

OPTIMIZATION OF LOCATIONS OF VORONOI GRID POINTS
IN RESERVOIR SIMULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ULVI RZA-GULIYEV

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

PETROLEUM AND NATURAL GAS ENGINEERING

SEPTEMBER 2015

Approval of the thesis:

OPTIMIZATION OF LOCATIONS OF VORONOI GRIDS

IN RESERVOIR SIMULATION

submitted by ULVI RZA-GULIYEV in partial fulfillment of the requirements for
the degree of Masters of Science in Petroleum and Natural Gas Engineering

Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mustafa Verşan Kök _________________
Head of Department, Petroleum and Natural Gas Eng. Dept.

Prof. Dr. Çaglar Sınayuç _________________

Supervisor, Petroleum and Natural Gas Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Mustafa Verşan Kök _________________
Petroleum and Natural Gas Engineering Dept., METU

Asst. Prof. Dr. Çaglar Sınayuç _________________
Petroleum and Natural Gas Engineering Dept., METU

Prof. Dr. Mahmut Parlaktuna _________________
Petroleum and Natural Gas Engineering Dept., METU

Asst. Prof. Dr. İsmail Durgut _________________
Petroleum and Natural Gas Engineering Dept., METU

Asst. Prof. Dr. Emre Artun _________________
Petroleum and Natural Gas Engineering Dept., METU NCC

 Date: 01.09.2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name: Ulvi, Rza-Guliyev

 Signature:

v

ABSTRACT

OPTIMIZATION OF LOCATIONS OF VORONOI GRID POINTS IN

RESERVOIR SIMULATION

Rza-Guliyev, Ulvi

M.S., Department of Petroleum and Natural Gas Engineering

Supervisor: Asst. Prof. Dr. Çağlar Sınayuç

September 2015, 216 pages

Reservoir simulations are computer models that can imitate real world reservoir

behavior under different circumstances, therefore making it possible for reservoir

engineers to make sensitivity studies in order to assess different scenarios. These

models discretize the reservoir into smaller blocks either using structured grids or

unstructured grids. The application of regular structured grids to correctly map

reservoir's geological structure can be very difficult, if not nearly impossible.

Unstructured grids can be more convenient for those cases. Voronoi gridding

technique creates unstructured grids such that the boundary of two grids is normal to

the line connecting Voronoi particles that represents the grids. So that it would be

convenient to calculate the transmissibility on the block boundaries.

In this study instead of placing the Voronoi particles randomly, or in a regular

fashion, the properties of the reservoir such as permeability anisotropy, orientation of

the permeability vectors, heterogeneity of the petrophysical properties, and well

locations and types were taken into consideration in the placement of Voronoi

particles. A three-step algorithm, created in this thesis and written using Matlab

software, takes into account the high resolution petrophysical properties in a finer

static mesh, together with permeability anisotropy ratio and orientation and well

vi

location. This algorithm generates initial distribution of grid points that honors

permeability anisotropy, then assigns each grid point an error value, which is

dependent on grid point placement, and tries to minimize this error by moving bad

points onto better locations. The error gets lower as the Voronoi grids and the

background finer static mesh agrees with each other. Finally, after each grid point's

location is chosen grid points related to vertical and horizontal wells and fault are

added. Algorithm was implemented on six cases of different complexity and then

generated Voronoi grid blocks were used in a simple, single phase simulator to show

the effects of the optimized grids. It was seen that the developed code during the

study can match the given input static model and can reduce the number of grid

blocks required to model a hydrocarbon reservoir.

Key words: Voronoi, PEBI, reservoir simulation, optimization

vii

ÖZ

REZERVUAR SİMÜLASYONUNDA VORONOİ IZGARA NOKTALARININ

YERLERİNİN OPTİMİZASYONU

Rza-Guliyev, Ulvi

Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Çağlar Sınayuç

Eylül 2015, 216 sayfa

Rezervuar simülasyonları gerçek saha davranışlarını farklı durumlarda taklit eden ve

bu sayede rezervuar mühendislerinin farklı senaryoları değerlendirmek için

hassasiyet çalışması yapmasını mümkün kılan bilgisayar modelleridir. Bu modeller

rezervuarı küçük bloklara yapılandırılmış bloklar halinde ya da yapılandırılmamış

bloklar halinde ayırırlar. Rezervuarın jeolojik yapısını doğru şekilde tanımlamak için

yapılandırılmış blokların kullanımı imkansız olmasa bile çok zordur.

Yapılandırılmamış bloklar bu durumda çok daha uygun olabilir. Voronoi ızgara

yöntemi ile elde edilen yapılandırılmamış bloklar arasındaki sınır, iki bloğu

birleştiren ve bloğu temsil eden parçacıkları birleştiren doğruya diktir. Bu sayede

blok sınırındaki iletgenliği hesaplamak daha kolay olmaktadır.

Bu çalışmada Voronoi parçacıklarını rastgele ya da düzenli şekilde yerleştirmek

yerine, rezervuarın geçirgenlik eşyönsüzlüğü, geçirgenlik vektörlerinin yönelimi,

petrofiziksel özelliklerin heterojenliği, kuyu yer ve tipleri gibi özellikleri göz önüne

alınarak voronoi parçacıklarının yerleri belirlenmiştir. Yüksek çözünürlüklü ince

statik bir ızgarada yer alan petrofiziksel özellikler, geçirgenlik eşyönsüzlük oranı ve

yönelimi ile kuyu yerlerini kullanan üç aşamalı bir Matlab kodu bu amaç için

yazılmıştır. Algoritma parçacıkların ilk dağılımını geçirgenlik eşyönsüzlüğü

viii

değerine bağlı olarak gerçekleştirmektedir. Yazılım voronoi parçacıklarının en

uygun yerlerini bir hata en aza indirme yöntemi ile belirlemektedir. Hata Voronoi

blokları ile ince statik ızgara ile verilen özellik sınırlarının birbirleri ile örtüşmesi ile

azalmaktadır. Son olarak, parçacıkların yerleri belirlendikten sonra dikey ve yatay

kuyular ile fay hatları eklenmektedir. Basit, tek fazlı bir simülatör kullanılarak altı

farklı durum için en uygun hale getirilmiş ızgaraların etkisi görülmüştür. Çalışma

sırasında geliştirilen kodun verilen statik model ile örtüştüğü ve bir hidrokarbon

rezervuarını modellemek için gerekli blok sayısını azalttığı görülmüştür.

Anahtar kelimeler: Voronoi, PEBI, rezervuar simülasyon, optimizasyon

 ix

ACKNOWLEDGEMENTS

I would like to thank:

My supervisor Prof. Dr. Çağlar Sınayuç for his assistance and continuous help

throughout making of this thesis;

Middle East Technical University Petroleum and Natural Gas Engineering

Department for their dedication to the work and always being there if any help is

required;

My family for their continuous support and faith in me;

My friends Said Akhundov, Tugce Bayram, Nijat Mutallimov, Rashad Mutallimov,

Fuad Rahimov, Avaz Alaskarov and Osman Quliyev for their interesting ideas that

put me on the right track throughout making of this thesis.

x

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTERS

1. INTRODUCTION .. 1

2. RESERVOIR SIMULATION .. 5

2.1. Introduction ... 5

2.2. Motivation to use reservoir simulation .. 7

2.3. Gridding techniques... 7

 2.3.1. Structured Grids... 8

 2.3.1.1. Cartesian Grid ... 8

 2.3.1.2. Cylindrical Grid .. 9

 2.3.1.3. Hexagonal Grid .. 10

 2.3.1.4. Triangular Grid ... 11

 2.3.2. Untructured Grids .. 11

 2.3.2.1. Voronoi Grid .. 12

 2.3.2.2. Truncated Grid.. 13

 2.3.2.3. Curvilinear Grid.. 14

 2.3.3. Hybrid Grid ... 15

3. VORONOI GRID BLOCKS .. 17

3.1. Introduction ... 17

3.2. Motivation to use Voronoi grids.. 20

3.3. Voronoi grid generation algorithm .. 21

3.3. Use of Voronoi grid in reservoir simulation .. 23

xi

4. RESERVOIR HETEROGENEITIES AND ANISOTROPY 27

4.1. Introduction ... 27

4.2. Channeling ... 28

4.3. Anisotropy ... 31

5. OPTIMIZATION ... 35

5.1. Introduction to optimization .. 35

5.2. Classes of optimization algorithms ... 36

5.3. Evolutionary algorithms .. 39

6. PROBLEM STATEMENT .. 43

7. METHODOLOGY ... 45

7.1. Introduction ... 45

7.2. Step One (generation of initial population of grid points) 46

7.3. Step Two (movement of the bad grid points) .. 49

7.4. Step Three (adding of grid points related to wells and faults)..................... 57

 7.4.1. Treatment of vertical wells .. 57

 7.4.2. Treatment of horizontal wells and faults ... 59

8. RESULTS OF STUDY .. 61

8.1. Introduction ... 61

8.2. Cases .. 62

 8.2.1. Case One (no anisotropy, no heterogeneities, one vertical well) 62

 8.2.2. Case Two (anisotropy, no heterogeneities, one vertical well) 72

 8.2.3. Case Three (anisotropy, straight channel, one vertical well) 77

 8.2.4. Case Four (anisotropy, deviated channel, one vertical well) 83

 8.2.5. Case Five (anisotropy, four different regions, one vertical well) 87

 8.2.6. Case Six (anisotropy, no heterogeneities, fault and horizontal well) 92

8.3. Effects of inputs on final results .. 95

 8.3.1. Effect of number of grid points ... 96

 8.3.2. Effect of number of moving grid points .. 97

 8.3.3. Effect of limit of movement of grid points .. 98

 8.3.4. Effect of distance of movement of grid points 99

9. CONCLUSION .. 101

10. PROPOSITION FOR FUTURE STUDIES ... 103

xii

BIBLIOGRAPHY .. 105

APPENDICES

A. SOURCE CODE ... 113

B. CASE 2 FLUID FLOW SIMULATION RUN .. 193

C. CASE 3 FLUID FLOW SIMULATION RUN ... 199

D. CASE 4 FLUID FLOW SIMULATION RUN .. 205

E. CASE 5 FLUID FLOW SIMULATION RUN ... 211

xiii

LIST OF TABLES

TABLE

8.1. Description of the cases .. 61

xiv

LIST OF FIGURES

FIGURES

2.1. Main stages of generation of reservoir simulators .. 7

2.2. Representation of geological feature using structured Cartesian grid with

refinement (a) versus unstructured grid (b) ... 8

2.3. Cartesian grid in 2D (a) and 3D (b).. .. 9

2.4. Local grid refinement in regular Cartesian grid .. 9

2.5. Cylindrical grid in two dimensions with local refinement (a) and three

dimensions (b) .. 10

2.6. Example on hexagonal grid in two dimensions .. 10

2.7. Example on triangular grid in two dimensions ... 11

2.8. Example on Voronoi grid in two dimensions ... 12

2.9. Truncated grid ... 13

2.10. Example on curvilinear grid type .. 14

2.11. Example on hybrid grids ... 15

3.1. Example on usage of hybrid gridding in reservoir simulation 18

3.2. Example on local grid refinement ... 19

3.3. Voronoi grid and Delaunay mesh ... 20

3.4. Common grid techniques that can be associated with Voronoi 21

4.1. Reservoir heterogeneity classes .. 28

4.2. Braided fluvial deposition system ... 29

4.3. Meandering fluvial deposition system .. 30

4.4. Example on diagenetic changes .. 32

5.1. Rough classification of optimization algorithms .. 37

5.2. The basic cycle of evolutionary algorithms .. 39

7.1. Angle between permeability in y-direction and y-direction of the reservoir 46

xv

7.2. First step example. Black rectangle - reservoir; green rectangle - area, where

grid points will be generated; red dot - starting point; a - reservoir length; b -

reservoir width ... 47

7.3. Flowchart of step one .. 48

7.4. Example on results obtained from the step one. Blue area - reservoir: white area

- zone outside of reservoir .. 50

7.5. Example on petrophysical field .. 51

7.6. Flowchart of step two .. 52

7.7. Zoom in of the orange rectangle from the figure 7.4. Green dots show property

points inside reservoir; red points show property points outside of reservoir; blue

dots are grid points ... 53

7.8. Example on reservoir.. .. 55

7.9. Treating of vertical wells .. 56

7.10. Treating of horizontal wells.. .. 58

7.11. Treating of faults.. ... 59

8.1. Permeability field for cases #1, #2 and #6 (plotted using MATLAB) 62

8.2. Results obtained after running of the first step for the case #1 (built in

MATLAB) .. 63

8.3. Results obtained after running of the second step of case #2 (built in MATLAB)

 .. 64

8.4. Error values for all generations of Case #1 ... 65

8.5. Results obtained for the case #1 (built in MATLAB) ... 66

8.6. Pressure distribution after 5 days .. 67

8.7. Pressure distribution after 10 days .. 67

8.8. Pressure distribution after 15 days .. 68

8.9. Pressure distribution after 20 days .. 68

8.10. Pressure distribution after 25 days .. 69

8.11. Pressure distribution after 30 days .. 69

8.12. Pressure distribution after 35 days .. 70

8.13. Pressure distribution after 40 days .. 70

8.14. Pressure distribution after 45 days .. 71

8.15. Pressure distribution after 50 days .. 71

xvi

8.16. Results obtained after running of the first step for the case #2 (built in

MATLAB).. ... 72

8.17. Results obtained after running of the second step of case #2(built in MATLAB)

.. 73

8.18. Error values for all generations of Case #2 ... 74

8.19. Results obtained for the case #2 (built in MATLAB)....................................... 75

8.20. Velocity field combined with the contour map of the distribution of the

pressures after 10 days of production for the second case (obtained with Surfer).. .. 76

8.21. Permeability field for case #3. Generated in MATLAB.. 76

8.22. Results obtained after running of the first step for the case #3 (built in

MATLAB).. ... 78

8.23. Results obtained after running of the second step of case #3 (built in

MATLAB).. ... 78

8.24. Error values for all generations of Case #3 ... 79

8.25. Results obtained for the case #3 (built in MATLAB)....................................... 80

8.26. Velocity field combined with the contour map of the distribution of the

pressures after 15 days of production for the third case (obtained with Surfer) 81

8.27. Permeability field for case #4. Plotted in MATLAB .. 82

8.28. Results obtained after running of the first step for the case #4 (built in

MATLAB).. ... 83

8.29. Results obtained after running of the second step of case #4 (built in

MATLAB).. ... 84

8.30. Error values for all generations of Case #4 ... 84

8.31. Results obtained for the case #4 (built in MATLAB)....................................... 85

8.32. Velocity field combined with the contour map of the distribution of the

pressures after 15 days of production for the fourth case (obtained with Surfer) 86

8.33. Permeability field for case #5. Plotted in MATLAB .. 87

8.34. Results obtained after running of the first step for the case #5 (built in

MATLAB).. ... 88

8.35. Results obtained after running of the second step of case #5 (built in

MATLAB.. ... 89

8.36. Error values for all generations of Case #5 ... 90

xvii

8.37. Results obtained for the case #5 (built in MATLAB) 91

8.38. Velocity field combined with the contour map of the distribution of the

pressures after 25 days of production for the fifth case (obtained with Surfer)......... 91

8.39. Results obtained after running of the first step for the case #6 (built in

MATLAB).. ... 92

8.40. Results obtained after running of the second step of case #6 (built in

MATLAB).. ... 93

8.41. Error values for all generations of Case #6 ... 94

8.42. Results obtained for the case number six (built in MATLAB) 95

8.43. Comparing results with different number of blocks (obtained with MATLAB)

 .. 96

8.44. Comparing results with different number of movements for each grid point

(obtained with MATLAB).. ... 97

8.45. Comparing results with different limits of movement (obtained with

MATLAB).. ... 98

8.46. Comparing results with different distance of movement (obtained with

MATLAB).. ... 99

B.1. Pressure distribution after 5 days ... 193

B.2. Pressure distribution after 10 days ... 194

B.3. Pressure distribution after 15 days ... 194

B.4. Pressure distribution after 20 days ... 195

B.5. Pressure distribution after 25 days ... 195

B.6. Pressure distribution after 30 days ... 196

B.7. Pressure distribution after 35 days ... 196

B.8. Pressure distribution after 40 days ... 197

B.9. Pressure distribution after 45 days ... 197

B.10. Pressure distribution after 50 days ... 198

C.1. Pressure distribution after 5 days ... 199

C.2. Pressure distribution after 10 days ... 200

C.3. Pressure distribution after 15 days ... 200

C.4. Pressure distribution after 20 days ... 201

C.5. Pressure distribution after 25 days ... 201

xviii

C.6. Pressure distribution after 30 days ... 202

C.7. Pressure distribution after 35 days ... 202

C.8. Pressure distribution after 40 days ... 203

C.9. Pressure distribution after 45 days ... 203

C.10. Pressure distribution after 50 days ... 204

D.1. Pressure distribution after 5 days ... 205

D.2. Pressure distribution after 10 days ... 206

D.3. Pressure distribution after 15 days ... 206

D.4. Pressure distribution after 20 days ... 207

D.5. Pressure distribution after 25 days ... 207

D.6. Pressure distribution after 30 days ... 208

D.7. Pressure distribution after 35 days ... 208

D.8. Pressure distribution after 40 days ... 209

D.9. Pressure distribution after 45 days ... 209

D.10. Pressure distribution after 50 days ... 210

E.1. Pressure distribution after 0.5 days .. 211

E.2. Pressure distribution after 1 day ... 212

E.3. Pressure distribution after 1.5 days .. 212

E.4. Pressure distribution after 2 days ... 213

E.5. Pressure distribution after 2.5 days .. 213

E.6. Pressure distribution after 3 days ... 214

E.7. Pressure distribution after 3.5 days .. 214

E.8. Pressure distribution after 4 days ... 215

E.9. Pressure distribution after 4.5 days .. 215

E.10. Pressure distribution after 5 days ... 216

1

CHAPTER 1

INTRODUCTION

With the dramatic advancements in computers during last half of the century,

reservoir modeling became one of the most powerful tools in the hands of reservoir

engineers. By giving possibility to assess different ways of exploitation of reservoirs

before making a final decision, it gave opportunity to correctly evaluate all possible

outcomes and to produce petroleum in the most efficient way.

Reservoir modeling is a process of usage of petrophysical and geological data

obtained from different studies in the field in order to predict the behavior of the

fluids under different conditions (Lie and Mallison, 2010). It is done by creating a

model which is a simplification of the real reservoir. This model is discretized into a

great amount of grid blocks, between which flow is calculated using fundamental

laws of fluid flow.

One of the factors that effectiveness of reservoir simulation depends on is a choice of

gridding type. There are many different types of the gridding techniques that have

been used in reservoir simulation. In the early days of reservoir simulation, only a

limited amount of Cartesian grids was used because of limitations of computers'

calculating power and available memory. So there was no need in creating new

gridding techniques, and for some time reservoirs were simulated by using several

thousand Cartesian grid blocks. The development of computers, their calculating

power and memory resulted in the possibility to use greater amount of blocks,

therefore resolution of models increased. With this refinement of blocks, new

demand appeared to try to represent complex geological features and fluid flow in a

2

more accurate manner. That was the cause that resulted in the creation of new

gridding techniques.

Usually, gridding techniques are separated into two broad groups: structured and

unstructured gridding. Sometimes hybrid grids are taken as the third group. Group of

structured gridding types include Cartesian, cylindrical, hexagonal etc, while one of

the most popular type of unstructured grids is PEBI (PErpendicular BIsector) or

Voronoi grids. The difference between structured and unstructured grids is that

structured grid types imply same regular shape of all of the grid blocks (for example,

triangles, rectangles), while unstructured ones do not require that condition (Moog,

2013). This difference means that unstructured grids are more flexible, compared to

the structured ones, which means that it can be used less amount of blocks to

represent some geological entity in the model without losing accuracy (Heinemann

and Brand, 1989).

Majority of unstructured grids was introduced in 1980's in order to meet

specifications concerning flexible modeling. The main types of grids invented during

this period include Control Volume Finite Element (Forsyth, 1989), Voronoi grids

(Heinemann and Brand, 1989) and hybrid grids (Pedrosa and Aziz, 1985). Voronoi

grid type appeared to be useful, because it takes better sides from both structured and

unstructured grids: they were flexible, allowed usage of different grid types,

providing a smooth transition from Voronoi grids to other gridding types (Katzmayr

and Ganzer, 2009).

However, apart from obvious advantages of unstructured grids, they also have some

problems: different number of block sides, non-orthogonality to the flow (grid

orientation effects) and others.

Voronoi grid blocks are areas that are closer to its grid point than to any of the other

ones, and the grid consists of this type of blocks (Palagi and Aziz, 1994). This

definition means that by accurate placement of Voronoi grid points in the reservoir

3

simulation accurate mapping of reservoir structures could be done. This study

focuses on optimization of Voronoi grid blocks' locations for this reason.

Optimization problem implies choosing of one option from a group of possible

solutions to the problem in order to maximize or minimize predefined function. In

the case discussed in this thesis optimization problem is in obtaining of optimized

locations of predefined number of grid blocks in a reservoir simulation of a field

including heterogeneities and/or permeability anisotropy while minimizing sum of

errors in all of the Voronoi grids. Each grid block in the simulation in the study is

assigned an error value - coefficient of badness of its placement. This error depends

on the match of the Voronoi grids with finer static mesh of petrophysical properties.

The higher the error in the block, the higher priority it has in the line of points that

will be moved. By moving of these bad points, an attempt to find better locations to

minimize the error value, and therefore better placing of grid points can be obtained

without increasing the amount of them.

In order to solve optimization problem, an optimization algorithm is usually

required. Optimization algorithm is a number of instructions that are required to be

applied to the problem in the correct order in order to reach desired results. All

optimization algorithms can be divided into two broad groups: probabilistic and

deterministic optimization algorithms. Probabilistic algorithms are such algorithms

that have at least one process including generation of random numbers in one of the

steps. This means that for the same input this algorithm will be able to produce

different results. This type of optimization algorithms is usually used when

approximate steps in order to reach optimized state are not known beforehand, so it

is required to search for this state everywhere. However, if these steps are known,

then no random generation (or searching for the correct direction) is required and

deterministic algorithms can be used. As it may be understood from this,

deterministic algorithms will always give the same results for the same input values.

(Weise, 2011)

4

The algorithm created in this study shares some concepts with evolutionary

optimization algorithms that are related to the probabilistic group, but itself is related

to the deterministic group. It consists of three simple steps the first of which

generates predefined number of uniformly distributed initial population of grid

points; the second step tries to minimize sum of errors in all of the blocks by moving

grid points obtained from the first step; the last step takes result obtained in the step

two and adds grid points related to wells and/or faults. This algorithm is described in

details in "Methodology" chapter.

Next chapters provide more detailed information on the main subjects of this study:

reservoir simulation, Voronoi gridding, reservoir heterogeneities and anisotropy, and

optimization.

5

CHAPTER 2

RESERVOIR SIMULATION

2.1. Introduction

At any particular point in geologic time, there is only one real dispensation of

petrophysical properties in the reservoir. This dispensation is the result of a

complicated combined work of chemical, physical, and biological processes.

Notwithstanding the fact that sometimes physics of depositional processes and

processes, occurring after deposition, may be realized very well, engineers do not

absolutely understand each process and its interaction with the others, which in

combination with the inability to get the boundary and initial conditions results in

impossibility to obtain the real singular dispensation of the properties of the reservoir

that change with time. So the only way is to build numerical simulations that can

imitate the real change of reservoir properties with time. Therefore, engineers try to

build reservoir simulations so that they would correlate with all the obtained data.

They understand that usually the real dispensation of reservoir properties will not be

exactly the same as in the model prediction, but they try to get the results as close as

possible (Pyrcz and Deutsch, 2014).

In less words, reservoir simulation is the process of inferring the behavior of a real

reservoir from the performance of a model of that reservoir (Jensen et al., 1997).

First reservoir simulations were far from what we have today. Actually, they were

physical models - for example, boxes made out of glass and filled with sand, from

where fluid was passing allowing scientist/engineer to look and understand what is

happening there. These simulations were first used in the 1930s and were used for

6

getting idea of how water breakthrough occurs in wells of the reservoir that has been

waterflooded.

