
AN APPROACH FOR INTRODUCING A SET OF DOMAIN SPECIFIC
COMPONENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İBRAHİM ONURALP YİĞİT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2015

Approval of the thesis:

AN APPROACH FOR INTRODUCING A SET OF DOMAIN SPECIFIC
COMPONENTS

submitted by İBRAHİM ONURALP YİĞİT in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Ali Hikmet Doğru
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Prof. Dr. Ali Hikmet Doğru
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Assoc. Prof. Dr. Vahid Garousi
Computer Engineering Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: İBRAHİM ONURALP YİĞİT

Signature :

iv

ABSTRACT

AN APPROACH FOR INTRODUCING A SET OF DOMAIN SPECIFIC
COMPONENTS

YİĞİT, İBRAHİM ONURALP
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ali Hikmet Doğru

September 2015, 52 pages

In this thesis, a preliminary methodology is proposed for the determination of a set of
components to populate the domain model of a Software Product Line infrastructure.
Software Product Line based approaches focus on the reusability of assets for a family
of software products. For effective reuse, the definition of reusable assets in this thesis
considers variability in a domain. The approach is based on variability specifications
that is rooted in Feature Models and is reflected to a component modeling notation
that addresses variability, namely VCOSEML. An initial set of components is ac-
quired from a feature model and is modified with respect to feature constraints and
design metrics corresponding to coupling, cohesion, and size oriented complexity. A
component set is refined through modifications, following an iterative methodology
until the developers are satisfied. The goal is to achieve a set that supports reusability
– consequently to arrive at quickly converging and manageable designs through com-
ponent assignments to required features. A case study is utilized in the validation of
the approach.

Keywords: Software Product Line, Variability Management, Domain Specific Com-
ponents, Software Reuse

v

ÖZ

ALANA ÖZGÜ BİLEŞEN KÜMESİNİ ORTAYA ÇIKARMAK İÇİN BİR
YAKLAŞIM

YİĞİT, İBRAHİM ONURALP
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali Hikmet Doğru

Eylül 2015 , 52 sayfa

Bu tez çalışmasında yazılım ürün hattı altyapısını oluşturacak alana özgü bileşenleri
belirlemek için bir ön yaklaşım önerilmektedir. Yazılım ürün hattı, bir yazılım ürün
ailesindeki varlıkların yeniden kullanımına odaklanan bir yaklaşımdır. Etkili yeni-
den kullanımı için yeniden kullanılabilir varlıklar alandaki değişkenlikler göz önüne
alınarak belirlenmektedir. Önerilen yaklaşım, özellik modellerindeki değişkenlik ta-
nımlamalarına ve değişkenliğin bileşen modelindeki notasyona yansıtılmasına dayan-
maktadır. Ortaya çıkan ilk bileşen kümesi özellik modelinde yer alan kısıtlara ve ba-
ğımlılık, uyum, büyüklük odaklı karmaşıklık gibi tasarım ölçütlerine göre elde edil-
mektedir. Bileşen kümesindeki değişiklikler geliştiricilerin ihtiyaçlarını karşılayacak
bir bileşen kümesi elde edinceye kadar yinelemeli bir şekilde devam etmektedir. Bu
yaklaşımın amacı, yeniden kullanıma uygun, hızlıca yakınsayan ve yönetilebilir bile-
şen kümesine ulaşmaktır. Yaklaşımı doğrulamak için bir vaka çalışmasından yararla-
nılmaktadır.

Anahtar Kelimeler: Yazılım Ürün Hattı, Değişkenlik Yönetimi, Alana Özgü Bileşen-
ler, Yeniden Kullanım

vi

To My Family

vii

ACKNOWLEDGMENTS

I would like thank my advisor Ali Hikmet Doğru, for his advice, motivation, patience
and supervision during my research. I would offer sincere thank to my family for
being supportive through all my life.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Overview of Software Product Lines 1

1.2 Variability in Software Product Lines 2

1.3 Motivation . 2

1.4 Related Works . 3

1.5 Thesis Organization . 5

2 BACKGROUND . 6

2.1 Software Reuse . 6

ix

2.2 Software Product Line Engineering 8

2.3 Variability Management in Software Product Line Engineering 10

2.4 Variability Modeling . 11

2.5 Software Metrics at Design Level 13

2.5.1 COSMIC Functional Size Measurement Method . 13

2.5.2 Coupling and Cohesion Metrics 15

2.5.3 Complexity Metrics 16

3 PROPOSED SOLUTION . 18

3.1 VCOSEML . 18

3.2 Tool Support . 21

3.2.1 FeatureIDE . 21

3.2.2 VCOSECASE . 22

3.3 Definition of Domain Specific Components Approach 24

3.3.1 Map Feature Model to Abstractions 25

3.3.2 Embed Feature Variability in Abstractions 25

3.3.3 Define Domain Specific Components 25

3.3.4 Evaluate the Set of Domain Specific Components . 31

4 CASE STUDY . 32

4.1 Overview of Cloud Management Domain 32

4.2 Definition of Component Set in Cloud Management Domain 34

4.3 Evaluation of Component Set 37

x

5 DISCUSSION . 42

6 CONCLUSION AND FUTURE WORK 44

6.1 Conclusion . 44

6.2 Future Work . 45

REFERENCES . 46

APPENDIX

A USER MANUAL . 50

xi

LIST OF TABLES

TABLES

Table 3.1 COSEML symbols and their meanings (from [11]) 19

Table 4.1 Results of COSMIC FSM method 38

Table 4.2 Dependency measurement results 40

xii

LIST OF FIGURES

FIGURES

Figure 2.1 The incremental adoption of software reuse: modified from [21] . . 7

Figure 2.2 SPLE phases (adapted from [37]) 9

Figure 2.3 Essential activities of SPLE according to [35] 10

Figure 2.4 An example feature model (from [7]) 13

Figure 2.5 Data movements of COSMIC method (from [15]) 14

Figure 3.1 VCOSEML variability symbols 20

Figure 3.2 Example component model of VCOSEML 21

Figure 3.3 FeatureIDE screenshot that displays a feature model (from [41]) . . 22

Figure 3.4 An example screen of VCOSECASE 23

Figure 3.5 Overview of the proposed approach 24

Figure 3.6 An example case for design rule 1 26

Figure 3.7 An example case for design rule 2 27

Figure 3.8 An example case for design rule 3 27

Figure 3.9 An example case for design rule 4 28

Figure 3.10 An example case for design rule 5 29

Figure 3.11 An example case for design rule 6 30

Figure 3.12 An example case for design rule 7 30

Figure 3.13 An example case for design rule 8 31

Figure 4.1 Overview of cloud management domain 32

xiii

Figure 4.2 Feature model of cloud management system 33

Figure 4.3 First level abstraction of the cloud management system 34

Figure 4.4 Decomposition of Monitor package 35

Figure 4.5 Decomposition of DataManagement package 35

Figure 4.6 Decomposition of EventManagement package 36

Figure 4.7 Decomposition of Optimization package 36

Figure 4.8 Component relationship diagram of cloud management system . . . 39

Figure A.1 Select an element for managing variability 50

Figure A.2 Define a new variability point . 51

Figure A.3 Define a new variant . 51

Figure A.4 Define variability constraints . 52

xiv

LIST OF ABBREVIATIONS

ACC Average Coupling Complexity

ANMC Average Number of Methods per Component

CASE Computer Aided Software Engineering

CCBC Coupling Complexity of Black Box Component

CCM Component Complexity Metric

CCom Cohesion Between Components

CD Component Dependency

CFP COSMIC Function Point

COSE Component Oriented Software Engineering

COSECASE COSE Computer Aided Software Engineering Tool

COSEML COSE Modeling Language

COSMIC Common Software Measurement International Consortium

COVAMOF ConIPF Variability Modelling Framework

CRG Component Relational Graph

CuCom Coupling Between Components

FOSD Feature Oriented Software Development

FP Function Point

FSM Functional Size Measurement

IC Interface Coupling

IDE Integrated Development Environment

IIc Number of Incoming Interfaces

OIc Number of Outgoing Interfaces

OVM Orthogonal Variability Modeling

SPL Software Product Line

SPLE Software Product Line Engineering

TNC Total Number of Components

TNIC Total Number of Implemented Components

TNL Total Number of Links

xv

UML Unified Modeling Language

VCOSECASE COSECASE with Variability

VCOSEML COSE Modeling Language with Variability

xvi

CHAPTER 1

INTRODUCTION

Nowadays, Software reuse is one of the most critical factors in improving quality

and productivity [4]. From the software engineering point of view, software reuse is

more efficient when systematically planned and managed for a set of applications in a

specific domain. For that reason, software product family is developed for a domain,

instead of creating software from scratch for each project. In this way, companies can

not only quickly respond to the different requests from the customer but also put a

new product on the market in a short period of time.

