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ABSTRACT 

 

 

OPTIMIZATION OF LOCATIONS OF VORONOI GRID POINTS IN 

RESERVOIR SIMULATION 

 

 

Rza-Guliyev, Ulvi 

M.S., Department of Petroleum and Natural Gas Engineering 

Supervisor: Asst. Prof. Dr. Çağlar Sınayuç 

 

September 2015, 216 pages 

 

Reservoir simulations are computer models that can imitate real world reservoir 

behavior under different circumstances, therefore making it possible for reservoir 

engineers to make sensitivity studies in order to assess different scenarios. These 

models discretize the reservoir into smaller blocks either using structured grids or 

unstructured grids. The application of regular structured grids to correctly map 

reservoir's geological structure can be very difficult, if not nearly impossible. 

Unstructured grids can be more convenient for those cases. Voronoi gridding 

technique creates unstructured grids such that the boundary of two grids is normal to 

the line connecting Voronoi particles that represents the grids. So that it would be 

convenient to calculate the transmissibility on the block boundaries.  

 

In this study instead of placing the Voronoi particles randomly, or in a regular 

fashion, the properties of the reservoir such as permeability anisotropy, orientation of 

the permeability vectors, heterogeneity of the petrophysical properties, and well 

locations and types were taken into consideration in the placement of Voronoi 

particles. A three-step algorithm, created in this thesis and written using Matlab 

software, takes into account the high resolution petrophysical properties in a finer 

static mesh, together with permeability anisotropy ratio and orientation and well 



vi 

 

location. This algorithm generates initial distribution of grid points that honors 

permeability anisotropy, then assigns each grid point an error value, which is 

dependent on grid point placement, and tries to minimize this error by moving bad 

points onto better locations. The error gets lower as the Voronoi grids and the 

background finer static mesh agrees with each other. Finally, after each grid point's 

location is chosen grid points related to vertical and horizontal wells and fault are 

added. Algorithm was implemented on six cases of different complexity and then 

generated Voronoi grid blocks were used in a simple, single phase simulator to show 

the effects of the optimized grids. It was seen that the developed code during the 

study can match the given input static model and can reduce the number of grid 

blocks required to model a hydrocarbon reservoir. 

 

Key words: Voronoi, PEBI, reservoir simulation, optimization 
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ÖZ 

 

 

REZERVUAR SİMÜLASYONUNDA VORONOİ IZGARA NOKTALARININ 

YERLERİNİN OPTİMİZASYONU 

 

 

Rza-Guliyev, Ulvi 

Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Çağlar Sınayuç 

 

Eylül 2015, 216 sayfa 

 

Rezervuar simülasyonları gerçek saha davranışlarını farklı durumlarda taklit eden ve 

bu sayede rezervuar mühendislerinin farklı senaryoları değerlendirmek için 

hassasiyet çalışması yapmasını mümkün kılan bilgisayar modelleridir. Bu modeller 

rezervuarı küçük bloklara yapılandırılmış bloklar halinde ya da yapılandırılmamış 

bloklar halinde ayırırlar. Rezervuarın jeolojik yapısını doğru şekilde tanımlamak için 

yapılandırılmış blokların kullanımı imkansız olmasa bile çok zordur. 

Yapılandırılmamış bloklar bu durumda çok daha uygun olabilir. Voronoi ızgara 

yöntemi ile elde edilen yapılandırılmamış bloklar arasındaki sınır, iki bloğu 

birleştiren ve bloğu temsil eden parçacıkları birleştiren doğruya diktir. Bu sayede 

blok sınırındaki iletgenliği hesaplamak daha kolay olmaktadır. 

 

Bu çalışmada Voronoi parçacıklarını rastgele ya da düzenli şekilde yerleştirmek 

yerine, rezervuarın geçirgenlik eşyönsüzlüğü, geçirgenlik vektörlerinin yönelimi, 

petrofiziksel özelliklerin heterojenliği, kuyu yer ve tipleri gibi özellikleri göz önüne 

alınarak voronoi parçacıklarının yerleri belirlenmiştir. Yüksek çözünürlüklü ince 

statik bir ızgarada yer alan petrofiziksel özellikler, geçirgenlik eşyönsüzlük oranı ve 

yönelimi ile kuyu yerlerini kullanan üç aşamalı bir Matlab kodu bu amaç için 

yazılmıştır. Algoritma parçacıkların ilk dağılımını geçirgenlik eşyönsüzlüğü
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değerine bağlı olarak gerçekleştirmektedir. Yazılım voronoi parçacıklarının en 

uygun yerlerini bir hata en aza indirme yöntemi ile belirlemektedir. Hata Voronoi 

blokları ile ince statik ızgara ile verilen özellik sınırlarının birbirleri ile örtüşmesi ile 

azalmaktadır. Son olarak, parçacıkların yerleri belirlendikten sonra dikey ve yatay 

kuyular ile fay hatları eklenmektedir. Basit, tek fazlı bir simülatör kullanılarak altı 

farklı durum için en uygun hale getirilmiş ızgaraların etkisi görülmüştür. Çalışma 

sırasında geliştirilen kodun verilen statik model ile örtüştüğü ve bir hidrokarbon 

rezervuarını modellemek için gerekli blok sayısını azalttığı görülmüştür. 

 

Anahtar kelimeler: Voronoi, PEBI, rezervuar simülasyon, optimizasyon  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

With the dramatic advancements in computers during last half of the century, 

reservoir modeling became one of the most powerful tools in the hands of reservoir 

engineers. By giving possibility to assess different ways of exploitation of reservoirs 

before making a final decision, it gave opportunity to correctly evaluate all possible 

outcomes and to produce petroleum in the most efficient way. 

 

Reservoir modeling is a process of usage of petrophysical and geological data 

obtained from different studies in the field in order to predict the behavior of the 

fluids under different conditions (Lie and Mallison, 2010). It is done by creating a 

model which is a simplification of the real reservoir. This model is discretized into a 

great amount of grid blocks, between which flow is calculated using fundamental 

laws of fluid flow. 

 

One of the factors that effectiveness of reservoir simulation depends on is a choice of 

gridding type. There are many different types of the gridding techniques that have 

been used in reservoir simulation. In the early days of reservoir simulation, only a 

limited amount of Cartesian grids was used because of limitations of computers' 

calculating power and available memory. So there was no need in creating new 

gridding techniques, and for some time reservoirs were simulated by using several 

thousand Cartesian grid blocks. The development of computers, their calculating 

power and memory resulted in the possibility to use greater amount of blocks, 

therefore resolution of models increased. With this refinement of blocks, new 

demand appeared to try to represent complex geological features and fluid flow in a 
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more accurate manner. That was the cause that resulted in the creation of new 

gridding techniques.  

 

Usually, gridding techniques are separated into two broad groups: structured and 

unstructured gridding. Sometimes hybrid grids are taken as the third group. Group of 

structured gridding types include Cartesian, cylindrical, hexagonal etc, while one of 

the most popular type of unstructured grids is PEBI (PErpendicular BIsector) or 

Voronoi grids. The difference between structured and unstructured grids is that 

structured grid types imply same regular shape of all of the grid blocks (for example, 

triangles, rectangles), while unstructured ones do not require that condition (Moog, 

2013). This difference means that unstructured grids are more flexible, compared to 

the structured ones, which means that it can be used less amount of blocks to 

represent some geological entity in the model without losing accuracy (Heinemann 

and Brand, 1989). 

 

Majority of unstructured grids was introduced in 1980's in order to meet 

specifications concerning flexible modeling. The main types of grids invented during 

this period include Control Volume Finite Element (Forsyth, 1989), Voronoi grids 

(Heinemann and Brand, 1989) and hybrid grids (Pedrosa and Aziz, 1985). Voronoi 

grid type appeared to be useful, because it takes better sides from both structured and 

unstructured grids: they were flexible, allowed usage of different grid types, 

providing a smooth transition from Voronoi grids to other gridding types (Katzmayr 

and Ganzer, 2009). 

 

However, apart from obvious advantages of unstructured grids, they also have some 

problems: different number of block sides, non-orthogonality to the flow (grid 

orientation effects) and others. 

 

Voronoi grid blocks are areas that are closer to its grid point than to any of the other 

ones, and the grid consists of this type of blocks (Palagi and Aziz, 1994). This 

definition means that by accurate placement of Voronoi grid points in the reservoir 
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simulation accurate mapping of reservoir structures could be done. This study 

focuses on optimization of Voronoi grid blocks' locations for this reason. 

 

Optimization problem implies choosing of one option from a group of possible 

solutions to the problem in order to maximize or minimize predefined function. In 

the case discussed in this thesis optimization problem is in obtaining of optimized 

locations of predefined number of grid blocks in a reservoir simulation of a field 

including heterogeneities and/or permeability anisotropy while minimizing sum of 

errors in all of the Voronoi grids. Each grid block in the simulation in the study is 

assigned an error value - coefficient of badness of its placement. This error depends 

on the match of the Voronoi grids with finer static mesh of petrophysical properties. 

The higher the error in the block, the higher priority it has in the line of points that 

will be moved. By moving of these bad points, an attempt to find better locations to 

minimize the error value, and therefore better placing of grid points can be obtained 

without increasing the amount of them. 

 

In order to solve optimization problem, an optimization algorithm is usually 

required. Optimization algorithm is a number of instructions that are required to be 

applied to the problem in the correct order in order to reach desired results. All 

optimization algorithms can be divided into two broad groups: probabilistic and 

deterministic optimization algorithms. Probabilistic algorithms are such algorithms 

that have at least one process including generation of random numbers in one of the 

steps. This means that for the same input this algorithm will be able to produce 

different results. This type of optimization algorithms is usually used when 

approximate steps in order to reach optimized state are not known beforehand, so it 

is required to search for this state everywhere. However, if these steps are known, 

then no random generation (or searching for the correct direction) is required and 

deterministic algorithms can be used. As it may be understood from this, 

deterministic algorithms will always give the same results for the same input values. 

(Weise, 2011) 
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The algorithm created in this study shares some concepts with evolutionary 

optimization algorithms that are related to the probabilistic group, but itself is related 

to the deterministic group. It consists of three simple steps the first of which 

generates predefined number of uniformly distributed initial population of grid 

points; the second step tries to minimize sum of errors in all of the blocks by moving 

grid points obtained from the first step; the last step takes result obtained in the step 

two and adds grid points related to wells and/or faults. This algorithm is described in 

details in "Methodology" chapter. 

 

Next chapters provide more detailed information on the main subjects of this study: 

reservoir simulation, Voronoi gridding, reservoir heterogeneities and anisotropy, and 

optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 

 

CHAPTER 2 

 

 

RESERVOIR SIMULATION 

 

 

 

2.1. Introduction 

 

At any particular point in geologic time, there is only one real dispensation of 

petrophysical properties in the reservoir. This dispensation is the result of a 

complicated combined work of chemical, physical, and biological processes. 

Notwithstanding the fact that sometimes physics of depositional processes and 

processes, occurring after deposition, may be realized very well, engineers do not 

absolutely understand each process and its interaction with the others, which in 

combination with the inability to get the boundary and initial conditions results in 

impossibility to obtain the real singular dispensation of the properties of the reservoir 

that change with time. So the only way is to build numerical simulations that can 

imitate the real change of reservoir properties with time. Therefore, engineers try to 

build reservoir simulations so that they would correlate with all the obtained data. 

They understand that usually the real dispensation of reservoir properties will not be 

exactly the same as in the model prediction, but they try to get the results as close as 

possible (Pyrcz and Deutsch, 2014). 

 

In less words, reservoir simulation is the process of inferring the behavior of a real 

reservoir from the performance of a model of that reservoir (Jensen et al., 1997). 

 

First reservoir simulations were far from what we have today. Actually, they were 

physical models - for example, boxes made out of glass and filled with sand, from 

where fluid was passing allowing scientist/engineer to look and understand what is 

happening there. These simulations were first used in the 1930s and were used for 
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getting idea of how water breakthrough occurs in wells of the reservoir that has been 

waterflooded. 

 

With advancements in computers from 1960s and later, reservoir simulations 

changed from physical models to computer-based models. These models divided 

existing reservoir into a number of connecting blocks and calculated the flow that 

will occur between these blocks under different conditions. When computers were 

just introduced, they had far less efficiency and power than what we have today - 

this fact was limiting number of blocks that reservoir can be divided into, which 

resulted in not so reliable results obtained after simulator was run. Nowadays, 

simulators allow to create models of millions and even billions of blocks, which 

makes results much more reliable (Islam et al., 2010). 

 

Figure 2.1 shows the main steps in the creation of the reservoir model as defined by 

Odeh in 1982. Formulation stage here includes the introduction of assumptions 

required to create a reservoir model in mathematical form. Then nonlinear partial 

differential equations describing fluid flow are introduced, which are then undergo 

stage of discretization and form a bunch of nonlinear algebraic equations. This 

discretization can be done by applying Taylor series expansion (other techniques are 

integral and variatonal methods (Aziz and Settari, 1979). 

 

As it was already mentioned, discretization results in formation of nonlinear 

algebraic equations, which in most of the cases require linearization in order to be 

solved. Well representation is also required at this stage in order to add fluid 

production/injection into equations that are still nonlinear. 

 

After all previous steps are fulfilled, solutions can be obtained. These solutions 

include distribution of both pressure and saturations and also flow rates of the 

introduced wells. Validation step is just checking that no mistakes were made in the 

previous step and in the source code of the simulator. After all these stages are done, 

the simulator is ready to be used. (Islam et al., 2010) 
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2.2. Motivation to use reservoir simulation 

 

The main purpose of reservoir simulation is to imitate real life reservoir behavior and 

therefore allow to predict future of reservoir under different development scenarios. 

So, if correct assumptions are made, if the data that the model is based on is 

representative of reservoir and many other nuances are kept, then the reservoir model 

should be a very powerful tool allowing engineers to solve many complex problems 

and even to foresee them; create reservoir management plan years into the future 

(Adamson et al., 1996). 

 

Figure 2.1. Main stages of generation of reservoir simulators (modified from Odeh, 

1982). 

 

2.3. Gridding techniques 

 

As it was previously mentioned, simulators divide the real reservoir into a number of 

blocks and then calculate flow between these blocks. Therefore, it is obvious that 

choice of appropriate gridding technique is crucial for the effectiveness of the model 

being built. The choosing of the appropriate grid in reservoir simulation is based 

mainly on two criteria: 

 It should be able to correctly map geological characteristics of the region; 

 It should be able to correctly map flow of fluid governed by the flow 

equations. (Lake and Holstein, 2007) 

 

Classification of gridding techniques is a difficult thing, because there are many 

different grid types that show absolutely different properties, however, many authors 

distinguish two main groups of grid types: structured and unstructured grids. 
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However, there are also grids that are not related to any of these groups. This 

subchapter will discuss these grid types one by one. 

 

2.3.1. Structured grids 

 

There are different definitions of structured grids in the literature, including 

"structured grid is a mesh type, consisting of many grid blocks of same geometrical 

shape" (Moog, 2013) and "structured gridding is a mesh type consisting of blocks 

with regular connectivity" (Castillo, 1991). 

 

 

Figure 2.2. Representation of geological feature using structured Cartesian grid with 

refinement (a) versus unstructured grid (b) (after Moog, 2013). 

 

Among the advantages of structured grids good convergence and high resolution is 

usually mentioned (Chawner, 2013), while the major drawback that is usually talked 

about is that regular structured grid sometimes fails in proper representation of 

geologically complex reservoirs (figure 2.2), which results in doubts in simulation's 

ability to accurately predict reservoir behavior (Moog, 2013). In the next subchapters 

different structured grid types are shown and discussed. 

 

2.3.1.1. Cartesian grid 

 

Regular Cartesian grids are the most popular gridding type used in reservoir 

simulation. They were used already in the first reservoir simulations used in the 

industry. Cartesian grids are usually represented by quadrilaterals in two dimensional 

models (figure 2.3 (a)) and by hexahedra in three dimensional simulations (figure 2.3 
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(b)). Sometimes, for better representation of geological structures, hexahedra are 

created by defining locations of each of its vertices. In this case, the obtained grid is 

called Corner Point Geometry Grids, which is also usually related to structured type. 

 

 

 

   

 

 

                                    (a)                                                          (b) 

Figure 2.3. Cartesian grid in 2D (a) and 3D (b). 

 

As it was already mentioned, sometimes reservoir that is have to be modeled has 

very complex structure, which usually results in necessity of locally refinement of 

grid blocks in the zone of increased reservoir complexity (figure 2.4). This is usually 

done in the fields with regular Cartesian grids and is also related to structured 

gridding types. 

 

 

Figure 2.4. Local grid refinement in regular Cartesian grid (modified from Lake and 

Holstein, 2007). 

 

2.3.1.2. Cylindrical grid 

 

Cylindrical grid usually is used for representation of wells inside reservoir 

simulation. If it is used with other other gridding type, which is usually the case, then 
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it becomes a hybrid grid which is described in the subchapter 2.3.3.1. It can be both 

used in two and three dimensional reservoir simulations (figure 2.5). 

 

 

(a)                                                           (b)  

Figure 2.5. Cylindrical grid in two dimensions with local refinement (a) and three 

dimensions (b) (modified from Kaufmann, 2006 and Angelo et al., 2002). 

 

2.3.1.3. Hexagonal grid 

 

Hexagonal grid is used rarely in reservoir simulation. The first proposal of 

application of hexagonal grid to the reservoir simulation was in the work of Pruess 

and Bodvarsson (Pruess and Bodvarsson, 1983). 

 

 

Figure 2.6. Example on hexagonal grid in two dimensions. 

 

From the definition of structured grids, hexagonal grids must be related to them, 

however in reality hexagonal structure is usually obtained by applying of 

unstructured gridding techniques. As an example, typical shapes of Voronoi grids in 
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two dimensions are hexagons, while in three dimensions they are hexagonal prisms 

(figure 2.6). 

 

One of the successful applications of structured hegagonal grid is described in the 

work of Wadsley et al. (Wadsley et al., 1990). He and his companions used 

hexagonal grids in order to model fluvial architecture with subsequent simulation of 

reservoir under production. Among the pluses of hexagonal grids, they mention the 

fact that hexagonal grids help to overcome grid orientation effects. 

 

2.3.1.4. Triangular Grid 

 

Triangular grids are used very rarely in reservoir modeling. This is due to they 

usually correspond to unstructured Voronoi gridding (Delaunay triangulation), which 

is more persistent to grid changes. Other cause of its rare usage is that they usually 

result in, what some authors call, "sliver" blocks that have little volume but big area 

of surface (Lake and Holstein, 2007). 

 

 

Figure 2.7. Example on triangular grid in two dimensions. 

 

In two dimensions triangular grid is represented by triangles, while in three 

dimensions they exist as tetrahedra (figure 2.7).  

 

2.3.2. Unstructured Grids 

 

As it was already mentioned, as distinct from structured gridding types, unstructured 

ones do not have particular shape, which results in its flexibility that makes it 
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possible to more accurately represent geologic entities in the model (figure 2.2). 

Other differences between these types is that the unstructured grid is based on a 

number of grid points that have no specific indexing. After these grid points are 

chosen, control volumes are generated around these grid points.  

 

One of the most popular unstructured grid types is Voronoi or PEBI grids which are 

the basis of the study described in this thesis. 

 

2.3.2.1. Voronoi grid 

 

Voronoi gridding technique is discussed in details in the next chapter, so this one 

only provides some basic information on them. 

 

 

Figure 2.8. Example on Voronoi grid in two dimensions. 

 

Voronoi grid block is an area of space that is closer to its grid point than any of the 

others that are present in the grid. This means that each block's sides are located in 

the middle of the line connecting two neighboring grid points and are perpendicular 

to it. Actually, that is where its second name is derived from - PErpendicular 

BIsector. 
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Voronoi grid were first proposed to be used in reservoir simulation in the paper of 

Heinemann and Brand in 1989 (Heinemann and Brand, 1989), and after that got 

some usage in reservoir simulation, however is still not very popular. 

 

Voronoi grids can exist both in two dimensional, two and a half dimensional and 

three dimensional spaces. As it was already mentioned, most typical shapes than 

they take in two and two and a half dimensional spaces are accordingly  hexagons 

and hexagonal prisms (Lake and Holstein, 2007). 

 

 

Figure 2.9. Truncated grid (modified from Lake and Holstein, 2007). 

 

Two and a half dimension dimensional Voronoi means that Voronoi is generated for 

each layer of reservoir formation and then are stucked on the top of each other. So 

each layer has its specific thickness, which means that the structure is in three 

dimensions but not fully. That is why it is called two and a half dimensions. In three 

dimensions there are no restricting planes on the top and the bottom. 

 

2.3.2.2. Truncated grids 

 

Truncated grids sometimes are used with Cartesian grids in order for better 

representation of the faults. The grid mainly is simple Cartesian grid described in 
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2.3.1.1., the only difference is that if the fault passes through on of the cells, it 

divides this cell into two parts. This is shown on figure 2.9. 

 

From the advantages better handling of reservoir heterogeneities can be mentioned, 

but this comes at great price - it may result in very sophisticated shapes of the blocks 

and therefore transmissibility terms between blocks will have to be calculated in a 

more difficult way. 

 

 

Figure 2.10. Example on curvilinear grid type. 

 

2.3.2.3. Curvilinear grids 

 

Discussion on application of curvilinear grids to the reservoir simulation started from 

the 1970s. It was mentioned in the work of Hirasaki and O'Dell (Hirasaki and O'Dell, 

1970), Sonier and Chaumet (Sonier and Chaumet, 1974) and many others. 

Curvilinear grid was mentioned to better simulate flow of fluids, however, by 

winning at representation of the fluid flow, some problems occur with representation 

of geological entities. So, this type of grids also did not get wide application in the 

industry. Figure 2.10. shows example on curvilinear geometry. 
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2.3.3. Hybrid grids 

 

Hybrid grids cannot be related to any of the previous groups because it is partly 

structured and partly unstructured. Application of hybrid grids in reservoir 

simulation were first discussed in the work of Pedrosa and Aziz (Pedrosa and Aziz, 

1986).  

 

Main purpose of usage of such hybrid grids in reservoir simulation is to improve 

treatment of well in there. Usually, cylindrical grid type is used around the wells in 

order to accurately map increased pressure gradients occurring when the well is 

producing or injecting. These grid blocks are usually surrounded by some regular 

structured grids like simple Cartesian, hexagonal, triangular or others. Example on 

hybrid grids is shown on figure 2.11. 

