
MATHEMATICAL MODELING AND SOLUTION APPROACHES FOR
BALANCING TURKISH ELECTRICITY DAY AHEAD MARKET

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

MATHEMATICAL MODELING AND SOLUTION APPROACHES FOR
BALANCING TURKISH ELECTRICITY DAY AHEAD MARKET

Yörükoğlu, Sı̇nan

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Zeynep Müge Avşar

Co-Supervisor : Dr. Bora Kat

September 2015, 95 pages

In the Turkish Electricity Market, electricity trade is carried out largely through Bilat-
eral Agreements and the emerging short term imbalances are settled in the Balancing
Power Market, particularly the Day Ahead Market. In the Day Ahead Market, the par-
ticipants submit their bids for each hour of the next day in the form of price-quantity
pairs and the Market Operator evaluates those bids using an optimization tool. After
the evaluation of the bids, a Market Clearing Price at every hour of the next day and
the accepted bids are announced. In this thesis, a mathematical model for balancing
a day in the Turkish Electricity Day Ahead Market is proposed. All types of bids,
including hourly, block and flexible bids, are included in the model. As the objec-
tive function of the model, “total economic welfare”, which is the sum of consumer
surplus and producer surplus, is used. In the model, “paradoxically rejected block or-
ders” are also taken into consideration and a bi-criteria solution approach is proposed
for this purpose. An extension of this solution method is also applied as a second ap-
proach. Since the proposed model is a mixed integer non-linear programming model,
a linear approximation to the objective function is proposed in order to overcome the
possible problems at the solution phase. Both models are tested by using several dif-
ferent, generated data sets, and applying the proposed bi-criteria solution approaches.
Both solution approaches include total economic welfare and the number of paradox-
ically rejected block orders as the two criteria. The results and performance of the
proposed methods and models are discussed at the end of the study.
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Keywords: Electricity Sector, Day Ahead Market, Mixed Integer Non-linear Pro-
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ÖZ

TÜRKİYE GÜN ÖNCESİ ELEKTRİK PİYASASI DENGELEMESİ İÇİN
MATEMATİKSEL MODELLEME VE ÇÖZÜM YAKLAŞIMLARI

Yörükoğlu, Sı̇nan

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Zeynep Müge Avşar

Ortak Tez Yöneticisi : Dr. Bora Kat

Eylül 2015 , 95 sayfa

Türkiye Elektrik Piyasası’nda, elektrik ticaretinin büyük bir kısmı uzun dönemli İkili
Anlaşmalar vasıtası ile yapılmakta, bu anlaşmalar sonrasında oluşan kısa süreli den-
gesizlikler ise başta Gün Öncesi Piyasası olmak üzere, Dengeleme Güç Piyasası’nda
giderilmektedir. Gün Öncesi Piyasası’nda, katılımcıların bir sonraki günün her bir
saati için ayrı ayrı fiyat-miktar ikilileri şeklinde verdiği teklifler, Piyasa İşletmecisi
tarafından bir optimizasyon aracı kullanılarak değerlendirilir. Bu değerlendirme so-
nucunda, ertesi günün her bir saati için bir Piyasa Takas Fiyatı ve bu fiyata bağlı
olarak kabul edilen teklif miktarları açıklanır. Bu çalışmada Türkiye Gün Öncesi Pi-
yasası’nın bir günlük dengelenmesi için matematiksel bir model önerilmiştir. Bu mo-
delde piyasadaki tüm teklif tipleri (saatlik, blok ve esnek teklifler) dikkate alınmak-
tadır. Modelin amaç fonksiyonu olarak, tüketici fazlası ve üretici fazlasının toplamı
olan “toplam ekonomik refah” kullanılmıştır. Modelin çözümünde ‘paradoksal red-
dedilen blok teklifler’i de göz önüne alınmış ve bu amaçla çift kriterli bir çözüm yak-
laşımı oluşturulmuştur. İkinci bir çözüm yaklaşımı olarak, ilk yöntemin bir uzantısı
kullanılmıştır. Önerilen matematiksel modelin karışık tamsayılı doğrusal olmayan bir
model olmasından kaynaklanan çözüm aşamasındaki olası güçlükleri gidermek için
amaç fonksiyonunun doğrusal yaklaştırması da önerilmiş ve bu modeller oluşturu-
lan farklı veri setleri üzerinden, önerilen çift kriterli çözüm yaklaşımları kullanılarak
test edilmiştir. Çözüm yaklaşımlarındaki iki kriter olarak, toplam ekonomik refah ve
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paradoksal reddedilen blok teklif sayısı belirlenmiştir. Çalışmanın sonunda, önerilen
yöntemlerin sonuçları ve performansı tartışılmıştır.

Anahtar Kelimeler: Elektrik Piyasası, Gün Öncesi Piyasası, Karışık Tamsayılı Doğ-
rusal Olmayan Programlama, Paradoksal Reddedilen Teklifler, Dengeleme
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OIZ Organize Industrial Zone (Organize Sanayi Bölgesi)
PMUM Market Financial Settlement Center (Piyasa Mali Uzlaştırma
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CHAPTER 1

INTRODUCTION

The Turkish Electricity Market is a place where electricity is generated, transmit-

ted, distributed and traded among the market players. Until recently, the market has

been dominated by completely state-owned companies and it was highly regulated.

Throughout the history, the electricity sector was a completely government-run, dis-

organized sector until the establishment of the state-owned Turkish Electricity Insti-

tution (TEK) in 1970, that controlled all activities related to generation, transmission,

distribution and sales of electricity (Privatization Administration, OIB, 2010). Based

on the envisioned privatization policies and efficiency targets of the government, the

initial unbundling of TEK took place by the establishment of the public companies

Turkish Electricity Generation and Transmission Company (TEAS) and Turkish Elec-

tricity Distribution Company (TEDAS) in 1994. With the enactment of the Electricity

Market Law (EML) no. 4628 in 2001, which was replaced by the new EML no. 6446

in March 2013, the liberalization of the market that is financially strong, stable, trans-

parent and competitive is aimed to be achieved (Energy Market Regulatory Authority,

EMRA, EML, 2013b).

Supplement to the EMLs, the liberalization of the electricity sector has been initiated

with the publication of Electricity Sector Reform and Privatization Strategy Paper in

2004. Based on the Strategy Paper (EMRA, 2004), the electricity distribution net-

work has been divided into 21 regions and each region has been privatized indepen-

dently. With the enactment of the new EML (EMRA, 2013b), the privatized distribu-

tion companies have further unbundled into two separate and independent bodies as

distribution companies and incumbent retailers, which has the responsibility to serve
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the customers who do not or cannot choose their own supplier. The Strategy Paper

also envisages the privatization of hydro power plants in Turkey, with the exception

of some large ones which will remain publicly owned. During this process, several

thermal power plants also have been and are being privatized. Another goal of the

Paper was to reduce the electricity consumption limit for freely choosing a supplier

to 0, which has not been fully achieved as of 2015.

2013 - 2015  

2015 -   

2004 - 2013   

2001 - 2004 

1994 - 2001 

         - 1994 TEK 

TEAS 

EUAS 

TEIAS EPIAS 

TETAS 

TEDAS 

21 EDCOs 

21 Private 
EDCOs 

Retail COs 

TEIAS 

Figure 1.1: Historical Evolution of the Institutions in Turkish Electricity Market

Based on these laws and the Strategy Paper, the market was divided, first (in 2001)

into 4 sectors, and later on into 6 separate and independent sectors in 2013, which

are generation, transmission, wholesale, distribution, retail (supply) and market op-

eration. In Figure 1.1, the historical evolution of the Turkish electricity market is

shown based on institutions (OIB, 2010; TEDAS web site, 2014; TEIAS web site,

2014)1. In addition to the institutions and companies in separated sectors, EMRA is

an autonomous state body regulating the whole market.

1 The information related to the market development is retrieved from TEDAS and TEIAS websites,
http://www.tedas.gov.tr/en/Pages/AboutUs.aspx and http://www.teias.gov.tr/Eng/CompanyBrief.aspx
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The entities that are somehow involved in the process of electricity trading (from

its generation to its -wholesale or retail- sales and consumption) can be defined as

the “market players”. Players in most of the aforementioned sectors are either fully

or partially private or in the process of privatization although some sectors are still

completely state controlled. For instance, Turkish Electricity Transmission Company

(TEIAS) is the sole responsible public company responsible for the electricity trans-

mission and therefore called the (Transmission) System Operator. Furthermore, Turk-

ish Electricity Trading and Contracting Company (TETAS) is the state organization

that purchases electricity from the generators and sells it to the distribution compa-

nies, and Turkish Electricity Generation Company (EUAS) is still the dominating

power in the generation market while most of the power plants in Turkey are planned

to be privatized by the end of 2015. The major players in the aforementioned seg-

ments of the Turkish Electricity Market are given below.

• Transmission: TEIAS.

• Distribution: 21 private Electricity Distribution Companies (EDCOs), some

Organized Industrial Zones (OIZs).

• Generation: State-owned EUAS power plants, Independent Power Producers

(IPPs), Auto-producers, Micro Generation Units, some OIZs.

• Wholesale: TETAS, private Wholesale Trading Companies (WTCs).

• Retail: Incumbent Retailers (separated from privatized EDCOs) and other stand-

alone Retail Licensees (RLs).

• Buyers: TETAS, WTCs, RLs, Eligible Customers (those having the option of

choosing their own supplier).

Among most of the above players, the electricity trade is carried out; (1) through

long-term bilateral contracts between buyers and wholesalers, (2) through bilateral

contracts between retailers and the eligible customers, and (3) through the Balancing

and Settlement market, also called “spot market”. The large part of the electricity pur-

chase and sale is done via Power Purchase Agreements (PPA), involving the parties

such as TETAS, WTCs, Incumbent Retailers (of EDCOs), private and public (EUAS)
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generators, within the framework of yearly or multi-year bilateral contracts. The gen-

eral structure of the long-term electricity trade through bilateral contracts is given in

Figure 1.2 (EMRA, EML, 2013b).

WTCs 

IPPs 

Private 
Power 
Plants 

TETAS 

Eligible 
Costomers 

Other 
Retailers 

EDCOs / 
Incumbent 
Retailers 

EUAS 
Power 
Plants 

SELLERS 

BUYERS 

Transmission - TEIAS 
Distribution – 21 EDCOs 

Service 

Consumer 

Generator 

Reseller 

Figure 1.2: Electricity Trade between Main Players in the Turkish Electricity Market

According to the existing law and other legislation, all the “unbalanced” amount of

power remaining after the execution of the bilateral contracts is settled in the spot

market that is called the Balancing and Settlement Market, operated by Market Fi-

nancial Settlement Center (PMUM). Since the end of 2011, one of the main stages of

the settlement mechanism is the Day Ahead Market (DAM). In a general sense, the

purpose of the DAM is to balance the next day’s hourly supply and demand in such a

way that the balancing costs are minimized while satisfying the operation safety and

integrity constraints in accordance with the supply security and supply quality crite-

ria. DAM is operated in order to provide the market players with the opportunity to

purchase and sell electricity for the next day so as to balance their activities on top of

their contractual obligations. In addition, DAM enables the system operator (TEIAS)

to balance the whole system by determining a reference value for the hourly electric-
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ity price. DAM is operated by PMUM, soon to become (by the end of 2015) Energy

Markets Operation Company (EPIAS), that is referred to as the Market Operator.

The players involved in the day ahead market are the licensed generators, autopro-

ducers, large consumers –who can adjust their consumption, wholesale companies,

incumbent retailers (of EDCOs) and the power plants that can load and de-load based

on the market balance. All of these aforementioned entities that take part and operate

in the DAM are in general referred to as “market participants”. The inclusion of the

large consumers in the market makes the demand more price elastic since they can

influence the prices by lowering/increasing their demand at high/low price periods. In

addition, market participants are allowed to form portfolios of different technologies

or combine demand and supply bids to reduce their risks and have more flexibility in

their operations. For instance, a portfolio bid can be a combination of wind and hydro

or of wind and natural gas units, reducing the risk of supply shortage when relying

on only wind. The offered consumption and generation amounts can be adjusted by

the bidders from both sides according to the price levels. It should be noted that reac-

tive (electrical) power is not involved in the spot market trading process; only active

power is traded in Turkish DAM2. According to the official data published on PMUM

website (2015)3, trade volume of DAM was about 32% of the total electricity market

in 2014.

Up to now, information on the Turkish Electricity Market in general is given with

a brief introduction to the DAM. As the main focus of this thesis is the DAM and

specifically its balancing, the DAM will be discussed and analyzed in more detail

from Chapter 2 on. The remainder of this thesis is organized as follows: In Chap-

ter 2, detailed information about the Turkish Electricity DAM is given with relevant

definitions, players, examples and description of its current settlement mechanism.

Types of bids valid in the DAM, how they are evaluated and how the hourly prices

are determined are also described in this chapter. The literature on the DAM imple-

mentations around the world and specifically balancing of spot markets are reviewed

2 There are two kinds of electrical energy carried in the network. Active power is the electrical energy that
can be converted into useful work, therefore it is commonly used and traded in the whole market. On the other
hand, reactive power is the ancillary energy that arises from the generation of active power and it is mostly useful
for adjusting the voltage profile of the network (for a detailed description of active power, see, for instance,
Chakrabarti, 2003).

3 https://rapor.pmum.gov.tr/rapor/xhtml/piyasaHacimFiziksel.xhtml
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in Chapter 3. The most common areas related to DAMs are the day ahead price fore-

casting, electricity generator portfolio and bidding strategy optimization and market

clearing/balancing. In Chapter 4, the mathematical model proposed to solve the bal-

ancing problem for the Turkish Electricity DAM, involving hourly, block and flexible

bids, is presented. In the mathematical model, the aim is to maximize total welfare.

For this purpose, a non-linear objective function and its linear approximation is used

to represent the total welfare. In order to achieve feasibility, paradoxically rejected

block orders are allowed in the model. A bi-criteria solution approach is proposed,

where a trade-off between the total welfare value and the number of paradoxically

rejected orders is presented. An extension of this, where only the minimum number

of paradoxically rejected orders is found by a two-step method, is also proposed as

another solution approach. The numerical results of the mathematical model based

on different objective functions and using the proposed solution approaches are dis-

cussed in Chapter 5. Finally, with comments and suggestions for further studies on

Turkish electricity spot market clearing, the thesis ends in Chapter 6.
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CHAPTER 2

THE TURKISH ELECTRICITY DAY AHEAD MARKET

2.1 The Operation of the Day Ahead Market

The DAM is operated daily on an hourly basis (from 00:00 to 23:00) and the par-

ticipation of all market players is not compulsory. The ones that do not participate

in the DAM can either trade electricity only by bilateral contracts or by directly bid-

ding at the Balancing Power Market that runs in real time after the DAM is closed.

Participants of the DAM are obliged to provide a collateral payment for the fulfill-

ment of their obligations on settlement of payments under the DAM. The amount of

such collateral payments will be just enough to cover any risks likely to arise from

any and all market activities conducted by each relevant market player. In the DAM,

the participants can submit their bids for either only the next day or up to the next 5

days. The average Day Ahead Price (Market Clearing Price, MCP) and the balancing

amount for each hour of the day are determined separately by the Market Operator

on the previous day. MCP is the calculated DAM Price that is determined by drawing

global supply and demand curves of all the bids submitted to the system. The gives

the MCP and the decision of whether a bid is accepted or rejected is made based on

this price. The debts and receivables between the participants in the DAM are settled

on the following day after the completion of all the electricity transactions.

For the sake of understanding, the term ‘bid’ is used to describe the submissions of

the participants of the DAM whereas the term ‘order’ refers to the translation of the

bids into the structure we use in our mathematical model. How bids in the DAM are

converted into the form that are orders in our model is described in Chapter 4 in detail.
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The usual operation scheme of the DAM, given in BSR in effect from January 2013

onwards (EMRA, BSR, 2013a) and in the DAM User Manual published by PMUM

(2013), is summarized below.

• 00:00 – 09:30: The system operator (TEIAS) determines the hourly transmis-

sion capacity between different regions for the next day and reports these ca-

pacities to the Market Operator so that they are announced to the market par-

ticipants.

• 00:00 – 16:00: Bilateral agreements of the market participants are submitted to

the DAM portal.

• 00:00 – 11:30: All the DAM participants submit their hourly bids for the next

day to the Market Operator.

• 11:30 – 12:00: The collateral payments of the participants are checked so that

their eligibility to place bids in the DAM is ensured.

• 11:30 – 12:00: Participants’ bids are confirmed and verified by the Market

Operator.

• 12:00 – 13:00: All the verified bids are evaluated by the optimization tool, and

the MCP and the Market Clearing Amounts for each hour of the next day are

determined.

• 13:00 – 13:30: The approved purchase/sale amounts are reported to the market

participants. They have the right to object to the reports if there is a mistake.

• 14:00: After the objections are evaluated, the final and ultimate MCP and the

couplings for the 24 hours of the next day are announced.

2.2 Bidding Types in the Day Ahead Market

In addition to their bilateral agreements, the market players are allowed to submit

hourly, block and/or flexible bids within the scope of DAM. All bids include price and

quantity pair(s) and all prices have a sensitivity of 1%. The price can be in Turkish
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Lira (TL), Euro or US Dollars per MWh while the quantity of electricity to be sold/

purchased is stated in terms of “lots”, where each lot corresponds to 10 MWh. The

sign of the bid quantity determines the direction of the bid; that is, a positive quantity

means a purchase bid and a negative lot means a sales bid. The highest bid price can

be 2,000 TL and the largest bidding quantity can be 100,000 Lots (or 10,000 MWh)

for both positive (purchase) and negative (sales) bids.

There are four types of bids that can be submitted to the DAM, described in the

following paragraphs (EMRA, BSR, 2013a; PMUM, 2013). Tables 2.1, 2.2 and 2.3

show an example for an hourly purchase (demand) bid, an hourly sales (supply) bid

and a block bid, respectively.

• Hourly Bids: Hourly bids are the main type of bids in the DAM, consisting

of price-quantity pair(s) at a single hour of the day for which the bid is made.

They can be both in sales and purchase directions. There can be at most 64

price-quantity pairs (32 in each direction) within an hourly bid and the same

price level cannot be used for sales and purchase directions in the same bid.

