three times. GPU 1 is NVIDIA GeForce GTX 560. It has 336 

CUDA cores and Fermi architecture with CUDA Compute Capability 2.1. On the other 

hand, GPU 2 is NVIDIA Tesla K40. It has 2880 CUDA cores and Kepler architecture 

with CUDA Compute Capability 3.5. GPU 2 has higher number of CUDA cores [100] 

and most of the speed difference can be attributed to this. It has also a more optimized 

architecture. Moreover, CUDA Compute Capability of GPU 2 is higher than GPU 1. 

Compute capability is an indicator of GPU’s abilities. 

Outputs of the CPU and GPU are also compared. Foreground masks of them are 

compared to the groundtruths and their similarities are calculated by checking each 

pixel. 

As stated before in Chapter 6.4, GPU results of the same software on the same device 

may differ from one runtime to another. Therefore, tests on the GPU are completed 

more than one times and then averaged. 

Both CPU and GPU implementations were run on six different videos from videos of 

Tsinko [76] and one video from Change Detection [93] for 10 times and their outputs 

are compared with groundtruths. Comparison was done by comparing each pixel and 

calculating F-measure (Fm), Fm creates a chance to understand their similarity in an 

objective way because Fm is composed of Precision (Pr) and Recall (Re). In other 

words, Fm is ratio of the similarities to all detections. 

Average similarity between GPU outputs and groundtruths is 0.73. This value is 0.71 

for the CPU comparison. Values are very close to each other. CPU, GPU outputs and 

Groundtruth of Frame 442 in Sequence 2 from [76] can be seen in Table 5. Outputs 

look like very similar. GPU usage does not cause any notable performance loss. Small 

differences seem unimportant beside a contribution of the GPU. Without considerable 

loss, GPU usage increases speed by using parallel high computational power. 
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Table 5: CPU & GPU Outputs and Groundtruth  

 Average Fm Values 
 1.00 0.73 0.71 

 

    

Example   

Original Frame 
Groundtruth GPU Result CPU Result 

 

 

7.4 Comparison with the Change Detection Algorithms 

In [93], a dataset for Change Detection challenge organized by IEEE Computer 

Society. The dataset includes videos and their groundtruths under 11 different 

categories. The best performing algorithm results are also published in website of the 

challenge. 

Although, algorithms in the competition are designed for the sequences of static 

camera, they made their experiments by adjusting some parameters to detect motion 

of the scenes from Pan-Tilt camera and their results are published on the web page 

[93].  

We conduct two experiments on this data. First, only background subtraction part [89] 

of our study is applied to ContinuousPan frame sequence similar to other 

implementations. IAGMM [89] is preferred for background subtraction part of our 

study as stated before. Then, full version of our study is applied to the video and then 

performances are compared. Comparison is done between five results. These are 
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background subtraction part [89] of our study, our normal study and the first three rank 

algorithm of the PTZ category. Results can be seen in Table 6. 

GPU/CPU comparison is given in the previous section, so only GPU results are used 

for this comparison. Performance ratios are calculated for each frame and their average 

is taken. In order to get more stable measurements, this operation is repeated 10 times 

and the average is taken again.  

 

 

Table 6: Comparison with the Change Detection Algorithms 

 

Algorithms 

Our Study 
IAGMM      

[89] 

MBS   

[64] 

IUTIS-3 

[11] 

SuBSENSE 

[69] 

M
et

ric
s 

Re 0.6074 0.6697 0.5973  0.6644  0.8306 

Sp 0.9575 0.9238 0.9963 0.9868 0.9629 

FPR 0.0425 0.0762 0.0037 0.0132 0.0371 

FNR 0.3224 0.2065 0.4027 0.3356 0.1694 

PWC 6.0918 7.9980 0.5850 1.5649  3.8159 

Pr 0.4534 0.1623 0.5400 0.3474 0.2840  

Fm 0.5088 0.1978 0.5520 0.3921 0.3476 
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When Recall (Re) values are compared, our study has similar performance with the 

other algorithms. The reason behind that the static camera algorithms have high Re 

performance is about definition of Re. It is not related to moving or static camera. 

When the camera moves, background model of static camera algorithm becomes 

incompatible and algorithm classifies many pixels as foreground. This increases true 

positive (TP) and false positive (FP) at the same time. This is the reason of static 

camera algorithms have high Re performance, especially [69]. 

Specificity (Sp) result of our algorithm is relatively lower. However, it is still very 

close to the other results. The reason of small differences between our both results and 

the other results is shadow. We do not do anything to prevent the classification of 

shadows as a foreground but they do. Shadows cause an increase in FP and a decrease 

in TN. Therefore, Sp has lower value.  

Similarly, Our False Positive Rate (FPR) results are higher than the others because of 

shadows and registration errors which cause some FPs. Another reason of higher FPs 

is modifications in other algorithms [11], [64] to decrease FPs. These modifications 

will be explained in the next section. 

False Negative Rate (FNR) of the Change Detection [93] algorithms is high because 

the algorithms are designed for static camera. However, in order to process Pan-Tilt 

video [11] and [64] made some modifications on the parameters. The purpose of these 

modifications is decreasing the FP because normally when the camera moves, 

background model becomes incompatible and the algorithm classifies everywhere as 

foreground. After some modifications like increasing learning rate, the algorithms 

prevent these FPs and FPRs. As stated before, they have very low FPR. Disadvantage 

of these modifications is high False Negative (FN) because real foreground objects are 

also cannot be labeled. Only some parts of them classified as foreground. On the other 

hand, IAGMM [89] and SuBSENSE [69] give lower result because there is not any 

modifications to decrease FPs. Therefore, when the camera moves, [69] and [89] 
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classify everywhere as foreground and count of FNs is small. This is also the reason 

for highest FPR. 

