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ABSTRACT

REGULATORY NETWORKS STUDIED BY ELLIPSOIDAL CALCULUS

Yayla, Selim

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

Co-Supervisor : Assoc. Prof. Dr. Vilda Purutçuoğlu

September 2015, 57 pages

The identification of regulatory networks affected by noise and data uncertainty is a
serious problem in many Operational Research applications. The fundamental struc-
ture of underlying systems can be established by regulatory networks in many sec-
tor like ecology, education and finance. After clustering and classification methods
gene/target and environmental states can be grouped into functional behaviour. The
analysis of complex regulatory systems under uncertainty is a compounded complex
by the unknown interactions between the variables which are represented by ellipsoids.
Ellipsoidal calculus is used in determination of the explicit representations of the un-
certain multivariate states of the system. MATLAB Ellipsoidal Toolbox (ET) provides
efficient plotting routines of ellipsoids, hyperplanes and reach sets. In this thesis, sev-
eral regression models are studied in order to approximate regulatory networks under
ellipsoidal uncertainty and Ellipsoidal Toolbox routines are explained for representing
a parameter estimation and inverse problem.

Keywords : Regulatory networks, regression, ellipsoid, optimization, uncertainty
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ÖZ

DÜZENLEYİCİ AĞLARININ ELİPSOİTSEL ANALİZ İLE ARAŞTIRMASI

Yayla, Selim

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ortak Tez Yöneticisi : Doç. Dr. Vilda Purutçuoğlu

Eylül, 57 sayfa

Yöneylem araştırmasındaki; veri belirsizliği ve kirliliğinden etkilenen düzenleyici ağ-
ların tanımlanması önemli bir sorundur. Düzenleyici-ağları; çevrebilim, eğitim ve
maliye alanlarında genel bir yapı sağlamaktadır. Kümeleme ve sınıflama yöntemlerin-
den sonra işlevsel olarak ilgili hedef ve çevre çarpan grupları belirlenebilir. Belirsizlik
içeren karmaşık düzenleyeci ağların çözümlenmesi; sağlam regresyondaki elipsoitler
ile temsil edilen değişkenler arasındaki bilinmeyen etkileşimler yüzünden aşamalı o-
larak karmaşıklaşmaktadır. Çok değişkenli belirsiz durumların açık gösterimini elde
etmek için sistemlere elipsoitsel analiz uygulanabilir. MATLAB Ellipsoidal Tool-
box (ET), elipsoitler, hiperdüzlemler ve hedef kümelerin grafiğini çizmek için ver-
imli fonksiyonlar sunar. Bu tezde düzenleyici-ağları, elipsoitsel belirsizlik altında tah-
minlemek için birçok regresyon modeli ve bir parametre tahminleme ve ters problemi
imgelemek için Ellipsoidal Toolbox daki araçlar çalışılmıştır.

Anahtar Kelimeler : Hesaplamalı biyoloji, regresyon, elipsoit, optimizasyon, belirsiz-
lik
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CHAPTER 1

INTRODUCTION

New interconnected technological systems gather huge amount of data. Here, we have
very complex systems with many variables and parameters to be analysed. Such sys-
tems are known as complex regulatory systems, appearing in biology, finance and en-
gineering sciences. We have some tools in mathematical analysis to understand these
systems. The parameters of the coupling rules and the time-dependent states of clusters
define our regulatory networks. Target-Environment (TE) regulatory systems consist
of two distinguishable groups of data, although they are strongly connected: the en-
vironmental factors and their dependent target variables. So, this class of regulatory
systems is suitable for many real-world applications.

In gene-environment networks, to understand the relations and interactions between
genes and other objects in a cell,tissue or mixture of some environmental unit, we carry
out research into the models of gene-expression and environmental states and their
predictions. Here, the gene expressions are called as the target variables, and toxins,
transcription factors, radiation, etc., are called as the environmental items. Ecological
networks, social networks, metabolic networks and immunological networks are other
examples in which TE-regulatory systems are used.

TE-models are generally affected by noise and uncertainty. Spline regression and
stochastic differential equations are used in order to handle the errors and uncertainty in
regression models. Bounding on the uncertain variable with ellipsoids has been proved
to be suitable for case of data corrupted by noise (see [12]). Ellipsoids are very resilient
in targets and environmental perspective. Confidence ellipsoids are used with respect
to stochastic dependencies of the error variables, e.g., in micro-array experiments.

On the other hand, clustering and classification identify structure of data items which
act jointly. The uncertain states of these clusters are represented by ellipsoids and el-
lipsoidal calculus is applied to model the dynamics of the TE-regulatory system. The
unknown parameters of the time-discrete TE-model are also clustered to make uncer-
tain (ellipsoidal) measurement data suitable for the regression. Complex regulatory
systems usually consist of a large number of interconnected components, and the TE-
regulatory network is highly systematized with multiple interactions between different
clusters. For practical reasons of regularity or stability, bounds on the degrees of the
nodes are applied to reduce some of branches in the TE-regulatory network [11].
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Furthermore, uncertainty of gene-environment networks is analyzed with several re-
gression models, e.g., interval arithmetic, stochastic differential equations and spline
regression models. Bounding each variable individually does not reveal correlations in
multivariate clusters of data. A representation of ellipsoids is used for uncertainty sets
with the help of its variance–covariance matrices and distributions. Ellipsoids are more
flexible than intervals and parallel pipes with respect to correlations of the data. Also,
ellipsoids are bigger than paraxial sets and their orthogonal projections. Moreover,
confidence ellipsoids are obtained from stochastic dependencies among any two of the
errors made in the measurements of the expression values of genes and environmental
levels, e.g., through microarray procedures and environmental technologies [12]. El-
lipsoidal states are representations of uncertain expression values of gene-environment
clusters.

Finally, ellipsoidal calculus is applied for estimating time-discrete regulatory model
of interactions between target and environmental factors. Shape matrix and distance
between centers of the ellipsoids are used in the objective function of the regression
model. For example, a regression model for parameter estimation of the regulatory
system is based on the trace and determinant. After estimation, their solvability can be
analyzed by semidefinite programming or conic programming, with their interior point
methods [13].

Accordingly, this thesis is planned in a way as follows: In Chapter 2, we present
the analysis of regulatory systems. In Chapter 3, we study the optimization of time-
discrete regression models under ellipsoidal uncertainty. Then, we demonstrate an
inverse problem mathematically with a graphical problem and implement its MATLAB
algorithm in Chapter 4. By a conclusion and an outlook, we conclude the thesis in
Chapter 5. In appendices, we also offer both definitions of ellipsoidal calculus related
to basic regression theory and ellipsoidal toolbox functions with a compact course on
MATLAB.
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CHAPTER 2

SYSTEMS UNDER ELLIPSOIDAL UNCERTAINTY

2.1 Ellipsoidal Uncertainty

An ellipsoid in Rp with center c ∈ Rp and a symmetric non-negative definite configu-
ration (shape) matrix Σ ∈ Rp×p is given as follows:

E(c,Σ) = {Σu+ c | ‖u‖2 ≤ 1} ,

where ‖ · ‖2 denotes the Euclidean norm, and u is a point in the full unit ball. Then,
under ellipsoidal uncertainty the target variables X(κ)

r , r = 1, . . . , R, and the environ-
mental variables E(κ)

s , s = 1, . . . , S, satisfy

X(κ)
r ∈ E

(
X

(κ)

r ,Σ
(κ)

r

)
⊂ R|Cr|,

E(κ)
s ∈ E

(
E

(κ)

r ,Π
(κ)

s

)
⊂ R|Ds|,

where Σ
(κ)

r and Π
(κ)

s are the variance-covariance matrices of cluster data, Cr is a tar-
get cluster, Ds is an environmental cluster, κ = 1, . . . , T , is the sampling index, and
R and S are the number of overlapping clusters of target and environmental items,
respectively [6].

2.2 Gene-Environment Systems

Gene-environment networks are consists of two type of variables: gene and environ-
mental items, e.g., proteins are gene expression and toxins are environmental factors.
The relation between the various clusters of genes and environmental factors can be
complex and unstable. This yields to uncertainty. Ellipsoidal set representation is very
suitable for representing uncertain states. Also, ellipsoids are very flexible to variations
in the measurements [4].
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2.2.1 Disjoint Clusters

Let us divide n genes into R disjoint clusters Cr ⊂ {1, . . . , n}, r = 1, . . . , R, and
m environmental factors into S disjoint clusters Ds ⊂ {1, . . . ,m}, s = 1, . . . , S.
Assume that Cr1 ∩Cr2 = ∅ when ∀r1 6= r2 andDs1∩Ds2 = ∅ when ∀s1 6= s2 relations
are satisfied for strict subset of the variables [1].

2.2.2 Overlapping Clusters

Assume that the vectors X = (X1, . . . ,Xn)′ and E = (E1, . . . ,Em)′ establish the
expression values of the genes and environmental factors, respectively. We symbolize
transposition of a matrix or vector by (·)′. R overlapping clusters of gene items Cr ⊂
{1, . . . , n}, r = 1, . . . , R, and S overlapping clusters of environmental item Ds ⊂
{1, . . . ,m}, s = 1, . . . , S, are established such that Cr1 ∩ Cr2 = ∅ when ∀r1 6= r2
and Ds1 ∩ Ds2 = ∅ when ∀s1 6= s2 relations may not hold. Specifically, Xr is a
|Cr|-subvector of X matched with the elements of Cr which are put together by a
gene cluster. Es is a |Ds|-subvector of E assigned to each clusters of environmental
factors which is given by the elements of Ds. X and E subvectors define crisp states
of the clusters. The vector Xr represents ellipsoidal states of the genes in cluster Cr
given by the ellipsoid E(µr,Σr) ⊂ R|Cr| for r-dimensional vector of mean µr and
covariance matrix of (r × r)-dimensional Σr. Similarly, Es represents the ellipsoidal
states of the environmental items in the cluster Ds given by the ellipsoid E(ρs,Πs) ⊂
R|Ds|. Therefore, uncertain states of the clusters are identified by error ellipsoids.
The ellipsoid E(µr,Σr) is parametrized by |Cr| + |Cr|2 coefficients and the ellipsoid
E(ρs,Πs) is determined by |Ds| + |Ds|2 variables. The number of coefficients can be
reduced by assuming symmetric shape matrices what refers to specific correlation of
the data variables. When we know exactly enough number of variables, flat ellipsoids
E(µr,Σr) and E(ρs,Πs) are data sets. This situation can be avoided by decreasing
bounds on the semiaxes distances or an artificial part added in the specified coordinate
directions of distance ε > 0 [11]. Identically, by increasing bounds, degenerate or
needleshaped ellipsoids are prevented from happening.

Before clustering, numerous overlapping clusters of genes and environmental factors
can be determined. But the noise in the data or the fact of existing outliers and errors
yield to possibly overlapping clusters of gene-networks. Discrete-time dynamics are
used in order to determine the distinctive attribute or characteristics of the regression.
Set-theoretic regression models are suggested in order to estimate the unknown system
parameters and their solvability by various methods [8].