 

 

Figure 2.11. Example on hybrid grids (modified from Marcondes et al., 2009). 

 

As it was already said, this study deals with Voronoi gridding technique which is 

discussed in details in chapter 3. 
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CHAPTER 3 

 

 

VORONOI GRID BLOCKS 

 

 

 

3.1. Introduction 

 

Voronoi (or PEBI) grids are one of the basic geometrical structures that may be used 

to divide the space into small areas of ascendancy. These grids may as well be used 

in reservoir engineering, dividing the reservoir model into a finite number of blocks. 

(Aurenhammer and Klein, 2000) 

 

Modeling of hydrocarbon reservoirs is usually done by partitioning the space 

occupied by reservoir into a set of fictitious blocks and applying of equations of 

conservation laws, such as mass conservation, on each one of them. Fluid movement 

from one block to another can be obtained from the discretized Darcy's law equation. 

The result of such modeling of flow depends on the character of the division of 

reservoir into blocks (placement of blocks, amount of blocks used, type of grid 

selected etc.) and formulation of equations of flow. 

 

It must be mentioned at this point, that, notwithstanding the fact that different types 

of grids were presented and discussed in details in literature, usage of some of them 

together in one simulation (for example, in order to correctly handle some properties 

of reservoir) was always a difficult, if not impossible to solve, problem. These 

problems sometimes could be solved by a very special cases such as hybrid gridding 

techniques (Figure 3.1) or local refinement (Figure 3.2). And still, you would face up 

with the situation when each block depends on the placement of nearby blocks. 
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One of the advantages of the Voronoi gridding technique is that grid points and 

therefore grid blocks can be placed anywhere inside the model without taking other 

points into account. This results in absolute independence of placing of grid points 

from adjacent blocks and therefore high flexibility of Voronoi grids. Because of this 

property of Voronoi grids, it has been widely exploited in many different disciplines 

such as crystallography (Mackay, 1972), fluid mechanics (Trease, 1985), electrical 

engineering (McNeal, 1953), physics (Winterfield et al., 1981), biology (Richards, 

1974), mathematics (Voronoi, 1908), rock characterization (Pathak et al., 1980) and 

many others. 

 

 

Figure 3.1. Example of usage of hybrid gridding in reservoir simulation (modified 

from Pedrosa and Aziz, 1985). 

 

 

Voronoi grid blocks have been known under different names such as PEBI 

(PErpendicular BIsection) and Wigner-Seitz cells, but in the most of the papers 

Voronoi grid is the most widely spread name of them, which refers to the 

mathematician who invented them. Heinemann and Brand were the first ones who 
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used Voronoi gridding technique in problem of modeling fluid flow in hydrocarbon 

reservoirs. First of all, they depicted a way to use equations of flow for a block with 

an unspecified number of neighboring blocks. This was done by usage of the integral 

discretization technique. Then Forsyth used Voronoi to develop better accuracy of 

junction of fine Cartesian grid blocks with coarse ones in the process of refinement. 

 

 

Figure 3.2. Example of local grid refinement (modified from the Kilic and Ertekin, 

2003). 
 

Voronoi grid consists of Voronoi grid block which are defined as the area around 

grid point that is closer to this point than to any surrounding ones (Figure 3.3.). 

Boundaries of grid blocks are perpendicular to the line connecting neighboring grid 

points and intersect this line just in the center (that is why it is also called 

perpendicular bisection). The latter means that Voronoi grid can be associated with 

point-distributed type of grids. 

 

On the figure 3.3, dashed lines that are connecting neighboring grid points are called 

Delaunay mesh which consists only of triangles. If the line exists, it means that flow 

can occur between the points that are connected. Actually, Delaunay mesh can 

consist not only of triangles, but also of lines, rectangles and higher order polygons. 
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In most of the cases reservoir and petroleum engineers are concerned with Voronoi 

gridding more than with Delaunay mesh. 

 

Figure 3.3. Voronoi grid and Delaunay mesh. (modified from Palagi and Aziz, 

1994). 

 

3.2. Motivation to use 

 

Most of the grid systems that are commonly used in reservoir simulation actually are 

some form of Voronoi grids. Even if they are not exactly the same, they are very 

close to each other. Examples on such gridding techniques are shown on the figure 

3.4. 

 

Voronoi grids can connect different grid types or coarse/fine grids without applying 

any sophisticated algorithms. All that is required is to add grid points in required 

places and run grid generation algorithm as usual, all conversions will be performed 

automatically. The result of this is that all required gridding techniques can be used 

at the same time in the same grid system which develops better handling of complex 

structures that have to be mapped and many other problems. 
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Voronoi grid can also be used for simulating three-dimensional reservoirs. In this 

case, usually Voronoi grid is created in the same conventional way for each of the 

layers one by one. 

 

 

Figure 3.4. Common grid techniques that can be associated with Voronoi (modified 

from Palagi and Aziz, 1994). 

 

3.3. Voronoi grid generation algorithm 

 

There are many different grid generation algorithms. They are discussed in many 

literature sources, such as paper by Ho-Le (Ho-Le, 1988). In this thesis, only one 

grid generation algorithm will be presented in order to provide some information 

how it occurs. The algorithm described here was created by Frederick et al 

(Frederick et al., 1970). 

 

This algorithm requires two inputs. One is the set of grid points of the blocks that 

will be generated, and the other one is rmax - the maximum radius. This rmax is used in 
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characterization of outer boundary. If rmax  is a large number, outer boundary of each 

block will be convex, if not, then it may be concave in some regions. Also, it must be 

said that the user of this algorithm is not required to explicitly identify grid points on 

the boundary of the region that will be divided into blocks. For more detailed 

discussion Palagi work (Palagi, 1992) can be referred to. 

1. Choose a grid point (m). 

2. Get the points that may become neighbors (n) in such a way, that the spacing 

between (n) and (m) would be less than the value of rmax multiplied by two 

(Lij<2*rmax). After all these points are selected, all other points are stopped to 

be considered during the next stages. 

3. Choose the point on the closest distance from the grid point (m) (minimal 

Lmn). 

4. Now you have line (mn). Find the next grid point (o) moving in counter-

clockwise direction, so that môn would be maximal.   

5. Next step is to generate a circle that all three points lay on and calculate 

radius of it. This radius is then named as rc. Now the first vertex of Voronoi 

grid block with center (grid point) in (m) can be found as the center of the 

circle. This vertice may fall outside of the area that will be divided into 

blocks (e.g. point D in figure 2.3). 

6. Then there are two cases: if rc < rmax, (o) is really a neighbor of block (m). 

Then you must set (n)=(o) and redo stages four and five. After some time the 

new neighbor is the first one, which means that all neighboring points have 

been processed. If this is the case, then grid block (m) is totally inside of the 

domain, and the other point for generation should be selected. Then 

everything is done from the beginning. This procedure should be performed 

for all points. 

7. The second case is rc > rmax. This means that grid block intersects the outer 

boundary of the domain. If this is the case, continue with the next step. 

8. Make (n) equal to the first grid point as in the third step. Perform stages four 

to seven in the clockwise direction till you reach another point outside of the 

domain. Then start from the beginning with the new point and continue while 

all the grid points are not processed. 
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9. After stages one to eight have been implemented for each of the points, the 

next step is to calculate all angles between points on the border of the domain 

and the corresponding grid points, such as angle CÂB on figure 3.3. 

10. Then there are two cases. Both of them will be discussed on an example of 

CÂB. If this angle is less than π/2, then central point of BC is a vertex of the 

grid block that contains points B and C. 

11. Otherwise, if this angle is bigger than π/2, then some part of the grid block 

must be out of the domain and therefore must be deleted. After this outside 

part is deleted, neighboring blocks also should be adjusted. 

12. And the last step is to delete all the lines that have width less than some 

predefined small number 

 (Palagi, C. L. and Aziz, K. Appendix (1994)) 

 

As it was said before, there are many other Voronoi grid generation algorithms that 

can be found in literature. Some of them are: Fortune's algorithm (or sweep line 

algorithm), Lloyd's algorithm, Bowyer-Watson algorithm etc. In this study Voronoi 

generation was used only for visualization of results. This visualization was 

performed by use of Matlab software using "Voronoi" function. 

 

3.4. Use of Voronoi grid in reservoir simulation 

 

As it was mentioned, use of Voronoi grids in reservoir simulation was firstly 

described in 1989 by Heinemann and Brand. After this introduction many scientists 

and engineers started to explore newly discovered horizons, perfect what was 

already done and tried to find additional use to them. This subchapter provides some 

information on how Voronoi grids were used in petroleum industry during last 26 

years. 

 

In the first years of usage of Voronoi grids one of the most productive unions was 

duet of Cesar Luiz Palagi and Khalid Aziz in Stanford university. In 1992 Palagi 

graduates from Stanford University and publishes his PhD dissertation called 

"Generation and application of Voronoi grid to model flow in heterogeneous 
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reservoirs" (Palagi, 1992). His supervisor on this work was Khalid Aziz. After 

graduation they publish together several more papers related to Voronoi gridding in 

reservoir simulation (Palagi and Aziz, 1993; Palagi et al., 1993; Palagi and Aziz, 

1994). Most of these papes concentrate on general application of Voronoi to 

reservoir simulation, but some of them also discuss proper handling of horizontal 

and vertical wells using Voronoi grids. 

 

After usage of Voronoi gridding technique in reservoir simulation proved to be 

efficient, several authors tried to create commercial black oil simulators that will use 

Voronoi grid in order to model reservoir behavior. Such type of model is discussed 

in the paper of Kuwauchi et al. (Kuwauchi et al., 1996). In this paper results obtained 

from the simulator using Voronoi grids are compared  with analytical solutions and 

decision on effectiveness of reservoir simulator with Voronoi grids is made. 

 

In the XXI century applications of Voronoi grid in reservoir simulation increase with 

more and more different applications. Some authors provide information on 

geological models' upscaling techniques with Voronoi (Prevost et al., 2004; Branets 

et al., 2009), others try to generate grid in such a way so that it would honor not only 

geological strutures, but also flow of fluids in the reservoir (Castellini, 2001; 

Mlachnik et al., 2006; Merland et al., 2011; Moog, 2013); some of the authors 

propose new Voronoi generation algorithms (Evazi and Mahani, 2009; Katzmayr 

and Ganzer, 2009), others provide techniques for better handling of wells and 

fractures (Syihab, 2009; Li, 2011; Olorode, 2011; Fung et al., 2014). 

Nowadays, Voronoi package can be found in some of the popular commercial 

simulators, however, usage of Voronoi grid in the industry is still not very popular. 

Among causes of this, Fung et al. (Fung et al., 2014) mentions extra stages that are 

required in order to generate Voronoi mesh, difficulties in populating of properties 

into Voronoi grid blocks and in the calculation of data related to well perforation. 

Also he mentions that in further stages of reservoir simulation generation such as 

history match, future predictions runs with different well locations etc. Voronoi grid 

requires more sophisticated and therefore less attractive reservoir modeling tools, 

which results in overall unattractiveness of the method. Another paper written by 
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Vestergaard et al. (Vestergaard et al., 2008) describes application of Voronoi grids to 

the problem of modeling of giant carbonate reservoir. Among the complications that 

they dealt with while building the model, problems with history match, inefficiency 

of linear solvers which were less efficient than for the case of Cartesian grid with 

similar grid block sizes are mentioned. Also it must be said, that before trying to 

apply Voronoi gridding technique to this problem, Cartesian grid simulation was 

performed, which was proved to be incompatible with the real data.  

 

So, decision on whether to use or not Voronoi gridding technique in reservoir 

simulation is still open. 
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CHAPTER 4 

 

 

RESERVOIR HETEROGENEITIES AND ANISOTROPY 

 

 

 

4.1. Introduction 

 

From the petroleum engineering point of view, definition of term "reservoir 

heterogeneity" would be geological intricacy of a reservoir and how this intricacy 

affects flow of fluid. (Alpay, 1972) In simpler terms, it is "spatial changes of 

reservoir properties in reservoir". 

 

This complexity is usually a result of changes in strata that occur after deposition, for 

example, under compaction, tectonic distortion and cementation. There are different 

classifications of reservoir heterogeneities, but the most widely used are as follows: 

microscopic heterogeneities (less than 1mm), mesoscopic heterogeneities (up to 1m), 

macroscopic heterogeneities (tens of meters) and megascopic heterogeneities 

(hundreds of meters) (figure 4.1) 

 

Microscopic heterogeneities are heterogeneities on scale of pores and grains of 

formation.  Mesoscopic heterogeneities can be seen on vertical measurements, e.g. 

during coring and logging. They alter such properties as permeability of matrix, 

rock-fluid interaction, formation damage and directional fluid flow. They include 

bedding, changes in lithology, and others. 

 

Macroscopic heterogeneities occur on the interwell scale. They include faults, 

pinchout, erosional cut-out and others. Macroscopic heterogeneities can be seen 

during well tests or on seismic survey results. The show great effect on sweep 

efficiency, patterns of flow, profitability of secondary recovery and EOR. 
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Megascopic are the biggest possible reservoir heterogeneities. They occur on a 

fieldwide scale. They are related to depositional environment and the structure of the 

field. Usually megascopic heterogeneities affect petroleum reservoir volumetrics, 

and therefore petroleum production trends.  

 

 

Figure 4.1. Reservoir heterogeneity classes (modified from Weber, 1986). 

 

This study faces up with one type of reservoir heterogeneity that will be discussed 

further in the chapter - channeling. 

 

4.2. Channeling 

 

Channeling is found usually in fluvial deposit systems. This means that during some 

time in the history here existed flowing body of water, e.g. river. Actually, there are 

two types of fluvial deposit systems: braided and meandering fluvial systems. 
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Braided fluvial pattern usually occurs when the river does not have enough discharge 

to take its sediment load with itself or in the cases when the river has banks that can 

be easily eroded. In most of the cases braided pattern can be found in the upper parts 

of a fluvial deposit system. In those regions bodies of water usually have steeper 

gradients, mainly coarse sediments and frequent changes in discharge. These 

conditions result in frequent intersection of channels, as it can be seen on figure 4.2. 

So, this means that the channel that is created in result is a very complicated system 

consisting of great amount of frequently intersecting channels. 

 

 

Figure 4.2. Braided fluvial deposition system (modified from Galloway and Hobday, 

1996). 

 

As it was already said, frequent discharge changes result in overloading of sediment. 

During flood, body of water is able to move all of its sediments. Nevertheless, 

usually rivers have little amount of flowing water, which results in inability to move 

sediments by flow. Because in the upper parts of fluvial deposit system coarse 

sediments are usually deposited, base of the resulting channel consists of coarse 

particles, which means better reservoir qualities in the future (if this structure is not 

affected greatly by the post-depositional conditions). 

 



 

30 

 

Meandering fluvial pattern (Figure 4.3) occurs in lower parts of fluvial deposition 

system. This is due to more gently sloping gradient than in the braided systems. The 

closer braided systems are to the source of the river, the straighter they are; the 

farther they are from the source, the more meandering character they get, until fully 

meandering system is not created. Here, flow has less speed, higher depth, which 

results in the fact that stream becomes affected by centrifugal force and bends 

towards the external bank. Because of this, external bank becomes severely eroded, 

the river is able to move towards this bank deeper in lateral direction. Therefore, the 

river itself becomes more and more tortuous until these sides of the river are not 

separated from each other by a thin layer of formations. After some time this layer is 

also eroded, and now the river has a better, straighter way to move, leaving one of its 

flanks behind. These left flanks are then called cutoffs. 

 

 

Figure 4.3. Meandering fluvial deposition system (modified from Prothero and 

Schwab, 2014). 

 

Sediments accumulated here are mainly on the inner sides of the river. As in the 

braided fluvial deposition system, sediments closer to the source are coarser ones, 

while towards the end they become finer. (Prothero and Schwab, 2014) 

 

These effects result in heterogeneities called "channeling" in reservoirs. In these 

channels property values may differ from the same properties of the part of reservoir 
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not affected by this channel. This is one of the cases, that was considered during this 

study.  

 

4.3. Anisotropy 

 

A formation is called anisotropic if the value of property in one direction differs 

from the value of the same property in another one. Most usual earth anisotropy is 

between vertical on horizontal directions, called transverse anisotropy, but it is not 

considered in this study. This study tries to deal with anisotropy of directional 

permeabilities in the horizontal plane, thus permeability in x-direction differs from 

permeability in y-direction. Before going further, this chapter will explain where 

anisotropy comes from and why it is different from reservoir heterogeneities. 

 

As it was already mentioned, anisotropy is not the same as heterogeneities discussed 

previously in the chapter, however, they are usually confused with each other. There 

are two main differences between them. 

 

The first one is that in anisotropy changes of reservoir properties occur at one point, 

but in a different direction (vector value), while heterogeneity means that there are 

differences in scalar or vector values in two or more different points. The second 

difference is that anisotropy deals mainly with physical properties, while 

heterogeneities may deal with anything starting from the same physical properties 

and ending with the composition of formation. 

 

Anisotropy results from processes occurring during and after deposition. For 

example, anisotropic changes in carbonates, such as changes in directional 

permeabilities, may be a result of layering which affects carbonate mineralogy by 

changing formation diagenetic potential and texture. As opposed to carbonates, in 

the clastic rocks anisotropy can occur only if the rock is homogeneous or uniform to 

some extent. If the formation is totally heterogeneous, then no anisotropy can occur 

there, because in this case there will not be any directionality in the rock. Summing 

this up we may come up with a conclusion that anisotropy developing with the 
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deposition has two causes: periodic layering and grains ordering, which results from 

the directionality of the rock. (Rajan, 1988). This ordering is mainly performed by 

gravitational forces and transport. 

 

 

Figure 4.4. Example on diagenetic changes (Anderson et al., 1994). 

 

After deposition, formation undergo changes due to diagenesis. Diagenesis is 

exposion of formation to different forces of chemical, physical and biological 

character after deposition. During this stage many changes can occur in formation 

structure: for example, when formation is buried at increasing depth, the overburden 

pressure increases with depth and may cause rearrangement or rotation of grains in 

the horizontal plane (Manrique et al., 1994). Other factors that may affect formation 

properties in the horizontal plane are fractures or plastic deformation and many 

others. 

 

For understanding of anisotropy, processes occurring during diagenesis should be 

always considered, because they can dramatically change the properties of the 

formation, even properties already changed during deposition. For instance, 

alterations in ordering/packing and horizontal orientation (this also affects formation 

permeability) that took place during deposition may be totally demolished by the 

diagnetic processes. 

On figure 4.4 depositional anisotropy is absolutely changed by the clay and quartz 

overgrowth. The point of this example is that permeability model should be based on 

both depositional and diagenetic alterations of rock, otherwise the representation of 
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formation will be incorrect, which can affect all following calculations. (Anderson et 

al., 1994) 

 

This study shows attempt to carefully divide reservoir, including heterogeneity and 

anisotropy into Voronoi blocks in order to produce a representative result using 

limited amount of grid blocks. 
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CHAPTER 5 

 

 

OPTIMIZATION 

 

 

 

5.1. Introduction to optimization 

 

Optimization, as a tool helping to solve different kind of problems, was 

accompanying humankind from the very beginning of its existence. Actually, at first 

this kind of optimization was absolutely primitive and was based on the instincts of 

early humans: they waited for most optimum conditions to plant or harvest crops, 

decided on whether to start a war with another tribe or used optimization when 

hunting animals - how many men are required to track down an animal and to kill it 

in as safe manner as possible. 

 

With the introduction and development of mathematical methods, optimization 

methods also underwent an advancement, but still were quite primitive. The greatest 

advancement of optimization techniques took place in last fifty-sixty years with the 

development of computational technologies. After that, optimization methods had 

dramatic improvement that is still continuing nowadays. While optimization 

algorithms were developing at an enormous rate, the technologies required for 

implementation of this algorithm were also advancing. This created ideal conditions 

for optimization, and now it is difficult to imagine complex and even usual projects 

in various disciplines that would not use any kind of its form (Diwekar, 2008). 

 

Optimization is the process of choosing the 'best' out of all solutions of the problem, 

if the "good" can be separated from the "bad" and measured. In our day-to-day life, 

everyone would like to have the "maximum" in some good things, like salary, health 

or holidays or "minimum" in bad things as expenses, over-time work and problems. 
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Taking this into account, the term "optimum" may be described as the "minimum" or 

"maximum" depending on the conditions, for example maximizing the salary while 

minimizing the over-time work. So the word "optimum" is much more useful than 

the term "best" in the same way as the term "optimize" is a way better than the word 

"improve". So, theory of optimization is a section of mathematics dealing with the 

study of optimum solutions of the problems and the procedures to obtain them. 

 

As it was said before, the optimization is used in a wide range of various disciplines 

including math, physics, business and economics, social sciences, engineering and 

even politics. It covers all engineering disciplines, starting from chemical and 

petroleum engineering and ending with mechanical and electrical engineering. Most 

common engineering areas of usage of optimization algorithms include design of 

buildings, creation of tools, curve fitting, modeling of systems and many others. 

Almost all real optimization problems do not have only one solution. Actually, 

amount of solutions may be up to infinite. That is why optimization based on some 

of the criteria that govern the behavior of the solutions is so important. (Antoniou 

and Lu, 2007) 

 

5.2. Classes of optimization algorithms 

 

An algorithm is a collection of actions that should be performed in order to solve 

some problem. They are usually written with human language, not with computer 

code, so it would be easy to understand for humans and would not depend on the 

programming environment or specific computers. Optimization algorithm is an 

algorithm of the type described in the previous sentence, that can be used to get 

optimum solutions of optimization problems. 

 

There are two broad groups of optimization algorithms: deterministic and 

probabilistic. 
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Figure 5.1. Rough classification of optimization algorithms (modified from Weise, 
2011). 
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Further subdivision is quite a difficult job, because some of the algorithm classes 

take properties of both basic classes, but some rough estimation is shown on the 

figure 5.1. 

 

Deterministic optimization algorithms are algorithms that during each step have only 

one way to move to the next one. This means that if the same set of data is used as 

input, this algorithm will do absolutely the same thing and the results will also be the 

same. So, this type of optimization algorithms is  mostly suitable for the cases when 

the most efficient decisions on how to proceed in different situations are known and 

used in the algorithm. These cases occur when the dependence between the different 

properties of the probable solutions of the problem and their utilities are clearly 

understood and used.  