The prices of the hourly bids must be in increasing order and the empty/unused

values between two consecutive price levels are filled out by the Market Oper-

ator using linear interpolation when drawing the respective supply and demand

curves. The quantities must be submitted in a non-increasing order for hourly

purchase bids and non-decreasing order for hourly sales bids.

Table 2.1: An Example Hourly Purchase Bid

Price (TL) 0 91 110 120 130 140 2,000
Hour
7–8

Number of Lots 46,700 44,580 41,680 40,280 38,780 38,180 38,180
MWh 4,670 4,458 4,168 4,028 3,878 3,818 3,818

Table 2.2: An Example Hourly Sales Bid

Price (TL) 0 75 100 120 130 2,000
Hour
7–8

Number of Lots −15, 100 −25, 100 −35, 750 −39, 650 −40, 650 −40, 650
MWh −1, 510 −2, 510 −3, 575 −3, 965 −4, 650 −4, 650
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• Block Bids: Block bids cover between 4 to 24 consecutive and complete hours

which cannot be processed separately. A block bid is a price-quantity pair for

the time slot (at least 4 hours) it spans. The number of block bids a participant

can submit is limited to 50 and each of them is either accepted fully or rejected

as a whole (no partial acceptance is allowed). Up to 3 block bids submitted for

the same bidding area1 in the same direction (sales or purchase) can be linked.

That is, when a block bid is linked to another one, it can only be accepted if the

other one is accepted. When a third bid is involved, i.e., the second bid is linked

to third one, then the linked bid is processed only if the other two are accepted.

For instance, the block bid shown in Table 2.3 is linked to another block bids;

namely, bid no. 577. Assuming that bid no. 577 is linked to a third bid no. 578,

then block bid in Table 2.3 can be accepted only if the bid no. 577 and no. 578

are both accepted because accepting bid no. 577 requires the acceptance of bid

no. 578. Otherwise, the example block bid is rejected. More than one linked

(block) bids can be submitted by the same participant.

Table 2.3: An Example (Sales) Block Bid

Starting Period Number of Hours Price (TL) Number of Lots MWh Link
7 4 100 −1, 750 −175 Ord. no. 577

• Flexible Bids: Flexible bids are the hourly bids that are not made at a specific

hour. In other words, they are special block bids that are submitted for a single,

unspecified hour. This means that they do not have a time component and

only include a price and a negative quantity (flexible bids are only sales bids).

Similar to block bids, flexible orders cannot be executed partially. Each market

participant can submit up to 10 flexible bids. The purpose of including such

flexible bids is to reduce the MCP. Since this type of bids is not attached to a

specific hour, they can be processed at any hour of the day. With this flexibility,

they are accepted in such a way that the MCP is lower and overall benefit of

the market players is higher. Current practice of the Market Operator is that

the flexible bids are accepted at the hour with the highest MCP of the day. The
1 At the time of the writing of this thesis, there is no zonal pricing in Turkey. The DAM consists of one single

bidding area.

10



numerical examples provided below will clarify how flexible bids are evaluated

in this manner.

• Bilateral Agreements: Bilateral agreements cover all 24 hours of the day and

they are predetermined through the long-term contracts made between the mar-

ket players. One party of the agreement submit positive (purchase) quantities

whereas the other one submits negative (sales) of the same amounts. If these

bids of the two parties match, then both bids will be accepted by the Market

Operator. Note that although bilateral contracts are scheduled in the DAM,

they are not counted in the stack of bids in the determination of DAM clearing

prices and quantities.

2.3 Current Settlement Mechanism

Recall that the Market Operator uses an optimization tool to evaluate and match (cou-

ple) the bids and to calculate the MCP with respect to the accepted bids. In principle,

there are ultimately two different prices in the DAM, which are calculated and deter-

mined for each hour by the Market Operator (EMRA, BSR, 2013a). The first price

is the Unconstrained Market Clearing Price (UMCP), which is, as the name implies,

calculated as a common single price for each hour of the day, without considering the

capacity constraints between the bidding areas. Therefore, the separation between

bidding areas is ignored. UMCP is calculated by assuming there are no constraints

on transmission capacity and it is based on the coupling of all bids coming from all

bidding areas. The second price realized in the DAM is the Final Market Clearing

Price (FMCP). The FMCP is determined separately for each hour and for each bid-

ding area by considering the constraints on transmission capacity between the bidding

areas. It is calculated by making the necessary adjustments on the UMCP in order to

satisfy the capacity constraints.

The current DAM clearing mechanism works in four steps. The first three steps are

followed to calculate the UMCP while the last step is the determination of the FMCP.

These steps are described below and summarized in Figure 2.1.

Step 1. The UMCP and the corresponding clearing amount are determined temporar-
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Figure 2.1: Current DAM Settlement Mechanism Applied by PMUM

ily by first drawing the supply and demand curves of the market based only

on hourly bids. All of the hourly purchase (sales) bids are arranged in a de-

scending (ascending) order so that they look like a single purchase (sales) bid.

While drawing the curves, two consecutive price-quantity pairs are connected

using linear interpolation. The point where the supply and demand curves in-

tersect defines the initial UMCP and the corresponding clearing amount. In

Figure 2.2, the individual demand and supply curves of the example hourly

bids given earlier in Tables 2.1 and 2.2 are shown. These bids will be the

basis of the initial (temporary) UMCP calculation. At this stage, only hourly

bids are considered and the UMCP is 120.75 TL as seen in Figure 2.3. In this

case, the unconstrained equilibrium quantity is 4, 016.68 MWh.

Figure 2.2: Supply and Demand Curves of Example Hourly Bids

Step 2. Block bids are compared to the previously found market clearing conditions.

The ones that lower the overall costs of the day (increase the welfare), that
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Figure 2.3: Calculation of MCP based on Example Hourly Bids

is, creating as low MCPs as possible, are accepted and incorporated into the

new supply and demand curves. To obtain lower daily costs, purchase block

orders, whose prices are higher and sales block orders whose prices are lower

than the weighted average UMCPs calculated for the all relevant hours, are

accepted. For instance, the sales block bid given in Table 2.3 is accepted be-

cause its price is 100 TL and it is lower than the incumbent UMCP, 120.75 TL.

Step 3. The flexible bids are taken into consideration in a similar manner and since

they can be only in the sales direction, the ones having a lower price than

the UMCP are accepted at the hour where the highest UMCP is prevailing.

After the evaluation of the flexible bids, the UMCP and temporary clearing

amounts for each hour of the next day are determined.

Step 4. When the UMCP is calculated, the supply and demand amounts at that price

level are also automatically determined. At this point, the Market Opera-
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tor calculates the energy flow between the bidding areas. If the energy flow

between all bidding areas is less than or equal to the transmission capacity

allocated and announced by the System Operator, then the UMCP is desig-

nated as the FMCP. However, if there exists at least one bidding area having

the trade flow larger than the capacity, the UMCP is decreased in the energy-

surplus-area and increased in the energy-deficit-area such that the transmis-

sion capacity is not exceeded.
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Figure 2.4: Calculation of MCP based on Example Hourly and Block Bids

The process described in the fourth step is applied to all bidding areas that require

excess capacity at the calculated UMCP. This adjustment is done so as to ensure the

maximum flow of energy from the lower-price areas to the higher-price areas at the

lowest possible price in all bidding areas. The calculated new price levels are as-

signed as the FMCPs for the relevant bidding areas. While the found MCPs have of 6

decimal digits of precision, they are rounded to 2 decimal digits (Kuruş) for financial

convenience. Note that the current practice in Turkey is to define the whole network

as a single bidding area and there is no transmission capacity constraint except the
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network’s overall technical capacity. Therefore, the UMCP calculated after the eval-

uation of all hourly, block and flexible bids (in Step 3) is also the FMCP, which will

simply be referred to as MCP in the following chapters of this thesis. In the case

of our example bids given above, two hourly bids given in Tables 2.1 and 2.2 are

both partially accepted. Assuming it is submitted for only one hour, the sales block

bid shown in Table 2.3 is also accepted because its price (100 TL) is lower than the

equilibrium price of the hourly bids (see Figure 2.3 for the equilibrium price). In the

end, the MCP is calculated as 116.66 TL and the corresponding clearing amount is

4, 074.81 MWh since the inclusion of the supply block bid has slightly shifted the

supply curve to the right, as demonstrated in Figure 2.4.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, the literature and practices on electricity DAMs and specifically their

balancing and clearing are reviewed. In the literature, there are three main categories

of electricity DAM studies. The first one is the largely studied “forecasting of MCP”;

that is, the market participants, especially electricity generators, aim to forecast the

hourly day ahead prices, or as called in general “spot prices”. The second category

of DAM studies is the “optimization of portfolio and bidding strategy”, again from

the generators’ point of view. The final category of DAM studies is the “balancing

(clearing) of the DAM”, which looks at the problem from the market operator’s point

of view and is also the focus of this thesis. Throughout the chapter, the studies in these

three main categories are reviewed briefly, with an emphasis on the last category.

The studies in the aforementioned first two categories are reviewed in Section 3.1.

These are all related to the operation of electricity DAM but not relevant to our pur-

pose, which is to find the balance of supply and demand, and the MCP. Section 3.2

gives a detailed summary of the most commonly known studies about the clearing of

DAM.

3.1 Studies on Forecasting of MCP and Optimization of Portfolio and Bidding

Strategy

One of the most commonly covered areas related to DAM is the forecasting of MCP.

There are numerous studies and methods in the literature; a number of them are
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mentioned in this paragraph with a brief summary. For instance, Amjady and Key-

nia (2008) propose a hybrid method to forecast day ahead prices that uses wavelet

transform and a cascade of neural network and evolutionary algorithms. Another

hybrid method, composed of wavelet transform, autoregressive integrated moving

average (ARIMA) and least squares support vector machine, is proposed by Zhang

et al. (2012). Vilar et al. (2012) provide a nonparametric functional regression model

and a semi-functional partial linear model to forecast day ahead electricity demand

and prices. Vahidinasab et al. (2008) use an Artificial Neural Network (ANN) with

Levenberg-Marquardt learning algorithm. In this study, sensitivity analysis is used

to determine optimal input combination and fuzzy c-mean algorithm is implemented

to cluster daily load patterns and to forecast day ahead electricity prices. Hong and

Wu (2012) present a hybrid principle component analysis method with a multi-layer

feed-forward neural network to forecast marginal prices in a DAM. Another hybrid

method is proposed by Voronin and Partanen (2012) for the forecasting of so-called

normal range prices in the Finnish spot market. The method includes ARIMA-based

models used for linear relationship in the price series and a generalized autoregres-

sive conditional heteroscedasticity (GARCH) model for non-homogeneous variance

of residual terms. A neural network is used to combine the previous two predictions.

For the price spikes, i.e., prices that are above some specified threshold, they pro-

pose k-nearest neighbor model (for the spike values) and a Gaussian mixture model

(for their probabilities). Garcia et al. (2005) also apply GARCH to forecast day ahead

prices in Spanish and California markets, for which they propose a flowchart to obtain

the model.

The second main category of DAM studies is the strategy optimization. In most

of the cases, the solution approach is from the generators’ point of view. For ex-

ample, Yücekaya (2013) develops a methodology for price taking generation units

to determine the best bidding strategy under stochastic price scenarios. The model

makes use of Monte Carlo simulation and maximizes the expected profit. Bajpai and

Singh (2007) use a fuzzy adaptive particle swarm optimization, which aims to find

the optimal bidding strategy of a thermal generating unit by modeling the production

cost as a sinusoidal nonlinear function and the start-up cost as an exponential func-

tion. The other generators’ behaviors are also included as probability distribution
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functions. In the mathematical model, the profit of a generator is maximized. Wong

et al. (2009) present a simulation model, where each generator analyzes the historical

data, forecasts the demand and prices, and develops and adjusts its bidding strategy

based on its deductions. In the model, risk assessment is included as a stage in the de-

cision making process of a generator and objective of each participant is to maximize

its profit. However, the simulation model proposed in this paper does not aim to find

the optimal strategy but to determine the most suitable bidding quantity and price

for the risk preference of individual generators under expected scenario outcomes.

Francisco and Nerves (2010) develop a two-step approach to model the bidding strat-

egy of Independent Power Producers (IPPs). In the first step, a security and capacity

constrained economic dispatch model to clear energy and reserve markets is solved

to determine expected spot prices (MCPs). The model minimizes the total supply,

demand and reserve cost plus a constraint violation penalty. In the second step, based

on the IPPs marginal cost and the calculated marginal price, the optimal bid price of

the IPP is obtained. This is done by maximizing the probability of gain, i.e., prob-

ability of acceptance and obtaining a positive revenue. In another study, Foroud et

al. (2011) propose an optimal bidding strategy for generation and distribution com-

panies, which takes into account the other participants’ bidding and operating condi-

tions. Their methodology consists of two levels; The upper level is a multi-objective

payoff maximization problem, where each market participant maximizes all market

players’ profits simultaneously. The lower subproblem is a security constrained cost

minimization market clearing problem for the system operator. Genetic Algorithm

and fuzzy satisfying method is used to solve the proposed multi-objective model.

An extension for optimal generator behavior is the strategy optimization in the com-

bination of long-term contracts and short-term bidding markets, which is usually re-

ferred to as “portfolio optimization”. Ramos et al. (2010) propose a model for gen-

eration companies to find the optimal balance between bilateral contracts and spot

market that maximizes profit and minimizes the price and volume risks. To forecast

the spot prices, a multivariate linear regression model is used. The efficient frontier

showing the combination set of expected return and risk is presented based on the

probability distribution of annual profit calculated for different generation quantities.

Feng et al. (2008) present a different, Genetic Algorithm based Stochastic Program-
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ming model for the same portfolio optimization problem. In the model, expected

utility function, defined by the difference between revenue and costs of the genera-

tion company plus its initial wealth, is maximized. Alternative portfolios make up the

genes in the algorithm and Monte Carlo simulation is used to calculate their fitness

values. The model by Yin et al. (2008) considers long-term contracts and spot market,

as well, but the long-term decisions are represented in the form of forward contracts,

which are agreements between two parties to buy or sell an asset on a future date

for a specified price (Benhamou, 2007). In their solution approach, first the prices in

the spot market are forecast using a time varying volatility model. Next, long-term

portfolio selection model, comprised of the estimation of mean and variance of for-

ward contract and spot market returns, is established. Finally, the optimal portfolio of

forward contract and spot market bids is found by Differential Evolution algorithm.

3.2 Studies on Electricity Day Ahead Market Clearing

There are only a limited number of detailed studies in the literature about the bal-

ancing (clearing) problem of electricity DAMs, especially concerning Turkish case.

Even fewer studies are publicly available as this subject is mostly a commercial issue

and there is a limited opportunity to obtain real life data. In the following paragraphs,

studies from both academic resources and commercial applications are discussed in

detail.

Weidlich and Veit (2008) build a simulation model of the German electricity whole-

sale market in three steps, one of which is for the DAM. In their DAM model, the

demand side is assumed to be a fixed load that does not depend on the market price.

So, they only simulate the supply side with the goal of electricity generators being

to maximize their profit subject to capacity constraints. In the study by Güler et

al. (2010), the effect of DAM on the real time balancing market and the system secu-

rity are investigated. The DAM is not cleared by a model but impact of its clearing

on the consumer and producer surpluses is assessed. Vlachos and Biskas (2011) aim

to clear the multi-zone, single period (1 hour) European spot market, where assuming

different clearing prices for demand and supply in the same zone is allowed and the

flow between bidding zones is constrained. Both supply and demand bids submitted
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in each zone are represented as aggregated single bids and the model is formulated

as a Mixed Complementarity Problem, where the demand prices are dependent on a

function of explicit supply prices in different zones. A similar paper by Farahmand

et al. (2012) looks at the integration of Northern European markets, based on differ-

ent generation facilities such as thermal, hydro and wind. The objective function is

the minimization of total cost, consisting of fuel costs, start-up costs and reservoir

usage costs for hydro units. In the constraints, the start-up of the generation units,

their minimum and maximum generation capacities, and transmission capacity be-

tween regions are taken into consideration. The balance equation is constructed not

at the supply-demand level but the balance of physical power exchange at each bus1

is ensured. Muñoz-Álvarez et al. (2012) again look at the clearing problem from

the generators’ point of view, by categorizing them as large, medium, small and mi-

cro generators. For the clearing mechanism, three equilibrium models are defined;

(1) between large generators and discretized partial residual demand, (2) between

large generators and discretized residual demand, and (3) between all generators, in-

cluding large, medium, small and micro, and discretized partial residual demand. In

all three cases, the objective function is defined as the minimization of total expected

generation costs, energy shortage and excess costs, and capacity reserve and addition

costs, under different scenarios. Both supply and demand are stochastic, thus their

expectations are formulated. Using a cost of flexibility rights, which is the right to

deviate from scheduled generation plan, the results of three equilibria are consoli-

dated. This study aims to clear single hour market, based on generation costs and

physical balances rather than economical indicators and parameters. In addition, the

first step of the study by Francisco and Nerves (2010) and the lower subproblem in

the paper of Foroud et al. (2011), which are described in Section 3.1 also approach to

the market clearing problem from a narrower point of view.

To the best of our knowledge, there is only one study directly related to clearing of

Turkish Electricity DAM. The study was recently published; which is another in-

dicator that this is a relatively new subject in the Turkish literature. In his paper,

Derinkuyu (2015) proposes a mathematical model to solve the DAM clearing prob-

lem in Turkey. He formulates the problem as a Mixed Integer Programming (MIP)

1 Bus is a common point in the power network, where several generators operating in parallel are connected,
to provide the energy needed (Saadat, 1999).
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model that finds an exact solution. In his model, he introduces all relevant types of

bids in the current Turkish practice; hourly bids or as Derinkuyu puts it, single bids,

block bids including linked blocks, and flexible bids. He defines hourly bids as SOS2

(Special Ordered Set of type 2) variables and interpolates on them to find the MCP.