Percentage of Wrong Classifications (PWC) shows the percentage of errors to all 

detections. The reason behind high PWC of our study is again shadow and registration 

errors. RANSAC [25] algorithm creates a homography with one or two pixel error. 

These errors cause a misalignment between panorama and background model. 

Therefore, all registration errors are classified as foreground. Reason of the high PWC 

of IAGMM [89] is different. When the camera moves, it classifies everywhere as 

foreground with a high FPR, therefore its PWC is also high. 

Last two metrics are Precision (Pr) and F-measure (Fm). They are very important 

indicators of the performance. Our algorithm gets the second best place among the 

algorithms. In our study, we subtract background after eliminating the effects of Pan-

Tilt camera so we do not need an extra effort to clear FPs because of camera motion. 

[11] and [64] make some modifications to reduce FPs so TPs are also decreasing. 

Because of this reason, [11] and [64] have lower TP so their Re and Pr are also low. 

On the contrary, our study has high Re and Pr. Furthermore, IAGMM [89] has the 

lowest Pr and Fm because of labeling everywhere as foreground. 

To sum up, our algorithm has persuasive performance with high Re, Pr and Fm rates. 

Performance of IAGMM [89] is increased with our camera motion elimination 

process. On the other hand, FPR should be decreased. The main reason of high FPR is 

classification of shadows and registration errors as a foreground. Moreover, if our 

background subtraction part is replaced with a more successful algorithm, performance 

of our study will increase automatically. If all scores are considered, our algorithm has 

convincing performance among Change Detection [93] algorithms. 

7.5 Comparison with [76] 

As stated before, the scope of our study and study of Tsinko [76] are very similar to 

each other. Same approaches are followed in both theses. Our implementation is 
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operated with the videos of Tsinko [76]. The videos are accessible on his web page 

[91].  

In study [76], three different background subtraction algorithms are given. One of 

these algorithms is GMM [70]. We compare our algorithm with GMM implementation 

of [76] in this section. Since GPU/CPU comparison is given before, we only use GPU 

results in this section. 

The outputs were taken from six videos in [76]. Half of the videos are outdoors and 

the others are indoor videos. Four frames are chosen from each video and groundtruths 

are available for these frames. Number of FN and FP were counted on each of these 

four frames. Also, ratio of these calculated FN and FP values to the number of all 

pixels in the frame was calculated. Our algorithm was also operated with two videos. 

One video is from outdoor videos and the other one is from indoor videos. These 

videos are available on the web page [91]. 

Used parameters are mostly the same with the previous part. Only Hessian threshold 

of SURF [9] is adjusted to a small value such as 30, because videos are in low 

resolution 160 x 131 and their textures are not so much. Therefore, in order to increase 

the number of feature points, a small Hessian threshold value is used. 

7.5.1 Frame Sequence 1 

Sequence 1 is formed of 1090 frames. It is also named as Sequence 1 in [76]. The 

recorded area is a lawn with a small pathway. There are buildings behind. Some trees 

are on the right. They are swaying with the wind. It is a good moving background 

challenge. There is a significant change in the illumination on the scene. This is also a 

good challenge. During camera motion, a person comes from the right in frame 584 

and after a small walk he stops in frame 657. He stays there for a while. Later, he 

continues in frame 800 and leaves the camera’s field of view in frame 981. Some 

frames of the image sequence can be seen in Figure 15. 
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Figure 15: Some Frames of Sequence 1 

 

 

Comparison results are gathered in two tables. Table 7 shows the foreground labels. 

On the other hand, Table 8 contains numbers and ratios of FP, FN and their total.  

In Frame 625, our algorithm detects the person, but some parts of the upper body are 

not detected. The reason is the color of the t-shirt. It is very similar to the dark trees 

behind. Therefore, the algorithm cannot distinguish it from the background. When 

some parts of a foreground object has the same color with background, IAGMM [89] 

generally classifies it wrongly because background IAGMM models may match with 

this object. This drawback of the IAGMM [89] increases the FN. Another point is the 

shadow of the person. Our algorithm labels it as a foreground because we do not make 

any operation to detect shadows. This situation increases the FP. The results are nearly 

same for Tsinko [76]. Due to the morphological filters at the end, the result of our 

study is more preferable and better than the others, also these filters prevent the noise. 

Frame 657 is the start point of the person standing. When the frame count is equal to 

720, he has been standing on the same location since 63 frames. Therefore, our 
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algorithm learns it. He is classified as background and he causes 10.73 % FN ratio. 

Algorithm of the Tsinko [76] responds with 10.4 % similarly. All GMM algorithms 

except the algorithms with zero learning rate, learn and classify foreground objects 

that stay in the scene without moving as a background after some time. On the left 

side, there are some FP points. The reason is the illumination change. The grasses in 

the frames appears to be brighter now because the sky is clearer.  

Frame 850 has a similar result with Frame 625. It finds the person with some missing 

parts because of t-shirt color. These missing parts cause some FN points. On the left 

side, there are some illumination change false detections and in the middle, some parts 

of the shadows are classified as foreground. Both of them cause FP points. However, 

the result is satisfying with 5.44 % FP + FN ratio. It is nearly half of [76]. There is a 

problem with background model of [76] because it finds two people. After a long 

duration of the appearance of the person in scene, algorithm of [76] learned the person 

and classified as background similar to our study. However, after person leaves from 

that position, the algorithm did not adapt itself quickly. This time, it classified the 

absence of the person as a foreground object. This problem may be solved with higher 

learning rates. In GMM algorithms, when stationary foreground object moves, it is 

classified again foreground object but this time, absence of it perceived as a change in 

background for a while. This causes FPs. 

