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ABSTRACT

EFFECTIVE & EFFICIENT METHODS FOR WEB SEARCH RESULT
DIVERSIFICATION

Özdemiray, Ahmet Murat

Ph.D., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. İsmail Sengör Altıngövde

September 2015, 124 pages

Search result diversification is one of the key techniques to cope with the ambigu-
ous and/or underspecified information needs of the web users. In this study we first
extensively evaluate the performance of a state-of-the-art explicit diversification strat-
egy and pin-point its weaknesses. We propose basic yet novel optimizations to rem-
edy these weaknesses and boost the performance of this algorithm. Secondly, we
cast the diversification problem to the problem of ranking aggregation and propose
to materialize the re-rankings of the candidate documents for each query aspect and
then merge these rankings by adapting the score(-based) and rank(-based) aggrega-
tion methods. As a third contribution, for the first time in the literature, we propose
using post-retrieval query performance predictors (QPPs) to estimate, for each aspect,
the retrieval effectiveness on the candidate document set, and leverage these estima-
tions to set the aspect weights. In addition to utilizing well-known QPPs from the
literature, we also introduce three new QPPs that are based on score distributions
and hence, can be employed for online query processing in real-life search engines.
For the last contribution, we use retrieval performance predictions of query aspects
to selectively expand those aspects that perform below some threshold, using the top
retrieved documents of the aspect’s own results.

Our extensive experimental evaluations show that, despite having lower computa-
tional complexity than the state-of-the-art diversification strategies, certain ranking
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aggregation methods are superior to the existing explicit diversification strategies in
terms of the diversification effectiveness. Furthermore, using QPPs for aspect weight-
ing improves almost all state-of-the-art diversification algorithms in comparison to
using a uniform weight estimator and also the proposed QPPs are comparable or su-
perior to the existing predictors in the context of aspect weighting. Lastly, using
QPP methods to selectively expand the query aspects provide better diversification
performance compared to unexpanded or fully expanded aspects, for most of the di-
versification strategies.

Keywords: Web Search Systems, Search Result Diversification, Ranking Aggrega-
tion, Query Performance Prediction, Query Expansion
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ÖZ

WEB ARAMA CEVAPLARININ ÇEŞİTLENDİRİLMESİNDE ETKİN VE
VERİMLİ YÖNTEMLER

Özdemiray, Ahmet Murat

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. İsmail Sengör Altıngövde

Eylül 2015 , 124 sayfa

Arama sonuçlarının çeşitlendirilmesi, web kullanıcılarının muğlak veya eksik belirtil-
miş bilgi ihtiyaçlarıyla baş edilmesi için kullanılan anahtar tekniklerden biridir. Son
yıllarda, sorgu cephelerinin açıkça bilinmesine dayanan stratejiler, sorgu sonuçları-
nın çeşitlendirilmesinde çok etkili yöntemler olarak kullanılmaya başlamıştır. Bu ça-
lışmada, öncelikle açıkça bilinen sorgu cephelerine dayanan modern çeşitlendirme
stratejilerinden birini detaylı bir şekilde değerlendirerek onun zayıf noktalarını tespit
ediyoruz. Bu zayıflıklara çözüm getirmek ve algoritmanın performansını artırmak için
basit ama daha önce uygulanmamış optimizasyonlar öneriyoruz. İkinci katkı olarak,
mevcut çeşitlendirme stratejilerinin aday dokümanların sorgu cephelerine yakınlığın-
dan faydalanmasından ilham alarak, çeşitlendirme problemini sıralama birleştirme
problemine benzeştiriyoruz. Bu amaçla, aday dokümanların her bir sorgu cephesi için
oluşturulmuş sıralamasını kullanmayı ve bu sıralamaları skor tabanlı ve sıra tabanlı
birleştirme yöntemlerini adapte ederek birleştirmeyi öneriyoruz. Üçüncü olarak, lite-
ratürde ilk defa sorgu sonrası performans tahmincileri (QPP) kullanarak, her sorgu
cephesi için aday doküman kümesinin performansını kestirip, bu bilgiyi kullanarak
sorgu cephelerinin ağırlıklarını belirliyoruz. Literatürde iyi bilinen QPP’lerin kulla-
nımının yanında, gerçek arama motorları tarafından çevrimiçi sorgu işleme sırasında
kullanılabilecek skor dağılımına dayalı üç yeni QPP daha tanımlıyoruz. Son katkı
olarak da, performans tahminleri belirli eşiğin altında olan sorgu cephelerini, sorgu
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cephesinin kendi sonuçlarını kullanarak genişletiyoruz.

Yoğun deneysel değerlendirmelerimiz gösteriyor ki, bakığında belirli sıralama bir-
leştirme yöntemleri, açıkça bilinen sorgu cephelerine dayanan modern çeşitlendirme
stratejilerinden çeşitlendirme etkinliği açısından daha iyi performans sağlıyor. Ay-
rıca, bu sıralama birleştirme yöntemleri, mevcut çeşitlendirme yöntemlerinden daha
az işlem güçlüğü gerektiriyor. Ayrıca, QPP’lerin sorgu cephelerinin ağırlığını bulmak
için kullanılması neredeyse tüm modern çeşitlendirme stratejilerinde eşit ağırlıklan-
dırmaya nazaran daha iyi sonuç veriyor. Bunun yanında, önerilen QPP’ler de aspekt
ağırlıklandırma açısından mevcut QPP’lerle kıyaslandığında benzer ya da daha iyi
sonuç veriyorlar. Son olarak, genişletilecek sorgu cephelerinin QPP yöntemleri ile
belirlenmesi ile elde edilen sonuçlar genişletilmemiş veya tamamı genişletilmiş sorgu
cephelerine göre daha iyi çeşitlendirme performansı sunuyor.

Anahtar Kelimeler: Web Arama Sistemleri, Arama Sonuçlarını Çeşitlendirme, Sıra-
lama Birleştirme, Sorgu Performans Tahmini, Sorgu Genişletme
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the proliferation of the digital age, Internet became the main source of infor-

mation. The text content hosted in the Web covers a broad range, including but not

limited to academic, educational, entertaining, informational, navigational and social

material. Search engines are the main tools to access those broad range of content on

the Web. In year 2014, one of the popular search engines, Google, responded more

that 2 trillion web searches 1.

More than half of the web searches consist of at most two terms 2, most of which are

ambiguous or underspecified, making it a challenge for search systems to determine

the intention of the user. For example, when a single term query, say ’Jordan’, is

issued to the search engine; the user’s search intention may be to get information

about the country Jordan, or the basketball legend Michael Jordan, which makes this

query ambiguous. Furthermore, the user may also want to know some demographic

or welfare information of people living in country Jordan, or the contact information

of the Jordan embassy in his country (or Jordan brand shoes, or the career stats of

"Michael Jordan") which also makes this query underspecified. For such queries, the

search engine can provide a result set that can cover possible different interpretations

of the query to satisfy the user.

Search result diversification methods try to improve user satisfaction in case of am-

1 http://www.statisticbrain.com/google-searches
2 http://www.keyworddiscovery.com/keyword-stats.html
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biguous or underspecified queries, either by implicitly discovering the query aspects

using the contents of the candidate documents, or by explicitly by using the previ-

ously obtained query aspects through some mechanisms.

In this thesis, we presume that the query aspects are explicitly known during query

execution and we propose effective and efficient strategies to diversify web search

results, while improving state-of the-art explicit search result diversification methods

also.

1.2 Contributions

The contributions in this thesis can be divided into four parts. Firstly, in Chapter 2, we

extensively evaluate one of the better performing state-of-the-art explicit search result

diversification methods (i.e. xQuAD [51]) and pin-point some of its weaknesses.

Being a probabilistic framework, xQuAD uses a greedy algorithm to construct the

query result, by choosing a candidate document at each iteration which maximize the

relevance to the original query and novelty among other selected documents. While

examining this algorithm, we noticed that for some queries, if a document which fully

represents a query aspect is selected to the result set, that query aspect is neglected

and the algorithm only diversifies the rest of the result set using other query aspects.

We called this problem "aspect elimination problem". Secondly, we realized that,

after selecting a few documents to the final result set, the novelty component’s weight

becomes negligible compared to the relevance component in the xQuAD mixture

model, making the algorithm choose rest of the result set based on the relevance to

the original query.

To overcome these weaknesses of xQuAD algorithm, we first apply some score nor-

malization methods in the literature to estimate the probability of aspect’s satisfaction

by choosing the document. We also propose a novel normalization algorithm which

depends on a virtual document to approximate the upper-bound of the document’s

relevance score. In order to mitigate the second issue, we propose to utilize some

aggregate functions to model the novelty component of xQuAD.

In Chapter 3, we present our second contribution, which is motivated by the obser-
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vation that, computing the relevance of candidate documents to query aspects play a

central role in current explicit search result diversification strategies. Inspired by this

finding, we exploit the re-rankings of the candidate documents according to the query

aspects and merged these re-rankings using score-based and rank-based ranking ag-

gregation algorithms. The work reported in Chapter 2 and Chapter 3 was published

in:

• A. M. Ozdemiray and I. S. Altingovde. Score and rank aggregation methods for

explicit search result diversfication. Technical Report METU-CENG-2013-01,

Middle East University, Computer Engineering Department, September 2013.

• A. M. Ozdemiray and I. S. Altingovde. Explicit search result diversification

using score and rank aggregation methods. Journal of the Association for In-

formation Science and Technology, 66(6):1212-1228, 2015.

During our extensive evaluations, we observed that the weighting of the query aspects

play an important role in the success of the diversification mechanism. In Chapter 4,

for the first time in the literature, we propose using post-retrieval query performance

predictors to estimate the retrieval effectiveness of each query aspect on the candidate

document set to find the relative weights of the query aspects. In addition to utilizing

the well-known post retrieval QPPs from the literature, we introduce three new QPPs

that are based on the score distributions of the candidate documents in the re-rankings.

The work presented in Chapter 4 was published in:

• A. M. Ozdemiray and I. S. Altingovde. Query Performance Prediction for As-

pect Weighting in Search Result Diversification. In: Proceedings of the 23rd

ACM International Conference on Information and Knowledge Management,

CIKM 2014, pages 1871-1874. ACM, 2014.

Inspired by the success of query expansion and re-writing techniques applied in ad

hoc retrieval, we propose to expand the query aspects in Chapter 5. In particular, we

use pseudo-relevance feedback (PRF) methods on the top-k results retrieved for each

query aspect to find expansion terms to better represent the aspect. Moreover, we

introduce a novel selective strategy, based on the findings of the previous chapter, to

3



expand those aspects that are likely to benefit from the expansion. Specifically, we

use the proposed QPP methods to predict the performance of the aspects and expand

the aspect queries if necessary.

We conclude and point some future work directions in Chapter 6.
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CHAPTER 2

OPTIMIZATIONS ON EXPLICIT DIVERSIFICATION

METHODS

Search result diversification methods try to satisfy user information needs in case

of ambiguous or underspeficied user queries. Some of these strategies assume that

query aspects are gathered through some mechanism and try to diversify the initial

query using these aspects. In this chapter 1, we pin-point some of the weaknesses of

one of the best performing state-of-the-art explicit diversification methods and pro-

pose some optimizations to remedy these weaknesses. We also applied one of these

optimizations to some state-of-the-art explicit diversification methods to observe its

behavior.

In Sections 2.1 we provide an introduction to the problem at hand and in Section 2.2

an overview of the related studies in the literature are given. We identify two po-

tential weaknesses of a state-of-the-art explicit diversification framework, xQuAD,

and introduce our solutions in Section 2.3. In the next two sections, we describe our

experimental setup and present the evaluation results, respectively. The last section

provides the conclusion.

1 A. M. Ozdemiray and I. S. Altingovde. "Explicit search result diversification using score and rank aggre-
gation methods", Journal of the Association for Information Science and Technology, 66(6):1212-1228. c©2015
John Wiley and Sons. http://dx.doi.org/10.1002/asi.23259. Reprinted by permission with license
number 371383091410
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2.1 Introduction

Search result diversification is a popular problem that receives attention from both

academia and industry. At the heart of the problem lies the fact that a large fraction

of web queries are vaguely specified and/or ambiguous, making it very hard (if not

impossible) for a search system to figure out the underlying search intent of the users.

For such queries, it seems to be a good compromise to provide a result set that can

cover possible different interpretations of the query and, thus, try to minimize the

risks of disappointing the users (e.g., [70]).

A number of result diversification strategies in the literature assume that potential

query aspects can be explicitly identified (say, by categorizing the queries accord-

ing to a taxonomy [1] or mining query logs [51, 9]), and aim to diversify the initial

retrieval results (candidate documents) of a query based on these already known as-

pects. In this study, we also assume the availability of explicit query aspects and

propose new strategies for result diversification in this setup.

In this chapter, we extensively evaluate the performance of a state-of-the-art explicit

diversification strategy, namely, xQuAD ([51]), and pin-point some of its weaknesses.

xQuAD is a probabilistic framework that constructs the final query result in a greedy

manner, by choosing the candidate document d that maximizes the relevance (based

on the likelihood of observing d for the query) and diversity (based on the relevance

of d to each query aspect, and the novelty of d with respect to the documents that

are already selected into the result) at each iteration. We identify two issues, so-

called "aspect elimination problem" and "aspect fading problem", that may arise due

to the ways the relevance and novelty probabilities are computed and/or estimated

in this framework. In essence, both of these problems are related to having some

query aspects that end up with a negligible or no impact during the early stages of the

diversification process; i.e., after selecting a few documents into the final result set.

To remedy the former problem, we explore a variety of relevance score normalization

methods and also propose a normalization strategy based on the upper-bound score

estimated for a given query and retrieval model. To address the second problem, we

propose to employ alternative functions while computing the novelty component of

6



xQuAD.

We evaluate the performance of the xQuAD variants, ranking aggregation methods

and QPPs in the context of aspect weighting using the standard TREC datasets and

explicit aspects discovered from different sources, and report the results for a number

of well-known metrics. We compare the proposed diversification methods to three

state-of-the-art explicit diversification strategies, namely IA-Select ([1]), xQuAD (as

originally proposed in ([51]), and PM2 strategy in ([20]). Our experiments show

that the xQuAD variants with the new score normalization and novelty components

outperform the original algorithm as well as the other baselines.

2.2 Related Work

Generating diverse/novel results is a hot topic with the potential of application in var-

ious contexts, ranging from web search engines (e.g., [50])) to recommenders (e.g.,

[59]) and topic tracking systems (e.g., [2]). In this study, we focus on the search re-

sult diversification problem that aims to provide both relevant and diverse results for

the ambiguous or underspecified web queries. In the literature, the approaches that

address this problem are broadly categorized as either implicit or explicit ([51]).

2.2.1 Implicit Search Result Diversification

The strategies in this category assume no prior knowledge of the query aspects; so

they either exploit the inter-similarity of the documents in the candidate set or at-

tempt to discover the underlying query aspects in an unsupervised manner ([50]).

A pioneering example of the former approach is the Maximum Marginal Relevance

(MMR) strategy that constructs the final ranking in a greedy manner ([10]). In each

iteration, a document’s score is computed by the difference of its relevance to the orig-

inal query and similarity to the documents that are selected into the final ranking up

to this point; and the document with the highest score is selected. Various strategies

in the literature adapt this greedy algorithm, yet differ in the way they compute the

inter-document similarities. For instance, Zhai et al. ([67]) utilize unigram language

models for representing the individual documents as well as the set of documents that
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are already selected into the final ranking at any point during the greedy iterations. In

contrast, Zuccon and Azzopardi ([74]) make use of the quantum probability ranking

principle while modeling the interference among the ranked documents. Two inde-

pendent works in the literature propose to adapt the modern portfolio theory to the

result diversification problem ([44], [63]). In this case, the inter-document similari-

ties are modeled based on the variance of the relevance among the ranked documents.

Gollapudi and Sharma ([25]) identify the connection between the result diversifica-

tion problem and facility dispersion optimization problems, and adapt some approxi-

mate solutions (namely, Max-Sum and Max-Min algorithms) from the operations re-

search field to the diversification context. Minack et al. employ these algorithms and

improve their efficiency for diversifying continuous data streams ([36]). A compara-

tive analysis of various implicit diversification algorithms using five different datasets

(other than standard TREC collections) is provided by Vieira et al. ([62]). More re-

cently, Zuccon et al. introduce an alternative perspective and model the diversification

problem within the desirable facility placement (DES) framework ([75]).

Different from the above approaches, some other implicit diversification strategies

(so-called coverage based methods in ([50])) attempt to model the underlying query

aspect from the initial retrieval results. For instance, Carterette and Chandar ([14])

identify the aspects (facets) using relevance modeling and topic models, and then con-

structs the final ranking in a round-robin fashion, i.e., by choosing the best document

for each facet. He et al. ([26]) also use topic models to partition the candidate docu-

ments into clusters; but they only consider the most relevant clusters to the query for

the subsequent diversification stages where well-known strategies such as the MMR

and round-robin are applied.

2.2.2 Explicit Search Result Diversification

In the explicit diversification methods, query aspects are modeled explicitly, i.e., by

exploiting the query labels, which are assigned either manually or automatically, or

from the reformulations of the query. IA-Select approach adopts the former option

and assumes that both queries and documents are associated with some categories

from a taxonomy ([1]). The diversification is achieved by favoring documents from
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different categories and penalizing the documents that fall into already covered cat-

egories. Alternatively, Radlinski and Dumais ([43]) use a given query and its refor-

mulations to obtain a candidate result set; which is then re-ranked and personalized

for a given user. Capannini et al. ([9]) employ query logs to decide when/how query

results should be diversified, and propose a new algorithm based on the popularity of

query reformulations in the log.

xQuAD is one of the most effective diversification strategies that also exploit query

reformulations obtained from TREC subtopics and search engines to model the query

aspects [51]. In a follow-up work, Santos et al. [52] employ both xQuAD and IA-

Select to achieve result diversification for the queries with navigational, informa-

tional, or transactional intents. Vallet and Castells [58] incorporate a personaliza-

tion component into both of the latter algorithms by explicitly introducing the user

as a random variable. In another study, Vargas et al. again employ these two al-

gorithms, xQuAD and IA-Select, and propose to model their relevance models ex-

plicitly, i.e., using the relevance judgments or, more practically, click statistics [60].

Finally, Zheng et al. propose a coverage based diversification framework where they

experiment with several coverage functions [72]. While these latter works also im-

prove or build on xQuAD, none of them focus on its components in a way similar to

ours. Different from the previous studies, we propose optimizations for the relevance

score normalization and novelty estimation components of xQuAD.

2.2.3 Score Normalization

The problem of score normalization is often tackled in the context of score-based

ranking aggregation. In one of the earliest works, Lee [31] employs MinMax nor-

malization (see Equation 2.3) to combine the retrieval scores of different systems.

Montague and Aslam ([37]) identify the desirable properties of the score normaliza-

tion techniques for meta-search and propose two new techniques, namely Sum and

ZMUV (zero-mean, unit-variance). A more detailed comparison of the latter tech-

niques is provided by Sever and Tolun ([53]). Fernandez et al. propose a probabilistic

normalization strategy for score-based aggregation ([24]). Arampatzis and Kamps

([4]) propose a normalization approach based on the assumption that the retrieval
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scores are composed of a signal and a noise component. In a rather different context,

Ravana and Moffat ([46]) investigate the score aggregation techniques for summariz-

ing the performance of a retrieval system over a set of queries. To the best of our

knowledge, none of the previous studies explore the impact of score normalization on

the explicit result diversification.

2.3 xQuAD Framework: Potential Weaknesses and Extensions

Preliminaries

Assume a query q is processed over a collection C and retrieves a ranked list of

documents τq, where |τq| = N .

Result Diversification Problem: Construct a ranked list τ ∗q of k documents (k < N)

such that τ ∗q maximizes both the relevance and diversity among all possible rankings

τi(|τi| = k) of τq.

A particular case of this general problem is the explicit result diversification problem,

where there is a set of explicitly identified query aspects (a.k.a., sub-topics, interpre-

tations, sub-queries) denoted as T = {q1, ..., qm} associated with the original query q.

Then, the objective function is finding a top-k ranking τ ∗q that maximizes the overall

relevance to multiple query aspects and at the same time, minimizes its redundancy

with respect to these aspects ([25]).

It can be shown that the general form of this problem is an instance of the max-

imum coverage problem and thus, it is NP-hard (e.g., see [51]). A large number

of diversification strategies based on the approximation algorithms, heuristics and/or

meta-heuristics are proposed in the literature (as briefly reviewed in the previous sec-

tion). In what follows, we describe one of the most effective strategies, xQuAD, that

is investigated and extended in more depth in the following sections.
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2.3.1 xQuAD Framework

xQuAD is a probabilistic framework ([51]) that constructs the ranking τ ∗q in a greedy

manner, by choosing the document di ∈ τq that maximizes the following probability

mixture model at each iteration:

(1− λ)P (d|q) + λ
∑
qi∈T

P (qi|q)P (d|qi)P (τ̄ ∗q |qi), (2.1)

where P (d|q) denotes the relevance (i.e., likelihood of observing d for the query q)

whereas the summation captures the diversity. In particular, P (qi|q) denotes the likeli-

hood of the aspect (sub-query) qi for the query q (referred to as sub-query importance

in [51]), P (d|qi) is the likelihood of observing d for the aspect qi and finally P (τ̄ ∗q |qi)
denotes the probability of qi not being satisfied by the documents that are already in

τ ∗q . The latter probability, which indeed captures the novelty, can be represented as

the product of the probabilities of each document in τ ∗q for not satisfying qi:

P (τ̄ ∗q |qi) =
∏
dj∈τ∗q

(1− P (dj|qi)). (2.2)

2.3.1.1 Potential Weaknesses of xQuAD

xQuAD is one of the most successful strategies for the explicit result diversification

and placed among the top-performers in the diversity tasks of both TREC 2009 and

2010 ([16], [17]). However, we still identify two problems that can significantly

diminish the performance of xQuAD, as follows.

Aspect elimination problem In the above model, a key component is the relevance

computation of a document d to the query q and its aspects (sub-queries) qi, denoted

as P (d|q) and P (d|qi), respectively. In previous works, these probabilities are usually

based on the popular weighting models like BM25, language models, etc. (e.g., [51]).

Typically, the scores produced by these methods are normalized to [0, 1] range at the

query-level, so that they can be employed in the xQuAD’s mixture model. While no

details are provided on the exact procedure employed in previous works, a practical

and tempting approach is using the MinMax score normalization, where the score

range of a query is mapped to the range [0, 1]; i.e., the top-ranked document in a list

11



having the score 1. MinMax normalization can be formally expressed as ([31], [47]):

P (d|q) =
s(d, q)−mindi∈τq s(di, q)

maxdi∈τq s(di, q)−mindi∈τq s(di, q)
, (2.3)

where τq is the ranked retrieval result for q, s(d, q) is the score generated by the

retrieval model and P (d|q) is the normalized relevance probability.

