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ABSTRACT

REPRESENTING IMAGES AND REGIONS FOR OBJECT RECOGNITION

Buzcu, İlker
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September 2015, 83 pages

We can represent images in entirely different ways, in order to fulfill different pur-
poses. For object recognition, power of a representation comes from its discriminative
ability. In this thesis work, handcrafted representations that dominated the last decade
of computer vision are evaluated against the current paradigm of Deep Learning, to
try and pinpoint the reasons behind why and how the fairly old Artificial Neural Net-
work (ANN) framework suddenly emerged as the state of the art in discriminative
representations. We observe, through our experiments, that true capabilities of Deep
ANN’s can only be achieved by having very large amounts of labeled data that have
been made available only recently. This thesis work also deals with ensembles of
both handcrafted and ANN based approaches to reinforce the new technology with
years of established knowledge behind handcrafted feature based approaches. For this
purpose, we propose a novel extension, based on Fisher Vectors, to the well known
Selective Search algorithm, called the Fisher-Selective Search algorithm, and obtain
a 10% relative increase in Average Precision at virtually no additional computation
cost.

Keywords: Visual Object Recognition, Image Representations, Fisher Vectors, Con-
volutional Neural Networks, Selective Search
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ÖZ

NESNE TANIMA İÇİN GÖRÜNTÜ VE BÖLGELERİN BETİMLENMESİ

Buzcu, İlker
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Eylül 2015 , 83 sayfa

Görüntüleri farklı amaçlara yönelik, tamamen farklı biçimlerde betimleyebiliriz. Nesne
tanıma uygulamalarında, görüntü betim yönteminin gücü ayrıştırıcı niteliğine bağlı
olmaktadır. Bu tez çalışmasında, geçtiğimiz on yıl boyunca hüküm sürmüş el ya-
pımı betimleme yöntemleri, günümüzün Derin Öğrenme paradigmasıyla karşılaştırıl-
makta; bu yolla, nispeten eski kökleri olan Yapay Sinir Ağları (YSA) yapısının ani
yükselişinin temel nedenlerine inilmesi amacı güdülmektedir. Öne sürdüğümüz de-
ney sonuçları, Derin YSA’ların gerçek performansına ulaşabilmesi için yakın zaman
öncesine kadar sahip olmadığımız, çok büyük, etiketlenmiş veri kümelerine gereksi-
nim duyduğunu göstermektedir. Bu tez çalışması aynı zamanda el yapımı yöntemler
ile YSA tabanlı yaklaşımların birleşimi üzerine kurulu metotlara değinmektedir. Bu
şekilde, yeni teknolojinin el yapımı yöntemlerin yıllar içerisinde oluşturduğu biri-
kim ile desteklenmesi amaçlanmaktadır. Bu doğrultuda Seçici Arama algoritmasına
Fisher Vektörü tabanlı, Fisher-Seçici Arama isimli bir eklenti önermekteyiz. Algo-
ritmamız ek bir hesaplama zamanı harcanmaksızın, ortalama kesinlik değerini % 10
arttırmaktadır.

Anahtar Kelimeler: Görsel Nesne Tanıma, Görüntü Betimleri, Fisher Vektörü, Evri-
şimli Sinir Ağları, Seçici Arama
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CHAPTER 1

INTRODUCTION

Inductive inference is the tool we use to make predictive, general statements from lim-

ited information. It is our way of extending knowledge beyond what we can directly

observe. The typical example, given as inductive reasoning leading to an incorrect

generalization, is:

• All of the swans we have seen are white.

• Therefore, (it is probable that) all swans are white.

Turns out, black swans exist! But that is fine, as long as most of our predictions and

generalizations are correct, we are better off trying to extend our knowledge this way,

instead of not making any generalizations at all.

When it is computers who generate predictions and generalizations out of incomplete

data, we call it machine learning. Machine learning mimics human induction: in

supervised learning, the training dataset consists of a number of input-output pairs.

The learner tries to find a general relation between the input and the output, such that it

can be used to predict the output of input features it has not seen in the training stage.

In unsupervised learning the situation is similar; the learner tries to find patterns in the

data that are applicable to test inputs as well, i.e. the findings should be generalizable.

The advantage of computers over us is their ability to work with numbers much more

efficiently - they are called computers, after all! The problem, however, with com-

puter vision based machine learning problems, such as image classification, is that

the numbers that represent images, i.e. the pixel values, are not directly related to the
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content of the image. It is not reasonable to expect a machine learning algorithm to

magically produce generalizations beyond finding out that the background of ship im-

ages are blue, whereas the background for car images would be mostly gray (Figure

1.1).

Figure 1.1: Images from CIFAR-10 dataset, grouped according to their raw pixel

value similarity using t-SNE [74]. It can be observed that images with similarly

colored backgrounds are grouped together, regardless of the object class.

For classification problems, we should evaluate representations in terms of their dis-

criminative power. That is to say, a distorted representation that amplifies distin-

guishing features of each class usually results in higher classification accuracy. Such

a distortion can be done via a non-linear transformation on the original feature space.

Figure 1.2 demonstrates with a toy example how the original representation can be

turned into a linearly separable one by applying such a transformation. On the same

note, a visually rich photograph can be much harder to classify than a simple drawing
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(Figure 1.3)-even though they are both trivial to the human visual system.

Figure 1.2: Non-linear transformations of the feature space are useful in obtaining

more discriminative representations. Taken from http://colah.github.io

Figure 1.3: Simpler representations may hold more discriminative power.

The point to be made here is that in order to apply Machine Learning techniques to

Computer Vision problems, we need better representations of data, beyond raw pixel

values. How to obtain those representations, particularly for images, is one of the two

focal points of this thesis work; the other is to extend those representations to regions

of an image in search of solutions to the problem of localization.
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1.1 Problem Statement

If Machine Learning in general is an imitation of inductive inference, then applying

Machine Learning to Computer Vision is trying to emulate the evolution of human

visual system. At the very least, it is the benchmark any learning-based computer

vision system is ultimately compared against [45] [44]. It is a tall task; the evolution

of the eye started more than 500 million years ago [59]. While our methods may be

more sophisticated and efficient, it is still quite hard to match the huge processing

power, dataset size and training time in the hands of evolution.

Nevertheless, we have been making some leeway in all of these areas: the PASCAL

Visual Object Classes(VOC) project started in 2005 with a dataset of 1578 images of

4 classes (bicycles, cars, motorbikes, people). By 2011, the size of the dataset was in-

creased to 11,530 images of 20 classes [23]. Its successor, the ImageNet Large Scale

Visual Recognition Challenge(ILSVRC) escalated the progress even further, with the

number of images in the competition dataset surpassing 500,000 [66]. Meanwhile,

the processing power available for the state of the art systems improved significantly,

mostly thanks to the parallelized architecture of neural networks which allows train-

ing to be done in GPU (Graphical Processing Unit) clusters, with batches of images

at a time [80]. The critical point of computers being competitive with humans at spe-

cific vision tasks has been reached, as exemplified by reports of surpassing human

performance in the task of classifying images [36].

An elegant definition of Machine Learning is made in [54]: “A computer program is

said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experi-

ence E.” Within this formulation, we may define the image classification problem as

follows:

• C = A set of object classes.

• T = A set of tasks, such that:

For each object class ci, the task ti is to recognize whether an object belonging

to ci exists in that image.
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• E = An image with ground truth annotation that indicates whether (and option-

ally, where) an object belonging to a class of objects exists in that image is

inputted to the learner.

• P = An evaluation metric, accompanying a test set of images.

In PASCAL VOC, the tasks are evaluated separately. The algorithms are expected

to output 20 score values, one for each class task, for each test image. The scores

output by the algorithm ought to relate to its confidence in its prediction: too high/too

low scores indicate with very high confidence that an object of the class in question

certainly exists/does not exist. For each task, a precision/recall curve is drawn accord-

ing to the scores output by the algorithm for the corresponding class. To do this, the

scores are sorted from highest to lowest, and the values higher than some threshold

are labeled as belonging to that class. Comparing these labels with the true labels,

we count the number of True Positives(tp) - the number of images that contain an

object of the class that are classified as such; False Positives(fp) - the number of im-

ages that do not contain any object from that class, but classified as such; and False

Negatives(fn) - the number of images containing a class object but misclassified as

not having any. For a given threshold, precision and recall values are derived from

these counts as:

prec =
tp

tp+ fp
, rec =

tp

tp+ fn
. (1.1)

By varying the threshold, we obtain different precision and recall values, which we

draw into the Precision-Recall curve (Figure 1.4). From the curve the average pre-

cision (AP) value, which corresponds to the area under the curve, is computed, and

used as the performance metric for a given class. The mean average of all class AP

values can be used to evaluate the overall performance of an algorithm [23]. Different

formulations for computing the AP are used in the literature, which result in slightly

different AP values as in Figure 1.4.

For ImageNet, the sheer scale of the dataset complicates the annotation process greatly.

