Mn(OAc)_3 PROMOTED ADDITION OF AN ACTIVE METHYLENE COMPOUND TO ALKENES: MECHANISTIC STUDIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEŁİN CEYHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CHEMISTRY

SEPTEMBER 2015
Mn(OAc)$_3$ PROMOTED ADDITION OF AN ACTIVE METHYLENE COMPOUND TO ALKENES: MECHANISTIC STUDIES

submitted by SELİN CEYHAN in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Cihangir Tanyeli
Head of Department, Chemistry

Prof. Dr. Metin Balçı
Supervisor, Chemistry Dept., METU

Exaining Committe Members:

Prof. Dr. Aliye Altundaş
Chemistry Dept., Gazi University

Prof. Dr. Metin Balçı
Chemistry Dept., METU

Prof. Dr. Cihangir Tanyeli
Chemistry Dept., METU

Assoc. Prof. Dr. Akın Akdağ
Chemistry Dept., METU

Assist. Prof. Dr. Yasin Çetinkaya
Food Technology Dept., Atatürk University

Date: 03.09.2015
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Selin CEYHAN

Signature :
ABSTRACT

Mn(OAc)$_3$ PROMOTED ADDITION OF AN ACTIVE METHYLENE COMPOUND TO ALKENES: MECHANISTIC STUDIES

Ceyhan, Selin

M.S., Department of Chemistry

Supervisor: Prof. Dr. Metin Balcı

September 2015, 142 pages

Radical cyclization of alkenes is one of the most important methods for the synthesis of cyclic compounds. The one electron oxidant Mn(OAc)$_3$ has been used for many years for the oxidative addition of acetic acid to alkenes to give lactones. In this thesis, various alkenes substituted at 1,2-positions by phenyl and thiophene rings were reacted with active methylene compounds in the presence of Mn(OAc)$_3$$

\cdot2H$_2$O. The regioselectivity of the addition were searched. The mechanism for the addition was studied in connection with the directing effect of the sulfur atom and substituents attached to the benzene ring. The regioselectivity was also discussed in terms of electron density distribution on the double bond.

Keywords: Mn(OAc)$_3$, directing effect of sulfur atom, substituents effect, radical cyclization, NBO calculations.
ÖZ

AKTİF METİLEN GRUBU İÇEREN BİLEŞİKLERİN Mn(OAc)₃ EŞLİĞİNDE ÇİFT BAĞLARA KATILMASI: MEKANİSTİK İNCELEME

Ceyhan, Selin

Yüksek Lisans, Kimya Bölümü

Tez Yöneticisi: Prof. Dr. Metin Balçı

Eylül 2015, 142 sayfa

Alkenlerin radikalik siklizasyon reaksiyonları, siklik bileşiklerin sentezine uygulanan en önemli yöntemlerden birisidir. Tek elektron oksidantı Mn(OAc)₃ yıllardır asetik asitin alkenlere katılarak lakton oluşumuna başarılı bir şekilde uygulanmaktadır. Bu çalışmada 1,2- konumunda fenil ve tiyofen halkaları ile substitüe çift bağlar Mn(OAc)₃∙2H₂O eşliğinde aktif metilen grubu içeren bileşiklerle reaksiyona sokularak katılmının yer seçiciliğini araştırıldı. Katılma reaksiyonunun mekanizmasına kükürt atomunun yönlendirici etkisi ile benzen halkasına bağlı olan sübstitüentlerin etkisi incelendi. Ayrıca katılmında gözlenen yer seçiciliği çift bağ üzerindeki elektron yoğunluğuna bağlı olarak da tartışıldı.

Anahtar kelimeler: Mn(OAc)₃, kükürt atomunun yönlendirici etkisi, sübstitüent etkisi, radikalik siklizasyon, NBO hesaplamaları.
To my beloved family…
ACKNOWLEDGEMENTS

I would like to express my special thanks to Prof. Dr. Metin Balcı for his valuable guidance, advices and support through every step of this thesis.

I am also grateful to Assist. Prof. Dr. Yasin Çetinkaya for his help during experimental studies and Assoc. Prof. Dr. Akın Akdağ for the theoretical calculations.

I want to thank to Hakan Akış for his support in every step of my life.

I would like to thank to all Synthor members, Dilşad Susam, Esra Kanberoğlu and Nurdan Sargın for their friendship and motivational support through all my stressful moments.

I would like to thank to TÜBİTAK (Scientific and Technical Research Council of Turkey) TBAG-112T360 project for the financial support.

Finally, for their valuable support in every step of my life, I am grateful to my mother, my father and the rest of my family. Without them, I would not be who I am today.
TABLE OF CONTENTS

ABSTRACT ... v
ÖZ .. vi
ACKNOWLEDGEMENTS .. viii
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xiv
LIST OF FIGURES .. xv
LIST OF SCHEMES .. xx
1. INTRODUCTION .. 1
 1.1 Free Radicals in Organic Chemistry ... 1
 1.1.1 Free Radical Cyclization Reactions .. 1
 1.2 General Knowledge on Manganese(III)Acetate .. 2
 1.3 Oxidative Free Radical Addition Reactions to Alkenes ... 4
 1.3.1 Formation of dihydrofurans .. 5
 1.3.2 Intramolecular Double Annulation Reactions of Mn(OAc)₃ 5
 1.3.3 Formation of Tetralones ... 6
 1.4 Mechanistic Considerations ... 7
 1.5 Aim of the thesis ... 9
2. RESULTS AND DISCUSSION .. 13
 2.1 Reactions of 2-{[(E)-2-phenylethenyl]thiophen & 2-{[(Z)-2-phenylethenyl]-
 thiophen with Mn(OAc)₃ ... 13
 2.1.1 Synthesis of Benzyltriphenylphosphonium bromide ... 13
2.1.2 Synthesis of 2-[(E)-2-phenylethenyl]thiophen & 2-[(Z)-2-phenylethenyl]-thiophen

2.1.3 Cyclization of 2-[(E)-2-phenylethenyl]thiophen & 2-[(Z)-2-phenylethenyl]-thiophen

2.2 Reactions of of 3-[(E)-2-phenylethenyl]thiophene & 3-[(Z)-2-phenylethenyl]-thiophene with Mn(OAc)₃

2.2.1 Synthesis of 3-[(E)-2-phenylethenyl]thiophene & 3-[(Z)-2-phenylethenyl]-thiophene

2.2.2 Cyclization Reactions of 3-[(E)-2-phenylethenyl]thiophene and 3-[(Z)-2-phenyl-ethenyl]thiophene

2.3 Reactions of (E)-2-(2-(thiophen-3-yl)vinylthiophen & (Z)-2-(2-(thiophen-3-yl)vinylthiophen with Mn(OAc)₃

2.3.1 Synthesis of Thiophen-2-ylmethanol

2.3.2 Chlorination of Thiophen-2-ylmethanol

2.3.3 Synthesis of Wittig Salt

2.3.4 Synthesis of (E)-2-(2-(thiophen-3-yl)vinylthiophen & (Z)-2-(2-(thiophen-3-yl)vinyl-thiophen

2.3.5 Cyclization Reactions of (E)-2-(2-(thiophen-3-yl)vinylthiophen and (Z)-2-(2-(thiophen-3-yl)vinyl-thiophen

2.4 Theoretical Considerations

2.5 Reactions of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene with Mn(OAc)₃

2.5.1 Synthesis of 2-methoxybenzaldehyde

2.5.2 Synthesis of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene

2.5.3 Cyclization Reactions of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene
2.6 Reactions of 1-methoxy-4-[(Z)-2-phenylethenyl]benzene and 1-methoxy-4-[(E)-2-phenylethenyl]benzene with Mn(OAc)$_3$...40
 2.6.1 Synthesis of 1-methoxy-4-[(E)-2-phenylethenyl]benzene and 1-methoxy-4-[(Z)-2-phenylethenyl]benzene ..40
 2.6.2 Cyclization Reactions of 1-Methoxy-4-[(E)-2-phenylethenyl]benzene and 1-Methoxy-4-[(Z)-2-phenylethenyl]benzene ..41
 2.7 Reactions of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene with Mn(OAc)$_3$...44
 2.7.1 Synthesis of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene 44
 2.7.2 Cyclization Reactions of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene ...45
 2.8 Reactions of (E)-1-Methoxy-4-(4-nitrostyryl)benzene and (Z)-1-Methoxy-4-(4-nitrostyryl)benzene with Mn(OAc)$_3$...49
 2.8.1 Synthesis of (4-Methoxyphenyl)methanol ..49
 2.8.2 Chlorination of (4-Methoxyphenyl)methanol ..50
 2.8.3 Synthesis of Wittig Salt ..50
 2.8.4 Synthesis of (E)-1-methoxy-4-(4-nitrostyryl)benzene and (Z)-1-methoxy-4-(4-nitrostyryl)benzene ...51
 2.8.5 Cyclization Reactions of (E)-1-Methoxy-4-(4-nitrostyryl)benzene and (Z)-1-Methoxy-4-(4-nitrostyryl)benzene ...51
3. EXPERIMENTAL ..57
 3.1 General..57
 3.2 Benzyltriphenylphosphonium bromide (52) ..57
 3.3 2-[(E)-2-phenylethenyl]thiophen (54) and 2-[(Z)-2-phenylethenyl]-thiophen (55) ...58
 3.4 1-(2-Methyl-4-phenyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-yl)ethanone (57) ...59
3.5 3-[(E)-2-phenylethenyl]thiophene (63) and 3-[(Z)-2-phenylethenyl]thiophene (64) .. 60
3.6 1-(2-Methyl-4-phenyl-5-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (65) and 1-(2-Methyl-5-phenyl-4-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (66) .. 61
3.7 Thiophen-2-ylmethanol (71) .. 62
3.8 2-(Chloromethyl)thiophene (72) .. 62
3.9 Triphenyl(thiophen-2-yl methyl)phosphonium chloride (73) 63
3.10 (E)-2-(2-(thiophen-3-yl)vinyllthiophen (74) and (Z)-2-(2-(thiophen-3-yl)vinyll thiophen (75) ... 63
3.11 1-(2-Methyl-5-(thiophen-2-yl)-4-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (76) .. 65
3.12 2-Methoxybenzaldehyde (87) ... 66
3.13 (E)-1-methoxy-2-styrylbenzene (88) and (Z)-1-methoxy-2-styryl benzene (89) ... 66
3.14 1-(5-(2-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (90) and 1-(4-(2-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (91) .. 67
3.15 1-Methoxy-4-[(E)-2-phenylethenyl]benzene (96) and 1-Methoxy-4-[(Z)-2-phenylethenyl]benzene (97) ... 68
3.16 1-(5-(4-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (98) and 1-(4-(4-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (99) ... 70
3.17 (E)-1-Nitro-4-styrylbenzene (101) and (Z)-1-Nitro-4-styrylbenzene (102) ... 71
3.18 1-(2-Methyl-5-(4-nitrophenyl)-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (103) and 1-(2-Methyl-4-(4-nitrophenyl)-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (104) ... 72
3.19 (4-Methoxyphenyl)methanol (105) .. 73
3.20 1-(Chloromethyl)-4-methoxybenzene (106) ... 74
3.21 (4-Methoxybenzyl)triphenylphosphonium chloride (107) 74
3.22 (E)-1-Methoxy-4-(4-nitrostyryl)benzene (108) and (Z)-1-Methoxy-4-(4-nitrostyryl)benzene (109) ... 75
3.23 1-(5-(4-Methoxyphenyl)-2-methyl-4-(4-nitrophenyl)-4,5-dihydrofuran-3-yl)ethanone (110) .. 76

4. CONCLUSION .. 77
REFERENCES .. 81
APPENDICES ... 85
SPECTRAL DATA .. 85
THEORETICAL CALCULATIONS ... 130
LIST OF TABLES

TABLES

Table 1. Starting alkenes and cyclization product(s).................................77
LIST OF FIGURES

FIGURES

Figure 1 1H-NMR spectrum of compound 57 ...15
Figure 2 HSQC spectrum of compound 57 ...16
Figure 3 HMBC spectrum of compound 57 ...16
Figure 4 1H-NMR spectrum of compound 65 ...20
Figure 5 HSQC spectrum of compound 65 ...20
Figure 6 HMBC spectrum of compound 65 ...21
Figure 8 HSQC spectrum of compound 76 ...26
Figure 7 1H-NMR spectrum of compound 76 ...26
Figure 9 HMBC spectrum of compound 76 ...27
Figure 10 The optimized geometry for compound 5429
Figure 11 The optimized geometry for compound 5529
Figure 12 The optimized geometry of compound 6331
Figure 13 The optimized geometry for compound 6431
Figure 14 The optimized geometry for compound 7433
Figure 15 The optimized geometry for compound 7533
Figure 16 1H-NMR spectrum of compound 90 ...37
Figure 17 HMBC spectrum of compound 90 ...38
Figure 18 The optimized geometry for compound 8839
Figure 19 The optimized geometry for compound 8939
Figure 20 1H-NMR spectrum of compound 98 ...42
Figure 21 HMBC spectrum of compound 98 ...43
Figure 22 The optimized geometry for compound 9643
Figure 23 The optimized geometry for compound 9744
Figure 24 1H-NMR spectrum of compound 103 ..46
Figure A 23 13C NMR spectrum of compound 71 ... 96
Figure A 24 1H NMR spectrum of compound 72 ... 96
Figure A 25 13C NMR spectrum of compound 72 ... 97
Figure A 26 1H NMR spectrum of compound 73 ... 97
Figure A 27 13C NMR spectrum of compound 73 ... 98
Figure A 28 1H NMR spectrum of compound 74 ... 98
Figure A 29 13C NMR spectrum of compound 74 ... 99
Figure A 30 IR spectrum of compound 74 .. 99
Figure A 31 1H NMR spectrum of compound 75 .. 100
Figure A 32 13C NMR spectrum of compound 75 .. 100
Figure A 33 IR spectrum of compound 75 .. 101
Figure A 34 1H NMR spectrum of compound 76 .. 101
Figure A 35 13C NMR spectrum of compound 76 .. 102
Figure A 36 HSQC spectrum of compound 76 ... 102
Figure A 37 HMBC spectrum of compound 76 ... 103
Figure A 38 COSY spectrum of compound 76 ... 103
Figure A 39 IR spectrum of compound 76 .. 104
Figure A 40 1H NMR spectrum of compound 87 .. 104
Figure A 41 13C NMR spectrum of compound 87 .. 105
Figure A 42 1H NMR spectrum of compound 88 .. 105
Figure A 43 13C NMR spectrum of compound 88 .. 106
Figure A 44 1H NMR spectrum of compound 89 .. 106
Figure A 45 13C NMR spectrum of compound 89 .. 107
Figure A 46 1H NMR spectrum of compound 90 .. 107
Figure A 47 13C NMR spectrum of compound 90 .. 108
Figure A 48 HSQC spectrum of compound 90 ... 108
Figure A 49 HMBC spectrum of compound 90 ... 109
Figure A 50 COSY spectrum of compound 90 ... 109
Figure A 51 IR spectrum of compound 90 .. 110
Figure A 52 1H NMR spectrum of compound 96 .. 110
Figure A 53 13C NMR spectrum of compound 96 .. 111
Figure A 54 1H NMR spectrum of compound 97 .. 111
Figure A 55 13C NMR spectrum of compound 97 ... 112
Figure A 56 1H NMR spectrum of compound 98 ... 112
Figure A 57 13C NMR spectrum of compound 98 ... 113
Figure A 58 HSQC spectrum of compound 98 ... 113
Figure A 59 HMBC spectrum of compound 98 ... 114
Figure A 60 COSY spectrum of compound 98 ... 114
Figure A 61 IR spectrum of compound 98 ... 115
Figure A 62 1H NMR spectrum of compound 101 ... 115
Figure A 63 13C NMR spectrum of compound 101 .. 116
Figure A 64 1H NMR spectrum of compound 104 .. 116
Figure A 65 13C NMR spectrum of compound 104 .. 117
Figure A 66 HSQC spectrum of compound 104 ... 117
Figure A 67 HMBC spectrum of compound 104 .. 118
Figure A 68 COSY spectrum of compound 104 ... 118
Figure A 69 IR spectrum of compound 104 ... 119
Figure A 70 1H NMR spectrum of compound 103 .. 119
Figure A 71 13C NMR spectrum of compound 103 ... 120
Figure A 72 HSQC spectrum of compound 103 .. 120
Figure A 73 HMBC spectrum of compound 103 .. 121
Figure A 74 COSY spectrum of compound 103 ... 121
Figure A 75 IR spectrum of compound 103 ... 122
Figure A 76 1H NMR spectrum of compound 105 .. 122
Figure A 77 13C NMR spectrum of compound 105 ... 123
Figure A 78 1H NMR spectrum of compound 106 ... 123
Figure A 79 13C NMR spectrum of compound 106 .. 124
Figure A 80 1H NMR spectrum of compound 107 ... 124
Figure A 81 13C NMR spectrum of compound 107 .. 125
Figure A 82 1H NMR spectrum of compound 108 ... 125
Figure A 83 13C NMR spectrum of compound 108 .. 126
Figure A 84 1H NMR spectrum of compound 110 ... 126
Figure A 85 13C NMR spectrum of compound 110 .. 127
Figure A 86 HSQC spectrum of compound 110 ... 127
Figure A 87 HMBC spectrum of compound 110 ..128
Figure A 88 COSY spectrum of compound 110 ..128
Figure A 89 IR spectrum of compound 110 ..129
LIST OF SCHEMES

SCHEMES

Scheme 1...2
Scheme 2..2
Scheme 3..3
Scheme 4..4
Scheme 5..4
Scheme 6..5
Scheme 7..6
Scheme 8..6
Scheme 9..7
Scheme 10...8
Scheme 11...9
Scheme 12...10
Scheme 13...11
Scheme 14...13
Scheme 15...14
Scheme 16...15
Scheme 17...17
Scheme 18...18
Scheme 19...19
Scheme 20...22
Scheme 21...23
Scheme 22...23
Scheme 23...24
Scheme 24...24
Scheme 25 .. 25
Scheme 26 .. 27
Scheme 27 .. 28
Scheme 28 .. 30
Scheme 29 .. 30
Scheme 30 .. 32
Scheme 31 .. 32
Scheme 32 .. 34
Scheme 33 .. 34
Scheme 34 .. 36
Scheme 35 .. 36
Scheme 36 .. 37
Scheme 37 .. 40
Scheme 38 .. 41
Scheme 39 .. 41
Scheme 40 .. 45
Scheme 41 .. 46
Scheme 42 .. 49
Scheme 43 .. 50
Scheme 44 .. 50
Scheme 45 .. 51
Scheme 46 .. 52
CHAPTER 1

INTRODUCTION

1.1 Free Radicals in Organic Chemistry

The formation of a C-C bond using free radicals has pioneered a new era in the field of synthetic organic chemistry. With the developments in the last decade, the aspect of uncontrollability of free radical reactions has completely changed. After realizing that, free-radical reactions can be carried out in more precise and controllable way, synthetic organic chemists are more confident now. The works of Julia, Walling and Beckwith pioneered other synthetic organic chemists in the field of free-radical chemistry and these works end up with adding new aspects to the field of free-radical chemistry.