In Frame 930, our algorithm works with a very small FN ratio, but a high FP ratio. 

There are two reasons of high FP ratio. First one is the shadow and the second one is 

illumination change on the left side as stated before. While the camera is facing to the 

right side, the sky of the left side comes to a clearer state, but still our performance is 

better than [76]. There is another problem on [76]. It has no control for first seen areas. 

All left side is classified as foreground by [76]. In order to hinder this situation our 

algorithm has a control mechanism. 
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Table 7: Comparisons of Sequence 1 
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Table 8: Errors for Sequence 1 

 
Frame 

625 

Frame 

720 

Frame 

850 

Frame 

930 
Total 

Our 
Results 

 

FP 
Count 713 908 723 2220 4564 

Ratio 
(%) 

3.40 4.33 3.45 10.59 5.44 

FN 
Count 771 2250 417 314 210 

Ratio 3.68 10.73 1.99 1.5 4.48 

FP + FN 
Count 1484 3157 1140 2534 8315 

Ratio 
(%) 

7.08 15.06 5.44 12.09 9.92 

Results 
of 

Tsinko 

FP 
Count 667 128 1778 4701 7274 

Ratio 
(%) 

3.18 0.61 8.48 22.43 8.68 

FN 
Count 860 2181 485 317 3843 

Ratio 
(%) 

4.10 10.4  2.31 1.51 4.58 

FP + FN 
Count 1527 2309 2263 5018 11117 

Ratio 
(%) 

7.28 11.01  10.79 23.94 13.26 
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Our algorithm gets frame and puts them in panorama before background subtraction 

process. In the Figure 16 panorama of the Sequence 1 can be seen. 

 

 

 

Figure 16: Panorama of Sequence 1 

 

 

7.5.2 Frame Sequence 2 

Sequence 2 is formed of 454 frames. It is named as Sequence 6 in [76]. The recorded 

area is in the inside of the building. The camera sweeps the area by panning and tilting. 

There is a plant on the left of the scene. There are walking people in the scene. During 

camera motion, a person appears on the right side in frame 200 and he starts to walk 
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towards to the camera. Then, another person appears in frame 345 and he also starts to 

walk towards to the camera. First person leaves the field of view in frame 419. In the 

end, the camera rotates to right and second person also disappears. Some frames of the 

image sequence can be seen in Figure 17. 

 

 

 

Figure 17: Some Frames of Sequence 2 

 

 

Comparison results are gathered in two tables. Table 9 shows foreground labels. On 

the other hand, Table 10 contains numbers and ratios of FP, FN and their total.  

In frame 239, our algorithm detects the person with a satisfactory FN ratio that is only 

0.28 but FP ratio of the result is a little bit higher. There are two reasons behind the 

fact that FP ratio is equal to 2.65. First one is that, the area on the left side has sunlight. 

The algorithm classified it as a foreground. Another reason is the detection of the 

shadow. As stated before, our system does not cover any operation to understand 
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shadows. These both situations cause false alarms so FP ratio increases. On the other 

hand, the FP ratio of the Tsinko [76] is very low, but it does not mean that the 

performance of [76] is better than our performance because the foreground area of 

frame 239 is already small. Moreover, our study has better FN ratio. 

Frame 314 is one of the frames that the person walks through to the camera. Our 

outputs are better than the results of [76] in both aspects. Walking person is classified 

as foreground with 2.20 FP + FN ratio. However, [76] has higher error ratios. The first 

problem of [76] is classification of some body parts as background because of the 

clothes’ color. Another and more important problem is the absence of the control for 

the first seen areas. Some regions on the left side are classified as foreground by [76]. 

In order to prevent this kind of false alarms, a counter is kept for each pixel and without 

reaching a threshold; this pixel is not classified as foreground. 

Frame 406 has a similar result with frame 314 because very small area is labeled as a 

foreground by [76]. Therefore, the FP ratio of [76] is small but the FN ratio of it is 

nearly two times of our result. On the other hand, our FP ratio is 4.53 because of the 

presence of the plant. The algorithm classifies some parts of the plant as foreground 

because of the similarities between its color and the person’s t-shirt color. 

In Frame 442, [76] finds nearly nothing again, in comparison our algorithm detects the 

person with satisfactory ratios. On the right side, there are some false alarms because 

of the registration errors. In order to increase the performance of our algorithm, 

registration errors of output should be decreased. 
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Table 9: Comparisons of Sequence 2 
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Table 10: Errors for Sequence 2 

 
Frame 

239 

Frame 

314 

Frame 

406 

Frame 

442 
Total 

Our 
Results 

 

FP 
Count 555 317 950 239 2061 

Ratio 
(%) 

2.65 1.51 4.53 1.14 2.46 

FN 
Count 37 145 853 113 1148 

Ratio 0.28 0.69 4.07 0.54 1.40 

FP + FN 
Count 592 462 1803 352 3209 

Ratio 
(%) 

2.93 2.20 8.60 1.68 3.85 

Results 
of 

Tsinko 

FP 
Count 134 964 99 725 1922 

Ratio 
(%) 

0.64 4.60 0.47 3.46 2.29 

FN 
Count 158 341 1833 346 2678 

Ratio 
(%) 

0.75 1.63 8.75 1.65 3.19 

FP + FN 
Count 292 1305 1932 1071 4600 

Ratio 
(%) 

1.39 6.23 9.22 5.11 5.48 
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Overall, our implementation has more satisfactory error ratios. One of the reasons is 

better adaptation of our algorithm. Frame 850 of Sequence 1 is the proof of it. After a 

long stay of foreground object, our algorithm can cover his model and classify the 

object correctly. Second, our study can handle first seen parts similar to Frame 930 of 

Sequence 1 and Frame 314 of Sequence 2. First seen parts are always the problem of 

Pan-Tilt camera background subtraction. Because of insufficient time, they are 

classified as foreground automatically. However, our algorithm can deal this problem. 