For this reason, a very simplistic strategy is used: each image is assigned to a single

object class, even if multiple objects of a variety of classes exist in that image. Algo-
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Figure 1.4: An example Precision-Recall curve, made with the VLFeat Toolbox for

MATLAB [75]. The numbers at the top correspond to the Average Precision values

computed in different ways.

rithms are expected to make guesses about the assigned class of a test image, sorted

according to their likelihood. Top 5 guesses of an algorithm are taken into account to

compute its top-5 accuracy, according to which competing algorithms are evaluated.

Image classification is a comparatively simpler task for a computer to perform; the

space of possible answers that the computer can give is quite limited. The VOC

classification challenge boils down to 20 binary classification problems. By contrast,

the object detection problem is more complicated - for a successful detection, the

object should be correctly classified in addition to its location being identified (Figure

1.5). Let us give a formulation of the detection problem, in line with its definition in

ImageNet and VOC challenges:

6



• C = A set of object classes.

• T1 = To find the bounding box of each object, if any, that belongs to some

member of C, within a given image.

• T2 = A (possibly empty) set of tasks, defined as:

For each object oi (found in T1), decide correctly on its class ci.

• E = An image with ground truth annotation of bounding boxes for all objects

that belong to some member of C is inputted to the learner.

• P = An evaluation metric, accompanying a test set of images.

Alternatively, E can be the same as in classification, i.e., the learner may be told only

what the objects are, but not where they are. In that case the learner has to infer the

location of the object in an unsupervised manner.

Figure 1.5: The ImageNet localization challenge. A detection is deemed correct only

if it succeeds at both classification and localization. Taken from [66]

Since the detection problem essentially contains the task of classification, it should be

no surprise that its solution commonly involves a classifier stage. The baseline sliding

window approach, used for a wide variety of detection tasks ([76], [17], [34], [25],

[24]), consists of a blindly exploring the image with a window, taking a crop at the
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location of the window every few steps and classifying the cropped part of the image

(Figure 1.6). The computationally expensive nature of this approach has been cause

for more sophisticated approaches to reduce the number of candidate windows at a

reasonable computational cost have been proposed ([72], [13]). Chapter 4 is devoted

to exploring this relation between classification and detection. It should be noted that

detection methods are also applied to classification problems to improve accuracy by

localizing the object of interest ([35], [56]); but this inverse relation is not explored

in this thesis.

Figure 1.6: The typical detection framework: multiple candidate windows are ex-

tracted from the image, which are in turn classified.

1.2 Representing Images and Regions

For visual recognition tasks, we need representations of the visuals that are well suited

to the task at hand. In its simplest form, a computerized representation of an image

is a two-dimensional array of raw pixel values. For the problem of image classifica-
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tion, we need the representations of images to hold discriminative power, such that

a classifier trained with them can give accurate results. Image representation tech-

niques can be divided into two groups: handcrafted versus learned representations -

although other taxonomies certainly also exist. Handcrafted representations are based

on some engineered feature extraction algorithm, whereas for learned representations

the computer learns to extract the features from pixel values.

For handcrafted representations, learning starts after some initial computation of fea-

tures. This is not to say that there is no aspect of machine learning in obtaining the

final image or region representation; it only means that the raw -or preprocessed-

pixel values never enter a learning system as inputs.

Another way of making the distinction between handcrafted and learned representa-

tion is to look at where the representation starts to depend on not only the image itself,

but also the training dataset. In 2.3 we discuss Fisher Vectors, which is an encoding

of local features of an image in terms of the generative model that best describes the

whole set of local features in the training data. While the encoding of the local fea-

tures depends on the model which in turn depends on the features used to train the

generative model, the extraction of those local features is a product of a handcrafted

algorithm. Therefore, we classify the Fisher Vector as a handcrafted representation.

Representing an image region is not much different from representing the whole im-

age. The subset of rectangular regions can be represented in the exact same way as

images, and some representation techniques can work just as well for irregular re-

gions. However, working with structured, rectangular inputs is absolutely necessary

for other methods. Convolutional neural networks (ConvNets), for instance, even re-

quire input images to rescaled to a certain width and height. Therefore, it has become

quite common to limit the regions of interest to rectangular ones only.

1.3 Contributions and Outline of the Thesis

Chapter 2, which is the first main body of this thesis work, gives the theoretical back-

ground of discriminative representations experimentally explored in the chapters that

follow. The other main chapters are more specialized in their scope, with Chapter
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3 focusing on the problem of image classification while Chapter 4 deals with object

detection.

In Chapter 3, we describe and compare two completely different archetypes of clas-

sifiers which are both considered state-of-the-art in their own niches, with specific

focus on experiment designs that bring out conclusive results about the strengths of

the approaches relative to each other.

The biggest novel contribution of this thesis work is described in Chapter 4: The

Fisher-Selective Search algorithm, an enhancement applied to the original Selective

Search algorithm. We also discuss the relation between our two problems of interest,

and explain why detection is in many cases solved through classification.

Finally, in Chapter 5, the analyses of the results established in the previous chapters

are reiterated, and future work discussed.
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CHAPTER 2

REPRESENTING IMAGES AND REGIONS FOR OBJECT

CLASSIFICATION AND DETECTION

We can represent images in entirely different ways, in order to fulfill different pur-

poses. For instance, both lossless and lossy compression standards are proposed to

generate storage-friendly representations of images. In its simplest form, a comput-

erized representation of an image is a two-dimensional array of raw pixel values; any

other representation may be derived from it, while the converse might not be possible

for every derived representation.

For the purpose of classification, the distinction is made in a different direction: the

discriminative power of the representation. A lossy representation is acceptable, even

encouraged; as long as the losses come from non-discriminative parts of the image.

A good representation technique for the task of classification, then, would be one

that describes images of same objects, or same scenes, similarly. In other words, a

good representation technique generates, for similar images, feature vectors that are

located closely in the feature space. For the pure two-dimensional pixel value array

representation such a relation does not generally exist, making it unusable for most

machine learning approaches.

Studies have shown that completely different paradigms of machine learning, when

applied properly, give reasonably similar results when applied to the same dataset

[52]. This amplifies the need to have good representations: if we can obtain a good

feature vector for each image in terms of their discriminative power, the classification

problem becomes almost trivial. This chapter is therefore dedicated to the various

paths taken toward obtaining a good representation of images.
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Representing image regions is a straightforward extension to representing images;

for a rectangular cropping of the image the exact same strategies apply, whereas for

arbitrary regions we are more limited, or have to be more creative, in how we make

use of spatial information, since many of the structured approaches cannot be applied.

2.1 Global Features of Images

Global features of an image are those that are computed directly from the pixel values

of an image. An example of global features are graylevel or color histograms, which

indicate the intensity or color distribution of pixels within the image. A simpler global

feature would be one that takes the average value of all pixels for each color band,

generating a 3-dimensional feature vector for an RGB image.

For machine learning tasks, the discriminative information provided by global fea-

tures are considered to be incomplete. Therefore, they are used often as complemen-

tary features, attached to some other representation which is lacking in some other

manner. An exemplary method suited for this purpose is found in [70], where the

global representation explicitly aims to capture the gist of the image, that is, a low di-

mensional representation that informs of the general context of the scene, as opposed

to the detailed information that describes the objects in the scene.

2.2 Pooled Local Features

The alternative to obtaining a complete global representation of a whole image, di-

rectly, is to first consider local features of said image and then pool those local fea-

tures into a representation of the whole image. Local features are useful as a starting

point, since there are several patch feature extraction methods (e.g. HOG [18], SIFT

[53] and its variants) that are quite sophisticated, in the sense that most of the useful

information in the image patch is preserved.

The pooling process can be done in different ways. A basic strategy might involve

taking the average of all local features in an image; but doing this directly will result

in an unacceptably large loss of discriminative power. To avoid this, the local features
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must go through some sort of feature encoding stage. The generic framework is

summarized in Figure 2.1.

Figure 2.1: The pooled local features framework. Local features are first coded ac-

cording to some encoding scheme; then the coded local features are pooled to gen-

erate the feature vector for the whole image. Here, the average pooling scheme is

demonstrated.

In [9], two major pooling strategies are described, in addition to the two most popular

encoding schemes used. These strategies merit detailed explanation.

2.2.1 Feature Encoding

For our problem, encoding is the act of assigning a set of values for a descriptor vec-

tor of a patch feature. We may consider the feature encoding step as a transformation

to a new feature space; in the new feature space, the codewords are the basis vectors,

and each patch feature is described in terms of a linear combination of the codewords.

Since the selection of codewords defines the feature space, it greatly affects the clas-

sification performance.

The codewords are usually chosen to minimize the loss of information, depending

on the feature encoding strategy; suboptimal codeword selection will result in coded

descriptors having less discriminative power, which in turn diminishes classification

performance. Another issue is sparsity of the codes: pooling strategies need to sum-

marize contributions from several features. With sparse representations there is less

13



overlap between representations of different features, generating little information

loss at the pooling stage. To summarize, there is a tradeoff between obtaining good

codes that replicate most of the information in the raw feature vector, and sparse codes

that adhere well to pooling.