However, we realize that MinMax and other normalization techniques that set the

P (d|q) (or, P (d|qi)) value to 1 for the highest scoring documents for q (or, qi) cause

a deficiency in the model. Once the top-scoring document d∗ for an aspect qi is

selected for τ ∗q , for all following iterations, the impact of covering this aspect will be

nullified. That is, as P (d∗|qi) = 1 using, say, MinMax normalization, the probability∏
dj∈τ∗q (1−P (dj|qi)) will be 0 once d∗ is selected for τ ∗q . Therefore, the algorithm will

not care covering aspect qi from this point on. Even worse, for a query with just a few

aspects, if the documents with the highest scores for each aspect are selected at the

early stages of the algorithm, then diversification part of the xQuAD will be totally

neglected, and all remaining documents will be selected solely based on P (d|q).

The problem is more pronounced for the queries with a few aspects and when the

diversified set size is relatively large; i.e., k ≥ 20. In Figure 2.1, we show the

number of eliminated aspects after choosing the documents for each rank position

i (1 ≤ i ≤ 20) using xQuAD on TREC 2009 diversity task setup for the λ that yields

the highest α-nDCG@20 score (see the section Experimental Setup for the details).

The figure shows that even after selecting the first two documents into τ ∗q , 23% of the

query aspects (i.e., 56 out of 241 aspects specified for the 50 topics in TREC 2009)

are neglected, which is clearly not helpful for the diversification purposes.

Finally, the aspect the aspect elimination problem can be further harmful for the in-

formational queries, for which the users usually need more than one document (per

aspect) to satisfy their information needs. Within this latter context, Welch et al.

([64]) report the existence of the aspect elimination problem for another diversifica-

tion strategy, namely, IA-Select ([1]). Note that, since the IA-Select strategy in its

original setup employs the scores obtained from a classifier, the problem in their case

is not directly related to the normalization techniques. Nevertheless, in this chapter,

we include IA-Select among our baseline strategies (replacing the classifier scores

with P (d|qi) scores as in [51]), and evaluate the impact of the relevance score nor-
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Figure 2.1: Percentage of the eliminated aspects after choosing the documents for
each rank in τ ∗q .

malization techniques (described in the next section) also for IA-Select.

Aspect fading problem: Even when the top-scoring document of an aspect is not se-

lected for τ ∗q , the impact of the aspect qi fades away after choosing, say, a couple of

documents with high P (d|qi) values; as the novelty component is based on the prod-

uct of (1 − P (d|qi)) scores. For instance, if only two documents with 0.9 coverage

probability of the aspect q1 are in τ ∗q , for all the remaining documents, their P (d|q1)
scores will be multiplied with 0.01, rendering this aspect practically useless. Further-

more, for the queries with a small number of aspects, the novelty scores computed

for the remaining documents would be numerically very small after selecting the first

few documents into τ ∗q ; and from this point on, the selection process would be es-

sentially guided by the relevance scores P (q|d)2. In the following sub-sections we

discuss solution methods for each of these problems.

2 The λ parameter can help to remedy the situation if the numerical differences are small; but it is still useless
when the relevance and diversity scores vary in the order of magnitudes.
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2.3.1.2 Relevance Score Normalization for xQuAD

While the problem of retrieval score normalization is investigated on its own in previ-

ous works and especially in the context of score-based ranking aggregation in meta-

search (e.g., [37], [47], [24]), to the best of our knowledge, its impact on the result

diversification is not yet addressed3. To remedy the aspect elimination problem dis-

cussed in the previous section, a straightforward solution can be using a normalization

that does not map the top-ranked document relevance to 1 for a given list τ . To this

end, a practical approach is using Sum normalization, defined as follows ([24]):

P (d|q) =
s(d, q)∑

di∈τq s(di, q)
(2.4)

Our problem at hand is different than the traditional ranking aggregation problem

for meta-search engines in that the diversification is usually applied by the party that

actually generates the initial retrieval scores for τq; i.e., the system does not only

know the scores but also knows how they are computed. Exploiting this information,

we propose an alternative normalization based on the highest possible score that can

be generated for a given query and retrieval model. In this chapter, we employ two

weighting models for initial retrieval, namely, a variant of Okapi-BM25 ([48]) and the

query-likelihood language model with Dirichlet smoothing ([69]) as implemented in

the Zettair text retrieval system ([66]).

For each retrieval model, we define a virtual best score that would be generated by a

virtual document that is supposed to include each query term in the document with

the frequency of the document length, i.e., as if the document is only composed of the

query terms4. We set this virtual document’s length to the average document length

in the collection. While this is an unrealistically high upper-bound, our experiments

reveal that it serves quite well for the purposes of this study. Therefore, we normalize

the scores in τq by dividing each score by the virtual best score obtained for q using the

same retrieval function that generatedτq. Note that, the same procedure is also applied

3 Note that, Vargas et al. ([60]) recently proposed using the number of clicks instead of the retrieval scores
for estimating the relevance probabilities. This is a viable though orthogonal approach to what we propose here.

4 This is similar to computing an upper-bound for the relevance scores in dynamic pruning strategies, e.g.,
see [34].
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while normalizing the scores for P (d|qi). We call this normalization Virtual:

P (d|q) =
s(d, q)

s(dV , q)
(2.5)

where s(dV , q) is the upper-bound score computed for the virtual best document dV .

2.3.1.3 Document Novelty Estimation for xQuAD

As discussed above, the aspect fading problem arises as xQuAD computes the novelty

of a document d for an aspect qi by multiplying the dissatisfaction probability of qi

by the documents in the current set τ ∗q , as follows:

P (τ̄ ∗q |qi) =
∏
dj∈τ∗q (1− P (dj|qi)).

To avoid the negligible document novelty estimations (in comparison to the relevance

scores), instead of taking the product of probabilities in P (τ̄ ∗q |qi), we propose to use

either arithmetic mean or geometric mean of the aspect dissatisfaction probabilities

(as shown in Equations 2.6 and 2.7, respectively). This is a simple yet effective opti-

mization to make the relevance and diversity sides of the mixture model comparable

to each other in terms of their numerical values. Furthermore, by this optimization,

λ can be determined more accurately among various queries, as it would serve only

as a trade-off parameter as intended, but not for the purposes of remedying the gap

between the numerical scores.

P (τ̄ ∗q |qi) =

∑
dj∈τ∗q

(1−P (dj |qi))

|τ∗q |
(2.6)

P (τ̄ ∗q |qi) = |τ∗q |
√∏

dj∈τ∗q (1− P (dj|qi)) (2.7)

The xQuAD versions that employ the arithmetic and geometric means of the prob-

abilities in the novelty estimation component are referred to as art_xQuAD and

geo_xQuAD in the rest of this study.
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2.4 Experimental Setup

2.4.1 Collection, Queries and Aspects

We use the standard framework of "Diversity Task" as described in the TREC Web

Track. In particular, we employ ClueWeb09 collection Part-B that includes around

50 million English web documents. The collection is initially parsed and indexed

using the publicly available Zettair IR system ([66]). During the indexing, Zettair is

executed with the "no stemming" option, yielding a vocabulary of 163,629,158 terms.

We report our results for TREC 2009 and 2010 topic sets that include 50 and 48 query

topics, respectively5. For each topic in these sets, a number of sub-topics (up to 8)

are described and the relevance judgments are provided at the sub-topic level. In the

following experiments, we generate the query aspects in two ways. First, following

the common practice in the previous works (e.g., [20], [51]), we use the "query" field

of each topic as the initial query and generate its aspects (sub-queries) using the offi-

cial sub-topic descriptions provided in the TREC topic sets. This case represents the

idealistic scenario with the perfect knowledge of the query aspects. Secondly, we sim-

ulate a more realistic scenario and use top-10 query suggestions (auto-completions)

collected from Google search engine as the aspects of each query, as first proposed in

[51].

2.4.2 Initial Retrieval Model

For the initial retrieval runs, we used our homemade IR system with two popular

retrieval models, namely, a variant of the well-known Okapi BM25 metric ([48]) and

the query-likelihood language model with Dirichlet smoothing ([69]). For BM25 we

set k1 to 1.2 and b to 0.50, and for the language model (LM) we set µ = 2000.

We first retrieve top-N candidate documents (τq) using one of these weighting mod-

els, and then run the diversification strategies to obtain the final top-k results, i.e, τ ∗q .

Unless stated otherwise, for all the experiments we setN = 100 and k = 20. During

5 Note that, we prefer to report evaluations separately on each topic set (but not their union) for the sake of
comparability with the previous works.
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retrieval, standard stopwords are removed.

Previous studies that experimented with the ClueWeb09 collection report that apply-

ing spam filtering can considerably improve the initial retrieval performance. There-

fore, we also employ the spam filtering technique in ([18]). In particular, we utilize

the publicly available Waterloo Spam Rankings6 that assigns a spam percentile score

to each document in the ClueWeb09 collection. During the initial retrieval, we set

the relevance scores of the documents with spam score of less than 60 to −∞ (as in

[20]), so that these documents are eliminated from the top-N candidate documents.

2.4.3 Baseline Diversification Strategies and Evaluation Metrics

We have three strategies that serve as the diversification baselines. All of these strate-

gies are greedy in nature and differ in the scoring function that is used to select the

best document at each iteration, until all k documents are selected into τ ∗q . We briefly

summarize these strategies as follows:

2.4.3.1 Intent Aware (IA)-select

This strategy aims to choose the document with the highest probability of satisfying

the user given that all previously selected ones fail to do so [1]. The scoring function

of IA-Select is as follows:

∑
qi∈T

P (qi|q)V (d|q, qi)
∏
dj∈τ∗q

(1− V (dj|q, qi)). (2.8)

where V (d|q, qi) is the likelihood of d satisfying q for the underlying aspect qi. As

there is no strict enforcement on the implementation of this latter component in ([1]),

it is replaced by P (d|qi) in our experiments (as in [51]).

2.4.3.2 org_xQuAD

This is the original xQuAD algorithm ([51]) as elaborated in the previous sections.

Its scoring function, which is basically the combination of Equations 2.1 and 2.2, is
6 http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
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as follows:

(1− λ)P (d|q) + λ
∑
qi∈T

P (qi|q)P (d|qi)
∏
dj∈τ∗q

(1− P (dj|qi))

 . (2.9)

2.4.3.3 PM2

In [20], two strategies, namely PM1 and PM2, are proposed within a proportionality-

based diversification framework. The authors report that PM2 outperforms both its

simpler predecessor PM1 and the original xQuAD for several evaluation metrics.

Therefore, we include PM2 strategy as our third diversification baseline.

The intuition for this strategy is that, in a similar manner to allocation of seats to

party representatives in some election systems, the ranks in τ ∗q should be allocated

to documents that satisfy the query aspects in proportion to the popularity of these

aspects in τq. At a given iteration p, first the winner aspect qi∗ is determined by the

popularity of the aspect in τq and number of positions in τ ∗q that are allocated to this

aspect up to iteration p (i.e., referred to as quotient score). Next, for this winner aspect

qi∗ , PM2 selects the document d that maximizes the following score function:

λ× qt[i∗]× P (d|qi∗) + (1− λ)
∑
i 6=i∗

qt[i]P (d|qi) (2.10)

where qt [i] is the quotient score and λ is the trade-off parameter between the rele-

vance to the winner aspect and other aspects. Since the selected document in PM2 is

expected to satisfy not only the winner aspect but also some other aspects, the number

of positions allocated to each aspect is also updated accordingly (see [20] for details).

In all of these diversification baselines, we compute the relevance of the candidate

documents to query aspects, i.e., P (d|qi), using the same model employed for the

initial retrieval. While doing so, standard stopwords are removed from the aspect

descriptions. Following the practice in [51], aspect probabilities P (qi|q) are computed

uniformly as 1/|T |, where T is the set of aspects {q1, ..., qm} for a given query q.

For the strategies xQuAD and PM2, we test all values of the trade-off parameter λ in

[0,1] range with a step size of 0.01, and the best λ values obtained on one of the topic
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sets (say, TREC 2009) is employed to obtain the reported results on the other topic

set (say, TREC 2010).

2.4.3.4 Evaluation metrics

To evaluate the diversification performance, we compute most common measures,

namely, α-nDCG, ERR-IA and Precision-IA, at the cut-off value of 20, using ndeval

software10. For α-nDCG, α is typically set to 0.5, i.e., relevance and diversity are

equally weighted.

Reproducibility of the results.

For search result diversification, a standard evaluation framework, namely "Diversity

Task" in TREC Web Track, is available, which allows the use of a common dataset,

queries and relevance judgments. Still, we identified some issues that complicate,

or occasionally, make it impossible to make direct comparison of the results in dif-

ferent studies. First, even when the same document collection is employed (usually

ClueWeb09 in the last years), the software used for indexing (e.g., Zettair, Terrier

(e.g., [51]), Lemur/Indri (e.g., [20]), etc.) and choice of the parameters (list of stop-

words, stemming options, handling various HTML tags during the parsing, spam

filtering, etc.) can considerably alter the final results. Secondly, the retrieval models

and their parameters can differ. A third issue that complicates comparing the results

in our case is the list of query aspects. Even when the original TREC sub-topics

are used for generating the aspects, there might be subtle differences in parsing the

sub-topic descriptions. Obviously, if Web search engine suggestions are used to this

end, the aspects employed by the works conducted at different times would differ

significantly, making the results even less comparable.

In the light of above discussion, we provide the following data items to allow other

researchers compare and contrast their findings with ours11. First, we provide the ini-

tial retrieval results, i.e., top-100 document identifiers, obtained over the ClueWeb09

Part-B collection. This would allow researchers to start with the same basis, i.e.,

candidate document set, to apply their own diversification strategies. Secondly, we

provide the list of query aspects generated for each topic using TREC sub-topics and
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search engine suggestions.

2.5 Evaluation Results

In this section, we seek answers to the following research questions:

1. What is the impact of the score normalization techniques on the performance

of the baseline diversification strategies, especially xQuAD and IA-Select that

can suffer from the aspect elimination problem?

2. Can the xQuAD variants with the new relevance normalization and novelty es-

timation components outperform the original xQuAD strategy and other base-

lines?

In the following experiments, we essentially report our results using the BM25 model

for the initial retrieval stage and official TREC sub-topics for representing the query

aspects. In the next chapter, we will provide additional experiments where we explore

the impact of the alternative retrieval models and aspect representations.

2.5.1 Performance of the Score Normalization Techniques

We begin with comparing the performance of the baseline diversification strategies

on TREC 2009 and 2010 topic sets and using the aspects obtained from the official

sub-topics and BM25 as the retrieval model (Table 2.1). For each diversification

strategy, we normalize the relevance scores using the MinMax and Sum methods

from the literature ([24]), as well as the virtual best score (denoted as Virtual) as

we describe in this study. We also report the trade-off parameter λ employed in each

case.

The following findings can be observed from Table 2.1. First, all diversification meth-

ods perform better than the non-diversified retrieval for both BM25 and LM models

as shown in the literature. Secondly, the results show that the score normalization

component affect all diversification methods; which is a justification for our interest

in the normalization techniques in this study.
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Table 2.1: Diversification performance w.r.t. the relevance normalization techniques

for different retrieval models using the query aspects obtained from the official sub-

topics. The highest scores are shown in boldface.
Relevance 2009 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 - - 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

org_xQuAD

MinMax 1.00 0.2242 0.3240 0.0769 0.99 0.2372 0.3281 0.1256

Sum 0.15 0.2181 0.3154 0.0902 0.77 0.2506 0.3570 0.1589

Virtual 1.00 0.2318 0.3263 0.0802 0.95 0.2634 0.3509 0.1315

IA-Select

MinMax - 0.2242 0.3240 0.0769 - 0.2445 0.3386 0.1252

Sum - 0.2141 0.3162 0.0929 - 0.2529 0.3568 0.1592

Virtual - 0.2318 0.3263 0.0802 - 0.2681 0.3660 0.1334

PM2

MinMax 0.40 0.2233 0.3271 0.0899 0.57 0.2477 0.3576 0.1515

Sum 0.57 0.2233 0.3266 0.0898 0.62 0.2571 0.3651 0.1555

Virtual 0.52 0.2328 0.3330 0.0932 0.46 0.2675 0.3713 0.1601

Third, for the org_xQuAD and IA-Select strategies, the normalization schemes Vir-

tual and/or Sum yield a better performance than the MinMax (especially on TREC

2010), which demonstrates that they can help in remedying the aspect elimination

problem for these two diversification strategies. In particular, the org_xQuAD strat-

egy with Virtual yields the highest ERR-IA scores (i.e., with a relative improvement

of 3% and 5% over the second-best normalization technique for TREC 2009 and 2010

sets, respectively) and α-nDCG score (i.e., with a relative improvement of 1% over

the MinMax on TREC 2009 set). Similarly, IA-Select achieves its best performance

with the normalization techniques Sum (yielding an up to 19% relative improvement

for the Precision-IA metric) and Virtual (yielding an up to 2% relative improvement

for the ERR-IA and α-nDCG metrics). Finally, Virtual is the best technique also for

PM2, as for all the reported evaluation metrics it yields a relative improvement that

ranges from 2% to 4% over the second-best normalization technique.

2.5.2 Performance of xQuAD variants

In Table 2.2, we compare the diversification performance of the original xQuAD

to the variants that use arithmetic and geometric means for the novelty estimation
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components, namely, art_xQuAD and geo_xQuAD, respectively. For the ease of

comparison, we repeat the results for org_xQuAD from Table 2.1. As before, each

strategy is combined with three different normalization techniques.

Our findings in Table 2.2 reveal that the novelty estimation methods proposed in this

study considerably improve the org_xQuAD. The highest scores for all of the eval-

uation metrics (as shown in boldface in Table 2.2) are produced by the art_xQuAD

and geo_xQuAD strategies that usually employ Virtual method for the relevance

score normalization. For instance, using the TREC2010 topics, the art_xQuAD

variant with Virtual normalization scheme provides a relative improvement of around

7% for both ERR-IA and α-nDCG metrics over the best-performing configuration of

the original xQuAD strategy.

Table 2.2: Diversification performance of the xQuAD variants using the query aspects

obtained from the official sub-topics. The highest scores across all methods are shown

in boldface.
Relevance 2009 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

org_xQuAD

MinMax 1 0.2242 0.3240 0.0769 0.99 0.2372 0.3281 0.1256

Sum 0.15 0.2181 0.3154 0.0902 0.77 0.2506 0.3570 0.1589

Virtual 1 0.2318 0.3263 0.0802 0.95 0.2634 0.3509 0.1315

geo_xQuAD

MinMax 0.92 0.2305 0.3301 0.0857 0.97 0.2494 0.3461 0.1418

Sum 0.15 0.2174 0.3134 0.0892 0.75 0.2495 0.3515 0.1571

Virtual 0.56 0.2333 0.3292 0.0905 0.86 0.2842 0.3876 0.1606

art_xQuAD

MinMax 0.91 0.2326 0.3374 0.0912 0.92 0.2629 0.3732 0.1578

Sum 0.15 0.2174 0.3134 0.0892 0.75 0.2495 0.3515 0.1571

Virtual 0.57 0.2338 0.3301 0.0918 0.86 0.2835 0.3868 0.1609

We further investigate the impact of the trade-off parameter λ on the performance of

xQuAD using the union of topics from TREC 2009 and 2010. In Figure 2.2, we report

the α-nDCG@20 scores for org_xQuAD using all three normalization methods, and

for our geo_XQuAD and art_XQuAD only with the best-performing normalization,

Virtual (to simplify the plot). The trade-off parameter λ is varied in the range [0, 1]

with a step size of 0.01. Our findings reveal that both Sum and Virtual normalization

techniques outperform MinMax for the entire range of values for the org_xQuAD
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strategy. Furthermore, while Sum reaches the peak effectiveness score when λ is

around 0.15, the other two techniques perform better as we increase the λ; and the

overall best performance for org_xQuAD is obtained with Virtual for λ = 1. Vargas

et al. ([60]) and Zheng et al. ([71]) independently report a similar finding; i.e., the

best λ value being 1 for xQuAD, and the latter work attributes this due to the use of

real sub-topics from TREC as the query aspects. Nevertheless, our art_xQuAD and

geo_xQuAD strategies with Virtual normalization yield the best effectiveness results

and outperform org_xQuAD coupled with any of these normalization techniques.

Figure 2.2: Diversification performance of the xQuAD variants vs. trade-off parame-
ter λ.

2.5.3 Summary of the Main Findings

Our experimental evaluations reveal that the new xQuAD variants art_xQuAD and

geo_xQuAD (coupled with the Virtual normalization technique) considerably im-

prove the performance of the original strategy. We further show that the score and

rank aggregation methods adapted for the result diversification problem are quite

effective. In particular, we find that mix_CombSUM and mix_MC2 are the best-

performing representatives of the score and rank aggregation methods, respectively.
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Overall, the proposed xQuAD variants and certain ranking aggregation methods (es-

pecially mix_CombSUM) consistently outperform all three diversification baselines

for most of the cases and evaluation metrics (as shown in Tables 3.3, 3.4, 3.5, and

3.6). The success of mix_CombSUM is remarkable as its computational complexity

is less than the baseline diversification strategies and xQuAD variants, as we discuss

in the section Score-based Aggregation Methods. This finding further justifies the use

of the ranking aggregation methods in the context of search result diversification, as

we propose in this study.

2.6 Conclusion

In this chapter, we improved the state-of-the-art in explicit search result diversifica-

tion. Namely, we proposed optimizations for the relevance score normalization and

novelty estimation components of xQuAD, a top-performing approach for the explicit

result diversification. We showed that the new xQuAD variants outperform the orig-

inal strategy and normalization methods improve xQuAD and other diversification

baselines employed in our study.
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CHAPTER 3

RANKING AGGREGATION METHODS FOR

DIVERSIFICATION

In this chapter 1, we inspired from the success of the current diversification strategies

that exploit the relevance of the candidate documents to individual query aspects, and

propose to use ranking aggregation methods to diversify search results. In Section 3.1

we provide our motivation and in Section 3.2 we give some information about related

work in ranking aggregation methods. In Section 3.3 we explain score-based and

rank-based aggregation methods and our proposed adaptations to these methods to be

used in diversification framework. In the next section, we evaluate the ranking aggre-

gation methods in diversification domain and compare the effectiveness of ranking

aggregation methods to baseline diversification methods described in previous chap-

ter in different setup configurations. We conclude the chapter with Section 3.5.

3.1 Introduction

Our second contribution is motivated by the observation that computing the relevance

of the candidate documents to each query aspect plays a central role in the success

of the current explicit diversification strategies, such as xQuAD. Encouraged by this

finding, we propose to materialize the re-rankings of the candidate documents for

each query aspect and then merge them by adapting the score(-based) and rank(-

based) aggregation methods that are widely applied in the meta-search scenario. In
1 A. M. Ozdemiray and I. S. Altingovde. "Explicit search result diversification using score and rank aggre-

gation methods", Journal of the Association for Information Science and Technology, 66(6):1212-1228. c©2015
John Wiley and Sons. http://dx.doi.org/10.1002/asi.23259. Reprinted by permission with license
number 371383091410
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other words, we cast the diversification problem to the problem of aggregating the

re-rankings per query aspect. We hypothesize that if each of these re-rankings can

place the most relevant documents for their respective aspects in their top-k results,

then the aggregation of these rankings would be both relevant and diverse in terms of

the coverage of these aspects, as required.