The clusters of a gene-environment network can attribute importance by the time-
dependent ellipsoidal states. The affine (linear) coupling rules can be used to represent
the relations between the clusters.
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2.2.3 Linear Model

We note that

Xr = E (µr,Σr) ⊂ R|Cr|, Es = E (ρs,Πs) ⊂ R|Ds|,

is an ellipsoidal representation of the two clusters.

To guarantee representations of ellipsoid in all time states, we define a system by
(affine) linear coupling rules [11]:

X
(κ+1)
j = ξj0 +

(
R⊕
r=1

AGGjr X(κ)
r

)
+

(
S⊕
s=1

AEGjs E(κ)
s

)
,

E
(κ+1)
i = ζi0 +

(
R⊕
r=1

AGEir X(κ)
r

)
+

(
S⊕
s=1

AEEis E(κ)
s

)
,


(EC)

is the linear model of the relations and dynamics between the clusters, where κ ≥ 0 and
for j = 1, 2, . . . , R, i = 1, 2, . . . , S, the (affine) linear coupling given by X(0)

j = X
(0)

j

and E(0)
i = E

(0)

i are initial values.

In time-discrete gene-environment regulatory systems, we have the diagram below:

(GG) gene
regulates−−−−−→ gene,

(EG) environment
regulates−−−−−→ gene,

(GE) gene
regulates−−−−−→ environment,

(EE) environment
regulates−−−−−→ environment.

This diagram defines cluster interactions and regulating effects. In an ellipsoidal or set
theoretic manner,

R⊕
r=1

AGGjr X(κ)
r ,

S⊕
s=1

AEGjs E(κ)
s ,

are the cumulative effects of all clusters exercise on the elements of cluster Cj . Simi-
larly,

R⊕
r=1

AGEir X(κ)
r ,

S⊕
s=1

AEEis E(κ)
s ,

are the additive genetic and environmental factors on Ei clusters. The unknown inter-
actions matrices:

AGGjr ⊂ R|Cj |×|Cr|,AEGjs ⊂ R|Cj|×|Ds|,AGEir ⊂ R|Di|×|Cr|,AEEis ⊂ R|Di|×|Ds|,

which are sub-matrices of the general form

AGG ∈ Rn×n,AEG ∈ Rn×m,AGE ∈ Rm×n,AEE ∈ Rm×m,

5



gives the degree of connectivity between distinct clusters. The general interactions
matrices are the bases for the sub-matrices. The position of the general interactions
matrices are defined by the particular cluster elements. The intercept vector ξj0 ∈ R|Cj |

is a disjoint component of ξ0 = (ξ10, . . . , ξn0)
′ ∈ Rn and ζi0 ∈ R|Di| is a disjoint

component of ζ0 = (ζ10, . . . , ζm0)
′ ∈ Rm, respectively.

2.2.4 Algorithm

Let us determine ellipsoidal time states of the clusters in (EC) linear system by apply-
ing ellipsoidal calculus. Then, the centers and configuration matrices of the predictions
X

(κ+1)
j and E(κ+1)

s , respectively, can be calculated iteratively [13]. Here, κ denotes the
number of iteration.

Assume that κ ≥ 0 and an ellipsoid

X
(κ+1)
j = E

(
µ
(κ+1)
j ,Σ

(κ+1)
j

)
is given with center

µ
(κ+1)
j = ξj0 +

R∑
r=1

AGGjr µ
(κ)
r +

S∑
s=1

AEGjs ρ
(κ)
s

and configuration matrix

Σ
(κ+1)
j =

(√
Tr G(κ)j +

√
TrH(κ)

j

) G(κ)j√
Tr G(κ)j

+
H(κ)
j√

TrH(κ)
j

 ,

where

G(κ)j =

(
R∑
r=1

√
Tr
(
AGGjr Σ

(κ)
r

(
AGGjr

)T))
 R∑

r=1

AGGjr Σ
(κ)
r

(
AGGjr

)T√
Tr
(
AGGjr Σ

(κ)
r

(
AGGjr

)T)
 ,

H(κ)
j =

(
S∑
s=1

√
Tr
(
AEGjs Π

(κ)
s

(
AEGjs

)T))
 S∑

s=1

AEGjs Π
(κ)
s

(
AEGjs

)T√
Tr
(
AEGjs Π

(κ)
s

(
AEGjs

)T)
 .

Then, genetic cluster states Cj, j = 1, 2, . . . , R, are defined by the above ellipsoid.

In a similar manner, the states of the environmental cluster Di, i = 1, 2, . . . , S, corre-
sponds to an ellipsoid

E
(κ+1)
i = E

(
ρ
(κ+1)
i ,Π

(κ+1)
i

)
6



with center

ρ
(κ+1)
i = ζi0 +

R∑
r=1

AGEir µ
(κ)
r +

S∑
s=1

AEEis ρ(κ)s

and configuration matrix

Π
(κ+1)
i =

(√
TrM(κ)

i +

√
Tr N (κ)

i

) M(κ)
i√

TrM(κ)
i

+
N (κ)
i√

Tr N (κ)
i

 ,

where

M(κ)
i =

(
R∑
r=1

√
Tr
(
AGEir Σ

(κ)
r (AGEir )

T
)) R∑

r=1

AGEir Σ
(κ)
r

(
AGEir

)T√
Tr
(
AGEir Σ

(κ)
r (AGEir )

T
)
 ,

N (κ)
i =

(
S∑
s=1

√
Tr
(
AEEis Π

(κ)
s (AEEis )

T
)) S∑

s=1

AEEis Π
(κ)
s

(
AEEis

)T√
Tr
(
AEEis Π

(κ)
s (AEEis )

T
)
 .

2.2.5 Regression Analysis

The unknown system parameters of linear model (EC) are estimated by the entries of
the interaction matrices AGGjr ,AEGjs ,AGEir and AEEis also by the intercepts ξj0 and ζi0.
For regression analysis, we have to compare the predictions of the linear model (EC)
and the real data obtained from genetic and environmental measurements [12]. The
ellipsoidal measurements

X
(κ)

r = E
(
µ(κ)
r ,Σ

(κ)

r

)
⊂ R|Cr|,

E
(κ)

s = E
(
ρ(κ)s ,Π

(κ)

s

)
⊂ R|Ds|,

with r = 1, 2, . . . , R; s = 1, 2, . . . , S, and κ = 0, 1, . . . , T , are taken at specified time
states t0 < t1 < . . . < tT and the first T predictions of the linear model are identified
by the ellipsoids

X̂
(κ+1)
j = E

(
µ̂
(κ+1)
j , Σ̂

(κ+1)
j

)
:= ξj0 +

(
R⊕
r=1

AGGjr X
(κ)

r

)
+

(
S⊕
s=1

AEGjs E
(κ)

s

)
,

Ê
(κ+1)
i = E

(
ρ̂
(κ+1)
i , Π̂

(κ+1)
i

)
:= ζi0 +

(
R⊕
r=1

AGEir X
(κ)

r

)
+

(
S⊕
s=1

AEEis E
(κ)

s

)
,

with j = 1, 2, . . . , R, i = 1, 2, . . . , S, and κ = 0, 1, . . . , T − 1.
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Figure 2.1: Overlap of Ellipsoids.

We have fusion (intersection) of ellipsoids (∩ operation), defined by

∆X(κ)
r := X̂(κ)

r ∩X
(κ)

r and ∆E(κ)
s := Ê(κ)

s ∩ E
(κ)

s ,

with r = 1, 2, . . . , R, s = 1, 2, . . . , S, and κ = 1, . . . , T . We aim to maximize the
overlap of the ellipsoid representations of predictions and measurement values with a
regression problem

maximize
T∑
κ=1

{
R∑
r=1

∥∥∆X(κ)
r

∥∥
∗ −

∥∥µ̂(κ)
r − µ(κ)

r

∥∥2
2

(R)

+
S∑
s=1

∥∥∆E(κ)
s

∥∥
∗ −

∥∥ρ̂(κ)s − ρ(κ)s

∥∥2
2

}
,

where ‖ · ‖∗ is the size of the intersections, and ‖∆X(κ)
r ‖∗ = 0 if ∆X

(κ)
r = ∅, and

‖∆E(κ)
s ‖∗ = 0 is assumed if ∆E

(κ)
s = ∅. In Figure 2.1, on the left, ellipsoids X̂(κ)

r and
X

(κ)

r intersect and the size as well as the measure of the fusions are equal on the figure.
The right graphics’ µ̂(κ)

r and µ(κ)
r centers are shifted so that the distance from one to

another is minimized.

Fusions ∆X
(κ)
r and ∆E

(κ)
s are sized by the objective function of (R). In general,

ψ(E(0, Q)) nonnegative-valued criteria functions (ψ(E1) ≤ ψ(E2) if E1 ⊆ E2) are
defined on the set of all nondegenerate ellipsoids. In order to evaluate the volume of
a p-dimensional ellipsoid E(0, Q), mentioned monotonously increasing functions are
put into operation. Let us introduce some of them from [14]:

(a) the trace of Q,

ψT (E (0, Q)) := Tr Q = λ1 + . . .+ λp,

where λi are the eigenvalues of Q;

(b) the trace of square of Q,

ψTS (E (0, Q)) := Tr Q2,

8



which corresponds to the sum of squares of semiaxes;

(c) the diameter,
ψDia (E (0, Q)) := diam (E (0, Q)) := d,

where

max {λi ∈ R | i = 1, . . . , p} =

(
d

2

)2

,

is the E(0, Q) parametrization of the p-dimensional sphere with d/2 radius;

(d) the determinant of Q,

ψDet (E (0, Q)) := detQ = λ1 · . . . · λp,

which evaluates the product of the eigenvalues. Therefore, it has a constant ratio of the
volume of the following ellipsoid

vol E (0, Q) = π
p
2 (detQ)

1
2

(
Γ
(p

2
+ 1
))−1

,

where the Gamma-function is written as Γ.

Taking the measurements of the shape of the intersection ellipsoids, with tools defined
above, allow us to reformulate the regression model (R) [11, 12].

2.2.5.1 The Trace Criterion

It is based on the intersections of ∆X
(κ)
r and ∆E

(κ)
s traces. Both of them are shape

matrices. The sizes of these ellipsoids are measured by the squared lengths of the
semiaxes which are indeed the traces of the shape matrices ∆Σ

(κ)
r and ∆Π

(κ)
s :

maximize
T∑
κ=1


R∑
r=1

Tr
(
∆Σ(κ)

r

)
−
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (RTr)

+
S∑
s=1

Tr
(
∆Π(κ)

s

)
−
|Ds|∑
i=1

(
p̂
(κ)
s,i − p

(κ)
s,i

)2 .

By substituting trace of the shape matrix of an ellipsoid with the sum of the squares of
the semiaxes, the regression problem turns into

maximize
T∑
κ=1


R∑
r=1

 |Cr|∑
j=1

λ
(κ)
r,j −

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R′Tr)

+
S∑
s=1

 |Ds|∑
i=1

Λ
(κ)
s,i −

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 ,

where λ(κ)r,j and Λ
(κ)
s,i are the eigenvalues of ∆Σ

(κ)
r and ∆Π

(κ)
s , respectively.
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2.2.5.2 The Trace of the Square Criterion

The volume of an ellipsoid is evaluated with the help of the traces of the square of its
shape matrix. Now, we achieve the following regression problem:

maximize
T∑
κ=0


R∑
r=1

Tr
(
∆Σ(κ)

r

)2 − |Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (RTS)

+
S∑
s=1

Tr
(
∆Π(κ)

s

)2 − |Ds|∑
i=1

(
p̂
(κ)
s,i − p

(κ)
s,i

)2 .