2.2.1.1 Hard Quantization Encoding

In hard quantization encoding, each possible local feature is assigned to a single one

of the codewords. The resulting codes are binary and very sparse, in fact only a single

element has the value ’1’ while the rest of the vector takes zero values. For a feature

space constructed with K codewords, the feature vector values are computed as:

αji ε{0, 1}, α
j
i = 1 ⇐⇒ ||xj −wk|| > ||xj −wi||, i 6= k, (2.1)

where xj indicates the j’th local feature vector, wk denotes the k’th codeword and α’s

are the code weights. In non-mathematical terms, we can simply say that the feature is

assigned to the nearest codeword. The quantization in this approach occurs due to the

fact that there is only K different codes, not nearly enough to have a unique mapping

for all possible patch features. In fact, all features that have the same codeword as the

closest are mapped to the same point in the feature space, and from this point onward

become indistinguishable from each other.

2.2.1.2 Sparse Encoding

In sparse encoding, the goal is to obtain sparse representations that preserve as much

of the information during the encoding step as possible. Naturally, the encoding

scheme turns into solving an optimization problem with the sparsity constraint ad-

justed by a parameter, λ. Instead of hard assignments, the local features are coded as

a linear combination of several codewords. In this soft assignment process, the spar-

sity constraint limits the number of codewords that contribute to representing each

local feature. The code vector can be computed as:
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αj = arg min
α
||xj −Wαj||2 − λ||αj||1. (2.2)

L1 norm is used with a regularization parameter to induce sparsity. The optimiza-

tion problem can be tackled in two ways: the dictionary matrix W can be learned

separately beforehand with an algorithm such as k-means; or dictionary learning and

learning of sparse representations can be considered together as a single optimiza-

tion problem, tackled by iteratively adjusting codewords followed by representation

coefficients.

2.2.2 Pooling

Pooling is the step required to summarize the coded patch features in a single vector

that is supposed to represent the whole region of interest. Even though the relation

between coded features and the corresponding pooled representation is not one-to-

one, with a well constructed sparse encoding scheme the final representation retains

most of the discriminative power of the patch features, but at the level of the whole

image, or the whole region of an image.

2.2.2.1 Average Pooling

In average pooling, we simply take the average of the codes of features within the

region of interest. A representation for the whole image is the average of all coded

patch features, calculated as:

Φ =
1

N

N∑
j=1

αj, (2.3)

where N is the number of patch features, αj is the j’th coded patch feature, and Φ is

the final image representation.
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2.2.2.2 Max Pooling

The alternative strategy is to use max pooling, in which the maximum valued coef-

ficient in each codeword’s dimension is selected, and combined to obtain the final

representation. It can be formalized as:

Φi = max
j
αji . (2.4)

Effectively, max pooling enforces additional sparsity by discarding the smaller coef-

ficients, at the cost of discarding the information contained in those coefficients. The

choice between average and max pooling, again, is closely related to the tradeoff of

sparsity versus representative power.

2.2.3 Bag of Visual Words

The benchmark approach, bag of visual words(BoV) (Figure 2.2), was inspired by

techniques used in natural language processing. Given a text, most of the discrim-

inative information can be obtained by simply counting the number of occurrences

of each word. The word counts, by themselves, give enough information for us to

discriminate between technical and non-technical texts, classify its topic, or to give

a more specific example, decide between spam and non-spam e-mails. The resulting

representation is named "the bag of words", which paints a nice visualisation of the

process: Grammatical structure and word ordering are discarded as all words within

the text are thrown in the bag, then the feature vector is obtained by counting the

occurrences of each word inside.

The bag of words representation can be described as the pooling of local features in

a text, i.e., words. The final representation is obtained by normalizing the counts, so

in this sense, the bag of words representation is an average pooling of local features.

We see that its image counterpart, BoV, is intuitively quite similar: if visual words

are local features of an image, then the bagging is the process of discarding all spatial

structure, and the final representation becomes the average pooling of local feature

occurrences.
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Figure 2.2: The bag of visual words representation. The object is described as a sum-

mary of all local visual features. Spatial information and correspondences between

features are lost in the process. Taken from http://sensblogs.wordpress.com

In the generic BoV framework, the dictionary is computed via the k-means algo-

rithm. The visual words are hard quantized; in other words, a given feature vector

is described in terms of which dictionary codeword it is closest to - and no other

information is given. Taking the histogram of visual word counts is equivalent to av-

erage pooling hard quantized representations, which turns out to be another way of

describing the BoV methodology.

The limitations and drawbacks of the standard pooling strategy is demonstrated by the

heavy quantization inherent to the BoV representation. Most of the information loss

due to quantization may be restored by using soft assignments instead of hard assign-

ments, i.e. with sparse encoding. Kernel codebooks [31] and Locality-constrained

Linear Coding [78] are examples of this approach. The alternative is to increase the

dimensionality of the representation beyond the size of the dictionary, and incorporate

the lost information into the added dimensions in a form that describes the difference

between each dictionary codeword and the descriptor to be encoded. The Fisher Vec-

tor (FV) [62] and the Super Vector [83] are such representations that found wide use

in visual recognition applications.

In [10] a comprehensive comparison study put these different image representations
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to the test. In a fair playing field of the same local features (SIFT), and a linear

SVM classifier for each representation technique, the experiments concluded that the

Fisher Vector’s performance surpassed all others by a significant margin in terms of

classification accuracy. Thus, for this thesis study, the Fisher Vector is used in all ex-

periments as the representative handcrafted representation technique. The following

section describes the FV framework in detail.

2.3 The Fisher Vector

The Fisher Vector (FV) representation is the state-of-the-art approach to handcrafted

representations based on the pooling of local features. The main idea was first pub-

lished in [42] in the form of the Fisher Kernel, a general way of deriving a discrim-

inative kernel from a generative model of data. It is favored over other kernels due

to its enhanced discriminative power, as well as being a comparison metric between

examples, naturally induced from the model.

The reign of Fisher Vectors lasted for quite a long time. The 2012 edition of the an-

nual ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012) [66] was

populated largely by FV based methods, even though they were all demolished by

the sole learned representation-based entry, the AlexNet [48]. Even as Convolutional

Neural Networks started to dominate visual recognition competitions, the Fisher Vec-

tor was kept on life support for a while longer, with innovations like deep Fisher

networks [68].

In this section, first, the Fisher kernel (FK) will be introduced as a valid kernel to mea-

sure the similarity between two features, and the Fisher vector is derived. Then, the

closed form representations for the Fisher vector coefficients will be derived for our

specific problem. Finally, improvements towards better classification performance,

as well as tricks of the implementation will be explored.
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Figure 2.3: A 1-dimensional example showing how changes in model parameters

affects the likelihood of data.
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2.3.1 The Fisher Kernel

The Fisher kernel induces a similarity measure between features generated by the

same generative model, defined as p(x|Θ) for the original local feature space, where

Θ indicates model parameters. The contribution of each parameter to the generation

of a particular feature x can be described by the partial derivative of the log-likelihood

with respect to said parameter; so, the contribution of all parameters can be described

by the gradient vector as follows:

Φ̂(x) = ∇Θ log p(x|Θ). (2.5)

The gradient is a valid representation of x, since we may infer the location of x in the

original feature space by how the generative model parameter changes its likelihood.

For instance, if the generative model chosen is a Gaussian mixture model (GMM),

gradient with respect to the weight parameters gives the same information as the BoV

representation with soft assignments [60]. A toy example for 1 dimensional data

modeled by 2 Gaussian components is given in Figure 2.3.

From Figure 2.3, we first observe that changes in the parameters of one Gaussian

affects mostly the likelihood of data that it describes, i.e., data that is closer to its mean

than others. This results in sparse representations. We also see that the changing the

weight parameter of one Gaussian results in a more distributed effect on the entire

feature space, since the weight parameters are controlled to sum up to 1, in order to

have a valid probability distribution. The change in the mean affects the likelihood

of data in a simple fashion: as the mean is moved closer to a point, the likelihood

of that point increases. The change in variance has a more nuanced effect; in our

example, for the indicated point p(x|σ) is at a local maximum, so both increasing and

decreasing the variance decreases the likelihood of this point.

To obtain the FK distance between two feature vectors xi and xj , we compute:

K(xi,xj) = Φ̂(xi)TH−1Φ̂(xj), (2.6)

where the Φ̂ vectors are the gradients as computed in (2.5), and H is the Fisher infor-
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mation matrix, defined as:

H = Ex{Φ̂(x)Φ̂(x)
T |Θ}. (2.7)

The gradient multiplied by the Fisher information matrix is called the natural gra-

dient, and has the effect of restricting the gradient to directions that can be taken

on the manifold defined by the class of generative models [42]. The Fisher kernel

is the inner product of the ordinary gradient representation with the natural gradient

representation.