To the best of our knowledge, we are the first to propose to model and solve the

result diversification problem using the score and rank aggregation methods. For the

purposes of score aggregation, we adapt two traditional methods, namely, CombSUM

and CombMNZ ([54], [31]), and investigate their performance employing various

score normalization techniques. We show that the normalization strategy proposed

for xQuAD proves to be useful for the score aggregation methods, as well. For the

rank aggregation, we adapt the classical methods like simple voting and Borda voting

([21]) as well as the Markov chain based approaches ([23]). We extend both the score

and rank aggregation methods by weighting the initial ranking and aspect rankings

within the classical probability mixture framework of the diversification approaches,

for the purposes of balancing the relevance and diversity in the final result.

We further find that, for various parameter configurations and evaluation metrics,

certain ranking aggregation methods as adapted here are also superior to all of the

baseline strategies. This is a remarkable finding as these ranking aggregation methods

can be computed more efficiently than the baseline diversification strategies and our

xQuAD variants.

3.2 Related Work

In real life, a common use of ranking aggregation (a.k.a. ranking fusion, result merg-

ing/fusion) methods is the election systems that allow voters to rank the candidates in

the order of preference2. In computer science, score(-based) and/or rank(-based) ag-

gregation methods are investigated for and applied to various research problems, such

as meta-search ([5], [23], [47]), federated search ([55]), spam detection ([23]), word

association ([23]), search quality evaluation ([38]) and result generation from search

2 http://en.wikipedia.org/wiki/Voting_system
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engine caches ([8]). However, to the best of our knowledge, no previous study pro-

poses to adapt such methods for the result diversification task (We discuss the details

of these methods in the section Ranking Aggregation Methods for Diversification.).

Note that, while the proportionality framework of Dang and Croft ([20]) also has its

roots in the voting systems; their approach is different than ours. More specifically,

their diversification strategies are based on the votes given to the aspects whereas here

we focus on the votes given to the documents by each aspect.

3.3 Ranking Aggregation Methods for Diversification

A key component of the xQuAD framework discussed in the previous chapter is

P (d|qi), i.e., the likelihood of observing d for the aspect qi (see Equations 2.1 and

2.2). In practice, this component computes the relevance of candidate documents to

each query aspect using a retrieval model. Indeed, such a computation is not only

involved in xQuAD, but also included in two other competing strategies, namely,

IA-Select ([1]) and PM2 ([20]). Encouraged by the success of all these explicit di-

versification strategies demonstrated in the earlier works, we propose an alternative

perspective to exploit this key component.

In this study, we materialize the re-rankings of the candidate documents for each

query aspect and then tackle the result diversification problem from a ranking aggre-

gation perspective. In the classical ranking aggregation context, the goal is producing

a merged list τ from the given full or partial rankings {τ1, ..., τm} so that the final list

τ has the minimal distance from each individual list τi. In our case, for a given query

q with the set of aspects T = {q1, ..., qm} and initial retrieval result τq(|τq| = N),

let’s assume that τqi denotes the re-ranking of the documents in τq with respect to the

relevance probabilities P (d|qi) for the aspect qi, and τ kqi denotes the top-k documents

in τqi . We hypothesize that if each ranking τqi places the most relevant documents

higher for the corresponding aspect qi, then the aggregation of these top-k rankings

would be both relevant and diverse; i.e., cover as many diverse aspects as possible.

In the context of ranking aggregation described above, it is tempting to optimize the

Kendall tau distance, which counts the number of pairwise disagreements between
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two lists, as a typical measure of distance between two rankings. However, Dwork et

al. ([23]) show that computing the aggregation that optimizes the Kendall distance,

so-called Kemeny optimal aggregation, is NP-hard even for four different rankings.

Fortunately, there are various sub-optimal methods that are shown to serve well in real

life applications, such as building meta-search engines and combating spam results

(see the section Related Work for other examples). Such ranking aggregation meth-

ods in the literature are categorized based on the type of information used during the

fusion process. Score-based aggregation methods exploit the relevance scores associ-

ated with each document in each ranking, whereas rank-based aggregation methods

only rely on the document’s position in the list. In the rest of this section, we adapt

a number of representative methods from each category for the purposes of result

diversification.

An important difference of our problem from the rank aggregation in meta-search is

that in our setup, there exists an initial ranking τq, and all τqi lists are basically re-

rankings of the former3. In the ranking aggregation methods employed in this study,

we exploit both τq and τqi rankings to generate the final diversified ranking τ ∗q . To

emphasize this mixture of the initial and aspect rankings, the abbreviations of the

method names are prefixed with mix in the following discussions.

3.3.1 Score-based Aggregation Methods

One of the well-known approaches for ranking aggregation in the context of meta-

search is combining the normalized relevance scores with various functions, such

as min, max, median and sum ([54], [31]). Among these variants, CombSUM and

CombMNZ are the most effective ones that are widely employed in the subsequent

works (e.g., [47], [5]).

3 Since our aggregation methods operate on the re-rankings of the initial ranking τq , the missing document
problem usually encountered in meta-search (e.g., see [22]) is not a concern for the result diversification frame-
work.
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3.3.1.1 CombSUM (mix_CombSUM).

This method computes the overall score of d for the query q by simply adding up the

document’s scores in each ranking τqi . For the purposes of diversification, we also

incorporate the initial ranking τq using a mixture model as typical in all diversification

frameworks and come up with the following formula:

S(q, d) = (1− λ)P (d|q) + λ
∑
qi∈T

P (qi|q)P (d|qi), (3.1)

where P (qi|q) denotes the aspect likelihood that is typically included in most of the

explicit diversification strategies. A similar notion of associating priorities to the

rankings has also been employed for the score aggregation methods in the meta-

search context ([47]). The final ranking τ ∗q includes the top-k documents (computed

using a heap of size k) in descending order of S(q, d) values (ties are broken ran-

domly).

Notice that the formula is indeed quite similar to that of xQuAD (and IA-Select

method defined in [1]) with one crucial difference: the latter strategy constructs the

final ranking in a greedy manner and takes into account the novelty with respect to

the documents that are already selected in τ ∗q while computing the score S(q, d). In

contrast, mix_CombSUM applies a linear weighted summation of the scores for ev-

ery aspect as well as the initial results, which is cheaper in terms of the computational

cost. In particular, mix_CombSUM needs to make a single pass over the candidate

documents to compute the scores, and then constructs the final ranking τ ∗q using a

heap of size k (e.g., see [65]), which implies an overall complexity of O(N log k)4.

In contrast, since xQuAD compares every candidate document to those already se-

lected into the τ ∗q for each iteration, its overall complexity is O(Nk) ([9]). Therefore,

mix_CombSUM is more efficient than xQuAD, as well as the other diversification

baselines IA-Select and PM2, which actually have the same computational complex-

ity as xQuAD (see the section Experimental Setup for the details of the baseline

strategies).

4 Following the practice in the literature ([9]), we neglect the number of query aspects, |T | , from the com-
plexity analysis of the methods presented in this study, as it is assumed to be a small constant.
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3.3.1.2 CombMNZ (mix_CombMNZ)

. This method is similar to the previous one, but the score of d is weighted by the sum

of the votes for d given by each τ kqi , as follows:

S(q, d) = (1− λ)P (d|q) + λ
∑
qi∈T

v(d, τ kqi)
∑
qi∈T

P (qi|q)P (d|qi). (3.2)

In Equation 3.2, v(d, τ kqi) denotes the number of rankings τ kqi where d appears, and it

is computed as

v(d, τ kqi) =

 1, if d ∈ τ kqi ,
0, otherwise.

(3.3)

Similar to the mix_CombSUM method, the final ranking τ ∗q includes the top-k docu-

ments (computed using a heap) in descending order of S(q, d) values (ties are broken

randomly). Thus, the computational complexity of mix_CombMNZ is O(N log k).

This overall complexity subsumes the cost of generating the top-k rankings per as-

pect (τ kqi), which is again O(N log k), given that the number of aspects is a small

constant that can be neglected, as in the previous analysis.

Note that, the relevance probabilities P (d|q) and P (d|qi) in Equations 3.1 and 3.2

should be normalized, as in the case of xQuAD. As we mention before, the diversifi-

cation scenario allows us to employ the Virtual technique that makes use of the ac-

tual retrieval model and the collection statistics, in addition to the traditional MinMax

and Sum normalization schemes. In our experimental evaluations, we consider all

three normalization techniques along with the mix_CombSUM and mix_CombMNZ

techniques.

3.3.2 Rank-based Aggregation Methods

In rank(-based) aggregation methods, the relevance scores are not taken into account

and the final ranking is obtained by only using the order of documents in each aspect

ranking.
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3.3.2.1 Simple voting (mix_SV).

In this method (e.g., see [8]), we assume that each document d ∈ τq receives a vote

from each ranking5 τ kqi weighted with the aspect likelihood P (qi|q); i.e, the vote count

per document is computed as:

C(q, d) = (1− λ)v(d, τ kq ) + λ
∑
qi∈T

P (qi|q)v(d, τ kqi) (3.4)

where vote v(d, τ kqi) is computed as in Equation 3.3 and τ kq denotes the top-k docu-

ments of the initial ranking τq.

The final ranking τ ∗q includes the top-k documents in descending order with respect to

the vote counts C(q, d) (ties are broken using P (d|q) values). As we discussed for the

mix_CombMNZ method, the worst-case complexity of mix_SV is also O(N log k).

3.3.2.2 Borda voting (mix_BV).

This is based on Borda’s classical method ([21]) that also takes the position of the

documents in the ranked lists into account while computing the vote counts, as fol-

lows:

C(q, d) = (1− λ)τq(d) + λ
∑
qi∈T

P (qi|q)τqi(d) (3.5)

where τq(d) is the rank position of d in some list τq. The final ranking τ ∗q is constructed

in ascending order with respect to the vote count (again, ties are broken using P (d|q)
values). Note that, since this method requires computing the ranking τqiper aspect

(but not only top-k re-rankings τ kqias in the previous methods), its overall complexity

is O(N logN).

3.3.2.3 Markov chain based methods.

Dwork et al. ([23]) have proposed using Markov chains for aggregating ranked partial

lists and described four different variants. In what follows we discuss this approach

5 We consider only τkqi lists for this method, as using τqi ’s would result in the same vote count for all the
documents.
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using our own problem setup and notation, please refer to [23] for basics and adapta-

tion to the general ranking aggregation problem.

For this case, we define the document space U as the union of the documents in τ kq as

well as the all top-k re-rankings per aspect (τ kqi), as follows:

U =
⋃
qi∈T

τ kqi
⋃
τ kq (3.6)

Note that, the document space is limited to top-k documents from each ranked list,

as otherwise the number of states and size of the transition matrix would be too large

for on-the-fly-computation of the diversified results. In this approach, each document

d ∈ U is considered as a state in the Markov chain. A non-negative stochastic matrix

M (of size |U | × |U |) defines the probability of the systems’ transitions from one

state to another. In our case, these probabilities are based on the positions of the

documents in various ranked lists. Once the system starts on some state probability

distribution (typically, the uniform distribution), it eventually reaches to a unique

fixed point where the state distribution does not change. This is called the stationary

distribution and for our purposes, the stationary probabilities of the states at this point

are used to sort the documents (states) and obtain the final τ ∗q .

Dwork et al. ([23]) define four different Markov chains by describing four different

ways of constructing the transition matrix, as follows:

1. MC1: If the current state (document) is di, the next state is chosen uniformly

from the multiset of all documents dj such that both di and dj appear in some

ranking τ and dj is ranked higher; i.e., τ(dj) ≤ τ(di).

2. MC2: If the current state (document) is di, then first pick a ranking τ uniformly

from all rankings that include di, and then choose a document dj uniformly that

is ranked higher than di in τ , i.e., τ(dj) ≤ τ(di).

3. MC3: If the current state (document) is di, then first pick a ranking τ uniformly

from all rankings that include di, and then choose a document dj uniformly

from τ . If τ(dj) < τ(di) then go to dj else stay in the state di.

4. MC4: If the current state (document) is di, then first pick a document dj uni-

formly from U . If τ(dj) < τ(di) for the majority of the lists τ that ranked both
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di and dj , then go to dj , else stay in the state di.

Some nice theoretical intuitions for constructing these particular Markov chains are

provided in [23], and a set of example transition matrices for the ranking aggregation

in meta-search scenario is given in [47]. Following the practice in the latter work, we

computed the stationary distribution using the simple power-iteration method. That

is, we start the iteration by a state vector where each state has 1/|U | probability and

repetitively multiply it with the transition matrix M till the state probabilities are

stabilized, i.e., converge to the stationary distribution.

The computational complexity of computing (or, more precisely, sampling) the sta-

tionary distribution is O(|U |), as shown by Dwork et al. ([23]). Given that the input

top-k rankings per aspect (τ kqi) (see Equation 13) can be constructed in O(N log k)

time, as well as the final ranking (using a heap of size k as before), the overall com-

plexity becomes O(|U | + N log k) ≈ O(N log k). Therefore, the methods based

on the Markov chains are still more efficient than the diversification baselines (i.e.,

xQuAD, IA-Select and PM2), which have the complexity of O(Nk).

Note that, as we use both the initial ranking τq and aspect rankings τqi while con-

structing the document space U , we again prefix the names of these methods with

mix, hereafter.

3.4 Experiments and Results

In this chapter, we used the same experimental setup as the previous chapter.

3.4.1 Evaluation Results

In this section we first evaluate the performance of the score aggregation methods and

then we report our results for rank aggregation methods. Finally we seek answer to

the following research questions

1. Can proposed diversification methods (i.e. xQuAD variants, score and rank

aggregation methods) outperform the diversification baselines
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Table 3.1: Diversification performance of the score aggregation methods using the

query aspects obtained from the official sub-topics. The highest scores across all

methods are shown in boldface.
Relevance 2009 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 - 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

mix_CombMNZ

MinMax 0.45 0.2188 0.3191 0.0915 0.85 0.2510 0.3536 0.1563

Sum 0.3 0.2135 0.3142 0.0950 0.05 0.2448 0.3502 0.1541

Virtual 0.75 0.2209 0.3216 0.0958 0.25 0.2450 0.3487 0.1557

mix_CombSUM

MinMax 0.7 0.2230 0.3255 0.0923 0.95 0.2599 0.3599 0.1638

Sum 0.15 0.2174 0.3134 0.0892 0.75 0.2495 0.3511 0.1569

Virtual 0.55 0.2370 0.3320 0.0975 0.9 0.2719 0.3712 0.1609

2. How does retrieval model and aspect representations affect our proposed meth-

ods’ effectiveness

In the following experiments, we essentially report our results using the BM25 model

for the initial retrieval stage and official TREC sub-topics for representing the query

aspects. In the section Impact of the Components and Parameters, we provide ad-

ditional experiments where we explore the impact of the alternative retrieval models

and aspect representations.

Table 3.1 shows the performance of the score aggregation methods mix_CombSUM

and mix_CombMNZ when coupled with each of the three relevance normalization

schemes described in Section 2.3.1.2. Our findings reveal that both methods signifi-

cantly outperform the non-diversified BM25 baseline. For both TREC 2009 and 2010

topic sets, mix_CombSUM coupled with the Virtual normalization technique out-

performs all other configurations by 2% to 6% (relatively) for the majority of the met-

rics (see the boldfaced cells in Table 3.1). This is a further evidence for the robustness

and usability of the Virtual technique in the context of result diversification.

Next, we report our results for the rank aggregation methods, namely, Simple Voting

(mix_SV), Borda Voting (mix_BV) and Markov chain based models (mix_MC1,

mix_MC2, mix_MC3, and mix_MC4). Table 3.2 reveals that, mix_MC2 outper-

forms both the other Markov chain based strategies and the relatively simplistic meth-

ods mix_SV and mix_BV (with a relative improvement of more than 3% over the
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Table 3.2: Diversification performance of the rank aggregation methods using the

query aspects obtained from the official sub-topics. The highest scores across all

methods are shown in boldface.
2009 2010

λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

mix_SV 0.9 0.2077 0.3094 0.0954 0.9 0.2327 0.3381 0.1524

mix_BV 0.85 0.2140 0.3135 0.0910 1 0.2437 0.3475 0.1743

mix_MC1 - 0.2129 0.3182 0.0915 - 0.2234 0.3328 0.1460

mix_MC2 - 0.2249 0.3307 0.0888 - 0.2559 0.3645 0.1404

mix_MC3 - 0.2183 0.3204 0.0914 - 0.2275 0.3367 0.1462

mix_MC4 - 0.2177 0.3157 0.0878 - 0.2489 0.3505 0.1390

second-best method for the ERR-IA and α-nDCG metrics). In contrary, the latter

methods perform well for the P-IA metric. A further comparison of Tables 3 and

4 shows that score aggregation methods are usually superior to Simple Voting and

Borda Voting. However, rank aggregation methods based on the Markov chains per-

form comparable to the score based methods. These findings confirm the previous

results reported in the context of meta-search ([47]).

Finally, in Table 3.3 we make an overall comparison of the best-performing configu-

rations (determined based on the α-nDCG@20 scores) of the state-of-the-art diversi-

fication baselines (see Section 2.4.3 to those representing each class of the strategies

proposed in Section 2.3.1.3, namely, xQuAD variants, and the score and rank aggre-

gation methods. From Table 3.3, we first observe that Virtual turns out to be the

most effective normalization technique for the majority of the diversification strate-

gies. More crucially, the score aggregation method mix_CombSUM and xQuAD

variants are always the best performers for different evaluation metrics on both TREC

2009 and 2010 topic sets (see the boldfaced cells in Table 3.3). Given that we have

three strong diversification strategies that are presented in their best configurations,

our improvements are remarkable. For instance, on TREC 2010, our geo_XQuAD

variant provides a relative improvement of 6% and 4% for the ERR-IA and α-nDCG

metrics, respectively, over the best diversification baseline (PM2 with the Virtual nor-

malization).
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Table 3.3: Comparison of the best cases for the baseline and proposed methods using

the query aspects obtained from the official sub-topics. The highest scores across all

methods are shown in boldface.
Rel. norm. λ ERR-IA α-nDCG P-IA

TREC 2009

Baseline

BM25 - - 0.1878 0.2757 0.0760

IA-Select Virtual - 0.2318B 0.3263B 0.0802P,C

org_xQuAD Virtual 1.00 0.2318B 0.3263B 0.0802P,C

PM2 Virtual 0.52 0.2328B 0.3330B∗ 0.0932X,I

Proposed

mix_CombSUM Virtual 0.55 0.2370B∗ 0.3320B∗ 0.0975B,X
I

mix_MC2 - - 0.2249B∗ 0.3307B∗ 0.0888B

art_xQuAD MinMax 0.91 0.2326B∗ 0.3374B∗ 0.0912B∗

TREC 2010

Baseline

BM25 - - 0.1947 0.2788 0.1254

IA-Select Virtual - 0.2681B∗,Xg 0.3660B∗,Xg∗ 0.1334X∗,P∗
C∗,Xg∗

org_xQuAD Sum 0.77 0.2506B 0.3570B∗,Xg 0.1589B∗,I∗

PM2 Virtual 0.46 0.2675B,Xg∗ 0.3713B∗,Xg∗ 0.1601B∗I∗
M

Proposed

mix_CombSUM Virtual 0.9 0.2719B∗,Xg 0.3712B∗,Xg 0.1609B∗,I∗
M

mix_MC2 - - 0.2559B∗ 0.3645B∗ 0.1404B,P
C,Xg

geo_xQuAD Virtual 0.86 0.2842B∗,P∗
I,C 0.3876B∗,X,P∗

I∗,C 0.1606B∗,I∗
M

Note. The sub/superscripts of a result denote a statistically significant difference from the BM25 (B), IA-

Select (I), org_xQuAD (X),PM2 (P ), mix_MC2 (M ), mix_CombSUM (C) or geo_xQuAD (Xg) at 0.05

level. The sub/superscripts with a star denote a statistically significant difference at 0.01 level.

We also conducted an analysis of the statistical significance of our findings using

Wilcoxon signed-rank test at the 95% and 99% confidence levels. We found that while

all the diversification strategies significantly outperform the non-diversified baseline

for most of the cases, the results are mixed among the diversification strategies. How-

ever, recent works in the literature also present similar findings. For instance, Dang

and Croft report that none of the improvements of PM2 over the original xQuAD

strategy are indeed statistically significant on TREC 2009 topics; and their results are

also mixed on TREC 2010 (see Table 2 in [20]). We also observed a larger number

of statistically significant cases on TREC 2010 topic set, which is possibly due to the

much larger differences among the actual effectiveness scores of the strategies (e.g.,

see Table 3.3).
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3.4.2 Impact of the Components and Parameters

3.4.2.1 Impact of the aspect representation.

In this experiment, for each query in our topic files, we obtain the top-10 query sug-

gestions (auto-completions) from Google search engine to represent the aspects, as in

[51]. Some of these suggestions include terms that are not in the collection vocabu-

lary, and after filtering the suggestions with such terms, we ended up with 9 aspects

per query, on the average.

Table 3.4: Comparison of the best cases for the baseline and proposed methods us-

ing the query aspects obtained from the suggestions. The highest scores across all

methods are shown in boldface.
Rel. norm. λ ERR-IA α-nDCG P-IA

TREC 2009

Baseline

BM25 - - 0.1878 0.2757 0.0760

IA-Select MinMax - 0.1778 0.2814 0.0783

org_xQuAD MinMax 0.83 0.1884C 0.2801Xg 0.0757Xg

PM2 MinMax 0.25 0.1937 0.2891 0.0840

Proposed

mix_CombSUM Virtual 0.25 0.2004B,X 0.2913 0.0847

mix_MC4 - 0.2014 0.2937B 0.0801

geo_xQuAD MinMax 0.86 0.1938 0.2948X 0.0868B,X

TREC 2010

Baseline

BM25 - - 0.1947 0.2788 0.1254

IA-Select Virtual - 0.2028 0.2966 0.1129X,C∗

org_xQuAD Sum 0.1 0.2041C 0.2963 0.1369B,I
C

PM2 Sum 0 0.2145 0.3028 0.1297C∗

Proposed

mix_CombSUM Virtual 0.3 0.2161X 0.3123 0.1499B∗,X,P∗
I∗,S∗

mix_SV - 0.85 0.2271 0.3027 0.1277C∗

art_xQuAD Virtual 0.38 0.2070 0.3008 0.1360B

Note. The sub/superscripts of a result denote a statistically significant difference from the BM25

(B), IA-Select (I), org_xQuAD (X), PM2 (P ), mix_SV (S), mix_CombSUM (C) or geo_xQuAD

(Xg) at 0.05 level. The sub/superscripts with a star denote a statistically significant difference at 0.01

level.

In Table 3.4, we present the best-performing configurations for the sake of brevity6.
6 The detailed results are at the Appendix
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We first notice that the effectiveness scores are considerably lower than those pre-

sented in Table 5. This is expected and confirms the previous findings (e.g., see [51]),

as the suggestions cannot perfectly represent the query aspects as the actual sub-topics

from TREC. As a further difference, for the baseline strategies, there are cases where

MinMax outperform the others. This is because in this setup, we have a far larger

number of aspects per query as mentioned above, and this probably makes the aspect

elimination problem less of a concern.

