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ABSTRACT 

 

LAND USE LAND COVER CHANGE ANALYSIS OF AFŞİN ELBİSTAN COAL 

BASIN WITH TWO DIFFERENT CLASSIFICATION METHODS 

 

Arıcan, İlke 

M.S., Department of Mining Engineering 

Supervisor  :  Prof. Dr. H. Şebnem Düzgün 

 

September 2015, 161 pages 

 

Surface coal mining is one of the most widespread energy and economic source for 

the communities and if implemented inappropriately, causes negative short and long 

term environmental, social and economic effects (such as loss of vegetation, 

migration, decreasing water resources, etc.). In order to detect, minimize and avoid 

all of these impacts, affected areas should be monitored and mapped, constantly. 

Monitoring surface mining activities by using land use land cover (LULC) maps is 

one of the effective methods for large areas.  However, finding the suitable method 

for constructing LULC maps for monitoring has been a challenge. Remote Sensing 

(RS) and Geographical Information Systems (GIS) have been helpful for generation 

of LULC maps. In this study, two change detection methods, namely, the post-

classification change detection based on Support Vector Machine (SVM) and 

Change-Detection-Driven Transfer Learning Approach (CDTL) are used to monitor 

change detection in LULC classes in the Afşin-Elbistan Coal Basin, which is one of 

the largest surface coal mines in Turkey.  The Landsat imageries of Afşin-Elbistan 

Coal Basin for the years of between 1984 and 2014 are utilized for the analyses. The 

progressive change in the LULC classes since the beginning of the mining activities 

are obtained quantitavely.  
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The LULC change detection maps reveal that the vegetation class increases by 3.2%, 

forest class increases by 55.9%, agriculture class decreases by 5.9%, settlement class 

decreases by 96.2%, water class increases by 608.1% and soil class decreases by 

8.1% between the years 1984 and 2014. It is found that the most and the least 

effected classes are water and vegetation, respectively. The comparison of post 

classification change detection based on SVM and CDTL shows that difference in 

the results are not significantly high.  Nevertheless, post classification change 

detection based on SVM results in higher accuracies than CDTL for each year. 

 

 

Keywords: Surface Coal Mine, Land Use Land Cover (LULC) Classification, 

Remote Sensing (RS) Support Vector Machine (SVM), Change-Detection-Driven 

Transfer Learning Approach (CDTL), Change Detection  
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ÖZ 

 

AFŞİN ELBİSTAN KÖMÜR HAVZASININ İKİ FARKLI SINIFLANDIRMA 

YÖNTEMİ İLE ARAZİ ÖRTÜSÜ KULLANIMI DEĞİŞİM ANALİZİ  

 

Arıcan, İlke 

Yüksek Lisans, Maden Mühendisşiği Bölümü 

Tez Yöneticisi  : Prof. Dr. H. Şebnem Düzgün 

 

Eylül 2015, 161 sayfa 

 

Açık ocak kömür madenciliği en çok kullanılan enerji ve ekonomik kaynaklardan 

biridir. Uygunsuz yapıldığı zaman kısa ve uzun vadeli çevresel, sosyal ve ekonomik 

olumsuz etkilere yol açabilir (bitki örtüsü kaybı, göç, su kaynaklarının azamlası vb.). 

Tüm bu olumsuz etkilerin tespit edilmesi azaltılması ve önlenmesi için etkilenen 

alanların sürekli bir biçimde kontrol edilmesi ve haritalanması gerekmektedir. Açık 

ocak mandecilik aktivitelerinin Arazi Örtüsü ve Arazi Kullanımı (AÖK) haritaları ile 

izlenmesi en etkin yöntemlerden biridir. AÖK haritalarını oluşturabilmek için en 

uygun yöntemi bulmak çözülmesi gereken bir sorun olagelmiştir. Uzaktan Algılama 

(UA) ve Coğrafi Bilgi Sistemleri (CBS) ise bu adımda devreye girmektedir. 

Araştırmacılar yıllardır UA ve CBS yöntemlerini kullanaraktan AÖK haritaları 

oluşturmaktadır.  Çalışmada sınıflandırma sonrası fark haritalarını elde etmek için iki 

farklı yöntem karşılaştırılarak hangisinin daha tutarlı olduğu incelenmiştir. 

Yöntemlerden biri geleneksel destek vektör makineleri sınıflandırma sonrası arazi 

değişim metodu ve diğeri de Değişim Belirlemeye Dayalı Transfer Öğrenme 

yaklaşımıdır. Çalışma alanı Türkiye’nin en büyük açık ocak kömür madenciliğinin 

uygulandığı Afşin-Elbistan Kömür Havzası olarak belirlenmiştir. Afşin-Elbistan 

Kömür Havzası’nın 1984 ve 2014 yılları arasındaki Landsat görüntüleri kullanılarak 

AÖK değişim haritaları çıkarılmıştır.  
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Analizler sonrası AÖK değişim haritaları incelendiğinde, bitki örtüsünün %3.2 

arttığı, ormanların %55.9 arttığı, tarım alanlarının %5.9 azaldığı, yerleşim yerlerinin 

%96.2 azaldığı, su alanlarının %608.1 arttığı ve toprak alanların %8.1 azaldığı 

gözlemlenmiştir. En fazla etkilenen sınıf su sınıfı olup, en az etkilenen sınıf ise bitki 

örtüsü olmuştur. Sınıflandırma yöntemleri karşılaştırma sonuçlarında ise her yıl, her 

sınıflandırma yöntemi için ayrı ayrı hesaplanılan doğruluk değerlendirmeleri 

arasında çok fark gözlemlenmemiştir. Geleneksel destek vektör makineleri ile 

sınıflandırılan görüntülerin doğruluk değerlendirmeleri sürekli olarak daha yüksek 

çıkmıştır. 

 

Anahtar kelimeler: Açık Ocak Kömür Madeni, Arazi Örtü ve Kullanımı (AÖK) 

Sınıflandırması, Uzaktan Algılama (UA), Destek Vektör Makinaları, Değişim 

Belirlemeye Dayalı Transfer Öğrenme Yaklaşımı, Değişim haritaları 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Coal had been one of the most consumed product in mining industry, especially in 

Turkey and it had been an important energy source (electricity, heating, 

manufacturing, etc.) to the countries for years. Total coal production of the world 

was 8687 million short tons in 2012 and, for Turkey, the production was 76 million 

short tons (U.S. Energy Information Administration, 2012). 

There are two ore extraction methods; surface and underground mining. Coal 

mining, particularly surface coal mining, generates significant impacts due to its 

nature, such as disturbing the topography, and decreasing value of biological and 

economical attributes on the surrounding environment of the mine (Rathore and 

Wright, 2007). Also, the surface coal mining accounts for about 40% of world coal 

production (World Coal Institute, 2009). Therefore sustainable approaches for the 

mining activities have been searched. As the communities increased their focus on 

sustainable development, mining companies begun to prioritize conserving the 

environment. Effective management of surface mining operations for environmental 

responsibility can be accomplished with intensive monitoring of surface mine areas 

and disturbed land and earth observation technology can play a central role in this 
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process (Düzgün and Demirel, 2011). In order to accomplish a successful 

monitoring for evaluating surface activities and their dynamics at a regional scale, 

researchers require observations with frequent temporal coverage over a long period 

of time in order to separate natural changes from human related changes (Latifovic 

et al., 2005). Land disturbance monitoring for the mining areas can be achieved by 

the data obtaining the land use land cover (LULC) information. Remote Sensing 

(RS) and Geographical Information Systems (GIS) tools provides efficient ways of  

representing the spatial data like LULC maps while easing the process of 

monitoring. Unlike the site focused studies, satellite data grants a broad territorial 

analysis, which seldom performed with field methods alone (Moran et al., 1994). 

LULC change detection analyses help monitoring the disturbed areas resulted from 

surface mining activities, such as, exploitation of ore, stripping, and dumping 

overburden. In the same fashion, LULC change detection provides valuable 

information for planning and management. In addition, temporal resolution of 

remote sensing satellites captures historical timeline for estimation of LULC 

changes. There are various change detection methods in the literature with their 

merits and flows. Lu et al. (2004) divided the LULC change detection methods 

having common characteristics into following five main categories; algebra, 

transformation, classification, advanced models, and visual analysis (Table 1).The   

most utilized method for LULC change detection monitoring in the literature is 

post-classification change detection technique due to its reliability, and ability to 

extract change matrices. For post-classification change detection, multi-temporal 

images are individually classified into thematic maps.  Then the classified images 

put into comparison pixel-by-pixel, consecutively. This method minimizes effects 

of environmental, atmospheric, sensor, and sun angle differences between the multi-

temporal images (Lu et al., 2004).  

Classification techniques of satellite images are investigated to improve pre-

mapping products that enable the user to identify the distribution of the land units 

within the area with relatively limited field study. These classification methods are 

divided into two categories as unsupervised and supervised classifications. The 
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supervised classification method, Support Vector Machine (SVM), is a very popular 

method designating the classes within the research area. SVM classification results 

very promising outcomes for creating classification maps and minimizes the 

classification errors empirically (Tso and Mather, 2009).  

 

Table 1. Change detection methods 

Techniques Specific Methods 

Image Enhancement 

(Algebra) 

• Image differencing 

• Vegetation index differencing 

• Change vector analysis (CVA) 

• Image regression 

• Image Ratioing 

Image Enhancement 

(Transformation) 

• Principal component analysis (PCA) 

• Tasseled Cap (KT) 

• Gramm-Schmidt (GS) 

• Chi square 

Classification • Artificial neural networks (ANN) 

• Unsupervised change detection 

• Hybrid Change Detection 

• Post-classification comparison 

Advanced Models and Visual Analysis 

 

Lately, instead of obtaining the classification steps manually, users began to 

automate the classification procedure. There is a new method that is developed by 

Demir et al. (2012), called Change-Detection-Driven Transfer Learning (CDTL). 

CDTL as being a newly developed approach, offers a vast chance by classifying 

remote sensing images acquired on the same area at different times with active 

learning when compared to the traditional way of change detection. The approach 

classifies an image for which no ground truth information is available by using the 
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existing information for an image acquired on the same area of interest at a different 

time (Demir et al., 2012). In this study, post-classification change detection with 

classified multi-temporal images is adopted. Classification methods chosen as the 

traditional supervised SVM classification technique and CDTL method.  

 

1.2 Objectives of the Study 

 

The main objective of the thesis is to compare post classification change detection 

approach based on SVM classification and Change-Detection-Driven Transfer 

Learning Approach (CDTL) in monitoring the surface coal mining activities. In order 

to evaluate the performance of the two change detection algorithms, Afşin-Elbistan 

Coal Basin is selected as it is one of the largest surface coal mines in Turkey. 

 

1.3 Outline of the Thesis 

 

In Chapter 2, a literature survey given in detail, which are environmental impacts of 

mining, introduction on geospatial information technologies and their related 

literature research. After overviewing the backgrounds in Chapter 1 and 2, research 

methodology is presented step by step in Chapter 3. Following Chapter 4 includes 

the study area, how the methodology is implemented, and results of analyzes. 

Finally, conclusions and recommendations are given in Chapter 5. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

2.1 Monitoring Environmental Impacts of Surface Coal Mining 

Activities  

 

Mining operations inherently cause various negative environmental effects, mainly 

as land disturbance, water and air pollution (Table 2). If not managed appropriately, 

these effects might decrease living standards of people, disturb the habitat and 

overall environment in a local, regional, or global scale. The impacts of mining 

activities can be grouped into three main categories according to the level of affected 

environmental components as land, water, and air disturbances (Düzgün and 

Demirel, 2011).  

Monitoring of the surface mining activities is required to manage the impacts on the 

environment. Geospatial information technologies, such as RS and GIS, provide for 

time and cost efficient tools for monitoring the large area. Rathore et al. (2007) 

overviewed the literature studies on the use of geospatial information technologies 

for monitoring environmental impacts of surface mining activities. They investigated 

performance of several satellite images on different monitoring conditions, which are 

monitoring land disruption due to surface coal mining, detection of mine fires, mine 

revegetation and reclamation monitoring, water pollution assessment, and detection 
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of subsidence. Moreover, use of Landsat TM data had been found to be superior to 

Landsat MSS due to the higher spectral resolution, and Landsat TM data favored 

over SPOT data for monitoring surface mining activities. The importance and 

efficiency of the incorporation of remotely sensed data with GIS for monitoring, and 

developing effective long term plans for environmental management and reclamation 

were also emphasized. 

 

Table 2. List of impacts and essential level of monitoring for surface mining 

(Düzgün and Demirel, 2011) 

Land   

Impact Monitoring Scale/Level 

• Land use change • Regional monitoring on the basis 

of years and decades • Removal of top soil 

• Removal of sub soil 
 

• Huge holes and scars on the Earth's surface 
 

• Deforestation 
 

• Reduced agricultural  area 
 

Water   

Impact Monitoring Scale/Level 

• Acid mine drainage 
• Regional monitoring on the basis 

of years and decades 
• Heavy metal contamination of water 

resources 

• Extensive use of water  

• Chemical contamination  

• Drainage network destruction and transportation of sediments    

Air   

Impact Monitoring Scale/Level 

• Dust • Local monitoring on the basis of 

days to months • Air blast 

• Particulate matter 
 

• Emissions to atmosphere   
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2.2 Geographical Information Systems (GIS) 

 

GIS is a system that captures, stores, controls, manipulates, analyzes and displays 

data which are spatially referenced to the Earth (Department of Environment, 1987). 

GIS analyzes data layers that simulates real world as seen in Figure 1. General 

hardware requirements for GIS are a computer, input devices (plotter, digitizer) and 

output devices (printer, monitor). The suitable GIS software can be split into five 

functional groups (Burrough and McDonnell, 1998): 

 Data input and verification 

 Data storage and database management 

 Data output and presentation 

 Data transformation 

 Interaction with the user. 

 

 

Figure 1. Layer structure of GIS (Henrico County, 1997) 
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2.3 Remote Sensing (RS) 

 

As defined by Lillesand et al. (2004) “Remote sensing is the science and art of 

obtaining information about an object, area, or phenomenon through the analysis of 

data acquired by a device that is not in contact with the object, area, or phenomenon 

under investigation.” There are many fields using remote sensing such as, mineral 

exploration, city and regional planning, monitoring, meteorology, land use land 

cover observations, disaster monitoring, etc. RS have been used since 1914’s. At 

first, the images taken were the aerial photos and, since then, the technology and the 

methods are rapidly developed. Nowadays, there are many RS satellites and airborne 

imagers having specific sensors and different features. Remote sensing systems 

involve various elements as illustrated in Figure 2. 

 

 

Figure 2. Elements of Remote Sensing (Lillesand et al., 2004) 

 

Images obtained, in other words remotely sensed data, by remote sensing are in raster 

form and the elements forming the raster are called pixels. Pixels of satellite images 

used in image analyses represent brightness values and called as digital number (DN) 

as seen from Figure 3. In color spectrum, each color has a wavelength interval and 
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satellites record each color with different sensor. Image taken with a sensor having a 

specific wavelength interval is called band or channel (blue band, red band, green 

band, etc.).  

 

 

Figure 3. Pixels and digital numbers (DN) in a remotely sensed image 

 

2.2 Land Use Land Cover Change Detection Monitoring for Mining 

Activities 

 

Land Use Land Cover (LULC) can be described as the materials on the surface and 

utilizations of the Earth’s surface, respectively. Land cover maps produced by 

utilizing remotely sensed data are an important source of information for monitoring 

purposes of the LULC across large areas (Aspinall and Hill, 1997).  In order to 

determine LULC change in the study area, two basic methods can be employed 

(Singh, 2010): 

1. Post-classification comparison of independently produced classifications 

between two images taken on the same area at different times 

2. Contemporaneous comparison of multitemporal data 

The overall goals in change detection and monitoring are comparing spatial 

representations of two points in time by controlling all variance caused by 
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differences in variables not of interest and measuring change caused by differences 

in the variables of interest (Green et al., 1994).   