Finally, we observe:

K(xi,xj) = Φ̂(xi)TH−1Φ̂(xj) (2.8a)

= Φ̂(xi)TH−1/2TH−1/2Φ̂(xj) (2.8b)

= (H−1/2Φ̂(xi))T (H−1/2Φ̂(xj)). (2.8c)

In other words, computing the FK distance of two features is equivalent to computing

the inner product of their Fisher vector representation, defined as:

Φ(x) = H−1/2Φ̂(x). (2.9)

The FV representation of an image is obtained by pooling the patch features in the

high dimensional FV feature space. Also note that the process of going from the

gradient vector to the FV is simply a whitening transformation. [47].

2.3.2 Derivation of the Closed Form Fisher Vector

In the generic FV framework, the D-dimensional patch features of images are mod-

eled as samples generated from a Gaussian mixture model (GMM), meaning that the

distribution of features in the original feature space is described as a sum of Gaus-

sian distributions. In this generative model, the likelihood at any point in the original

feature space is given as:
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p(x|Θ) =
N∑
i=1

wipi(x|Θi), (2.10)

where Θ designates the model parameters, whereas Θi’is the portion of the parameters

for the i’th Gaussian only; N is the number of Gaussians, wi stands for the weight of

the i’th Gaussian, and pi’s are given by:

pi(x|Θi) =
1

(2π)D/2(detΣi)1/2
exp[−1

2
(x− µi)

TΣ−1
i (x− µi)]. (2.11)

To ease calculations, the covariance matrix Σi’s are assumed to be diagonal, i.e.,

Σi = diag(σ2
i). The parameters of the GMM are made up of the mean and variance

vectors, as well as the weight of each Gaussian:

Θ = (µi, σ
2
i, wi : i = 1, 2, ..., N). (2.12)

For each Gaussian distribution contributing to the mixture, we can write the gradient

of likelihood as:

∇Θi
p(x|Θi) = p(x|Θi)g(x|Θi), (2.13a)

g(x|Θi) =

 g(x|µi)
g(x|σ2

i)

 , (2.13b)

g(x|µi)j =
xj − µi,j
σ2

i,j

, (2.13c)

g(x|σ2
i)j =

1

2σ2
i,j

[(
xj − µi,j
σ2

i,j

)2 − 1], (2.13d)

and the gradient of log-likelihood for the mixture distribution as:

∇Θi
log p(x|Θ) = qi(x)g(x|Θi), (2.14a)

qi(x) =
wipi(x|Θi)∑N
i=1 wipi(x|Θi)

. (2.14b)
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If the model describes the data well, then most of the examples will be located near

a center of some Gaussian. Moreover, if the dimensionality of data is large enough,

the Gaussians will be separated from each other by a good amount of distance. So,

qi(x) likely can be approximated as equal to 1 for a single Gaussian component and 0

for the others; essentially assigning that portion of the feature space to that Gaussian,

similar to the hard assignments in the BoV method. Under this approximation, the

Gaussians are already uncorrelated, making the Fisher information matrix a diagonal

one, whose parameters can be calculated as:

Hµi,j =
wi
σ2

i,j

, Hσ2
i,j

=
wi

2σ4
i,j

, (2.15)

and finally, we make use of the general FV formula at (2.9) to obtain the final FV

representation for our model:

Φµi,j(x) = qi(x)
xj − µi,j√
wiσi,j

, (2.16a)

Φσ2
i,j

(x) =
qi(x)√

2wi
[(
xj − µi,j
σ2

i,j

)2 − 1]. (2.16b)

The final FV representation for a point feature is the concatenation of these coeffi-

cients for all values of i and j. To obtain the representation for the whole image,

we use average pooling. It should be noted that the weight terms are omitted here,

since they are very often left out of practical FV implementations as they do not in-

troduce any additional discriminative information, as evidenced by a lack of increase

in classification performance when they are used.

2.3.3 Improving the Fisher Vector

In [62] two improvements to the basic FV were proposed. The new formulation,

named "improved Fisher vector" (IFV), involves:

1. Using Hellinger’s kernel to compute distances,

2. L2 normalization.
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When used together, these two ideas were shown to significantly increase perfor-

mance. The relation between the original and the improved formulation goes, for

each element of a given FV:

ΦI
k(X) = sign(Φk(X))

√
|Φk(X)|∑
k |Φk(X)|

. (2.17)

Another improvement, which may be applied to all pooled local representations, is to

incorporate some weak spatial information into the model by first dividing the image

into a few slices, and computing separate FV representations for each slice, as well

as for the whole image. The final representation, named spatial pyramid[49], is

obtained by concatenating all of those FV representations into a single vector.

2.4 Learned Representations

The success of handcrafted local feature based methods is evident: in the PASCAL

VOC competition that ran yearly between 2007-2012, such methods dominated the

classification contest [23]. The best performing method throughout the years of the

competition came in its last year, when National University of Singapore reported

82% mean accuracy with their method partly based on [82]. The move from the

PASCAL VOC to the new competition based on the huge ImageNet dataset, ILSVRC

[66], coincided with the rebirth of deep learning. The entries to last year’s ILSVRC

consisted entirely of a roster of deep networks, a trend that does not look to change

soon.

Even though the PASCAL VOC competition missed the rebirth of deep learning,

many works on classifying images with deep networks still report their results on the

VOC datasets. A comparable study in [58] reports an improvement to 83% mean

accuracy, which marks the end of the dynasty of classical, handcrafted methods in the

task of classification. It should be noted that deep networks trained on the much larger

ImageNet dataset, then fine-tuned on the PASCAL VOC training set can achieve even

better accuracy [32].

Representation learning is not synonymous with deep learning. Nevertheless, in this
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thesis work learned representations almost exclusively refer to deep artificial neural

networks (ANN), due to the significant difference in performance in visual recogni-

tion related tasks - while shallow nets can be brought to the same capacity (in terms of

the range of functions/transformations that can be accomplished with said network),

empirical findings indicate that they cannot be trained to leverage the added capacity

as easily [20]. To add insult to injury, one rare study that reports competitive perfor-

mance levels with a shallow network accomplishes this by teaching the shallow net

to mimic 1 a deep network [5].

We further refine our focus to consider for the most part only networks trained via

supervised training methods. It is not a reasonable approach to expect a computer

to find out the difference between classes by itself, and initializing networks with

weights learned via unsupervised training is not found to improve performance com-

pared to purely supervised training with proper random weight initialization - in fact,

it may even hurt performance [50].

2.4.1 The Artificial Neuron

The basis of an ANN is the artificial neuron, which is in turn based on its biological

counterpart (Figure 2.4). The biological neuron is a simple processing unit that takes

input signals from other neurons connected to its dendrites and outputs a response

accordingly. Neurons are adaptable; they can adjust themselves to perform different

operations on the input data depending on the task [77]. The real power of neurons

come from sheer numbers; on average, the human brain is estimated to consist of 86

billion neurons [4]. The goal of deep learning is not to create processing units that

model biological neurons as accurately as possible; but to make use of the idea that

layers upon layers of simple, adaptable processing units can solve a large variety of

difficult problems. Therefore, while initially inspired by the biological neuron, the

basic unit of an ANN has evolved in a different direction than what current biological

models suggest.

The modern artificial neuron does resemble its biological counterpart in terms of its
1 Instead of using class labels, a network can be trained with the output values of another network. The

optimization then becomes a regression problem between the outputs of the student and the teacher network. In
layman’s terms, the student tries to mimic the teacher.
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Figure 2.4: The biological neuron (simplified). Inputs from other neurons, received

by the dendrites, are processed by the soma and transmitted to other neurons via the

axon. Taken from http://wikimedia.org

functionality. It computes a weighted sum of its inputs, adds a bias value to the sum

and finally applies a non-linear function to this value to generate the output (Figure

2.5). In mathematical terms, the output y in terms of the inputs xi’s, the neuron

weights wi’s and the bias b:

y = g(b+
∑
i

wixi), (2.18)

where g(.) is a (generally) non-linear function called the activation function. With

proper selection of the activation function, a feedforward ANN with a single hidden

layer with an appropriate number of neurons can approximate any smooth function,

giving the ANN’s the universal approximator property [39]. For this property to

hold, the activation function needs to be one that squashes its inputs, e.g. to between

0 and 1 as in the case of the sigmoid function. It is vital to note that this gives us no

guarantees about whether we can find the solution for the parameters for the ANN

that approximates a given function; only that a solution exists. Nevertheless, this

property, among others, has led to squashing functions being used predominantly in

earlier, shallow ANN’s.
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Figure 2.5: The artificial neuron. Its output is a non-linear function of a biased,

weighted sum of its inputs.

Figure 2.6: Commonly used activation functions. From left to right: sigmoid, hyper-

bolic tangent, and the rectifier function.

Some of the properties to look for in an activation function are (piecewise) differen-

tiability, monotonicity, and saturated outputs. Differentiability is especially critical,

since the primary algorithm for training ANN’s, backpropagation (Section 2.4.2.2),

depends on analytical differentiation.

Some of the commonly used activation functions are (Figure 2.6):

• The sigmoid function:

g(u) =
1

1 + eu
, (2.19)

The sigmoid function maps all inputs to a value between 0 and 1, so it works
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well as a probability estimate.