2.2.5.3 The Diameter Criterion

The diameter of the ellipsoids ∆X
(κ)
r and ∆E

(κ)
s has the form of a sphere which con-

tains all the fusions in least size. By writing them in the objective function, we get:

maximize
T∑
κ=0


R∑
r=1

diam
(
E
(
0,∆Σ(κ)

r

))
−
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (RDia)

+
S∑
s=1

diam
(
E
(
0,∆Π(κ)

s

))
−
|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 .

In eigenvalues terms of ∆Σ
(κ)
r and ∆Π

(κ)
s , we note:

maximize
T∑
κ=1


R∑
r=1

2 ·
√
λ
(κ)
r −

|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R′Dia)

+
S∑
s=1

2 ·
√

Λ
(κ)
s −

|Ds|∑
i=1

(
p̂
(κ)
s,i − p

(κ)
s,i

)2 ,

with λ(κ)r := max{λ(κ)r,j | j = 1, . . . , |Cr|} and Λ
(κ)
s := max{Λ(κ)

s,i | i = 1, . . . , |Ds|}.
So we have a new regression problem:

maximize
T∑
κ=0


R∑
r=1

λ(κ)r −
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R′′Dia)

+
S∑
s=1

Λ(κ)
s −

|Ds|∑
i=1

(
p̂
(κ)
s,i − p

(κ)
s,i

)2 ,

as an alternative proposal.
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2.2.5.4 The Determinant Criterion

This type of objective function of the regression model can be set up on the determi-
nants of the configuration matrices of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s which can be

used as a basis for objective function of the regression model:

maximize
T∑
κ=1


R∑
r=1

det
(
∆Σ(κ)

r

)
−
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (RDet)

+
S∑
s=1

det
(
∆Π(κ)

s

)
−
|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 .

The model can be rewritten with respect to the eigenvalues of the configuration matri-
ces:

maximize
T∑
κ=1


R∑
r=1

|Cr|∏
j=1

λ
(κ)
r,j

− |Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R′Det)

+
S∑
s=1

|Ds|∏
i=1

Λ
(κ)
s,i

− |Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 ,

and the volumes of the ellipsoids ∆X
(κ)
r and ∆E

(κ)
s are addressed explicitly in the

following problem:

maximize
T∑
κ=1

{
R∑
r=1

[(
π

2
|Cr | Γ

(
|Cr|

2
+ 1

)
vol
(
∆X(κ)

r

))2

(R′′Det)

−
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2
+

S∑
s=1

[(
π

2
|DS| Γ

(
|Ds|

2
+ 1

)
vol
(
∆E(κ)

s

))2

−
|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 .

2.3 Target-Environment Systems

Regulatory systems that are effected by noise and uncertainty can be analyzed by
target-environment system. The time-discrete target-environment regulatory systems
consist of n targets and m environmental factors and, thus, constitute two-modal sys-
tems. The target elements are valued by the following vectors X = [X1, . . . ,Xn]′ and
E = [E1, . . . ,En]′ which denote the states of the environmental variables.
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The set of all targets and environments could be partitioned in Cr ⊂ {1, . . . , n} where
r = 1, . . . , R, and DS ⊂ {1, . . . ,m}, s = 1, . . . , S, clusters respectively. The clusters
might be disjoint or overlapping. The restrictions of partitions are represented by
Xr ∈ R|Cr| and Es ∈ R|Ds|, respectively.

2.3.1 The Time-Discrete Model

A discrete-time model for the states of the targets Xj, j = 1, . . . , n, and the environ-
mental factors Ei, i = 1, . . . ,m.

Four types of interactions and regulating effects exist [10]:

(TT ) target cluster→ target variable,

(ET ) environmental cluster→ target vaiable,

(TE) target cluster→ environment variable,

(EE) environmental cluster→ environment variable.

The target-environment regulatory cluster model:

X(κ+1)
j = ζTj0 +

R∑
r=1

[
X(κ)
r

]′
ΘTT
jr +

S∑
s=1

[
E(κ)
s

]′
ΘET
js ,

E(κ+1)
i = ζEi0 +

R∑
r=1

[
X(κ)
r

]′
ΘTE
ir +

S∑
s=1

[
E(κ)
s

]′
ΘEE
is ,


(CM)

with κ ≥ 0. The additional parameters ζTj0, ζ
E
i0 ∈ R are intercepts. Here, ΘTT

jr , ΘTE
ir

are |Cr| subvectors of ΘTT
j ∈ Rn and ΘTE

i ∈ Rn; ΘET
js and ΘEE

is are |Ds| subvectors
of ΘET

j ∈ Rm and ΘEE
i ∈ Rm respective parameter vectors.

2.3.2 The Regression Problem

By substituting measurements X(κ)
=
[
X(κ)

1 , . . . ,X(κ)

n

]′
, E(κ)

=
[
X(κ)

1 , . . . ,X(κ)

m

]′
where X(κ)

,E(κ) ∈ Rn are obtained at t0 < t1 < . . . < tT sampling times for
κ = 0, 1, . . . , T , into (CM), we have:

X̂(κ+1)
j = ζTj0 +

R∑
r=1

[
X

(κ)

r

]′
ΘTT
jr +

S∑
s=1

[
E

(κ)

s

]′
ΘET
js ,

Ê(κ+1)
i = ζEi0 +

R∑
r=1

[
X

(κ)

r

]′
ΘTE
ir +

S∑
s=1

[
E

(κ)

s

]′
ΘEE
is ,

where κ = 0, 1, . . . , T − 1; i = 1, . . . , n; j = 1, . . . ,m.
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By comparing measurements and predictions in following regression problem, we ob-
tain:

minimize
T∑
κ=1

{
n∑
j=1

∣∣∣X̂κ
j − Xκ

j

∣∣∣+
m∑
j=1

∣∣∣Êκi − Eκi
∣∣∣} . (RP)

The ellipsoidal states turns the TE-regulatory network in a dynamic graph model in-
stead of a static one. Hereby, network analysis features from discrete mathematics like
connectedness, cycles and shortest paths could be applied to assess the importance of
ellipsoidal clusters [7].
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CHAPTER 3

OPTIMIZATION METHODS

In this chapter, we state optimization methods rely on the shape matrices Σ
(κ)
r and Π

(κ)
s ,

the distance of the centers µ(κ)
r and ρ(κ)s of the fusions ∆X

(κ)
r and ∆E

(κ)
s . Objective

functions of these 3-dimensional regression problems mostly depend on the determi-
nant or eigenvalues of symmetric positive semidefinite matrices [5]. However, positive
semidefinite representable objective functions are not always available. Therefore, ob-
jective functions have to be modified.

3.1 Semidefinite Programming

The problem (RDet) depends heavily on det(M) in which M is a symmetric positive
semidefinite matrix (M � 0) has a size of n × n [4]. If n ≥ 2, then the function
of determinant is neither a convex nor a concave function. However, if p ∈ Q with

0 ≤ p ≤ 1

n
, then it can be defined as follows:

f(M) =

{
− detp(M) , if M � 0 (i.e. positive definite),
∞ , otherwise,

So, the regression model takes the form:

maximize
T∑
κ=1

−
R∑
r=1

detp
(
∆Σ(κ)

r

)
+

|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R̃Det)

−
S∑
s=1

detq
(
∆Π(κ)

s

)
+

|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 ,
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where p, q ∈ Q with 0 ≤ p ≤ 1

|Cr|
and 0 ≤ q ≤ 1

|Ds|
. Since det(M) =

n∏
i=1

λi(M),

where λi(M) are the eigenvalues ofM , we can rewrite the determinant criterion (R′Det)

maximize
T∑
κ=1

−
R∑
r=1

|Cr|∏
j=1

λ
(κ)
r,j

p

+

|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R̃′Det)

−
S∑
s=1

|Ds|∏
i=1

Λ
(κ)
s,i

q

+

|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 ,

and instead of (R′′Det) we state

maximize
T∑
κ=1

{
R∑
r=1

[(
π

2
|Cr | Γ

(
|Cr|

2
+ 1

)
vol
(
∆X(κ)

r

))2p

(R̃′′Det)

−
|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2
+

ρ̂∑
s=1

[(
π

2
|Ds| Γ

(
|Ds|

2
+ 1

)
vol
(
∆E(κ)

s

))2q

−
|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 .

If ∆Σ
(κ)
r and ∆Π

(κ)
s are positive definite shape matrices then determinants with neg-

ative exponent can be used [13]. The matrix M ∈ Rn×n is mapped as a positive
semidefinite matrix by

f(M) =

{
det−p(M) , if M � 0,

∞ , otherwise,

when p ∈ Q and p > 0, i.e., it is a positive rational function. As a final note, when
p > 0, q > 0 and p, q ∈ Q, our model turns into

maximize
T∑
κ=1


R∑
r=1

det−p
(
∆Σ(κ)

r

)
+

|Cr|∑
j=1

(
µ̂
(κ)
r,j − µ

(κ)
r,j

)2 (R′′′Det)

+
S∑
s=1

det−q
(
∆Π(κ)

s

)
+

|Ds|∑
i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2 .

In trace criterion (R′Tr), all eigenvalues from configuration matrices are added into
∆Σ

(κ)
r and ∆Π

(κ)
s are positive semidefinite representable functions. Also interior point

methods can be considered but they are more difficult to apply. Alternatively, gradi-
ent methods from bilevel programming can be introduced when calculating sums of
eigenvalues in the objective function [16].
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3.2 Mixed-Integer Regression Problem

Gene-environment networks have vast amount of highly-interconnected genes and en-
vironmental clusters. Some clusters which have a weak influence on the system, can
be identified by regression analysis. By deleting negligible degrees of connectivity be-
tween clusters, we can reduce complexity [13]. We require binary constraints between
two clusters for giving a judgement of cluster boundaries.

Given two A,B clusters, A← B says that cluster B regulates cluster A.

In contrast, A 6← B denotes that A is not regulated by cluster B. Then, we define the
Boolean matrices for testing of relations:

χGGjr =

{
1, if Cj ← Cr,

0, if Cj 6← −Cr,
χEGir =

{
1, if Di ← Cr,

0, if Di 6← −Cr,

χGEjs =

{
1, if Cj ← Ds,

0, if Cj 6← −Ds,
χEEis =

{
1, if Di ← Ds,

0, if Di 6← −Ds.

If two clusters do not interact with each other, then not allAGG, AGE, AEG, AEE matri-
ces, but some elements are zero-valued when a disjoint cluster decomposition occurs.

The indegree of the genetic clusterCj in a regulatory network in terms of whole genetic
and environmental clusters is expressed with

deg(Cj)
GG
in :=

R∑
r=1

χGGjr , deg(Cj)
EG
in :=

S∑
s=1

χEGjs ,

where j ∈ {1, . . . , R}.