Researchers began to utilize remotely sensed data for monitoring mining activities 

with successful launch of the Landsat in 1972. Coker (1977) and Collins (1991) 

differentiated bare lands from vegetated areas. Parks and Petersen (1987) compared 

Spot MSS and Landsat TM data for delineation of vegetation and reclamation 

success in a surface coal mining are in central Pennsylvania. Image analysis and 

digital techniques emphasized classification of vegetation and coal spoil surfaces. 

Different vegetation species, age classes, and cover densities are separated with 

accuracy values ranging from 92% to 115% by maximum likelihood classification. 

The research demonstrates the potential role of high resolution remotely sensed data 

in creation of an integrated database that can be used by surface mining regulation 

enforcement personnel during field inspections. Chaterjee et al. (1996) performed a 

geomorphological classification for Jharia open cast mine covering a relatively large 

area (about 480 km
2
) based on Landsat TM images. In terms of reclamation of 

mining areas in Turkey, few studies conducted by Erener (2010) and Bascetin (2007) 

for Seyitömer open cast coal mine, and Pamukçu and Simsir (2006) for limestone 

quarries located in İzmir. Intensive and constant monitoring of disturbed areas by the 

use of remote sensing systems is a must to accomplish effective management and 

control of the mining activities. New satellite platforms having higher spectral and 

spatial resolution are and will be essential tools for monitoring environmental 

impacts and reclamation with their cost and time effective characteristics. As 

mentioned in section 1.1, there are several change detection methods with specific 

categories, which are described in the following sections. Lu et al. (2004) performed 

an extensive research on LULC change detection methods, which are methods based 

on algebra (category I), transformation (Category II), classification (Category III) 

and advanced models (Category IV).  
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2.2.1 Category I. Algebra 

 

The first category of the change detection methods includes image differencing, 

vegetation index differencing, change vector analysis (CVA), image regression and 

image rationing. Common characteristic of these methods is use of distinguishing 

thresholds to identify the changes. Characteristics, advantages, disadvantages, and 

the key factors affecting the results are explained in following sections. The majority 

of these techniques are utilized for change detection with satellite imagery having 

relatively fine spatial resolution such as Landsat MSS, TM, SPOT, or radar (Lu et 

al., 2004). 

 

Image Differencing 

Image differencing method determines changes in the brightness values between two 

or more data sets by cell-by-cell subtraction of co-registered image datasets 

(Muchoney and Haack, 1994). Subtraction produces positive and negative values in 

changed areas, and zero in areas of no change. A constant is normally added to keep 

output values in the positive range. The process is expressed mathematically as: 

                                            ∆𝑥𝑖𝑗𝑘 = 𝑥(1)𝑖𝑗𝑘 − 𝑥(2)𝑖𝑗𝑘 + 𝐶                                    (1) 

where  ∆x is the change pixel value, x(1) is the value at time 1, x(2) is the value at 

time 2, C is constant, i=1...nl number of lines, j=1...nc number of columns, and k is a 

single band (Sohl, 1999). Method cannot provide a detailed change matrix, thus the 

accuracy assessments cannot be computed. It is simple, straightforward, and the 

results are easy to interpret. Prakash and Gupta (1998), and Macleod and Congalton 

(1998) utilized image-differencing method with other algebra related algorithms in 

order to observe LULC changes. 

 



12 
 

Vegetation Index Differencing 

Vegetation index is an indicator that represents the relative density and health of 

vegetation for each pixel in a remotely sensed image. Many satellites carry sensors 

which measuring red and near-infrared wavelength ranges reflected by the surfaces, 

and with these wavelength ranges, analysts transform raw images into vegetation 

indices. One of the most widely used vegetation index is Normalized Difference 

Vegetation Index (NDVI) (U.S. Geological Survey, 2015). The algorithm is 

expressed by mathematically as NDVI = (NIR — VIS)/(NIR + VIS) where NIR is 

near infrared radiation and VIS is visible radiation. Calculations of NDVI for a given 

pixel result in a range from minus one (-1) to plus one (+1); however, no green leaf 

gives a value close to zero. A zero value means no vegetation and close to +1 (0.8 - 

0.9) indicates the highest possible density of green leaves (NASA, 2000). The 

method reduces effects of illumination and topographic structure. 

A remote sensing based LULC change assessment methodology is utilized by 

Latifovic et al. (2004) for the Oil Sands Mining Development in Athabasca, Alta., 

Canada. Two Landsat images from 2001 and 1992 are analyzed for the study. 

Researchers applied two LULC change detection methods for each image. The first 

one is post-classification change detection, and the second one is based on a key 

resources indicator (KRI), calculated using normalized difference vegetation index. 

For the post-classification change detection, images are classified with K-means 

classifier with 15 land cover classes and overall accuracy is calculated as 87%. Post-

classification change detection showed a decrease of natural vegetation in the study 

area (715,094 ha) for 2001 approximately - 8.64% relative to 1992. KRI trend 

analysis indicated a slightly decreasing trend in vegetation greenness in close 

distance to the mining development.   

 

Change Vector Analysis (CVA) 

A change vector can be described as vector length change and an angle of change 

from time 1 to time 2 (Jensen, 1996). If a pixel’s grey-level values in two images on 
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dates t1, t2 are given with G=(g1, g2, g3, ... , gn)
T
 and H=(h1, h2, h3, ... , hn)

T
, 

respectively, and n is the number of bands, a change vector is defined as shown in 

Eq. (2). 

                                                        ∆𝐺 = 𝐻 − 𝐺                                                      (2) 

where  ∆𝐺 includes all the change information between the two dates for a given 

pixel, and the change magnitude //∆𝐺// is computed as the Euclidean distance in 

multidimensional space based on the Pythagorean theorem (Eq. 3) (Siwe and Koch, 

2008): 

                     ‖∆𝐺‖ = √(ℎ1 − 𝑔1)2 + (ℎ2 − 𝑔2)2 + ⋯ + (ℎ𝑛 − 𝑔𝑛)2                     (3) 

CVA has the ability to produce detailed change detection maps but it is difficult to 

observe and identify the LULC change trajectories. Chen et al. (2003) utilized LULC 

change detection with CVA for Beijing, China from year 1991 to 1997 and with 

some modifications to the algorithm, researchers concluded that CVA is a reliable 

LULC change detection method. Other CVA applications are change detection for 

landscape variables in a region across Mali, Senegal and Guinea (Lambin, 1996), 

land-cover changes in various regions (Johnson and Kasischke, 1998), and disaster 

assessment of Hurricane Andrew (Johnson, 1994), disaster assessment of Chernobyl 

(Schoppmann and Tyler, 1996). 

 

Image Regression 

Image regression method establishes relationships between bitemporal images, time 

1 and time 2, while estimating pixel values of the time 2 image by the use of an 

accurate regression function.  Then the regressed image is subtracted from the time 1 

image. The method reduces the sensor, environmental, and atmospheric differences 

between the remotely sensed images. Important part of the method is requirement of 

developing accurate regression functions for the selected bands before performing 

the change detection (Lu et al., 2004).  
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Image regression method was utilized by Jha and Unni (1994) in order to detect 

forest conversion of dry tropical regions consisting Sonbhadra district, Uttar Pradesh, 

as well  as adjoining portions of the Singrauli coal  fields,  in  the  Sidhi district, and  

a part of Sarguja district, Madhya Pradesh, India. Singh (1996) analyzed tropical 

forest change in the northeastern part of India using Landsat satellite imageries with 

image regression. Ridd and Liu (1998) compared four different methods, which are 

image differencing, image regression, tasseled cap transformation (KT), and Chi-

square transformation for urban LULC change detection in the Salt Lake Valley area 

using Landsat TM imagery. The researchers concluded that for band 3 of Landsat 

TM imagery, image differencing and image regression were the best methods, but 

none of the algorithms or band selections utilized were superior to the others.  

  

Image Rationing 

Image rationing calculates the ratio between the bitemporal images, band by band. 

Areas of no change have values near wholeness, and changed areas have values less 

than or greater than one, as the case may be. Observation results showed that the 

image rationing give a slight overestimation in results (Prakash and Gupta, 1998). 

This method reduces the effects of shadow, sun angle, and topography, as well . 

There are various conclusions regarding the effectiveness of the algebra based 

change detection methods. This diversity occurs due to the different characteristics of 

the utilized data and study areas. Additionally, image differencing is the most 

commonly utilized method among these. 

 

2.2.2 Category II. Transformation 

 

The second category in change detection methods includes principal component 

analysis (PCA), Tasseled Cap (KT), Gramm-Schmidt (GS), and Chi-square. Methods 

reduce the data redundancy, but they are lack of change matrices. This is a great 
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disadvantage for the transformation change detection methods. The GS and chi-

square methods are relatively less used in practice due to their complexity compared 

to PCA and KT transformations (Lu et al., 2004). 

 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is another general tool for coordinate 

transformation and data reduction in image processing. The new axes formed by 

PCA are not specified by the user’s prior definition of the transformation matrix, but 

are derived from the correlation matrix computed from the data analysis. The process 

of PCA can be divided into three steps (Tso and Mather, 2009): 

- Calculation of the correlation matrix of multiband images (e.g., in case of a 

four band image, the covariance matrix has dimension 4 x 4),  

- Extraction of the eigenvalues and eigenvectors of the matrix, and 

- Transformation of the feature space coordinates using eigenvectors. 

PCA reduces data redundancy between the bands and puts emphasis on different 

information in derived constituents. Also, the algorithm cannot yield a change matrix 

of class information.  

Byrne et al. (1980) analyzed land-cover change of Batemas Bay Township by PCA 

with four channel Landsat images. Ingebritsen and Lyon (1985) performed PCA 

method in order to detect and monitor LULC change of the area of an open cast 

uranium mine located in the northwest of Washington, and a wetland area in the 

Carson Desert, Nevada. Forest mortality of Lake  Tahoe  Basin, located  in  the  

central  Sierra  Nevada  Mountains  in  the  California/Nevada  border is analyzed by 

Collins and Woodcock (1996). In the study, PCA, Tasseled Cap (KT) and Gramm-

Schmidt (GS) methods applied to Landsat TM imageries, and results showed that 

PCA and KT preforms better when compared to GS algorithm.  
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Tasseled Cap (KT) 

Tasseled cap transform (KT) introduced by Kauth and Thomas (1976) uses four band 

Landsat MSS images. The axes of this four-dimensional feature space are 

transformed into new four-dimensional coordinates defined by the concepts of 

brightness, greenness, yellowness, and nonesuch. The transformation involves 

rotation of the axes of feature space and translation of the origin of the coordinate 

system (Tso and Mather, 2009). In other words, principle of KT is similar to PCA 

with the difference of scene dependency. KT transformation is not dependent on the 

image scene (Lu et al., 2004). Also, the algorithm cannot yield a change matrix of 

class information. 

Coppin et al. (2001) utilized KT method for monitoring green biomass change of 

central Cass County, Minnesota with Landsat TM data. Seto et al. (2002) used 

change vectors of KT to monitor LULC change of Pearl River Delta located in China 

with Landsat TM data. Forest mortality of Lake  Tahoe  Basin, located  in  the  

central  Sierra  Nevada  Mountains  in  the  California/Nevada  border is analyzed by 

Collins and Woodcock (1996). In the study, PCA, Tasseled Cap (KT) and Gramm-

Schmidt (GS) methods applied to Landsat TM imageries, and researchers concluded 

that PCA and KT performs better when compared to GS algorithm.  

 

Gramm-Schmidt (GS) 

Gramm-Schmidt (GS) method was originally used by Kauth and Thomas (1976) in 

order to derive KT transformation for single date imagery. This method allows 

subtracting information related to attributes of the study area, which would not be 

allowed with KT and PCA. Collins and Woodcock (1994) applied the GS 

transformation to Landsat TM images of Lake Tahoe Basin in order to map forest 

mortality of the area. Researchers concluded that the GS transformation algorithm is 

a reliable method for change detection and critical point of this approach is initial 

identification of the stable subspace of the multitemporal data.  
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Chi-square 

Chi-square method was explored by Ridd and Liu (1998) while comparing the 

method with three other algorithms to detect changes by utilizing the six bands to 

create a single band change image. Transformation formula can be seen in Eq (4).  

                                      𝑌 = (𝑋 − 𝑀)𝑇 ∑ (𝑋 − 𝑀)−1
                                                (4)  

where Y is digital value of change image, X is vector of the difference of the six 

digital values between the two dates, M is vector of the mean residuals of each band, 

T is transverse of the matrix, Ʃ
-1

 is inverse covariance matrix of the six bands. As a 

result of the study, accuracy of the chi-square method was calculated above 95% in 

detecting green-farmland to dry farmland changes. The researchers concluded that 

none of the methods are superior to the others, and choice of change detection 

algorithms and band selection depends on environmental conditions.  

PCA and KT are most often utilized algorithms among transformation-based change 

detection methods. When PCA and KT methods compared, PCA is dependent on the 

image scenes, while KT transformation coefficients are independent of the image 

scenes. The GS and Chi-square methods are relatively less frequently used in 

practice due to their relative complexity compared to PCA and KT transforms (Lu et 

al., 2004).  

 

2.2.3 Category III. Classification 

 

The third category of change detection methods includes artificial neural network 

(ANN), unsupervised change detection, expectation maximization (EM), hybrid 

change detection, and post-classification comparison. These methods perform change 

detection by utilizing classified images. Classification requires sample sets (or 

training sets), which represents the ground truth information. In order to obtain 

qualified classification maps, training set selection must be made carefully. If 

training set is in good quality, resultant classification, and change-detection maps 
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would be reliable.  This category can provide change matrix of difference maps, 

where the transitions between classes can be observed. Major shortcoming of this 

category is, time consuming, and difficulty to obtain highly accurate classification 

maps. 

 

Artificial neural networks (ANN) 

Artificial neural networks (ANN) do not demand any assumptions about statistical 

distribution of the data while using a neural network. The input is utilized in order to 

train the neural network which is spectral data of the period of change. The 

performance of a neural network to a specific extent depends on how well the 

training set is selected, and not on the adequacy of assumptions concerning statistical 

distribution of the data. Neural network learns from capabilities present in the 

training data, and with these regularities, constructs rules that can be extended to the 

unknown data. However, the user must determine the architecture of the network, 

and also define parameters such as learning rate, which affect the training time, 

performance, and the rate of convergence of a neural network. There are no clear 

rules to help with the design of the network, only the rule of thumbs exist (Tso and 

Mather, 2009).  

Woodcock et al. (2001) monitored forest change in the Cascade Range of Oregon 

with Landsat TM and ETM+ images. Bandibas (1998) and Fauzi et al. (2001) 

compared the maximum likelihood (ML) classifier and artificial neural networks 

(ANN) in the mapping of the land-use/land cover types of Aurora province, 

Philippines and a tropical rainforest in Indonesia respectively. Overall accuracies of 

ANN and ML classification methods were compared and results showed that ANN 

has better accuracy than ML classifier. 
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Unsupervised change detection 

Unsupervised change detection distinguishes spectrally matching groups of pixels in 

image belonging to time 1 and clusters image into major clusters, then selects similar 

pixel groups in image belonging to time 2 and clusters image into major clusters. For 

the final step, the changes are detected between images time 1 and time 2.  The 

unsupervised change detection algorithm is not frequently preferred due to the 

difficulties in labeling change trajectories (Lu et al., 2004). 

Forest change detection with unsupervised change detection for Korkeakoski district 

of the National Board of Forestry in Finland was performed by Hame et al. (1998) 

with two Landsat TM images from years 1984 and 1985. Remote sensing and GIS 

technologies were utilized by Manu et al. (2004) in order to examine the temporal 

and spatial extent of environmental degradation from 1986 to 2000 in the Tarkwa 

gold mining area. In the study, Landsat TM image obtained in June 1986 and 

Landsat ETM image obtained in June 2001 were used. Landsat images pre-processed 

and classified with unsupervised classification method. From the observations, for 

1986, four LULC classes were identified, and for 2001, the LULC classes increased 

to six. The results of the classifications showed that most of the agricultural lands 

were destroyed, and almost 60% of the land was destroyed.  

