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ABSTRACT

APPLICATION OF F-TEST METHOD ON MODEL ORDER SELECTION
AND RELATED PROBLEMS

Yazar, Alper
M.S., Department of Electrical and Electronics Eng.
Supervisor : Assoc. Prof. Dr. Cagatay Candan

August 2015, 140 pages

Signal modeling is one of the important topics of signal processing area. The in-
put signal should be modeled with a suitable mathematical model first. In statis-
tics related disciplines, there are information theory based criteria for model
order selection topic. In this thesis work, F-test based methods are proposed
on model order selection and related problems. F-test is used in statistics re-
lated disciplines. However, it is not so widely used in signal processing related
problems. Solution approaches for signal processing related problems based on
known F-test are contributions of this thesis work. This work is focused on

signals in linear spaces.

Fundamentally, F-test is a test of significance. It is used to test whether a signal
model is sufficient to model the signal of interest or higher order models are
needed. This test is made by using two nested models with different orders.

RSS (Residual Sum of Squares) values are calculated for each model and they



are compared using F-test. According to the test result, it is determined that
whether the lower order model is almost good as the higher order model or the
higher order model improves the accuracy significantly. The proposed method
is basically an iterative application of F-test. It selects the suitable model order

by applying F-test many times.

In this work, some problems related with model order selection topic are solved
using F-test based approaches. An analysis window length selection method
for zero-crossing point estimation problem using line fit is proposed as the first
example. Secondly, a method is proposed for the segmentation of multi tone
signals. Similar approach is given as the third example for segmentation of
F'M signals. As the fourth example, a number of pole selection algorithm is
proposed for all-pole signal modeling using Prony’s method. Lastly, a segmen-
tation method for damped sinusoidal signals with Prony’s method is proposed.

Simulation results are provided for each five problems.

Keywords: Signal Modeling, Linear Models, Parameter Estimation, Model Or-
der Selection, Model Validity, Analysis Window Length Selection, Test of Sig-

nificance, F-test, Nested Models, Zero-Crossing Estimation, Segmentation.
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Y/

MODEL DERECESI SECIMI VE ILGILI PROBLEMLER ICIN F-TESTI
YONTEMININ UYGULANMASI

Yazar, Alper
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi : Dog. Dr. Cagatay Candan

Agustos 2015 , 140 sayfa

Isaret modellemesi, isaret isleme alanmin en 6nemli konularmdan biridir. Giris
isareti ilk olarak uygun bir matematiksel model ile gosterilmelidir. Istatistik ile
ilgili alanlarda, model derecesi secimi ile ilgili bilgi kurami tabanli ¢esitli kriterler
bulunmaktadir. Bu tez calismasinda, model derecesi secimi ve ilgili problemler
icin F-testi tabanh bir yontem Onerilmigtir. F-testi, istastik ile ilgili alanlarda
kullanilan bir yontemdir. Bu tez ¢alismasinin temel katkisi, cesitli isaret igleme
problemleri icin F-testi tabanl ¢oziimler sunmasidir. Bu ¢alisma dogrusal uzay-

larda bulunan isaretler iizerinedir.

Temel olarak F-testi bir énemlilik testidir. Bu test, bir modelin ilgilenen isa-
reti gosterebilmek icin yeterli olup olmadigini, daha yiiksek dereceli modellere
ihtiyac duyulup duyulmadigini anlamak icin yapilir. Test i¢in farkli derecelerde
iki adet igice modele ihtiya¢ duyulmaktadir. Her iki model i¢in de RSS (Resi-
dual Sum of Squares) veya AKT (Artik Kareler Toplami) degerleri hesaplanr

vii



ve bu degerler F-testi kullanilarak karsilagtirilir. Test sonucuna gore, diigiik de-
receli modelin neredeyse yiiksek dereceli model kadar iyi oldugu veya yiiksek
dereceli modelin modelleme dogrulugunu 6nemli bir bicimde iyilegtirdigi karar
verilir. Onerilen yoéntem temel olarak F-testi ydnteminin tekrarlamali olarak kul-
lanmaktadir. Yontem, uygun olan model derecesini birden fazla F-testi yaparak

se¢cmektedir.

Bu ¢aligmada, model derecesi se¢imi ile ilgili bazi probemler F-testi tabanli yak-
lagimlarla ¢oziilmiistiir. Ilk olarak, dogru oturtularak yapilan sifir kesim noktasi
kestirimi problemi ic¢in analiz penceresi uzunlugu se¢imi problemine bir yontem
onerilmistir. Tkinci érnek problem olarak, cok tonlu isaretlerin boliimlenmesi
problemi incelenmigtir. Benzer bir yaklagimin FM isaretler i¢in uygulanmasi
iigiincii 6rnek problem olarak verilmistir. Dordiincii 6rnek olarak da, bir igsaretin
Prony yontemi ile sadece kutuplu siizgeg ¢iktisi olarak modellenmesi probleminde
kutup sayis1 secimi icin bir yontem Onerilmigtir. Son problem ise, soniimlii si-
niis isaretlerinden olusan bir isaretin Prony yontemi kullanilarak boéliimlenmesi

iizerinedir. Ornek problemler icin benzetim sonuclari sunulmustur.

Anahtar Kelimeler: Isaret Modellemesi, Dogrusal Modeller, Parametre Kesti-
rimi, Model Derecesi Se¢imi, Model Gegerliligi, Analiz Penceresi Uzunlugu Se-
cimi, Onemlilik Testi, F-testi, Icice Modeller, Sifir Kesim Noktas: Kestirimi,

Boliimleme.
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CHAPTER 1

INTRODUCTION

In many applications of signal processing area, the input signal is modeled with
a suitable and mathematically manageable model in the first steps of processing.
The selection of a suitable model and its parameters is a fundamentally impor-
tant signal processing problem in several applications such as power spectrum
estimation with all pole modeling, impulse response modeling with Kth order
filters etc. Dictionary meaning of the word “model” is given as mathematical
description used for guidance or imitation [19]. According to this definition,
there is no such thing as correct model. Indeed, a model is suitable if it satisfies
requirements of the problem. Once a suitable model is determined, the model

parameters are then estimated from the input.

Generally the model accuracy depends on its complexity. Using more parameters
provides more detailed and potentially more accurate model. However, generally
these parameters are estimated from observed signal and observation contains
noise in addition to the actual signal that should be modeled. Estimations are
prone to statistical errors caused by noise. Therefore, the model accuracy may
get worsen after some point as more and more parameters are estimated from
noisy observations. The model complexity and the model accuracy should be
balanced. Then, fundamental questions of signal modeling arise: Which signal
model should be used for a specific problem? Do we have simple models that

satisfy problem requirements or do we need more complex ones?

Ideally, the signal model should be as simple as possible and at the same time

represent the signal of interest with high fidelity. In addition the fact that



simple models are less prone to the effects of noise on parameter estimation,
they also simplify the subsequent signal processing operations. It can be said
that the main approach in model selection follows the principle of Occam’s which
is the utilization of the simplest model, the model with fewest constraints and

assumptions, among the useful models.

The problem of model order selection has been examined from different view-
points. One of the earliest works for model order selection problems is cross-
validation. Cross-validation is primarily a way of measuring the predictive per-
formance of a statistical model. Basically, a training set is chosen from observa-
tion to apply cross-validation. Then, training is done with the chosen set and the
remaining observations are used for parameter estimations. By comparing errors
for different set selections, cross-validation tries to find a suitable model for ob-
servation. K-fold cross-validation and leave-one-out cross-validation (LOOCV)
are some example methods based on this approach. Also, there are informa-
tion theory based approaches for model order selection. These approaches can
be related with cross-validation based ones [31]. One of them is the Akaike
Information Criterion, (AIC) which evaluates the generalized likelihood of the
model, after estimating its parameters, and penalizes the likelihood with a rate
proportional to the number of parameters [1|. Using a higher order model re-
duces the representation error, i.e. increases the generalized likelihood, at the
expense of penalty associated with the higher order model. AIC seeks a balance
between representation error and penalty. Several other criteria, similar to AIC,
have been proposed in the literature |6,20,30,33|. Among these, Bayesian Infor-
mation Criterion (BIC) and Generalized Information Criterion (GIC) have also

found several applications [9, 20,26, 36].

In this thesis work, a model order selection rule is proposed for signals in linear
spaces that are observed under additive white Gaussian noise. The proposed
method is based on a statistical test used for ANOVA in statistics related disci-
plines called F-test [4,23]. There are some books and papers that utilize F-test
for radar, communication, biomedical, array processing and some signal process-
ing problems [3,8,10,13,15,16,34]. Although the origins of F-test date back to

1920’s, it is not widely used in signal processing area [22].



In this thesis work, F-test based solutions for various signal processing problems
are given. These problems are parameter estimation, model order selection,
model validity and analysis window length selection problems. Different from the
previously mentioned information theory based criteria, there is not any explicit
penalty term related with the number of used parameters in F-test. However as
it will be more clear in the following chapters, F-test based approaches for given
problems use simple models with a predetermined probability of false model
selection. Although fundamentals of all approaches are the same, they may not

be used interchangeably for all cases.

1.1 Outline of The Thesis

This thesis work is divided into 5 chapters and the following chapters are orga-

nized as follows:

In Chapter 2, the properties of linear signal models are given to explain the basics
of F-test based approach. Problems of interest and possible problem types are

defined.

In Chapter 3, the basics of F-test are explained. F-test based solution approaches

are suggested for the problems of interest.

In Chapter 4, the approaches proposed in Chapter 3 are applied with or without

minor modifications on different signal processing problems.

In Chapter 5, a summary of the thesis work and possible future works are given.

1.2 Special Variables

Throughout this thesis work, some variables are given special meanings. List of
reserved variables is given in Table 1.1. Although all variables will be defined in
the following chapters properly, list is given as reference to reader. However, it
should be noted that some variables may be used to represent other quantities

inadvertently. Unless explicitly noted, they will be used with these meanings
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after defining them in the following chapters properly.
Table 1.1: Special Variables

Variable Represents

A Design matrix of a linear signal model

A Amplitude of a sinusoidal signal

e Residuals vector

F Most of the time F ratio value and sometimes frequency of a
discrete time sinusoidal signal (cycles/sample)

f Frequency of a continuous time sinusoidal signal (Hz)

h Impulse response of an LTI system

1 Identity matrix

K Order of the actual signal model

L Order difference between higher and lower order nested models.

l Linear component of a signal

M Model order of the model signal. For nested case, order of the
lower order model

My Model order of the model signal. For nested case, order of the
higher order model

N Number of observations

p Parameter vector of a linear signal model

P Number of poles

q Number of zeros

s Signal vector

w Noise vector

x Signal (in a linear space) vector

Yy Observation vector

z Number of zeros

€ Approximation error

Q Frequency of a discrete time sinusoidal signal (rad/sample)

w Frequency of a continuous time sinusoidal signal (rad/second)

1.3 Publications

The conference article [35] was presented in 23' Signal Processing and Commu-
nications Applications Conference (SIU’15). Also poster entitled “Model Order
Selection Using F-Test” was presented in METU EEE Graduate Research Work-
shop’15.



CHAPTER 2

PROBLEM DEFINITION

2.1 Linear Signal Model

In this work, real valued discrete time signals in linear spaces are considered.
Although real signals are considered, the comments below can be extended to

complex signals with proper declaration of operators. Signal model is given as
x = Ap. (2.1)
Here, @ is the signal vector.

Consider a signal in a linear space of dimension K observed at N different points.

Each z; in

X1

X2

>

T
L7 N Nzl

stands for one signal sample.

In the following equation, p is a column vector and is called the parameter
vector. Each p; in

b1
D2

>

-pK- Kzl

represents a single parameter of the signal given in (2.1).
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In the following equation, A is called the design matrix,

AL [a a a ] 2.9
1 2 PP K .
NzK ( )
where each a; is defined as
a;1
(075}
A (A
a/.
- ZN- Nzl
The A matrix can also be written as
a;; apz a3z ... MK
21 Qg2 Q23 ... 2K
A=
a a anNs ... @
|[aN1 an2  GN3 NEK] o

by combining (2.2) and (2.3).

The signal space or the column space of A is represented by C(A) and is
defined as the space spanned by the a; vectors (columns of A). The x vector is

an element of this space (i.e. € C(A)).
If x is a uniquely identifiable vector with K parameters, then

rank(A) = K. (2.4)
In other words, a; (i = 1: N) should form a linearly independent set.

It is assumed that the signal given in (2.1) is observed under zero-mean additive

white Gaussian noise (AWGN) with variance o2 as

y=x+w=Ap+w. (2.5)

Here, y is the observation vector. Each y; in

n
Y2

lI>

—yN— Nzl



represents an observation point.

In equation (2.5), w is the noise vector representing the additive noise. Each

w; in

[1>

- - Nzxl,

is a random variable with the following distribution
Ww; ~ N(O, 0'2).

Mainly two different problems can be defined for signals in linear spaces observed

under AWGN namely “Parameter Estimation” and “Model Order Selection”.

2.2 Parameter Estimation Problem

One of the most important research topics in signal processing problems is the
estimation of the signal parameters from noisy observations. For the case pre-
sented in the preceding section, the problem is the calculation of p which is
the estimate of p from y. An effective parameter estimation method which can
be applied here is the Maximum Likelihood Estimator (MLE). For this specific
case, Least Squares (LS) and MLE solution gives the same result due to the

signal model and the noise characteristics [18]. LS solution is found as,
p=A"y (2:6)
where A" is Moore—Penrose pseudoinverse of A for N > K case defined as [14]

AT 2 (ATA)TTAT (2.7)
Consequently the LS signal estimate can be written as
x = Ap

by using parameter estimates.



The LS solution tries to minimize L2-norm of the error defined as

In other words, the vector p satisfies the following,

p = arg min ||e||? (2.9)
P

equality.

In statistics and in some other research fields, the resultant error on the obser-
vation vector after minimization given in (2.9) is called as the Residual Sum

of Squares (RSS) and it is expressed as

RSS = |le||*. (2.10)

In the following sections, the effect of N on the parameter estimation problems
is analyzed for N < K and N >= K. It will be assumed that the signal model

is known completely. i.e. the matrix A and the parameter K are known.

2.2.1 N < K (Insufficient Number of Observations)

The condition, rank(A) = K, should be satisfied in order to uniquely identify
the K different parameters of the signal. However, in that case the following
situation will occur: rank(A) = K’ < K which violates the condition given in
(2.4). It may be thought that « is a linear combination of K’ different param-
eters, not K. At least K observations should be made to observe and estimate
the effects of K different parameters. It also makes sense that estimation of
K different parameters from less number of observations causes some problems.
Mathematically, (AT A) product becomes singular. Therefore, (AT A)~" does
not exist. Consequently, it is general not feasible, to use less than K observations

to estimate K different parameters.



2.2.2 N > K (Sufficient or More Than Sufficient Number of Obser-

vations)

In this case, if rank(A) = K then the parameters can be estimated without
having any trouble in the calculation of A". The relationship between the
parameter estimation accuracy and the number of observations will be examined
next. The estimation accuracy can be expressed by using the covariance matrix

of the estimates, defined as follows

. R T
Sp 2 B{[p— ;] [P— w5 ), .
0211
: 012122
Zﬁ = : 0-1%33
I : : . : O-JEMM- M x M.

Here, p; and afm are defined as follows

Hy 2 E{p). (212)

Ogii £ var(p;).