With advancements in computers from 1960s and later, reservoir simulations

changed from physical models to computer-based models. These models divided

existing reservoir into a number of connecting blocks and calculated the flow that

will occur between these blocks under different conditions. When computers were

just introduced, they had far less efficiency and power than what we have today -

this fact was limiting number of blocks that reservoir can be divided into, which

resulted in not so reliable results obtained after simulator was run. Nowadays,

simulators allow to create models of millions and even billions of blocks, which

makes results much more reliable (Islam et al., 2010).

Figure 2.1 shows the main steps in the creation of the reservoir model as defined by

Odeh in 1982. Formulation stage here includes the introduction of assumptions

required to create a reservoir model in mathematical form. Then nonlinear partial

differential equations describing fluid flow are introduced, which are then undergo

stage of discretization and form a bunch of nonlinear algebraic equations. This

discretization can be done by applying Taylor series expansion (other techniques are

integral and variatonal methods (Aziz and Settari, 1979).

As it was already mentioned, discretization results in formation of nonlinear

algebraic equations, which in most of the cases require linearization in order to be

solved. Well representation is also required at this stage in order to add fluid

production/injection into equations that are still nonlinear.

After all previous steps are fulfilled, solutions can be obtained. These solutions

include distribution of both pressure and saturations and also flow rates of the

introduced wells. Validation step is just checking that no mistakes were made in the

previous step and in the source code of the simulator. After all these stages are done,

the simulator is ready to be used. (Islam et al., 2010)

7

2.2. Motivation to use reservoir simulation

The main purpose of reservoir simulation is to imitate real life reservoir behavior and

therefore allow to predict future of reservoir under different development scenarios.

So, if correct assumptions are made, if the data that the model is based on is

representative of reservoir and many other nuances are kept, then the reservoir model

should be a very powerful tool allowing engineers to solve many complex problems

and even to foresee them; create reservoir management plan years into the future

(Adamson et al., 1996).

Figure 2.1. Main stages of generation of reservoir simulators (modified from Odeh,

1982).

2.3. Gridding techniques

As it was previously mentioned, simulators divide the real reservoir into a number of

blocks and then calculate flow between these blocks. Therefore, it is obvious that

choice of appropriate gridding technique is crucial for the effectiveness of the model

being built. The choosing of the appropriate grid in reservoir simulation is based

mainly on two criteria:

 It should be able to correctly map geological characteristics of the region;

 It should be able to correctly map flow of fluid governed by the flow

equations. (Lake and Holstein, 2007)

Classification of gridding techniques is a difficult thing, because there are many

different grid types that show absolutely different properties, however, many authors

distinguish two main groups of grid types: structured and unstructured grids.

8

However, there are also grids that are not related to any of these groups. This

subchapter will discuss these grid types one by one.

2.3.1. Structured grids

There are different definitions of structured grids in the literature, including

"structured grid is a mesh type, consisting of many grid blocks of same geometrical

shape" (Moog, 2013) and "structured gridding is a mesh type consisting of blocks

with regular connectivity" (Castillo, 1991).

Figure 2.2. Representation of geological feature using structured Cartesian grid with

refinement (a) versus unstructured grid (b) (after Moog, 2013).

Among the advantages of structured grids good convergence and high resolution is

usually mentioned (Chawner, 2013), while the major drawback that is usually talked

about is that regular structured grid sometimes fails in proper representation of

geologically complex reservoirs (figure 2.2), which results in doubts in simulation's

ability to accurately predict reservoir behavior (Moog, 2013). In the next subchapters

different structured grid types are shown and discussed.

2.3.1.1. Cartesian grid

Regular Cartesian grids are the most popular gridding type used in reservoir

simulation. They were used already in the first reservoir simulations used in the

industry. Cartesian grids are usually represented by quadrilaterals in two dimensional

models (figure 2.3 (a)) and by hexahedra in three dimensional simulations (figure 2.3

9

(b)). Sometimes, for better representation of geological structures, hexahedra are

created by defining locations of each of its vertices. In this case, the obtained grid is

called Corner Point Geometry Grids, which is also usually related to structured type.

 (a) (b)

Figure 2.3. Cartesian grid in 2D (a) and 3D (b).

As it was already mentioned, sometimes reservoir that is have to be modeled has

very complex structure, which usually results in necessity of locally refinement of

grid blocks in the zone of increased reservoir complexity (figure 2.4). This is usually

done in the fields with regular Cartesian grids and is also related to structured

gridding types.

Figure 2.4. Local grid refinement in regular Cartesian grid (modified from Lake and

Holstein, 2007).

2.3.1.2. Cylindrical grid

Cylindrical grid usually is used for representation of wells inside reservoir

simulation. If it is used with other other gridding type, which is usually the case, then

10

it becomes a hybrid grid which is described in the subchapter 2.3.3.1. It can be both

used in two and three dimensional reservoir simulations (figure 2.5).

(a) (b)

Figure 2.5. Cylindrical grid in two dimensions with local refinement (a) and three

dimensions (b) (modified from Kaufmann, 2006 and Angelo et al., 2002).

2.3.1.3. Hexagonal grid

Hexagonal grid is used rarely in reservoir simulation. The first proposal of

application of hexagonal grid to the reservoir simulation was in the work of Pruess

and Bodvarsson (Pruess and Bodvarsson, 1983).

Figure 2.6. Example on hexagonal grid in two dimensions.

From the definition of structured grids, hexagonal grids must be related to them,

however in reality hexagonal structure is usually obtained by applying of

unstructured gridding techniques. As an example, typical shapes of Voronoi grids in

11

two dimensions are hexagons, while in three dimensions they are hexagonal prisms

(figure 2.6).

One of the successful applications of structured hegagonal grid is described in the

work of Wadsley et al. (Wadsley et al., 1990). He and his companions used

hexagonal grids in order to model fluvial architecture with subsequent simulation of

reservoir under production. Among the pluses of hexagonal grids, they mention the

fact that hexagonal grids help to overcome grid orientation effects.

2.3.1.4. Triangular Grid

Triangular grids are used very rarely in reservoir modeling. This is due to they

usually correspond to unstructured Voronoi gridding (Delaunay triangulation), which

is more persistent to grid changes. Other cause of its rare usage is that they usually

result in, what some authors call, "sliver" blocks that have little volume but big area

of surface (Lake and Holstein, 2007).

Figure 2.7. Example on triangular grid in two dimensions.

In two dimensions triangular grid is represented by triangles, while in three

dimensions they exist as tetrahedra (figure 2.7).

2.3.2. Unstructured Grids

As it was already mentioned, as distinct from structured gridding types, unstructured

ones do not have particular shape, which results in its flexibility that makes it

12

possible to more accurately represent geologic entities in the model (figure 2.2).

Other differences between these types is that the unstructured grid is based on a

number of grid points that have no specific indexing. After these grid points are

chosen, control volumes are generated around these grid points.

One of the most popular unstructured grid types is Voronoi or PEBI grids which are

the basis of the study described in this thesis.

2.3.2.1. Voronoi grid

Voronoi gridding technique is discussed in details in the next chapter, so this one

only provides some basic information on them.

Figure 2.8. Example on Voronoi grid in two dimensions.

Voronoi grid block is an area of space that is closer to its grid point than any of the

others that are present in the grid. This means that each block's sides are located in

the middle of the line connecting two neighboring grid points and are perpendicular

to it. Actually, that is where its second name is derived from - PErpendicular

BIsector.

13

Voronoi grid were first proposed to be used in reservoir simulation in the paper of

Heinemann and Brand in 1989 (Heinemann and Brand, 1989), and after that got

some usage in reservoir simulation, however is still not very popular.

Voronoi grids can exist both in two dimensional, two and a half dimensional and

three dimensional spaces. As it was already mentioned, most typical shapes than

they take in two and two and a half dimensional spaces are accordingly hexagons

and hexagonal prisms (Lake and Holstein, 2007).

Figure 2.9. Truncated grid (modified from Lake and Holstein, 2007).

Two and a half dimension dimensional Voronoi means that Voronoi is generated for

each layer of reservoir formation and then are stucked on the top of each other. So

each layer has its specific thickness, which means that the structure is in three

dimensions but not fully. That is why it is called two and a half dimensions. In three

dimensions there are no restricting planes on the top and the bottom.

2.3.2.2. Truncated grids

Truncated grids sometimes are used with Cartesian grids in order for better

representation of the faults. The grid mainly is simple Cartesian grid described in

14

2.3.1.1., the only difference is that if the fault passes through on of the cells, it

divides this cell into two parts. This is shown on figure 2.9.

From the advantages better handling of reservoir heterogeneities can be mentioned,

but this comes at great price - it may result in very sophisticated shapes of the blocks

and therefore transmissibility terms between blocks will have to be calculated in a

more difficult way.

Figure 2.10. Example on curvilinear grid type.

2.3.2.3. Curvilinear grids

Discussion on application of curvilinear grids to the reservoir simulation started from

the 1970s. It was mentioned in the work of Hirasaki and O'Dell (Hirasaki and O'Dell,

1970), Sonier and Chaumet (Sonier and Chaumet, 1974) and many others.

Curvilinear grid was mentioned to better simulate flow of fluids, however, by

winning at representation of the fluid flow, some problems occur with representation

of geological entities. So, this type of grids also did not get wide application in the

industry. Figure 2.10. shows example on curvilinear geometry.

15

2.3.3. Hybrid grids

Hybrid grids cannot be related to any of the previous groups because it is partly

structured and partly unstructured. Application of hybrid grids in reservoir

simulation were first discussed in the work of Pedrosa and Aziz (Pedrosa and Aziz,

1986).

Main purpose of usage of such hybrid grids in reservoir simulation is to improve

treatment of well in there. Usually, cylindrical grid type is used around the wells in

order to accurately map increased pressure gradients occurring when the well is

producing or injecting. These grid blocks are usually surrounded by some regular

structured grids like simple Cartesian, hexagonal, triangular or others. Example on

hybrid grids is shown on figure 2.11.

Figure 2.11. Example on hybrid grids (modified from Marcondes et al., 2009).

As it was already said, this study deals with Voronoi gridding technique which is

discussed in details in chapter 3.

16

17

CHAPTER 3

VORONOI GRID BLOCKS

3.1. Introduction

Voronoi (or PEBI) grids are one of the basic geometrical structures that may be used

to divide the space into small areas of ascendancy. These grids may as well be used

in reservoir engineering, dividing the reservoir model into a finite number of blocks.

(Aurenhammer and Klein, 2000)

Modeling of hydrocarbon reservoirs is usually done by partitioning the space

occupied by reservoir into a set of fictitious blocks and applying of equations of

conservation laws, such as mass conservation, on each one of them. Fluid movement

from one block to another can be obtained from the discretized Darcy's law equation.

The result of such modeling of flow depends on the character of the division of

reservoir into blocks (placement of blocks, amount of blocks used, type of grid

selected etc.) and formulation of equations of flow.

It must be mentioned at this point, that, notwithstanding the fact that different types

of grids were presented and discussed in details in literature, usage of some of them

together in one simulation (for example, in order to correctly handle some properties

of reservoir) was always a difficult, if not impossible to solve, problem. These

problems sometimes could be solved by a very special cases such as hybrid gridding

techniques (Figure 3.1) or local refinement (Figure 3.2). And still, you would face up

with the situation when each block depends on the placement of nearby blocks.

18

One of the advantages of the Voronoi gridding technique is that grid points and

therefore grid blocks can be placed anywhere inside the model without taking other

points into account. This results in absolute independence of placing of grid points

from adjacent blocks and therefore high flexibility of Voronoi grids. Because of this

property of Voronoi grids, it has been widely exploited in many different disciplines

such as crystallography (Mackay, 1972), fluid mechanics (Trease, 1985), electrical

engineering (McNeal, 1953), physics (Winterfield et al., 1981), biology (Richards,

1974), mathematics (Voronoi, 1908), rock characterization (Pathak et al., 1980) and

many others.

Figure 3.1. Example of usage of hybrid gridding in reservoir simulation (modified

from Pedrosa and Aziz, 1985).

Voronoi grid blocks have been known under different names such as PEBI

(PErpendicular BIsection) and Wigner-Seitz cells, but in the most of the papers

Voronoi grid is the most widely spread name of them, which refers to the

mathematician who invented them. Heinemann and Brand were the first ones who

19

used Voronoi gridding technique in problem of modeling fluid flow in hydrocarbon

reservoirs. First of all, they depicted a way to use equations of flow for a block with

an unspecified number of neighboring blocks. This was done by usage of the integral

discretization technique. Then Forsyth used Voronoi to develop better accuracy of

junction of fine Cartesian grid blocks with coarse ones in the process of refinement.

Figure 3.2. Example of local grid refinement (modified from the Kilic and Ertekin,

2003).

Voronoi grid consists of Voronoi grid block which are defined as the area around

grid point that is closer to this point than to any surrounding ones (Figure 3.3.).

Boundaries of grid blocks are perpendicular to the line connecting neighboring grid

points and intersect this line just in the center (that is why it is also called

perpendicular bisection). The latter means that Voronoi grid can be associated with

point-distributed type of grids.

On the figure 3.3, dashed lines that are connecting neighboring grid points are called

Delaunay mesh which consists only of triangles. If the line exists, it means that flow

can occur between the points that are connected. Actually, Delaunay mesh can

consist not only of triangles, but also of lines, rectangles and higher order polygons.

20

In most of the cases reservoir and petroleum engineers are concerned with Voronoi

gridding more than with Delaunay mesh.

Figure 3.3. Voronoi grid and Delaunay mesh. (modified from Palagi and Aziz,

1994).

3.2. Motivation to use

Most of the grid systems that are commonly used in reservoir simulation actually are

some form of Voronoi grids. Even if they are not exactly the same, they are very

close to each other. Examples on such gridding techniques are shown on the figure

3.4.

Voronoi grids can connect different grid types or coarse/fine grids without applying

any sophisticated algorithms. All that is required is to add grid points in required

places and run grid generation algorithm as usual, all conversions will be performed

automatically. The result of this is that all required gridding techniques can be used

at the same time in the same grid system which develops better handling of complex

structures that have to be mapped and many other problems.

21

Voronoi grid can also be used for simulating three-dimensional reservoirs. In this

case, usually Voronoi grid is created in the same conventional way for each of the

layers one by one.

Figure 3.4. Common grid techniques that can be associated with Voronoi (modified

from Palagi and Aziz, 1994).

3.3. Voronoi grid generation algorithm

There are many different grid generation algorithms. They are discussed in many

literature sources, such as paper by Ho-Le (Ho-Le, 1988). In this thesis, only one

grid generation algorithm will be presented in order to provide some information

how it occurs. The algorithm described here was created by Frederick et al

(Frederick et al., 1970).

This algorithm requires two inputs. One is the set of grid points of the blocks that

will be generated, and the other one is rmax - the maximum radius. This rmax is used in

22

characterization of outer boundary. If rmax is a large number, outer boundary of each

block will be convex, if not, then it may be concave in some regions. Also, it must be

said that the user of this algorithm is not required to explicitly identify grid points on

the boundary of the region that will be divided into blocks. For more detailed

discussion Palagi work (Palagi, 1992) can be referred to.

1. Choose a grid point (m).

2. Get the points that may become neighbors (n) in such a way, that the spacing

between (n) and (m) would be less than the value of rmax multiplied by two

(Lij<2*rmax). After all these points are selected, all other points are stopped to

be considered during the next stages.

3. Choose the point on the closest distance from the grid point (m) (minimal

Lmn).

4. Now you have line (mn). Find the next grid point (o) moving in counter-

clockwise direction, so that môn would be maximal.

5. Next step is to generate a circle that all three points lay on and calculate

radius of it. This radius is then named as rc. Now the first vertex of Voronoi

grid block with center (grid point) in (m) can be found as the center of the

circle. This vertice may fall outside of the area that will be divided into

blocks (e.g. point D in figure 2.3).

6. Then there are two cases: if rc < rmax, (o) is really a neighbor of block (m).

Then you must set (n)=(o) and redo stages four and five. After some time the

new neighbor is the first one, which means that all neighboring points have

been processed. If this is the case, then grid block (m) is totally inside of the

domain, and the other point for generation should be selected. Then

everything is done from the beginning. This procedure should be performed

for all points.

7. The second case is rc > rmax. This means that grid block intersects the outer

boundary of the domain. If this is the case, continue with the next step.

8. Make (n) equal to the first grid point as in the third step. Perform stages four

to seven in the clockwise direction till you reach another point outside of the

domain. Then start from the beginning with the new point and continue while

all the grid points are not processed.

23

9. After stages one to eight have been implemented for each of the points, the

next step is to calculate all angles between points on the border of the domain

and the corresponding grid points, such as angle CÂB on figure 3.3.

10. Then there are two cases. Both of them will be discussed on an example of

CÂB. If this angle is less than π/2, then central point of BC is a vertex of the

grid block that contains points B and C.

11. Otherwise, if this angle is bigger than π/2, then some part of the grid block

must be out of the domain and therefore must be deleted. After this outside

part is deleted, neighboring blocks also should be adjusted.

12. And the last step is to delete all the lines that have width less than some

predefined small number

 (Palagi, C. L. and Aziz, K. Appendix (1994))

As it was said before, there are many other Voronoi grid generation algorithms that

can be found in literature. Some of them are: Fortune's algorithm (or sweep line

algorithm), Lloyd's algorithm, Bowyer-Watson algorithm etc. In this study Voronoi

generation was used only for visualization of results. This visualization was

performed by use of Matlab software using "Voronoi" function.

3.4. Use of Voronoi grid in reservoir simulation

As it was mentioned, use of Voronoi grids in reservoir simulation was firstly

described in 1989 by Heinemann and Brand. After this introduction many scientists

and engineers started to explore newly discovered horizons, perfect what was

already done and tried to find additional use to them. This subchapter provides some

information on how Voronoi grids were used in petroleum industry during last 26

years.

In the first years of usage of Voronoi grids one of the most productive unions was

duet of Cesar Luiz Palagi and Khalid Aziz in Stanford university. In 1992 Palagi

graduates from Stanford University and publishes his PhD dissertation called

"Generation and application of Voronoi grid to model flow in heterogeneous

24

reservoirs" (Palagi, 1992). His supervisor on this work was Khalid Aziz. After

graduation they publish together several more papers related to Voronoi gridding in

reservoir simulation (Palagi and Aziz, 1993; Palagi et al., 1993; Palagi and Aziz,

1994). Most of these papes concentrate on general application of Voronoi to

reservoir simulation, but some of them also discuss proper handling of horizontal

and vertical wells using Voronoi grids.

After usage of Voronoi gridding technique in reservoir simulation proved to be

efficient, several authors tried to create commercial black oil simulators that will use

Voronoi grid in order to model reservoir behavior. Such type of model is discussed

in the paper of Kuwauchi et al. (Kuwauchi et al., 1996). In this paper results obtained

from the simulator using Voronoi grids are compared with analytical solutions and

decision on effectiveness of reservoir simulator with Voronoi grids is made.

In the XXI century applications of Voronoi grid in reservoir simulation increase with

more and more different applications. Some authors provide information on

geological models' upscaling techniques with Voronoi (Prevost et al., 2004; Branets

et al., 2009), others try to generate grid in such a way so that it would honor not only

geological strutures, but also flow of fluids in the reservoir (Castellini, 2001;

Mlachnik et al., 2006; Merland et al., 2011; Moog, 2013); some of the authors

propose new Voronoi generation algorithms (Evazi and Mahani, 2009; Katzmayr

and Ganzer, 2009), others provide techniques for better handling of wells and

fractures (Syihab, 2009; Li, 2011; Olorode, 2011; Fung et al., 2014).

Nowadays, Voronoi package can be found in some of the popular commercial

simulators, however, usage of Voronoi grid in the industry is still not very popular.

Among causes of this, Fung et al. (Fung et al., 2014) mentions extra stages that are

required in order to generate Voronoi mesh, difficulties in populating of properties

into Voronoi grid blocks and in the calculation of data related to well perforation.

Also he mentions that in further stages of reservoir simulation generation such as

history match, future predictions runs with different well locations etc. Voronoi grid

requires more sophisticated and therefore less attractive reservoir modeling tools,

which results in overall unattractiveness of the method. Another paper written by

25

Vestergaard et al. (Vestergaard et al., 2008) describes application of Voronoi grids to

the problem of modeling of giant carbonate reservoir. Among the complications that

they dealt with while building the model, problems with history match, inefficiency

of linear solvers which were less efficient than for the case of Cartesian grid with

similar grid block sizes are mentioned. Also it must be said, that before trying to

apply Voronoi gridding technique to this problem, Cartesian grid simulation was

performed, which was proved to be incompatible with the real data.

So, decision on whether to use or not Voronoi gridding technique in reservoir

simulation is still open.

26

27

CHAPTER 4

RESERVOIR HETEROGENEITIES AND ANISOTROPY

4.1. Introduction

From the petroleum engineering point of view, definition of term "reservoir

heterogeneity" would be geological intricacy of a reservoir and how this intricacy

affects flow of fluid. (Alpay, 1972) In simpler terms, it is "spatial changes of

reservoir properties in reservoir".

This complexity is usually a result of changes in strata that occur after deposition, for

example, under compaction, tectonic distortion and cementation. There are different

classifications of reservoir heterogeneities, but the most widely used are as follows:

microscopic heterogeneities (less than 1mm), mesoscopic heterogeneities (up to 1m),

macroscopic heterogeneities (tens of meters) and megascopic heterogeneities

(hundreds of meters) (figure 4.1)

Microscopic heterogeneities are heterogeneities on scale of pores and grains of

formation. Mesoscopic heterogeneities can be seen on vertical measurements, e.g.

during coring and logging. They alter such properties as permeability of matrix,

rock-fluid interaction, formation damage and directional fluid flow. They include

bedding, changes in lithology, and others.

Macroscopic heterogeneities occur on the interwell scale. They include faults,

pinchout, erosional cut-out and others. Macroscopic heterogeneities can be seen

during well tests or on seismic survey results. The show great effect on sweep

efficiency, patterns of flow, profitability of secondary recovery and EOR.

28

Megascopic are the biggest possible reservoir heterogeneities. They occur on a

fieldwide scale. They are related to depositional environment and the structure of the

field. Usually megascopic heterogeneities affect petroleum reservoir volumetrics,

and therefore petroleum production trends.

Figure 4.1. Reservoir heterogeneity classes (modified from Weber, 1986).

This study faces up with one type of reservoir heterogeneity that will be discussed

further in the chapter - channeling.

4.2. Channeling

Channeling is found usually in fluvial deposit systems. This means that during some

time in the history here existed flowing body of water, e.g. river. Actually, there are

two types of fluvial deposit systems: braided and meandering fluvial systems.

29

Braided fluvial pattern usually occurs when the river does not have enough discharge

to take its sediment load with itself or in the cases when the river has banks that can

be easily eroded. In most of the cases braided pattern can be found in the upper parts

of a fluvial deposit system. In those regions bodies of water usually have steeper

gradients, mainly coarse sediments and frequent changes in discharge. These

conditions result in frequent intersection of channels, as it can be seen on figure 4.2.

So, this means that the channel that is created in result is a very complicated system

consisting of great amount of frequently intersecting channels.

Figure 4.2. Braided fluvial deposition system (modified from Galloway and Hobday,

1996).

As it was already said, frequent discharge changes result in overloading of sediment.

During flood, body of water is able to move all of its sediments. Nevertheless,

usually rivers have little amount of flowing water, which results in inability to move

sediments by flow. Because in the upper parts of fluvial deposit system coarse

sediments are usually deposited, base of the resulting channel consists of coarse

particles, which means better reservoir qualities in the future (if this structure is not

affected greatly by the post-depositional conditions).

30

Meandering fluvial pattern (Figure 4.3) occurs in lower parts of fluvial deposition

system. This is due to more gently sloping gradient than in the braided systems. The

closer braided systems are to the source of the river, the straighter they are; the

farther they are from the source, the more meandering character they get, until fully

meandering system is not created. Here, flow has less speed, higher depth, which

results in the fact that stream becomes affected by centrifugal force and bends

towards the external bank. Because of this, external bank becomes severely eroded,

the river is able to move towards this bank deeper in lateral direction. Therefore, the

river itself becomes more and more tortuous until these sides of the river are not

separated from each other by a thin layer of formations. After some time this layer is

also eroded, and now the river has a better, straighter way to move, leaving one of its

flanks behind. These left flanks are then called cutoffs.