1.1.1 Free Radical Cyclization Reactions

During past 30 years, the usage of free radical reactions for the alkene cyclization has become a valuable method for the synthesis of cyclic compounds. Widely used procedure for the formation of cyclic compounds starts with the reduction of an alkyl halide 1 or other functional group to a radical by using R₃SnH. Initially formed radical 2 undergoes cyclization, then reduction of cyclic radical 3 in the propagation step forms compound 4 (Scheme 1).
This approach is limited due to the formation of unfunctionalized product, compound 4, which is obtained from reductive termination.

Oxidative free-radical cyclizations have considerable synthetic potential, because more functionalized products, compound 5 or intermediate 6, can be prepared by generating the initial radical and terminating the cyclic radical oxidatively (Scheme 2).

1.2 General Knowledge on Manganese(III)Acetate

Transition metal catalysts especially Mn(OAc)$_3$ plays an important role for the synthesis of many biologically active molecules such as; araliopsine (7) and atanine (8).
Mn(OAc)$_3$, one electron oxidant, is one of the most prominent reagents in the field of free radical chemistry. Due to the lower reduction potential of Mn(OAc)$_3$ compared to Pb(OAc)$_4$, Cu(OAc)$_2$, (NH$_4$)$_2$Ce(NO$_3$)$_6$ and Fe(ClO$_4$)$_3$, it shows moderate reactivity and higher selectivity.7

Anhydrous Mn(OAc)$_3$ and hydrated Mn(OAc)$_3$·2H$_2$O forms are commercially available. Electrochemical oxidation of manganese(II) acetate with KMnO$_4$ and chlorine to give Mn(OAc)$_3$·2H$_2$O has been reported by Christensen.8 Then in 1922, Weinland9 proposed [Mn$_3$(OAc)$_6$(H$_2$O)$_2$](OAc)$_3$·4H$_2$O for the structure of Mn(OAc)$_3$·2H$_2$O.7

Oxidations with manganese(III) acetate were divided into two pathways by de Klein10:

- In direct oxidation pathway, radical intermediate is formed in the first step, then transformations such as; dimerization and disproportionation result in the formation of products (Scheme 3).10

\[
\begin{align*}
\text{Mn(III) + substrate} & \quad \rightarrow \quad \text{intermediate radical + Mn(II)} \\
\text{Mn(III) + intermediate R}^- & \quad \rightarrow \quad \text{product + Mn(II)}
\end{align*}
\]

Scheme 3

- In indirect oxidation pathway, a stabilized radical at an enolizable position is formed in the first step. Subsequent addition or substitution of initially formed radical to the aromatic systems or alkenes, results in the formation of a new radical.
After the oxidation of final radical with excess Mn(OAc)$_3$, products are formed (Scheme 4).10

\[
\begin{align*}
\text{O} & \quad \text{C} \quad \text{C} \quad \text{H} + \text{Mn(III)} & \rightarrow & \text{O} \quad \text{C} \quad \text{C} \quad \cdot \quad \text{Mn(II)} + \text{H}^+ \\
\text{O} & \quad \text{C} \quad \text{C} \quad \cdot \quad \text{C} \quad \text{C} & \rightarrow & \text{O} \quad \text{C} \quad \text{C} \quad \text{C} \quad \cdot \quad \text{Products} + \text{Mn(II)}
\end{align*}
\]

Scheme 4

1.3 Oxidative Free Radical Addition Reactions to Alkenes

Formation of lactones from alkenes and acetic acid in the presence of Mn(OAc)$_3$ was reported by Heiba-Dessau11 and Bush-Finkbeiner12 (Scheme 5).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O} \quad \text{OH} \quad \xrightarrow{\text{Mn(OAc)$_3$, AcOH, reflux}} \quad \text{HO} \quad \text{C} \quad \text{O} \quad \cdot \quad \text{CH}_2 \\
9 & \quad \xrightarrow{\text{R}} \quad \text{10} & \quad \xrightarrow{\text{Mn(OAc)$_3$}} \quad \text{11} & \quad \text{12}
\end{align*}
\]

Scheme 5

Formation of radical 10 from acetic acid (9) was the initial step for the formation of lactone 12. Subsequent addition of radical 10 to alkene leads to the formation of radical 11. Lactone 12 was obtained from the oxidation of radical 11 with excess Mn(OAc)$_3$.

Unfortunately, Mn(OAc)$_3$ mediated cyclization reactions have some limitations. Optimal solvent for Mn(OAc)$_3$ reactions is acetic acid; therefore, the cyclization of unsaturated acids is not possible, due to the oxidation of acetic acid.5
1.3.1 Formation of dihydrofurans

Oxidation of β-ketoesters and 1,3-dicarbonyl compounds to radicals with Mn(OAc)$_3$ was reported by Heiba and Dessau13 in 1974 (Scheme 6).

According to the proposed mechanism, the first step is the oxidative formation of radical 14, which is then added to the alkene and resulting in the formation of radical 15. Subsequent oxidation of radical 15 in the presence of excess Mn(OAc)$_3$ followed by cyclization produces dihydrofuran 16.

1.3.2 Intramolecular Double Annulation Reactions of Mn(OAc)$_3$

Formation of cyclopentanone ring with intramolecular annulation reaction in the presence of Mn(OAc)$_3$ was reported by Corey14 and Fristad15 (Scheme 7).
1.3.3 Formation of Tetralones

In 1972 Heiba and Dessau16 reported the formation of tetralones from the reaction of acetophenone and olefins in the presence of Mn(OAc)\textsubscript{3} (Scheme 8).

For the construction of tetralones, the first step is the formation of radical 22 oxidatively from acetophenone in the presence of Mn(OAc)\textsubscript{3}. As a result of the addition of radical 22 to olefin, radical 23 is formed. Then radical 23 is converted to radical 24 via internal cyclization. Final step is the formation of tetralone derivative 25 in the presence of excess Mn(OAc)\textsubscript{3}.
1.4 Mechanistic Considerations

In 1968 Heiba-Dessau11 and Bush- Finkbeiner12 reported the formation of lactones from alkenes and acetic acid in the presence of Mn(OAc)\textsubscript{3}. There are two possible proposed mechanisms for the formation of lactones (Scheme 9).17 The first step is the formation of a radical 26, which is added to the alkene to produce radical 27. Then, radical 27 may follow route A or route B. For the route A; radical 27 undergoes oxidation and forms carbocation 29 and then as a result of cyclization, carbocation 29 is converted to cyclic carbocation 30. Finally, proton elimination gives compound 31. For the route B; radical 27 undergoes cyclization and forms cyclic radical 28 and then radical 28 is oxidized to cyclic carbocation 30. Subsequent proton elimination produces compound 31. According to Heiba and Dessau16 Mn(OAc)\textsubscript{3} reactions follow route A. According to Fristad and Peterson18 Mn(OAc)\textsubscript{3} reactions follow route B.

![Scheme 9](image-url)
In order to finalize the confliction in the literature and enlighten the reaction mechanism, intermediates 32 and 33 are incorporated to the benzobarrelene system by Balci et al.19

![Chemical Structures](image)

It is well known that the radicals, which are formed at bicyclic systems, for example, benzobarrelene, do not have a tendency for rearrangement.20 Therefore, it is expected that radical 32 cannot undergo rearrangement. On the other hand carbocations, which are formed at bicyclic systems can undergo rearrangement.21 Therefore, carbocation 33 can undergo rearrangement and form a nonclassical carbocation.

In the experimental study which is reported by Balci et al.19 benzobarrelene (34) was reacted with acetylacetone (35) (Scheme 10).

![Experimental Reaction](image)

Scheme 10

At the end of the reaction, the formation of rearranged compound 36 was observed. Formation mechanism of compound 36 is shown in Scheme 11.19
Firstly, addition of acetylacetone radical to benzobarrelene results in the formation of radical 38. In the presence of Mn(OAc)$_3$, radical 38 is oxidized to carbocation 39. Wagner-Meerwein type rearrangement of carbocation 39 yields the formation of carbocation 40. Subsequent cyclization of carbocation 40 generates the rearranged product compound 36. Finally, it was proven that during Mn(OAc)$_3$ reactions cyclization occurs mainly after the oxidation of initially formed radical.

1.5 Aim of the thesis

Recently, Yilmaz et al.22 reacted (E)-2-styrylthiophene (41) with 3-oxo-3-phenylpropanenitrile (42) in the presence of Mn(OAc)$_3$ (Scheme 12). They proposed that only compound 43 was formed and any trace amount of compound 44 was not observed. Furthermore, they did not report or could not determine the exact configuration of the substituents attached to the dihydrofuran ring.
Balci et al.23 repeated this reaction as described by authors. They isolated a single product, compound 47 (Scheme 13).

Extensive NOE and 2D-NMR spectral measurements (COSY, HSQC and HMBC) revealed the constitution of the substituents attached to dihydrofuran ring as well as the configuration of the substituents. The structure 47 was assigned to the formed product.

Since thiophene electronically behaves like a benzene it was difficult to understand the exclusive formation of a single isomer 47. Therefore, we were puzzled why 49 was not formed.
The aim of this study was to reveal the reason and the mechanism for the formation of exclusively one regioisomer in the reaction of (E)-2-styrylthiophene (45) and (Z)-2-styrylthiophene (48) with compound 46 in the presence of Mn(OAc)$_3$ and enlighten the reaction mechanism by applying the same reaction to similar systems.
CHAPTER 2

RESULTS AND DISCUSSION

2.1 Reactions of 2-[(E)-2-phenylethenyl]thiophen & 2-[(Z)-2-phenylethenyl]-thiophen with Mn(OAc)$_3$

2.1.1 Synthesis of Benzyltriphenylphosphonium bromide

For the synthesis of starting alkenes 54 and 55, it was started with the synthesis of benzyltriphenylphosphoniumbromide (52) according to a literature method.24 Reaction of benzylbromide (50) and triphenylphosphine (51) in toluene gave starting material 52 in 96% yield (Scheme 14).

![Scheme 14](image)

Characterization of compound 52 was done by using the NMR spectra. In 1H NMR spectrum, methylene protons resonate at 5.79 ppm as a doublet. These protons couples with neighbour P atom and the coupling constant is $J = 13.3$ Hz.
2.1.2 Synthesis of 2-[(E)-2-phenylethenyl]thiophen & 2-[(Z)-2-phenylethenyl]-thiophen

After the synthesis of compound 52, the synthesis of 2-[(E)-2-phenylethenyl]-thiophen (54) and 2-[(Z)-2-phenylethenyl]thiophen (55) were undertaken for future purposes. For this reason, Wittig reaction was performed by reacting thiophene-2-carbaldehyde (53) with benzyltriphenylphosphonium bromide (52) in Na/EtOH. \(^{23}\) At the end of the reaction 2-[(E)-2-phenylethenyl]thiophen (54) and 2-[(Z)-2-phenylethenyl]thiophen (55) were obtained in yields of 51% and 38%, respectively (Scheme 15).

![Scheme 15](attachment:image.png)

To confirm the structures, \(^1\)H-NMR and \(^{13}\)C-NMR spectra were used. In the \(^1\)H-NMR spectrum of compound 54, one of the olefinic proton resonates at 6.84 ppm as a doublet and the coupling constant is \(J = 16.1\) Hz, which is in agreement with the \textit{trans} configuration. In the \(^1\)H-NMR spectrum of compound 55, olefinic protons resonate at 6.61 and 6.48 ppm as an AB system and the coupling constant between the relevant proton is \(J = 12.0\) Hz, which is in agreement with the \textit{cis} configuration.

2.1.3 Cyclization of 2-[(E)-2-phenylethenyl]thiophen & 2-[(Z)-2-phenylethenyl]-thiophen

In order to enlighten the reaction mechanism, 2-[(E)-2-phenylethenyl]thiophen (54) and 2-[(Z)-2-phenylethenyl]thiophen (55) were reacted separately with acetylacetone.
(56) in the presence of Mn(OAc)$_3$ in acetic acid at 80 °C.23 Both reactions gave only 1-(2-methyl-4-phenyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-yl)ethanone (57) with the cis configuration in a yield of 77% (Scheme 16).

![Scheme 16](image)

The structure of compound 57 was determined by 1D and 2D spectral data. In the 1H-NMR spectrum, the proton H-3 resonates at 7.03 ppm as doublet of doublets with coupling constants of $J = 3.5$ Hz and $J = 0.5$ Hz (Figure 1). The proton H-5' resonates at 5.54 ppm as a doublet, whereas the H-4' appears at 4.46 ppm as a doublet of doublets (Figure 1).
By using HSQC spectrum C-5' and C-4' carbon atoms were found (Figure 2).

Figure 2 HSQC spectrum of compound 57

Figure 3 HMBC spectrum of compound 57
The HMBC spectrum confirms the proposed structure without a question. The important part in the HMBC spectrum is the correlation between H-3 proton and C-5' carbon (Figure 3).

The formation of the regioisomer 58 was also expected. Examination of the reaction mixture did not indicate the formation of compound 58. Balcı et al. proposed the following reaction mechanism for similar reactions. According to this mechanism, first a complex 59 is formed between Mn(OAc)₃, alkene and acetylacetone (56) where sulfur atom of thiophene also undergoes an electronic interaction with the Mn atom of the Mn(OAc)₃. Then electron transfer from alkene to the Mn atom of the Mn(OAc)₃ occurs and carbon-carbon bond forms between the active carbon atom in acetylacetone and the olefinic carbon atom which is close to the benzene ring. Formation of carbon-carbon bond between the carbon atom which is close to the thiophene ring is hindered because of geometrical restrictions. After the formation of C-C bond, radical 60 is generated. Subsequent oxidation of radical 60 with Mn(OAc)₃, leads to the formation of carbocation 61, which undergoes intramolecular cyclization reaction to give 57. According to these mechanism, the position of the sulfur atom in the starting alkene affects the reaction mechanism and responsible for exclusive formation of final product 57 with the formation of complex 59 (Scheme 17).

![Scheme 17](image)

2.2 Reactions of of 3-[(E)-2-phenylethenyl]thiophene & 3-[(Z)-2-phenylethenyl]-thiophene with Mn(OAc)₃
2.2.1 Synthesis of 3-[(E)-2-phenylethenyl]thiophene & 3-[(Z)-2-phenylethenyl]-thiophene

To strengthen the proposed mechanism, which indicates the importance of the position of the sulfur atom, position of the sulfur atom in the starting alkene was changed. For this purpose, we decided to synthesize the 3[(E)-2-phenylethenyl] thiophene (63) and 3[(Z)-2-phenylethenyl] thiophene (64) where the thiophen ring is bonded to the alkene at C-3 carbon atom of the thiophene ring. The target molecules were synthesized by reacting benzyltriphenylphosphonium bromide (52) and thiophene-3-carbaldehyde (62) in Na/EtOH.25 3-[(E)-2-phenylethenyl]thiophen (63) and 3-[(Z)-2-phenylethenyl] thiophen (64) were obtained in yields of 54% and 43%, respectively (Scheme 18).

![Scheme 18](image)

In the 1H-NMR spectrum of compound 63 olefinic protons resonate at 7.12 and 6.94 ppm as an AB system with a coupling constant of $J = 16.3$ Hz, indicating the trans configuration of coupling product 63. The olefinic protons in compound 64 resonate at 6.57 and 6.53 ppm as an AB system with a coupling constant of $J = 12.1$ Hz, coupling constant clearly shows the cis configuration of coupling product 64.
2.2.2 Cyclization Reactions of 3-[(E)-2-phenylethenyl]thiophene and 3-[(Z)-2-phenyl-ethenyl]thiophene

To observe the regioselectivity of the reaction when the position of the sulfur atom is moved to the third position, compounds 63 and compound 64 were reacted with acetylacetone (56) separately in the presence of Mn(OAc)$_3$ in AcOH at 80 °C for 24 h. The formation of two regioisomeric cyclization products with cis configuration was observed (Scheme 19).

![Scheme 19](image)

The structures of compounds 65 and 66 were again determined by 1D and 2D spectral data. In the 1H-NMR spectrum of compound 65 H-4' and H-5' resonate at 5.41 ppm and 4.34 ppm, respectively. Also H-4 proton resonates at 7.07 ppm as doublet of doublets with a coupling constants of $J = 5.0$ Hz and $J = 1.2$ Hz (Figure 4).
First, we assigned the carbon resonances by using HSQC spectrum (Figure 5).

Figure 4 1H-NMR spectrum of compound 65

Figure 5 HSQC spectrum of compound 65
With the help of HMBC spectrum we were able to distinguish between those isomers 65 and 66. The important part in the HMBC spectrum was the correlation between H-5' proton and C-4 carbon of the thiophen ring. This correlation clearly shows that thiophene ring is bonded to the dihydrofuran ring from the same carbon atom as the oxygen functionality (Figure 6).