Trace of the covariance matrix can be written as

M M
tr(Eﬁ) = ZUIQ)ZZ = Var(]ﬁi).
i=1

i=1
Using (2.6) and (2.7), (2.12) can be written as follows

Ky =E{ATy}
=E{A"(Ap +w)}
=E{A" Ap} + E{ATw}
=P
which implies that the LS solution is an unbiased estimate of p.
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Equation (2.11) can expanded further as follows

S5 =B{[ATy — ;) [ATy — p;] '}
=F{[ATw] [A*w}T}
—ATS, AT (2.13)

Trace of the matrices at both sides of the equation in (2.13) can be written as

follows

tr(2;) =tr(A*S,A")
=tr((ATA)TATE, ((ATA)TAT)T)
—tr((ATA)'ATE, A(ATA)Y). (2.14)

Due to the assumed noise characteristics, the covariance matrix of noise can be

written as

Yy = o1 (2.15)

Using (2.15), (2.14) can be written as follows

tr(3;) =0’ tr((ATA)TATTA(ATA))
=o?tr((ATA)™Y). (2.16)

Define Ay and Ax.; matrices as follows

a1 a2 a1 K
921 929 ... Q49K

A

Ay =
anNy an2 ... QNK

- - NxK,
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a1 12 Ce 1K
a921 929 Ce Ao K
A
Ay 2
an1 an2 Ce ANK
| A(N+1)1 A(N+1)2 -+ A(NHDK | N41xK
Ay
AN+1 = T
a
L N+1xK,
A(N+1)1
a | AN+1)2
a =
a
LPNHDE T pe sy,

Here, Ay and Ay, matrices represent the A matrix when N and N + 1 ob-
servations are made, respectively. Consider the (AT A)~! term shown in (2.16).

It can be written for N 4 1 observations case as follows
A%JrlAN—H =A Ay +aa’,
(AN Ani) ' =(Ay Ay +aa”)™!
and using Matrix Inversion Lemma,

(AVAy)laa"(AyAy)~!

AT A -1 _ ATA -1
(AR Ava) ™ =(Af ) - TS

tr((Ay Ann) ) =tr((AyAn) ™)

tr ((A%AN)_IGGT(A%AN)—I) |

2.17
1+aT(AyAy)ta (2:17)

Consider the second term in (2.17). It can be written as

(Al AR AY) (A Y
1 +OIT(A%AN)_10, 1 +G,T(A%AN)_IG, . .

Since AT A is a positive semi-definite matrix (A" A > 0), (2.18) is always posi-
tive; hence tr ((Ay 1 Ant1) ") < tr ((AVAN)Y).

Consequently, an increase in the number of observations leads to an increase in

the parameter estimation accuracy.
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2.3 Model Order Selection Problem

In another possible scenario, model order (K) may be unknown. This problem
is similar to the previous estimation problem. However, in this case in addition
to the parameters to be estimated, model order is also unknown and it should

be estimated too.

Let us assume that unknown and actual dimension of the signal space is K. Also
assume that M represents the order of the tested model. In other words, order
of the signal model is assumed to be M during parameter estimation. According

to the relation between K and M, three different cases can be analyzed.

In the following sections, it is assumed that NV is fixed. N is also assumed to be
high enough to satisfy the condition in (2.4). In other words, N is greater than
or equal to the order of the model with the highest order. Dependency of the
expressions on N is not shown explicitly. However, the model order is shown

explicitly in the expressions as subscript like X o0del order if NECESSary.

2.3.1 M = K (Tested Model Order Matches The True Order)

Let us rewrite the error given in (2.8) as follows

e=y— Aup
=(I - AnAy)y
= — Pa,, )y
=Py y. (2.19)

Here, P4,, is a projection matrix defined as
Py, = Ay AL

and it projects (observation) vectors to the model signal space denoted as

C(An).
Similarly, Py, is a projection matrix defined as
Py £1— Py,

12



and it projects (observation) vectors to the noise space. Noise space and model
signal space are orthogonal subspaces of the observation space. Dimensions

of the model signal space, noise space, observation space and signal space are

M, N — M, N, K, respectively.

The error expression given in (2.19) can further be simplified as

€ :Pj{M(AKPK +w)

_ pl
—PAMw.

Rewrite the RSS defined in (2.10) as follows
RSS =|le||* = (PjM'w)TPjM'w
=w'(Py, ) Py w
—w' Py w (2.20)
and this final relation shows that only source of the error is noise. If y were a

noiseless signal, i.e.,  were used directly for estimation, parameters could be

perfectly estimated.

PALM can be decomposed into its eigenvalues and eigenvectors as

N
4 E ' T
PAM = )\kekek .
k=1

This is an N x N square matrix. Since it is a projection matrix, its eigenvalues

(Ak) are either 0 or 1 as

0 1<k<M
A =
1 M+1<k<N.

Since the dimension of the noise space is N— M, N — M and M of eigenvalues are
1 and 0, respectively [14]|. Finally, projection matrix expression can be written

as

where e;’s are N x 1 orthonormal column vectors.
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The RSS expression defined in (2.20) is continued as follows

N
RSS =w?’ Z erer w

= ) (ex"w)’ (2.21)

where
exfw M+1<Ek<N

Zk
0 otherwise.

The elements of the noise vector (w) consist of N independent random variables
(wy,) with N(0,0?) distribution. Consequently, ,, = o?I. Each z is also a
random variable with distribution N (0, e’ 0?Iey). Since, ex’s are mutually
orthonormal vectors, z; ~ N(0,0?). Notice that similar to wy, each z; is an

independent identically distributed (I.I.D.) random variable and that makes
RSS ~ o*\A_us (2.22)
relation possible.

X% _a term in (2.22) represents a chi-squared distribution with N — M degrees

of freedom. Expected value of RSS is given as

E[RSS] = ¢*(N — M). (2.23)

2.3.2 M > K (Tested Model Has Higher Order)

In that case, order of the tested model is greater than the order of the actual
signal model. Let us expand the matrix A, considering different model orders

as follows

llK* [a a a ]
1 AN K
NxK,
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AM:|:GI1 a; ... g QK41 ... aM]NXM
:[AK a1 .- aM]NXM (224)

where

LEM-K.

As shown in (2.24), Ak is included in A, completely. These two different
models with model degree of K and M are said to be nested models. Model
with model degree K is nested in model with model degree M. Model with
model degree M has L additional parameters in comparison with the model
with degree K. Two models generate the same signal. For the given nested

model definition,

C(Ak) CC(Awm),
C(Py,,) CC(Py,)

relations are valid. Error expressions can be written as follows

e =y — AvyDPm

=(I — AmA})Y

=(I — Pay,)y

=P,y

:Ij&(AKpK%~w) (2.25)
=Py w. (2.26)

Notice that progression from (2.25) to (2.26) is correct since Py (Axpk) = 0.
Result of Axpg is a column vector which is an element of C(Ag). Due to the
fact that the model with model degree K is nested in the model with model
degree M, it is also an element of C(Apy). PjM projects vectors to the noise

space which is orthogonal to C(Aps). Therefore, PjM(AKpK) yields 0.

Summary of the last two sections is that while M > K, the error expressions
given in (2.22) and (2.23) are valid. As long as this condition is met, only source

of the error are the noise components projected onto the noise space.
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2.3.3 M < K (Tested Model Has Smaller Order)

In this case, order of the model signal is less than the order of the actual signal.

Expressions for M > K case can be defined similarly for this situation as follows

AK:[G a a }
1 2 ... M Qp4+1 ... Ag
+ NxK
=1A a a}
|: M M+1 KN><K,
A
L2K - M,

C(Anm) CC(Ak),
C(Py,) <C(Py,,),

In contrast to the previously analyzed M > K case, the model signal space is
a subspace of the actual signal space. PAMLa: # 0 for this case. There are
remaining components of the actual signal in the noise space after projection.
There are L extra non-zero parameters in the actual signal which can not be
modeled completely by the model signal. Define ¢; term similar to definition
given in (2.22) as

exx 1<k<K

0 otherwise.

Similar to (2.21), RSS can be written as follows

N
RSS= ) (ex"(z +w))
k=M-+1
K K N
= Z cp +2 Z Cr2k T Z Z. (2.27)
k=M-+1 k=M+1 k=M+1
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Expected value of RSS is given as

E[RSS] = 0*(N — M) + i e,

k=M+1

In summary, different than M > K case there is a constant error term in the

mean value of RSS which is independent from the noise signal as shown in (2.27).

This term can be thought as the bias part of the error. This bias part is caused

by the insufficiency of the model signal. Different than the other cases, even for

noiseless situation RSS # 0.

2.3.4 Summary of Results

In the previous sections, parameter estimation problem of a signal from its noisy

observation was examined. Depending on the relation between M and K, RSS

can be expressed as follows

RSS =

K <M
K=M
K
oozt Y, 2z K>M

.
o*(N — M) K<M
E[RSS] = o*(N — M) K=M
K
o? (N-M)+ > ¢ K>M.
\ k=M+1
RSS value for noiseless case is given as follows
0 K<M
RSSnoiseless = 9 0 K=M
K
> K> M.
k=M+1

(2.28)



In the last section, the change in RSS with respect to problem parameters is
analyzed. K (true model order) will be varied while M (tested model order) is
kept fixed. Since RSS value is the same for K < M and K = M as shown in

(2.28), these two cases can be combined as a single K < M condition.

2341 K< M

Let us consider two different test models with order M and My, both of which
are greater than the true model order K. Relationship between orders are given

as follows

My =M + L,
L >0,
M+ L <N

and two models are considered to be nested.

For nested models, the relations given below

C(Am) CC(Amy),
C(Py ) CC(PjM)

Angy

remain valid as discussed previously.

RSS can be written as

N
RSSy = Y 7,
k=M+1
N N
RSS]WH: Z Ziz Z Z]%
k=Mpg+1 k=M+L+1

where the equation (2.28) is used.

The difference between the two RSS values then becomes

N N
RSSy —RSSu, = > z— > 2%
k=M+1 k=M+L+1
M+L
=) =% (2.29)
k=M+1
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Therefore, RSS of the higher order model is smaller than the lower order model

where the exact RSS difference is given in (2.29).

2342 K>M

Similar to the previous case, let us take two nested models with degree M and
My, both of which have smaller model order than the actual order. Relationship

between orders are given as follows

My =M + L,
L >0,
M+ L <N,
My <K

and two models are considered to be nested.

For nested models, the relations given below

C(Am) CC(Amy),
C(Py ) CC(Pj{M)

Anyy

remain valid as discussed previously.

Using equation (2.28), RSS can be written as follows

K K N
k=M+1 k=M+1 k=M+1
K K N
RSSy,, = Z i +2 Z Cp2k + Z 22 (2.30)
k=Mp+1 k=Mpg+1 k=Mpg+1

The difference between two RSS values then becomes

M+L M+L M+L
RSS]\/[ — RSSMH = Z Ci + 2 Z CrZr + Z Zz
k=M+1 k=M+1 k=M+1
M+L
= Z (Ck; + Zk;)2
k=M+1
>0. (2.31)
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So, RSS of the higher order model is smaller than the lower order model where

the exact RSS difference is given in (2.31).

As a special case, My = K (true model order) condition can be analyzed sepa-

rately. Equation (2.30) can be arranged for that special case as follows

K K N
2 2
RSS]V[ = E Cp. + 2 E CpZr + E 2Ly
k=M+1 k=M+1 k=M+1
N

RSSuy, = Y. 7z

k=M +1

Then, the difference between two RSS values becomes

K K K
RSSM—RSS]V[H == Z CZ—{—Q Z ckzk—k Z Zlg
k=M+1 k=M+1 k=M+1
M+L
= Y (a+w) (2.32)
k=M+1

>0.

So, RSS of the higher order model is smaller than the lower order model where

the the exact RSS difference is given in (2.32).

All results obtained about the model order selection problems up to this point
can be summarized as follows: Independent from the relation between K and M,
as M increases RSS does not increase but decreases on the average. However,
components of RSS varies according to the this relation. When M > K, RSS
consists of noise components in the noise space only. In that case, RSS=0 for
noiseless observation. When M < K, signal components that couldn’t be mod-
eled by the signal model remain in the noise space. This additional components
contribute to RSS in addition to noise components. In that case, RSS decreases
as M increases because of the reduction in both signal and noise components.
There is not any signal component projected onto the noise space for M > K
case. As stated previously, K value is unknown for model order selection prob-
lems. Although as M increases, RSS always decreases on the average. This
change is governed by the relation between M and K. The goal of the model
order selection problem is to estimate the model order of the actual signal ob-

served under noise. For that reason, choosing M which minimizes the RSS value
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as the model order estimate is not a suitable approach. This M value makes the
estimated signal close to the noisy observations, not to the actual signal. In the
limiting case, taking M = N makes RSS = 0 and independent from K,L and
M but obviously, this is not a valid estimate of K. M should be chosen close
to K even though RSS value is lower for higher M values. When M = K all
components of the signal lie in the model signal space. This is the best condition
where M is minimum and all signal components are in the model signal space.

This situation is called as perfect fit."'

All signal components still continue to stay in the model signal space but new
noise components will be an element of the model signal space as M increases
beyond K. In that case, the estimated signal is the sum of & and noise com-
ponents projected onto the model signal space. This is not a desired case for
the estimation since the signal to be modeled includes some additional noise

components. This case is called as over fit.

When M < K, the model signal can’t model all components of the actual signal.
There are some signal components left which are projected onto the noise space

and treated like noise. This is the under fit case.

As shown in the parameter estimation section, using more observations (N) for
parameter estimation improves the estimation accuracy. If results of two types
of problems are thought together, when maximum number of observations (V)
is used (observing the actual signal), using M = K yields the “the best result”

for parameter estimation problems.

2.4 Related Problems

Problems related with parameter estimation of a signal in a linear space from its
noisy observations can be classified into four categories. Each type shares some
common concepts and approaches. Solutions are proposed for each type in the

following chapters.

L «“Perfect fit” should be considered as “perfect order fit” in this thesis work. Perfect fit case does
not imply that the error in the parameter estimation is zero. “Perfect fit” case means that the order
of the model signal is equal to the order of the actual signal (K = M).
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2.4.1 Typel

In this type of problem, it is assumed that noisy observations of two signals with
different models are concatenated to form a single observation. This scenario is

expressed as follows

Y, =x1 +wy; = Aip, + w,

Yy = Ty + wy = Aop,y + Wy,

and shown graphically in Figure 2.1. Models of two signals are known. A; and

A, could be written completely if the length of the each observation was known.

Let us assume that first N/ observations from total N observations belong to
the signal with Model #1 with parameter vector p; and remaining observations
belong to the signal with Model #2 with parameter vector p,. These two models
may be nested models as well. Correct observations should be used to calculate
p, and p, using LS approach. p, and p, should be estimated using y, and
Yo, respectively. Total observation vector with length N should be split into
two observations with length N” and N — N’ and each observation should be
used for parameter estimation separately. This splitting process and each split
section will be called as segmentation and segment, respectively. N’ shown
in Figure 2.1 is assumed to be unknown and it should be estimated. If there is

a priori information about N, it may be used for segmentation.

0 yIn] N-1

_

0 vyl N-IN vyl N-1
Model #1 Model #2

Figure 2.1: Illustration of Problem Type I
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2.4.2 Typell

For Type II problem, it is assumed that observed signal is a noisy observation of
a signal with unknown model order. This is a model order estimation problem.
As stated previously, desired result for this parameter estimation problem is
the perfect fit case. One should avoid under fit or over fit cases for estimation
problems. For example, it may be known that the observation with length N is
an observation of a polynomial function under noise but the polynomial order

is unknown.