Figure 4.3. Meandering fluvial deposition system (modified from Prothero and

Schwab, 2014).

Sediments accumulated here are mainly on the inner sides of the river. As in the

braided fluvial deposition system, sediments closer to the source are coarser ones,

while towards the end they become finer. (Prothero and Schwab, 2014)

These effects result in heterogeneities called "channeling" in reservoirs. In these

channels property values may differ from the same properties of the part of reservoir

31

not affected by this channel. This is one of the cases, that was considered during this

study.

4.3. Anisotropy

A formation is called anisotropic if the value of property in one direction differs

from the value of the same property in another one. Most usual earth anisotropy is

between vertical on horizontal directions, called transverse anisotropy, but it is not

considered in this study. This study tries to deal with anisotropy of directional

permeabilities in the horizontal plane, thus permeability in x-direction differs from

permeability in y-direction. Before going further, this chapter will explain where

anisotropy comes from and why it is different from reservoir heterogeneities.

As it was already mentioned, anisotropy is not the same as heterogeneities discussed

previously in the chapter, however, they are usually confused with each other. There

are two main differences between them.

The first one is that in anisotropy changes of reservoir properties occur at one point,

but in a different direction (vector value), while heterogeneity means that there are

differences in scalar or vector values in two or more different points. The second

difference is that anisotropy deals mainly with physical properties, while

heterogeneities may deal with anything starting from the same physical properties

and ending with the composition of formation.

Anisotropy results from processes occurring during and after deposition. For

example, anisotropic changes in carbonates, such as changes in directional

permeabilities, may be a result of layering which affects carbonate mineralogy by

changing formation diagenetic potential and texture. As opposed to carbonates, in

the clastic rocks anisotropy can occur only if the rock is homogeneous or uniform to

some extent. If the formation is totally heterogeneous, then no anisotropy can occur

there, because in this case there will not be any directionality in the rock. Summing

this up we may come up with a conclusion that anisotropy developing with the

32

deposition has two causes: periodic layering and grains ordering, which results from

the directionality of the rock. (Rajan, 1988). This ordering is mainly performed by

gravitational forces and transport.

Figure 4.4. Example on diagenetic changes (Anderson et al., 1994).

After deposition, formation undergo changes due to diagenesis. Diagenesis is

exposion of formation to different forces of chemical, physical and biological

character after deposition. During this stage many changes can occur in formation

structure: for example, when formation is buried at increasing depth, the overburden

pressure increases with depth and may cause rearrangement or rotation of grains in

the horizontal plane (Manrique et al., 1994). Other factors that may affect formation

properties in the horizontal plane are fractures or plastic deformation and many

others.

For understanding of anisotropy, processes occurring during diagenesis should be

always considered, because they can dramatically change the properties of the

formation, even properties already changed during deposition. For instance,

alterations in ordering/packing and horizontal orientation (this also affects formation

permeability) that took place during deposition may be totally demolished by the

diagnetic processes.

On figure 4.4 depositional anisotropy is absolutely changed by the clay and quartz

overgrowth. The point of this example is that permeability model should be based on

both depositional and diagenetic alterations of rock, otherwise the representation of

33

formation will be incorrect, which can affect all following calculations. (Anderson et

al., 1994)

This study shows attempt to carefully divide reservoir, including heterogeneity and

anisotropy into Voronoi blocks in order to produce a representative result using

limited amount of grid blocks.

34

35

CHAPTER 5

OPTIMIZATION

5.1. Introduction to optimization

Optimization, as a tool helping to solve different kind of problems, was

accompanying humankind from the very beginning of its existence. Actually, at first

this kind of optimization was absolutely primitive and was based on the instincts of

early humans: they waited for most optimum conditions to plant or harvest crops,

decided on whether to start a war with another tribe or used optimization when

hunting animals - how many men are required to track down an animal and to kill it

in as safe manner as possible.

With the introduction and development of mathematical methods, optimization

methods also underwent an advancement, but still were quite primitive. The greatest

advancement of optimization techniques took place in last fifty-sixty years with the

development of computational technologies. After that, optimization methods had

dramatic improvement that is still continuing nowadays. While optimization

algorithms were developing at an enormous rate, the technologies required for

implementation of this algorithm were also advancing. This created ideal conditions

for optimization, and now it is difficult to imagine complex and even usual projects

in various disciplines that would not use any kind of its form (Diwekar, 2008).

Optimization is the process of choosing the 'best' out of all solutions of the problem,

if the "good" can be separated from the "bad" and measured. In our day-to-day life,

everyone would like to have the "maximum" in some good things, like salary, health

or holidays or "minimum" in bad things as expenses, over-time work and problems.

36

Taking this into account, the term "optimum" may be described as the "minimum" or

"maximum" depending on the conditions, for example maximizing the salary while

minimizing the over-time work. So the word "optimum" is much more useful than

the term "best" in the same way as the term "optimize" is a way better than the word

"improve". So, theory of optimization is a section of mathematics dealing with the

study of optimum solutions of the problems and the procedures to obtain them.

As it was said before, the optimization is used in a wide range of various disciplines

including math, physics, business and economics, social sciences, engineering and

even politics. It covers all engineering disciplines, starting from chemical and

petroleum engineering and ending with mechanical and electrical engineering. Most

common engineering areas of usage of optimization algorithms include design of

buildings, creation of tools, curve fitting, modeling of systems and many others.

Almost all real optimization problems do not have only one solution. Actually,

amount of solutions may be up to infinite. That is why optimization based on some

of the criteria that govern the behavior of the solutions is so important. (Antoniou

and Lu, 2007)

5.2. Classes of optimization algorithms

An algorithm is a collection of actions that should be performed in order to solve

some problem. They are usually written with human language, not with computer

code, so it would be easy to understand for humans and would not depend on the

programming environment or specific computers. Optimization algorithm is an

algorithm of the type described in the previous sentence, that can be used to get

optimum solutions of optimization problems.

There are two broad groups of optimization algorithms: deterministic and

probabilistic.

37

Figure 5.1. Rough classification of optimization algorithms (modified from Weise,
2011).

38

Further subdivision is quite a difficult job, because some of the algorithm classes

take properties of both basic classes, but some rough estimation is shown on the

figure 5.1.

Deterministic optimization algorithms are algorithms that during each step have only

one way to move to the next one. This means that if the same set of data is used as

input, this algorithm will do absolutely the same thing and the results will also be the

same. So, this type of optimization algorithms is mostly suitable for the cases when

the most efficient decisions on how to proceed in different situations are known and

used in the algorithm. These cases occur when the dependence between the different

properties of the probable solutions of the problem and their utilities are clearly

understood and used.

In some cases the manner of how the deterministic algorithms approach the problem,

may cause problems in getting the most optimal solution. This is the situation when

the dependence between the solution and the goodness of it is not so straightforward

(for example, changing or very complex), or when the size of the search space is

enormous. In such kind of cases application of deterministic algorithms is not very

efficient and the use of probabilistic ones is much more effective choice.

Deterministic algorithms include search algorithms, which are subdivided into

informed (including Gready and A* searches) and uninformed search (including

Breadth-First search (BFS), Depth-First search (DFS), and Iteratively Deepening

Depth-First Search (IDDFS)).

As opposed to deterministic optimization algorithms, probabilistic ones have

minimum one step in it that is based on the generation of random numbers. This

means that the approach will generate random solutions, which is a very useful step

if you do not know exactly how to proceed. These random approach, of course, has

disadvantages - for example, if the set of input data is the same, algorithm still will

produce different results, and still in many cases, they are preferable. Probabilistic

optimization algorithms include metaheuristics which is further subdivided into

evolutionary computation algorithms and algorithms that are not referred to that

39

category, including hill climbing, simulated annealing and many others. (Weise,

2011)

Figure 5.2. The basic cycle of evolutionary algorithms (after Weise, 2011).

As it was mentioned before, many algorithms share some properties of both

probabilistic and deterministic algorithms. Algorithm created during this study is not

an exception: it takes concepts of populations and fitnesses from the evolutionary

algorithms which are related to the probabilistic types, however, it is purely

deterministic in its nature. So, in order to provide better background on the

algorithm, the next subchapter provides some preliminary information on

evolutionary algorithms and their concepts shared with the algorithm described

further in the thesis.

5.3. Evolutionary algorithms

Evolutionary algorithms are probabilistic optimization algorithms based on

population of solutions. This means that input to these algorithm is not a single

probable solution of the problem, but a set of different ones that will be processed in

order to get the most optimum one. As it may be understood from their name, these

algorithms are based on

40

analogy with some natural processes and mechanisms, such as biological evolution

and survival of the fittest conceptions. These algorithms use these ideas in the

processing of the population of solutions, hoping to find the one that is most suitable

for the problem under consideration.

Evolutionary algorithms were not developed together by one man. Actually, they

include a large set of different algorithms that were created to some extent by

different scientists and researchers. Evolutionary algorithms showed high flexibility

and performance in a wide range of different disciplines.

Despite that majority of evolutionary algorithms were invented by different

scientists, all of them undergo similar steps when initiated. These repeating steps are

called the basic cycle of evolutionary algorithms (figure 5.2). Following are the

stages of this cycle for evolutionary algorithm optimization with a single objective:

1. Population of probable solutions is used as an input to the algorithm. This

will be the first generation of solutions (t=1). This population may be random

or seeded, depending on the person who uses the algorithm and the problem.

If the initial population is seeded, this means that the used solutions are

already preprocessed and adapted to some extent to the criterion that is used

for optimization. It can even be the case when the whole first population

consists of such preprocessed individuals. These adapted solutions can be

obtained by using the same algorithm or by any other method. Seeding is

used to reach the optimum solution in a less number of generations. The

drawback of using seeding is that the fake convergence may be reached

before the actual convergence is achieved. This may be the result because

good solutions (or preprocessed) will have better fitness and will wipe out the

random solutions. So, this type of behavior must be considered before

applying of seeding.

2. Next step is to calculate objective functions for each individual solution in

the population.

41

3. Using values obtained from the previous step, distribute the values of fitness

to each of the individuals.

4. The next step is selection process - choosing individuals with higher fitness

values for reproduction, therefore wiping out individuals with lower

fitnesses.

5. The next step is reproduction - getting offspring from the parents selected in

the previous stage. This is done by applying of specialized reproduction

operations to the genotypes of the parents. Genotypes are just sets of genes.

They are usually obtained by converting solutions into binary, however, there

are also many other methods. Each "0" or "1" value inside of these genomes

are referred to as genes. This conversion is done for easier application of

reproduction operators. Most common reproduction operations are crossover

and mutation. Crossover is used to combine genotypes of parents together to

get genotype of children and mutation just makes changes in one genotype in

order to support diversity in the solutions. After reproduction is performed,

part of the last generation or the whole previous generation is swapped with

the children, depending on the choice of the person using the algorithm. This

will be the new generation. Number of generations is increased by one.

6. If the termination criterion is achieved, then everything stops here and

solution with the highest fitness is selected as the best one. If not, then

convert genotypes to phenotypes (this means converting of solutions into the

form, which is better suitable for calculation of objective functions. For

example, if the solutions are given in binary, convert them into system

suitable for calculation, which is usually decimal), then return to step 2 and

redo all the same thing for the new generations (Weise, 2011).

Now, after evolutionary algorithms were described, the last question that must be

answered is why exactly algorithm created in this study is based on evolutionary

optimization, but not on the other type of algorithms. The answer would be that the

algorithm of the solution to the problem that will be described in the "Methodology"

chapter is an iterative process, that uses population of solutions, trying to improve

population's worst performing individual solutions. Actually, that is what

42

evolutionary optimization algorithms are all about - they are highly suitable for such

kind of problems. However, the random part had to be eliminated from the process

and also the process of improvement of bad solutions was changed, making the

overall process deterministic, because exact direction of improvement is known from

the beginning, therefore, no randomification was required.

Algorithm created during this study uses population and fitness criteria described in

this chapter. More information on how exactly algorithm proceeds can be found in

"Methodology" chapter in this thesis work.

43

CHAPTER 6

PROBLEM STATEMENT

The aim of this study is to find an algorithm that will divide the reservoir model into

unstructured Voronoi grid blocks by considering the direction of permeability

vectors, anisotropy ratio, permeability or porosity heterogeneity of the reservoir in

such way that the defined error value in each block would be minimal. Voronoi grids

are strongly connected with the locations of grid points, that is why, by adjusting the

coordinates of grid points, shapes and locations of grid blocks can be altered, thus,

attempt to minimize the total error can be made. Since the main pressure gradients

exist around the wells, the representation of the wells is achieved by using closely

placed Voronoi grids around the wells as well.

This thesis provides detailed information on algorithm created for solving of the

problem described here and then shows some examples on how exactly it works.

44

45

CHAPTER 7

METHODOLOGY

7.1. Introduction

Algorithm created in this study is deterministic. As it was said before, this means

that for the same input values, the results produced by the algorithm will also be the

same. This algorithm consists of three major steps:

1. Generation of uniformly distributed grid points, taking into account

anisotropy in the reservoir;

2. Moving of grid points that have bad locations described by fitness values

(this deals with the effects of reservoir heterogeneity);

3. Adding of grid points related to vertical and horizontal wells or faults.

This chapter will cover these steps one-by-one.

Code of the algorithm written for Matlab can be found in Appendix A. Before

running of the algorithm, four column vectors called permXvec, permYvec,

permZvec (accordingly x, y and z coordinates of the points of petrophysical field)

and permeabilitiesVec (values of petrophysical property in the locations of points

assigned by vectors permXvec, permYvec and permZvec) should already be loaded

into the workspace. As it was mentioned before this petrophysical property field

should consist of densely and uniformly populated points with property values. For

creation of the field some extrapolation/interpolation methods may be required.

46

7.2. Step One (generation of initial population of grid points)

As it was previously mentioned, the first step consists in the generation of uniformly

distributed grid points throughout the reservoir. This distribution is created regarding

directional permeability relations in the reservoir. The first step requires several

input parameters: desired number of grid points (grid blocks); how many times

permeability in the y-direction is higher (or less) than the permeability in x-direction,

Ky/Kx (permeability in y-direction (Ky) divided by permeability in x-direction (Kx)

- these directions may not align with x- and y-directions of the reservoir); angle

between permeability in y-direction and y-direction of the reservoir (figure 7.1);

coordinates of vertices of reservoir; some small distance and small increment that

will be added to this distance at the end of each iteration.

Figure 7.1. Angle between permeability in y-direction and y-direction of the

reservoir.

Figure 7.2 shows an example on how the first step algorithm proceeds. The first

thing that the algorithm does - it finds coordinates of the starting point (red dot at

figure 7.2). If angle θ is between 0⁰ and 90⁰, then it calculates red dot coordinates

from: ܺݐݎܽݐݏ = −ܾ ∗ sinሺθሻ ∗ cosሺ�ሻ (7.1) ܻݐݎܽݐݏ = ܾ ∗ sinሺθሻ ∗ sinሺ�ሻ (7.2),

where startX - x-coordinate of starting point; startY - y-coordinate of starting point;

b - reservoir width. Minus sign is used in equation (7.1), because the lower left

corner of the reservoir is considered as (0;0) point, which means that starting point

will have negative x-coordinate.

47

If angle θ is between 90⁰ and 180⁰ (or 180⁰ and 270⁰, or between 270⁰ and 360⁰),

then 90⁰ (or 180⁰, or 270⁰) is subtracted from this angle and then formulas (7.1) and

(7.2) can be used. If angle θ is equal to 0⁰, 90⁰, 180⁰, 270⁰ or 360⁰, then lower left

corner of the reservoir (0;0) is chosen as the starting point. After starting point is

selected, the next step is to generate grid points.

Figure 7.2. First step example. Black rectangle - reservoir; green rectangle - area,

where grid points will be generated; red dot - starting point; a - reservoir length; b -

reservoir width.

The main idea behind this generation is that if permeability is higher in one direction

(x or y), then generated points need to be placed more densely in that direction - in

other words distance from one point to the next one in the permeability y-direction

divided by distance from the same point to the next one in permeability x-direction

should be equal to Ky divided by Kx.

So, for example, if permeability Ky is twice as Kx, then distance between points in

Kx direction is twice the distance between points in Ky direction.

48

Figure 7.3. Flowchart of step one.

49

This is because if permeability is higher in one direction than it is in the other, then

pressure disturbance generated by producing/injecting wells, when the simulation

will run, will propagate at a higher rate in the direction of higher permeability.

So, in order to accurately see how much this disturbance moves, grid points should

be placed more densely in that direction.

Because we know only relation of the distance in one direction to the distance in the

other one, but not exact values, we need to take some random small distance for one

direction and calculate distance in the other, so that we could generate these grid

points - that is what small distance in the input is used for. So, the algorithm starts to

generate points from starting point in Ky and Kx directions according to Ky and Kx

values and the small distance from the input. As it can be seen, some of the

generated points will fall outside of the reservoir (black rectangle), so after all of the

points are generated these points outside of the reservoir are ignored, while all the

points inside reservoir are counted. If the resulting number of grid points is higher

than the desired number of points entered as an input, then small distance is

increased by increment also entered as an input, then process starts from the

beginning with these new distances. This process is done until the number of grid

points is not less than the desired number. If distance in the beginning and increment

are not very large, resulting number of blocks should be very close to desired

number.

After the required number of grid points is achieved, the algorithm proceeds to the

second step. For better understanding, step one flowchart is shown on figure 7.3.

7.3. Step Two (movement of the bad grid points)

After all the grid points were generated, the next step is to check if their placement is

good enough. If it is bad, it would be better to move them to better places. This step

also requires some input values, namely: field of petrophysical property that will be

used to define different regions of the reservoir, number of iterations, number of

50

worst points that will be moved during each iteration, the number of times each point

can be moved, required sum of errors in all of the blocks, number of regions and

intervals of property values for each region.

Figure 7.4. Example on results obtained from the step one. Blue area - reservoir;

white area - zone outside of the reservoir.

Property field is the population of densely spaced points in the reservoir that provide

some information about the reservoir property at their locations.

These property points should be representative of different regions/formations that

can be met in the reservoir rock. For example, if there is channeling with better rock

properties (like porosity, permeability) than the surrounding reservoir rocks'

properties, then these values can be used in the algorithm.

As it was written before, this field should consist of very densely spaced points. This

means that if there is not enough information about reservoir properties are obtained

from previous studies in the field, some interpolation/extrapolation techniques can be

used in order to spread property values all over the field. Example on petrophysical

51

field consisting of 56400 permeability points for the field shown on figure 7.4 is

shown on figure 7.5.

Figure 7.5. Example on petrophysical field.

It must be mentioned that this property field should also include points outside of

reservoir with zero values, so that algorithm would understand where the boundaries

of reservoir are located.

Imagine, that the reservoir, that has to be modeled, is not of rectangular shape (or has

heterogeneities (such as channeling, etc.)). The first step has already been

implemented, resulting in a scheme shown on figure 7.4. Input values for the first

step were: 500 grid points, octagonal reservoir, no anisotropy or heterogeneities,

angle is equal to zero. Because each grid block can only have one property value

calculated as the average of all property points that fall inside of this block,

gridblocks on the edges of the reservoir (or on the edges of heterogeneities if they

are present) will not be representative of the area they cover.

52

Figure 7.6. Flowchart of step two.

53

For example, in the figure 7.7 red dots show reservoir properties outside of the

reservoir (which is zero), while the green dots show reservoir property points values

(different from zero). In the figure 7.7 grid blocks 1 and 4 have property values

different than zero, despite that these blocks have more than a half located outside of

the reservoir.

Figure 7.7. Zoom in of the orange rectangle from the figure 7.4. Green dots show

property points inside reservoir; red dots show property points outside of the

reservoir; blue dots are grid points.

Ideal placement of the grid points, and therefore grid blocks, would be in such way

that reservoir boundary would correlate with boundaries between blocks. If it was

the case, then blocks inside reservoir would have reservoir property values

representative of the zone that they are located at, while blocks outside would have

zero values. So the main purpose of the second step of the algorithm is to move these

bad points (and consequentially block boundaries), so that the block boundaries

would align with reservoir boundaries for better representation of the reservoir. This

is done in the following way:

54

1. Calculate error and fitness values for each block. The error in the grid block

is equal to the standard deviation of reservoir property values that fall inside

of this grid block. For example, petrophysical field's points with permeability

values equal to 500, 510, 570 and 620 md fell inside one block. Two regions

of petrophysical fields were defined before: with permeabilities less than 550

md and with permeabilities higher than this values. Therefore, error of the

block is equal to standard deviation of these values, which is equal to 55.98.

This value is assigned to the block and is used in further calculations.

However, if the block is totally inside one region, then error is equal to zero.

The choice of standard deviation as an error left from very simple early runs

of the algorithm, when it was very effective. Because no better alternative

was found for the error function for more difficult late runs, it made its way

into the final version of the algorithm.

2. Each block is also assigned a fitness value, which is its rank (or place) in a

row of blocks' errors in a descending order.

3. Calculate sum of all error values.

4. For "n" (given as an input - number of points that will be moved during each

iteration) least fit grid points (highest error values) do the following

procedure: check if grid point can be moved at least once more; understand

where grid point is located; get property points inside this block; if the grid

point is inside one region, calculate mean values of the coordinates of all

other property points and move the grid block in the opposite direction from

the resulting mean property point at a distance given in the input.

5. Increase iteration counter by one.

6. If an iteration counter is less than a predefined number of required iterations,

return to step one, do all the steps again. If the iteration counter has reached

the predefined number of iterations, then take the result that has least sum of

errors and use it in the next step. This means that the best result in terms of

error function is chosen as an input for the next step. However, this best

result is the best only for the entered input parameters, by changing them

better or worse results may be achieved. This problem will be discussed in

the chapter 8.3, where effects of different input values are reviewed.

55

Deciding on whether the obtained result is good enough for use is based

mainly on error value and visual investigation of the obtained figure. If block

boundaries are very far from from reservoir boundaries, then algorithm

should be re-used with other input values. In order to get better results, it may

be required to include less points to be moved during each iteration, but a

greater number of times and therefore more generations. If these values do

not help, increased number of grid points should be able to solve the

problem.

In a form of flowchart this procedure would be as shown on figure 7.6. This

algorithm proved to be effective in solving part of the problem described in the

problem statement, however, it may encounter a problem if reservoir boundaries are

too close to a rectangle, surrounding it, but isn't exactly coinciding with it.

Figure 7.8. Example on reservoir.

This case is shown on figure 7.8. Reservoir sides "d" and "i" will not cause any

problems, because they coincide with surrounding rectangle. However, sides "a", "f"

56

and "g" may cause such problem, because they are very close to the vertical sides of

the rectangle.

If the distance from them to the rectangle sides is less than small distance obtained at

the end of step one, then the problem may occur, because points required outside of

the reservoir in order to generate block boundary coinciding with reservoir

boundary, may fall outside of black rectangle and therefore will not be generated.

Figure 7.9. Treating of vertical wells.

This problem is solved by adding of one layer of grid points on the different sides of

reservoir boundaries that have both starting and ending points closer to the rectangle

sides than small distance from the end of step one. This increases the resulting

number of grid blocks, but solves the problem effectively.

After handling of reservoir boundaries, points located inside rectangle but outside of

reservoir can be deleted. This is done by moving of all reservoir's vertices from the

center at a greater distance between the points multiplied by one and a half. Greater

distance is one of the distances (in Ky or Kx direction) obtained at the end of step

57

one. It is multiplied by 1.5 to make sure that at least one layer of points is left outside

of reservoir in order to handle all boundaries. So, reservoir vertices are pushed from

the center, area of reservoir increases in all of the directions. After this all points

outside of this big reservoir are deleted. These new bigger reservoir vertices are not

used after this step.

As it may be understood from the algorithm, the result will strongly depend on the

input parameters: how many points will be moved during each iteration; number of

required iterations; distance at which least fit points will be moved. For better

efficiency of the algorithm, it is proposed to use a greater number of iterations with

less points to be moved during each iteration at smaller distances but for a greater

number of times. However, usage of these characteristics means that calculation time

will increase, so the final decision on which values to use will depend on the person

using the algorithm.