 

In some cases the manner of how the deterministic algorithms approach the problem, 

may cause problems in getting the most optimal solution. This is the situation when 

the dependence between the solution and the goodness of it is not so straightforward 

(for example, changing or very complex), or when the size of the search space is 

enormous. In such kind of cases application of deterministic algorithms is not very 

efficient and the use of probabilistic ones is much more effective choice. 

Deterministic algorithms include search algorithms, which are subdivided into 

informed (including Gready and A* searches) and uninformed search (including 

Breadth-First search (BFS), Depth-First search (DFS), and Iteratively Deepening 

Depth-First Search (IDDFS)). 

 

As opposed to deterministic optimization algorithms, probabilistic ones have 

minimum one step in it that is based on the generation of random numbers. This 

means that the approach will generate random solutions, which is a very useful step 

if you do not know exactly how to proceed. These random approach, of course, has 

disadvantages - for example, if the set of input data is the same, algorithm still will 

produce different results, and still in many cases, they are preferable.  Probabilistic 

optimization algorithms include metaheuristics which is further subdivided into 

evolutionary computation algorithms and algorithms that are not referred to that 
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category, including hill climbing, simulated annealing and many others. (Weise, 

2011) 

 

 

Figure 5.2. The basic cycle of evolutionary algorithms (after Weise, 2011). 

 

As it was mentioned before, many algorithms share some properties of both 

probabilistic and deterministic algorithms. Algorithm created during this study is not 

an exception: it takes concepts of populations and fitnesses from the evolutionary 

algorithms which are related to the probabilistic types, however, it is purely 

deterministic in its nature. So, in order to provide better background on the 

algorithm, the next subchapter provides some preliminary information on 

evolutionary algorithms and their concepts shared with the algorithm described 

further in the thesis. 

 

5.3. Evolutionary algorithms 

 

Evolutionary algorithms are probabilistic optimization algorithms based on 

population of solutions. This means that input to these algorithm is not a single 

probable solution of the problem, but a set of different ones that will be processed in 

order to get the most optimum one. As it may be understood from their name, these 

algorithms are based on  
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analogy with some natural processes and mechanisms, such as biological evolution 

and survival of the fittest conceptions. These algorithms use these ideas in the 

processing of the population of solutions, hoping to find the one that is most suitable 

for the problem under consideration.  

 

Evolutionary algorithms were not developed together by one man. Actually, they 

include a large set of different algorithms that were created to some extent by 

different scientists and researchers. Evolutionary algorithms showed high flexibility 

and performance in a wide range of different disciplines. 

 

Despite that majority of evolutionary algorithms were invented by different 

scientists, all of them undergo similar steps when initiated. These repeating steps are 

called the basic cycle of evolutionary algorithms (figure 5.2). Following are the 

stages of this cycle for evolutionary algorithm optimization with a single objective: 

 

1. Population of probable solutions is used as an input to the algorithm. This 

will be the first generation of solutions (t=1). This population may be random 

or seeded, depending on the person who uses the algorithm and the problem. 

If the initial population is seeded, this means that the used solutions are 

already preprocessed and adapted to some extent to the criterion that is used 

for optimization. It can even be the case when the whole first population 

consists of such preprocessed individuals. These adapted solutions can be 

obtained by using the same algorithm or by any other method. Seeding is 

used to reach the optimum solution in a less number of generations. The 

drawback of using seeding is that the fake convergence may be reached 

before the actual convergence is achieved. This may be the result because 

good solutions (or preprocessed) will have better fitness and will wipe out the 

random solutions. So, this type of behavior must be considered before 

applying of seeding. 

2. Next step is to calculate objective functions for each individual solution in 

the population. 



 

41 

 

3. Using values obtained from the previous step, distribute the values of fitness 

to each of the individuals. 

4. The next step is selection process - choosing individuals with higher fitness 

values for reproduction, therefore wiping out individuals with lower 

fitnesses. 

5. The next step is reproduction - getting offspring from the parents selected in 

the previous stage. This is done by applying of specialized reproduction 

operations to the genotypes of the parents. Genotypes are just sets of genes. 

They are usually obtained by converting solutions into binary, however, there 

are also many other methods. Each "0" or "1" value inside of these genomes 

are referred to as genes. This conversion is done for easier application of 

reproduction operators. Most common reproduction operations are crossover 

and mutation. Crossover is used to combine genotypes of parents together to 

get genotype of children and mutation just makes changes in one genotype in 

order to support diversity in the solutions. After reproduction is performed, 

part of the last generation or the whole previous generation is swapped with 

the children, depending on the choice of the person using the algorithm. This 

will be the new generation. Number of generations is increased by one. 

6. If the termination criterion is achieved, then everything stops here and 

solution with the highest fitness is selected as the best one. If not, then 

convert genotypes to phenotypes (this means converting of solutions into the 

form, which is better suitable for calculation of objective functions. For 

example, if the solutions are given in binary, convert them into system 

suitable for calculation, which is usually decimal), then return to step 2 and 

redo all the same thing for the new generations (Weise, 2011). 

 

Now, after evolutionary algorithms were described, the last question that must be 

answered is why exactly algorithm created in this study is based on evolutionary 

optimization, but not on the other type of algorithms. The answer would be that the 

algorithm of the solution to the problem that will be described in the "Methodology" 

chapter is an iterative process, that uses population of solutions, trying to improve 

population's worst performing individual solutions. Actually, that is what 
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evolutionary optimization algorithms are all about - they are highly suitable for such 

kind of problems. However, the random part had to be eliminated from the process 

and also the process of improvement of bad solutions was changed, making the 

overall process deterministic, because exact direction of improvement is known from 

the beginning, therefore, no randomification was required. 

 

Algorithm created during this study uses population and fitness criteria described in 

this chapter. More information on how exactly algorithm proceeds can be found in 

"Methodology" chapter in this thesis work. 
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CHAPTER 6 

 

 

PROBLEM STATEMENT 

 

 

 

The aim of this study is to find an algorithm that will divide the reservoir model into 

unstructured Voronoi grid blocks by considering the direction of permeability 

vectors, anisotropy ratio, permeability or porosity heterogeneity of the reservoir in 

such way that the defined error value in each block would be minimal. Voronoi grids 

are strongly connected with the locations of grid points, that is why, by adjusting the 

coordinates of grid points, shapes and locations of grid blocks can be altered, thus, 

attempt to minimize the total error can be made. Since the main pressure gradients 

exist around the wells, the representation of the wells is achieved by using closely 

placed Voronoi grids around the wells as well. 

 

This thesis provides detailed information on algorithm created for solving of the 

problem described here and then shows some examples on how exactly it works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

45 

 

CHAPTER 7 

 

 

METHODOLOGY 

 

 

 

7.1. Introduction 

 

Algorithm created in this study is deterministic. As it was said before, this means 

that for the same input values, the results produced by the algorithm will also be the 

same. This algorithm consists of three major steps: 

 

1. Generation of uniformly distributed grid points, taking into account 

anisotropy in the reservoir; 

2. Moving of grid points that have bad locations described by fitness values 

(this deals with the effects of reservoir heterogeneity); 

3. Adding of grid points related to vertical and horizontal wells or faults. 

 

This chapter will cover these steps one-by-one. 

 

Code of the algorithm written for Matlab can be found in Appendix A. Before 

running of the algorithm, four column vectors called permXvec, permYvec, 

permZvec (accordingly x, y and z coordinates of the points of petrophysical field) 

and permeabilitiesVec (values of petrophysical property in the locations of points 

assigned by vectors permXvec, permYvec and permZvec)  should already be loaded 

into the workspace. As it was mentioned before this petrophysical property field 

should consist of densely and uniformly populated points with property values. For 

creation of the field some extrapolation/interpolation methods may be required. 
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7.2. Step One (generation of initial population of grid points) 

 

As it was previously mentioned, the first step consists in the generation of uniformly 

distributed grid points throughout the reservoir. This distribution is created regarding 

directional permeability relations in the reservoir. The first step requires several 

input parameters: desired number of grid points (grid blocks); how many times 

permeability in the y-direction is higher (or less) than the permeability in x-direction, 

Ky/Kx (permeability in y-direction (Ky) divided by permeability in x-direction (Kx) 

- these directions may not align with x- and y-directions of the reservoir); angle 

between permeability in y-direction and y-direction of the reservoir (figure 7.1); 

coordinates of vertices of reservoir; some small distance and small increment that 

will be added to this distance at the end of each iteration. 

 

 

Figure 7.1. Angle between permeability in y-direction and y-direction of the 

reservoir. 

 

Figure 7.2 shows an example on how the first step algorithm proceeds. The first 

thing that the algorithm does - it finds coordinates of the starting point (red dot at 

figure 7.2). If angle θ is between 0⁰ and 90⁰, then it calculates red dot coordinates 

from: ܺݐݎܽݐݏ = −ܾ ∗ sinሺθሻ ∗ cosሺ�ሻ         (7.1) ܻݐݎܽݐݏ = ܾ ∗ sinሺθሻ ∗ sinሺ�ሻ            (7.2), 

where startX - x-coordinate of starting point; startY - y-coordinate of starting point; 

b - reservoir width. Minus sign is used in equation (7.1), because the lower left 

corner of the reservoir is considered as (0;0) point, which means that starting point 

will have negative x-coordinate. 
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If angle θ is between 90⁰ and 180⁰  (or 180⁰ and 270⁰, or between 270⁰ and 360⁰), 

then 90⁰ (or 180⁰, or 270⁰) is subtracted from this angle and then formulas (7.1) and 

(7.2) can be used. If angle θ is equal to 0⁰, 90⁰, 180⁰, 270⁰ or 360⁰, then lower left 

corner of the reservoir (0;0) is chosen as the starting point. After starting point is 

selected, the next step is to generate grid points. 

 

 

Figure 7.2. First step example. Black rectangle - reservoir; green rectangle - area, 

where grid points will be generated; red dot - starting point; a - reservoir length; b - 

reservoir width. 

 

The main idea behind this generation is that if permeability is higher in one direction 

(x or y), then generated points need to be placed more densely in that direction - in 

other words distance from one point to the next one in the permeability y-direction 

divided by distance from the same point to the next one in permeability x-direction 

should be equal to Ky divided by Kx. 

 

So, for example, if permeability Ky is twice as Kx, then distance between points in 

Kx direction is twice the distance between points in Ky direction. 
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Figure 7.3. Flowchart of step one. 

 

 

 

 

 



 

49 

 

This is because if permeability is higher in one direction than it is in the other, then 

pressure disturbance generated by producing/injecting wells, when the simulation 

will run, will propagate at a higher rate in the direction of higher permeability. 

 

So, in order to accurately see how much this disturbance moves, grid points should 

be placed more densely in that direction. 

 

Because we know only relation of the distance in one direction to the distance in the 

other one, but not exact values, we need to take some random small distance for one 

direction and calculate distance in the other, so that we could generate these grid 

points - that is what small distance in the input is used for. So, the algorithm starts to 

generate points from starting point in Ky and Kx directions according to Ky and Kx 

values and the small distance from the input. As it can be seen, some of the 

generated points will fall outside of the reservoir (black rectangle), so after all of the 

points are generated these points outside of the reservoir are ignored, while all the 

points inside reservoir are counted. If the resulting number of grid points is higher 

than the desired number of points entered as an input, then small distance is 

increased by increment also entered as an input, then process starts from the 

beginning with these new distances. This process is done until the number of grid 

points is not less than the desired number. If distance in the beginning and increment 

are not very large, resulting number of blocks should be very close to desired 

number. 

 

After the required number of grid points is achieved, the algorithm proceeds to the 

second step. For better understanding, step one flowchart is shown on figure 7.3. 

 

7.3. Step Two (movement of the bad grid points) 

 

After all the grid points were generated, the next step is to check if their placement is 

good enough. If it is bad, it would be better to move them to better places. This step 

also requires some input values, namely: field of petrophysical property that will be 

used to define different regions of the reservoir, number of iterations, number of 
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worst points that will be moved during each iteration, the number of times each point 

can be moved, required sum of errors in all of the blocks, number of regions and 

intervals of property values for each region.  

 

 

Figure 7.4. Example on results obtained from the step one. Blue area - reservoir; 

white area - zone outside of the reservoir. 

 

Property field is the population of densely spaced points in the reservoir that provide 

some information about the reservoir property at their locations. 

These property points should be representative of different regions/formations that 

can be met in the reservoir rock. For example, if there is channeling with better rock 

properties (like porosity, permeability) than the surrounding reservoir rocks' 

properties, then these values can be used in the algorithm. 

 

As it was written before, this field should consist of very densely spaced points. This 

means that if there is not enough information about reservoir properties are obtained 

from previous studies in the field, some interpolation/extrapolation techniques can be 

used in order to spread property values all over the field.  Example on petrophysical 
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field consisting of 56400 permeability points for the field shown on figure 7.4 is 

shown on figure 7.5. 

 

Figure 7.5. Example on petrophysical field. 

 

It must be mentioned that this property field should also include points outside of 

reservoir with zero values, so that algorithm would understand where the boundaries 

of reservoir are located. 

 

Imagine, that the reservoir, that has to be modeled, is not of rectangular shape (or has 

heterogeneities (such as channeling, etc.)). The first step has already been 

implemented, resulting in a scheme shown on figure 7.4. Input values for the first 

step were: 500 grid points, octagonal reservoir, no anisotropy or heterogeneities, 

angle is equal to zero. Because each grid block can only have one property value 

calculated as the average of all property points that fall inside of this block, 

gridblocks on the edges of the reservoir (or on the edges of heterogeneities if they 

are present) will not be representative of the area they cover. 
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Figure 7.6. Flowchart of step two. 
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For example, in the figure 7.7 red dots show reservoir properties outside of the 

reservoir (which is zero), while the green dots show reservoir property points values 

(different from zero). In the figure 7.7 grid blocks 1 and 4 have property values 

different than zero, despite that these blocks have more than a half located outside of 

the reservoir.  

 

 

Figure 7.7. Zoom in of the orange rectangle from the figure 7.4. Green dots show 

property points inside reservoir; red dots show property points outside of the 

reservoir; blue dots are grid points. 

 

 

Ideal placement of the grid points, and therefore grid blocks, would be in such way 

that reservoir boundary would correlate with boundaries between blocks. If it was 

the case, then blocks inside reservoir would have reservoir property values 

representative of the zone that they are located at, while blocks outside would have 

zero values. So the main purpose of the second step of the algorithm is to move these 

bad points (and consequentially block boundaries), so that the block boundaries 

would align with reservoir boundaries for better representation of the reservoir. This 

is done in the following way: 
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1. Calculate error and fitness values for each block. The error in the grid block 

is equal to the standard deviation of reservoir property values that fall inside 

of this grid block. For example, petrophysical field's points with permeability 

values equal to 500, 510, 570 and 620 md fell inside one block. Two regions 

of petrophysical fields were defined before: with permeabilities less than 550 

md and with permeabilities higher than this values. Therefore, error of the 

block is equal to standard deviation of these values, which is equal to 55.98. 

This value is assigned to the block and is used in further calculations. 

However, if the block is totally inside one region, then error is equal to zero. 

The choice of standard deviation as an error left from very simple early runs 

of the algorithm, when it was very effective. Because no better alternative 

was found for the error function for more difficult late runs, it made its way 

into the final version of the algorithm. 

2. Each block is also assigned a fitness value, which is its rank (or place) in a 

row of blocks' errors in a descending order. 

3. Calculate sum of all error values. 

4. For "n" (given as an input - number of points that will be moved during each 

iteration) least fit grid points (highest error values) do the following 

procedure: check if grid point can be moved at least once more; understand 

where grid point is located; get property points inside this block; if the grid 

point is inside one region, calculate mean values of the coordinates of all 

other property points and move the grid block in the opposite direction from 

the resulting mean property point at a distance given in the input. 

5. Increase iteration counter by one. 

6. If an iteration counter is less than a predefined number of required iterations, 

return to step one, do all the steps again. If the iteration counter has reached 

the predefined number of iterations, then take the result that has least sum of 

errors and use it in the next step. This means that the best result in terms of 

error function is chosen as an input for the next step. However, this best 

result is the best only for the entered input parameters, by changing them 

better or worse results may be achieved. This problem will be discussed in 

the chapter 8.3, where effects of different input values are reviewed. 
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Deciding on whether the obtained result is good enough for use is based 

mainly on error value and visual investigation of the obtained figure. If block 

boundaries are very far from from reservoir boundaries, then algorithm 

should be re-used with other input values. In order to get better results, it may 

be required to include less points to be moved during each iteration, but a 

greater number of times and therefore more generations. If these values do 

not help, increased number of grid points should be able to solve the 

problem. 

 

In a form of flowchart this procedure would be as shown on figure 7.6. This 

algorithm proved to be effective in solving part of the problem described in the 

problem statement, however, it may encounter a problem if reservoir boundaries are 

too close to a rectangle, surrounding it, but isn't exactly coinciding with it.  

 

 

Figure 7.8. Example on reservoir. 

 

 

This case is shown on figure 7.8. Reservoir sides "d" and "i" will not cause any 

problems, because they coincide with surrounding rectangle. However, sides "a", "f" 
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and "g" may cause such problem, because they are very close to the vertical sides of 

the rectangle. 

 

If the distance from them to the rectangle sides is less than small distance obtained at 

the end of step one, then the problem may occur, because points required outside of 

the reservoir in order to generate block boundary coinciding with reservoir 

boundary, may fall outside of black rectangle and therefore will not be generated. 

 

 

Figure 7.9. Treating of vertical wells. 

 

This problem is solved by adding of one layer of grid points on the different sides of 

reservoir boundaries that have both starting and ending points closer to the rectangle 

sides than small distance from the end of step one. This increases the resulting 

number of grid blocks, but solves the problem effectively. 

 

After handling of reservoir boundaries, points located inside rectangle but outside of 

reservoir can be deleted. This is done by moving of all reservoir's vertices from the 

center at a greater distance between the points multiplied by one and a half. Greater 

distance is one of the distances (in Ky or Kx direction) obtained at the end of step 
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one. It is multiplied by 1.5 to make sure that at least one layer of points is left outside 

of reservoir in order to handle all boundaries. So, reservoir vertices are pushed from 

the center, area of reservoir increases in all of the directions. After this all points 

outside of this big reservoir are deleted. These new bigger reservoir vertices are not 

used after this step. 

 

As it may be understood from the algorithm, the result will strongly depend on the 

input parameters: how many points will be moved during each iteration; number of 

required iterations; distance at which least fit points will be moved. For better 

efficiency of the algorithm, it is proposed to use a greater number of iterations with 

less points to be moved during each iteration at smaller distances but for a greater 

number of times. However, usage of these characteristics means that calculation time 

will increase, so the final decision on which values to use will depend on the person 

using the algorithm. 

 

After the best solution is chosen, the algorithm can proceed to the step 3, where grid 

points related to vertical/horizontal wells and faults can be added. 

 

7.4. Step Three (adding of grid points related to wells and faults) 

 

Step three adds grid points related to vertical and horizontal wells and faults. 

Vertical and horizontal wells are treated in different ways, while faults are treated 

almost in the same way as horizontal well, so discussion is divided into two blocks - 

vertical wells are discussed in one sub-chapter, horizontal wells and faults are 

discussed in the other. 

 

7.4.1. Treatment of vertical wells 

 

Before talking about inputs for this step, it is required to show how the vertical wells 

are treated. Figure 7.9 shows how grid points around vertical wells should be 

generated. 
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Here, well is located in the middle of the structure, while surrounding blocks are 

created in order to accurately represent a pressure drop in the area around the well. 

These surrounding blocks are placed very densely, because the greatest pressure 

drop occurs just around wells, so the more points are used there, the better 

representation of the real conditions can be achieved. 

 

 

Figure 7.10. Treating of horizontal wells. 

 

As it may be seen from the figure 7.9, new blocks should be generated around the 

well, and no grid points from the previous steps should interrupt their pattern. Also, 

the number of blocks and layers, distances between layers of points and distance 

from the well to the farthest layer of grid points should be considered. All these 

values, along with the location of the well, its radius, should be entered as an input. 

 

After these input values are entered, the algorithm starts by deleting grid point 

generated during previous steps that fall into the region around well that will be 

repopulated. After all these points are deleted, grid point related to the well is 

generated, and then all surrounding points are generated layer-by-layer. This will end 

up with something close to the pattern shown on figure 7.9. 
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7.4.2. Treatment of horizontal wells and faults 

 

As it was said, faults and horizontal wells are treated almost in the same way, so they 

will be discussed together. There are two main differences between them: number of 

layers and alternating of grid blocks' property values in the fault representation. 

Other than these characteristics, everything is the same. Representation of horizontal 

wells and faults are shown on figures 7.10 and 7.11 respectively. 

 

 

Figure 7.11. Treating of faults. 

 

Inputs for this step are: coordinates of the fault/well; number of grid points (and 

number of layers for wells only) that will be added; radius of fault/well; distance 

from the well that will be repopulated with new points  and distance between layers 

of grid points for wells; permeability of the fault for faults.  

 

When all input data were entered, algorithm starts deleting grid points generated 

during previous steps that fall inside zone that will be repopulated. 

Then it generates the layer of points related to the well/fault, and finishes with the 

generation of layers of points outside of well/fault. For faults, it also asks 
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permeability of the fault and then assigns entered value to the blocks that represent 

this fault. After this procedure is finished, it asks if another well/fault will be added. 

When all wells or faults are introduced, algorithm finishes its work by drawing 

result. 

 

It must be mentioned that the algorithm described here was used only in two-

dimensional problems. However, if there is a three-dimensional problem, the 

algorithm can be run for each layer separately. Then all results may be gathered 

together. If the layer is inclined and inclination angle is known, then layer can be 

changed into horizontal position, where the algorithm can be run, and then results 

can be converted back into inclined position. So, the algorithm is quite general and 

can be used in many cases. As it was previously mentioned, the code for running this 

algorithm was written in Matlab. This code can be found in Appendix A. 
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CHAPTER 8 

 

 

RESULTS OF STUDY 

 

 

 

8.1. Introduction 

 

This chapter discusses the results obtained by running the algorithm for six different 

cases. These results will be discussed one-by-one in different sub-chapters. Table 8.1 

shows what complications were added to the model in each of the cases. 