He proposes minimizing the sum of the hourly MCPs of a given day as the objective

function. This objective is used due to the political stress on the Market Operator and

because direct welfare maximization is not possible with real instances (we propose

new approaches to overcome this issue). In order to decrease the processing time

of the model, he develops a solution methodology that is comprised of the reduc-

tion of the problem size and calculation of an initial solution. To reduce the problem

size, all hourly bids submitted at each hour are aggregated and a total of 24 hourly

bids are obtained (one for each hour of the day). For variable elimination, lower and

upper bounds for the MCP of each hour are calculated by assuming all supply and

demand block and flexible bids are accepted, respectively, and then the bids that are

not satisfying those bounds are removed iteratively. We also introduce lower and up-

per bounds for MCP in our model in Chapter 4 in the same way. As for the initial

solution, the clearing problem is solved by applying the current hierarchical heuristic

method applied by the market operator (EMRA, BSR, 2013 and PMUM, 2013). That

is, hourly bids are cleared first and then block and flexible bids are introduced. Based

on this initial solution, variable elimination method that he suggested is applied by

introducing a perturbation parameter to define upper and lower bounds on the found

MCP. The reduced MIP is solved with the updated price bounds. This procedure is

repeated until no improvement is observed (optimal solution is found). In the end,

computational experiments using real data are provided and optimal solution is found

within 1 hour in almost all instances while most of the cases are solved less than only

a minute.

One of the most commonly known, publicly available commercial study about DAM

clearing is the COSMOS coupling system by Djabali et al. (2011), which is also

our main source of inspiration when building our model presented in Chapter 4.

COSMOS includes a mathematical model and a heuristic algorithm that uses branch-

and-bound to find a feasible, close-to-optimal solution to the Central Western Eu-

ropean (CWE) market coupling problem. CWE region combines APX (Amsterdam
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Power Exchange), ENDEX (European Energy Derivatives Exchange), Belpex (Bel-

gium Power Exchange) and EPEX (European Power Exchange) spot markets. As it

involves more than one region, it includes both market operation and network con-

straints where the objective function is maximization of social welfare. Social wel-

fare is calculated by summing the difference between consumer surplus and producer

surplus, and the total congestion revenue due to electricity flow between regions. Net-

work constraints include the available transmission capacity constraints that limit the

cross border trade, and balance of energy flow between regions based on accepted

bids. In the market constraints, only hourly bids and block bids are included. It

is claimed in the description document that the COSMOS algorithm can be easily

modified to facilitate the evaluation of linked block bids and flexible bids, as well as

integration of other constraints for possible extensions to the neighboring exchange

markets, the latter of which is not relevant for the Turkish case. Hourly bids are han-

dled in COSMOS model and algorithm in such a way that the ones that are “in the

money”, as it is put in the document, are fully accepted, while the ones that are “at the

money” are partially accepted, meaning the MCP is between the price limits of the

bid (details of price limits are discussed in Chapter 4). The ones that are “out of the

money” are always rejected. Definitions for the block bids are the same as their Turk-

ish counterparts, and they are similarly constrained by the “fill-or-kill” constraints.

However, this property works in one direction only; a block bid is rejected when it is

out of the money, i.e., when the weighted (over the quantity offered at every hour the

block bid is attached to) average of the demand (supply) bid price is lower (higher)

than the weighted average of the MCPs of the relevant hours. The fact that accept-

ing the block bids that are in the money is not forced necessitates the introduction of

the concept of “paradoxically rejected block bids”. In this case, a block bid can be

rejected even if it satisfies the weighted average price criteria, hence it becomes para-

doxically rejected. Although it is not explicitly stated in the COSMOS document, this

concept is considered and included in the model as it is necessary to obtain feasibility.

Therefore, we also introduce paradoxically rejected bids into our model in Chapter 4;

not only for block bids but also for flexible bids, by a different approach from the

model in COSMOS.

The COSMOS algorithm works as follows: First, the linear relaxation of the initial
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clearing problem is solved. That is, partial acceptance of block bids is allowed. After

finding a solution to the relaxed problem, branch-and-bound algorithm is executed

by branching on partially accepted block bids. Decision variables used for those

block bids are gradually forced to take the values of 0 or 1 at each step. This way,

a feasible or, if possible, an optimal solution that satisfies all market and network

constraints, including the fill-or-kill property, is aimed to be found within the time

limit (10 minutes in the COSMOS case). It is stated that an initial feasible solution is

found within less than 30 seconds at all instances and the optimal solution is found in

most of the cases before reaching the time limit.

As stated earlier, the mathematical model proposed in this thesis is mainly based

on the COSMOS model by Djabali et al. (2011). One main difference is that, in

COSMOS, a common notation is used to denote the price and quantity parameters

of supply and demand bids. They are distinguished by the sign of the quantity pa-

rameter. Although we also use different signs for quantities in different directions,

we differentiate between supply and demand bids with independent representation

of variables and parameters. The way we handle paradoxically rejected block –and

flexible– bids is also new compared to COSMOS, for which we introduce a new set

of binary variables to handle those bids. However, the main difference of our model

is that we directly find the optimal solution while COSMOS works with a heuristic

algorithm. All differences of our model from COSMOS, as well as our contributions,

are discussed in Chapter 4 in detail. The mathematical formulation of the COSMOS

model (with common notation to denote the price and quantity parameters of supply

and demand bids) is provided in Appendix A. The related references are given also in

Chapter 4.

Martin et al. (2014) solves the European DAM clearing problem by decomposing it

into a quadratic master problem and a linear pricing problem for the congestion rent.

In the mathematical model, total economic surplus is maximized, as in the case of

COSMOS (Djabali et al., 2011) and the model we propose in Chapter 4. The bid

prices are defined as the market participants’ marginal willingness to pay. There-

fore, the producer and consumer surpluses of hourly bids are calculated by taking

the integral of a participant’s marginal willingness to pay curve. Similarly, block bid

surpluses are the difference between total willingness to pay over all relevant hours
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and the multiplication of MCP and the bid quantities at the relevant hours. Surplus

of flexible bids is very similar to those of block bids, only flexible bids are executed

at most one hour as per their definition. In this study, paradoxically rejected bids are

defined as the bids that does not result in a ‘’surplus maximizing solution” from the

bidder’s point of view.

The constraints of the model proposed by the authors are very similar to those used in

COSMOS. Constraints regarding energy flow balance, available transmission capac-

ity, acceptance of block (and flexible) bids are parallel in both studies. Here, just like

in COSMOS, rejection of block and flexible bids is not forced in order to take care

of the paradoxically rejected bids. On the other hand, maximization of congestion

rent between bidding areas are represented as constraints to the welfare maximization

model, using dual variables and Karush-Kuhn-Tucker (KKT) optimality conditions.

A similar approach is adopted also for the acceptance of hourly bids. The available

IBM CPLEX solvers is not able to solve the described model in 30 minutes, nor NLP

solvers solve before 10 minutes. Thus, a heuristic method and an exact solution algo-

rithm is proposed. First, the price conditions of block and flexible bids are relaxed and

the model is solved. The optimal solution to this relaxed model satisfies the hourly

bid price conditions but may not satisfy the block and flexible bid price conditions. In

this case, a ‘’bid cut” is added to the relaxed model to discard this infeasible (to the

original model) solution. This process is repeated until a feasible solution is found.

Feasibility of a given solution is tested by an LP that minimizes the loss incurred by

the executed block and flexible bids when their price conditions are relaxed. As for

the bid cuts, two alternatives are used. In the first one, at least one of the loss incur-

ring block or flexible bids is forced to be rejected. In the second bid cut, exactly one

is prohibited. The first cut is said to possibly lead to suboptimal solutions but is a

fast heuristic while the second one is slower but converges to global optimal solution.

Both methods are tested using real data and they are compared to the performance of

the optimizer currently used by the European Market Coupling Company (EMCC).

Maximum solution time of the heuristic bid cut method is reported as 1.1 minutes

and the average is only 4 seconds. The second method is slower but improves 4% of

the solutions found by the first method. 38% of the cases end with an optimal solu-

tion and the remaining ones reach the time limit before reducing the absolute gap and
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proving optimality.

A very similar mechanism to that of Turkey is the Romanian DAM trading system

called SAPRI (n.d). In the SAPRI system, three types of bids are allowed, namely

hourly bids, block bids and flexible bids. Their definitions are exactly the same as

the ones in Turkish DAM given in Chapter 2. The evaluation mechanism of SAPRI

is as follows: First, the aggregated supply and demand curves of only hourly bids

are drawn, just like in the Turkish case (see Section 2.3 in Chapter 2). Later, block

bids are integrated iteratively in two steps. In the first step, after calculation of MCPs

considering all block bids are accepted, block bids that do not satisfy the price cri-

teria are excluded one by one, and a new MCP is calculated. When there does not

remain any block bid violating the price criteria, re-inclusion of the favorable-priced

bids is checked. The ones that remain rejected although they satisfy the price crite-

ria (the ones that cannot be accepted because they affect the acceptance decision of

previously accepted bids) are called “paradoxically rejected bids”, as in the case of

COSMOS (Djabali et al., 2011). Flexible bids are evaluated iteratively as the Turkish

Market Operator considers them. That is, the ones having lower price than the highest

prevailing MCP calculated are accepted at the hour having the highest MCP, as long

as they do not disrupt the decision of previously accepted hourly and block bids.

Biskas et al. (2014) formulate the European DAM models in their two-part study with

a very similar approach to the ones just described. They formulate the clearing prob-

lem of European DAM as a Power Pool where bids in the market are represented at

the participant level (e.g., generation units), and as a Power Exchange (PX) where

all bid types are included in the model. The power pool is represented by a unit

commitment model since the cost of participants includes the start-up, shut-down and

energy reserve expenses. Only power balance and available transmission capacity are

considered in this model. However, in the PX model, hourly, block, linked block,

flexible, and convertible block bids are included (convertible blocks are bids that can

be converted to hourly bids when certain conditions hold). The objective function is

the minimization of total cost incurred minus the total utility obtained by each mar-

ket participant or each unit of each market participant, depending on the structure

of the bidding areas. In the objective function, the cost of sellers/importers and the

utility of buyers/exporters are defined by the multiplication of price and quantity of
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the corresponding bids whereas cost and utility of supply and demand bids are also

considered as the multiplication of price, quantity and acceptance level of the bids.

Power balance and available transmission capacity between bidding areas are added

to PX model as constraints, as well, as in the case of power pool model. Later on, the

two models (power pool and PX models) are combined as a single European market

clearing model. In this MILP model, the import and export agents are excluded. MCP

in this combined model is calculated using the Lagrange multiplier of the power bal-

ance equation and the power transfer distribution factors (PTDFs) of bidding areas,

based on a reference area that needs to be defined by the market operator in order

to compute PTDFs. Although the clearing conditions on hourly, flexible and linked

block bids are considered, there is no comparison of any bid type to MCP. Instead,

the authors suggest an algorithm in the second part of their study to deal with the

prices. The suggested iterative algorithm is devised for the integrated model of power

pools and power exchanges, and it works as follows. First, the MILP model described

in the first part is solved. Later, the prices of block, linked block, convertible block

and flexible bids are compared to the calculated MCP to determine the paradoxically

rejected/accepted bids. The values of the decision variables representing those para-

doxically rejected bids are fixed to 0 and eligible convertible block bids are converted

to hourly bids. Then, the model is solved again.

Related to DAM clearing, there are also some studies suggesting models and algo-

rithms for simultaneous clearing of active and reactive energy markets. To our knowl-

edge, the operation of active and reactive power markets is decoupled and clearing is

separate or at least sequential (see, for instance, Singh et al., 2011, and El-Samahy

et al., 2006, for recent implementations on reactive power markets in different coun-

tries). Rabiee et al. (2009) look at the coupled active and reactive power clearing

problem by considering system security constraints and minimizing the bidding cost

of generators for active power and total payment for reactive power including the

lost opportunity cost. In another study, Aghaei et al. (2009a) suggest a two-stage

solution method where first random scenarios for generation behavior of the units

are generated by Monte Carlo Simulation and then they are inserted into a series of

optimization problems, objectives of which are minimization of expected generation,

capacity reserve, lost opportunity and interruption cost. The same authors also formu-
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late the joint energy and reactive power DAM clearing problem as a multi-objective

mathematical program where minimization of generation cost and optimization of

system security (minimization of voltage drop and line overload) are the compet-

ing objectives (Aghaei et al., 2009b). The multi-objective mathematical problem is

solved using ε-constraint method. Reddy et al. (2011), too, propose a multi-objective

approach with several objectives such as augmented payment function minimization,

loss minimization, maximization of load served and minimization of Voltage Stabil-

ity Enhancement Index. In this study, Strength Pareto Evolutionary Algorithm 2+

approach is used.

The next chapter demonstrates the mathematical model built for clearing the Turkish

Electricity DAM, which is a modified and developed version of COSMOS (Djabali et

al., 2011). Proposed solution approaches are also provided in Chapter 4.
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CHAPTER 4

THE PROPOSED MATHEMATICAL MODEL AND

SOLUTION APPROACHES

Recall from the previous chapters that there are only a limited number of studies on

the balancing/clearing of Electricity DAMs. The model proposed on the COSMOS

CWE Market Coupling Algorithm (Djabali et al., 2011) cited and discussed in Chap-

ter 3 focuses on the DAM clearing problem and suggests a solution with an econom-

ical approach. In their model, social welfare is maximized subject to price conditions

of hourly and block bids. Derinkuyu (2015) solves the DAM clearing problem in

Turkish case by minimizing the daily sum of the hourly MCPs, while satisfying the

price and balancing criteria. The algorithm by Biskas et al. (2014) approaches the

problem from a flow-based, inter-zonal power exchange and market splitting point

of view while minimizing the cost of generating, importing and transmitting energy,

rather than optimizing some economic or social term with respect to price-quantity

pairs of the market orders. Martin et al. (2014) optimizes the welfare maximization

problem in European DAM by making use of an bid cutting algorithm. In this thesis,

we use an economic term called total welfare as the objective of our mathematical

model, as in COSMOS and Martin et al. (2014).

In this chapter, the proposed mathematical model to solve the balancing problem for

Day Ahead clearing in the Turkish Electricity Market is discussed. The (hourly) clear-

ing of the Turkish Electricity DAM requires the simultaneous balancing of hourly

bids, block bids that span at least 4 hours, and the flexible bids that can be processed

during any hour of a day. The current market operator approaches the problem as a

separated yet connected multi-stage problem, where the decisions on accepting or re-
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jecting the hourly bids are made first while processing of the block bids and the flexi-

ble bids comes second and third, respectively, based on the clearing of the hourly bids.

This stepwise approach makes the solution to the Turkish Electricity DAM clearing

problem somewhat a sub-optimal solution and gives room for improvement. In this

thesis, we propose a mathematical model (based on COSMOS Model of Djabali et

al., 2011) to solve the market clearing problem, processing the hourly, block and flex-

ible bids all at once. The model proposed in this thesis is solved using 15-day Turkish

market data generated as described in Chapter 5. In the model, total economic wel-

fare (in very broad definition, the sum of consumer surplus and the producer surplus)

is aimed to be maximized while satisfying the price-quantity matching, bid coupling

and market clearing constraints. In order to properly run the model, hourly bids sub-

mitted in the Turkish DAM need to be converted to “hourly orders”, which are the

specific entities evaluated in our model. This is done by taking the two of (usually)

several price levels of an hourly bid and denoting them as upper and lower price limits

to accept and reject an hourly order. The difference between the two bid quantities

corresponding to the two price levels makes up the order quantity. The method to

transform hourly bids into orders, how the price limits and quantity parameters of an

hourly supply and demand orders are calculated are elaborated in Section 4.2. Note

that block and flexible bids do not require any conversion process and are directly

used as orders in the model.

Before continuing with the model description in Section 4.2, some definitions and

descriptions are given first in Section 4.1 to clarify the objective function, i.e., total

welfare, and the parts of the objective function that constitute the general welfare

term.

4.1 Economic Welfare

As stated several times earlier, the objective function of the model proposed in this

thesis is maximizing the total (economic) welfare. In a very general sense, welfare

can be defined as the overall well-being of the whole society as the term implies while,

economically, it refers to a different yet somewhat related thing: it is the sum of con-

sumer surplus and the producer surplus, as defined, for example, by Perloff (2008).
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That is, if we can somehow separate the society into two groups of entities, produc-

ers and consumers, and measure (in numbers) those groups’ individual well-being,

then the sum of their well-being “values” will give the overall welfare of that society.

However, different economists and social scientists have defined and tried to explain

(total) welfare in different ways as exemplified in the next paragraph.

The term, as “economic surplus”, was first brought up by the economist Baran (1957)

although its components had been defined much earlier by Alfred Marshall (1920).

Baran (1957) defines the economic surplus very broadly as “the difference between

society’s actual current output and its actual current consumption”. As stated above,

it is divided into two related quantities; namely, the consumer surplus and the pro-

ducer surplus. Consumer surplus is the monetary difference between the amount a

customer is willing to pay and the amount he/she actually pays (see Perloff, 2008,

for a similar definition). Marshall (1920) defines this value as the total excess of the

price a consumer would pay for a good over the real price of that good. Similarly,

producer surplus is the monetary gain a supplier earns by selling at a price higher

than the price he/she is willing to sell for (Perloff, 2008). Marshall (1920) has di-

vided the producer’s surplus into further two categories: worker’s surplus, which is

the rate earned by the worker in addition to the pleasure he/she gets from the work,

and saver’s surplus, which is the extra earning an owner receives in excess of the

amount for which he/she is compelled to make the saving. According to Samuelson

and Nordhaus (1992), efficient markets operate at the maximum economic surplus. In

other words, when the overall satisfaction or the utility of the market participants are

at its highest, the market is in equilibrium and the economic surplus, or total welfare

as referred to throughout this thesis, is maximum.

Each individual producer or consumer has his/her own preferences and price deci-

sions; so, basically every point of the supply or demand curve refers to a distinct

choice of a producer or a customer, respectively. When all of these individual pref-

erences are aggregated, the overall supply and demand curves are obtained. The area

that falls between these aggregate curves and the price and quantity axes makes up

the total economic surplus value, i.e., total welfare. Figure 4.1 shows an example

breakdown of the total welfare into consumer surplus and producer surplus using the

example hourly bids given in Chapter 2. As Perloff (2008) describes, the area above
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the supply curve and below the market price (the pink region) gives the producer

surplus. Similarly, the area below the demand curve and over the market price (the

blue region) is the consumer surplus. Total welfare, defined as “the area between

supply and demand curves and the two axes”, can be clearly seen in the graph. As

Figure 4.1: Consumer and Producer Surplus based on the Supply and Demand Curves

of Example Hourly Bids

it is demonstrated in Figure 4.1, when there are only two hourly bids submitted by

two players for a single hour, the problem of electricity DAM clearing can be solved

graphically and using simple calculations by hand. In fact, even if there are more

than one hourly bids, they can be aggregated and treated as a single hourly bid, as

Derinkuyu (2015) does (see Chapter 3). However, balancing (clearing) of Turkish

Electricity DAM is done every day for the next 24 hours and it involves not only

many hourly purchase and sales bids but also block bids spanning at least four hours

and flexible bids that can be executed during any hour of the day. Therefore, a more

complex tool is needed to solve this problem, for which we propose a mathematical

model.
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4.2 The Mathematical Model

In this section, the mathematical model, due to the CWE Market Coupling Algorithm

by Djabali et al. (2011) called COSMOS, is adapted, modified and extended for

balancing (clearing) the Turkish Electricity DAM. The differences between the model

we present for Turkey and the COSMOS model are itemized below.