After the best solution is chosen, the algorithm can proceed to the step 3, where grid

points related to vertical/horizontal wells and faults can be added.

7.4. Step Three (adding of grid points related to wells and faults)

Step three adds grid points related to vertical and horizontal wells and faults.

Vertical and horizontal wells are treated in different ways, while faults are treated

almost in the same way as horizontal well, so discussion is divided into two blocks -

vertical wells are discussed in one sub-chapter, horizontal wells and faults are

discussed in the other.

7.4.1. Treatment of vertical wells

Before talking about inputs for this step, it is required to show how the vertical wells

are treated. Figure 7.9 shows how grid points around vertical wells should be

generated.

58

Here, well is located in the middle of the structure, while surrounding blocks are

created in order to accurately represent a pressure drop in the area around the well.

These surrounding blocks are placed very densely, because the greatest pressure

drop occurs just around wells, so the more points are used there, the better

representation of the real conditions can be achieved.

Figure 7.10. Treating of horizontal wells.

As it may be seen from the figure 7.9, new blocks should be generated around the

well, and no grid points from the previous steps should interrupt their pattern. Also,

the number of blocks and layers, distances between layers of points and distance

from the well to the farthest layer of grid points should be considered. All these

values, along with the location of the well, its radius, should be entered as an input.

After these input values are entered, the algorithm starts by deleting grid point

generated during previous steps that fall into the region around well that will be

repopulated. After all these points are deleted, grid point related to the well is

generated, and then all surrounding points are generated layer-by-layer. This will end

up with something close to the pattern shown on figure 7.9.

59

7.4.2. Treatment of horizontal wells and faults

As it was said, faults and horizontal wells are treated almost in the same way, so they

will be discussed together. There are two main differences between them: number of

layers and alternating of grid blocks' property values in the fault representation.

Other than these characteristics, everything is the same. Representation of horizontal

wells and faults are shown on figures 7.10 and 7.11 respectively.

Figure 7.11. Treating of faults.

Inputs for this step are: coordinates of the fault/well; number of grid points (and

number of layers for wells only) that will be added; radius of fault/well; distance

from the well that will be repopulated with new points and distance between layers

of grid points for wells; permeability of the fault for faults.

When all input data were entered, algorithm starts deleting grid points generated

during previous steps that fall inside zone that will be repopulated.

Then it generates the layer of points related to the well/fault, and finishes with the

generation of layers of points outside of well/fault. For faults, it also asks

60

permeability of the fault and then assigns entered value to the blocks that represent

this fault. After this procedure is finished, it asks if another well/fault will be added.

When all wells or faults are introduced, algorithm finishes its work by drawing

result.

It must be mentioned that the algorithm described here was used only in two-

dimensional problems. However, if there is a three-dimensional problem, the

algorithm can be run for each layer separately. Then all results may be gathered

together. If the layer is inclined and inclination angle is known, then layer can be

changed into horizontal position, where the algorithm can be run, and then results

can be converted back into inclined position. So, the algorithm is quite general and

can be used in many cases. As it was previously mentioned, the code for running this

algorithm was written in Matlab. This code can be found in Appendix A.

61

CHAPTER 8

RESULTS OF STUDY

8.1. Introduction

This chapter discusses the results obtained by running the algorithm for six different

cases. These results will be discussed one-by-one in different sub-chapters. Table 8.1

shows what complications were added to the model in each of the cases.

Table 8.1. Description of the cases

 Case #1 Case #2 Case #3 Case #4 Case #5 Case #6
Number of points 500 500 500 500 500 600

Angle θ, ⁰ 90 120 210 45 10 90
Ky/Kx 1 3 0.4 0.5 2 2

Number of grid
points moved in each

iteration

5 5 5 5 5 5

Number of
movements for each

grid point

8 8 8 8 8 8

Distance of
movement, times the

distance in the
direction of lowest

permeability

0.07 0.07 0.07 0.07 0.07 0.07

Number of
generations

450 500 450 450 450 320

Vertical well in the
center

+ + + + +

Horizontal well +
Fault +

62

This chapter describes results obtained after running of the six cases described in the

table and further in the chapter and makes conclusion if algorithm xreated for this

thesis work is effective or not.

Figure 8.1. Permeability field for cases #1, #2 and #6 (plotted using MATLAB).

8.2. Cases

8.2.1. Case One (no anisotropy, no heterogeneities, one vertical well).

This case is the most simple one. This case includes absolutely homogeneous,

isotropic reservoir with a vertical well in the middle. The reservoir is not rectangular.

Permeability field required for running of the algorithm is shown on figure 8.1.

All values are given in milli-darcies. This permeability field was generated randomly

in the required interval of permeability values. For all of the cases described in this

63

thesis, permeability field consists of 14400 uniformly distributed points - 120 rows

and columns.

Main inputs for the first step are as follows: 500 points; 90 degrees angle between

Ky and y-direction of the reservoir; no anisotropy or heterogeneities; small distance

equal to 5; increment in distance also equal to 5.

Figure 8.2. Results obtained after running of the first step for the case #1 (built in

MATLAB).

At the end of the first step resulting picture is as shown on figure 8.2. Resulting sum

of errors at this figure is equal to 18113. As it may be seen from the figure, grid after

the first step is a regular Cartesian grid or very close to it (in the other cases).

Main inputs for the second stage are: five worst points moved during each iteration;

eight movements for each point; 450 iterations; one region of permeabilities between

1 and 1000 md (entered as three column vectors - permX (x-coordinates of

64

permeability points), permY (y-coordinates of permeability points), permeabilities

(permeability values in the points defined by vectors permX and permY)).

Figure 8.3. Results obtained after running of the second step of case #1 (built in

MATLAB).

At the end of the second step figure 8.2 transforms into what is shown on figure 8.3.

It must be mentioned that no wells or faults have been added to the model yet. Also

no additional grid points related to proper handling of reservoir boundaries close to

rectangle were added and no points outside of reservoir have been deleted. This

means that the number of grid points in the figure 8.3 is absolutely equal to the

number of grid points on figure 8.2. However, sum of errors for the case shown on

the figure 8.3 is equal to 9319. This fact shows the effectiveness of the second step

of the algorithm.

Figure 8.4. shows error values for all 450 generations of the first case. The curve

goes rapidly down, reaches minimum in the mid-seventies and then shows upward

trend.

65

Third stage main inputs are: vertical well in the middle of the reservoir; 60 points

were added, related to this well; radius around well that was cleaned and repopulated

is 100 feet; distance between the first and the second layers are 10 feet, while

distance to next layers are 1.2 times the distance to the previous one.

Figure 8.4. Error values for all generations of Case #1.

The final distribution of grid points (and therefore grid blocks) is shown on figure

8.5. As in similar previous figures, reservoir here is shown in blue color, while white

area is a zone outside of the reservoir. The resulting number of blocks is 537. This is

higher than 500 that was entered as input in the first stage because of the points

added for well representation and points that were required to correctly represent the

boundaries of the reservoir that are very close to the surrounding rectangle (this was

discussed in details in the previous chapter). The resulting sum of errors in all of the

blocks reduced from 18113 to 9319, which is almost twice.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 100 200 300 400 500

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #1

66

After the dispensation of grid points shown on figure 8.3 was obtained, fluid flow

simulation was created. A Python code was written based on the flow equations

described in the book of Ertekin et al. (Ertekin et al., 2001) to make these

simulations.

Figure 8.5. Results obtained for the case #1 (built in MATLAB).

Inputs for this fluid flow simulation run are as follows: one vertical well in the center

producing 100 stb/d for 50 days with time step of 5 days. This means that data after

10 time steps was generated and analyzed. Initial reservoir pressure is equal to 3044

PSI, fluid is slightly compressible, only one phase present.

Expectations are to see pressure disturbance to propagate at the same speed in all

directions, because there is no permeability anisotropy and hetergeneities in the field.

This means that pressure disturbance propagation should take shape of a circle.

Compare with result shown on figures 8.6-8.15. As it may be seen, pressure

propagates at circular shape until it reaches reservoir boundaries.

67

Figure 8.6. Pressure distribution after 5 days.

Figure 8.7. Pressure distribution after 10 days.

68

Figure 8.8. Pressure distribution after 15 days.

Figure 8.9. Pressure distribution after 20 days.

69

Figure 8.10. Pressure distribution after 25 days.

Figure 8.11. Pressure distribution after 30 days.

70

Figure 8.12. Pressure distribution after 35 days.

Figure 8.13. Pressure distribution after 40 days.

71

Figure 8.14. Pressure distribution after 45 days.

Figure 8.15. Pressure distribution after 50 days.

72

8.2.2. Case Two (anisotropy, no heterogeneities, one vertical well).

This case is almost identical to the previous one, with the only exception: anisotropy

has been introduced. So, the reservoir is of irregular shape, with anisotropy but no

heterogeneities. One vertical well is introduced in the center. Permeability field is

the same as in the case #1. This means that it was also randomly generated in the

required intervals - between 1 and 1000 md.

Figure 8.16. Results obtained after running of the first step for the case #2 (built in

MATLAB).

Main inputs for the first step are as follows: 500 blocks; angle between Ky and y-

direction of the reservoir is equal to 120 degrees; permeability in y-direction is three

times higher than permeability in x-direction; small distance and increment are both

equal to 5 feet.

73

At the end of the first step resulting picture is as shown on figure 8.16. Resulting

sum of errors at this figure is equal to 19039. As it may be seen from the figure, grid

after the first step is very close to Cartesian grid.

Figure 8.17. Results obtained after running of the second step of case #2 (built in

MATLAB).

Main inputs for the second step are: number of points that will be moved during each

iteration is equal to 5; number of required generations is equal to 450; required

number of movements for each point is equal to 8; one region with permeabilities

ranging from 1 to 1000 md.

Resulting locations of grid points after the second step of the case #2 are shown at

figure 8.17. As in the previous case, number of blocks is still the same, so change in

the sum of errors is only because of the better placement of the grid points. Sum of

errors reduced here from the 19039 to 2320.

74

Figure 8.18. shows error values for all 500 generations of the second case. The curve

goes rapidly down, reaches minimum in the eighties and then shows upward trend.

Figure 8.18. Error values for all generations of Case #2.

Main inputs for the third stage are: one vertical well in the middle; radius around the

well that is cleaned and repopulated is equal to 100 feet; 60 points related to the well

are added; distance between the first and the second layer of points is equal to 10

feet, while distance to next layers are 1.2 times the distance to the previous one.

The resulting distribution of grid points (and therefore grid blocks) is shown on

figure 8.19. As in similar previous figures, reservoir here is shown in blue color,

while white area is a zone outside of the reservoir. The resulting number of blocks is

540. This is higher than 500 that was entered as input in the first stage because of the

points added for well representation and points that were required to correctly

represent the boundaries of the reservoir that are very close to the surrounding

rectangle (this was discussed in details in chapter 6).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 100 200 300 400 500 600

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #2

75

The resulting sum of errors in all of the blocks reduced from 19039 to 2320, which

means that sum of errors reduced more than eight times. The great effectiveness of

the algorithm for the second case, compared to the case number one, may be due to

input parameters entered in the step one - angle and anisotropy factor.

Figure 8.19. Results obtained for the case #2 (built in MATLAB).

It can also be seen from the figures 8.5 and 8.19. On the figure 8.19 block

boundaries are better aligned with reservoir shape than on the figure 8.5. From this,

the conclusion may be made that the algorithm's effectiveness depends on the

reservoir properties.

76

Figure 8.20. Velocity field combined with the contour map of the distribution of the

pressures after 5 days of production for the second case (obtained with Surfer).

Figure 8.21. Permeability field for case #3. Generated in MATLAB.

77

However, by adjusting the input parameters given in the second stage effectiveness

may be increased. For example, by minimizing the distance at which points are

moved in each iteration and by increasing the number of movements for each point

and number of iterations, slightly better results may be achieved. However, this

would require more computation time for the computer. So, the choice is totally on

the person using the algorithm.

For this case fluid flow simulation run was also implemented. All input parameters

are just the same as in the previous case: one vertical well in the center producing

100 stb/d for 50 days with time step of 5 days. Initial reservoir pressure is equal to

3044 PSI, fluid is slightly compressible, only one phase present.

Expectations are to see pressure disturbance propagate at higher rate in the north-east

and south-west directions because of the permeability anisotropy. This is what can

be seen on figure 8.20.

Other figures showing results of case #2 fluid flow simulation run are in Appendix

B.

8.2.3. Case Three (anisotropy, straight channel, one vertical well).

This is the first case where heterogeneity is introduced. This heterogeneity is

represented by a straight channel in the middle of the reservoir.

This channel has better permeability values than the surrounding reservoir - in the

channel permeability is between 500 and 1000 md, while in other parts of the

reservoir they are between 1 and 500 md. The algorithm should be able to handle not

only reservoir - outside of reservoir boundaries, but also reservoir - channel

boundaries. This is shown on figure 8.21 - representation of permeability field.

78

Figure 8.22. Results obtained after running of the first step for the case #3 (built in

MATLAB).

Figure 8.23. Results obtained after running of the second step of case #3 (built in

MATLAB).

79

Main inputs for the first step are as follows: 500 grid points; angle between Ky and

y-direction of the field is equal to 210 degrees; Ky to Kx relation is equal to 0.4;

small distance and each iteration increment are both equal to 5.

Figure 8.24. Error values for all generations of Case #3.

At the end of the first step resulting picture is as shown on figure 8.22. Resulting

sum of errors at this figure is equal to 19213. As it may be seen from the figure, grid

after the first step is very close to Cartesian grid.

Main inputs for the second step are: number of points that were changed during each

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said,

the two regions were introduced: one with permeabilities between 1 and 500 md, the

other with permeabilities between 501 and 1000 md.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #3

80

Resulting locations of grid points after the second step of the case #3 are shown at

figure 8.23. As in the previous cases, number of blocks is still the same as in figure

8.22, so change in the sum of errors is only because of the better placement of the

grid points. Sum of errors reduced here from the 19213 to 1821.

Figure 8.24. shows error values for all 450 generations of the third case. The curve

goes rapidly down, reaches minimum in the early one hudredth and then shows

upward trend.

Figure 8.25. Results obtained for the case #3 (built in MATLAB).

Main inputs for the third step are: one vertical well in the center of the reservoir;

radius around the well that was repopulated is equal to 100 feet; 60 points related to

this well was added; distance between the first and the second layers of points

around the well is equal to 10 feet; distance to the next layers are 1.2 times the

distance to the previous one.

81

Obtained result is shown on figure 8.25. The resulting number of blocks is 527,

while sum of errors in each block reduced from initial value of 19213 to the best

result of 2046, which is almost 10 times! This is even beyond expectations, because

it is even better than in the both previous, simpler cases.

Figure 8.26. Velocity field combined with the contour map of the distribution of the

pressures after 5 days of production for the third case (obtained with Surfer).

Why this happens is not very clear, but maybe this is due to the angle introduced in

the first step which somehow better coincides with reservoir boundaries and makes

the work of the algorithm easier. Increased number of blocks is still due to handling

of reservoir boundaries close to the outside borders and adding of grid points related

to the well.

82

For this case fluid flow simulation run was also implemented in order to see how

reservoir behaves and is this behavior is close to what we expect. Inputs for the fluid

flow simulation run are as follows: vertical well producing at 100 stb/d; initial

reservoir pressure equal to 3044 PSI; run for 50 days; time step 5 day.

For this case the graph should show pressure disturbance propagating in the y-

direction from the well at a higher speed than in the x-direction. This is shown on the

figure 8.26 - velocity field combined with a contour map of pressure distribution in

the field after 5 days of production from the vertical well in the center.

Figure 8.27. Permeability field for case #4. Plotted in MATLAB.

Other figures, for the fluid flow simulation run of this case can be found in Appendix

C.

It can be seen that figure 8.26 clearly shows what was expected. Pressure disturbance

reached reservoir boundaries in the upward and downward directions in the picture,

83

also anisotropy effect can also be seen - in the direction of higher permeability

pressure disturbance propagated very far from the well.

8.2.4. Case Four (anisotropy, deviated channel, one vertical well).

This case is similar to the previous one with the only difference: now the channel is

not straight, it is deviated. Other than that, everything is almost the same.

Permeability field is as shown on figure 8.27.

Figure 8.28. Results obtained after running of the first step for the case #4 (built in

MATLAB).

Main inputs for the first step are as follows: 500 grid points; angle between Ky and

y-direction of the field is equal to 45 degrees; Ky to Kx relation is equal to 0.5; small

distance and each iteration increment are both equal to 5.

At the end of the first step resulting picture is as shown on figure 8.28. Resulting

sum of errors at this figure is equal to 21894. As it may be seen from the figure, grid

after the first step is very close to Cartesian grid.

84

Figure 8.29. Results obtained after running of the second step of case #4 (built in

MATLAB).

Figure 8.30. Error values for all generations of Case #4.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #4

85

Main inputs for the second step are: number of points that were changed during each

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said,

the two regions were introduced: one with permeabilities between 1 and 500 md, the

other with permeabilities between 501 and 1000 md.

Figure 8.31. Results obtained for the case #4 (built in MATLAB).

Resulting locations of grid points after the second step of the case #4 are shown at

figure 8.29. As in the previous cases, number of blocks is still the same as in figure

8.28, so change in the sum of errors is only because of the better placement of the

grid points. Sum of errors reduced here from the 21894 to 1813.

Figure 8.30. shows error values for all 450 generations of the fourth case. The curve

goes rapidly down, reaches minimum in the early one hudredth and then shows

upward trend.

Main inputs for the third step are: one vertical well in the center of the reservoir;

radius around the well that was repopulated is equal to 100 feet; 60 points related to

86

this well was added; distance between the first and the second layers of points

around the well is equal to 10 feet; distance to the next layers are 1.2 times the

distance to the previous one.

Figure 8.32. Velocity field combined with the contour map of the distribution of the

pressures after 10 days of production for the fourth case (obtained with Surfer).

The final results are shown on figure 8.31. The resulting number of blocks is equal to

536, while sum of errors in all of the blocks reduced from the initial value of 21894

to 3500, which is more than 6 times.

For this case fluid flow simulation run was also implemented. Inputs for the run are

still exactly as in the previous cases: vertical well producing at 100 stb/d; initial

reservoir pressure equal to 3044 PSI; run for 50 days; time step 5 day. Expectations

are to see pressure disturbance propagating at a higher rate towards and inside the

87

channel, because it has higher permeability values than the surrounding reservoir.

The results are shown on the graph 8.32 - velocity field combined with a contour

map of pressure distribution in the field after 10 days of production from the vertical

well in the center. Other figures, obtained from the fluid flow simulation run for this

case, can be found in Appendix D.

Figure 8.33. Permeability field for case #5. Plotted in MATLAB.

The picture coincides with the expectations - disturbance propagated further in the

northeast and south directions, exactly where the channel is located. So, the

algorithm was successful in solving this kind of problems.

8.2.5. Case Five (anistropy, four different regions, one vertical well).

The fifth case represents more complex conditions than each of the previous cases.

Now there is no channel, but some number of different regions in the field. Each

88

region has its own characteristics, so the purpose is to correctly represent each of this

region in the model.

Figure 8.34. Results obtained after running of the first step for the case #5 (built in

MATLAB).

This permeability field is shown on figure 8.33. As in previous cases, all

permeability values are given in milli-darcies.

Main inputs for the first step are as follows: 500 grid points; angle between Ky and

y-direction of the field is equal to 10 degrees; Ky to Kx relation is equal to 2; small

distance and each iteration increment are both equal to 10.

At the end of the first step resulting picture is as shown on figure 8.34. Resulting

sum of errors at this figure is equal to 23506. As it may be seen from the figure, grid

after the first step is very close to Cartesian grid.

89

Main inputs for the second step are: number of points that were changed during each

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said,

four regions were introduced: one with permeabilities between 1 and 250 md, the

second with permeabilities between 251 and 500 md, the third with permeabilities

between 501 and 750 md, and the last one with permeabilities between 750 and 1000

md. These regions were shown on the figure 8.20.

Figure 8.35. Results obtained after running of the second step of case #5 (built in

MATLAB).

Resulting locations of grid points after the second step of the case #5 are shown at

figure 8.35. As in the previous cases, number of blocks is still the same as in figure

8.21, so change in the sum of errors is only because of the better placement of the

grid points. Sum of errors reduced here from the 23506 to 5872.

90

Figure 8.36. shows error values for all 450 generations of the fifth case. The curve

contiuouly goes down, reaches minimum in the early one hudred fourties and then

shows mainly upward trend.

Main inputs for the third step are: one vertical well in the center of the reservoir;

radius around the well that was repopulated is equal to 100 feet; 60 points related to

this well was added; distance between the first and the second layers of points

around the well is equal to 10 feet; distance to the next layers are 1.2 times the

distance to the previous one.

Figure 8.36. Error values for all generations of Case #5.

The obtained results are shown on figure 8.37. The resulting number of blocks is

equal to 530, while the sum of errors in all of the blocks reduced from an initial

value of 23506 to 5872, which is not so good as previous two cases, but still quite

impressive.

For this case fluid flow simulation run was also implemented. Inputs for the run are

exactly as in the previous cases: vertical well producing at 100 stb/d; initial reservoir

pressure equal to 3044 PSI; run for 5 days; time step 0.5 day.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #5

91

Figure 8.37. Results obtained for the case #5 (built in MATLAB).

Figure 8.38. Velocity field combined with the contour map of the distribution of the

pressures after 2.5 days of production for the fifth case (obtained with Surfer).

92

Expectations are to see pressure disturbance propagating at a higher rate towards the

lower regions, because they have higher permeability values than the other regions.

The picture shown on figure 8.38 completely coincides with the expectations -

disturbance propagated further in the east and south directions, exactly where the

higher permeability regions are located. So, the algorithm was also successful in

solving this kind of problems. Other flow simulation run's timesteps can be found in

Appendix E.

Figure 8.39. Results obtained after running of the first step for the case #6 (built in

MATLAB).

8.2.6. Case Six (anisotropy, no heterogeneities, fault and horizontal well)

Case six, last case discussed in this thesis, represents conditions with

compartmentalized reservoir, from where production is performed using one

horizontal well.

93

The main purpose of showing of this case is to see, how the fault and horizontal well

are added to the model. Permeability field required for running of the algorithm is

the same as in cases #1 and #2.

Figure 8.40. Results obtained after running of the second step of case #6 (built in

MATLAB).

Main inputs for the first step are as follows: 600 grid points; angle between Ky and

y-direction of the field is equal to 90 degrees; Ky to Kx relation is equal to 2; small

distance is equal to 5, while each iteration distance increment is equal to 2.5.

Reservoir boundaries are chosen as in all of the previous cases.

At the end of the first step resulting picture is as shown on figure 8.39. Resulting

sum of errors at this figure is equal to 18317. As it may be seen from the figure, grid

after the first step is very close to Cartesian grid.

94

Main inputs for the second step are: number of points that were changed during each

iteration is 5; 320 iterations; each point was allowed to move 9 times; only one

permeability region with permeabilities between 1 and 1000 md is present.

Resulting locations of grid points after the second step of the case #5 are shown at

figure 8.40. As in the previous cases, number of blocks is still the same as in figure

8.39, so change in the sum of errors is only because of the better placement of the

grid points. Sum of errors reduced here from the 18317 to 2811.

Figure 8.41. Error values for all generations of Case #6.

Figure 8.41. shows error values for all 320 generations of the fourth case. The curve

contiuouly goes down, reaches minimum in the mid-sixties and then shows mainly

upward trend.

Main inputs for the third step are: one horizontal well and one sealing fault totally

dividing reservoir into two compartments (figure 8.42); radius around the well that

was repopulated is equal to 50 feet; 100 points related to this well were added;

distance between the first and the second layers of points around the well is equal to

5 feet; distance to the next layers are 1.2 times the distance to the previous one.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

S
u

m
 o

f
E

r
r
o

r
s

Number of Generations

Case #6

95

The obtained results are shown on figure 8.42. The resulting number of blocks is

equal to 747, while the sum of errors in all of the blocks reduced from an initial

value of 18317 to 2811, which is also pretty impressive. Resulting number of blocks

is higher than the 600 entered in the first step because of the grid points related to

well and fault and also points related to proper reservoir border handling.

