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ABSTRACT

DIMENSION REDUCED ROBUST BEAMFORMING FOR TOWED
ARRAYS

Topçu, Emre

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ça§atay Candan

September 2015, 59 pages

Adaptive beamforming methods are used to obtain higher signal to interference

plus noise ratio at the array output. However, these methods are very sensi-

tive to steering vector and covariance matrix estimation errors. To overcome

this issue, robust methods are usually employed. On the other hand, imple-

mentation of these robust methods can be computationally expensive for arrays

with large number of sensors. Reduced dimension techniques aim to lower the

computational load of adaptive beamforming algorithms with a minor loss of

performance.

In this thesis, the reduced dimension method is combined with the robust adap-

tive beamforming technique in order to obtain a rapidly converging, low com-

plexity beamformer which is robust against the steering vector mismatches and

small number of training snapshots. Moreover, a dimension reduction matrix

that suppresses the known interferences such as the main-ship noise for towed
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arrays is designed to enhance the performance of the reduced dimension beam-

former. The performance of the developed technique is illustrated by using both

the simulated data (generated for di�erent types of steering vector mismatches)

and the �eld data obtained by a towed array in actual sea trials.

Keywords: Dimension Reduction, Robust Beamforming, Towed Array, The Di-

mension Reducing Matrix, Worst Case Performance Optimization
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ÖZ

ÇEK�L� D�Z�NLER �Ç�N DÜ�ÜK BOYUTA �ND�RGENM�� GÜRBÜZ I�IN
DEMETLEME

Topçu, Emre

Yüksek Lisans, Elektrik Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Ça§atay Candan

Eylül 2015 , 59 sayfa

Uyarlamal� �³�n demetleme yöntemleri, dizin ç�kt�s�nda daha yüksek sinyal pa-

razit art� gürültü oran� elde etmek için kullan�l�rlar. Fakat bu yöntemler yön-

lendirme vektörü ve kovaryans matrisi hatalar�na çok hassast�rlar. Bu sorunu

çözmek için genellikle gürbüz yöntemler kullan�lmaktad�r. Ancak, gürbüz yön-

temlerin gerçekle³tirilmesi, yüksek say�da sensöre sahip olan dizinler için hesap-

lama yükü aç�s�ndan pahal�d�r. Dü³ük boyuta indirgenmi³ yöntemler ise, uyarla-

mal� �³�n demetleme yöntemlerinde kontrollü bir biçimde performanstan feragat

ederek i³lem yükünü dü³ürmeyi amaçlar.

Bu tez kapsam�nda, boyut indirgeme yöntemi, gürbüz �³�n demetleme tekni§i ile

birle³tirilerek, h�zl� bir ³ekilde yak�nsayan, yönlendirme vektörü uyumsuzlu§una

ve dü³ük say�daki e§itim verisinden kaynaklanan hatalara kar³� gürbüz, dü³ük

i³lem yükü getiren bir �³�n demetleme yöntemi elde etmek amaçlanmaktad�r.

Boyut indirgenmi³ �³�n demetleme yönteminin performans�n� artt�rmak için bi-
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linen parazitleri (örne§in çekili dizinler için ana gemi gürültüsünü) bast�ran bir

boyut indirgeme matrisi tasarlanm�³t�r. Geli³tirilen yöntemin performans� ben-

zetim verileri (farkl� yönlendirme vektörü hatalar� için) ve deniz testlerinde çekili

dizinle elde edilen gerçek veriler kullan�larak test edilmi³tir.

Anahtar Kelimeler: Boyut �ndirgeme, Gürbüz I³�n Demetleme, Çekili Dizin, Bo-

yut �ndirgeme Matrisi, En Kötü Durum için Performans Optimizasyonu
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Beamforming or spatial �ltering is a signal processing technique often used for

extracting information from signals obtained by an array of sensors and has been

widely used in numerous applications such as radar, sonar, wireless communi-

cations, microphone arrays, seismology, medical imaging, and other areas. The

main objective of beamforming is to estimate the direction of desired signals in

the presence of noise and interference.

Beamformers can be categorized as either data independent or data dependent.

Data independent beamformers use the preestablished beamformer coe�cients

to provide the distortionless response in the desired signal directions [27]. The

major disadvantage of the data independent beamformers is that these methods

do not have interference rejection capability. On the other hand, the data de-

pendent beamformers (sometimes referred as adaptive beamformers) optimize

the beamformer coe�cients, using second order statistics of operational environ-

ment, to maximally suppress interference and noise while maintaining a distor-

tionless response at the desired direction. The adaptive beamformer coe�cients

have to be regularly updated based on the collected statistics from the array

output.

The adaptive beamformers can provide an increased signal to interference plus

noise ratio (SINR) at the array output compared to the data independent beam-

formers, thanks to the interference rejection capability. They have higher resolu-
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tion than the data independent methods. However, the performance of adaptive

beamformers can substantially degrade if the array response to the desired signal

is not known exactly [6, 28,29].

In practical applications, discrepancies may occur between the assumed steer-

ing vector and the true steering vector as a consequence of look direction mis-

match [18], array imperfections [17], environment inhomogeneities [22], near-�eld

problem [15], local scattering [1] and some other e�ects. Adaptive beamformers

are especially sensitive to steering vector mismatches. In the presence of such a

mismatch, adaptive beamformers tend to suppress the incoming desired signal

treating it as an interference, instead of maintaining the distortionless response

at the look direction [16]. Consequently, robust and adaptive approaches are

required in many practical applications.

Several methods providing robustness against steering vector mismatches have

been developed in the literature. The most common method called as the Lin-

early Constrained Minimum Variance (LCMV) beamformer is presented in [10]

and [25]. Also in [3], a robust beamforming method is derived via a Bayesian

approach. These methods are robust only to uncertainties in the steering vector

caused by the signal look direction mismatches. Several other methods such as

the quadratically constrained beamformer [7] and the eigenspace-based beam-

former [5,9] are able to partly overcome the arbitrary steering vector mismatches

as well. The quadratically constrained beamformer is based on the diagonal load-

ing of the sample covariance matrix and it is in general not clear how to obtain

the diagonal loading factor. The eigenspace-based beamformer is ine�ective at

low Signal to Noise Ratios (SNR) since it is very sensitive to the knowledge of

signal plus interference subspace.

In [11], a robust adaptive method in the presence of the unknown steering vector

mismatches is presented. This method is based on the worst case performance

optimization. This beamformer can also be interpreted as a diagonal loading

approach, however for this method, it is su�cient to have an upper bound of

diagonal loading, which is typically calculated using the norm of the steering

vector mismatch.
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In practice, another cause of performance degradation of adaptive beamformers

is the small number of available training snapshots caused by the nonstationar-

ity of the environment, array position and shape and moving sources. It is well

known that the number of the stationary training snapshots that are used to

estimate the sample covariance matrix should be at least two times higher than

the number of elements in the array [21]. To overcome this problem, several

methods have been developed. Most popular of them is diagonal loading [4, 7].