Estimation of K while N is fixed will be called as Type II problem and it is
illustrated in Figure (2.2).

0 y[n] N-1
_
: Model #1 ?
: Model #2 ? .

Model #3 ?

Figure 2.2: Tllustration of Problem Type II

2.4.3 Type IIlI

Type III problem is a combination of Type I and Type II. In addition to Type
I problem, orders of models that should be used for each model signal, i.e. M
values, are also unknown in addition to N’ value. In this problem, observation
should be segmented as in Type I and suitable signal models should be found
for each segment as in Type II. If model orders shown in Figure 2.1 are also

unknown, this problem is called as Type III problem.

23



2.4.4 TypelV

The last problem type is Type IV. In this scenario, parameters of a signal which
is approximately in the assumed signal space is estimated. It is assumed that
observed signal y with length N is a noisy observation of signal s which is given
as

Yy=s+tw.

In contrast to the earlier problem, s is not an element of a linear space, neces-

sarily, that is, it may not satisfy s = Ap condition.
Signal in a linear space is defined as

x; = A1p;. (2.33)

New error term (which results from approximating x using ;) is defined as
e(n) = s(n) — z1(n) (2.34)

and it is called the approximation error. This error is assumed to satisfy the

following inequality,

le(n)| > |e(n)] where n’ > n.

That is, approximation error increases as the signal drifts away from the assumed
linear signal space. In certain applications, one may wish to approximate s
using x; and estimate the parameters of x; from these observations. Question
is how many samples should be used to approximate s as a signal in a linear
space? In other words, what is a good choice for N’ value shown in Figure 2.3.
While using more observations for parameter estimation of @; increases the
estimation accuracy, approximation error increases with increasing N. This
situation is called model mismatch. Window between [0 N’ — 1] is called
analysis window. Observations for parameter estimation are taken within
this window. Selection of N’ is also called as analysis window length selection

problem.
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0] yIn] N-1
_

0 vin N'-1
Model #1 =

Figure 2.3: Tlustration of Problem Type IV
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CHAPTER 3

THE PROPOSED METHOD

In this section, the proposed method for the problem types mentioned in the
preceding sections is explained. Main idea is using the maximum number of
observations for parameter estimation while keeping the model mismatches min-
imal, i.e., providing the best parameter estimation results by targeting perfect

fit to the model.

In the previous chapter, change in RSS is analyzed for different M (tested model
order) and K (true model order) values. Basic principle behind the proposed
method is to track the change in RSS. If the order of the actual signal model
(K) is fixed and the order (M) of the model signal is increased from M < K
condition, RSS value drops. This drop is due to the decrease in both signal and
noise components projected onto the noise space. After M = K point, reduction
in RSS is solely due to the reduction in noise components projected onto the
noise space. If it is possible to detect this change, it is also possible to detect
when M reaches K, i.e, the perfect fit case. The proposed method tries to make

use of the drop in RSS for model order selection.

A test method known as F-test in literature is studied as a solution for four
types of problems mentioned earlier. Although F-test is well known in the
statistics literature, it is not widely used in signal processing problems, as stated

previously. F' ratio (value) is calculated as

RSSy — RSSus,,
My — M
RSSyr,,

N — My

F= (3.1)
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and it will be shown that this ratio is suitable for the problems considered.

To define F' value properly,

My =M + L,
L >0,
My <N

conditions should be satisfied.

In equation (3.1), RSSy, and RSS,,, represent RSS values when the signal is
modeled with models with order M and My, respectively. It is assumed that

the model with order M is nested in the model with order My.

In the next section, the characteristics of F' value is studied in order to bet-
ter explain the reasons behind the suggested utilization of RSS in model order

selection better.

3.1 Characteristics of F' Ratio

Properties of F ratio is given in [29] in detail. In this section, properties that
are necessary to understand proposed methods are given. F' ratio is analyzed

for three different conditions.

3.1.1 M>K

Using equation (2.28), RSS can be written as follows

N

RSSy = Y 2

k=M+1

2.2
~O XN-M,

N
RSSwy, = Z 7= Z 2

k=Mpg+1 k=M+L+1

~T XN ML (3.2)
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Then, the difference between RSS values becomes

M+L

RSSy —RSSw, = Y %

k=M+1

~ 0\7. (3.3)

Using the equations (3.1), (3.2) and (3.3), F' ratio can be written as follows

M+L

> %

k=M+1

e

~ L (3.5)
X?\/—M—L
N-—-M-—-1L

and F' ratio is a random variable with F distribution [17].

Consider a random variable, X, defined as

X — xl/dl

= oafds (3.6)

Assume that in (3.6), x; and x5 terms represent random variables which have
chi-squared distribution with d; and dy degrees of freedom, respectively. If
r1 and x5 are independent random variables, X is a random variable with F

distribution [17].

If x? and x%_,,_; terms are independent, the expression given in (3.5) is a
random variable with F distribution. Summation terms shown in (3.4) can
be considered to show independence. Due to minimum and maximum limits

of summation terms in the nominator and the denominator, a particular z; is
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summed up in either the numerator or the denominator. There is no common
z; term that appears in both the nominator and the denominator. Since each
z; is independent from each other as explained previously, the numerator and
the denominator are independent from each other. Therefore, the expression
given in (3.5) has an F distribution. F distribution can be characterized by
the degrees of freedom of chi-squared random variables in the numerator and
the denominator. Probability Density Function (PDF) expression of random
variable X defined in (3.6) is given in as

(dy z)4 d32
(d1 z+dg)d1td2

:L“B(ﬂ d—2)

27 2

f(x;dy, dy) =

dy _dytdy
2

: dl) ( dl) |
= — (2} 27 (1+-22 3.7
w597 z Y

for real x > 0. f(z;dy,dy) = 0 for < 0. B term in (3.7) is the Beta function

and given as

1
B(x,y) = / t" 11 —t)v"'dt  for Re(x),Re(y) > 0.
0

In this work, PDF expression of F distribution is not used directly. Rather
characteristics of I distribution are used. PDFs and CDFs of I distribution for

various parameters are shown in Figure 3.1 and Figure 3.2, respectively.
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PDF of F Distribution for Various Parameters
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Figure 3.1: PDF of F Distribution
CDF of F Distribution for Various Parameters
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Figure 3.2: CDF of F Distribution
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3.1.2 M<K and Mg > K

RSS expressions can be written as follows

N N
RSSm,, = g Z: = E P
k=Mp+1 k=M+L+1

NO’ZX?VfoLa
M+L
RSSy — RSSur, = Y (cx+ )
k=M+1
K M+L
= Z Ck +Zk Z Zk
k=M+1 k=K+1
M+L K K
= Z z + Z i +2 Z Ck2k-

k=M+1 k=M+1 k=M+1
F ratio defined in (3.1) can be written as
M+L

2 us 2 X
Yo ozt 2L a2 Y ax

k=M+1 k=M+1 k=M+1

F// — L

(3.8)

After that point let F” denotes the F ratio defined in (3.4) for M > K case.

Then, equation (3.8) can be rewritten as

K

K
Sooad+2 Y azm

k=M-+1 k=M+1
F'=F+ L . (3.9)

N

> %

k=M-+L+1

N-M-1L
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r is defined as
K K
A
r= E Cz + 2 E CrRk
k=M+1 k=M+1

to simplify expressions. It is a random variable defined as

r NN(NWUS)v
K

Z 2
My = Cl>
k=M+1
K
2 g2 2 _ 4.2
o, =40 g ¢, =40,
k=M+1

When r > 0 condition is met, F” defined in (3.9) becomes greater than F”.
The reason behind the analysis of this condition will be clear in the following

sections. Probability of this condition can be found as follows

Pr{r > 0} =Pr{F" > F'}
—Q (_£> | (3.10)

20

2 and p, are kept

Plot of (3.10) is given in Figure 3.3 and Figure 3.4 when o
constant, respectively. When L, M and K are fixed, Figure 3.4 also can be
thought as probability values for different SNR values of observations. As SNR

of observed signal increases, probability of F” > F’ increases.

The mean value of I can be found as

K K
Sod+2 Y axm
k=M+1 k=M+1
E[F'| =E[F'| + E L
> %
k=M+L+1
i N—-M-L i
Soad+2 > oz
N—-M-L Z _
_R[F] + | k=M k=M+1 (3.11)
L N
> %
k=M+L+1
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Pr{r>0} for Different Mean Values
1 : : : : :

0.95

0.9}

0.85

0.8

Pr{r>0}
o
o

0.65[

0.6

0.55}

10 10 10 10" 10 10 10
i

Figure 3.3: Pr{F"” > F'} for Different p, Values with Fixed o2
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Figure 3.4: Pr{F"” > F'} for Different o2 Values with Fixed p,

Consider the second term in (3.11). The second expectation term can be written
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as follows

K K K K
SoAd+2 Y o oo S ez
k=M+1 k=M +1 _ k=M +1 k=M +1
E _ S o) IR ) T (3.12)
> &% >z > %
k=M+L+1 k=M+L+1 k=M+L+1

In this expression numerator and denominator of the first term are both positive.

So, expectation of the first term in (3.12) is a positive value. Define

K
> Chzk
k=M-+1

> 5

k=M+L+1
to simplify expressions. Notice that due to summation indices, n and d are

independent. From law of total expectation, expectation of r can be written as
E[r] =Eq4 [E,jalr|d] .

Since E,|q[r|d] = 0 for all r and d values, E[r] = 0. So, expectation of the second

term in (3.12) is 0 and it makes E [F"] > E[F’]. F” which is the value of F' when

My > K > M is greater than F’ which is the value of F' when My > M > K

in average. The exact expression is given in (3.9).

3.1.3 Mp< K

For this case, RSS values can be written as follows

K K N
RSSM = Z Ci+2 Z Cp2r + Z Z,z,
k=M+1 k=M+1 k=M +1
K K N
RSSMH = Z Ci + 2 Z Cr2r + Z Zz,
k=Mp+1 k=Mp+1 k=Mp+1
M+L M+L M+L
RSSy, — RSSMH = Z Ci + 2 Z Cpzr + Z Z]z.
k=M+1 k=M+1 k=M+1

F' ratio can be written as

N — M — LRSSy — RSS,,

F/// —
L RSSuz,
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In that case, it is not so easy to show the relation between F" and F’ due to ¢,
terms in both numerator and denominator. Furthermore, final expressions would
be dependent on almost all problem parameters and they should be analyzed
for various cases. However, one does not have to find all equations for all cases
in order to understand the operation of the F-test for My < K condition.
Therefore, instead of a given set of equations for all cases, important results are

emphasized for particular cases.

F-test as defined in the next section is actually a test of significance as stated
previously. Tt gives decisions according to F' values. Larger F' values for two
nested model with order M and My mean that the model with order My im-
proves the model accuracy or model the actual signal “significantly better” than
the model with order M. If the value of F' ratio is relatively low, it means that
the model with order My does not improve the modeling accuracy “significantly”

than the model with order M.

F ratio can also be seen as only the ratio of RSS values for different orders of
model signal if the ratio formed by skipping N, M and L terms shown in (3.1).
F' value is calculated for the case when the model orders of both model signals
are greater than the order of the actual signal. In that case, both RSS values

are error signals caused only by observation noise.

It was shown that F” is greater than F’ with an increasing probability with an
increase in SNR. Also the inequality F” > F’ is true in average. The reason is
that RSS); consists of both noise and signal components that can not be mod-
eled whereas RSS),, does not have any signal component. So, it makes sense
that RSSy; — RSSyy, can be greater than the previous case. This situation can
also be considered from significance perspective: F' ratio increases because the
model with order My models the actual signal “significantly better” than the
model with order M. The model with order M has some missing signal com-
ponents. The difference between two F' values (F’ and F"”) is highly dependent
on the difference between magnitudes of the signal components that can not be
modeled by a model with order of M and noise components added to the signal

space when the model order is increased from M to Mpy. If magnitude of the
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mentioned signal components becomes greater than the magnitude of mentioned

noise components, change in F' ratio becomes more distinguishable.

However, F” < F’ may be true with a non-zero probability depending on the
SNR value as shown in Figure 3.4. Low F' ratio means that model with or-
der My does not model the signal “significantly better” than model with order
M. This may be true in low SNR case particularly. In this case, the signal
components that can’t be modeled by the lower order model, M, may not be
distinguishable than the noise components that are included in the model signal
space when the model order is changed from M to My. To avoid this situation,
the missing signal components should be “sufficiently” dominant than the new
noise components added in the model signal space when the model order is in-
creased. If the newly added signal components aren’t dominant than the noise
components, F-test will fail to distinguish the signal components from the noise

components.

In the last case, both models with model order M and My can’t estimate all
components of the actual signal. Both RSS values have signal components that
can’t be modeled by the model signal as an error source. Firstly, let us consider
high SNR and M < My < K case. In that case, most of the reduction in RSS
when the model order is changed from M to My is caused by the reduction in
signal components that can’t be modeled by insufficient models. If this reduc-
tion is “signficant”, then F"" > F’. For low SNR case, reduction in RSS when
the model order is increased is dominated by the new noise components included
in the new model signal space rather than the actual signal components. This
makes F” ~ F’ meaning that reduction in RSS is probably due to noise com-
ponents and there is not any “signficant” signal component that is modeled by
the higher order model. The lower order model can model the actual signal “as

good as” the higher order one.
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3.2 The F-test

F-test was initially developed in the statistics literature as the variance ratio by

Fisher in 1920s [22].

The ultimate goal of the F-test based approaches in this thesis work is to estimate
the number of parameters, K , in other words model order of a signal in a linear
space using NN noisy observations. If K is estimated close to K then P can be

found accurately as in perfect fit case. Suggested algorithm is given as follows:

1. Initially a false decision probability should be determined. The effect of
this parameter will be explained in detail. This value will be denoted by
pfa- Since it denotes a probability, prq can be 0 < pgqg < 1. However, the

inequality given below should be considered to make F-test useful,

0<pfd<1.

2. Two suitable nested models with model degree M and My (My > M)
should be determined for the problem. If there is not any a priori infor-
mation about K, model degrees should be chosen as low as possible. Also,
My should be close to M as much as possible to increase K resolution.
If it is possible, taking My = M + 1 gives the best K resolution. How-
ever, this may not be logical for all problems which is shown in one of the

example problems later.

3. A threshold should be chosen for F-test. This threshold value is calculated
by making K < M < My assumption. Previously, it was shown that F'
ratio for that case (F’) is a random variable with F-distribution: F’ ~
F(L, N — My). The calculated F ratio is checked against assumed F-
distribution. This is done by calculating a threshold value using the CDF
of F-distribution and ps, value as given in (3.13).

threshold = Fepr ' (1 — pgg, L, N — My) (3.13)

If the assumption is correct, F' < threshold condition is satisfied with

1 — pfq probability.
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4. F ratio given in (3.1) is calculated by using RSSy; and RSSyy,, values.
Then, F ratio is compared against threshold value. If F' > threshold, it
is assumed that model with order My can model the signal “significantly
better” than model with order M. In other words, M < K. On the other
hand, test may give wrong decision with ps; probability even if the initial
assumption (K < M < My) is valid. This is why py, is called as false
decision probability.

5. Both M and My are increased by the same amount. Most of the time,
increasing them by one is suitable in order to keep K resolution high. This
increase may be taken higher than one in order to speed up the test at
the expense of K resolution. New threshold and F ratio is calculated
and compared for new M and My values. This increase, calculate and
compare cycle is continued until F' < threshold condition is met. When
F' < threshold condition is met, it is decided that model with order M
can model the actual signal “sufficiently good” as model with order M.