• The hyperbolic tangent:

g(u) =
eu − e−u

eu + e−u
, (2.20)

The output of the hyperbolic tangent function is unbiased, i.e. if the input data is

generated from a symmetric distribution with zero mean, the output distribution

will also be symmetric with zero mean.

• The rectifier function:

g(u) = max(0, u). (2.21)

A neuron with rectifier activation function is called a Rectified Linear Unit(ReLU)

[55].

ReLU and its variants (Leaky ReLU, Parametric ReLU [36], etc.) are almost exclu-

sively used in state of the art deep learning systems [81], even though the rectifier

is not a squashing function. The main reason is that networks of ReLU’s do not

come across the problem of vanishing gradients[38] during training: if the input of

a squashing function grows to be too large, the output becomes practically invariant

to small changes in the parameters of the neuron because the output has saturated.

Unsurprisingly, it comes down to which type of activation function can be trained

more easily, rather than a problem of capacity. The exception is the linear activation

function, i.e. g(u) = u, since that does not extend the capacity of the network beyond

linear combination of its inputs. For an ANN with a single hidden linear activation

layer:

y = b1 +
∑
i

(b0,i +
∑
j

wj,ixj), (2.22a)

= (b1 +
∑
i

b0,i) +
∑
j

xj
∑
i

wj,i, (2.22b)
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Define a new bias term, b∗, and new weights w∗j :

b∗ = b1 +
∑
i

b0,i, (2.23a)

w∗j =
∑
i

wj,i, (2.23b)

y = b∗ +
∑
i,j

w∗jxj, (2.23c)

which is equivalent to a single neuron with a linear activation function.

2.4.2 Feedforward Neural Networks

A feedforward neural network consists of layers of several artificial neurons (Figure

2.7). Subsequent layers are typically fully connected to each other; the outputs of a

layer of neurons are concatenated into the input vector for all units belonging to the

next layer.

In the standard notation of feedforward ANN’s, there exist two special layers - namely

the input and output layers. The input layer simply holds the input vector values. The

output layer must give some sort of a meaningful value at its output, such as a vector

of class probabilities between 0 and 1 for a classification problem. For this reason,

the sigmoid function is often used for the activation of the output layer. The layers in

between, usually layers of ReLU’s, are called hidden layers.

The layered formulation of the feedforward ANN allows us to use matrix notation to

describe input-output relation of a whole layer in one go. Even more importantly, the

matrix based approach makes very large and deep networks feasible [12]. Many of the

computing tools used in deep learning (Caffe [43], Theano [7], Torch to name a few)

make use of the Basic Linear Algebra Subroutines (BLAS) library to compute matrix

multiplication efficiently. Furthermore, implementations to perform ANN computa-

tions on widely available Graphical Processing Units (GPU) exist which introduces

multiplicative increases in performance. This is made possible due to the paralleliz-

able nature of ANN computations [12], both over units and examples.
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Figure 2.7: A shallow feedforward neural network with a single hidden sigmoid layer.

Taken from [6].

For the network depicted in Figure 2.7, the output can be written, in matrix notation,

in terms of the inputs and the parameters of the network as:

ŷ = sigmoid(b1 + V ∗ sigmoid(b0 + Wx)), (2.24)

where ŷ and x are the output and the input vectors, W and V respectively are the

weight vectors of the hidden and the output layers, and bi’s are the bias vectors for

the hidden and the output layer. The sigmoid function is an elementwise operation as

defined by Equation 2.19. One may notice that while this direct output-input relation-

ship looks simple for a shallow ANN, it quickly becomes convoluted as the number of

hidden layers are increased, even though the layerwise input-output relation remains

the same.

2.4.2.1 The Loss Function

To fully define a complete framework of a learning system for an ANN, one needs a

loss/cost function and a training method in addition to the input-output relationship

(Figure 2.8). The loss function depends on the problem to be solved by the ANN.

The following types of loss functions are common in supervised training with labels

for classification problems:
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Figure 2.8: The complete framework for a feedforward ANN.

• Logistic loss:

L = −[y log ŷ + (1− y) log(1− ŷ)]. (2.25)

The logistic loss is only applicable to binary classification problems, such as classi-

fying images of tumors as benign or malignant. For such problems, the label for each

input is a binary scalar, and the output of the ANN is always a value between 0 and

1. We can interpret the output as answering a yes/no question with some confidence:

if the output is higher than 0.5, the answer is yes; and as the output gets closer to 0 or

1 rather than somewhere in the middle, we can say that the ANN gets more and more

confident in its answer.

Investigating the loss function, one may observe that it harshly punishes misclassifi-

cations where the ANN is confident in its answer, as the negative of the output of one

of the logarithms diverges towards infinity.

There are two extensions to the logistic loss for multiclass problems, depending on

the mutual exclusivity of the problem, which are listed below.

• Multinomial logistic loss:

L = − log ŷk, (2.26)

where ŷk is the output probability value that corresponds to the correct class for the

given input. The multinomial logistic loss is used if the classes are mutually exclusive,
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i.e. each input datum belongs to a single one of many classes. In this case, the output

is a vector of probabilities that sums up to 1 to satisfy the axioms of probability:

there exist N mutually exclusive events (a given datum belonging to class number

k,1 ≤ k ≤ N ) which covers the whole sample space, so their probabilities must sum

up to 1.

The summation to 1-property is critical; otherwise, since the output values for other

classes are disregarded in computing the loss function, the optimal solution becomes

an output of all 1’s. In practice, this property is enforced by subjecting the outputs of

the output sigmoid layer to a softmax function:

ŷ∗k =
ŷk∑N
n=1 ŷn

. (2.27)

• Sigmoid cross-entropy loss:

L = − 1

n

N∑
n=1

[yn log ŷn + (1− yn) log(1− ŷn)]. (2.28)

The sigmoid cross-entropy loss is useful when classes are not mutually exclusive,

i.e. an input datum may belong to more than one class, or possibly even none of the

classes. In this case, the problem can be stated as N binary classification problems,

i.e. N yes/no questions, with N being the number of classes. In that case, the input la-

beling can be described by a binary vector, and the loss function becomes the average

of N logistic losses.

2.4.2.2 Training Neural Networks

Learning in ANN’s corresponds to optimizing the parameters of each layer for given

topology. Topology, or architecture, of an ANN refers to its number of layers, as

well as the number and type of neurons in each layer. This definition presumes that

the network has a layered structure, which is true for the networks studied in this

work; an arbitrary topology can also be defined by the properties of each neuron and

their interconnections [27]. The topology of an ANN is predetermined; it defines

a class of functions that can be realized by the network, as well as a flow graph

of computations to implement those functions. Parameters that define the topology
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of an ANN are hyperparameters; they are not part of training but can be optimized

according to which topology performs best on a validation set.

The optimization is generally performed by applying Gradient Descent to the loss

function:

θ∗ = θ − α∇θL(θ; [X,y]), (2.29)

where L(θ;X) is the loss function in terms of ANN parameter vector θ, array of input

vectors X and the corresponding labels y, and α is the learning rate that dictates how

far the parameters are updated with respect to their previous values. This update is

performed iteratively until the stopping condition is reached.

It should be noted that the ultimate goal of learning is not to minimize the loss with re-

spect to the training data; but to maximize performance on the test data. This changes

the stopping condition of optimization: instead of stopping the training when a local

minimum is reached, the ANN with current parameter values are tested on validation

data periodically. The training is stopped when the performance on the validation

data starts to diminish due to overfitting, as seen in Figure 2.9. The assumption is that

the training data is a good sample of the general data distribution; so optimizations

over training data are likely to generalize to previously unseen data - up to some point

where the learner starts to memorize minute details about training data that does not

generalize. This strategy is called early stopping [63] (Figure 2.9).

Another note is regarding the non-convexity of the loss function of ANN’s. This

property makes it so that smaller networks’ convergence is unreliable; that is, their

performance fluctuates wildly depending on the values of paramaters during initial-

ization; but in deeper networks most local minima have similar errors on test data,

and “bad" critical points are exponentially more likely to be saddle points [19] [14].

Given that for learners the real optimization goal is not to find the global optimum

anyway, the non-convexity ceases to be a problem for deep ANN’s.

For the huge size of datasets deep learning requires, this formulation of gradient de-

scent may not be sensible; a single update of parameters requires calculating the

gradient of the loss with respect to the whole array of inputs. A specific feature of
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Figure 2.9: To the left: demonstration of overfitting to training data, to the right:

demonstration of early stopping.

optimizing ANN’s is that the loss functions can be defined in terms of a single input

example, and the true loss with respect to the whole dataset becomes the average of

per-example losses; so it is possible to compute gradients in terms of a fraction of the

dataset. This method of optimization is called mini-batch gradient descent [16]. GPU

based implementations of ANN’s bounds the size of mini-batches from both sides:

a number too small will waste processing power due to not enough parallelization,

while a number too large will cause the whole data to exceed the GPU memory size.