Another technique that increases the e�ective number of training snapshots is

the null-broadening in the direction of the moving interferers as given in [24].

Although this method is e�ective against the snapshot de�ciency, its computa-

tional complexity for arrays with a large number of elements is high.

For arrays with a large number of elements, the dimension reduction technique

can be used to obtain rapidly converging, low complexity beamformers. After

projecting the array output to a reduced dimension subspace by using a dimen-

sion reducing transform, robustness against the steering vector mismatches can

be provided by performing the robust methods within this subspace. Moreover,

dimension reduction decreases the performance degradation of the robust and

adaptive methods that is induced by the small number of training snapshots.

However, dimension reduction results in less degrees of freedom (the number

of unconstrained of free weights). Consequently, there is a trade o� between

choosing a dimension small enough to have the desired algorithm convergence

and high enough to provide su�cient degrees of freedom.

In the literature, several dimension reduction methods have been developed.

These methods can be separated as data independent (such as beamspace [12,27],

subarray processing [8]) and data dependent [13,14]. Although the data depen-

dent dimension reduction methods have better rejection capabilities against out

of sector sources, they are in general computationally expensive for real-time

operations.

In [23], the reduced dimension method [12] is combined with the Robust Capon

Beamforming [19, 25, 26]. However, a dimension reduced subspace is not de-

scribed. The performance of the developed method is examined only for a sub-

3



space that is comprised of a set of conventional beams.

1.2 Scope of the Thesis

The aim of this work is to combine the reduced dimension method given in

[23] and the robust adaptive beamforming technique in [11] in order to have a

rapidly converging, reduced dimension beamformer that is robust against the

steering vector mismatches and small number of training snapshots. Moreover,

the dimension reducing matrix that suppresses the known interferences such as

main-ship noise for towed arrays is designed to enhance the performance of the

reduced dimension beamformer.

The performance of the beamformer techniques described in Chapter 2 are exam-

ined by using both the simulated data (generated for di�erent types of steering

vector mismatch) and the real data (obtained by the towed array of ASELSAN

in sea trials).

1.3 Outline

In Chapter 2, the signal model used in all simulations and some background

of adaptive beamforming are presented. Then the robust adaptive beamformer,

Worst Case Performance Optimization, is reviewed. In Section 2.6, the combina-

tion of the reduced dimension method and the worst case performance optimiza-

tion beamformer is illustrated and in Subsection 2.6.1, the dimension reducing

matrix design is described.

Chapter 3 presents the simulation and experimental results where the perfor-

mance of the reduced dimension robust adaptive beamformer with the designed

subspace is compared with the methods described in Chapter 2.

Chapter 4 contains concluding remarks.
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CHAPTER 2

BEAMFORMING TECHNIQUES

In this chapter, �rst the signal model used throughout this work is given. Then,

some beamforming techniques and a robust-adaptive reduced dimension method

are described.

2.1 Signal Model

The standard narrowband beamforming model is used in this study. In this

model, it is assumed that K narrowband plane wave signals are impinging on

an array of M sensors, where K < M . The array output is modeled as

y(t) = a(φ0)s(t) +
K−1∑
k=1

a(φk)sk(t) + n(t)

= a(φ0)s(t) + i(t) + n(t)

= a(φ0)s(t) + e(t)

(2.1)

where y(t) = [y0(t) y1(t) · · · yM−1(t)]T ∈ CM×1 is the array output, M is

the number of sensors, a(φ) is the steering vector (also named as the manifold

vector), s(t), i(t), n(t) are the signal of interest (SOI), K − 1 interfering sources

and noise, respectively.

The elements of the steering vector consists of the exponential function whose

exponent is related with the phase delays between reference sensor and the

remaining sensors of the array. The steering vector for the signal impinging on

5



the array from the azimuth angle φ0 can be de�ned as

a(φ0) = [e−j
2π
λ

(Px0 cos(φ0)+Py0 sin(φ0)) · · · e−j
2π
λ

(PxM−1
cos(φ0)+PyM−1

sin(φ0))]T (2.2)

where λ is the wavelength, Pxi , Pyi are the xy positions of i
th sensor, respectively

and (.)T stands for the transpose. Sensor positions of Uniform Linear Array

(ULA) can be written as

Px = [0 d 2d · · · (M − 1)d],

Py = [0 0 0 · · · 0].
(2.3)

Using (2.3), the steering vector for the ULA becomes

a(φ0) = [1 e−j
2π
λ
d cos(φ0) e−j

2π
λ

2d cos(φ0) · · · e−j
2π
λ

(M−1)d cos(φ0)]T . (2.4)

Following the general convention, we do not normalize the steering vector and

we have

‖a(φ0)‖2 = M. (2.5)

The narrowband beamformer output is given by

yF (t) = wHy(t)

= wHa(φ0)s(t) + wHe(t)
(2.6)

where w ∈ CM×1 is the beamformer coe�cients and (.)H stands for the Her-

mitian transpose. The signal to interference plus noise ratio (SINR) at the

beamformer output can be found by using (2.6)

SINR =
wHRsw

wHRew
. (2.7)

Here Rs is the covariance matrix of SOI and Re is the covariance matrix of

interference plus noise,

Rs = E[(a(φ0)s(t))(a(φ0)s(t))H ]

= σ2
sa(φ0)a(φ0)H

Re = E[e(t)e(t)H ],

(2.8)

and σ2
s = E[|s(t)|2] is the power of SOI. Inserting (2.8) into (2.7), SINR can be

written as

SINR =
σ2
s |wHa(φ0)|2

wHRew
. (2.9)
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2.2 Conventional Beamformer

Conventional beamformer is a data independent beamformer and also called

as delay and sum beamformer. The main goal of this method is to emphasize

signals coming from a certain direction and minimize beamformer output with

the white noise and no interference assumptions. In order to achieve this, phase

shifts are applied to each sensor output by using preset beamformer coe�cients.

By doing so, the array can be steered to a desired direction.

Then, desired response can be written as

wHa(φ0) = 1. (2.10)

Using (2.8) and (2.10) together with di�use noise and no interference assump-

tions, the beamformer coe�cients can be found easily as

w =
a(φ0)

M
. (2.11)

Although conventional beamformer is simple and has low computation complex-

ity, it does not guarantee robustness against steering vector mismatches, sensor

placement errors, calibration errors, etc. Therefore, these mismatches and errors

may cause a degradation of performance. Moreover, conventional beamformer

cannot adapt null responses for interference rejection since beamformer coe�-

cients are calculated without using array data and statistics.