Therefore, model order of the actual signal can be taken as K = M.

Here, it is assumed that one of the tested models is appropriate for the actual
signal. Then, F-test is used to select the appropriate one from the set of tested

models.

“Sufficiency” or “goodness” is directly related with pss parameter. Under any
circumstances, 0 < F' < oo. As psq decreases, threshold increases as it can
be seen from Figure 3.2. As threshold increases, F' < threshold condition is
satisfied at lower M and My values. As false decision probability decreases,
“sufficiency” condition becomes “tighter”. One can consider taking pyq values
low in order to increase threshold and put more strict “sufficiency” conditions.
However, in that case there is a risk such that F' ratio can be smaller than
threshold at the beginning of the test, e.g., when M = 1 and My = 2 so K
can’t be estimated properly. This situation causes under fit. On the other hand,

taking pgq so high increases the probability of over fit.

Choice of pq value affects the performance of F-test directly. Optimum py,4 value

for the best performance is not the subject of this thesis study and it deserves
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special consideration. In this study, psq is chosen as 0.1 in general empirically.

However, the effect of psq on performance will be shown with simulation results.

One of the main advantages of F-test is that it does not use the noise variance
(0?) information. Noise variance may be unknown and does not need to be
estimated. F' ratio is found using RSS values and threshold is calculated using
the CDF of F-distribution. On the other hand, SNR should be relatively high
enough to find K close enough to K. This is because, F-test should be able
to distinguish reasons behind the decrease in RSS as model order of the model
signal increases as explained previously. If SNR is not high enough, it couldn’t
be possible to understand whether the decrease is caused only by the reduction
of noise components or noise components plus signal components. In that case,
F-test may decide to stop at a model with order much lower than K and de-
cide that it is “good enough” to model observed signal since further increase in
model order does not provide additional “significant” benefits. Obviously, this
is not the desired case for model order estimation problems. Effects of SNR on
relations between the F' ratios for different cases were mentioned briefly in the
previous sections with the help of Figure 3.4. The relationship between SNR

and parameter estimation error may be analyzed in a separate study.

3.3 Application of F-test to The Related Problems

In this section, solution approaches based on F-test are suggested for previously
mentioned four different problem types. In the next chapter, these approaches

will be supported by examples.

3.3.1 Typel

Utilization of search window is suggested for this type of problems. Length
of search window will be denoted by Ny,. This window is shifted step by step
(for example, one by one) through observation vector from the beginning to
the end. This shift corresponds to taking N, samples from different locations

of the observation vector. The lower order model with order M is chosen as
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Model #/1 which is shown in Figure 3.5. The higher order model with order My
covers both Model #1 and Model #2. Notice that, the two models become
nested models with this selection rule. F-test is done for each window. If
F' < threshold condition is satisfied for a window, it can be said that this
particular window consists of observations from only Model #1, otherwise it
is decided that observations from both Model #1 and Model #2 exist in that

window.

It is assumed that N,, = Mg + 1 which is the minimum allowable N, not
to have problems related with rank and make RSS);, = 0. Suppose that the
first window does not have any observation from Model #2. As the search
window is shifted step by step, after some point it includes the point N’ shown
in Figure 3.5 and the windowed observation consists of observations from both
models. In this case F' > threshold condition is satisfied. For example, centre
of the search window may be taken as N’ when F first becomes greater than
threshold. Depending on the specific problem, the N’ estimation can be found
in a different way like by taking the starting point, not the centre, of the search

window as N'.

Depending on the desired resolution of N’, N, and shifting step size may be
modified. This solution approach is illustrated in Figure 3.5.

0 yIn] N-1
ﬁ
0 y[ N-IN' I N-1
Model #1 Model #2
------------- >  —

Figure 3.5: Illustration of Proposed F-test Based Approach for Problem Type I

3.3.2 Typell

This type is a straightforward problem for F-test approach. Two models with
order M and My with My > M condition are determined initially. They
should be nested models. Furthermore keeping My — M difference small, like
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one, improves the K resolution. RSS values are calculated for each model and
F' ratio is found. If the condition ' > threshold is satisfied, it is assumed
that M < K . M and My are increased while keeping the My — M difference
the same. Then F' and threshold are compared. This cycle continues until the
I < threshold condition is met. When F' becomes smaller than the threshold,
test is ended up by taking K = M. You can examine Sec.4.4 for an application

of F-test for this type of problem.

3.3.3 Type II1

Different than Type I case, model orders of the actual signals are also unknown.
This problem includes both segmentation (Type I) and model order selection
(Type II) problem. Model orders are estimated first. To estimate parameters of
signal #1, the longest possible window is taken from beginning of the observa-
tion. If there is a priori information about N’, it should be used to decide the
proper window length. It should be noted that this window has to exclude obser-
vations from the second signal. Parameters of the first observation is estimated
using the approach defined for Type II problem. Then the solution approach for
Type I problem is applied.Initially, the lower order model with order M stated
in Type I approach is formed by the estimated model of signal #1. On the other
hand, the higher order with order My has to include an information about model
#2 in addition to model #1. At that moment, model order of the second signal
is also unknown. The lowest possible order can be assumed for model #2 and
the higher model (Mp) is formed as if this assumption is valid. At that moment,
N’ point shown in Figure 2.1 is estimated. The approach explained for Type I
problems is used to estimate N’. Now, parameters of model #2 can be estimated
properly using the approach explained in Type II. After finishing parameter es-
timation of model #2, N’ may be estimated using the Type I approach again
with the improved high order model (Mpy). Now, the higher order model can

include more parameters from model #2 after estimation of model #2.

As an alternative way, parameters of model #2 can also be estimated prior

to the application of Type I approach by taking observations from end of the
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observation vector. Two models can be pre-estimated before the application of

Type I approach.

Whole solution strategy can be expanded easily for cases where there are more
than 2 different observations added consecutively in time. You can examine

Sec.4.2 and Sec.4.3 for an application of F-test for this type of problem.

3.3.4 TypelV

The suggested solution for this problem is very similar to the solution for Type
IT problem. However different than Type II problem, the linear signal model is
known prior to application of F-test . Instead of model order, analysis window

for the preselected model should be found.

The linear model given in (2.33) is used as the lower order model (M) for F-test.
A linear model which covers the model given in (2.33) and approximates s better
than x4, i.e., lowers the error defined in (2.34) is used as the higher order model
(Mpy). An initial value is selected for N’ shown in Figure 2.3. F-test is applied
for selected values. If ' < threshold condition is satisfied it implies that s can
be approximated “good enough” as x; for the first N’ points. N’ is increased
and F-test is applied for new analysis window. If F' > threshold condition is
satisfied it implies that &, does not approximate s for the first N’ points “very
well”. Since the goal is finding maximum N’ value where s can be approximated
with @1 “well enough”, it is decided that previously tested window is suitable
for that purpose. Previously tested N’ value is the largest possible value that
makes F' < threshold condition possible. Finally, parameters given in (2.33)

can be estimated by using the selected observations.

This problem can be thought also as observation of a signal in a linear space
under not only AWGN but also AWGN plus a bias given in (2.34). Depending
on the signal, noise and bias levels, assuming that the signal is observed under
AWGN and ignoring bias may be reasonable at the expense of parameter esti-
mation accuracy. You can examine Sec.4.1 for an application of F-test for this

type of problem.
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In the next chapter, these suggested methods will be supported by different

example problems.
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CHAPTER 4

APPLICATION EXAMPLES

In this chapter, the F-test based solution methods for five different example
problems are demonstrated. Since the Type I problem is actually part of the
Type II1, an example for the Type I problem is not given separately.

4.1 Zero-Crossing Point Estimation (Problem Type: IV)

This problem is about estimation of zero-crossing point of a continuous function
from its noisy observations in discrete time. This is the first example problem
examined during thesis work and it represents the behaviour of F-test clearly.

This example was also briefly mentioned in a previous work [35].

Here, tg values which satisfy the 0 = f(¢y) condition are called zero-crossing
points of a real function f(¢). For example, a line function has a single zero-
crossing point but higher order polynomials may have more than one zero-
crossing points or none. In this problem, it is assumed that function of interest

has at least one zero-crossing point within a known interval.

Firstly, let us consider the zero-crossing point estimation problem particularly

for a line function. Continuous time expression of a line is given as
z(t) = at +b=a(t —to),

where



Continuous time signal can be expressed in discrete time as
z[n] =an+b=a(n — ny).
This signal is sampled at ¢ values which satisfies the
n=t where n + 0.5 is an integer

rule. This rule is selected to simplify the following equations. Therefore, the

A

Nng = to (41)
equality becomes valid.

Similarly, the
—0.5<ny<0.5 (4.2)

inequality is assumed to provide relatively easy calculations.

In continuous time it is assumed that the signal is observed under AWGN as
y(t) = z(t) + w(t) = a(t — to) + w(t).

Here, y(t) and w(t) represents the observed signal and noise, respectively. It

also can be written as
y[n] = z[n] + wn] = a(n — ng) + wln] (4.3)
in discrete time.

no should be estimated as ny by using y[n]. Considering the equality given
in (4.1), the t, = fg equality holds. The number of available observations is

denoted by V.

Two assumptions given as

ny = —ny, (4.4)
Nnit1=mn; + 1 where 0<i< N (4.5)
are made to simplify calculations.
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The y vector defined as

>

=,
. :

S

Ynxi

_y[nN]_
is the observation vector. The vectors  and w can be defined similarly. Each
w; term in the w vector is an independent random variable with ~ N(0,0?)

distribution.

Equation (4.3) can be written as
y=rx+w=Ap+w

using vector notation. Also A matrix and p vectors can be represented for this

problem as follows

_nl 1_
AN><2 é " ! ’
_nN 1_
D2x1 £ !

After LS solution is applied, p is found. ny can be found as

ng = ——.

N

a

The Cramér-Rao Lower Bound for ng is given in as

2 2
CRLB = -2 (1+ L2ng ) .

Na? N2 -1
Derivation of the CRLB expression is given in Appendix A. From this expression
it can be seen that the CRLB of ny which shows the minimum possible variance
of ng depends on many problem variables. One of them is N, the number of
observations. As N increases, the CRLB decreases. This is also an intuitive
result. An increase in the number of observations decreases the effect of noise
on estimation. It should be noted that this is true since there is not any model

mismatch.
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Up to that point, estimation of the zero-crossing point of a line function observed
under AWGN was studied. Same concepts will be given for sinusoidal signals
with the help of Figure 4.1. General expression of a continuous time sinusoidal
signal is given in as

s(t) = Asin 2w f(t — to). (4.6)

A and t, terms shown in the equation (4.6) represent amplitude and zero-crossing
point of sinusoidal signal, respectively. An example signal is shown in Figure 4.1

when A = /2 and ¢, = 0.3.

A=y/2, F=0.0625, ny=0.3

2 ~

15F
x-X
/ *
. \
Zero—Crossing X \
g Point I’ X
\ of \
\ Interest # ‘\
051 \ K : X
\ \
\ \
or # 3
X , X
‘ ‘
-0.5[ \ # '
X ’ X
\ ]
-1+ \ /x
x 14
AN % = ¥ = s[n]
X o
_1.5 1 1 1 1 1 1 1 1 1 1
-9.5 -55 -251.505051.525 5.5 9.5

Sample Index

Figure 4.1: An Example Sinusoidal Signal

Similar to line function case, sinusoidal signal is also observed under AWGN and
sampled at f, frequency. For discrete time indices, in addition to the relations

given in (4.4), (4.5),
n=tx fs where n + 0.5 is an integer
is valid. Discrete time signal can be written as
s[n] = Asin (27 F(n — ny))
while the inequality given in equation (4.2) is still assumed.
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Using the previously given definitions, the followings can be written

no = to X fs,

Féi

fs

QéQWF:%ri

fs
yln] = s[n] +win].

As an example, observation signal (y[n]) for SNR = 20 dB case and the actual
signal (s[n]) is shown in Figure 4.2. Similar to line function case, zero-crossing

point of the sinusoidal signal shown in Figure 4.2 is to be estimated.

A=v2, F=0.0625, ny=0.3, SNR=20 dB

15
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-9.5 -5.5 -2.5-15-05 0.5 15 25 5.5 9.5
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Figure 4.2: Noisy and Noiseless Sinusoidal Signals

One possible approach for finding zero-crossing point of a sinusoidal signal is
to fit a straight line to the two samples with different signs around the zero-
crossing point [24].Then, the zero-crossing point of the fit line is used as estimate
of the zero-crossing point of the sinusoidal signal. This approach assumes that
the signal is sampled “fast” enough such that a simple line fit is sufficient to

accurately determine the zero-crossing point. Validity of this approach can be
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seen from the Taylor series expansion given as [32]

sinx = i ﬂx%“. (4.7)

!
—~ (2n + 1)!
Equation (4.7) can be rearranged as

0o 1 k
sinQn = Qn + Z %(Qn)wﬁLl (4.8)
k=1

+ )

for discrete time signals. Qn term in (4.8) shows the line component of the
Taylor series and the remaining terms represents the higher order polynomials.

The line component is represented as
[(Qn) = Qn
and the approximation error is given as

€(n) £ sin(Qn) — 1(Qn).

RMSE(£2, N) term defined as

N/2

RMSE(Q, N) & % > [e’ (Q [n—%Dr (4.9)

n=—N/2

is the root-mean-square of approximation error. Plot of [(Qn) ve €(Q2n) for the
sinusoidal shown in Figure 4.1 are shown in Figure 4.3. RMSE(Q, N) is shown

in Figure 4.4 for the same signal.

Suppose that one decides to use line fitting approach to estimate the zero-
crossing point of a sinusoidal signal. Figure 4.3 and 4.4 shows that |e(Qn)|,
which is the absolute value of approximation error, increases as n increases. It
is clear that line approximation introduces an estimation error even for noise-
less case. This error is caused by model mismatch between the line and the

sinusoidal signal and it will be shown up in the zero-crossing estimates as bias.

This problem fits to the scenario given for Type IV problems. N’ shown in
Figure 2.3 should be estimated first. Then the first N’ points of observation

vector are considered as observations from a line function under AWGN. A
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Figure 4.4: RMSE due to Line Approximation for Different Window Lengths

straight line is fitted to these observations and the zero-crossing point of the

fitted line is considered as 7.

This N’ value may be chosen without the proposed method by using only fre-

quency information. In that problem, the frequency is assumed to be unknown.
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If discrete time frequency (F') is low, signal can be considered to be sampled
“fast”. In that case more than 2 points around the zero-crossing point should be
used for estimation to increase the accuracy since as frequency decreases more
observations tend to lie on a line, approximately. When the frequency is high,
less number of observations should be used for line fitting in order to keep the
model mismatch at a reasonable level. The question is that how many samples
should be used around the zero-crossing point to fit a line? This problem is

illustrated in Figure 4.5.

fs=16xf , ny=0.3, SNR=20 dB
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Figure 4.5: Ilustration of Analysis Window Length Selection

As explained before, the F-test based approach for Type IV problem needs two
nested models with order M and Mp. For that problem, M = 2 and the lower
order model is a line model. The higher order model is chosen as a polynomial
function with degree 3 which makes My = 4. The reason behind this choice is
shown below. Taylor series expansion given as

- _ 1 T S G Vi 2k+1
sinQn = Qn — E(Qn) + ; W(Qn)

shows that the lowest order term after Qn term is (Qn)? term.
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The solution approach defined for Type IV problems is used with minor modi-
fications. In order to get symmetrical points around the zero-crossing point, N’
is increased by 2 in each step. Since My = 4, the initial value of N’ should be
greater than 4 and to keep symmetry around the zero-crossing point it is taken
as 6. Suppose that F' < threshold condition is true for the first run. It means
that a polynomial with order 1 (line) fits first 6 points sufficiently “good” as a
polynomial with order 3. Then the same test is done by using 8 points around
the zero-crossing point. If F' < threshold condition is still satisfied, test is re-
peated for 10 points. Suppose that F' > threshold condition becomes true when
test is done using 10 points. In that case, the higher model fits 10 observations
“significantly” better than the lower model. Approximating 10 points around
the zero-crossing point as a single line is not a good idea. Therefore, 8 points
should be used for line fitting and the zero crossing point of this line can be

taken as nyg.