 

Hybrid Change Detection 

The hybrid change detection method combines the advantages of the algebra and 

classification categories. The algebra methods such as image differencing are often 

utilized to detect the changed areas, and then classification methods are utilized to 

classify and analyze detected change areas using the threshold method. In other 

words, steps of this method are; first step is isolation of changed pixels, second step 

is applying supervised classification to multi-temporal images, third step is 

constructing binary change mask from classified thematic maps, and finally sieving 

out the changed areas from LULC maps generated for each date (Lu et al., 2004).  

Petit et al. (2001) combined image differencing and post-classification change 
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detection in order to obtain LULC change in the southeastern Zambia. The 

researchers concluded that this kind of hybrid change detection is better than post-

classification change detection methods. Luque (2000) analyzed LULC change 

detection for New Jersey Pinelands with Landsat MSS and TM satellite imageries by 

using supervised maximum-likelihood classification technique. 

 

Post-classification comparison 

For post-classification change detection, multi-temporal images individually 

classified into thematic maps, then consecutive classified images put into comparison 

pixel-by-pixel. This method minimizes effects of environmental, atmospheric, 

sensor, and sun angle differences between the multi-temporal images (Lu et al., 

2004). Other advantage of post-classification LULC change detection is that it 

provides the change matrix of the multi-temporal thematic maps.  

Dimyati et al. (1996), Miller et al. (1998), Mas (1999), and Foody (2001) monitored 

LULC changes for Yogyakarta in Indonesia, the northern forest of New England, the 

southeast of Mexico, southern areas of Sahara, respectively. Munyati (2000) utilized 

Landsat MSS and TM images to detect wetland change of Kaufe Lats in Zambia with 

maximum likelihood classification. Kavzaoğlu et al. (2009) studied LULC change 

detection with post-classification method for Gebze district of Turkey with two 

classification techniques. The experiments in the study pointed out the high 

urbanization rate in the region. In the comparison of the percentages of LULC 

classes, it is found that pasture lands and the areas covered by deciduous trees were 

degraded and transformed into urban lands. In the period between 1997 and 2000, 

increase in the urban lands reached to around 30%, a substantial change for a five-

year period. Emil (2010) utilized multi-temporal high resolution satellite imageries to 

monitor land degradation of abandoned Ovacık surface coal mine. Historic aerial 

photos utilized to obtain topography of the pre-mining state of the research area and 

the LULC classes were determined and mapped with two supervised classification 

methods. After post-classification LULC change detection analyses, the research 
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revealed that 63% of the study area had been changed from 1951 to 2008. The 

changes had been listed as; 37,595 m
2
 forest area damaged because of the open pit 

excavation, 88,046 m
2
 forest area disturbed because of the dump sites, 106,012 m

2
 

forest area recovered due to forestation of old dump sites and 34,877 m
2
 forest area 

converted to agricultural land. Demirel et al. (2010) examined LULC changes for an 

open cast lignite coal mine in Bolu, Turkey. Images of Ikonos in September 2008 

and Quickbird in 2004 were utilized in order to analyze the impacts of the surface 

mining activities on the environment. Six LULC classes were used. SVM was chosen 

as the classification method and radial basis function was used. For the change 

detection, post-classification change detection method is utilized, and it was found 

that mine and dump area decreased by 192.5 ha, forest area increased by 57.4 ha, 

agriculture area increased by 68.6 ha and water and coal stockpile areas also 

significantly increased.  

 

2.2.4 Category IV. Advanced Models 

 

Advanced methods transform the image reflectance values to physically based 

parameters or fractions through linear or non-linear models. Converted parameters 

allow analyst for better interpretation capabilities. Major disadvantage of the 

advanced methods are time-consuming and difficulty of developing suitable models 

for conversion of image reflectance values to biophysical parameters (Lu et al., 

2004). 

In this category, linear spectral mixture analysis (LSMA) is the most frequently used 

approach for detection of land-cover change (Adams et al., 1995, and Roberts et al., 

1998), Ustin et al. (1998) and Rogan et al. (2002) utilized this algorithm to observe 

vegetation change, Radeloff et al. (1999) used this method to detect defoliation, 

Piwowar et al. (1998) used advanced methods to visualize environmental change. In 

studies, researchers concluded that the advanced models can only provide vegetation 
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change and they are not suitable for other LULC classes. Additionally they are time-

consuming and difficult to perform.  

 

2.2.5 Category VI. Visual Analysis 

 

Visual analysis method involves visual interpretation of multi-temporal images and 

on-screen digitizing of changed regions, while completely utilizing experience and 

knowledge of the user. Visual interpretation includes observing shape, texture, size 

and patterns of the remotely sensed images. The disadvantages of visual analysis are; 

time consuming application of a large area change detection, difficulty to updating 

the change detection maps of time-series, and difficulty to provide detailed change 

trajectories. With the rapid development of computer technologies and RS 

techniques, digital computer processing mainly replaced the visual analysis method 

(Lu et al., 2004). 

All of the LULC change detection methods have advantages and disadvantages.  

However, post-classification change detection algorithm is the most commonly used 

one due its reliability (Jensen et al., 1993). For this reason, post-classification change 

detection method is chosen for the purpose this thesis study.  The other reasons are: 

They provide accuracy measures for the classification results for each image, which 

provide in-depth understanding of classification performance for each LULC classes, 

in these methods, image distortions before LULC change detection analyses are 

minimized. 

 

2.3 Image Classification 

 

Classification is applied to images in order to differentiate the LULC classes. There 

are two mostly used classification algorithms, which are supervised and unsupervised 
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classifications. For unsupervised classification approach, it is assumed that there is 

little knowledge of the characteristics of the data set, and the user is required to input 

required number of clusters (classes). Finally, classifier automatically constructs the 

clusters and extracts the thematic maps. In theory, users do not need to interact with 

automatically operating classifier. Nevertheless, in practice, results of the classifier 

are modified (accepted and/or rejected) on the basis of user’s demands (Tso and 

Mather, 2009). Iso-data and k-means algorithms are mostly used two unsupervised 

classification methods. Supervised classification methods are based on statistical 

learning theory that requires auxiliary information containing knowledge of the area 

and/or the objects. These methods require some input from the user before 

classification related to the area to be classified. The input obtained by the user is 

called a training set and it contains the samples of pixels representing the classes. 

The validity of the classifications depends on two factors – the size and the 

representativeness of the training set (Mather, 2004). Therefore, training set selection 

is the most crucial part of the classification process. Supervised statistical 

classification carried out in three major steps (Tso and Mather, 2009): 

(i) Determination of the LULC classes 

(ii) Generation of training sets for each LULC classes 

(iii) Utilizing a proper classification technique  

The most common supervised classification methods are Maximum Likelihood 

(ML), Parallelpiped, Minimum Distance, Support Vector Machine (SVM), and 

Spectral Angle Mapper classifications.  Main classes for study area are known from 

field studies and satellite imageries, and with proper training sets, classification 

accuracies improve drastically compared to unsupervised classification methods. 

Therefore supervised classification method is utilized for this study. 

Kavzaoğlu, et al. (2009) studied LULC change detection with post-classification 

method of Gebze district of Turkey with two classification techniques, which are 

Support Vector Machine (SVM) and Maximum Likelihood (ML) classifications. A 

Landsat ETM+ image acquired in 1997 and a Terra ASTER image acquired in 2002 
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were used in this study to determine the LULC classes. Training and validation test 

sets for the two images were formed with randomly selected pixels, thus 

guaranteeing the maximum variation and representativeness available for each class. 

All data sets were created with equal numbers of samples for each class, which is 

important for the estimation of overall accuracy. One-against-one multiclass 

classification approach and two kernels, which are polynomial and radial basis 

functions, were used for the classification of the two images with SVM. The quality 

of the LULC maps obtained from different classification algorithms were compared 

with the accuracy analyzes. There were six classes, which are water, deciduous, 

coniferous, pasture, bare soil and urban. Overall accuracies were calculated as 

86.95% for ML, 90.81 for SVM-1, 89.71% for SVM-2 in 1997, and 88.0% for ML, 

92.81% for SVM-1, 90.93% for SVM-2 in 2002. The study demonstrated that SVM, 

which has important advantages over the ML classifier, can produce higher 

classification accuracies. As a result, they appear to be a good alternative to 

conventional classification techniques. Emil (2010) utilized multi-temporal high 

resolution satellite imageries to monitor land degradation of abandoned Ovacık 

surface coal mine. Historic aerial photos utilized to obtain topography of the pre-

mining state of the research area and the LULC classes were determined and 

mapped. In order to construct LULC map, SVM and maximum likelihood 

classifications carried out and it was concluded that SVM classification creates more 

homogeneous LULC map than the maximum likelihood classification.  

There are various supervised classification algorithms and success of Support Vector 

Machines (SVMs) suppresses other supervised classification methods (Düzgün and 

Demirel, 2011). Therefore, SVM classification for post-classification LULC change 

detection analyses is utilized for this study. 

 

Support Vector Machine Classification 

The SVM classification technique is based on the principle of “optimal separation”. 

Process of optimal separation operates as; if the classes are separable, the decision 
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surface which provides maximum separation between the classes is chosen (Brown et 

al., 1999). Decision surface is usually called as optimal hyperplane and the data 

closest to the optimal hyperplane are called support vectors. Users can modify SVM 

to become a nonlinear classifier through the use of training sets. SVM applies a 

threshold, which eliminates the certain degree of misclassifications caused by the 

similar training sets. The threshold creates a soft margin that permits some 

misclassifications, such as allowing some training points on the wrong side of the 

hyperplane and eliminates the others. For higher accuracy, threshold should be 

properly selected (ENVI5.0 Help Menu, 2012). Given a training set of instance label 

pairs (xi, yi), i = 1, . . . ,l where xi ∈ Rn
 and y ∈ {1, -1}

l
, the support vector machines 

(SVM) (Boser et al., 1992, and Cortes and Vapnik, 1995) require the solution of the 

following optimization problem:  

min
𝑤,𝑏,𝜉

 
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

,

  

 

                            Subject to  𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,   (5) 

              𝜉𝑖 ≥ 0. 

In Eq (5), training vectors xi are mapped into a higher (maybe infinite) dimensional 

space by the function 𝜙. SVM finds a linear separating hyperplane with the maximal 

margin in this higher dimensional space. C > 0 is the penalty parameter of the error 

term. Besides, K(xi, xj)  ≡ 𝜙(xi)
T 𝜙(xj) is called kernel function. The basic four 

kernels are linear, polynomial, radial basis function (RBF) and sigmoid. In this study 

RBF is utilized (Eq (6)) (Hsu et al., 2010). 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , 𝛾 > 0.   (6) 
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Change Detection Driven Transfer Learning Method 

CDTL renews the land use land cover maps with classification of the satellite images 

acquired for the same area in different times. Main approach of the technique is 

constructing a primary training set for the first image in the timeline and deriving 

other training sets with the primary one by using the information between the before 

and after images. Unsupervised change detection is applied to the source and target 

images, changed and unchanged areas are determined and the primary training set is 

transformed with these information. Transformed training set becomes the new 

training set of the target image to use in classification. Methodology for the CDTL 

classification approach can be seen from Figure 4. Users can determine the 

supervised classification method for the classification step (Demir et al., 2012). In 

the proposed method, authors utilized the SVM method for the supervised 

classifications; therefore SVM is used in this study as well. 

 

 

Figure 4. Methodology of change-detection-driven transfer learning (CDTL) 

approach. (Demir et al., 2012) 

 

Accuracy Assessments 

Accuracy is assessed in order to determine whether the classification is valid or not. 

One of the most commonly used method to calculate accuracy is constructing a 

classification error matrix (Lillesand et al., 2004). After generation of the error 

matrix, other important accuracy assessment metrics are calculated, such as 
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producer’s accuracy which controls the accuracy of algorithm, user’s accuracy which 

controls the validity of the training set, overall accuracy which represents the 

precision of the classification process and kappa coefficient which controls the 

validity of the overall accuracy. Output of classification is used in post classification 

comparison algorithm of change detection. An example of error matrix is given in 

Figure 5. In Figure 5, there are six main LULC classes like water, sand, forest, urban 

and hay, and 1992 random points (pixels) selected from the image. The most 

successful class is water with 100% producer’s accuracy, and the overall accuracy is 

calculated as 84%. 

 

 

Figure 5. Error matrix resulting from classifying training set pixels (Lillesand et al., 

2004) 
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CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

 

 

 

The research methodology followed in this study has three main parts, namely, data 

collection, Geographical Information Systems (GIS) analyses for the selection of 

study area and Remote Sensing (RS) studies (Figure 6).  

In data collection phase (Figure 6), several different satellite imageries, Ground 

Control Points (GCPs), digital topographical contour maps and Corine map were 

gathered. Corine map was obtained in order to observe the classes on the area. GCPs 

were collected during the field surveys and used for the accuracy assessments. 

The GIS analyses mainly serve for delineating the boundary of the study region 

(Figure 6). Moreover these analyses complement the image processing analyses like 

collecting GCPs from the field survey.  In order to obtain a study area, 

morphological boundary of a watershed, in which the license area of the mine 

locates, is used.  For this purpose the GIS analyses namely, obtaining Digital 

Elevation Models (DEMs) from the topographical data, generating slope and aspect 

maps, establishing the stream network, creating watershed from the slope, aspect and 

stream network data, and generating the basin boundary.  

RS part (Figure 6) consists of image processing analyses, which are pre-processing 

for correcting any distortions from the raw data, image enhancement for improving 
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the visual appearance of objects in the images, training set selection for the 

classifications, performing SVM and CDTL classifications, carrying out accuracy 

assessments for the classified images, post processing of the classified images by 

using contrast enhancement and finally conducting change detection analyses.  

 

 

Figure 6. Flow diagram of research methodology  
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CHAPTER 4 

 

 

IMPLEMENTATION OF METHODOLOGY: CASE 

STUDY 

 

 

 

4.1 General Information about the Research Area 

 

The study site has 3550 km
2
 area entailing Afşin and Elbistan districts in 

Kahramanmaraş Province, which is located in the South Eastern Turkey (Figure 7). 

Afşin Elbistan towns are neighbor to Kayseri in the west, Malatya in the east, Sivas 

in the north and, Nurhak and Göksun in the south. The general topography of the 

region consists of hills with an average elevation of 1500 m. and the climate of the 

area is continental with a mean annual rainfall of 570 mm. Ceyhan river, one of the 

biggest and important rivers in Turkey, passes through the Afşin-Elbistan Coal 

Basin, having 8 m
3
/s flow rate on the average (Mert, 2010). In the basin, a lignite 

coal mine has been actively working since 1981. In 1973, underground mining trials 

conducted and it was decided that open cast mining is more appropriate method for 

the extraction of lignite. Therefore, their operation is open cast mining and there are 

two power plants located in the basin. The basin has 4.8 billion tonnes of proven 

lignite reserve and this reserve constitutes 38% of the total lignite reserves in Turkey 

(Electricity Generation Company of Turkish Republic, 2014). The Plants are 

established at approximately 15 km. northeast from the Afşin town. The 
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morphological formations in the basin are 16.3% plains, 59.7% mountains, and 24% 

plateaus (Ministry of Environment and Urbanization, 2011). Elbistan has the fourth 

biggest plain with 1000-1300 km
2
 surface area and 1100-1150 m average height 

(Governor's Office of Kahramanmaraş, 2014). Monitoring the surface mining 

activities and LULC changes in this basin is crucially important due to its potential 

impacts on large agricultural areas.  

Afşin-Elbistan Coal Basin has a 3550.4 km
2
 area and the license area covers 296.7 

km
2
 of the basin. There still are houses with families living and working in their 

agricultural lands inside the license area of the mine even though there had been 

expropriations. These expropriations had been done piece by piece, such as only a 

part of the farm. Therefore there are still changes in settlements and agricultural 

lands in the license area of the mine.   

 

 

Figure 7. Location of Afşin-Elbistan Coal Basin 
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Exploration phase in the Afşin-Elbistan Coal Basin began in 1966 by the association 

of Otto Gold GmbH and General Directorate of Mineral Research and Exploration of 

Turkish Republic (MTA). The first lignite detected in 1967 and feasibility studies 

were performed between the years of 1969 and 1970. A summary of activities in the 

Afşin-Elbistan Coal Basin is provided in Figure 8 (Yaylacı, 2015). As the result of 

the feasibility analyses, license area divided into five parts and called Sector A, 

Sector B, Sector C, Sector D and Sector E (Figure 9).  