Nevertheless, the trends in Table 3.4 are still similar to our previous results, as the

xQuAD variants and/or rank and score aggregation methods are superior to all the tra-

ditional baselines. In particular, geo_xQuAD (mix_CombSUM) achieves the high-

est P-IA and α-nDCG scores on TREC 2009 (2010) sets, respectively. Remarkably,

mix_CombSUM provides a relative improvement of 15.3% over the best-performing

baseline strategy, PM2 with the Sum normalization, in terms of the P-IA metric on

TREC 2010 topics. In this latter case, the differences between the mix_CombSUM

and all other strategies (except art_xQuAD) are found to be statistically significant

at 95% confidence level.

3.4.2.2 Impact of the initial retrieval model.

In order to investigate the impact of the initial retrieval model, we repeated all the

experiments using the query-likelihood language model (LM) with Dirichlet smooth-

ing ([69]). Table 3.5 shows the best-performing configurations when the query as-

pects are based on the TREC sub-topics. As before, the proposed methods perform

quite well and for the majority of the evaluation metrics, the score aggregation meth-

ods mix_CombSUM and mix_CombMNZ outperform the best-performing baseline

methods by 1% to 11% (relatively). Note that, the second best-performer is usually

an xQuAD variant, either art_xQuAD or geo_xQuAD.

In Table 3.6, we continue with the best-performing configurations for the experiments

that employ the search engine suggestions as the query aspects. As before, the actual

scores are lower for all metrics in comparison to Table 3.5, but the trends are similar

in that the score aggregation method mix_CombSUM yields the best diversification

performance for the majority of the cases, especially on TREC 2009.
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Table 3.5: Comparison of the best cases for the baseline and proposed methods using

the LM for the initial retrieval and query aspects obtained from the official sub-topics.

The highest scores across all methods are shown in boldface.
Rel. norm. λ ERR-IA α-nDCG P-IA

TREC 2009

Baseline

LM 0.0877 0.1895 0.0798

IA-Select MinMax - 0.2240B∗ 0.3311B∗ 0.0920

org_xQuAD MinMax 1.00 0.2240B∗ 0.3311B∗ 0.0920

PM2 MinMax 0.66 0.2160B∗, 0.3259B∗ 0.0923C,Xa

Proposed

mix_CombMNZ MinMax 0.45 0.2343B∗ 0.3334B∗ 0.1022P

mix_MC2 - 0.2222B∗ 0.3282B∗ 0.0944

art_xQuAD Virtual 0.95 0.2240B∗ 0.3284B∗ 0.1006P

TREC 2010

Baseline

LM - - 0.1959 0.2842 0.1406

IA-Select Virtual - 0.2631B∗ 0.3624B∗ 0.1291X∗,C∗
Xg∗

org_xQuAD Sum 0.56 0.2634B∗ 0.3689B∗ 0.1562P∗,I∗
M

PM2 MinMax 0.76 0.2679B∗ 0.3751B∗ 0.1314X∗,C,
Xg∗

Proposed

mix_CombSUM Virtual - 0.2740B∗ 0.3805B∗ 0.1519P,I∗

mix_MC2 - - 0.2645B∗ 0.3714B∗ 0.1394X

geo_xQuAD Virtual 0.78 0.2721B∗ 0.3792B∗ 0.1614P∗,I∗

Note. The sub/superscripts of a result denote a statistically significant difference from LM (B),

IA-Select (I), org_xQuAD (X),PM2 (P ), mix_MC2 (M ), mix_CombSUM (C), art_xQuAD (Xa)

or geo_xQuAD (Xg) at 0.05 level. The sub/superscripts with a star denote a statistically significant

difference at 0.01 level.

3.4.2.3 Other score normalization techniques

In addition to those discussed in the previous sections, we also repeat our experiments

using another normalization technique, namely, z-score normalization ([47]). This

technique subtracts the mean score of τ from each score, and then divides them by

the standard deviation of the ranking. Since the resulting score values do not fall

into [0, 1] range, they are further normalized using the MinMax method. In our

experiments, we find that the z-score normalization does not yield better results than

MinMax when coupled with our diversification strategies, and thus the results are not

reported here.
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Table 3.6: Comparison of the best cases for the baseline and proposed methods using

the LM for the initial retrieval and query aspects obtained from the suggestions. The

highest scores across all methods are shown in boldface.
Rel. norm. λ ERR-IA α-nDCG P-IA

TREC 2009

Baseline

LM - 0.0877 0.1895 0.0798

IA-Select MinMax - 0.1913B∗ 0.2916B∗ 0.0908X,Xg

org_xQuAD Sum 0.57 0.1928B∗ 0.2929B∗ 0.1014I,M

PM2 MinMax 0.74 0.1891B∗ 0.2870B∗ 0.0921Xg

Proposed

mix_CombSUM MinMax 0.85 0.1992B∗ 0.2967B∗ 0.0965

mix_MC2 - - 0.1955B∗ 0.2917B∗ 0.0907X,Xg

geo_xQuAD Virtual 0.76 0.1938B∗ 0.2941B∗ 0.1001I,M

TREC 2010

Baseline

LM - - 0.1959 0.2842 0.1406

IA-Select Virtual - 0.2106 0.3078B 0.1195X∗,C
Xg

org_xQuAD Sum 0.46 0.2164B 0.3147B∗ 0.1486I∗,M

PM2 MinMax 0.46 0.2039 0.3033 0.1344X∗,C
Xg

Proposed

mix_CombSUM Sum 0.50 0.2149B 0.3124B 0.1480I,M

mix_MC1 - - 0.2124 0.3165B 0.1329X,C
Xg

geo_xQuAD Virtual 0.62 0.2146 0.3122B 0.1464I,M

Note. The sub/superscripts of a result denote a statistically significant difference from LM (B),

IA-Select (I), org_xQuAD (X), PM2 (P ), mix_CombSUM (C), mix_MC1 (M ), mix_MC2

(M ), or geo_xQuAD (Xg) at 0.05 level. The sub/superscripts with a star denote a statistically

significant difference at 0.01 level.

3.4.2.4 Impact of the probability mixture model in ranking aggregation.

For all the score and rank aggregation methods considered in this study, we also

experimented with the versions that do not take the initial ranked list τq into account

during the diversification process. Our results reveal that, for almost all cases and

evaluation metrics, the versions with the probability mixture model are superior to

their counterparts without the model.
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3.5 Conclusion

In this chapter, we adapted various score and rank aggregation strategies that are used

in meta-search scenarios in the literature to the diversification problem. Our experi-

ments revealed that some of these strategies, despite their simplicity, also serve well

for the diversification purposes and outperform three state-of-the-art baselines from

the literature. This is an especially important finding given that these ranking ag-

gregation methods can be computed more efficiently than the baseline diversification

strategies and our xQuAD variants.
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CHAPTER 4

QUERY PERFORMANCE PREDICTION FOR ASPECT

WEIGHTING IN DIVERSIFICATION

Explicit search result diversification strategies depend on the availability of potential

query aspects and exploit them to diversify the initial retrieval results using a weighted

mixture model. Accurate estimation of query aspect weights is an important issue to

improve the performance of explicit search result diversification algorithms. In this

chapter 1, for the first time in the literature we propose using post-retrieval query

performance predictors (QPPs) to estimate the relative weights of the query aspects.

In addition to utilizing well-known QPPs from the literature, we also introduce three

new QPPs that are based on score distributions.

The rest of the chapter is organized as follows. In Section 4.1 we provide the moti-

vation of our work. In the next section, we describe the QPPs from the literature and

introduced our proposed QPPs which will be used to weight query aspects. In Sec-

tion 4.3, we describe the experimental setup and the results of the proposed weighting

methods. The conclusion is provided in Section 4.4.

4.1 Introduction

Explicit diversification methods directly model the query aspects, exploiting manu-

ally or automatically assigned query labels in a taxonomy [1], or query reformulations

1 A. M. Ozdemiray and I. S. Altingovde. "Query Performance Prediction for Aspect Weighting in Search Re-
sult Diversification", Proceedings of the 23rd ACM International Conference on Information and Knowledge Man-
agement, pages 1871-1874, c©2014 ACM, Inc. http://dx.doi.org/10.1145/2661829.2661975.
Reprinted by permission with license number 3713830639102.
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in a search log [51]. In the latter case, aspects weights that can represent the impor-

tance [51], popularity [9] or likelihood [1] of each aspect for a given query is of

utmost importance to optimize the quality of the final result.

In this chapter, we put a new perspective on aspect weighting to improve the perfor-

mance of explicit search result diversification. The weight to be assigned to an aspect

in a diversification method should not only depend on the aspects’ intrinsic properties

(such as those exemplified above), but it should better reflect the expected retrieval

effectiveness of the top-ranked results (in the candidate set) that match to this aspect.

We explain the underlying intuition as follows. In a typical explicit diversification

framework, the relevance score of candidate documents for each explicit aspect is

computed (using some retrieval model); and each aspect contributes its highest scor-

ing documents to the final query result, which is typically of size 10 or 20. Thus,

given an aspect (regardless of how important or likely it is for a given query), if the

candidate documents with the highest matching scores to this aspect are indeed ir-

relevant, such an aspect cannot help improving the final result quality, and may even

degrade it.

In this light, we propose leveraging query performance predictors (QPPs) to estimate

the retrieval effectiveness of the query aspects over the candidate documents. To

this end, we employ post-retrieval QPPs that are based on score distribution analy-

sis, namely, weighted information gain (WIG) [73], normalized query commitment

(NQC) [56] and their variants presented in [35]. The choice of these QPPs is inten-

tional, to satisfy the demanding efficiency requirements of online query processing.

As mentioned above, the state-of-the-art explicit diversification algorithms [1, 20, 51]

compute the relevance of aspects to candidate documents, and hence, the input to

these predictors will be created for free, without any additional cost or effort. To the

best of our knowledge, no previous work employs QPPs for weighting query aspects

in the context of search result diversification.

We also introduce three new predictors that are again based on the score distribution

analysis and hence, directly applicable in aspect weighting scenario. The first one is

a simple yet effective QPP that is based on the score ratios. The other two predictors

are novel in that their performance estimations are based on a virtual document that
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yields the best possible relevance score for a given query aspect.

We evaluate the existing and proposed QPPs in the context of aspect weighting using

the standard TREC Diversity Task framework. Our experiments include a wide range

of explicit diversification methods, namely, IA-Select [1], xQuAD [51] (and its vari-

ants proposed in Chapter 2), PM2 [20], and a well known score-based aggregation

strategy CombSUM, which is adapted to diversification problem in Chapter 3. Our

findings show that, performance based weighting of query aspects consistently im-

proves the result quality for these algorithms. Furthermore, the proposed predictors

are superior to the existing QPPs when applied in the context of aspect weighting.

4.2 QPPs for Aspect Weighting

Let’s assume that a given query q retrieves an initial set of N documents, i.e., so-

called the candidate set Dq, over a corpus C. The goal of result diversification is

constructing a ranking Dk
q of k documents that maximizes both relevance and diver-

sity. In case of the explicit result diversification, it is assumed that there is a set of

explicitly identified query aspects (a.k.a., sub-topics, interpretations, sub-queries) de-

noted as T = {q1, ..., qm} associated with the original query q. These aspects are

usually obtained from external resources, such as a taxonomy or query log.

In most explicit diversification methods (as discussed in the next section), there is

an aspect weight component, which may represent the likelihood, popularity or im-

portance of a given aspect qi for the query q. This aspect weight can be assigned in

various ways. For instance, Agrawal et al. employ a classifier trained on the ODP

taxonomy to associate categories (as aspects) to the queries along with the class like-

lihood scores (as weights) [1]. Santos et al. apply three different methods to compute

aspect weights, the simplest being the uniform probability assigned as a weight to

each aspect [51]. They also suggest weighting methods based on the number of re-

sults retrieved by the query aspects from an external collection (e.g., using a search

engine) and the local corpora C (in a similar manner to resource selection methods

employed in distributed retrieval systems). In their work, the simple uniform esti-

mator is reported to yield the best performing aspect weights, and hence, it is also

45



adopted in the succeeding works by others (like [20]).

In this thesis, we propose a novel perspective for aspect weighting that is different

from all the aforementioned approaches. Our proposal is based on the observation

that the most successful explicit diversification methods (such as [20, 51]) compute

and exploit the relevance rel(d, qi) of each candidate document d ∈ Dq to each aspect

qi during the diversification process. Furthermore, since the ultimate goal is coming

up with a final ranking Dk
q and there may be several aspects of a query, only the

highest scoring documents for an aspect can have a chance to be selected into this

final ranking. Subsequently, an aspect qi can improve the quality of the final result

only if its top-p documents over the candidate set, Dp
qi

, is highly relevant to qi. This

suggests that the effectiveness of Dp
qi

for the aspect qi is a natural indicator of the

weight that should be assigned to qi during diversification. Hence, in this thesis,

we propose using QPPs to assign weights to query aspects in result diversification

algorithms.

Since the rankings Dp
qi

per aspect are typically computed by the state-of-the-art di-

versification methods, it is a natural choice to employ post-retrieval QPPs that rely

on the score distribution analysis for aspect weighting task. By doing so, we avoid

additional costs that may be incurred by the predictors and can satisfy the demand-

ing requirements of online query processing in large-scale search engines. In what

follows, we describe these baseline QPPs (in addition to simple uniform estimator)

adopted for query aspect weighting. Next, in Section 2.2, we introduce our own QPPs

that are again based on score distributions.

4.2.1 Baseline QPPs for Aspect Weighting

Uniform predictor. This is the straightforward approach employed in several earlier

works [20, 51]. For a query with the set of aspects T = {q1, ..., qm}, the aspect

weights are computed as W (qi) = 1/m.

Weighted Information Gain (WIG). This predictor is originally proposed to capture

the divergence between the mean retrieval score of top ranked documents and that of

the entire corpus [73]. To compute WIG, we use Eq. 4.1 presented in [11]. Note that,
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rel(C, qi) represents the relevance score of the corpus C to the aspect qi, and it further

helps to make different aspect weights comparable, i.e., serves as a normalization

factor.

W (qi) =
1

p
√
|qi|

(
avgd∈Dpqi (rel(d, qi))− rel(C, qi)

)
(4.1)

Normalized Query Commitment (NQC). Shtok et al. propose that the mean re-

trieval score for the top-ranked results of a query represents the score of a possible

misleader (as the result list would include some irrelevant documents besides the rel-

evant ones) [56]. Therefore, NQC computes the standard deviation of the relevance

scores over the list Dp
qi

and again normalizes the result value by the relevance score

of the corpus (Eq. 4.2).

W (qi) =

√
1
p

∑
d∈Dpqi

(rel(d, qi)− avgd∈Dpqi (rel(d, qi))
2

|rel(C, qi)|
(4.2)

ScoreAvg. Markovits et al. employ a simpler variant of WIG in a data fusion set-

ting [35]. In this variant, called here ScoreAvg, instead of using rel(C, qi) for nor-

malization as in WIG, the relevance scores rel(d, qi) are sum normalized to [0, 1]

before computing their average.

ScoreDev. This method [35] is a variant of NQC, and applies Eq. 4.2 without the

normalization factor rel(C, qi). Note that, there are other works [42, 19, 56] that

again make use of the standard deviation of the document scores in various ways, and

not considered here for the sake of space.

4.2.2 Proposed QPPs for Aspect Weighting

ScoreRatio. This predictor is motivated by the intuition that as the gap between

the scores of the documents in a ranking widens, the likelihood of seeing irrelevant

documents also increases. Thus, the ScoreRatio predictor computes the ratio of the

scores of the first and last documents in Dp
qi

.

VScoreAvg. In Chapter /refchapter:xquad, we have shown that explicit diversifica-

tion algorithms are quite sensitive to techniques that are employed for normalizing the
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relevance scores between documents and query aspects. Furthermore, we have pro-

posed an effective score normalization technique, so-called Virtual, which we adapt

here for the purposes of query performance prediction.

Our virtual-score based predictors differ from the previously described QPPs in the

following way. Instead of considering the score of the entire corpus (as a huge single

document) for normalization (as in WIG or NQC), we consider a virtual document

that can yield the highest possible relevance score for a query aspect qi on a given

corpus. More specifically, for a given aspect qi, we assume a virtual document dV

that includes each term in the aspect with the frequency of the document length and

no other terms, i.e., as if the document is only composed of the query terms. The

length of the virtual document is set to the average document length in the corpus.

Then, we compute the relevance score of this virtual document dV to qi as an upper-

bound value, i.e., the score of an imaginary perfect match for this aspect. Assume that

for a given qi, the virtual(-normalized) scores for each d in Dp
qi

are defined as follows:

relV irtual(d, qi) =
rel(d, qi)

rel(dV , qi)
(4.3)

Then, VScoreAvg predictor computes the weight of an aspect qi as shown in Eq. 4.4

W (qi) =
1

k

∑
d∈Dkq

relV irtual(d, qi) (4.4)

VScoreFirst. Inspired from the earlier approaches that use highest retrieval score as

an indicator of the query performance [57], for each aspect qi, we use the virtual score

of the top-ranked document in Dp
qi

.

4.3 Experimental Evaluation

We used the same dataset, query topics and initial retrieval models as in Chapter 2.
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4.3.1 Explicit diversification methods

In this study, we employ various explicit diversification methods that can be broadly

categorized as greedy approaches and aggregation-based approaches. While outlin-

ing these methods we conform to their original descriptions that are typically based

on a probabilistic mixture model, where P (d|q) (P (d|qi)) represents the likelihood of

a document for a given query (aspect), respectively; and P (qi|q) corresponds to the

aspect weight. In our experiments, for the former probability, we employ rel(d, q)

and rel(d, qi) scores that are computed by BM25 retrieval model, after normalizing

them with one of the techniques discussed later in this section. For the latter probabil-

ity, aspect weight, we use the baseline and proposed QPP strategies described in the

previous section. While doing so, the weights computed for the aspects of a query are

sum normalized to [0, 1] so that they can replace P (qi|q) in the explicit diversifica-

tion methods described in Section 2.4.3 and CombSUM method ([39, 41]) described

in Section 3.3.1.1.

In our experiments, for all the diversification strategies that employ the trade-off pa-

rameter λ, we test all values in [0, 1] range with a step size of 0.01, and report the

test results for the λ values that maximize the α-nDCG@20 scores. We also em-

ploy three normalization techniques described in Section 2.3.1.2, namely MinMax,

Sum and Virtual, to normalize the relevance scores generated by BM25, so that these

scores can replace the corresponding probabilities in the diversification methods. Our

results are reported for all three techniques, as diversification algorithms are shown

to be sensitive to the applied normalization in previous chapters.

4.3.2 Experimental Results

We evaluate the baseline and proposed QPPs by incorporating the predicted aspect

weights into each of the seven diversification algorithms. Note that, for all QPPs,

we set the parameter p as 10, i.e., we obtain top-10 documents (out of a candidate

set of 100 documents) for each aspect and provide their scores to the performance

predictors. Since every query in TREC topic set has more than one aspect and the

final ranking has size 20, we believe setting p as 10 would be adequate (as will be
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Table 4.1: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the baseline QPPs for the query

aspects obtained from the official sub-topics. The highest score is boldfaced.
Div. Relevance

Uniform
Baseline QPPs

method norm. WIG NQC ScrAvg ScrDev

IA-Select

MinMax 0.3386 0.3291 0.3430 0.3452 0.3543

Sum 0.3568 0.3490 0.3350 0.3447 0.3488

Virtual 0.3660 0.3568 0.3464 0.3555 0.3485

xQuAD

MinMax 0.3386 0.3308 0.3430 0.3452 0.3543

Sum 0.3664 0.3681 0.3440 0.3546 0.3586

Virtual 0.3660 0.3568 0.3464 0.3555 0.3485

art_xQuAD

MinMax 0.3751 0.3755 0.3717 0.3671 0.3810

Sum 0.3612 0.3622 0.3417 0.3519 0.3525

Virtual 0.3892 0.3802 0.3670 0.3753 0.3808

geo_xQuAD

MinMax 0.3581 0.3602 0.3523 0.3539 0.3646

Sum 0.3612 0.3622 0.3417 0.3519 0.3525

Virtual 0.3890 0.3796 0.3671 0.3746 0.3802

PM2

MinMax 0.3705 0.3707 0.3645 0.3664 0.3754

Sum 0.3669 0.3657 0.3524 0.3578 0.3591

Virtual 0.3756 0.3666 0.3593 0.3588 0.3726

mix_CombSUM

MinMax 0.3662 0.3674 0.3658 0.3635 0.3813

Sum 0.3613 0.3610 0.3410 0.3516 0.3531

Virtual 0.3811 0.3747 0.3634 0.3702 0.3806

justified by the results). We report α-NDCG@20 scores computed with ndeval

software.

From our results shown in Table 4.1 and 4.2, we draw the following conclusions: (i)

We see that using QPPs for aspect weighting improves almost all the diversification

methods (15 out of 18 cases) in comparison to assigning uniform weights to each

aspect. The absolute improvements in α-NDCG scores reach up to 2%, whereas the

relative improvements are up to 6% (e.g., for the xQuAD method with Sum normal-

ization). (ii) Considering the baseline predictors, WIG and ScoreDev are the most

effective ones. Among the proposed QPPs, the ScoreRatio predictor outperforms the

other two. (iii) Comparing baseline predictors to the proposed ones, we observe that

the latter are more effective as they (especially the ScoreRatio predictor) yield the
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Table 4.2: Diversification performance (α-NDCG@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the best baseline QPPs and proposed

QPPs for the query aspects obtained from the official sub-topics. The highest score

in each group is bold, the overall winner is underlined.
Div. Relevance

Uniform
Baseline QPPs Proposed QPPs

method norm. WIG ScrDev VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3386 0.3291 0.3543 0.3400 0.3385 0.3442

Sum 0.3568 0.3490 0.3488 0.3574 0.3565 0.3682

Virtual 0.3660 0.3568 0.3485 0.3633 0.3632 0.3636

xQuAD

MinMax 0.3386 0.3308 0.3543 0.3400 0.3385 0.3442

Sum 0.3664 0.3681 0.3586 0.3655 0.3711 0.3804

Virtual 0.3660 0.3568 0.3485 0.3633 0.3632 0.3636

art_xQuAD

MinMax 0.3751 0.3755 0.3810 0.3818 0.3777 0.3716

Sum 0.3612 0.3622 0.3525 0.3579 0.3645 0.3758

Virtual 0.3892 0.3802 0.3808 0.3858 0.3878 0.3805

geo_xQuAD

MinMax 0.3581 0.3602 0.3646 0.3637 0.3602 0.3594

Sum 0.3612 0.3622 0.3525 0.3579 0.3645 0.3758

Virtual 0.3890 0.3796 0.3802 0.3863 0.3886 0.3798

PM2

MinMax 0.3705 0.3707 0.3754 0.3728 0.3691 0.3664

Sum 0.3669 0.3657 0.3591 0.3722 0.3732 0.3755

Virtual 0.3756 0.3666 0.3726 0.3776 0.3732 0.3778

mix_CombSUM

MinMax 0.3662 0.3674 0.3813 0.3758 0.3728 0.3632

Sum 0.3613 0.3610 0.3531 0.3580 0.3621 0.3720

Virtual 0.3811 0.3747 0.3806 0.3761 0.3788 0.3742
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highest α-nDCG scores in 9 cases (covering all algorithms and most normalization

techniques), whereas uniform estimator is the most effective estimator in 3 cases and

baseline estimators yield the best effectiveness for a total of 6 cases. Note that, VS-

coreFirst (VScoreAvg) predictor outperforms all baseline QPPs in 9 (10) out of 18

cases, respectively.