Suppose that F' > threshold condition is satisfied when N’ = 6. In that case
a line is fit to 4 points around the zero-crossing point. Especially for higher
frequencies, the best estimation results are obtained when the only 2 points are
used for line fitting. Using 4 points instead of 2 worsens the estimation perfor-
mance. As a minor modification, line fit is done by taking 2 not 4 points when
F > threshold and N’ = 6 conditions are satisfied. By doing so, the proposed
method may give estimates as accurate as the classical 2 points approach espe-
cially for high frequencies. Disadvantages of this modification is that for some
medium frequencies usage of 4 points may be a better choice than usage of 2
points. However with this modification, the proposed method never selects 4

points.

Depending on SNR and frequency, F' may always be smaller than threshold for
all N’ values for a specific observation. One may want to limit the number of
points used by line estimation independent from the F-test result. A variable
called Nusedmax is defined for that purpose. If the proposed method can’t
decide a proper N’ value until it reaches Nusedmazx, test is terminated and
Nusedmax points are used for estimation. This may become useful if there is a

priori information about the maximum value of frequency of signal of interests.
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Independent from the F-test result, it may be used to avoid the cases where the

points around negative and positive peaks of the sinusoidal are treated as lying

on a straight line. Flow chart of the modified approach is shown in Figure 4.6.
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Zero—Crossing
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Estimate
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Figure 4.6: F-test Based Proposed Algorithm for Analysis Window Length Se-

lection

o4



4.1.1 Simulation Results

Comparison between the classical 2-points approach and the F-test based ap-
proach is given for different scenarios with help of Monte Carlo simulation re-
sults. Monte Carlo run number is denoted by MCym. MChum is taken as 10°

for each scenario. RMSE shown in the following figures is calculated using the

Mc’num

1 .
o 3

=1

RMSE =

relation where 7, denotes the estimation for i*" run. Notice that this RMSE
definition is different from the definition given in (4.9). Nusedmax is taken as

16 for all scenarios.

4.1.1.1 Scenariol

Figure 4.7 shows RMSE values of both approaches for different frequencies. For
each frequency value, new Monte Carlo simulation is run. psq = 0.1 is taken for

this scenario.

RMSE vs Window Length for ny=0.0518, SNR=35 dB

F-Test, Nusedmax=16 pfd=0.1
10 S = = = 2-points g

RMSE

i

10"
Q=xm

Figure 4.7: Error Comparison Between The Classical and The Proposed Method

Two methods perform the same for high frequencies. This is because the pro-
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posed method always choose to use 2 points for line fitting at these frequen-
cies. Figure 4.9 shows the histogram of lengths (N’) of selected windows when
) = 0.5 rad. This histogram shows that the proposed method always takes
N'=2.

1.5 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
-9.58.57.56.55.54.53.52.51.5050515253545556.57.5859.5
Sample Index

Figure 4.8: s[n] when Q = 0.57
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Figure 4.9: Percentage of The Number of Selected Samples by The Proposed
Method
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This and the following simulation results are obtained when SNR = 35 dB.
However, one of the simulations is repeated for 2 = 0.57 rad case when SNR
= 0 dB to show the effect of SNR on the performance. As it can be seen from
Figure 4.10, F-test fails to select correct number of points at low SNR. For this
frequency, 2-points should be selected for line approximation as it can be seen
from Figure 4.8. As it is stated in Chapter 3, SNR value should be relatively
high for proper operation of the F-test.
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Figure 4.10: Percentage of The Number of Selected Samples by The Proposed
Method when SNR = 0 dB

When ©Q = 0.1257 rad, the proposed method selects N = 6 for more than 10%

of experiments as shown in Figure 4.12.

When € = 0.087 rad, the proposed method starts to select N’ = 8 in addition
to 6 points as shown in Figure 4.14. This provides lower RMSE values compared

to the classical 2-points approach.

When Q = 0.00257 rad, the proposed method selects 16 points most of the time
as it can be seen from Figure 4.16. Notice that Nusedmaz is also 16 for that

problem.
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Figure 4.11: s[n| when Q = 0.1257
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Figure 4.12: Percentage of The Number of Selected Samples by The Proposed
Method
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Figure 4.13: z[n| when Q = 0.087

Percentage of Number of Selected Samples for 2=0.087 pfd=0.1
100 T T T T T T T T

90 1

80 b

70

60

50

40

Selection Percentage

30
20

10

2 4 6 8 10 12 14 16
Number of Selected Samples

Figure 4.14: Percentage of The Number of Selected Samples by The Proposed
Method
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Figure 4.15: s[n| when Q = 0.0257
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Figure 4.16: Percentage of The Number of Selected Samples by The Proposed
Method
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4.1.1.2 Scenario 11

Similar experiments are repeated for by taking psq = 0.9. In that case, threshold
has lower values than the previous case. F' becomes F > threshold at lower N’
values. Thus, the proposed method tends to select lower N’ values. RMSE value
for prq = 0.9 case is shown in Figure 4.17. Since the proposed method selects
lower N’ values, RMSE value of the proposed method is close to RMSE value

of the classical 2-points method.

RMSE vs Window Length for ny=0.0518, SNR=35 dB

F-Test, Nusedmax=16 pfd=0.9
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Figure 4.17: Error Comparison Between The Classical and The Proposed
Method

Larger N’ values are chosen for low frequencies as seen previously. Even for low
frequencies, the proposed method chooses 2-points 90% of the time as seen from
Figure 4.18 when prq = 0.9. In that case the maximum value of N’ is 6 where

it was 16 for the psq = 0.1 case.
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Figure 4.18: Percentage of The Number of Selected Samples by The Proposed
Method

4.1.1.3 Scenario II1

Lastly, simulations are repeated when pss = 0.01. In that case threshold reaches
the highest value among three scenarios. As threshold increases N’ value se-
lected by the proposed method increases. RMSE graph is given in Figure 4.19
for prg = 0.01. N’ value tends to increase so much that especially for high fre-
quencies the proposed method does not recognize model mismatches and uses

wrong number of points for line approximation.

This example is given to demonstrate the proposed method for the type IV
problem. Also, effects of psq and SNR value on performance are demonstrated
by using three different values. As stated in the previous chapter, as pyq in-
creases threshold deceases. “False decision” probability of F-test should not be
confused with performances of the suggested algorithms. For example, 2 points
are selected with ~ 90% probability when psy = 0.9 as shown in Figure 4.18.
However, it does not mean that selection of 2 points is wrong. Value of the pgq
changes behaviour of the F-test. Depending on application, change in behaviour

affects the overall performance differently.
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RMSE vs Window Length for ny=0.0518, SNR=35 dB
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Figure 4.19: Error Comparison Between The Classical and The Proposed
Method
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Figure 4.20: Percentage of The Number of Selected Samples by The Proposed
Method
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4.2 Segmentation of Multi Tone Signals (Problem Type: III)

As a demonstrative example for the type III problem, segmentation of multi

tone signals is selected. A multi tone signal with length N is expressed as

T
ZT<n7nlt7n2t7At7 Qtu q)t) O S n S N - 1

sl = { (4.10)
0 otherwise
where
0<ny,ny <N-—-1 , Vt,
T>1,
. Asin(Qn+ @) np <n <ny
T(n,nl,ng,A,Q,q)) = (411)
0 otherwise.

The signal s[n] is generated by adding up tones with different or not amplitude,
frequency, phase, start and stop times. One interest of signal processing area is
the characterization of this kind of signals. The only constraint on s[n| is that
there is at least one non-zero tone component at any time instance. One may
want to plot spectrograms of multi tone signals. In that problem amplitude(A),
frequency(€2), phase(®) , start(n;) and stop times(ns) of signals are assumed to
be unknown. The goal is to improve the frequency resolution in spectrogram

plots.

Let us review some basics of spectrogram before the application of F-test. At

this moment, the observation vector is assumed to be noiseless.

Spectrogram is generated by plotting magnitude of DFT of windowed data. A
vector (segment) with length Nwindow is taken from the beginning of the ob-
servation vector. The length of the second segment is also Nwindow. Noverlap
samples are taken from end of the first segment for second segment. In other
words, segments are overlapped. This segmentation procedure is repeated as
shown in Figure 4.21. We call it as classical segmentation. It is illustrated
in . After segmentation, NDFT point DFT is calculated for each segment. In
practice, generally DFT is calculated using FF'T. Magnitude plots of DF'Ts are
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placed side by side in time to generate spectrogram plot. Overlapping provides

smooth transitions in spectrogram plot.

Signal of Interest |

4{ Segment #1
Overlap }—{ Segment #2

Overlap }—{ Segment #3
Overlap }—‘ Segment #4

Figure 4.21: Tllustration of The Classical Segmentation

As an example, let us consider s[n| generated by using (4.10), (4.11) and the
parameters given in Table 4.1. Spectrogram of this signal is shown in Figure 4.22.
This is generated by taking Nwindow = 1024, NDF'T = 1024 and Noverlap =
512. Tt can be seen that there are tone changes around 20000 and 25000 at time

axis.

Table 4.1: Parameters of s[n], N = 30000

Tone # / Parameter ny N9 A Q )
1 0 20000 | 1 | 0.37 | O
2 20000 | 30000 | 1 | 027 | Q
3 25000 | 30000 | 1 | 0.237 | O

Figure 4.23 shows spectrogram of the same signal with different spectrogram
parameters: Nwindow = 64, NDFT = 64 ve Noverlap = 32. Unlike the
previous spectrogram shown in Figure 4.22, it is not possible to distinguish
existence of two tones after 25000"® sample visually. Similarly, the plot is spread
over frequency axis for all tones. Although an accurate frequency estimation is
much more difficult than the previous case, the tone transition points are much

more clear than Figure 4.22.

Value of Nwindow parameter has direct impact on spectrogram plots. Basics of

DTEFT should be analyzed to understand the differences between two plots. DFT
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Figure 4.22: Spectrogram of Example Signal with The Classical Approach Using
Long Segments
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Figure 4.23: Spectrogram of Example Signal with The Classical Approach Using
Short Segments

can be thought as sampled version of DTFT between 0 and 27 rad frequencies
with 20 /NDFT rad steps [2]. As it will be explained later, main reason behind

the differences between two spectrograms is windowing effect not the relations
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between DTFT and DFT functions. Therefore, explanations are given by using

concepts related with DTFT.

DTFT of an infinite length signal z[n] is found as

S(Q) = Z s[n]e™7%m,
Let us consider an infinite length sinusoidal signal given as
s[n] = cos(Q2sn) —1<Q, <7
and its DTFT can be written as
S(Q) =m0 (Q — Q) + 76 (Q + Q) -7 <Q<mT.

The classical segmentation for spectrogram generation can be expressed math-

ematically as

s'n] = Z s[n] = s[n]w[n],
N -1
1 |n| <
wln] = 2 (4.12)

0 otherwise

where §'[n] represents one of the segments with length N + 1.

Using DTFT properties [2] S’(§2) can be written as

o

F(Q) = Y ne?™ =5(Q)«W(Q) = ! / ' S(Q =MW (A)dA.  (4.13)

T om

n=—oo -

Equation given in (4.12) is known as rectangular window function and its DTFT

given as

sin (NE)
W) = ———% if N is odd

(3

Although this equation is valid when N is an odd number, an extra phase term

is a well known function [25].

is added when N is an even number. Since phase of DTFT is discarded to plot
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spectrogram and only magnitude of DTFT is used, DTFT for odd number case

is considered in order to get rid of extra phase term to simplify expressions [25].

Plot of W(2) for N = 17 case is shown in Figure 4.24. W(2) has null points at
) = 27 /N frequencies. Main lobe width of the rectangular window function is

47 /N.
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Figure 4.24: Normalized DTFT of Rectangular Window with Length 17

Equation (4.13) can be continued as

S(Q) = [W(Q—Q,) +W(Q+ Q)]

DO | —

and as it can be seen from this equation, DTFT of a finite length sinusoidal is
equivalent to shifting DTFT of the window function to the frequency of sinu-
soidal signal which is known as modulation property. Magnitudes of DTFT of
rectangular windows with N = 64 and N = 1024 are plotted in 4.25. As it can
be seen from the figure, as N increases main lobe width decreases. If it assumed
that NDF'T is fixed, energy of sinusodial signal spreads over less number of
DFT points as N increases. This improves both frequency estimation accuracy

for single tone case and frequency clearance between tones for multi tone case.

The problem which is defined by parameters given in Table 4.1 contains single

tone up to 20000 point. As it can be seen from Figure 4.22 and 4.23, frequency
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Figure 4.25: Effect of Window Length on DTFT Results

resolution increases as Nwindow increases. Different from Figure 4.25, there is
an extra parameter involved in spectrogram generation: N DFT. However, this
is not the reason of the mentioned difference. This parameter only changes
the sampling interval of DTFT. As NDFT increases, sampling interval in the
frequency axis decreases. However, the difference shown in Figure 4.25 is purely
due to DTFET properties. Sampling these DTFT functions more and more closely
does not improve the result. To show this, Figure 4.23 is plotted again in
Figure 4.26 by taking NDF'T = 1024 as in Figure 4.22. The frequency resolution
problem still exists even if NDFT is same as the condition where frequency

resolution is fine as in Figure 4.22.

Taking long segments for spectrogram generation improves the frequency resolu-
tion. However as it can be seen from Figure 4.22 and Figure 4.23 around 20000
and 25000"" sample, tone transitions can’t be resolved in time axis very well.
On the other hand, transitions are resolved in time axis when shorter segments
are used as shown in Figure 4.26. The reason behind is that when segments are
long, they include higher number of samples and the distance between two ad-
jacent segment is big. For example, for Nwindow = 64 and Noverlap = 32 case

each segment contains 64 samples and the distance between each of them is 32
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Figure 4.26: Effect of NDFT Parameter on The Frequency Resolution

samples whereas for Nwindow = 1024 and Noverlap = 512 case each segment
contains 1024 samples and the distance between each of them is 512 samples.
Since DFT is computed for each individual segment, time resolution of the long
segments is lower than the short segments. Lower time resolution causes time

ambiguity around tone transition points.

In summary, long segments and short segments increase the frequency and the

time resolution, respectively.

If spectrogram of the example signal was generated by using not equal segments
like, first segment was taken between 0" and 20000*" sample, second one was
taken between 20000"* and 25000*" sample and the last one was taken between
25000 and 30000*", spectrogram would be like in Figure 4.27 and Figure 4.28.
Notice that the colormap is different from the previous spectrograms for visual
simplicity. Also, there is no overlap between these three segments. Segmentation

is illustrated in Figure 4.29. We call it as dynamic segmentation.