2.3 Minimum Variance Distortionless Response (MVDR) Beamformer

Minimum variance distortionless response beamformer (MVDR) is designed us-

ing the statistics of the array output. The main goal is to optimize the beam-

former coe�cients such that the beamformer output contains minimal contri-

butions from interferences and noise while maintaining a distortionless response

for the SOI. That is, the beamformer coe�cients can be obtained by maximizing

the SINR (2.9)

min
w

wHRew s.t wHa(φ0) = 1. (2.12)
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The optimization problem given in (2.12) has well known analytical solution [25],

which is given as

w =
R−1
e a(φ0)

a(φ0)HR−1
e a(φ0)

. (2.13)

The expression (2.13) gives the optimal beamformer coe�cients under the as-

sumption that the steering vector and Re are exactly known in the case of a

point source. However, MVDR cannot be used in practical applications since

exact covariance matrix Re is unavailable. There are some additional techni-

calities on the utilization of the MVDR beamformer. These will be explained

next.

2.4 Sample Matrix Inversion (SMI) Beamformer

In practical applications, the covariance matrix of interference-plus-noise Re is

unavailable. A common method is to use the sample covariance matrix given in

(2.14)

R̂ =
1

N

N∑
n=1

y(n)y(n)H . (2.14)

Here N is the number of training snapshots. In this case, the optimization

problem in (2.12) can be rewritten as

min
w

wHR̂w s.t wHa(φ0) = 1. (2.15)

The solution to the problem (2.15) is given by [25]

w =
R̂−1a(φ0)

a(φ0)HR̂−1a(φ0)
. (2.16)

The solution of this modi�ed problem is usually referred to as Sample Matrix

Inversion (SMI) beamformer. The use of the sample covariance matrix (2.14)

instead of the exact covariance matrix of interference-plus-noise (2.8) causes

a certain performance degradation when the training snapshots contain SOI

components. Under the assumption that the SOI component is not present

in the training data, the SINR of SMI beamformer output converges to the
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optimum SINR

SINRopt = σ2
sa(φ0)HR−1

e a(φ0). (2.17)

It is well known that if the signal-free training data is available, the performance

loss of SMI beamformer is less than 3 dB on average, relative to (2.17) if the

following condition is satis�ed [21]

N ≥M. (2.18)

However, this rule is no longer valid if the training data is contaminated with

the SOI. In such cases, the convergence of the SMI beamformer to (2.17) is

much slower. Consequently, the SMI beamformer requires N � M in practical

applications. Figure 2.1 shows the performance of the SMI beamformer with

respect to the SINR versus number of training snapshots in the ideal case (no

mismatch and steering vector is exactly known). In this example, SOI is im-

pinging from θs = 90◦ (broadside) on a ULA that has M = 32 omnidirectional

sensors spaced half a wavelength apart and Signal to Noise Ratio (SNR) is -10

dB. There are 2 interfering sources with the directions of arrival (DOAs) 30◦

and 50◦, respectively and Interference to Noise Ratio (INR) of each interfering

source is 30 dB. Note that even in this ideal case, the performance of the SMI

beamformer drastically decreases with decreasing number of training snapshots.

In practice, there may be a certain level of mismatch between the assumed

and actual steering vector and the SMI beamformer does not provide su�cient

robustness against this steering vector mismatch. In case of steering vector

mismatch, the SMI beamformer may suppress the SOI as if it was an interference

and this drastically reduces the SINR at the SMI beamformer output. As an

example to the steering vector mismatch, 1◦ look direction mismatch between

the presumed and actual direction of arrival (DOA) is considered. Figure 2.2

indicates the performance of SMI in terms of bearing versus SINR for SNR =

−10 dB and N = 500. This �gure is generated by shifting the direction of arrival

of the SOI and by calculating the SINR for each beam. As can be seen from

Figure 2.2, 1◦ look direction mismatch leads to a substantial degradation of the

output SINR.
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Figure 2.1: Output SINR versus number of training snapshots N , SOI: 90◦,
Interferences: 30◦ and 50◦

An imperfect array calibration, unknown wavefront distortions, local scattering,

nonstationarity of the environment and sources may also cause a considerable

performance degradation of the SMI beamformer. Therefore, a robust adaptive

beamformer is essential to improve the performance against mismatches and

other errors in practical applications. This thesis aims to study robust beam-

forming methods which aim to provide robustness to both covariance matrix

estimation errors and steering vector mismatches.
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2.5 Worst-Case Performance Optimization Beamformer

In this section, the Worst-Case Performance Optimization Beamformer (WCO)

[11] that is robust against the small number of training snapshots and steering

vector mismatches is examined. The design principle of this beamformer is to

assume the actual steering vector ã as a sum of the assumed steering vector a

and the mismatch vector δ which is a deterministic norm bounded vector. The

actual steering vector is given as

ã = a + δ, ‖δ‖ ≤ ε (2.19)

where ε is a priori known constant. Then the spherical uncertainty set can be

represented as

A(ε) , {c | c = a + δ, ‖δ‖ ≤ ε} . (2.20)

In order to maintain distortionless response for all possible steering vectors which

belong to the spherical uncertainty set A(ε) instead of only the assumed steering
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vector a, the SMI problem de�nition (2.15) is modi�ed as

min
w

wHR̂w s.t |wHc| ≥ 1 for all c ∈ A(ε). (2.21)

According to (2.20), the constraint of (2.21) can be rewritten as

min
w

wHR̂w s.t |wH(a + δ)| ≥ 1 for all ‖δ‖ ≤ ε. (2.22)

The constraint in (2.22) guarantees that distortionless response is maintained

for all steering vectors which belong to A(ε). That is, in the worst case, i.e.

the minimum value of |wHc|, the distortionless response can be provided with

this constraint. Therefore, the robustness of beamformer against the steering

vector mismatches is provided. However, (2.22) is a semi-inde�nite nonconvex

quadratic problem since the condition |wHc| ≥ 1 is a nonlinear and nonconvex

constraint onw for each c ∈ A(ε) and it is known that this optimization problem

is NP-hard and thus intractable. Surprisingly, (2.22) can be reformulated as a

convex Second-Order Cone (SOC) program and then, the problem can be solved

e�ciently. The equivalent problem statement can be described as

min
w

wHR̂w s.t min
δ∈D(ε)

|wHa + wHδ| ≥ 1 (2.23)

where the set D(ε) is given by

D(ε) , {δ | ‖δ‖ ≤ ε} . (2.24)

The constraint in (2.23) can be rewritten by using the triangle and Cauchy-

Schwarz inequalities along with ‖δ‖ ≤ ε

|wHa + wHδ| ≥ |wHa| − |wHδ| ≥ |wHa| − ε‖w‖. (2.25)

Moreover, if ‖δ‖ = ε and we have δ = − w
‖w‖εe

jφ where φ = angle
{
wHa

}
,

|wHa + wHδ| = |wHa| − ε‖w‖. (2.26)

Then, combining (2.25) and (2.26),

min
δ∈D(ε)

|wHa + wHδ| = |wHa| − ε‖w‖. (2.27)
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Using (2.27), the semi-inde�nite nonconvex quadratic problem (2.22) can be

rewritten as a quadratic minimization problem with a single nonlinear constraint

min
w

wHR̂w s.t |wHa| − ε‖w‖ ≥ 1. (2.28)

The problem constraint in (2.28) is still nonconvex. However, it can be observed

that the constraint is independent from the phase of w. Therefore, the cost

function can be convex by rotating the phase ofw without a�ecting the objective

function value. That is, w can be chosen such that,

Re
{
wHa

}
≥ 0,

Im
{
wHa

}
= 0.