1.1 Overview of Software Product Lines

Companies race against each other for becoming the leader of the software market.

To win the race, software developing companies must not only cope with the pace of

market demands but also decrease time to market and the development costs. Thus,

the researchers in the software engineering world have focused on finding new ap-

proaches in order to solve these problems. To this end, a new approach, namely Soft-

ware Product Line (SPL), has been proposed inspiring of the product line concept,

which is the invention of Henry Ford, in the automotive industry.

Software Product Line is a popular approach in software engineering because of de-

velopment with reuse [28]. An SPL is "a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific needs of a particular mar-

ket segment or mission and that are developed from a common set of core assets in

a prescribed way" [9]. The set of features specifies the particular needs of a market

1

segment. Software products are developed from a common set of core assets. Also,

Software Product Line Engineering (SPLE) is a methodology for producing software

products at lower cost, using less time and with a higher quality [37]. The crucial aim

of the SPL approach is to improve reuse systematically. For successful SPLE, de-

veloping a set of core assets deals with commonality and variability among software

product family [8]. Consequently, a suitable environment for reuse of core assets

needs to be developed.

1.2 Variability in Software Product Lines

SPLE manages commonality (what is common) and variability (what differs between

products in a family) [34]. Variability management is one of the most significant and

critical issues in SPLs. There is an important difference between SPL and traditional

approaches to software development. In the traditional software development, vari-

ability in time is managed in a single system [37]. On the other hand, variability in

time is not enough for SPLE. Moreover, SPLE handles variability in space [37]. Both

variability in time and space brings out a complicated configuration problem. Also,

SPLE tries to solve the problem of configuration management.

Variability modeling defines methods that show the variability between software prod-

ucts in a family in order to assist engineers in work of variability management [39].

Variability in SPLs is modeled by several modeling methods such as Orthogonal Vari-

ability Modeling (OVM) [37], COVAMOF [10], and feature modeling [27]. Feature

modeling is discussed in Chapter 2.

1.3 Motivation

SPL methodology empowers large scale manufacturing of a family of related software

products in the software industry, and it proposes a systematic reuse strategy that cov-

ers all phases of software development. Notably, domain design phase is highlighted

as a significant point to develop reusable assets. Uncontrolled variability between

reusable assets in an SPL finishes off the potential benefits of domain commonal-

2

ity and decreases the effectiveness of domain variability handling [28]. Therefore,

variability in a domain must be taken into account while defining reusable assets.

Otherwise, it is clear that unproductive systematic reuse damages the advantages of

SPL approach and threatens the overall quality of an SPL.

Definition of domain specific components is a critical aspect of SPLE. However, the

existing methodologies do not present a systematic way of how to define the set of do-

main specific components. In this thesis, we propose a primary methodology for the

determination of a set of components to populate the domain model of an SPL infras-

tructure. This research presents an approach based on a well-defined set of principles,

guidelines, and metrics. Moreover, the proposed approach makes it possible to ex-

ploit the commonality and manage variability in both problem and solution space. A

case study is utilized in the validation phase of the approach, as well.

The motivation of this thesis is to construct a procedure to define domain specific

components for SPLs. The main contribution of the study is to propose a preliminary

approach to determine a set of components to populate the domain model of an SPL

infrastructure. The objectives of this thesis study can be summarized as follows:

1. Explore how to manage variability in the existing SPL methodologies.

2. Create a new tool to model a set of components with representing variability.

3. Propose a new methodology to define a set of components for a specific domain.

4. Evaluate a determined set of components in terms of reusability.

1.4 Related Works

There are some similarities between this study and the work of Ileri et. al. [25] in

which they introduce a component-based variability modeling approach to manage

variability in a component model with Component Relational Graphs (CRG). In ad-

dition, their approach handles commonality and variability among components within

a given domain, in terms of both problem and solution spaces. On the other hand, the

study comes up with a solution for only the component variability. The proposed ap-

3

proach does not provide a guideline for the determination of components in a product

line. Also, tool support for variability representation is left as a future work.

In the study of Asikainen et. al. [1], a similar approach for modeling software product

families is presented. The approach introduced by Koalish, which is a modeling

language that extends Koala [44], is a component model and architecture. Koalish

provides a method to deal with modeling and configuring components and interfaces,

by taking the variability concept into account. Also, this study provides a variability

resolution technique at compile time. Nevertheless, the approach does not have a

useful mechanism for modeling composition variability.

In the work of Haber et. al. [23], a hierarchical approach is introduced to man-

age variability by extending MontiArc architectural description language. This study

defines a variability modeling approach that supports the component-based systems.

MontiArc represents the component variability with a hierarchical structure. More-

over, this study provides a tool support for hierarchical modeling. Although the tool

has the capability to be modeled in solution space, this study is planned to support the

modeling problem with space variability as a future work. Also, this approach lacks

in handling variability in components and composition among components.

In another study conducted by Bayraktar, a method for representing variability in

components is proposed by relating them with the OVM, which provides a separate

model for managing variability [5]. The method introduces an approach to manage

variability information for different configuration of products and trace variability be-

tween versions. Moreover, the tool supports OVM in the scope of this study. There-

fore, this method is appropriate for component-based software systems to create soft-

ware product family models. Nevertheless, the method does not address a solution

for defining an appropriate set of domain specific components.

In a recent study by Balci, a new method is proposed to create a reference architecture

for component-based SPLE [2]. The study focused not only on creating component-

based reference architecture but also managing variability among components in the

infrastructure of SPL. Also, a new tool which is called X-MAN Reference Architec-

ture Tool is developed for constructing a reference architecture. Although this tool

works well for handling the main types of features, it does not support variability

4

constraints among features.

1.5 Thesis Organization

In Chapter 2, some background information is given to provide a better understanding

of the main topic of this thesis study. The proposed solution for the definition of

domain specific components is explained in Chapter 3. In Chapter 4, a case study

conducted in cloud management domain will be explained. The experimental study

to evaluate the approach is discussed in Chapter 5. Finally, conclusion and future

work is expressed in Chapter 6.

5

CHAPTER 2

BACKGROUND

In this chapter, the fundamental concepts which provide a basis for this thesis are

studied in detail. First of all, Software Reuse is introduced. Secondly, Software Prod-

uct Line Engineering and its general principles are examined. After that, “Variability

Management” and “Variability Modeling” terms in Software Product Line Engineer-

ing are given details. Finally, software metrics at design level is briefly explained.

2.1 Software Reuse

Software reuse is the concept of developing software using existing software pieces

instead of building from scratch [32]. Software reuse is not limited to using only the

source code of the previously developed software while building a different software.

All assets that arise during the software development process can be converted into

reusable assets [38]. Software architecture, requirements, design, test descriptions,

and documents are examples of reusable assets in software projects [3, 6].