In this case, the position of the sulfur atom was changed by moving the sulfur atom to the 3rd position. We assume that sulfur atom of the thiophene ring also forms a complex here. However, due to the large distance between the complex and double bond and geometrical reasons, this complex can not be responsible for the reaction. The sulfur atom doesn’t have any directing effect in this case, so that a free diacetyl radical is acting as a reagent. Therefore, the radical can add to the both side of the double bond carbon atoms. As a result of the addition of radical to the both side of the double bond carbon atoms, compound 65 and compound 66 are formed in a ratio of 2:1 (Scheme 20).
2.3 Reactions of (E)-2-(2-(thiophen-3-yl)vinylthiophen & (Z)-2-(2-(thiophen-3-yl)vinylthiophen with Mn(OAc)$_3$

2.3.1 Synthesis of Thiophen-2-ylmethanol

After observing the formation of a single cyclization product 57, by the reaction of compound 54 and compound 55 with Mn(OAc)$_3$ in presence of a 1,3-dicarbonyl compound, the formation of two cyclization products, compound 65 and compound 66 were observed upon moving the sulfur atom of the thiophene ring from second to the third position. After these results, we planned to synthesize an alkene that have two thiophene rings connected to the alkene moiety one at the C-2 and the other one at the C-3 carbon atoms. For the synthesis of the target molecule, we started with the synthesis of thiophene-2-ylmethanol (71) according to a literature method. Reduction of thiophen-2-carbaldehyde (53) with LiAlH$_4$ gave thiophene-2-ylmethanol (71) (Scheme 21).
The presence of broad signal (OH) at 3.66 ppm in 1H-NMR spectrum and the disappearance of the aldehyde proton signal, proved the structure.

2.3.2 Chlorination of Thiophen-2-ylmethanol

To replace –OH group with –Cl atom, chlorination reaction was performed according to a literature method. Thiophen-2-ylmethanol (71) was reacted with SOCl$_2$, 2-(chloromethyl)thiophene (72) was formed in 95% yield (Scheme 22).

Characterization of compound 72 was done with the help of the 1H-NMR spectrum. The disappearance of broad –OH proton signal which resonates at 3.66 ppm and the presence of methylene protons signal at 4.70 ppm proved the structure of compound 72.
2.3.3 Synthesis of Wittig Salt

To synthesize target salt 73, 2-(chloromethyl)thiophene (72) was reacted with triphenylphosphine (51) in acetonitrile, triphenyl(thiophene-2-yl methyl)phosphonium chloride (73) was formed in 88% yield (Scheme 23).\(^{28}\)

![Scheme 23]

Characterization of compound 73 was established by using the \(^1\)H-NMR spectrum. The methylene protons resonate at 5.79 ppm as doublet due to the coupling with neighbour phosphorous atom and the coupling constant is \(J = 13.3\) Hz.

2.3.4 Synthesis of (\(E\))-2-(2-(thiophen-3-yl)vinylthiophen & (\(Z\))-2-(2-(thiophen-3-yl)vinylthiophen

After successful synthesis of the starting material 73, thiophene-3-carbaldehyde (62) was reacted with triphenyl(thiophen-2-yl methyl)phosphonium chloride (73) in the presence of Na/EtOH. (\(E\))-2-(2-(thiophen-3-yl)vinylthiophen (74) and (\(Z\))-2-(2-(thiophen-3-yl)vinylthiophen (75) were formed in 55.5% and 30% yields, respectively (Scheme 24).

![Scheme 24]
In the 1H-NMR spectrum of compound 74, the presence of an AB system which appears at 7.01 and 6.87 ppm with a coupling constant of $J = 16.1$ Hz, indicates the *trans* configuration for compound 74. In the 1H-NMR spectrum of compound 75, the presence of an AB system resonating at 6.55 and 6.37 ppm with a coupling constant of $J = 11.9$ Hz, is consistent with the *cis* configuration of compound 75.

2.3.5 Cyclization Reactions of (E)-2-(2-(thiophen-3-yl)vinylthiophen and (Z)-2-(2-(thiophen-3-yl)vinylthiophen

(E)-2-(2-(thiophene-3-yl)vinylthiophene (74) and (Z)-2-(2-(thiophene-3-yl)vinyl thiophene (75) were separately reacted with acetylacetone (56) in presence of Mn(OAc)$_3$. Analysis of the reaction mixture revealed the exclusive formation of a single product, 1-(2-methyl-5-(thiophen-2-yl)-4-(thiophen-3-yl)-4,5-dihyrophuran-3-yl)-ethanone (76), Careful analysis did not show the formation of any trace amount of isomer 77 (Scheme 25).

![Scheme 25](image)

In 1H-NMR spectrum of compound 76, proton H-2 proton resonates at 6.41 ppm as doublet of doublets with the coupling constants of $J = 2.9$ Hz and $J = 1.2$ Hz which are characteristic thiophene couplings (Figure 7).
By using HSQC spectrum C-2'' and C-3'' carbons were found (Figure 8).
With the help of the HMBC spectrum we were able to prove the structure of compound 76. The important part in the spectrum was again the correlation between H-2 proton and C-3\(^{\prime}\) carbon (Figure 9).

Exclusive formation of a single cyclization product 76 confirmed the proposed mechanism. (The starting alkenes 74 and 75 contain two thiophene rings attached from the different carbon atoms (C-2 and C-3) to the C=C double bond). The structure 76 shows that oxygen atom of the acetylacetone is bonded to the carbon atom which is connected to C-2 of thiophene ring (Scheme 26).

All those results indicate that the position of sulfur atom, compared to the double
bond, plays an important role in determining the mode of the addition.

2.4 Theoretical Considerations

For the case in which the complex formation should not have any effect on the distribution of the adducts by changing the position of the sulfur atom (Scheme 27), the formation ratio of compounds 65 and compound 66 is 2:1. We assume that there can be some other factors that can affect the product distribution. To answer this question some theoretical calculations were done.

![Scheme 27](image)

The starting alkenes were optimized by using Gaussian 09L\(^{29}\) programme and the optimizations were done at the level of M06 / TZVP.

It was thought that the electron densities on the olefinic carbon atoms can affect the final product distribution. For this reason natural bond orbital (NBO) analysis were carried out at the level of M06 / TZVP.
According to theoretical calculations which is done for compound 54, the natural charge on C-7 atom is -0.172 Coulomb and natural charge on C-6 atom is -0.188 Coulomb. In compound 54 electron density on C-6 atom is higher than the electron density on C-7 atom (Figure 10).

Natural charge on C-11 atom in compound 55 is -0.186 Coulomb; on the other hand natural charge on C-12 atom in compound 55 is -0.191 Coulomb. According to natural charge calculations it is obvious that the electron density on C-12 atom is higher than the electron density on C-11 atom (Figure 11).

On the basis of these theoretical calculations, we may propose that compound 58 should be formed as the major product with the addition of radical to the electron rich olefinic carbon atoms in both E and Z isomers (Scheme 28). However, no trace of compound 58 was not observed during experimental studies.
Formation of complex 59 explains the addition of radical to the electronically poor olefinic carbon atom and formation of compound 57 as a single product (Scheme 29).

Natural bond orbital (NBO) analysis was carried out for compounds 63 and 64.
According to M06 / TZVP natural bond orbital (NBO) analysis; natural charge on the C-6 atom in compound 63 is -0.167 Coulomb; on the other hand, natural charge on the C-7 atom is -0.168 Coulomb. As a result, electron density on C-7 atom is more than the electron density on C-6 atom in compound 63 (Figure 12).

For the compound 64, natural charge on the C-7 atom is -0.179 Coulomb and natural charge on the C-8 atom is -0.172 Coulomb. As a result, electron density on C-7 atom is higher than the electron density on the C-8 carbon atom in compound 64 (Figure 13).

According to the results of theoretical calculations, proposed mechanism for the formation of major product compound 65 is shown in Scheme 31. Compound 65 is formed as a result of the addition of radical to the electronically rich olefinic carbon atoms in both E and Z isomers.
Compound 66 was formed as a minor product as a result of the addition of radical to the electronically poor olefinic carbon atoms in both E and Z isomers (Scheme 31).
For the compounds 74 and 75 NBO analysis were carried out. According to the results of the compound 74 natural charge on C-11 carbon atom is -0.168 Coulomb and natural charge on C-9 carbon atom is -0.196 Coulomb. It is obvious that the electron density on C-9 carbon atom is higher than the electron density on C-11 carbon atom (Figure 14).

![Figure 14](image1.png)

Figure 14 The optimized geometry for compound 74

NBO analysis of compound 75 shows that the natural charge for the C-9 carbon atom is -0.188 Coulomb and for the C-11 carbon atom is -0.184 Coulomb. These calculations show that the electron density on the C-9 carbon atom is higher than the electron density on C-11 carbon atom (Figure 15).

![Figure 15](image2.png)

Figure 15 The optimized geometry for compound 75

If we propose a mechanism according to the theoretical results, compound 77 should be formed as a major product. However, experimental results shows that no trace of compound 77 did not form during reaction (Scheme 32)
For this reaction, again the complex formation is responsible for the formation of compound 76 as a single product (Scheme 33).

According to the experimental and theoretical results; for the cases in which the sulphur atom is close to the olefinic carbon atoms, formation of a complex such as 59 and 78 predominates and exclusively single cyclization products 57 or 76 are formed. For the cases in which the sulphur atom is not close to the olefinic carbon atoms, any complex formed can not be responsible for the addition because of the geometrical
reasons. In this case two cyclization products are formed and electronic effects determine the mode of the addition and the ratio of the product distribution.

2.5 Reactions of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene with Mn(OAc)$_3$

2.5.1 Synthesis of 2-methoxybenzaldehyde

To strengthen the proposed theory, which indicates the importance of a complex formation with the lone pair of sulfur atom and Mn(OAc)$_3$, we decided to synthesize stilbene derivatives having substituents in the ortho position of one of the benzene rings. Heteroatoms can also undergo interaction with Mn(OAc)$_3$ and determine the regioselectivity of the addition. Furthermore, we were interested in changing the electron density in one of the benzene rings in order to search whether the electron density at the double bond should have any effect on the mode of the addition reactions or not. First we introduced an electron donating methoxy group to the ortho position of one of the benzene ring in stilbene. For this purpose, we decided to synthesize (E)-1-methoxy-2-styrylbenzene (88) and (Z)-1-methoxy-2-styrylbenzene (89).

We started with the synthesis of 2-methoxybenzaldehyde (87). 2-Hydroxy benzaldehyde (85) was reacted with iodomethane (86) in DMF, at room temperature, for 12 h to obtain 2-methoxybenzaldehyde (87) (Scheme 34).
Disappearance of broad –OH proton signal and the presence of signal at 3.93 ppm, which belongs to methoxy protons, in the 1H-NMR spectrum of compound 87 completely proves the structure.

2.5.2 Synthesis of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene

(E)-1-methoxy-2-styrylbenzene (88) and (Z)-1-methoxy-2-styryl benzene (89) were synthesized by reacting 2-methoxybenzaldehyde (87) with benzyltriphenylphosphonium bromide (52) in Na/EtOH, at room temperature, for 24 hours (Scheme 35).

In the 1H-NMR spectrum of compound 88 olefinic protons resonate at 7.42 and 7.04 ppm as an AB system with a coupling constant of $J = 16.5$ Hz, indicating trans configuration of compound 88. According to 1H-NMR of compound 89 olefinic protons resonate at 6.62 and 6.56 ppm as an AB system with a coupling constant of $J = 12.2$ Hz, indicating the cis configuration of compound 89.
2.5.3 Cyclization Reactions of (E)-1-methoxy-2-styrylbenzene and (Z)-1-methoxy-2-styryl benzene

Compounds 88 and 89 were reacted with acetylacetone (56) separately in presence of Mn(OAc)$_3$ in AcOH at 80 °C for 24 h. At the end of the reaction, the formation of two regioisomeric cyclization products 90 and 92 with cis configuration were obtained (Scheme 36).

![Scheme 36](image)

Figure 16: 1H-NMR spectrum of compound 90
In the 1H-NMR spectrum of compound 90, the protons H-5' and H-4' resonate at 5.57 and 4.09 ppm, respectively. The coupling constant observed between those protons is $J = 4.2$ Hz indicating the cis configuration of the substituents attached to the five membered ring in 90. The methoxy protons resonate at 3.72 ppm as a singlet (Figure 16).

To determine the correct constitution of the isomers 90 and 91, first we determined the exact resonance frequency of the C-2 carbon atom from the correlation between the –OCH₃ protons resonance and the C-2 carbon atom from the HMBC spectrum. Then we looked at the correlations between the C-2 carbon atom and proton resonances. Only the signal resonating at 5.57 ppm showed the correlation with the C-2 carbon atom not the signal appearing at 4.09 ppm. From this information we assigned the correct structure to 90 (Figure 17). In the case of minor isomer 91, the C-2 carbon atom showed only correlation with H-4' proton not with H-5' proton.

For the starting alkenes of this reaction, optimization and natural bond orbital (NBO) analysis were done at the level of M06 / TZVP to get an idea about the mechanism of formation, which is based on the electron density on the olefinic carbon atoms.
According to the NBO analysis result, the natural charge on C-8 atom in compound 88 is -0.171 Coulomb; on the other hand natural charge on C-7 atom is -0.170 Coulomb. These results shows that the electron density on C-8 atom is higher than the electron density on C-7 atom (Figure 18).

Same analysis was done to the isomer 89. Natural charge on C-8 atom is -0.178 Coulomb and natural charge on C-7 atom is -0.164 Coulomb. NBO analysis shows that the electron density on C-8 atom is higher than the electron density on C-7 atom (Figure 19).

According to the results of theoretical calculations, compound 91 should be formed as a major product with the addition of radical to the electron rich olefinic carbon atoms in both E and Z isomers and compound 90 should be formed as the minor product.
These results indicate that electron density distribution on the double bonds in 88 as well as in 89 don’t have any effect on the formation of products. For the formation of compound 90 as the major product we propose that the formation of a complex 92 between oxygen atom of methoxyl group, Mn(OAc)₃ and acetylacetone (56) is responsible for the mode of the reaction. An electron transfer from the alkene to the Mn atom of the Mn(OAc)₃ occurs and carbon-carbon bond forms between the active carbon atom in acetylacetone (56) and the olefinic carbon atom which is close to the unsubstituted benzene ring. After the formation of carbon-carbon bond, the generated radical 93 undergoes subsequent oxidation to the carbocation 94 followed by intramolecular cyclization reaction to give regioisomer 90 (Scheme 37).

![Scheme 37](image)

2.6 Reactions of 1-methoxy-4-[(Z)-2-phenylethenyl]benzene and 1-methoxy-4-[(E)-2-phenylethenyl]benzene with Mn(OAc)₃

2.6.1 Synthesis of 1-methoxy-4-[(E)-2-phenylethenyl]benzene and 1-methoxy-4-[(Z)-2-phenylethenyl]benzene

To remove the effect of complex formation and to have deeper look into mechanism of formation of the products, we decided to move the electron donating methoxy group from the ortho position to the para position of the benzene ring in the starting alkene. For this purpose, we decided to synthesize the compounds 96 and 97. Benzytrimethylphosphonium bromide (52) was reacted with 4-methoxy benzaldehyde (95) in Na/EtOH as described above. 1-Methoxy-4-[(E)-2-phenyl
ethenyl]benzene (96) and 1-methoxy-4-[(Z)-2-phenylethenyl]benzene (97) were obtained in yields of 25% and 72%, respectively (Scheme 38).

![Scheme 38](image)

The olefinic protons which resonate at 7.0 and 6.9 ppm as an AB system with a coupling constant of $J = 16.3$ Hz in 1H-NMR spectrum, indicates the trans configuration for the compound 96. On the other hand; in 1H-NMR spectrum of compound 97, olefinic protons resonate at 6.48 and 6.44 ppm as an AB system with a coupling constant of $J = 12.1$ Hz, clearly showing the cis configuration.

2.6.2 Cyclization Reactions of 1-Methoxy-4-[(E)-2-phenylethenyl]benzene and 1-Methoxy-4-[(Z)-2-phenylethenyl]benzene

![Scheme 39](image)
The isomeric compounds 96 and 97 were reacted with acetylacetone (56) in presence of Mn(OAc)$_3$ in AcOH at 80 °C for 24 h. The formation of two regioisomeric cyclization products 98 and 99 with cis configuration of the substituents attached to the five membered ring were observed (Scheme 39).

In the 1H-NMR spectrum of compound 98 the protons H-5' and H-4' resonate at 5.28 and 4.30 ppm, respectively. The H-3 protons in compound 98 are shifted to the high field because of the presence of methoxy groups at the ortho position (Figure 20). On the other hand; in the 1H-NMR spectrum of compound 99 H-5' and H-4' protons resonate at 5.31 and 4.25 ppm, respectively.

![Figure 20 1H-NMR spectrum of compound 98](image)

Firstly, quaternary C-5 carbon atom is found from the correlation of H-3 protons, higher field aromatic protons, by using HMBC spectrum. Then the correlation of C-5 carbon atom with only H-4' proton not with H-5' proton completely proves the proposed structure for major product, compound 98, (Figure 21). The other key correlation for the proposed structure for regioisomer 98, is the correlation of C-1a and H-5'.
NBO analysis for compound 96 shows that the electron density on C-7 atom is -0.162 Coulomb; on the other hand natural charge on C-8 atom is -0.183 Coulomb (Figure 22).

Natural charge on C-8 atom in compound 97 is -0.143 Coulomb; on the other hand natural charge on C-7 atom is -0.196 Coulomb. According to natural charge calculations it is obvious that the electron density on C-7 atom is higher than the electron density on C-8 atom (Figure 23).
Theoretical calculations are in agreement with experimental results. According to the results, major cyclization product, compound 98, is formed with the addition of radical to the electronically rich olefinic carbon atoms in both E and Z isomers.

The other regioisomeric cyclization product, compound 99, is formed as a minor product with the addition of radical to the electronically poor olefinic carbon atom.

2.7 Reactions of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene with Mn(OAc)₃

2.7.1 Synthesis of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene

To search the effect of a strong electron withdrawing group, such as a nitro group, on the distribution of the addition products, we decided to introduce a nitro group to the para position of one of the benzene rings. Therefore, first we synthesized (E)-1-nitro-4-styrylbenzene (101) and (Z)-1-nitro-4-styrylbenzene (102) by reacting benzyltriphenylphosphoniumbromide (52) with 4-nitrobenzaldehyde (100) in Na/EtOH (Scheme 40).
In the 1H-NMR spectrum of compound 101, olefinic proton signals resonate at 7.30 and 7.15 ppm as an AB system with a coupling constant of $J = 16.3$ Hz, clearly showing the trans configuration. For the compound 102, olefinic proton resonates at 6.82 and 6.62 ppm as an AB system with a coupling constant of $J = 12.2$ Hz, indicating the cis configuration of compound 102.