The indegrees deg(Cj)
GG and deg(Cj)

EG are the sums of genetic and environmental
clusters which regulate Cj cluster, respectively. The overall indegree of the genetic Cj
cluster is expressed as

deg(Cj)in = deg(Cj)
GG
in + deg(Cj)

EG
in .

Correspondingly, for i ∈ {1, . . . , S} the indegree of Di cluster in connection with the
environmental clusters and the genetic cluster is stated as

deg(Di)
GE
in :=

R∑
r=1

χGEir , deg(Di)
EE
in :=

S∑
s=1

χEEis .

Likewise, the indegrees deg(Di)
GE and deg(Di)

EE are the sums of genetic and en-
vironmental clusters which regulate Di cluster. The overall indegree of Di cluster is
stated as

deg(Di)in := deg(Di)
GE
in + deg(Di)

EE
in .
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In parallel, bounds on the outdegree, i.e., the sum of outgoing branches, are identified.
The binary values are created in order to check outgoing connection:

ζGGjr =

{
1, if Cr ← Cj,

0, if Cr 6← Cj,
ζGEir =

{
1, if Cr ← Di,

0, if Cr 6← Di,

ζEGjs =

{
1, if Ds ← Cj,

0, if Ds 6← Cj,
ζEEis =

{
1, if Ds ← Di,

0, if Ds 6← Di.

Then, the outdegree of genetic Cj cluster in terms of whole genetic and environmental
clusters can be stated as

deg(Cj)
GG
out :=

R∑
r=1

ζGGjr , deg(Cj)
GE
out :=

S∑
s=1

ζGEjs ,

where j ∈ {1, . . . , R}. The outdegrees deg(Cj)
GG
out and deg(Cj)

EG
out determine the sum

of genetic and environmental clusters regulated by Cj cluster. The overall outdegree
of Cj genetic cluster is given by

deg(Cj)out := deg(Cj)
GG
out + deg(Cj)

EG
out .

The outdegree of environmental Di cluster in connection with the environmental clus-
ters and the genetic clusters is defined by

deg(Di)
GE
out :=

R∑
r=1

ζGEir , deg(Di)
EE
out :=

S∑
s=1

ζEEis ,

where i ∈ {1, . . . , S}.

The outdegrees deg(Di)
GE
out and deg(Di)

EE
out determine the sum of genetic and environ-

mental clusters regulated by Di cluster. The overall outdegree of cluster Di is

deg(Di)out := deg(Di)
GE
out + deg(Di)

EE
out .

Including particular bounds on the indegrees and outdegrees of the genetic and the
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environmental cluster separately, we obtain:

maximize
T∑
κ=1

{
R∑
r=1

∥∥∆X(κ)
r

∥∥
∗ −

∥∥µ̂(κ)
r − µ(κ)

r

∥∥2
2

+
S∑
s=1

∥∥∆E(κ)
s

∥∥
∗ −

∥∥ρ̂(κ)s − ρ(κ)s

∥∥2
2

}
subject to

deg(Cj)
GG
in ≤ αGGj , j = 1, . . . , R,

deg(Cj)
EG
in ≤ αEGj , j = 1, . . . , R,

deg(Di)
GE
in ≤ αGEi , i = 1, . . . , S,

deg(Di)
EE
in ≤ αEEi , i = 1, . . . , S,

deg(Cj)
GG
out ≤ βGGj , j = 1, . . . , R,

deg(Cj)
EG
out ≤ βEGj , j = 1, . . . , R,

deg(Di)
GE
out ≤ βGEi , i = 1, . . . , S,

deg(Di)
EE
out ≤ βEEi , i = 1, . . . , S.



(MI1)

Now, joined the bounds and put a restriction on all nodes of individual cluster:

maximize
T∑
κ=1

{
R∑
r=1

∥∥∆X(κ)
r

∥∥
∗ −

∥∥µ̂(κ)
r − µ(κ)

r

∥∥2
2

+
S∑
s=1

∥∥∆E(κ)
s

∥∥
∗ −

∥∥ρ̂(κ)s − ρ(κ)s

∥∥2
2

}
subject to

deg(Cj)in ≤ γj, j = 1, . . . , R,

deg(Di)in ≤ δi, i = 1, . . . , S,

deg(Cj)out ≤ εj, j = 1, . . . , R,

deg(Dijsout ≤ ϕi, i = 1, . . . , S.



(MI2)

3.3 Continuous Programming

Real-valued continuous constraints PGG
jr , PEG

js , PGE
ir , PEE

is ∈ [0, 1] are less strict
than χGGjr , χ

EG
js , χ

GE
ir , χ

EE
is binary constraints for relaxing in (MI1) and (MI2) [17].

Furthermore, AGGjr , AEGjs , AGEir , AEEis are bases of continuous variables.

In terms of the genetic and environmental clusters, Cj gives:

deg(Cj)
GG
in :=

R∑
r=1

PGG
jr

(
AGGjr

)
, deg(Cj)

EG
in :=

S∑
s=1

PEG
js

(
AEGjs

)
,
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where Cj is a cluster with real-valued indegree. In the same way, Di cluster with the
real-valued indegree can be stated as

deg(Di)
GE
in :=

R∑
r=1

PGE
ir

(
AGEir

)
,

deg(Di)
EE
in :=

S∑
s=1

PEE
is

(
AEEis

)
.

Similarly, we can make the outdegrees of clusters suitable for a new use by substituting
the binary variables ζGGjr , ζ

EG
js , ζ

GE
ir and ζEEis with QGG

jr , Q
EG
js , Q

GE
ir , Q

EE
is ∈ [0, 1]

real variables which can be expressed in AGGjr ,AEGjs , AGEir , AEEis expressions. Cluster
Cj with the real-valued outdegrees is given by the help of defined by GE clusters

deg(Cj)
GG
out :=

R∑
r=1

QGG
jr

(
AGGjr

)
,

deg(Cj)
EG
out :=

S∑
s=1

QEG
js

(
AEGjs

)
.

Also, the cluster Di with the real-valued outdegree can be defined as

deg(Di)
GE
out :=

R∑
r=1

PGE
ir

(
AGEir

)
,

deg(Di)
EE
out :=

S∑
s=1

QEE
is

(
AEEis

)
.

To protect the significant clusters of the regulatory network to be deleted, we substitute
the strict binary constraints in (MI1) with the continuous soft constraints [13], then we

20



acquire following model:

maximize
T∑
κ=1

{
R∑
r=1

∥∥∆X(κ)
r

∥∥
∗ −

∥∥µ̂(κ)
r − µ(κ)

r

∥∥2
2

+
S∑
s=1

∥∥∆E(κ)
s

∥∥
∗ −

∥∥ρ̂(κ)s − ρ(κ)s

∥∥2
2

}
subject to

R∑
r=1

PGG
jr

(
AGGjr

)
≤ αGGj , j = 1, . . . , R,

R∑
s=1

PEG
js

(
AEGjs

)
≤ αEGj , j = 1, . . . , R,

R∑
r=1

PGE
ir

(
AGEir

)
≤ αGEi , i = 1, . . . , S,

R∑
s=1

PEE
is

(
AEEis

)
≤ αEEi , i = 1, . . . , S,

R∑
r=1

QGG
jr

(
AGGjr

)
≤ βGGj , j = 1, . . . , R,

R∑
s=1

QEG
js

(
AEGjs

)
≤ βEGj , j = 1, . . . , R,

R∑
r=1

QGE
ir

(
AGEir

)
≤ βGEi , i = 1, . . . , S,

R∑
s=1

QEE
is

(
AEEis

)
≤ βEEi , i = 1, . . . , S.



(C1)

The model (MI2) can be relaxed in the following form by fitting real-valued limits on
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all cluster nodes separately:

maximize
T∑
κ=1

{
R∑
r=1

∥∥∆X(κ)
r

∥∥
∗ −

∥∥µ̂(κ)
r − µ(κ)

r

∥∥2
2

+
S∑
s=1

∥∥∆E(κ)
s

∥∥
∗ −

∥∥ρ̂(κ)s − ρ(κ)s

∥∥2
2

}
subject to

R∑
r=1

PGG
jr

(
AGGjr

)
+

R∑
s=1

PEG
js

(
AEGjs

)
≤ γGGj , j = 1, . . . , R,

R∑
r=1

PGE
ir

(
AGEir

)
+

R∑
s=1

PEE
is

(
AEEis

)
≤ βGEi , i = 1, . . . , S,

R∑
r=1

QGG
jr

(
AGGjr

)
+

R∑
s=1

QEG
js

(
AEGjs

)
≤ γEGj , j = 1, . . . , R,

R∑
r=1

QGE
ir

(
AGEir

)
+

R∑
s=1

QEE
is

(
AEEis

)
≤ δiEE, i = 1, . . . , S.



(C2)

3.4 Robust Regression under Ellipsoidal Uncertainty

We now turn to an estimation of parameters of the linear cluster model (CM) under
crisp states. One can write the Regression Problem (RP) model affected by uncertainty
as follows:

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}
such that

∣∣∣X̂(κ)
j − X(κ)

j

∣∣∣ ≤ p
(κ)
j∣∣∣Ê(κ)

i − E(κ)

i

∣∣∣ ≤ q
(κ)
i ,

(κ = 1, . . . , T ; i = 1, . . . ,m; j = 1, . . . , n).


(RP)
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By substituting the equations with corresponding satisfied prediction variables, we can
write (RP) as

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that

∣∣∣∣∣ζTj0 +
R∑
r=1

[
X

(κ−1)
r

]′
ΘTT
jr +

S∑
s=1

[
E

(κ−1)
s

]′
ΘET
js − X(κ)

j

∣∣∣∣∣ ≤ p
(κ)
j ,∣∣∣∣∣ζEi0 +

R∑
r=1

[
X

(κ−1)
r

]′
ΘTE
ir +

S∑
s=1

[
E

(κ−1)
s

]′
ΘEE
is − E(κ)

i

∣∣∣∣∣ ≤ q
(κ)
i

(κ = 1, . . . , T ; i = 1, . . . ,m; j = 1, . . . , n).