Our algorithm gets frame and puts them in panorama before background subtraction 

process. In Figure 18 panorama and foreground mask of the Sequence 2 can be seen. 

 

 

 

Figure 18: Panorama of Sequence 2 
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CHAPTER 8 

 

 

CONCLUSIONS 

 

 

 

In this thesis, we proposed a method for background subtraction of frames recorded 

by Pan-Tilt cameras. In order to compensate camera motion, features in each frame 

are extracted with SURF [9] and matching is found between features of new frame and 

features of panorama by using Brute-Force Matching. RANSAC algorithm [25] is used 

to calculate homography by using these feature pairs. Then new frame is added to 

panorama according to the homography matrix. Finally, IAGMM [89] is applied to the 

panorama image to generate the foreground mask. 

Robust real-time background subtraction on frames from the output of Pan-Tilt camera 

requires remarkable computational power. This computational power is provided by 

not only the CPU, but also GPU by using a heterogeneous programming model in this 

thesis. 

Pan-Tilt camera background subtraction algorithms, which are based on only image 

information, are divided into two groups according to the usage of offline generated 

map. First group needs a scanning operation in the beginning but the second group 

does not need. Our algorithm is from second group, it does not require any prior 

knowledge. In other words, there is no need to scan all areas before operation mode. 

In this study, feature points of the panorama are kept in a list instead of extracting them 

each time. Keeping a list provides more qualified feature points in shorter time. 

The algorithm uses two methods in order to get more accurate homography matrix. 

First one is the checking the distribution of the feature points. Homography matrix is 

not created for the feature points that are not distributed sufficiently, because when 
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feature points are close to each other, even small errors cause serious mistakes. The 

second method is controlling of generated homography matrices. Matrices are 

compared with reference homography matrix and the matrix, which has excessive 

difference, is eliminated because the changes in homography matrices must be little. 

The whole process of the algorithm is implemented for both only CPU case and GPU-

CPU hybrid case. Their performance and outputs are compared. Processing of one 

frame takes 624.06, 43.18 and 18.86 ms for CPU, GPU 1 and GPU 2, respectively. 

There are 14.45 speedup for GPU 1 and 33.09 speedup for GPU 2. Our study makes 

panoramic background subtraction to run in real-time with the help of the GPU. 

Similarity between groundtruths and outputs of GPU - CPU hybrid case and only CPU 

case are measured as 0.73 and 0.71 respectively. Measurements are done by running 

the algorithm on many times and averaging the results. Both implementations of our 

study generate nearly the same result. GPU usage increases the speed of the algorithm 

without any remarkable performance loss.  

In Pan-Tilt camera background subtraction algorithms, there is a possibility to classify 

the first seen part as a foreground because of the inadequate learning. In order to beat 

this weakness in our study, a counter is kept for each pixel and foreground detection 

is prevented until the counter reaches a threshold value. 

Our algorithm is compared with Change Detection algorithms [93] by using their 

performance metrics. It produces impressive performance with high Re, Pr and Fm 

rates. On the other hand, FPR needs an improvement. Decreasing the misalignment 

errors of panorama generation will also decrease the FPR. As stated before, parts of 

our system are not coupled to each other. Each of them can be replaced with another 

algorithm. If our background subtraction part is changed with another algorithm such 

as the successful algorithm from Change Detection [93] that has higher performance, 

overall performance of our system will increase. 
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Our method is based on [76]. Similar operations are applied in same order with some 

differences. In order to extract features SURF [9] is preferred instead of SIFT [45] 

because SURF is more appropriate for parallelization. Furthermore, two extra methods 

are used to get more robust homography matrix and eliminate weak ones. These 

methods are checking distribution of feature points and controlling coherence of 

consecutive homography matrices. Our last contribution is preventing false alarms 

from first seen parts. 

Results of our study and [76] are compared. Phyton implementation of [76] processes 

a single frame of the sequence with resolution 160 x 131 in 40 seconds. On the other 

hand, our GPU + CPU hybrid C++ implementation processes a single frame with 704 

x 480 resolution in 33.09 ms. There is a huge speedup. Moreover, our implementation 

generates better FP and FN ratios because of the more robust homography matrices. 

One of the advantages of our study is that our algorithm adapts itself faster than [76] 

to change in the background of the scene. Secondly, [76] does not have any control for 

the first seen areas so it labels them as a foreground. However, our algorithm keeps a 

count in order to prevent false alarms from the first seen parts. 

As a future work, zoom feature can be added to the system. By using interpolation, 

frames with different FOV can be processed. Another feature which will be useful if 

it is added to the system is detection of shadows. Now, shadows are classified as 

foreground. Detection of them will increase the performance by means of decreasing 

the rate of false positives. 

 
 
 
 
 
 
 
 
 
 
 
 

91 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

92 



  

REFERENCES 

 

 

 

[1] T. Aach and A. Kaup, "Bayesian algorithms for adaptive change detection in image 
sequences using markov random fields", Signal processing: Image Communication, 
Vol. 7, pp. 147-160, 1995. 
 