2.4.2.3 Backpropagation

Backpropagation is the name of the method for computing gradients in ANN’s, as

required for the optimization process. It is an optimal algorithm in terms of computa-

tional complexity, that is, no other algorithm is faster in O(.) notational sense [6]. It

is an application of the chain rule in calculus:

∂f(~v, x)

∂x
=

∑
i

∂f(~v, x)

∂vi

∂vi
∂x

. (2.30)

Now, let us apply the chain rule to a very simple "network", consisting of an "ADD"
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and a "MULTIPLY" neuron:

q = 3x+ y, (2.31a)

f = qz. (2.31b)

Then, the gradients for each neuron are:

∂f

∂z
= q,

∂f

∂q
= z, (2.32a)

∂q

∂x
= 3,

∂q

∂y
= 1. (2.32b)

Now, since we are really interested in the gradients of the output, we observe that can

obtain it from the neuron gradients and the chain rule:

∂f

∂x
=
∂f

∂q

∂q

∂x
= 3z, (2.33a)

∂f

∂y
=
∂f

∂q

∂q

∂y
= z. (2.33b)

So, just like in a forward pass of a neural network where the outputs of earlier layers

are passed on to compute the outputs of the next layers, we can calculate the gradients

with respect to the inputs of earlier layers by making use of the gradient values for

the following layers. During the computation of gradients, everything is backwards:

first, the gradients with respect to the output layer inputs are calculated, which are

propagated to the last hidden layer. This process continues until gradients with respect

to the first hidden layer weights are computed.

For practically useful ANN’s, the process remains exactly the same; only the analyt-

ical expressions for neural gradients may get slightly more complicated, depending

on the type of neuron. For a neuron with sigmoid nonlinearity, the gradient can be

simplified more if written in terms of its output:

df(u)

du
= f(u)(1− f(u)). (2.34)
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This means that the gradient can be computed much more efficiently if the output

value is cached in memory during the forward pass.

2.4.3 Convolutional Neural Networks

2.4.3.1 Introduction

For visual recognition, fully connected ANN based solutions quickly become in-

tractable. For a 200x200 RGB image, a fully connected feedforward network’s first

hidden layer neurons will each have 200x200x3=120,000 weights. This, multiplied

by the number of neurons, makes for an enormous amount of parameters. When we

also add in the other layer parameters, we suddenly enter the realm of the curse of

dimensionality, which means that the further increases in the number of parameters

start to decrease the reliability of the estimation of their optimal values [41]. Convo-

lutional Neural Networks (ConvNet) are the solution to this problem.

ConvNets are different from fully connected feedforward ANN’s in terms of con-

nections between each layer. Unlike the fully connected networks, ConvNet neurons

connect only to a local neighborhood of neurons. These neighborhoods are defined in

terms of two dimensional coordinates. While we describe the activations at each layer

of a fully connected network as a vector, which works well for ordinary, one dimen-

sional inputs, for ConvNets we jump to three dimensions to incorporate the geometry

of the data (Figure 2.10). Colored image data is three dimensional - traveling in the

third dimension (depth) corresponds to moving from one color space to another.

Working in this geometry, we now constrain the neuron inputs to only have local

connections in width and height, but not in depth. For instance, we may restrict each

neuron of the first hidden layer to be connected only to a 5x5 neighborhood, for all

color channels. Each neuron in the first hidden layer will have 5x5x3=75 inputs, as

opposed to hundreds of thousands. Except for the sides of the image, there is a one to

one correspondence between a neuron in the next layer, and one in the previous layer,

which happens to be the center of its neighborhood.

This local, sparse connectivity approach is not just a result of extreme computational
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Figure 2.10: Layers of a ConvNet are volumes, not vectors. The first volume is the

input image, whose third dimension corresponds to different color spaces. Taken

from http://cs231n.stanford.edu

costs of fully connected networks; it also introduces a sensible prior: transformations

of a small region of an image describe well the low level properties of an image, which

can then be pooled into high level representations. Pooled local representations based

on features such as HOG [18] and SIFT [53], and ConvNets share this prior.

ConvNets and pooled local representations also have the same parameter sharing

property: SIFT is applied to every single patch of image the same way regardless

of its location within the image. Similarly, sets of neurons in a convolutional layer

apply the same transformation to their respective regions because their weights are

shared across the set. Variance of low level representations is achieved by increasing

the depth of the layer: a convolutional layer of depth D will have D sets of neu-

rons with shared weights, but connected to different locales in the image. Parameter

sharing introduces another prior, namely that local features ought to be invariant to

translation. With this prior, each set of neurons tells us of the locations that satisfy

some property described by the weights shared by those neurons. Moreover, the num-

ber of parameters per layer is reduced even further: For a W ∗H ∗D layer connected

to a previous layer of w ∗ h ∗ d width, height and depth, we only have N ∗M ∗ d ∗D
parameters, where N and M are the number of local connections in width and height.

For the first hidden layer, if N = M = 3, d = 3 (i.e. input images are described

in a tricolor space), w = h = 200 (input images are 200x200), and D = 10; the

number of parameters would be 270, which is quite reasonable. For comparison, a

fully connected layer of the same size would have whdWHD = 48, 000, 000, 000
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different parameters!

Deeper convolutional layers in a network create a hierarchy of increasing abstraction

in representations. While neurons in deeper layers are still locally connected, they

are indirectly affected by a larger and larger number of neurons from previous layers.

Even networks with every neuron locally connected a very small region, at some

depth the output of neurons will start to depend on all inputs. The herd of volumes on

which the output of a neuron depends is called the receptive field of a neuron (Figure

2.11).

Figure 2.11: Receptive field of a neuron in a sparse, locally connected network. Taken

from [6].

2.4.3.2 Layers of a ConvNet

Typically, a ConvNet consists of a number of convolutional layers followed by a few

fully connected layers. The fully connected portion can be considered as a separate

feedforward ANN which takes the output volume of the final convolutional layer as

its input - the volume is flattened into a vector to facilitate this transition. The fully

connected part is fairly standard, consisting of ReLU’s.

The convolutional layers are more complex, and perhaps better understood in stages
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Figure 2.12: A convolutional layer can be understood as a collection of simple layers.

of several simple layers (Figure 2.12): a convolution stage, followed by a nonlinearity,

often followed by a pooling layer. Type of nonlinearity and existence/type of pooling

operation are predetermined as part of the network architecture; only convolution

weights are optimized, again typically via backpropagation based mini-batch gradient

descent. The duo of convolution followed by nonlinearity is in essence the same as

the typical artificial neuron; but local connectivity combined with parameter sharing

has a significant mathematical implication: the operation becomes a two dimensional

convolution, as in Eqn. 2.35.

S[x, y] = (I ∗H)[x, y] =
∞∑

l=−∞

∞∑
k=−∞

I[x− k, y − l]H[k, l]. (2.35)

If each neuron is locally connected to a N ∗ M area, the filter H[x, y] is nonzero

only in an N ∗M area. In almost all cases N = M , and is typically 3, 5 or 7. So,

the first convolutional layer corresponds to passing the image through a variety of

small linear, translation invariant filters.As usual, the following nonlinearity is often

rectification.

The goal of the pooling stage is to shrink the size of the output volume of the layer

by pooling the outputs of several neurons into a single value. This keeps the size of

the network as a whole, and consequently the number of parameters, at a manage-

able level while the network depth increases in terms of the number of convolutional

layers. The pooling method of choice is universally max-pooling:

P [x, y] = max
k,l

S[Mk : Mk +M − 1, Nl : Nl +N − 1]. (2.36)

UsuallyM = N = 2, so the output volume of the nonlinear activation is sliced to 2∗2
portions and the non-maximum values of each slice are removed from the final output

volume (Figure 2.13). No pooling in depth, i.e. across separate filters, is performed.
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Figure 2.13: Demonstration of max-pooling. Taken from http://cs231n.stanford.edu

2.4.4 Final Remarks

The success of ConvNets is evident: from the tiniest, 32x32 images of the CIFAR-

10 dataset [51] to the colossal size of over million images of the ImageNet dataset

[69], ConvNet based methods reportedly hold the records for every single one. It is,

currently, the state of the art for visual recognition. This may make it convenient to

think that the similarity of neural networks to the human visual system makes them

a good choice for computer vision related problems. However, one must not forget

that the neural network idea was largely abandoned for a long time [67] due to its

underwhelming performance compared to other algorithms at the time. It is hard to

argue that this similarity offers an advantage over competing algorithms, when we

still do not understand the intricacies of how even the most studied parts of the brain

works [57]. Ultimately, results drive research - no researcher wants to waste time on a

dead-end path, and people are flocking towards the path of deep learning as evidenced

by the publications in recent conferences in Computer Vision [1] [28].