Hence, the Robust Regression Problem with uncertain ellipsoidal state reads as fol-
lows:

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that

∣∣∣∣∣ζTj0 +
R∑
r=1

[
X

(κ−1)
r

]′
ΘTT
jr +

S∑
s=1

[
E

(κ−1)
s

]′
ΘET
js − X(κ)

j

∣∣∣∣∣ ≤ p
(κ)
j ,∣∣∣∣∣ζEi0 +

R∑
r=1

[
X

(κ−1)
r

]′
ΘTE
ir +

S∑
s=1

[
E

(κ−1)
s

]′
ΘEE
is − E(κ)

i

∣∣∣∣∣ ≤ q
(κ)
i

(κ = 1, . . . , T ; i = 1, . . . , n; j = 1, . . . ,m)

∀X(κ)
r ∈ E

(
X

(κ)

r ,Σ
(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ E

(
E

(κ)

s ,Π
(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).
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The above problem can be rewritten:

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0 +
R∑
r=1

[
X(κ−1)
r

]′
ΘTT
jr +

S∑
s=1

[
E(κ−1)
s

]′
ΘET
js − X(κ)

j ≤ p
(κ)
j ,

−ζTj0 +
R∑
r=1

[
X(κ−1)
r

]′
ΘTT
jr −

S∑
s=1

[
E(κ−1)
s

]′
ΘET
js + X(κ)

j ≤ p
(κ)
j ,

ζEi0 +
R∑
r=1

[
X(κ−1)
r

]′
ΘTE
ir +

S∑
s=1

[
E(κ−1)
s

]′
ΘEE
is − E(κ)

i ≤ q
(κ)
i ,

−ζEi0 −
R∑
r=1

[
X(κ−1)
r

]′
ΘTE
ir −

S∑
s=1

[
E(κ−1)
s

]′
ΘEE
is + E(κ)

i ≤ q
(κ)
i

(κ = 1, . . . , T ; i = 1, . . . ,m; j = 1, . . . , n)

∀X(κ)
r ∈ E

(
X

(κ)

r ,Σ
(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ E

(
E

(κ)

s ,Π
(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).

By another reformulation employing:

E
(
X

(κ)

r ,Σ
(κ)

r

)
=
{
X

(κ)

r + Σ
(κ)

r ur | ‖ur‖2 ≤ 1
}
,

E
(
E

(κ)

s ,Π
(κ)

s

)
=
{
E

(κ)

s + Π
(κ)

s vs | ‖vs‖2 ≤ 1
}
,

with

Ur :=
{
ur ∈ R|Cr| | ‖ur‖2 ≤ 1

}
, r = 1, . . . , R,

Vs :=
{
vs ∈ R|Ds| | ‖vs‖2 ≤ 1

}
, s = 1, . . . , S,

24



we then obtain the following equivalent problem:

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0 +
R∑
r=1

[
X

(κ−1)
r

]′
ΘTT
jr +

R∑
r=1

max
ur∈Ur

{
u′rΣ

(κ−1)
r ΘTT

jr

}
+

S∑
r=1

[
E

(κ−1)
s

]′
ΘET
js +

S∑
s=1

max
vs∈Vs

{
v′sΠ

(κ−1)
s ΘET

js

}
− X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

−ζTj0 −
R∑
r=1

[
X

(κ−1)
r

]′
ΘTT
jr −

R∑
r=1

max
ur∈Ur

{
u′rΣ

(κ−1)
r ΘTT

jr

}
−

S∑
r=1

[
E

(κ−1)
s

]′
ΘET
js −

S∑
s=1

max
vs∈Vs

{
v′sΠ

(κ−1)
s ΘET

js

}
+ X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′
ΘTE
ir +

R∑
r=1

max
ur∈Ur

{
u′rΣ

(κ−1)
r ΘTE

ir

}
+

S∑
r=1

[
E

(κ−1)
s

]′
ΘEE
is +

S∑
s=1

max
vs∈Vs

{
v′sΠ

(κ−1)
s ΘEE

is

}
− E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m),

−ζEi0 −
R∑
r=1

[
X

(κ−1)
r

]′
ΘTE
ir −

R∑
r=1

max
ur∈Ur

{
u′rΣ

(κ−1)
r ΘTE

ir

}
−

S∑
r=1

[
E

(κ−1)
s

]′
ΘEE
is −

S∑
s=1

max
vs∈Vs

{
v′sΠ

(κ−1)
s ΘEE

is

}
+ E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T, i = 1, . . . ,m).

With the help of the following equalities

max
ur∈Ur

{
u′rΣ

(κ)

r ΘTT
jr

}
= max

ur∈Ur

{
−u′rΣ

(κ)

r ΘTT
jr

}
=
∥∥∥Σ

(κ)

r ΘTT
jr

∥∥∥
2
,

max
ur∈Ur

{
u′rΣ

(κ)

r ΘTE
ir

}
= max

ur∈Ur

{
−u′rΣ

(κ)

r ΘTE
ir

}
=
∥∥∥Σ

(κ)

r ΘTE
ir

∥∥∥
2
,

max
vs∈Vs

{
v′sΠ

(κ)

s ΘET
js

}
= max

vs∈Vs

{
−v′sΠ

(κ)

s ΘET
js

}
=
∥∥∥Π

(κ)

s ΘET
js

∥∥∥
2
,

max
vs∈Vs

{
v′sΠ

(κ)

s ΘEE
is

}
= max

vs∈Vs

{
−v′sΠ

(κ)

s ΘEE
is

}
=
∥∥∥Π

(κ)

s ΘEE
is

∥∥∥
2
,

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m),
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we obtain that

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that

∣∣∣∣∣ζTj0 +
R∑
r=1

[
X

(κ−1)
r

]′
ΘTT
jr +

S∑
s=1

[
E

(κ−1)
s

]′
ΘET
js − X(κ)

j

∣∣∣∣∣
+

R∑
r=1

∥∥∥Σ
(κ−1)
r ΘET

jr

∥∥∥
2

+
S∑
s=1

∥∥∥Π
(κ−1)
s ΘET

js

∥∥∥
2
≤ p

(κ)
j ,∣∣∣∣∣ζEi0 +

R∑
r=1

[
X

(κ−1)
r

]′
ΘTE
ir +

S∑
s=1

[
E

(κ−1)
s

]′
ΘEE
is − E(κ)

i

∣∣∣∣∣
+

R∑
r=1

∥∥∥Σ
(κ−1)
r ΘTE

ir

∥∥∥
2

+
S∑
s=1

∥∥∥Π
(κ−1)
s ΘEE

is

∥∥∥
2
≤ q

(κ)
i ,

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m).

For simplification we define the vectors:

ΘT
j =

[
ζTj0,Θ

TT
j1 , . . . ,Θ

TT
jR ,Θ

ET
j1 , . . . ,Θ

ET
jS

]′
,

ΘE
i =

[
ζEi0,Θ

TE
i1 , . . . ,Θ

TE
iR ,Θ

EE
i1 , . . . ,ΘEE

iS

]′
,

c(κ) =
[
1, X

(κ)

1 , . . . , X
(κ)

R , E
(κ)

1 , . . . , E
(κ)

S

]′
.

Then we have the following problem [10]:

minimize
T∑
κ=1

{
n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}
such that

∣∣∣[c(κ−1)]′ΘT
j − X(κ)

j

∣∣∣
+

R∑
r=1

∥∥∥Σ
(κ−1)
r ΘTT

jr

∥∥∥
2

+
S∑
s=1

∥∥∥Π
(κ−1)
s ΘET

js

∥∥∥
2
≤ p

(κ)
j ,∣∣∣[c(κ−1)]′ΘE

i − E(κ)

i

∣∣∣
+

R∑
r=1

∥∥∥Σ
(κ−1)
r ΘTE

ir

∥∥∥
2

+
S∑
s=1

∥∥∥Π
(κ−1)
s ΘEE

is

∥∥∥
2
≤ q

(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m).



(RCPE)

In this chapter, we examined inverse problems for target-environment networks under
ellipsoidal uncertainty methodically and in detail. These systems are especially suited
for parameter identification of gene-environment networks in computational biology
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and genetics along with applications of eco-finance networks [9]. In the subsequent
chapter, we shall give a basic application of ellipsoidal techniques in standard regres-
sion methodology.
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CHAPTER 4

AN APPLICATION OF ELLIPSOIDAL TECHNIQUES IN
REGRESSION

Estimating real-world problems from observed data is very popular among scientists
from very different disciplines, because it can be used to determine existence, unique-
ness and stability of the solutions.

In the following, G is a function which establishes a relation between model (parame-
ter) m, that is an n-element vector, and (response) data are also called observation d,
that is an m-element vector. Let us define a mathematical model as

G(m) = d.

When observing physical world, noise η in the data is inevitable. Thus, one can define
the following model

d = G(mtrue) + η

= dtrue + η,

where dtrue and mtrue state ideal cases.

Estimating finite vector-wise m from d is called a discrete inverse problem (parameter
estimation problem) [3]. Also, when d and m are functions, then, the model can often
be turned into a discrete inverse problem by discretizing.

Fitting of a function to a data set via linear regression is a linear parameter estimation
problem. In the real-world, linearity is very common among very important inverse
problems such as ballistic positioning. Our quadratic mathematical model in ballistic
trajectory is

y(t) = m1 +m2t− (1/2)m3t
2,

, where t is observation time, m1 is initial altitude, m2 is initial vertical velocity and
m3 is effective gravitational acceleration. Gravitational acceleration is multiplied by
-(1/2) because altitude is decreasing. We try to solve for the unknown m model with
monitoring altitude of the body yi at time ti. Measurement unit of the time is second,
and the distance is measured in meter. The data are considered to be independent and
Gaussian distributed.
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We form a mathematical model based on linear equations of the model parameters:
1 t1 (−1

2
)t21

1 t2 (−1
2
)t22

. . .

. . .

. . .
1 tm (−1

2
)t2m


m1

m2

m3

 =


y1
y2
.
.
.
ym

 .

To solve the model by least-squares estimation, we construct the parabolic system
matrix G. The rows of G are given by

Gi = [1, ti,−(1/2)t2i ].

Then, we build the following parabolic system (or design) matrix

G =



1.0000 1.0000 −0.5000
1.0000 2.0000 −2.0000
1.0000 3.0000 −4.5000
1.0000 4.0000 −8.0000
1.0000 5.0000 −12.5000
1.0000 6.0000 −18.0000
1.0000 7.0000 −24.5000
1.0000 8.0000 −32.0000
1.0000 9.0000 −40.5000
1.0000 10.0000 −50.0000


.

So, G has full rank.

The precise solution is

mtrue = [10m, 100m/s, 9.8m/s2]
′
.

The randomly generated vertical position of a ballistic object from a true solution with
mean µ = 0, standard deviation σ = 8 at a time t is obtained by using the MATLAB
code below.

clear;
rand(’state’,0);
randn(’state’,1);
m_1 = 10;
m_2 = 100;
m_3 = 9.8;
for t=1:10
sgm(t,1) = 8;
y(t,1)=m_1+m_2*t-(1/2*m_3)*tˆ2+sgm(t,1)*randn;
end
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So, the obtained randomly generated vertical position data are:

t y
1.0000 112.0152
2.0000 191.1536
3.0000 259.0847
4.0000 338.5880
5.0000 383.9957
6.0000 430.1627
7.0000 461.0782
8.0000 499.5700
9.0000 505.3806

10.0000 521.3476

Number of model parameters are less than data points, so that finding mtrue is very un-
likely because there usually exist errors in the data and the model function is not exact.
Thus, the solution will not satisfy the system. In a geometric perspective, a parabola
does not exists that goes all data points through. However, estimated solutions to such
problems may be found approximately. The difference between the observations y and
the mathematical model Gm, namely,

y −Gm

is called the residual (prediction error). Data errors are assumed to be independent
and to have a normal distribution, so that the least-squares method can be used to
find a unique solution [3]. In least-squares estimation, the goal is to find an m that
minimizes the 2-norm (Euclidean distance) of the residual:

‖y −Gm‖2 =

√√√√ m∑
i=1

(yi −Gmi)2.