2.7.2 Cyclization Reactions of (E)-1-nitro-4-styrylbenzene and (Z)-1-nitro-4-styrylbenzene

The stilbene derivatives 101 and 102 having a nitro group in the para position were reacted with acetylacetone (56) in presence of Mn(OAc)$_3$ in AcOH at 80 °C for 24 h. Again two regioisomeric cyclization products with cis configuration of the substituents attached to the dihydrofuran ring were isolated (Scheme 41).
In 1H-NMR spectrum of compound 103 H-5' and H-4' resonates at 5.20 and 4.34 ppm, respectively. The H-3 protons in compound 103 are shifted to the low field because of the presence of a nitro group at the ortho position. The H-4 proton resonates at 6.90 ppm (Figure 24).

Firstly, C-5' and C-4' carbon atoms were found from the HSQC spectrum (Figure 25).
The correlation of H-4 proton with only C-4' carbon atom not with the C-5' carbon atom in HMBC spectrum, completely proves the proposed structure for major product, compound 103, (Figure 26). In the case of the minor product 104, H-4 proton correlates with C-5' carbon atom not with C-4' carbon atom.
According to the NBO analysis, natural charge on C-7 atom is -0.194 Coulomb and the natural charge on C-8 atom is -0.133 Coulomb in compound 101. It can be seen that the electron density on C-7 atom is higher than the electron density on C-8 atom (Figure 27).

![Figure 27 The optimized geometry for compound 101](image)

Same NBO analysis were done for compound 102, according to these calculations the natural charge on C-8 atom is -0.200 Coulomb; on the other hand natural charge on C-7 atom is -0.148 Coulomb and the electron density on C-8 atom is higher than the electron density on C-7 atom (Figure 28).

![Figure 28 The optimized geometry for compound 102](image)

Theoretical calculations are in agreement with the experimental results. According to the results, electron density on the olefinic carbon atoms affects the reaction mechanism and product distribution. Major cyclization product, compound 103, is formed with the addition of the radical to the electronically rich olefinic carbon atoms in both E and Z isomers from the same mechanism as shown in Scheme 30.
The other regioisomeric cyclization product, compound 104, is formed as a minor product with the addition of radical to the electronically poor olefinic carbon atom.

2.8 Reactions of (E)-1-Methoxy-4-(4-nitrostyryl)benzene and (Z)-1-Methoxy-4-(4-nitrostyryl)benzene with Mn(OAc)$_3$

2.8.1 Synthesis of (4-Methoxyphenyl)methanol

Finally, we were interested in the synthesis of a stilbene derivative substituted at one of the benzene ring with an electron-withdrawing group at the other one with the electron-donating group. Therefore, we planned the synthesis of 108 and 109.

To synthesize the target molecule 108 and 109, it was started with the synthesis of (4-methoxyphenyl)methanol (105) by reducing 4-methoxybenzaldehyde (95) with LiAlH$_4$ (Scheme 42). 33

Scheme 42
Disappearance of aldehyde proton signal and the presence of broad -OH proton signal resonating at 3.56 ppm proved the structure for compound 105.

2.8.2 Chlorination of (4-Methoxyphenyl)methanol

To replace –OH group with a chlorine atom, (4-Methoxyphenyl)methanol (105) was reacted with SOCl₂ as described in literature to give 1-(Chloromethyl)-4-methoxybenzene (106) (Scheme 43).³⁴

![Reaction scheme](attachment:image.png)

Scheme 43

Characterization of compound 106 was done by using the ¹H-NMR and ¹³C-NMR spectral data. Disappearance of broad –OH proton signal, which resonates at 3.56 ppm, proved the proposed structure for compound 106.

2.8.3 Synthesis of Wittig Salt

To perform Wittig reaction, it was started with the synthesis of Wittig salt 107. To synthesize target salt 1-(chloromethyl)-4-methoxybenzene (106) was reacted with triphenylphosphine (51) in toluene. At the end of the reaction, (4-methoxybenzyl)triphenylphosphonium chloride (107) was formed (Scheme 44).³⁵

![Reaction scheme](attachment:image.png)

Scheme 44
Methylene protons, resonating at 5.36 ppm as a doublet due to the coupling with neighbour phosphorous atom ($J_{HP} = 13.8$ Hz). 1H-NMR spectrum of compound 107 completely proved the proposed structure.

2.8.4 Synthesis of (E)-1-methoxy-4-(4-nitrostyryl)benzene and (Z)-1-methoxy-4-(4-nitrostyryl)benzene

Target alkenes, compound 108 and compound 109, were synthesized by reacting (4-Methoxybenzyl)triphenylphosphonium chloride (107) with 4-Nitrobenzaldehyde (100) in Na/EtOH solution (Scheme 45).

![Scheme 45](image)

Signals resonating at 7.25 and 7.03 ppm as an AB system with a coupling constant of $J = 16.3$ Hz, proved the proposed structure for compound 108. In the 1H-NMR spectrum of compound 109, olefinic protons resonate at 6.75 and 6.53 ppm as an AB system with a coupling constant of $J = 12.1$ Hz, clearly showing the cis configuration.

2.8.5 Cyclization Reactions of (E)-1-Methoxy-4-(4-nitrostyryl)benzene and (Z)-1-Methoxy-4-(4-nitrostyryl)benzene

The stilbene derivatives having an electron-donating and electron-withdrawing groups, 108 and 109, were seperately reacted with acetylacetone (56) in presence of
Mn(OAc)$_3$ for 24 h.23 Careful analysis of the product indicated the formation of exclusively one regioisomer 110. Formation of any trace amount of regioisomer 111 was not observed (Scheme 46).

Figure 29 1H-NMR spectrum of compound 110
In the 1H-NMR of compound 110, the H-5' proton resonates at 5.17 ppm and the proton H-4' resonates at 4.38 ppm. Due to the presence of methoxy group the H-3 protons are shifted to high field and they appear at 6.85 ppm. The H-3a protons are shifted to low field and they resonate at 8.13 ppm because of the presence of $-\text{NO}_2$ group (Figure 29).

First we determined the exact resonance frequencies of the carbon atoms C-4' and C-5' using the HSQC spectrum (Figure 30).

The HMBC spectrum of 110 shows that the H-4a proton resonance correlates with the C-4' carbon and the H-4 proton correlates with the C-5' carbon atom. On the basis of these findings we assigned the structure 110 to the isolated product (Figure 31).
For the starting alkenes 108 and 109, optimization and natural bond orbital (NBO) analysis were done at the level of M06 / TZVP.

Natural charge on the C-7 carbon atom in compound 108 was found to be -0.207 Coulomb; on the other hand natural charge on C-8 atom in compound 108 is -0.125 Coulomb. According to natural charge calculations it is obvious that the electron density on the C-7 carbon atom is higher than the electron density on the C-8 carbon atom (Figure 32).
According to the NBO analysis of compound 109 natural charge on C-7 carbon atom is -0.214 Coulomb; on the other hand natural charge on C-8 carbon atom in is -0.139 Coulomb. It is obvious that the electron density on C-7 carbon atom is higher than the electron density on C-8 carbon atom (Figure 33).

Theoretical calculations are completely in agreement with the experimental results. According to the results, electronic effect dominates and only regioisomer 110 is formed during the reaction with the addition of radical to the electronically rich olefinic carbon atoms in both E and Z isomers from the same mechanism as shown in Scheme 30.
CHAPTER 3

EXPERIMENTAL

3.1 General

Nuclear magnetic resonance (\(^1\)H NMR and \(^{13}\)C NMR) spectra were recorded with Bruker Instrument Avance Series-Spectrospin DPX-400 Ultrashield instrument in CDCl\(_3\) and C\(_6\)D\(_6\) with TMS as internal reference. Chemical shifts (δ) were showed as parts per million (ppm). Spin multiplicities were expressed as singlet (s), doublet (d), doublet of doublet (dd), triplet (t), broad triplet (bt) triplet of triplet (tt) and multiplet (m) and coupling constants (J) were reported in Hertz (Hz).

Infrared spectra were recorded on a Matson FT-IR spectrometer and Vertex 70 series FT-IR spectrometer. Band positions were reported in reciprocal centimeters (cm\(^{-1}\)).

Mass spectra were recorded by Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) LC/MS on Agilent 1200/6530.

Column chromatographies were performed by using Fluka Silica Gel 60 plates with a particle size of 0.063-0.20 mm. Thin layer chromatography (TLC) was performed by using 0.25 mm silica gel plates purchased from Fluka.

Compounds were named by using ACD Name Generator.

3.2 Benzyltriphenylphosphonium bromide (52)

Triphenylphosphine (51) (25 g, 0.095mol) was added to a solution of benzyl bromide (50) (19.1 g, 0.112 mol) in toluene (250 mL). The mixture was heated at reflux
temperature for 6 h and then cooled to room temperature. The product was filtered, recrystallized from EtOH/n-hexane mixture and 39.5 g (96 %) of (52) was collected as a white cubic crystals. M.p: 297-298 °C (lit. m.p. 288 °C).

\[
\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.79-7.70 (m, 9H), 7.66-7.61 (m, 6H), 7.22 (tt, \ J_{6,5} = 6.8 \text{ Hz}, \ J_{6,4} = 1.9 \text{ Hz}, 1H, H-6), 7.14-7.09 (m, 4H), 5.37 (d, \ J_{1,2} = 14.4 \text{ Hz}, 2H, H-2).
\]

\[
\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 135.0 (3C), 134.3 (6C), 131.5 (2C), 130.2 (6C), 130.1 (3C), 128.8 (2C), 128.4, 117.7, 30.9
\]

3.3 2-[(E)-2-phenylethenyl]thiophen (54) and 2-[(Z)-2-phenylethenyl]-thiophen (55)

Wittig salt 52 (4.5 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared with the dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 mL of EtOH. After the dissolution of all Wittig salt (52), thiophene-2-carbaldehyde (53) (1.06 g, 9.46 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO\(_4\). Removal of solvent gave 1.74 g crude product, which was chromatographed over silica gel eluting with hexane. 2-[(Z)-2-phenylethenyl]thiophene (55) was isolated as the first fraction: colorless liquid 660 mg (38% isolated yield). 2-[(E)-2-phenylethenyl]thiophene (54) was isolated as the second fraction: white powder (from hexane), 890 mg (51% isolated yield), m.p 110 °C-111 °C.
2-[(E)-2-phenylethenyl]thiophene (54)

1H-NMR (400 MHz, CDCl$_3$) δ 7.37 (d, $J = 7.5$ Hz, 2H, H-1a), 7.25 (t, $J = 7.5$ Hz, 2H, H-2a), 7.14 (m, 2H), 7.09 (d, $J_{5,4} = 5.0$ Hz, 1H, H-5), 6.97 (d, $J_{3,4} = 3.5$ Hz, 1H, H-3), 6.91 (dd, $J_{4,5} = 5.0$ Hz, $J_{4,3} = 3.5$ Hz, 1H, H-4), 6.84 (d, $J = 16.1$ Hz, 1H).

13C-NMR (100 MHz, CDCl$_3$) δ 142.9, 137.0, 128.8 (2C), 128.4, 127.7 (2C), 126.4 (2C), 126.2, 124.4, 121.8.

2-[(Z)-2-phenylethenyl]thiophene (55)

1H-NMR (400 MHz, CDCl$_3$) δ 7.28-7.18 (m, 5H, benzene), 6.98 (d, $J_{5,4} = 5.0$ Hz, 1H, H-5), 6.87 (d, $J_{3,4} = 3.5$ Hz, 1H, H-3), 6.78 (dd, $J_{4,5} = 5.0$ Hz, $J_{4,3} = 3.5$ Hz, 1H, H-4), 6.61 (d, A part of AB system $J = 12.0$ Hz, 1H), 6.48 (d, B part of AB system $J = 12.0$ Hz, 1H).

13C-NMR (100 MHz, CDCl$_3$) δ 139.9, 137.4, 129.0, 128.9 (2C), 128.6 (2C), 128.2, 127.6, 126.5, 125.6, 123.4.

3.4 1-(2-Methyl-4-phenyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-yl)ethanone (57)

Mn(OAc)$_3$ (2.89 g, 9.72 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of -[(E)-2-phenylethenyl] thiophene (54) (0.67 g, 3.6 mmol) and acetylacetone (56) (7.218 g, 72.1 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)$_3$ solution. The reaction mixture was stirred at 80 °C under nitrogen for 24 h. The reaction mixture was cooled to the room temperature and saturated NaHCO$_3$ solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO$_4$. Evaporation of solvent under the reduced pressure afforded the residue, which was then separated by column chromatography on silica gel eluting with hexane / EtOAc (20:1) to yield 1-(2-Methyl-4-phenyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-yl)ethanone (57) as a pale yellow liquid (0.79 g, 77%).
1H-NMR (400 MHz, CDCl$_3$) δ 7.37-7.22 (m, 6H), 7.03 (br d, $J_{3,4} = 3.5$ Hz, 1H, H-3), 6.99 (dd, $J_{4,5} = 5.0$ Hz, $J_{4,3} = 3.5$ Hz, 1H, H-4), 5.54 (d, $J_{5',4'} = 5.6$ Hz, 1H, H-5'), 4.46 (dd, $J_{4',5'} = 5.6$ Hz, $J = 1.1$, 1H, H-4'), 2.42 (d, $J = 1.1$ Hz, 3H), 1.93 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$) δ 195.0, 168.1, 143.3, 142.5, 129.1 (2C), 127.5, 127.4 (2C), 126.9, 125.8, 125.3, 115.2, 87.7, 58.1, 29.7, 15.1

IR (ATR) 1669, 1593, 1372, 1309, 1217, 1075, 981, 929, 832, 770

HRMS for C$_{17}$H$_{16}$O$_2$S [M+H]$^+$: 285.09493. Found: 285.09504

3.5 3-[(E)-2-phenylethenyl]thiophene (63) and 3-[(Z)-2-phenylethenyl]thiophene (64)

Wittig salt 52 (4.5 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared by the dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 mL of EtOH. After the dissolution of all Wittig salt, thiophene-3-carbaldehyde (62) (1.06 g, 9.46 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO$_4$. Evaporation of the solvent under the reduced pressure gave the residue, which was then separated by column chromatography on silica gel eluting with hexane. 3-[(Z)-2-phenylethenyl]thiophene (64) was isolated as a first fraction: colorless liquid, 740 mg (42.5% isolated yield). 3-[(E)-2-phenylethenyl]thiophene (63) was isolated as a second fraction: white powder (from hexane), 937 mg (53.5% isolated yield), m.p 123.5-124 °C.25

3-[(E)-2-phenylethenyl]thiophene (63)

1H-NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 7.6$ Hz, 2H), 7.35-7.29 (m, 4H), 7.25-7.22 (m, 2H), 7.12 (d, A part of AB system $J = 16.3$ Hz, 1H), 6.94 (d, B part of AB system $J = 16.3$ Hz, 1H).
3-[(Z)-2-phenylethenyl]thiophene (64)

\[
\begin{array}{c}
\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.30-7.22 (m, 5H), 7.12-7.09 (m, 2H), 6.86 (dd, J_{4,5} = 4.7 Hz, J_{4,2} = 1.5 Hz, 1H, H-4), 6.57 (d, A part of AB system } J = 12.1 \text{ Hz, 1H), 6.53 (d, B part of AB system } J = 12.1 \text{ Hz, 1H).}
\end{array}
\]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 138.3, 137.9, 129.6, 128.8 (2C), 128.4 (2C), 128.1, 127.3, 125.0, 124.5, 124.2.
\]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 140.2, 137.4, 128.7 (3C), 127.5, 126.3 (2C), 126.2, 125.0, 122.9, 122.4.
\]

3.6 1-(2-Methyl-4-phenyl-5-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (65) and 1-(2-Methyl-5-phenyl-4-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (66)

Mn(OAc)\textsubscript{3} (0.890 g, 3.3 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of 3-[(E)-2-phenylethenyl]thiophen (63) (0.206 g, 1.1 mmol) and acetylacetone (56) (2.21 g, 22 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)\textsubscript{3} solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to room temperature and saturated NaHCO\textsubscript{3} solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO\textsubscript{4}. Evaporation of the solvent under the reduced pressure afforded the residue, which was then separated by column chromatography on silica gel eluting with hexane / EtOAc (20:1) to yield 1-(2-Methyl-4-phenyl-5-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (65) as a first fraction: pale yellow liquid, 205 mg (66% crude yield). 1-(2-methyl-5-phenyl-4-(thiophen-3-yl)-4,5-dihydrofuran-3-yl)ethanone (66) can not be separated. According to crude NMR of the mixture crude yield of the compound 66 was 33%.
H-NMR (400 MHz, CDCl$_3$) δ 7.38-7.36 (m, 4H), 7.31-7.28 (m, 1H), 7.23 (dd, $J = 7.2$ Hz, $J = 1.5$ Hz, 2H), 7.07 (dd, $J_{4,5} = 5.0$ Hz, $J_{4,2} = 1.2$ Hz, 1H, H-4), 5.41 (d, $J_{5',4'} = 5.8$ Hz, 1H, H-5’), 4.34 (dd, $J_{4',5'} = 5.8$ Hz, $J = 1.1$ Hz, 1H, H-4’), 2.44 (d, $J = 1.1$ Hz, 3H), 1.90 (s, 3H).

C-NMR (100 MHz, CDCl$_3$) δ 195.1, 168.6, 143.1, 141.7, 129.1 (2C), 127.4 (2C), 127.2, 125.1, 124.9, 121.7, 115.2, 88.3, 57.2, 29.7, 15.1

IR (ATR) 1715, 1669, 1595, 1517, 1346, 1217, 932, 851, 758, 699.

HRMS for C$_{17}$H$_{16}$O$_2$S [M+H]$^+$: 285.09493 Found: 285.09910.

3.7 Thiophen-2-ylmethanol (71)

To a solution of LiAlH$_4$ (0.169 g, 4.46 mmol) in dry THF (10 mL), thiophene-2-carbaldehyde (53) (1.0 g, 8.92 mmol) was added dropwise in an ice-bath. After the reaction mixture was stirred for 2 h, and then the reaction mixture was quenched with sat. NH$_4$Cl solution. Then the extraction was performed with ethyl acetate (3 × 100 mL). The combined organic extracts were dried over MgSO$_4$. Removal of solvent gave thiophen-2-ylmethanol (71) (930 mg, 91% isolated yield) as a yellow liquid.