• We introduce linked block bids and flexible bids into the COSMOS model. For

some cases, working with linked block bids and flexible bids is the practice in

the Turkish DAM although not very common. The model we propose includes

all three types of bids applicable in the Turkish DAM, namely hourly bids,

flexible bids, and block bids, including linked block bids.

As defined earlier in Section 2.2 in Chapter 2, the linked block bids are two

or three block bids that are in the same direction (either sales or purchase) and

a linked block bid can only be accepted if the other (linked) block bid(s) are

accepted. The flexible bids are the sales bids that can be undertaken at any hour

of the day.

• The block bids in Turkey consist of a single price-quantity pair whereas distinct

amounts of electrical energy can be submitted for each hour of a block bids in

the CWE case.

• There is no zonal pricing and bidding applications in Turkey at the time of

this thesis unlike the case in the CWE region where the COSMOS algorithm

is used for clearing of different bidding areas (mostly countries). The network

constraints in COSMOS can be seen in Appendix A.

• In our model, we define different sets of parameters and variables for supply

and demand orders, for both hourly and block orders. (See definitions in Sec-

tion 4.2.1.) In COSMOS, a common notation is used for both supply and de-

mand orders and they are only differentiated by the sign of the quantity param-

eters. Note that the Turkish DAM and COSMOS have opposite signs for supply

and demand quantities (See definitions in Appendix A).

• The constraints regarding the block bids in the model in COSMOS include
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only the condition to accept a block bid. That is, if a block bid is accepted,

then it must be ‘in the money’, meaning the accepted block bid must satisfy the

price criteria. The other way around is not included in COSMOS, i.e., a block

bid that is in the money does not have to be accepted. Recall from Chapter 3

(e.g., Biskas et al., 2014, and SAPRI, n.d.) that the block bids –and for some

cases, flexible bids– that are rejected even though they satisfy the price criteria

are called ‘paradoxically rejected’ (block/flexible) bids. COSMOS model deals

with this kind of bids by not forcing (with a constraint) a block bid that is in- or

out of the money to be accepted or rejected, respectively. However, we consider

additional constraints in our model for both cases; “to accept a block bid if it

satisfies price criteria (and if the trade-off is resolved without paradoxically

rejecting the bid)” and “to reject a block bid if it does not satisfy the price

criteria”. We include an auxiliary binary variable to allow and keep track of

paradoxically rejected block and flexible bids. Details of how we do that are

given in Section 4.2.2.

In the Turkish DAM’s bidding structure, the hourly bids include more than one price-

quantity pair in each bid, as demonstrated in Section 2.2 in Chapter 2. However, as

stated in the beginning of this chapter, we use a different structure in our mathematical

model, which involves hourly orders. Each distinct quantity component of an hourly

bid is treated as a single hourly order and this quantity is determined by the difference

between the two (consecutive) quantities having two consecutive price levels. The

two prices corresponding to the quantities that give the aforementioned difference are

called the initial and final price of hourly orders and their definitions depend on the

direction of the order.

Recall from Section 2.2 in Chapter 2 that the price levels of hourly bids are submitted

in an increasing order. Suppose we take two consecutive price-quantity pairs of an

hourly bid; refer to the lower price as plow and the corresponding quantity as qlow.

Similarly, the higher price level and the quantity attached to that price will be denoted

by phigh and qhigh, respectively.

In order to go from an hourly purchase bid to an hourly demand order, the following

steps are followed: (1) define the initial price of the demand order as equal to phigh,
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(2) define the final price of the demand order as equal to plow, (3) determine the

order quantity by the difference qlow − qhigh. Since the quantities submitted in hourly

purchase (demand) bids are put in a decreasing order (qlow ≥ qhigh), the calculated

quantity of the hourly demand order is positive. Note that an hourly purchase bid

having the price level of 2, 000 TL is always executed. Therefore, we need to define,

for each hourly purchase bid, an additional hourly demand order that has 2, 000 TL

as its both initial and final prices. The order quantity is equal to the bid quantity at

the price level of 2, 000 TL.

Table 4.1: Conversion from Actual Purchase Bid to Demand Orders

Order no. Order Type
Initial Price Final Price

qlow qhigh
Quantity

(phigh) (plow) (qlow − qhigh)
i = 1 Demand 91 0 4, 670 4, 458 212

i = 2 Demand 110 91 4, 458 4, 168 290

i = 3 Demand 120 110 4, 168 4, 028 140

i = 4 Demand 130 120 4, 028 3, 878 150

i = 5 Demand 140 130 3, 878 3, 818 60

i = 6 Demand 2, 000 140 3, 818 3, 818 0

i = 7 Demand 2, 000 2, 000 3, 818 0 3, 818

The transition from an hourly sales bid to an hourly supply order is almost the same,

except for the definitions of initial and final prices: (1) define the initial price of the

supply order as equal to plow, (2) define the final price of the supply order as equal

to phigh, (3) determine the order quantity by the difference qlow − qhigh. Since the

quantities submitted in hourly sales (supply) bids are put in an increasing order in

absolute value (qlow ≤ qhigh), the calculated quantity of the hourly supply order is

negative. Note that, similar to the purchase bids, an hourly sales bid having the price

level of 0 TL is always executed. Thus, for each hourly sales bid, an additional hourly

supply order that has 0 TL as its both initial and final prices needs to be included in

the model to make sure that it is processed. The order quantity is equal to the bid

quantity at the price level of 0 TL.

In Tables 4.1 and 4.2, the initial price, the final price, qlow, qhigh, and the calculated

order quantities of hourly purchase and sales bids, respectively, are shown. Those de-
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Table 4.2: Conversion from Actual Sales Bid to Supply Orders

Order no. Order Type
Initial Price Final Price

qlow qhigh
Quantity

(plow) (phigh) (qlow − qhigh)
j = 1 Supply 0 0 0 1, 510 −1, 510
j = 2 Supply 0 75 1, 510 2, 510 −1, 000
j = 3 Supply 75 100 2, 510 3, 575 −1, 065
j = 4 Supply 100 120 3, 575 3, 965 −390
j = 5 Supply 120 130 3, 965 4, 650 −685
j = 6 Supply 130 2, 000 4, 650 4, 650 0

mand and supply orders are derived from the example hourly purchase and sales bids

given in Tables 2.1 and 2.2 in Chapter 2, respectively. The graphical representation

of the derived hourly orders can also be seen in Figure 4.2. Each line segment of the

supply (demand) bid curves in the figure corresponds to one hourly supply (demand)

order. The parametric representation of prices and quantities of hourly orders and

how the initial and final prices are utilized in making the acceptance decision of the

orders are described in Section 4.2.1. Note that the block and flexible orders in our

mathematical model have gone through no conversion process and they are exactly

the same as the block and flexible bids in the Turkish DAM.

4.2.1 Parameters and Decision Variables

Let AcceptDhr(i) and AcceptShr(j) denote the decision variables for rate of acceptance

of hourly demand order i and hourly supply order j. Similarly, AcceptDbl (b) and

AcceptSbl(c) denote the decision variables for acceptance of demand block order b

and supply block order c, respectively. Finally, the decision variable for accepting

flexible order f at hour h is denoted by Acceptfl(f, h). Recall from Chapter 2 that

hourly orders can be fully or partially accepted while flexible and block orders are

either fully accepted or fully rejected. Also, flexible orders are not attached to any

specific time slot and can be processed at any hour of the day. Thus, they are denoted

using an additional index h that represents the hour of the day. When a flexible order

f is accepted at hour h, the variable Acceptfl(f, h) takes the value of 1 and otherwise

it becomes 0. In the model, AcceptDhr(i) and AcceptShr(j) are defined as nonnegative
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Figure 4.2: Transition from Hourly Bids in DAM to Hourly Orders in the Mathemat-

ical Model

decision variables that can take any value in the closed interval [0, 1]. AcceptDbl (b),

AcceptSbl(c) and Acceptfl(f, h) are binary decision variables taking a value of 0 (full

rejection) or 1 (full acceptance). That is,

0 ≤ AcceptDhr(i) ≤ 1 for i = 1, ..., I, (4.1)

0 ≤ AcceptShr(j) ≤ 1 for j = 1, ..., J, (4.2)

AcceptDbl (b) ∈ {0, 1} for b = 1, ..., B, (4.3)

AcceptSbl(c) ∈ {0, 1} for c = 1, ..., C, (4.4)

Acceptfl(f, h) ∈ {0, 1} for f = 1, ..., F and h = 1, ..., 24. (4.5)

Also, let the nonnegative decision variable MCP (h) be the (final) MCP that is effec-

tive at hour h. Note that MCP (h) is calculated based on all three types of orders in

the model and it is based on their price levels and proportion of acceptance:

0 ≤MCP (h) ≤ 2000 for h = 1, ..., 24. (4.6)
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All types of orders have different price structures, and therefore different price pa-

rameters. For instance, demand and supply block orders b and c have a single price,

denoted by pDbl (b) and pSbl(c), which are the prices applicable for each hour spanned

by the block order. Similarly, the single price parameter pfl(f) is used for flexible

orders, which can only be submitted in the supply direction. On the other hand, the

hourly orders present a different picture as they have two separate price levels. The

first price level of the hourly orders can be briefly referred to as the initial price; the

price at which an hourly order starts to be (partially) accepted. It is denoted in the

model by pDhr(i, 0) and pShr(j, 0), respectively, for hourly demand and hourly supply

orders. The second price can be considered as the final price; it is the price level

at which an hourly order is fully accepted. An hourly demand or an hourly supply

order is fully accepted at hour h if a certain (final) price level, denoted by pDhr(i, 1)

and pShr(j, 1), respectively, is reached by the MCP (h). For hourly supply orders, the

starting (initial) price for accepting the order is always less than or equal to the (fi-

nal) price beyond which the order is completely accepted: pShr(j, 0) ≤ pShr(j, 1). For

hourly demand orders, the opposite is true: the initial price is at least as large as the

final price: pDhr(i, 0) ≥ pDhr(i, 1).

0 ≤ pDhr(i, 0) ≤ 2000 and 0 ≤ pDhr(i, 1) ≤ 2000 for i = 1, ..., I, (4.7)

pDhr(i, 0) ≥ pDhr(i, 1) for i = 1, ..., I, (4.8)

0 ≤ pShr(j, 0) ≤ 2000 and 0 ≤ pShr(j, 1) ≤ 2000 for j = 1, ..., J, (4.9)

pShr(j, 1) ≥ pShr(j, 0) for j = 1, ..., J. (4.10)

Now, as expected, the meaning of the initial and final prices depends on the direction

of the hourly order; that is, whether it is a supply order or a demand order. Basically,

pShr(j, 0) of an hourly supply order is the minimum price at which that order starts to

be partially accepted. If MCP (h) is lower than this price, then the respective supply

order will be rejected. Similarly, pShr(j, 1) of an hourly supply order is the minimum

price at which that order can be fully accepted. If MCP (h) is higher than or equal to

this price, then the relevant order will be fully accepted.

The explanation of the price levels is almost the same for demand direction except

that the minimum price levels of supply orders become maximum levels in demand

cases. To clarify, pDhr(i, 0) of an hourly demand order is the maximum price to start
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Figure 4.3: Initial and Final Prices
(
p·(·, 0) and p·(·, 1)

)
of Hourly Demand and Sup-

ply Orders

accepting the order (minimum price at which the order is rejected) and pDhr(i, 1) of an

hourly demand order is the maximum price at which the relevant demand order can

be fully accepted. If MCP (h) is lower than pDhr(i, 1), then the hourly demand order

will be fully accepted.

The relationship between the two price levels and their effect on the rate of acceptance

of the orders –based on the level of MCP (h)– are illustrated in Figure 4.3. For both

supply and demand orders, any clearing priceMCP (h) that is between the initial and

final prices indicates that the order is accepted only partially.

Similar to the price structures, each order type has a unique quantity component that

is attached to the relevant price level(s). As stated earlier, the block bids in Turkish

Electricity DAM (block orders in our model) have single quantity that is associated

with the price components pDbl (b) and pSbl(c), and the given price-quantity pairs are

effective for every hour that a block order spans. In our mathematical model, the

quantities submitted by block orders b and c are denoted by the parameters qDbl (b)

and qSbl(c), respectively. The quantity parameter is positive for demand block orders,

qDbl (b) ≥ 0, and negative for supply block orders, qSbl(c) ≤ 0. The hourly demand

and supply orders have a very similar annotation and the quantities are represented

by the parameters qDhr(i) and qShr(j), respectively. The quantities of hourly orders

are applicable at the single hour they are submitted for and they are again positive

for demand orders and negative for supply orders. Recall that these parameters are

different than the bid quantities submitted in the DAM and they are calculated based
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on those bid quantities. As for the flexible orders that are submitted only in the supply

direction, the quantity is represented by the negative parameter qfl(f).

As stated earlier in Section 4.2, orders from i = 1 to i = 7 in Table 4.1 are actually

converted from the single purchase bid given in Table 2.1 in Chapter 2 and orders

from j = 1 to j = 6 in Table 4.2 are derived from the single sales bid given in

Table 2.2. Based on the prevailing MCP calculated at the hour they are submitted

(which is the 8th hour of the day), it is determined which portions of the single bids

shown in Chapter 2 (in other words, which individual orders given in Tables 4.1 and

4.2) will be accepted. Consider the case where MCP (8) = 120.75 TL, which is

actually the equilibrium price for the two bids as shown in Figure 2.3. In this case,

the maximum prices to fully accept the demand orders 7, 6 (which is a redundant

order as the quantity is 0) and 5 are higher than the MCP, which means that these

orders are fully accepted:

pDhr(7, 1) ≥MCP (8) ⇒ AcceptDhr(7) = 1,

pDhr(6, 1) ≥MCP (8) ⇒ AcceptDhr(6) = 1, and

pDhr(5, 1) ≥MCP (8) ⇒ AcceptDhr(5) = 1.

Moreover, demand order 4 is partially accepted since the MCP is lower than the price

at which the order starts to be accepted while it is higher than the maximum price at

which that demand order is fully accepted:

pDhr(4, 1) < MCP (8) < pDhr(4, 0) ⇒ 0 < AcceptDhr(4) < 1.

Similarly, the supply orders 1, 2, 3 and 4 are all fully accepted since the minimum

prices to fully accept those supply orders are lower than the MCP:

pShr(1, 1) ≤MCP (8) ⇒ AcceptShr(1) = 1,

pShr(2, 1) ≤MCP (8) ⇒ AcceptShr(2) = 1,

pShr(3, 1) ≤MCP (8) ⇒ AcceptShr(3) = 1, and

pShr(4, 1) ≤MCP (8) ⇒ AcceptShr(4) = 1.

In addition, as the MCP is lower than the minimum fully-accept-price of the supply

order 5 and higher than the initial price at which the order starts to be accepted, the

supply order 5 is partially accepted, i.e.,

pShr(5, 0) < MCP (8) < pShr(5, 1) ⇒ 0 < AcceptShr(5) < 1.
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When all of the above calculations and decisions are translated for the Turkish Elec-

tricity DAM, we can say that both of the purchase and sales bids given in Tables 2.1

and 2.2 in Chapter 2 are partially accepted when the MCP is 120.75 TL.

As for determining the accepted hourly supply and demand quantities, we can sum

the qDhr(i) and qShr(j) amounts of each of the fully accepted orders and add, on top of

that amount, the amount found by interpolating the quantity of the partially accepted

order using the price limits pDhr(i, 0), p
D
hr(i, 1), p

S
hr(j, 0) and pShr(j, 1), and MCP .

For instance, since the demand orders 7, 6 and 5 are all fully accepted we sum the

quantities attached to those orders and obtain 3, 878 MWh. For the 4th order which is

partially accepted, we interpolate between 120 and 130 for 120.75 to find how much

of the 150 MWh offered is executed. That is,

AcceptDhr(4) =
(130− 120.75)× 150

(130− 120)
=

9.25× 150

10
= 0.925

and the corresponding accepted amount is

AcceptDhr(4)× qDhr(4) = 0.925× 150 = 138.68 MWh.

In a similar manner, we can calculate the total accepted quantity supplied by summing

up the submitted quantities of the fully accepted supply orders 1, 2, 3 and 4, and add

the accepted portion of −685 MWh submitted in supply order 5, which is calculated

again by interpolation as follows:

AcceptShr(5) =
(120.75− 120)

(130− 120)
=

0.75

10
= 0.075

and the corresponding accepted amount is

AcceptShr(5)× qShr(5) = 0.075× (−685) = −51.68 MWh.

In the end, we find the equilibrium quantity of the purchase and sales bids given in

Tables 2.1 and 2.2 (in other words, the orders in Tables 4.1 and 4.2) as 4, 016.68 MWh

as shown in Figure 2.3. That is,

qDhr(7) + qDhr(5) + qDhr(5) + AcceptDhr(4)× qDhr(4)

= 3, 878 + 138.68

= 4, 016.68 MWh.
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Alternatively,

qShr(1) + qShr(2) + qShr(3) + qShr(4) + AcceptShr(5)× qShr(5)

= (−3965) + (−51.68)

= −4, 016.68 MWh.

The price and quantity parameters described above do not have a time component h.