 

Table 8.1. Description of the cases 

 Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 
Number of points 500 500 500 500 500 600 

Angle θ, ⁰ 90 120 210 45 10 90 
Ky/Kx 1 3 0.4 0.5 2 2 

Number of grid 
points moved in each 

iteration 

5 5 5 5 5 5 

Number of 
movements for each 

grid point 

8 8 8 8 8 8 

Distance of 
movement, times the 

distance in the 
direction of lowest 

permeability 

0.07 0.07 0.07 0.07 0.07 0.07 

Number of 
generations 

450 500 450 450 450 320 

Vertical well in the 
center 

+ + + + +  

Horizontal well      + 
Fault      + 
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This chapter describes results obtained after running of the six cases described in the 

table and further in the chapter and makes conclusion if algorithm xreated for this 

thesis work is effective or not. 

 

 

Figure 8.1. Permeability field for cases #1, #2 and #6 (plotted using MATLAB). 

 

8.2. Cases 

 

8.2.1. Case One (no anisotropy, no heterogeneities, one vertical well). 

 

This case is the most simple one. This case includes absolutely homogeneous, 

isotropic reservoir with a vertical well in the middle. The reservoir is not rectangular. 

Permeability field required for running of the algorithm is shown on figure 8.1.  

 

All values are given in milli-darcies. This permeability field was generated randomly 

in the required interval of permeability values. For all of the cases described in this 
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thesis, permeability field consists of 14400 uniformly distributed points - 120 rows 

and columns. 

 

Main inputs for the first step are as follows: 500 points; 90 degrees angle between 

Ky and y-direction of the reservoir; no anisotropy or heterogeneities; small distance 

equal to 5; increment in distance also equal to 5. 

 

Figure 8.2. Results obtained after running of the first step for the case #1 (built in 

MATLAB). 

 

At the end of the first step resulting picture is as shown on figure 8.2. Resulting sum 

of errors at this figure is equal to 18113. As it may be seen from the figure, grid after 

the first step is a regular Cartesian grid or very close to it (in the other cases). 

 

Main inputs for the second stage are: five worst points moved during each iteration; 

eight movements for each point; 450 iterations; one region of permeabilities between 

1 and 1000 md (entered as three column vectors - permX (x-coordinates of 
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permeability points), permY (y-coordinates of permeability points), permeabilities 

(permeability values in the points defined by vectors permX and permY)).  

 

Figure 8.3. Results obtained after running of the second step of case #1 (built in 

MATLAB). 

 

At the end of the second step figure 8.2 transforms into what is shown on figure 8.3. 

It must be mentioned that no wells or faults have been added to the model yet. Also 

no additional grid points related to proper handling of reservoir boundaries close to 

rectangle were added and no points outside of reservoir have been deleted. This 

means that the number of grid points in the figure 8.3 is absolutely equal to the 

number of grid points on figure 8.2. However, sum of errors for the case shown on 

the figure 8.3 is equal to 9319. This fact shows the effectiveness of the second step 

of the algorithm.  

 

Figure 8.4. shows error values for all 450 generations of the first case. The curve 

goes rapidly down, reaches minimum in the mid-seventies and then shows upward 

trend. 
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Third stage main inputs are: vertical well in the middle of the reservoir; 60 points 

were added, related to this well; radius around well that was cleaned and repopulated 

is 100 feet; distance between the first and the second layers are 10 feet, while 

distance to next layers are 1.2 times the distance to the previous one. 

 

 

Figure 8.4. Error values for all generations of Case #1. 

 

The final distribution of grid points (and therefore grid blocks) is shown on figure 

8.5. As in similar previous figures, reservoir here is shown in blue color, while white 

area is a zone outside of the reservoir. The resulting number of blocks is 537. This is 

higher than 500 that was entered as input in the first stage because of the points 

added for well representation and points that were required to correctly represent the 

boundaries of the reservoir that are very close to the surrounding rectangle (this was 

discussed in details in the previous chapter). The resulting sum of errors in all of the 

blocks reduced from 18113 to 9319, which is almost twice.  
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After the dispensation of grid points shown on figure 8.3 was obtained, fluid flow 

simulation was created. A Python code was written based on the flow equations 

described in the book of Ertekin et al. (Ertekin et al., 2001) to make these 

simulations. 

 

Figure 8.5. Results obtained for the case #1 (built in MATLAB). 

 

Inputs for this fluid flow simulation run are as follows: one vertical well in the center 

producing 100 stb/d for 50 days with time step of 5 days. This means that data after 

10 time steps was generated and analyzed. Initial reservoir pressure is equal to 3044 

PSI, fluid is slightly compressible, only one phase present. 

 

Expectations are to see pressure disturbance to propagate at the same speed in all 

directions, because there is no permeability anisotropy and hetergeneities in the field. 

This means that pressure disturbance propagation should take shape of a circle. 

Compare with result shown on figures 8.6-8.15. As it may be seen, pressure 

propagates at circular shape until it reaches reservoir boundaries. 
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Figure 8.6. Pressure distribution after 5 days. 

 

 

Figure 8.7. Pressure distribution after 10 days. 
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Figure 8.8. Pressure distribution after 15 days. 

 

 

Figure 8.9. Pressure distribution after 20 days. 
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Figure 8.10. Pressure distribution after 25 days. 

 

 

Figure 8.11. Pressure distribution after 30 days. 
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Figure 8.12. Pressure distribution after 35 days. 

 

 

Figure 8.13. Pressure distribution after 40 days. 
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Figure 8.14. Pressure distribution after 45 days. 

 

 

Figure 8.15. Pressure distribution after 50 days. 
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8.2.2. Case Two (anisotropy, no heterogeneities, one vertical well). 

 

This case is almost identical to the previous one, with the only exception: anisotropy 

has been introduced. So, the reservoir is of irregular shape, with anisotropy but no 

heterogeneities. One vertical well is introduced in the center. Permeability field is 

the same as in the case #1. This means that it was also randomly generated in the 

required intervals - between 1 and 1000 md. 

 

Figure 8.16. Results obtained after running of the first step for the case #2 (built in 

MATLAB). 

 

Main inputs for the first step are as follows: 500 blocks; angle between Ky and y-

direction of the reservoir is equal to 120 degrees; permeability in y-direction is three 

times higher than permeability in x-direction; small distance and increment are both 

equal to 5 feet. 
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At the end of the first step resulting picture is as shown on figure 8.16. Resulting 

sum of errors at this figure is equal to 19039. As it may be seen from the figure, grid 

after the first step is very close to Cartesian grid. 

 

Figure 8.17. Results obtained after running of the second step of case #2 (built in 

MATLAB). 

 

Main inputs for the second step are: number of points that will be moved during each 

iteration is equal to 5; number of required generations is equal to 450; required 

number of movements for each point is equal to 8; one region with permeabilities 

ranging from 1 to 1000 md. 

 

Resulting locations of grid points after the second step of the case #2 are shown at 

figure 8.17. As in the previous case, number of blocks is still the same, so change in 

the sum of errors is only because of the better placement of the grid points. Sum of 

errors reduced here from the 19039 to 2320. 



 

74 

 

Figure 8.18. shows error values for all 500 generations of the second case. The curve 

goes rapidly down, reaches minimum in the eighties and then shows upward trend. 

 

 

Figure 8.18. Error values for all generations of Case #2. 

 

Main inputs for the third stage are: one vertical well in the middle; radius around the 

well that is cleaned and repopulated is equal to 100 feet; 60 points related to the well 

are added; distance between the first and the second layer of points is equal to 10 

feet, while distance to next layers are 1.2 times the distance to the previous one. 

 

The resulting distribution of grid points (and therefore grid blocks) is shown on 

figure 8.19. As in similar previous figures, reservoir here is shown in blue color, 

while white area is a zone outside of the reservoir. The resulting number of blocks is 

540. This is higher than 500 that was entered as input in the first stage because of the 

points added for well representation and points that were required to correctly 

represent the boundaries of the reservoir that are very close to the surrounding 

rectangle (this was discussed in details in chapter 6).  
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The resulting sum of errors in all of the blocks reduced from 19039 to 2320, which 

means that sum of errors reduced more than eight times. The great effectiveness of 

the algorithm for the second case, compared to the case number one, may be due to 

input parameters entered in the step one - angle and anisotropy factor. 

 

Figure 8.19. Results obtained for the case #2 (built in MATLAB). 

 

It can also be seen from the figures 8.5 and 8.19. On the figure 8.19 block 

boundaries are better aligned with reservoir shape than on the figure 8.5. From this, 

the conclusion may be made that the algorithm's effectiveness depends on the 

reservoir properties.  
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Figure 8.20. Velocity field combined with the contour map of the distribution of the 

pressures after 5 days of production for the second case (obtained with Surfer). 

 

Figure 8.21. Permeability field for case #3. Generated in MATLAB. 
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However, by adjusting the input parameters given in the second stage effectiveness 

may be increased. For example, by minimizing the  distance at which points are 

moved in each iteration and by increasing the number of movements for each point 

and number of iterations, slightly better results may be achieved. However, this 

would require more computation time for the computer. So, the choice is totally on 

the person using the algorithm. 

 

For this case fluid flow simulation run was also implemented. All input parameters 

are just the same as in the previous case: one vertical well in the center producing 

100 stb/d for 50 days with time step of 5 days. Initial reservoir pressure is equal to 

3044 PSI, fluid is slightly compressible, only one phase present. 

 

Expectations are to see pressure disturbance propagate at higher rate in the north-east 

and south-west directions because of the permeability anisotropy. This is what can 

be seen on figure 8.20. 

 

Other figures showing results of  case #2 fluid flow simulation run are in Appendix 

B. 

 

8.2.3. Case Three (anisotropy, straight channel, one vertical well). 

 

This is the first case where heterogeneity is introduced. This heterogeneity is 

represented by a straight channel in the middle of the reservoir.  

 

This channel has better  permeability values than the surrounding reservoir - in the 

channel permeability is between 500 and 1000 md, while in other parts of the 

reservoir they are between 1 and 500 md. The algorithm should be able to handle not 

only reservoir - outside of reservoir boundaries, but also reservoir - channel 

boundaries. This is shown on figure 8.21 - representation of permeability field. 
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Figure 8.22. Results obtained after running of the first step for the case #3 (built in 

MATLAB). 

 

Figure 8.23. Results obtained after running of the second step of case #3 (built in 

MATLAB). 
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Main inputs for the first step are as follows: 500 grid points; angle between Ky and 

y-direction of the field is equal to 210 degrees; Ky to Kx relation is equal to 0.4; 

small distance and each iteration increment are both equal to 5. 

 

 

Figure 8.24. Error values for all generations of Case #3. 

 

At the end of the first step resulting picture is as shown on figure 8.22. Resulting 

sum of errors at this figure is equal to 19213. As it may be seen from the figure, grid 

after the first step is very close to Cartesian grid. 

 

Main inputs for the second step are: number of points that were changed during each 

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said, 

the two regions were introduced: one with permeabilities between 1 and 500 md, the 

other with permeabilities between 501 and 1000 md. 

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

S
u

m
 o

f 
E

r
r
o

r
s
 

Number of Generations 

Case #3 



 

80 

 

 

Resulting locations of grid points after the second step of the case #3 are shown at 

figure 8.23. As in the previous cases, number of blocks is still the same as in figure 

8.22, so change in the sum of errors is only because of the better placement of the 

grid points. Sum of errors reduced here from the 19213 to 1821. 

 

Figure 8.24. shows error values for all 450 generations of the third case. The curve 

goes rapidly down, reaches minimum in the early one hudredth and then shows 

upward trend. 

 

Figure 8.25. Results obtained for the case #3 (built in MATLAB). 

 

Main inputs for the third step are: one vertical well in the center of the reservoir; 

radius around the well that was repopulated is equal to 100 feet; 60 points related to 

this well was added; distance between the first and the second layers of points 

around the well is equal to 10 feet; distance to the next layers are 1.2 times the 

distance to the previous one. 
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Obtained result is shown on figure 8.25. The resulting number of blocks is 527, 

while sum of errors in each block reduced from initial value of 19213 to the best 

result of 2046, which is almost 10 times! This is even beyond expectations, because 

it is even better than in the both previous, simpler cases. 

 

 

Figure 8.26. Velocity field combined with the contour map of the distribution of the 

pressures after 5 days of production for the third case (obtained with Surfer). 

 

Why this happens is not very clear, but maybe this is due to the angle introduced in 

the first step which somehow better coincides with reservoir boundaries and makes 

the work of the algorithm easier. Increased number of blocks is still due to handling 

of reservoir boundaries close to the outside borders and adding of grid points related 

to the well. 
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For this case fluid flow simulation run was also implemented in order to see how 

reservoir behaves and is this behavior is close to what we expect. Inputs for the fluid 

flow simulation run are as follows: vertical well producing at 100 stb/d; initial 

reservoir pressure equal to 3044 PSI; run for 50 days; time step 5 day.  

 

For this case the graph should show pressure disturbance propagating in the y-

direction from the well at a higher speed than in the x-direction. This is shown on the 

figure 8.26 - velocity field combined with a contour map of pressure distribution in 

the field after 5 days of production from the vertical well in the center.  

 

Figure 8.27. Permeability field for case #4. Plotted in MATLAB. 

 

Other figures, for the fluid flow simulation run of this case can be found in Appendix 

C.  

 

It can be seen that figure 8.26 clearly shows what was expected. Pressure disturbance 

reached reservoir boundaries in the upward and downward directions in the picture, 
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also anisotropy effect can also be seen - in the direction of higher permeability 

pressure disturbance propagated very far from the well.  

 

8.2.4. Case Four (anisotropy, deviated channel, one vertical well). 

 

This case is similar to the previous one with the only difference: now the channel is 

not straight, it is deviated. Other than that, everything is almost the same. 

Permeability field is as shown on figure 8.27. 

 

Figure 8.28. Results obtained after running of the first step for the case #4 (built in 

MATLAB). 

 

Main inputs for the first step are as follows: 500 grid points; angle between Ky and 

y-direction of the field is equal to 45 degrees; Ky to Kx relation is equal to 0.5; small 

distance and each iteration increment are both equal to 5. 

 

At the end of the first step resulting picture is as shown on figure 8.28. Resulting 

sum of errors at this figure is equal to 21894. As it may be seen from the figure, grid 

after the first step is very close to Cartesian grid. 
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Figure 8.29. Results obtained after running of the second step of case #4 (built in 

MATLAB). 

 

 

Figure 8.30. Error values for all generations of Case #4. 
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Main inputs for the second step are: number of points that were changed during each 

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said, 

the two regions were introduced: one with permeabilities between 1 and 500 md, the 

other with permeabilities between 501 and 1000 md. 

 

Figure 8.31. Results obtained for the case #4 (built in MATLAB). 

 

Resulting locations of grid points after the second step of the case #4 are shown at 

figure 8.29. As in the previous cases, number of blocks is still the same as in figure 

8.28, so change in the sum of errors is only because of the better placement of the 

grid points. Sum of errors reduced here from the 21894 to 1813. 

 

Figure 8.30. shows error values for all 450 generations of the fourth case. The curve 

goes rapidly down, reaches minimum in the early one hudredth and then shows 

upward trend. 

 

Main inputs for the third step are: one vertical well in the center of the reservoir; 

radius around the well that was repopulated is equal to 100 feet; 60 points related to 
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this well was added; distance between the first and the second layers of points 

around the well is equal to 10 feet; distance to the next layers are 1.2 times the 

distance to the previous one. 

 

 

Figure 8.32. Velocity field combined with the contour map of the distribution of the 

pressures after 10 days of production for the fourth case (obtained with Surfer). 

 

The final results are shown on figure 8.31. The resulting number of blocks is equal to 

536, while sum of errors in all of the blocks reduced from the initial value of 21894 

to 3500, which is more than 6 times. 

 

For this case fluid flow simulation run was also implemented. Inputs for the run are 

still exactly as in the previous cases: vertical well producing at 100 stb/d; initial 

reservoir pressure equal to 3044 PSI; run for 50 days; time step 5 day.  Expectations 

are to see pressure disturbance propagating at a higher rate towards  and inside the 
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channel, because it has higher permeability values than the surrounding reservoir. 

The results are shown on the graph 8.32 - velocity field combined with a contour 

map of pressure distribution in the field after 10 days of production from the vertical 

well in the center. Other figures, obtained from the fluid flow simulation run for this 

case, can be found in Appendix D. 

 

Figure 8.33. Permeability field for case #5. Plotted in MATLAB. 

 

The picture coincides with the expectations - disturbance propagated further in the 

northeast and south directions, exactly where the channel is located. So, the 

algorithm was successful in solving this kind of problems. 

 

8.2.5. Case Five (anistropy, four different regions, one vertical well). 

 

The fifth case represents more complex conditions than each of the previous cases. 

Now there is no channel, but some number of different regions in the field. Each 
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region has its own characteristics, so the purpose is to correctly represent each of this 

region in the model.  

 

Figure 8.34. Results obtained after running of the first step for the case #5 (built in 

MATLAB). 

 

This permeability field is shown on figure 8.33. As in previous cases, all 

permeability values are given in milli-darcies. 

 

Main inputs for the first step are as follows: 500 grid points; angle between Ky and 

y-direction of the field is equal to 10 degrees; Ky to Kx relation is equal to 2; small 

distance and each iteration increment are both equal to 10. 

 

At the end of the first step resulting picture is as shown on figure 8.34. Resulting 

sum of errors at this figure is equal to 23506. As it may be seen from the figure, grid 

after the first step is very close to Cartesian grid. 
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Main inputs for the second step are: number of points that were changed during each 

iteration is 5; 450 iterations; each point was allowed to move 8 times; as it was said, 

four regions were introduced: one with permeabilities between 1 and 250 md, the 

second with permeabilities between 251 and 500 md, the third with permeabilities 

between 501 and 750 md, and the last one with permeabilities between 750 and 1000 

md. These regions were shown on the figure 8.20. 

 

Figure 8.35. Results obtained after running of the second step of case #5 (built in 

MATLAB). 

 

Resulting locations of grid points after the second step of the case #5 are shown at 

figure 8.35. As in the previous cases, number of blocks is still the same as in figure 

8.21, so change in the sum of errors is only because of the better placement of the 

grid points. Sum of errors reduced here from the 23506 to 5872. 
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Figure 8.36. shows error values for all 450 generations of the fifth case. The curve 

contiuouly goes down, reaches minimum in the early one hudred fourties and then 

shows mainly upward trend. 

 

Main inputs for the third step are: one vertical well in the center of the reservoir; 

radius around the well that was repopulated is equal to 100 feet; 60 points related to 

this well was added; distance between the first and the second layers of points 

around the well is equal to 10 feet; distance to the next layers are 1.2 times the 

distance to the previous one. 

 

 

Figure 8.36. Error values for all generations of Case #5. 

 

The obtained results are shown on figure 8.37. The resulting number of blocks is 

equal to 530, while the sum of errors in all of the blocks reduced from an initial 

value of 23506 to 5872, which is not so good as previous two cases, but still quite 

impressive. 

 

For this case fluid flow simulation run was also implemented. Inputs for the run are 

exactly as in the previous cases: vertical well producing at 100 stb/d; initial reservoir 

pressure equal to 3044 PSI; run for 5 days; time step 0.5 day.  
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Figure 8.37. Results obtained for the case #5 (built in MATLAB). 

 

 

Figure 8.38. Velocity field combined with the contour map of the distribution of the 

pressures after 2.5 days of production for the fifth case (obtained with Surfer). 
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Expectations are to see pressure disturbance propagating at a higher rate towards the 

lower regions, because they have higher permeability values than the other regions.  

 

The picture shown on figure 8.38 completely coincides with the expectations - 

disturbance propagated further in the east and south directions, exactly where the 

higher permeability regions are located. So, the algorithm was also successful in 

solving this kind of problems. Other flow simulation run's timesteps can be found in 

Appendix E. 

 

Figure 8.39. Results obtained after running of the first step for the case #6 (built in 

MATLAB). 

 

8.2.6. Case Six (anisotropy, no heterogeneities, fault and horizontal well) 

 

Case six, last case discussed in this thesis, represents conditions with 

compartmentalized reservoir, from where production is performed using one 

horizontal well. 
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The main purpose of showing of this case is to see, how the fault and horizontal well 

are added to the model. Permeability field required for running of the algorithm is 

the same as in cases #1 and #2. 

 

Figure 8.40. Results obtained after running of the second step of case #6 (built in 

MATLAB). 

 

Main inputs for the first step are as follows: 600 grid points; angle between Ky and 

y-direction of the field is equal to 90 degrees; Ky to Kx relation is equal to 2; small 

distance is equal to 5, while each iteration distance increment is equal to 2.5. 

Reservoir boundaries are chosen as in all of the previous cases. 

 

At the end of the first step resulting picture is as shown on figure 8.39. Resulting 

sum of errors at this figure is equal to 18317. As it may be seen from the figure, grid 

after the first step is very close to Cartesian grid. 
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Main inputs for the second step are: number of points that were changed during each 

iteration is 5; 320 iterations; each point was allowed to move 9 times; only one 

permeability region with permeabilities between 1 and 1000 md is present. 

 

Resulting locations of grid points after the second step of the case #5 are shown at 

figure 8.40. As in the previous cases, number of blocks is still the same as in figure 

8.39, so change in the sum of errors is only because of the better placement of the 

grid points. Sum of errors reduced here from the 18317 to 2811. 

 

 

Figure 8.41. Error values for all generations of Case #6. 

 

Figure 8.41. shows error values for all 320 generations of the fourth case. The curve 

contiuouly goes down, reaches minimum in the mid-sixties and then shows mainly 

upward trend. 

 

Main inputs for the third step are: one horizontal well and one sealing fault totally 

dividing reservoir into two compartments (figure 8.42); radius around the well that 

was repopulated is equal to 50 feet; 100 points related to this well were added; 

distance between the first and the second layers of points around the well is equal to 

5 feet; distance to the next layers are 1.2 times the distance to the previous one. 
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The obtained results are shown on figure 8.42. The resulting number of blocks is 

equal to 747, while the sum of errors in all of the blocks reduced from an initial 

value of 18317 to 2811, which is also pretty impressive. Resulting number of blocks 

is higher than the 600 entered in the first step because of the grid points related to 

well and fault and also points related to proper reservoir border handling. 