C-NMR (100 MHz, CDCl$_3$) δ 195.1, 168.6, 143.1, 141.7, 129.1 (2C), 127.4 (2C), 127.2, 125.1, 124.9, 121.7, 115.2, 88.3, 57.2, 29.7, 15.1

13C-NMR (100 MHz, CDCl$_3$) δ 195.1, 168.6, 143.1, 141.7, 129.1 (2C), 127.4 (2C), 127.2, 125.1, 124.9, 121.7, 115.2, 88.3, 57.2, 29.7, 15.1

IR (ATR) 1715, 1669, 1595, 1517, 1346, 1217, 932, 851, 758, 699.

HRMS for C$_{17}$H$_{16}$O$_2$S [M+H]$^+$: 285.09493 Found: 285.09910.

3.8 2-(Chloromethyl)thiophene (72)

Thiophene-2-ylmethanol (71) (9.42 g, 0.083 mol) was dissolved in dry CH$_2$Cl$_2$ (50 mL). The reaction flask was placed in a 0 °C ice bath. Then SOCl$_2$ (10.81 g, 0.091 mol) was added dropwise to the reaction mixture over 30 min. After the reaction
mixture was stirred for 4 h at 0 °C, removal of solvent gave 10.44 g 2-(Chloromethyl) thiophene (72) as a colorless liquid (10.44 g, 95%).

\[
\begin{align*}
\text{1H-NMR} & \quad (400 \text{ MHz, CDCl}_3) \delta 7.20 (\text{dd}, J_{3,4} = 5.1 \text{ Hz}, J_{5,3} = 0.9 \text{ Hz}, 1\text{H, H-5}), 6.98 (\text{br d}, J_{3,4} = 2.9 \text{ Hz}, 1\text{H, H-3}), 6.85 (\text{dd}, J_{4,5} = 5.1 \text{ Hz}, J_{4,3} = 3.6 \text{ Hz}, 1\text{H, H-4}), 4.70 (s, 2\text{H, H-1a}).
\end{align*}
\]

\[
\begin{align*}
\text{13C-NMR} & \quad (100 \text{ MHz, CDCl}_3) \delta 140.2, 127.8, 127.0 (2\text{C}), 40.5.
\end{align*}
\]

3.9 Triphenyl thiophen-2-yl methylphosphonium chloride (73)

Triphenylphosphine (51) (2.76 g, 10.52 mmol) was added to a solution of (72) (0.93 g, 7.02 mmol) in acetonitrile (30 mL). The reaction mixture was heated at reflux temperature for 16 h and then cooled to room temperature. After the removal of solvent the product was washed with diethylether (50 mL) and Triphenyl(thiophen-2-yl methyl)phosphonium chloride (73) was collected (2.44 g, 88 %) as a light pink cubic crystals. M.p: 311-312°C.

\[
\begin{align*}
\text{1H-NMR} & \quad (400 \text{ MHz, CDCl}_3) \delta 7.70 (\text{m}, 9\text{H}), 7.60-7.55 (\text{m, 6H}), 7.05 (\text{m, 2H}), 6.77 (\text{bt, } J = 4.3 \text{ Hz, 1H}), 5.79 (\text{d, } J_{1a,1} = 13.3 \text{ Hz, 2H, H-1a}).
\end{align*}
\]

\[
\begin{align*}
\text{13C-NMR} & \quad (100 \text{ MHz, CDCl}_3) \delta 135.1 (3\text{C}), 134.3 (6\text{C}), 131.9, 130.3 (6\text{C}), 127.7, 127.4, 126.8, 117.8 (3\text{C}), 26.6.
\end{align*}
\]

3.10 \((E)-2-(2\text{-}(thiophen-3-yl)vinyliothiophen (74) and (Z)-2-(2\text{-}(thiophen-3-yl)vinyliothiophen (75)\]

Wittig salt 73 (1.73 g, 4.38 mmol) was added to a Na / EtOH solution, which is prepared by the dissolution of metallic sodium (0.121 g, 5.26 mmol) in 50 mL of EtOH. After the dissolution of all Wittig salt, thiophene-3-carbaldehyde (62) (0.45 g, 4.01 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and
the reaction mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO$_4$. Evaporation of the solvent under the reduced pressure gave the residue, which was then separated by column chromatography on silica gel eluting with hexane to yield (Z)-2-(2-(thiophen-3-yl)vinyl)thiophene (75) as a first fraction: colorless liquid, 230 mg (30 % isolated yield). (E)-2-(2-(thiophen-3-yl)vinyl)thiophene (74) was isolated as a second fraction: white needle (from hexane) 427 mg (55.5% isolated yield).

(E)-2-(2-(thiophen-3-yl)vinylthiophen (74)

\[\text{1H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.25-7.22 \text{ (m, 2H), 7.16 (bt, } J = 1.9 \text{ Hz, 1H), 7.10 (d, } J = 4.9 \text{ Hz, 1H), 7.00 (d, A part of AB system } J = 16.1 \text{ Hz, 1H), 6.96 (d, } J_{3,4} = 3.3 \text{ Hz, 1H, H-3), 6.92 (dd, } J_{4,5} = 5.0 \text{ Hz, } J_{4,3} = 3.3 \text{ Hz, 1H, H-4), 6.90 (d, B part of AB system } J = 16.1 \text{ Hz, 1H).} \]

\[\text{13C-NMR (100 MHz, CDCl}_3\text{)} \delta 142.8, 139.7, 127.6, 126.3, 125.7, 124.8, 124.1, 122.7, 122.2, 121.8. \]

\[\text{IR (ATR) 3091, 1744, 1429, 1374, 1273, 1213, 1076, 1040, 951, 866, 856, 816, 769.} \]

HRMS for C$_{10}$H$_8$S$_2$ [M-H]: 190.99892 Found: 191.00145

(Z)-2-(2-(thiophen-3-yl)vinyl thiophen (75)

\[\text{1H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.19-7.17 \text{ (m, 2H), 7.06 (d, } J = 5.0 \text{ Hz, 1H), 6.95-6.92 \text{ (m, 1H), 6.92 (d, } J_{3,4} = 3.6 \text{ Hz, 1H, H-3), 6.83 (dd, } J_{4,5} = 4.9 \text{ Hz, } J_{4,3} = 3.5 \text{ Hz, 1H, H-4), 6.55 (d, A part of AB system } J = 11.9 \text{ Hz, 1H), 6.37 (d, B part of AB system } J = 11.9 \text{ Hz, 1H).} \]

\[\text{13C-NMR (100 MHz, CDCl}_3\text{)} \delta 139.9, 137.8, 128.1, 128.0, 126.7, 125.7, 125.5, 124.2, 123.8, 123.3. \]
IR (ATR) 3102, 3011, 2923, 2853, 1732, 1435, 1411, 1350, 1261, 1214, 1108, 1079, 1044, 949, 855, 835, 807, 757.

HRMS for C_{10}H_{8}S_{2} [M-H]^{-}: 190.99892 Found: 191.00145.

3.11 1-(2-Methyl-5-(thiophen-2-yl)-4-(thiophen-3-yl)-4,5-dihyfuran-3-yl)ethanone (76)

Mn(OAc)$_3$ (1.59 g, 5.94 mmol) was dissolved in 30 mL of glacial acetic acid and the reaction flask was heated to 80 °C under nitrogen. Then a mixture of (E)-2-(2-(thiophen-3-yl)vinyl)thiophene (74) (0.381 g, 1.98 mmol) and acetylacetone (56) (3.97 g, 39.64 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)$_3$ solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to the room temperature and saturated NaHCO$_3$ solution was added. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO$_4$. Evaporation of the solvent under the reduced pressure afforded the residue, which was then separated by column chromatography on silica gel eluting with hexane/EtOAc (20:1) to yield 1-(2-methyl-5-(thiophen-2-yl)-4-(thiophen-3-yl)-4,5-dihyfuran-3-yl)ethanone (76) as a pale yellow liquid, 477 mg (83% isolated yield).

1H-NMR (400 MHz, C$_6$D$_6$) δ 6.63 (dd, $J_{5,4} =$ 5.0 Hz, $J_{5,2} =$ 3.0 Hz, 1H, H-5), 6.61 (dd, $J_{5,4} =$ 5.0 Hz, $J_{5,3} =$ 1.2 Hz, 1H, H-5), 6.5 (dd, $J_{4,5} =$ 5.0 Hz, $J_{4,2} =$ 1.2 Hz, 1H, H-4), 6.47 (dd, $J_{3,4} =$ 3.5 Hz, $J_{3,5} =$ 1.2 Hz, 1H, H-3), 6.43 (dd, $J_{4,5} =$ 5.0 Hz, $J_{4,3} =$ 3.6 Hz, 1H, H-4′), 6.41 (dd, $J_{2,5} =$ 2.9 Hz, $J_{2,4} =$ 1.2 Hz, 1H, H-2), 5.15 (d, $J_{2,3} =$ 5.4 Hz, 1H, H-2′), 4.23 (dd, $J_{3,2} =$ 5.4 Hz, $J =$ 1.0 Hz, 1H, H-3′), 2.06 (d, $J =$ 1.0 Hz, 3H), 1.52 (s, 3H).

13C-NMR (100 MHz, C$_6$D$_6$) δ 193.0, 166.8, 143.8, 143.7, 126.8, 126.7, 126.5, 125.6, 125.1, 121.5, 115.2, 86.7, 53.3, 29.1, 14.7.
IR (ATR) 3096, 2962, 2921, 1744, 1668, 1592, 1417, 1370, 1326, 1260, 1227, 1119, 1078, 1017, 930, 857, 833, 793, 704.

HRMS for C_{15}H_{14}O_{2}S_{2}[M+H]^+: 291.05135 Found: 291.05452

3.12 2-Methoxybenzaldehyde (87)

2-Hydroxybenzaldehyde (85) (1.46 g, 12.0 mmol) was methylated using methyl iodide (86) (1.7 g, 12 mmol) and anhydrous potassium carbonate (1.7 g, 12 mmol) in DMF (7 mL), by stirring at room temperature for 12 h. After the reaction was complete, the reaction mixture was extracted with ethyl acetate (3 × 50 mL). Removal of solvent gave crude product, which was chromatographed over silica gel eluting with hexane / EtOAc (10:1) to give the 2-Methoxybenzaldehyde (87) as a pale yellow liquid, 1.58 g (97% isolated yield).

\[\text{δ}^{1}H-NMR (400 MHz, CDCl}_3 \] δ 10.41 (s, 1H, H-1b), 7.76 (dd, \(J_{6,5} = 7.7 \text{ Hz}, J_{6,4} = 1.7 \text{ Hz}, 1H, H-6)\), 7.49 (td, \(J_{4,5} = 7.7 \text{ Hz}, J_{4,6} = 1.7 \text{ Hz}, 1H, H-4)\), 6.98-6.91 (m, 2H), 3.84 (s, 3H, H-1a).

\[\text{δ}^{13}C-NMR (100 MHz, CDCl}_3 \] δ 189.7, 161.8, 136.0, 128.3, 124.7, 120.6, 111.7, 55.6.

3.13 (E)-1-methoxy-2-styrylbenzene (88) and (Z)-1-methoxy-2-styryl benzene (89)

Wittig salt 52 (4.5 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared by the dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 ml of EtOH. After the dissolution of all Wittig salt, 2-Methoxybenzaldehyde (87) (1.288 g, 9.46 mmol) was added to reaction mixture. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO₄. Evaporation of the solvent under the reduced pressure gave
the residue, which was then separated by column chromatography on silica gel eluted with hexane. (Z)-1-methoxy-2-styryl benzene (89) was isolated as a first fraction: colorless liquid 810 mg, 41% (isolated yield). (E)-1-methoxy-2-styrylbenzene (88) was isolated as a second fraction: colorless liquid 970 mg, 49% (isolated yield). 31

(E)-1-methoxy-2-styryl benzene (88)

\[
\begin{align*}
\text{H-NMR} & \quad (400 \text{ MHz, CDCl}_3) \quad \delta 7.53 \text{ (dd, } J = 7.7 \text{ Hz, } J = 1.5 \text{ Hz, 1H)}, 7.46 \text{ (d, } J_{11,12} = 7.6 \text{ Hz, 2H, H-11)}, 7.42 \text{ (A part of AB system d, } J_{8,9} = 16.5 \text{ Hz, 1H, H-8)}, 7.27 \text{ (t, } J_{12,11} = 7.6 \text{ Hz, 2H, H-12)}, 7.20-7.15 \text{ (m, 2H)}, 7.04 \text{ (B part of AB system d, } J_{9,8} = 16.5 \text{ Hz, 1H, H-9)}, 6.90 \text{ (t, } J = 7.5 \text{ Hz, 1H)}, 6.83 \text{ (d, } J = 8.2 \text{ Hz, 1H)}, 3.82 \text{ (s, 3H)}. \\
\text{C-NMR} & \quad \delta 156.9, 138.0, 129.1, 128.7, 128.6 (2C), 128.0, 127.4, 126.6 (2C), 126.4, 123.5, 120.8, 110.9, 55.5.
\end{align*}
\]

(Z)-1-methoxy-2-styryl benzene (89)

\[
\begin{align*}
\text{H-NMR} & \quad (400 \text{ MHz, CDCl}_3) \quad \delta 7.18-7.08 \text{ (m, 7H)}, 6.82 \text{ (d, } J = 8.2 \text{ Hz, 1H)}, 6.68 \text{ (t, } J = 7.5 \text{ Hz, 1H)}, 6.62 \text{ (A part of AB system d, } J = 12.3 \text{ Hz, 1H)}, 6.56 \text{ (B part of AB system d, } J = 12.3 \text{ Hz, 1H)}, 3.76 \text{ (s, 3H)}. \\
\text{C-NMR} & \quad (100 \text{ MHz, CDCl}_3) \quad \delta 157.9, 139.0, 130.1, 129.7, 129.6 (2C), 129.0, 128.3, 127.5 (2C), 127.4, 124.5, 121.7, 111.9, 56.5.
\end{align*}
\]

3.14 1-(5-(2-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (90) and 1-(4-(2-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (91)

Mn(OAc)$_3$ (2.91 g, 10.8 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of (E)-1-methoxy-2-styrylbenzene (88) (0.76 g, 3.6 mmol) and acetylacetone (56) (7.24 g, 72.3 mmol) in
50 mL of glacial acetic acid was added dropwise to the Mn(OAc)\textsubscript{3} solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to the room temperature and saturated NaHCO\textsubscript{3} solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO\textsubscript{4}. Evaporation of the solvent gave the crude product, which was column chromatographed on silica gel eluting with (5:1 DCM/hexane). 1-(5-(2-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl) ethanone (90) was isolated as a second fraction: pale yellow liquid (0.704 g (64% isolated yield). 1-(4-(2-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl) ethanone (91) could not be separated. According to crude NMR of the mixture, crude yield of the compound 91 was 36%.

1-(5-(2-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (90)

\begin{center}
\includegraphics[width=0.5\textwidth]{compound_90.png}
\end{center}

\begin{itemize}
\item \textbf{\textit{1H}-NMR} (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.31-7.25 (m, 3H), 7.23-7.22 (m, 1 Hz), 7.19 (dd, \(J = 7.8 \text{ Hz}, J = 1.7 \text{ Hz}, 2H\)), 7.14 (dd, \(J = 7.5 \text{ Hz}, J = 1.3 \text{ Hz}, 1H\)), 6.91 (dt, \(J = 7.5 \text{ Hz}, J = 0.7 \text{ Hz}, 1H\)), 6.86 (d, \(J = 8.2 \text{ Hz}, 1H\)), 5.57 (d, \(J_{5'4'} = 4.2 \text{ Hz}, 1H, H-5'\)), 4.09 (dd, \(J_{4'5'} = 4.2 \text{ Hz}, J = 1.0 \text{ Hz}, 1H, H-4'\)), 3.72 (s, 3H), 2.45 (s, 3H), 1.79 (s, 3H).
\item \textbf{\textit{13C}-NMR} (100 MHz, CDCl\textsubscript{3}) \(\delta\) 195.5, 169.1, 156.1, 143.8, 129.2, 129.1, 128.7 (2C), 127.6 (2C), 127.0, 125.2, 120.5, 115.4, 110.5, 87.6, 57.0, 55.0, 29.5, 15.1.
\item \textbf{IR} (ATR) 2988, 2900, 1669, 1438, 1491, 1455, 1378, 1286, 1188, 1075, 1066, 1050, 1027, 930, 753, 700, 653, 628.
\item \textbf{HRMS} for C\textsubscript{20}H\textsubscript{21}O\textsubscript{3} [M+H]+: 309.37894 Found: 309.15041
\end{itemize}

3.15 1-Methoxy-4-[(\textit{E})-2-phenylethenyl]benzene (96) and 1-Methoxy-4-[(\textit{Z})-2-phenylethenyl]benzene (97)

Wittig salt 52 (4.5 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared by dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 mL of EtOH.
After the dissolution of all Wittig salt, 4-Methoxybenzaldehyde (95) (1.288 g, 9.46 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO₄. Evaporation of the solvent under the reduced pressure gave the residue, which was then separated by column chromatography on silica gel eluted with hexane. 1-Methoxy-4-[(Z)-2-phenylethenyl]benzene (96) was isolated as a first fraction: colorless liquid 0.495 g (25% isolated yield). 1-Methoxy-4-[(E)-2-phenylethenyl]benzene (97) was isolated as a second fraction: white needles (from hexane), 1.43 g (72% isolated yield), m.p 128-129 °C (Lit. 136 °C).³¹

1-Methoxy-4-[(E)-2-phenylethenyl]benzene (96)

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.34 \text{ (br d, } J_{9,10} = 7.3 \text{ Hz, 2H, H-9), 7.26 (A part of AA'BB', quasi-d } J_{4,3} = 8.6 \text{ Hz, 2H, H-4), 7.16 (t, } J = 7.6 \text{ Hz, 2H, H-10), 7.06 (t, } J = 7.2 \text{ Hz, 1H, H-11), 7.01 (A part of AB system d, } J_{6,7} = 16.4 \text{ Hz, 1H, H-6), 6.91 (B part of AB system d, } J_{7,6} = 16.4 \text{ Hz, 1H, H-7), 6.76 (B part of AA'BB' quasi-d, } J_{3,4} = 8.7 \text{ Hz, 2H, H-3), 3.28 (s, 3H, H-2').} \]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 159.3, 137.7, 130.2, 128.7, 128.2, 127.7, 127.2, 126.7, 126.3, 114.2, 55.3. \]

1-Methoxy-4-[(Z)-2-phenylethenyl]benzene (97)

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.32 \text{ (dd, } J_{9,10} = 8.6 \text{ Hz, } J_{9,11} = 1.4 \text{ Hz, 2H, H-9), 7.20 (A part of AA'BB' system quasi-d, } J_{4,3} = 8.7 \text{ Hz, 2H, H-4), 7.05 (m, 2H, H-10), 6.98 (tt, } J_{11,10} = 7.3 \text{ Hz, } J_{11,9} = 1.4 \text{ Hz, 1H, H-11), 6.60 (B part of AA'BB' system quasi-d, } J_{3,4} = 8.7 \text{ Hz, 2H, H-3), 6.48 (A part of AB system d, } J_{6,7} = 12.2 \text{ Hz, 1H, H-6), 6.44 (B part of AB system d, } J_{7,6} = 12.2 \text{ Hz, 1H, H-7), 3.21 (s, 3H, H-2').} \]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 158.8, 137.7, 130.3, 129.9, 129.7, 128.9, 128.8, 128.4, 127.0, 113.7, 55.2. \]
3.16 1-(5-(4-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (98) and 1-(4-(4-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl) ethanone (99)

Mn(OAc)₃ (2.91 g, 10.8 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of 1-methoxy-4-[(E)-2-phenylethenyl]benzene (96) (0.76 g, 3.6 mmol) and acetylacetone (56) (7.24 g, 72.3 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)₃ solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to the room temperature and saturated NaHCO₃ solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 5 0 mL). The combined organic layers were dried over MgSO₄. Evaporation of the solvent gave the crude product which was column chromatographed on silica gel eluting with (5:1 DCM/hexane). 1-(5-(4-methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (98) was isolated as a second fraction: pale yellow liquid, 0.869 g (79% crude yield). 1-(4-(4-Methoxyphenyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (99) can not be separated. According to crude NMR of the reaction mixture, crude yield of compound 99 was 21%.