 

 

Figure 8. History and Progress of the Mining and Energy Sector Operations in the 

Afşin-Elbistan Coal Basin 

 

Overburden excavation activities began in 1973, and ore excavation activities began 

in 1981 in sector A for extraction of 581 million tonnes of lignite. As mentioned 

before, there are two thermal power plants in the license area, (Figure 9) called A and 

B power plants having capacities of 1376 MW and 1440 MW, respectively (TKİ, 

2011). The first power plant (A) began its activities in 1984 with feed of lignite 

extracted from the sector A. The second power plant (B) began its activities in 2003 

in order to increase electricity production. In 2011 a landslide occurred in sector B 

and production was stopped since then. 
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Figure 9. Power plants and sectors of the mine 

 

Potential LULC disturbances for this area are decrease in agricultural areas, increase 

in water bodies, decrease in settlement, and increase in forested areas. The 

agricultural lands inside the license area have decreased due to surface mining 

activities.  The agricultural lands outside the license area has decreased due to ash 

plume carried by wind from power plants as well as expropriation and resettlement 

activities, which led owner of these lands to move to urban areas and leave the 

agricultural activities.  Change in water bodies inside the license area has potential to 

affect other connected waterways.  Settlement inside the license area can decrease 

while outside the license area increasing, forested areas can increase due to 

reclamation works and uncontrolled growth.  
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4.2 Data Collection and Database 

 

All the data that were gathered and used can be seen from Table 3 with their format, 

source and dates. Landsat imageries are available for downloading from USGS 

database, Corine and topographical maps were requested from related departments 

and Ground Control Points were recorded with handheld GPS device during the field 

surveys (Figure 10).  

 

Table 3. Collected data 

Data Type Format Source Date 

Landsat 5 TM Imagery TIFF USGS* 21.08.1984 

   
27.06.1987 

   
22.08.1990 

Landsat 7 ETM+ Imagery TIFF USGS* 22.06.2000 

   
18.08.2003 

   
23.08.2005 

   
15.08.2008 

   
09.09.2011 

Landsat 8 OLI Imagery TIFF USGS* 24.08.2014 

Aerial Photos TIFF ETKB*** 2001 

    2013 

 Corine Map SHP OGM** 1995 

Topographic Contour Map SHP ETKB*** 2014 

Topographic Contour Map SHP HGK**** - 

Mine License Boundary SHP HGK**** - 

Mine Sector Map SHP EUAŞ*****  

Ground Control Points (GCPs) SHP Field Works 30.11.2013 

   
05.04.2014 

   
06.07.2014 

* United States Geological Survey 

** General Directorate of Forestry (OGM ) 

*** Ministry of Energy and Natural Resources (ETKB) 

**** General Command of Mapping (HGK) 

***** Electricity Generation Company (EUAŞ) 
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Figure 10. Ground Control Points (GCPs) 

 

Satellite Imagery 

In order to detect LULC change, all the Landsat satellite images available between 

1970 and 2015 were downloaded from USGS website, which are free for research 

purposes (U.S. Geological Survey, EarthExplorer, 2014). These images were 

reviewed and the most suitable ones were chosen for classification analyses. When 

choosing the years for images, timeline in Figure 8 was taken as reference. Surface 

mining operations began on 1972 but Landsat images between 1970 and 1984 were 

unusable due to distortions and sensor errors. Therefore 1984 was taken as the first 

image of the time series. In order to reduce the problems from Sun angle differences 

and vegetation phenology changes, images selected were acquired in summer season 

and had less than 10% cloud cover (Singh, 2010). In order to observe the LULC 

changes on Afşin-Elbistan Coal Basin, images have three year gaps between them, 

and most of the milestones in mining activities correspond to the chosen years. No 

images were found for the study area in the database for the years between 1990 and 
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1998. Timeline and preview of some of the images can be seen in Figure 11. Detailed 

band, wavelength and resolution information of the Landsat images, and all the 

Landsat images utilized in the analyses are given in Appendix A. 

 

 

Figure 11. Boundary of study area and previews of satellite imageries: True color 

displays of (a) TM 1984, (b) ETM+ 2003 (c) OLI 2014 

 

Topographical Maps 

Topographical contour maps were obtained from General Command of Mapping 

(HGK), which includes a very large coverage, (Afşin-Elbistan Coal Basin and the 

neighboring regions) and the map obtained from Ministry of Energy and Natural 

Resources (ETKB) was restricted with the license area of mine. Their scale is 

1:25000. Topographical maps were utilized to obtain Digital Elevation Models 

(DEMs) and watershed.  

 

Ancillary Data 

Obtained aerial photos are for the years of 2001 and 2013, and cover the license area. 

The photos were useful when combined with the GCPs, taken during the field 

surveys, to be used for accuracy assessment of the classifications. Corine map 

accommodates LULC data from 13 different countries and the section involving 
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Afşin-Elbistan Coal Basin can be seen from Figure 12. In 1985 the Corine program 

was started by the European Union. Corine means 'coordination of information on 

the environment' and it is a prototype research project about many different 

environmental issues (European Environment Agency, 1995). All of the data is listed 

in Table 3 and additional data from the analyses are stored and organized using 

ArcGIS 10 software.   

 

 

Figure 12. Corine map of the Afşin-Elbistan Basin 
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4.3 Data Processing  

 

4.3.1 Digital Elevation Model generation for Pre-mining and Mining Terrain 

 

Topographical contour map (obtained from General Command of Mapping) having 

the scale of 1:25000 was transformed into Digital Elevation Model (DEM) using 

ArcGIS 10 software. First, contour maps were joined with each other from the end 

points. After joining, the new polylines were converted to a point cloud with 

coordinates and elevation data, then extreme elevation values (-9999 or 9999 meters) 

were eliminated from the point cloud. Finally, Inverse Distance Weighting (IDW) 

technique was applied to the final layer and digital elevation model of pre-mining 

terrain was obtained. Elevations alternate between 3025 meters and 440 meters and, 

average elevation is 1456 meters (Figure 13). The highest elevations represent 

mountains, which are Binboğa, Berit, and Engizek mountains shown in Figure 13 

and Figure 14. 

The changes in the topography of Afşin-Elbistan Coal Basin generally occur in the 

extent of the surface coal mine. Therefore, the license area extracted from 

topographical contour map obtained from General Command of Mapping (HGK), 

and the contour map acquired from Ministry of Energy and Natural Resources 

(ETKB) was located on the extracted part. Join function was applied in ArcGIS 10 

software and the new topographic contour map was transformed into DEM with 

IDW technique. With the surface mining activities, minimum elevation was 

decreased from 440 meters to 164 meters. Maximum and average elevations did not 

change (Figure 14). The dark (black and dark grey) colors represent the lower 

elevations and the bright (white and light grey) colors represent the higher elevations 

in Figure 14.  
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Figure 13. Digital Elevation Model of the pre-mining terrain 
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Figure 14. Digital Elevation Model of the mining terrain 
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In order to perceive the study area better, 3D representation of the DEM was 

obtained as given in Figure 15.  The 3D representation of the Afşin-Elbistan Coal 

Basin was generated with overlaying study area borders and Landsat OLI image of 

2014 as shown in Figure 16. 

 

 

Figure 15. 3D representation of DEM 
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Figure 16. 3D representation of study area 

 

4.3.2 Watershed Generation for Pre-mining and Mining Terrain 

 

Watershed is generated for the purpose of observing the hydrological basins and 

forms the study area. In order to generate watershed following steps applied on 

DEMs of pre-mining and mining terrains with the software ArcGIS 10. First, to 

remove small imperfections in the data, Fill function applied to the DEM. Second, to 

create a raster of flow direction from each cell to its downslope neighbor, Flow 

Direction function applied to the Fill raster. Third, to create a raster of accumulated 

flow into each cell, Flow Accumulation function applied to the Flow Direction raster. 

Fourth, to detect pour points by considering highest pour points of the accumulation 

raster, Snap Pour Point function applied to the Flow Accumulation raster (Esri, 

2010) (Figure 17). 
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Figure 17. Pour points for watershed analyses 

 

Finally, in order to determine the watershed, Watershed function was applied with 

Flow Direction and Pour Point layers. All of the steps were applied to the pre-

mining and mining DEMs with different pour points and, eight watersheds obtained, 

four watersheds for pre-mining and four watersheds for mining stages. The generated 

watersheds can be seen from Figure 18 and Figure 19. Watersheds generated for pre-

mining and mining periods were overlaid and no discrepancy was observed. For 

further analyses, watershed 3 (Figure 20) was chosen to utilize as Afşin-Elbistan 

Coal Basin. 
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Figure 18. Watersheds of pre-mining terrain 
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Figure 19. Watersheds of mining terrain 
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Figure 20. Utilized watershed 
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4.3.3 Pre-processing of Landsat Satellite Imagery 

 

Before beginning classification analyses, raw images were pre-processed. For 

Landsat ETM+ imageries, images between years 2003 and 2011 had gaps as seen 

from Figure 21. Gaps had long triangles starting from the middle of the image and 

continued through the image. The reason for these gaps is the failure of the scan line 

corrector of the Landsat imager in May 31 2003. Scan line corrector trimmed the 

distortions caused by the forward motion of the imager (USGS, 2015).  

 

 

Figure 21. Raw Landsat ETM+ image with gaps 

 

Landsat ETM+ images between the years 2003 and 2011 required further editing due 

to the scan line corrector failure. The methodology for filling the gaps is published 

by Scaramuzza, et al. (2004) and is developed as a plugin for the ENVI 5.0 by the 

Yale Centre for Earth Observation (2013). The function is called landsat_gapfill and 
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it was utilized for this study. After applying landsat_gapfill function to the images on 

years 2003, 2005, 2008 and 2011, atmospheric corrections were applied to satellite 

images. The images without the landsat_gapfill processing atmospherically were 

corrected with the software Geomatica 2014 in trial mode, and the images with 

landsat_gapfill processing were failed for atmospheric correction. Non-

morphological filters were applied to the images with landsat_gapfill process such 

as, median filter and mean filter.  However, each trail didn’t enhance the results. 

Therefore, all of the images used were non-atmospherically corrected, and preparing 

training sets for each image in SVM classification had performed the analyses. 

Composite Bands, NDVI, and Principal Component Analysis functions applied to all 

of the Level 1 GeoTIFF Landsat images taken between the years of 1984 and 2014 

with ArcGIS 10 software. Seven classes were determined by using visual 

examination of images, the data gathered from the field surveys and the Corine map. 

These classes are: 

- Vegetation 

- Forest 

- Agriculture 

- Soil 

- Settlement 

- Water 

- Mine 

Vegetation class refers to all the green areas like meadows, parks, etc. Forest class 

represents the dense forest areas.  Agriculture class includes cropland and orchards.  

Soil corresponds to bare land. Settlement class consists of urban and rural areas with 

villages, towns and cities.  Water class constitutes water bodies like rivers, channels, 

lake, dam reservoirs, etc.  Mine class delineates the areas where surface mining 

activities are performed. When the images were examined, it was found that six 

bands, which are blue, green, red, near infrared (NIR), short wave infrared 1 

(SWIR1) and short wave infrared 2 (SWIR2) were found to contain most of the 
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available information for the classes.  Hence they were used for the analyses. All of 

the images were masked out within the boundaries of watershed vector as seen in 

Figure 22 and the resultant area called as Afşin-Elbistan Coal Basin. Images acquired 

from USGS website having Level 1 GeoTIFF plus metadata did not require co-

registration because all had been resampled with cubic convolution resampling 

method (USGS, 2015).  

 

 

Figure 22. Masked out Landsat image 

 

4.3.4 Image Enhancement 

 

Image enhancement operations were applied to satellite imageries in order to detect 

the margins between classes. Before the classification analyses, trials had been 

conducted and it was observed that areas containing active mining operations 
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presented problems in the classifications. Problems were due to the similarities in 

spectral signatures of mining area and the other classes, like soil, agriculture, etc. 

classes (Rathore and Wright, 2007). In order to eliminate this issue, mining area were 

masked out from all of the images (Figure 23) and analyses were conducted with the 

masked images. 

 

 

Figure 23. Masked out surface mine area from the year 2014 

 

4.4 Classification Analyses 

 

For the classifications, as mentioned in section 2.2, supervised Support Vector 

Machine (SVM) classification method was utilized. In order to conduct supervised 

classifications, sample sets, also called training sets was constructed first. After 

selection of training sets, supervised classifications were applied to multi-temporal 
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images for both classification methods, and accuracy assessment calculations were 

carried out in order to examine the success of classifications.  

 

4.4.1 Training Set Selection 

 

The first step of the supervised classification is choosing the appropriate training sets 

for the satellite images. As mentioned in section 4.3.3, there were six main classes in 

the Afşin-Elbistan Coal Basin. Training set selection for SVM classification was 

performed for each of the satellite images separately as seen between Figure 24 and 

Figure 32. 

 

 

Figure 24. Training sets of SVM classifications for the year 1984 
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Figure 25. Training sets of SVM classifications for the year 1987 

 

Figure 26. Training sets of SVM classifications for the year 1990 
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Figure 27. Training sets of SVM classifications for the year 2000 

 

Figure 28. Training sets of SVM classifications for the year 2003 
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Figure 29. Training sets of SVM classifications for the year 2005 

 

Figure 30. Training sets of SVM classifications for the year 2008 
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Figure 31. Training sets of SVM classifications for the year 2011 

 

Figure 32. Training sets of SVM classifications for the year 2014 
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For CDTL classification, one training set is chosen for year 2014 (Figure 33) and 

other training sets derived from the 2014 training set. In original paper, training sets 

prepared with machine learning system written in code. The code required could not 

acquire and generated, thus the training set selection done manually with closest 

way. Derived training sets arranged with before and after technique. To give an 

example, absolute value of pre-processed Landsat ETM+ image acquired on 2011 

subtracted from the absolute value of pre-processed Landsat OLI image acquired on 

2014 with the raster calculator in ArcGIS10 software, and with threshold, gray scale 

image divided into two groups of changed and unchanged areas which colored as 

black and white as seen in Figure 34. The differencing is not the prime parameter for 

the changes as you can see from the Figure 34 because of the differences between the 

atmospheric effects, the function only decreased the areas to be observed in order to 

select samples. The difference map, second image that needed training set and first 

training set overlaid, and second training set derived manually by observing all three 

layers. Rest of the difference maps can be seen in Appendix B. All of the training 

sets can be seen between Figure 35 and Figure 42. 
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Figure 33. Training set of CDTL classification for the year of 2014 

 

Figure 34. Changed and unchanged areas bewteen the years of 2014 and 2011 
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Figure 35. Training set of CDTL classification for the year of 2011 

 

Figure 36. Training set of CDTL classification for the year of 2008 
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Figure 37. Training set of CDTL classification for the year of 2005 

 

Figure 38. Training set of CDTL classification for the year of 2003 
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Figure 39. Training set of CDTL classification for the year of 2000 

 

Figure 40. Training set of CDTL classification for the year of 1990 
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Figure 41. Training set of CDTL classification for the year of 1987 

 

Figure 42. Training set of CDTL classification for the year of 1984 
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4.4.2 Traditional SVM Classification 

 

The Support Vector Machine (SVM) function was used for each of the nine images 

with the help of ENVI software. Kernel type for SVM was chosen as Radial Basis 

Function, gamma was taken as 0.167, penalty parameter was 100 and pyramid levels 

left as 0, all of the parameters can be seen from Figure 43, and classifications can be 

seen between Figure 44 and Figure 52. Each pixel was counted with respect to their 

classes and class percentages were calculated. 

 

 

Figure 43. SVM parameters 
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From the calculations for the classification of 1984 image (Figure 44), percentage of 

the classes are found to be as: Vegetation is 6.1%, forest is 5.5%, agriculture is 

30.3%, settlement is 7.3%, water is 0.1% and soil is 50.4%. The percentage of the 

mine area is 0.3%. Soil and agriculture are the dominant classes in the classification 

map of 1984.  