 

Figure 8.42. Results obtained for the case number six (built in MATLAB). 

 

For this case fluid flow simulation run was not implemented, because the model that 

was used for running of previous cases is still under construction and is not able to 

handle horizontal wells at the moment of writing of this thesis work. 

 

8.3. Effects of inputs on final results 

 

This subchapter discusses effects of input values on final results by showing several 

cases and talking about them. At the end of it, conclusion about how parameters 

should be chosen in order to get less error values is made. Parameters chosen for this 

study are all the parameters that affect final distribution of grid points, that can be 
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changed. Also no sensitivity study on to what extent each of the parameters affects 

final result is made, so it is proposed to do it in the future studies. 

 

8.3.1. Effect of number of grid points 

 

It is obvious that higher amount of points should end up with less resulting error. 

This is shown on figure 8.43. 

 

The only difference in the cases shown in the figure is number of grid points, other 

than that all input values were chosen to be absolutely the same. Background 

petrophysical property mesh consists of 57600 uniformly distributed permeability 

points with values randomly generated in the interval between 1 and 1000 md. As it 

may be seen from the figure, while number of blocks is four times higher on the right 

figure, error in there is approximately less by one-fifth. This difference is not very 

big, however, from the figure it may be seen that reservoir boundary handling is 

much better than in the left one, especially in the right lower corner. 

 

 

Figure 8.43. Comparing results with different number of blocks (obtained with 

MATLAB). 

 

But this better accuracy comes at big price - calculation time of the second step, 

which is the most time consuming step in the algorithm, differs significantly for 
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these two cases: left one requires 200 seconds in order to perform 100 generations, 

while the right one requires 670 seconds for the same amount of generations. Also, 

because right case has higher amount of grid points, more of them will require 

relocation compared to the left case. This means that for the same input values, right 

hand side will also require higher amount of generations in order to get to the 

minimum error value that could be used as the final result. So, whether to use higher 

amount of grid points is not an easy question. 

 

8.3.2. Effect of number of moving grid points 

 

As it was discussed in methodology, during each generation number of grid points 

with highest error values are moved. This number is taken from the input given by 

the person using the algorithm, so there is a question whether to give big values in 

order to move several grid points at once, or limit them, for example, moving them 

one by one. Figure 8.44 shows two cases that differ from each other only by this 

criterion. 

 

 

Figure 8.44. Comparing results with different number of movements for each grid 

point (obtained with MATLAB). 

 

In the case shown on the left grid points were moved one by one, while in the case 

shown on the right ten worst grid points were chosen in each generation to be 



 

98 

 

moved. First case shows smaller final error value and that is what can be expected: 

when high amount of point is moved during each generation, several points that are 

not the worst are moved also with the worst one. The problem is that maybe better 

result in terms of error function may have been achieved in the middle of moving. 

That is why it is proposed to move less amount of grid points during each 

generation. However, this choice also have drawbacks. The less amount of grid 

points is moved during each generation, the more amount of generations may be 

required to get best results, which affects significantly calculation time. Also it must 

be said that moving several points in each generation also affects calculation time, 

by affecting each generation calculation time. Left hand side case requires 105 

seconds in order to calculate 100 generations, while right hand side case requires 140 

seconds. This difference is not very big, but also should be considered. 

 

 

Figure 8.45. Comparing results with different limits of movements (obtained with 

MATLAB). 

 

8.3.3. Effect of limit of movement of grid points 

 

Another input criterion that affects final results is number of times each point can be 

moved. This is a very important values, because it lets control at what distance may 

point end up from its original place. The effect of this criteria is shown on figure 

8.45. 
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As in the previous cases, these ones are also differ only in the input criterion that is 

discussed - all other values are absolutely the same. As it can be seen from the figure 

8.45, left hand side case, using limit of movement equal to ten, has smaller error 

value at the end and also less distortion of the initial grid on the left and right sides 

of the reservoir. As it was already said, limiting movement makes it possible to 

control movement of points to some extent, which means that smaller value for this 

criterion should end up in less grid distortion. However, by limiting number of 

movements better results also may be missed. This criteria does not affect 

computation time, so it must be carefully considered whether to let points to move 

freely in the reservoir or to limit them. 

 

 

Figure 8.46. Comparing results with different distance of movement (obtained with 

MATLAB). 

 

8.3.4. Effect of distance of movement of grid points 

 

Finally, the last criterion that affects final result - distance at which points are 

moved. As it was mentioned in the methodology chapter, input also includes fraction 

of longer distance that points are moved at. Longer distance is the distance between 

neighboring grid points in the direction of lower permeability. The effect of this 

criterion is shown in the figure 8.46. 
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It seems like the distance at which points are moved during each iteration should be 

chosen as little in order to get better results. However, cases show something 

opposite to this supposition. Error of the case with distance of movement equal to 

0.01 times the big distance has higher final error values than the case with 0.07 times 

the big distance. It also can be seen from the figure, right hand side case deals with 

reservoir properties in a more accurate way than the left hand side case. This can be 

seen especially in the lower left corner. The only advantage of smaller moving 

distance seems to be less distortion of the initial grid. So, proposition would be to 

use something in between of these values, but the choice totally depends on the 

person using the algorithm. 

 

In the next chapter conclusion and propositions for future studies can be found. 
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CHAPTER 9 

 

 

CONCLUSION 

 

 

 

Based on the results obtained after running of cases of increasing complexity, 

algorithm described in this thesis proved to be capable of placing Voronoi grid 

points in reservoir simulation in order to honor geological properties of the reservoir 

including anisotropy orientation and ratio, and reservoir heterogeneities.  

 

One of the main advantages of the algorithm is that it tries to obtain better locations 

of limited number of Voronoi grid points without making a significant increase in 

this number. This means that instead of increasing the number of grid points 

exceedingly, it provides better solutions rather than placing these points uniformly 

all over the field. Error values and graphs that show final distribution of the grid 

plots show that as the grid block boundaries coincide with background reservoir 

property mesh, error values decrease. 

 

Also it must be mentioned that effectiveness of the algorithm in terms of error 

function can be affected by values of some input parameters required for running of 

the algorithm. The most effective inputs include the number of times that the points 

are allowed to move as less points to be moved during each iteration, but a greater 

number of times and therefore with more iterations. Number of grid points also 

affects final accuracy - the higher the number of grid points the better is the result. 

However, these choices will increase computation time, so they must be carefully 

chosen before application of the algorithm to the problem. 
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CHAPTER 10 

 

 

PROPOSITION FOR FUTURE STUDIES 

 

 

 

For future studies it is proposed to use the algorithm on the cases of increasing 

complexity and to add all necessary sophistications to the algorithm so that all the 

complications will be solved. 

 

This includes: 
 

 Trying to change algorithm, so that not only one property would be used for 

differentiating different geological entities. In this study only permeability 

was used for this purpose, proposition is to use several different properties 

together at one time. Maybe some weightening of these properties should be 

applied to each of the property points. 

 Considering application of the algorithm to 3D problems, including not 

horizontal formations. 

 Considering handling of regions with intersecting intervals of property 

values. 

 Thinking if a better error function definition could be used. 

 Checking of the results obtained for the case with horizontal wells by running 

flow simulation. 

 Do similar flow simulation runs with Cartesian grid and compare the results 

for all of the cases. 

 Thinking if the grid points near the reservoir boundaries can be handled 

better. Maybe truncation concept can be used there, which will further 

decrease number of grid points.  
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 Doing sensitivity analysis on to what extent each of the input parameters 

affects final result. 
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APPENDIX A 

 

 

SOURCE CODE 

 

 

 

%{ 

This code was written as a part of a METU MSc dissertation of Ulvi 

Rza-Guliyev. 

  

To run it, four column vectors named permXvec, permYvec, permZvec,  

permeabilitiesVec must already be loaded onto workspace of Matlab. permXvec, 

permYvec and permZvec must have X, Y and Z coordinates of permeability  

points in the field, while permeabilitiesVec must have permeability values  

in x direction in it. All other inputs are given in the code. 

%} 

  

 

 

% Start of the first step, where initial population of the gridpoints is 

% generated 

  

n=input('Enter number of points: '); 

angle=input('Enter value of Tetta, 0-360, degrees: '); 

tet=pi*angle/180; % Changed to radians for trigonometric functions 

if (tet < pi/2) 

    w=0; 

elseif (tet >= pi/2 && tet < pi) 

    w=pi/2; 

elseif (tet >= pi && tet < 3*pi/2) 
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    w=pi; 

elseif (tet >= 3*pi/2 && tet < 2*pi) 

    w=3*pi/2; 

elseif tet == 2*pi 

    tet=0; 

    w=0; 

else fprintf('Angle must be between 0 and 360 degrees. Start again.'); 

end 

m=input('Enter Ky/Kx value: '); 

kykxrel=m; 

R=input('Enter distance in minimum direction (should be small): '); 

increment=input('Enter value of increment to the minimum distance,\nthat will be 

added at the end of each iteration: '); 

  

% Entering reservoir vertexes 

resBouVert=zeros; 

nprb=input('Enter number of reservoir verteces: '); 

for kl=1:1:nprb 

    resBouVert(kl,1)=input('Enter x coordinate of vertex: '); 

    resBouVert(kl,2)=input('Enter y coordinate of vertex: '); 

end 

resBouVert(nprb+1,1)=input('Enter x coordinate of first vertex: '); 

resBouVert(nprb+1,2)=input('Enter y coordinate of first vertex: '); 

resVertX=resBouVert(:,1); 

resVertY=resBouVert(:,2); 

  

% Calculating of rectangle boundaries 

length=abs(max(resVertX)-min(resVertX)); 

width=abs(max(resVertY)-min(resVertY)); 

resVertX=resVertX-min(resVertX); 

resVertY=resVertY-min(resVertY); 
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counter=n+1; 

while counter>n 

  

if m > 1 && tet >= 0 && tet < pi/2 

    Ry=R;  

    Rx=m*R; 

elseif m > 1 && tet >= pi/2 && tet < pi 

    Ry=m*R; 

    Rx=R; 

elseif m > 1 && tet >= pi && tet < 3*pi/2 

    Ry=R;  

    Rx=m*R; 

elseif m > 1 && tet >= 3*pi/2 && tet < 2*pi 

    Ry=m*R; 

    Rx=R;     

elseif m < 1 && tet >= 0 && tet < pi/2 

    Rx=m*R; 

    Ry=R; 

elseif m < 1 && tet >= pi/2 && tet < pi 

    Ry=m*R;  

    Rx=R; 

elseif m < 1 && tet >= pi && tet < 3*pi/2 

    Rx=m*R; 

    Ry=R; 

elseif m < 1 && tet >= 3*pi/2 && tet < 2*pi 

    Ry=R;  

    Rx=m*R; 

else  

    Rx=R; 

    Ry=R; 

end 
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% Now it will calculate dimensions of matrix. 

if (tet > 0 && tet < pi/2) 

    overwidth=width*cos(tet)+length*sin(tet); 

    overlength=width*sin(tet)+length*cos(tet); 

    matrixNreal=overlength/Rx; 

    matrixMreal=overwidth/Ry; 

elseif (tet > pi && tet < 3*pi/2) 

    overwidth=width*cos(tet-pi)+length*sin(tet-pi); 

    overlength=width*sin(tet-pi)+length*cos(tet-pi); 

    matrixNreal=overlength/Rx; 

    matrixMreal=overwidth/Ry; 

elseif (tet > pi/2 && tet < pi) 

    overlength=width*cos(tet-pi/2)+length*sin(tet-pi/2); 

    overwidth=width*sin(tet-pi/2)+length*cos(tet-pi/2); 

    matrixNreal=overwidth/Rx; 

    matrixMreal=overlength/Ry; 

elseif (tet > 3*pi/2 && tet < 2*pi) 

    overlength=width*cos(tet-3*pi/2)+length*sin(tet-3*pi/2); 

    overwidth=width*sin(tet-3*pi/2)+length*cos(tet-3*pi/2); 

    matrixNreal=overwidth/Rx; 

    matrixMreal=overlength/Ry; 

elseif (tet == 0 || tet == pi || tet == 2*pi) 

    matrixNreal=width/Ry; 

    matrixMreal=length/Rx; 

elseif (tet == pi/2 || tet == 3*pi/2) 

    matrixNreal=width/Rx; 

    matrixMreal=length/Ry; 

else fprintf('Angle must be between 0 and 360 degrees. Start again.'); 

end 

  

matrixN=ceil(matrixNreal); 

matrixM=ceil(matrixMreal);  
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abscissa=zeros(matrixN,matrixM); 

ordinate=zeros(matrixN,matrixM); 

     

% Now it will calculate starting point, which is outside of reservoir. 

if (tet > 0 && tet < pi/2) 

    Sx=0-width*sin(tet)*cos(tet);  

    Sy=width*sin(tet)*sin(tet); 

elseif (tet > pi/2 && tet < pi) 

    Sx=0-width*sin(tet-pi/2)*cos(tet-pi/2); 

    Sy=width*sin(tet-pi/2)*sin(tet-pi/2); 

elseif (tet > pi && tet < 3*pi/2) 

    Sx=0-width*sin(tet-pi)*cos(tet-pi); 

    Sy=width*sin(tet-pi)*sin(tet-pi); 

elseif (tet > 3*pi/2 && tet < 2*pi) 

    Sx=0-width*sin(tet-w)*cos(tet-w); 

    Sy=width*sin(tet-w)*sin(tet-w); 

elseif (tet == 0 || tet == pi/2 || tet == pi || tet == 3*pi/2 || tet == 2*pi) 

    Sx=0; 

    Sy=0; 

else fprintf('Angle must be between 0 and 360 degrees. Start again.'); 

end 

  

% Start of generation of probable initial population of gridpoints 

if (tet > 0 && tet < pi/2 ) || (tet > pi && tet < 3*pi/2) 

 for i=1:1:matrixN 

     abscissa(i,1)=Sx; 

     ordinate(i,1)=Sy; 

     for e=2:1:matrixM 

         abscissa(i,e)=abscissa(i,e-1)+Ry*sin(tet-w); 

         ordinate(i,e)=ordinate(i,e-1)+Ry*cos(tet-w); 

     end   

     Sx=Sx+Rx*cos(tet-w); 
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     Sy=Sy-Rx*sin(tet-w); 

 end 

elseif (tet > pi/2 && tet < pi) || (tet > 3*pi/2 && tet < 2*pi); 

 for i=1:1:matrixN 

     abscissa(i,1)=Sx; 

     ordinate(i,1)=Sy; 

     for e=2:1:matrixM 

         abscissa(i,e)=abscissa(i,e-1)+Ry*sin(tet-w); 

         ordinate(i,e)=ordinate(i,e-1)+Ry*cos(tet-w); 

     end   

     Sx=Sx+Rx*cos(tet-w); 

     Sy=Sy-Rx*sin(tet-w); 

 end 

 elseif (tet == 0 || tet == pi) 

    for i=1:1:matrixN  

     abscissa(i,1)=Sx; 

     ordinate(i,1)=Sy; 

     for e=2:1:matrixM 

         ordinate(i,e)=ordinate(i,e-1)+Rx*sin(tet-w); 

         abscissa(i,e)=abscissa(i,e-1)+Rx*cos(tet-w); 

     end   

     Sy=Sy+Ry*cos(tet-w); 

     Sx=Sx+Ry*sin(tet-w); 

    end 

elseif (tet == pi/2 || tet == 3*pi/2) 

    for i=1:1:matrixN  

     abscissa(i,1)=Sx; 

     ordinate(i,1)=Sy; 

     for e=2:1:matrixM 

         ordinate(i,e)=ordinate(i,e-1)+Ry*sin(tet-w); 

         abscissa(i,e)=abscissa(i,e-1)+Ry*cos(tet-w); 

     end   
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     Sy=Sy+Rx*cos(tet-w);  

     Sx=Sx+Rx*sin(tet-w);  

    end 

else fprintf('Angle must be between 0 and 360 degrees'); 

end 

  

v=1;   

sk=matrixN*matrixM; 

absc=zeros(sk,1); 

ord=zeros(sk,1); 

   

% Deleting of the points outside of rectangle 

 for i=1:1:matrixN 

     for e=1:1:matrixM 

         if abscissa(i,e)>0 && abscissa(i,e)<=length ...  

            && ordinate(i,e)>0 && ordinate(i,e)<=width  

             absc(v,1)=abscissa(i,e); 

             ord(v,1)=ordinate(i,e); 

             v=v+1; 

         end 

     end 

 end  

  

% Means of seeing how many points were generated in current iteration 

fprintf('Number of blocks on this stage is: %g\n', v); 

if m>=1 

    fprintf('At this stage your minimum distance is: %g\n', R); 

else 

    fprintf('At this stage your minimum distance is: %g\n', m*R); 

end 

tocontinue=input('Press 0 + enter:'); 
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counter=v; 

if v>n 

   R=R+increment; 

else fprintf('Number of blocks is: %g\n', counter-1); 

end 

end 

  

% Saving of the final initial population in allGens 

numGen=1; 

allGens{numGen,1}=absc; 

allGens{numGen,2}=ord; 

  

% Inputs for the second step 

lastNumPoints=input('Enter number of points that will be changed in every iteration: 

'); 

moveFun=input('Enter fraction of distance that points will be moved (i.e. 0.07): '); 

requiredNumGen=input('Enter required number of generations: '); 

requiredError=input('Enter required error: '); 

limitOfMovement=input('Enter required number of movements for each point: '); 

numReg=input('Enter number of regions (without zero region): '); 

minLim=zeros; 

maxLim=zeros; 

for kg=1:1:numReg 

    fprintf('Enter minimum permeability in region #%g: ',kg); 

    minLim(kg,1)=input(''); 

    fprintf('Enter maximum permeability in region #%g: ',kg); 

    maxLim(kg,1)=input(''); 

end 

minLim(kg+1,1)=0; 

maxLim(kg+1,1)=abs(min(minLim)-1); 

  

numberOfMovements=zeros(counter-1,1); 
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sumError=requiredError+1; 

checker21=1; 

  

permXi=size(permXvec,1); 

permFieldVec=[permXvec,permYvec]; 

if m*R>=R 

    maxDist=m*R; 

    minDist=R; 

else 

    maxDist=R; 

    minDist=m*R; 

end 

  

stopStep2=0; 

minimEr=inf; 

while sumError>=requiredError && numGen<=requiredNumGen+1 && 

stopStep2~=42 

num=1; 

number=1; 

x=zeros(counter-1,1); 

y=zeros(counter-1,1); 

z=40*ones(counter-1,1); 

absc=[absc;0]; 

ord=[ord;0]; 

while absc(num,1)~=0 

    absc(num,1)=roundn(absc(num,1),-3); 

    x(num,1)=absc(num,1); 

    num=num+1; 

end 

while ord(number,1)~=0 

    ord(number,1)=roundn(ord(number,1),-3); 

    y(number,1)=ord(number,1); 
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    number=number+1; 

end 

  

xy=[x,y]; 

blocksOfPoints=zeros(permXi,counter-1); 

distances=pdist2(permFieldVec,xy); 

  

% Finding which block each permeability point is related to 

for kk=1:1:size(distances,1) 

    distancesForPoints=distances(kk,:); 

    backUpDist=distancesForPoints; 

    [closestDist,ind]=min(backUpDist); 

    blocksOfPoints(kk,ind)=permeabilitiesVec(kk,1); 

    backUpDist(1,ind)=inf; 

    [closestDist2,ind2]=min(backUpDist); 

    if closestDist2==closestDist 

        blocksOfPoints(kk,ind2)=permeabilitiesVec(kk,1); 

        backUpDist(1,ind2)=inf; 

        [closestDist3,ind3]=min(backUpDist); 

        if closestDist3==closestDist2 

            blocksOfPoints(kk,ind3)=permeabilitiesVec(kk,1); 

            backUpDist(1,ind3)=inf; 

            [closestDist4,ind4]=min(backUpDist); 

            if closestDist4==closestDist3 

                blocksOfPoints(kk,ind4)=permeabilitiesVec(kk,1); 

                backUpDist(1,ind4)=inf; 

                [closestDist5,ind5]=min(backUpDist); 

                if closestDist5==closestDist4 

                    blocksOfPoints(kk,ind5)=permeabilitiesVec(kk,1); 

                    backUpDist(1,ind5)=inf; 

                    [closestDist6,ind6]=min(backUpDist); 

                    if closestDist6==closestDist5 
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                        blocksOfPoints(kk,ind6)=permeabilitiesVec(kk,1); 

                        backUpDist(1,ind6)=inf; 

                        [closestDist7,ind7]=min(backUpDist); 

                        if closestDist7==closestDist6 

                            blocksOfPoints(kk,ind7)=... 

                                permeabilitiesVec(kk,1); 

                            backUpDist(1,ind7)=inf; 

                            [closestDist8,ind8]=min(backUpDist); 

                            if closestDist8==closestDist7 

                                blocksOfPoints(kk,ind8)=... 

                                    permeabilitiesVec(kk,1); 

                                backUpDist(1,ind8)=inf; 

                                [closestDist9,ind9]=min(backUpDist); 

                                if closestDist9==closestDist8 

                                    blocksOfPoints(kk,ind9)=... 