4.4 Conclusion

For the first time in the literature, we used post-retrieval QPPs in the context of as-

pect weighting in explicit search result diversification. To this end, we introduced

three new QPPs that are based on score distributions, as well as using several others

from the literature. Through extensive experiments, we showed that predicting the

retrieval effectiveness of each individual aspect on the candidate document set is a

good indicator of an aspect’s contribution to the quality of the final result.
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CHAPTER 5

ASPECT EXPANSION FOR EXPLICIT SEARCH RESULT

DIVERSIFICATION

In this chapter, we propose to use query expansion techniques to represent the query

aspects better, and hence improve the overall effectiveness of explicit search result

diversification methods. As our first contribution, we exploit the results of each query

aspect itself for the purposes of expansion, and show that this is better than expanding

the aspects based on the results of the main query, as well as expanding the main query

itself. Secondly, we propose a novel selective approach that only expands certain

query aspects based on their retrieval performance, which is obtained using post-

retrieval query performance predictors (QPPs). Our experiments reveal that selective

expansion of aspects is better than expanding all the aspects blindly.

The rest of the chapter is organized as follows. In the next section, we provide the

motivation for proposing aspect expansion in the context of explicit result diversifi-

cation. In Section 5.2, we review earlier works that essentially focus on employing

query expansion techniques only for the main query. In Section 5.3, we first define a

general aspect expansion strategy based on the retrieval results of each aspect when

executed on the collection, and then propose a selective approach that only expands

certain aspects. Section 5.4 devoted to experimental results. Finally, we conclude and

point future work directions in Section 5.5.
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5.1 Introduction

Earlier works on explicit diversification methods rely on the assumption that aspects

of a given query can be obtained a priori from various resources, and aim to exploit

these aspects to the greatest extent to obtain the highest diversification effectiveness.

In this setup, the query aspects are typically obtained from some external resources,

like some taxonomies (such as ODP), Wikipedia, or query logs ([51, 9]), and once

they are obtained, they are fed to diversification strategies without any further pro-

cessing. However, in many cases, it is possible that the aspect terms extracted from

such external corpora do not include all the terms to represent the aspect ideally for

the collection on which the diversification will take place; and such aspects may not

be as useful as they could be for the diversification algorithms, or may even mislead

the algorithm.

In this chapter, inspired by the success of query expansion and re-writing techniques

applied in ad hoc retrieval ([13]), we propose to expand the query aspects based on

the documents they retrieve on the target collection. In particular, we apply typi-

cal pseudo-relevance feedback (PRF) methods on the top-k results retrieved for each

query aspect. To the best of our knowledge, all the previous work in the literature

either use a given set of aspects, or aim to expand the main query itself (in a way

that will introduce diverse terms to the query). In contrast, for the first time in the

literature, we expand the query aspects using the feedback from the target collection.

We believe that our proposal fits well to practical retrieval systems, and in particular,

search engines, due to their very large result caches. More specifically, assuming

the aspects extracted from various resources (like query logs and Wikipedia) for a

given query, it is very likely that such aspects (or, at least, most of them) have been

submitted to the search engine as independent queries, and hence, their results would

be available in the result caches. For instance, assume the infamous "jaguar" query.

The search engine, once having discovered the query’s mot probable intents (say,

"jaguar car pictures", "jaguar branches", "jaguar animal", etc.) from its logs and other

external resources, would most likely find the result of these query aspects in its result

cache, which can be large enough to store several millions of queries and their results

in these days ([3]). This means that aspect expansion in practical settings may not
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require executing each aspect as a separate query on the collection, and its overhead

for the system would only be running an expansion algorithm on the results, which

can be done even offline.

As our second contribution in this chapter, we introduce a novel selective strategy

that expands only those aspects that are likely to benefit from the expansion. This

idea is inspired by our findings in the previous chapter, where we have shown that an

aspect’s weight should be proportional to its predicted retrieval performance on the

candidate result set of the main query. In this case, if an aspect’s retrieval performance

suffers over the candidate documents, then it is more likely that expanding this aspect

using its own retrieval results (as described before) will be useful. Therefore, we

again leverage query performance predictors to estimate the retrieval effectiveness of

the query aspects over the candidate documents, and then selectively expand certain

aspects based on their estimated performance.

In our experiments, we use the standard TREC Diversity Task setup (as described in

the previous chapters) and several baselines, namely, expanding only the main query

and expanding the main query and diverse aspects (to serve as an upperbound for

the approaches discussed in [7]), as well as a naïve no-expansion baseline. Our find-

ings reveal that aspect expansion usually improves the diversification performance of

allmost all state-of-the-art explicit diversification methods. Moreover, selectively ex-

panding particular aspects of a query yields higher diversification performance than

that of blindly expanding all the aspects of the query.

5.2 Related Work

Automatic query expansion is used to improve the precision of the search results

by embedding new terms to usually short user queries. The expansion terms can

be selected based on either the original query terms (i.e. term-based) or the top-

retrieved documents of the initial search results (i.e. result-based) [13]. In term-

based approaches, the expansion terms are selected by linguistic techniques like using

stemmers or external sources like thesaurus, ConceptNet, WordNet or Wikipedia [28,

29, 32]; or by analyzing the co-occurrence of the terms in the corpus [13]. In result-
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based approaches, either the terms in the top-retrieved documents are analyzed to

find new expansion terms [49, 12], or a statistical language model is built using the

top-retrieved documents to assign probabilities to expansion terms [30, 68].

Vargas et. al. ([61]), proposed to use query expansion in Search Result Diversification

framework, by selecting expansion terms for original query to improve the diversity

of the results. Similar to explicit search result diversification methods, they assumed

the explicit knowledge of the aspects of a query and used assessed documents of

each aspect as the feedback documents to find the candidate expansion terms for each

aspect. After finding the candidate terms for each aspect, they select the expansion

terms by using a procedure inspired from the xQuAD algorithm ([51]).

In [6], Bouchoucha et. al. utilize ConceptNet to find candidate terms for the given

query and calculate the similarity between the terms to be used in MMRE, MMR-

based Expansion algorithm [10], to select the most diverse expansion terms that cover

multiple aspects implicitly. In a following work [7], they integrate multiple resources,

namely ConceptNet, Wikipedia, query logs and PRF to diversify the search results.

In the first phase, they find expanded queries for each resource using a generalized

version of MMRE algorithm. In the second phase, they retrieve the top documents

from the collection for each expanded query to construct the candidate document set.

Finally they iteratively select the final result set by applying MMR principle.

5.3 Selectively Expanding Aspect Queries

In explicit search result diversification the aspects qi of a query q are assumed to be

known during the query execution. After q is executed on the collectionC, and top−k
documents Dk

q are retrieved, diversification methods calculate the relevance rel(d, qi)

of each document in the candidate set, d ∈ Dk
q , and generate are ranking lists, Dk

qi

(i.e. re-rankings) for each aspect. In the final phase, the ranking lists are aggregated

using the diversification method.
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5.3.1 Aspect Expansion

Although, the query aspects are explicitly known, the terms defining the aspect may

be inadequate to represent the aspect successfully. In order to prevent from possi-

ble shortcomings, we propose a novel approach to search result diversification by

expanding aspect queries. In particular, we use pseudo-relevance feedback from top

retrieved documents of a document set, and use the following simplified version of

Rocchio’s formula [49] defined in [13]:

w′t,q′ = (1− λ) · wt,q + λ · scoret (5.1)

to find new expansion terms for the aspect query, where wt,q is the weight of the

term t for original query q and w′t,q′ is the weight of t for expanded query w′ and λ

is the weighting factor between original terms and the expansion terms. Although

Equation 5.1 can be used to reweight the terms in the query ([12, 13]), we just use the

equation to pick the expansion terms from the top-scoring terms with respect to w′t,q′ ,

and leave the rest to the retrival model.

5.3.1.1 Term Scoring Functions

In Rocchio’s original formula ([49]), the term score is the sum of term weights in

the top-retrieved documents. Instead of a simple proportion of term frequencies, in

Equation 5.2 we use Okapi BM25 ([48]) term scores as term weights to reuse already

calculated scores during re-ranking of candidate documents for each query aspect.

score(t) =
∑
d∈R

(k1 + 1) · fd,t
k1 · [(1− b) + b. dlen

avr_dlen ] + fd,t
(5.2)

In [12], in addition to Rocchio’s original term scoring function, Carpineto et. al. used

different term scoring functions to find expansion terms and showed that Kullback-

Leibler distance (i.e. KLD) based following function generate better expansion terms:

score(t) = [pR(t)] · log[pR(t)/pC(t)] (5.3)
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where pX(t) is the ratio of occurrence of term t in document set X where X = R for

result set, and X = C for the whole collection.

5.3.2 Selecting Aspects to Expand

Since diversification methods use mixture models (using relevance or ranking of the

documents), the diversification performance depend on aspects’ individual perfor-

mance. The expansion of all aspects may give harm to the overall effectiveness of the

diversification. On the one hand, expansion of an aspect may decrease the retrieval

performance of that aspect, which may affect the recall of that aspect in the final list.

On the other hand, expansion of an aspect may boost the performance of that aspect

so that the documents relevant to that aspect may dominate the final list.

Therefore, we propose to select the aspects to be expanded using two of our post-

retrieval QPP methods ([40]) described in Section 4.2.2, namely VScoreFirst and

VScoreAvg. In particular, after an explicit diversification algorithm generate the re-

ranking of the candidate set Dqi for an aspect qi, we use the top-k documents to

predict the sub-query performance and decide to expand the query if the prediction

score is below some threshold.

5.4 Experiments and Results

We used the same dataset, query topics and initial retrieval models as in Chapter 2.

5.4.1 Experimental Setup

5.4.1.1 Explicit diversification methods

In this study, we employ various explicit diversification methods that can be broadly

categorized as greedy approaches and aggregation-based approaches. While outlin-

ing these methods we conform to their original descriptions for which that are typi-

cally based on a probabilistic mixture model, where P (d|q) (P (d|qi)) represents the
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likelihood of a document for a given query (aspect), respectively; and P (qi|q) cor-

responds to the aspect weight. In our experiments, for the former probability, we

employ rel(d, q) and rel(d, qi) scores that are computed by BM25 retrieval model,

after normalizing them with one of the techniques discussed later in this section. For

the latter probability, aspect weight, we use the baseline and proposed QPP strategies

described in the previous chapter. While doing so, the weights computed for the as-

pects of a query are sum normalized to [0, 1] so that they can replace P (qi|q) in the

explicit diversification methods described in Section 2.4.3 and CombSUM method

described in Section 3.3.1.1.

In our experiments, for all the diversification strategies that employ the trade-off pa-

rameter λ, we test all values in [0, 1] range with a step size of 0.01, and report the

test results for the λ values that maximize the α-nDCG@20 scores. We also em-

ploy three normalization techniques described in Section 2.3.1.2, namely MinMax,

Sum and Virtual, to normalize the relevance scores generated by BM25, so that these

scores can replace the corresponding probabilities in the diversification methods. Our

results are reported for all three techniques, as diversification algorithms are shown

to be sensitive to the applied normalization in previous chapters.

5.4.1.2 Sub-topic Query Expansion

The employed query expansion methods generate a ranking for the terms used in the

documents in a document set. We both used sub-topic’s own ranking, Sqi, and top-

m documents from the re-ranking of Dq according to sub-topic qi as the document

sets. In the experiments, we either add 5 expansion terms to a sub-topic, or we fix the

number of terms of a sub-topic to 10.

5.4.1.3 Selective Sub-topic Query Expansion

In order to select the aspects that needs expansion, we used VScoreAvg and VScore-

First QPPs. Empirically we set the threshold to 0.7 for official sub-topics and expand

the sub-topics whose QPP score is below the threshold, based on the observation in

Chapter 4 that if the performance of the sub-topic is not good enough then it may not
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have the relevant documents to improve the diversification performance of the final

result set. On the other hand, we set the threshold to 0.6 and expand the sub-topics

that perform better than others for aspects generated from query suggestions. This

controversy stems from the observation that, most of the aspects in query suggestions

does have relevant documents and therefore do not contribute to the final result. In

that sense, we try to improve the quality of the results of the promising aspects instead

of dealing with the aspects that perform badly.

5.4.2 Evaluation Results

5.4.2.1 Expansion of official sub-topics using candidate re-rankings

We firstly used the candidate re-rankings for the pseudo-relevance feedback docu-

ments to find the expansion terms. In Table 5.1 we see that in TREC 2009 diver-

sification task, expanding the sub-topics using candidate documents did not provide

better diversification results than original sub-topics. However, as seen in Table 5.2,

expansion with candidate documents actually improve diversification performance of

some methods for TREC 2010 topics.
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Table 5.1: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their expansions using candidate re-rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.3240 0.3019 0.2782 0.2850 0.2795

Sum 0.3162 0.2914 0.2738 0.2872 0.2979

Virtual 0.3263 0.3016 0.2800 0.2883 0.3009

xQuAD

MinMax 0.3298 0.3086 0.2964 0.3058 0.3095

Sum 0.3238 0.3181 0.3024 0.3133 0.3208

Virtual 0.3268 0.3108 0.2966 0.3137 0.3096

art_xQuAD

MinMax 0.3387 0.3222 0.3155 0.3216 0.3256

Sum 0.3238 0.3176 0.3006 0.3124 0.3215

Virtual 0.3354 0.3170 0.3037 0.3200 0.3213

geo_xQuAD

MinMax 0.3420 0.3184 0.3093 0.3195 0.3207

Sum 0.3238 0.3176 0.3006 0.3124 0.3215

Virtual 0.3341 0.3152 0.3048 0.3201 0.3204

PM2

MinMax 0.3334 0.3075 0.2865 0.2942 0.2960

Sum 0.3310 0.3007 0.2827 0.2917 0.2996

Virtual 0.3360 0.3056 0.2859 0.2963 0.2953

mix_CombSUM

MinMax 0.3323 0.3183 0.3133 0.3125 0.3149

Sum 0.3235 0.3176 0.3004 0.3128 0.3213

Virtual 0.3339 0.3212 0.3027 0.3147 0.3181

mix_Borda 0.3273 0.3094 0.3074 0.3055 0.3086

mix_SV 0.3094 0.3026 0.3088 0.2848 0.2967

mix_MC2 0.3307 0.3276 0.3115 0.3181 0.3106
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Table 5.2: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their expansions using candidate re-rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.3386 0.3576 0.3612 0.3349 0.3426

Sum 0.3568 0.3618 0.3516 0.3484 0.3447

Virt 0.3660 0.3773 0.3715 0.3627 0.3578

xQuAD

MinMax 0.3386 0.3576 0.3612 0.3360 0.3426

Sum 0.3664 0.3683 0.3700 0.3520 0.3472

Virtual 0.3660 0.3773 0.3715 0.3627 0.3583

art_xQuAD

MinMax 0.3751 0.3850 0.3844 0.3645 0.3563

Sum 0.3612 0.3662 0.3672 0.3506 0.3468

Virtual 0.3892 0.3769 0.3755 0.3574 0.3558

geo_xQuAD

MinMax 0.3581 0.3735 0.3706 0.3524 0.3487

Sum 0.3612 0.3662 0.3672 0.3506 0.3468

Virtual 0.3890 0.3765 0.3755 0.3584 0.3551

PM2

MinMax 0.3705 0.3751 0.3673 0.3507 0.3519

Sum 0.3669 0.3740 0.3683 0.3548 0.3538

Virtual 0.3756 0.3767 0.3659 0.3578 0.3526

mix_CombSUM

MinMax 0.3662 0.3539 0.3599 0.3477 0.3555

Sum 0.3613 0.3653 0.3669 0.3500 0.3468

Virtual 0.3811 0.3616 0.3619 0.3568 0.3536

mix_Borda 0.3542 0.3661 0.3679 0.3620 0.3561

mix_SV 0.3381 0.3506 0.3486 0.3434 0.3504

mix_MC2 0.3645 0.3684 0.3604 0.3418 0.3523
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5.4.2.2 Expansion of official sub-topics using own ranking

Then we used sub-topic’s own rankings to expand the query. As Table 5.3 and Ta-

ble 5.4 shows, expanding all sub-topics improve the diversification result of some

methods in 2009 and most of the methods in 2010. Please note that using BM25

term-ranking function provide better results than using KLD.

Table 5.3: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their expansions using sub-topic’s own rankings as PRF. The highest score is bold-

faced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.3240 0.3151 0.3078 0.2966 0.3097

Sum 0.3162 0.3082 0.2881 0.2985 0.3036

Virtual 0.3263 0.3238 0.3126 0.2967 0.3109

xQuAD

MinMax 0.3298 0.3302 0.3216 0.3167 0.3195

Sum 0.3238 0.3217 0.3149 0.3194 0.3248

Virtual 0.3268 0.3273 0.3207 0.3151 0.3198

art_xQuAD

MinMax 0.3387 0.3442 0.3347 0.3318 0.3346

Sum 0.3238 0.3212 0.3143 0.3181 0.3234

Virtual 0.3354 0.3345 0.3295 0.3259 0.3308

geo_xQuAD

MinMax 0.3420 0.3469 0.3353 0.3287 0.3311

Sum 0.3238 0.3212 0.3143 0.3181 0.3234

Virtual 0.3341 0.3345 0.3292 0.3262 0.3313

PM2

MinMax 0.3334 0.3367 0.3195 0.3138 0.3161

Sum 0.3310 0.3273 0.3146 0.3130 0.3249

Virtual 0.3360 0.3286 0.3139 0.3151 0.3180

mix_CombSUM

MinMax 0.3323 0.3377 0.3263 0.3189 0.3285

Sum 0.3235 0.3200 0.3136 0.3180 0.3225

Virtual 0.3339 0.3269 0.3236 0.3220 0.3298

mix_Borda 0.3273 0.3119 0.3127 0.3144 0.3191

mix_SV 0.3094 0.3218 0.3260 0.2949 0.3160

mix_MC2 0.3307 0.3318 0.3223 0.3216 0.3269
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Table 5.4: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their expansions using sub-topic’s own rankings as PRF. The highest score is bold-

faced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.3386 0.3636 0.3616 0.3411 0.3448

Sum 0.3568 0.3823 0.3749 0.3486 0.3416

Virtual 0.3660 0.3810 0.3836 0.3549 0.3542

xQuAD

MinMax 0.3386 0.3636 0.3616 0.3411 0.3448

Sum 0.3664 0.3941 0.3858 0.3618 0.3529

Virtual 0.3660 0.3810 0.3836 0.3610 0.3542

art_xQuAD

MinMax 0.3751 0.3900 0.3866 0.3741 0.3719

Sum 0.3612 0.3898 0.3813 0.3564 0.3500

Virtual 0.3892 0.3898 0.3987 0.3658 0.3661

geo_xQuAD

MinMax 0.3581 0.3789 0.3802 0.3654 0.3677

Sum 0.3612 0.3898 0.3813 0.3564 0.3500

Virtual 0.3890 0.3921 0.3991 0.3674 0.3671

PM2

MinMax 0.3705 0.3833 0.3794 0.3592 0.3667

Sum 0.3669 0.3919 0.3877 0.3633 0.3743

Virtual 0.3756 0.3853 0.3864 0.3561 0.3640

mix_CombSUM

MinMax 0.3662 0.3629 0.3652 0.3625 0.3602

Sum 0.3613 0.3886 0.3809 0.3565 0.3500

Virtual 0.3811 0.3725 0.3786 0.3490 0.3517

mix_Borda 0.3542 0.3691 0.3728 0.3577 0.3641

mix_SV 0.3381 0.3731 0.3799 0.3590 0.3626

mix_MC2 0.3645 0.3733 0.3845 0.3708 0.3773
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5.4.2.3 Expansion of suggested topics using own ranking

We also applied the same expansion methodology to suggested sub-topics. In Ta-

ble 5.5 and Table 5.6, it is shown that sub-topic expansion improves suggested sub-

topics also.

Table 5.5: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their ex-

pansions using sub-topic’s own rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2814 0.3089 0.2997 0.2530 0.2756

Sum 0.2688 0.2883 0.2793 0.2635 0.2786

Virtual 0.2675 0.3020 0.2842 0.2658 0.2800

xQuAD

MinMax 0.2960 0.3102 0.2997 0.2975 0.2897

Sum 0.2846 0.3116 0.3056 0.2936 0.2945

Virtual 0.2887 0.3231 0.3196 0.3027 0.3115

art_xQuAD

MinMax 0.3049 0.3071 0.3111 0.3040 0.3000

Sum 0.2860 0.3090 0.3061 0.2909 0.2938

Virtual 0.2948 0.3162 0.3177 0.3081 0.3015

geo_xQuAD

MinMax 0.3019 0.3131 0.3125 0.3097 0.3037

Sum 0.2860 0.3090 0.3061 0.2909 0.2938

Virtual 0.2957 0.3160 0.3188 0.3090 0.3014

PM2

MinMax 0.2935 0.2928 0.2972 0.2728 0.2857

Sum 0.2775 0.3007 0.2876 0.2716 0.2801

Virtual 0.2889 0.2994 0.2965 0.2777 0.2868

mix_CombSUM

MinMax 0.3043 0.2958 0.2960 0.2930 0.2956

Sum 0.2860 0.3092 0.3063 0.2912 0.2934

Virtual 0.2959 0.3079 0.3020 0.2998 0.2977

mix_Borda 0.2894 0.2936 0.2894 0.2859 0.2908

mix_SV 0.2757 0.2983 0.2757 0.2757 0.2891

mix_MC2 0.2858 0.2919 0.2879 0.2818 0.2864
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Table 5.6: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their ex-

pansions using sub-topic’s own rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2952 0.3099 0.3056 0.2847 0.3074

Sum 0.3043 0.3154 0.3157 0.2907 0.2857

Virtual 0.3046 0.3223 0.3211 0.2872 0.3114

xQuAD

MinMax 0.3072 0.3240 0.3319 0.3090 0.3166

Sum 0.3215 0.3245 0.3226 0.3104 0.3125

Virtual 0.3090 0.3392 0.3397 0.3120 0.3247

art_xQuAD

MinMax 0.3225 0.3465 0.3484 0.3205 0.3282

Sum 0.3225 0.3243 0.3209 0.3051 0.3078

Virtual 0.3210 0.3386 0.3354 0.3125 0.3285

geo_xQuAD

MinMax 0.3228 0.3368 0.3466 0.3192 0.3249

Sum 0.3225 0.3243 0.3209 0.3051 0.3078

Virtual 0.3194 0.3387 0.3369 0.3128 0.3288

PM2

MinMax 0.3129 0.3333 0.3312 0.3078 0.3136

Sum 0.3129 0.3226 0.3380 0.2998 0.3109

Virtual 0.3107 0.3277 0.3400 0.3045 0.3160

mix_CombSUM

MinMax 0.3145 0.3291 0.3295 0.3135 0.3215

Sum 0.3224 0.3245 0.3200 0.3049 0.3076

Virtual 0.3256 0.3273 0.3229 0.3122 0.3257

mix_Borda 0.3190 0.3425 0.3408 0.3360 0.3309

mix_SV 0.3179 0.3464 0.3546 0.3347 0.3349

mix_MC2 0.3081 0.3328 0.3441 0.3141 0.3244
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5.4.2.4 Selective expansion of official sub-topics using own rankings

Since adding 5 terms to the query using BM25 term weights generate the better re-

sults in previous experiments, we applied selective expansion using that setup. We

can see from Table 5.7 and Table 5.8 selectively expanding sub-topics improved the

diversification performance compared to expanding all sub-topics blindly.