(2.29)

Using constraints (2.29) in (2.28), the convex problem formulation can be written

as

min
w

wHR̂w s.t wHa ≥ ε‖w‖+ 1

Im
{
wHa

}
= 0.

(2.30)

The problem formulation (2.30) is now convex but it is still not suitable for CVX

programming that is a Matlab-based modeling system for convex optimization.

In order to develop a CVX formulation of (2.30), �rst step is to use the Cholesky

factorization of R̂.

R̂ = UHU. (2.31)

By using (2.31), the objective function of (2.30) is converted to linear function

wHR̂w = ‖Uw‖2. (2.32)

Also inserting a new constraint and using (2.32), (2.30) can be rewritten as

min
τ,w

τ s.t ‖Uw‖ ≤ τ

wHa ≥ ε‖w‖+ 1

Im
{
wHa

}
= 0

(2.33)

where τ is a scalar non-negative variable. As a last step to have the CVX

formulation of (2.30), (2.33) must be converted to a real-valued form. Therefore,
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the new variable de�nitions are introduced:

w̆ , [ Re {w}T , Im {w}T ]T

ă , [ Re {a}T , Im {a}T ]T

ā , [ Im {a}T , −Re {a}T ]T

Ŭ ,

 Re {U} −Im {U}
Im {U} Re {U}

 .
(2.34)

Using the new variable de�nitions in (2.34), the CVX formulation of (2.30) is

obtained as

min
τ,w̆

τ s.t ‖Ŭw̆‖ ≤ τ

w̆H ă ≥ ε‖w̆‖+ 1

w̆H ā = 0.

(2.35)

After solving the optimization problem (2.35) in CVX, the beamformer coe�-

cients is equal to

wWCO = [w̆1, · · · w̆M ]T + j[w̆M+1, · · · w̆2M ]. (2.36)

As a result, the semi-inde�nite nonconvex quadratic problem formulation (2.22)

is converted to the canonical CVX problem formulation (2.35) and the beam-

former coe�cients (2.36) that are robust against the steering vector mismatch

and small number of training snapshots are obtained.

2.6 Reduced DimensionWorst-Case Performance Optimization Beam-

former

In this section, the Worst-Case Performance Optimization Beamformer is com-

bined with the data independent reduced dimension technique [23] in order to

decrease the computational complexity and increase the algorithm convergence

for large arrays. Moreover, a subspace design to suppress the known interfer-

ences is examined. The use of this subspace for the dimension reduction enables

us to use the available degrees of freedom only for the suppression of unknown

interferences. Thus, the disadvantage of dimension reduction (which is the fewer

degrees of freedom) is reduced.
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In the data independent reduced dimension method, theM element array output

y ∈ CM×1 is projected onto an L dimension subspace by using a dimension

reducing transformation matrix D(φ0) ∈ CM×L, where L < M . The reduced

dimension array output can be written as

yRD = DH(φ0)y (2.37)

where yRD ∈ CL×1. And the signal model is rewritten as

yRD(t) = DH(φ0)a(φ0)s(t) + DH(φ0)e(t)

= b(φ0)s(t) + eRD(t).
(2.38)

The dimension reducing transformation matrix D(φ0) is often designed such

that DH(φ0)D(φ0) = IL so that white noise remains white after the dimension

reduction.

Using (2.38), the sample covariance matrix can be calculated as

R̂RD =
1

L

L∑
l=1

yRD(l)yRD(l)H

= DH(φ0)R̂D(φ0).

(2.39)

After projecting the array output onto the L dimensional subspace, the Worst-

Case Performance Optimization Beamformer is applied to the reduced dimension

array output (2.37). The problem formulation can be rewritten as

min
w̄

w̄HR̂RDw̄ s.t |w̄Hc| ≥ 1 for all c ∈ ARD(ε) (2.40)

where ARD(ε) , {c | c = b + δ, ‖δ‖ ≤ ε} is a reduced dimension spherical

uncertainty set, b = DH(φ0)a is a reduced dimension steering vector, w̄ ∈ CL×1

is the reduced dimension beamformer coe�cient vector. The solution of this

problem formulation is identical to the one given in (2.35). After solving w̄ in

CVX, the beamformer coe�cients can be transformed to the full-dimension

wRD = D(φ0)w̄. (2.41)

Then the beamformer output is equal to

yf = wH
RDy. (2.42)
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The computational complexity is reduced by solving the worst case optimiza-

tion problem in reduced dimension. As an example, for 32 element array, the

following steps must be calculated to �nd the beamformer coe�cients

• 32x32 dimension covariance matrix must be estimated,

• The Cholesky factorization of this covariance matrix must be calculated,

• The optimization problem must be solved in 32 dimension.

If the array output is multiplied by 5x32 dimension reducing transformation

matrix to get the reduced dimension array output and the beamformer coef-

�cients are calculated in this dimension, the following steps which have lower

computational complexity must be calculated.

• 5x5 dimension covariance matrix must be estimated,

• The Cholesky factorization of this covariance matrix must be calculated,

• The optimization problem must be solved in 5 dimension.

The selection of the dimension reducing transformation matrix D is crucial since

dimension reduction causes the beamformer to have fewer degrees of freedom.

In the next section, the dimension reducing transformation matrix is designed

to suppress the known interferences such as the main ship in towed array appli-

cations.

2.6.1 Subspace Design

In this subsection, a subspace is designed to suppress the known interferences

while reducing the signal dimension. Thus, the degrees of freedom decreased in

consequence of dimension reduction can be used for only the unknown interfer-

ences.