In recent years, scope and complexity of the software-intensive systems have grown

dramatically. Software companies have been in constant struggle to find better ways

to decrease time to market, cost and effort of the software development. Software

reuse is the most reasonable solution to this problem. Software companies utilize

software reusability approaches, for the simple reason that software reuse provides

many advantages for developing large scale software systems. As stated in [36], these

advantages can be summarized as follows:

6

• Reduce effort, time and cost of development,

• Improve productivity and quality of products,

• Increase reliability of products,

• Decrease maintenance cost.

Consequently, software reuse is an attractive approach for many organizations.

Experience indicates that there are five phases of software reuse for an organization

[21] (See Figure 2.1). Each phase increases the reusability with respect to its prede-

cessor stage. As a result, upper level run phase of software reuse corresponds to in-

creased benefits in terms of time to market, cost, and quality because of the improved

usage rate of reusable assets. Increased level of software reuse not only accelerates

the product development stage, but also reduces development costs and increases end

product quality [20].

Figure 2.1: The incremental adoption of software reuse: modified from [21]

“Pervasive domain-specific reuse” is seen to be the most effective software reuse

level, when the adoption levels of software reuse are examined [14]. The scope of the

domain should be set out clearly in order to reach the highest level software reuse.

7

Hence, the domain is analyzed for discovering the commonality and variability in

the domain. After the domain analysis, domain specific architecture and components

are defined by considering the commonality and variability in the domain. Hereupon

software products are being developed in accordance with the domain specific archi-

tecture by using domain specific components.

There are two types of software reuse; opportunistic reuse and systematic reuse.

Opportunistic reuse defines that new software is developed from existing software.

However, existing software is modified to satisfy variable customer needs of the new

software [31]. Systematic reuse provides the guarantee of software reuse through

descriptions, responsibilities and tasks for a particular organization [19]. In system-

atic reuse, a new software is developed to utilize reusable assets such as architecture,

and components. Moreover, reusable assets can enhance the profit of software reuse.

Today, opportunistic reuse is replaced with systematic reuse. Organizations prefer

systematic reuse to opportunistic reuse because systematic reuse brings more benefits

than opportunistic reuse.

2.2 Software Product Line Engineering

Nowadays, large-scale software intensive systems are being developed as a product

family instead of a single product. The product family brings flexibility to meet var-

ious customer requirements. Also, it reduces development time for producing new

products. Software Product Line is a popular approach regarding product family in

software engineering due to the advantages that it offers to software development

time, cost and effort [22]. The main purpose of SPLs is to meet quickly variable cus-

tomer/market requirements. Moreover, SPLs intend to develop particular products at

lower cost and with less effort.

Software Product Line Engineering (SPLE) is a methodology that leads to high-level

reuse with a systematical way. SPLE handles commonality and variability among

software products for the product family [43]. SPLE makes use of domain knowledge

to exploit commonality and variability between the products for creating reusable el-

ements. Reusable elements in an SPL are named as “core assets” that are particular to

8

a domain. Core assets that generate the skeleton of an SPL are created by considering

commonality and variability in the domain. Besides, SPLE emphasizes the fact that

new product must be developed by using the core assets.

SPLE is composed of two phases: Domain Engineering and Application Engineer-

ing for reuse and development with reuse [42]. As shown in Figure 2.2, Domain

Engineering is a phase that is composed of domain analysis, domain design, domain

realization, and domain testing processes in order to develop core assets. All of the

core assets constitute the infrastructure of the product line. On the other hand, Appli-

cation Engineering briefly defines a development process where software products are

produced from reusable core assets. Application Engineering consists of four main

processes, namely; application requirement engineering, application design, appli-

cation realization, and application testing. As a summary, Application Engineering

phase yields the end products that are built on the core assets which are created in Do-

main Engineering phase. SPLE does not consist of only two primary phases. SPLE

Figure 2.2: SPLE phases (adapted from [37])

describes three essential activities: Core Asset Development, Product Development,

and Management. Figure 2.3 represents these three essential activities of SPLE. Core

Asset Development is corresponds to Domain Engineering Phase, whereas Product

Development is equivalent to Application Engineering phase. Management is also an

9

essential activity to manage the development activities in both technical and organi-

zational point of view. If the roles and responsibilities are appropriate to administer

the organization aspect of SPLE, the organization must be successful in the applica-

tion of SPL [42]. Furthermore, the activities affect each other, and they arise from

interaction [35].

Figure 2.3: Essential activities of SPLE according to [35]

2.3 Variability Management in Software Product Line Engineering

Variability defines how different products can be changed or customized in SPLs and

is the center element of SPLE [43]. Variation points and variants recognize the vari-

ability of SPL [2]. There are two types of variations, which are variation in time and

space [24]. Variation in time is associated with the specific products that have dif-

ferent versions. On the other hand, variability in space is identified by two particular

products in a family with variants which is present in various releases.

Variability management is about handling the introduction, use, and evolution of vari-

ability [39]. Managing variability among software products of a family is one of the

most significant activity in SPLE. Variability between particular products of a fam-

ily must be administered in a systematical way. Moreover, variability management

10

covers all development processes from requirement engineering to testing. However,

increasing the number of variations among the products is in parallel with the enlarg-

ing size and complexity of the products. Therefore, variability management turns into

a complicated task in order to deal with commonality and variability in a product line.

Variability management consists of the set of activities that are used to determine and

organize commonality and variability in product families. SPLE deals with emerging

domain specific products, taking commonality and variability into consideration [8].

For developing software products by using core assets, domain engineers must detect

and manage variability between software products.

2.4 Variability Modeling

Variability modeling is a method to represent variability among software products of

a domain. The concept not only provides an understanding of variability but also

assists domain engineers in the task of variability management [39]. Variability mod-

eling expresses common and variable parts in SPLs. Moreover, it defines constraints

between variable parts explicitly. Variability management plays a significant role

in both phases of SPLE, domain engineering and application engineering. Conse-

quently, variability modeling should be employed for both phases. There are numer-

ous approaches for variability modeling such as feature modeling, COVAMOF [10],

and OVM [37]. Feature modeling is used in the scope of this thesis. For this reason,

feature modeling is discussed in the following paragraphs.

A feature describes a software property and represents functionality in a domain [26].

A feature model as represented in a hierarchical tree structure is a composition of

mandatory, optional, and alternative features [26]. Also, feature model is a powerful

notion of handling the complexity in SPLs. From the end user view, the model pro-

vides a presentation of the characteristics in a domain. Essentially, it consists of the

common features and variations of software products in a domain. Thus, variability

modeling with feature modeling is one of the key strategies for indicating the problem

space of SPLs.

There are four groups of feature types that categorize the association between a parent

11

feature and a child feature. These feature types are explained as follows:

• Mandatory represents the features that must be in every possible configuration

of particular products.

• Optional demonstrates that the features can either be or not be a part of the

specific product.

• Or signifies that at least one of the child features must be selected for the par-

ticular products.

• Alternative displays that only one of the child feature has to be selected for the

product derivation.

Variation points and variants express feature variability. A variation point defines

what can vary in a feature [37]. A variant specifies how a feature can vary [37].

Every variation point has a set of related variants that determine how the variation

point can be resolved [23].

Feature variability also defines two kinds of constraints between features: requires

and excludes [18].

• Requires constraint: If a feature A is selected to be a part of a configuration,

then also feature B has to be selected.

• Excludes constraint: If a feature A is selected to be a part of a configuration,

then feature B cannot be selected.

Figure 2.4 represents a case of feature model with the description and the relationship

between features. Commonalities are displayed using "mandatory" and "or" features

in a domain while variability is represented via not only "optional" but also "alterna-

tive" features.