                                        permeabilitiesVec(kk,1); 

                                    backUpDist(1,ind9)=inf; 

                                    [closestDist10,ind10]=min(backUpDist); 

                                    if closestDist10==closestDist9 

                                    fprintf('Something is wrong'); 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

jj=1; 
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forError=0; 

uu=1; 

error=zeros(counter-1,1); 

  

% Calculating of error for each block 

while jj<=counter-1 

    for ii=1:1:permXi 

        if blocksOfPoints(ii,jj)~=0; 

           forError(uu,1)=blocksOfPoints(ii,jj); 

           uu=uu+1; 

        end 

    end 

    for ht=1:1:size(minLim,1) 

        if forError(1,1)>=minLim(ht,1) && forError(1,1)<=maxLim(ht,1) 

            blockMin=minLim(ht,1); 

            blockMax=maxLim(ht,1); 

        end 

    end 

    ug=0; 

    for hk=1:1:size(forError) 

        if forError(hk,1)>=blockMin && forError(hk,1)<=blockMax 

            ug=ug+1; 

        end 

    end 

    if ug==size(forError,1) 

        error(jj,1)=0; 

    elseif ug<size(forError,1) 

        error(jj,1)=std(forError); 

    else fprintf('Something is wrong(line 346)'); 

    end 

    checker{jj,checker21}=forError; 

    jj=jj+1; 
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    uu=1; 

    forError=0; 

end 

  

% Saving errors in allGens 

allGens{numGen,3}=error; 

sumError=sum(error); 

allGens{numGen,4}=sumError; 

if minimEr>sumError 

    minimEr=sumError; 

elseif sumError>=minimEr+2000 

    stopStep2=42; 

end 

  

% Assigning of fitnesses 

errorBackUp=error; 

fitness=zeros(counter-1,1); 

ii=1; 

while ii<=counter-1 

    [value,index]=min(errorBackUp); 

    fitness(index,1)=ii; 

    errorBackUp(index,1)=inf; 

    ii=ii+1; 

end 

  

xBackUp=x; 

yBackUp=y; 

pp=counter-1; 

dd=0; 

  

% Moving of bad points in the required direction while checking if number 

% of movements for these points is less than the limit 
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while dd<=lastNumPoints && pp>=2 

  for index=1:1:counter-1 

       if fitness(index,1)==pp 

          ppm=zeros(numReg+1,1); 

          if numberOfMovements(index,1)<limitOfMovement; 

              numberOfMovements(index,1)=numberOfMovements(index,1)+1; 

              dd=dd+1; 

              blm=checker{index,checker21}; 

              % Calculates how many points inside block are of different  

              % regions permeability. 

              for zv=1:1:size(blm,1) 

                  for fq=1:1:numReg 

                      if blm(zv,1)==0.001 

                          ppm(numReg+1)=ppm(numReg+1)+1; 

                      elseif blm(zv,1)<=maxLim(fq,1) && blm(zv,1)>=minLim(fq,1) 

                          ppm(fq,1)=ppm(fq,1)+1; 

                      else moe=42; 

                      end 

                  end 

              end 

              xes=zeros; 

              yes=zeros; 

              skp=1; 

              [valper,indper]=max(ppm); 

              useMin=minLim(indper,1); 

              useMax=maxLim(indper,1); 

                  for jkr=1:1:size(permeabilitiesVec,1) 

                      if (blocksOfPoints(jkr,index)<useMin && 

blocksOfPoints(jkr,index)>0) || (blocksOfPoints(jkr,index)>useMax) 

                          xes(skp,1)=permXvec(jkr,1); 

                          yes(skp,1)=permYvec(jkr,1); 

                          skp=skp+1; 
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                      end 

                  end 

                  centX=mean(xes); 

                  centY=mean(yes); 

                  myPointX=x(index,1); 

                  myPointY=y(index,1); 

                  bcatm1=abs(centX-myPointX); 

                  bcatm2=abs(centY-myPointY); 

                  xuse=myPointX-centX; 

                  yuse=myPointY-centY; 

                  if xuse>0 && yuse>0 

                      alpha=atand(bcatm2/bcatm1); 

                      x(index,1)=x(index,1)+maxDist*moveFun*cosd(alpha); 

                      y(index,1)=y(index,1)+maxDist*moveFun*sind(alpha); 

                  elseif xuse<0 && yuse>0 

                      alpha=atand(bcatm2/bcatm1); 

                      x(index,1)=x(index,1)-maxDist*moveFun*cosd(alpha); 

                      y(index,1)=y(index,1)+maxDist*moveFun*sind(alpha); 

                  elseif xuse>0 && yuse<0 

                      alpha=atand(bcatm2/bcatm1); 

                      x(index,1)=x(index,1)+maxDist*moveFun*cosd(alpha); 

                      y(index,1)=y(index,1)-maxDist*moveFun*sind(alpha); 

                  elseif xuse<0 && yuse<0 

                      alpha=atand(bcatm2/bcatm1); 

                      x(index,1)=x(index,1)-maxDist*moveFun*cosd(alpha); 

                      y(index,1)=y(index,1)-maxDist*moveFun*sind(alpha); 

                  elseif xuse==0 && yuse>0 

                      x(index,1)=x(index,1); 

                      y(index,1)=y(index,1)+maxDist*moveFun; 

                  elseif xuse==0 && yuse<0 

                      x(index,1)=x(index,1); 

                      y(index,1)=y(index,1)-maxDist*moveFun; 



 

128 

 

                  elseif xuse>0 && yuse==0 

                      x(index,1)=x(index,1)+maxDist*moveFun; 

                      y(index,1)=y(index,1); 

                  elseif xuse<0 && yuse==0 

                      x(index,1)=x(index,1)-maxDist*moveFun; 

                      y(index,1)=y(index,1); 

                  else fprintf('My point and point it bounces off are at the same place'); 

                  end              

          end 

       end 

  end  

  pp=pp-1; 

end 

  

absc=x; 

ord=y; 

numGen=numGen+1; 

fprintf('Gen #%g\n',numGen); 

allGens{numGen,1}=absc; 

allGens{numGen,2}=ord; 

checker21=checker21+1; 

end 

  

% Choose best result from allGens 

helper=zeros; 

for i=1:1:numGen-1 

    helper(i,1)=allGens{i,4}; 

end 

  

[value,minIndex]=min(helper); 

xBest=allGens{minIndex,1}; 

yBest=allGens{minIndex,2}; 
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% Remove points outside of reservoir 

resVertXBackUp=resVertX; 

resVertYBackUp=resVertY; 

if m>=1 

    moveDist=m*R; 

else 

    moveDist=R; 

end 

smt=size(resVertX,1); 

for ii=1:1:smt 

    if resVertX(ii,1)>=0 && resVertX(ii,1)<length/2 && resVertY(ii,1)>=0 && 

resVertY(ii,1)<width/2 

        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist*cosd(45); 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist*sind(45); 

    elseif resVertX(ii,1)>=0 && resVertX(ii,1)<length/2 && resVertY(ii,1)>width/2 

&& resVertY(ii,1)<=width 

        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist*cosd(45); 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist*sind(45); 

    elseif resVertX(ii,1)>length/2 && resVertX(ii,1)<=length && 

resVertY(ii,1)>width/2 && resVertY(ii,1)<=width 

        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist*cosd(45); 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist*sind(45); 

    elseif resVertX(ii,1)>length/2 && resVertX(ii,1)<=length && resVertY(ii,1)>=0 

&& resVertY(ii,1)<width/2 

        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist*cosd(45); 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist*sind(45); 

    elseif resVertX==length/2 && resVertY>=0 && resVertY<width/2 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)-moveDist; 

    elseif resVertX==length/2 && resVertY>width/2 && resVertY<=width 

        resVertYBackUp(ii,1)=resVertYBackUp(ii,1)+moveDist; 

    elseif resVertX>=0 && resVertX<length/2 && resVertY==width/2 
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        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)-moveDist; 

    elseif resVertX>length/2 && resVertX<=length && resVertY==width/2 

        resVertXBackUp(ii,1)=resVertXBackUp(ii,1)+moveDist; 

    elseif resVertX==length/2 && resVertY==width/2 

        fprintf('Point in the center. Left at its place'); 

    else fprintf('Something is wrong with vertexes (line 584)'); 

    end 

end 

  

nos=inpolygon(xBest, yBest, resVertXBackUp, resVertYBackUp); 

nos=nos+0; 

xk=zeros; 

yk=zeros; 

kew=1; 

for kk=1:1:size(nos,1) 

    if nos(kk,1)==1 

        xk(kew,1)=xBest(kk,1); 

        yk(kew,1)=yBest(kk,1); 

        kew=kew+1; 

    end 

end 

xBest=xk; 

yBest=yk; 

  

% Handling of boundaries close to the rectangle boundaries 

ii=2; 

targetZone=zeros(1,2); 

while ii<=size(resVertX,1) 

    if resVertX(ii,1)>=0 && resVertX(ii,1)<=1.5*maxDist && ... 

            resVertX(ii-1,1)>=0 && resVertX(ii-1,1)<=1.5*maxDist 

        if resVertX(ii,1)~=0 || resVertX(ii-1,1)~=0 

            startX=resVertX(ii-1,1); 
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            startY=resVertY(ii-1,1);  

            endX=resVertX(ii,1); 

            endY=resVertY(ii,1); 

            bcat1=abs(startX-endX); 

            bcat2=abs(startY-endY); 

            boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);             

             

            distForBound=maxDist/2; 

            numOfPoints=boundLength/distForBound; 

            xMove=startX-endX; 

            yMove=startY-endY; 

             

            if xMove>0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove<0 
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                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);      

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 
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                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);     

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove>0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 
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                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove<0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 
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                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 
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            elseif xMove==0 && yMove==0 

                fprintf('Two reservoir boundary points are at the same place'); 

            else ulvi=1992; 

            end 

        end 

    elseif resVertX(ii,1)>=length-1.5*maxDist && resVertX(ii,1)<=length && ... 

            resVertX(ii-1,1)>=length-1.5*maxDist && resVertX(ii-1,1)<=length 

        if resVertX(ii,1)~=length || resVertX(ii-1,1)~=length 

            startX=resVertX(ii-1,1); 

            startY=resVertY(ii-1,1);  

            endX=resVertX(ii,1); 

            endY=resVertY(ii,1); 

            bcat1=abs(startX-endX); 

            bcat2=abs(startY-endY); 

            boundLength=sqrt(bcat1*bcat1+bcat2*bcat2); 

             

             

            distForBound=maxDist/2; 

            numOfPoints=boundLength/distForBound; 

            xMove=startX-endX; 

            yMove=startY-endY; 

             

            if xMove>0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 
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                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 
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                firstX2=startX-10*sind(alpha);      

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);     

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 
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                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove>0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove<0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound; 
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                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 
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                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove==0 

                fprintf('Two reservoir boundary points are at the same place'); 

            else ulvi=1992; 

            end 

        end 

    elseif resVertY(ii,1)>=0 && resVertY(ii,1)<=1.5*maxDist && ... 

            resVertY(ii-1,1)>=0 && resVertY(ii-1,1)<=1.5*maxDist 

        if resVertY(ii,1)~=0 || resVertY(ii-1,1)~=0 

            startX=resVertX(ii-1,1); 

            startY=resVertY(ii-1,1);  

            endX=resVertX(ii,1); 

            endY=resVertY(ii,1); 

            bcat1=abs(startX-endX); 

            bcat2=abs(startY-endY); 

            boundLength=sqrt(bcat1*bcat1+bcat2*bcat2); 

             

             

            distForBound=maxDist/2; 

            numOfPoints=boundLength/distForBound; 

            xMove=startX-endX; 

            yMove=startY-endY; 
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            if xMove>0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 
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                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);      

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);     

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 
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                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove>0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove<0 

                firstX1=startX-10; 
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                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 
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                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove==0 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove==0 

                fprintf('Two reservoir boundary points are at the same place'); 

            else ulvi=1992; 

            end 

        end 

    elseif resVertY(ii,1)>=width-1.5*maxDist && resVertY(ii,1)<=width && ... 

            resVertY(ii-1,1)>=width-1.5*maxDist && resVertY(ii-1,1)<=width 

        if resVertY(ii,1)~=width || resVertY(ii-1,1)~=width 

            startX=resVertX(ii-1,1); 

            startY=resVertY(ii-1,1);  

            endX=resVertX(ii,1); 

            endY=resVertY(ii,1); 
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            bcat1=abs(startX-endX); 

            bcat2=abs(startY-endY); 

            boundLength=sqrt(bcat1*bcat1+bcat2*bcat2);            

            distForBound=maxDist/2; 

            numOfPoints=boundLength/distForBound; 

            xMove=startX-endX; 

            yMove=startY-endY; 

             

            if xMove>0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);  

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove>0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);  



 

148 

 

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove>0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX+10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX-10*sind(alpha);      

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 
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                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove<0 && yMove<0 

                alpha=atand(bcat2/bcat1); 

                firstX1=startX-10*sind(alpha); 

                firstY1=startY+10*cosd(alpha); 

                firstX2=startX+10*sind(alpha);     

                firstY2=startY-10*cosd(alpha); 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound*cosd(alpha); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound*sind(alpha); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound*cosd(alpha); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound*sind(alpha); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove>0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)-distForBound; 
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                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)-distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove<0 

                firstX1=startX-10; 

                firstY1=startY; 

                firstX2=startX+10; 

                firstY2=startY; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1); 

                    firstP1(pd,2)=firstP1(pd-1,2)+distForBound; 

                    firstP2(pd,1)=firstP2(pd-1,1); 

                    firstP2(pd,2)=firstP2(pd-1,2)+distForBound; 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif (xMove>0 && yMove==0) && (startY~=0 && endY~=0) && 

(startY~=width && endY~=width) 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 
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                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)-distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)-distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif (xMove<0 && yMove==0)  && (startY~=0 && endY~=0) && 

(startY~=width && endY~=width) 

                firstX1=startX; 

                firstY1=startY+10; 

                firstX2=startX; 

                firstY2=startY-10; 

                firstP1=[firstX1, firstY1]; 

                firstP2=[firstX2, firstY2]; 

                pd=2; 

                dd=2; 

                while dd<=numOfPoints+1 

                    firstP1(pd,1)=firstP1(pd-1,1)+distForBound; 

                    firstP1(pd,2)=firstP1(pd-1,2); 

                    firstP2(pd,1)=firstP2(pd-1,1)+distForBound; 

                    firstP2(pd,2)=firstP2(pd-1,2); 

                    dd=dd+1; 

                    pd=pd+1; 

                end 

                targetZone=[targetZone; firstP1; firstP2]; 

            elseif xMove==0 && yMove==0 

                fprintf('Two reservoir boundary points are at the same place'); 
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            else ulvi=1992; 

            end 

        end 

    end 

    ii=ii+1; 

end 

targetZoneX=targetZone(:,1); 

targetZoneY=targetZone(:,2); 

xBest=[xBest;targetZoneX]; 

yBest=[yBest;targetZoneY]; 

  

% Now we have best results. Next step is to introduce wells/faults. 

bu=999; 

fprintf('If you want to add vertical well, enter "1";\n'); 

fprintf('If you want to add horizontal well, enter "2";\n'); 

fprintf('If you want to add fault, enter "3";\n'); 

fprintf('If you do not want to do anything, enter "4";\n'); 

  

fault=[0,0]; 

faultCount=0; 

horWellCount=0; 

while bu~=42 

    wellValue=input('Your number: '); 

    if wellValue==1 

        % Inputs for vertical well 

        xWell=input('Enter X coordinate of location of the well: '); 

        yWell=input('Enter Y coordinate of location of the well: '); 

        radAroundWell=input('Enter radius around well that will be cleaned and 

populated with new points: '); 

        amountPoints=input('Enter amount of points to be added: '); 

        wellRad=input('Enter well radius: '); 

        firstLayerDist=2*wellRad; 
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        secondLayerDist=input('Enter distance between first and second layer: '); 

        magnDist=input('Enter value of how much distance to the next layer will be 

higher than to previous layer: '); 

         

        % Delete points near well 

        xy=[xBest,yBest]; 

        xyWell=[xWell,yWell]; 

        distancesToWell=pdist2(xy,xyWell); 

        for oo=1:1:size(distancesToWell,1) 

            if distancesToWell(oo)<=radAroundWell 

                xBest(oo,1)=0; 

                yBest(oo,1)=0; 

            end 

        end 

        xNew=zeros; 

        yNew=zeros; 

        tt=1; 

        for aa=1:1:size(xBest,1) 

            if xBest(aa,1)~=0 

                xNew(tt,1)=xBest(aa,1); 

                yNew(tt,1)=yBest(aa,1); 

                tt=tt+1; 

            end 

        end         

         

        % Calculation of how many layers there will be 

        kk=secondLayerDist; 

        mm=firstLayerDist+secondLayerDist; 

        sld=secondLayerDist; % Between first layer (for well) and second 

        amountLayers=1; % Here 

        while mm<=radAroundWell 

            amountLayers=amountLayers+1; 
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            xx=mm; 

            mm=mm+kk*magnDist; 

            kk=mm-xx;             

        end 

        pointsInOneLayer=amountPoints/amountLayers; 

        radDistBetweenPoints=360/pointsInOneLayer; 

        xAroundWell=zeros; 

        yAroundWell=zeros; 

        % Creating of the first layer 

        nn=0; 

        for kk=1:1:pointsInOneLayer % Was with -1, one more point was required. 

check  

            xAroundWell(1,kk)=xWell+firstLayerDist*sind(nn*radDistBetweenPoints); 

            yAroundWell(1,kk)=yWell+firstLayerDist*cosd(nn*radDistBetweenPoints); 

            nn=nn+1; 

        end 

        % Creating of other layers   

        qq=firstLayerDist+secondLayerDist; 

        ff=secondLayerDist; 

        for ii=2:1:amountLayers+1 

            for jj=1:1:pointsInOneLayer                 

                xAroundWell(ii,jj)=xWell+qq*sind(jj*radDistBetweenPoints); 

                yAroundWell(ii,jj)=yWell+qq*cosd(jj*radDistBetweenPoints); 

            end 

            yy=qq; 

            qq=qq+ff*magnDist; 

            ff=qq-yy; 

        end 

        % Checking if all generated points are inside of reservoir 

        bo1=size(xAroundWell,1); 

        bo2=size(xAroundWell,2); 

        bo=bo1*bo2; 
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        xAroundWell=reshape(xAroundWell,bo,1); 

        yAroundWell=reshape(yAroundWell,bo,1); 

        winch=inpolygon(xAroundWell,yAroundWell,resVertX,resVertY); 

        winch=winch+0; 

        for kq=1:1:size(winch,1) 

            if winch(kq,1)==0 

                xAroundWell(kq,1)=0; 

                yAroundWell(kq,1)=0; 

            end 

        end 

        xf=zeros; 

        yf=zeros; 

        nm=1; 

        for hs=1:1:size(xAroundWell,1) 

            if xAroundWell(hs,1)~=0 || yAroundWell(hs,1)~=0 

                xf(nm,1)=xAroundWell(hs,1); 

                yf(nm,1)=yAroundWell(hs,1); 

                nm=nm+1; 

            end 

        end 

        fprintf('Your vertical well is located at x = %g, y = %g\n', xWell, yWell); 

        bu=input('If you want to add another well, enter "0", if not, enter "42": '); 

        % Saving generated points 

        xNew=[xNew;xf;xWell]; 

        yNew=[yNew;yf;yWell]; 

        xBest=xNew; 

        yBest=yNew; 

    elseif wellValue==2 

        % Input for horizontal well 

        horWellCount=horWellCount+1; 

        startX=input('Enter X coordinate of start (left!) of the well: '); 

        startY=input('Enter Y coordinate of start (left!) of the well: '); 
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        endX=input('Enter X coordinate of end (right! If well is parallel to y-axis start 

from uppermost) of the well: '); 

        endY=input('Enter Y coordinate of end (right! If well is parallel to y-axis start 

from uppermost) of the well: '); 

        amountPoints=input('Enter maximum amount of points to be added: '); 

        radWell=input('Enter radius of the well: '); 

        firstLayerDist=2*radWell; 

        secondLayerDist=input('Enter distance between first and second layer: '); 

        magnDist=input('Enter value of how much distance to the next layer will be 

higher than to previous layer: '); 

        distFromWell=input('Enter distance from well that will be cleared and 

populated with new points: '); 

        cat1=abs(startX-endX); 

        cat2=abs(startY-endY); 

        wellLength=sqrt(cat1*cat1+cat2*cat2); 

        % Checking how the well is located towards rectangle's sides 

        if cat1==0 

            parallelWell=1; 

        elseif cat2==0 

            parallelWell=2; 

        else parallelWell=0; 

        end 

        xv=zeros; 

        yv=zeros; 

        if parallelWell==0 % If well is not parallel to rectangle's sides 

            alpha=atand(cat2/cat1); 

            if startY > endY 

                xv(1,1)=startX+distFromWell*sind(alpha); 

                yv(1,1)=startY+distFromWell*cosd(alpha); 

                xv(2,1)=endX+distFromWell*sind(alpha); 

                yv(2,1)=endY+distFromWell*cosd(alpha); 

                xv(3,1)=endX-distFromWell*sind(alpha); 
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                yv(3,1)=endY-distFromWell*cosd(alpha); 

                xv(4,1)=startX-distFromWell*sind(alpha); 

                yv(4,1)=startY-distFromWell*cosd(alpha); 

                % Delete points near well 

                IN=inpolygon(xBest,yBest,xv,yv); 

                IN=IN+0; 

                for ii=1:1:size(IN,1) 

                    if IN(ii,1)==1 

                        xBest(ii,1)=0; 

                        yBest(ii,1)=0; 

                    end 

                end 

                xNew=zeros; 

                yNew=zeros; 

                tt=1; 

                for aa=1:1:size(xBest,1) 

                    if xBest(aa,1)~=0 

                       xNew(tt,1)=xBest(aa,1); 

                       yNew(tt,1)=yBest(aa,1); 

                       tt=tt+1; 

                    end 

                end 

                % Calculation of number of layers 

                kk=secondLayerDist; 

                mm=firstLayerDist+secondLayerDist; 

                amountLayers=1; % Here 

                while mm<=distFromWell 

                      amountLayers=amountLayers+1; 

                      xx=mm; 

                      mm=mm+kk*magnDist; 

                      kk=mm-xx;                       

                end 
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                pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1; 

                distBetweenPoints=wellLength/pointsInOneLayer; 

                % Creating of layer exactly on well 

                wellGridX=zeros; 

                wellGridY=zeros; 

                wellGridX(1,1)=startX; 

                wellGridY(1,1)=startY; 

                for ii=2:1:pointsInOneLayer+2 

                    wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    wellGridY(ii,1)=wellGridY(ii-1,1)-distBetweenPoints*sind(alpha); 

                end 

                % Creating of layers (to the upper part) 

                xFromWellUp=zeros; 

                yFromWellUp=zeros; 

                xFromWellUp(1,1)=startX+firstLayerDist*sind(alpha); 

                yFromWellUp(1,1)=startY+firstLayerDist*cosd(alpha); 

                for ii=2:1:pointsInOneLayer+2 

                    xFromWellUp(1,ii)=xFromWellUp(1,ii-

1)+distBetweenPoints*cosd(alpha); 

                    yFromWellUp(1,ii)=yFromWellUp(1,ii-1)-

distBetweenPoints*sind(alpha); 

                end 

                dd=firstLayerDist+secondLayerDist;  

                ll=secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer+2 

                        xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj)+dd*sind(alpha); 