Nevertheless, it would be wrong to claim that the similarity is insignificant, as it is

not unheard of that a neuroscientific finding can predict the direction of artificial neu-

ral network research. A study from year 2000 showed that neurons from auditory

processing region of the brain could, when rewired to the visual input, retrain them-

selves to process visual signals [77]. Nowadays, similar ANN architectures are used

to process very different inputs to solve a variety of problems.
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Another prediction can be made in terms of the depth of a neural network: there

are bounds on computational capacity of the human brain, such as the firing rate of

neurons, and we can measure the time taken between seeing an object and recognizing

it. By simple multiplication, an estimate on the depth of the human brain’s object

recognition network can be made. For a firing rate of 200Hz [33], and a recognition

time of 0.1 seconds, the depth turns out to be 20, which is close to the depth of the

state of the art ConvNets used in image classification and object detection.
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CHAPTER 3

HANDCRAFTED VERSUS LEARNED REPRESENTATIONS

FOR CLASSIFICATION

In the previous chapter, we established the theoretical framework for different schools

of image representation. We identified two distinct approaches in obtaining represen-

tations from encodings of handcrafted local features, versus approaches purely based

on learning. In this chapter, we compare the two approaches by taking a flagship

method from both sides in settings that are as fair as possible for both sides.

Designing the experiments to allow for a fair comparison is no easy task. Attention

must be given to a lot of details that make up the algorithms. We have checked our

implementations by first reproducing the original experiments done using the meth-

ods, achieving similar levels of accuracy. Any deviations from the original results

may be due to randomness that is inherent to many parts of the algorithms. As far

as we know, no implementation details in the original works are missed in our own

implementations. Parts of algorithms were implemented via off-the-shelf packages,

which diminishes the possibility of bugs immensely.

Several comparison works of this fashion already exist in machine learning literature,

such as [10], [11]. One takeaway from the study of these works is that as the com-

parison focuses on a specific part instead of a whole classification framework, the

experiment setting becomes very clear: fix the rest of the framework in a way that

does not favor any of the competing methods, then compare the end results of the

whole system [10]. We may be able to come up with some evaluation metric directly

for the outputs of the compared methods, but scoring well in such a metric might not

necessarily translate to classification accuracy. For two very distinct algorithms, how-
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ever, can be much harder to compare in this manner. If two algorithms have nothing

in common, all we can do is fix the inputs: we must use the same training and testing

data for both algorithms; if we use some sort of data augmentation for one algorithm,

we must use the same augmented data for the other.

3.1 Experiment Setup

The final experimental setup consists of input data and labels for training and for

testing, and two model definitions. We do not compare several handcrafted algorithms

with each other; nor do we compare different ConvNet architectures. For the final

comparison, the only variance is in the amount of training data made available to

both models. However, in order to have a fair comparison, both models have to well

constructed, both with respect to each other and compared to other possible models

within their own paradigms. The models must be:

• Representative of their paradigm - they must consist of parts that are com-

monly used in other methods. In other words, we should not use some obscure

variant that doubles the test execution time while improving the accuracy by

some minuscule amount.

• Optimal in their hyperparameter selection - any suboptimal setting on one

side but not the other will tip the scales, leading us to wrong conclusions.

• Comparable in any way possible to each other - having similar representation

size, training time etc.

To satisfy the representativeness condition, we look to the more well-known methods

from each paradigm. For handcrafted methods, Fisher Vector based approaches are

seemingly still very popular within the community as evidenced by recent confer-

ence submissions [61, 21, 46], hence we focus on optimizing a Fisher Vector based

framework. For the ConvNet model, we have chosen CaffeNet, a modified version of

AlexNet, which has large availability, a reasonable size and very competitive perfor-

mance.
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The methods are compared on two levels of training: at the first level, both models

are trained from scratch with the VOC2012 training data comprised of 11,530 images

[23]. At the second level, we also make the ILSVRC2014 training data available for

both methods. The ILSVRC2014 dataset consists of 150,000 images of 1,000 classes

that are different from the 20 VOC classes [66]. During testing, we always use the

VOC2012 test data. The test results are uploaded to the VOC2012 evaluation server

for official evaluation.

3.2 Implementation Details of Compared Frameworks

3.2.1 The Fisher Vector Framework

An overview of the Fisher Vector classification framework is given in Figures 3.1 and

3.2. Parts of the system that merit some explanation will be discussed here.

Figure 3.1: The Fisher Vector classification training framework.
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Figure 3.2: Test framework for Fisher Vector classification.

3.2.1.1 Extraction of Local Features

For local feature extraction, there are two main points of contention. The first one is

the type of feature to be extracted, whereas the second one is the strategy enforced in

the sampling of features.

As discussed in Section 2.2, there are several types of local features that are used in

object recognition, with the most prevalent one being SIFT and its variants [53].

The SIFT descriptor of a point describes the local shape around that point using edge

orientation histograms. To achieve scale invariance, the image may be rescaled to the

scale of the detected keypoint; however, depending on the point sampling strategy,

no keypoint detection might be applied. In that case, the image is rescaled to several

predetermined sizes. At the desired scale, the image is smoothed with a Gaussian

filter, then the SIFT descriptor, a 3-D spatial histogram of the image gradients around

the point, is computed.

One serious issue with the SIFT descriptor is the lack of color information - the orig-

inal SIFT formulation [53] is only for grayscale images. For this reason, some clas-

sification systems that make use of the SIFT descriptor supplement it with a color
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descriptor. Another approach is to use one of the variants of the original SIFT de-

scriptor, one that incorporates color information without supplement. In [73], colored

SIFT variants as well as other color descriptors were empirically compared; it was

found that the OpponentSIFT variant performed the best overall.

The OpponentSIFT descriptor first converts the RGB image to the Opponent color

space as follows:


O1

O2

O3

 =


R−G√

2

R+G−2B√
6

R+G+B√
3

 . (3.1)

Then, SIFT descriptors are computed on each of the three Opponent color channels.

The concatenation of those three descriptors gives us the OpponentSIFT descriptor,

which is the one we use throughout this comparison study.

It is shown that for both the original SIFT descriptor and its variants, square rooting

of descriptor values and descriptor normalization are both strategies that improve

performance [3]. They are simple to implement and have negligible computation

cost; so they are used in our implementation.

The second issue of feature extraction is the sampling strategy. The original SIFT

methodology includes a keypoint detection stage [53]; however, recent works com-

monly opt for no keypoint detection. Instead, they uniformly sample points, with a

predetermined step size, on several differently rescaled versions of the image. The

descriptor is computed for each sample point; then low contrast points are removed

due to their unstability. This strategy is known as dSIFT, shorthand for dense SIFT,

first used in [8].

3.2.1.2 Principal Component Analysis

The OpponentSIFT descriptors are 3 times as large as the SIFT descriptor; and many

of the 384 dimensions are strongly correlated. This is not very desirable, since

we assume in our Gaussian Mixture Model that the data dimensions are uncorre-
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lated (Readers are referred back to Subsection 2.3.2 for detailed discussion). More-

over, the Fisher Vector space is very high dimensional. The ordinary FV has 2 ∗
numberOfGaussians ∗ descriptorLength dimensions. If a 3 ∗ 1 spatial pyramid1

scheme is implemented, the dimensionality further increases fourfold. Dimension

reduction with Principal Component Analysis(PCA) solves both of these problems

together, at a reduced information loss.

With PCA, the data is described by a reduced number of orthogonal basis vectors.

The vectors are chosen to be the eigenvectors of the covariance matrix of the data,

so that after the projection to the directions of the new basis vectors, the covariance

matrix becomes diagonal, i.e. the data becomes uncorrelated. The eigenvectors that

correspond to the larger eigenvalues are selected as the basis vectors of the projection,

meaning that only the dimensions that describe a smaller portion of variance in the

data are eliminated.

3.2.2 The Convolutional Neural Net Framework

An overview of the simpler ConvNet framework is given in Figures 3.3 and 3.4. Nev-

ertheless, some tricks in implementation are vital in achieving good performance with

deep networks, which will be discussed here.

Figure 3.3: Training framework for Convolutional Neural Network classifier.

1 Ina3∗1spatialpyramid, theimageisdividedhorizontallyinto3equalparts.Therepresentationofthetop,middleandbottomareasarecomputedandconcatenatedintoasinglerepresentationalongwiththerepresentationcomputedforthewholeimage.
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Figure 3.4: Test framework for ConvNet classification.

3.2.2.1 Preprocessing Images

ConvNets only accept images of a predetermined size as inputs. While rescaling an

image is a trivial process, the aspect ratio, which varies significantly from image to

image, is an issue. The default solution is to discard the original aspect ratio and

simply resize the image to the required input size for the network; however, this

necessarily causes the image to stretch. Instead of learning the characteristics of

an object class from stretched examples, one may first rescale the image such that

the shorter side has the same size as the desired input size, then crop off the sides

in the other dimension symmetrically to bring the image to the desired size. This

strategy opts to give up the information at the sides of the image in favor of the

information dependent on keeping the aspect ratio. Experimentally, it has been found

that cropping works better than resizing for image classification [11].

It is well established that neural networks work much better with zero-mean data that

is appropriately scaled in all dimensions, i.e. if values in one dimension vary between

[−1; 1] while another dimension values are in the range of [−500, 000; 500, 000], we

would have a serious problem. Thankfully, image data is limited to a strict range

of possible pixel values, e.g. [0; 255] for uint8 images; so we only need to move the

images to zero mean. To achieve this, we construct the mean image from by averaging

the resized and cropped training images, then subtract this mean image from each

training image. During test time, we subtract the same mean image obtained from
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training data to the test images.