To compare the prices to the MCP of a specific hour, we need additional parameters

to associate hourly and block orders with the hours they are attached to. (Recall that

flexible orders can be processed at any hour; so, there will be no need to define a time

parameter for flexible orders). These parameters are hourD(i, h) and hourS(j, h) for

hourly demand and supply orders; and hoursD(b, h) and hoursS(c, h) for demand

and supply block orders, respectively. These parameters are defined as follows:

hourD(i, h) =

 1 if hourly demand order i is submitted for hour h,

0 otherwise, for i = 1, ..., I and h = 1, ..., 24,
(4.11)

hourS(j, h) =

 1 if hourly supply order j is submitted for hour h,

0 otherwise, for j = 1, ..., J and h = 1, ..., 24,
(4.12)

hoursD(b, h) =

 1 if span of demand block order b includes hour h,

0 otherwise, for b = 1, ..., B and h = 1, ..., 24,
(4.13)

hoursS(c, h) =

 1 if span of supply block order c includes hour h,

0 otherwise, for c = 1, ..., C and h = 1, ..., 24.
(4.14)

Using the above four parameters, the relationship between the orders, their time slot

(a single hour or a set of hours) and MCP (h) can be set up in the model. This way,

the decision on whether or not accepting an order is made based on their (initial and

final) prices, pDhr(i, 0), p
S
hr(j, 0) and pDhr(i, 1), p

S
hr(j, 1), and the MCP of the hour(s)

that the order is valid for. In Section 4.2.2 below, the constraints of the mathematical

model that are formulated for the purpose of determining the MCP and the execution

of all types of orders are described.

4.2.2 Constraints

Recall that our model is based on COSMOS Model by Djabali et al. (2011) with

additions of linked block orders, flexible orders, and a new method to deal with para-
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doxically rejected block and flexible orders. Furthermore, in Turkish DAM, block

orders do not have separate quantities for each hour of the order, and there is no zonal

pricing in Turkey. Finally, we use distinct notation for demand and supply orders to

make it easier to distinguish different directions of orders, as demonstrated above in

Section 4.2.1.

To begin with, the values that the decision variables can take should be specified in

the set constraints. Recall (4.1) through (4.5): AcceptDhr(i) and AcceptShr(j) can take

any fractional value between and including 0 and 1 whereas AcceptDbl (b), Accept
S
bl(c)

are integer variables that can only take the values 0 or 1 in the model. The other

decision variable, MCP (h), gives the final MCP and can take any nonnegative value:

MCP (h) ≥ 0 for h = 1, ..., 24, although in practice the upper level is 2,000 TL (see

(4.6) on page 37).

4.2.2.1 Constraints for Hourly Orders

The constraints of the mathematical model, which make sure that the fully accepted

and partially accepted hourly orders satisfy the initial and final price limits as demon-

strated in Section 4.2.1 are described in this section.

The first set of structural constraints is about the criterion to accept an hourly order.

With the constraints (4.15) and (4.16) below, it is stated that an hourly demand order

i and an hourly supply order j can be accepted only if it benefits from the price differ-

ence. That is, an hourly demand (supply) order can be –at least partially– accepted if

its initial price is higher (lower) than the MCP. Since the price at which an hourly de-

mand order starts to be accepted must be higher than the MCP, the left hand side of the

inequality (4.15) is defined as pDhr(i, 0)−MCP (h), whereas it isMCP (h)−pShr(j, 0)
for the hourly supply order in (4.16). With these two constraints, we only set values

of two binary variables yD1 (i) and yS1 (j), and how they work to determine the value

of acceptance variables is described below.

For i = 1, ..., I ,

pDhr(i, 0)−
24∑
h=1

MCP (h)× hourD(i, h) ≤ M ×
(
1− yD1 (i)

)
. (4.15)
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For j = 1, ..., J ,

24∑
h=1

MCP (h)× hourS(j, h)− pShr(j, 0) ≤ M ×
(
1− yS1 (j)

)
. (4.16)

where M is a sufficiently large number and yD1 (i) and yS1 (j) are binary decision vari-

ables; yD1 (i) ∈ {0, 1} for i = 1, ..., I such that

yD1 (i) =

 1 if MCP (h) ≥ pD(i, 0) (hourly demand order i is rejected),

0 if MCP (h) ≤ pD(i, 0).

yS1 (j) ∈ {0, 1} and for j = 1, ..., J such that

yS1 (j) =

 1 if MCP (h) ≤ pS(j, 0) (hourly supply order j is rejected),

0 if MCP (h) ≥ pS(j, 0).

When the above two constraints are evaluated together with rejection inequalities

(4.17) through (4.20) and partial acceptance constraints (4.27) through (4.30), it is

made sure that the binary variables yD1 (i) and yS1 (j) take the correct values so that the

decision variables AcceptDhr(i) and AcceptShr(j) also take the correct value represent-

ing the acceptance decisions. These constraints are explained next.

The following two couple of constraints make sure that when the criterion of the MCP

being larger (smaller) than the price at which an hourly supply (demand) order starts

to be accepted is not satisfied, then the order in question is rejected.

For i = 1, ..., I ,

24∑
h=1

MCP (h)× hourD(i, h)− pDhr(i, 0) ≤ M × yD1 (i), (4.17)

AcceptDhr(i) ≤ 1− yD1 (i). (4.18)

For j = 1, ..., J ,

pShr(j, 0)−
24∑
h=1

MCP (h)× hourS(j, h) ≤ M × yS1 (j), (4.19)

AcceptShr(j) ≤ 1− yS1 (j). (4.20)

In the constraints (4.17) through (4.20) above, it is ensured that when the initial price

of an hourly demand (supply) order is lower (higher) than the MCP of the hour that
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the order is placed for, then the corresponding order is rejected due to (4.18) and

(4.20). The constraints (4.15) and (4.16) are included in the model so that when

the aforementioned price conditions do not hold, yD1 (i) = 0
(
yS1 (j) = 0

)
and the

corresponding hourly demand order i (supply order j) is not forced to be rejected.

In order to fully accept an hourly order, pDhr(i, 1) must be larger than the MCP for

demand orders and pShr(j, 1) must be smaller than the MCP for supply orders as stated

in Section 4.2.1. The following constraints are included in the mathematical model

for this purpose.

For i = 1, ..., I ,

pDhr(i, 1)−
24∑
h=1

MCP (h)× hourD(i, h) ≤ M ×
(
1− yD2 (i)

)
, (4.21)

24∑
h=1

MCP (h)× hourD(i, h)− pDhr(i, 1) ≤ M × yD2 (i), (4.22)

AcceptDhr(i)− 1 ≥ −yD2 (i), (4.23)

For j = 1, ..., J ,

24∑
h=1

MCP (h)× hourS(j, h)− pShr(j, 1) ≤ M ×
(
1− yS2 (j)

)
, (4.24)

pShr(j, 1)−
24∑
h=1

MCP (h)× hourS(j, h) ≤ M × yS2 (j), (4.25)

AcceptShr(j)− 1 ≥ −yS2 (j), (4.26)

where yD2 (i) and yS2 (j) are binary decision variables; yD2 (i) ∈ {0, 1} for i = 1, ..., I

such that

yD2 (i) =

 0 if MCP (h) ≤ pD(i, 1) (hourly demand order i is fully accepted),

1 MCP (h) ≥ pD(i, 1).

yS2 (j) ∈ {0, 1} for j = 1, ..., J such that

yS2 (j) =

 0 if MCP (h) ≥ pS(j, 1) (hourly supply order j is fully accepted),

1 MCP (h) ≤ pS(j, 1).

The way the above set of constraints works is as follows. When an hourly demand

order i or an hourly supply order j is fully accepted, i.e., yD2 (i) = 0 or yS2 (j) = 0,
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the constraints (4.23) and (4.26) indicate that AcceptDhr(i) ≥ 1 or AcceptShr(j) ≥ 1,

respectively. In addition to this condition, AcceptDhr(i) ≤ 1 and AcceptShr(j) ≤ 1

due to (4.1) and (4.2) on page 37. This makes the value of the Accept·hr(·) variables

equal to 1, meaning that the hourly order i or j is fully accepted when yD2 (i) = 0 or

yS2 (j) = 0, respectively.

The final set of structural constraints related to the hourly orders in the Turkish DAM

are about the price conditions that an order must satisfy in order to be partially ac-

cepted.

For i = 1, ..., I ,

24∑
h=1

MCP (h)× hourD(i, h)−
(
pDhr(i, 0)− AcceptDhr(i)×

(
pDhr(i, 0)− pDhr(i, 1)

))
≤M × yD1 (i) +M ×

(
1− yD2 (i)

)
,

(4.27)

24∑
h=1

MCP (h)× hourD(i, h)−
(
pDhr(i, 0)− AcceptDhr(i)×

(
pDhr(i, 0)− pDhr(i, 1)

))
≥ −M × yD1 (i)−M ×

(
1− yD2 (i)

)
.

(4.28)

For j = 1, ..., J ,

24∑
h=1

MCP (h)× hourS(j, h)−
(
pShr(j, 0) + AcceptShr(j)×

(
pShr(j, 1)− pShr(j, 0)

))
≤M × yS1 (j) +M ×

(
1− yS2 (j)

)
,

(4.29)

24∑
h=1

MCP (h)× hourS(j, h)−
(
pShr(j, 0) + AcceptShr(j)×

(
pShr(j, 1)− pShr(j, 0)

))
≥ −M × yS1 (j)−M ×

(
1− yS2 (j)

)
.

(4.30)

Constraints (4.27) and (4.28) are redundant for all combinations of
(
yD1 (i), y

D
2 (i)

)
except for the case this pair is equal to (0, 1), which makes the right-hand side of both
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inequalities 0. In other words, constraints (4.27) and (4.28) are given for the case

pDhr(i, 1) ≤ MCP (h) ≤ pDhr(i, 0) to determine the corresponding AcceptDhr(i) mak-

ing use of the equality MCP (h) = pDhr(i, 0)− AcceptDhr(i)×
(
pDhr(i, 0)− pDhr(i, 1)

)
.

Almost the same conditions apply for the hourly supply orders. In that case, con-

straints (4.29) and (4.30) are redundant for all combinations of
(
yS1 (j), y

S
2 (j)

)
except

when this pair is equal to (0, 1). In other words, (4.29) and (4.30) are given for the

case pShr(j, 0) ≤ MCP (h) ≤ pShr(i, 1) to determine the corresponding AcceptShr(j)

using the equality MCP (h) = pShr(j, 0) + AcceptShr(j) ×
(
pShr(j, 1) − pShr(j, 0)

)
. In

short, the interpolation of MCP between the price limits of the hourly order i or j

determines how much of that order will be accepted.

There are three outcomes of the model that can be observed related to the hourly

orders. An hourly order can either be (1) fully rejected, (2) fully accepted, or (3) par-

tially accepted. This decision is made based on the comparison of MCP at the hour

the order is submitted for, to the initial and final prices of the order, p·hr(·, 0) and

p·hr(·, 1).

For a given hourly demand order i such that hourD(i, h) = 1, the following analysis

can be made based on the comparison between the MCP and the initial price of the

order.

Case I-1. When MCP (h) > pDhr(i, 0), we have

yD1 (i) = 1 due to (4.17),

AcceptDhr(i) = 0 due to (4.18), meaning hourly demand order i is rejected.

Case I-2. When MCP (h) < pDhr(i, 0), we have

yD1 (i) = 0 due to (4.15). The hourly demand order i is either partially or

fully accepted, depending on the value of yD2 (i) = 0, which is based on the

comparison of MCP and the final price.

Case I-3. When MCP (h) = pDhr(i, 0), we have

Subcase I-3.1. yD1 (i) = 1,

AcceptDhr(i) = 0; hourly demand order i is rejected (see

Case I-1 above).
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Subcase I-3.2. yD1 (i) = 0,

AcceptDhr(i) = 0; hourly demand order i is rejected due

to (4.27) and (4.28). Also, yD2 (i) = 1 due to (4.22) as

MCP ≥ pDhr(i, 1).

A similar analysis, which makes use of the comparison between the MCP and the

final price of a given hourly demand order i can be summarized as follows.

Case F-1. When MCP (h) < pDhr(i, 1), we have

yD2 (i) = 0 due to (4.21),

AcceptDhr(i) = 1 due to (4.23), meaning hourly demand order i is fully

accepted.

Case F-2. When MCP (h) > pDhr(i, 1), we have

yD2 (i) = 0 due to (4.22). The hourly demand order i is either partially

accepted or rejected, depending on the comparison of MCP and the initial

price.

Case F-3. When MCP (h) = pDhr(i, 1), we have

Subcase F-3.1. yD2 (i) = 0,

AcceptDhr(i) = 1; hourly demand order i is fully accepted

(see Case F-1 above).

Subcase F-3.2. yD2 (i) = 1,

AcceptDhr(i) = 1, hourly demand order i is fully accepted

due to (4.27) and (4.28). Also, yD1 (i) = 0 due to (4.15) as

MCP ≤ pDhr(i, 0).

Based on the analyses above, we can demonstrate how the mathematical model be-

haves by the changing combination of the pair
(
yD1 , yD2

)
.

(1)
(
yD1 (i), y

D
2 (i)

)
= (1, 0)

In this case, yD1 (i = 1 implies MCP (h) ≥ pD(i, 0) and yD2 (i) = 0 implies

MCP (h) < pD(i, 1), which is not possible because pD(i, 0) > pD(i, 1) for de-

mand orders.
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(2)
(
yD1 (i), y

D
2 (i)

)
= (1, 1)

This pair implies MCP (h) ≥ pD(i, 0) and MCP (h) > pD(i, 1), which is pos-

sible depending on the values of pD(i, 0) and pD(i, 1). Also, yD1 (i) = 1 means

that AcceptDhr(i) = 0, and yD2 (i) = 1 does not violate this outcome in any of the

constraints.

(3)
(
yD1 (i), y

D
2 (i)

)
= (0, 0)

yD2 (i) = 0 implies MCP (h) ≤ pD(i, 1), which also means that hourly demand

order i is fully accepted. Having yD1 (i) = 0 does not violate this outcome in any

of the constraints.

(4)
(
yD1 (i), y

D
2 (i)

)
= (0, 1)

This pair implies pD(i, 1) ≤ MCP (h) ≤ pD(i, 0), which can result in either full

acceptance, partial acceptance or full rejection of order i. This is determined by

the constraints (4.27) and (4.28).

Note that almost the same analysis can be done for the hourly supply orders, for which

(4.29) and (4.30) are the partially acceptance constraints.

4.2.2.2 Constraints for Block Orders

In this section, constraints for the block orders are given. Recall from Section 4.2 that

block bids submitted in the Turkish DAM are directly incorporated into our model

as block orders without going through a conversion process. Since block orders can

only be accepted or rejected fully and cannot be partially executed, there is only one

main set of constraints (about when to accept those orders and when to reject them)

for each direction. The constraints below are very similar to their counterparts for

hourly orders. The decision of whether accepting or rejecting a block order is based

upon the total price difference over all hours at which a block order is placed. This

summation is equivalent to the sum of individual price differences at every hour the

block order placed at. This equivalence relationship is given below, showing that the

sum of price differences is equal to the difference between total prices (difference
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between MCP and the block price).

pDbl (b)×
24∑
h=1

hoursD(b, h)−
24∑
h=1

MCP (h)× hoursD(b, h)

=
24∑
h=1

hoursD(b, h)×
(
pDbl (b)−MCP (h)

)
The constraints (4.31) and (4.33) specify the acceptance conditions. In the constraints

(4.32) and (4.34), the rejection of block orders are specified.

For b = 1, ..., B,

pDbl (b)
24∑
h=1

hoursD(b, h)−
24∑
h=1

MCP (h)× hoursD(b, h)

≤M × AcceptDbl (b) +M ×
(
1− yD3 (b)

)
, (4.31)

24∑
h=1

MCP (h)× hoursD(b, h)− pDbl (b)
24∑
h=1

hoursD(b, h)

≤M ×
(
1− AcceptDbl (b)

)
, (4.32)

For c = 1, ..., C,

24∑
h=1

MCP (h)× hoursS(c, h)− pSbl(c)
24∑
h=1

hoursS(c, h)

≤M × AcceptSbl(c) +M ×
(
1− yS3 (c)

)
, (4.33)

pSbl(c)
24∑
h=1

hoursS(c, h)−
24∑
h=1

MCP (h)× hoursS(c, h)

≤M ×
(
1− AcceptSbl(c)

)
, (4.34)

When the summation of prices of a demand (supply) block order is lower (higher)

than the total MCPs at the hours the block order is submitted, then the constraints

(4.32) and (4.34) imply that the demand (supply) block order is rejected. However,

the opposite is not always imposed. As stated in Section 4.2, some block orders can

be rejected even if they satisfy the price criteria, and these orders are called “paradox-

ically rejected block (PRB) orders”. Therefore, unlike the constraints regarding the

acceptance of hourly orders or the rejection of block orders, we have an additional
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term M ×
(
1− y·3(·)

)
in the block order acceptance constraints. How this term helps

allowing and tracking PRB orders is as follows. When a demand (supply) block order

is paradoxically rejected, then yD3 (b) = 0
(
yS3 (c) = 0

)
, which makes the constraint

(4.31)
(
(4.33)

)
redundant. This way, these constraints do not force the mentioned

block order to be accepted although that order satisfies the price criteria. Thus, it

becomes a PRB order.

yD3 (b) =

 0 if demand block order b is paradoxically rejected,

1 if demand block order b is either accepted or fairly rejected,

and

yS3 (c) =

 0 if supply block order c is paradoxically rejected,

1 if supply block order c is either accepted or fairly rejected.

In the constraint (4.35)
(
(4.36)

)
below, we make sure that when a demand block

order b (supply block order c) is accepted, the corresponding yD3 (b) is 1
(
yS3 (c) is 1

)
and the acceptance constraint (4.31)

(
(4.33)

)
is active. When demand block order b

(supply block order c) is paradoxically rejected, i.e., yD3 (b) = 0
(
yS3 (c) = 0

)
, this

is imposed by again (4.35)
(
(4.36)

)
. On the other hand, we need constraint (4.37)(

(4.38)
)

to ensure that the acceptance constraint (4.31)
(
(4.33)

)
is not allowed to be

redundant due to yD3 (b) (yS3 (c)) when demand block order b (supply block order c) is

fairly rejected, i.e., the order is rejected because it does not satisfy the price criteria.

That is, we force yD3 (b) (yS3 (c)) to take the value of 1 in case of fair rejection, which

is in accordance with the definition of yD3 (b) (yS3 (c)).