12

Figure 2.4: An example feature model (from [7])

2.5 Software Metrics at Design Level

Software measurement is one of the crucial points in Software Engineering in order

to provide clear information about the achievement of a determined goal. Software

estimation effort is a series of actions to forecast the size of a software product in order

to achieve the desired result [15]. Also, it is utilized as a part of the estimation that

people need to devote some time on for software projects to be successful. Decision

makers must be acquainted with the exact size of a software product to control and

organize the software development life cycle.

Software metrics play a significant role in detecting errors at the design level of soft-

ware development life cycle. The detected errors can be prevented at an early stage of

software development process thanks to software measurements at the design level. In

this thesis, we suggest that the determined set of domain specific components should

be evaluated in terms of complexity size, coupling and cohesion metrics. Therefore,

software metrics at design level will be shortly introduced.

2.5.1 COSMIC Functional Size Measurement Method

COSMIC is a method, which was founded by The Common Software Measurement

International Consortium (COSMIC) group in 1998, to measure the functional size

of a component [13]. The COSMIC group proposed a new method to measure the

13

functional size of a software based on functional user requirements [17]. The new

method can be utilized in not only embedded but also enterprise software products

[16]. The studies indicate the suitability of COSMIC method for measuring functional

component size at the design level [15].

Figure 2.5: Data movements of COSMIC method (from [15])

Data movements of COSMIC method are represented in Figure 2.5. Each data move-

ment is equal to 1 COSMIC Function Point (CFP). Data movement types are ex-

plained as follows:

• Entry (E): The data group flows from the functional users beyond the boundary

into the functional process layer.

• Exit (X): The data group flows from the functional process beyond the bound-

ary to the functional users.

• Read (R): The data group flows from the persistence storage to the functional

process.

• Write (W): The data group flows from the functional process into the persis-

tence storage.

14

The data movements are counted for each functional process in order to calculate CFP.

The CFP of each data movement types is summed up to get the size of the functional

process. As the result of this calculation, the total function size is computed for a

software product.

FunctionalSize(process)i =
∑

Ei+
∑

Xi+
∑

Ri
∑

Wi (2.1)

2.5.2 Coupling and Cohesion Metrics

It is preferred to have components which are less dependent on each other as much as

possible. In order to reach high quality and ease of the maintenance software prod-

ucts, software engineers should devise a component set according to two perspectives

that are coupling and cohesion. Therefore, the determined set of components should

be evaluated considering the low coupling and high cohesion principles.

Coupling between components (CuCom) is a design metric to calculate coupling for

each component [45]. CuCom indicates the dependency of a component to other

components.

CuCom = CD + IC (2.2)

CuCom: Coupling between components

CD: Component dependency

IC: Interface coupling, which is the number of inflows of a component

Coupling complexity of a black box component and average coupling complexity are

other design metrics to measure coupling for a component based system [33]. These

design metrics are given as follows:

CCBC = IIc+OIc (2.3)

ACC =
n∑

i=1

CCBCi

n
(2.4)

CCBC: Coupling complexity of a black box component

15

IIc: Number of incoming or required interfaces

OIc: Number of outgoing or required interfaces

ACC: Average coupling complexity

n: Number of components

In the study of Yadav et. al. [45], Cohesion between components (CCom) is a de-

sign metric that can be utilized to compute cohesion for each component in the set.

CCom metric points out the relevancy between the components. We are following the

cohesion concept as introduced in this study.

CCom =


CCM = 0 if CC = TIC

CCM = 1 if CC = 0∑n
i=1

CCi
TIC

Otherwise

(2.5)

TIC: Total number of interfaces between other components

CC: Number of caller components

CCM: Component complexity metric

n: Number of components

2.5.3 Complexity Metrics

Complexity metrics can be used to measure and evaluate the design model composed

of domain specific components. The metrics provide a way to predict both maintain-

ability and integrability of software product line infrastructure at the design level. The

structural complexity of each component depends not only on the functional size but

also on the attributes such as the set of components, connectors between components,

interfaces of each component, and composition tree [30].

There are two complexity metrics for predicting maintenance and integration efforts

at design level. One of them is Correction Effort per Component in order to mea-

sure component maintainability [40]. The following regression model can be used to

16

calculate maintenance effort for a set of components.

Correction Effort = exp(-0.02*TNC + 0.07*TNIC + 0.02*ANMC - 2.37) (2.6)

TNC: Total number of components

TNIC: Total number if implemented components

ANMC: Average number of methods per component

Another complexity metric is Integration Effort to compute the total effort spent on

integration among components while building the end software product [40]. The fol-

lowing regression model can be utilized to measure integration effort for a component-

based product line using only the number of links between components.

Integration Effort = 0.1 * TNL + 2.6 (2.7)

TNL: Total number of links

17

CHAPTER 3

PROPOSED SOLUTION

In this chapter, the proposed component modeling language for variability manage-

ment, basic information about the tool selected for feature modeling and the new

tool created for a component model are explained. Finally, the proposed solution is

discussed in detail.

3.1 VCOSEML

Component is an element of software, as a building block that contains complex func-

tionalities. Component-based software systems are developed by selecting appropri-

ate components and assembling those together [11]. Component Oriented Software

Engineering Modeling Language (COSEML) is a graphical and proper modeling lan-

guage for visualizing a hierarchical decomposition [12]. Different from the “Com-

ponent Based” approaches, components are the fundamental notions starting with the

abstractions in requirements and continuing through the executable code. COSEML

is supported with a graphical tool, modeling a system as components and their con-

nections. COSEML begins with the abstraction of system parts to introduce the build-

ing blocks of a system. After that physical components need to be corresponded to

encapsulate the detailed functionalities in the defined abstract modules [25]. Links

connect abstractions to physical components. Table 3.1 explains further detail about

the graphical primitives of COSEML.

18

Table 3.1: COSEML symbols and their meanings (from [11])

Symbol Explanation
Package: Package is for organizing the part-whole relations. A
container that wraps system-level entities and functions etc. at a
decomposition node. Can contain further Package, Data,
Function, and Control elements. Also can own one port of one or
more connectors. Can be represented by a Component.
Function: Function represents a system-level function. Can
contain further Function, Data, and Package elements. Can own
connector ports. Can be represented by a Component.
Data: Data represents a system-level entity. Can contain further
Data, Function, and Package elements. Can own connector ports.
Has its internal operations. Can be represented by a Component.
Control: Control corresponds to a state machine within a
Package. Meant for managing the event traffic at the Package
boundary, to affect the state transitions.
Connector: Connector represents data and control flows across
the system modules. Cannot be contained in one module because
two ports will be used by different modules. Ports correspond to
interfaces at components level.
Component: A Component corresponds to the existing
implemented component codes. Contains one or more interfaces.
Can contain components. Can represent abstraction.
Interface: An Interface is the connection point of a Component.
Services requested from a component have to be invoked through
this interface.
Represents: A Represents relation indicates that an abstraction
will be implemented by a Component.

Abstractions in COSEML are Package, Data, Control and Function at the logical

level. Packages not only refer to the abstract components but also encapsulate ab-

straction groups associated elements. Also, the Package are detailed through further

Package, Data, Control, and Function abstractions. Besides, components and their

interfaces are main elements at the physical level. Connectors represent communica-

tions among components, as well as between abstractions. Both logical and physical

level elements in COSEML provide an opportunity to represent the solution in or-

der to find out the subproblem of the entire system. Therefore, COSEML is capable

of representing not only the solution space but also the problem space for design-

19

ing component-oriented software systems. Consequently, system requirements are

transformed into a set of components and connectors between components.

Unfortunately, COSEML does not support variability management. Moreover, a

model of COSEML does not point out which elements are variable and how the vari-

ability is realized. Therefore, it becomes a requirement to find new approaches or

improve COSEML to manage variability at the design level. Variability modeling

has been introduced to component-oriented development by importing from OVM

and Feature Model. Hence, COSEML with variability (VCOSEML) is introduced.