 
[2] Y. Abdel-Aziz and H. Karara, “Direct linear transformation from comparator 
coordinates into object space coordinates in close-range photogrammetry”, 
Proceedings of the Symposium on Close Range Photogrammetry, American Society of 
Photogrammetry, pp. 1-18, 1971. 
 
 
[3] A. Al-Mazeed, M. Nixon and S. Gunn, “Classifiers Combination for Improved 
Motion Segmentation”, ICIAR 2004, pp. 363-371, 2004. 
 
 
[4] M. Amintoosi, F. Farbiz, M. Fathy, M. Analoui and N. Mozayani, “QR 
decomposition-based algorithm for background subtraction”, ICASSP 2007, 2007. 
 
 
[5] K. Appiah and A. Hunter, “Single-Chip FPGA Implementation of Realtime 
Adaptive Background Model”, IEEE Conference on Field-Programmable Technology 
(FPT 2005), December 2005. 
 
 
[6] P. Atrey, V. Kumar, A. Kumar nad M. Kankanhalli, “Experiential sampling based 
foreground/background segmentation for video surveillance”, ICME 2006, pp. 1809-
1812, July 2006.  
 
 
[7] D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes”, 
Pattern Recognition, Vol. 13, No. 2, pp. 111-122, 1981.  
 
 
[8] O. Barnich and M. Van Droogenbroeck, "ViBe: A Universal Background 
Subtraction Algorithm for Video Sequences", IEEE Transactions on Image 
Processing, Vol. 20, No. 6, pp. 1709-1724, June 2011. 
 
 

93 



  

[9] H. Bay, and T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust Features”, 
9th European Conference on Computer Vision, 2006. 
 
 
[10] H. Bhaskar, L. Mihaylova and S. Maskell, “Automatic Target Detection Based on 
Background Modeling Using Adaptive Cluster Density Estimation”, 3rd German 
Workshop on Sensor Data Fusion: Trends, Solutions, Applications, September 2007. 
 
 
[11] S. Bianco, G. Ciocca and R. Schettini, "How far can you get by combining change 
detection algorithms?", Submitted to IEEE Transactions on Image Processing, 2015. 
 
 
[12] M. Brown and D. G. Lowe, "Recognising panoramas”, International Conference 
on Computer Vision (ICCV 2003), pp. 1218-1225, October 2003. 
 
 
[13] P. J. Burt and E. H. Adelson, "The Laplacian Pyramid as a Compact Image Code", 
IEEE Transactions on Communications, Vol. 31, No. 4, pp. 532-540, April 1983. 
 
 
[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust 
Independent Elementary Features”, 11th European Conference on Computer Vision 
(ECCV), September 2010. 
 
 
[15] Y. Chen, "A background subtraction algorithm for a pan-tilt camera", M.S. thesis, 
Dept. Comput. Sci., University Of Alberta, 2014. 
 
 
[16] J. Cheng, J. Yang, Y. Zhou and Y. Cui, “Flexible background mixture models for 
foreground segmentation”, Image and Vision Computing, Vol. 24, pp. 473-482, 2006. 
 
 
[17] M. Chouchene, F. E. Sayadi, Y. Said, M. Atri and R. Tourki, “Efficient 
implementation of Sobel edge detection algorithm on CPU, GPU and FPGA”, Int. J. 
Advanced Media and Communication, Vol. 5, No. 2/3, pp.105-117, 2014. 
 
 
[18] M. Cristani and V. Murino, “A spatial sampling mechanism for effective 
background subtraction”, VISAPP 2007, Vol. 2, pp. 403-410, March 2007. 
 
 

94 



  

[19] D. D. Doyle, A. L. Jennings, J. T. Black, "Optical flow background subtraction 
for real-time PTZ camera object tracking," Instrumentation and Measurement 
Technology Conference (I2MTC), 2013 IEEE International, pp. 866-871, May 2013. 
 
 
[20] E. Dubrofsky, “Homography Estimation”, M.S. thesis, Dept. Comput. Sci., The 
University Of British Columbia, 2009. 
  
 
[21] M. M. El-Gayar, H. Soliman and N. Meky “A comparative study of image low 
level feature extraction algorithms”, Egyptian Informatics Journal 14, pp. 175-181, 
2013. 
 
 
[22] A. Elgammal, D. Harwood and L. Davis, “Non-parametric Model for Background 
Subtraction”, ECCV 2000, pp. 751-767, June 2000. 
 
 
[23] X. Fang, W. Xiong, B. Hu B and L. Wang, “A Moving Object Detection 
Algorithm Based on Color Information, Journal of Physics, Vol. 48, pp. 384-387, 
2006. 
 
 
[24] A. Ferone, L. Maddalena, "Neural Background Subtraction for Pan-Tilt-Zoom 
Cameras", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, 
No. 5, pp. 571-579, May 2014. 
 
 
[25] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for model 
fitting with applications to image analysis and automated cartography”, 
Communications of the ACM, Vol. 24, No. 6, pp. 381-395, 1981. 
 
 
[26] N. Friedman and S. Russell, “Image Segmentation in Video Sequences: A 
Probabilistic Approach”, Proceedings of the Thirteenth conference on Uncertainty in 
Artificial Intelligence, pp. 175-181, 1997. 
 
 
[27] P. Guler, D. Emeksiz, M. Teke, A. Temizel and T. Taskaya Temizel, "Real-time 
Multi-Camera Video Analytics System on GPU", Journal of Real-Time Image 
Processing, March 2013. 
 
 
[28] C. Harris and M. Stephens, “A combined corner and edge detector”, Proceedings 
of the Alvey  Vision Conference, pp. 147-151, 1988. 

95 



  

[29] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”, 
Cambridge University Press, 2004. 
 