                        yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd*cosd(alpha); 
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                    end 

                    end 

                end 

                % Creating of layers (to the down part) 

                xFromWellDown=zeros; 

                yFromWellDown=zeros; 

                xFromWellDown(1,1)=startX-firstLayerDist*sind(alpha); 

                yFromWellDown(1,1)=startY-firstLayerDist*cosd(alpha); 

                for ii=2:1:pointsInOneLayer+2 

                    xFromWellDown(1,ii)=xFromWellDown(1,ii-

1)+distBetweenPoints*cosd(alpha); 

                    yFromWellDown(1,ii)=yFromWellDown(1,ii-1)-

distBetweenPoints*sind(alpha); 

                end   

                ll=secondLayerDist; 

                dd=firstLayerDist+secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer+2                         

                        xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj)-dd*sind(alpha); 

                        yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd*cosd(alpha); 

                    end   

                    end 

                end 

                % Putting everything together 

                

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1); 
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xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1); 

                

yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1); 

                

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1); 

                av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY); 

                av=av+0; 

                bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY); 

                bv=bv+0; 

                for lp=1:1:size(xFromWellUp,1) 

                    if av(lp,1)==0 

                        xFromWellUp(lp,1)=0; 

                        yFromWellUp(lp,1)=0; 

                    end 

                end 

                for pr=1:1:size(xFromWellDown,1) 

                    if bv(pr,1)==0 

                        xFromWellDown(pr,1)=0; 

                        yFromWellDown(pr,1)=0; 

                    end 

                end 

                xu=zeros; 

                xd=zeros; 

                yu=zeros; 

                yd=zeros; 

                wcu=1; 

                wcd=1; 

                for hg=1:1:size(xFromWellUp,1) 
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                    if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0 

                        xu(wcu,1)=xFromWellUp(hg,1); 

                        yu(wcu,1)=yFromWellUp(hg,1); 

                        wcu=wcu+1; 

                    end 

                end 

                for yh=1:1:size(xFromWellDown,1) 

                    if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0 

                        xd(wcd,1)=xFromWellDown(yh,1); 

                        yd(wcd,1)=yFromWellDown(yh,1); 

                        wcd=wcd+1; 

                    end 

                end 

                xFromWellUp=xu; 

                yFromWellUp=yu; 

                xFromWellDown=xd; 

                yFromWellDown=yd; 

                xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX]; 

                yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY]; 

                xBest=xNew; 

                yBest=yNew; 

            elseif startY < endY 

                xv(1,1)=startX-distFromWell*sind(alpha); 

                yv(1,1)=startY+distFromWell*cosd(alpha); 

                xv(2,1)=endX-distFromWell*sind(alpha); 

                yv(2,1)=endY+distFromWell*cosd(alpha); 

                xv(3,1)=endX+distFromWell*sind(alpha); 

                yv(3,1)=endY-distFromWell*cosd(alpha); 

                xv(4,1)=startX+distFromWell*sind(alpha); 

                yv(4,1)=startY-distFromWell*cosd(alpha); 

                % Delete points near the well 

                IN=inpolygon(xBest,yBest,xv,yv); 
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                IN=IN+0; 

                for ii=1:1:size(IN,1) 

                    if IN(ii,1)==1 

                        xBest(ii,1)=0; 

                        yBest(ii,1)=0; 

                    end 

                end 

                xNew=zeros; 

                yNew=zeros; 

                tt=1; 

                for aa=1:1:size(xBest,1) 

                    if xBest(aa,1)~=0 

                       xNew(tt,1)=xBest(aa,1); 

                       yNew(tt,1)=yBest(aa,1); 

                       tt=tt+1; 

                    end 

                end 

                kk=secondLayerDist; 

                mm=firstLayerDist+secondLayerDist; 

                amountLayers=1; 

                % Calculate number of layers 

                while mm<=distFromWell                     

                      amountLayers=amountLayers+1; 

                      xx=mm; 

                      mm=mm+kk*magnDist; 

                      kk=mm-xx; 

                end 

                pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1; 

                distBetweenPoints=wellLength/pointsInOneLayer; 

                % Creating of points exactly on well 

                wellGridX=zeros; 

                wellGridY=zeros; 
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                wellGridX(1,1)=startX; 

                wellGridY(1,1)=startY; 

                for ii=2:1:pointsInOneLayer+2 

                    wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    wellGridY(ii,1)=wellGridY(ii-1,1)+distBetweenPoints*sind(alpha); 

                end 

                % Creating of layers (to the upper part) 

                xFromWellUp=zeros; 

                yFromWellUp=zeros; 

                xFromWellUp(1,1)=startX-firstLayerDist*sind(alpha); 

                yFromWellUp(1,1)=startY+firstLayerDist*cosd(alpha); 

                for ii=2:1:pointsInOneLayer+2% 

                    xFromWellUp(1,ii)=xFromWellUp(1,ii-

1)+distBetweenPoints*cosd(alpha); 

                    yFromWellUp(1,ii)=yFromWellUp(1,ii-

1)+distBetweenPoints*sind(alpha); 

                end 

                 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist;                 

                for kk=2:1:amountLayers+2% 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz;       

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer+2% 

                        xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj)-dd*sind(alpha); 

                        yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd*cosd(alpha); 

                    end 

                    end 

                end 
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                % Creating of layers (to the down part) 

                xFromWellDown=zeros; 

                yFromWellDown=zeros; 

                xFromWellDown(1,1)=startX+firstLayerDist*sind(alpha); 

                yFromWellDown(1,1)=startY-firstLayerDist*cosd(alpha); 

                for ii=2:1:pointsInOneLayer+2 

                    xFromWellDown(1,ii)=xFromWellDown(1,ii-

1)+distBetweenPoints*cosd(alpha); 

                    yFromWellDown(1,ii)=yFromWellDown(1,ii-

1)+distBetweenPoints*sind(alpha); 

                end 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist;                

                for kk=2:1:amountLayers+2% 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer+2%        

                        xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj)+dd*sind(alpha); 

                        yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd*cosd(alpha); 

                    end 

                    end 

                end 

                

                % Putting everything together 

                

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1); 

                

xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1); 
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yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1); 

                

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1); 

                av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY); 

                av=av+0; 

                bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY); 

                bv=bv+0; 

                for lp=1:1:size(xFromWellUp,1) 

                    if av(lp,1)==0 

                        xFromWellUp(lp,1)=0; 

                        yFromWellUp(lp,1)=0; 

                    end 

                end 

                for pr=1:1:size(xFromWellDown,1) 

                    if bv(pr,1)==0 

                        xFromWellDown(pr,1)=0; 

                        yFromWellDown(pr,1)=0; 

                    end 

                end 

                xu=zeros; 

                xd=zeros; 

                yu=zeros; 

                yd=zeros; 

                wcu=1; 

                wcd=1; 

                for hg=1:1:size(xFromWellUp,1) 

                    if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0 

                        xu(wcu,1)=xFromWellUp(hg,1); 

                        yu(wcu,1)=yFromWellUp(hg,1); 
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                        wcu=wcu+1; 

                    end 

                end 

                for yh=1:1:size(xFromWellDown,1) 

                    if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0 

                        xd(wcd,1)=xFromWellDown(yh,1); 

                        yd(wcd,1)=yFromWellDown(yh,1); 

                        wcd=wcd+1; 

                    end 

                end 

                xFromWellUp=xu; 

                yFromWellUp=yu; 

                xFromWellDown=xd; 

                yFromWellDown=yd; 

                xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX]; 

                yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY]; 

                xBest=xNew; 

                yBest=yNew; 

            end 

        elseif parallelWell==1 % Parallel to y-axis 

                xv(1,1)=startX-distFromWell; 

                yv(1,1)=startY; 

                xv(2,1)=endX-distFromWell; 

                yv(2,1)=endY; 

                xv(3,1)=endX+distFromWell; 

                yv(3,1)=endY; 

                xv(4,1)=startX+distFromWell; 

                yv(4,1)=startY; 

                % Delete points near well 

                for ff=1:1:size(xBest,1) 

                    if xBest(ff,1)>xv(1,1) && xBest(ff,1)<xv(4,1) ... 

                        && yBest(ff,1)>yv(2,1) && yBest(ff,1)<yv(1,1) 
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                        xBest(ff,1)=0; 

                        yBest(ff,1)=0; 

                    end 

                end 

                xNew=zeros; 

                yNew=zeros; 

                tt=1; 

                for aa=1:1:size(xBest,1) 

                    if xBest(aa,1)~=0 

                       xNew(tt,1)=xBest(aa,1); 

                       yNew(tt,1)=yBest(aa,1); 

                       tt=tt+1; 

                    end 

                end 

                % Calculate number of layers 

                kk=secondLayerDist; 

                mm=firstLayerDist+secondLayerDist; 

                amountLayers=1; 

                while mm<=distFromWell                       

                      amountLayers=amountLayers+1; 

                      xx=mm; 

                      mm=mm+kk*magnDist; 

                      kk=mm-xx; 

                end 

                pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1; 

                distBetweenPoints=wellLength/pointsInOneLayer; 

                % Creating of points exactly on well 

                wellGridX=zeros; 

                wellGridY=zeros; 

                wellGridX(1,1)=startX; 

                wellGridY(1,1)=startY; 

                for ii=2:1:pointsInOneLayer 
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                    wellGridX(ii,1)=wellGridX(ii-1,1); 

                    wellGridY(ii,1)=wellGridY(ii-1,1)-distBetweenPoints; 

                end 

                % Creating of layers (to the left) 

                xFromWellLeft=zeros; 

                yFromWellLeft=zeros; 

                xFromWellLeft(1,1)=startX-firstLayerDist; 

                yFromWellLeft(1,1)=startY; 

                for ii=2:1:pointsInOneLayer 

                    xFromWellLeft(1,ii)=xFromWellLeft(1,ii-1); 

                    yFromWellLeft(1,ii)=yFromWellLeft(1,ii-1)-distBetweenPoints; 

                end                 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer          

                        xFromWellLeft(kk,jj)=xFromWellLeft(kk-1,jj)-dd; 

                        yFromWellLeft(kk,jj)=yFromWellLeft(kk-1,jj); 

                    end 

                    end 

                end 

                % Creating of layers (to the right) 

                xFromWellRight=zeros; 

                yFromWellRight=zeros; 

                xFromWellRight(1,1)=startX+firstLayerDist; 

                yFromWellRight(1,1)=startY; 

                for ii=2:1:pointsInOneLayer 

                    xFromWellRight(1,ii)=xFromWellRight(1,ii-1); 
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                    yFromWellRight(1,ii)=yFromWellRight(1,ii-1)-distBetweenPoints; 

                end                 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer                      

                        xFromWellRight(kk,jj)=xFromWellRight(kk-1,jj)+dd; 

                        yFromWellRight(kk,jj)=yFromWellRight(kk-1,jj); 

                    end                   

                    end 

                end 

                % Putting everything together 

                

xFromWellLeft=reshape(xFromWellLeft,size(xFromWellLeft,1)*size(xFromWellLe

ft,2),1); 

                

xFromWellRight=reshape(xFromWellRight,size(xFromWellRight,1)*size(xFromWe

llRight,2),1); 

                

yFromWellLeft=reshape(yFromWellLeft,size(yFromWellLeft,1)*size(yFromWellLe

ft,2),1); 

                

yFromWellRight=reshape(yFromWellRight,size(yFromWellRight,1)*size(yFromWe

llRight,2),1); 

                av=inpolygon(xFromWellLeft,yFromWellLeft,resVertX,resVertY); 

                av=av+0; 

                bv=inpolygon(xFromWellRight,yFromWellRight,resVertX,resVertY); 

                bv=bv+0; 
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                for lp=1:1:size(xFromWellLeft,1) 

                    if av(lp,1)==0 

                        xFromWellLeft(lp,1)=0; 

                        yFromWellLeft(lp,1)=0; 

                    end 

                end 

                for pr=1:1:size(xFromWellRight,1) 

                    if bv(pr,1)==0 

                        xFromWellRight(pr,1)=0; 

                        yFromWellRight(pr,1)=0; 

                    end 

                end 

                xu=zeros; 

                xd=zeros; 

                yu=zeros; 

                yd=zeros; 

                wcu=1; 

                wcd=1; 

                for hg=1:1:size(xFromWellLeft,1) 

                    if xFromWellLeft(hg,1)~=0 || yFromWellLeft(hg,1)~=0 

                        xu(wcu,1)=xFromWellLeft(hg,1); 

                        yu(wcu,1)=yFromWellLeft(hg,1); 

                        wcu=wcu+1; 

                    end 

                end 

                for yh=1:1:size(xFromWellRight,1) 

                    if xFromWellRight(yh,1)~=0 || yFromWellRight(yh,1)~=0 

                        xd(wcd,1)=xFromWellRight(yh,1); 

                        yd(wcd,1)=yFromWellRight(yh,1); 

                        wcd=wcd+1; 

                    end 

                end 
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                xFromWellLeft=xu; 

                yFromWellLeft=yu; 

                xFromWellRight=xd; 

                yFromWellRight=yd; 

                xNew=[xNew; xFromWellLeft; xFromWellRight; wellGridX]; 

                yNew=[yNew; yFromWellLeft; yFromWellRight; wellGridY]; 

                xBest=xNew; 

                yBest=yNew; 

        elseif parallelWell==2 % Parallel to x-axis 

                xv(1,1)=startX; 

                yv(1,1)=startY+distFromWell; 

                xv(2,1)=endX; 

                yv(2,1)=endY+distFromWell; 

                xv(3,1)=endX; 

                yv(3,1)=endY-distFromWell; 

                xv(4,1)=startX; 

                yv(4,1)=startY-distFromWell; 

                % Delete points near well 

                for ss=1:1:size(xBest,1) 

                    if xBest(ss,1)>xv(1,1) && xBest(ss,1)<xv(2,1) ... 

                        && yBest(ss,1)>yv(4,1) && yBest(ss,1)<yv(1,1) 

                        xBest(ss,1)=0; 

                        yBest(ss,1)=0; 

                    end 

                end 

                xNew=zeros; 

                yNew=zeros; 

                tt=1; 

                for aa=1:1:size(xBest,1) 

                    if xBest(aa,1)~=0 

                       xNew(tt,1)=xBest(aa,1); 

                       yNew(tt,1)=yBest(aa,1); 
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                       tt=tt+1; 

                    end 

                end 

                % Calculate number of layers 

                kk=secondLayerDist; 

                mm=firstLayerDist+secondLayerDist; 

                amountLayers=1; % Here 

                while mm<=distFromWell                     

                      amountLayers=amountLayers+1; 

                      xx=mm; 

                      mm=mm+kk*magnDist; 

                      kk=mm-xx; 

                end 

                pointsInOneLayer=(amountPoints/((2*amountLayers)+1))+1; 

                distBetweenPoints=wellLength/pointsInOneLayer; 

                % Creating of points exactly on well 

                wellGridX=zeros; 

                wellGridY=zeros; 

                wellGridX(1,1)=startX; 

                wellGridY(1,1)=startY; 

                for ii=2:1:pointsInOneLayer 

                    wellGridX(ii,1)=wellGridX(ii-1,1)+distBetweenPoints; 

                    wellGridY(ii,1)=wellGridY(ii-1,1); 

                end 

                % Creating of layers (to the upper part) 

                xFromWellLeft=zeros; 

                yFromWellLeft=zeros; 

                xFromWellUp(1,1)=startX; 

                yFromWellUp(1,1)=startY+firstLayerDist; 

                for ii=2:1:pointsInOneLayer 

                    xFromWellUp(1,ii)=xFromWellUp(1,ii-1)+distBetweenPoints; 

                    yFromWellUp(1,ii)=yFromWellUp(1,ii-1); 
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                end                 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer                     

                        xFromWellUp(kk,jj)=xFromWellUp(kk-1,jj); 

                        yFromWellUp(kk,jj)=yFromWellUp(kk-1,jj)+dd; 

                    end 

                    end 

                end 

                % Creating of layers (to the down part) 

                xFromWellDown=zeros; 

                yFromWellDown=zeros; 

                xFromWellDown(1,1)=startX; 

                yFromWellDown(1,1)=startY-firstLayerDist; 

                for ii=2:1:pointsInOneLayer 

                    xFromWellDown(1,ii)=xFromWellDown(1,ii-1)+distBetweenPoints; 

                    yFromWellDown(1,ii)=yFromWellDown(1,ii-1); 

                end                 

                dd=firstLayerDist+secondLayerDist; 

                ll=secondLayerDist; 

                for kk=2:1:amountLayers+1 

                    zz=dd; 

                    dd=dd+ll*magnDist; 

                    ll=dd-zz; 

                    if dd<=distFromWell 

                    for jj=1:1:pointsInOneLayer               

                        xFromWellDown(kk,jj)=xFromWellDown(kk-1,jj); 
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                        yFromWellDown(kk,jj)=yFromWellDown(kk-1,jj)-dd; 

                    end     

                    end 

                end 

                % Putting everything together 

                

xFromWellUp=reshape(xFromWellUp,size(xFromWellUp,1)*size(xFromWellUp,2)

,1); 

                

xFromWellDown=reshape(xFromWellDown,size(xFromWellDown,1)*size(xFrom

WellDown,2),1); 

                

yFromWellUp=reshape(yFromWellUp,size(yFromWellUp,1)*size(yFromWellUp,2)

,1); 

                

yFromWellDown=reshape(yFromWellDown,size(yFromWellDown,1)*size(yFrom

WellDown,2),1); 

                av=inpolygon(xFromWellUp,yFromWellUp,resVertX,resVertY); 

                av=av+0; 

                bv=inpolygon(xFromWellDown,yFromWellDown,resVertX,resVertY); 

                bv=bv+0; 

                for lp=1:1:size(xFromWellUp,1) 

                    if av(lp,1)==0 

                        xFromWellUp(lp,1)=0; 

                        yFromWellUp(lp,1)=0; 

                    end 

                end 

                for pr=1:1:size(xFromWellDown,1) 

                    if bv(pr,1)==0 

                        xFromWellDown(pr,1)=0; 

                        yFromWellDown(pr,1)=0; 

                    end 
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                end 

                xu=zeros; 

                xd=zeros; 

                yu=zeros; 

                yd=zeros; 

                wcu=1; 

                wcd=1; 

                for hg=1:1:size(xFromWellUp,1) 

                    if xFromWellUp(hg,1)~=0 || yFromWellUp(hg,1)~=0 

                        xu(wcu,1)=xFromWellUp(hg,1); 

                        yu(wcu,1)=yFromWellUp(hg,1); 

                        wcu=wcu+1; 

                    end 

                end 

                for yh=1:1:size(xFromWellDown,1) 

                    if xFromWellDown(yh,1)~=0 || yFromWellDown(yh,1)~=0 

                        xd(wcd,1)=xFromWellDown(yh,1); 

                        yd(wcd,1)=yFromWellDown(yh,1); 

                        wcd=wcd+1; 

                    end 

                end 

                xFromWellUp=xu; 

                yFromWellUp=yu; 

                xFromWellDown=xd; 

                yFromWellDown=yd; 

                xNew=[xNew; xFromWellUp; xFromWellDown; wellGridX]; 

                yNew=[yNew; yFromWellUp; yFromWellDown; wellGridY]; 

                xBest=xNew; 

                xBest=xNew; 

        else ulvi=1992; 

        end 

        % Saving points to fprintf them at the end 
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        horWellPoints{horWellCount,1}=wellGridX; 

        horWellPoints{horWellCount,2}=wellGridY; 

        bu=input('If you want to add another well, enter "0", if not, enter "42": '); 

        xBest=xNew; 

        yBest=yNew; 

    elseif wellValue==3 % Adding of fault 

        faultCount=faultCount+1; % Counting faults 

        startX=input('Enter X coordinate of start (left!) of the fault: '); 

        startY=input('Enter Y coordinate of start (left!) of the fault: '); 

        endX=input('Enter X coordinate of end (right! If well is parallel to y-axis start 

from uppermost) of the fault: '); 

        endY=input('Enter Y coordinate of end (right! If well is parallel to y-axis start 

from uppermost) of the fault: '); 

        amountPoints=input('Enter maximum amount of points to be added: '); 

        firstLayerDist=input('Enter distance to the layer of points of the fault: '); 

        distFromFault=input('Enter distance from fault that will be cleared and 

populated with new points: ');         

        cat1=abs(startX-endX); 

        cat2=abs(startY-endY); 

        faultPerm=input('Enter value of fault permeability: '); 

        faultLength=sqrt(cat1*cat1+cat2*cat2); 

        smur=(amountPoints/3)+1; 

        distBetweenPoints=faultLength/smur; 

        % Understanding how fault is located compared to rectangle's sides 

        if cat1==0 

            parallelFault=1; 

        elseif cat2==0 

            parallelFault=2; 

        else parallelFault=0; 

        end 

        if parallelFault==0 % Not parallel to rectangle's sides 

            alpha=atand(cat2/cat1); 
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            if startY > endY 

                firstPointUpX=startX+distFromFault*sind(alpha); 

                firstPointUpY=startY+distFromFault*cosd(alpha); 

                firstPointDownX=startX-distFromFault*sind(alpha); 

                firstPointDownY=startY-distFromFault*cosd(alpha); 

                lastPointUpX=endX+distFromFault*sind(alpha); 

                lastPointUpY=endY+distFromFault*cosd(alpha); 

                lastPointDownX=endX-distFromFault*sind(alpha); 

                lastPointDownY=endY-distFromFault*cosd(alpha); 

                polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX; 

firstPointDownX]; 

                polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY; 

firstPointDownY]; 

                % Delete points inside this region 

                gs=inpolygon(xBest,yBest,polfaultX,polfaultY); 

                gs=gs+0; 

                for uj=1:1:size(gs,1) 

                    if gs(uj,1)==1 

                        xBest(uj,1)=0; 

                        yBest(uj,1)=0; 

                    end 

                end 

                xfa=zeros; 

                yfa=zeros; 

                hk=1; 

                for ha=1:1:size(xBest,1) 

                    if xBest(ha,1)~=0 || yBest(ha,1)~=0 

                        xfa(hk,1)=xBest(ha,1); 