1-(5-(4-Methoxyphenyl)-2-methyl-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (98)

1H-NMR (400 MHz, CDCl₃) δ 7.37-7.34 (m, 2H), 7.29-7.27 (m, 1H), 7.22-7.20 (m, 2H), 7.21 (A part of AA’BB’ system quasi-d, J₄₃ = 8.6 Hz, 2H, H-4), 6.92 (B part of AA’BB’ system quasi-d, J₃₄ = 8.6 Hz, 2H, H-3), 5.28 (d, J₅₄ = 6.0 Hz, 1H, H-5), 4.30 (dd, J₄₅ = 6.0 Hz, J =1.0 Hz, 1H, H-4’), 3.83 (s, 3H), 2.46 (d, J = 1.2 Hz, 3H), 1.88 (s, 3H).

13C-NMR (100 MHz, CDCl₃) δ 195.3, 168.9, 159.8, 143.4, 133.0, 129.1 (2C), 127.4 (2C), 127.3, 126.8 (2C), 115.1, 114.2 (2C), 91.9, 58.2, 55.3, 29.7, 15.2.

IR (ATR) 2932, 1741, 1667, 1593, 1512, 1422, 1377, 1304, 1243, 1174, 1128, 1111, 1076, 1029, 931, 826, 774, 750, 700, 645, 628, 606, 558.
HRMS for C_{20}H_{21}O_{3} [M+H]^+: 309.37894 Found: 309.15023.

3.17 (E)-1-Nitro-4-styrylbenzene (101) and (Z)-1-Nitro-4-styrylbenzene (102)

Wittig salt 52 (4.5 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared by the dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 mL of EtOH. After the dissolution of all Wittig salt, 4-nitrobenzaldehyde (100) (1.43 g, 9.46 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3×50 mL). The organic extracts were dried over MgSO₄. Evaporation of the solvent under the reduced pressure gave the residue, which was then separated by column chromatography on silica gel eluted with hexane. (E)-1-Nitro-4-styrylbenzene (101) was isolated as a second fraction: yellow needle (crystallized in hexane), 1.36 g (64% crude yield), m.p 159-161 °C (Lit. 157 °C).³² (Z)-1-Nitro-4-styrylbenzene (102) can not be separated. According to crude NMR of the reaction mixture, crude yield of the compound 102 was 36%.

(E)-1-Nitro-4-styrylbenzene (101)

\[\text{1H-NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta 8.22 \text{ (A part of AA'BB' system quasi-d, } J_{3,4} = 8.8 \text{ Hz, } 2H, \text{ H-3), 7.6 \text{ (B part of AA'BB' system quasi-d, } J_{4,3} = 8.8 \text{ Hz, } 2H, \text{ H-4), 7.56 \text{ (d,}} \]
\[J_{10,11} = 7.2 \text{ Hz, } 2H, \text{ H-10), 7.41 \text{ (t, } J = 7.3 \text{ Hz, } 2H, \text{ H-11), 7.34 \text{ (bt, } J_{12,11} = 7.3 \text{ Hz, 1H, H-12), 7.27 \text{ (A part of AB system d, } J_{8,7} = 16.3 \text{ Hz, 1H,}} \]
\[\text{H-8), 7.14 \text{ (B part of AB system d, } J_{7,8} = 16.3 \text{ Hz, 1H, H-7).} \]

\[\text{13C-NMR} \ (100 \text{ MHz, CDCl}_3) \ \delta 141.5, 138.6, 130.9, 128.1, 123.7 \text{ (2C), 123.6, 121.8 \text{ (2C), 121.6 \text{ (2C), 121.0, 119.0 \text{ (2C).}}} \]
3.18 1-(2-Methyl-5-(4-nitrophenyl)-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (103) and 1-(2-Methyl-4-(4-nitrophenyl)-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (104)

Mn(OAc)$_3$ (1.163 g, 4.33 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of (E)-1-Nitro-4-styrylbenzene (101) (0.326 g, 1.4 mmol) and acetylacetone (56) (2.89 g, 28.9 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)$_3$ solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to the room temperature and saturated NaHCO$_3$ solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO$_4$. Evaporation of the solvent gave the crude product which is column chromatographed on silica gel eluting with (10:1 hexane/EtOAc). 1-(2-Methyl-4-(4-nitrophenyl)-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (103) was isolated as a first fraction: pale yellow liquid, 0.41 g (90% isolated yield). 1-(2-Methyl-5-(4-nitrophenyl)-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (104) was isolated as a second fraction: pale yellow liquid, 0.045 g (10% isolated yield).

1-(2-Methyl-5-(4-nitrophenyl)-4-phenyl-4,5-dihydrofuran-3-yl)ethanone (103)

1H-NMR (400 MHz, C$_6$D$_6$) δ 7.78 (A part of AA'BB' system quasi-d, $J_{3,4} = 8.6$ Hz, 2H, H-3), 7.12-7.10 (m, 3H), 7.02 (bd, $J = 6.6$ Hz, 2H), 6.66 (B part of AA'BB' system quasi-d, $J_{4,3} = 8.6$ Hz, 2H, H-4), 4.95 (d, $J_{5',4'} = 6.2$ Hz, 1H, H-5'), 4.09 ($J_{4,5'} = 6.2$ Hz, 1H, H-4'), 2.21 (s, 3H), 1.57 (s, 3H).

13C-NMR (100 MHz, C$_6$D$_6$) δ 192.9, 167.3, 147.9, 147.5, 143.0, 129.4 (2C), 128.4, 127.5 (2C), 125.6 (2C), 123.9 (2C), 115.1, 90.2, 58.7, 29.4, 14.5.

IR (ATR) 1715, 1669, 1595, 1517, 1346, 1217, 932, 851, 699.

HRMS for C$_{19}$H$_{18}$NO$_4$ [M+H]$^+$: 324.35052 Found: 324.12522
1-(2-Methyl-4-(4-nitrophenyl)-5-phenyl-4,5-dihydrofuran-3-yl)ethanone (104)

1H-NMR (400 MHz, C$_6$D$_6$) δ 7.80 (A part of AA'BB' system quasi-d, $J_{3,4} = 8.7$ Hz, 2H, H-3), 7.11 (dd, $J_{2a,3a} = 7.4$ Hz, $J_{2a,4a} = 1.5$ Hz, 2H, H-2a), 7.08-7.04 (m, 1H), 6.97-6.94 (m, 2H), 6.69 (B part of AA'BB' system quasi-d, $J_{4,3} = 8.7$ Hz, 2H, H-4), 4.97 (d, $J_{5',4'} = 6.2$ Hz, 1H, H-5'), 3.90 (dd, $J_{4',5'} = 6.2$ Hz, $J_{4',1b} = 1.2$ Hz, 1H, H-4'), 2.30 (d, $J_{1b,4} = 1.2$ Hz, 3H, H-1b), 1.6 (s, 3H).

13C-NMR (100 MHz, C$_6$D$_6$) δ 192.1, 168.1, 150.3, 147.3, 140.7, 129.0 (2C), 128.7, 128.0 (2C), 125.3 (2C), 124.2 (2C), 115.2, 91.0, 58.2, 29.2, 14.6.

IR (ATR) 1671, 1595, 1518, 1378, 1345, 1314, 1248, 1216, 1189, 1108, 1001, 930, 840, 751, 699, 650, 628

HRMS for C$_{19}$H$_{18}$NO$_4$ [M+H]$^+$: 324.35052 Found: 324.12465

3.19 (4-Methoxyphenyl)methanol (105)

To a solution of LiAlH$_4$ (0.418 g, 0.011 mol) in dry THF (35 mL), 4-methoxybenzaldehyde (95) (3.0 g, 0.022 mol) was added drop wise in an ice-bath. After the reaction was stirred for 2 h, the mixture was quenched with sat. NH$_4$Cl solution. Then the extraction was performed with ethyl acetate (3 × 50mL) and dried over MgSO$_4$. Evaporation of solvent under the reduced pressure gave successively (4-Methoxyphenyl)methanol (105) as a colorless liquid, 2.94 g (97% isolated yield).33

1H-NMR (400 MHz, CDCl$_3$) δ 7.24 (A part of AA'BB' system, quasi-d, $J_{2,3} = 8.6$ Hz, 2H, H-2), 6.88 (B part of AA'BB' system, quasi-d, $J_{3,2} = 8.6$ Hz, 2H, H-3), 4.5 (s, 2H, H-1'), 3.78 (s, 3H, H-5), 3.56 (bs, 1H, H-2').

13C-NMR (100 MHz, CDCl$_3$) δ 158.9, 133.3, 128.6 (2C), 113.8 (2C), 64.5, 55.2.
3.20 1-(Chloromethyl)-4-methoxybenzene (106)

To a solution of (4-Methoxyphenyl)methanol (105) (2.33 g, 0.0168 mol) in dry CH₂Cl₂ (50 mL), SOCl₂ (4.02 g, 0.033 mol) was added slowly. The reaction was stirred for 30 min. After the completion of reaction the evaporation of solvent under the reduced pressure gave successively 1-(chloromethyl)-4-methoxybenzene (106) as a light brown liquid, 2.55 g (%97 isolated yield).

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.32 \text{ (A part of AA'BB' system, quasi-d, } J_{2,3} = 8.6 \text{ Hz, 2H, H-2), 6.88 (B part of AA'BB' system, quasi-d, } J_{3,2} = 8.6 \text{ Hz, 2H, H-3), 4.53 (s, 2H, H-1‘), 3.79 (s, 3H, H-5).} \]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 159.8, 130.2 (2C), 129.8, 114.2 (2C), 55.3, 45.4. \]

3.21 (4-Methoxybenzyl)triphenylphosphonium chloride (107)

Triphenylphosphine (51) (25 g, 0.095mol) was added to a solution of (106) (17.5 g, 0.112 mol) in toluene (250 mL). The mixture was heated to reflux for 6 h and then cooled to room temperature. The product was collected, recrystallized from ethanol-hexane mixture and 33.4 g (84% isolated yield) of (107) was collected as a white cubic crystals. M.p: 245-247 °C (Lit. 241-243 °C).

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.79-7.71 \text{ (m, 9H), 7.66-7.62 (m, 6H), 7.01 (dd, } J = 8.7 \text{ Hz, } J = 2.5 \text{ Hz, 2H), 6.66 (d, } J_{5,4} = 8.4 \text{ Hz, 2H, H-5), 5.36 (d, } J_{2,1} = 13.8 \text{ Hz, 2H, H-2), 3.73 (s, 3H, H-8).} \]

\[\text{C-NMR (100 MHz, CDCl}_3\text{)} \delta 159.6, 134.9 (3C), 134.4 (6C), 132.7 (2C), 130.2 (6C), 118.6 , 117.9 (3C), 114.2 (2C), 55.2, 29.9. \]
3.22 \((E)-1\text{-}\text{Methoxy-4-(4-nitrostyryl)benzene (108)}\) and \((Z)-1\text{-}\text{Methoxy-4-(4-nitrostyryl)benzene (109)}\)

\((4\text{-methoxybenzyl})\text{triphenylphosphonium chloride (107)}\) (4.35 g, 10.4 mmol) was added to a Na / EtOH solution, which is prepared by the dissolution of metallic sodium (0.29 g, 12.5 mmol) in 50 mL of EtOH. After the dissolution of all Wittig salt 107, 4-nitrobenzaldehyde (100) (1.43 g, 9.46 mmol) was added to reaction media. The reaction mixture was stirred at room temperature for 24 h. After the evaporation of reaction solvent, water was added and the mixture was extracted with dichloromethane (3 × 50 mL). The organic extracts were dried over MgSO\(_4\). Evaporation of the solvent under the reduced pressure gave the residue, which was then separated by column chromatography on silica gel eluted with hexane. \((E)-1\text{-Methoxy-4-(4-nitrostyryl)benzene (108)}\) was isolated as a second fraction: yellow needle (crystallized in hexane), 1.75 g (73% crude yield), m.p 135-137 °C (Lit. 130-131 °C).\(^{36}\) \((Z)-1\text{-Methoxy-4-(4-nitrostyryl)benzene (109)}\) could not be separated.

According to the crude NMR of the reaction mixture, the crude yield of the compound 109 was 27%.

\((E)-1\text{-Methoxy-4-(4-nitrostyryl)benzene (108)}\)

\(^1\text{H-}\text{NMR}\ (400 \text{ MHz, CDCl}_3)\ \delta 8.13 \text{ (A part of AA’BB’ system quasi-d, } J_{3,4} = 8.8 \text{ Hz, 2H, H-3),} 7.52 \text{ (B part of AA’BB’ system quasi-d, } J_{4,3} = 8.8 \text{ Hz, 2H, H-4),} 7.43 \text{ (A part of AA’BB’ system quasi-d, } J_{4b,3b} = 8.7 \text{ Hz, 2H, H-4b),} 7.15 \text{ (A part of AB system d, } J_{2a,1a} = 16.3 \text{ Hz, 1H, H-2a),} 6.93 \text{ (B part of AB system d, } J_{1a,2a} = 16.3 \text{ Hz, 1H, H-1a),} 6.86 \text{ (B part of AA’BB’ system quasi-d, } J_{3b,4b} = 8.7 \text{ Hz, 2H, H-3b),} 3.78 \text{ (s, 3H).}

\(^{13}\text{C-}\text{NMR}\ (100 \text{ MHz, CDCl}_3)\ \delta 160.3, 146.5, 144.3, 132.9, 128.9, 128.4 (2\text{C}), 126.5 (2\text{C}), 124.2 (2\text{C}), 124.1, 114.4 (2\text{C}), 55.4.
3.23 1-(5-(4-Methoxyphenyl)-2-methyl-4-(4-nitrophenyl)-4,5-dihydrofuran-3-yl)ethanone (110)

Mn(OAc)$_3$ (0.80 g, 2.98 mmol) was dissolved in 30 mL of glacial acetic acid and the flask was heated to 80 °C under nitrogen. Then a mixture of (E)-1-methoxy-4-(4-nitrostyryl)benzene (108) (0.254 g, 0.995 mmol) and acetylacetone (56) (1.99 g, 19.87 mmol) in 50 mL of glacial acetic acid was added dropwise to the Mn(OAc)$_3$ solution. The reaction mixture was stirred for 24 h at 80 °C under nitrogen. The reaction mixture was cooled to the room temperature and saturated NaHCO$_3$ solution was added to the reaction mixture. Then the solution was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over MgSO$_4$. Evaporation of the solvent gave the crude product which was column chromatographed on silica gel eluting with (10:1 hexane/EtOAc) to yield 1-(5-(4-methoxyphenyl)-2-methyl-4-(4-nitrophenyl)-4,5-dihydrofuran-3-yl)ethanone (110) as a pale yellow liquid (312 mg, 89% isolated yield).

1H-NMR (400 MHz, CDCl$_3$) δ 8.12 (A part of AA'BB' system quasi-d, $J_{3a,4a} = 8.7$ Hz, 2H, H-3a), 7.30 (B part of AA'BB' system quasi-d, $J_{4a,3a} = 8.7$ Hz, 2H, H-4a), 7.11 (A part of AA'BB' system quasi-d, $J_{4,3} = 8.7$ Hz, 2H, H-4), 6.84 (B part of AA'BB' system quasi-d, $J_{3,4} = 6.2$ Hz, 2H, H-3) 5.17 (d, $J_{5,5'} = 6.2$ Hz, 1H, H-5'), 4.38 (d, $J_{4',5'} = 6.2$ Hz, 1H, H-4'), 3.74 (s, 3H), 2.39 (s, 3H), 1.94 (s, 3H).

13C-NMR (100 MHz, CDCl$_3$) δ 194.0, 169.5, 160.1, 150.8, 147.2, 131.9, 128.3(2C), 126.9 (2C), 124.3 (2C), 115.6, 114.4 (2C), 91.2, 57.8, 55.4, 29.5, 15.4.