For b = 1, ..., B and c = 1, ..., C,

AcceptDbl (b) ≤ yD3 (b), (4.35)

AcceptSbl(c) ≤ yS3 (c). (4.36)

24∑
h=1

MCP (h)× hoursD(b, h)− pDbl (b)
24∑
h=1

hoursD(b, h) ≤M × yD3 (b), (4.37)

pSbl(c)
24∑
h=1

hoursS(c, h)−
24∑
h=1

MCP (h)× hoursS(c, h) ≤M × yS3 (c), (4.38)

Recall from Chapter 2 that some block orders are linked to other block orders, which

means that a linked block order can only be accepted when the block order(s) it is
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linked to is (are) accepted. For that purpose, the constraints below are added to the

model. Note that the linked block orders must be submitted in the same direction and

at most three block orders can be linked.

For the case of two linked block orders,

AcceptDbl (b
′) ≤ AcceptDbl (b), if demand block order b′ is linked to order b,(4.39)

AcceptSbl(c
′) ≤ AcceptSbl(c), if supply block order c′ is linked to order c. (4.40)

For the case of three linked block orders, the acceptance of demand block order b′′

(supply block order c′′) is dependent on the acceptance of two other block orders b

and b′ (c and c′). That is, the block order b (c) can be accepted at any case whereas

block order b′ (c′) can only be executed if block order b (c) is accepted (see (4.39) and

(4.40) above), and block order b′′ (c′′) can be accepted only if block orders b and b′

(c and c′) are accepted (EMRA, BSR, 2013a). The opposite is not enforced, i.e., the

block order b′ (c′) does not have to be accepted when block order b (c) is accepted.

AcceptDbl (b
′′) ≤ AcceptDbl (b

′), if demand order b′′ is linked to orders b and b′, (4.41)

AcceptSbl(c
′′) ≤ AcceptSbl(c

′), if supply order c′′ is linked to orders c and c′. (4.42)

In the constraints (4.41) and (4.42) above, linked block orders b′′ and c′′ are associated

with only block orders b′ and c′, respectively. However, with the constraints (4.39)

and (4.40), block orders b′ and c′ are linked to block orders b and c. This way, linking

block orders b′′ and c′′ to block orders b and c, respectively, is also ensured.

4.2.2.3 Constraints for Flexible Orders

One can expect that the constraints regarding the decisions of accepting and rejecting

the flexible orders will be almost the same as those defined for block orders. In

fact, flexible orders are some special kind of block orders, placed to be executed at

a single, unspecified hour. However, although the two types are very similar, there

are significant differences between the constraints written for the two types of orders.

Since flexible orders are not submitted for a specific hour, they can be processed at

any hour of the day. This characteristic of the flexible orders requires that price,

pfl(f), of each order f is compared to the MCP at every hour of the day. In addition,
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as the flexible orders can be placed only in the supply direction, there is no need for

adding a superscript to denote the direction. Based on these inferences, the conditions

for which a flexible order f can be accepted at an hour h are given below.

24∑
h=1

Acceptfl(f, h) ≤ 1 for f = 1, ..., F. (4.43)

With the above constraint, we ensure that each flexible order is executed only at a

single hour or not executed at all.

For f = 1, ..., F and h = 1, ..., 24,

MCP (h)− pfl(f) ≤ M × Acceptfl(f, h) +M ×
(
1− y4(f, h)

)
. (4.44)

where

y4(f, h) =

 0 if flexible order f is paradoxically rejected at hour h,

1 if flexible order f is either accepted or fairly rejected at hour h.

Constraint (4.44) above is a modified version of (4.33), where the only difference

from the supply block orders is that price comparison is done for each hour h, instead

of comparing the total price differences. Just like block orders, flexible orders can

also be paradoxically rejected; that’s why we work with the term M ×
(
1− y4(f, h)

)
on the right hand side of (4.44). When a flexible order f is rejected at hour h even if its

price is lower than MCP (h) (paradoxically rejected), we have y4(f, h) = 0, making

(4.44) redundant. Two constraints below are very similar to their counterparts given

for block orders; making sure of the correct functioning of y4(f, h) for all cases a

flexible order f is accepted and paradoxically or fairly rejected at hour h.

For f = 1, ..., F and h = 1, ..., 24,

pfl(f, h)−MCP (h) ≤M × y4(f, h), (4.45)

Acceptfl(f, h) ≤ y4(f, h). (4.46)

The rejection inequality of flexible orders is similar to the constraint (4.34) written

for supply block orders as seen below.

For f = 1, ..., F and h = 1, ..., 24,

pfl(f)−MCP (h) ≤ M ×
(
1− Acceptfl(f, h)

)
. (4.47)
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4.2.2.4 Constraint for Hourly Market Balance

Up to this point, the conditions that define and limit the price ranges for which hourly,

block and flexible orders are partially and fully accepted or rejected are discussed.

However, the decision of whether or not accepting an order, or how much of it to ac-

cept, depends not only on the prices corresponding to that order but also the decision

made about other orders submitted in the market. In order for the Turkish Electricity

DAM, in fact for any competitive market, to be feasible, the total supplied amount

must be equal to the total quantity demanded. Therefore, we write the following con-

straint about the feasibility of the order couplings so that the supply at every hour is

not short of the demand.

I∑
i=1

hourD(i, h)× qDhr(i)× AcceptDhr(i) +
J∑

j=1

hourS(j, h)× qShr(j)× AcceptShr(j)

+
B∑
b=1

hoursD(b, h)× qDbl (b)× AcceptDbl (b) +
C∑
c=1

hoursS(c, h)× qSbl(c)× AcceptSbl(c)

+
F∑

f=1

qfl(f)× Acceptfl(f, h) = 0 for h = 1, ..., 24. (4.48)

In the constraint (4.48) above, the quantity of orders of any type that is accepted at a

certain hour h is summed up. Note that the quantities are included in the inequality

together with their sign without their absolute value taken. Since demand order quan-

tities have positive sign and supply order quantities have negative sign, the total on

the left hand side must be equal to zero to have a balance of supply and demand.

4.2.3 The Objective Function

All of the constraints given in Section 4.2.2 serve the purpose of determining which

orders to accept and which ones to reject so as to balance or clear the Turkish Elec-

tricity DAM. In this section, we formulate the objective function of our mathematical

model, which is “Total Economic Welfare”, and clarify how it is constructed and how

it works.

As stated several times, the objective function of the mathematical model proposed in

this thesis is the total economic welfare of the Turkish Electricity DAM. The objec-
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tive function consists of three distinct expressions; each of them is included for one

type of order in the DAM, namely hourly orders, block orders and flexible orders.

First, define the objective function, TotWel, as the sum of surpluses of three types of

orders:

TotWel =
I∑

i=1

qDhr(i)× AcceptDhr(i)×

(
pDhr(i, 0) + pDhr(i, 1)

2

+
pDhr(i, 0)− pDhr(i, 1)

2
×
(
1− AcceptDhr(i)

))

+
J∑

j=1

qShr(j)× AcceptShr(j)×

(
pShr(j, 0) + pShr(j, 1)

2

+
pShr(j, 0)− pShr(j, 1)

2
×
(
1− AcceptShr(j)

))

+
B∑
b=1

24∑
h=1

qDbl (b)× AcceptDbl (b)× pDbl (b)× hoursD(b, h)

+
C∑
c=1

24∑
h=1

qSbl(c)× AcceptSbl(c)× pSbl(c)× hoursS(c, h)

+
F∑

f=1

24∑
h=1

qfl(f)× Acceptfl(f, h)× pfl(f) (4.49)

In (4.49), the first two lines give the sum of consumer surplus for the hourly demand

orders and the next two lines give the producer surplus of the hourly supply orders.

Similarly, the fifth and sixth lines of (4.49) give the consumer surplus and producer

surplus of block orders, respectively. The (producer) surplus arising from the flexible

orders is calculated by the term in the last line. Next, it is clarified how these formu-

lations give the consumer or producer surplus based on the example hourly orders.

The three cases for which the economic surplus or welfare is calculated are described

next.

1. When an hourly order is rejected, i.e., the MCP is higher than the price

pDhr(i, 0) at which an hourly demand order i starts to be accepted or lower than

the price pShr(j, 0) at which an hourly supply order j starts to be accepted.

In this case, MCP (h) falls outside the interval between two prices. Therefore,

the hourly order is rejected and Accept·hr(·) = 0, meaning the whole term in

TotWel corresponding to the order under consideration becomes 0, i.e., the
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Figure 4.4: The Consumer and Producer Surplus When an Hourly Order is Fully

Accepted

surplus is 0.

2. When an hourly order is fully accepted, i.e., the MCP is lower than the max-

imum price pDhr(i, 1) for which an hourly demand order i is fully accepted or

the MCP is higher than the minimum price pShr(j, 1) for which an hourly supply

order j is fully accepted.

This case is the opposite of the first item above: Accept·hr(·) = 1 and the area

below the line that is connecting the two price limits is calculated as the surplus

as shown in Figure 4.4 for both demand and supply orders. The formula for the

areas of the shaded (blue and red) trapezoids is

q·hr(·)×
p·hr(·, 0) + p·hr(·, 1)

2

since the term

p·hr(·, 0)− p·hr(·, 1)
2

×
(
1− Accept·hr(·)

)
is cancelled out due to Accept·hr(·) = 1.

3. When an hourly order is partially accepted, i.e., the MCP is between the two

price limits, p·hr(·, 0) and p·hr(·, 1).
When this is the case, whole of the objective function formula in (4.49) that

is related to the hourly orders remains valid. Value of the surplus for a given

partially accepted hourly order i or j is calculated as follows.

Surplus =

(
p·hr(·, 0) +MCP (h)

2

)
× q·hr(·)× Accept·hr(·),
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where

MCP (h) = p·hr(·, 0) +
(
p·hr(·, 1)− p·hr(·, 0)

)
× Accept·hr(·)

due to (4.27) through (4.30). Therefore,

Surplus =

(
p·hr(·, 0) + p·hr(·, 0) +

(
p·hr(·, 1)− p·hr(·, 0)

)
× Accept·hr(·)

2

)
× q·hr(·)× Accept·hr(·)

=

(
p·hr(·, 0) + p·hr(·, 0)

2
+
(p·hr(·, 0)− p·hr(·, 1)

2

)
×
(
1− Accept·hr(·)

)
−

(
p·hr(·, 0)− p·hr(·, 1)

)
2

)
× q·hr(·)× Accept·hr(·)

=

(
p·hr(·, 0) + p·hr(·, 1)

2
+
(p·hr(·, 0)− p·hr(·, 1)

2

)
×
(
1− Accept·hr(·)

))
× q·hr(·)× Accept·hr(·). (4.50)

The region that constitutes the consumer and producer surpluses are now smaller

shaded (blue and red) trapezoids (respectively) shown in Figure 4.5. The areas are

calculated as in (4.50). Since the amount supplied is actually designated with a neg-

ative quantity, the producer surplus is mathematically a negative term. Therefore,

the total welfare is in fact calculated by subtracting the producer surplus from the

consumer surplus (in absolute terms), represented by the shaded triangular area in

Figure 4.5.

The calculation of block and flexible order surpluses is rather simple as they only

involve the multiplication of the price and the quantity parameters for the accepted

orders, Accept·bl(·) = 1 or Acceptfl(f, h) = 1, and it is equal to zero when the block

or flexible order in question is rejected, Accept·bl(·) = 0 or Acceptfl(f, h) = 0. The

difference between two types is that since block orders are placed for at least four

hours, the calculation of surplus includes the multiplication of the term hours·(·, h).
For all three types of orders, the quantity parameter is included in the formula with its

sign. That is, the calculation is actually “{the total of consumer surplus} − {the total

of producer surplus}” as the quantity is positive for demand orders and negative for

supply orders. In other words, total welfare is the “{the blue area} − {the red area}”
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Figure 4.5: The Consumer and Producer Surplus When an Hourly Order is Partially

Accepted

as illustrated in Figure 4.5.

4.2.4 Linear Approximation

In the objective function given in Section 4.2.3, the hourly surplus term involves

the square of the acceptance decision variables,
(
AcceptDhr(i)

)2 and
(
AcceptShr(j)

)2,
which makes the total welfare a quadratic function. In addition, in general our math-

ematical model includes several binary decision variables, which also affects the so-

lution time of the model. The binary decision variables are inevitably used due to

the characteristic of the Turkish Electricity DAM but non-linearity can be avoided

by using a slightly different expression in the objective function. For that purpose,

we propose a linear approximation to the quadratic calculation of “Total Welfare”
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function, which is based on the study due to Hazell and Norton (1986).

TotWel′ =
I∑

i=1

qDhr(i)× AcceptDhr(i)×
pDhr(i, 0) + pDhr(i, 1)

2

+
J∑

j=1

qShr(j)× AcceptShr(j)×
pShr(j, 0) + pShr(j, 1)

2

+
B∑
b=1

24∑
h=1

qDbl (b)× AcceptDbl (b)× pDbl (b)× hoursD(b, h)

+
C∑
c=1

24∑
h=1

qSbl(c)× AcceptSbl(c)× pSbl(c)× hoursS(c, h)

+
F∑

f=1

24∑
h=1

qfl(f)× Acceptfl(f, h)× pfl(f) (4.51)

In the above equation, the hourly order surplus terms are linearized while the way

block and flexible order surpluses are calculated is not changed, as compared to the

original objective function in (4.49).

Recall from Figure 4.5 in Section 4.2.3 that when an hourly order is partially ac-

cepted, only a part of the area under the supply or demand curve is factored in the

calculated of the objective function. The fact that hourly orders are allowed to be par-

tially accepted makes the objective function non-linear since the rate of acceptance

depends directly on the interpolation of MCP between two price limits. How this

interpolation affects the calculation of hourly order surplus and makes it non-linear

can be seen in (4.50) in Section 4.2.3.

What we do to find a linear approximation to the non-linear objective function is that

we simply remove the interpolation term from the equation. Since some hourly orders

will be partially accepted with an acceptance rate close to 1 and some will be partially

accepted with an acceptance rate close to 0, the approximation would result in losing

some and winning some of the original objective function value, depending on the

direction of the hourly order. Therefore, the linearized objective would be (hopefully)

a good approximation to the actual total welfare. In Figure 4.6, how the total welfare

is approximated is shown, based on the example hourly bids given in Tables 2.1 and

2.2 in Chapter 2. It can be observed from the graphic that the quadratic welfare curve

is represented by a piecewise linear function, where the welfare value is estimated at

distinct price levels and connected at each of two adjacent points with a linear line.
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MCPs for the Example Hourly Bids

The solution performance of the model that has linearized welfare as its objective

value is tested and discussed in Chapter 5.

4.3 Alternative Solution Approaches

In this section, alternative approaches are proposed to solve the clearing problem of

Turkish Electricity DAM using the mathematical model provided in Section 4.2.

In most of the real life cases, the DAM clearing problem is infeasible without the

presence of paradoxically rejected orders. This is because there does not exist a fea-

sible set of linear prices that maximizes the total welfare due to non-convexity of the

welfare function (Derinkuyu, 2015). Therefore, we need to introduce paradoxically

rejected orders into our model to reach at least feasibility. Although the concept of

paradoxically accepted orders can also be included, we only consider the paradoxical
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rejection case in our model. In fact, in all of 15 instances, our model did not give any

feasible solution when we do not allow paradoxically rejecting block and flexible or-

ders. Only solutions of 3 cases turned out to have no block order that is paradoxically

rejected (see Table 5.3 in Chapter 5). However, when the concept of paradoxically

rejected orders comes into picture, the question of how and to what extent they will

be allowed arises. For that purpose, we propose two different solution approaches,

which are summarized below.

1. Iteratively solve the original problem, where the total number of paradox-

ically rejected block orders allowed is updated at every iteration. In this

bi-criteria approach, we obtain several results to the DAM clearing problem,

using the mathematical model given in Section 4.2. To limit the number of

paradoxically rejected block orders, we introduce a new constraint: the sum of

binary variables
(
1−y·3(·)

)
is limited by a certain number, n.

(
Recall that y·3(·)

makes the acceptance constraints redundant when a block order is a PRB order.

Also, recall constraints (4.35) through (4.38) for the use of y·3(·)
)
.

B∑
b=1

(
1− yD3 (b)

)
+

C∑
c=1

(
1− yS3 (c)

)
≤ n. (4.52)

Note that we propose this solution approach to deal with the case regarding

paradoxically rejected block orders only, as flexible orders are submitted for

any hour of the day and they are executed at most at one hour. In this case, for

instance, accepting a flexible order f at an hour h may cause the same flexible

order to be paradoxically rejected at the other 23 hours of the day. Hence, it is

difficult to limit the number of paradoxically rejected flexible orders.

By systematically changing the value of n in (4.52), we allow different number

of paradoxically rejected block orders in the problem solution. Each solution

delivers a different set of accepted and rejected orders, different MCPs and

different objective function values, which is total welfare. It is up to the Market

Operator to choose between a solution that maximizes the total welfare while

allowing a certain number of PRB orders, a solution that has the minimum

possible number of PRB orders, or a solution that is neither of the two extremes.

The efficient frontier will provide all the possible alternative solutions to the

Market Operator for resolving the trade-off between the number of PRB orders
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and the total welfare.

The solution algorithm proposed for this approach is given below.

Initialization;

iter = 0, iteration counter;

Let n =∞ and solve the mathematical model for maximizing TotWel;

Let TotWel∗ be the optimal objective value of the problem;

Set Welfare(iter) = TotWel∗;

Let n∗ =
B∑
b=1

(
1− yD3 (b)

)
+

C∑
c=1

(
1− yS3 (c)

)
, number of PRB orders in the

optimal solution;

Set n = n∗ − 1;

Introduce upper bound for Total Welfare; TotWel ≤ Welfare(iter);

while n 6= 0 and the solution is not infeasible do

iter = iter + 1;

Solve the mathematical model for maximizing TotWel;

Welfare(iter) = TotWel∗;

Calculate n∗ =
B∑
b=1

(
1− yD3 (b)

)
+

C∑
c=1

(
1− yS3 (c)

)
;

Update n = n∗ − 1;

TotWel ≤ Welfare(iter);

end
Algorithm 1: Solution algorithm

We first solve the model without limiting the number of PRB orders allowed,

and we obtain the maximum number of PRB orders that maximizes the total

welfare. Next, we start the algorithm by making n equal to obtained number

of PRB orders in the solved model, minus one. At each step of the solution

algorithm, we solve the model and decrease the limit on the allowed number of

PRB orders, until we reach 0 PRB orders or get an infeasible solution.