 

 

Figure 44. SVM classification of Afşin-Elbistan Coal Basin for year 1984 

 

For the classification of 1987 image (Figure 45), the percentage of the six classes are 

obtained as: Vegetation is 5.4%, forest is 4.3%, agriculture is 32.5%, settlement is 

0.6%, water is 0.5%, soil is 56.2%, and surface mine area is 0.4% of the basin. As 

seen from Figure 45, soil and agriculture are the dominant classes in the 

classification. When compared to the classified image of 1984, vegetated lands 

transforms to soil and agriculture around the mine, settlement decreases in the basin, 
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vegetation shrinks in the southwest of the basin and forested areas remains 

unchanged.  

 

 

Figure 45. SVM classification of Afşin-Elbistan Coal Basin for year 1987 

 

For the classification of 1990 image (Figure 46), percentage of the six main classes 

are found to be: Vegetation is 5.3%, forest is 6%, agriculture is 41.9%, settlement is 

0.5%, water is 0.3%, soil is 45.6%, and the mine area is 0.5% of the basin. When 

compared to the classified image of 1987, the transformed vegetated lands of the 

1987 image becomes vegetated lands again; the settlement increases in the southeast 

of the mine, and there is a slight increase in the forested areas.  
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Figure 46. SVM classification of Afşin-Elbistan Coal Basin for year 1990 

 

For the classification of 2000 (Figure 47), percentage of the six main classes were 

found to be: Vegetation is 5.9%, forest is 4.7%, agriculture is 33%, settlement is 

0.5%, water is 0.3%, soil is 54.9%, and the mine area is 0.7% of the basin. When 

compared to the classified image of 1990, the northwestern parts of the vegetation 

around the mine transforms to agricultural lands, and settlement and waterways 

remains unchanged. 

For the classification of 2003 (Figure 48), percentage of the main six classes are: 

Vegetation is 6.2%, forest is 6.2%, agriculture is 18.8%, settlement is 0.6%, water is 

0.5%, soil is 65.2%, and the mine area covers 1.1% of the basin. When compared to 

the classified image of 2000, vegetation is increased with the settlement, forested 

areas nearly are unchanged, and waterways are dispersed around the basin.  
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Figure 47. SVM classification of Afşin-Elbistan Coal Basin for year 2000 

 

Figure 48. SVM classification of Afşin-Elbistan Coal Basin for year 2003 
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For the classification of 2005 (Figure 49), percentage of the six classes are: 

Vegetation is 14.6%, forest is 5%, agriculture is 28.9%, settlement is 1.1%, water is 

0.2%, soil is 49.1%, and the mine area covers 1.2% of the basin. When compared to 

the classified image of 2003, vegetation is increased broadly, especially around the 

waterways, agriculture is increased as well, new settlement is observed around the 

northeastern part of the basin, and forested areas are nearly unaltered.  

 

 

Figure 49. SVM classification of Afşin-Elbistan Coal Basin for year 2005 

 

For the classification of 2008 (Figure 50), percentage of the six main classes are: 

Vegetation is 5.3%, forest is 8.1%, agriculture is 21.6%, settlement is 0.3%, water is 

0.1%, soil is 63.5%, and the mine area covers 1.2% of the basin. When compared to 

the classified image of 2005, vegetation is decreased, new settlement areas around 

the northeastern part of the basin from classification of 2005 vanish, this situation 

may be related to misclassification, and forested areas and waterways are unaltered.  
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Figure 50. SVM classification of Afşin-Elbistan Coal Basin for year 2008 

 

For the classification of 2011 (Figure 51), percentage of the six classes are: 

Vegetation is 6.8%, forest is 6%, agriculture is 18.6%, settlement is 0.8%, water is 

0.2%, soil is 66.1% and the mine area covers 1.5% of the basin. When compared to 

the classified image of 2008, there are unclassified areas on the southwestern part of 

the basin, vegetation is slightly increased, settlement in the southeastern part of the 

mine increases, and forested areas and waterways are nearly unchanged.  

Finally, for the classification of 2014 (Figure 52), percentage of the six main classes 

are; vegetation 6.3%, forest 8.6%, agriculture 28.5%, settlement 0.3%, water 0.3% 

and soil is 54.5%. In addition to the classes, the mine area covers 1.5% of the basin. 

When compared to the classified image of 2011, agriculture increases, settlement 

nearly disappears, waterways are clearly visible and increased, the reason for the 

rapid increase may be dam reservoirs being developed due to hydroelectric power 

plants constructions around the rivers in the basin, and forested areas are slightly 

increased. 
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Figure 51. SVM classification of Afşin-Elbistan Coal Basin for year 2011 

 

Figure 52. SVM classification of Afşin-Elbistan Coal Basin for year 2014 
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4.4.3 CDTL Classification 

 

As mentioned in section 2.2, CDTL classification method utilizes SVM function for 

classifications. SVM step of CDTL classification applied to nine periodically 

arranged multi-temporal images individually with ENVI software. Kernel type for 

SVM is chosen as Radial Basis Function, gamma is taken as 0.167, penalty 

parameter is 100 and pyramid levels left as 0, all of the parameters can be seen from 

Figure 43. Images classified according to six classes, which are vegetation, forest, 

agriculture, settlement, water and soil. Each pixel had counted with respect to their 

classes, class percentages are calculated, and the classifications can be seen between 

Figure 53 and Figure 61.  

From the calculations for the classification of 1984 image (Figure 53), percentage of 

the six classes are: Vegetation is 5.3%, forest is 4.8%, agriculture is 24.0%, 

settlement is 1.2%, water is 0.3%, soil is 64.1%, and the mine area covers 0.2% of 

the basin. As seen from Figure 47, soil and agriculture are the dominant classes in the 

classification.  
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Figure 53. CDTL classification of Afşin-Elbistan Coal Basin for year 1984 

 

For the classification of 1987 (Figure 54), percentages of the six classes are: 

Vegetation is 7.1%, forest is 3.9%, agriculture is 30.9%, settlement is 0.6%, water is 

0.5%, soil is 56.6%, and the mine area covers 0.3% of the basin. When compared to 

the classified image of 1984, vegetated lands transforms to soil and agriculture 

around the mine, again vegetation shrinks in the southwest of the basin, settlement 

decreases, and forested areas are nearly unchanged.  

For the classification of 1990 image (Figure 55), percentage of the six classes are: 

Vegetation is 8.4%, forest is 5.3%, agriculture is 24.6%, settlement is 1.1%, water is 

0.3%, soil is 59.9%, and the mine area covers 0.5% of the basin. When compared to 

the classified image of 1987, transformed vegetated areas of the 1987 image around 

the cast mine becomes vegetated again, vegetation on the southwestern part of the 

basin increases, settlement increases in the southeast and the south of the mine, and 

there is a slight increase on the forested areas.  
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Figure 54. CDTL classification of Afşin-Elbistan Coal Basin for year 1987 

 

Figure 55. CDTL classification of Afşin-Elbistan Coal Basin for year 1990 
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For the classification of 2000 image (Figure 56), percentage of the six main classes 

are: vegetation is 11.2%, forest is 4.4%, agriculture is 23.1%, settlement is 1.7%, 

water is 0.6%, soil is 58.3%, and the mine area covers 0.7% of the basin. When 

compared to the thematic map of 1990, the northwestern parts of the agriculture 

around the mine becomes intact, settlement increases, waterways slightly increases, 

and forested areas decreases a little.  

 

 

Figure 56. CDTL classification of Afşin-Elbistan Coal Basin for year 2000 

 

For the classification of 2003 image (Figure 57), percentage of the six classes are: 

Vegetation is 8.8%, forest is 4.6%, agriculture is 24.2%, settlement is 2.4%, water is 

0.5%, soil is 58.3%, and the mine area covers 1.1% of the basin. When compared to 

the classified image of 2000, vegetation slightly decreases, there is a rapid increase in 

settlement class, this increase may be related to the misclassification of the pixels, 

forested areas nearly are unchanged, and waterways are dispersed in the basin. 
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Figure 57. CDTL classification of Afşin-Elbistan Coal Basin for year 2003 

 

For the classification of 2005 (Figure 58), percentage of the classes are: Vegetation is 

14.6%, forest is 5%, agriculture is 28.9%, settlement is 1.1%, water is 0.2%, soil is 

49.1%, and the mine area covers 1.2% of the basin. When compared to the classified 

image of 2003, vegetation increases broadly, agriculture increases, settlement 

decreases, and forested areas are nearly unaltered.  

For the classification of 2008 image (Figure 59), percentage of the six classes are: 

Vegetation is 7%, forest is 4.9%, agriculture is 26.6%, settlement is 2.6%, water is 

0.4%, soil is 57.3%, and the mine area covers 1.2% of the basin. When compared to 

the classified image of 2005, vegetation rapidly decreases, settlement increases, 

especially in the southwestern part of the mine, forested areas are unaltered, and 

there is a slight increase in the waterways.  
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Figure 58. CDTL classification of Afşin-Elbistan Coal Basin for year 2005 

 

Figure 59. CDTL classification of Afşin-Elbistan Coal Basin for year 2008 
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For the classification of 2011 image (Figure 60), percentage of the six main classes 

are: Vegetation is 9.6%, forest is 4.9%, agriculture is 22.3%, settlement is 1%, water 

is 0.7%, soil is 59.9%, and the mine area covers 1.5% of the basin. When compared 

to the classified image of 2008, vegetation increases, agricultural lands around the 

mine transforms into vegetation and decreases mainly, and forested areas and 

waterways are nearly unchanged.  

 

 

Figure 60. CDTL classification of Afşin-Elbistan Coal Basin for year 2011 

 

Finally for the classification of 2014 image (Figure 61), percentage of the six classes 

are: Vegetation is 6.1%, forest is 6%, agriculture is 23.6%, settlement is 1.8%, water 

is 2.2%, soil is 58.9%, and the mine area covers 1.5% of the basin. When compared 

to the classified image of 2011, there is a slight increase in agriculture.  The 

settlement class increases in the southeastern part of the mine, waterways are clearly 

visible and increases, the reason for the rapid increase may be the enlarged water 
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surfaces due to dam reservoirs of hydroelectric power plants in the basin, and 

forested areas also increase. 

 

 

Figure 61. CDTL classification of Afşin-Elbistan Coal Basin for year 2014 

 

4.4.4. Accuracy Assessments 

 

In order to conduct accuracy assessment, approximately 2000 random points are 

assigned in the classified images using ArcGIS 10 software. As it can be seen from 

Figure 62, each point represents a pixel on the image. The overall accuracy, 

i.e.(intersecting pixels/total point number)*100, is calculated by using the matrix in  

Figure 5.  
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Figure 62. Random points assigned on the image of 2014 

 

Another important accuracy metric is Kappa coefficient, which determines whether 

the accuracy calculation is valid or not. Calculation of Kappa coefficient can be seen 

from Figure 63. In Figure 63, the first table is error matrix of a classification with 

three classes (C1, C2, C3) the second table is prepared to calculate kappa coefficient. 

It needs two values which are, expected (Ex) and overall accuracy (OA). In order to 

calculate Ex, cumulative sum (CS) and production matrix (PM) must be found, 

which are calculated with addition of all the cells and addition of diagonal cells in 

coefficient calculation table respectively. Dividing PM to CS gives the Ex value and 

finally Kappa coefficient is calculated as (OA - Ex) / (1 - Ex). 
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Figure 63. Kappa coefficient calculation example 

 

Accuracy Assessments of the SVM Classifications 

The number of samples used for the accuracy assessment of 1984 image is 1911. As 

it can be seen from Table 4, the most unsuccessful class is water with 69.2% 

producer’s accuracy. Overall accuracy is calculated as 86.9% and the Kappa 

coefficient is 0.79 when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 1987 image is 2057. As 

it can be seen from Table 5, the most unsuccessful class is forest with 69.3% 

producer’s accuracy. Overall accuracy (OA) is calculated as 86.9% and the Kappa 

coefficient is 0.78 when these results are compared, the calculation is successful. 
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Table 4. Error matrix of the classification of year 1984 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 106 1 1 1 0 7 0 116 91.4 

  V* 7 125 0 0 0 0 0 132 94.7 

  A* 1 4 525 1 0 70 0 601 87.4 

OI* S* 0 3 0 32 0 4 0 39 82.1 

  M* 0 0 0 0 10 0 0 10 100 

  So* 23 11 107 5 0 854 4 1004 85.1 

  W* 0 0 0 0 0 0 9 9 100 

  Total 137 144 633 39 10 935 13 1911   

  
PA* 

(%) 
77.4 86.8 82.9 82.1 100 91.3 69.2     

  OA: 86.9%, Kappa= 0.79             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Table 5. Error matrix of the classification of year 1987 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 79 2 0 0 0 8 0 89 88.8 

  V* 8 91 8 0 0 7 1 115 79.1 

  A* 7 9 588 2 0 37 0 643 91.4 

OI* S* 0 0 0 28 0 3 0 31 90.3 

  M* 0 0 0 0 12 0 0 12 100 

  So* 20 17 127 3 0 976 2 1145 85.2 

  W* 0 0 0 0 0 8 14 22 63.6 

  Total 114 119 723 33 12 1039 17 2057   

  
PA* 

(%) 
69.3 76.5 81.3 84.8 100 93.9 82.4     

  OA: 86.9%, Kappa= 0.78             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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The number of samples used for the accuracy assessment of 1990 image is 2056. As 

it can be seen from Table 6, the most unsuccessful class is forest with 72.9% 

producer’s accuracy. OA is calculated as 84.8% and the Kappa coefficient is 0.76 

when these results are compared, the calculation is successful. 

 

Table 6. Error matrix of the classification of year 1990 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 97 9 0 0 0 7 0 113 85.8 

  V* 3 105 1 1 0 4 0 114 92.1 

  A* 16 7 699 2 0 131 0 855 81.8 

OI* S* 2 1 1 22 0 2 0 28 78.6 

  M* 0 0 0 0 12 0 0 12 100 

  So* 15 6 95 3 0 797 1 917 86.9 

  W* 0 0 0 0 0 5 12 17 70.6 

  Total 133 128 796 28 12 946 13 2056   

  
PA* 

(%) 
72.9 82 87.8 78.6 100 84.2 92.3     

  OA: 84.8%, Kappa= 0.76             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

The number of samples used for the accuracy assessment of 2000 image is 2052. As 

it can be seen from Table 7, the most unsuccessful class is settlement with 53.1% 

producer’s accuracy. OA is calculated as 87.2% and the Kappa coefficient is 0.79 

when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 2003 image is 2059. As 

it can be seen from Table 8, the most unsuccessful class is settlement with 53.1% 

producer’s accuracy. OA is calculated as 87.7% and the Kappa coefficient is 0.78 

when these results are compared, the calculation is successful. 



83 
 

Table 7. Error matrix of the classification of year 2000 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 81 4 0 0 0 8 1 94 86.2 

  V* 5 117 3 0 0 0 0 125 93.6 

  A* 15 17 567 6 0 61 2 668 84.9 

OI* S* 0 0 0 17 0 2 0 19 89.5 

  M* 0 0 0 0 18 0 0 18 100 

  So* 34 34 56 9 0 972 2 1107 87.8 

  W* 0 0 0 0 0 2 19 21 90.5 

  Total 135 172 626 32 18 1045 24 2052   

  
PA* 

(%) 
60 68 90.6 53.1 100 93 79.2     

  OA: 87.2%, Kappa= 0.79             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Table 8. Error matrix of the classification of year 2003 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 99 8 1 0 0 10 1 119 83.2 

  V* 4 135 2 0 2 0 0 143 94.4 

  A* 0 0 342 1 0 32 0 375 91.2 

OI* S* 0 0 0 17 0 3 0 20 85 

  M* 0 0 0 0 41 0 0 41 100 

  So* 8 14 143 14 0 1152 4 1335 86.3 

  W* 0 0 0 0 0 7 19 26 73.1 

  Total 111 157 488 32 43 1204 24 2059   

  
PA* 

(%) 
89.2 86 70.1 53.1 95.3 95.7 79.2     

  OA: 87.7%, Kappa= 0.78             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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The number of samples used for the accuracy assessment of 2005 image is 2035. As 

it can be seen from Table 9, the most unsuccessful class is forest with 57.7% 

producer’s accuracy. OA is calculated as 80.6% and the Kappa coefficient is 0.71 

which indicates a valid accuracy assessment. 