IR (ATR) 2935, 2837, 1711, 1670, 1596, 1513, 1462, 1418, 1305, 1244, 1175, 1109, 1077, 1030, 982, 931, 851, 824, 767,745, 693, 631, 617.

HRMS for C$_{17}$H$_{16}$O$_2$S [M+H]$^+$: 354.37650. Found: 354.13519
Radical cyclization of alkenes is one of the most important methods for the synthesis of cyclic compounds. In our study, in the presence of Mn(OAc)$_3$ active methylene compound was added to benzene and thiophene substituted alkenes and cyclization products were formed.

Table 1: Starting alkenes and cyclization product(s)

<table>
<thead>
<tr>
<th>No</th>
<th>Alkene</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the first part, directing effect of the sulfur atom on the regioselective addition of active methylene compound to the benzene and thiophene substituted alkenes were studied. For the cases, in which the thiophene ring bonded to the olefine at C-2 position (Entry No: 1, 3) and for the ortho methoxy substituted stilbene derivative (Entry No: 4) complex formation is proposed and complex formation has the dominating effect on the formation of single regioisomer or product distribution.
For the case, in which the thiophene ring bonded to the olefine at C-3 position (Entry No:2) formation of two regioisomer observed. To search the reason for the formation of two regioisomeric cyclization products and their formation ratio, natural bond orbital (NBO) analysis were done to see whether the electron density on the olefinic carbon atoms have any affect on the reaction mechanism or not. For this reason, electron density on olefinic carbon atoms was changed by introducing electron- donating and electron-withdrawing groups to the benzene ring (Entry No: 5, 6 and 7) and the same reaction pathway was applied to these alkenes. Also NBO analysis were done for these molecules. According to the theoretical and experimental results; for the cases in which complex formation is hindered because of geometrical restrictions, electron density on olefinic carbon atoms have dominating effect on reaction mechanism and major cyclization product forms with the addition of radical to the electron rich olefinic carbon atom
REFERENCES

APPENDICES

SPECTRAL DATA

Figure A 1 1H NMR spectrum of compound 52

Figure A 2 13C NMR spectrum of compound 52
Figure A 3 1H NMR spectrum of compound 54

Figure A 4 13C NMR spectrum of compound 54
Figure A 5 1H NMR spectrum of compound 55

Figure A 6 13C NMR spectrum of compound 55
Figure A 7 1H NMR spectrum of compound 57

Figure A 8 13C NMR spectrum of compound 57
Figure A 9 HSQC spectrum of compound 57

Figure A 10 HMBC spectrum of compound 57
Figure A 11 COSY spectrum of compound 57

Figure A 12 IR spectrum of compound 57
Figure A 13 1H NMR spectrum of compound 63

Figure A 14 13C NMR spectrum of compound 63
Figure A 15 1H NMR spectrum of compound 64

Figure A 16 13C NMR spectrum of compound 64
Figure A 17 1H NMR spectrum of compound 65

Figure A 18 13C NMR spectrum of compound 65
Figure A 19 HSQC spectrum of compound 65

Figure A 20 HMBC spectrum of compound 65
Figure A 21 IR spectrum of compound 65

Figure A 22 1H NMR spectrum of compound 71
Figure A 23 13C NMR spectrum of compound 71

Figure A 24 1H NMR spectrum of compound 72
Figure A 25 13C NMR spectrum of compound 72

Figure A 26 1H NMR spectrum of compound 73
Figure A 27 13C NMR spectrum of compound 73

Figure A 28 1H NMR spectrum of compound 74
Figure A 29 13C NMR spectrum of compound 74

Figure A 30 IR spectrum of compound 74
Figure A 31 1H NMR spectrum of compound 75

Figure A 32 13C NMR spectrum of compound 75
Figure A 33 IR spectrum of compound 75

Figure A 34 1H NMR spectrum of compound 76
Figure A 35 13C NMR spectrum of compound 76

Figure A 36 HSQC spectrum of compound 76
Figure A 37 HMBC spectrum of compound 76

Figure A 38 COSY spectrum of compound 76
Figure A 39 IR spectrum of compound 76

Figure A 40 1H NMR spectrum of compound 87
Figure A 41 13C NMR spectrum of compound 87

Figure A 42 1H NMR spectrum of compound 88
Figure A 43 ¹³C NMR spectrum of compound 88

Figure A 44 ¹H NMR spectrum of compound 89
Figure A 45 ^{13}C NMR spectrum of compound 89

Figure A 46 ^1H NMR spectrum of compound 90
Figure A 47 13C NMR spectrum of compound 90

Figure A 48 HSQC spectrum of compound 90
Figure A 49 HMBC spectrum of compound 90

Figure A 50 COSY spectrum of compound 90
Figure A 51 IR spectrum of compound 90

Figure A 52 1H NMR spectrum of compound 96
Figure A 53 13C NMR spectrum of compound 96

Figure A 54 1H NMR spectrum of compound 97
Figure A 55 13C NMR spectrum of compound 97

Figure A 56 1H NMR spectrum of compound 98
Figure A 57 13C NMR spectrum of compound 98

Figure A 58 HSQC spectrum of compound 98
Figure A 59 HMBC spectrum of compound 98

Figure A 60 COSY spectrum of compound 98
Figure A 61 IR spectrum of compound 98

Figure A 62 1H NMR spectrum of compound 101
Figure A 63 13C NMR spectrum of compound 101

Figure A 64 1H NMR spectrum of compound 104
Figure A 65 13C NMR spectrum of compound 104

Figure A 66 HSQC spectrum of compound 104
Figure A 67 HMBC spectrum of compound 104

Figure A 68 COSY spectrum of compound 104
Figure A 69 IR spectrum of compound 104

Figure A 70 1H NMR spectrum of compound 103
Figure A 71 13C NMR spectrum of compound 103

Figure A 72 HSQC spectrum of compound 103
Figure A 73 HMBC spectrum of compound 103

Figure A 74 COSY spectrum of compound 103
Figure A 75 IR spectrum of compound 103

Figure A 76 1H NMR spectrum of compound 105
Figure A 77 13C NMR spectrum of compound 105

Figure A 78 1H NMR spectrum of compound 106
Figure A 79 13C NMR spectrum of compound 106

Figure A 80 1H NMR spectrum of compound 107
Figure A 81 13C NMR spectrum of compound 107

Figure A 82 1H NMR spectrum of compound 108
Figure A 83 13C NMR spectrum of compound 108

Figure A 84 1H NMR spectrum of compound 110
Figure A 85 13C NMR spectrum of compound 110

Figure A 86 HSQC spectrum of compound 110
Figure A 87 HMBC spectrum of compound 110

Figure A 88 COSY spectrum of compound 110
Figure A 89 IR spectrum of compound 110
THEORETICAL CALCULATIONS

Cartesian Coordinates for the Optimized Structure of Compound 54

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.664342</td>
<td>-3.151499</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-0.848894</td>
<td>-1.795597</td>
<td>0.000000</td>
</tr>
<tr>
<td>S</td>
<td>-2.559136</td>
<td>-1.418124</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.970296</td>
<td>-3.099680</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-1.868146</td>
<td>-3.891864</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.178574</td>
<td>-0.790154</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>0.536190</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.033231</td>
<td>1.560032</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.401527</td>
<td>1.271455</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.339940</td>
<td>2.283937</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.941239</td>
<td>3.613732</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.590473</td>
<td>3.918381</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.650720</td>
<td>2.903307</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>2.737159</td>
<td>0.240090</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>4.395441</td>
<td>2.036087</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>3.681389</td>
<td>4.405340</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.266040</td>
<td>4.952723</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.407220</td>
<td>3.147102</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.322974</td>
<td>-3.597235</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.913800</td>
<td>-4.972640</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-4.008546</td>
<td>-3.394452</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.019689</td>
<td>0.920604</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.188274</td>
<td>-1.197077</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian Coordinates for the Optimized Structure of Compound 55

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.443494</td>
<td>0.903648</td>
<td>0.099576</td>
</tr>
<tr>
<td>C</td>
<td>-1.593900</td>
<td>0.059122</td>
<td>1.197169</td>
</tr>
<tr>
<td>C</td>
<td>-2.527000</td>
<td>-0.962929</td>
<td>1.178462</td>
</tr>
<tr>
<td>C</td>
<td>-3.324917</td>
<td>-1.155922</td>
<td>0.061990</td>
</tr>
<tr>
<td>C</td>
<td>-3.192944</td>
<td>-0.314096</td>
<td>-1.031308</td>
</tr>
<tr>
<td>C</td>
<td>-2.264713</td>
<td>0.712611</td>
<td>-1.009488</td>
</tr>
<tr>
<td>H</td>
<td>-2.631041</td>
<td>-1.612946</td>
<td>2.039765</td>
</tr>
<tr>
<td>H</td>
<td>-4.052723</td>
<td>-1.959030</td>
<td>0.045361</td>
</tr>
<tr>
<td>H</td>
<td>-3.816612</td>
<td>-0.458715</td>
<td>-1.906181</td>
</tr>
<tr>
<td>H</td>
<td>-2.157303</td>
<td>1.369588</td>
<td>-1.866511</td>
</tr>
<tr>
<td>C</td>
<td>-0.449717</td>
<td>1.990068</td>
<td>0.114960</td>
</tr>
<tr>
<td>C</td>
<td>0.879116</td>
<td>1.856081</td>
<td>0.133432</td>
</tr>
<tr>
<td>C</td>
<td>1.705955</td>
<td>0.672585</td>
<td>0.055389</td>
</tr>
<tr>
<td>C</td>
<td>3.071064</td>
<td>0.672963</td>
<td>0.162000</td>
</tr>
<tr>
<td>C</td>
<td>3.663210</td>
<td>-0.595889</td>
<td>-0.017206</td>
</tr>
<tr>
<td>C</td>
<td>2.746816</td>
<td>-1.564672</td>
<td>-0.273521</td>
</tr>
<tr>
<td>S</td>
<td>1.131771</td>
<td>-0.946471</td>
<td>-0.290171</td>
</tr>
<tr>
<td>H</td>
<td>3.629298</td>
<td>1.580034</td>
<td>0.360776</td>
</tr>
<tr>
<td>H</td>
<td>4.727612</td>
<td>-0.780752</td>
<td>0.040022</td>
</tr>
<tr>
<td>H</td>
<td>2.915574</td>
<td>-2.616707</td>
<td>-0.447746</td>
</tr>
<tr>
<td>H</td>
<td>1.467211</td>
<td>2.770831</td>
<td>0.179075</td>
</tr>
<tr>
<td>H</td>
<td>-0.847212</td>
<td>3.002255</td>
<td>0.104053</td>
</tr>
<tr>
<td>H</td>
<td>-0.959998</td>
<td>0.207571</td>
<td>2.065385</td>
</tr>
</tbody>
</table>
Cartesian Coordinates for the Optimized Structure of Compound 63

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.852561</td>
<td>-1.287801</td>
<td>0.001150</td>
</tr>
<tr>
<td>C</td>
<td>2.000443</td>
<td>-0.181517</td>
<td>-0.000103</td>
</tr>
<tr>
<td>C</td>
<td>2.583019</td>
<td>1.089636</td>
<td>-0.001386</td>
</tr>
<tr>
<td>C</td>
<td>3.954949</td>
<td>1.241517</td>
<td>-0.001289</td>
</tr>
<tr>
<td>C</td>
<td>4.786490</td>
<td>0.129957</td>
<td>0.000042</td>
</tr>
<tr>
<td>C</td>
<td>4.227776</td>
<td>-1.136749</td>
<td>0.001255</td>
</tr>
<tr>
<td>C</td>
<td>0.560672</td>
<td>-0.401435</td>
<td>-0.000080</td>
</tr>
<tr>
<td>C</td>
<td>-0.397151</td>
<td>0.529996</td>
<td>0.000320</td>
</tr>
<tr>
<td>C</td>
<td>-1.829790</td>
<td>0.292620</td>
<td>0.000205</td>
</tr>
<tr>
<td>C</td>
<td>-2.774115</td>
<td>1.364106</td>
<td>0.001597</td>
</tr>
<tr>
<td>C</td>
<td>-4.064078</td>
<td>0.953157</td>
<td>0.001267</td>
</tr>
<tr>
<td>S</td>
<td>-4.176588</td>
<td>-0.773574</td>
<td>-0.000811</td>
</tr>
<tr>
<td>C</td>
<td>-2.460179</td>
<td>-0.922577</td>
<td>-0.001230</td>
</tr>
<tr>
<td>H</td>
<td>1.954225</td>
<td>1.973060</td>
<td>-0.002581</td>
</tr>
<tr>
<td>H</td>
<td>4.384037</td>
<td>2.237304</td>
<td>-0.002319</td>
</tr>
<tr>
<td>H</td>
<td>5.863181</td>
<td>0.253382</td>
<td>0.000090</td>
</tr>
<tr>
<td>H</td>
<td>4.865977</td>
<td>-2.013107</td>
<td>0.002257</td>
</tr>
<tr>
<td>H</td>
<td>2.419134</td>
<td>-2.283349</td>
<td>0.002093</td>
</tr>
<tr>
<td>H</td>
<td>-2.479229</td>
<td>2.406459</td>
<td>0.002827</td>
</tr>
<tr>
<td>H</td>
<td>-4.961533</td>
<td>1.552309</td>
<td>0.002101</td>
</tr>
<tr>
<td>H</td>
<td>0.264065</td>
<td>-1.449465</td>
<td>-0.000285</td>
</tr>
<tr>
<td>H</td>
<td>-0.114489</td>
<td>1.580755</td>
<td>0.000892</td>
</tr>
<tr>
<td>H</td>
<td>-2.013555</td>
<td>-1.905626</td>
<td>-0.002581</td>
</tr>
</tbody>
</table>
Cartesian Coordinates for the Optimized Structure of Compound 64