In general form, we note Least-Squares as

‖d−GmL2‖
2
2 = min ‖d−Gm‖22 . (LS)

The diagonal weighting matrix is represented as given below:

W = diag(1/σ1, 1/σ2, . . . , 1/σm)

=



1/8 0 0 0 0 0 0 0 0 0
0 1/8 0 0 0 0 0 0 0 0
0 0 1/8 0 0 0 0 0 0 0
0 0 0 1/8 0 0 0 0 0 0
0 0 0 0 1/8 0 0 0 0 0
0 0 0 0 0 1/8 0 0 0 0
0 0 0 0 0 0 1/8 0 0 0
0 0 0 0 0 0 0 1/8 0 0
0 0 0 0 0 0 0 0 1/8 0
0 0 0 0 0 0 0 0 0 1/8


.
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Let us apply the weighting matrix:

Gw = WG =



0.1250 0.1250 −0.0625
0.1250 0.2500 −0.2500
0.1250 0.3750 −0.5625
0.1250 0.5000 −1.0000
0.1250 0.6250 −1.5625
0.1250 0.7500 −2.2500
0.1250 0.8750 −3.0625
0.1250 1.0000 −4.0000
0.1250 1.1250 −5.0625
0.1250 1.2500 −6.2500


.

Thus, the solution is

dw = Wd =



14.0019
23.8942
32.3856
42.3235
47.9995
53.7703
57.6348
62.4462
63.1726
65.1684


.

The maximum-likelihood estimator of model parameters m is found in the following
way [3]:

Gwm = dw,

where

mw = (G
′

wGw)−1G
′

wdw = mL2 =

 18.4960 m
96.3291 m/s
9.2503 m/s2

 .
In Figure 4.1, the data fit of the estimated model could be plotted by the following
MATLAB code:

% time state vector: 0,0.05,0,10,...,10.90,10.95,11
time=min(t)-1:0.05:max(t)+1
%compute L2 model predictions
model_L2=m_L2(1)+m_L2(2)*time-0.5*m_L2(3)*time.ˆ2
% plot L2 model predictions
plot(time,model_L2,’-’);
%plot [t-sigma,t+sigma] and [y-sigma,y+sigma] error bars
%in same figure
hold on;errorbar(t,y,sigma,’+’);

We have just fitted the model parameters but, we need to test the data fit against uncer-
tainty and estimate error propagation on the model parameters.
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Figure 4.1: Data and L2 Model Predictions.
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A data point that is very much bigger or smaller than the next nearest data point is
called an outlier [3]. Let us assume that d(5) = 683.9957 is an outlier. Then, the
solution turns into:

mL2 =

 −41.5040 m
144.5110 m/s
18.3412 m/s2

 .
Here, L2 solution describe a misfit for the set of observables. See Figure 4.2.

Therefore, we define instead the 1-norm:

‖y −Gm‖1 =
m∑
i=1

‖yi − (Gm)i‖.

The 1-norm solution can be approximated by the MATLAB code below; it is also
called iteratively reweighted least squares strategy [3].

% the size of the system
[m,n]=size(G_w);
tolerance=1.0e-10;
maxiteration=50;
%identity matrix with dimension m
I=eye(m);
%initial m is least square solution
x=G_w\y_w;
%iterate
for i=1:maxiteration
%find residual
d=G_w*x-y_w;
for i=1:m
if (abs(d(i)) < tolerance)
d(i)=abs(tolerance)ˆ(-1);
else
d(i)=abs(d(i))ˆ(-1);
end
end
I=diag(d);
m_L1=(G_w’*I*G_w)\(G_w’*I*y_w);
if (norm(m_L1-x)/(1+norm(x)) < tolerance)
%stop when less than tolerance
break;
else
%solution
x=m_L1;
end
end
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Figure 4.2: L2 (straight) and L1 (dashed) Model Predictions with an outlier.

Then, the result is

mL1 =

 21.1601 m
95.3896 m/s
9.0742 m/s2

 .
In Figure 4.2, data fit of the L1 and skewed L2 models could be plotted similarly by
the following MATLAB code:

% time state vector: 0,0.05,0,10,...,10.90,10.95,11
time=min(t)-1:0.05:max(t)+1
%compute L1 model predictions
model_L1=m_L1(1)+m_L1(2)*time-0.5*m_L1(3)*time.ˆ2
% plot L1,L2 model predictions
plot(time,model_L1,’k-’,time,model_L2,’k:’);
%plot [t-sigma,t+sigma] and [y-sigma,y+sigma] error bars
%in same figure
hold on;errorbar(t,y,sigma,’o’);

Herewith, the 1-norm technique can be more suitable when there are outliers in data
but, the calculations are more complex.
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We again revert back to d(5) = 683.9957. The covariance matrix for fitted parameters
shows the dependency between the parameters:

Cov(mL2) = (G
′

wGw)−1G
′

w((G
′

wGw)−1G
′

w)
′

=

 88.5333 −33.6000 −5.3333
−33.6000 15.4424 2.6667
−5.3333 2.6667 0.4848

 .
Monte-Carlo error propagation is an uncomplicated practice to estimate the covariance
matrix of solutions in noisy problems [3]. In this technique, L1 approximated solution
is taken as baseline data for reproducing data errors conjunction with model errors.

GmL1 = db.

Then, the L1 approximated solution is solved again by the IRLS for q times :

GmL1,i = db + ηi,

where η represents noise and i = 1, . . . , q.

Let A ∈ Rq×m be defined by m = mean(m) and with the following row vectors:

Ai,. = m
′

L1,i
−m

′

L1,.
,

where i = 1, . . . , q.

Then, approximated covariance matrix from trial data is defined by:

Cov(mL1) :=
A

′
A

q
.

We can implement the above procedure in MATLAB:

iteration_mc=50000;
%initial y is L1 estimate
y_0 = G*m_L1;
%loop for solving generated data
for i = 1:mc_iteration
%data generation
y = y_0+sgm.*randn(N,1);
%weighting
y_w=y./sgm;
%IRLS tecnique mentioned above
m_mc(i,:)=irls(G_w,y)’;
end
%average model
m_avg=[mean(m(:,1))*ones(iteration_mc,1),mean(m(:,2))...
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...*ones(iteration_mc,1),mean(m(:,3))*ones(iteration_mc,1)];
%subtract average from irls estimation
cov_L1_est=m_mc-m_avg;
%estimated covariance matrix
covm_L1_est=(covm_L1_est’*covm_L1_est)/mc_iteration;

Cov(mL1) =

123.9780 −46.9560 −7.4345
−46.9560 21.6892 3.7473
−7.4345 3.7473 0.6824

 .
Then, plot the calculated model points. Figure 4.3 shows the Monte-Carlo error pro-
jections.

%plot m_1-m_2 estimated data points
plot(m_mc(:,1),m_mc(:,2),’k*’)
xlabel(’m_1 (m)’)
ylabel(’m_2 (m/s)’)
subplot(1,3,2)
%plot m_1-m_3 estimated data points
plot(m_mc(:,1),m_mc(:,3),’k*’)
xlabel(’m_1 (m)’)
ylabel(’m_3 (m/sˆ2)’)
subplot(1,3,3)
%plot m_2-m_3 estimated data points
plot(m_mc(:,2),m_mc(:,3),’k*’)
xlabel(’m_2 (m/s)’)
ylabel(’m_3 (m/ˆ2)’)

The 1.96-sigma confidence interval is a tool to find a range which includes the true
parameter with 95% probability.

The 95% parameter confidence intervals (m−,mest,m+) are calculated below, where
we used symbolic ± notation to segment internal vectors:

(m−,mest,m+) = mL2 ± 1.96 · diag(Cov(mL2))
1/2

= [18.4960± 18.4421 m, 96.3291± 7.7022 m/s, 9.2503± 1.3648 m/s2]
′

=

 2.8555 18.4960 39.7396
87.3721 96.3291 102.7764
7.6491 9.2503 10.3786

 .
We use the chi-square value(and distribution) of sums-of-squares of errors to test the
quality of data [3]. There are 3 parameters to estimate, we have 7 (=10-3) degrees of
freedom. Chi-square misfit for 7 parameters and random variable d has a chi-square
distribution with 7 degrees of freedom. So we calculate the chi-square value:

χ2 = ‖dw −Gwmw‖22 =
m∑
i=1

(di − (Gmw)i)
2σ2

i = 3.5966.
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Figure 4.3: Monte-Carlo error projections.
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The chi-square p-value for this data set is

p =

∫ ∞
χ2

1

27/2Γ(7/2)
x

5
2 e−

x
2 dx ≈ 0.8249.

The p-value is within close range of 1 so the data is very likely to be the real physics.
Spread of the expected model parameters obtained by using covariance matrix is given
symbolically by

Var(mw) =
√

diag(Cov(mw)) =

9.4092 0 0
0 3.9297 0
0 0 0.6963

 .
The matrix of parameter correlations obtained by scaling the covariances with vari-
ances is

Cor(mw) =
Cov(mw)√

Var(mw)Var(mw)′
=

 1.0000 −0.9087 −0.8140
−0.9087 1.0000 0.9746
−0.8140 0.9746 1.0000

 .
The pairwise dependency between m1, m2 and m3 is strong, and the error ellipsoid is
thus inclined and eccentric.

Let us diagonalize the covariance model matrix to find eigenvalues and eigenvectors:

Cov(mw)−1 = P−1ΛP.

We note that the eigenvalues correspond to the ellipsoid semiaxis lengths are:

Λ = diag(λ1, λ2, λ3) ≈

0.0095 0 0
0 2.4718 0
0 0 101.9793

 .
Orthonormal eigenvectors show the directions of the error ellipsoid principal axes
where P is

P ≈

−0.0299 0.3663 −0.9300
−0.2330 0.9022 0.3629
0.9720 0.2275 0.0584

 .
The 95% confidence ellipsoid semiaxis lengths are noted in√

F−1χ2,3(0.95)[1/
√
λ1, 1/

√
λ2, 1/

√
λ3] ≈

[
28.6062, 1.7781, 0.2768

]
,

so that the 95% confidence ellipsoid semiaxes are comprised of

=

−0.8547 0.6514 −0.2574
−6.6653 1.6042 0.1005
27.8057 0.4046 0.0162

 .
The 95% confidence ellipsoid with n-dimension:

(m−mL2)
′
C−1(m−mL2) ≤ ∆2,
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where C is the covariance matrix and ∆ =
√

F−1χ2,2(0.95)

mathrmVarpeip.

In ellipsoidal toolbox, the solutions of the equation:

E(c,C) = {x :< (x− c),C−1(x− c) >≤ 1},

defines an ellipsoid with vectors x, c ∈ Rn, in fact, with center c and symmetric
positive semidefinite shape matrix C ∈ Rn×n [15]. Here, < ·, · > stands for scalar
product.

The uncertainty in the model parameters becomes not easy to analyse or understand
when all parameters mash-up. We can consider just two parameters at a time more
practically. Projection of pairwise confidence ellipsoids onto the coordinate axes can
be provided by the following MATLAB code with the help of Ellipsoidal Toolbox (ET)
is shown in Figure 4.4.