Figure 8.42. Results obtained for the case number six (built in MATLAB).

For this case fluid flow simulation run was not implemented, because the model that

was used for running of previous cases is still under construction and is not able to

handle horizontal wells at the moment of writing of this thesis work.

8.3. Effects of inputs on final results

This subchapter discusses effects of input values on final results by showing several

cases and talking about them. At the end of it, conclusion about how parameters

should be chosen in order to get less error values is made. Parameters chosen for this

study are all the parameters that affect final distribution of grid points, that can be

96

changed. Also no sensitivity study on to what extent each of the parameters affects

final result is made, so it is proposed to do it in the future studies.

8.3.1. Effect of number of grid points

It is obvious that higher amount of points should end up with less resulting error.

This is shown on figure 8.43.

The only difference in the cases shown in the figure is number of grid points, other

than that all input values were chosen to be absolutely the same. Background

petrophysical property mesh consists of 57600 uniformly distributed permeability

points with values randomly generated in the interval between 1 and 1000 md. As it

may be seen from the figure, while number of blocks is four times higher on the right

figure, error in there is approximately less by one-fifth. This difference is not very

big, however, from the figure it may be seen that reservoir boundary handling is

much better than in the left one, especially in the right lower corner.

Figure 8.43. Comparing results with different number of blocks (obtained with

MATLAB).

But this better accuracy comes at big price - calculation time of the second step,

which is the most time consuming step in the algorithm, differs significantly for

97

these two cases: left one requires 200 seconds in order to perform 100 generations,

while the right one requires 670 seconds for the same amount of generations. Also,

because right case has higher amount of grid points, more of them will require

relocation compared to the left case. This means that for the same input values, right

hand side will also require higher amount of generations in order to get to the

minimum error value that could be used as the final result. So, whether to use higher

amount of grid points is not an easy question.

8.3.2. Effect of number of moving grid points

As it was discussed in methodology, during each generation number of grid points

with highest error values are moved. This number is taken from the input given by

the person using the algorithm, so there is a question whether to give big values in

order to move several grid points at once, or limit them, for example, moving them

one by one. Figure 8.44 shows two cases that differ from each other only by this

criterion.

Figure 8.44. Comparing results with different number of movements for each grid

point (obtained with MATLAB).

In the case shown on the left grid points were moved one by one, while in the case

shown on the right ten worst grid points were chosen in each generation to be

98

moved. First case shows smaller final error value and that is what can be expected:

when high amount of point is moved during each generation, several points that are

not the worst are moved also with the worst one. The problem is that maybe better

result in terms of error function may have been achieved in the middle of moving.

That is why it is proposed to move less amount of grid points during each

generation. However, this choice also have drawbacks. The less amount of grid

points is moved during each generation, the more amount of generations may be

required to get best results, which affects significantly calculation time. Also it must

be said that moving several points in each generation also affects calculation time,

by affecting each generation calculation time. Left hand side case requires 105

seconds in order to calculate 100 generations, while right hand side case requires 140

seconds. This difference is not very big, but also should be considered.

Figure 8.45. Comparing results with different limits of movements (obtained with

MATLAB).

8.3.3. Effect of limit of movement of grid points

Another input criterion that affects final results is number of times each point can be

moved. This is a very important values, because it lets control at what distance may

point end up from its original place. The effect of this criteria is shown on figure

8.45.

99

As in the previous cases, these ones are also differ only in the input criterion that is

discussed - all other values are absolutely the same. As it can be seen from the figure

8.45, left hand side case, using limit of movement equal to ten, has smaller error

value at the end and also less distortion of the initial grid on the left and right sides

of the reservoir. As it was already said, limiting movement makes it possible to

control movement of points to some extent, which means that smaller value for this

criterion should end up in less grid distortion. However, by limiting number of

movements better results also may be missed. This criteria does not affect

computation time, so it must be carefully considered whether to let points to move

freely in the reservoir or to limit them.

Figure 8.46. Comparing results with different distance of movement (obtained with

MATLAB).

8.3.4. Effect of distance of movement of grid points

Finally, the last criterion that affects final result - distance at which points are

moved. As it was mentioned in the methodology chapter, input also includes fraction

of longer distance that points are moved at. Longer distance is the distance between

neighboring grid points in the direction of lower permeability. The effect of this

criterion is shown in the figure 8.46.

100

It seems like the distance at which points are moved during each iteration should be

chosen as little in order to get better results. However, cases show something

opposite to this supposition. Error of the case with distance of movement equal to

0.01 times the big distance has higher final error values than the case with 0.07 times

the big distance. It also can be seen from the figure, right hand side case deals with

reservoir properties in a more accurate way than the left hand side case. This can be

seen especially in the lower left corner. The only advantage of smaller moving

distance seems to be less distortion of the initial grid. So, proposition would be to

use something in between of these values, but the choice totally depends on the

person using the algorithm.

In the next chapter conclusion and propositions for future studies can be found.

101

CHAPTER 9

CONCLUSION

Based on the results obtained after running of cases of increasing complexity,

algorithm described in this thesis proved to be capable of placing Voronoi grid

points in reservoir simulation in order to honor geological properties of the reservoir

including anisotropy orientation and ratio, and reservoir heterogeneities.

One of the main advantages of the algorithm is that it tries to obtain better locations

of limited number of Voronoi grid points without making a significant increase in

this number. This means that instead of increasing the number of grid points

exceedingly, it provides better solutions rather than placing these points uniformly

all over the field. Error values and graphs that show final distribution of the grid

plots show that as the grid block boundaries coincide with background reservoir

property mesh, error values decrease.

Also it must be mentioned that effectiveness of the algorithm in terms of error

function can be affected by values of some input parameters required for running of

the algorithm. The most effective inputs include the number of times that the points

are allowed to move as less points to be moved during each iteration, but a greater

number of times and therefore with more iterations. Number of grid points also

affects final accuracy - the higher the number of grid points the better is the result.

However, these choices will increase computation time, so they must be carefully

chosen before application of the algorithm to the problem.

102

103

CHAPTER 10

PROPOSITION FOR FUTURE STUDIES

For future studies it is proposed to use the algorithm on the cases of increasing

complexity and to add all necessary sophistications to the algorithm so that all the

complications will be solved.

This includes:

 Trying to change algorithm, so that not only one property would be used for

differentiating different geological entities. In this study only permeability

was used for this purpose, proposition is to use several different properties

together at one time. Maybe some weightening of these properties should be

applied to each of the property points.

 Considering application of the algorithm to 3D problems, including not

horizontal formations.

 Considering handling of regions with intersecting intervals of property

values.

 Thinking if a better error function definition could be used.

 Checking of the results obtained for the case with horizontal wells by running

flow simulation.

 Do similar flow simulation runs with Cartesian grid and compare the results

for all of the cases.

 Thinking if the grid points near the reservoir boundaries can be handled

better. Maybe truncation concept can be used there, which will further

decrease number of grid points.

104

 Doing sensitivity analysis on to what extent each of the input parameters

affects final result.

105

BIBLIOGRAPHY

Adamson, G. et al. (1996), "Simulation Throughout the Life of the Reservoir",

Oilfield Review, Summer 1996, pp. 16-27.

Alpay, Allen, O. (1972), "A Practical Approach to Defining Reservoir
Heterogeneity", Journal of Petroleum Technology, July, 1992, pp. 841-848.

Anderson, B. et al. (1994), "Oilfield Anisotropy: Its Origins and Electrical
Characteristics", Oilfield Review, October 1994, pp. 48-56.

Angelo, G. D., Henning, T. and Kley, W. (2002), "Nested-grid Calculations of Disk-
Planet Interaction", January 2002.

Antoniou, A. and Lu, W. (2007), "Practical Optimization. Algorithms and
Engineering Applications", Springer Science+Business Media, LLC, 2007.

Aurenhammer, F. (1991), "Voronoi Diagrams - a survey of a fundamental geometric
data structure", ACM Comput. Surv., 1991.

Aurenhammer, F. and Klein, R. (2000), "Voronoi Diagrams. Handbook of
Computational Geometry", Ed. J. Sack, J. Urrutia (eds.), 2000, 201-290.

Aziz, K. and Settari, A. (1979), "Petroleum Reservoir Simulation", Appled Science
Publishers, London.

Aziz, K. (1993), "Reservoir Simulation Grids: Opportunities and Problems", Journal
of Petroleum Technology, July 1993, pp. 658-663.

Baldick, R. (2006), "Applied Optimization. Formulation and Algorithms for
Engineering Systems", Cambridge University Press, 2006.

Belegundu, A. D. and Chandrupatla T. R. (2011), "Optimization Concepts and
Applications in Engineering", 2nd Ed., Cambridge University Press, 2011.

Beni, L. H., Mostafavi, M.A. and Pouliot, J. (2010). "Voronoi diagram: An adaptive
spatial tessellation for processes simulation, Modeling Simulation and Optimization
- Tolerance and Optimal Control, Shkelzen Cakaj (Ed.), ISBN: 978-953-307-056-8,
InTech, Available from: http://www.intechopen.com/books/modeling-simulation-
and-optimization-tolerance-and-optimalcontrol/voronoi-diagram-an-adaptive-spatial-
tessellation-for-processes-simulation, retrieved on 25th of August, 2015.

106

Bernal, J. (1993), "Bibliographic Notes on Voronoi Diagrams", Technical report,
National Institute of Standarts and Technologies, April 1993.

Branets, L. V., Ghai, S. S., Lyons, S. L. and Wu, X.-H. (2009), "Efficient and
Accurate Reservoir Modelling Using Adaptive Gridding With Global Scale Up",
SPE paper 118946, Society of Petroleum Engineers, 2009.

Castellini, A. (2001), "Flow Based Grids For Reservoir Simulation", MSc
Dissertation, Stanford University, Stanford, June 2001.

Castillo, J. E. (1991), "Mathematical Aspects of Grid Generation", Society for
Industrial and Applied Mathematics, Philadelphia, 1991.

Chawner, J. (2013), "Quality and Control - Two Reasons Why Structured Grids Are
Not Going Away", The Connector Pointwise, March / April, 2013.

Chong, E. K. P. and Zak, S. H. (2008), "An Introduction to Optimization", 3rd Ed.,
John Wiley & Sons, Inc., 2008.

Corvi, P. et al. (1992), "Reservoir Characterization Using Expert Knowledge, Data
and Statistics", Oilfield Review, January 1992, pp. 25-39.

Diwekar, U. (2008), "Introduction to Applied Optimization", 2nd Ed., Springer
Science+Business Media, LLC, 2008.

Du, Q., Faber, V. and Gunzburger, M. (1999), "Centroidal Voronoi Tesellations:
Applications and Algorithms", SIAM Review, Vol. 41, No. 4, pp. 637-676, Society
for Industrial and Applied Mathematics.

Ertekin, T., Abou-Cassem, J. H. and King G. R. (2001), "Basic Applied Reservoir
Simulation", Henry L. Doherty Memorial Fund of AIME Society of Petroleum
Engineers, Richardson, Texas, 2001.

Evazi, M. and Mahani, H. (2009), "Generation of Voronoi Grid Based on Vorticity
for Coarse-Scale Modeling of Flow in Heterogeneous Formations", Springer
Science+Business Media B.V. 2009.

Forsyth, P. (1989), "A Control Volume Finite Element Method for Local Mesh
Refinements", SPE 18415, 10th SPE Symposium Reservoir Simulation.

Frederick, C.O., Wong, Y.C. and Edge, F.W. (1970), "Two-Dimensional Automatic
Mesh Generation for Structural Analysis", Int. J. Nurner, Meth. Eng. 1970, 2, No 1,
pp. 133-144.

Fung, L. S. K., Ding, X. Y. and Dogru, A. H. (2014), "Unconstrained Voronoi Grids
for Densely Spaced Complex Wells in Full-Field Reservoir Simulation", SPE paper
163648, SPE Journal 2014.

107

Galloway, W. A., and D. K. Hobday (1996), "Terrigenous Clastic Depositional
System", 2ed. Springer-Verlag, New York, 1996.

George, P. L. (1991), "Automatic Mesh Generation", 1991.

Heinemann, Z. E. and Brand, C.W. (1989), "Gridding Techniques in Reservoir
Simulation", presented at the 1989 Second Interntional Forum on Reservoir
Simulation, Alpbach.

Heinemann, Z. E., Brand, C.W., Munka, M. and Chen, Y. (1991), "Modeling
reservoir geometry with irregular grids", SPE Reservoir Engineering, 6(2), May
1991.

Hirasaki, G. J. and O'Dell P. M. (1970), "Representation of Reservoir Geometry for
Numerical Simulation", SPEJ, December 1970, p. 393.

Ho-Le, K. (1988), "Finite Element Mesh Generation Methods a Review and
Classification", Computer-Aided Design (Jan.-Feb 1988) 20, pp. 27-38.

Islam, M.R., et al. (2010), "Advanced Petroleum Reservoir Simulation", Scrivener
Publishing LLC, 2010.

Jensen, J.L., et al. (1997), "Statistics for Petroleum Engineers and Geoscientists",
Prentice-Hall, Inc., 1997.

Kang, J. M. (2008), "Voronoi Diagrams", 8715: Spatial Databases Encyclopedia
Article.

Katzmayr, M. and Ganzer, L. (2009), "An Iterative Algorithm for Generating
Constrained Voronoi Grids", SPE paper 118942, Society of Petroleum Engineers.

Kaufmann, D. E. (2006), "Capability Development for Modeling the Structure and
Dynamics of Barred Spiral Galaxies 15-R9577", Southwest Research Institute, 2006.

Kilic, A. and Ertekin, T. (2003), "Application of a Local Grid Refinement Protocol
in Highly Faulted Reservoir Architectures", Journal of Canadian Petroleum
Technology, April 2003, Volume 42, No. 4, pp. 58-69.

Kocberber, S., (1997), "An Automatic, Unstructured Control Volume Generation
System for Geologically Complex Reservoirs", SPE paper 38001, Society of
Petroleum Engineers, 1997.

Kuwauchi, Y. et al. (1996), "Development and Applications of a Three Dimensional
Voronoi-Based Flexible Grid Black Oil Reservoir Simulator", SPE paper 37028,
Society of Petroleum Engineers, 1996.

108

Lake, L.W. and Holstein, E. D. (2007), "Petroleum Engineering Handbook", Vol. 5 -
Reservoir Engineering and Petrophysics, Society of Petroleum Engineers.

Li, Q., Li, H., Cai, Q. and Liu, Y. (2011), "Generation of 2D Conforming Voronoi
Diagram in Complex Domain", J. Chang (Ed.): ICAIC 2011, Part IV, CCIS 227, pp.
32-39, Springer-Verlag Berlin Heidelberg, 2011.

Mackay, A. L. (1972), "Stereological Characteristics of Atomic Arrangements in
Crystals", Journal of Microscopy, 1972, 95, 217-227.

Manrique J. F., Kasap E. and Georgi D.T. (1994), "Effect of Heterogeneity and
Anisotropy on Probe Permeameter Measurements", Transactions of the SPWLA
35th Annual Logging Symposium, Tulsa, Oklahoma, USA, June 19-22, 1994.

Marcondes, F., Maliska, C. R. and Zambaldi, M. C. (2009), "A comparative study of
implicit and explicit methods using unstructured voronoi meshes in petroleum
reservoir simulation", Journal of The Brazilian Society of Mechanical Sciences and
Engineering, October/December 2009.

Mattax, C. C. and Dalton R. L. (1990), "Reservoir Simulation", SPE monograph,
Vol. 13, Henry L. Doherty Series, 1990.

Mavriplis, D. J. (1996), "Mesh Generation and Adaptivity for Complex Geometries
an Flows", Handbook of Computational Fluid Mechanics, 1996.

McNeal, R. H. (1953), "An Asymmetrical Finite Difference Network", Quart. Appl.
Math, 1953, 11, 295-310.

Merland, R. et al. (2011), "Building Centroidal Voronoi Tessellations For Flow
Simulation In Reservoirs Using Flow Information", SPE paper 141018, Society of
Petroleum Engineers, 2011.

Merland, R., Caumon, G., Levy, B. and Collon-Drouaillet, P. (2014), "Voronoi Grids
Conforming to 3D Structural Features", Springer International Publishing
Switzerland, 2014.

Mlachnik, M. J., Durlofsky, L. J. and Heinemann, Z. E. (2006), "Sequentially
Adapted Flow-Based PEBI Grids for Reservoir Simulation", SPE paper 90009,
Society of Petroleum Engineers, 2006.

Moog, G. J. E. A. (2013), "Advanced Discretization Methods for Flow Simulation
Using Unstructured Grids", PhD dissertation, Stanford University, Stanford, June
2013.

Odeh, A. S. (1982), "An overview of mathematical modeling of the behavior of
hydrocarbon reservoirs", SIAM Review, Vol. 24 (3), pp. 263.

109

Okabe, A. et al. (2000), "Spatial Tesselations: Concepts and Applications of Voronoi
diagrams", 2nd Ed., Probability and Statistics, Wiley, 2000.

Olorode, O. M. (2011), "Numerical Modeling of Fractured Shale-Gas and Tight-Gas
Reservoirs Using Unstructured Grids", MSc Thesis, Texas A&M University, Austin,
December 2011.

Palagi, C. L. (1992), "Generation and Application of Voronoi Grid to Model Flow in
Heterogeneous Reservoirs", PhD Dissertation, Stanford University, Stanford, May
1992.

Palagi, C. L. and Aziz, K. (1993), "The Modeling of Vertical and Horizontal Wells
With Voronoi Grid", SPE paper 24072, Society of Petroleum Engineers, 1993.

Palagi, C. L. and Aziz, K. Appendix (1993), "The Modeling of Vertical and
Horizontal Wells With Voronoi Grid", SPE paper 26301, Society of Petroleum
Engineers, 1993.

Palagi, C. L., P.R. Ballin and Aziz K. (1993), "The Modeling of Flow in
Heterogeneous Reservoirs With Voronoi Grid", SPE paper 25259, Society of
Petroleum Engineers, 1993.

Palagi, C. L. and Aziz, K. (1994), "Use of Voronoi Grid in Reservoir Simulation",
SPE paper 22889, SPE Advanced Technology Series, Vol. 2, No. 2.

Palagi, C. L. and Aziz, K. Appendix (1994), "Use of Voronoi Grid in Reservoir
Simulation: Appendices A, B and C", SPE paper 26951, Society of Petroleum
Engineers, 1994.

Pathak, P. et al. (1980), "Rock Structure and Transport There in: Unifying with
Voronoi Models and Percolation Concepts", SPE paper 8846, Society of Petroleum
Engineers, April, 1980.

Pedrosa, O.A. and Aziz, K. (1985), "Use of hybrid grid in reservoir simulation",
proceedings of SPE Middle East Oil Technical Conference, pp. 99-12, Bahrain

Pedrosa, O. A. and Aziz, K. (1986), "Use of a Hybrid Grid in Reservoir
Engineering", SPE Reservoir Engineering, November 1986, pp. 611-621.

Pedrosa, O. A. (1984), "Use of Hybrid Grid in Reservoir Simlation", PhD
Dissertation, Stanford University, Stanford, December 1984.

Ponting, D. K. (1989), "Corner Point Geometry in Reservoir Simulation", 1st
European Conference on the Mathematics of Oil Recovery, July 1989.

Prevost, M. (2003), "Accurate Coarse Reservoir Modeling Using Unstructured
Grids, Flow-Based Upscaling and Streamline Simulation", PhD Dissertation,
Stanford University, Stanford, December 2003.

110

Prevost, M., Lepage, F., Durlofsky, L. J. and Mallet, J.-L. (2004), "Unstructured 3D
Gridding and Upscaling for Coarse Modelling of Geometrically Complex
Reservoirs", 9th European Conference on the Mathematics of Oil Recovery, Cannes,
France, 2004.

Prothero, D. R. and Schwab, F. (2014), "Sedimentary Geology. An introduction to
Sedimentary Rocks and Stratigraphy", 3rd Ed., W. H. Freeman and Company, 2014.

Pruess, K. and Bodvarsson, G. S. (1983), "A Seven Point Finite Difference Method
for Improved Grid Orientation Performance in Pattern Steamfloods", SPE paper
12252, 1983.

Pyrcz, M. J. and Deutsch, C. V. (2014), "Geostatistical Reservoir Modeling", 2nd
Ed., Oxford University Press, 2014.

Rajan V. S. V (1988), "Discussion of the origins of Anisotropy", SPE paper 18394m,
Journal of Petroelum Technology, July 1988, p. 905.

Richards, F. D. (1974), "The Interpretation of Protein Structures: Total Volume,
Group Volume Distributions and Packing Density", Journal of Molecular Biology,
1974, 82.

Robertson, G. E. and Woo, P. T. (1978), "Grid-Orientation Effects and the Use of
Orthogonal Curvilinear Coordinates in Reservoir Simulation", SPEJ, February 1978,
p. 13.

Sarvottamananda, S. (2010), "Voronoi Diagrams", Ramakrishna Mission
Vivekananda University, BHU-IGGA, 2010.

Slatt, R. M. (2006), "Stratigraphic Reservoir Characterization", Elsevier B. V., 2006.

Soleng, H. H. and Holden, L., "Gridding for Petroleum Reservoir Simulation",
Norwegian Computing Center.

Sonier, F. and Chaumet, P. (1974), "A Fully Three-Dimensional Model In
Curvilinear Coordinates", SPEJ, August 1974, p. 361.

Syihab, Z. (2009), "Simulation of Discrete Fracture Network Using Flexible Voronoi
Gridding", PhD Dissertation, Texas A&M University, Austin, December 2009.

Todd, M. R., O'Dell, P. R. and Hirasaki, G. J. (1972) "Methods for Increased
Accuracy in Numerical Reservoir Simulators", Trans. Society of Petroleum
Engineers of AIME, 253, 515-530.

Trease, H. E. (1985), "Three-Dimensional Free Langrangian Hydrodynamics", The
Free-Language Method, eds. M. J. Fritts, W. P. Crowley and H. E. Trease, Lecture
Notes in Physics, Springer-Verlag, New York, 1985, 238, 145-157.

111

Verma, S. K. (1996), "Flexible Grids for Reservoir Simulation", PhD Dissertation,
Stanford University, Stanford, June 1996.

Vestergaard, H., Olsen, H., Sikandar, A. S., Al-Emadi, I. A. and Noman, R. (2008)
"Unstrucuctured Gridding for Full-Field Simulation of a Giant Carbonate Reservoir
DEveloped With Long Horizontal Wells", Journal of Petroleum Technology, July,
2008.

Voronoi, G. (1908), "Nouvelles applications des parametres continus a la theorie des
formes quadratiques", J. Reine Angew. Math., 1908, 134, 198-287.

Wadsley, A. W., Erlandsen, S. and Goemans, H. W. (1990), "HEX - A Tool for
Integrated Fluvial Architecture Modelling and Numerical Simulation of Recovery
Processes", The Norwegian Institute of Technology, North Sea Oil Reservoirs - II,
1990.

Weber, K.J. (1986), "How heterogeneity affects oil recovery", in L. W. Lake and H.
B. J. Carroll, eds., Reservoir Characterization: Orlando, FL, Academy Press, p. 487-
844.

Weise, T. (2011), "Global Optimization Algorithms - Theory and Application", 3rd
Ed., Thomas Weise, 2011.

Winterfield, P. H. et al. (1981), "Percolation and Conductivity of Random Two-
Dimensional Composites", J.Phys. C.: Solid State Phys., 1981, 14, 2361-76.

Yang, X. (2008), "Introduction to Mathematical Optimization. From Linear
Programming to Metaheuristics", Cambridge International Science Publishing, 2008.

Yang, X. and Koziel, S. (2011), "Computational Optimization and Applications in
Engineering and Industry", Springer-Verlag Berlin Heidelberg, 2011.

112

113

APPENDIX A

SOURCE CODE

%{

This code was written as a part of a METU MSc dissertation of Ulvi

Rza-Guliyev.

To run it, four column vectors named permXvec, permYvec, permZvec,

permeabilitiesVec must already be loaded onto workspace of Matlab. permXvec,

permYvec and permZvec must have X, Y and Z coordinates of permeability

points in the field, while permeabilitiesVec must have permeability values

in x direction in it. All other inputs are given in the code.