 

Table 9. Error matrix of the classification of year 2005 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 75 8 0 0 0 9 0 92 81.5 

  V* 13 231 5 1 0 34 2 286 80.8 

  A* 17 15 455 5 0 97 0 589 77.2 

OI* S* 0 1 2 17 0 1 0 21 81 

  M* 0 0 0 0 26 0 0 26 100 

  So* 25 26 125 5 0 820 0 1001 81.9 

  W* 0 0 0 0 0 4 16 20 80 

  Total 130 281 587 28 26 965 18 2035   

  
PA* 

(%) 
57.7 82.2 77.5 60.7 100 85 88.9     

  OA: 80.60%, Kappa= 0.71             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

The number of samples used for the accuracy assessment of 2008 image is 2059. As 

it can be seen from Table 10, the most unsuccessful class is settlement with 27.3% 

producer’s accuracy. OA is calculated as 87.8% and the Kappa coefficient is 0.79 

when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 2011 image is 2041. As 

it can be seen from Table 11, the most unsuccessful class is forest with 58.5% 

producer’s accuracy. OA is calculated as 80.8% and the Kappa coefficient is 0.70 

when these results are compared, the calculation is successful. 
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Table 10. Error matrix of the classification of year 2008 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 132 5 4 0 0 7 1 149 88.6 

  V* 4 103 1 2 0 0 0 110 93.6 

  A* 0 2 376 4 0 31 0 413 91 

OI* S* 0 0 0 9 0 1 0 10 90 

  M* 0 0 0 0 39 0 0 39 100 

  So* 8 18 141 18 0 1137 4 1326 85.7 

  W* 0 0 0 0 0 0 12 12 100 

  Total 144 128 522 33 39 1176 17 2059   

  
PA* 

(%) 
91.7 80.5 72 27.3 100 96.7 70.6     

  OA: 87.8%, Kappa= 0.79             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Table 11. Error matrix of the classification of year 2011 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 100 5 1 0 0 5 0 111 90.1 

  V* 11 111 0 1 0 4 1 128 86.7 

  A* 3 1 309 2 0 51 0 366 84.4 

OI* S* 0 0 1 15 0 6 0 22 68.2 

  M* 0 0 0 0 43 0 0 43 100 

  So* 57 58 169 7 0 1062 2 1355 78.4 

  W* 0 0 0 0 0 5 11 16 68.8 

  Total 171 175 480 25 43 1133 14 2041   

  
PA* 

(%) 
58.5 63.4 64.4 60 100 93.7 78.6     

  OA: 80.8%, Kappa= 0.70             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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The number of samples used for the accuracy assessment of 2014 image is 2066. As 

it can seen from Table 12, the most unsuccessful class is settlement with 27.9% 

producer’s accuracy. Overall accuracy is calculated as 89.4% and the Kappa 

coefficient is 0.83 when these results are compared, the calculation is successful. 

 

Table 12. Error matrix of the classification of year 2014 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 146 13 2 2 0 4 2 169 86.4 

  V* 2 130 0 3 0 0 0 135 96.3 

  A* 0 0 516 4 0 60 0 580 89 

OI* S* 0 0 1 12 0 1 0 14 85.7 

  M* 0 0 0 0 45 0 0 45 100 

  So* 21 10 70 22 0 984 3 1110 88.6 

  W* 0 0 0 0 0 0 13 13 100 

  Total 169 153 589 43 45 1049 18 2066   

  
PA* 

(%) 
86.4 85 87.6 27.9 100 93.8 72.2     

  OA: 89.4%, Kappa= 0.83             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Accuracy Assessments of the CDTL Classifications 

The number of samples used for the accuracy assessment of 1984 image is 1909. As 

it can be seen from Table 13, the most unsuccessful class is settlement with 30.8% 

producer’s accuracy. Overall accuracy is calculated as 79.5% and the Kappa 

coefficient is 0.66 when these results are compared, the calculation is successful. 
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Table 13. Error matrix of the classification of year 1984 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 87 8 15 0 0 27 0 137 88.8 

  V* 1 108 18 1 0 10 4 142 93.1 

  A* 1 0 401 10 0 221 0 633 84.4 

OI* S* 1 0 5 12 0 21 0 39 50 

  M* 0 0 0 0 10 0 0 10 100 

  So* 8 0 36 1 0 889 1 935 76 

  W* 0 0 0 0 0 2 11 13 68.8 

  Total 98 116 475 24 10 1170 16 1909   

  
PA* 

(%) 
63.5 76.1 63.3 30.8 100 95.1 84.6     

  OA: 79.5%, Kappa= 0.66             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

The number of samples used for the accuracy assessment of 1987 image is 2057. As 

it can be seen from Table 14, the most unsuccessful class is forest with 58.6% 

producer’s accuracy. Overall accuracy is calculated as 81.5% and the Kappa 

coefficient is 0.70 when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 1990 image is 2056. As 

it can be seen from Table 15, the most unsuccessful class is agriculture with 57.8% 

producer’s accuracy. Overall accuracy is calculated as 77.1% and the Kappa 

coefficient is 0.63 when these results are compared, the calculation is successful. 
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Table 14. Error matrix of the classification of year 1987 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 65 11 17 0 0 18 0 111 86.7 

  V* 1 104 13 0 0 14 0 132 66.2 

  A* 2 38 518 5 0 157 0 720 83.4 

OI* S* 0 0 2 22 0 9 0 33 75.9 

  M* 0 0 0 0 12 0 0 12 100 

  So* 7 4 71 2 0 941 7 1032 82.4 

  W* 0 0 0 0 0 3 14 17 66.7 

  Total 75 157 621 29 12 1142 21 2057   

  
PA* 

(%) 
58.6 78.8 71.9 66.7 100 91.2 82.4     

  OA: 81.5%, Kappa= 0.70             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Table 15. Error matrix of the classification of year 1990 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 80 27 4 2 0 20 0 133 88.9 

  V* 2 115 6 1 0 4 0 128 59.9 

  A* 0 40 460 7 0 289 0 796 90.9 

OI* S* 0 1 2 21 0 4 0 28 55.3 

  M* 0 0 0 0 12 0 0 12 100 

  So* 8 9 34 7 0 887 1 946 73.5 

  W* 0 0 0 0 0 3 10 13 90.9 

  Total 90 192 506 38 12 1207 11 2056   

  
PA* 

(%) 
60.2 89.8 57.8 75 100 93.8 76.9     

  OA: 77.1%, Kappa= 0.63             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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The number of samples used for the accuracy assessment of 2000 image is 2047. As 

it can be seen from Table 16, the most unsuccessful class is forest with 50.8% 

producer’s accuracy. Overall accuracy is calculated as 80.8% and the Kappa 

coefficient is 0.69 when these results are compared, the calculation is successful. 

 

Table 16. Error matrix of the classification of year 2000 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 66 14 5 0 0 43 2 130 76.7 

  V* 3 129 6 9 0 23 2 172 57.3 

  A* 8 79 415 7 0 113 4 626 89.8 

OI* S* 0 0 5 19 0 8 0 32 39.6 

  M* 0 0 0 0 18 0 0 18 100 

  So* 6 3 31 13 0 989 3 1045 84 

  W* 3 0 0 0 0 1 20 24 64.5 

  Total 86 225 462 48 18 1177 31 2047   

  
PA* 

(%) 
50.8 75 66.3 59.4 100 94.6 83.3     

  OA: 80.8%, Kappa= 0.69             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

The number of samples used for the accuracy assessment of 2003 image is 2059. As 

it can be seen from Table 17, the most unsuccessful class is water with 65.4% 

producer’s accuracy. Overall accuracy is calculated as 83.5% and the Kappa 

coefficient is 0.72 when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 2005 image is 2035. As 

it can be seen from Table 18, the most unsuccessful class is settlement with 50% 

producer’s accuracy. Overall accuracy is calculated as 78.6% and the Kappa 

coefficient is 0.67 when these results are compared, the calculation is successful. 
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Table 17. Error matrix of the classification of year 2003 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 73 15 9 4 0 9 1 111 83 

  V* 2 130 23 2 0 2 0 159 76 

  A* 0 12 366 3 0 107 0 488 74.7 

OI* S* 0 2 4 23 0 4 0 33 44.2 

  M* 0 0 0 0 35 0 0 35 100 

  So* 9 12 86 20 0 1075 5 1207 89.6 

  W* 4 0 2 0 0 3 17 26 73.9 

  Total 88 171 490 52 35 1200 23 2059   

  
PA* 

(%) 
65.8 81.8 75 69.7 100 89.1 65.4     

  OA: 83.5%, Kappa= 0.72             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

Table 18. Error matrix of the classification of year 2005 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 76 4 4 10 0 35 1 130 76 

  V* 12 196 14 16 0 40 3 281 91.2 

  A* 0 13 362 6 0 206 0 587 88.5 

OI* S* 0 0 6 14 0 8 0 28 23.7 

  M* 0 0 0 0 26 0 0 26 100 

  So* 12 2 23 13 0 909 6 965 75.8 

  W* 0 0 0 0 0 1 17 18 63 

  Total 100 215 409 59 26 1199 27 2035   

  
PA* 

(%) 
58.5 69.8 61.7 50 100 94.2 94.4     

  OA: 78.6%, Kappa= 0.67             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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The number of samples used for the accuracy assessment of 2008 image is 2059. As 

it can be seen from Table 19, the most unsuccessful class is settlement with 45.5% 

producer’s accuracy. Overall accuracy is calculated as 78.3% and the Kappa 

coefficient is 0.64 when these results are compared, the calculation is successful. 

 

Table 19. Error matrix of the classification of year 2008 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 77 32 16 6 0 12 1 144 91.7 

  V* 3 96 23 2 0 4 0 128 64.4 

  A* 0 9 362 8 0 142 0 521 70.6 

OI* S* 0 2 4 15 0 12 0 33 21.1 

  M* 0 0 0 0 39 0 0 39 100 

  So* 3 10 107 40 0 1010 7 1177 85.5 

  W* 1 0 1 0 0 1 14 17 63.6 

  Total 84 149 513 71 39 1181 22 2059   

  
PA* 

(%) 
53.5 75 69.5 45.5 100 85.8 82.4     

  OA: 78.3%, Kappa= 0.64             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

The number of samples used for the accuracy assessment of 2011 image is 2041. As 

it can be seen from Table 20, the most unsuccessful class is forest with 44.3% 

producer’s accuracy. Overall accuracy is calculated as 76.6% and the Kappa 

coefficient is 0.61 when these results are compared, the calculation is successful. 

The number of samples used for the accuracy assessment of 2014 image is 2066. As 

it can be seen from Table 21, the most unsuccessful class is settlement with 62.8% 

producer’s accuracy. Overall accuracy is calculated as 84.1% and the Kappa 

coefficient is 0.75 when these results are compared, the calculation is successful. 
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Table 20. Error matrix of the classification of year 2011 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 78 48 10 0 0 37 3 176 85.7 

  V* 5 130 13 2 0 28 1 179 65.3 

  A* 0 5 317 3 0 155 0 480 68.6 

OI* S* 0 4 2 13 0 6 0 25 59.1 

  M* 0 0 0 0 34 0 0 34 100 

  So* 7 12 120 4 0 980 10 1133 81.1 

  W* 1 0 0 0 0 2 11 14 44 

  Total 91 199 462 22 34 1208 25 2041   

  
PA* 

(%) 
44.3 72.6 66 52 100 86.5 78.6     

  OA: 76.6%, Kappa= 0.61             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 

 

 

Table 21. Error matrix of the classification of year 2014 

        CI*             

    F* V* A* S* M* So* W* Total 
UA* 

(%) 

  F* 106 9 5 4 0 26 19 169 93 

  V* 2 120 14 1 0 6 10 153 91.6 

  A* 0 0 431 6 0 151 1 589 87.1 

OI* S* 1 2 4 27 0 8 1 43 61.4 

  M* 0 0 0 0 45 0 0 45 100 

  So* 4 0 41 6 0 995 3 1049 83.7 

  W* 1 0 0 0 0 3 14 18 29.2 

  Total 114 131 495 44 45 1189 48 2066   

  
PA* 

(%) 
62.7 78.4 73.2 62.8 100 94.9 77.8     

  OA: 84.1%, Kappa= 0.75             

*F=Forest, V=Vegetation, A= Agriculture, S=Settlement, M=Mine, So=Soil, 

W= Water, UA= User's accuracy, PA= Producer's accuracy, OI= Original 

image, CI= Classified image 
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4.5 Land Use Land Cover Change Detection 

 

LULC change detection between years of 1984 and 2014 for Afşin-Elbistan Coal 

Basin is performed with Change Detection function of ENVI5.0 software. Images 

with traditional SVM classification and CDTL method are divided into seven pairs of  

consecutive years, which are 1984-1987, 1987-1990, 1990-2000, 2003-2005, 2005-

2008, 2008-2011, and 2011-2014. All of the LULC change maps can be seen 

between Figure 64 and Figure 79, and change statistics are given between Table 22 

and Table 37. From the images, legends indicate changes between the classes from 

initial year to final year, there are six main classes, which are vegetation, forest, 

agriculture, settlement, soil, and water. In the tables of change statistics (Table 22-

Table 37), Class Difference row is the difference in the total number of equivalently 

classed pixels in two images, computed by subtracting the Initial State Class Totals 

from Final State Class Totals. Positive Class Difference indicates increase in the 

class size. Likewise, negative Class Difference indicates decrease in class size. For 

example, in Table 22, agriculture increases by 7.3% and forest decreases by 21.1%, 

and they are calculated by subtracting initial state pixel count from final state pixel 

count, then dividing the result with initial state pixel count (ENVI5.0 Help Menu, 

2012). The reason of percentage difference between the classification maps and 

LULC change maps is that mining terrain is included in classification map 

percentage calculations.   
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Post-classification change detection with SVM classification 

The change map between the years of 1984 and 1987 can be seen from Figure 64. 

The first class indicates that it belongs to the year 1984, and the second one belongs 

to year 1987. The observable changes are; agriculture to vegetation (light purple), 

soil to agriculture (light green), soil to vegetation (light blue) and soil to settlement 

(dark blue). As it can be seen from Table 22, while vegetation, forest and settlement 

classes decrease, agriculture, water and soil classes increase. Decrease in settlement 

is due to the classifications errors in 1984 thematic map, increase in agriculture is 

related to the increase in vegetation as agricultural lands changes to vegetated lands 

in resultant change detection map.  

 

Table 22. Change statistics between years 1984 and 1987 

        1984       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

1987 

Vegetation 

(%) 
40.7 6.7 5.5 5 0.5 1.1 

Forest (%) 1.6 64.9 0.2 1.8 0 0.9 

Agriculture 

(%) 
41.8 17.9 62.9 28.1 0.2 15.6 

Settlement 

(%) 
0.2 0 0.5 1.5 0.3 0.7 

Water (%) 0.5 0.9 0.1 0.4 91.9 0.6 

Soil (%) 15.2 9.5 30.4 63.2 7 81.1 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

59.3 35.1 37.1 98.5 8.1 18.9 

  

Class 

Difference 

(%) 
-11.3 -21.1 7.3 -91.7 534.2 11.4 
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Figure 64. Change map between the years 1984 and 1987 
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The change map between the years of 1987 and 1990 can be seen from Figure 65. 

The first class indicates that it belongs to the year of 1987 and the second one 

belongs to year of 1990. The signifcant changes are; agriculture to vegetation (light 

purple), soil to agriculture (light green), vegetation to agriculture (maroon), and soil 

to vegetation (light blue). As it can be seen from Table 23, while vegetation, 

settlement, water and soil classes are decreasing, forest and agriculture classes 

increase. Increase in vegetated lands is related to the decrease in agriculture class as 

both of the classes change into others in the resultant change detection map. 