If tone changes are detected and segments were taken between transition points,
spectrograms have better frequency resolutions than classical spectrograms. F-

test is used to estimate the tone transition points. After these points are es-
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Figure 4.27: Spectrogram of Example Signal Using The Dynamic Segmentation
(3 Segments), View #1
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Figure 4.28: Spectrogram of Example Signal Using The Dynamic Segmentation
(3 Segments), View #2

timated, (dynamic) segments and spectrogram plots are generated. Similar to

the previous cases, s[n] is observed under AWGN as y[n].

This problem is similar to Type III problem but the solution given for Type

III is modified a lot. Two nested and linear models should be determined to
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Figure 4.29: Tllustration of The Dynamic Segmentation

apply F-test. However, there is no prior information about added tones, so the
necessary ones should be estimated. Rather than giving F-test approach as one

stage, it is divided into four stages.

First of all, proper linear models should be selected. First stage finds the model
candidates. The flow is illustrated in Figure 4.30. This stage is called as model

pre-selection algorithm.

Logic behind the model pre-selection algorithm is finding frequencies that have
high DFT values in terms of magnitude. In that stage, a search window with
length Ny, is selected and shifted through the observation vector. For each shift,
DFT is taken and possible tones are determined. It is thought that tones with
higher DFT magnitudes have higher probability of existence. If there is a priori
information about frequency components, the maximum number of allowable
tones can be limited in each search window. In the next section, validity of

these pre-selected tones is tested.

The pre-selection algorithm uses following parameters:

e N,,: sw is abbreviation for Search Window. It shows the length of search
window. This length affects the frequency resolution for searching and
the final segmentation performance. If search window is considered as
rectangular window, two tones become separable when their frequencies

are separated by more than 27 /Ny, rad.
® Ny sdft is an abbreviation for Search DFT. Ny point DFT is taken
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Take samples between
i Nsw/2 and i+ Nswi/2

J

Take Nsdft point DFT

v

Discard negative frequencies
and
Take absolute of DFT of
positive frequencies

Find peaks and sort
peak locations (frequencies)
in descending order of
peak magnitudes

v

possible_tones(i,:) = Peak frequencies

false

i> N —-Nsw/2

Figure 4.30: The Proposed Model Pre-Selection Algorithm

at each search window. Since DFT peaks are used for the pre-selection

algorithm, at least one DFT bin should exists between two separable fre-
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quencies. Therefore, this parameter should be at least double of the desired

search frequency resolution between 0 and 2.

At second stage, validity of the pre-selected tones is checked using F-test. This
is similar the approach used for Type II problem. The flow is illustrated in
Figure 4.31. This stage is called as model validity stage.

For each search window, the pre-selected tones are tested using the Type II
approach. Consider the F-test done for the i*® search window. Initially, F-test
checks whether this window contains a single or dual tones. To do this, the
lower order model is constructed using the frequency in possible tones(i, 1).
This is the frequency with the highest DFT magnitude for the i*" search win-
dow. The higher order model is constructed using two tones with frequencies
possible _tones(i, 1) and possible _tones(i,2). A matrix for the first test is given

as
Ajy = [azi a_ﬁ]
for the lower order (M) model and as
Al = |a} al a aj

for the higher order (My) model. In that case M = 2 and My = 4. Notice that
different from the previous cases, A matrices (and also p vectors) have complex
terms. Although previous expressions given for real cases, replacing transpose
matrices with Hermitian matrices is sufficient to apply all previous results and

comments about RSS values and F' ratios for complex cases.

In general, elements of A matrix can be written as

7
ay,
]
i a2,l
a, =
]
| U N 1]
where
a’;cl — ejxposmble_tones(z,l)><k.

)
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Get peak frequencies from
possible_tones(i,:)

Lower order model = Tones up to k th frequency
Higher order model = Tones up to ( k+1) th frequency

i

Calculate F value for two fits

true false

F >= threshold

false

estimated_tones(i,:) = Tones up to k th frequency

false

i>N-Nsw/2

Figure 4.31: The Proposed Model Validation Algorithm

If F-test concludes that the dual tone model is “more suitable” than the single

tone model for the i*" search window, then the dual tone and the triple tone

I6)



models are compared. In that case, A matrix can be written as follows
= lal af &) ai
o =|ai ol @ @ af ai
for M = 4 and My = 6. If F-test concludes that the triple tone model is “more
suitable” than the dual tone model for the i*" search window, the quadruple

tone model is tested against the triple tone model until the correct model order

is found. Tt is the algorithm given for Type I problem.

The validity algorithm uses the following parameter:

o N, Number of maximum tones: It is the maximum number of tones that
can be found in a search window. If F-test couldn’t verify tones even if the
number of tested tones reaches that parameter, number of IV; tones are
assumed to exist in that search window and test is ended for that particular
search window. If there is a priori information about the possible number

of tones at a time instant, this information can be used for NN; selection.

After the validation stage, a post processing is done to improve the validation
results. At least, I'-test may give wrong decisions with py; probability. These
decisions may be reduced using some a priori information about the problem if
available. This stage is not related with F-test and is not subject of this thesis
work. However, it is given to show that F-test results may be improved further

by some post processing depending on the problem specifications.

Due to nature of F-test, it may found some tones with very short durations.
For example, tone with frequency 0.17 with 5 samples duration may not be a
practical case. These impractical “glitchy” results may be eliminated by utiliza-
tion of some simple methods. The post-processing algorithm is illustrated in

Figure 4.32.

The proposed post-processing algorithm uses the following parameter:

o Ny, Mintmum Period: A tone should be detected at least NV, times of
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Figure 4.32: The Proposed Post-Processing Algorithm

its period to declare its existence. If there is a priori information about

the signal it can be used for N,,, selection.

The last stage is generation of dynamic segments and resultant spectrogram
using the post-processed tone profile. The flow is shown in Figure 4.33. If a
tone disappears or a new tone appears, a new segment should start at that
instant. After segmentation, spectrogram is plot similar to the classical case.
DFT is taken for each spectrogram and plotted side by side in time. Different

from the classical approach, there is no overlapped samples between segments.

Notice that the final frequency resolution of dynamic spectrogram should not be

confused with N, and N4 parameters used in the model pre-selection section.
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The number of DFT points is selected as length of each segment which is gen-

erally larger than the length of search window to have resolution improvements.

Figure 4.33: The Proposed Dynamic Spectrogram Generation

The overall proposed algorithm is shown in Figure 4.34.

Performance of the proposed method is demonstrated using example scenarios

at the next section.
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y[n]

Estimate linear models will be used in F-Test

possible_tones(:,:)

Decide active tones using F-Test

estimated_tones(:,:)

estimated_tones_filtered(:,:)

Figure 4.34: The Proposed Dynamic Segmentation Algorithm

4.2.1 Simulation Results

4.2.1.1 Scenario 1

Problem Definition
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Table 4.2: Problem Parameters for Scenario I

Parameter | Value
N 4000
Ny 96
Nsapt 96
N; 4
Npp 10
SNR 60 dB
Prd 0.1

Table 4.3: Tone Parameters for Scenario 1

Tone # / Parameter | n, ny | A Q )
1 0 1000 | 1 | 0.057 | Random
2 1001 | 2000 | 1 | 0.127 | Random
3 2001 | 3000 | 1 | 0.227 | Random
4 3001 | 4000 | 1 | 0.327 | Random

Results

Ideally, indices of dynamic segments should be at 1001, 2001 and 3001. The
proposed method finds starting indices of dynamic segments at 942, 981, 1943 ,
1945, 2948, 2985. Although the proposed method couldn’t find the ideal indices

exactly, it starts new segments around them.

Spectrogram shown in Figure 4.35 is generated using the classical segmentation.
Figure 4.36 shows the spectrogram generated using dynamic segments. Even
if dynamic segmentation is not the same as the ideal one, the dynamic spec-

trograph increases the frequency resolution. Figure 4.37 shows the number of

actual and detected tones using F-test.
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Figure 4.35: Classical Spectrogram
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Figure 4.36: Dynamic Spectrogram
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Tone Detection Performance
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Figure 4.37: True and Estimated Number of Tones
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4.2.1.2 Scenario 11

Problem Definition

Table 4.4: Problem Parameters for Scenario 11

Parameter | Value
N 30000
Ny 24
Ngart 64
N; 4
N 2
SNR 60 dB
Pfd 0.1

Table 4.5: Tone Parameters for Scenario 11

Tone # / Parameter | n, No A Q )
1 0 10000 | 1 | 0.207 | Random
2 7500 | 22500 | 1 | 0.807 | Random
3 15000 | 22500 | 1 | 0.257 | Random
4 22501 | 30000 | 1 | 0.307 | Random

Results

Ideally, indices of dynamic segments should be at 7500, 10001, 15001, 22501.
The proposed method finds starting indices of dynamic segments at 7419, 9989,
14933, 22422, 22444, 22483, 22492. Although the proposed method couldn’t find

ideal indices exactly, it starts new segments around them.

Spectrogram shown in Figure 4.38 is generated using the classical segmentation.
Figure 4.39 show spectrogram generated using dynamic segments. Even if the
dynamic segmentation is not same as the ideal one, the dynamic segmentation

increases the frequency resolution. Figure 4.42 show the number of actual and

detected tones using F-test.

From Figure 4.39, it may not be easy to see the detected frequencies due to the
problems related with the MATLAB renderer, Figure 4.40 and Figure 4.41 are

given to show the same spectrogram from different angles. As it can be seen

83




from these figures, each DFT segments have sharp frequency plots.
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Figure 4.38: Classical Spectrogram
Spectrogram in dB Scale Using Dynamic Segmentation
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Figure 4.39: Dynamic Spectrogram, View #1
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Spectrogram in dB Scale Using Dynamic Segmentation
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Figure 4.40: Dynamic Spectrogram, View #2

Spectrogram in dB Scale Using Dynamic Segmentation

-100

-120

it :3::-I:»':-:-:-:.-zI:-,s:-z:»z:»z:»:'I~ A

0.8 0.6 0.4 0.2 oL
Frequency (x7 rad) Sample Taidex

-140

Figure 4.41: Dynamic Spectrogram, View #3
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Tone Detection Performance
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Figure 4.42: True and Estimated Number of Tones
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4.3 Segmentation of FM Signals (Problem Type: III)

This example problem is similar to the segmentation of the multi tone signal
problem. This problem is based on a single tone signal which has a time varying
instantaneous frequency. For example, various FM signals, like linear, hyperbolic
FMs, have time-varying instantaneous frequencies. Since various FM pulses
are used in radar and sonar applications, these signals are specially considered
in this section [28]. The aim is improvements in the frequency resolution of
spectrograms of FM signals observed under AWGN. Let us consider the signal

given as

s(t) = Asin(0(t)).

The instantaneous frequency of the signal s(t) is defined as

o 1do()

f(t) o (4.14)

It is assumed that f(t) is a continuous function and has its derivative is well
defined at every point. Noisy version of this signal is observed in discrete time
as

yln] = s[n] + wln].

If F[n] denotes the instantaneous frequency of x[n] is discrete time, the relation

f(t) = F[tfs]fs is valid. Notice that n = tfs where f, is the sampling frequency.

Let us consider an HFM signal as an example. General equation for an HFM
signal is given in as

2
—Wln

s(t) = cos ( = In(1+bfot) + 90)

éfo - fl
JofiT

where fo, f1, T, 0y in (4.15) represents start frequency, stop frequency, duration

b

(4.15)

and initial phase of FM pulse, respectively. The instantaneous frequency of the

signal given can be written as

0=—g"7

14 t
HT
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by using (4.14).

An example plot of f(t) where fy = 300Hz, f; = 3800 Hz, T = 5 sec, 6y = 0 is
given in Figure 4.43. Spectrogram of s[n] which is generated by sampling s(t)
with fs = 8000 Hz is shown Figure 4.44. This is a classical spectrogram, i.e.,
lengths of segments and overlapped samples are fixed. Parameters Nwindow,
Noverlap and N DF'T shown in classical spectrogram are the same as previous

definitions given in the multi tone segmentation problem.

f(t) of Example s(t)
4000 T T T T

3500

3000

2500

2000

1500

Frequency (Hz)

1000

500

Time (sec)

Figure 4.43: The Instantaneous Frequency of Example Signal

As it can be seen from Figure 4.43 or Figure 4.44, the instantaneous frequency
seems to be almost constant at the beginning of the pulse. It rapidly increases
at the end of the pulse. Frequency resolution of spectrogram can be increased by
taking long segments where instantaneous frequency changes slowly and short
segments where the instantaneous frequency changes rapidly. These concepts
are explained in detail in the previous problem. It is assumed that FM pulse
parameters and properties of f(t) function, like monotone increasing/decreasing,

are unknown.

The proposed approach uses the fact that instantaneous frequency is a continu-
ous function. A single segment is used while the instantaneous frequency stays

almost constant. As the instantaneous frequency starts to deviate, new seg-
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Figure 4.44: Classical Spectrogram of Example Signal

ment starts. Whole observation is dynamically segmented using this approach.
After segmentation, spectrogram is plotted as described previously. One may
also limit the minimum length of the dynamic segments. It guarantees that fre-
quency resolution of the dynamic spectrogram is as good at least as the classical

spectrogram.

The algorithm proposed for the segmentation of FM pulses is very similar to the
algorithm proposed for segmentation of multi tone signal. The blocks shown in
Figure 4.34 from begging up to the post process block are same for FM case.
The F-test based verification algorithm proposed in the previous problem is used
also for FM case without any modification. Last two blocks are different for FM

case. New post processing algorithm is illustrated in Figure 4.45.

The following parameters are used in the segmentation algorithm:

o Wiin, Minimum Window: This is the minimum length for dynamic seg-

ments. Length of each dynamic segment is at least W,,;, samples.

® Tin, Minimum Period: Segment length should be at least T,,;, times its

fundamental period.
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Figure 4.45: The Proposed Segmentation Algorithm for FM Pulses

This approach divides [0,27) radial frequency interval to Nsdft pieces. The

frequency resolution of dynamic spectrogram will be 2 /N4 rad. The proposed
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algorithm basically divides spectrogram into 27/Nyqp rad steps and determines
which parts of observation vector can be considered as a single tone. If the
instantaneous frequency is almost constant at a specific part of observed signal,

it can be considered as a single constant tone.

Two rules are used to end the current segment and start a new segment:

1. Suppose, F-test verifies that both i*" and i — 1*® search window contains
dual tone. In other words observation vectors in both search windows can
be modeled as summation of two tones. It is decided that current segment
should end at location of i — 1*" window and new one should start at the
location of i*" window if at least one of these detected frequencies is not

same for both i — 1*" and *" search windows.

2. Suppose, F-test verifies that both i*" and i — 1*" search window contains
singe tone. In other words observation vector in both search windows can
be modeled as single tone. It is decided that current segment should end
at the location of i — 1'" window and new one should start at the location
of i*® window if frequency of the single tone is not same for both i — 1'h

and 7" search windows.

After a new segment starts, it is not tested against a new segment for specific

time determined by W,,;, and T),;, parameter.

Nsdft and Nsw parameters shown in Figure 4.30 effects lengths of segments
directly. As values of these parameters are increased, frequency resolution of
the dynamic spectrogram also increases. As resolution increases, small changes
in detected frequencies causes F-test to decide end the current segment and start

a new one more quickly.

When this stage is competed, segment index() stores start and end points of

dynamic segments.