                        yfa(hk,1)=yBest(ha,1); 

                        hk=hk+1; 

                    end 

                end 
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                xNew=xfa; 

                yNew=yfa; 

                % Generation of points 

                faultUp=[firstPointUpX, firstPointUpY]; 

                faultDown=[firstPointDownX, firstPointDownY]; 

                faultExact=[startX,startY]; 

                for ii=2:1:smur 

                    faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultUp(ii,2)=faultUp(ii-1,2)-distBetweenPoints*sind(alpha); 

                    faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultDown(ii,2)=faultDown(ii-1,2)-distBetweenPoints*sind(alpha); 

                    faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultExact(ii,2)=faultExact(ii-1,2)-distBetweenPoints*sind(alpha); 

                end 

                faultUpX=faultUp(:,1); 

                faultUpY=faultUp(:,2); 

                faultDownX=faultDown(:,1); 

                faultDownY=faultDown(:,2); 

                faultExactX=faultExact(:,1); 

                faultExactY=faultExact(:,2); 

                xNew=[xNew;faultUpX;faultDownX;faultExactX]; 

                yNew=[yNew;faultUpY;faultDownY;faultExactY]; 

                xBest=xNew; 

                yBest=yNew; 

                fault=[fault;faultExact]; 

            elseif startY < endY 

                firstPointUpX=startX-distFromFault*sind(alpha); 

                firstPointUpY=startY+distFromFault*cosd(alpha); 

                firstPointDownX=startX+distFromFault*sind(alpha); 

                firstPointDownY=startY-distFromFault*cosd(alpha); 

                lastPointUpX=endX-distFromFault*sind(alpha); 

                lastPointUpY=endY+distFromFault*cosd(alpha); 
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                lastPointDownX=endX+distFromFault*sind(alpha); 

                lastPointDownY=endY-distFromFault*cosd(alpha); 

                polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX; 

firstPointDownX]; 

                polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY; 

firstPointDownY]; 

                % Delete points inside this region 

                gs=inpolygon(xBest,yBest,polfaultX,polfaultY); 

                gs=gs+0; 

                for uj=1:1:size(gs,1) 

                    if gs(uj,1)==1 

                        xBest(uj,1)=0; 

                        yBest(uj,1)=0; 

                    end 

                end 

                xfa=zeros; 

                yfa=zeros; 

                hk=1; 

                for ha=1:1:size(xBest,1) 

                    if xBest(ha,1)~=0 || yBest(ha,1)~=0 

                        xfa(hk,1)=xBest(ha,1); 

                        yfa(hk,1)=yBest(ha,1); 

                        hk=hk+1; 

                    end 

                end 

                xNew=xfa; 

                yNew=yfa; 

                % Generation of points 

                faultUp=[firstPointUpX, firstPointUpY]; 

                faultDown=[firstPointDownX, firstPointDownY]; 

                faultExact=[startX,startY]; 

                for ii=2:1:smur 
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                    faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultUp(ii,2)=faultUp(ii-1,2)+distBetweenPoints*sind(alpha); 

                    faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultDown(ii,2)=faultDown(ii-1,2)+distBetweenPoints*sind(alpha); 

                    faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints*cosd(alpha); 

                    faultExact(ii,2)=faultExact(ii-1,2)+distBetweenPoints*sind(alpha); 

                end 

                faultUpX=faultUp(:,1); 

                faultUpY=faultUp(:,2); 

                faultDownX=faultDown(:,1); 

                faultDownY=faultDown(:,2); 

                faultExactX=faultExact(:,1); 

                faultExactY=faultExact(:,2); 

                xNew=[xNew;faultUpX;faultDownX;faultExactX]; 

                yNew=[yNew;faultUpY;faultDownY;faultExactY]; 

                xBest=xNew; 

                yBest=yNew; 

                fault=[fault;faultExact]; 

            else fprintf('Something is wrong'); 

            end 

        elseif parallelFault==1 % Parallel to y-axis 

                firstPointUpX=startX-distFromFault; 

                firstPointUpY=startY; 

                firstPointDownX=startX+distFromFault; 

                firstPointDownY=startY; 

                lastPointUpX=endX-distFromFault; 

                lastPointUpY=endY; 

                lastPointDownX=endX+distFromFault; 

                lastPointDownY=endY; 

                polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX; 

firstPointDownX]; 
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                polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY; 

firstPointDownY]; 

                % Delete points inside this region 

                gs=inpolygon(xBest,yBest,polfaultX,polfaultY); 

                gs=gs+0; 

                for uj=1:1:size(gs,1) 

                    if gs(uj,1)==1 

                        xBest(uj,1)=0; 

                        yBest(uj,1)=0; 

                    end 

                end 

                xfa=zeros; 

                yfa=zeros; 

                hk=1; 

                for ha=1:1:size(xBest,1) 

                    if xBest(ha,1)~=0 || yBest(ha,1)~=0 

                        xfa(hk,1)=xBest(ha,1); 

                        yfa(hk,1)=yBest(ha,1); 

                        hk=hk+1; 

                    end 

                end 

                xNew=xfa; 

                yNew=yfa; 

                % Generation of points 

                faultUp=[firstPointUpX, firstPointUpY]; 

                faultDown=[firstPointDownX, firstPointDownY]; 

                faultExact=[startX,startY]; 

                for ii=2:1:smur 

                    faultUp(ii,1)=faultUp(ii-1,1); 

                    faultUp(ii,2)=faultUp(ii-1,2)-distBetweenPoints; 

                    faultDown(ii,1)=faultDown(ii-1,1); 

                    faultDown(ii,2)=faultDown(ii-1,2)-distBetweenPoints; 
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                    faultExact(ii,1)=faultExact(ii-1,1); 

                    faultExact(ii,2)=faultExact(ii-1,2)-distBetweenPoints; 

                end 

                faultUpX=faultUp(:,1); 

                faultUpY=faultUp(:,2); 

                faultDownX=faultDown(:,1); 

                faultDownY=faultDown(:,2); 

                faultExactX=faultExact(:,1); 

                faultExactY=faultExact(:,2); 

                xNew=[xNew;faultUpX;faultDownX;faultExactX]; 

                yNew=[yNew;faultUpY;faultDownY;faultExactY]; 

                xBest=xNew; 

                yBest=yNew; 

                fault=[fault;faultExact]; 

        elseif parallelFault==2 % Parallel to x-axis 

                firstPointUpX=startX; 

                firstPointUpY=startY+distFromFault; 

                firstPointDownX=startX; 

                firstPointDownY=startY-distFromFault; 

                lastPointUpX=endX; 

                lastPointUpY=endY+distFromFault; 

                lastPointDownX=endX; 

                lastPointDownY=endY-distFromFault; 

                polfaultX=[firstPointUpX; lastPointUpX; lastPointDownX; 

firstPointDownX]; 

                polfaultY=[firstPointUpY; lastPointUpY; lastPointDownY; 

firstPointDownY]; 

                % Delete points inside this region 

                gs=inpolygon(xBest,yBest,polfaultX,polfaultY); 

                gs=gs+0; 

                for uj=1:1:size(gs,1) 

                    if gs(uj,1)==1 
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                        xBest(uj,1)=0; 

                        yBest(uj,1)=0; 

                    end 

                end 

                xfa=zeros; 

                yfa=zeros; 

                hk=1; 

                for ha=1:1:size(xBest,1) 

                    if xBest(ha,1)~=0 || yBest(ha,1)~=0 

                        xfa(hk,1)=xBest(ha,1); 

                        yfa(hk,1)=yBest(ha,1); 

                        hk=hk+1; 

                    end 

                end 

                xNew=xfa; 

                yNew=yfa; 

                % Generation of points 

                faultUp=[firstPointUpX, firstPointUpY]; 

                faultDown=[firstPointDownX, firstPointDownY]; 

                faultExact=[startX,startY]; 

                for ii=2:1:smur 

                    faultUp(ii,1)=faultUp(ii-1,1)+distBetweenPoints; 

                    faultUp(ii,2)=faultUp(ii-1,2); 

                    faultDown(ii,1)=faultDown(ii-1,1)+distBetweenPoints; 

                    faultDown(ii,2)=faultDown(ii-1,2); 

                    faultExact(ii,1)=faultExact(ii-1,1)+distBetweenPoints; 

                    faultExact(ii,2)=faultExact(ii-1,2); 

                end 

                faultUpX=faultUp(:,1); 

                faultUpY=faultUp(:,2); 

                faultDownX=faultDown(:,1); 

                faultDownY=faultDown(:,2); 
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                faultExactX=faultExact(:,1); 

                faultExactY=faultExact(:,2); 

                xNew=[xNew;faultUpX;faultDownX;faultExactX]; 

                yNew=[yNew;faultUpY;faultDownY;faultExactY]; 

                xBest=xNew; 

                yBest=yNew; 

                fault=[fault;faultExact]; 

        else ulvi=1992; 

        end 

        bu=input('If you want to add another well, enter "0", if not, enter "42": '); 

    elseif wellValue==4 

        xNew=xBest; 

        yNew=yBest; 

        bu=42; 

    else 

        bu=input('You should have written "1","2","3" or "4". Enter "0" to choose well 

type again or enter "42" to exit'); 

    end 

end 

fault(1,:)=[]; 

% Clean all points outside of rectangle 

xFinal=zeros; 

yFinal=zeros; 

yy=1; 

gow=size(xNew,1); 

for ii=1:1:gow 

    if xNew(ii,1)>=0 && xNew(ii,1)<=length && yNew(ii,1)>=0 && 

yNew(ii,1)<=width 

       xFinal(yy,1)=xNew(ii,1); 

       yFinal(yy,1)=yNew(ii,1); 

       yy=yy+1; 

    end 
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end 

  

% Recalculating error for final + permeabilities assignment 

counterNew=size(xFinal,1); 

xy=[xFinal,yFinal]; 

sxf=size(xFinal,1); 

blocksOfPoints=zeros(sxf,counterNew); 

distances=pdist2(permFieldVec,xy); 

  

for kk=1:1:size(distances,1) 

    distancesForPoints=distances(kk,:); 

    backUpDist=distancesForPoints; 

    [closestDist,ind]=min(backUpDist); 

    blocksOfPoints(kk,ind)=permeabilitiesVec(kk,1); 

    backUpDist(1,ind)=inf; 

    [closestDist2,ind2]=min(backUpDist); 

    if closestDist2==closestDist 

        blocksOfPoints(kk,ind2)=permeabilitiesVec(kk,1); 

        backUpDist(1,ind2)=inf; 

        [closestDist3,ind3]=min(backUpDist); 

        if closestDist3==closestDist2 

            blocksOfPoints(kk,ind3)=permeabilitiesVec(kk,1); 

            backUpDist(1,ind3)=inf; 

            [closestDist4,ind4]=min(backUpDist); 

            if closestDist4==closestDist3 

                blocksOfPoints(kk,ind4)=permeabilitiesVec(kk,1); 

                backUpDist(1,ind4)=inf; 

                [closestDist5,ind5]=min(backUpDist); 

                if closestDist5==closestDist4 

                    blocksOfPoints(kk,ind5)=permeabilitiesVec(kk,1); 

                    backUpDist(1,ind5)=inf; 

                    [closestDist6,ind6]=min(backUpDist); 
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                    if closestDist6==closestDist5 

                        blocksOfPoints(kk,ind6)=permeabilitiesVec(kk,1); 

                        backUpDist(1,ind6)=inf; 

                        [closestDist7,ind7]=min(backUpDist); 

                        if closestDist7==closestDist6 

                            blocksOfPoints(kk,ind7)=... 

                                permeabilitiesVec(kk,1); 

                            backUpDist(1,ind7)=inf; 

                            [closestDist8,ind8]=min(backUpDist); 

                            if closestDist8==closestDist7 

                                blocksOfPoints(kk,ind8)=... 

                                    permeabilitiesVec(kk,1); 

                                backUpDist(1,ind8)=inf; 

                                [closestDist9,ind9]=min(backUpDist); 

                                if closestDist9==closestDist8 

                                    blocksOfPoints(kk,ind9)=... 

                                        permeabilitiesVec(kk,1); 

                                    backUpDist(1,ind9)=inf; 

                                    [closestDist10,ind10]=min(backUpDist); 

                                    if closestDist10==closestDist9 

                                    fprintf('Something is wrong'); 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 
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jj=1; 

error=zeros(counterNew,1); 

%{ 

while jj<=counterNew 

    forError=0; 

    uu=1; 

    for ii=1:1:permXi 

        if blocksOfPoints(ii,jj)~=0; 

           forError(uu,1)=blocksOfPoints(ii,jj); 

           uu=uu+1; 

        end 

    end 

    error(jj,1)=std(forError); 

    checkerFinal{jj,1}=forError; 

    jj=jj+1; 

end 

%} 

% Calculating of error for each block 

while jj<=counterNew 

    forError=0; 

    uu=1; 

    for ii=1:1:permXi 

        if blocksOfPoints(ii,jj)~=0; 

           forError(uu,1)=blocksOfPoints(ii,jj); 

           uu=uu+1; 

        end 

    end 

    for ht=1:1:size(minLim,1) 

        if forError(1,1)>=minLim(ht,1) && forError(1,1)<=maxLim(ht,1) 

            blockMin=minLim(ht,1); 

            blockMax=maxLim(ht,1); 

        end 
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    end 

    ug=0; 

    for hk=1:1:size(forError) 

        if forError(hk,1)>=blockMin && forError(hk,1)<=blockMax 

            ug=ug+1; 

        end 

    end 

    if ug==size(forError,1) 

        error(jj,1)=0; 

    elseif ug<size(forError,1) 

        error(jj,1)=std(forError); 

    else fprintf('Something is wrong'); 

    end 

    checkerFinal{jj,1}=forError; 

    jj=jj+1; 

    uu=1; 

    forError=0; 

end 

finalError=sum(error); 

permMean=zeros; 

% Finding of means of permeabilities in each block 

for ij=1:1:counterNew 

    khm=checkerFinal{ij,1}; 

    permMean(ij,1)=mean(khm); 

end 

% If mean is zero, setting block permeability as mean of surrounding 

% permeability points (at 1.5*maxDist distance) 

fin=inpolygon(xFinal,yFinal,resVertX,resVertY); 

fin=fin+0; 

for ki=1:1:size(permMean,1) 

    if permMean(ki,1)<0.001 && fin(ki,1)==1 

        xyFinal=[xFinal(ki,1),yFinal(ki,1)]; 
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        permDist=pdist2(permFieldVec,xyFinal); 

        forMean=zeros; 

        kf=1; 

        for jah=1:1:size(permDist,1) 

            if permDist(jah,1)<=1.5*maxDist 

                forMean(kf,1)=permeabilitiesVec(jah,1); 

                kf=kf+1; 

            end 

        end 

        permMean(ki,1)=mean(forMean); 

    end 

end 

% Changing permeabilities outside of reservoir from 0.001 to 0 

for ka=1:1:size(permMean,1) 

    if permMean(ka,1)>0 && permMean(ka,1)<1 && fin(ka,1)~=1 

        permMean(ka,1)=0; 

    end 

end 

% Check blocks on fault and assign faultPerm values to these blocks 

if faultCount>0 

    for up=1:1:size(xFinal,1) 

        for do=1:1:size(fault,1) 

            if xFinal(up,1)==fault(do,1) && yFinal(up,1)==fault(do,2); 

                permMean(up,1)=faultPerm; 

            end 

        end 

    end 

end 

  

fprintf('GridPointX GridPointY GridPointZ\n'); 

for ik=1:1:counterNew     

    fprintf('%g %g %g\n', xFinal(ik,1), yFinal(ik,1), permZvec(1,1)); 
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end 

fprintf('BlockAveragePermeabilitity in x-direction\n'); 

for il=1:1:counterNew 

    fprintf('%g\n',permMean(il,1)); 

end 

fprintf('BlockAveragePermeabilitity in y-direction\n'); 

for ir=1:1:counterNew 

    fprintf('%g\n',permMean(ir,1)*kykxrel); 

end 

if horWellCount>0 

    fprintf('You have %g horizontal wells\n', horWellCount); 

    for ks=1:1:horWellCount 

        fprintf('Horizontal well #%g gridpoints:\n', ks); 

        xForPrint=horWellPoints{ks,1}; 

        yForPrint=horWellPoints{ks,2}; 

        for ru=1:1:size(xForPrint,1) 

            fprintf('%g %g\n', xForPrint(ru,1), yForPrint(ru,1)); 

        end 

    end 

end 

  

% Showing result 

reg1verX=[3200; 3200; 4400; 5500; 4000; 4000; 3200]; 

reg1verY=[0; 4500; 6000; 4250; 3000; 0; 0]; 

  

% Changing region vertices to align with reservoir 

reg1verX=reg1verX-min(resVertX); 

reg1verY=reg1verY-min(resVertY); 

boc=[0, 0.5, 0]; 

  

voronoi(xFinal,yFinal); 

hold on 



 

191 

 

fill(resVertX,resVertY,boc,'FaceAlpha',0.2); 

hold on 

fill(reg1verX,reg1verY,boc,'FaceAlpha',0.1); 

hold off 

  

%{ 

% Main showing result 

boc=[0, 0.5, 0]; 

  

voronoi(xFinal,yFinal); 

hold on 

fill(resVertX,resVertY,boc,'FaceAlpha',0.2); 

hold off 

%} 

  

if horWellCount > 0 

    save 280815case4results.mat xFinal yFinal permeabilitiesVec permXvec 

permYvec allGens permMean horWellPoints finalError 

else 

    save 280815case4results.mat xFinal yFinal permeabilitiesVec permXvec 

permYvec allGens permMean finalError 

end 
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APPENDIX B 

 

 

CASE 2 FLUID FLOW SIMULATION RUN 

 

 

 

This appendix includes fluid flow simulation run pictures for case #2. Inputs for 

fluid flow simulation run were grid blocks and permeabilities discussed in sub-

chapter 8.2.2, one vertical well in the middle of reservoir producing at 100 stb/d for 

50 days. Initial reservoir pressure was chosen to be 3044 PSI.  Time step was chosen 

as 5 days, so there are 10 pictures showing propagation of pressure disturbance after 

5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 days. 

 

 

 

Figure B.1. Pressure distribution after 5 days. 
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Figure B.2. Pressure distribution after 10 days. 

 

 

Figure B.3. Pressure distribution after 15 days. 
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Figure B. 4. Pressure distribution after 20 days. 

 

 

Figure B. 5. Pressure distribution after 25 days. 
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Figure B.6. Pressure distribution after 30 days. 

 

 

Figure B.7. Pressure distribution after 35 days. 
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Figure B.8. Pressure distribution after 40 days. 

 

 

Figure B.9. Pressure distribution after 45 days. 
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Figure B.10. Pressure distribution after 50 days. 
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APPENDIX C 

 

 

CASE 3 FLUID FLOW SIMULATION RUN 

 

 

 

This appendix includes fluid flow simulation run for case #3. Inputs for fluid flow 

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.3, 

one vertical well in the middle of reservoir producing at 100 stb/d for 50 days. Initial 

reservoir pressure was chosen to be 3044 PSI.  Timestep was chosen as 5 days, so 

there are 10 pictures showing propagation of pressure disturbance after 5, 10, 15, 20, 

25, 30, 35, 40, 45 and 50 days. 

 

 

 

Figure C.1. Pressure distribution after 5 days. 
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Figure C.2. Pressure distribution after 10 days. 

 

 

Figure C.3. Pressure distribution after 15 days. 
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Figure C.4. Pressure distribution after 20 days. 

 

 

Figure C.5. Pressure distribution after 25 days. 
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Figure C.6. Pressure distribution after 30 days. 

 

 

Figure C.7. Pressure distribution after 35 days. 

 



 

203 

 

 

Figure C.8. Pressure distribution after 40 days. 

 

 

Figure C.9. Pressure distribution after 45 days. 
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Figure C.10. Pressure distribution after 50 days. 
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APPENDIX D 

 

 

CASE 4 FLUID FLOW SIMULATION RUN 

 

 

 

This appendix includes fluid flow simulation run for case #4. Inputs for fluid flow 

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.4, 

one vertical well in the middle of reservoir producing at 100 stb/d for 50 days. Initial 

reservoir pressure was chosen to be 3044 PSI.  Timestep was chosen as 5 days, so 

there are 10 pictures showing propagation of pressure disturbance after 5, 10, 15, 20, 

25, 30, 35, 40, 45 and 50 days. 

 

 

 

Figure D.1. Pressure distribution after 5 days. 
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Figure D.2. Pressure distribution after 10 days. 

 

 

Figure D.3. Pressure distribution after 15 days. 
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Figure D.4. Pressure distribution after 20 days. 

 

 

Figure D.5. Pressure distribution after 25 days. 
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Figure D.6. Pressure distribution after 30 days. 

 

 

Figure D.7. Pressure distribution after 35 days. 
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Figure D.8. Pressure distribution after 40 days. 

 

 

Figure D.9. Pressure distribution after 45 days. 
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Figure D.10. Pressure distribution after 50 days. 
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APPENDIX E 

 

 

CASE 5 FLUID FLOW SIMULATION RUN 

 

 

 

This appendix includes fluid flow simulation run for case #5. Inputs for fluid flow 

simulation run were grid blocks and permeabilities discussed in sub-chapter 8.2.5, 

one vertical well in the middle of reservoir producing at 100 stb/d for 5 days. Initial 

reservoir pressure was chosen to be 3044 PSI.  Timestep was chosen as 0.5 days, so 

there are 10 pictures showing propagation of pressure disturbance after 0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5 and 5 days. 

 

 

 

Figure E.1. Pressure distribution after 0.5 days. 



 

212 

 

 

Figure E.2. Pressure distribution after 1 day. 

 

Figure E.3. Pressure distribution after 1.5 days. 
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Figure E.4. Pressure distribution after 2 days. 

 

 

Figure E.5. Pressure distribution after 2.5 days. 
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Figure E.6. Pressure distribution after 3 days. 

 

 

Figure E.7. Pressure distribution after 3.5 days. 
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Figure E.8. Pressure distribution after 4 days. 

 

 

Figure E.9. Pressure distribution after 4.5 days. 
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Figure E.10. Pressure distribution after 5 days. 


	Figure 3.2. Example of local grid refinement (modified from the Kilic and Ertekin, 2003).