Table 5.7: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their selective expansions by adding 5 expansion terms calculated with BM25 term

ranking function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.3240 0.3151 0.2970 0.3097

Sum 0.3162 0.3082 0.3064 0.3050

Virtual 0.3263 0.3238 0.3127 0.3295

xQuAD

MinMax 0.3298 0.3302 0.3142 0.3251

Sum 0.3238 0.3217 0.3208 0.3229

Virtual 0.3268 0.3273 0.3164 0.3295

art_xQuAD

MinMax 0.3387 0.3442 0.3392 0.3421

Sum 0.3238 0.3212 0.3196 0.3220

Virtual 0.3354 0.3345 0.3316 0.3415

geo_xQuAD

MinMax 0.3420 0.3469 0.3324 0.3405

Sum 0.3238 0.3212 0.3196 0.3220

Virtual 0.3341 0.3345 0.3308 0.3407

PM2

MinMax 0.3334 0.3367 0.3280 0.3432

Sum 0.3310 0.3273 0.3167 0.3311

Virtual 0.3360 0.3286 0.3281 0.3384

mix_CombSUM

MinMax 0.3323 0.3377 0.3425 0.3441

Sum 0.3235 0.3200 0.3193 0.3218

Virtual 0.3339 0.3269 0.3279 0.3389

mix_Borda 0.3273 0.3119 0.3182 0.3205

mix_SV 0.3094 0.3218 0.3159 0.3182

mix_MC2 0.3307 0.3318 0.3308 0.3388
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Table 5.8: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their selective expansions by adding 5 expansion terms calculated with BM25 term

ranking function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.3386 0.3636 0.3650 0.3388

Sum 0.3568 0.3823 0.3721 0.3702

Virtual 0.3660 0.3810 0.3638 0.3529

xQuAD

MinMax 0.3386 0.3636 0.3650 0.3388

Sum 0.3664 0.3941 0.3874 0.3734

Virtual 0.3660 0.3810 0.3638 0.3529

art_xQuAD

MinMax 0.3751 0.3900 0.3944 0.3727

Sum 0.3612 0.3898 0.3823 0.3690

Virtual 0.3892 0.3898 0.3961 0.3748

geo_xQuAD

MinMax 0.3581 0.3789 0.3797 0.3560

Sum 0.3612 0.3898 0.3823 0.3690

Virtual 0.3890 0.3921 0.3973 0.3737

PM2

MinMax 0.3705 0.3833 0.3747 0.3701

Sum 0.3669 0.3919 0.3797 0.3771

Virtual 0.3756 0.3853 0.3802 0.3804

mix_CombSUM

MinMax 0.3662 0.3629 0.3684 0.3639

Sum 0.3613 0.3886 0.3803 0.3674

Virtual 0.3811 0.3725 0.3796 0.3784

mix_Borda 0.3542 0.3691 0.3662 0.3608

mix_SV 0.3381 0.3731 0.3815 0.3693

mix_MC2 0.3645 0.3733 0.3799 0.3707
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5.5 Conclusions and Future Work

In this chapter, we used PRF to expand aspect queries to improve the search result

diversification. To this end, we used top-k documents from candidate documents’

re-ranking and subtopic’s own ranking which probably reside in the search engine’s

cache. Furthermore, we applied QPPs to select the subtopics that take benefit from

the expanded terms. Through extensive experiments, we showed that selecting the

sub-topics which will be expanded using PRF as subtopic’s own ranking improve the

performance of the diversification procedure. As a future work, we plan to use other

metrics to select the aspects that need expansion.
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CHAPTER 6

CONCLUSION

Search result diversification strategies try to provide a result set that covers the differ-

ent interpretations of an ambiguous query to satisfy the user intentions. In this thesis,

we evaluate state-of-the-art explicit search result diversification methods, find some

weaknesses and propose methods to overcome these weaknesses. Our experiments

showed that the new xQuAD variants outperform both the original xQuAD strategy

and other better performing state-of-the-art diversification baselines.

We are also inspired from the success of explicit diversification methods which utilize

the relevance of the candidate documents for each query aspect to propose to adapt

score and rank based ranking aggregation methods to search result diversification do-

main. Our experiments revealed that some of these strategies, also serve well for the

diversification purposed and outperform some of the state-of-the-art baselines from

the literature. This is an especially important finding given that these methods can be

computed more efficiently than the baseline diversification strategies and our xQuAD

variants.

For the first time in the literature we proposed to use post-retrieval query performance

predictors to estimate the query aspect weights and introduced 3 new QPP strategies

while using several other strategies from the literature. The extensive experiments

showed that predicting the retrieval effectiveness of each individual aspect on the

candidate document set is a good indicator of an aspect’s contribution to the quality

of the final result.

Lastly, we used PRF to from candidate re-rankings and subtopics’ own ranking from
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cache to expand the subtopic, and used QPPs to select the aspects that require ex-

pansion. Our experiments showed that expanding all sub-topics using sub-topics own

results from the cache yield better diversification performance than unexpanded sub-

topics. Furthermore selecting the aspects that require expansion also improve the

diversification performance.
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APPENDIX A

ADDITIONAL EXPERIMENTS

A.1 BM25 retrieval model and query aspects obtained from the suggestions

Table A.1: Diversification performance w.r.t. the relevance normalization techniques

using the query aspects obtained from the suggestions and BM25 as the retrieval

model. The highest scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 - 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

org_xQuAD

MinMax 0.83 0.1884 0.2801 0.0757 0.60 0.1921 0.2779 0.1235

Sum 0.2 0.1902 0.2792 0.0822 0.10 0.2041 0.2963 0.1369

Virtual 0.97 0.1797 0.2737 0.0763 0.38 0.2012 0.2883 0.1241

IA-Select

MinMax - 0.1778 0.2814 0.0783 - 0.1863 0.2815 0.1103

Sum - 0.1806 0.2688 0.0796 - 0.2035 0.2962 0.1300

Virtual - 0.1744 0.2675 0.0779 - 0.2028 0.2966 0.1129

PM2

- 0.25 0.1937 0.2891 0.0840 0.34 0.2021 0.3014 0.1318

Sum 0.25 0.1809 0.2710 0.0798 0 0.2145 0.3028 0.1297

Virtual 0.64 0.1692 0.2636 0.0791 0.05 0.2118 0.3006 0.1302
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Table A.2: Diversification performance of the xQuAD variants using the query as-

pects obtained from the suggestions and BM25 as the retrieval model. The highest

scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 - 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

org_xQuAD

MinMax 0.83 0.1884 0.2801 0.0757 0.60 0.1921 0.2779 0.1235

Sum 0.2 0.1902 0.2792 0.0822 0.10 0.2041 0.2963 0.1369

Virtual 0.97 0.1797 0.2737 0.0763 0.38 0.2012 0.2883 0.1241

geo_xQuAD

0.86 0.1938 0.2948 0.0868 0.95 0.2025 0.2971 0.1234

Sum 0.2 0.1913 0.2828 0.0829 0.1 0.2022 0.2921 0.1396

Virtual 0.5 0.1938 0.2904 0.0860 0.38 0.2068 0.3005 0.1359

art_xQuAD

MinMax 0.82 0.1954 0.2936 0.0887 0.66 0.2070 0.2968 0.1328

Sum 0.2 0.1913 0.2828 0.0829 0.1 0.2022 0.2921 0.1396

Virtual 0.5 0.1924 0.2854 0.0836 0.38 0.2070 0.3008 0.1360

Table A.3: Diversification performance of the score aggregation methods using the

query aspects obtained from the the suggestions and BM25 as the retrieval model.

The highest scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 - 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

mix_CombMNZ

MinMax 1 0.1906 0.2811 0.0800 0.1 0.2012 0.2838 0.1257

Sum 1 0.1817 0.2735 0.0819 0 0.1947 0.2788 0.1254

Virtual 0.6 0.1879 0.2795 0.0818 0.1 0.2224 0.3073 0.1303

mix_CombSUM

MinMax 0.9 0.1953 0.2871 0.0881 0.6 0.1919 0.2840 0.1300

Sum 0.2 0.1914 0.2829 0.0829 0.1 0.2033 0.2942 0.1400

Virtual 0.25 0.2004 0.2913 0.0847 0.3 0.2161 0.3123 0.1499
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Table A.4: Diversification performance of the rank aggregation methods using the

query aspects obtained from the suggestions and BM25 as the retrieval model. The

highest scores are shown in boldface.
2009 2010

λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

BM25 0.1878 0.2757 0.0760 - 0.1947 0.2788 0.1254

mix_SV 0.95 0.1738 0.2671 0.0808 0.85 0.2271 0.3027 0.1277

mix_BV 1 0.1932 0.2851 0.0844 0.9 0.2127 0.2991 0.1374

mix_MC1 - 0.1873 0.2815 0.0795 - 0.2059 0.2902 0.1243

mix_MC2 - 0.1914 0.2858 0.0799 - 0.2060 0.2976 0.1214

mix_MC3 - 0.1911 0.2854 0.0798 - 0.2016 0.2885 0.1252

mix_MC4 - 0.2014 0.2937 0.0801 - 0.2068 0.2904 0.1286
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A.2 LM retrieval model and query aspects obtained from official sub-topics

Table A.5: Diversification performance w.r.t. the relevance normalization techniques

using the query aspects obtained from the official sub-topics and LM as the retrieval

model. The highest scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

org_xQuAD

MinMax 1 0.2240 0.3311 0.0920 1.00 0.2517 0.3499 0.1496

Sum 0.44 0.2078 0.3065 0.0939 0.56 0.2634 0.3689 0.1562

Virtual 0.92 0.2242 0.3283 0.0940 0.79 0.2584 0.3514 0.1409

IA-Select

MinMax - 0.2240 0.3311 0.0920 - 0.2517 0.3499 0.1496

Sum - 0.2113 0.3096 0.0874 - 0.2547 0.3618 0.1451

Virtual - 0.2143 0.3148 0.0774 - 0.2631 0.3624 0.1291

PM2

MinMax 0.66 0.2160 0.3259 0.0923 0.76 0.2679 0.3751 0.1314

Sum 0.44 0.2110 0.3111 0.0896 0.71 0.2469 0.3547 0.1326

Virtual 0.1 0.2094 0.3076 0.0888 0.8 0.2662 0.3674 0.1331
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Table A.6: Diversification performance of the xQuAD variants using the query as-

pects obtained from the official sub-topics and LM as the retrieval model. The highest

scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

org_xQuAD

MinMax 1 0.2240 0.3311 0.0920 1.00 0.2517 0.3499 0.1496

Sum 0.44 0.2078 0.3065 0.0939 0.56 0.2634 0.3689 0.1562

Virtual 0.92 0.2242 0.3283 0.0940 0.79 0.2584 0.3514 0.1409

geo_xQuAD

MinMax 0.96 0.2163 0.3238 0.0918 1 0.2521 0.3530 0.1478

Sum 0.4 0.2048 0.3038 0.0940 0.79 0.2568 0.3527 0.1453

Virtual 0.95 0.2238 0.3281 0.1006 0.78 0.2721 0.3792 0.1614

art_xQuAD

MinMax 0.97 0.2166 0.3235 0.0978 0.91 0.2604 0.3687 0.1576

Sum 0.4 0.2048 0.3038 0.0940 0.79 0.2568 0.3527 0.1453

Virtual 0.95 0.2240 0.3284 0.1006 0.78 0.2721 0.3792 0.1614

Table A.7: Diversification performance of the score aggregation methods using the

query aspects obtained from the official sub-topics and LM as the retrieval model.

The highest scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

mix_CombMNZ

MinMax 0.45 0.2343 0.3334 0.1022 0.45 0.2552 0.3604 0.1549

Sum 0.55 0.2138 0.3077 0.0948 0.15 0.2597 0.3618 0.1560

Virtual 0.8 0.2273 0.3242 0.1007 0.25 0.2506 0.3533 0.1564

mix_CombSUM

MinMax 0.85 0.2193 0.3207 0.1036 0.8 0.2639 0.3682 0.1648

Sum 0.4 0.2047 0.3037 0.0943 0.8 0.2546 0.3508 0.1449

Virtual 0.95 0.2232 0.3253 0.1033 0.75 0.2712 0.3780 0.1639
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Table A.8: Diversification performance of the rank aggregation methods using the

query aspects obtained from the official sub-topics and LM as the retrieval model..

The highest scores are shown in boldface.
2009 2010

λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

mix_SV 0.8 0.2119 0.3137 0.0983 0.7 0.2421 0.3452 0.1535

mix_BV 0.85 0.2066 0.3071 0.0967 0.8 0.2362 0.3421 0.1608

mix_MC1 - 0.2222 0.3242 0.0950 - 0.2525 0.3606 0.1483

mix_MC2 - 0.2222 0.3282 0.0944 - 0.2645 0.3714 0.1394

mix_MC3 - 0.2185 0.3213 0.0952 - 0.2591 0.3677 0.1479

mix_MC4 - 0.2134 0.3117 0.0921 - 0.2484 0.3594 0.1497
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A.3 LM retrieval model and query aspects obtained from the suggestions

Table A.9: Diversification performance w.r.t. the relevance normalization techniques

using the query aspects obtained from the suggestions and LM as the retrieval model.

The highest scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

org_xQuAD

MinMax 0.97 0.1923 0.2929 0.0941 0.99 0.2057 0.3020 0.1398

Sum 0.57 0.1928 0.2929 0.1014 0.46 0.2164 0.3147 0.1486

Virtual 0.97 0.1895 0.2905 0.0945 0.78 0.2127 0.2997 0.1393

IA-Select

MinMax - 0.1913 0.2916 0.0908 - 0.1997 0.2956 0.1294

Sum - 0.1985 0.2881 0.0953 - 0.2021 0.3020 0.1424

Virtual - 0.1890 0.2847 0.0882 - 0.2106 0.3078 0.1195

PM2

MinMax 0.74 0.1891 0.2870 0.0921 0.46 0.2039 0.3033 0.1344

Sum 0.9 0.1721 0.2702 0.0893 0 0.1956 0.2913 0.1353

Virtual 0.87 0.1697 0.2670 0.0950 0.2 0.1954 0.2867 0.1367
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Table A.10: Diversification performance of the xQuAD variants using the query as-

pects obtained from the suggestions and LM as the retrieval model. The highest scores

are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

org_xQuAD

MinMax 0.97 0.1923 0.2929 0.0941 0.99 0.2057 0.3020 0.1398

Sum 0.57 0.1928 0.2929 0.1014 0.46 0.2164 0.3147 0.1486

Virtual 0.97 0.1895 0.2905 0.0945 0.78 0.2127 0.2997 0.1393

geo_xQuAD

MinMax 0.85 0.1934 0.2939 0.0986 0.94 0.2064 0.3091 0.1422

Sum 0.57 0.1913 0.2871 0.0992 0.46 0.2160 0.3130 0.1488

Virtual 0.76 0.1938 0.2941 0.1001 0.62 0.2146 0.3122 0.1464

art_xQuAD

MinMax 0.97 0.1923 0.2927 0.0957 0.84 0.2123 0.3090 0.1441

Sum 0.57 0.1913 0.2871 0.0992 0.46 0.2160 0.3130 0.1488

Virtual 0.77 0.1929 0.2931 0.0992 0.62 0.2139 0.3117 0.1469

Table A.11: Diversification performance of the score aggregation methods the query

aspects obtained from the suggestions and LM as the retrieval model. The highest

scores are shown in boldface.
Relevance TREC 2009 TREC 2010

norm. λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM - 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

mix_CombMNZ

MinMax 0.65 0.1941 0.2860 0.0963 0.5 0.2033 0.2983 0.1343

Sum 0.35 0.1838 0.2763 0.0987 0.1 0.2117 0.3062 0.1326

Virtual 0.15 0.1929 0.2865 0.0973 0.1 0.2001 0.2967 0.1341

mix_CombSUM

MinMax 0.85 0.1992 0.2967 0.0965 0.85 0.2116 0.3075 0.1452

Sum 0.7 0.1913 0.2821 0.0983 0.5 0.2149 0.3124 0.1480

Virtual 0.75 0.1871 0.2857 0.1001 0.55 0.2127 0.3114 0.1485

88



Table A.12: Diversification performance of the rank aggregation methods the query

aspects obtained from the suggestions and LM as the retrieval model. The highest

scores are shown in boldface.
2009 2010

λ ERR-IA α-nDCG P-IA λ ERR-IA α-nDCG P-IA

LM 0.1738 0.2645 0.0930 - 0.1959 0.2842 0.1406

mix_SV 0.95 0.1790 0.2711 0.0944 0.65 0.2098 0.2963 0.1370

mix_BV 0.35 0.1773 0.2682 0.0923 0.7 0.2063 0.2981 0.1382

mix_MC1 - 0.1872 0.2808 0.0918 - 0.2039 0.2936 0.1286

mix_MC2 - 0.1932 0.2887 0.0913 - 0.2024 0.2984 0.1230

mix_MC3 - 0.1873 0.2816 0.0929 - 0.2023 0.2953 0.1286

mix_MC4 - 0.1887 0.2786 0.0900 - 0.1889 0.2828 0.1294
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A.4 Aspect Weighting using Query Performance Predictions

A.4.1 2009 official sub-topics

Table A.13: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the baseline QPPs for the query

aspects obtained from the official sub-topics. The highest score is boldfaced.
Div. Relevance

Uniform
Baseline QPPs

method norm. WIG NQC ScrAvg ScrDev

IA-Select

MinMax 0.3250 0.3286 0.3040 0.3224 0.3119

Sum 0.3179 0.3182 0.2935 0.3202 0.3103

Virtual 0.3263 0.3095 0.3038 0.3144 0.3096

xQuAD

MinMax 0.3308 0.3313 0.3118 0.3291 0.3184

Sum 0.3255 0.3223 0.3068 0.3284 0.3159

Virtual 0.3268 0.3154 0.3045 0.3260 0.3147

art_xQuAD

MinMax 0.3391 0.3403 0.3208 0.3387 0.3284

Sum 0.3255 0.3230 0.3082 0.3275 0.3149

Virtual 0.3354 0.3304 0.3162 0.3359 0.3203

geo_xQuAD

MinMax 0.3430 0.3426 0.3176 0.3395 0.3261

Sum 0.3255 0.3230 0.3082 0.3275 0.3149

Virtual 0.3341 0.3300 0.3183 0.3348 0.3202

PM2

MinMax 0.3322 0.3345 0.3253 0.3339 0.3282

Sum 0.3328 0.3293 0.3269 0.3272 0.3282

Virtual 0.3360 0.3372 0.3243 0.3308 0.3287

mix_CombSUM

MinMax 0.3323 0.3335 0.3102 0.3275 0.3202

Sum 0.3249 0.3226 0.3083 0.3271 0.3129

Virtual 0.3338 0.3314 0.3211 0.3313 0.3184
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Table A.14: Diversification performance (α-NDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the best baseline QPPs and proposed

QPPs for the query aspects obtained from the official sub-topics. The highest score

in each group is bold, the overall winner is underlined.
Div. Relevance

Uniform
Baseline QPPs Proposed QPPs

method norm. WIG ScrAvg VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3250 0.3286 0.3224 0.3233 0.3203 0.3236

Sum 0.3179 0.3182 0.3202 0.3169 0.3223 0.3208

Virtual 0.3263 0.3095 0.3144 0.3161 0.3252 0.3213

xQuAD

MinMax 0.3308 0.3313 0.3291 0.3261 0.3247 0.3309

Sum 0.3255 0.3223 0.3284 0.3260 0.3301 0.3283

Virtual 0.3268 0.3154 0.3260 0.3274 0.3312 0.3287

art_xQuAD

MinMax 0.3391 0.3403 0.3387 0.3312 0.3330 0.3414

Sum 0.3255 0.3230 0.3275 0.3238 0.3302 0.3282

Virtual 0.3354 0.3304 0.3359 0.3351 0.3383 0.3357

geo_xQuAD

MinMax 0.3430 0.3426 0.3395 0.3379 0.3363 0.3400

Sum 0.3255 0.3230 0.3275 0.3238 0.3302 0.3282

Virtual 0.3341 0.3300 0.3348 0.3344 0.3389 0.3346

PM2

MinMax 0.3322 0.3345 0.3339 0.3329 0.3333 0.3360

Sum 0.3328 0.3293 0.3272 0.3340 0.3289 0.3345

Virtual 0.3360 0.3372 0.3308 0.3343 0.3334 0.3388

mix_CombSUM

MinMax 0.3323 0.3335 0.3275 0.3247 0.3293 0.3290

Sum 0.3249 0.3226 0.3271 0.3234 0.3298 0.3277

Virtual 0.3338 0.3314 0.3313 0.3316 0.3328 0.3327
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A.4.2 2009 sub-topics from suggestions

Table A.15: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the proposed QPPs for the query

aspects obtained from the suggestions. The highest score is boldfaced.
Div. Relevance

Uniform
Proposed QPPs

method norm. VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2814 0.2875 0.2913 0.2892

Sum 0.2688 0.2729 0.2728 0.2689

Virtual 0.2675 0.2711 0.2716 0.2716

xQuAD

MinMax 0.2960 0.2971 0.2967 0.2951

Sum 0.2846 0.2854 0.2862 0.2922

Virtual 0.2887 0.2930 0.2931 0.2956

art_xQuAD

MinMax 0.3049 0.3059 0.3044 0.3030

Sum 0.2860 0.2824 0.2831 0.2911

Virtual 0.2948 0.3000 0.3003 0.3009

geo_xQuAD

MinMax 0.3019 0.3055 0.3051 0.3023

Sum 0.2860 0.2824 0.2831 0.2911

Virtual 0.2957 0.3026 0.2999 0.3008

PM2

MinMax 0.2935 0.2988 0.3016 0.2959

Sum 0.2775 0.2949 0.2855 0.2789

Virtual 0.2889 0.2986 0.2869 0.2800

mix_CombSUM

MinMax 0.3043 0.3056 0.3031 0.3024

Sum 0.2860 0.2823 0.2833 0.2902

Virtual 0.2959 0.2963 0.2974 0.2990
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A.4.3 2010 suggested subtopics

Table A.16: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the baseline QPPs. The highest

score is boldfaced.
Div. Relevance

Uniform
Proposed QPPs

method norm. VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2952 0.3022 0.2939 0.2967