 

Table 23. Change statistics between years 1987 and 1990 

        1987       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

1990 

Vegetation 

(%) 
35.9 2.1 7.2 1.8 5.1 1.5 

Forest (%) 8.6 76.1 3.3 1 7.7 2 

Agriculture 

(%) 
45.7 10.7 70.8 21.3 10.7 28 

Settlement 

(%) 
0.4 0 0.7 15.2 0.7 0.2 

Water (%) 0.3 0.3 0.1 0.3 21.2 0.2 

Soil (%) 8.9 10.8 17.7 60.3 54.2 68 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

64.1 23.9 29.2 84.8 78.8 32 

  

Class 

Difference 

(%) 
-2.8 38.1 28.8 -22.5 -46.4 -18.8 
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Figure 65. Change map between the years 1987 and 1990 

 



98 
 

The change map between the years of 1990 and 2000 can be seen from Figure 65. 

The first class indicates that it belongs to the year of 1990 and the second one 

belongs to year of 2000. The important changes are; agriculture to vegetation (light 

purple), agriculture to soil (pink), and soil to vegetation (light blue). From Table 24, 

forest, agriculture and settlement classes decrease, vegetation, water and soil classes 

increase. Between years of 1990 and 2000, power plant constructions began; 

therefore the soil increase can be related to these activities. Vegetated lands increase 

because, while agricultural lands are left uncultivated, they are detected as vegetated 

lands. 

 

Table 24. Change statistics between years 1990 and 2000 

        1990       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2000 

Vegetation 

(%) 
49.5 6.7 5.7 3 7.4 1 

Forest (%) 3.2 60 1 0.2 4.4 1.1 

Agriculture 

(%) 
32.5 18.6 59.8 30.7 11.9 10.8 

Settlement 

(%) 
0.3 0.1 0.2 28.8 0.6 0.5 

Water (%) 0.3 0.7 0.1 0.1 23.7 0.3 

Soil (%) 14 14 32.8 36.5 52.1 86.2 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

50.5 40 40.2 71.2 76.3 13.8 

  

Class 

Difference 

(%)  
10.9 -21.1 -21.2 -3.8 8.3 20.6 
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Figure 66. Change map between the years 1990 and 2000 
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The change map between years 2000 and 2003 can be seen from Figure 67. The first 

class indicates that it belongs to the year 2000 and second one belongs to year 2003. 

The important changes are; soil to vegetation (light blue), agriculture to soil (pink), 

and vegetation to soil (dark purple). From Table 25, while only the agriculture 

decreased, vegetation, forest, settlement, water and soil classes increased. Between 

years of 2000 and 2003, construction of power plant B began; therefore the soil 

increase can be related to these activities. Vegetated lands increase because, while 

agricultural lands are left uncultivated, they are detected as vegetated lands. 

 

Table 25. Change statistics between years 2000 and 2003 

         2000       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2003 

Vegetation 

(%) 
53.9 4 9.6 3.5 4.9 1.9 

Forest (%) 5.6 84.8 3.7 0.1 4.8 1.1 

Agriculture 

(%) 
13 0.1 46.9 10.1 5.4 5 

Settlement 

(%) 
0.2 0 0.4 52.3 0.3 0.5 

Water (%) 0.4 2.2 0.4 0.2 55.4 0.2 

Soil (%) 27 9 39 33.9 29.3 91.3 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

47 15.3 53.8 48.9 44.6 8.9 

  

Class 

Difference 

(%)  
28.3 30.2 -43 41.5 87.9 18.7 
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Figure 67. Change map between years 2000 and 2003 
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The change map between years 2003 and 2005 can be seen from Figure 68. From the 

legend, first class indicates that it belongs to the year 2003 and second one belongs to 

year 2005. The observed changes are; soil to vegetation (light blue), soil to 

agriculture (light green), and agriculture to vegetation (light purple). From Table 26, 

while forest, water and soil decreased, vegetation, agriculture and settlement 

increased. Between years of 2003 and 2005, there are no significant changes for 

mining activities. While barelands transformed to vegetated lands, existing 

agricultural lands left uncultivated and detected as vegetated lands. 

 

Table 26. Change statistics between years 2003 and 2005 

        2003       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2005 

Vegetation 

(%) 
77.4 28.8 3.3 6.3 32.9 9.5 

Forest (%) 2 66.7 0 0.1 30.3 0.8 

Agriculture 

(%) 
15.7 2.6 81.9 6 1.6 18.5 

Settlement 

(%) 
0.7 0.1 0.7 64.5 0.2 0.9 

Water (%) 0 0 0 0 25.5 0.1 

Soil (%) 4 1.8 14 23.2 9.4 70.2 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

22.6 33.3 18.1 35.5 74.5 29.8 

  

Class 

Difference 

(%)  
94.7 -19.8 53.6 88 -64.2 -24.8 
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Figure 68. Change map between the years 2003 and 2005 
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The change map between years 2005 and 2008 can be seen from Figure 69. From the 

legend, first class indicates that it belongs to the year 2005 and second one belongs to 

year 2008. The detected changes are; agriculture to vegetation (light purple), 

vegetation to soil (dark purple), and vegetation to forest (dark green). From Table 27, 

while vegetation, agriculture, settlement and water decreased, forest and soil 

increased. Between years of 2005 and 2008, no significant changes for mining 

activities. There are uncontrolled forestation where vegetated lands are observed as 

forested areas. 

 

Table 27. Change statistics between years 2005 and 2008 

        2005       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2008 

Vegetation 

(%) 
27.2 2.4 3.2 4.4 4.2 0.4 

Forest (%) 20.1 92.1 1 1 12 0.6 

Agriculture 

(%) 
11.6 0.2 54.1 11.9 2.3 8.3 

Settlement 

(%) 
0.1 0 0.1 16.3 0 0.1 

Water (%) 0 0.1 0 0 21.7 0 

Soil (%) 39.9 5.1 41.5 66.4 59.8 90.5 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

72.8 7.9 45.9 83.7 78.3 9.5 

  

Class 

Difference 

(%)  
-63.8 64.3 -25.4 -75.2 -72.2 29.4 
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Figure 69. Change map between the years 2005 and 2008 
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The change map between years 2008 and 2011 can be seen from Figure 70. From the 

legend, first class indicates that it belongs to the year 2008 and second one belongs to 

year 2011. The important changes are; agriculture to vegetation (light purple), soil to 

agriculture (light green), and agriculture to soil (pink). From Table 28, while forest 

and agriculture decreased, vegetation, settlement, water and soil increased. Between 

years of 2008 and 2011, mining operations on sector B began and in 2011 a landslide 

occurred on that sector, therefore soil increase can be related to those activities.  

There are uncontrolled forestation where vegetated lands are observed as forested 

areas. Also, existing agricultural lands left uncultivated and detected as vegetated 

lands. 

 

Table 28. Change statistics between years 2008 and 2011 

        2008       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2011 

Vegetation 

(%) 
57.4 15.6 3.8 1.4 2.1 2.6 

Forest (%) 5.5 68.6 0.1 0.1 7.7 0.6 

Agriculture 

(%) 
5.8 0.8 58 6 0.2 8.9 

Settlement 

(%) 
0.9 0.1 0.6 62.9 0.1 0.7 

Water (%) 0.2 0.5 0 0 82.4 0.2 

Soil (%) 29.1 14.2 36.7 29.4 7.5 86.8 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

42.6 31.4 42.1 37.1 17.6 13.2 

  
Class 

Difference  
27.6 -22.7 -14.1 169.8 348.9 3.8 
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Figure 70. Change map between the years 2008 and 2011 
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The change map between years 2011 and 2014 can be seen from Figure 71. From the 

legend, first class indicates that it belongs to the year 2011 and second one belongs to 

year 2014. The detected changes are; soil to vegetation (light blue), soil to agriculture 

(light green), and soil to water (light lilac). From Table 29, while vegetation, 

settlement and soil decreased, forest, agriculture and water increased. Between years 

of 2011 and 2014, there are no significant changes for mining activities. There are 

uncontrolled forestation where vegetated lands are observed as forested areas. Also, 

existing vegetated lands are cultivated and detected as agricultural lands. 

 

Table 29. Change statistics between years 2011 and 2014 

        2011       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2014 

Vegetation 

(%) 
44.8 8.1 2.2 10.2 6.2 3.4 

Forest (%) 20.1 77 0.4 3.3 30.3 3.3 

Agriculture 

(%) 
13.6 0.6 83.3 19.5 1.2 18.1 

Settlement 

(%) 
0.1 0 0 14.6 0.1 0.2 

Water (%) 0.4 0.7 0 0.7 12.4 0.3 

Soil (%) 21 13.6 13.7 51.3 49.8 74.4 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

55.2 23 16.7 85.4 87.6 25.6 

  

Class 

Difference 

(%)  
-6.4 36.7 53.9 -65.9 27.7 -17.3 
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Figure 71. Change map between the years 2011 and 2014 
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Post-classification change detection with CDTL method 

The change map between the years 1984 and 1987 can be seen from Figure 72. The 

first class indicates that it belongs to the year 1984 and second one belongs to year 

1987. The observable changes are; soil to agriculture (orange), agriculture to 

vegetation (cyan), agriculture to soil (purple), and vegetation to agriculture (light 

orange). As seen from the Table 30, while forest, settlement and soil classes 

decreased, vegetation, agriculture and water classes increased. Increase in agriculture 

is related to the increase in vegetation as agricultural lands changes to vegetated 

lands in resultant change detection map. 

 

Table 30. Change statistics between years 1984 and 1987 

        1984       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

1987 

Vegetation 

(%) 
50.7 9.7 10.6 3.3 9.6 2.2 

Forest (%) 2 68.9 0.7 0 2.6 0.6 

Agriculture 

(%) 
34.7 12.2 62.2 64.2 13.1 19.9 

Settlement 

(%) 
0.2 0 0.6 19.1 0.7 0.3 

Water (%) 0.3 0.2 0 0.5 51.6 0.5 

Soil (%) 12 9 25.9 12.9 22.3 76.6 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

49.3 31.1 37.9 80.9 48.4 23.5 

  
Class 

Difference  
35.9 -18.6 28.9 -53.5 59.6 -11.8 
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Figure 72. Change map between the years 1984 and 1987 
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The change map between the years of 1987 and 1990 can be seen from Figure 73. 

The first class indicates that it belongs to the year of 1987 and the second one 

belongs to year of 1990. The significant changes are; agriculture to soil (purple), 

agriculture to vegetation (cyan), vegetation to agriculture (light orange) and 

vegetation to soil (dark purple). As seen from Table 31, while agriculture and water 

classes decreased, vegetation, forest, settlement and soil classes increased. Increase 

in vegetated lands is related to the decrease in agriculture class as both of the classes 

change into others in the resultant change detection map. 

 

Table 31. Change statistics between years 1987 and 1990 

        1987       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

1990 

Vegetation 

(%) 
46.8 5.2 11.2 4.1 13.5 2.4 

Forest (%) 4.7 78.7 2.7 0.3 3.3 1.8 

Agriculture 

(%) 
29 3.3 49.5 27.3 4.5 12.3 

Settlement 

(%) 
1 0.1 1.5 37.3 3.2 0.6 

Water (%) 0.5 0.3 0.2 0.7 16.8 0.1 

Soil (%) 18 12.4 34.9 30.3 58.7 82.8 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

53.2 21.3 50.6 62.8 83.3 17.2 

  
Class 

Difference  
18.3 34.1 -20.6 90.2 -45.8 5.9 
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Figure 73. Change map between the years 1987 and 1990 
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The change map between the years of 1990 and 2000 can be seen from Figure 74. 

The first class indicates that it belongs to the year of 1990 and the second one 

belongs to year of 2000. The important changes are; agriculture to soil (purple), 

agriculture to vegetation (cyan), soil to agriculture (orange),  and forest to soil (dark 

blue). From Table 32, forest, agriculture and soil classes decreased, and vegetation, 

water and settlement classes increased. Between years of 1990 and 2000, power plant 

constructions began; therefore the settlement increase can be related to these 

activities. Vegetated lands increase because, while agricultural lands are left 

uncultivated, they are detected as vegetated lands. 

 

Table 32. Change statistics between years 1990 and 2000 

        1990       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2000 

Vegetation 

(%) 
62.1 8.6 13.6 9.8 23.2 3.4 

Forest (%) 3.3 63.9 0.7 0.2 5.4 1 

Agriculture 

(%) 
13.6 5.2 57.2 18.7 3.1 12.3 

Settlement 

(%) 
2.3 0.3 2.3 38.9 3.4 0.8 

Water (%) 1.7 1.1 0.3 0.5 32.8 0.5 

Soil (%) 16.9 20.8 25.9 31.8 32.1 81.8 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

37.9 36.1 42.9 61.2 67.2 18.2 

  
Class 

Difference  
32.8 -16.2 -6.1 51.9 138.2 -2.6 
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Figure 74. Change map between the years 1990 and 2000 
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The change map between years 2000 and 2003 can be seen from Figure 75. The first 

class indicates that it belongs to the year 2000 and second one belongs to year 2003. 

The important changes are; soil to settlement (light green), agriculture to soil 

(purple), agriculture to vegetation (cyan), vegetation to agriculture (light orange), and 

vegetation to soil (dark purple). From Table 33, while vegetation and water 

decreased, forest, agriculture, settlement classes increased, and changes on soil did 

not effect its increase and/or decrease. Existing vegetated lands are cultivated and 

detected as agricultural lands. Therefore, while vegetation is decreased, agricultural 

lands are increased. 

 

Table 33. Change statistics between years 2000 and 2003 

         2000       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2003 

Vegetation 

(%) 
48.3 5.5 6.6 10.9 14.7 2.3 

Forest (%) 3.7 79.5 0.5 0.1 8.7 0.9 

Agriculture 

(%) 
29 3.7 66.6 22.2 14.5 8.6 

Settlement 

(%) 
2.3 1.5 1.1 40.9 1.3 2 

Water (%) 0.3 1.6 0.1 0.1 35.1 0.2 

Soil (%) 15.6 8.2 24.3 24.8 25.5 85.7 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

51.7 20.5 33.4 59.2 64.9 14.3 

  
Class 

Difference  
-21.5 5.1 5.1 47.5 -24.8 0 
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Figure 75. Change map between the years 2000 and 2003 
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The change map between years 2003 and 2005 can be seen from Figure 76. The first 

class indicates that it belongs to the year 2003 and second one belongs to year 2005. 

The observed changes are; agriculture to soil (purple), agriculture to vegetation 

(cyan), and forest to vegetation (light blue). From Table 34, while only agriculture 

decreased, all the other classes are increased. Between years of 2003 and 2005, there 

are no significant changes for mining activities. Existing agricultural lands left 

uncultivated and detected as vegetated lands. 

 

Table 34. Change statistics between years 2003 and 2005 

        2003       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2005 

Vegetation 

(%) 
73.2 6.9 10 13 7.3 1.7 

Forest (%) 5.1 88 1.4 8.4 24 0.8 

Agriculture 

(%) 
10.7 0.6 62.9 8.7 2.1 5.9 

Settlement 

(%) 
2.2 0.9 1.3 45.5 1.1 2.1 

Water (%) 0.5 0.5 0.2 0.2 54.6 0.2 

Soil (%) 8.2 3.1 24.1 24.2 10.9 89.3 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

26.8 12 37.1 54.5 45.4 10.7 

  
Class 

Difference  
19.9 21.3 -17.8 17.7 6 1.9 
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Figure 76. Change map between the years 2003 and 2005 
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The change map between years 2005 and 2008 can be seen from Figure 77. The first 

class indicates that it belongs to the year 2005 and second one belongs to year 2008. 

The detected changes are; agriculture to soil (purple), vegetation to agriculture (light 

orange), vegetation to soil (dark purple), and soil to agriculture (orange). From Table 

35, while vegetation, forest, settlement, water and soil decreased, only agriculture 

increased. Between years of 2005 and 2008, no significant changes for mining 

activities. Existing vegetated lands are cultivated and detected as agricultural lands. 

Therefore, while vegetation is decreased, agricultural lands are increased. 