 
[30] O. N. Ivanov, “Adaptation of Known Background Subtraction Methods in the 
Case of a Moving PTZ Camera Mounted on a Mobile Platform”, Pattern Recognition 
and Image Analysis, Vol. 24, No. 2, pp. 318-323, June 2014. 
 
 
[31] P. Jaikumar, A. Singh and S. Mitra, “Background Subtraction in Videos using 
Bayesian Learning with Motion Information”, BMVC 2008, pp. 615-624, September 
2008. 
 
 
[32] V. Jain, B. Kimia and J. Mundy, “Background modelling based on subpixel 
edges”, ICIP 2007, Vol. 6, pp. 321-324, September 2007. 
 
 
[33] O. Javed, K. Shafique and M. Shah, “A Hierarchical Approach to Robust 
Background Subtraction using Color and Gradient Information”, WMVC 2002, pp. 22, 
December 2002. 
 
 
[34] Y. Jia, J. Wang, G. Zeng, H. Zha, and X. S. Hua, “Optimizing kdtrees for scalable 
visual descriptor indexing,” Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 3392-
3399, 2010. 
 
 
[35] H. Jiang, H. Ardo and V. Owall, “Hardware accelerator design for video 
segmentation with multi-modal background modeling”, ISCAS 2005, Vol. 2, pp. 1142- 
1145, May 2005. 
 
 
[36] E. Kepucka, I. Gurcan and A. Temizel, "Fast Omnidirectional Image Unwrapping 
on GPU", Euromicro International Conference on Parallel, Distributed and Network-
Based Computing (WIP), February 2012. 
 
 
[37]  K. Kim, T. Chalidabhongse, D. Harwood and L. Davis, "Background modeling 
and  subtraction by codebook construction" International Conference on Image 
Processing, Vol. 5, pp. 3061-3064, October 2004. 
 
 
[38] D. Lee, “Online Adaptive Gaussian Mixture Learning for Video Applications”, 
ECCV Workshop on Statistical Methods for Video Processing, May 2004. 

96 



  

[39] A. Lepisk, “The use of Optic Flow within Background Subtraction”, M.S. thesis, 
Royal Institute of Technology, 2005. 
 
 
[40] Y. Liang, Z. Wang, X. Xu and X. Cao, “Background Pixel Classification for 
Motion Segmentation using Mean Shift Algorithm”, ICMLC 2007, pp. 1693-1698, 
2007. 
 
 
[41] C. Lien, C. Hua, Y. Jiang and L. Jang, “Large Area Video Surveillance System 
with Handoff Scheme among Multiple Cameras”, MVA 2009, May 2009. 
 
 
[42] H. Lin, T. Liu and J. Chuang, "A probabilistic SVM approach for background 
scene initialization", ICIP 2002, Vol. 3, pp. 893-896, September 2002. 
 
 
[43] J. Lindstrom, F. Lindgren, K. Ltrstrom, J. Holst and U. Holst, “Background and 
Foreground Modeling Using an Online EM Algorithm”, ECCV 2006, May 2006. 
 
 
[44] N. Liu, H. Wu, and L. Lin, "Hierarchical Ensemble of Background Models for 
PTZ-Based Video Surveillance", IEEE Transactions on Cybernetics, Vol. 45, No.1, 
pp. 89-102, January 2015. 
 
 
[45] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, 
International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004. 
 
 
[46] L. Maddalena and A. Petrosino, “A self organizing approach to background 
subtraction for visual surveillance applications”, IEEE Transactions on Image 
Processing, Vol. 17, No. 7, pp 1729-1736, 2008. 
 
 
[47] V. Morellas, L. Pavlidis P. Tsiamyrtzis, “DETER: detection of events for threat 
evaluation and recognition”, Machine Vision and Applications, Vol. 15, pp. 29-45, 
June 2003. 
 
 
[48] E. Monari and T. Pollok, "A Real-Time Image-to-Panorama Registration 
Approach for Background Subtraction Using Pan-Tilt-Cameras", 8th Intern. Conf. 
AVSS, pp. 237-242, 2011. 
 
 

97 



  

[49] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic 
algorithm configuration”, International Conference on Computer Vision Theory and 
Application VISSAPP’09, pp. 331-340, 2009. 
 
 
[50] M. Muja, D. G. Lowe, "Fast Matching of Binary Features," 2012 Ninth 
Conference on Computer and Robot Vision (CRV), pp. 404-410, May 2012. 
 
 
[51] L. Niu and N. Jiang, “Moving Objects Detection Algorithm Based on Improved 
Background Subtraction”, ISDA 2008, Vol. 03, pp. 604-607, 2008. 
 
 
[52] T. T. Nguyen and J. W. Jeon, “Real-Time Background Compensation for PTZ 
Cameras Using GPU Accelerated and Range-Limited Genetic Algorithm Search” in 
Advances in Image and Video Technology, Vol. 7087, Y. S. Ho, Berlin, Springer 
Berlin Heidelberg, 2011. 
 
 
[53] P.M. Panchal, S.R. Panchal and S.K. Shah, “A Comparison of SIFT and SURF”, 
International Journal of Innovative Research in Computer and Communication 
Engineering, Vol. 1, No. 2, April 2013. 
 
 
[54] J. Park, A. Tabb and A. Kak, “Hierarchical Data Structure for Real Time 
Background Subtraction”, ICIP 2006, pp. 1849-1852, October 2006. 
 
 
[55] D. Parks and S. Fels, “Evaluation of Background Subtraction Algorithms with 
Post-processing”, AVSS 2008, September 2008. 
 