%}

% Start of the first step, where initial population of the gridpoints is

% generated

n=input('Enter number of points: ');

angle=input('Enter value of Tetta, 0-360, degrees: ');

tet=pi*angle/180; % Changed to radians for trigonometric functions

if (tet < pi/2)

 w=0;

elseif (tet >= pi/2 && tet < pi)

 w=pi/2;

elseif (tet >= pi && tet < 3*pi/2)

114

 w=pi;

elseif (tet >= 3*pi/2 && tet < 2*pi)

 w=3*pi/2;

elseif tet == 2*pi

 tet=0;

 w=0;

else fprintf('Angle must be between 0 and 360 degrees. Start again.');

end

m=input('Enter Ky/Kx value: ');

kykxrel=m;

R=input('Enter distance in minimum direction (should be small): ');

increment=input('Enter value of increment to the minimum distance,\nthat will be

added at the end of each iteration: ');

% Entering reservoir vertexes

resBouVert=zeros;

nprb=input('Enter number of reservoir verteces: ');

for kl=1:1:nprb

 resBouVert(kl,1)=input('Enter x coordinate of vertex: ');

 resBouVert(kl,2)=input('Enter y coordinate of vertex: ');

end

resBouVert(nprb+1,1)=input('Enter x coordinate of first vertex: ');

resBouVert(nprb+1,2)=input('Enter y coordinate of first vertex: ');

resVertX=resBouVert(:,1);

resVertY=resBouVert(:,2);

% Calculating of rectangle boundaries

length=abs(max(resVertX)-min(resVertX));

width=abs(max(resVertY)-min(resVertY));

resVertX=resVertX-min(resVertX);

resVertY=resVertY-min(resVertY);

115

counter=n+1;

while counter>n

if m > 1 && tet >= 0 && tet < pi/2

 Ry=R;

 Rx=m*R;

elseif m > 1 && tet >= pi/2 && tet < pi

 Ry=m*R;

 Rx=R;

elseif m > 1 && tet >= pi && tet < 3*pi/2

 Ry=R;

 Rx=m*R;

elseif m > 1 && tet >= 3*pi/2 && tet < 2*pi

 Ry=m*R;

 Rx=R;

elseif m < 1 && tet >= 0 && tet < pi/2

 Rx=m*R;

 Ry=R;

elseif m < 1 && tet >= pi/2 && tet < pi

 Ry=m*R;

 Rx=R;

elseif m < 1 && tet >= pi && tet < 3*pi/2

 Rx=m*R;

 Ry=R;

elseif m < 1 && tet >= 3*pi/2 && tet < 2*pi

 Ry=R;

 Rx=m*R;

else

 Rx=R;

 Ry=R;

end

116

% Now it will calculate dimensions of matrix.

if (tet > 0 && tet < pi/2)

 overwidth=width*cos(tet)+length*sin(tet);

 overlength=width*sin(tet)+length*cos(tet);

 matrixNreal=overlength/Rx;

 matrixMreal=overwidth/Ry;

elseif (tet > pi && tet < 3*pi/2)

 overwidth=width*cos(tet-pi)+length*sin(tet-pi);

 overlength=width*sin(tet-pi)+length*cos(tet-pi);

 matrixNreal=overlength/Rx;

 matrixMreal=overwidth/Ry;

elseif (tet > pi/2 && tet < pi)

 overlength=width*cos(tet-pi/2)+length*sin(tet-pi/2);

 overwidth=width*sin(tet-pi/2)+length*cos(tet-pi/2);

 matrixNreal=overwidth/Rx;

 matrixMreal=overlength/Ry;

elseif (tet > 3*pi/2 && tet < 2*pi)

 overlength=width*cos(tet-3*pi/2)+length*sin(tet-3*pi/2);

 overwidth=width*sin(tet-3*pi/2)+length*cos(tet-3*pi/2);

 matrixNreal=overwidth/Rx;

 matrixMreal=overlength/Ry;

elseif (tet == 0 || tet == pi || tet == 2*pi)

 matrixNreal=width/Ry;

 matrixMreal=length/Rx;

elseif (tet == pi/2 || tet == 3*pi/2)

 matrixNreal=width/Rx;

 matrixMreal=length/Ry;

else fprintf('Angle must be between 0 and 360 degrees. Start again.');

end

matrixN=ceil(matrixNreal);

matrixM=ceil(matrixMreal);

117

abscissa=zeros(matrixN,matrixM);

ordinate=zeros(matrixN,matrixM);

% Now it will calculate starting point, which is outside of reservoir.

if (tet > 0 && tet < pi/2)

 Sx=0-width*sin(tet)*cos(tet);

 Sy=width*sin(tet)*sin(tet);

elseif (tet > pi/2 && tet < pi)

 Sx=0-width*sin(tet-pi/2)*cos(tet-pi/2);

 Sy=width*sin(tet-pi/2)*sin(tet-pi/2);

elseif (tet > pi && tet < 3*pi/2)

 Sx=0-width*sin(tet-pi)*cos(tet-pi);

 Sy=width*sin(tet-pi)*sin(tet-pi);

elseif (tet > 3*pi/2 && tet < 2*pi)

 Sx=0-width*sin(tet-w)*cos(tet-w);

 Sy=width*sin(tet-w)*sin(tet-w);

elseif (tet == 0 || tet == pi/2 || tet == pi || tet == 3*pi/2 || tet == 2*pi)

 Sx=0;

 Sy=0;

else fprintf('Angle must be between 0 and 360 degrees. Start again.');

end

% Start of generation of probable initial population of gridpoints

if (tet > 0 && tet < pi/2) || (tet > pi && tet < 3*pi/2)

 for i=1:1:matrixN

 abscissa(i,1)=Sx;

 ordinate(i,1)=Sy;

 for e=2:1:matrixM

 abscissa(i,e)=abscissa(i,e-1)+Ry*sin(tet-w);

 ordinate(i,e)=ordinate(i,e-1)+Ry*cos(tet-w);

 end

 Sx=Sx+Rx*cos(tet-w);

118

 Sy=Sy-Rx*sin(tet-w);

 end

elseif (tet > pi/2 && tet < pi) || (tet > 3*pi/2 && tet < 2*pi);

 for i=1:1:matrixN

 abscissa(i,1)=Sx;

 ordinate(i,1)=Sy;

 for e=2:1:matrixM

 abscissa(i,e)=abscissa(i,e-1)+Ry*sin(tet-w);

 ordinate(i,e)=ordinate(i,e-1)+Ry*cos(tet-w);

 end

 Sx=Sx+Rx*cos(tet-w);

 Sy=Sy-Rx*sin(tet-w);

 end

 elseif (tet == 0 || tet == pi)

 for i=1:1:matrixN

 abscissa(i,1)=Sx;

 ordinate(i,1)=Sy;

 for e=2:1:matrixM

 ordinate(i,e)=ordinate(i,e-1)+Rx*sin(tet-w);

 abscissa(i,e)=abscissa(i,e-1)+Rx*cos(tet-w);

 end

 Sy=Sy+Ry*cos(tet-w);

 Sx=Sx+Ry*sin(tet-w);

 end

elseif (tet == pi/2 || tet == 3*pi/2)

 for i=1:1:matrixN

 abscissa(i,1)=Sx;

 ordinate(i,1)=Sy;

 for e=2:1:matrixM

 ordinate(i,e)=ordinate(i,e-1)+Ry*sin(tet-w);

 abscissa(i,e)=abscissa(i,e-1)+Ry*cos(tet-w);

 end

119

 Sy=Sy+Rx*cos(tet-w);

 Sx=Sx+Rx*sin(tet-w);

 end

else fprintf('Angle must be between 0 and 360 degrees');

end

v=1;

sk=matrixN*matrixM;

absc=zeros(sk,1);

ord=zeros(sk,1);

% Deleting of the points outside of rectangle

 for i=1:1:matrixN

 for e=1:1:matrixM

 if abscissa(i,e)>0 && abscissa(i,e)<=length ...

 && ordinate(i,e)>0 && ordinate(i,e)<=width

 absc(v,1)=abscissa(i,e);

 ord(v,1)=ordinate(i,e);

 v=v+1;

 end

 end

 end

% Means of seeing how many points were generated in current iteration

fprintf('Number of blocks on this stage is: %g\n', v);

if m>=1

 fprintf('At this stage your minimum distance is: %g\n', R);

else

 fprintf('At this stage your minimum distance is: %g\n', m*R);

end

tocontinue=input('Press 0 + enter:');

120

counter=v;

if v>n

 R=R+increment;

else fprintf('Number of blocks is: %g\n', counter-1);

end

end

% Saving of the final initial population in allGens

numGen=1;

allGens{numGen,1}=absc;

allGens{numGen,2}=ord;

% Inputs for the second step

lastNumPoints=input('Enter number of points that will be changed in every iteration:

');

moveFun=input('Enter fraction of distance that points will be moved (i.e. 0.07): ');

requiredNumGen=input('Enter required number of generations: ');

requiredError=input('Enter required error: ');

limitOfMovement=input('Enter required number of movements for each point: ');

numReg=input('Enter number of regions (without zero region): ');

minLim=zeros;

maxLim=zeros;

for kg=1:1:numReg

 fprintf('Enter minimum permeability in region #%g: ',kg);

 minLim(kg,1)=input('');

 fprintf('Enter maximum permeability in region #%g: ',kg);

 maxLim(kg,1)=input('');

end

minLim(kg+1,1)=0;

maxLim(kg+1,1)=abs(min(minLim)-1);

numberOfMovements=zeros(counter-1,1);

121

sumError=requiredError+1;

checker21=1;

permXi=size(permXvec,1);

permFieldVec=[permXvec,permYvec];

if m*R>=R

 maxDist=m*R;

 minDist=R;

else

 maxDist=R;

 minDist=m*R;

end

stopStep2=0;

minimEr=inf;

while sumError>=requiredError && numGen<=requiredNumGen+1 &&

stopStep2~=42

num=1;

number=1;

x=zeros(counter-1,1);

y=zeros(counter-1,1);

z=40*ones(counter-1,1);

absc=[absc;0];

ord=[ord;0];

while absc(num,1)~=0

 absc(num,1)=roundn(absc(num,1),-3);

 x(num,1)=absc(num,1);

 num=num+1;

end

while ord(number,1)~=0

 ord(number,1)=roundn(ord(number,1),-3);

 y(number,1)=ord(number,1);

122

 number=number+1;

end

xy=[x,y];

blocksOfPoints=zeros(permXi,counter-1);

distances=pdist2(permFieldVec,xy);

% Finding which block each permeability point is related to

for kk=1:1:size(distances,1)

 distancesForPoints=distances(kk,:);

 backUpDist=distancesForPoints;

 [closestDist,ind]=min(backUpDist);

 blocksOfPoints(kk,ind)=permeabilitiesVec(kk,1);

 backUpDist(1,ind)=inf;

 [closestDist2,ind2]=min(backUpDist);

 if closestDist2==closestDist

 blocksOfPoints(kk,ind2)=permeabilitiesVec(kk,1);

 backUpDist(1,ind2)=inf;

 [closestDist3,ind3]=min(backUpDist);

 if closestDist3==closestDist2

 blocksOfPoints(kk,ind3)=permeabilitiesVec(kk,1);

 backUpDist(1,ind3)=inf;

 [closestDist4,ind4]=min(backUpDist);

 if closestDist4==closestDist3

 blocksOfPoints(kk,ind4)=permeabilitiesVec(kk,1);

 backUpDist(1,ind4)=inf;

 [closestDist5,ind5]=min(backUpDist);

 if closestDist5==closestDist4

 blocksOfPoints(kk,ind5)=permeabilitiesVec(kk,1);

 backUpDist(1,ind5)=inf;

 [closestDist6,ind6]=min(backUpDist);

 if closestDist6==closestDist5

123

 blocksOfPoints(kk,ind6)=permeabilitiesVec(kk,1);

 backUpDist(1,ind6)=inf;

 [closestDist7,ind7]=min(backUpDist);

 if closestDist7==closestDist6

 blocksOfPoints(kk,ind7)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind7)=inf;

 [closestDist8,ind8]=min(backUpDist);

 if closestDist8==closestDist7

 blocksOfPoints(kk,ind8)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind8)=inf;

 [closestDist9,ind9]=min(backUpDist);

 if closestDist9==closestDist8

 blocksOfPoints(kk,ind9)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind9)=inf;

 [closestDist10,ind10]=min(backUpDist);

 if closestDist10==closestDist9

 fprintf('Something is wrong');

 end

 end

 end

 end

 end

 end

 end

 end

 end

end

jj=1;

124

forError=0;

uu=1;

error=zeros(counter-1,1);

% Calculating of error for each block

while jj<=counter-1

 for ii=1:1:permXi

 if blocksOfPoints(ii,jj)~=0;

 forError(uu,1)=blocksOfPoints(ii,jj);

 uu=uu+1;

 end

 end

 for ht=1:1:size(minLim,1)

 if forError(1,1)>=minLim(ht,1) && forError(1,1)<=maxLim(ht,1)

 blockMin=minLim(ht,1);

 blockMax=maxLim(ht,1);

 end

 end

 ug=0;

 for hk=1:1:size(forError)

 if forError(hk,1)>=blockMin && forError(hk,1)<=blockMax

 ug=ug+1;

 end

 end

 if ug==size(forError,1)

 error(jj,1)=0;

 elseif ug<size(forError,1)

 error(jj,1)=std(forError);

 else fprintf('Something is wrong(line 346)');

 end

 checker{jj,checker21}=forError;

 jj=jj+1;

125

 uu=1;

 forError=0;

end

% Saving errors in allGens

allGens{numGen,3}=error;

sumError=sum(error);

allGens{numGen,4}=sumError;

if minimEr>sumError

 minimEr=sumError;

elseif sumError>=minimEr+2000

 stopStep2=42;

end

% Assigning of fitnesses

errorBackUp=error;

fitness=zeros(counter-1,1);

ii=1;

while ii<=counter-1

 [value,index]=min(errorBackUp);

 fitness(index,1)=ii;

 errorBackUp(index,1)=inf;

 ii=ii+1;

end

xBackUp=x;

yBackUp=y;

pp=counter-1;

dd=0;

% Moving of bad points in the required direction while checking if number

% of movements for these points is less than the limit

126

while dd<=lastNumPoints && pp>=2

 for index=1:1:counter-1

 if fitness(index,1)==pp

 ppm=zeros(numReg+1,1);

 if numberOfMovements(index,1)<limitOfMovement;

 numberOfMovements(index,1)=numberOfMovements(index,1)+1;

 dd=dd+1;

 blm=checker{index,checker21};

 % Calculates how many points inside block are of different

 % regions permeability.

 for zv=1:1:size(blm,1)

 for fq=1:1:numReg

 if blm(zv,1)==0.001

 ppm(numReg+1)=ppm(numReg+1)+1;

 elseif blm(zv,1)<=maxLim(fq,1) && blm(zv,1)>=minLim(fq,1)

 ppm(fq,1)=ppm(fq,1)+1;

 else moe=42;

 end

 end

 end

 xes=zeros;

 yes=zeros;

 skp=1;

 [valper,indper]=max(ppm);

 useMin=minLim(indper,1);

 useMax=maxLim(indper,1);

 for jkr=1:1:size(permeabilitiesVec,1)

 if (blocksOfPoints(jkr,index)<useMin &&

blocksOfPoints(jkr,index)>0) || (blocksOfPoints(jkr,index)>useMax)

 xes(skp,1)=permXvec(jkr,1);

 yes(skp,1)=permYvec(jkr,1);

 skp=skp+1;

127

 end

 end

 centX=mean(xes);

 centY=mean(yes);

 myPointX=x(index,1);

 myPointY=y(index,1);

 bcatm1=abs(centX-myPointX);

 bcatm2=abs(centY-myPointY);

 xuse=myPointX-centX;

 yuse=myPointY-centY;

 if xuse>0 && yuse>0

 alpha=atand(bcatm2/bcatm1);

 x(index,1)=x(index,1)+maxDist*moveFun*cosd(alpha);

 y(index,1)=y(index,1)+maxDist*moveFun*sind(alpha);

 elseif xuse<0 && yuse>0

 alpha=atand(bcatm2/bcatm1);

 x(index,1)=x(index,1)-maxDist*moveFun*cosd(alpha);

 y(index,1)=y(index,1)+maxDist*moveFun*sind(alpha);

 elseif xuse>0 && yuse<0

 alpha=atand(bcatm2/bcatm1);

 x(index,1)=x(index,1)+maxDist*moveFun*cosd(alpha);

 y(index,1)=y(index,1)-maxDist*moveFun*sind(alpha);

 elseif xuse<0 && yuse<0

 alpha=atand(bcatm2/bcatm1);

 x(index,1)=x(index,1)-maxDist*moveFun*cosd(alpha);

 y(index,1)=y(index,1)-maxDist*moveFun*sind(alpha);

 elseif xuse==0 && yuse>0

 x(index,1)=x(index,1);

 y(index,1)=y(index,1)+maxDist*moveFun;

 elseif xuse==0 && yuse<0

 x(index,1)=x(index,1);

 y(index,1)=y(index,1)-maxDist*moveFun;

128

 elseif xuse>0 && yuse==0

 x(index,1)=x(index,1)+maxDist*moveFun;

 y(index,1)=y(index,1);

 elseif xuse<0 && yuse==0

 x(index,1)=x(index,1)-maxDist*moveFun;

 y(index,1)=y(index,1);

 else fprintf('My point and point it bounces off are at the same place');

 end

 end

 end

 end

 pp=pp-1;

end

absc=x;

ord=y;

numGen=numGen+1;

fprintf('Gen #%g\n',numGen);

allGens{numGen,1}=absc;

allGens{numGen,2}=ord;

checker21=checker21+1;

end

% Choose best result from allGens

helper=zeros;

for i=1:1:numGen-1

 helper(i,1)=allGens{i,4};

end

[value,minIndex]=min(helper);

xBest=allGens{minIndex,1};

yBest=allGens{minIndex,2};

129

% Remove points outside of reservoir

resVertXBackUp=resVertX;

resVertYBackUp=resVertY;

if m>=1

 moveDist=m*R;

else

 moveDist=R;

end

smt=size(resVertX,1);

for ii=1:1:smt

 if resVertX(ii,1)>=0 && resVertX(ii,1)<length/2 && resVertY(ii,1)>=0 &&

resVertY(ii,1)<width/2

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist*cosd(45);

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist*sind(45);

 elseif resVertX(ii,1)>=0 && resVertX(ii,1)<length/2 && resVertY(ii,1)>width/2

&& resVertY(ii,1)<=width

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist*cosd(45);

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist*sind(45);

 elseif resVertX(ii,1)>length/2 && resVertX(ii,1)<=length &&

resVertY(ii,1)>width/2 && resVertY(ii,1)<=width

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist*cosd(45);

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist*sind(45);

 elseif resVertX(ii,1)>length/2 && resVertX(ii,1)<=length && resVertY(ii,1)>=0

&& resVertY(ii,1)<width/2

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist*cosd(45);

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist*sind(45);

 elseif resVertX==length/2 && resVertY>=0 && resVertY<width/2

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist;

 elseif resVertX==length/2 && resVertY>width/2 && resVertY<=width

 resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist;

 elseif resVertX>=0 && resVertX<length/2 && resVertY==width/2

130

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist;

 elseif resVertX>length/2 && resVertX<=length && resVertY==width/2

 resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist;

 elseif resVertX==length/2 && resVertY==width/2

 fprintf('Point in the center. Left at its place');

 else fprintf('Something is wrong with vertexes (line 584)');

 end

end

nos=inpolygon(xBest, yBest, resVertXBackUp, resVertYBackUp);

nos=nos+0;

xk=zeros;

yk=zeros;

kew=1;

for kk=1:1:size(nos,1)

 if nos(kk,1)==1

 xk(kew,1)=xBest(kk,1);

 yk(kew,1)=yBest(kk,1);

 kew=kew+1;

 end

end

xBest=xk;

yBest=yk;

% Handling of boundaries close to the rectangle boundaries

ii=2;

targetZone=zeros(1,2);

while ii<=size(resVertX,1)

 if resVertX(ii,1)>=0 && resVertX(ii,1)<=1.5*maxDist && ...

 resVertX(ii-1,1)>=0 && resVertX(ii-1,1)<=1.5*maxDist

 if resVertX(ii,1)~=0 || resVertX(ii-1,1)~=0

 startX=resVertX(ii-1,1);

131

 startY=resVertY(ii-1,1);

 endX=resVertX(ii,1);

 endY=resVertY(ii,1);

 bcat1=abs(startX-endX);

 bcat2=abs(startY-endY);

 boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);

 distForBound=maxDist/2;

 numOfPoints=boundLength/distForBound;

 xMove=startX-endX;

 yMove=startY-endY;

 if xMove>0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove<0

132

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

133

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove>0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

134

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove<0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

135

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

136

 elseif xMove==0 && yMove==0

 fprintf('Two reservoir boundary points are at the same place');

 else ulvi=1992;

 end

 end

 elseif resVertX(ii,1)>=length-1.5*maxDist && resVertX(ii,1)<=length && ...

 resVertX(ii-1,1)>=length-1.5*maxDist && resVertX(ii-1,1)<=length

 if resVertX(ii,1)~=length || resVertX(ii-1,1)~=length

 startX=resVertX(ii-1,1);

 startY=resVertY(ii-1,1);

 endX=resVertX(ii,1);

 endY=resVertY(ii,1);

 bcat1=abs(startX-endX);

 bcat2=abs(startY-endY);

 boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);

 distForBound=maxDist/2;

 numOfPoints=boundLength/distForBound;

 xMove=startX-endX;

 yMove=startY-endY;

 if xMove>0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

137

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

138

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

139

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove>0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove<0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound;

140

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

141

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove==0

 fprintf('Two reservoir boundary points are at the same place');

 else ulvi=1992;

 end

 end

 elseif resVertY(ii,1)>=0 && resVertY(ii,1)<=1.5*maxDist && ...

 resVertY(ii-1,1)>=0 && resVertY(ii-1,1)<=1.5*maxDist

 if resVertY(ii,1)~=0 || resVertY(ii-1,1)~=0

 startX=resVertX(ii-1,1);

 startY=resVertY(ii-1,1);

 endX=resVertX(ii,1);

 endY=resVertY(ii,1);

 bcat1=abs(startX-endX);

 bcat2=abs(startY-endY);

 boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);

 distForBound=maxDist/2;

 numOfPoints=boundLength/distForBound;

 xMove=startX-endX;

 yMove=startY-endY;

142

 if xMove>0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

143

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

144

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove>0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove<0

 firstX1=startX-10;

145

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

146

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove==0

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove==0

 fprintf('Two reservoir boundary points are at the same place');

 else ulvi=1992;

 end

 end

 elseif resVertY(ii,1)>=width-1.5*maxDist && resVertY(ii,1)<=width && ...

 resVertY(ii-1,1)>=width-1.5*maxDist && resVertY(ii-1,1)<=width

 if resVertY(ii,1)~=width || resVertY(ii-1,1)~=width

 startX=resVertX(ii-1,1);

 startY=resVertY(ii-1,1);

 endX=resVertX(ii,1);

 endY=resVertY(ii,1);

147

 bcat1=abs(startX-endX);

 bcat2=abs(startY-endY);

 boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);

 distForBound=maxDist/2;

 numOfPoints=boundLength/distForBound;

 xMove=startX-endX;

 yMove=startY-endY;

 if xMove>0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove>0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

148

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove>0

 alpha=atand(bcat2/bcat1);

 firstX1=startX+10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX-10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

149

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove<0 && yMove<0

 alpha=atand(bcat2/bcat1);

 firstX1=startX-10*sind(alpha);

 firstY1=startY+10*cosd(alpha);

 firstX2=startX+10*sind(alpha);

 firstY2=startY-10*cosd(alpha);

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove>0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)-distForBound;

150

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)-distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove<0

 firstX1=startX-10;

 firstY1=startY;

 firstX2=startX+10;

 firstY2=startY;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1);

 firstP1(pd,2)=firstP1(pd-1,2)+distForBound;

 firstP2(pd,1)=firstP2(pd-1,1);

 firstP2(pd,2)=firstP2(pd-1,2)+distForBound;