At the last stage, dynamic spectrogram is plotted using the dynamic segments

as shown in Figure 4.46.
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Figure 4.46: Dynamic Spectrogram Generation Using Dynamic Segments

The proposed algorithm is shown in Figure 4.47. As stated before, only the last

two blocks are not same for Figure 4.47 and Figure 4.34.
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y[n]

Estimate linear models will be used in F-Test

possible_tones(:,:)

Decide active tones using F-Test

estimated_tones(:,:)

segment_index(:,:)

Figure 4.47: General Flow of The Proposed Dynamic Segmentation Approach

4.3.1 Simulation Results

4.3.1.1 Scenario 1

Problem Definition
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Table 4.6: Problem Parameters for Scenario I

Parameter | Value
Ny 128
Nagt 256
Trin 5
Wnin 256
SNR 60 dB
Prd 0.1

fs 8000 Hz

Interested signal is a noisy observation of HFM pulse with the instantaneous

frequency given in (4.15). Pulse parameters are given in Table 4.7.

Table 4.7: Signal Parameters for Scenario [

Parameter | Value
fo 300
fi 3800
T 5
0o Random

Results

Figure 4.48 shows plot of f(t) given in (4.15). Classical and dynamic spectro-
gram of FM pulse are shown in Figure 4.49 and 4.51, respectively. Since the
instantaneous frequency of pulse increases rapidly at the end of pulse, length of
segments decreases. Length of segment is limited by W,,;, parameter approxi-
mately after 30'" segment. After that point, dynamic spectrogram looks similar

to the classical spectrogram. Figure 4.50 show the length of each segment.
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Figure 4.48: The Instantaneous Frequency of Signal, Scenario 1
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Figure 4.49: Classical Spectrogram, Scenario |
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Figure 4.51: Dynamic Spectrogram, Scenario I
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4.3.1.2 Scenario 11

Problem Definition

Table 4.8: Problem Parameters for Scenario 11

Parameter | Value
Ny 128
Nagt 256
Trin 5
Wnin 256
SNR 60 dB
Prd 0.1

fs 10000 Hz

This example is about LEM pulse. General expression and instantaneous fre-

quency of LFM signal is given as follows

x(t) = cos (27T (fo + %) i+ 90) )

F(t) = fo+ kt. (4.16)

Table 4.9: Signal Parameters for Scenario 11

Parameter | Value
fo 2000
k 1000
T 2
0 Random

Results

Figure 4.52 shows plot of the instantaneous frequency given in (4.16). Classical
and dynamic spectrogram of FM pulse is shown in Figure 4.53 and 4.55, respec-
tively. Since slope of the instantaneous frequency of LFM signal is constant,
F-test selects the length of each segment almost same. Figure 4.54 shows the

length of each segment.
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Figure 4.52: The Instantaneous Frequency of Signal, Scenario II
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Figure 4.53: Classical Spectrogram, Scenario 1T
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Figure 4.54: Change in Dynamic Segment Length, Scenario 11
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Figure 4.55: Dynamic Spectrogram, Scenario II
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4.3.1.3 Scenario 111

Problem Definition

Table 4.10: Problem Parameters for Scenario I11

Parameter | Value
Ny 128
Nagt 256
Trin 5
Wnin 256
SNR 60 dB
Prd 0.1
fs 8000 Hz

This example is about EFM pulse. General expression and the instantaneous

frequency of EFM signal is given as follows

x(t) = cos (27rf0 (%) + QO) ,

f(t) = fok". (4.17)

Table 4.11: Signal Parameters for Scenario I11

Parameter | Value
fo 2000
k 1.8206
T 5
0, Random

Results

Figure 4.56 shows plot of the instantaneous frequency given in (4.17). Classi-
cal and dynamic spectrogram of FM pulse is shown in Figure 4.57 and 4.59,
respectively. Figure 4.58 show the length of each segment. As slope of the in-
stantaneous frequency increases, length of segments decreases. The length of

segments are limited approximately after 50 segment by W,,.;,, parameter.
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Figure 4.56: The Instantaneous Frequency of Signal, Scenario 111
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Figure 4.57: Classical Spectrogram, Scenario 111
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Figure 4.58: Change in Dynamic Segment Length, Scenario 111
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Figure 4.59: Dynamic Spectrogram, Scenario III

102



4.3.1.4 Scenario IV

Problem Definition

Table 4.12: Problem Parameters for Scenario IV

Parameter | Value
Ny 128
Napt 256
Trin 5
Wnin 256
SNR 60 dB
Drd 0.1
fs 8000 Hz

This example is about QFM pulse. General expression and the instantaneous
frequency of QFM signal is given as
as by
I(t) = COS 27Tf0 gt + §t +ct )+ 60 s
ft) = at* + bt +c. (4.18)

Table 4.13: Signal Parameters for Scenario IV

Parameter | Value
a -862.5
b 3425
c 100
T 4
0o Random

Results

Figure 4.60 shows plot of the instantaneous frequency given in (4.18). Classical
and dynamic spectrogram of FM pulse is shown in Figure 4.61 and 4.63, respec-
tively. Figure 4.62 show the length of each segment. Most of time the length
of segments are limited by W,,;, parameter. The length of segments is only
above W,,;, limit around 2 seconds where slope of the instantaneous frequency

decreases and changes sign.
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Figure 4.60: The Instantaneous Frequency of Signal, Scenario IV
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Figure 4.61: Classical Spectrogram, Scenario IV
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Figure 4.62: Change in Dynamic Segment Length, Scenario IV
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Figure 4.63: Dynamic Spectrogram, Scenario IV
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4.4 Model Order Selection for Prony’s Method (Problem Type: II)

This problem is about signal modeling in discrete time. Impulse response mod-
eling is one of the practical modeling approaches used in signal processing area.
Impulse response expression of an LTT filter is given as

B,(z d o bg(k)z7F
M) = 3105 = T 1)

If input of this filter is excited by v[n], the output signal s[n] can be written as
S(z) = H(2)V(z) (4.20)
in frequency domain and as
s[n] = hin] x v[n] (4.21)
in time domain.

For example, when v[n] is selected as

v[n] = Zé(n — knyg)

which is an impulse train, s[n| may be used to model a speech signal [27].

When v[n] is selected as

p

v[n] = Zaké(n — ng),

k=0

s[n] may be used for multipulse linear predictive coding problems [5,7,11,12].

In this problem, v[n] is assumed to be a unit impulse as given below



Let us assume that ¢, b,(k), p and a,(k) terms in (4.19) are unknown. Length
of s[n] is assumed to be N. Once these parameters are estimated, the estimate
of s[n], i.e. §[n], can be generated from these estimates using the same equality
given in (4.19). Least squares solution of this problem minimizes the RSS value

defined as [21]

RSS £ ) " |¢'[n]]?
n=0

where

e'[n] = s[n] — &[n]. (4.22)

However, this is not a linear least squares problem and requires solutions for
set of p 4+ ¢ + 1 non-linear equations [14|. Instead of non-linear equations, this
problem can be solved approximately by set of linear equations. Let us consider
the case where the transfer function has no zeros and has fixed number of poles.
In this case by setting ¢ = 0, (4.19) can be written as
By(2) _ by(0)

Ap(z) 1+ ap(k)e

This kind of signal is called as all-pole signal and widely used in signal process-

S(z) =

(4.23)

ing problems like speech signal modeling [27]. Also, many signals in practical

systems can be modeled as all-pole signals, as well [14].
Equation (4.23) can be written as
sln] + ay(1)sn — 1] + a,(2)s[n — 2] + ... + a,(p)sn — p] = b,(0)d[n]  (4.24)

in time domain. Additionally, if signal is considered as an impulse response of a

casual filter, s[n] = 0 is satisfied when n < 0.

The signal s[n] can be written recursively using the characteristics of IIR filters

as follows
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These equations can be expressed in matrix form as

s 0 0 ... 0] [ay(1) s1]
s[1] s[0] 0 ... Of [an(2) - s[2]
sl2] s[1] s0] ... o | ¢ |

i : ] Lan(p) ] | s[N —1]]

Using the standard notation, they also can be written as

Ap = x. (4.25)

Estimation of unknown parameters of an all-pole signal by using the least squares

solution of (4.25) is known as Prony’s method.

RSSyrony = Z |€prony [n]|? (4.26)
n=0
where »
eprony|[1] 2 s[n] + Z iy (k)s[n — k] (4.27)
k=1

is the Prony error.

Notice that the error defined in (4.27) is different than the error defined in (4.22).
Linear LS solution tries to minimize RSS defined in (4.26). Therefore, this solu-
tion may not minimize the actual approximation error. This is a disadvantage

of Prony’s solution.

After finding p by using LS approach for the equation (4.25), b,(0) becomes the

only unknown term in (4.23). One may use the
by(0) = s[0] (4.28)

equation directly which can be written from (4.24). When all parameters are

estimated, estimate signal can be written as

A(Z)prony _ BiQ(Z) bQ(O)

Az) Lo ay(k)

In this equation, each a,(k) is taken from p. §[n|pony can be found by taking

the inverse z transform of S(2)prony-
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Although (4.28) means $[0]prony = s[0], this selection may cause an improper
selection of by(0) if s[0] is a badly scaled value. To avoid the dependency of by(0)

on a single sample, 5[0], b,(0) can be estimated as [19)]

This selection rule matches not their first samples of both signals but their

energy [19]. Tt will be used to calculate by(0) in the following example scenarios.

The difference between the actual signal and the approximated signal using
Prony’s method is called as Prony approximation error and it is calculated

as

€prony [1] = 5[] — 8[1]prony - (4.29)

In this problem, s[n] with length NV is observed under AWGN as y[n]. Parameters
given in (4.23) are estimated from noisy observations using Prony’s method.

Observation model is expressed as

To apply Prony’s solution, a suitable p value which denotes the number of poles

of all-pole model should be selected.

The A and p matrices defined in (4.25), when the number of poles in Prony’s

solution is p and p + 1, are given as follows

s[0] 0 0 0
s[1] s[0] 0 . 0
A, = | 5[2] s[1] s[o] ... 0 (4.30)
[s[N —2] s[N—3] s[N—4] ... s[N—p—1]] N,



(0, (1)]
A |w(2)
b, .
_ap(p)_ px1,
[ 5[0) 0 0 0 0
s[1] s[0] 0 0 0
Apa=1| s[2 sl s[o] 0 0
_S[N —2] s[N—=3] s[N—-4] ... s[IN—-p—1] s[N —p}_ N—1xp+1,
_ N
0
PR (4.31)
0
[ a,(1) ]
ap(Q)
Ppi1 = :
ap(p)
| ap(p+1)]

px1.

As it can be seen from (4.31), A, is nested in A,;; and each column is inde-
pendent from each other except some rare and special conditions. Therefore,
F-test can be used to find the proper p number. This case is similar to Type II
problem. For this problem, K and K defined in Type II are denoted as p and p,
respectively. F-test can be applied straightforwardly to this problem as shown
in Figure 4.64.

At each iteration two nested models are compared using F-test. If I’ > threshold,
it is decided that higher order model (My) models the actual signal “significantly
better” than the model with lower order (M). Then, each model order is in-

creased by same amount and F-test is applied until F' < threshold. In that case,

110



Calculate Prony error for p = i case ¢
Calculate Prony error for p = i+1 case

v

Calculate F ratio using these two errors

true false

F <= threshold

false

Figure 4.64: The Proposed Model Order Selection Algorithm for Prony’s Method

it is decided that the model with order M is suitable to model the actual signal,

i.,e. p= M. Then poles and zero are estimated as mentioned before.

In each ' iteration A, and Ay, are formed as stated previously in (4.30) and
(4.31). For each estimation, RSSony is calculated as in (4.26). F' ratio and
threshold are calculated using the formulas given in (3.1) and (3.13), respec-

tively.
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New algorithm parameter p,,.. is introduced as shown in Figure 4.64.

® Dar: Limits the maximum number of poles used by Prony’s method. One
may want to set a upper limit for p if there is a priori information about

s[n].

Since only noisy observation of the signal s[n| is available, A matrices are formed

by using y vector, not s.

4.4.1 Simulation Results

In this section, performance of the proposed method for number of pole selection
is demonstrated with different scenarios. In each scenario, as many as MCNum

parameter Monte Carlo simulation are run.

The following figures show RMSE values of Prony errors and Prony approxima-
tion errors. RMSE stands for root-mean-square error and is calculated using all

Monte Carlo simulations.

4.4.1.1 Scenariol

Problem Definition

s[n] is generated using the parameters given in Table 4.14. Plot of the signal is

given in Figure 4.65.

112



Table 4.14: Signal Parameters for Scenario I

Parameter Value
Length 96

Number of Zeros (q)
Zero Location #0
Number of Poles (p) 5

Pole Location #1 -0.92

Pole Location #2 -0.4
Pole Location #3 -0.3
Pole Location #4 -0.1

Pole Location #5 0.4

s[n]

151

0.5}

0 20 20 60 80 100
Figure 4.65: Plot of s[n|, Scenario I

Problem parameters are given in Table 4.15

Table 4.15: Problem Parameters for Scenario I

Parameter | Value
Dmaz 10
SNR 60 dB
p 0.1
MCNum 10000

Results
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The poles of all-pole model signals are estimated from noisy observations of the
signal. The proposed method is used to select the number of poles that should
be used in the model. Figure 4.66 shows the RMS value of Prony error with
changing number of poles. The error decreases monotonically as p increases.
However, Prony approximation error does not decrease monotonically as shown
in Figure 4.67. This is due to the fact that Prony’s method is an approximation
to the non-linear LS problem. Its error is different than the actual error defined
in (4.22). The proposed method tracks the changes in the Prony error, not
Prony approximation error. Histogram of the selected number of poles by the
proposed method is given in Figure 4.68. The proposed method selects all-pole
models with 4 or 5 poles in most of the experiments. From Figure 4.67, it can
be seen that using all-pole signal with 5 poles is suitable. However, since the
Prony error is almost same for p = 4 and p = 5 the proposed method chooses
both of them. This difference is due to the performance of Prony’s method not
the proposed method itself. Nevertheless, selecting p = 4 is not the worst choice

according to Figure 4.67.

o Prony Error
lo T T T T T T T T

10

Figure 4.66: eprony[n| vs p, Scenario I
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Prony Approximation Error
10 T T T T T T T T

—4 i i i i i i i i

10
1 2 3 4 5 6 7 8 9 10
p
Figure 4.67: €prony Vs p, Scenario I
Percentage of Selected Poles by F-Test
100 T T T T T
90 b
80 B
70t 1

Percentage

Figure 4.68: Selection Percentage of p by The Proposed Algorithm, Scenario I

4.4.1.2 Scenario 11

Problem Definition
Parameters of s[n] signal are given in Table 4.16. Notice that this is not an
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all-pole signal, it has 2 zeros in addition to 4 poles. All-pole signal can also
be used to model more general signals in practice like this signal [19]. In this
scenario, s[n| is generated using more general formula given in (4.19) not using
(4.23) which is valid for only all-pole signals. However, during modeling signal
is assumed to be an all-pole signal as given in (4.23) and modeled using this

assumption. Plot of the signal is given in Figure 4.69.

Table 4.16: Signal Parameters for Scenario 11

Parameter Value
Length 98
Number of Zeros (q) 2
Zero Location #0 1
Zero Location #1 -0.2
Zero Location #2 0.1
Number of Poles (p) 4
Pole Location #1 -0.8 + 0.1j
Pole Location #2 -0.8 - 0.1j
Pole Location #3 -0.7 + 0.6]
Pole Location #4 -0.7 - 0.6

0 20 40 60 80 100
n

Figure 4.69: Plot of s[n], Scenario II

Problem parameters are given in Table 4.17.
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Results

From Figure (4.72), the proposed method selects the suitable number of poles

at most of time according to Prony error graph shown in Figure 4.70. How-

ever, similar

Prony error exactly. This situation is independent from the proposed method

as explained

RMSE

Table 4.17: Problem Parameters for Scenario 11

Parameter | Value
Prmaz 10
SNR 60 dB
P 0.1
MCNum 10000

to Scenario I, the Prony approximation error does not follow the

previously.