VCOSEML is a representation technique specified for variability modeling [46]. Fig-

ure 3.1 displays specific variability symbols of VCOSEML.

Figure 3.1: VCOSEML variability symbols

Abstract primitives in VCOSEML are used for problem space modeling, where as

components and connectors are used for solution space modeling. Thus, variability

can be tracked not only in the problem space but also in the solution space through

VCOSEML. Furthermore, VCOSEML essentially focuses on the hierarchical decom-

position of a domain as well as variability management.

Figure 3.2 shows an example component model of VCOSEML. In this example, the

problem space of the domain is modeled through abstraction elements. Also, the

solution space is designed by using components and connectors that represent com-

munications among components. This modeling view provides the general aspect

of the set of components for the purpose of developing software products with do-

main specific components in an SPL. Moreover, it decreases complexity in managing

the variability in an SPL through assisting the domain engineers in their analysis for

changing effects for component selection.

20

Figure 3.2: Example component model of VCOSEML

3.2 Tool Support

Before going into details about the proposed approach, it is helpful to provide some

preliminary information about the tool support in this study. Feature IDE was used

for feature modeling and VCOSECASE was implemented to manage variability when

defining domain specific components in an SPL infrastructure. The rest of this section

contains an introductory overview about these tools to accomplish the goals of this

study.

3.2.1 FeatureIDE

FeatureIDE is an open source tool for Feature Oriented Software Development [29].

In this study, a feature modeling tool is a necessity in order to analyze the domain.

FeatureIDE is selected because of its simple and friendly user interfaces for modeling

a feature diagram. Also, the tool provides textual modeling besides graphical user

interfaces. Furthermore, both Domain and Application Engineering phases of SPLE

are powered by FeatureIDE. Therefore, it is used to create and manage the feature

model in the scope of the study. A screenshot is given from FeatureIDE in Figure 3.3.

FeatureIDE is able to visualize feature models in a hierarchical tree format. Features

in the model can be managed using the graphical user interfaces of the tool. The

feature model created by using FeatureIDE is contained in all associations and con-

straints between features. For this reason, the tool can be utilized to handle variability

21

Figure 3.3: FeatureIDE screenshot that displays a feature model (from [41])

and constraints on the feature model.

3.2.2 VCOSECASE

This study also covers the improvements to COSECASE, which is the graphical tool

for supporting COSEML. COSECASE does not support graphical representation of

variability management in either logical or physical level. It brings the need of a tool

support to create a component model with variability in a domain. Thus, the tool was

enhanced to support the functionalities about variability management at both logical

and physical level. The new version of COSECASE is called VCOSECASE, as it is

basically COSECASE with variability. In this section, newly added functionalities

for managing variability at the design level are explained.

VCOSECASE provides domain engineers to use not only all COSEML elements but

also VCOSEML items in both logical and physical levels. It is a CASE tool to model

easily the structural views of the domain. Domain engineers are able to decompose

hierarchically a domain in accordance with domain requirements and graphically rep-

22

resent the structural views of the domain architecture composed of domain specific

components. Interaction between domain specific components is also modeled with

the tool using the hierarchical diagram.

VCOSECASE has features for managing variability in a domain. The functionalities

about variability management in an SPL is brought with the tool. VCOSECASE is de-

fined after adding the new features. Some of the new features that support variability

management are:

• Creating a new VCOSEML model for designing domain reference architecture,

• Integrating variation points and variants in a domain design model,

• Viewing variability dependencies between VCOSEML elements,

• Adding variability constraints for each VCOSEML element,

• Making modifications in VCOSEML elements.

Figure 3.4: An example screen of VCOSECASE

VCOSECASE is capable of managing variability in both problem and solution spaces.

The user manual for using variability features in VCOSECASE is introduced in Ap-

pendix A.

23

3.3 Definition of Domain Specific Components Approach

Domain design is highlighted as a crucial concept to develop reusable and flexible

domain specific components. The main purpose of domain design is to identify do-

main specific components and interaction between them. The set of domain specific

components must be reusable and flexible because all software products of the family

are developed using these components.

The proposed solution is an introductory approach to build and evolve a reusable

infrastructure, which covers all variability requirements contained in an SPL. The

approach is based on the structural decomposition of a domain and variability spec-

ifications that is rooted in feature models and reflected a variable component model

represented with VCOSEML. An initial set of proposed components is modified with

respect to the variability constraints and design metrics that regard coupling, cohe-

sion, and size oriented complexity. The modification of the component set has been

continued iteratively until an optimal set of components is achieved. Iterations are

excepted to improve the set of components, to reflect at the design metrics. However,

when to stop the iterations is a decision to be made by the domain designer.

Figure 3.5: Overview of the proposed approach

The following steps are suggested in defining domain specific components:

1. Map feature model to abstractions,

2. Embed feature variability in abstractions,

3. Define domain specific components,

4. Evaluate and revise the component set.

24

An overview of the proposed approach can be observed in Figure 3.5. The proposed

approach steps are explained in the rest of this section.

3.3.1 Map Feature Model to Abstractions

The transition process from the feature model in the domain analysis to the definition

of domain specific components begins with the creation of a model of VCOSEML.

The model is created to map the feature model to the abstractions of VCOSEML. The

mapping process from features to abstractions is straightforward and is a one-to-one

relationship between features and abstractions. Domain engineers manually assign

features to abstraction elements of VCOSEML. The mapping process is carried out

with the tool that can help domain engineers to understand the complex design of

SPLs.

Domain engineers use abstractions of VCOSEML such as Package, Function and

Data for modeling the system graphically. Package abstraction illustrates subparts of

a system at the logical level. Function and Data abstractions represent the details for

each subpart of a system.

3.3.2 Embed Feature Variability in Abstractions

We consider that feature variability should be traceable through the abstractions of

VCOSEML model in the design of components. Determined feature variability dur-

ing domain analysis are embedded in the abstractions through the variability ele-

ments of VCOSEML. Variation points, variants, and variability constraints in a fea-

ture model can be reflected to a VCOSEML model. Thanks to the visualization abil-

ities of VCOSEML, feature variability can be traced at the design level.

3.3.3 Define Domain Specific Components

The relationship between abstractions and components are established at this step.

While abstractions reside in the problem space, realizations of the abstractions are

part of the solution space. The abstractions are implemented by components at the

25

physical level. A top-down approach is followed for defining components in the do-

main. The components that correspond to the abstractions are determined by applying

the following design rules:

1. Each variation point in the abstraction corresponds to at least one component.

The system should be designed such that at least one component corresponds to

a single variation point. Figure 3.6 illustrates an example of this case. Packages

that contain variability points are implemented as separate components.

Figure 3.6: An example case for design rule 1

2. If a variant excludes another variant at the same variation point, variants will

be mapped to separate components.

Managing mutually exclusive variables is one of the common problems in

SPLE. There should be no ‘excludes’ variability constraints between the vari-

ability elements in the scope of the corresponding component.The activation of

a group of features at the same time may cause the system to not work prop-

erly. Therefore, it is recommended to implement the components separately

whenever a variant excludes another variant at the same variation point.

Figure 3.7 shows an example of expressing this case. Although Package4 and

Package5 are at the same variation point, they correspond to two separate com-

ponents because the variants of the packages are mutually exclusive. In case

26

that the variant of Package6 and the variant of Package7 are not mutually ex-

clusive, single component covers the variants.

Figure 3.7: An example case for design rule 2

3. If a variant is an alternative to another variant at the same variation point,

variants will be mapped to separate components.

Variants which are alternative to each other are mutually exclusive as if design

rule 2. Thus, it is suggested that the variants are implemented as individual

components. This case is depicted in Figure 3.8. Package4 and Package5

correspond to individual components. Because of this, this package contains

variants that are alternative to each other.