 
[56] D. Pokrajac and L. Latecki, “Spatiotemporal Blocks-Based Moving Objects 
Identification and Tracking”, VS-PETS 2003, pp. 70-77, October 2003. 
 
 
[57] T. Porter and T. Duff, “Compositing digital images”, Acm Siggraph Computer 
Graphics, Vol. 18,  No. 3, pp. 253-259, July 1984. 
  
 
[58] Z. Qu, M. Yu and J. Liu, “Real-time traffic vehicle tracking based on improved 
MoG background extraction and motion segmentation”, ISSCAA 2010, pp. 676-680, 
June 2010. 
 
 

98 



  

[59] C. Ridder, O. Munkelt and H. Kirchner, “Adaptive background estimation and 
foreground detection using kalman-filtering”, Proceedings of International 
Conference on recent Advances in Mechatronics, pp. 193-199, 1995. 
 
 
[60] R. Rodriguez, “Background Subtraction with PTZ Cameras”, M.S. thesis, Dept. 
Elect. and Comput. Sci., Technical University of Berlin, 2012. 
 
 
[61] E. Rosten, R. Porter and T. Drummond, “Faster and better: a machine learning 
approach to corner detection”, IEEE Transaction Pattern Analysis and Machine 
Intelligence, Vol 32, pp. 105-119, 2010. 
 
 
[62] P. J. Rousseeuw, “Least median of squares regression”, Journal of the American 
Statistical Association, Vol. 79, No. 388, pp. 871-880, March 2012. 
 
 
[63] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient 
alternative to SIFT or SURF," IEEE International Conference on Computer Vision 
(ICCV), pp. 2564-2571, Novemberr 2011. 
 
 
[64] H. Sajid and S. Cheung, "Universal Multimode Background Subtraction", 
Submitted to IEEE Transactions on Image Processing, 2015. 
 
 
[65] K. Schindler and H. Wang, “Smooth Foreground-Background Segmentation for 
Video Processing”, ACCV 2006, Vol. 3852, pp. 581-590, January 2006. 
 
 
[66] Z. Sheng and X. Cui, “An adaptive learning rate GMM for background 
extraction”, Optoelectronics Letters, Vol. 4, No. 6, pp. 460-463, November 2008. 
 
 
[67] H. Shi and C. Tomassi, “Good Features to Track”, 9th IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 593-600, 1994.  
 
 
[68] A. Shimada, D. Arita and R. Taniguchi. “Dynamic Control of Adaptive Mixture-
of Gaussians Background Model”, AVSS 2006, pp. 5, November 2006. 
 
 

99 



  

[69] P. L. St-Charles, G. A. Bilodeau and R. Bergevin, R, "SuBSENSE: A Universal 
Change Detection Method With Local Adaptive Sensitivity", IEEE Transactions on 
Image Processing, Vol. 24, No.1, pp. 359-373, January 2015. 
 
 
[70] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for 
real-time tracking”, IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Vol. 2, pp. 246-252, 1999. 
 
 
[71] G. Stijnman and R. Van den Boomgaard, “Background estimation in video 
sequences”, Technical Report 10, Intelligent Sensory Information Systems Group, 
University of Amsterdam, January 2000. 
 
 
[72] Y. Sun, “Better Foreground Segmentation for Static Cameras via New Energy 
Form and Dynamic Graph-cut”, ICPR 2006, 2006. 
 
 
[73] A. Temizel, T. Halici, B. Logoglu, T. Taskaya Temizel, F. Omruuzun and E. 
Karaman, "Experiences on Image and Video Processing with CUDA and OpenCL" in 
NVIDIA GPU Computing Gems, Vol. 1, W. Hwu, Elsevier, 2011. 
 
 
[74] T. Terriberry, L. French, and J. Helmsen, “GPU accelerating speeded-up robust 
features”, 4th International Symposium on 3D Data Processing, Visualization and 
Transmission, 2008, pp. 1–8. 
 
 
[75] Y. Tian and A. Hampapur, “Robust Salient Motion Detection with Complex 
Background for Real-time Video Surveillance”, CVPR 2005, Vol. 2, pp. 30-35, 
January 2005. 
 
 
[76] E. Tsinko, “Background Subtraction with a Pan/Tilt Camera”, M.S. thesis, Dept. 
Comput. Sci., The University Of British Columbia, 2010. 
 
 
[77] D. Turdu and H. Erdogan, “Improved post-processing for GMM based adaptive 
background modeling”, ISCIS 2007, pp. 1-6, November 2007. 
 
 
 
 

100 



  

[78] R. Wang, F. Bunyak, G. Seetharaman, K. Palaniappan, "Static and Moving Object 
Detection Using Flux Tensor with Split Gaussian Models", Computer Vision and 
Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference, pp. 420,424, June 
2014. 
 
 
[79] B. White and M. Shah “Automatically Tuning Background Subtraction 
Parameters Using Particle Swarm Optimization”, ICME 2007, pp. 1826-1829, 2007. 
 
 
[80] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, “Pfinder: Real-Time Tracking 
of the Human Body”, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 19, No. 7, pp. 780-785, July1997. 
 
 
[81] M. Xu and T. Ellis, “Illumination-invariant motion detection using color mixture 
models, BMVA 2001, pp. 163-172, September 2001. 
 
 
[82] K. Xue, Y. Liu, G. Ogunmakin, J. Chen, J. Zhang, “Panoramic Gaussian Mixture 
Model and large-scale range background substraction method for PTZ camera-based 
surveillance systems”, Machine Vision and Applications, Vol. 24, No. 3, pp. 477-492, 
April 2013. 
 