2. First minimize the number of paradoxically rejected orders, then maxi-

mize the total welfare. With this two-step solution approach, the model would

try to find the solutions with the minimum number of paradoxically rejected
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block orders.

At the first step, the original problem with all the constraints given in Sec-

tion 4.2 is solved. Only difference is that the objective function is not the max-

imization of total welfare but the minimization of total number of PRB orders.

For this purpose, the left-hand side of (4.52) is defined as the objective func-

tion equation. Again, as in the first solution approach, we do not calculate or

optimize the number of paradoxically rejected flexible orders.

After finding the minimum number of PRB orders, the outcome of the optimal

objective value in the first step is input to the model provided in the previous

solution approach. The model, which includes (4.49) as the objective function

(Max. Total Welfare) is solved while the number of PRB orders is limited by

(4.52). In this constraint, the value of n on the right-hand side is equal to the

optimal objective value of the first step in this solution approach.

The solution method described in the first bi-criteria approach is applied and numeri-

cal results for 15 days of data are provided in Chapter 5. The algorithm is tested using

both the original non-linear model and the linear approximation of the objective func-

tion. The second two-step approach is also applied to the same data set, the solution

times and the model outcomes are compared to the first approach.
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CHAPTER 5

COMPUTATIONAL RESULTS

In this chapter, the results of the numerical experiments performed to test the math-

ematical model and the solution algorithm given in Chapter 4 are given. First, the

procedure we followed to generate the date set is described. Later in Section 5.2, ex-

perimental results of our solution approaches, using the data generated are provided.

In order to perform numerical experiments to test our mathematical model and the

proposed solution methods, we need market data for the orders placed in the Turkish

DAM user portal. However, as this kind of information is classified as a trade secret,

it is not publicly or exclusively shared by TEIAS. Therefore, we need to generate

data set of our own. For that purpose, we generate a 15-day sample data set for

hourly, block and flexible bids. We base our data generation method on probability

distributions when producing bid prices and quantities. Regarding the number of

bids submitted to the DAM, we make use of the information provided by Derinkuyu

(2015) who somehow managed to obtain and use real market data. In his paper, the

average number of hourly, block and flexible bids submitted in a day as well as the

number of price levels used in the hourly bids are provided. We also try to bear in

mind the publicly available information about the past electricity prices on the PMUM

website (2015).

On the average, each 24-hour real data consists of around 7,500 hourly bids having

approximately 30,000 price levels (Derinkuyu, 2015). Recall from Chapter 4 that we

convert hourly bids submitted to the Turkish DAM to hourly orders in such a way that

each price level of each bid defines an hourly order. In other words, 7,500 hourly bids

with a total of 30,000 price levels mean 30,000 hourly orders to be included in our
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model. However, we assume between 6,000 and 7,000 of them are “dummy” orders,

i.e. orders with 0 MWh of quantity. This assumption stems from our estimation that

a proportion of the price levels in the hourly bids will not correspond to a quantity

change. As for the block bids, which are directly incorporated into our model as

block orders, there are on average 150 of them, including a few (up to 14) linked

block orders. Flexible orders (bids) are much more rarely observed in the Turkish

DAM. Hence, we have one or two flexible orders on each day of our data set.

The next section is devoted to the data generation scheme we develop and implement

to generate bidding data. In Section 5.2, the numerical results of every instance,

including the equilibrium quantity and MCP at each hour, and the resulting welfare

value as well as the number of paradoxically rejected orders (if any) are provided

for both solution approaches proposed in Section 4.3. Optimality and the processing

times of the model are also discussed in that section.

5.1 Data Generation Scheme

As stated, we need to generate sample market data in order to test our model’s per-

formance due to the confidentiality of the PMUM data and strict secrecy of TEIAS.

We develop a generic procedure to generate hourly, block and flexible bids. The pa-

rameters used in the generation procedure can be different for all three types of bids,

yet the method would be essentially the same. Below is the summary of our method,

first for hourly bids to demonstrate the way hourly bid data is generated. Next, the

process of generating block bid data is described, in representation of both block and

flexible bids.

The steps below are followed when hourly bids are generated.

1. Generate unique bid prices

i. Determine the probability distribution of hourly bid prices to be generated.

ii. Generate a certain number of prices.

iii. Round all values to the nearest integer.
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The price levels used in the hourly bids are mostly integer. Exceptional

cases will be taken into consideration in the coming steps.

iv. Remove duplicate price values.

When the prices are rounded, it is very likely that we observe the same

price a number of times. With this step, we obtain unique prices.

v. Sort the prices in ascending order.

At this point, we have unique integer prices that will be assigned to hourly

bids as bid price levels.

2. Generate constant hourly bids

i. Determine the number and probability distribution of constant hourly bid

quantities.

These bids consist of only two price levels, 0 and 2, 000 TL, which are

respectively the lower and upper limits for hourly bid prices in the Turkish

DAM. These kind of bids are largely observed in practice to the extent we

know and they are always processed independent of the MCP.

3. Generate regular hourly bids

These bids have more than two price levels and at least two distinct quantity

values are attached to different price levels.

i. Determine the number and probability distribution of the maximum quan-

tity of regular hourly bids.

This is the maximum amount of electricity that is estimated to be de-

manded or supplied in an hourly bid.

ii. With a certain probability, assign a non-zero quantity at the initial price

level of the bid; that price level is 0 TL for supply bids and 2,000 TL for

demand bids.

In most cases, an hourly demand bid has 0 MWh at the highest price level,

2,000 TL, and a supply bid has 0 MWh at the lowest price level, 0 TL.

A small number of them will have a non-zero quantity, meaning that a

certain amount of electricity will be demanded or supplied no matter what
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the MCP is.

iii. Assign the number of discrete quantity jumps in a bid.

There should be a discrete probability distribution to represent the number

of distinct quantities/price levels in a bid.

iv. Randomly assign price levels to the distinct quantity levels.

For each quantity jump, we assign a different price level. The prices will

be selected and assigned in a descending order for demand bids and an

ascending order for supply bids.

v. With a certain probability, generate an additional price level, which is 1

Kuruş (0.01 TL) higher or lower than the previous one.

Generally, the quantity of an hourly bid changes at a price level that is just

0.01 TL higher or lower than the previous price level. The quantity jump

will be at this level. For instance, a demand bid quantity is 100 MWh at

100 TL, and it decreases to 90 MWh at 100.01 TL.

vi. Randomly assign discrete quantity values to the distinct price levels.

Starting with the maximum bid quantity (generated at Step 2-b-i) at the

initial price level, we decrease the bid quantity by a random percentage

of the quantity at the next price level. This is done up to the price level

2,000 TL for demand orders, and down to 0 TL for supply orders, where

the quantity is either 0 or non-zero, depending on the outcome of Step 3-ii.

The procedure to generate block bids is summarized next.

1. Determine the number of supply and demand block bids

2. Randomly assign the length of the period each block bid spans, which must be

between 4 and 24 hours

3. Determine the starting period of the block bid based on the length of its validity

time

4. Determine the probability distribution of price parameter of the block bids

5. Determine the probability distribution of the block bid quantity.
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6. Determine the number of linked block bids and match the bids.

As the flexible bids are special types of block bids, a similar method to that of block

bids can be followed in order to generate flexible bids. Since they are submitted for

a single unspecified hour, there is no need for creating the length of period and a

starting point. Therefore, only 4th and 5th steps above are applied for each flexible

bid.

Using the above procedure, a data set can be generated, based on the sectoral experi-

ence, assumptions and preferences/choices of any user who cannot possibly reach real

data, just like we did. To use in the numerical experiments to test our mathematical

model, we generated a data set of 15 days, using the assumptions listed below:

• The number of bid prices to be generated is 500.

• The bide prices are generated from Normal distribution with mean = 200 and

standard deviation = 50.

• The number of constant hourly supply bids and constant hourly demand bids is

75 each at every hour.

• The number of regular hourly supply bids is 100 and the number of regular

hourly demand bids is 75 at every hour.

• Constant hourly bid quantities and maximum quantities of regular hourly bids

are generated using Normal distribution with mean = 500 and standard

deviation = 150.

• The number of price level changes in each hourly bid is determined using the

following probability distribution:

P (X = x) =



0.50, x = 1

0.20, x = 2

0.15, x = 3

0.10, x = 4

0.05, x = 5

(5.1)

where P (X = x): probability that the number of price level changes will be
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equal to x,

• With probability 2/3, an additional price level, which is 0.01 TL lower than the

next price level, is generated.

• With probability 1/3, an hourly bid is exactly the same as another hourly bid

submitted at the previous hour. We expect that the characteristics of bids sub-

mitted at consecutive hours to be considerably the same.

• With probability 0.1, the minimum quantity of a regular hourly bid is made

non-zero.

• The number of supply and demand block bids is 75 each in five cases, 100 in

five cases and 50 in five cases.

• The duration of a block bid is uniformly distributed between 4 and 24.

• The quantity of a block bid is uniformly distributed between 0 and 1000 MWh

• For the sake of achieving feasibility in the experiments, the price of a block

bid is generated with the help of mean and standard deviation of the generated

hourly bids. They are used as the mean and standard deviation of the Normal

distribution function used to create block bid prices.

• The number of flexible bids is 1 or 2 in each case, determined randomly.

• The price and quantity of a flexible bid is generated using the same probability

distributions as the price and quantity of block bids.

So as to incorporate the generated bid data into our model, we apply the conversion

procedure discussed in Section 4.2, to transform the generated hourly bids into hourly

orders. We then solve the model using the converted hourly orders, block orders and

flexible orders, where the last two types do not need any conversion and such orders

can be interchangeably called bids. The results are provided in the next section.
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5.2 Experimental Results

In this section, we provide the numerical results of the model obtained by using the

generated data set. The outcomes of the first solution approach are provided in Sec-

tion 5.2.1. Later in Section 5.2.2, the solutions obtained by applying the second

proposed solution method are presented. All instances are solved using a 2.7 GHz

laptop that has 12 GB RAM.

In Table 5.1 below, detailed breakdown of each daily data set, showing the number of

hourly, block, linked block and flexible bids and orders is provided. The number of

bids are based on the information provided by Derinkuyu (2015) while the rest of the

specifications of the data depend on the assumptions made in Section 5.1. To test the

sensitivity of the model and the solution approaches to the size of block bid pool, we

increase and decrease the number of block bids/orders in 5 trials for each case.

Table 5.1: Data Used in the Experiments

Trial no.

Number
of
Hourly
Demand
Price
Levels

Number
of
Hourly
Supply
Price
Levels

Number
of Price
Levels
with
q·hr(·) =

0

Number
of
Hourly
Demand
Orders

Number
of
Hourly
Supply
Orders

Number
of De-
mand
Block
Bids/
Orders

Number
of Sup-
ply
Block
Bids/
Orders

Number
of
Linked
Block
Pairs

Number
of Flex-
ible
Bids/
Orders

1 10,181 12,759 6,315 5,469 6,493 75 75 10 2
2 10,101 12,559 6,353 5,432 6,453 75 75 4 2
3 10,437 12,397 6,288 5,544 6,411 75 75 9 2
4 10,408 12,683 6,313 5,505 6,368 75 75 5 2
5 10,409 12,783 6,361 5,541 6,458 75 75 6 2
6 10,266 12,785 6,298 5,513 6,521 100 100 4 2
7 10,267 12,762 6,283 5,569 6,466 100 100 14 2
8 10,425 12,669 6,323 5,587 6,420 100 100 8 2
9 10,211 12,778 6,430 5,459 6,442 100 100 4 2
10 10,291 12,331 6,399 5,513 6,316 100 100 8 2
11 10,360 12,794 6,259 5,533 6,397 50 50 3 2
12 10,272 12,792 6,369 5,494 6,521 50 50 5 1
13 10,196 12,498 6,378 5,470 6,405 50 50 5 2
14 10,306 12,287 6,249 5,449 6,362 50 50 5 2
15 10,278 12,689 6,305 5,520 6,521 50 50 8 2

Avg. 10,294 12,638 6,328 5,507 6,437 75 75 6.53 1.93

We have, on the average, 29,260 hourly bids on a one-day data set, where 6,328 of

them are ‘zero bids’. This translates into 11,943 hourly orders, 5,507 of which are
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demand orders and 6,437 are supply orders. There are 150 block orders on each day,

of which 13.1 are linked block orders (6.5 linked pairs). On the average, each day

includes 1.93 flexible orders.

5.2.1 Results of the Bi-criteria Solution Approach

In the experiments presented in this section, the solution algorithm described in Sec-

tion 4.3 is applied. In each trial, an efficient frontier of solutions, changing in terms

of welfare value and the number of PRB orders, is obtained. The Market Operator

is free to choose any of the solutions on the frontier. Graphical representation of an

efficient frontier is exemplified in Figure 5.11. At every iteration, the number of PRB

orders allowed is updated based on the outcome of the previous iteration. It may be

observed that the number of PRB orders is reduced by more than one. This points

between these numbers are the points where the total welfare does not change while

the number of PRB orders decreases one by one. Therefore, we do not need to solve

for those points.

Welfare 

Number of 

PRB orders 

1 2 4 6 10 

20 MTL 

22 MTL 

24 MTL 

26 MTL 

28 MTL 

Figure 5.1: Efficient Frontier for Total Welfare vs. Number of Paradoxically Rejected

Block Orders

In all of the 15 instances of 24-hour bidding data, the model is able to find the effi-

cient frontier with respect to total welfare and the number of paradoxically rejected
1 Note that the number of PRB orders shown in the figure may seem unrealistically high; such high volume

of PRB orders would not be both beneficial in terms of Total Welfare and fair in the eyes of market participants.
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block (PRB) orders within less than one hour, which is actually the time limit of the

Market Operator in Turkey. However, since we cannot get hold of real market data

from TEIAS or PMUM (EPIAS), we had to make assumptions on probability distri-

butions and amount of bids when generating the data. Although we try to keep the

assumptions as simple as possible, it is not likely that the data we generated com-

pletely represent the real cases in the Turkish DAM. We expect that the performance

of our model and the solution approach will be much better when experimented with

real data.

Table 5.2: CPU Times to Solve the Non-linear Problem (seconds)

Trial no. Iter. no.1 Iter. no.2 Average Total Time
1 59.77 1.27 30.52 61.04
2 15.48 0.87 8.17 16.35
3 9.57 0.96 5.26 10.53
4 90.97 0.93 45.95 91.91
5 112.77 0.84 56.80 113.61
6 126.48 0.89 63.68 127.37
7 2,803.40 0.97 1,402.18 2,804.36
8 943.86 0.86 472.36 944.71
9 332.75 1.71 167.23 334.46

10 214.85 0.98 107.91 215.83
11 2.90 2.90 2.90
12 6.35 0.92 3.63 7.26
13 5.51 0.96 3.23 6.47
14 2.57 2.57 2.57
15 4.80 4.80 4.80

Avg. 315.47 1.01 158.48 316.28

On the average, it takes the model around 316 seconds (a little over 5 minutes) to find

every point on the efficient frontier for a given day. The efficient frontier is derived

within the range that is based on the maximum and minimum possible number of

PRB orders. In 3 out of 15 instances, the model is able to find a solution that does not

involve any paradoxically rejected block orders and all 3 of them are the days having

fewer (100 in total) block orders. On the remaining 12 days, we obtain a solution after

2 iterations. On the days having 75 supply and 75 demand block orders, the solution

procedure ends in 59 seconds on average, whereas it is only less than 5 seconds for
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the 50 supply-50 demand case and close to 885 seconds (around 15 minutes) for the

100 supply-100 demand days.

On the other hand, every subproblem (iteration), that is, each individual model solu-

tion to find the total welfare given a certain number of paradoxically rejected block

orders is allowed, lasts a little over 2.5 minutes. The CPU times of each iteration,

as well as average and total time to solve the problem is presented in Table 5.2. In 7

instances, the efficient frontier is derived in less than a minute while 1 instance lasts

exactly 1 minute and another 1.5 minutes.

Table 5.3: Total Welfare (in thousand TL) and the Number of Paradoxically Rejected
Block Orders at Each Iteration of Every Instance

Trial no.
Iter. no.1 Iter. no.2

Welfare PRB Welfare PRB
1 109,199.0 6 inf. 5
2 100,209.2 1 inf. 0
3 110,249.8 2 inf. 1
4 111,877.8 2 inf. 1
5 96,865.2 1 inf. 0
6 116,866.7 3 inf. 2
7 103,306.9 8 inf. 7
8 104,700.7 5 inf. 4
9 106,292.5 1 inf. 0

10 108,775.2 2 inf. 1
11 98,118.3 0
12 111,831.6 1 inf. 0
13 97,616.8 1 inf. 0
14 101,121.3 0
15 92,584.9 0

Avg. 104,647.72 2.20
*inf. : infeasible

The results of the experiments using the aforementioned data sets are given in Ta-

ble 5.3. Average welfare value is 104.648 million TL and the average number of PRB

orders a day is 2.20. In 8 out of 15 cases, we obtain no or only one PRB orders where

the maximum number of PRB orders observed in a solution is 8. On 3 days, there are

no PRB orders. The detailed list of the outcomes for the number of PRB orders and

the Total Welfare values are shown in Table 5.3.
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In addition to the original non-linear total welfare model, we also experimented using

the linear approximation of the objective function, which is given in Section 4.2.4.

The solution times of every iteration are shown in Table 5.4. In 11 out of 15 days,

the linear model has reached the time limit of 1 hour before completing the efficient

frontier. 3 of those 11 cases have ended without providing any solution at the last

iteration. The final iteration of the remaining 8 instances is terminated with at least a

feasible solution. The average time to determine all points on the efficient frontier is

2,400 seconds, i.e., 40 minutes. When there are 50 supply and 50 demand block or-

ders, the solution time is 15.5 minutes whereas the 200-block order case are all lasted

one hour, terminating with a solution in 3 instances and without one in 2 instances at

the last step. The outcome of the linear model on the average-day (150 block orders)

trials present a very similar picture where only one instance completely derives the

efficient frontier in less than an hour (42.5 minutes). As these results and the ones

given in Table 5.2 show, the non-linear model outperforms its linear approximation

in terms of solution time in all cases.