In order to suppress the known interferences, a maximum tolerable loss at look

direction is de�ned. The purpose is to provide distortionless response within
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the given tolerance to the direction of the SOI while suppressing the known

interferences. To ease the presentation, in this section we assume that a(φ) and

w vectors are normalized so that ‖a(φ)‖ = ‖w‖ = 1. If there is only one known

interfering source from direction φ1, the problem can be de�ned as

min
w
|wHa(φ1)| s.t |wHa(φ0)| >

√
1− ρ2 (2.43)

where 0 ≤ ρ ≤ 1 is the maximum tolerable loss at a desired direction. (2.43) is

a nonconvex problem since |wHa(φ0)| >
√

1− ρ2 is a nonlinear and nonconvex

constraint on w. However, (2.43) can be reformulated as a convex problem. Any

vector w can be written as

w = βa(φ0) + Vx (2.44)

where V ∈ CM×(M−1) is the matrix that provides the condition VTa(φ0) =

0M−1×1. That is, the each column of the matrix V is orthogonal to the vector

a(φ0). x ∈ C1×(M−1) is the unknown vector. By using (2.44), the constraint in

(2.43) can be written as

|(βa(φ0) + Vx)Ha(φ0)| = |β| >
√

1− ρ2. (2.45)

Since the norm of w is equal to 1, the condition on β and x can be found as

‖w‖2 = |β|2 + ‖x‖2 = 1. (2.46)

Combining (2.45) and (2.46),

‖x‖ < ρ. (2.47)

The optimization problem given in (2.43) can be rewritten as

min
x
|(βa(φ0) + Vx)Ha(φ1)| s.t ‖x‖ < ρ. (2.48)

The value of β in optimization problem (2.48) is not known. However, it is known

that its value is between
√

1− ρ2 and 1. By taking β = 1, that is selecting the

maximum value for its value, the problem is relaxed to the following one:

min
x
|(a(φ0) + Vx)Ha(φ1)| s.t ‖x‖ < ρ. (2.49)
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This optimization problem is convex and can be solved by using the CVX con-

vex optimization tool. When there are more than one interfering sources, the

optimization problem can be de�ned as

min
x
δ s.t ‖x‖ < ρ

|(a(φ0) + Vx)Ha(φ1)| < δ

...

|(a(φ0) + Vx)Ha(φk)| < δ.

(2.50)

Finally, the desired steering vector is equal to

ad(φ0) = a(φ0) + Vxopt. (2.51)

where xopt is the x vector optimized through convex programming. The desired

2L− 1 dimensional subspace with β degree intervals can be generated by using

the desired steering vectors as

D(φ0) = [ad(φ0 − Lβ) · · · ad(φ0 − β) ad(φ0) ad(φ0 + β) · · · ad(φ0 + Lβ)].

(2.52)

In this study, the passive towed arrays are considered while designing the sub-

space. In such applications, the known interference is the noise of main ship

that tows the array. Since the depth of the towed array changes with the vessel

speed and there are re�ections from the sea surface, the direction of the main-

ship noise is assumed to be within the interval [0◦ 10◦]. With this assumption

the beams from which the desired subspace is formed are generated.

In Figure 2.3 and 2.4, conventional and designed beampatterns for di�erent

angles are compared. In Figure 2.3, it can be observed that there is a small

loss in the look direction. However, the designed beam has a high suppression

in the interference interval. Moreover, the loss at the look direction decreases

with increasing angle di�erence between the desired direction and the main ship

while the desired beam still has a high suppression in the interference interval.

This can be seen from Figure 2.4.

As a result, the disadvantage of dimension reduction (which is the decrease in the

degrees of freedom) is reduced by using the dimension reducing transformation

matrix D(φ0) which only includes the designed beams.
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Figure 2.3: Comparison of designed and conventional beampatterns for SOI: 25◦
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CHAPTER 3

RESULTS

In this chapter, a comparison of the reduced dimension Worst-Case Performance

Optimization with the conventional subspace and the designed subspace and

the full dimensional adaptive and robust beamformer techniques (described in

Chapter 2) is given. In the �rst section, simulation results are examined. Next,

a performance comparison of these methods is made by using the �eld data of a

towed array. Implementations of these methods and simulations are performed

in MATLAB.

3.1 Simulation Results

In this section, the simulation results are given. In simulations, a uniform linear

array with 32 sensors is used. For all simulations, the parameters and assump-

tions used are as follows:

• Sensors are omnidirectional.

• Sensors are spaced half of a wavelength apart.

• For all simulation results, 200 Monte Carlo runs are used.

• In order to emulate main-ship noise, 5 interfering sources are used with the

direction of arrival angles and Interference to Noise Ratios (INR) given in

Table 3.1.

• An interfering source with the direction of arrival 30◦ and INR = 30 dB is
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used.

Table 3.1: Interfering sources to de�ne main-ship noise

Angle, degree 2 4 6 8 10
INR, dB 30 25 20 18 14

• For all sources, far-�eld assumption (plane wavefronts) is used.

• For dimension reduction, 2 beams with 1 degree intervals are used for each

side of the main beam (e.g. the conventional subspace in Figure 3.1).
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Figure 3.1: Conventional subspace used for dimension reduction, SOI: 90◦, 5
beams with 1◦ intervals

In the next sections, the SMI beamformer, the full dimension WCO beamformer,

the reduced dimension Worst-Case Performance Optimization Beamformer with

the conventional subspace and the designed subspace are compared for di�er-

ent cases. First, the performance of each method under ideal case is examined.

Then, signal look direction mismatch and sensor placement error are examined.
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Lastly, performance of each method under coherent and incoherent local scat-

tering of the signal is investigated.

3.1.1 Case 1: No Mismatch

In this case, the assumed and actual steering vectors are exactly the same and

the sample covariance matrix is estimated using training snapshots N = 64. In

order to determine the user parameter ε for the robust beamformer techniques,

SINR values versus angle and epsilon are obtained. Figure 3.2, 3.3, and 3.4

display how the performance of each method is related to the user parameter

ε. These �gures are generated by shifting direction of arrival of SOI and by

calculating SINR for each angle and epsilon, SNR= −10 dB for all cases. Using

these �gures, the proper epsilon values (red lines in �gures) are selected to be

used in all simulations.

Figure 3.2: Output SINR versus epsilon and angle, Interferences: Main ship and
30◦ - Worst Case Optimization
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Figure 3.3: Output SINR versus epsilon and angle, Interferences: Main ship and
30◦ - Reduced Dimension Worst Case Optimization with conventional subspace

Figure 3.4: Output SINR versus epsilon and angle, Interferences: Main ship and
30◦ - Reduced Dimension Worst Case Optimization with main-ship suppressed
subspace
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Figure 3.5 shows the performance of each method with increasing number of

snapshots for SOI that is impinging on the array at 90◦ and SNR = −10 dB.

Robust methods perform well even with small number of snapshots compared to

SMI. Moreover, the reduced dimension Worst Case Optimization Beamformer

with main-ship suppressed subspace (nulled) performs better than other robust

methods even with much smaller number of snapshots.

For all simulation results, the optimal beamformer output value and the per-

formance bounds of the reduced dimension methods with both the conventional

and the designed subspace are calculated by using the theoretical covariance

matrix of interference plus noise.
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Figure 3.5: Output SINR versus number of snapshots, SOI: 90◦, Interferences:
Main ship and 30◦

Beampatterns of each method for the ideal case (no mismatch) are given in Fig-

ure 3.6. As can be seen in the �gure, the directions from where main-ship noise

is impinging on the array are suppressed in the reduced dimension WCO that

use the designed subspace for dimension reduction. Figure 3.7 displays output

SINR with increasing SNR. Moreover, Figure 3.8 indicates the performance of

methods in terms of bearings versus SINR for SNR = −10 dB and N = 64.