Figure 3.8: An example case for design rule 3

27

4. If a variant requires another variant at the same variation point, variants will

be mapped to the same component.

The variants that require each other at the same variation points are imple-

mented by the same component in order to adapt low coupling and high cohe-

sion design principles. The example given in Figure 3.9 illustrates that Pack-

age6 and Package7 are mapped to the same component for the reason that the

variants of these packages require each other.

Figure 3.9: An example case for design rule 4

5. If a variant requires another variant at a different variation point, variants will

be mapped to different components, which are linked with connectors.

In the design rule 1, it is recommended that each variation point correspond to

at least one component. If the variants between the variation points require each

other, the components that implement the variants are linked with connectors

in order to communicate with them. An instance of this case is given in Figure

3.10. Component1 and Component2 are connected with a connector whereas

Function1 and Data1 include in the variants that require each other at different

variation points.

28

Figure 3.10: An example case for design rule 5

6. If variants excluding each other require another variant at the same variation

point, the required variant will be mapped to the individual component that

links with other components by using connectors.

In the design rule 2, it is suggested that the variants correspond to individual

components whenever a variant excludes another variant at the same variation

point. The design rule 6 is proposed such that the variant which is required by

variants excluding each other at the same variation point is linked with other

components by using connectors. Also, the component must be linked with

other components by using connectors. Thus, the parts that are dependent on

other components excluding each other are minimized. Moreover, by shrinking

the dependent parts is intended to increase the number of common components

which can get along well with other components.

An example case is given in Figure 3.11. Although both the variants of Pack-

age4 and Package5 are mutually exclusive, they require the variant of Pack-

age6. For that reason, the packages are implemented by separate components.

Finally, Component6 is linked with Component4 and Component5 because of

the required variant that Component6 contains.

29

Figure 3.11: An example case for design rule 6

7. If a variant is optional, it will be mapped to the component that links with other

components, which contain mandatory variants at the same variation point, by

using connectors.

The design rule 7 is proposed such that the abstractions that are defined as op-

tional are implemented separately from the mandatory component. In case that

optional variables are selected, the optional components are also selected. Op-

tional and mandatory components should be connected via connectors. The ex-

ample of this case in Figure 3.12 illustrates how the components are connected

using connectors.

Figure 3.12: An example case for design rule 7

8. If a variant at different variation point is required by at least two variants at dif-

ferent variation points, the variant will be mapped to the individual component

that links with other components. Different variants under different variation

points are implemented by different components. If the variants require each

30

other, the connectors provide the interaction between the components. Accord-

ing to the design rule 8, a variant at different variation point corresponds to the

individual component. The component is linked with separate components in

the case that ‘requires’ constraints are available from at least two variants at

different variation points.

Figure 3.13 displays an example case for expressing the design rule 8. Pack-

age3 and Package6 are implemented by individual components because of that

the variants are at different variation points. On the other hand, Function1 is

implemented by Component1 and connected the other component through the

connectors for the reason that the variants require the variant in Function1.

Figure 3.13: An example case for design rule 8

3.3.4 Evaluate the Set of Domain Specific Components

The approach suggests that the determined set of domain specific components should

be measured in accordance with software metrics at the design level. Hence, the re-

sult of measurements is evaluated in terms of component size, coupling, cohesion

and structural complexity. Also, the set of components is appraised using complexity

metrics in order to predict maintenance and integration efforts. First of all, the set of

components is reviewed in the direction of the results of measurements. Components

having the above average complexity and dependence on other components are de-

tected. After considering the outputs about the evaluations, the component set can be

modified by reapplying the recommended rules of the approach. This process might

be performed in numerous iterations until an optimal set of components is reached.

31

CHAPTER 4

CASE STUDY

In this chapter, a case study on cloud management domain is performed, to test and

evaluate the proposed solution presented in this thesis. This chapter begins with the

overview of cloud management domain. After that, the proposed approach is ex-

plained step by step for the case study under consideration. Finally, the results of this

case study are given.

4.1 Overview of Cloud Management Domain

In this section, we conducted a case study to investigate the validation of the approach.

Figure 4.1: Overview of cloud management domain

32

The case study involves a product family of the cloud management domain. The

software products in the domain provide not only cloud monitoring but also resource

planning for managing cloud resources. Also, it is planned to optimize the utilization

of cloud resources with respect to their performance, cost and energy consumption.

Domain analysis was conducted before applying the approach. Domain requirements

and feature model were prepared during the domain analysis process. The feature

model of the cloud management domain is created in FeatureIDE tool. The feature

model is shown in Figure 4.2.

Figure 4.2: Feature model of cloud management system

33

4.2 Definition of Component Set in Cloud Management Domain

In the first stage of the approach, the feature model was mapped directly to a model

of VCOSEML through the abstractions. After mapping the features to the abstrac-

tions, feature variability (variation points, variants and variability constraints) was

embedded in the VCOSEML model.

Figure 4.3 displays the first level abstractions of the cloud management system using

VCOSEML.

Figure 4.3: First level abstraction of the cloud management system

Afterward we continued the next step of the approach that is the definition of do-

main specific components. By this way, the set of components for cloud management

domain was determined by following the recommended rules. Furthermore, the struc-

tural view of cloud management system was expressed through the VCOSEML model

that consists of abstractions and their matching components. The following figures

represent the big picture emerged as the result of the first iteration.

34

Figure 4.4 displays the decomposition of the Monitor package, which is in charge of

discovering and tracking cloud resources.

Figure 4.4: Decomposition of Monitor package

Figure 4.5 represent the decomposition of the DataManagement package, which ac-

counts for recording and processing data from cloud resources due to report, analyze,

and bill.

Figure 4.5: Decomposition of DataManagement package

The decomposition of the EventManagement package is shown in Figure 4.6. The

package handles logging events, notifying problems and recommending solutions to

problems.

35

Figure 4.6: Decomposition of EventManagement package

In Figure 4.7, It can be seen the decomposition of the Optimization package. The

package optimizes cloud resources in terms of usage, performance, cost, and energy.

Figure 4.7: Decomposition of Optimization package

36

4.3 Evaluation of Component Set

The defined domain specific components were measured in accordance with software

metrics at the design level. The measurement results were evaluated in terms of com-

plexity size, coupling, and cohesion. Moreover, the set of components was appraised

according to complexity metrics in order to predict the efforts spent on both mainte-

nance and integration. After the evaluation of measurement results, the set of domain

specific components was modified with respect to the design metric until the optimal

set of components were acquired.

When the first iteration was completed, 23 components were determined for the cloud

management domain. After the components were determined, the functional size of

each component is manually computed using COSMIC FSM method. The calculated

function points of the components obtained from this case study are tabulated in Table

4.1.

Furthermore, the dependency of other components are calculated for each component

in terms of coupling and cohesion. The component relationship diagram can be refer-

enced to calculate coupling and cohesion between the components at the design level.

The arrows among the components in the diagram presented in Figure 4.8 illustrate

the relations. All arrows demonstrate the dependency among the set of components.

37

Table 4.1: Results of COSMIC FSM method

Component Entry (E) Exit (X) Read (R) Write (W) FP
ResourceDiscovery 9 5 - 12 26

IaasManager 12 8 8 12 40
PaasManager 8 8 8 5 29
SaasManager 8 8 6 3 25

SystemTracker 18 - - 17 35
ApplicationTracker 20 - - 18 38

CostTracker 16 - - 16 32
EnergyTracker 16 - - 16 32
CustomTracker 21 - - 20 41

UsageDataManager 8 16 18 - 42
PerformanceDataManager 9 18 18 - 47

CostDataManager 8 15 15 - 38
EnergyDataManager 8 15 15 - 38

Reporter 16 8 20 6 50
Analyzer 18 30 32 7 87

BillManager 10 6 14 6 36
EventManager 18 28 18 24 88
HealthChecker 8 16 8 8 40
TroubleShooter 14 14 14 - 42
UsageOptimizer 24 14 - 12 50

PerformanceOptimizer 20 8 - 8 36
CostOptimizer 12 4 - 4 20

EnergyOptimizer 12 4 - 4 20

38

Figure 4.8: Component relationship diagram of cloud management system

39

The results of the first iteration in accordance with coupling and cohesion design

metrics are given in Table 4.2.