Sum 0.3043 0.3000 0.3021 0.3037

Virtual 0.3046 0.3066 0.3044 0.3092

xQuAD

MinMax 0.3072 0.3077 0.3090 0.3113

Sum 0.3215 0.3238 0.3221 0.3196

Virtual 0.3090 0.3082 0.3059 0.3108

art_xQuAD

MinMax 0.3225 0.3258 0.3250 0.3277

Sum 0.3225 0.3238 0.3235 0.3197

Virtual 0.3210 0.3201 0.3195 0.3209

geo_xQuAD

MinMax 0.3228 0.3212 0.3248 0.3260

Sum 0.3225 0.3238 0.3235 0.3197

Virtual 0.3194 0.3201 0.3186 0.3200

PM2

MinMax 0.3129 0.3153 0.3113 0.3175

Sum 0.3129 0.3094 0.3063 0.3074

Virtual 0.3107 0.3077 0.3063 0.3061

mix_CombSUM

MinMax 0.3145 0.3131 0.3125 0.3098

Sum 0.3224 0.3244 0.3235 0.3197

Virtual 0.3256 0.3275 0.3262 0.3260
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A.5 Query expansion tables

A.5.1 2009 official sub-topics

Table A.17: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their expansions using candidate re-rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2242 0.2060 0.1805 0.1912 0.1854

Sum 0.2141 0.1975 0.1783 0.1924 0.2000

Virt 0.2318 0.2024 0.1852 0.1883 0.1956

xQuAD

MinMax 0.2326 0.2108 0.2071 0.2092 0.2145

Sum 0.2218 0.2256 0.2036 0.2132 0.2221

Virt 0.2329 0.2220 0.1992 0.2179 0.2150

art_xQuAD

MinMax 0.2342 0.2235 0.2134 0.2158 0.2206

Sum 0.2218 0.2264 0.2032 0.2143 0.2224

Virt 0.2355 0.2237 0.2030 0.2181 0.2229

geo_xQuAD

MinMax 0.2355 0.2210 0.2125 0.2156 0.2180

Sum 0.2218 0.2264 0.2032 0.2143 0.2224

Virt 0.2350 0.2227 0.2045 0.2183 0.2218

PM2

MinMax 0.2325 0.2047 0.1950 0.1895 0.1901

Sum 0.2272 0.2018 0.1860 0.1857 0.1981

Virt 0.2347 0.2031 0.1906 0.1885 0.1888

mix_CombSUM

MinMax 0.2362 0.2214 0.2136 0.2106 0.2146

Sum 0.2215 0.2265 0.2040 0.2146 0.2225

Virt 0.2353 0.2309 0.2104 0.2167 0.2199

mix_Borda 0.2307 0.2150 0.2102 0.2105 0.2117

mix_SV 0.2077 0.2005 0.2078 0.1831 0.1968

mix_MC2 0.2249 0.2282 0.2083 0.2148 0.2056
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Table A.18: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their expansions using sub-topic’s own rankings as PRF. The highest score is bold-

faced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2242 0.2146 0.2095 0.1907 0.2101

Sum 0.2141 0.2017 0.1849 0.1913 0.1964

Virt 0.2318 0.2209 0.2067 0.1912 0.2022

xQuAD

MinMax 0.2326 0.2309 0.2198 0.2237 0.2252

Sum 0.2218 0.2213 0.2133 0.2173 0.2183

Virt 0.2329 0.2299 0.2251 0.2105 0.2197

art_xQuAD

MinMax 0.2342 0.2365 0.2270 0.2281 0.2302

Sum 0.2218 0.2210 0.2130 0.2094 0.2180

Virt 0.2355 0.2278 0.2267 0.2178 0.2219

geo_xQuAD

0.2355 0.2379 0.2265 0.2276 0.2293

Sum 0.2218 0.2210 0.2130 0.2094 0.2180

Virt 0.2350 0.2279 0.2260 0.2181 0.2213

PM2

MinMax 0.2325 0.2297 0.2185 0.2130 0.2095

Sum 0.2272 0.2184 0.2113 0.2066 0.2154

Virt 0.2347 0.2221 0.2118 0.2103 0.2102

mix_CombSUM

MinMax 0.2362 0.2350 0.2260 0.2178 0.2235

Sum 0.2215 0.2211 0.2125 0.2175 0.2154

Virt 0.2353 0.2263 0.2240 0.2159 0.2223

mix_Borda 0.2307 0.2138 0.2146 0.2137 0.2201

mix_SV 0.2077 0.2179 0.2277 0.1958 0.2143

mix_MC2 0.2249 0.2272 0.2197 0.2112 0.2206
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Table A.19: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their expansions by adding

5 expansion terms calculated with BM25 term ranking function on sub-topic’s own

rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3240 0.3151 0.3204 0.3195 0.3154

Sum 0.3162 0.3082 0.3012 0.3011 0.3035

Virtual 0.3263 0.3238 0.3162 0.3154 0.3198

xQuAD

MinMax 0.3298 0.3302 0.3318 0.3333 0.3235

Sum 0.3238 0.3217 0.3264 0.3243 0.3258

Virtual 0.3268 0.3273 0.3274 0.3192 0.3281

art_xQuAD

MinMax 0.3387 0.3442 0.3398 0.3436 0.3445

Sum 0.3238 0.3212 0.3253 0.3241 0.3245

Virtual 0.3354 0.3345 0.3351 0.3335 0.3365

geo_xQuAD

MinMax 0.3420 0.3469 0.3384 0.3446 0.3463

Sum 0.3238 0.3212 0.3253 0.3241 0.3245

Virtual 0.3341 0.3345 0.3349 0.3336 0.3359

PM2

MinMax 0.3334 0.3367 0.3298 0.3261 0.3253

Sum 0.3310 0.3273 0.3155 0.3162 0.3164

Virtual 0.3360 0.3286 0.3247 0.3239 0.3169

mix_CombSUM

MinMax 0.3323 0.3377 0.3347 0.3304 0.3352

Sum 0.3235 0.3200 0.3258 0.3239 0.3250

Virtual 0.3339 0.3269 0.3268 0.3290 0.3334
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Table A.20: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their expansions by adding

5 expansion terms calculated with BM25 term ranking function on sub-topic’s own

rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2242 0.2146 0.2222 0.2205 0.2132

Sum 0.2141 0.2017 0.1973 0.1976 0.2002

Virtual 0.2318 0.2209 0.2130 0.2083 0.2150

xQuAD

MinMax 0.2326 0.2309 0.2313 0.2356 0.2223

Sum 0.2218 0.2213 0.2271 0.2240 0.2261

Virtual 0.2329 0.2299 0.2298 0.2234 0.2312

art_xQuAD

MinMax 0.2342 0.2365 0.2315 0.2366 0.2377

Sum 0.2218 0.2210 0.2268 0.2263 0.2255

Virtual 0.2355 0.2278 0.2297 0.2293 0.2303

geo_xQuAD

MinMax 0.2355 0.2379 0.2304 0.2370 0.2389

Sum 0.2218 0.2210 0.2268 0.2263 0.2255

Virt 0.2350 0.2279 0.2303 0.2294 0.2298

PM2

MinMax 0.2325 0.2297 0.2223 0.2183 0.2141

Sum 0.2272 0.2184 0.2105 0.2078 0.2117

Virt 0.2347 0.2221 0.2142 0.2154 0.2100

mix_CombSUM

MinMax 0.2362 0.2350 0.2327 0.2294 0.2356

Sum 0.2215 0.2211 0.2271 0.2261 0.2263

Virt 0.2353 0.2263 0.2258 0.2295 0.2301
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Table A.21: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the official sub-topics and

their selective expansions by adding 5 expansion terms calculated with BM25 term

ranking function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.2242 0.2146 0.2007 0.2114

Sum 0.2141 0.2017 0.2014 0.1995

Virt 0.2318 0.2209 0.2143 0.2304

xQuAD

MinMax 0.2326 0.2309 0.2240 0.2249

Sum 0.2218 0.2213 0.2219 0.2214

Virt 0.2329 0.2299 0.2244 0.2304

art_xQuAD

MinMax 0.2342 0.2365 0.2325 0.2335

Sum 0.2218 0.2210 0.2215 0.2209

Virt 0.2355 0.2278 0.2298 0.2394

geo_xQuAD

MinMax 0.2355 0.2379 0.2274 0.2302

Sum 0.2218 0.2210 0.2215 0.2209

Virt 0.2350 0.2279 0.2295 0.2364

PM2

MinMax 0.2325 0.2297 0.2260 0.2333

Sum 0.2272 0.2184 0.2119 0.2240

Virt 0.2347 0.2221 0.2220 0.2325

mix_CombSUM

MinMax 0.2362 0.2350 0.2371 0.2362

Sum 0.2215 0.2211 0.2215 0.2209

Virt 0.2353 0.2263 0.2277 0.2376

mix_Borda 0.2307 0.2138 0.2238 0.2187

mix_SV 0.2077 0.2179 0.2179 0.2147

mix_MC2 0.2249 0.2272 0.2318 0.2322
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Table A.22: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their selective expansions by

adding 5 expansion terms calculated with BM25 term ranking function on sub-topic’s

own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand by VScrFirst < 0.7

method norm. All Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3240 0.3151 0.3097 0.3144 0.3173 0.3204

Sum 0.3162 0.3082 0.305 0.3152 0.3232 0.3119

Virtual 0.3263 0.3238 0.3295 0.3205 0.3251 0.3262

xQuAD

MinMax 0.3298 0.3302 0.3251 0.3259 0.3234 0.3267

Sum 0.3238 0.3217 0.3229 0.3244 0.3325 0.3342

Virtual 0.3268 0.3273 0.3295 0.3278 0.3315 0.3335

art_xQuAD

MinMax 0.3387 0.3442 0.3421 0.3418 0.3414 0.3435

Sum 0.3238 0.3212 0.3220 0.3245 0.3330 0.3339

Virtual 0.3354 0.3345 0.3415 0.3410 0.3399 0.3432

geo_xQuAD

MinMax 0.3420 0.3469 0.3405 0.3426 0.3383 0.337

Sum 0.3238 0.3212 0.3220 0.3245 0.3330 0.3339

Virtual 0.3341 0.3345 0.3407 0.3398 0.3403 0.3424

PM2

MinMax 0.3334 0.3367 0.3432 0.3398 0.3341 0.3406

Sum 0.3310 0.3273 0.3311 0.3330 0.3284 0.3285

Virtual 0.3360 0.3286 0.3384 0.3397 0.3319 0.3365

mix_CombSUM

MinMax 0.3323 0.3377 0.3441 0.3398 0.3386 0.3450

Sum 0.3235 0.3200 0.3218 0.3242 0.3327 0.3336

Virtual 0.3339 0.3269 0.3389 0.3294 0.3338 0.3332
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Table A.23: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their selective expansions by

adding 5 expansion terms calculated with BM25 term ranking function on sub-topic’s

own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand by VScrFirst < 0.7

method norm. All Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2242 0.2146 0.2114 0.2151 0.2156 0.2210

Sum 0.2141 0.2017 0.1995 0.2112 0.2221 0.2075

Virt 0.2318 0.2209 0.2304 0.2186 0.2228 0.2251

xQuAD

MinMax 0.2326 0.2309 0.2249 0.2272 0.2233 0.2280

Sum 0.2218 0.2213 0.2214 0.2247 0.2318 0.2334

Virt 0.2329 0.2299 0.2304 0.2292 0.2331 0.2367

art_xQuAD

MinMax 0.2342 0.2365 0.2335 0.2336 0.2327 0.2336

Sum 0.2218 0.2210 0.2209 0.2249 0.2323 0.2327

Virt 0.2355 0.2278 0.2394 0.2348 0.2359 0.2388

geo_xQuAD

MinMax 0.2355 0.2379 0.2302 0.2337 0.2295 0.2324

Sum 0.2218 0.2210 0.2209 0.2249 0.2323 0.2327

Virt 0.2350 0.2279 0.2364 0.2342 0.2335 0.2392

PM2

MinMax 0.2325 0.2297 0.2333 0.2331 0.2293 0.2315

Sum 0.2272 0.2184 0.2240 0.2224 0.2249 0.2207

Virt 0.2347 0.2221 0.2325 0.2362 0.2285 0.2339

mix_CombSUM

MinMax 0.2362 0.2350 0.2362 0.2346 0.2339 0.2370

Sum 0.2215 0.2211 0.2209 0.2248 0.2322 0.2326

Virt 0.2353 0.2263 0.2376 0.2263 0.2301 0.2322
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A.5.2 2010 official sub-topics

Table A.24: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their expansions using candidate re-rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2445 0.2714 0.2707 0.2476 0.2541

Sum 0.2529 0.2732 0.2667 0.2628 0.2586

Virt 0.2681 0.2804 0.2736 0.2664 0.2638

xQuAD

MinMax 0.2445 0.2714 0.2707 0.2512 0.2541

Sum 0.2643 0.2739 0.2802 0.2651 0.2592

Virt 0.2681 0.2804 0.2736 0.2664 0.2639

art_xQuAD

MinMax 0.2652 0.2853 0.2892 0.2653 0.2616

Sum 0.2629 0.2736 0.2787 0.2643 0.2603

Virt 0.2799 0.2744 0.2832 0.2678 0.2656

geo_xQuAD

MinMax 0.2571 0.2794 0.2839 0.2607 0.2581

Sum 0.2629 0.2736 0.2787 0.2643 0.2603

Virt 0.2799 0.2739 0.2822 0.2615 0.2651

PM2

MinMax 0.2702 0.2800 0.2733 0.2622 0.2582

Sum 0.2597 0.2787 0.2818 0.2661 0.2501

Virt 0.2722 0.2802 0.2732 0.2701 0.2653

mix_CombSUM

MinMax 0.2576 0.2688 0.2693 0.2601 0.2651

Sum 0.2629 0.2728 0.2784 0.2637 0.2603

Virt 0.2761 0.2706 0.2721 0.2710 0.2621

mix_Borda 0.2474 0.2805 0.2834 0.2748 0.2664

mix_SV 0.2327 0.2510 0.2538 0.2531 0.2571

mix_MC2 0.2559 0.2552 0.2723 0.2687 0.2722
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Table A.25: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their expansions using sub-topic’s own rankings as PRF. The highest score is bold-

faced.
Div. Relevance

Original
BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2445 0.2681 0.2645 0.2428 0.2470

Sum 0.2529 0.2874 0.2770 0.2469 0.2363

Virt 0.2681 0.2831 0.2827 0.2541 0.2470

xQuAD

MinMax 0.2445 0.2681 0.2645 0.2428 0.2470

Sum 0.2643 0.2961 0.2881 0.2560 0.2467

Virt 0.2681 0.2831 0.2827 0.2581 0.2470

art_xQuAD

MinMax 0.2652 0.2839 0.2788 0.2663 0.2645

Sum 0.2629 0.2949 0.2871 0.2578 0.2499

Virt 0.2799 0.2895 0.2967 0.2653 0.2692

geo_xQuAD

MinMax 0.2571 0.2838 0.2794 0.2637 0.2680

Sum 0.2629 0.2949 0.2871 0.2578 0.2499

Virt 0.2799 0.2902 0.2968 0.2665 0.2691

PM2

MinMax 0.2702 0.2820 0.2774 0.2512 0.2567

Sum 0.2597 0.2836 0.2886 0.2556 0.2616

Virt 0.2722 0.2837 0.2782 0.2521 0.2572

mix_CombSUM

MinMax 0.2576 0.2698 0.2693 0.2600 0.2526

Sum 0.2629 0.2914 0.2846 0.2576 0.2501

Virt 0.2761 0.2809 0.2878 0.2541 0.2595

mix_Borda 0.2474 0.2742 0.2862 0.2600 0.2669

mix_SV 0.2327 0.2718 0.2821 0.2531 0.2630

mix_MC2 0.2559 0.2628 0.2720 0.2569 0.2662
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Table A.26: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their expansions by adding

5 expansion terms calculated with BM25 term ranking function on sub-topic’s own

rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3386 0.3636 0.3630 0.3765 0.3679

Sum 0.3568 0.3823 0.3792 0.3710 0.3777

Virtual 0.3660 0.3810 0.3835 0.3892 0.3857

xQuAD

MinMax 0.3386 0.3636 0.3630 0.3765 0.3679

Sum 0.3664 0.3941 0.3877 0.3799 0.3862

Virtual 0.3660 0.3810 0.3835 0.3917 0.3857

art_xQuAD

MinMax 0.3751 0.3900 0.3946 0.3899 0.3790

Sum 0.3612 0.3898 0.3826 0.3760 0.3834

Virtual 0.3892 0.3898 0.3896 0.3877 0.3857

geo_xQuAD

MinMax 0.3581 0.3789 0.3814 0.3743 0.3648

Sum 0.3612 0.3898 0.3826 0.3760 0.3834

Virtual 0.3890 0.3921 0.3899 0.3876 0.3861

PM2

MinMax 0.3705 0.3833 0.3779 0.3790 0.3757

Sum 0.3669 0.3919 0.3892 0.3851 0.3842

Virtual 0.3756 0.3853 0.3823 0.3807 0.3808

mix_CombSUM

MinMax 0.3662 0.3629 0.3604 0.3608 0.3605

Sum 0.3613 0.3886 0.3814 0.3746 0.3830

Virtual 0.3811 0.3725 0.3728 0.3728 0.3730
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Table A.27: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their expansions by adding

5 expansion terms calculated with BM25 term ranking function on sub-topic’s own

rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2445 0.2681 0.2665 0.2789 0.2717

Sum 0.2529 0.2874 0.2862 0.2795 0.2829

Virt 0.2681 0.2831 0.2834 0.2906 0.2885

xQuAD

MinMax 0.2445 0.2681 0.2665 0.2789 0.2717

Sum 0.2643 0.2961 0.2913 0.2863 0.2917

Virt 0.2681 0.2831 0.2834 0.2936 0.2885

art_xQuAD

MinMax 0.2652 0.2839 0.2877 0.2852 0.2757

Sum 0.2629 0.2949 0.2892 0.2840 0.2907

Virt 0.2799 0.2895 0.2882 0.2916 0.2865

geo_xQuAD

MinMax 0.2571 0.2838 0.2802 0.2709 0.2716

Sum 0.2629 0.2949 0.2892 0.2840 0.2907

Virt 0.2799 0.2902 0.2886 0.2908 0.2868

PM2

MinMax 0.2702 0.2820 0.2751 0.2781 0.2801

Sum 0.2597 0.2836 0.2912 0.2861 0.2892

Virt 0.2722 0.2837 0.2872 0.2873 0.2865

mix_CombSUM

MinMax 0.2576 0.2698 0.2626 0.2618 0.2660

Sum 0.2629 0.2914 0.2885 0.2838 0.2902

Virt 0.2761 0.2809 0.2809 0.2854 0.2817
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Table A.28: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the official sub-topics and

their selective expansions by adding 5 expansion terms calculated with BM25 term

ranking function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.2445 0.2681 0.2714 0.2412

Sum 0.2529 0.2874 0.2652 0.2703

Virt 0.2681 0.2831 0.2684 0.2608

xQuAD

MinMax 0.2445 0.2681 0.2714 0.2412

Sum 0.2643 0.2961 0.2860 0.2725

Virt 0.2681 0.2831 0.2684 0.2608

art_xQuAD

MinMax 0.2652 0.2839 0.2901 0.2648

Sum 0.2629 0.2949 0.2822 0.2720

Virt 0.2799 0.2895 0.2899 0.2652

geo_xQuAD

MinMax 0.2571 0.2838 0.2854 0.2591

Sum 0.2629 0.2949 0.2822 0.2720

Virt 0.2799 0.2902 0.2902 0.2656

PM2

MinMax 0.2702 0.2820 0.2715 0.2607

Sum 0.2597 0.2836 0.2729 0.2761

Virt 0.2722 0.2837 0.2750 0.2736

mix_CombSUM

MinMax 0.2576 0.2698 0.2697 0.2600

Sum 0.2629 0.2914 0.2799 0.2706

Virt 0.2761 0.2809 0.2798 0.2674

mix_Borda 0.2474 0.2742 0.2665 0.2588

mix_SV 0.2327 0.2718 0.2809 0.2656

mix_MC2 0.2559 0.2628 0.2673 0.2566
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Table A.29: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their selective expansions by

adding 5 expansion terms calculated with BM25 term ranking function on sub-topic’s

own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand by VScrAvg < 0.7

method norm. All Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.3386 0.3636 0.3650 0.3747 0.3626 0.3493

Sum 0.3568 0.3823 0.3721 0.3748 0.3744 0.3715

Virtual 0.3660 0.3810 0.3638 0.3570 0.3561 0.3529

xQuAD

MinMax 0.3386 0.3636 0.3650 0.3747 0.3626 0.3493

Sum 0.3664 0.3941 0.3874 0.3906 0.3847 0.3850

Virtual 0.3660 0.3810 0.3638 0.3600 0.3618 0.3559

art_xQuAD

MinMax 0.3751 0.3900 0.3944 0.3997 0.3888 0.3826

Sum 0.3612 0.3898 0.3823 0.3854 0.3819 0.3802

Virtual 0.3892 0.3898 0.3961 0.3904 0.3836 0.3807

geo_xQuAD

MinMax 0.3581 0.3789 0.3797 0.3866 0.3782 0.3717

Sum 0.3612 0.3898 0.3823 0.3854 0.3819 0.3802

Virtual 0.3890 0.3921 0.3973 0.3896 0.3820 0.3800

PM2

MinMax 0.3705 0.3833 0.3747 0.3751 0.3691 0.3600

Sum 0.3669 0.3919 0.3797 0.3822 0.3821 0.3851

Virtual 0.3756 0.3853 0.3802 0.3794 0.3814 0.3815

mix_CombSUM

MinMax 0.3662 0.3629 0.3684 0.3708 0.3632 0.3653

Sum 0.3613 0.3886 0.3803 0.3824 0.3801 0.3799

Virtual 0.3811 0.3725 0.3796 0.3694 0.3668 0.3682
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Table A.30: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the official sub-topics and their selective expansions by

adding 5 expansion terms calculated with BM25 term ranking function on sub-topic’s

own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand by VScrAvg < 0.7

method norm. All Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2445 0.2681 0.2714 0.2783 0.2654 0.2517

Sum 0.2529 0.2874 0.2652 0.2678 0.2722 0.2723

Virt 0.2681 0.2831 0.2684 0.2588 0.2590 0.2528

xQuAD

MinMax 0.2445 0.2681 0.2714 0.2783 0.2654 0.2517

Sum 0.2643 0.2961 0.2860 0.2885 0.2798 0.2864

Virt 0.2681 0.2831 0.2684 0.2635 0.2645 0.2610

art_xQuAD

MinMax 0.2652 0.2839 0.2901 0.2942 0.2846 0.2811

Sum 0.2629 0.2949 0.2822 0.2872 0.2855 0.2810

Virt 0.2799 0.2895 0.2899 0.2816 0.2756 0.2737

geo_xQuAD

MinMax 0.2571 0.2838 0.2854 0.2880 0.2804 0.2786

Sum 0.2629 0.2949 0.2822 0.2872 0.2855 0.2810

Virt 0.2799 0.2902 0.2902 0.2811 0.2728 0.2731

PM2

MinMax 0.2702 0.2820 0.2715 0.2667 0.2602 0.2586

Sum 0.2597 0.2836 0.2729 0.2741 0.2759 0.2773

Virt 0.2722 0.2837 0.2750 0.2680 0.2723 0.2760

mix_CombSUM

MinMax 0.2576 0.2698 0.2697 0.2725 0.2651 0.2695

Sum 0.2629 0.2914 0.2799 0.2859 0.2848 0.2808

Virt 0.2761 0.2809 0.2798 0.2666 0.2675 0.2709
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A.5.3 2009 sub-topics from suggestions