%chi2 reduced to number of parameters
delta=sqrt(chi2inv(0.95,2));
%extract 1st and 2nd row/columns
C=covm((1:2),(1:2));
%find corresponding eigenvalues/eigenvectors
[u,lam]=eig(inv(C));
subplot(1,3,1)
%Create and plot m_1-m_2 ellipsoid
E=ellipsoid([m(1);m(2)],deltaˆ2*C)
hold on;
option.fill=1;
plot(E,’k’,options)
axis([-50 50 85 110]);
xlabel(’m_1 (m)’);
ylabel(’m_2 (m/s)’);
%extract 1st and 3rd row/columns
C=covm([1,3],[1,3]);
%find corresponding eigenvalues/eigenvectors
[u,lam]=eig(inv(C));
subplot(1,3,2)
%Create and plot m_1- m_3 ellipsoid
E=ellipsoid([m(1);m(3)],deltaˆ2*C)
hold on;
option.fill=1;
plot(E,’k’,options)
axis([-50 50 7 12]);
xlabel(’m_1 (m)’);
ylabel(’m_3 (m/sˆ2)’);
%extract 2nd and 3rd row/columns
C=covm([2,3],[2,3]);
%find corresponding eigenvalues/eigenvectors
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[u,lam]=eig(inv(C));
subplot(1,3,3)
%Create and plot m_2-m_3 ellipsoid
E=ellipsoid([m(2);m(3)],deltaˆ2*C)
hold on;
option.fill=1;
plot(E,’k’,options)
axis([80 120 7 12]);
xlabel(’m_2 (m/s)’);
ylabel(’m_3 (m/sˆ2)’);
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Figure 4.4: 95% Confidence Ellipse Projections.

We obtain 95% confidence intervals which are larger than the 1.96-sigma levels:

[m1,m2,m3] = [16.42± 23.03 m, 96.97± 9.62 m/s, 9.41± 1.70 m/s2].

Note that the 95% confidence 3-D ellipsoid simulation in the (m1, m2, m3) coordinate
system in Figure 4.5.
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Figure 4.5: 95% Confidence Ellipsoid.
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CHAPTER 5

CONCLUSION AND OUTLOOK

Ellipsoids are a more effective representation tool for uncertain states of overlapping
and disjoint clusters than interval arithmetics. It is like an additional information layer
onto networks when weighting clusters. This layer includes various properties of el-
lipsoids associated with clusters. After a preprocessing step of clustering and clas-
sification, functionally related groups of data are identified. Corresponding cluster
parameters determine the dynamics of target and environmental factors as well as their
effects on each other. Time-discrete models estimate effects of single variables and
their joint effects on clusters. Interior point methods and semidefinite programming
are used for solving.

In this study, we aim to summarize the literature in the ellipsoidal optimization field.
Firstly, we define suitable systems that produce ellipsoidal uncertainty under some
conditions. Then, we introduce optimization methods, especially, regression models,
available for those systems. In Chapter 4, we give some basic background information
in inverse problems and try to solve an inverse problem step by step using a regression
model. Also, we use ellipsoidal toolbox for an easy way to plot ellipsoids in 2D and
3D, using covariance matrix as shape matrix and estimated model parameters as center
vector.

In future research, network analysis and concepts from discrete mathematics like con-
nectedness, cycles and shortest paths can be investigated. In mixed-integer program-
ming, using penalty function instead of constraints could be done. More suitable op-
timization methods for regulatory systems in systems biology and life sciences ap-
plications with real-world data can be looked into. Collaborative game theory under
interval uncertainty [2] can be studied by ellipsoids. Also, advantages of representing
uncertainties with polyhedrals instead of ellipsoids may be investigated.
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APPENDIX A

Ellipsoidal Calculus

Calculation of approximation at each time step with ellipsoidal calculus can be used
in discrete-time systems with singular state tansition matrices. Lets review the basic
ellipsoidal operations to deal with ellipsoidal uncertainty [15].

A.1 Ellipsoidal Descriptions

E(c,Σ) ∈ Rp is an ellipsoid as

E(c,Σ) =
{

Σ1/2u+ c | ‖u‖2 ≤ 1
}
,

wherein c ∈ Rp is its center and Σ ∈ Rp×p is its positive definite shape matrix. When
Σ1/2 is positive semi-definite, we get the non-degenerate ellipsoid E(c,Σ)

E(c,Σ) =
{
x ∈ Rp | (x− c)′Σ−1(x− c) ≤ 1

}
.

where corresponding eigenvector are zero.

Affine transformations are given by

AE(c,Σ) + b = E (Ac+ b, AΣA′) ,

where E(c,Σ) ⊂ Rp, matrix A ∈ Rm×p and vector b ∈ Rm.

The family of ellipsoids is closed with respect to affine transformations. Thus, ellip-
soids are preserved under affine transformation. If the rows of A are linearly indepen-
dent (which impliesm ≤ p), and b = 0, the affine transformation is called a projection.

Geometric sum of ellipsoids as

E1 + . . .+ Ek = {z1 + . . .+ zk | zk ∈ Ek} ,

where Ek = E(ck,Σk), k = 1, . . . , K, are nondegenerate ellipsoids. The sum generally
is not an ellipsoid. However, it can be tightly approximated by parametrized families
of external ellipsoids.

Geometric difference of ellipsoids as

E1 − E2,

47



where E1 = E(c1,Σ1), E2 = E(c2,Σ2), are nondegenerate ellipsoids.

Minimal trace ellipsoid could be denoted as

σ =
K∑
k=1

ck

and

P =

(
K∑
k=1

√
TrΣk

)(
K∑
k=1

Σk√
TrΣk

)
,

where E(σ, P ) =
K⊕
k=1

Ek is outer ellipsoidal approximation and S =
K∑
k=1

Ek is contain-

ing the sum ellipsoids [15].

Let us assume that
X := λΣ−11 + (1− λ)Σ−12

and
τ := 1− λ(1− λ)(c2 − c1)′Σ−12 X−1Σ−11 (c2 − c1).

Fusion of ellipsoids is defined by

Eλ(c0,Σ0) := {x ∈ Rp | λ(x− c1)′Σ−11 (x− c1)
+(1− λ)(x− c2)′Σ−12 (x− c2) ≤ 1

}
,

where λ ∈ [0, 1], E(c1,Σ1), E(c2,Σ2) ⊂ Rp are non-degenerate ellipsoids when
E(c1,Σ1) ∩ E(c2,Σ2) 6= ∅. The ellipsoid Eλ(c0, Σ0) is given by the center

c0 = X−1
(
λΣ−11 c1 + (1− λ

)
Σ−12 c2)

and the shape matrix
Σ0 = τX−1.

We introduce two new terms:

X := λΣ−11 + (1− λ)Σ−12 ,

and
τ := 1− λ(1− λ)(c2 − c1)′Σ−12 X−1Σ−11 (c2 − c1).

If E(c1,Σ1) * E(c2,Σ2) or E(c2,Σ2) * E(c1,Σ1), then approximated outbound ellip-
soidal Eλ(c0,Σ0) could be defined as

τ (detX ) Tr
(
co (X )

(
Σ−11 − Σ−12

))
− p (detX )2

×
(
2c′0Σ

−1
1 c1 − 2c′0Σ

−1
2 c2 + c′0

(
Σ−12 − Σ−11

)
c0 − c′1Σ−11 c1 + c′2Σ

−1
2 c2

)
= 0,

where λ is the only root in (0, 1) of the following polynomial of degree 2p − 1 and
co(X ) denotes the matrix of cofactors of X .
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In fact, let us substitute X−1 = co (X )/ detX in this polynomial:

τ (detX )2 Tr
(
X−1

(
Σ−11 − Σ−12

))
− p (detX )2

×
(
2c′0Σ

−1
1 c1 − 2c′0Σ

−1
2 c2 + c′0

(
Σ−12 − Σ−11

)
c0 − c′1Σ−11 c1 + c′2Σ

−1
2 c2

)
= 0.

The input is given in following terms:

X
(κ)

r = E
(
µ(κ)
r ,Σ

(κ)

r

)
⊂ R|Cr|, E

(κ)

s ∈ E
(
ρ(κ)s ,Π

(κ)

s

)
⊂ R|Ds|.

The approximated fusions ∆X
(κ)
r = X̂

(κ)
r ∩ X(κ)

Cr
is an ellipsoid E

(
∆µ

(κ)
r , ∆Σ

(κ)
r

)
with center

∆µ(κ)
r :=

[
X (κ)
r

]−1(
λ
[
Σ̂(κ)
r

]−1
µ̂(κ)
r + (1− λ)

[
Σ

(κ)

r

]−1
µ(κ)
r

)
and shape matrix

∆Σ(κ)
r = ξ(κ)r

[
X (κ)
r

]−1
,

where
X (κ)
r := λ

[
Σ̂(κ)
r

]−1
+ (1− λ)

[
Σ

(κ)

r

]−1
and

ξ(κ)r := 1− λ (1− λ)
(
µ(κ)
r − µ̂(κ)

r

)′ [
Σ

(κ)

r

]−1 [
X (κ)
r

]−1 [
Σ̂(κ)
r

]−1 (
µ(κ)
r − µ̂(κ)

r

)
.

The parameter λ is the only root in of the following polynomial of degree 2|Cr| − 1:

ξ(κ)r

(
detX (κ)

r

)2
Tr

([
X (κ)
r

]−1([
Σ̂(κ)
r

]−1
−
[
Σ

(κ)

r

]−1))
− |Cr|

(
detX (κ)

r

)2
×
(

2
[
∆µ(κ)

r

]′ [
Σ(κ)
r

]−1
µ̂(κ)
r − 2

[
∆µ(κ)

r

]′ [
Σ

(κ)

r

]−1
µ(κ)
r

+
[
∆µ(κ)

r

]′([
Σ

(κ)

r

]−1
−
[
Σ̂(κ)
r

]−1)
∆µ(κ)

r − [µ̂r]
[
Σ̂(κ)
r

]−1
µ̂(κ)
r

+
[
µ(κ)
r

]′ [
Σ

(κ)

r

]−1
µ(κ)
r

)
= 0.

Similarly, the predicted fusion ∆E
(κ)
s := Ê

(κ)
s ∩ E

(κ)

s is an ellipsoid E(∆p
(κ)
s ,∆Π

(κ)
s )

with center

∆ρ(κ)s =
[
Y(κ)
s

]−1(
λ
[
Π̂(κ)
s

]−1
ρ̂(κ)s + (1− λ)

[
Π

(κ)

s

]−1
ρ(κ)s

)
and shape matrix

∆Π(κ)
s = η(κ)s

[
Y(κ)
s

]−1
,

where
Y(κ)
s := λ

[
Π̂(κ)
s

]−1
+ (1− λ)

[
Π

(κ)

s

]−1
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and

η(κ)s := 1− λ(1− λ)
(
p(κ)s − p̂(κ)s

)′ [
Π

(κ)

s

]−1 [
Y(κ)
s

]−1 [
Π̂(κ)
s

]−1 (
p(κ)s − p̂(κ)s

)
.