Table 4.2: Dependency measurement results

Component Coupling Cohesion
ResourceDiscovery 3 1

IaasManager 5 0.86
PaasManager 3 0.75
SaasManager 3 0.75

SystemTracker 2 0.66
ApplicationTracker 3 0.5

CostTracker 2 0.66
EnergyTracker 2 0.66
CustomTracker 5 0.57

UsageDataManager 5 0.80
PerformanceDataManager 4 0.75

CostDataManager 5 0.80
EnergyDataManager 3 0.75

Reporter 2 1
Analyzer 8 0.44

BillManager 1 1
EventManager 7 0.43
HealthChecker 2 0.66
Troubleshooter 1 1
UsageOptimizer 3 1

PerformanceOptimizer 3 1
CostOptimizer 3 1

EnergyOptimizer 3 1

As can be observed in Table 4.1 and Table 4.2, components called Analyzer and

EventManager are not behaving like other components. When we analyzed the out-

puts of the first iteration, we detected these anomalous components in terms of not

only complexity size, but also dependency on other components. Therefore, the fea-

ture model was reviewed for expanding the features realized by the determined com-

ponents. Moreover, the feature variabilities are updated according to the emerging

features.

After updating the feature model and feature variabilities, we continued with the sec-

ond iteration. In the second iteration, the Analyzer was noticed to require to be de-

40

composed into four subcomponents (PerformanceAnalyzer, CostAnalyzer, TrendAn-

alyzer, WhatIfAnalyzer). Also, EventManager was divided into three subcomponents

(EventLogger, AlertManager, NotificationManager). At the end of the second itera-

tion, we reached a more appropriate set of components in terms of reusability.

On the other hand, the results of two iterations were compared with regards to main-

tainability and integrability. Correction Effort per component was equal to 195.195

for the set of components in the first iteration. Otherwise, the result for the same met-

ric was 41.347 in the second iteration. Also, Integration Effort in the second iteration

was equal to 6.6 while the result was 6.3 in the first iteration. Although the results of

iterations were almost equal according to Integration Effort metric, the result obtained

in the second iteration was much better that the result of the first iteration in terms of

maintainability. Therefore, we also achieved a more maintainable set of components

at the end of the second iteration.

41

CHAPTER 5

DISCUSSION

There are some problems to be considered in this study, which might be improved in

this approach. Firstly, the proposed approach supports only feature variability in the

feature model. Nevertheless, variability management should expand through all the

stages. Hence, the approach should be enhanced to support the different life cycle

stages of SPLE in the future. Secondly, variability constraints between the items of

VCOSEML are not shown graphically in the model. Even though constraints are

not represented in the model, the tool provides a way to keep the textual information

about variability constraints between elements. Finally, it was not possible to make

a comparison of our results with the results of other approaches because there are

no existing approaches in the literature. Updated versions of the approach might be

compared to former versions. Thus, improvements of the approach can be evaluated,

and these evaluations will provide significant information for further research.

The direction of the study was to propose a preliminary methodology in order to

define a set of components to populate the domain model of a Software Product Line

infrastructure. In the light of this motivation, the following goals are set in the scope

of this thesis.

• Offering a systematic way to define the set of domain specific components

• Introducing a well-defined set of principles, guidelines, and metrics

• Exploiting the commonality and manage variability in both problem and solu-

tion space

42

Despite the existence of these issues, the case study illustrates to accomplish the goals

of this study through applying the proposed approach. When we analyze the results of

the case study, it is evident that the proposed approach can considerably decrease not

only time-to-market but also effort and cost for development. Moreover, the approach

makes it possible to increase reliability and quality of software products, as well as

the ease of maintainability. Therefore, the proposed approach is up-and-coming and

utilizable in practice. Furthermore, the proposed approach and the tool developed can

be applied to define a set of components for other domains.

43

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this final chapter, conclusion and future work of the study are given. First, a brief

conclusion of the thesis is presented. Finally, the future work related to this study is

introduced.

6.1 Conclusion

In this thesis, a preliminary methodology is proposed to define a set of domain spe-

cific components in a product line. The main contribution of this thesis is to propose

a systematic approach that contains a set of guidelines, activities, and metrics. In

addition to that, the study presented the definition, planning, operation, analysis and

interpretation of the case study that evaluated the viability of the domain design ap-

proach. Cloud monitoring domain has been selected as the case study in the scope of

this thesis, because of its suitability for the validation of the proposed solution. Our

current experimentation revealed the usability of this approach. The techniques were

adequate in evaluating the determined set of components. Also, the suggested steps

of the approach yielded a refined set that makes sense.

Furthermore, variability modeling is crucial to deal with variability and commonal-

ity in a domain. VCOSEML has enhanced COSEML for the inclusion of variability

modeling at design level. Moreover, variability in both problem and solution spaces

was made visible in the VCOSEML model. Thus, variability besides commonality

is not only represented explicitly but is also managed through VCOSEML. Conse-

quently, VCOSEML supports the capability to populate a product line environment

44

with domain specific components.

6.2 Future Work

As future work, the current version of VCOSECASE should be improved in various

aspects. Firstly, the tool does not support representations of constraints appearing

in extended feature models. Within this context, variability constraints and depen-

dencies can be supported in the VCOSEML model. Secondly, a rule based system

can be implemented for checking variability constraints. Thus, any invalid connec-

tors among components can be detected automatically. On the other hand, the fea-

ture model from domain analysis is being mapped to abstractions manually. Feature

models are currently being formed in the FeatureIDE tool. A feature model can be

exported from the tool as an XML file. It is possible to import such a file by VCOSE-

CASE. Thanks to the addition of the ability of importing feature models in XML

format, the mapping phase of the approach will complete automatically. Thus, spent

effort and time for completing this process will reduce.

Furthermore, the case study demonstrated the usability of this approach. Industrial

scale case studies are missing until now. We are planning to improve the approach

based on the experience to be gathered from its usage in real industrial projects. Our

approach can further be refined as a result of applying to large domains preferably

through real industrial projects.

45

REFERENCES

[1] T. Asikainen, T. Soininen, and T. Männistö. A Koala-based approach for mod-
elling and deploying configurable software product families. Software Product
Family Engineering, LNCS 3014, pages 225–249, 2004.

[2] M. Balci. Reference Architecture Tool for Software Product Line Engineering.
Master’s thesis, The University of Manchester, 2013.

[3] B. H. Barnes and T. B. Bollinger. Making reuse cost-effective. IEEE Software,
8(1):13–24, 1991.

[4] V. R. Basili, L. C. Briand, and W. L. W. Melo. INFLUENCES PRODUCTIV-
ITY IN OBJECT- ORIENTED SYSTEMS REUSE. Communications of the
ACM, 1996.

[5] G. Bayraktar. Representing Component Variability in Configuration Manage-
ment. Master’s thesis, Middle East Technical University, 2012.

[6] F. Belli. Dependability and software reuse - Coupling them by an industrial
standard. In Proceedings - 7th International Conference on Software Security
and Reliability Companion, SERE-C 2013, pages 145–154, 2013.

[7] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35(6):615–
636, 2010.

[8] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. 2000.

[9] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
2001.

[10] S. Deelstra, M. Sinnema, J. Bosch, and J. Nijhuis. COVAMOF: A Framework
for Modeling Variability in Software Product Families. Software Product Lines,
pages 197–213, 2004.