As can be seen from Figure 3.6, 3.7, and 3.8 all robust methods perform much

better than the Sample Matrix Inversion beamformer for small number of train-

ing snapshots. The reduced dimension WCO beamformer with main ship noise
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suppressed subspace performs even better than the full dimension Worst Case

Optimization beamformer.
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Figure 3.6: Beampatterns, N = 64, SOI: 90◦, Interferences: Main ship and 30◦

Note that in Figure 3.8, the performance bound of the reduced dimension method

with the conventional subspace �uctuates near the interfering source at 30◦ and

the performance bound of the reduced dimension WCO beamformer with main

ship noise suppressed subspace has smaller oscillations. This is because of the

fact that the reduced dimension WCO with the conventional subspace has less

degrees of freedom. When the number of beams used in conventional subspace

for dimension reduction is increased, as can be seen in Figure 3.9 the �uctuations

decrease since degrees of freedom of this method are increased.
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Figure 3.7: Output SINR versus SNR, SOI: 90◦, Interferences: Main ship and
30◦
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Figure 3.8: Output SINR for each bearing, Interferences: Main ship and 30◦
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Figure 3.9: Comparison of performance bounds for the conventional subspace
with 5 beams and 11 beams, Interferences: Main ship and 30◦
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3.1.2 Case 2: Array Look Direction Mismatch

As the second case, the look direction mismatch is considered. In this case, the

SOI is impinging on the array from the DOA φ and the assumed steering vector

is formed by using the DOA as φ + 1◦. This corresponds to a 1◦ look direction

mismatch.

Figure 3.10 elaborates the performance of beamforming techniques with increas-

ing number of training snapshots for the �xed SNR = −10 dB. It can be observed

that the Sample Inversion Matrix beamformer tries to suppress the SOI as an

interference instead of maintaining distortionless response. The robust methods

have performance degradations but perform well compared to SMI especially

the reduced dimension WCO beamformers.
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Figure 3.10: Output SINR versus number of snapshot, 1◦ look direction mis-
match, SOI: 90◦, Interferences: Main ship and 30◦

Beampatterns of each method for 1◦ look direction mismatch case and the num-

ber of training snapshots N = 64 are given in Figure 3.11. It can also be seen

from the beampatterns that the SMI beamformer tends to interpret the SOI as

an interference. Moreover, the performance of these algorithms versus the SNR

for this case is shown in Figure 3.12. At high SNR values, the performance

of the SMI beamformer is worse than it is at low SNR values since the train-

ing snapshots are now contaminated by the SOI. Although robust methods also
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have small performance degradation at high SNR values, their performances are

much higher than the SMI beamformer.
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Figure 3.11: Beampatterns, 1◦ look direction mismatch, SOI: 90◦, Interferences:
Main ship and 30◦

Figure 3.13 indicates the performance of methods in terms of bearings versus

SINR for SNR = −10 dB and N = 64. The reduced dimension WCO with the

subspace that main ship noise suppressed has best performance for each bearing

under the small number of training snapshots and 1◦ look direction mismatch.

The performance results in this section are generated by using the user param-

eter ε which is determined in no mismatch case. For the number of training

snapshots N = 64 and 1◦ look direction mismatch, the epsilon analysis for the

reduced dimension WCO with the subspace that main ship noise suppressed is

recalculated and the ε values for each bearing is updated (red line in Figure

3.14).

In Figure 3.15, the performance of the reduced dimension WCO with the sub-

space that main ship noise suppressed in terms of bearings versus SINR for the
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Figure 3.12: Output SINR versus SNR, 1◦ look direction mismatch, SOI: 90◦,
Interferences: Main ship and 30◦

epsilon set determined in no mismatch case and in this case is given in Fig-

ure 3.15. By using the updated epsilon values, the SINR at the output of this

beamformer is increased.
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Figure 3.13: Output SINR for each bearing, 1◦ look direction mismatch, Inter-
ferences: Main ship and 30◦

Figure 3.14: Output SINR versus epsilon and angle, 1◦ look direction mismatch,
Interferences: Main ship and 30◦, - Reduced Dimension Worst Case Optimiza-
tion with main-ship suppressed subspace
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Figure 3.15: Output SINR versus angle for updated epsilon values, 1◦ look
direction mismatch, Interferences: Main ship and 30◦, - Reduced Dimension
Worst Case Optimization with main-ship suppressed subspace
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3.1.3 Case 3: Sensor Placement Error

Sensor placement error is considered as the next case. In this case, the assumed

steering vector is formed by using the designed sensor positions; but the true

steering vector is di�erent from the assumed steering vector. Uniformly drawn

sensor placement error from the interval [-0.01λ, 0.01λ] is added to the designed

sensor positions when the array output is generated in simulations. Note that

the sensor placement error is changed in each Monte Carlo run.

The performance of the beamforming techniques with increasing the number of

training snapshots for the �xed SNR = −10 dB is shown in Figure 3.16. In this

case, the performance of the reduced dimension methods is worse than the full

dimension WCO beamformer since the design of the subspaces used to reduce

dimension also comprises the sensor placement error. However, they still have

much higher performance compared to the SMI beamformer especially for small

number of training snaphots.
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Figure 3.16: Output SINR versus number of snapshot, [-0.01λ 0.01λ] uniformly
distributed sensor placement error, SOI: 90◦, Interferences: Main ship and 30◦

Beampatterns of methods and the performance of these algorithms versus the

SNR for uniformly drawn sensor placement error from the interval ([-0.01λ,

0.01λ]) and the number of training snapshots N = 64 are given in Figure 3.17

and 3.18, respectively. With increasing SNR, the performance di�erence between
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the reduced dimension WCO beamformers and full dimension WCO beamformer

decreases. At high SNR values, the reduced dimension methods perform as good

as the full dimension WCO beamformer.