Also, λ is the only root of the following polynomial of degree 2|Ds| − 1:

η(κ)s

(
detY(κ)

s

)2
Tr

([
Y(κ)
s

]−1([
Π̂(κ)
s

]−1
−
[
Π

(κ)

s

]−1))
− |Ds|

(
detY(κ)

s

)2
×
(

2
[
∆ρ(κ)s

]′ [
Π̂(κ)
s

]−1
ρ̂(κ)s − 2

[
∆ρ(κ)s

]′ [
Π

(κ)

s

]−1
ρ(κ)s

+
[
∆ρ(κ)s

]′([
Π

(κ)

s

]−1
−
[
Π̂(κ)
s

]−1)
∆ρ(κ)s − [ρ̂s]

′
[
Π̂(κ)
s

]−1
ρ̂(κ)s

+
[
p(κ)s

]′ [
Π

(κ)

s

]−1
p(κ)s

)
= 0.

These representations are called explicit representations of the fusions [11] and could
be used for numerical calculations and an estimation of the parameters in the regression
problems (RP).
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APPENDIX B

Ellipsoidal Toolbox

Ellipsoidal Toolbox (ET) is a software package that implements the ellipsoidal calculus
and its application freely in MATLAB [15].

The ellipsoidal toolbox features:

• The operations of the ellipsoidal calculus: affine transformation, geometric sum,
geometric difference, intersections with hyperplane, ellipsoid, halfspace and
polytope, calculation of maximum ellipsoid, calculation of minimum ellipsoid.

• Reachability problem and ellipsoidal methods for the reach set approximation.

B.1 Installation

1. Download version 1.1.3 from

http://systemanalysisdpt-cmc-msu.github.io/ellipsoids

2. Extract the downloaded file.

3. Open and run install.m from extracted ellipsoids folder in MATLAB.

4. File→ Set Path... and click Save.

B.2 Examples

>> q = [2; -1],
>> Q = [9 -5; -5 4];
% nondegenerate ellipsoid in Rˆ2
>> E = ellipsoid(q, Q);
>> E = ellipsoid(Q) + q;
>> E = sqrtm(Q)*ell unitball(size(Q, 1)) + q;
% 2x2 array of ellipsoids
>> EE = [E polar(E); inv(E) [0 1; -2 0] * E + [3; 0]];
% define halfspace x1 + x2 <= 1

51

http://systemanalysisdpt-cmc-msu.github.io/ellipsoids


>> H = hyperplane([1; 1], 1);
% define halfspace x1 + x2 >= 1
>> H = hyperplane([-1; -1], -1);
% convert array of hyperplanes to polytope
>> P = hyperplane2polytope(HH);
% covert polytope to array of hyperplanes
>> HP = polytope2hyperplane(P);
>> HP == HH
ans =
1 1 1 1

% Functions hyperplane2polytope and polytope2hyperplane
% require the Multi-Parametric Toolbox to be installed.

B.3 Function Reference

B.3.1 ellipsoid Methods

contains – checks if one ellipsoid contains the other.

dimension - returns the dimension of the space in which the ellipsoid is defined
and the rank of its shape matrix.

display – displays the details of the ellipsoid object.

distance – computes the distance from the given ellipsoid to the specified object
– vector, ellipsoid, hyperplane or polytope.

double – returns parameters of the ellipsoid, its center and shape matrix.

ellintersection ia – computes maximum volume ellipsoid that is con-
tained in the intersection of given ellipsoids.

ellipsoid – constructor for the ellipsoid object.

ellunion ea – computes minimum volume ellipsoid that contains union of given
ellipsoids.

eq – overloaded operator ’==’, checks if two ellipsoids are equal.

ge, gt – checks if the first ellipsoid is bigger than the second one.

getAbsTol – gives array the same size as input array with values of absTol
properties for each ellipsoid in input array.

getNPlot2dPoints – gives value of nPlot2dPoints property of ellip-
soids in input array of ellipsoids.
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getNPlot3dPoints – gives value of nPlot3dPoints property of ellip-
soids in input array of ellipsoids.

getRelTol – gives array the same size as input array with values of relTol
properties for each ellipsoid in input array.

hpintersection – computes the ellipsoid which results from intersection of
given ellipsoid with given hyperplane.

intersect – checks if the union or intersection of ellipsoids intersects given el-
lipsoid, hyperplane or polytope.

intersection ea – computes the external ellipsoidal approximation of the
intersection of the ellipsoid with given ellipsoid, halfspace or polytope.

intersection ia – computes the internal ellipsoidal approximation of the
intersection of the ellipsoid with given ellipsoid, halfspace or polytope.

inv – inverts the shape matrix of the ellipsoid if it is nonsingular.

isbaddirection – checks if ellipsoidal approximations of the geometric dif-
ference of two ellipsoids can be computed for given directions.

isbigger – checks if one ellipsoid would contain the other if their centers would
coincide.

isdegenerate – checks if given ellipsoid is degenerate.

isempty – checks if given ellipsoid is an empty object.

isinside – checks if the intersection of ellipsoids contains the union or intersec-
tion of given ellipsoids or polytopes.

isinternal – checks if the union or intersection of ellipsoids contains given
vectors.

le, lt – checks if the second ellipsoid is bigger than the first one.

maxeig – returns the biggest eigenvalue of the ellipsoid.

mineig – returns the smallest eigenvalue of the ellipsoid.

minkdiff – computes and plots the geometric difference of two ellipsoids in 2D
and 3D.

minkdiff ea – computes external ellipsoidal approximations of the geometric
difference of two ellipsoids of arbitrary dimension for given directions, if these direc-
tions are not bad.

minkdiff ia – computes internal ellipsoidal approximations of the geometric
difference of two ellipsoids of arbitrary dimension for given directions, if these direc-
tions are not bad.
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minkmp – computes and plots geometric
(Minkowski) sum of the geometric difference of two ellipsoids and the geometric sum
of n ellipsoids in 2D or 3D.

minkmp ea – computes external ellipsoidal approximations of the geometric
(Minkowski) sum of the geometric difference of two ellipsoids and the geometric sum
of n ellipsoids.

minkmp ia – computes internal ellipsoidal approximations of the geometric
(Minkowski) sum of the geometric difference of two ellipsoids and the geometric sum
of n ellipsoids.

minkpm – computes and plots geometric (Minkowski) difference of the geometric
sum of ellipsoids and a single ellipsoid in 2D or 3D.

minkpm ea – computes external ellipsoidal approximations of the geometric
(Minkowski) difference of the geometric sum of ellipsoids and a single ellipsoid.

minkpm ia – computes internal ellipsoidal approximations of the geometric
(Minkowski) difference of the geometric sum of ellipsoids and a single ellipsoid.

minksum – computes and plots the geometric sum of finite number of ellipsoids in
2D and 3D.

minksum ea – computes external ellipsoidal approximations of the geometric sum
of finite number of ellipsoids of arbitrary dimension for given directions.

minksum ia – computes internal ellipsoidal approximations of the geometric sum
of finite number of ellipsoids of arbitrary dimension for given directions.

minus – overloaded operator ’-’.

move2origin – moves given ellipsoids to the origin.

mtimes – overloaded operator ’*’.

ne – overloaded operator ’˜=’, checks if two ellipsoids are not equal.

parameters – returns parameters of the ellipsoid, its center and shape matrix.

plot – plots ellipsoids in 1D, 2D and 3D.

plus – overloaded operator ’+’.

polar – computes polars for ellipsoids which contain the origin.

projection – computes projection of ellipsoids onto given orthogonal basis.

rho – computes the support function of the ellipsoids for given directions and corre-
sponding boundary points.

shape – has the same functionality as mtimes but modifies only the shape matrix
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of the ellipsoid leaving its center as is.

trace – computes trace of given ellipsoids.

uminus – overloaded operation unitary minus.

volume – computes volume of given ellipsoids.

B.3.2 hyperplane Methods

contains – checks if the hyperplanes contain given vectors.

dimension – returns the dimension of the space in which the hyperplane is de-
fined.

display – displays the details of the hyperplane object.

double – returns parameters of the hyperplane object, its normal and scalar.

eq – overloaded operator ’==’. checks if two hyperplanes are equal.

getAbsTol – gives array the same size as input array with values of absTol
properties for each hyperplane in input array.

hyperplane – constructor for the hyperplane object. If called without parame-
ters, returns empty hyperplane.

isempty – checks if the hyperplane object is empty.

isparallel – checks if the hyperplanes are parallel.

ne – overloaded operator ’˜=’, checks if two hyperplanes are not equal.

parameters – returns parameters of the hyperplane object, its normal and scalar.

plot – plots hyperplanes in 2D and 3D.

uminus – overloaded operator unitary minus. It does not change the hyperplane,
and affects only the halfspace this hyperplane defines.

B.3.3 linsys Methods

dimension – returns dimensions of state, input, output and disturbance input
spaces.

display – displays the details of the linear system object.

hasdisturbance – checks if given linear system is the system with distur-
bance.
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hasnoise – checks if given linear system has noise at the output.

isdiscrete – checks if given linear system is discrete-time.

isempty – checks if given linear system is an empty object.

islti – checks if given linear system is time invariant.

linsys – constructor for the linear system object. If called without parameters,
creates an empty object.

B.3.4 reach Methods

cut – extracts a segment of the reach tube from the given start time to the given end
time.

dimension – returns the dimension of the reach set and the dimension of the state
space for which the reach set was originally computed.

display – displays the details of the reach set object.

evolve – computes further evolution in time of the already existing reach set.

get center – returns trajectory of the center of the reach set.

get directions – returns the trajectories of the direction vectors for which the
ellipsoidal approximations were computed.

get ea – returns array of ellipsoids that represent the external approximation of the
reach set.

get goodcurves – returns the trajectories along which the ellipsoidal approxi-
mations are touching the actual reach set.

get ia – returns array of ellipsoids that represent the internal approximation of the
reach set.

get system – returns the linear system object for which the reach set was com-
puted.

intersect – checks if the external or internal approximation of the reach set
intersects with given ellipsoids, hyperplanes or polytopes.

iscut – checks if the given reach set object resulted from cut operation.

isempty – checks if the given reach set object is empty.

isprojection – checks if the given reach set is a result of projection op-
eration.

plot ea – plots external approximation of the reach set in 2D and 3D.
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plot ia – plots internal approximation of the reach set in 2D and 3D.

projection – projects the reach set onto the given orthogonal basis.

reach – constructor for the reach set object and the main function that computes the
reach set.

refine – adds new approximations for the specified directions to the given reach
set object, thus improving the overall approximation.

B.3.5 Miscellaneous Functions

ell simdiag – computes the orthogonal transformation matrix that simultane-
ously diagonalizes two symmetric matrices.

ell unitball – creates the ellipsoid object that represents a unit ball of the
given dimension.

ell valign – computes the orthogonal matrix that aligns two vectors.

hyperplane2polytope – converts array of hyperplanes of the same dimen-
sion into the polytope object of the Multi-Parametric Toolbox.

polytope2hyperplane – converts the polytope object of the
Multi-Parametric Toolbox into the array of hyperplanes.
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