[11] A. H. Dogru. Component-Oriented Software Engineering Modeling Language:
COSEML. Technical report, Computer Engineering Department, Middle East
Technical University, 1999.

[12] A. H. Dogru. Component Oriented Software Engineering. The Atlas Publica-
tions, Dallas, Texas, 2006.

46

[13] R. Dumke and A. Abran. COSMIC Function points: theory and advanced prac-
tices. 2011.

[14] B. Durak, E. Akbiyik, and I. Yigit. Deniz Savunma Sistemleri Alanında Sistem-
atik Yazılım Yeniden Kullanım Yaklaşımı. ceur-ws.org, 1221:689–699, 2014.

[15] O. Eren. PL FSM : An Aproach and A Tool for The Application of Functional
Size Measurement in Software Product Line Environments. Master’s thesis,
Middle East Technical University, 2014.

[16] C. Gencel. How to use COSMIC functional size in effort estimation models?
In Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), volume 5338 LNCS,
pages 196–207, 2008.

[17] C. Gencel and O. Demirors. Conceptual Differences Among Functional Size
Measurement Methods. First International Symposium on Empirical Software
Engineering and Measurement ESEM 2007, pages 305–313, 2007.

[18] L. Gherardi. Variability Modeling and Resolution in Component-based
Robotics Systems. (February), 2013.

[19] M. Griss. Software Reuse: Objects and Frameworks are not Enough. Object
Magazine, 1995.

[20] M. Griss. Software reuse architecture, process, and organization for business
success. Proceedings of the Eighth Israeli Conference on Computer Systems
and Software Engineering, 1997.

[21] M. Griss. Reuse Strategies CMM as a Framework for Adopting Systematic
Reuse. Object Magazine, pages 60–62, 69, 1998.

[22] A. Guendouz and D. Bennouar. Component-Based Specification of Software
Product Line Architecture. In International Conference on Advanced Aspects
of Software Engineering, pages 2–4, 2014.

[23] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. Van Der Linden. Hierar-
chical variability modeling for software architectures. In Proceedings - 15th
International Software Product Line Conference, SPLC 2011, pages 150–159,
2011.

[24] G. Halmans and K. Pohl. Communicating the variability of a software-product
family to customers, 2004.

[25] I. Ileri, A. Eroglu, and A. H. Dogru. Component-Based Variability Modeling. In
The 18th International Conference on Transformative Science and Engineering,
Business and Social Innovation, pages 55–62, Campinas, São Paulo, Brazil,
2013.

47

[26] K. C. Kang, S. G. Cohen, J. a. Hess, W. E. Novak, and a. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, 1990.

[27] K. C. Kang and H. Lee. Variability Modeling. In Systems and Software Vari-
ability Management, pages 25–42. 2013.

[28] E. K. Karatas. An Ontology-Based Approach to Requirements Reuse Problem
in Software Product Lines. Master’s thesis, Middle East Technical University,
2012.

[29] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel. FeatureIDE: A tool framework for feature-oriented software devel-
opment. In Proceedings - International Conference on Software Engineering,
pages 611–614, 2009.

[30] N. Kaur and a. Singh. Component Complexity Metrics: A Survey. Interna-
tional Journal, 3(6):1056–1061, 2013.

[31] G. Kotonya, S. Lock, and J. Mariani. Opportunistic reuse: Lessons from
scrapheap software development. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 5282 LNCS, pages 302–309, 2008.

[32] C. W. Krueger. Software reuse, 1992.

[33] S. Kumar, P. Tomar, R. Nagar, and S. Yadav. Coupling Metric to Measure the
Complexity of Component Based Software through Interfaces. 4(4):157–162,
2014.

[34] A. Metzger and K. Pohl. Software product line engineering and variability man-
agement: achievements and challenges. Proceedings of the on Future of Soft-
ware Engineering - FOSE 2014, pages 70–84, 2014.

[35] L. Northrop. SEI’s software product line tenets. IEEE Software, 19(4), 2002.

[36] B. Ozyurt. Enforcing Connection-Related Constraints and Enhancement on
Component Oriented Software Engineering CASE Tool. Master’s thesis, Mid-
dle East Technical University, 2003.

[37] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering.
Foundations, Principles, and Techniques, volume 49. 2005.

[38] R. Prieto-Diaz. Status report. Software reusability. IEEE Software, 10(3):61–
66, 1993.

[39] M. Razavian and R. Khosravi. Modeling variability in the component and con-
nector view of architecture using UML. In AICCSA 08 - 6th IEEE/ACS Inter-
national Conference on Computer Systems and Applications, pages 801–809,
2008.

48

[40] N. Salman. Complexity metrics as predictors of maintainability and integrabil-
ity of software components. Journal of Arts and Sciences, pages 39–50, 2006.

[41] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. Fea-
tureIDE: An extensible framework for feature-oriented software development.
Science of Computer Programming, 79:70–85, 2014.

[42] F. Van Der Linden, K. Schmid, and E. Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. 2007.

[43] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in soft-
ware product lines. Proceedings Working IEEE/IFIP Conference on Software
Architecture, 2001.

[44] R. van Ommering, F. van der Linder, J. Kramer, and J. Magee. The Koala
Component Model for Consumer Electronics Software. Computer, 33(3):78–
85, 2000.

[45] K. Yadav and P. Tomar. Design of Metrics for Component-Based Software
System at Design Level. International Journal of Engineering and Technical
Research, 2(4):285–289, 2014.

[46] I. O. Yigit and A. H. Dogru. Yazılım Urun Hatlarinda Alana Ozgu Bilesen-
leri Belirleme Yaklasimi. In Proceedings of the 9th Turkish National Software
Engineering Symposium, Izmir, Turkey, 2015. CEUR.

49

APPENDIX A

USER MANUAL

VCOSECASE is a modeling tool that provides graphical user interfaces for defin-

ing abstractions and components with variability among them. VCOSECASE is a

new version of COSECASE in order to manage variability graphically. Therefore,

COSECASE was improved to add new capabilities for supporting variability. Only

variability capabilities are explained in this section. The newly added capabilities

related variability provide to define and manage variability into a system. Following

figures illustrates the steps how to define variability for an item of VCOSEML.

If a user wants to define variability for an element, the element should be selected and

right clicking on it. Variability Management dialog is triggered when the “Variability”

item on the pop-up menu is pressed. The pop-up menu and “Variability” item are

shown in Figure A.1.

Figure A.1: Select an element for managing variability

50

Variation point and variant are two main terms in variability management as discuss

in Chapter 3. The processes how to define variation point and variant are presented

in Figure A.2 and A.3. When defined variation point for selected element, Binding

Time property must be chosen. Also, the variability dependencies have to be selected

in case of defining the variant of selected element.

Figure A.2: Define a new variability point

Figure A.3: Define a new variant

51

The step how to define requires and excludes variability constraints is illustrated in

Figure A.4. A new constraint is added to the constraint list of selected element. All

variability constraints of selected element can be edited or deleted from the constraint

list.

Figure A.4: Define variability constraints

52

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Overview of Software Product Lines
	Variability in Software Product Lines
	Motivation
	Related Works
	Thesis Organization

	Background
	Software Reuse
	Software Product Line Engineering
	Variability Management in Software Product Line Engineering
	Variability Modeling
	Software Metrics at Design Level
	COSMIC Functional Size Measurement Method
	Coupling and Cohesion Metrics
	Complexity Metrics

	Proposed Solution
	VCOSEML
	Tool Support
	FeatureIDE
	VCOSECASE

	Definition of Domain Specific Components Approach
	Map Feature Model to Abstractions
	Embed Feature Variability in Abstractions
	Define Domain Specific Components
	Evaluate the Set of Domain Specific Components

	Case Study
	Overview of Cloud Management Domain
	Definition of Component Set in Cloud Management Domain
	Evaluation of Component Set

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES
	APPENDIX
	User Manual