 
[83] S. Xuehua, C. Yu, G. Jianfeng and C. Jingzhu, “A Robust Moving Objects 
Detection Algorithm Based on Gaussian Mixture Model”, ITSC 2009, Vol. 1, pp. 566-
569, 2009. 
 
 
[84] Q. Yan, Y. Xu, X. Yang nad L. Traversoni, “Real-Time Foreground Detection 
Based on Tempo-Spatial Consistency Validation and Gaussian Mixture Model”, IEEE 
International Symposium on Broadband Multimedia Systems and Broadcasting 
(BMSB 2010), pp. 1-4, March 2010. 
 
 
[85] Q. Zang and R. Klette, “Evaluation of an Adaptive Composite Gaussian Model in 
Video Surveillance”, CITR Technical Report 114, Auckland University, August 2002. 
 
 
[86] H. Zheng, Z. Liu and X. Wang, “Video Segmentation Method with Integrated 
Multi-features Based on GMM”, International Conference on Digital Image 
Processing (DIP 2009), pp. 62-66, March 2009. 
 
 

101 



  

[87] J. Zhang, Y. Wang, J. Chen and K. Xue, "A framework of surveillance system 
using a PTZ camera", IEEE International Conference on Computer Science and 
Information Technology (ICCSIT), Vol. 1, pp. 658-662, July 2010. 
 
 
[88] D. Zhou and H. Zhang, “Modified GMM background modeling and optical flow 
for detection of moving objects”, IEEE International Conference on Systems, Man and 
Cybernetics, pp. 2224-2229, October 2005. 
 
 
[89] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background 
subtraction”, International Conference Pattern Recognition, Vol. 2, pp. 28-31, 2004. 
 
 
[90] X. Zou, X. Zhao, Z. Chi, "A robust background subtraction approach with a 
moving camera", Computing and Convergence Technology (ICCCT), 2012 7th 
International Conference, pp. 1026-1029, December 2012. 
 
 
[91] Egor Tsinko's Thesis, [Online], Available: http://www.cs.ubc.ca/nest/lci/ 
thesis/etsinko/, [Accessed: Sep. 01, 2015]. 
 
 
[92] FLANN - Fast Library for Approximate Nearest Neighbors: FLANN, [Online], 
Available: http://www.cs.ubc.ca/research/flann/, [Accessed: Sep. 01, 2015]. 
 
 
[93] IEEE Change Detection Workshop, [Online], Available: http://changedetection. 
net, [Accessed: Sep. 01, 2015]. 
 
 
[94] Nvidia Corporation, “CUDA C Programming Guide v7.0”, [Online], Available: 
http://docs.nvidia.com/cuda/cuda-c-programming-guide, [Accessed: Sep. 01, 2015]. 
 
 
[95] Nvidia Corporation, “GeForce GTX 980 Whitepaper”, [Online], Available: 
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_G 
TX_980_Whitepaper_FINAL.PDF, [Accessed: Sep. 01, 2015]. 
 
 
[96] Nvidia Corporation, “Precision And Performance: Floating Point And Ieee 754 
Compliance for Nvidia Gpus - Nvidia White Paper”, [Online], Available: 
http://docs.nvidia.com/cuda/floating-point/index.html, [Accessed: Sep. 01, 2015]. 
 
 

102 



  

[97] OpenCL - The open standard for parallel programming of heterogeneous systems, 
[Online], Available: https://www.khronos.org/opencl/, [Accessed: Sep. 01, 2015]. 
 
 
[98] OpenCV, [Online], Available: http://opencv.org/, [Accessed: Sep. 01, 2015]. 
 
 
[99] Parallel Programming and Computing Platform, [Online], Available: 
http://www.nvidia.com/object/cuda_home_new.html, [Accessed: Sep. 01, 2015].  
 
 
[100] Visual Computing Leadership from NVIDIA, [Online], Available: 
http://www.nvidia.com/page/home.html, [Accessed: Sep. 01, 2015]. 

103 


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	1.1 Motivation
	1.2 Scope
	1.3 Outline

	LITERATURE REVIEW
	2.1 Background Subtraction with Static Camera
	2.1.1 Parametric Methods
	2.1.2 Non-parametric Methods

	2.2 Background Subtraction with Pan-Tilt Camera

	FEATURE EXTRACTION AND MATCHING
	3.1 Feature Extraction Algorithm
	3.2 Feature Matching Algorithm
	3.3 Panorama Feature Extraction Method
	3.4 Refining of Matching Results
	3.5 Effect of Feature Points Distribution

	IMAGE REGISTRATION AND BLENDING
	4.1 Transformation Type
	4.2 Elimination of Outliers
	4.3 Homography Matrix Control
	4.4 Blending Type

	BACKGROUND SUBTRACTION
	5.1 Background Subtraction Algorithm
	5.2 Filtering According to First Seen Part
	5.3 Post Processing Operations

	PORTING ALGORITHMS TO GPU
	6.1 Introduction
	6.2 GPU Architecture
	6.2.1 Compute Unified Device Architecture (CUDA)
	6.2.2 CUDA Memory Hierarchy

	6.3 CUDA Implementation
	6.3.1 Initialization
	6.3.2 Feature Extraction and Matching Part
	6.3.3 Image Registration
	6.3.4 Background Subtraction

	6.4 Precision Difference between GPU and CPU

	TEST RESULTS AND APPLICATIONS OF THE THEORY
	7.1 Introduction
	7.2 Evaluation Metrics
	7.3 Comparison of CPU and GPU Results
	7.4 Comparison with the Change Detection Algorithms
	7.5 Comparison with [76]
	7.5.1 Frame Sequence 1
	7.5.2 Frame Sequence 2


	CONCLUSIONS

	REFERENCES