Lastly, the performance of methods in terms of bearing versus SINR for SNR =

−10 dB and N = 64 is displayed in Figure 3.19. Although reduced dimension

methods have performance degradations compared to the full dimension WCO

beamformer at angle interval [30◦ 160◦], they are better than the full dimension

WCO and much better than the SMI beamformer at angle interval [20◦ 30◦]

between the interferences.
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Figure 3.17: Beampatterns, [-0.01λ 0.01λ] uniformly distributed sensor place-
ment error, SOI: 90◦, Interferences: Main ship and 30◦
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Figure 3.18: Output SINR versus SNR, [-0.01λ 0.01λ] uniformly distributed
sensor placement error, SOI: 90◦, Interferences: Main ship and 30◦
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Figure 3.19: Output SINR for each bearing, [-0.01λ 0.01λ] uniformly distributed
sensor placement error, Interferences: Main ship and 30◦
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3.1.4 Case 4: Coherent Local Scattering

In this case, the spatial signature of the SOI is distorted by local scattering

e�ects that are de�ned as plane waves impinging on array from the 3 di�erent

paths. That is, the actual spatial signature is coming to the array by four signal

paths given by

ã(φ0) = a(φ0) +
3∑
i=1

ejψia(φi) (3.1)

where a(φ0) is the assumed steering vector corresponding to direct path and

a(φi) (i = 1, 2, 3) are steering vectors corresponding to the coherently scattered

paths. Angles φi of the coherently scattered paths are independently drawn from

a uniform random distribution with mean= φ0 and standard deviation= 1◦ and

phases ψi are also independently and uniformly drawn from the interval [0 2π]

in each Monte Carlo run. That is, angles and phases of the scatters remained

frozen from snapshot to snapshot and are changed from run to run. Note that

all signal paths are used to calculate the SNR in this case when the array output

is generated in simulations.

The performance of the methods with increasing number of training snapshots

for the �xed SNR = −10 dB is given in Figure 3.20. In Figure 3.21, the beam-

patterns of methods are displayed for �xed the number of training snapshots

N = 64 and SNR = −10 dB. Additionally, the performance of these methods

versus SNR for the training snapshots N = 64 is compared in Figure 3.22. As

a last result for this case, the performance of methods in terms of bearings ver-

sus SINR for SNR = −10 dB and N = 64 is given in Figure 3.23. As can be

seen from the results given for this case, the reduced dimension WCO beam-

former with the designed subspace has the best performance among all the other

methods tested.
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Figure 3.20: Output SINR versus number of snapshot, Local Coherent Scatter-
ing, SOI: 90◦, Interferences: Main ship and 30◦
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Figure 3.21: Beampatterns, Local Coherent Scattering, SOI: 90◦, Interferences:
Main ship and 30◦
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Figure 3.22: Output SINR versus SNR, Local Coherent Scattering, SOI: 90◦,
Interferences: Main ship and 30◦
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Figure 3.23: Output SINR for each bearing, Local Coherent Scattering, Inter-
ferences: Main ship and 30◦
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3.1.5 Case 5: Incoherent Local Scattering

As a �nal case, the case of incoherent local scattering is considered. In this case,

the spatial signature of the SOI is time-varying and is modeled by

s̃(t) = s0(t)a(φ0) +
3∑
i=1

si(t)a(φi) (3.2)

where the angles φi (i = 1, 2, 3) are independently drawn from a uniform random

distribution with mean= φ0 and standard deviation= 1◦, si(t) are i.i.d. zero-

mean complex Gaussian variables. In order to de�ne incoherent local scatterers,

φi is changed in each Monte Carlo and remained �xed from snapshot to snapshot

while si(t) is changed both from snapshot to snapshot and from run to run. As

in the previous case, all signal paths are used to calculate the SNR as the array

output is generated in simulations. Note that, according to the signal model

(3.2), the covariance matrix of the SOI Rs is no longer a rank-one matrix.

As a �rst simulation result, similar to previous cases, the performance of methods

versus the number of training snapshots for SNR = −10 dB is given in Figure

3.24. In Figure 3.25, beampatterns are shown for the training snapshots N = 64

and in Figure 3.26, the output SINR values of methods versus SNR is presented

when N = 64. Moreover, the dependency of the output SINR values to the DOA

of SOI for N = 64 and SNR = −10 dB is indicated in Figure 3.27. The given

results show that the reduced dimension WCO with main ship noise suppressed

subspace provide advantage against the incoherent local scatterers.
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Figure 3.24: Output SINR versus number of snapshot, Local Incoherent Scat-
tering, SOI: 90◦, Interferences: Main ship and 30◦
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Figure 3.25: Beampatterns, Local Incoherent Scattering, SOI: 90◦, Interferences:
Main ship and 30◦
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Figure 3.26: Output SINR versus SNR, Local Incoherent Scattering, SOI: 90◦,
Interferences: Main ship and 30◦
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Figure 3.27: Output SINR for each bearing, Local Incoherent Scattering, Inter-
ferences: Main ship and 30◦
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3.2 Experimental Results

In this section, a performance comparison of each beamforming method is made

using the passive sonar data collected with a large towed array during the sea

trials of ASELSAN in the Marmara Sea.

To compute the beamformer outputs, 32 sensors spaced half wavelength apart

of the towed array are used. The parameters of the towed array such as design

frequency, total number of sensors, array length are proprietary. The sensor

outputs were %50 overlapped and fast Fourier transformed (FFT). The lengths

of the overlapping windows were selected to satisfy the bandwidth limit B < 1
8Ttr

given in [2] where Ttr is the transit time across the towed array. Results are

examined for a single frequency bin such that the center of the selected frequency

bin corresponds to the design frequency of array. Moreover, the number of the

frequency-domain training snapshots is equal to 63 and the snapshots are highly

contaminated by the SOIs. The results are generated in only azimuth plane with

angle separation 2.5◦. That is, 72 beams are formed in the azimuthal plane.

While selecting the dataset, we pay attention the dataset to contain the weak

sources in order to observe the performance of the methods at low SNR values

and the strong sources to compare the interference rejection capability of meth-

ods. Moreover, it is remarked that the dataset has the source near the main ship

noise and that provides to observe the performance of the designed subspace.

Bearing Time Records (BTRs) are given for the following methods

• Conventional Beamformer in Figure 3.28,

• SMI Beamformer in Figure 3.29,

• Worst-Case Performance Optimization Beamformer in Figure 3.30,

• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the conventional subspace in Figure 3.31,

• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the designed (nulled) subspace in Figure 3.32.
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From the BTR �gures, the following observations are made;

• It is clear that the Conventional Beamformer has the poorest performance.

The weak sources at angles 60◦, 100◦, 110◦, 125◦ in the �rst sample time

cannot be observed in the BTR �gure, as this beamformer does not have

an adaptive interference rejection capability, high sidelobes of the strong

sources like the main-ship noise between angles [160◦ 180◦] mask these

weak sources.

• The SMI Beamformer has better performance compared to the Conven-

tional Beamformer. The weak sources now appear in the BTR �gure ow-

ing to the improved interference rejection capability of this beamformer.

However, the power of all the sources are weaker than the full dimension

WCO beamformer. This is because of the fact that the SMI beamformer

is not robust against the mismatches and other errors in real data. Also

the performance degrades by the contaminated small number of training

snapshots.

• The Worst-Case Performance Optimization Beamformer has the best per-

formance among the full dimension methods tested since it is robust to

mismatches, other modeling errors and even the small number of training

snapshots. Only the source near to main-ship noise can barely be seen

because of the strong source, main ship noise.

• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the conventional subspace has smaller performance degradation com-

pared to the full dimension WCO beamformer but has better performance

compared to the SMI beamformer. The output powers of sources are

slightly decreased and the source near the main ship noise still cannot be

observed clearly.

• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the designed (nulled) subspace performs as good as the full dimension

WCO beamformer. Now, all sources, especially the source near the main

ship noise, can be seen clearly. It can be seen that the use of the designed
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subspace instead of the conventional subspace to reduce dimension has

some advantages. These advantages are the stronger output power of

sources and the more degrees of freedom. However, it is seen that the

background noise in this reduced dimension method is slightly increased.

Figure 3.28: Bearing Time Record, Conventional Beamformer
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Figure 3.29: Bearing Time Record, SMI Beamformer

Figure 3.30: Bearing Time Record, WCO Beamformer
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Figure 3.31: Bearing Time Record, Reduced Dimension WCO with the conven-
tional subspace

Figure 3.32: Bearing Time Record, Reduced Dimension WCO with ship noise
suppression subspace
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In order to examine the performance of methods in detail, the detection outputs

of the beamformers are presented. For background estimation, two pass split

window given in [20] and a constant threshold are used. The constant threshold

is intentionally selected a high value to observe the advantage of the designed

subspace near the known interference, that is the main ship noise, to other

methods tested.

The detection results that are generated by using the same background estimator

and the constant threshold are given in the following order

• Detection results of Conventional Beamformer in Figure 3.33,

• Detection results of SMI Beamformer in Figure 3.34,

• Detection results of Worst-Case Performance Optimization Beamformer in

Figure 3.35,

• Detection results of Reduced Dimension Worst-Case Performance Opti-

mization Beamformer with the conventional subspace in Figure 3.36,

• Detection results of Reduced Dimension Worst-Case Performance Opti-

mization Beamformer with the designed (nulled) subspace in Figure 3.37.

From the detection outputs of beamformers, the following results are obtained

• With the Conventional Beamformer, the source near the main ship noise

and even the main ship noise could not be detected.

• The SMI Beamformer has better performance compared to the Conven-

tional Beamformer but worse than the full dimension WCO beamformer.

The main ship noise could not be detected in few instants and the source

near the main ship noise could not be detected until approximately 20◦

di�erence between the source and the main ship provided.

• The Worst-Case Performance Optimization Beamformer has the best per-

formance among the full dimension methods tested. However, the source

near the main ship noise also could not be detected until di�erence between

the source and the main ship increases.

48



• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the conventional subspace performs nearly as good as the full dimen-

sion WCO beamformer.

• Reduced Dimension Worst-Case Performance Optimization Beamformer

with the designed (nulled) subspace performs as good as the full dimension

WCO beamformer. Furthermore, the source near the main ship noise

is detected completely. This shows that the suppression of the known

interferences while reducing dimension increases the performance of the

reduced dimension robust beamformer.

As a result, the performance of the full dimension WCO beamformer is nearly

achieved by using the reduced dimension WCO beamformers. Moreover, the

performance of the reduced dimension beamformer is enhanced by using the

designed subspace that provides suppression of the known interferences while

reducing the dimension. Thus, the reduced dimension robust WCO beamformer

with a lower computational complexity is obtained.
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Figure 3.33: Detection outputs of Conventional Beamformer
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Figure 3.34: Detection outputs of SMI Beamformer
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Figure 3.35: Detection outputs of WCO Beamformer
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Figure 3.36: Detection outputs of Reduced Dimension WCO with conventional
subspace
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Figure 3.37: Detection outputs of Reduced Dimension WCO with ship noise
suppression subspace
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

In this thesis, the dimension reduction method used in [23] is applied to the

robust adaptive beamforming using Worst-Case performance optimization given

in [11] in order to produce quickly converging beamformer allowing for steering

vector mismatches and small number of training snapshots. To enhance the

performance of this new reduced dimension beamformer, also the special sub-

space that suppresses the known interferences is developed. For towed arrays,

the performance of the developed technique is examined and compared with the

full dimension methods.

In Chapter 1, the relevant literature is presented. The data independent beam-

former which is the Conventional beamformer, the statistically optimum beam-

former also called as MVDR, and the Sample Matrix Inversion are reviewed in

Chapter 2. Moreover, the Worst-Case Performance Optimization Beamformer

and the reduced dimension implementation of this method are given. Lastly, the

subspace design to suppress the known interferences are presented in Chapter 2.

Chapter 3 contains both the simulation and the experimental results. The sim-

ulations compare the performance of the methods for �ve di�erent cases. In

the �rst case, the case of no mismatch in steering vector along with a small

number of training snapshots is considered. In this case, �rstly the system pa-

rameters of the robust methods are determined and utilized in the rest of cases.

It is observed that the reduced dimension WCO beamformer with the main-ship

noise suppressed subspace has better performance compared as compared with

other methods tested in snapshot de�cient scenario. Moreover, the conventional
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subspace causes �uctuations in the output SINR at the angles near the strong

interference if the dimension that the array output is projected is small.

In the second case, the signal look direction mismatch with a small number

of training snapshots is considered. The reduced dimension WCO beamformer

with the main-ship noise suppressed subspace has also better performance than

others; although all methods tested have some performance degradation. Fur-

thermore, it is shown that the SINR performance in this case can be improved

by choosing a proper robustness parameter.

In the next case, the sensor placement error with a small number of train-

ing snapshots is examined. In this case, it is observed that the full dimension

WCO beamformer performs better than the dimension reduced methods since

the subspaces used to reduce dimension also comprises the sensor placement

error. However, reduced methods still have much higher performance compared

to the SMI beamformer.

In the �nal simulations, the performance of the methods under the coherent and

incoherent local scatters with a de�cient snapshots is compared. For both cases,

a better performance can be obtained by using the dimension reduced WCO

beamformer with the main-ship noise suppressed subspace instead of the other

techniques.

In the experimental results with the �eld data, the Bearing Time Records are

given for all methods described in Chapter 2 by using the towed array data

obtained in sea trials of ASELSAN. Moreover, the detection outputs generated

by a generic detector are presented. From presented results, it can be concluded

that the Conventional Beamformer has drastically poor performance. The SMI

beamformer has weaker output power than the full dimension WCO beamformer

due to the mismatches in the assumed steering vector and the small number of

snapshot. The dimension reduced beamformers tested have the performance

as good as the full dimension robust beamformer. Moreover, the performance

enhancement of reduced method with the main ship noise is suppressed subspace

is seen from the detection of the source near the main ship noise.
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As a summary, a dimension reduced robust beamformer is given by formulat-

ing a robust beamforming method in the literature in the reduced dimension.

The performance of this method is enhanced by designing a special dimension

reducing matrix that suppresses the known interfering sources during reducing

dimension. Also, the success of this method is veri�ed with both simulation and

experimental results. Thus, a low computational complexity beamformer that is

robust against the steering vector mismatch at a low number training snapshots

is presented.
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