Prony Error
10 T T T T T T T T

10

Figure 4.70: epony[n] Vs p vs p, Scenario II
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1 Prony Approximation Error
T T T

T T T

10 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
p
Figure 4.71: €prony[n] VS p vs p, Scenario 1T
Percentage of Selected Poles by F-Test
100 T T T T T
90 E
80 b
70 b
& 60 1
g
g 50 ]
o
—
(o)
A 40 .
30 E
20 b
10 E
0
8 9 10
p

Figure 4.72: Selection Percentage of p by The Proposed Algorithm, Scenario 1T

4.4.1.3 Scenario II1

Problem Definition

Parameters of s[n] are given in Table 4.18. Notice that this is same signal

introduced in Scenario I. Therefore, plot of s[n] is not given again.
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Table 4.18: Signal Parameters for Scenario 1T

Parameter Value
Length 96
Number of Zeros (q)
Zero Location #0 1

Number of Poles (p) 5
Pole Location #1 -0.92

Pole Location #2 -0.4
Pole Location #3 -0.3
Pole Location #4 -0.1

Pole Location #5 0.4

Problem parameters are given in Table 4.19. The only difference form Scenario
I is value of SNR, which is lower than Scenario I in this case. This scenario is

given to show the effect of SNR on the performance.

Table 4.19: Problem Parameters for Scenario 111

Pmaaz 10
SNR 20 dB
P 0.1
MCNum | 10000

Results

The first thing that is different from the previous scenarios is the changes in
both Prony error and Prony approximation error with p. In this case errors do
not change significantly with p as shown in Figures 4.73 and 4.74. Notice the
limits of y-axes. As shown in Figure 4.75, the proposed method generally selects
one pole model. This selection is logical if Figure 4.73 is considered. According
to this figure, model with order 2 does not provide a “significant” decrease in
RMSE than model with order 1. However, selected number of poles should be
close to 5 in order to estimate the model order accurately. For this SNR value,
the reduction in RSS is dominated by not only signal components but also noise
components. Therefore, it is not possible to estimate the correct model order

using RSS values.
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As an example, one of the observed signals used during the simulation is shown

in (4.75).

Prony Error

10—0.84 | : : . i
(L,ﬂ) 10708 |
=
~

10708 | . |

10787 )

1 2 3 4 5 6 7 8 9 10
p
Figure 4.73: eprony[1] Vs p, Scenario 111
Prony Approximation Error
—-0.64 T T T T

10 B b

107°%5 | . |
£2)
[9p]
=
~

107056 |

10757 |

1 2 3 4 5 6 7 8 9 10
p

Figure 4.74: €prony[n] Vs p, Scenario 111
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Percentage of Selected Poles by F-Test
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40
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Figure 4.75: Selection Percentage of p by The Proposed Algorithm, Scenario 111

s[n] and y[n]

= = = y[n] Realization
s 5[N]

0 20 40 60 80 100

Figure 4.76: s[n] and y[n] Realization, Scenario 111

4.5 Segmentation of Damped Sinusoidals

As a last example problem, segmentation of the impulse responses of casual
LTT filters will be considered. Similar to segmentation of multi tone signals,

impulse responses are concatenated over time. Noisy observation is segmented
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into multiple segments such that each contains observation from a single impulse
response. Segmented observations may be modeled later as all-pole signals ex-
plained in the previous example problem. However, this example problem is
about only segmentation of observations. This is also an example problem for
usage of the F-test based proposed method with other algorithms as it will be

explained soon.

s[n] is generated by summing impulse responses of H different casual LTI filters

as given below

H
Zsh(n7n1h7n2h7aph7bqh7ph7Qh) OSTLSN—].
5[”] = 9§ h=1
0 otherwise,

Z7HSu(2)} mi, <n<ny,

A
Sh(n’ N1y, N2, Apy, s bqu’“w Qh) =
0 otherwise,
dn
> bq<k> h)z_k
Sh<z7a’ph7bqhaph7qh) = :(;;h )
145 ay(k, h)=—"
k=1
| (lp(]_, |
ap(27
al’h é ap 37
ap(ph’ h)_ phX17
[ 5,(0,h) |
by(1, h)
bo(2, h
b | P20
by(3, h)
%a9m )]

a,(j,1) and b,(j, 1) denote j™ pole and j™ zero of i response, respectively. To

demonstrate the structure of s[n], an example is shown in Figure 4.77 where
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H = 4. It was mentioned that all-pole modeling can also be used to model
signals with number of zeros greater than one. Therefore, there is no constraint

on number of zeros for any response.

1.5 T T T T T T T T

0.5

0 20 40 60 80 100 120 140 160 180

Figure 4.77: An Example s[n] Signal

Segmentation is based on the difference between approximated signal using
Prony’s method and the observation signal. Since Prony’s method approxi-
mates to the signal as a sum of damped sinusoidals, at starting point of the
next segment the error between the approximation and the observation starts
to increase. Segmentation is done by tracking this error which is not related
with F-test. F-test is used as in the previous model order selection problem for
Prony’s method. Once the error reaches to error threshold, which is different
than threshold used in F-test, new segment starts. Observation in the new seg-
ment is modeled as all-pole signal using Prony’s method with the help of the
proposed F-test based number of poles selection approach. The segmentation

algorithm is shown in Figure 4.78.

Blue block shown in Figure 4.78 represents the algorithm previously given in
the number of pole selection problem. It represents the algorithm shown in
Figure 4.64. It can be seen that the segmentation algorithm given for this

problem is quite different than the algorithm given for multi tone signals. In
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First segment starts

v

Take N, observations from

beginning of the segment.

v

Approximate this data as
All-pole model signal
Using Prony’s Method

And F-Test

v

Calculate error_threshold

J

Find the minimum indeks
Where
le,[n]l > error_threshold

AND
current segment lasts at least N samples

J

Finish current segment
and
create new one

J

Do it until end of the observation

Figure 4.78: The Proposed Segmentation Algorithm

multi tone segmentation problem, power of tone does not decrease as search
window moves. However in this case, power of damped sinusoidal decreases if
a search window is used and shifted. Therefore, segmentation algorithm is not

F-test based completely.
The algorithm works as follows: It is assumed that observation starts with a
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noisy impulse response. N; samples are selected from the beginning of the first
segment. Using the proposed algorithm given in the previous problem, selected
samples are modeled as all-pole signal with pole number selected by the proposed
method. Prony approximation error which is defined in (4.29) is calculated for
the rest of the observation. A threshold called error threshold is calculated

for segmentation.

To calculate error threshold, absolute value of Prony approximation error
is smoothed using a moving average filter with window length N,;4. Then,
error_threshold is set as mean value of the first N,,;, samples. Minimum length
of each segment is also taken as N,,;,. The lowest possible index where the ab-
solute value of Prony approximation error is greater than error threshold is
found after segment lasts at least NV,,;, samples. This index is taken as starting
point of the new segment. The flow is repeated for the new segment and the

segmentation continues until the end of the observation.

error _threshold is calculated as !
]Vmi'n._1

Z smooth(|eprony [12]]s Naza)- (4.32)
k=0

error _threshold = 4

mwn

The following parameters are used in the algorithm shown in Figure 4.78.

e N; (Ninitiar): Number of samples taken from the beginning of the each new

segment to approximate to the observation using Prony’s method.

® Nuin (Nminimum): Minimum length of each segment. If there is a pri-
ori information about minimum separation between two consecutive filter

responses, it may be used to set this parameter.

® Nuya (Nuoving Average): Length of the moving window used to smooth out

Prony error as given in (4.32).

® Dyae: Limits the maximum number of poles used in Prony’s method. One

may want to set an upper limit for p if there is a priori information about

! smooth() function is used to demonstrate moving average filter. Indeed, this syntax is used

same as smooth() function of Curve Fitting Toolbox of MATLAB®. For detailed information please
see the MATLAB® R2015a documentation or visit: http://www.mathworks.com/help/curvefit/
smooth.html
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s[n]. It is used in blue box shown in Figure 4.78. It is the same parameter

introduced in the previous problem.

4.5.1 Simulation Results
4.5.1.1 Scenario 1

Problem Definition

In this scenario H is selected as 4. Parameters for each impulse response are

given in Table 4.20.

Table 4.20: Signal Parameters for Scenario I

Parameter s1[n] | s2[n] | s3[n] | s4[n]
Starting Index 0 40 80 120
End Index 39 79 119 179
Length 40 40 40 60

Number of Zeros (q)
Zero Location #0
Number of Poles (p)
Pole Location #1 -0.6 -0.7 -0.8 -0.9

Problem parameters are given in Table 4.23.

Table 4.21: Problem Parameters for Scenario [

Parameter | Value
Pmaz 10
SNR 60 dB

Dfd 0.1
N; 10
Nara 20
Noin 30

Results

Indices of ideal segment borders should be 40, 80, 120. The proposed method

estimates these values as: 39, 179, 119. It finds the segment borders almost
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exactly. The segment borders are shown in Figure 4.79.

O

s[n] and Segments

0.8

0.6

0.4

0.2
I [l ‘“H\‘

| | Il L

s[n] i
—© Segment Borders

0 20 40 60 80 100 120 140 160 180

Figure 4.79: s[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario I

4.5.1.2 Scenario 11

Problem Definition

In this scenario H is selected as 4. Parameters for each impulse response are

given in Table 4.22.
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Table 4.22: Signal Parameters for Scenario 11

Parameter s1[n] Sa[n] ss[n] s4[n]
Starting Index 0 75 172 269
End Index 74 171 268 367
Length 75 97 97 99
Number of Zeros (q) 0 0 0 2
Zero Location #0 1 1 1 1
Zero Location #1 - - - -0.9 + 0.7j
Zero Location #2 - - - -0.9 - 0.7
Number of Poles (p) 6 4 5 2

Pole Location #1 -0.2 +0.55 | -0.2 +0.13 | -0.92 | -0.9 + 0.01;
Pole Location #2 -0.2-0.5) | -0.2-0.15 | -0.4 | -0.9-0.01;

Pole Location #3 0.1 -0.7-0.65 | -0.3 -
Pole Location #4 -0.1 -0.7 +0.65 | -0.1 -
Pole Location #5 -0.6 + 0.7j - -0.4 -

Pole Location #6 -0.6 - 0.7j - - -

Problem parameters are given in Table 4.23.

Table 4.23: Problem Parameters for Scenario 11

Parameter | Value
Dmaz 10
SNR 60 dB

Drd 0.1
N; 10
Nya 20
Noin 50

Results

Indices of ideal segment borders should be 75, 172, 269. The proposed method
estimates these values as: 74, 171, 271. It finds the segment borders with

relatively small errors. The segment borders are shown in Figure 4.80.
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s[n] and Segments

)

—© Segment Borders

s[n]

0 50 100 150 200 250 300 350 400
n

Figure 4.80: s[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario II

4.5.1.3 Scenario 111

Problem Definition

As a last example, a real world data is taken from p. 133 of [19]. Raw data can be
found in the CD included in [19] with the name FSSP3exer5 2.mat. This data
is taken from output of an accelerometer of a faulty bearing machine. Since
data is not synthetically generated, it is not possible to give a mathematical

representation. Instead, a plot is given in Figure 4.81.

Problem parameters are given in Table 4.24.

Table 4.24: Problem Parameters for Scenario 111

Parameter | Value
Pmaz 10
SNR ?

Drfd 0.4
N; 10
Nya 20
Noin 100
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n

Figure 4.81: Plot of y[n]

Although expression and characteristics of noise aren’t known, proposed method

is applied anyway.
Results

Since the mathematical expression of the actual signal is unknown, results can
be only seen visually in Figure 4.82. Except few false decisions, segments seem

to be at correct positions.

y[n] and Segments

0.6 D—Q O = O

0.4

0.2

-0.2 b
_0.4 . 4
-0.6 y[n] i
—© Segment Borders
0 500 1000 1500 2000

Figure 4.82: y[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario I11
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CHAPTER 5

CONCLUSIONS

In this thesis, different F-test based methods are proposed for model order se-
lection related problems. F-test is studied in the statistical literature whereas
it is not equally used in the signal processing area. The fundamentals of F-test

are adapted to signal processing problems in this work.

Initially, the necessary background information is given. After giving necessary
information, the proposed methods are supported by example problems. In each
problem, the proposed algorithms are shown using flow charts and supported by
simulations. The effects of SNR and F-test parameters as psq on the performance

are studied in some simulations.

In general, F-test based methods looks suitable for some signal processing prob-
lems, provided that the signal can be indeed modeled as an element of a linear

space.

One of the main advantages of F-test is that it does not require noise variance
information. On the other hand, SNR should be relatively high to estimate the

model orders accurately.

The F-test based approaches also look suitable for embedded and real time ap-
plications. The most expensive operation is the calculation of A™ matrix which
involves a matrix inversion operation. Apart form this calculation, application

of F-test is quite easy to implement.
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Future Work

Although the effects of pyq and SNR are shown in some simulations, their effects
aren’t analyzed in detail. It is shown and explained that both of them affect
the performance of the suggested methods directly. For a given problem, an
optimum selection of py; parameter may be analyzed. Also the SNR threshold
beyond which F-test works well can be studied.
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APPENDIX A

CRAMER-RAO LOWER BOUND FOR
ZERO-CROSSING POINT ESTIMATION

Consider the signal given as

N -1 N -1
zln] =a(n —no) =an+b, n=-——,...,=15,-050515. .., ——.

(A.1)
no is the zero-crossing point of x[n]. a and b, in other words ng, are unknown
parameters of the signal. Similar to example problem about zero-crossing point
estimation problem, it is assumed that ny can take any real value between —0.5

and 0.5. At this section, CRLB will be derived for ng.
This problem is similar to CRLB calculation for vector parameter case [18].

N is an integer. z[n] is observed under AWGN (wn]) as

yln] = xln] + wln] = An + B + wln].

This can be written as

Ynx1 — AN><2p2><1 + Wi,

in vector notation where
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05 1

N-1 g

Fisher information matrix (I(p)) can be written as

(02 Inp(y; p) ] [0°Inp(y; p)] |
- da® | _E_ dadb
I(p) =
[0 Inp(y;p)] [0 Inp(y;p)]
_p | _p |
I obda | o ||
The likelihood function is given as
N—1
1 1 &
. - = o o —b 2
p(y; p) o) eXp 4 ~5 n_l(y[n] an —b)
- 2
and
N—1
Olnp(y;p) 1
it AC AT £ A —an—b
9 p n_ZNl(y[n] an — b)n,
- 2
N-—1
9?Inp(y; p) RS
n=— 2_1
N—1
Olnp(y;p) 1
el AL AT —an—b
2% p _ZN_l(y[n] an —b),
Plply;p) N
0b? g2
N—1
& Inp(y; p) 1<
dadb o2 ZN_ln_ ’

&* Inp(y; p) 1<
dbda o 2;



Counsider summation term given (A.2) as follows;

:M(M+1)(2M+1) _M(M+1)+%
2

3
:% [4M? — 1]
N(N? -1)

12

and then
lnp(y;p) 1 N(N? 1)

Oa? o2 12

can be written.

Now the Fisher information matrix can be written as

N(N? -1) 0
1 12
I(p) = =
0 N
Finally using (A.1), the followings can be written,
b
g(p) 2o = —— = -2,
a b1

el ]

a? a
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