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif (xMove>0 && yMove==0) && (startY~=0 && endY~=0) &&

(startY~=width && endY~=width)

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

151

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)-distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)-distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif (xMove<0 && yMove==0) && (startY~=0 && endY~=0) &&

(startY~=width && endY~=width)

 firstX1=startX;

 firstY1=startY+10;

 firstX2=startX;

 firstY2=startY-10;

 firstP1=[firstX1, firstY1];

 firstP2=[firstX2, firstY2];

 pd=2;

 dd=2;

 while dd<=numOfPoints+1

 firstP1(pd,1)=firstP1(pd-1,1)+distForBound;

 firstP1(pd,2)=firstP1(pd-1,2);

 firstP2(pd,1)=firstP2(pd-1,1)+distForBound;

 firstP2(pd,2)=firstP2(pd-1,2);

 dd=dd+1;

 pd=pd+1;

 end

 targetZone=[targetZone; firstP1; firstP2];

 elseif xMove==0 && yMove==0

 fprintf('Two reservoir boundary points are at the same place');

152

 else ulvi=1992;

 end

 end

 end

 ii=ii+1;

end

targetZoneX=targetZone(:,1);

targetZoneY=targetZone(:,2);

xBest=[xBest;targetZoneX];

yBest=[yBest;targetZoneY];

% Now we have best results. Next step is to introduce wells/faults.

bu=999;

fprintf('If you want to add vertical well, enter "1";\n');

fprintf('If you want to add horizontal well, enter "2";\n');

fprintf('If you want to add fault, enter "3";\n');

fprintf('If you do not want to do anything, enter "4";\n');

fault=[0,0];

faultCount=0;

horWellCount=0;

while bu~=42

 wellValue=input('Your number: ');

 if wellValue==1

 % Inputs for vertical well

 xWell=input('Enter X coordinate of location of the well: ');

 yWell=input('Enter Y coordinate of location of the well: ');

 radAroundWell=input('Enter radius around well that will be cleaned and

populated with new points: ');

 amountPoints=input('Enter amount of points to be added: ');

 wellRad=input('Enter well radius: ');

 firstLayerDist=2*wellRad;

153

 secondLayerDist=input('Enter distance between first and second layer: ');

 magnDist=input('Enter value of how much distance to the next layer will be

higher than to previous layer: ');

 % Delete points near well

 xy=[xBest,yBest];

 xyWell=[xWell,yWell];

 distancesToWell=pdist2(xy,xyWell);

 for oo=1:1:size(distancesToWell,1)

 if distancesToWell(oo)<=radAroundWell

 xBest(oo,1)=0;

 yBest(oo,1)=0;

 end

 end

 xNew=zeros;

 yNew=zeros;

 tt=1;

 for aa=1:1:size(xBest,1)

 if xBest(aa,1)~=0

 xNew(tt,1)=xBest(aa,1);

 yNew(tt,1)=yBest(aa,1);

 tt=tt+1;

 end

 end

 % Calculation of how many layers there will be

 kk=secondLayerDist;

 mm=firstLayerDist+secondLayerDist;

 sld=secondLayerDist; % Between first layer (for well) and second

 amountLayers=1; % Here

 while mm<=radAroundWell

 amountLayers=amountLayers+1;

154

 xx=mm;

 mm=mm+kk*magnDist;

 kk=mm-xx;

 end

 pointsInOneLayer=amountPoints/amountLayers;

 radDistBetweenPoints=360/pointsInOneLayer;

 xAroundWell=zeros;

 yAroundWell=zeros;

 % Creating of the first layer

 nn=0;

 for kk=1:1:pointsInOneLayer % Was with -1, one more point was required.

check

 xAroundWell(1,kk)=xWell+firstLayerDist*sind(nn*radDistBetweenPoints);

 yAroundWell(1,kk)=yWell+firstLayerDist*cosd(nn*radDistBetweenPoints);

 nn=nn+1;

 end

 % Creating of other layers

 qq=firstLayerDist+secondLayerDist;

 ff=secondLayerDist;

 for ii=2:1:amountLayers+1

 for jj=1:1:pointsInOneLayer

 xAroundWell(ii,jj)=xWell+qq*sind(jj*radDistBetweenPoints);

 yAroundWell(ii,jj)=yWell+qq*cosd(jj*radDistBetweenPoints);

 end

 yy=qq;

 qq=qq+ff*magnDist;

 ff=qq-yy;

 end

 % Checking if all generated points are inside of reservoir

 bo1=size(xAroundWell,1);

 bo2=size(xAroundWell,2);

 bo=bo1*bo2;

155

 xAroundWell=reshape(xAroundWell,bo,1);

 yAroundWell=reshape(yAroundWell,bo,1);

 winch=inpolygon(xAroundWell,yAroundWell,resVertX,resVertY);

 winch=winch+0;

 for kq=1:1:size(winch,1)

 if winch(kq,1)==0

 xAroundWell(kq,1)=0;

 yAroundWell(kq,1)=0;

 end

 end

 xf=zeros;

 yf=zeros;

 nm=1;

 for hs=1:1:size(xAroundWell,1)

 if xAroundWell(hs,1)~=0 || yAroundWell(hs,1)~=0

 xf(nm,1)=xAroundWell(hs,1);

 yf(nm,1)=yAroundWell(hs,1);

 nm=nm+1;

 end

 end

 fprintf('Your vertical well is located at x = %g, y = %g\n', xWell, yWell);

 bu=input('If you want to add another well, enter "0", if not, enter "42": ');

 % Saving generated points

 xNew=[xNew;xf;xWell];

 yNew=[yNew;yf;yWell];

 xBest=xNew;

 yBest=yNew;

 elseif wellValue==2

 % Input for horizontal well

 horWellCount=horWellCount+1;

 startX=input('Enter X coordinate of start (left!) of the well: ');

 startY=input('Enter Y coordinate of start (left!) of the well: ');

156

 endX=input('Enter X coordinate of end (right! If well is parallel to y-axis start

from uppermost) of the well: ');

 endY=input('Enter Y coordinate of end (right! If well is parallel to y-axis start

from uppermost) of the well: ');

 amountPoints=input('Enter maximum amount of points to be added: ');

 radWell=input('Enter radius of the well: ');

 firstLayerDist=2*radWell;

 secondLayerDist=input('Enter distance between first and second layer: ');

 magnDist=input('Enter value of how much distance to the next layer will be

higher than to previous layer: ');

 distFromWell=input('Enter distance from well that will be cleared and

populated with new points: ');

 cat1=abs(startX-endX);

 cat2=abs(startY-endY);

 wellLength=sqrt(cat1*cat1+cat2*cat2);

 % Checking how the well is located towards rectangle's sides

 if cat1==0

 parallelWell=1;

 elseif cat2==0

 parallelWell=2;

 else parallelWell=0;

 end

 xv=zeros;

 yv=zeros;

 if parallelWell==0 % If well is not parallel to rectangle's sides

 alpha=atand(cat2/cat1);

 if startY > endY

 xv(1,1)=startX+distFromWell*sind(alpha);

 yv(1,1)=startY+distFromWell*cosd(alpha);

 xv(2,1)=endX+distFromWell*sind(alpha);

 yv(2,1)=endY+distFromWell*cosd(alpha);

 xv(3,1)=endX-distFromWell*sind(alpha);

157

 yv(3,1)=endY-distFromWell*cosd(alpha);

 xv(4,1)=startX-distFromWell*sind(alpha);

 yv(4,1)=startY-distFromWell*cosd(alpha);

 % Delete points near well

 IN=inpolygon(xBest,yBest,xv,yv);

 IN=IN+0;

 for ii=1:1:size(IN,1)

 if IN(ii,1)==1

 xBest(ii,1)=0;

 yBest(ii,1)=0;

 end

 end

 xNew=zeros;

 yNew=zeros;

 tt=1;

 for aa=1:1:size(xBest,1)

 if xBest(aa,1)~=0

 xNew(tt,1)=xBest(aa,1);

 yNew(tt,1)=yBest(aa,1);

 tt=tt+1;

 end

 end

 % Calculation of number of layers

 kk=secondLayerDist;

 mm=firstLayerDist+secondLayerDist;

 amountLayers=1; % Here

 while mm<=distFromWell

 amountLayers=amountLayers+1;

 xx=mm;

 mm=mm+kk*magnDist;

 kk=mm-xx;

 end

158

 pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1;

 distBetweenPoints=wellLength/pointsInOneLayer;

 % Creating of layer exactly on well

 wellGridX=zeros;

 wellGridY=zeros;

 wellGridX(1,1)=startX;

 wellGridY(1,1)=startY;

 for ii=2:1:pointsInOneLayer+2

 wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints*cosd(alpha);

 wellGridY(ii,1)=wellGridY(ii-1,1)-distBetweenPoints*sind(alpha);

 end

 % Creating of layers (to the upper part)

 xFromWellUp=zeros;

 yFromWellUp=zeros;

 xFromWellUp(1,1)=startX+firstLayerDist*sind(alpha);

 yFromWellUp(1,1)=startY+firstLayerDist*cosd(alpha);

 for ii=2:1:pointsInOneLayer+2

 xFromWellUp(1,ii)=xFromWellUp(1,ii-

1)+distBetweenPoints*cosd(alpha);

 yFromWellUp(1,ii)=yFromWellUp(1,ii-1)-

distBetweenPoints*sind(alpha);

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer+2

 xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj)+dd*sind(alpha);

 yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd*cosd(alpha);

159

 end

 end

 end

 % Creating of layers (to the down part)

 xFromWellDown=zeros;

 yFromWellDown=zeros;

 xFromWellDown(1,1)=startX-firstLayerDist*sind(alpha);

 yFromWellDown(1,1)=startY-firstLayerDist*cosd(alpha);

 for ii=2:1:pointsInOneLayer+2

 xFromWellDown(1,ii)=xFromWellDown(1,ii-

1)+distBetweenPoints*cosd(alpha);

 yFromWellDown(1,ii)=yFromWellDown(1,ii-1)-

distBetweenPoints*sind(alpha);

 end

 ll=secondLayerDist;

 dd=firstLayerDist+secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer+2

 xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj)-dd*sind(alpha);

 yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd*cosd(alpha);

 end

 end

 end

 % Putting everything together

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1);

160

xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1);

yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1);

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1);

 av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY);

 av=av+0;

 bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY);

 bv=bv+0;

 for lp=1:1:size(xFromWellUp,1)

 if av(lp,1)==0

 xFromWellUp(lp,1)=0;

 yFromWellUp(lp,1)=0;

 end

 end

 for pr=1:1:size(xFromWellDown,1)

 if bv(pr,1)==0

 xFromWellDown(pr,1)=0;

 yFromWellDown(pr,1)=0;

 end

 end

 xu=zeros;

 xd=zeros;

 yu=zeros;

 yd=zeros;

 wcu=1;

 wcd=1;

 for hg=1:1:size(xFromWellUp,1)

161

 if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0

 xu(wcu,1)=xFromWellUp(hg,1);

 yu(wcu,1)=yFromWellUp(hg,1);

 wcu=wcu+1;

 end

 end

 for yh=1:1:size(xFromWellDown,1)

 if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0

 xd(wcd,1)=xFromWellDown(yh,1);

 yd(wcd,1)=yFromWellDown(yh,1);

 wcd=wcd+1;

 end

 end

 xFromWellUp=xu;

 yFromWellUp=yu;

 xFromWellDown=xd;

 yFromWellDown=yd;

 xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX];

 yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY];

 xBest=xNew;

 yBest=yNew;

 elseif startY < endY

 xv(1,1)=startX-distFromWell*sind(alpha);

 yv(1,1)=startY+distFromWell*cosd(alpha);

 xv(2,1)=endX-distFromWell*sind(alpha);

 yv(2,1)=endY+distFromWell*cosd(alpha);

 xv(3,1)=endX+distFromWell*sind(alpha);

 yv(3,1)=endY-distFromWell*cosd(alpha);

 xv(4,1)=startX+distFromWell*sind(alpha);

 yv(4,1)=startY-distFromWell*cosd(alpha);

 % Delete points near the well

 IN=inpolygon(xBest,yBest,xv,yv);

162

 IN=IN+0;

 for ii=1:1:size(IN,1)

 if IN(ii,1)==1

 xBest(ii,1)=0;

 yBest(ii,1)=0;

 end

 end

 xNew=zeros;

 yNew=zeros;

 tt=1;

 for aa=1:1:size(xBest,1)

 if xBest(aa,1)~=0

 xNew(tt,1)=xBest(aa,1);

 yNew(tt,1)=yBest(aa,1);

 tt=tt+1;

 end

 end

 kk=secondLayerDist;

 mm=firstLayerDist+secondLayerDist;

 amountLayers=1;

 % Calculate number of layers

 while mm<=distFromWell

 amountLayers=amountLayers+1;

 xx=mm;

 mm=mm+kk*magnDist;

 kk=mm-xx;

 end

 pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1;

 distBetweenPoints=wellLength/pointsInOneLayer;

 % Creating of points exactly on well

 wellGridX=zeros;

 wellGridY=zeros;

163

 wellGridX(1,1)=startX;

 wellGridY(1,1)=startY;

 for ii=2:1:pointsInOneLayer+2

 wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints*cosd(alpha);

 wellGridY(ii,1)=wellGridY(ii-1,1)+distBetweenPoints*sind(alpha);

 end

 % Creating of layers (to the upper part)

 xFromWellUp=zeros;

 yFromWellUp=zeros;

 xFromWellUp(1,1)=startX-firstLayerDist*sind(alpha);

 yFromWellUp(1,1)=startY+firstLayerDist*cosd(alpha);

 for ii=2:1:pointsInOneLayer+2%

 xFromWellUp(1,ii)=xFromWellUp(1,ii-

1)+distBetweenPoints*cosd(alpha);

 yFromWellUp(1,ii)=yFromWellUp(1,ii-

1)+distBetweenPoints*sind(alpha);

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+2%

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer+2%

 xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj)-dd*sind(alpha);

 yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd*cosd(alpha);

 end

 end

 end

164

 % Creating of layers (to the down part)

 xFromWellDown=zeros;

 yFromWellDown=zeros;

 xFromWellDown(1,1)=startX+firstLayerDist*sind(alpha);

 yFromWellDown(1,1)=startY-firstLayerDist*cosd(alpha);

 for ii=2:1:pointsInOneLayer+2

 xFromWellDown(1,ii)=xFromWellDown(1,ii-

1)+distBetweenPoints*cosd(alpha);

 yFromWellDown(1,ii)=yFromWellDown(1,ii-

1)+distBetweenPoints*sind(alpha);

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+2%

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer+2%

 xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj)+dd*sind(alpha);

 yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd*cosd(alpha);

 end

 end

 end

 % Putting everything together

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1);

xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1);

165

yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1);

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1);

 av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY);

 av=av+0;

 bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY);

 bv=bv+0;

 for lp=1:1:size(xFromWellUp,1)

 if av(lp,1)==0

 xFromWellUp(lp,1)=0;

 yFromWellUp(lp,1)=0;

 end

 end

 for pr=1:1:size(xFromWellDown,1)

 if bv(pr,1)==0

 xFromWellDown(pr,1)=0;

 yFromWellDown(pr,1)=0;

 end

 end

 xu=zeros;

 xd=zeros;

 yu=zeros;

 yd=zeros;

 wcu=1;

 wcd=1;

 for hg=1:1:size(xFromWellUp,1)

 if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0

 xu(wcu,1)=xFromWellUp(hg,1);

 yu(wcu,1)=yFromWellUp(hg,1);

166

 wcu=wcu+1;

 end

 end

 for yh=1:1:size(xFromWellDown,1)

 if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0

 xd(wcd,1)=xFromWellDown(yh,1);

 yd(wcd,1)=yFromWellDown(yh,1);

 wcd=wcd+1;

 end

 end

 xFromWellUp=xu;

 yFromWellUp=yu;

 xFromWellDown=xd;

 yFromWellDown=yd;

 xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX];

 yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY];

 xBest=xNew;

 yBest=yNew;

 end

 elseif parallelWell==1 % Parallel to y-axis

 xv(1,1)=startX-distFromWell;

 yv(1,1)=startY;

 xv(2,1)=endX-distFromWell;

 yv(2,1)=endY;

 xv(3,1)=endX+distFromWell;

 yv(3,1)=endY;

 xv(4,1)=startX+distFromWell;

 yv(4,1)=startY;

 % Delete points near well

 for ff=1:1:size(xBest,1)

 if xBest(ff,1)>xv(1,1) && xBest(ff,1)<xv(4,1) ...

 && yBest(ff,1)>yv(2,1) && yBest(ff,1)<yv(1,1)

167

 xBest(ff,1)=0;

 yBest(ff,1)=0;

 end

 end

 xNew=zeros;

 yNew=zeros;

 tt=1;

 for aa=1:1:size(xBest,1)

 if xBest(aa,1)~=0

 xNew(tt,1)=xBest(aa,1);

 yNew(tt,1)=yBest(aa,1);

 tt=tt+1;

 end

 end

 % Calculate number of layers

 kk=secondLayerDist;

 mm=firstLayerDist+secondLayerDist;

 amountLayers=1;

 while mm<=distFromWell

 amountLayers=amountLayers+1;

 xx=mm;

 mm=mm+kk*magnDist;

 kk=mm-xx;

 end

 pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1;

 distBetweenPoints=wellLength/pointsInOneLayer;

 % Creating of points exactly on well

 wellGridX=zeros;

 wellGridY=zeros;

 wellGridX(1,1)=startX;

 wellGridY(1,1)=startY;

 for ii=2:1:pointsInOneLayer

168

 wellGridX(ii,1)=wellGridX(ii-1,1);

 wellGridY(ii,1)=wellGridY(ii-1,1)-distBetweenPoints;

 end

 % Creating of layers (to the left)

 xFromWellLeft=zeros;

 yFromWellLeft=zeros;

 xFromWellLeft(1,1)=startX-firstLayerDist;

 yFromWellLeft(1,1)=startY;

 for ii=2:1:pointsInOneLayer

 xFromWellLeft(1,ii)=xFromWellLeft(1,ii-1);

 yFromWellLeft(1,ii)=yFromWellLeft(1,ii-1)-distBetweenPoints;

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer

 xFromWellLeft(kk,jj)=xFromWellLeft(kk-1,jj)-dd;

 yFromWellLeft(kk,jj)=yFromWellLeft(kk-1,jj);

 end

 end

 end

 % Creating of layers (to the right)

 xFromWellRight=zeros;

 yFromWellRight=zeros;

 xFromWellRight(1,1)=startX+firstLayerDist;

 yFromWellRight(1,1)=startY;

 for ii=2:1:pointsInOneLayer

 xFromWellRight(1,ii)=xFromWellRight(1,ii-1);

169

 yFromWellRight(1,ii)=yFromWellRight(1,ii-1)-distBetweenPoints;

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer

 xFromWellRight(kk,jj)=xFromWellRight(kk-1,jj)+dd;

 yFromWellRight(kk,jj)=yFromWellRight(kk-1,jj);

 end

 end

 end

 % Putting everything together

xFromWellLeft=reshape(xFromWellLeft,size(xFromWellLeft,1)*size(xFromWellLe

ft,2),1);

xFromWellRight=reshape(xFromWellRight,size(xFromWellRight,1)*size(xFromWe

llRight,2),1);

yFromWellLeft=reshape(yFromWellLeft,size(yFromWellLeft,1)*size(yFromWellLe

ft,2),1);

yFromWellRight=reshape(yFromWellRight,size(yFromWellRight,1)*size(yFromWe

llRight,2),1);

 av=inpolygon(xFromWellLeft,yFromWellLeft,resVertX,resVertY);

 av=av+0;

 bv=inpolygon(xFromWellRight,yFromWellRight,resVertX,resVertY);

 bv=bv+0;

170

 for lp=1:1:size(xFromWellLeft,1)

 if av(lp,1)==0

 xFromWellLeft(lp,1)=0;

 yFromWellLeft(lp,1)=0;

 end

 end

 for pr=1:1:size(xFromWellRight,1)

 if bv(pr,1)==0

 xFromWellRight(pr,1)=0;

 yFromWellRight(pr,1)=0;

 end

 end

 xu=zeros;

 xd=zeros;

 yu=zeros;

 yd=zeros;

 wcu=1;

 wcd=1;

 for hg=1:1:size(xFromWellLeft,1)

 if xFromWellLeft(hg,1)~=0 || yFromWellLeft(hg,1)~=0

 xu(wcu,1)=xFromWellLeft(hg,1);

 yu(wcu,1)=yFromWellLeft(hg,1);

 wcu=wcu+1;

 end

 end

 for yh=1:1:size(xFromWellRight,1)

 if xFromWellRight(yh,1)~=0 || yFromWellRight(yh,1)~=0

 xd(wcd,1)=xFromWellRight(yh,1);

 yd(wcd,1)=yFromWellRight(yh,1);

 wcd=wcd+1;

 end

 end

171

 xFromWellLeft=xu;

 yFromWellLeft=yu;

 xFromWellRight=xd;

 yFromWellRight=yd;

 xNew=[xNew; xFromWellLeft; xFromWellRight; wellGridX];

 yNew=[yNew; yFromWellLeft; yFromWellRight; wellGridY];

 xBest=xNew;

 yBest=yNew;

 elseif parallelWell==2 % Parallel to x-axis

 xv(1,1)=startX;

 yv(1,1)=startY+distFromWell;

 xv(2,1)=endX;

 yv(2,1)=endY+distFromWell;

 xv(3,1)=endX;

 yv(3,1)=endY-distFromWell;

 xv(4,1)=startX;

 yv(4,1)=startY-distFromWell;

 % Delete points near well

 for ss=1:1:size(xBest,1)

 if xBest(ss,1)>xv(1,1) && xBest(ss,1)<xv(2,1) ...