Table 5.4: CPU Times to Solve the Linear Approximation Model (seconds)

Trial no. Iter. no.1 Iter. no.2 Iter. no.3 Iter. no.4 Average Total Time
1 136.39 (> 1 hr) 1,800.00 3,600.00
2 835.13 (> 1 hr) 1,800.00 3,600.00
3 202.04 (> 1 hr) 1,800.00 3,600.00
4 354.68 (> 1 hr) - (> 1 hr)
5 729.59 1203.88 610.32 1.82 636.40 2,545.61
6 195.10 (> 1 hr) 1800.00 3600.00
7 1,526.85 (> 1 hr) - (> 1 hr)
8 146.27 (> 1 hr) 1,800.00 3,600.00
9 1,643.17 (> 1 hr) 1,800.00 3,600.00

10 11.75 1,183.66 (> 1 hr) - (> 1 hr)
11 179.42 95.47 1.25 92.05 276.14
12 113.39 1.09 57.24 114.48
13 258.60 (> 1 hr) 1,800.00 3,600.00
14 22.97 346.61 31.75 1.93 100.82 403.26
15 20.01 2,586.18 (> 1 hr) 1,200.00 3,600.00

Avg. 425.51 1,988.23 409.28 1.87 1,096.03 2,400.45
*(> 1 hr): reached time limit of 1 hour before completion
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For only one case the linear model is able to find a solution with no PRB orders,

which overlaps with the non-linear model’s results. In total, 8 data sets give the same

PRB order outcome in both linear and non-linear models, 5 of them shows exactly the

same welfare values for both models at the last step. The differences in the optimal

welfare values of three data sets can be ignored as they give no higher than 0.01%

improvement in terms of total welfare when the non-linear objective is considered.

Moreover, the average welfare of all iterations of the linear approximation model is

only less than 0.1% smaller compared to the average optimal welfare value of non-

linear model. In addition to this slight difference in terms of total welfare, it takes

non-linear model to find the optimal efficient frontier 7.5 times less than the linear

model. The detailed results of the linear approximation are shown in Table 5.5. It

should also be noted that the linear approximation of the total welfare value is on

average 13.2% less than the calculated actual welfare.

Table 5.5: Total Welfare (in thousand TL) and the Number of Paradoxically Rejected
Block Orders at Each Iteration of Every Instance Using Linear Approximation

Trial no.
Iter. no.1 Iter. no.2 Iter. no.3 Iter. no.4

Welfare PRB Welfare PRB Welfare PRB Welfare PRB
1 109,184.4 7 109,197.0. 6
2 100,125.5 5 100,130.2 4
3 110,236.8 4 110,242.8 3
4 111,619.5 8 (> 1 hr) 7
5 96,800.5 3 96,858.2 2 96,865.2 1 inf. 0
6 116,833.4 4 116,864.0 3
7 103,231.6 14 (> 1 hr) 13
8 104,698.9 5 inf. 4
9 106,287.8 2 106,292.5 1
10 108,761.3 3 108,775.2 2 inf. 1
11 98,064.1 2 98,074.4 1 inf. 0
12 111,831.6 1 inf. 0
13 97,343.9 6 97,377.8 5
14 100,066.3 4 100,078.1 2 100,085.4 1 100,121.3 0
15 92,392.3 8 92,394.7 7 92,435.5 6

Avg. 104,500.8 5.13 103,316.7 3.43 96,902.9 2.00 101,121.3 0.00
*inf. : infeasible

The resulting equilibrium quantities in MWh and the average MCPs in Turkish Liras

at every hour, denoted by EqQuant(h) and MCP (h), respectively, are presented as

the average of 15 non-linear model runs in Table 5.6.

MCP is within the range of 53–167 TL in all cases and the equilibrium quantity is be-
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Table 5.6: Average Outcomes of Equilibrium Quantities ((EqQuant(h)) in MWh

and MCPs
(
MCP (h)

)
in TL

Hour h 1 2 3 4 5 6 7 8 9 10 11 12
MCP (h) 147.74 136.65 131.80 128.80 119.92 115.84 106.34 103.32 104.78 101.99 102.45 98.59

EqQuant(h) 61,901 63,521 64,023 65,864 67,235 67,281 68,080 68,693 68,946 69,202 69,117 69,088

Hour h 13 14 15 16 17 18 19 20 21 22 23 24
MCP (h) 103.27 105.93 105.92 109.86 107.79 110.74 117.97 123.45 126.16 131.22 139.68 143.39

EqQuant(h) 68,634 68,415 68,175 68,204 67,966 67,898 67,639 64,941 64,787 64,196 63,926 61,860

tween 57.5 and 73.6 GWh. As the results show, the average MCP (of all hours of all

runs) is slightly lower than the observed clearing prices in Turkey (117.65 TL com-

pared to 167 TL, the average in 2014, published on PMUM website2, 2015). This may

be an indicator that we used lower bid prices. On one hand, the objective of the market

operator is to keep the prices at minimum (Derinkuyu, 2015) whereas we approach

the problem from a welfare maximizing perspective. Although the Turkish Market

Operator prefers to seek minimum MCPs using a heuristic solution method, we be-

lieve that the allocation of bids to have the maximum total welfare is economically

more meaningful. Furthermore, it is expected that solving the welfare maximization

problem will be computationally easier than the minimum-price model as the balance

of supply and demand naturally gives, more or less, the maximum welfare solution

(see Figure 4.1 in Chapter 4.1). In that sense, we present a set of alternative solutions

to the existing ones, providing an efficient frontier of solutions with respect to total

welfare and the number of paradoxically rejected block orders allowed, which is pre-

sented in Table 5.3. On the other hand, we may obtain higher prices if we modify

the bid prices generated using the data generation scheme presented in Section 5.1.

Nevertheless, we aim to represent the real life instances (in terms of MCPs and the

number of bids submitted) as much as possible, with the simplest assumptions that

need to be made. In all cases, we obtain the optimal solution to the market clearing

problem of Turkish Electricity DAM within the time limit of 1 hour.

5.2.2 Results of Minimum PRB Solution Approach

In this section, we present and discuss the outcome of the second solution approach

given in Section 4.3. In this method, we first solve the MIP whose objective function
2 https://rapor.pmum.gov.tr/rapor/xhtml/ptfSmfListeleme.xhtml
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is the minimization of total number of PRB orders where constraints are the con-

straints to the original model described in Section 4.2.2. Later, we restrict the number

of PRB orders in the welfare maximization model, for which we use the optimal ob-

jective value of the first subproblem. A summary of the results obtained by applying

the second solution approach are provided in Table 5.7.

Table 5.7: CPU Times to Solve the Minimum PRB Order Problem and the Solution
Status

Trial no.
Time To Solve the MIP Time to Solve the MINLP Total Time Solution

(sec) (sec) (sec) Found
1 3,606.66 8.62 3,615.28 Optimal
2 2,092.80 15.93 2,108.72 Optimal
3 3,601.54 7.94 3,609.48 Optimal
4 3,602.01 98.62 3,700.63 Optimal
5 134.31 165.47 299.78 Optimal
6 - - - no solution
7 3,605.67 1,053.56 4,659.24 Optimal
8 3,601.68 32.68 3,634.35 Optimal
9 3,603.02 386.46 3,989.48 Optimal

10 3,619.91 38.67 3,658.57 Optimal
11 15.76 2.5 18.26 Optimal
12 66.74 6.34 73.08 Optimal
13 700.36 3.95 704.32 Optimal
14 21.31 2.09 23.4 Optimal
15 45.80 2.12 47.92 Optimal

Avg. 2,022.68 130.35 2,153.04

In 14 out of 15 instances, this solution approach is able to find the optimal solution,

which is also obtained by the first solution approach as presented in Table 5.3. In

one of the 200-block order instances (6th instance), the model could not return any

feasible solution to the first MIP. Hence, the MINLP in the second step is skipped and

the outcome of the solution approach for this instance is labeled as ‘’no solution”.

The average time to find the optimal solution by solving the two subproblems is close

to 36 minutes. Note that only the original, non-linear objective function is used in this

approach, as it is observed in Section 5.2.1 that the linear approximation model takes

much longer in terms of CPU time of both individual iterations and complete deriva-

tion of the efficient frontier. In fact, the average solution time of the MINLP step of
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this approach is a little longer than 2 minutes, which is slightly lower than the average

solution time of the non-linear model iterations presented in Table 5.2 (2.5 minutes).

However, the real bottleneck of this solution approach is the initial MIP step, where

it takes 34 minutes on the average. In 7 instances, the model terminates with only a

feasible, non-optimal solution to the MIP after running for an hour. Nevertheless, the

optimal welfare maximizing solution with the minimum number of PRB orders is still

found within reasonable times. This is because our data set gives the minimum-PRB

solution even if no bound is provided for the number of PRB orders (see Table 5.3 in

Section 5.2.1). Although this observation may be due to the characteristic of the data

we generated, the argument that it takes too long to find the optimal solution to the

MIP will still be valid when working with real data.

As all of the above model results obtained by applying both proposed solution ap-

proaches show, the non-linear model, which iteratively maximizes welfare given a

number of PRB orders is allowed, performs much better in terms of CPU times and

optimal welfare values compared to its linear approximation and the second solution

approach. Even working with days having higher or lower number of block orders

does not close this performance gap between models and solution approaches. Plus, it

allows the Market Operator to choose between several efficient solutions with respect

to total welfare and the number of PRB orders. Thus, we can say that it is a fast and

efficient method to find a set of alternative solutions to the DAM balancing problem,

which the Market Operator needs to solve everyday.
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CHAPTER 6

CONCLUSION

In this study, a mathematical model and two solution approaches are developed to

solve the clearing problem in Turkish Electricity DAM. The aim of the study is to

provide an alternative method to the existing market settlement mechanism applied

by the Market Operator, PMUM (EPIAS). Our model and the method is the first in the

literature to find the optimal solution to the Turkish case, using maximization of total

welfare as the objective function. Furthermore, we develop a solution approach to

deal with the paradoxically rejected block (PRB) orders, which is unique and has not

been studied in this way in any other work that we know of. In fact, our approach is the

first in literature to solve the maximum-welfare DAM clearing problem to optimality

with PRB orders besides Martin et al. (2014). Other studies mostly find a solution by

using heuristic methods.

In the mathematical model, total welfare is calculated as the sum of consumer and

producer surplus of all types of bids, namely the hourly, block and flexible bids. In

order to numerically work with the model we propose, we first generate sample mar-

ket data to test the performance of our model and the proposed solution approach.

The data generated represent the “bids” placed in the DAM, and we apply a conver-

sion operation so as to include them in our mathematical model as “orders”. Each

order has a non-zero quantity and a single order price, with the exception of hourly

orders. They have two price levels, which are the prices the hourly order starts to be

accepted or rejected.

Since the welfare function is non-linear, one may expect that the problem would be

hard, even impossible, to solve, or it would take a long time to solve it. Considering
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this, we propose a modified, linearized version of the objective function. The linear

approximation of the welfare formula is in fact the piecewise linear representation of

the quadratic function. However, the performance of the model turns out to be the

opposite of this expectation, as the results of our solution approaches show.

As a solution method, we first propose a bi-criteria algorithm that iteratively reduces

the number of PRB orders allowed in the solution. By implementing the algorithm,

we obtain a set of solutions having different welfare values and different number

of PRB orders, which constitutes an efficient frontier of possible solutions that the

Market Operator can choose from. With this method, our model is able to produce the

set of optimal solutions to the clearing problem within a very short time, 5 minutes on

the average. The optimal objective value of the linear approximation model deviates

from the actual non-linear welfare value by over 13% on the average and it takes the

linear model 7.5 times longer to completely determine the solutions on the efficient

frontier, when compared to the performance of the non-linear model.

In addition, another solution approach consisting of two subproblems is proposed,

where the minimization of the number of PRB orders is done at the first step. Next,

the optimal objective value of this problem is input to the welfare maximization model

as the upper limit of the number of PRB orders allowed. This way, we aim to directly

find the optimal solution (in terms of total welfare) with the smallest number of PRB

orders possible. However, the CPU times of especially the MIP in the first step is too

long, even past 1 hour in half of the instances. Moreover, the solutions with minimum

number of PRB orders can be found by the first approach in much shorter times.

Therefore, this solution method can be discarded as long as there is no significant

improvement in solution times of the first step.

Regarding the future work in the area, the solution approach to find the minimum

number of PRB orders could be improved to get a result within more reasonable time.

One modification could be that the PRB orders are penalized by a sufficiently large

coefficient in the objective function. This will result in a feasible solution with the

minimum number of PRB orders, and the solution having the maximum number of

PRB orders can be obtained by not penalizing the PRB orders at all. This will be a

marginal improvement to our second solution approach, as the solution steps will be
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reduced from two to one, which will have a slightly more complex objective function

then our original MINLP. In another method, paradoxically accepted block orders can

also be taken into consideration in further studies, to handle the “unfair” outcomes in

both acceptance and rejection directions. Furthermore to these approaches, paradox-

ically rejecting/accepting an order may not be allowed when the difference between

the order’s price and the MCP is larger than a certain amount or a certain percentage

of MCP.
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APPENDIX A

COSMOS MODEL

A.1 Variables

• Acceptance of an hourly (supply and demand) order:

0 ≤ Acchr(i) ≤ 1 for i = 1, ..., I. (A.1)

• Acceptance of a block (supply and block) order:

Accbl(b) ∈ {0, 1} for b = 1, ..., B. (A.2)

• Energy flow on line l at hour h:

Flow(l, h) ≥ 0 for l = 1, ...L and h = 1, ..., 24. (A.3)

• Congestion price of capacity of line l at hour h:

PriceATC(l, h) ≥ 0 for l = 1, ..., L and h = 1, ..., 24. (A.4)

• Market Clearing Price in bidding area (market) m at hour h:

MCP (m,h) ≥ 0 for m = 1, ...,M, and h = 1, ..., 24. (A.5)

A.2 Parameters

• Quantity of hourly order i:

Qhr(i) ≤ 0 for demand, for i = 1, ..., I, (A.6)

Qhr(i) ≥ 0 for supply, for i = 1, ..., I. (A.7)
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• Initial price of hourly order i (price at which hourly order i starts to be ac-

cepted): Phr(i, 0).

• Final price of hourly order i (price at which hourly order i is fully accepted):

Phr(i, 1).

Phr(i, 0) ≥ Phr(i, 1) for demand, for i = 1, ..., I, (A.8)

Phr(i, 0) ≤ Phr(i, 1) for supply, for i = 1, ..., I. (A.9)

• The hour at which hourly order i is submitted:

1 ≤ hour(i) ≤ 24 for i = 1, ..., I. (A.10)

• The bidding area at which hourly order i is submitted:

areahr(i) for i = 1, ..., I. (A.11)

• Quantity of block order b at hour h:

Qbl(b, h) ≤ 0 for demand, for b = 1, ..., B and h = 1, ...24, (A.12)

Qbl(b, h) ≥ 0 for supply, for b = 1, ..., B and h = 1, ...24. (A.13)

• Price of block order b:

Pbl(b) for b = 1, ..., B. (A.14)

• The hours that block order b spans:

hours(b) for b = 1, ..., B. (A.15)

• The bidding area at which block order b is submitted:

areabl(b) for B = 1, ..., B. (A.16)

• The capacity of ATC (Available Transmission Capacity) line l at hour h:

CapATC(l, h) ≥ 0 for l = 1, ..., L and h = 1, ..., 24. (A.17)
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• The bidding area line l originates from

from(l) for l = 1, ..., L. (A.18)

• The bidding area line l leads to

to(l) for l = 1, ..., L. (A.19)

A.3 Market Constraints

• Hourly order i can be accepted only if it is in- or at the money:

for i = 1, ..., I ,

Acchr(i) > 0 (A.20)

⇒ Qhr(i)×
(
MCP

(
areahr(i), hour(i)

)
− Phr(i, 0)

)
≥ 0.

• Hourly order i must be rejected only if it is out of the money:

for i = 1, ..., I ,

Qhr(i)×
(
Phr(i, 0)−MCP

(
areahr(i), hour(i)

))
> 0 (A.21)

⇒ Acchr(i) = 0.

• Hourly order i is partially accepted only if it is at the money (MCP is between

inital and final prices):

for i = 1, ..., I ,

0 < Acchr(i) < 1 (A.22)

⇒MCP
(
areahr(i), hour(i)

)
= Phr(i, 0) +

(
Phr(i, 1)− Phr(i, 0)

)
× Acchr(i).

• Hourly order i must be fully accepted if it is in the money:

for i = 1, ..., I ,

Qhr(i)×
(
Phr(i, 1)−MCP

(
areahr(i), hour(i)

))
< 0 (A.23)

⇒ Acchr(i) = 1.
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• Block order b can be accepted only if it is in the money:

for b = 1, ..., B,

Accbl(b) = 1 (A.24)

⇒
∑

h∈hours(b)
Qbl(b, h)×

(
MCP

(
areabl(b), h

)
− Pbl(b)

)
≥ 0.

A.4 Network Constraints

• The energy flow in bidding area m must be in balance at hour h:

I∑
i=1

h∈hour(i)
areahr(i)=m

Acchr(i)×Qhr(i) +
B∑
b=1

h∈hours(b)
areabl(b)=m

Accbl(b)×Qbl(b, h) (A.25)

=
L∑
l=1

from(l)=m

Flow(l, h)−
L∑
l=1

to(l)=m

Flow(l, h).

• The energy flow on line l cannot exceed the capacity:

Flow(l, h) ≤ CapATC(l, h). (A.26)

• Congestion price of an ATC line can be positive only if the line is congested

(capacity is fully utilized):

PriceATC(l, h) > 0 ⇒ Flow(l, h) = CapATC(l, h). (A.27)

• The positive congestion price of an ATC line is equal to the difference between

two bidding areas that the line l is connecting:

PriceATC(l, h) = MCP
(
to(l), h

)
−MCP

(
from(l), h

)
. (A.28)
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A.5 Objective Function

The objective function is the maximization of total welfare, defined as the sum of

consumer and producer surplus, plus the congestion revenue.

TotWel =
I∑

i=1

Qhr(i)× Acchr(i)×

(
Phr(i, 0) + Phr(i, 1)

2
(A.29)

+
Phr(i, 0)− Phr(i, 1)

2
×
(
1− Acchr(i)

))

+
B∑
b=1

24∑
h=1

h∈hours(b)

Qbl(b, h)× Accbl(b)× Pbl(b)
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