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.913567</td>
<td>0.862193</td>
<td>0.567571</td>
</tr>
<tr>
<td>C</td>
<td>1.704551</td>
<td>0.733718</td>
<td>-0.117313</td>
</tr>
<tr>
<td>C</td>
<td>1.471554</td>
<td>-0.444415</td>
<td>-0.829099</td>
</tr>
<tr>
<td>C</td>
<td>2.401619</td>
<td>-1.467592</td>
<td>-0.825997</td>
</tr>
<tr>
<td>C</td>
<td>3.586544</td>
<td>-1.335907</td>
<td>-0.117114</td>
</tr>
<tr>
<td>C</td>
<td>3.840678</td>
<td>-0.164693</td>
<td>0.578198</td>
</tr>
<tr>
<td>C</td>
<td>0.763775</td>
<td>1.856165</td>
<td>-0.125021</td>
</tr>
<tr>
<td>C</td>
<td>-0.573440</td>
<td>1.847809</td>
<td>-0.115826</td>
</tr>
<tr>
<td>C</td>
<td>-1.497636</td>
<td>0.730627</td>
<td>0.038742</td>
</tr>
<tr>
<td>C</td>
<td>-2.770348</td>
<td>0.766090</td>
<td>-0.458817</td>
</tr>
<tr>
<td>S</td>
<td>-3.671684</td>
<td>-0.656646</td>
<td>-0.084413</td>
</tr>
<tr>
<td>C</td>
<td>-2.322122</td>
<td>-1.310445</td>
<td>0.785611</td>
</tr>
<tr>
<td>C</td>
<td>-1.257520</td>
<td>-0.476069</td>
<td>0.766812</td>
</tr>
<tr>
<td>H</td>
<td>2.205140</td>
<td>-2.372304</td>
<td>-1.390349</td>
</tr>
<tr>
<td>H</td>
<td>4.314103</td>
<td>-2.139341</td>
<td>-0.117345</td>
</tr>
<tr>
<td>H</td>
<td>4.769007</td>
<td>-0.047970</td>
<td>1.125959</td>
</tr>
<tr>
<td>H</td>
<td>3.118978</td>
<td>1.783242</td>
<td>1.104663</td>
</tr>
<tr>
<td>H</td>
<td>-0.324777</td>
<td>-0.693600</td>
<td>1.269653</td>
</tr>
<tr>
<td>H</td>
<td>-2.410192</td>
<td>-2.271412</td>
<td>1.269024</td>
</tr>
<tr>
<td>H</td>
<td>-1.060870</td>
<td>2.815636</td>
<td>-0.210964</td>
</tr>
<tr>
<td>H</td>
<td>1.238158</td>
<td>2.835280</td>
<td>-0.153782</td>
</tr>
<tr>
<td>H</td>
<td>0.554382</td>
<td>-0.547864</td>
<td>-1.398383</td>
</tr>
<tr>
<td>H</td>
<td>-3.224315</td>
<td>1.559784</td>
<td>-1.034337</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C</td>
<td>-2.752738</td>
<td>1.033577</td>
<td>-0.000847</td>
</tr>
<tr>
<td>C</td>
<td>-2.387299</td>
<td>-0.316274</td>
<td>0.000778</td>
</tr>
<tr>
<td>C</td>
<td>-3.410972</td>
<td>-1.266734</td>
<td>0.001798</td>
</tr>
<tr>
<td>C</td>
<td>-4.742750</td>
<td>-0.891785</td>
<td>0.001040</td>
</tr>
<tr>
<td>C</td>
<td>-5.085201</td>
<td>0.449705</td>
<td>-0.000621</td>
</tr>
<tr>
<td>C</td>
<td>-4.081312</td>
<td>1.408797</td>
<td>-0.001554</td>
</tr>
<tr>
<td>C</td>
<td>-1.003966</td>
<td>-0.773217</td>
<td>0.001669</td>
</tr>
<tr>
<td>C</td>
<td>0.090943</td>
<td>-0.005369</td>
<td>-0.001636</td>
</tr>
<tr>
<td>C</td>
<td>1.472097</td>
<td>-0.466002</td>
<td>-0.001014</td>
</tr>
<tr>
<td>C</td>
<td>1.826205</td>
<td>-1.813648</td>
<td>-0.001616</td>
</tr>
<tr>
<td>C</td>
<td>3.144728</td>
<td>-2.227578</td>
<td>-0.000919</td>
</tr>
<tr>
<td>C</td>
<td>4.154914</td>
<td>-1.282352</td>
<td>0.000183</td>
</tr>
<tr>
<td>C</td>
<td>3.845214</td>
<td>0.068153</td>
<td>0.000539</td>
</tr>
<tr>
<td>C</td>
<td>2.518652</td>
<td>0.479130</td>
<td>-0.000010</td>
</tr>
<tr>
<td>O</td>
<td>2.146713</td>
<td>1.782393</td>
<td>0.000373</td>
</tr>
<tr>
<td>C</td>
<td>3.146052</td>
<td>2.768043</td>
<td>0.001311</td>
</tr>
<tr>
<td>H</td>
<td>-3.147588</td>
<td>-2.320071</td>
<td>0.003235</td>
</tr>
<tr>
<td>H</td>
<td>-5.516355</td>
<td>-1.651321</td>
<td>0.001838</td>
</tr>
<tr>
<td>H</td>
<td>-6.126749</td>
<td>0.749140</td>
<td>-0.001207</td>
</tr>
<tr>
<td>H</td>
<td>-4.340346</td>
<td>2.461692</td>
<td>-0.002705</td>
</tr>
<tr>
<td>H</td>
<td>-1.987006</td>
<td>1.801168</td>
<td>-0.001371</td>
</tr>
<tr>
<td>H</td>
<td>4.645052</td>
<td>0.797107</td>
<td>0.001360</td>
</tr>
<tr>
<td>H</td>
<td>5.194162</td>
<td>-1.589889</td>
<td>0.000614</td>
</tr>
<tr>
<td>H</td>
<td>3.382204</td>
<td>-3.284548</td>
<td>-0.001435</td>
</tr>
<tr>
<td>H</td>
<td>1.042298</td>
<td>-2.562498</td>
<td>-0.003000</td>
</tr>
<tr>
<td>H</td>
<td>-0.894389</td>
<td>-1.856318</td>
<td>0.005431</td>
</tr>
<tr>
<td>H</td>
<td>-0.025886</td>
<td>1.072994</td>
<td>-0.005038</td>
</tr>
<tr>
<td>H</td>
<td>2.633256</td>
<td>3.728373</td>
<td>0.001607</td>
</tr>
<tr>
<td>H</td>
<td>3.779752</td>
<td>2.703689</td>
<td>0.893271</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C</td>
<td>2.897460</td>
<td>0.868203</td>
<td>-0.552474</td>
</tr>
<tr>
<td>C</td>
<td>1.630230</td>
<td>0.975185</td>
<td>0.019289</td>
</tr>
<tr>
<td>C</td>
<td>1.318609</td>
<td>0.136876</td>
<td>1.091210</td>
</tr>
<tr>
<td>C</td>
<td>2.230707</td>
<td>-0.796126</td>
<td>1.547762</td>
</tr>
<tr>
<td>C</td>
<td>3.476269</td>
<td>-0.913214</td>
<td>0.946517</td>
</tr>
<tr>
<td>C</td>
<td>3.808225</td>
<td>-0.072779</td>
<td>-0.103422</td>
</tr>
<tr>
<td>C</td>
<td>0.702065</td>
<td>1.980061</td>
<td>-0.497823</td>
</tr>
<tr>
<td>C</td>
<td>-0.632943</td>
<td>1.960316</td>
<td>-0.559835</td>
</tr>
<tr>
<td>C</td>
<td>-1.588257</td>
<td>0.908779</td>
<td>-0.193776</td>
</tr>
<tr>
<td>C</td>
<td>-2.754398</td>
<td>1.271393</td>
<td>0.473565</td>
</tr>
<tr>
<td>C</td>
<td>-3.696302</td>
<td>0.337361</td>
<td>0.870776</td>
</tr>
<tr>
<td>C</td>
<td>-3.484873</td>
<td>-0.997363</td>
<td>0.580059</td>
</tr>
<tr>
<td>C</td>
<td>-2.352421</td>
<td>-1.390469</td>
<td>-0.116935</td>
</tr>
<tr>
<td>C</td>
<td>-1.414699</td>
<td>-0.448359</td>
<td>-0.520481</td>
</tr>
<tr>
<td>H</td>
<td>-1.106820</td>
<td>2.873390</td>
<td>-0.915892</td>
</tr>
<tr>
<td>H</td>
<td>1.185942</td>
<td>2.876935</td>
<td>-0.880343</td>
</tr>
<tr>
<td>O</td>
<td>-0.322382</td>
<td>-0.756292</td>
<td>-1.250751</td>
</tr>
<tr>
<td>H</td>
<td>-2.212518</td>
<td>-2.435456</td>
<td>-0.362805</td>
</tr>
<tr>
<td>H</td>
<td>-4.208373</td>
<td>-1.745404</td>
<td>0.883529</td>
</tr>
<tr>
<td>H</td>
<td>-4.585251</td>
<td>0.651616</td>
<td>1.404185</td>
</tr>
<tr>
<td>H</td>
<td>3.161999</td>
<td>1.530105</td>
<td>-1.371462</td>
</tr>
<tr>
<td>H</td>
<td>4.783776</td>
<td>-0.146078</td>
<td>-0.571028</td>
</tr>
<tr>
<td>H</td>
<td>4.189377</td>
<td>-1.645920</td>
<td>1.306787</td>
</tr>
<tr>
<td>H</td>
<td>1.971606</td>
<td>-1.433947</td>
<td>2.385816</td>
</tr>
<tr>
<td>H</td>
<td>0.350743</td>
<td>0.226424</td>
<td>1.573259</td>
</tr>
<tr>
<td>H</td>
<td>-2.905663</td>
<td>2.321899</td>
<td>0.703028</td>
</tr>
<tr>
<td>C</td>
<td>0.081653</td>
<td>-2.099220</td>
<td>-1.330117</td>
</tr>
</tbody>
</table>

Cartesian Coordinates for the Optimized Structure of Compound 89
Cartesian Coordinates for the Optimized Structure of Compound 96

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.724838</td>
<td>-1.666101</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.015762</td>
<td>-0.303240</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.367663</td>
<td>0.059931</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.372189</td>
<td>-0.880485</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.057747</td>
<td>-2.236381</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.721322</td>
<td>-2.625294</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>0.738134</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-1.326520</td>
<td>0.572851</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.339665</td>
<td>1.619065</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-3.687459</td>
<td>1.252863</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-4.692543</td>
<td>2.203590</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-4.373618</td>
<td>3.551016</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-3.039228</td>
<td>3.934112</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.037186</td>
<td>2.984344</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-3.943466</td>
<td>0.197676</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-5.730376</td>
<td>1.890217</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-5.156980</td>
<td>4.299909</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-2.779158</td>
<td>4.986739</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.002304</td>
<td>3.308755</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>2.627374</td>
<td>1.114099</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>4.416704</td>
<td>-0.592445</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>4.105248</td>
<td>-3.091675</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.447618</td>
<td>-3.672575</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.307839</td>
<td>-1.997745</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.728275</td>
<td>-0.439178</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian Coordinates for the Optimized Structure of Compound 97

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.560033</td>
<td>0.249951</td>
<td>-0.787593</td>
</tr>
<tr>
<td>C</td>
<td>2.465752</td>
<td>0.578970</td>
<td>0.011667</td>
</tr>
<tr>
<td>C</td>
<td>2.055004</td>
<td>-0.339583</td>
<td>0.978912</td>
</tr>
<tr>
<td>C</td>
<td>2.697406</td>
<td>-1.556356</td>
<td>1.115610</td>
</tr>
<tr>
<td>C</td>
<td>3.766953</td>
<td>-1.881364</td>
<td>0.294019</td>
</tr>
<tr>
<td>C</td>
<td>4.198569</td>
<td>-0.971210</td>
<td>-0.656675</td>
</tr>
<tr>
<td>C</td>
<td>1.830308</td>
<td>1.892620</td>
<td>-0.145371</td>
</tr>
<tr>
<td>C</td>
<td>0.533617</td>
<td>2.218859</td>
<td>-0.134017</td>
</tr>
<tr>
<td>C</td>
<td>-0.657999</td>
<td>1.372164</td>
<td>-0.080296</td>
</tr>
<tr>
<td>C</td>
<td>-1.838752</td>
<td>1.897107</td>
<td>0.456100</td>
</tr>
<tr>
<td>C</td>
<td>-2.997977</td>
<td>1.157794</td>
<td>0.514614</td>
</tr>
<tr>
<td>C</td>
<td>-3.022277</td>
<td>-0.140789</td>
<td>0.013266</td>
</tr>
<tr>
<td>C</td>
<td>-1.869907</td>
<td>-0.674430</td>
<td>-0.554056</td>
</tr>
<tr>
<td>C</td>
<td>-0.710283</td>
<td>0.080639</td>
<td>-0.597709</td>
</tr>
<tr>
<td>H</td>
<td>0.311366</td>
<td>3.283133</td>
<td>-0.192739</td>
</tr>
<tr>
<td>H</td>
<td>2.532015</td>
<td>2.712275</td>
<td>-0.288610</td>
</tr>
<tr>
<td>H</td>
<td>0.173754</td>
<td>-0.347330</td>
<td>-1.056533</td>
</tr>
<tr>
<td>H</td>
<td>-1.865554</td>
<td>-1.672066</td>
<td>-0.974036</td>
</tr>
<tr>
<td>O</td>
<td>-4.204121</td>
<td>-0.792029</td>
<td>0.110727</td>
</tr>
<tr>
<td>H</td>
<td>-3.908558</td>
<td>1.564911</td>
<td>0.938336</td>
</tr>
<tr>
<td>H</td>
<td>3.904392</td>
<td>0.965098</td>
<td>-1.528483</td>
</tr>
<tr>
<td>H</td>
<td>5.041146</td>
<td>-1.210743</td>
<td>-1.295608</td>
</tr>
<tr>
<td>H</td>
<td>4.268477</td>
<td>-2.836079</td>
<td>0.403865</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C</td>
<td>-1.400370</td>
<td>0.777128</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>0.756592</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.675137</td>
<td>1.982050</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-0.006950</td>
<td>3.180748</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-1.388579</td>
<td>3.157368</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.095130</td>
<td>1.965432</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.780846</td>
<td>-0.469951</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.303128</td>
<td>-1.719017</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.076827</td>
<td>-2.951737</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.397610</td>
<td>-4.171821</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.083162</td>
<td>-5.373262</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.467498</td>
<td>-5.380349</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.159266</td>
<td>-4.176427</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.474537</td>
<td>-2.978245</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.687937</td>
<td>-4.169253</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.534009</td>
<td>-6.307746</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>3.008700</td>
<td>-6.319296</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>4.243174</td>
<td>-4.175444</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>3.034380</td>
<td>-2.049576</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.759814</td>
<td>1.984864</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.511051</td>
<td>4.130796</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>C</td>
<td>3.833334</td>
<td>0.233219</td>
<td>-0.738931</td>
</tr>
<tr>
<td>C</td>
<td>2.729904</td>
<td>0.572587</td>
<td>0.043374</td>
</tr>
<tr>
<td>C</td>
<td>2.284458</td>
<td>-0.342815</td>
<td>0.997153</td>
</tr>
<tr>
<td>C</td>
<td>2.902713</td>
<td>-1.571670</td>
<td>1.136618</td>
</tr>
<tr>
<td>C</td>
<td>3.979308</td>
<td>-1.908975</td>
<td>0.329838</td>
</tr>
<tr>
<td>C</td>
<td>4.445220</td>
<td>-1.000759</td>
<td>-0.606647</td>
</tr>
<tr>
<td>C</td>
<td>2.113387</td>
<td>1.892276</td>
<td>-0.124826</td>
</tr>
<tr>
<td>C</td>
<td>0.820279</td>
<td>2.230241</td>
<td>-0.139517</td>
</tr>
<tr>
<td>C</td>
<td>-0.369594</td>
<td>1.378577</td>
<td>-0.115259</td>
</tr>
<tr>
<td>C</td>
<td>-1.545216</td>
<td>1.886886</td>
<td>0.443390</td>
</tr>
<tr>
<td>C</td>
<td>-2.707843</td>
<td>1.144150</td>
<td>0.468178</td>
</tr>
<tr>
<td>C</td>
<td>-2.697733</td>
<td>-0.118824</td>
<td>-0.092965</td>
</tr>
<tr>
<td>C</td>
<td>-1.561076</td>
<td>-0.645661</td>
<td>-0.682096</td>
</tr>
<tr>
<td>C</td>
<td>-0.404980</td>
<td>0.104826</td>
<td>-0.692340</td>
</tr>
<tr>
<td>H</td>
<td>0.598757</td>
<td>3.294049</td>
<td>-0.193367</td>
</tr>
<tr>
<td>H</td>
<td>2.824106</td>
<td>2.707557</td>
<td>-0.247133</td>
</tr>
<tr>
<td>H</td>
<td>0.484817</td>
<td>-0.294673</td>
<td>-1.163704</td>
</tr>
<tr>
<td>H</td>
<td>-1.601920</td>
<td>-1.630222</td>
<td>-1.129357</td>
</tr>
<tr>
<td>N</td>
<td>-3.935000</td>
<td>-0.921217</td>
<td>-0.077109</td>
</tr>
<tr>
<td>H</td>
<td>-3.619214</td>
<td>1.527528</td>
<td>0.907666</td>
</tr>
<tr>
<td>H</td>
<td>4.204381</td>
<td>0.947596</td>
<td>-1.467387</td>
</tr>
</tbody>
</table>

Cartesian Coordinates for the Optimized Structure of Compound 102
Cartesian Coordinates for the Optimized Structure of Compound 108

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.429921</td>
<td>-0.169905</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.415629</td>
<td>0.797159</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.796699</td>
<td>2.143867</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.123563</td>
<td>2.519285</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>4.093818</td>
<td>1.534283</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.758257</td>
<td>0.189391</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>0.471138</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-0.532979</td>
<td>-0.756700</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-1.941879</td>
<td>-1.105947</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.307357</td>
<td>-2.457752</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-3.624855</td>
<td>-2.850761</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-4.637250</td>
<td>-1.894124</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-4.300832</td>
<td>-0.542058</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.971263</td>
<td>-0.165375</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.527571</td>
<td>-3.212952</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-3.903370</td>
<td>-3.897653</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-5.900372</td>
<td>-2.367319</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-5.069256</td>
<td>0.220521</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-2.736305</td>
<td>0.893389</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.026345</td>
<td>2.907582</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>3.417535</td>
<td>3.560322</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian Coordinates for the Optimized Structure of Compound 109

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.494079</td>
<td>1.724447</td>
<td>-0.715564</td>
</tr>
<tr>
<td>C</td>
<td>1.295132</td>
<td>1.581923</td>
<td>-0.011687</td>
</tr>
<tr>
<td>C</td>
<td>1.120558</td>
<td>0.439144</td>
<td>0.776516</td>
</tr>
<tr>
<td>C</td>
<td>2.089682</td>
<td>-0.538929</td>
<td>0.831969</td>
</tr>
<tr>
<td>C</td>
<td>3.251074</td>
<td>-0.376359</td>
<td>0.094736</td>
</tr>
<tr>
<td>C</td>
<td>3.469838</td>
<td>0.749401</td>
<td>-0.677003</td>
</tr>
<tr>
<td>C</td>
<td>0.313369</td>
<td>2.664936</td>
<td>-0.063805</td>
</tr>
<tr>
<td>C</td>
<td>-1.022757</td>
<td>2.615379</td>
<td>-0.004328</td>
</tr>
<tr>
<td>C</td>
<td>-1.927715</td>
<td>1.468288</td>
<td>-0.004657</td>
</tr>
<tr>
<td>C</td>
<td>-3.138211</td>
<td>1.555125</td>
<td>0.691969</td>
</tr>
<tr>
<td>C</td>
<td>-4.030304</td>
<td>0.508547</td>
<td>0.717220</td>
</tr>
<tr>
<td>C</td>
<td>-3.751348</td>
<td>-0.663245</td>
<td>0.016939</td>
</tr>
<tr>
<td>C</td>
<td>-2.570848</td>
<td>-0.758331</td>
<td>-0.714151</td>
</tr>
<tr>
<td>C</td>
<td>-1.679510</td>
<td>0.300567</td>
<td>-0.720135</td>
</tr>
<tr>
<td>H</td>
<td>-1.529347</td>
<td>3.578407</td>
<td>0.033394</td>
</tr>
<tr>
<td>H</td>
<td>0.755899</td>
<td>3.654822</td>
<td>-0.153271</td>
</tr>
<tr>
<td>H</td>
<td>-0.772945</td>
<td>0.218598</td>
<td>-1.309330</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>-2.342536</td>
<td>-1.644589</td>
<td>-1.292055</td>
</tr>
<tr>
<td>O</td>
<td>-4.683650</td>
<td>-1.635969</td>
<td>0.097276</td>
</tr>
<tr>
<td>H</td>
<td>-4.961517</td>
<td>0.571323</td>
<td>1.267655</td>
</tr>
<tr>
<td>H</td>
<td>2.652754</td>
<td>2.617570</td>
<td>-1.310490</td>
</tr>
<tr>
<td>H</td>
<td>4.394650</td>
<td>0.848186</td>
<td>-1.229989</td>
</tr>
<tr>
<td>N</td>
<td>4.285722</td>
<td>-1.424677</td>
<td>0.145569</td>
</tr>
<tr>
<td>H</td>
<td>1.966968</td>
<td>-1.422983</td>
<td>1.443645</td>
</tr>
<tr>
<td>H</td>
<td>0.213707</td>
<td>0.327712</td>
<td>1.358891</td>
</tr>
<tr>
<td>H</td>
<td>-3.371097</td>
<td>2.466687</td>
<td>1.233769</td>
</tr>
<tr>
<td>C</td>
<td>-4.447959</td>
<td>-2.843219</td>
<td>-0.584178</td>
</tr>
<tr>
<td>H</td>
<td>-5.300375</td>
<td>-3.487050</td>
<td>-0.376783</td>
</tr>
<tr>
<td>H</td>
<td>-4.373014</td>
<td>-2.689683</td>
<td>-1.666681</td>
</tr>
<tr>
<td>H</td>
<td>-3.534923</td>
<td>-3.335301</td>
<td>-0.230392</td>
</tr>
<tr>
<td>O</td>
<td>5.308452</td>
<td>-1.237568</td>
<td>-0.480454</td>
</tr>
<tr>
<td>O</td>
<td>4.051603</td>
<td>-2.413587</td>
<td>0.809378</td>
</tr>
</tbody>
</table>