 && yBest(ss,1)>yv(4,1) && yBest(ss,1)<yv(1,1)

 xBest(ss,1)=0;

 yBest(ss,1)=0;

 end

 end

 xNew=zeros;

 yNew=zeros;

 tt=1;

 for aa=1:1:size(xBest,1)

 if xBest(aa,1)~=0

 xNew(tt,1)=xBest(aa,1);

 yNew(tt,1)=yBest(aa,1);

172

 tt=tt+1;

 end

 end

 % Calculate number of layers

 kk=secondLayerDist;

 mm=firstLayerDist+secondLayerDist;

 amountLayers=1; % Here

 while mm<=distFromWell

 amountLayers=amountLayers+1;

 xx=mm;

 mm=mm+kk*magnDist;

 kk=mm-xx;

 end

 pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1;

 distBetweenPoints=wellLength/pointsInOneLayer;

 % Creating of points exactly on well

 wellGridX=zeros;

 wellGridY=zeros;

 wellGridX(1,1)=startX;

 wellGridY(1,1)=startY;

 for ii=2:1:pointsInOneLayer

 wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints;

 wellGridY(ii,1)=wellGridY(ii-1,1);

 end

 % Creating of layers (to the upper part)

 xFromWellLeft=zeros;

 yFromWellLeft=zeros;

 xFromWellUp(1,1)=startX;

 yFromWellUp(1,1)=startY+firstLayerDist;

 for ii=2:1:pointsInOneLayer

 xFromWellUp(1,ii)=xFromWellUp(1,ii-1)+distBetweenPoints;

 yFromWellUp(1,ii)=yFromWellUp(1,ii-1);

173

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer

 xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj);

 yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd;

 end

 end

 end

 % Creating of layers (to the down part)

 xFromWellDown=zeros;

 yFromWellDown=zeros;

 xFromWellDown(1,1)=startX;

 yFromWellDown(1,1)=startY-firstLayerDist;

 for ii=2:1:pointsInOneLayer

 xFromWellDown(1,ii)=xFromWellDown(1,ii-1)+distBetweenPoints;

 yFromWellDown(1,ii)=yFromWellDown(1,ii-1);

 end

 dd=firstLayerDist+secondLayerDist;

 ll=secondLayerDist;

 for kk=2:1:amountLayers+1

 zz=dd;

 dd=dd+ll*magnDist;

 ll=dd-zz;

 if dd<=distFromWell

 for jj=1:1:pointsInOneLayer

 xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj);

174

 yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd;

 end

 end

 end

 % Putting everything together

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1);

xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1);

yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1);

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1);

 av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY);

 av=av+0;

 bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY);

 bv=bv+0;

 for lp=1:1:size(xFromWellUp,1)

 if av(lp,1)==0

 xFromWellUp(lp,1)=0;

 yFromWellUp(lp,1)=0;

 end

 end

 for pr=1:1:size(xFromWellDown,1)

 if bv(pr,1)==0

 xFromWellDown(pr,1)=0;

 yFromWellDown(pr,1)=0;

 end

175

 end

 xu=zeros;

 xd=zeros;

 yu=zeros;

 yd=zeros;

 wcu=1;

 wcd=1;

 for hg=1:1:size(xFromWellUp,1)

 if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0

 xu(wcu,1)=xFromWellUp(hg,1);

 yu(wcu,1)=yFromWellUp(hg,1);

 wcu=wcu+1;

 end

 end

 for yh=1:1:size(xFromWellDown,1)

 if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0

 xd(wcd,1)=xFromWellDown(yh,1);

 yd(wcd,1)=yFromWellDown(yh,1);

 wcd=wcd+1;

 end

 end

 xFromWellUp=xu;

 yFromWellUp=yu;

 xFromWellDown=xd;

 yFromWellDown=yd;

 xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX];

 yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY];

 xBest=xNew;

 xBest=xNew;

 else ulvi=1992;

 end

 % Saving points to fprintf them at the end

176

 horWellPoints{horWellCount,1}=wellGridX;

 horWellPoints{horWellCount,2}=wellGridY;

 bu=input('If you want to add another well, enter "0", if not, enter "42": ');

 xBest=xNew;

 yBest=yNew;

 elseif wellValue==3 % Adding of fault

 faultCount=faultCount+1; % Counting faults

 startX=input('Enter X coordinate of start (left!) of the fault: ');

 startY=input('Enter Y coordinate of start (left!) of the fault: ');

 endX=input('Enter X coordinate of end (right! If well is parallel to y-axis start

from uppermost) of the fault: ');

 endY=input('Enter Y coordinate of end (right! If well is parallel to y-axis start

from uppermost) of the fault: ');

 amountPoints=input('Enter maximum amount of points to be added: ');

 firstLayerDist=input('Enter distance to the layer of points of the fault: ');

 distFromFault=input('Enter distance from fault that will be cleared and

populated with new points: ');

 cat1=abs(startX-endX);

 cat2=abs(startY-endY);

 faultPerm=input('Enter value of fault permeability: ');

 faultLength=sqrt(cat1*cat1+cat2*cat2);

 smur=(amountPoints/3)+1;

 distBetweenPoints=faultLength/smur;

 % Understanding how fault is located compared to rectangle's sides

 if cat1==0

 parallelFault=1;

 elseif cat2==0

 parallelFault=2;

 else parallelFault=0;

 end

 if parallelFault==0 % Not parallel to rectangle's sides

 alpha=atand(cat2/cat1);

177

 if startY > endY

 firstPointUpX=startX+distFromFault*sind(alpha);

 firstPointUpY=startY+distFromFault*cosd(alpha);

 firstPointDownX=startX-distFromFault*sind(alpha);

 firstPointDownY=startY-distFromFault*cosd(alpha);

 lastPointUpX=endX+distFromFault*sind(alpha);

 lastPointUpY=endY+distFromFault*cosd(alpha);

 lastPointDownX=endX-distFromFault*sind(alpha);

 lastPointDownY=endY-distFromFault*cosd(alpha);

 polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX;

firstPointDownX];

 polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY;

firstPointDownY];

 % Delete points inside this region

 gs=inpolygon(xBest,yBest,polfaultX,polfaultY);

 gs=gs+0;

 for uj=1:1:size(gs,1)

 if gs(uj,1)==1

 xBest(uj,1)=0;

 yBest(uj,1)=0;

 end

 end

 xfa=zeros;

 yfa=zeros;

 hk=1;

 for ha=1:1:size(xBest,1)

 if xBest(ha,1)~=0 || yBest(ha,1)~=0

 xfa(hk,1)=xBest(ha,1);

 yfa(hk,1)=yBest(ha,1);

 hk=hk+1;

 end

 end

178

 xNew=xfa;

 yNew=yfa;

 % Generation of points

 faultUp=[firstPointUpX, firstPointUpY];

 faultDown=[firstPointDownX, firstPointDownY];

 faultExact=[startX,startY];

 for ii=2:1:smur

 faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultUp(ii,2)=faultUp(ii-1,2)-distBetweenPoints*sind(alpha);

 faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultDown(ii,2)=faultDown(ii-1,2)-distBetweenPoints*sind(alpha);

 faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultExact(ii,2)=faultExact(ii-1,2)-distBetweenPoints*sind(alpha);

 end

 faultUpX=faultUp(:,1);

 faultUpY=faultUp(:,2);

 faultDownX=faultDown(:,1);

 faultDownY=faultDown(:,2);

 faultExactX=faultExact(:,1);

 faultExactY=faultExact(:,2);

 xNew=[xNew;faultUpX;faultDownX;faultExactX];

 yNew=[yNew;faultUpY;faultDownY;faultExactY];

 xBest=xNew;

 yBest=yNew;

 fault=[fault;faultExact];

 elseif startY < endY

 firstPointUpX=startX-distFromFault*sind(alpha);

 firstPointUpY=startY+distFromFault*cosd(alpha);

 firstPointDownX=startX+distFromFault*sind(alpha);

 firstPointDownY=startY-distFromFault*cosd(alpha);

 lastPointUpX=endX-distFromFault*sind(alpha);

 lastPointUpY=endY+distFromFault*cosd(alpha);

179

 lastPointDownX=endX+distFromFault*sind(alpha);

 lastPointDownY=endY-distFromFault*cosd(alpha);

 polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX;

firstPointDownX];

 polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY;

firstPointDownY];

 % Delete points inside this region

 gs=inpolygon(xBest,yBest,polfaultX,polfaultY);

 gs=gs+0;

 for uj=1:1:size(gs,1)

 if gs(uj,1)==1

 xBest(uj,1)=0;

 yBest(uj,1)=0;

 end

 end

 xfa=zeros;

 yfa=zeros;

 hk=1;

 for ha=1:1:size(xBest,1)

 if xBest(ha,1)~=0 || yBest(ha,1)~=0

 xfa(hk,1)=xBest(ha,1);

 yfa(hk,1)=yBest(ha,1);

 hk=hk+1;

 end

 end

 xNew=xfa;

 yNew=yfa;

 % Generation of points

 faultUp=[firstPointUpX, firstPointUpY];

 faultDown=[firstPointDownX, firstPointDownY];

 faultExact=[startX,startY];

 for ii=2:1:smur

180

 faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultUp(ii,2)=faultUp(ii-1,2)+distBetweenPoints*sind(alpha);

 faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultDown(ii,2)=faultDown(ii-1,2)+distBetweenPoints*sind(alpha);

 faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints*cosd(alpha);

 faultExact(ii,2)=faultExact(ii-1,2)+distBetweenPoints*sind(alpha);

 end

 faultUpX=faultUp(:,1);

 faultUpY=faultUp(:,2);

 faultDownX=faultDown(:,1);

 faultDownY=faultDown(:,2);

 faultExactX=faultExact(:,1);

 faultExactY=faultExact(:,2);

 xNew=[xNew;faultUpX;faultDownX;faultExactX];

 yNew=[yNew;faultUpY;faultDownY;faultExactY];

 xBest=xNew;

 yBest=yNew;

 fault=[fault;faultExact];

 else fprintf('Something is wrong');

 end

 elseif parallelFault==1 % Parallel to y-axis

 firstPointUpX=startX-distFromFault;

 firstPointUpY=startY;

 firstPointDownX=startX+distFromFault;

 firstPointDownY=startY;

 lastPointUpX=endX-distFromFault;

 lastPointUpY=endY;

 lastPointDownX=endX+distFromFault;

 lastPointDownY=endY;

 polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX;

firstPointDownX];

181

 polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY;

firstPointDownY];

 % Delete points inside this region

 gs=inpolygon(xBest,yBest,polfaultX,polfaultY);

 gs=gs+0;

 for uj=1:1:size(gs,1)

 if gs(uj,1)==1

 xBest(uj,1)=0;

 yBest(uj,1)=0;

 end

 end

 xfa=zeros;

 yfa=zeros;

 hk=1;

 for ha=1:1:size(xBest,1)

 if xBest(ha,1)~=0 || yBest(ha,1)~=0

 xfa(hk,1)=xBest(ha,1);

 yfa(hk,1)=yBest(ha,1);

 hk=hk+1;

 end

 end

 xNew=xfa;

 yNew=yfa;

 % Generation of points

 faultUp=[firstPointUpX, firstPointUpY];

 faultDown=[firstPointDownX, firstPointDownY];

 faultExact=[startX,startY];

 for ii=2:1:smur

 faultUp(ii,1)=faultUp(ii-1,1);

 faultUp(ii,2)=faultUp(ii-1,2)-distBetweenPoints;

 faultDown(ii,1)=faultDown(ii-1,1);

 faultDown(ii,2)=faultDown(ii-1,2)-distBetweenPoints;

182

 faultExact(ii,1)=faultExact(ii-1,1);

 faultExact(ii,2)=faultExact(ii-1,2)-distBetweenPoints;

 end

 faultUpX=faultUp(:,1);

 faultUpY=faultUp(:,2);

 faultDownX=faultDown(:,1);

 faultDownY=faultDown(:,2);

 faultExactX=faultExact(:,1);

 faultExactY=faultExact(:,2);

 xNew=[xNew;faultUpX;faultDownX;faultExactX];

 yNew=[yNew;faultUpY;faultDownY;faultExactY];

 xBest=xNew;

 yBest=yNew;

 fault=[fault;faultExact];

 elseif parallelFault==2 % Parallel to x-axis

 firstPointUpX=startX;

 firstPointUpY=startY+distFromFault;

 firstPointDownX=startX;

 firstPointDownY=startY-distFromFault;

 lastPointUpX=endX;

 lastPointUpY=endY+distFromFault;

 lastPointDownX=endX;

 lastPointDownY=endY-distFromFault;

 polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX;

firstPointDownX];

 polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY;

firstPointDownY];

 % Delete points inside this region

 gs=inpolygon(xBest,yBest,polfaultX,polfaultY);

 gs=gs+0;

 for uj=1:1:size(gs,1)

 if gs(uj,1)==1

183

 xBest(uj,1)=0;

 yBest(uj,1)=0;

 end

 end

 xfa=zeros;

 yfa=zeros;

 hk=1;

 for ha=1:1:size(xBest,1)

 if xBest(ha,1)~=0 || yBest(ha,1)~=0

 xfa(hk,1)=xBest(ha,1);

 yfa(hk,1)=yBest(ha,1);

 hk=hk+1;

 end

 end

 xNew=xfa;

 yNew=yfa;

 % Generation of points

 faultUp=[firstPointUpX, firstPointUpY];

 faultDown=[firstPointDownX, firstPointDownY];

 faultExact=[startX,startY];

 for ii=2:1:smur

 faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints;

 faultUp(ii,2)=faultUp(ii-1,2);

 faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints;

 faultDown(ii,2)=faultDown(ii-1,2);

 faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints;

 faultExact(ii,2)=faultExact(ii-1,2);

 end

 faultUpX=faultUp(:,1);

 faultUpY=faultUp(:,2);

 faultDownX=faultDown(:,1);

 faultDownY=faultDown(:,2);

184

 faultExactX=faultExact(:,1);

 faultExactY=faultExact(:,2);

 xNew=[xNew;faultUpX;faultDownX;faultExactX];

 yNew=[yNew;faultUpY;faultDownY;faultExactY];

 xBest=xNew;

 yBest=yNew;

 fault=[fault;faultExact];

 else ulvi=1992;

 end

 bu=input('If you want to add another well, enter "0", if not, enter "42": ');

 elseif wellValue==4

 xNew=xBest;

 yNew=yBest;

 bu=42;

 else

 bu=input('You should have written "1","2","3" or "4". Enter "0" to choose well

type again or enter "42" to exit');

 end

end

fault(1,:)=[];

% Clean all points outside of rectangle

xFinal=zeros;

yFinal=zeros;

yy=1;

gow=size(xNew,1);

for ii=1:1:gow

 if xNew(ii,1)>=0 && xNew(ii,1)<=length && yNew(ii,1)>=0 &&

yNew(ii,1)<=width

 xFinal(yy,1)=xNew(ii,1);

 yFinal(yy,1)=yNew(ii,1);

 yy=yy+1;

 end

185

end

% Recalculating error for final + permeabilities assignment

counterNew=size(xFinal,1);

xy=[xFinal,yFinal];

sxf=size(xFinal,1);

blocksOfPoints=zeros(sxf,counterNew);

distances=pdist2(permFieldVec,xy);

for kk=1:1:size(distances,1)

 distancesForPoints=distances(kk,:);

 backUpDist=distancesForPoints;

 [closestDist,ind]=min(backUpDist);

 blocksOfPoints(kk,ind)=permeabilitiesVec(kk,1);

 backUpDist(1,ind)=inf;

 [closestDist2,ind2]=min(backUpDist);

 if closestDist2==closestDist

 blocksOfPoints(kk,ind2)=permeabilitiesVec(kk,1);

 backUpDist(1,ind2)=inf;

 [closestDist3,ind3]=min(backUpDist);

 if closestDist3==closestDist2

 blocksOfPoints(kk,ind3)=permeabilitiesVec(kk,1);

 backUpDist(1,ind3)=inf;

 [closestDist4,ind4]=min(backUpDist);

 if closestDist4==closestDist3

 blocksOfPoints(kk,ind4)=permeabilitiesVec(kk,1);

 backUpDist(1,ind4)=inf;

 [closestDist5,ind5]=min(backUpDist);

 if closestDist5==closestDist4

 blocksOfPoints(kk,ind5)=permeabilitiesVec(kk,1);

 backUpDist(1,ind5)=inf;

 [closestDist6,ind6]=min(backUpDist);

186

 if closestDist6==closestDist5

 blocksOfPoints(kk,ind6)=permeabilitiesVec(kk,1);

 backUpDist(1,ind6)=inf;

 [closestDist7,ind7]=min(backUpDist);

 if closestDist7==closestDist6

 blocksOfPoints(kk,ind7)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind7)=inf;

 [closestDist8,ind8]=min(backUpDist);

 if closestDist8==closestDist7

 blocksOfPoints(kk,ind8)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind8)=inf;

 [closestDist9,ind9]=min(backUpDist);

 if closestDist9==closestDist8

 blocksOfPoints(kk,ind9)=...

 permeabilitiesVec(kk,1);

 backUpDist(1,ind9)=inf;

 [closestDist10,ind10]=min(backUpDist);

 if closestDist10==closestDist9

 fprintf('Something is wrong');

 end

 end

 end

 end

 end

 end

 end

 end

 end

end

187

jj=1;

error=zeros(counterNew,1);

%{

while jj<=counterNew

 forError=0;

 uu=1;

 for ii=1:1:permXi

 if blocksOfPoints(ii,jj)~=0;

 forError(uu,1)=blocksOfPoints(ii,jj);

 uu=uu+1;

 end

 end

 error(jj,1)=std(forError);

 checkerFinal{jj,1}=forError;

 jj=jj+1;

end

%}

% Calculating of error for each block

while jj<=counterNew

 forError=0;

 uu=1;

 for ii=1:1:permXi

 if blocksOfPoints(ii,jj)~=0;

 forError(uu,1)=blocksOfPoints(ii,jj);

 uu=uu+1;

 end

 end

 for ht=1:1:size(minLim,1)

 if forError(1,1)>=minLim(ht,1) && forError(1,1)<=maxLim(ht,1)

 blockMin=minLim(ht,1);

 blockMax=maxLim(ht,1);

 end

188

 end

 ug=0;

 for hk=1:1:size(forError)

 if forError(hk,1)>=blockMin && forError(hk,1)<=blockMax

 ug=ug+1;

 end

 end

 if ug==size(forError,1)

 error(jj,1)=0;

 elseif ug<size(forError,1)

 error(jj,1)=std(forError);

 else fprintf('Something is wrong');

 end

 checkerFinal{jj,1}=forError;

 jj=jj+1;

 uu=1;

 forError=0;

end

finalError=sum(error);

permMean=zeros;

% Finding of means of permeabilities in each block

for ij=1:1:counterNew

 khm=checkerFinal{ij,1};

 permMean(ij,1)=mean(khm);

end

% If mean is zero, setting block permeability as mean of surrounding

% permeability points (at 1.5*maxDist distance)

fin=inpolygon(xFinal,yFinal,resVertX,resVertY);

fin=fin+0;

for ki=1:1:size(permMean,1)

 if permMean(ki,1)<0.001 && fin(ki,1)==1

 xyFinal=[xFinal(ki,1),yFinal(ki,1)];

189

 permDist=pdist2(permFieldVec,xyFinal);

 forMean=zeros;

 kf=1;

 for jah=1:1:size(permDist,1)

 if permDist(jah,1)<=1.5*maxDist

 forMean(kf,1)=permeabilitiesVec(jah,1);

 kf=kf+1;

 end

 end

 permMean(ki,1)=mean(forMean);

 end

end

% Changing permeabilities outside of reservoir from 0.001 to 0

for ka=1:1:size(permMean,1)

 if permMean(ka,1)>0 && permMean(ka,1)<1 && fin(ka,1)~=1

 permMean(ka,1)=0;

 end

end

% Check blocks on fault and assign faultPerm values to these blocks

if faultCount>0

 for up=1:1:size(xFinal,1)

 for do=1:1:size(fault,1)

 if xFinal(up,1)==fault(do,1) && yFinal(up,1)==fault(do,2);

 permMean(up,1)=faultPerm;

 end

 end

 end

end

fprintf('GridPointX GridPointY GridPointZ\n');

for ik=1:1:counterNew

 fprintf('%g %g %g\n', xFinal(ik,1), yFinal(ik,1), permZvec(1,1));

190

end

fprintf('BlockAveragePermeabilitity in x-direction\n');

for il=1:1:counterNew

 fprintf('%g\n',permMean(il,1));

end

fprintf('BlockAveragePermeabilitity in y-direction\n');

for ir=1:1:counterNew

 fprintf('%g\n',permMean(ir,1)*kykxrel);

end

if horWellCount>0

 fprintf('You have %g horizontal wells\n', horWellCount);

 for ks=1:1:horWellCount

 fprintf('Horizontal well #%g gridpoints:\n', ks);

 xForPrint=horWellPoints{ks,1};

 yForPrint=horWellPoints{ks,2};

 for ru=1:1:size(xForPrint,1)

 fprintf('%g %g\n', xForPrint(ru,1), yForPrint(ru,1));

 end

 end

end

% Showing result

reg1verX=[3200; 3200; 4400; 5500; 4000; 4000; 3200];

reg1verY=[0; 4500; 6000; 4250; 3000; 0; 0];

% Changing region vertices to align with reservoir

reg1verX=reg1verX-min(resVertX);

reg1verY=reg1verY-min(resVertY);

boc=[0, 0.5, 0];

voronoi(xFinal,yFinal);

hold on

191

fill(resVertX,resVertY,boc,'FaceAlpha',0.2);

hold on

fill(reg1verX,reg1verY,boc,'FaceAlpha',0.1);

hold off

%{

% Main showing result

boc=[0, 0.5, 0];

voronoi(xFinal,yFinal);

hold on

fill(resVertX,resVertY,boc,'FaceAlpha',0.2);

hold off

%}

if horWellCount > 0

 save 280815case4results.mat xFinal yFinal permeabilitiesVec permXvec

permYvec allGens permMean horWellPoints finalError

else

 save 280815case4results.mat xFinal yFinal permeabilitiesVec permXvec

permYvec allGens permMean finalError

end

192

193

APPENDIX B

CASE 2 FLUID FLOW SIMULATION RUN

This appendix includes fluid flow simulation run pictures for case #2. Inputs for

fluid flow simulation run were grid blocks and permeabilities discussed in sub-

chapter 8.2.2, one vertical well in the middle of reservoir producing at 100 stb/d for

50 days. Initial reservoir pressure was chosen to be 3044 PSI. Time step was chosen

as 5 days, so there are 10 pictures showing propagation of pressure disturbance after

5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 days.

Figure B.1. Pressure distribution after 5 days.

194

Figure B.2. Pressure distribution after 10 days.

Figure B.3. Pressure distribution after 15 days.

195

Figure B. 4. Pressure distribution after 20 days.

Figure B. 5. Pressure distribution after 25 days.

196

Figure B.6. Pressure distribution after 30 days.

Figure B.7. Pressure distribution after 35 days.

197

Figure B.8. Pressure distribution after 40 days.

Figure B.9. Pressure distribution after 45 days.

198

Figure B.10. Pressure distribution after 50 days.

199

APPENDIX C

CASE 3 FLUID FLOW SIMULATION RUN

This appendix includes fluid flow simulation run for case #3. Inputs for fluid flow

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.3,

one vertical well in the middle of reservoir producing at 100 stb/d for 50 days. Initial

reservoir pressure was chosen to be 3044 PSI. Timestep was chosen as 5 days, so

there are 10 pictures showing propagation of pressure disturbance after 5, 10, 15, 20,

25, 30, 35, 40, 45 and 50 days.

Figure C.1. Pressure distribution after 5 days.

200

Figure C.2. Pressure distribution after 10 days.

Figure C.3. Pressure distribution after 15 days.

201

Figure C.4. Pressure distribution after 20 days.

Figure C.5. Pressure distribution after 25 days.

202

Figure C.6. Pressure distribution after 30 days.

Figure C.7. Pressure distribution after 35 days.

203

Figure C.8. Pressure distribution after 40 days.

Figure C.9. Pressure distribution after 45 days.

204

Figure C.10. Pressure distribution after 50 days.

205

APPENDIX D

CASE 4 FLUID FLOW SIMULATION RUN

This appendix includes fluid flow simulation run for case #4. Inputs for fluid flow

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.4,

one vertical well in the middle of reservoir producing at 100 stb/d for 50 days. Initial

reservoir pressure was chosen to be 3044 PSI. Timestep was chosen as 5 days, so

there are 10 pictures showing propagation of pressure disturbance after 5, 10, 15, 20,

25, 30, 35, 40, 45 and 50 days.

Figure D.1. Pressure distribution after 5 days.

206

Figure D.2. Pressure distribution after 10 days.

Figure D.3. Pressure distribution after 15 days.

207

Figure D.4. Pressure distribution after 20 days.

Figure D.5. Pressure distribution after 25 days.

208

Figure D.6. Pressure distribution after 30 days.

Figure D.7. Pressure distribution after 35 days.

209

Figure D.8. Pressure distribution after 40 days.

Figure D.9. Pressure distribution after 45 days.

210

Figure D.10. Pressure distribution after 50 days.

211

APPENDIX E

CASE 5 FLUID FLOW SIMULATION RUN

This appendix includes fluid flow simulation run for case #5. Inputs for fluid flow

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.5,

one vertical well in the middle of reservoir producing at 100 stb/d for 5 days. Initial

reservoir pressure was chosen to be 3044 PSI. Timestep was chosen as 0.5 days, so

there are 10 pictures showing propagation of pressure disturbance after 0.5, 1, 1.5, 2,

2.5, 3, 3.5, 4, 4.5 and 5 days.

Figure E.1. Pressure distribution after 0.5 days.

212

Figure E.2. Pressure distribution after 1 day.

Figure E.3. Pressure distribution after 1.5 days.

213

Figure E.4. Pressure distribution after 2 days.

Figure E.5. Pressure distribution after 2.5 days.

214

Figure E.6. Pressure distribution after 3 days.

Figure E.7. Pressure distribution after 3.5 days.

215

Figure E.8. Pressure distribution after 4 days.

Figure E.9. Pressure distribution after 4.5 days.

216

Figure E.10. Pressure distribution after 5 days.

	Figure 3.2. Example of local grid refinement (modified from the Kilic and Ertekin, 2003).