Table A.31: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their ex-

pansions using candidate re-rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2814 0.2877 0.2777 0.2530 0.2475

Sum 0.2688 0.2497 0.2462 0.2319 0.2447

Virtual 0.2675 0.2723 0.2550 0.2437 0.2482

xQuAD

MinMax 0.2960 0.2877 0.2956 0.2849 0.2923

Sum 0.2846 0.2911 0.2857 0.2828 0.2900

Virtual 0.2887 0.2892 0.2948 0.2859 0.2916

art_xQuAD

MinMax 0.3049 0.2921 0.2996 0.2905 0.2995

Sum 0.2860 0.2894 0.2842 0.2821 0.2908

Virtual 0.2948 0.2965 0.2962 0.2905 0.2963

geo_xQuAD

MinMax 0.3019 0.2987 0.3050 0.2890 0.2956

Sum 0.2860 0.2894 0.2842 0.2821 0.2908

Virtual 0.2957 0.2964 0.2965 0.2916 0.2965

PM2

MinMax 0.2935 0.2638 0.2691 0.2458 0.2507

Sum 0.2775 0.2710 0.2676 0.2436 0.2471

Virtual 0.2889 0.2650 0.2560 0.2382 0.2446

mix_CombSUM

MinMax 0.3043 0.2950 0.2928 0.2885 0.2954

Sum 0.2860 0.2889 0.2840 0.2817 0.2901

Virtual 0.2959 0.2832 0.2878 0.2870 0.2924

mix_Borda 0.2894 0.2757 0.2796 0.2824 0.2861

mix_SV 0.2757 0.2845 0.2757 0.2777 0.2773

mix_MC2 0.2858 0.2657 0.2706 0.2531 0.2569
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Table A.32: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their ex-

pansions using candidate re-rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.1778 0.1829 0.1774 0.1544 0.1508

Sum 0.1806 0.1627 0.1558 0.1477 0.1593

Virt 0.1744 0.1786 0.1646 0.1510 0.1571

xQuAD

MinMax 0.2081 0.1829 0.2015 0.1927 0.1998

Sum 0.1941 0.1976 0.1924 0.1879 0.1911

Virt 0.1985 0.1928 0.2038 0.1939 0.1989

art_xQuAD

MinMax 0.2088 0.1950 0.2016 0.1951 0.2036

Sum 0.1946 0.1967 0.1927 0.1880 0.1915

Virt 0.2010 0.2023 0.2034 0.1966 0.2018

geo_xQuAD

MinMax 0.1968 0.1915 0.2042 0.1946 0.2023

Sum 0.1946 0.1967 0.1927 0.1880 0.1915

Virt 0.2016 0.2021 0.2040 0.1971 0.2019

PM2

MinMax 0.1984 0.1745 0.1748 0.1563 0.1579

Sum 0.1862 0.1753 0.1731 0.1556 0.1591

Virt 0.1955 0.1697 0.1650 0.1501 0.1539

mix_CombSUM

MinMax 0.2100 0.2026 0.2011 0.1940 0.2000

Sum 0.1946 0.1966 0.1926 0.1877 0.1911

Virt 0.2022 0.1920 0.1965 0.1952 0.1985

mix_Borda 0.1960 0.1878 0.1806 0.1927 0.1949

mix_SV 0.1878 0.1925 0.1878 0.1818 0.1804

mix_MC2 0.1914 0.1689 0.1759 0.1621 0.1645
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Table A.33: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their ex-

pansions using sub-topic’s own rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.1778 0.2030 0.1981 0.1520 0.1721

Sum 0.1806 0.1988 0.1872 0.1666 0.1829

Virt 0.1744 0.2100 0.1923 0.1720 0.1856

xQuAD

MinMax 0.2081 0.2084 0.1981 0.1979 0.1931

Sum 0.1941 0.2153 0.2082 0.1926 0.1954

Virt 0.1985 0.2249 0.2218 0.2011 0.2082

art_xQuAD

MinMax 0.2088 0.2072 0.2062 0.2052 0.1970

Sum 0.1946 0.2144 0.2078 0.1920 0.1947

Virt 0.2010 0.2219 0.2224 0.2080 0.2003

geo_xQuAD

MinMax 0.1968 0.2078 0.2066 0.2041 0.1989

Sum 0.1946 0.2144 0.2078 0.1920 0.1947

Virt 0.2016 0.2219 0.2231 0.2084 0.2008

PM2

MinMax 0.1984 0.2012 0.2048 0.1720 0.1861

Sum 0.1862 0.2078 0.1936 0.1737 0.1835

Virt 0.1955 0.2128 0.2024 0.1835 0.1953

mix_CombSUM

MinMax 0.2100 0.2055 0.2049 0.2019 0.1958

Sum 0.1946 0.2146 0.2078 0.1930 0.1946

Virt 0.2022 0.2156 0.2081 0.2009 0.1973

mix_Borda 0.1960 0.1998 0.1957 0.1947 0.1932

mix_SV 0.1878 0.2057 0.1878 0.1878 0.1877

mix_MC2 0.1914 0.1974 0.1905 0.1791 0.1834
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Table A.34: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the suggestions and their expansions by adding 5 expan-

sion terms calculated with BM25 term ranking function on sub-topic’s own rankings

as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2814 0.3089 0.3120 0.3134 0.3090

Sum 0.2688 0.2883 0.2883 0.2848 0.2888

Virtual 0.2675 0.3020 0.3022 0.3026 0.3025

xQuAD

MinMax 0.2960 0.3102 0.3146 0.3155 0.3101

Sum 0.2846 0.3116 0.3088 0.3018 0.3008

Virtual 0.2887 0.3231 0.3223 0.3202 0.3182

art_xQuAD

MinMax 0.3049 0.3071 0.3063 0.3045 0.3023

Sum 0.2860 0.3090 0.3064 0.3034 0.2981

Virtual 0.2948 0.3162 0.3145 0.3103 0.3074

geo_xQuAD

MinMax 0.3019 0.3131 0.3178 0.3193 0.3093

Sum 0.2860 0.3090 0.3064 0.3034 0.2981

Virtual 0.2957 0.3160 0.3151 0.3109 0.3085

PM2

MinMax 0.2935 0.2928 0.3084 0.2976 0.2906

Sum 0.2775 0.3007 0.3065 0.2915 0.3001

Virtual 0.2889 0.2994 0.3048 0.2922 0.2950

mix_CombSUM

MinMax 0.3043 0.2958 0.2948 0.2950 0.2956

Sum 0.2860 0.3092 0.3064 0.3033 0.2983

Virtual 0.2959 0.3079 0.2996 0.2941 0.2970
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Table A.35: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the suggestions and their expansions by adding 5 expan-

sion terms calculated with BM25 term ranking function on sub-topic’s own rankings

as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.1778 0.2030 0.2083 0.2102 0.2055

Sum 0.1806 0.1988 0.1990 0.1969 0.2043

Virt 0.1744 0.2100 0.2076 0.2077 0.2090

xQuAD

MinMax 0.2081 0.2084 0.2140 0.2151 0.2087

Sum 0.1941 0.2153 0.2148 0.2112 0.2095

Virt 0.1985 0.2249 0.2179 0.2168 0.2153

art_xQuAD

MinMax 0.2088 0.2072 0.2075 0.2110 0.2001

Sum 0.1946 0.2144 0.2141 0.2105 0.2086

Virt 0.2010 0.2219 0.2175 0.2175 0.2112

geo_xQuAD

MinMax 0.1968 0.2078 0.2125 0.2171 0.2077

Sum 0.1946 0.2144 0.2141 0.2105 0.2086

Virt 0.2016 0.2219 0.2180 0.2179 0.2120

PM2

MinMax 0.1984 0.2012 0.2207 0.2120 0.2000

Sum 0.1862 0.2078 0.2185 0.2067 0.2144

Virt 0.1955 0.2128 0.2185 0.2034 0.2082

mix_CombSUM

MinMax 0.2100 0.2055 0.2047 0.2047 0.2050

Sum 0.1946 0.2146 0.2141 0.2104 0.2078

Virt 0.2022 0.2156 0.2077 0.2045 0.2048
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Table A.36: Diversification performance (α-nDCG@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their

selective expansions by adding 5 expansion terms calculated with BM25 term ranking

function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.2814 0.3089 0.3085 0.3083

Sum 0.2688 0.2883 0.2830 0.2852

Virtual 0.2675 0.3020 0.3026 0.3057

xQuAD

MinMax 0.2960 0.3102 0.3085 0.3083

Sum 0.2846 0.3116 0.3013 0.3013

Virtual 0.2887 0.3231 0.3121 0.3165

art_xQuAD

MinMax 0.3049 0.3071 0.3078 0.3124

Sum 0.2860 0.3090 0.2993 0.3011

Virtual 0.2948 0.3162 0.3091 0.3109

geo_xQuAD

MinMax 0.3019 0.3131 0.3114 0.3167

Sum 0.2860 0.3090 0.2993 0.3011

Virtual 0.2957 0.3160 0.3093 0.3118

PM2

MinMax 0.2935 0.2928 0.3017 0.3000

Sum 0.2775 0.3007 0.2918 0.2919

Virtual 0.2889 0.2994 0.2932 0.2938

mix_CombSUM

MinMax 0.3043 0.2958 0.2954 0.2946

Sum 0.2860 0.3092 0.2993 0.3010

Virtual 0.2959 0.3079 0.3019 0.3037

mix_Borda 0.2894 0.2936 0.2878 0.2918

mix_SV 0.2757 0.2983 0.3037 0.2965

mix_MC2 0.2858 0.2919 0.3007 0.2945
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Table A.37: Diversification performance (ERR-IA@20) of the algorithms on TREC

2009 topics using original query aspects obtained from the suggestions and their

selective expansions by adding 5 expansion terms calculated with BM25 term ranking

function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.1778 0.2030 0.2060 0.2052

Sum 0.1806 0.1988 0.1948 0.1984

Virt 0.1744 0.2100 0.2043 0.2090

xQuAD

MinMax 0.2081 0.2084 0.2060 0.2052

Sum 0.1941 0.2153 0.2110 0.2111

Virt 0.1985 0.2249 0.2145 0.2191

art_xQuAD

MinMax 0.2088 0.2072 0.2118 0.2154

Sum 0.1946 0.2144 0.2102 0.2107

Virt 0.2010 0.2219 0.2132 0.2126

geo_xQuAD

MinMax 0.1968 0.2078 0.2132 0.2168

Sum 0.1946 0.2144 0.2102 0.2107

Virt 0.2016 0.2219 0.2120 0.2135

PM2

MinMax 0.1984 0.2012 0.2043 0.2065

Sum 0.1862 0.2078 0.2030 0.2040

Virt 0.1955 0.2128 0.2040 0.2071

mix_CombSUM

MinMax 0.2100 0.2055 0.2042 0.2023

Sum 0.1946 0.2146 0.2102 0.2106

Virt 0.2022 0.2156 0.2090 0.2106

mix_Borda 0.1960 0.1998 0.1916 0.1991

mix_SV 0.1878 0.2057 0.2115 0.2056

mix_MC2 0.1914 0.1974 0.2040 0.2029
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A.5.4 2010 sub-topics from suggestions

Table A.38: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their ex-

pansions using candidate re-rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.2952 0.3109 0.3009 0.2722 0.2842

Sum 0.3043 0.2909 0.2864 0.2568 0.2682

Virtual 0.3046 0.2973 0.2952 0.2831 0.2751

xQuAD

MinMax 0.3072 0.3225 0.3116 0.2924 0.3045

Sum 0.3215 0.3051 0.2990 0.2810 0.2857

Virtual 0.3090 0.3161 0.3130 0.2959 0.3127

art_xQuAD

MinMax 0.3225 0.3246 0.3261 0.2957 0.3049

Sum 0.3225 0.3042 0.2981 0.2788 0.2809

Virtual 0.3210 0.3145 0.3114 0.2935 0.3005

geo_xQuAD

MinMax 0.3228 0.3305 0.3246 0.2947 0.3083

Sum 0.3225 0.3042 0.2981 0.2788 0.2809

Virtual 0.3194 0.3138 0.3108 0.2931 0.3015

PM2

MinMax 0.3129 0.3169 0.3107 0.2828 0.2944

Sum 0.3129 0.3186 0.3119 0.2900 0.3000

Virtual 0.3107 0.3148 0.3065 0.2847 0.2888

mix_CombSUM

MinMax 0.3145 0.3024 0.3007 0.2807 0.2857

Sum 0.3224 0.3007 0.2981 0.2788 0.2815

Virtual 0.3256 0.3064 0.2987 0.2839 0.2874

mix_Borda 0.3190 0.3184 0.3161 0.3015 0.3107

mix_SV 0.3179 0.3176 0.3083 0.3058 0.3079

mix_MC2 0.3081 0.3105 0.3064 0.3001 0.2831
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Table A.39: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their ex-

pansions using candidate re-rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.1978 0.2223 0.2103 0.1843 0.1946

Sum 0.2116 0.2163 0.2069 0.1715 0.1892

Virt 0.2094 0.2150 0.2107 0.1923 0.1941

xQuAD

MinMax 0.2172 0.2378 0.2303 0.2039 0.2155

Sum 0.2301 0.2247 0.2187 0.1948 0.2032

Virt 0.2143 0.2324 0.2267 0.2032 0.2190

art_xQuAD

MinMax 0.2272 0.2348 0.2384 0.2050 0.2167

Sum 0.2306 0.2244 0.2179 0.1947 0.1967

Virt 0.2227 0.2318 0.2260 0.2071 0.2170

geo_xQuAD

MinMax 0.2251 0.2435 0.2325 0.2042 0.2166

Sum 0.2306 0.2244 0.2179 0.1947 0.1967

Virt 0.2228 0.2313 0.2253 0.2073 0.2177

PM2

MinMax 0.2134 0.2350 0.2233 0.1984 0.2138

Sum 0.2220 0.2380 0.2203 0.2047 0.2124

Virt 0.2150 0.2363 0.2216 0.2025 0.2039

mix_CombSUM

MinMax 0.2196 0.2235 0.2237 0.1946 0.2073

Sum 0.2304 0.2239 0.2178 0.1947 0.1966

Virt 0.2316 0.2279 0.2178 0.2003 0.2054

mix_Borda 0.2269 0.2399 0.2341 0.2185 0.2249

mix_SV 0.2348 0.2346 0.2328 0.2259 0.2272

mix_MC2 0.2153 0.2251 0.2220 0.2168 0.1924
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Table A.40: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their ex-

pansions using sub-topic’s own rankings as PRF. The highest score is boldfaced.

Div. Relevance
Original

BM25 KLD

method norm. Add 5 Fix 10 Add 5 Fix 10

IA-Select

MinMax 0.1978 0.2175 0.2219 0.1950 0.2155

Sum 0.2116 0.2277 0.2346 0.2056 0.2016

Virt 0.2094 0.2315 0.2316 0.1978 0.2141

xQuAD

MinMax 0.2172 0.2314 0.2468 0.2195 0.2254

Sum 0.2301 0.2374 0.2378 0.2174 0.2250

Virt 0.2143 0.2411 0.2519 0.2137 0.2347

art_xQuAD

MinMax 0.2272 0.2459 0.2577 0.2258 0.2358

Sum 0.2306 0.2380 0.2377 0.2160 0.2165

Virt 0.2227 0.2484 0.2493 0.2143 0.2370

geo_xQuAD

MinMax 0.2251 0.2415 0.2554 0.2241 0.2336

Sum 0.2306 0.2380 0.2377 0.2160 0.2165

Virt 0.2228 0.2481 0.2496 0.2146 0.2359

PM2

MinMax 0.2134 0.2394 0.2381 0.2146 0.2217

Sum 0.2220 0.2318 0.2406 0.2110 0.2176

Virt 0.2150 0.2298 0.2447 0.2148 0.2257

mix_CombSUM

MinMax 0.2196 0.2402 0.2386 0.2236 0.2309

Sum 0.2304 0.2380 0.2372 0.2166 0.2163

Virt 0.2316 0.2433 0.2366 0.2188 0.2355

mix_Borda 0.2269 0.2569 0.2564 0.2456 0.2379

mix_SV 0.2348 0.2547 0.2651 0.2449 0.2410

mix_MC2 0.2153 0.2368 0.2487 0.2224 0.2287
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Table A.41: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the suggestions and their expansions by adding 5 expan-

sion terms calculated with BM25 term ranking function on sub-topic’s own rankings

as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.2952 0.3099 0.3044 0.3108 0.3120

Sum 0.3043 0.3154 0.3143 0.3080 0.3176

Virtual 0.3046 0.3223 0.3248 0.3197 0.3228

xQuAD

MinMax 0.3072 0.3240 0.3216 0.3225 0.3244

Sum 0.3215 0.3245 0.3266 0.3220 0.3267

Virtual 0.3090 0.3392 0.3367 0.3294 0.3369

art_xQuAD

MinMax 0.3225 0.3465 0.3387 0.3361 0.3421

Sum 0.3225 0.3243 0.3261 0.3197 0.3278

Virtual 0.3210 0.3386 0.3323 0.3264 0.3339

geo_xQuAD

MinMax 0.3228 0.3368 0.3333 0.3318 0.3352

Sum 0.3225 0.3243 0.3261 0.3197 0.3278

Virtual 0.3194 0.3387 0.3331 0.3270 0.3336

PM2

MinMax 0.3129 0.3333 0.3258 0.3283 0.3327

Sum 0.3129 0.3226 0.3175 0.3181 0.3207

Virtual 0.3107 0.3277 0.3185 0.3196 0.3181

mix_CombSUM

MinMax 0.3145 0.3291 0.3174 0.3182 0.3238

Sum 0.3224 0.3245 0.3262 0.3196 0.3278

Virtual 0.3256 0.3273 0.3235 0.3179 0.3218
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Table A.42: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using the aspect weights assigned by the QPP methods for the original

query aspects obtained from the suggestions and their expansions by adding 5 expan-

sion terms calculated with BM25 term ranking function on sub-topic’s own rankings

as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expansion using BM25 Add 5 terms

method norm. Uniform VScrFirst VScrAvg ScrRatio

IA-Select

MinMax 0.1978 0.2175 0.2107 0.2171 0.2180

Sum 0.2116 0.2277 0.2317 0.2260 0.2323

Virt 0.2094 0.2315 0.2332 0.2264 0.2301

xQuAD

MinMax 0.2172 0.2314 0.2299 0.2320 0.2328

Sum 0.2301 0.2374 0.2440 0.2375 0.2400

Virt 0.2143 0.2411 0.2372 0.2301 0.2368

art_xQuAD

MinMax 0.2272 0.2459 0.2428 0.2445 0.2447

Sum 0.2306 0.2380 0.2435 0.2372 0.2424

Virt 0.2227 0.2484 0.2451 0.2338 0.2443

geo_xQuAD

MinMax 0.2251 0.2415 0.2390 0.2399 0.2408

Sum 0.2306 0.2380 0.2435 0.2372 0.2424

Virt 0.2228 0.2481 0.2456 0.2330 0.2438

PM2

MinMax 0.2134 0.2394 0.2316 0.2355 0.2396

Sum 0.2220 0.2318 0.2301 0.2335 0.2347

Virt 0.2150 0.2298 0.2320 0.2338 0.2302

mix_CombSUM

MinMax 0.2196 0.2402 0.2294 0.2288 0.2335

Sum 0.2304 0.2380 0.2436 0.2371 0.2424

Virt 0.2316 0.2433 0.2389 0.2338 0.2360

119



Table A.43: Diversification performance (α-nDCG@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their

selective expansions by adding 5 expansion terms calculated with BM25 term ranking

function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.2952 0.3099 0.3123 0.3100

Sum 0.3043 0.3154 0.3132 0.3205

Virtual 0.3046 0.3223 0.3316 0.3281

xQuAD

MinMax 0.3072 0.3240 0.3141 0.3125

Sum 0.3215 0.3245 0.3244 0.3257

Virtual 0.3090 0.3392 0.3316 0.3331

art_xQuAD

MinMax 0.3225 0.3465 0.3346 0.3303

Sum 0.3225 0.3243 0.3211 0.3270

Virtual 0.3210 0.3386 0.3292 0.3309

geo_xQuAD

MinMax 0.3228 0.3368 0.3253 0.3234

Sum 0.3225 0.3243 0.3211 0.3270

Virtual 0.3194 0.3387 0.3296 0.3309

PM2

MinMax 0.3129 0.3333 0.3262 0.3278

Sum 0.3129 0.3226 0.3153 0.3249

Virtual 0.3107 0.3277 0.3196 0.3253

mix_CombSUM

MinMax 0.3145 0.3291 0.3185 0.3156

Sum 0.3224 0.3245 0.3211 0.3269

Virtual 0.3256 0.3273 0.3248 0.3276

mix_Borda 0.3190 0.3425 0.3347 0.3484

mix_SV 0.3179 0.3464 0.3235 0.3330

mix_MC2 0.3081 0.3328 0.3241 0.3308
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Table A.44: Diversification performance (ERR-IA@20) of the algorithms on TREC

2010 topics using original query aspects obtained from the suggestions and their

selective expansions by adding 5 expansion terms calculated with BM25 term ranking

function on sub-topic’s own rankings as PRF. The highest score is boldfaced.
Div. Relevance

Original
Expand Selective by

method norm. All VScrAvg VScrFirst

IA-Select

MinMax 0.1978 0.2175 0.2158 0.2153

Sum 0.2116 0.2277 0.2256 0.2347

Virt 0.2094 0.2315 0.2298 0.2328

xQuAD

MinMax 0.2172 0.2314 0.2234 0.2241

Sum 0.2301 0.2374 0.2373 0.2377

Virt 0.2143 0.2411 0.2298 0.2382

art_xQuAD

MinMax 0.2272 0.2459 0.2374 0.2322

Sum 0.2306 0.2380 0.2364 0.2394

Virt 0.2227 0.2484 0.2388 0.2418

geo_xQuAD

MinMax 0.2251 0.2415 0.2313 0.2299

Sum 0.2306 0.2380 0.2364 0.2394

Virt 0.2228 0.2481 0.2389 0.2418

PM2

MinMax 0.2134 0.2394 0.2280 0.2281

Sum 0.2220 0.2318 0.2238 0.2354

Virt 0.2150 0.2298 0.2276 0.2390

mix_CombSUM

MinMax 0.2196 0.2402 0.2278 0.2234

Sum 0.2304 0.2380 0.2365 0.2394

Virt 0.2316 0.2433 0.2352 0.2396

mix_Borda 0.2269 0.2569 0.2470 0.2609

mix_SV 0.2348 0.2547 0.2369 0.2418

mix_MC2 0.2153 0.2368 0.2288 0.2305
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