 

Table 35. Change statistics between years 2005 and 2008 

        2005       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2008 

Vegetation 

(%) 
48.1 8.4 4.1 7.8 4.8 0.7 

Forest (%) 2.2 75.2 0.1 3.7 5.5 0.4 

Agriculture 

(%) 
31.1 9.1 63.1 24.7 25.9 15.8 

Settlement 

(%) 
4.5 0.4 2.1 31.8 0.3 1.3 

Water (%) 0.2 1.5 0 0 41.3 0.1 

Soil (%) 12.4 5.4 30.3 31.9 22.1 81.7 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

51.9 24.8 36.9 68.2 58.7 18.3 

  
Class 

Difference  
-33.3 -13.1 33.6 -8.4 -28.2 -3.7 
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Figure 77. Change map between the years 2005 and 2008 
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The change map between years 2008 and 2011 can be seen from Figure 78. The first 

class indicates that it belongs to the year 2008 and second one belongs to year 2011. 

The detected changes are; agriculture to soil (purple), forest to vegetation (blue), soil 

to agriculture (orange), and agriculture to vegetation (cyan). From Table 36, while 

settlement and agriculture decreased, vegetation, forest, water and soil increased. 

Between years of 2008 and 2011, mining operations on sector B began and in 2011 a 

landslide occurred on that sector, therefore soil increase can be related to those 

activities. Also, existing agricultural lands left uncultivated and detected as vegetated 

lands. 

 

Table 36. Change statistics between years 2008 and 2011 

        2008       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2011 

Vegetation 

(%) 
64.8 19.3 9.1 21.2 2.3 2 

Forest (%) 6.1 74.7 1.9 0.4 22.4 0.4 

Agriculture 

(%) 
12.9 0.7 55.2 18.6 2 10.8 

Settlement 

(%) 
1.1 0 0.8 18.7 0.1 0.3 

Water (%) 0.4 0.9 0.7 0.2 64.5 0.4 

Soil (%) 13.8 4.2 31.3 40.7 8.5 85.9 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

35.2 25.3 44.8 81.3 35.5 14.1 

  
Class 

Difference  
37.1 1 -16.2 -62.7 104.5 4.6 
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Figure 78. Change map between the years 2008 and 2011 
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The change map between years 2011 and 2014 can be seen from Figure 79. The first 

class indicates that it belongs to the year 2011 and second one belongs to year 2014. 

The detected changes are; agriculture to soil (purple), vegetation to forest (dark 

green), soil to water (dark blue), and soil to agriculture (orange). From Table 37, 

while vegetation and soil decreased, forest, agriculture, settlement and water 

increased. Between years of 2011 and 2014, there are no significant changes for 

mining activities. There are uncontrolled forestation where vegetated lands are 

observed as forested areas. Also, existing vegetated lands are cultivated and detected 

as agricultural lands. 

 

Table 37. Change statistics between years 2011 and 2014 

        2011       

 
  

Vegetation 

(%) 

Forest 

(%) 

Agriculture 

(%) 

Settlement 

(%) 

Water 

(%) 

Soil 

(%) 

2014 

Vegetation 

(%) 
35.9 7.2 4.3 9.3 5.8 1.9 

Forest (%) 15 72.3 0.5 0.9 15 1.2 

Agriculture 

(%) 
14.8 0.7 68 15.6 2.9 11.3 

Settlement 

(%) 
3.2 0.3 1.9 45.5 0.9 0.9 

Water (%) 6.9 6.5 1.2 5.2 29.1 1.1 

Soil (%) 24 13 23.9 23.2 46.3 83.3 

 
Total (%) 100 100 100 100 100 100 

 

Class 

Changes 

(%) 

64.1 27.7 32 54.5 70.9 16.7 

  
Class 

Difference  
-36.9 21.4 5.8 79.3 194 -1.7 
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Figure 79. Change map between the years 2011 and 2014 
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4.6 Results and Discussions 

 

In this study, LULC change detection of Afşin-Elbistan Coal Basin is studied with 

two classification methods. The methods, SVM and CDTL, are used for comparing 

their performance. The results of these analyses are listed below: 

1. Using DEMs, band combinations of satellite images and the collected data in 

the field studies, the determined LULC classes are vegetation, forest, 

agriculture, settlement, soil, water and mine. Mine class is masked out from 

the images due to its mixing with other classes. 

2. When the images are examined visually, six bands, which are blue, green, 

red, near infrared (NIR), short wave infrared 1 (SWIR1) and short wave 

infrared 2 (SWIR2) are found to contain the most available information for 

the classes, and are utilized for the analyses. 

3. LULC maps are obtained with respect to the selected classes by using the two 

classification techniques.  The overall accuracies are compared to each other. 

As it can be seen from Figure 80, traditional SVM classification technique 

has higher overall accuracies than CDTL classification method for each year.  

However, the differences are not considerably high. The highest difference is 

obtained with 9.8% for the 2008 image. The difference is maninly because of 

the misclassifications of settlement and forest classes. For traditional SVM 

classification, true pixel numbers for forest and settlement are 132 and 9 

respectively, while for the CDTL classification the numbers are 77 and 15, 

respectively. Also water has higher producer’s accuracy for CDTL than 

traditional SVM classification for the 2008 image.  When the other years are 

compared, numbers usually changes between the classification techniques. 

The reason for the higher accuracy in water class for 2008 image is the 

training set which includes detailed water class labeling for CDTL 

classification. 
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Figure 80. Overall Accuracy comparison for SVM and CDTL classification methods 

 

4. In addition to comparison of the overall accuracies, producer’s accuracies 

(PA) of the classifications for each class are compared.  The results are given 

in Appendix C. Specific class performances of the classification methods 

based on producer’s accuracies (PA) are listed in Table 38. The results show 

that traditional SVM classification method is more effective for forest, 

vegetation, agriculture and settlement classes, while CDTL method is 

effective for soil and water classes for large-area classification. 

5. LULC change detection with SVM classification between images of 1984 

and 2014 for the Afşin-Elbistan Coal Basin is performed for each year and 

the resultant LULC change image between years 1984 and 2014 can be seen 

from Figure 81. The map reveals that the vegetation increases by 3.2%, forest 

increases by 55.9%, agriculture decreases by 5.9%, settlement decreases by 

96.2%, water increases by 289.9% and soil increases by 8.2% between the 

years 1984 and 2014.  
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Table 38. Producer's accuracy (PA) comparison of classifications for each year 

    PA   PA   PA 

Year Class SVM CDTL Year SVM CDTL Year SVM CDTL 

1
9
8
4
 

Forest 77.4 63.5 

2
0
0
0
 

60.0 50.8 

2
0
0
8
 

91.7 53.5 

Vegetation 86.8 76.1 68.0 75.0 80.5 75.0 

Agriculture 82.9 63.3 90.6 66.3 72.0 69.5 

Settlement 82.1 30.8 53.1 59.4 27.3 45.5 

Soil 91.3 95.1 93.0 94.6 96.7 85.8 

Water 69.2 84.6 79.2 83.3 70.6 82.4 

1
9
8
7
 

Forest 69.3 58.6 

2
0
0
3
 

89.2 65.8 

2
0
1
1
 

58.5 44.3 

Vegetation 76.5 78.8 86.0 81.8 63.4 72.6 

Agriculture 81.3 71.9 70.1 75.0 64.4 66.0 

Settlement 84.8 66.7 53.1 69.7 60.0 52.0 

Soil 93.9 91.2 95.7 89.1 93.7 86.5 

Water 82.4 82.4 79.2 65.4 78.6 78.6 

1
9
9
0
 

Forest 72.9 60.2 

2
0
0
5
 

57.7 58.5 

2
0
1
4
 

86.4 62.7 

Vegetation 82.0 89.8 82.2 69.8 85.0 78.4 

Agriculture 87.8 57.8 77.5 61.7 87.6 73.2 

Settlement 78.6 75.0 60.7 50.0 27.9 62.8 

Soil 84.2 93.8 85.0 94.2 93.8 94.9 

Water 92.3 76.9 88.9 94.4 72.2 77.8 

 

6. LULC change detection with CDTL method between years of 1984 and 2014 

for Afşin-Elbistan Coal Basin is performed for each year and the resultant 

LULC change image between years of 1984 and 2014 can be seen from 

Figure 82. The map reveals that the vegetation increases by 15.9%, forest 

increases by 24.3%, agricultural lands decrease by 1.6%, settlement increases 

by 42.8%, water increases by 608.1% and soil decreases by 8.1% between the 

years of 1984 and 2014.  
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7. When change detection statistics of years of 1984 and 2014 for both methods 

are compared, big differences between results are observed as seen from 

Table 39. When investigating the classification maps of both classes, these 

differences are not visible as seen in the statistics. Vegetation, forest and 

water increase, and agriculture decrease for both methods. Soil increases in 

the resultant post-classification change-detection map with SVM 

classification, meanwhile decreasing in the resultant post-classification 

change-detection map with CDTL method. Likewise, settlement decreases for 

post-classification change-detection map with SVM classification, while 

increasing for post-classification change-detection map with CDTL method.  

The difference between the percentages are significant. The maximum 

difference is observed for the water class as 318.2%, and the minimum 

difference is obtained for the  agriculture class as 4.3%. 

8. During the the investigation of classification performances by using the 

change detection maps, the following change values are taken into count due 

to the least amount of accuracy values obtained in the classifications: Change 

in water by 608.1% and soil by 8.1% are significant between years of 1984 

and 2014 because of classification performance of CDTL technique, and 

change in vegetation by 3.2%, forest by 55.9%, agriculture by 5.9% and 

settlement by 96.2% are significant between years of 1984 and 2014 because 

of classification performance of traditional SVM method. 

Table 39. Change statistics comparison of both methods 

1984 to 2014 SVM (%) CDTL(%) 

Vegetation (%) 3.2 15.9 

Forest (%) 55.9 24.3 

Agriculture (%) -5.9 -1.6 

Settlement (%) -96.2 42.8 

Water (%) 289.9 608.1 

Soil (%) 8.2 -8.1 
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Figure 81. LULC change-detection with SVM between years 1984 and 2014 
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Figure 82. LULC change-detection with CDTL between years 1984 and 2014  
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

Surface coal mining is one of the most disturbing activities for the environment. 

These activities threaten the economical, social and biological value of the 

surrounding environment. While the awareness about impacts of surface mining 

increased, monitoring became more and more important. Remote Sensing (RS) and 

Geographic Information Systems (GIS) play a central role in monitoring the effected 

areas caused by the surface mining activities. Capability of management of large 

remotely sensed data, wide range analysis options and visualizing the end-product 

make RS and GIS utilization a must for the LULC change detection, impact 

assessment, reclamation and rehabilitation studies. 

Utilization of post-classification change detection with CDTL algorithm in this study 

is a first for monitoring the surface coal mine impacts on environment of Afşin-

Elbistan Coal Basin. Updating LULC cover maps for large-areas such as the study 

area is a necessity to minimize the effects of the surface mine activities.  

LULC maps for nine periodical years (1984, 1987, 1990, 2000, 2003, 2008, 2011, 

2014) and the corresponding change maps are extracted. The change maps 

demonstrate the severity of settlement and agriculture decrease on the basin. The 

study area is a relatively large area and the classes investigated are primary classes, 

which are vegetation, forest, agriculture, soil, water, and settlement. This study 
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intends to perform broad change analysis of the basin, for the further studies, only 

the license area can be analyzed with more than six LULC classes. A proper 

reclamation plan can be proposed with the new results, and this plan can be 

visualized and shared with the decision makers, stakeholders, and local people. Also, 

this case study can be transformed to investigate changes on vegetated lands, 

waterways, and agricultural activities in Afşin-Elbistan Coal Basin.  

LULC maps for nine periodical years and the corresponding LULC change detection 

maps of Afşin-Elbistan Coal Basin are successfully analyzed and quantified based on 

remotely sensed images of Landsat images. When the results from change detection 

between thematic maps of years 1984 and 2014, and change detection maps for other 

pairs of years are examined, agriculture and vegetation classes usually transform into 

another.  The main reason for this change is decrease in agricultural areas in the 

basin. The decrease in agricultural lands can be attributed to various interrelated 

dynamic factors in the basin.  However, two important parameters that may lead to 

decrease in agricultural activities are notable.  The first one is the ash from the power 

plant A, which has old filters on funnels.  The ashes are transported by winds and 

cover the land and the crop, which degrade the crop yield.  The second important 

parameter is land expropriation and resettlement due to mining activities, where the 

majority of the resettled population has been started to live in urban areas leaving the 

agricultural activities. As mentioned before, the fouth biggest plain in Turkey is in 

Elbistan, therefore the decrease in agricultural lands is a negative impact on the 

economic status of the area, where mining activities have some contribution to it. 

This fact is validated also by the field surveys, in which it was observed that most of 

the residents inside the license area left their agricultural lands and moved to work in 

other towns. Increase in forest class is observed outside of the license area. 

Settlement class increases between the images of years 1984 and 2014, which is 

mainly due to classification errors related to the settlement class in 1984 thematic 

map. In order to overcome this error, post-classification change detection is utilized 

for 1987 and 2014 thematic maps, and the same difference is observed again. 

Therefore, post-classification change detection maps for 1984 and 2014 thematic 
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maps are taken into account.  However, results are not interpreted due to large 

classification errors.   The high increase in water bodies is notable, which is mainly 

due to formation of dam reservoirs for hydroelectric power plant activities in the 

Basin. In addition, hybrid post-classification change detection with two different 

classification algorithms can be utilized  in the future with best performances of 

classifiers for each individual class. 

While this study is the first one on detecting the LULC changes in Afşin-Elbistan 

Coal Basin, it will be a base for further studies on rehabilitation planning for the site, 

and several other studies.  There are other sectors in the basin that are planned for 

extraction with ongoing agricultural activities, where the methodology used in the 

thesis can be adopted. For the sectors with abandoned mining activities, erosion 

factor should also be considered in reclamation planning in order to stabilize the 

slopes, and to maintain ecology and biology of the area in equilibrium. Moreover, 

people living inside the license area whom are continuing their activities near the 

mine pose great threat and they should be evacuated properly to designated 

settlement areas. 

Image processing results indicate that Landsat satellite imagery could not supply 

sufficient detail due to its resolution (30x30 m) for monitoring only the license area. 

For further researches, remotely sensed data having higher spatial and spectral 

properties should be utilized in order to obtain more detailed classification maps. 

In conclusion, traditional SVM classification and CDTL classification techniques are 

both effective classification techniques, SVM classification is more reliable than 

CDTL method because of higher accuracies, and CDTL is more preferable for multi-

date classification analyses because of its time efficiency. In order to increase 

accuracy of CDTL method, samples for training set should be selected carefully. 

Post-classification LULC change detection maps for both classification methods are 

compared and excessive differences between the difference maps is observed. These 

differences mostly occur due to the different sample sets, therefore selection of 

training sets for each individual classification method is crucial for the analyses. 
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Finally, utilization of remotely sensed data is a must for the determining LULC 

change detection of surface mining activities instead of costly methods. 
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APPENDIX A 

 

Table A1. Specifications of Landsat imagery used (USGS, 2015) 

Landsat 5 

TM 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

 Band 1 0.45-0.52 30 

 Band 2 0.52-0.60 30 

 Band 3 0.63-0.69 30 

 Band 4 0.76-0.90 30 

 Band 5 1.55-1.75 30 

 Band 6 10.40-12.50 120* (30) 

  Band 7 2.08-2.35 30 

Landsat 7  

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 0.45-0.52 30 

Band 2 0.52-0.60 30 

ETM+ Band 3 0.63-0.69 30 

 Band 4 0.77-0.90 30 

 Band 5 1.55-1.75 30 

 Band 6 10.40-12.50 60 * (30) 

 Band 7 2.09-2.35 30 

  Band 8 .52-.90 15 

Landsat 8 

OLI 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

 Band 2 - Blue 0.45 - 0.51 30 

 Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

 Band 7 - SWIR 2 2.11 - 2.29 30 

 Band 8 - Panchromatic 0.50 - 0.68 15 

 Band 9 - Cirrus 1.36 - 1.38 30 

 Band 10 - Thermal Infrared 1 10.60 - 11.19 100 * (30) 

  Band 11 - Thermal Infrared 2 11.50 - 12.51 100 * (30) 
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Figure A1. Landsat imageries used in analyses 
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APPENDIX B 

 

Figure B1. Difference maps from the year 1984 to 2014 periodically 



154 
 



155 
 



156 
 

 

  



157 
 

APPENDIX C 

 

Figure C1. Producer’s Accuracy comparison between SVM and CDTL 

classifications for each years 
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