3.2.2.2 Network Initialization

Initialization of network parameters is a touchy subject. First of all, since network

layers are symmetrical constructs, the only way we can break symmetry is by initial-

izing parameters in a layer to different values. In practice, this is done with random

initialization, with the initial values of the parameters of the same layer drawn from

the same probability distribution. For the actual distribution, we follow the sugges-

tion of [36], using a zero-mean Gaussian distribution with variance 2/n, where n is

the number of weights in a layer.

For the bias parameters, randomness is not necessary since the symmetry is already

broken with the random initialization of weight parameters. We initialize all biases to

a deterministic small, positive value, which is due to the use of ReLU’s in the network

used. If the bias is negative, the probability of activating the neuron initially with

random weights is smaller than 1/2; and if the neuron is not activated, the gradient

cannot be propagated back through that neuron [37].

3.3 Analysis of the Results

3.3.1 Optimization of Both Methods with Validation Data

Before moving on to the grand comparison of handcrafted versus learned represen-

tation, we did small empirical studies on how to best handle some details. One such

detail is incorporating spatial information into FV’s. The OpponentSIFT descriptor

by itself encodes no spatial information: a local feature should be described the same

way regardless of its location within the image. However, strict reliance on the local

feature will deter us from making use of the discriminative information held by the

general location of an object in an image, as well as the relative positioning of related

local features.

We tested two methods of incorporating spatial information against the standard FV
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formulation with no spatial information. One approach tested was to augment the

dimension-reduced descriptor the XY coordinates of each point feature. The coordi-

nates were adjusted such that the center of the image was (0, 0) and both the width

and length of the image would be equal to 1. The other method tested was a 3x1

spatial pyramid, as explained in Subsection 2.3.3. We tested all 3 methods on the

validation data of VOC2012, and decided to use the 3x1 spatial pyramid for future

experiments due to its higher performance on validation data 3.1.

Table 3.1: Performance comparison of different methods of incorporating spatial in-
formation for FV’s.

Strategy Name Description mAP
FV Spatial information is discarded. 0.5912

FV_AugmentXY
XY coordinates of point features
are augmented to the descriptor.

0.6025

FV_SpatialPyramid FV’s are extracted in a 3x1 spatial pyramid. 0.6223

A similar study was done on the convolutional network, which was selected as Caf-

feNet due to its immense popularity as well as good performance for its reasonable

depth. There was a concern that the size of the VOC2012 dataset might be too small

to train an 8-layer network, to a point that it might be actually beneficial to reduce

the number of layers in the network. We implemented an incremental reduction in

the network depth by removing layers one by one, at each step retraining the network

from scratch. Again, we tested the networks on the VOC2012 validation data. We

observed that the reduction in the number of convolutional layers to 3 actually caused

a slight increase in performance (Table 3.2, Figure 3.5). We used both the full-sized

CaffeNet and the 3+3-layered version for the big test.

Table 3.2: Performance comparison of different number of Convolutional and Fully
Connected layers for the ConvNet.

Conv Layers FC Layers mAP
5 3 0.3654
3 3 0.3687
3 2 0.3628
2 2 0.3435
2 1 0.2773
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Figure 3.5: The effect of the depth of a network on its performance.

3.3.2 Comparison of FV Classifier versus CaffeNet

The VOC2012 dataset, with only 10,000 images, is tiny by today’s standards - several

times more photos are uploaded to Facebook every minute. The increase in dataset

sizes may be the main cause of the rise of Deep Learning, but it might also be the

case that better practices, such as the use of ReLU’s coincided with the arrival of Big

Data. By limiting training for both sides to only use the VOC2012 data, we aim to

isolate the effect of dataset size on performance. The Average Precision results for

each class, as well as the mean of all 20 classes are given in Table 3.3.

Looking at Table 3.3, we see a perhaps unsurprising result: even with a couple of

years of improvements, the neural network with insufficient data performs much

worse than the handcrafted method. Using some sort of data augmentation, even

if applied to both methods, might help the ConvNet gain back some ground against

the FV classifier, but the gap between the methods is simply too large to be covered

up in that manner.
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Table 3.3: Performance comparison of the FV based classifier and two ConvNet vari-
ants, trained only with VOC2012 data.

Class FV_SpatialPyramid CaffeNet_Full CaffeNet_3+3
Aeroplane 0.87000 0.65700 0.65860
Bicycle 0.56370 0.29940 0.30720
Bird 0.60510 0.26010 0.25310
Boat 0.65720 0.34130 0.32510
Bottle 0.28160 0.13630 0.14010
Bus 0.75870 0.44330 0.46520
Car 0.57950 0.38540 0.35810
Cat 0.64470 0.37640 0.32970
Chair 0.50570 0.32770 0.29510
Cow 0.41500 0.17650 0.13430
Dining Table 0.47230 0.22830 0.20760
Dog 0.52040 0.33130 0.31480
Horse 0.60380 0.28830 0.31500
Motorbike 0.65070 0.39440 0.38820
Person 0.81100 0.66880 0.63880
Potted Plant 0.32210 0.11320 0.09900
Sheep 0.50980 0.26950 0.26640
Sofa 0.46650 0.20830 0.17700
Train 0.81060 0.41960 0.45370
Tv / Monitor 0.60150 0.31520 0.28660
Mean 0.58250 0.33200 0.32070

Comparing the per-class AP values of both deep networks studied, we see no statis-

tically significant difference, indicating that the capacity introduced by the additional

convolutional layers is left untapped. Going back to Table 3.2, we might remem-

ber that with the validation data performance really only started to fall off when the

depth was reduced all the way to 3 from the original 8. The obvious takeaway is that

deep networks cannot be utilized to its full capacity without having enough training

examples. At the same time, as we increase the number of training examples, the

performance should eventually get bounded by the depth of the network.

Moving onto the larger scale, we first have to note that the additional ImageNet data,

due to having an entirely different set of classes, cannot be used to train a classifier

that tries to learn to classify the 20 VOC classes from a given representation. The

unsupervised training portion of Fisher Vectors, i.e. learning the PCA projection and
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the GMM, does not improve by throwing in more data; it would actually hurt to add

the ImageNet data into the mix during training as it would only work in lowering the

amount of data, that is more directly related to the test data, made available to the

learner. In order to provide a fair platform, we decouple the training of the ConvNet

into two stages as well: the first stage learns a discriminative representation from

the ImageNet data - while it discriminates between a different set of classes, there are

certainly similarities in between, so it incidentally learns how to differentiate between

VOC classes as well. For the second stage, we forward propagate the VOC2012 data

through the network - with its final, class specific layer trimmed out - and obtain

deep representations for each image to be classified. Then we train a classifier for

these deep representations the same way we do with FV representations: we use

an SVM. Another perk of this approach is that it allows us to directly compare the

representations, since the classifier part is the same. The resulting classifiers are

compared in Table 3.4.

From Table 3.4, we see that pretraining with a large dataset improved the ConvNet

representation immensely. We also confirm our speculation that after some point,

the performance is not bounded by the amount of data, but rather the depth of rep-

resentation. The difference in performance between the 8-layer and the 7-layer rep-

resentation is definitely significant. Also, 8 layers seems to mark a critical threshold

where the learned representation starts to get ahead of its handcrafted counterpart by

a healthy margin.

Speculatively, it could be said that discriminative power of a representation is not

class- or problem-specific, owing to the fact that we just trained a representation that

had no access to the class labels of the actual problem it was tested against; instead it

was subjected to a different set of problems in training. Surely one might argue that

the sets of classes have enough in common that such a generalization is not really

applicable; however, [65] reports that off-the-shelf use of ConvNet representations

beat the state-of-the-art in a considerably large variety of recognition tasks.

The perks of using ReLU type neurons cannot be forgotten: with proper weight ini-

tialization, the network will reliably settle in some point that is very close to optimal

almost every time, making a statistical fluke very unlikely. In that sense both method-
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Table 3.4: Performance comparison of the FV based classifier and two ConvNet vari-
ants, trained with ImageNet data in addition to VOC2012.

Class FV_SpatialPyramid CaffeNet_Full CaffeNet_5+2
Aeroplane 0.87000 0.90190 0.86060
Bicycle 0.56370 0.65470 0.58030
Bird 0.60510 0.78020 0.71970
Boat 0.65720 0.70880 0.62460
Bottle 0.28160 0.37970 0.29290
Bus 0.75870 0.77490 0.71060
Car 0.57950 0.60470 0.52180
Cat 0.64470 0.81320 0.74710
Chair 0.50570 0.44390 0.45040
Cow 0.41500 0.51580 0.45010
Dining Table 0.47230 0.48700 0.45610
Dog 0.52040 0.76910 0.70470
Horse 0.60380 0.73070 0.62420
Motorbike 0.65070 0.70930 0.67710
Person 0.81100 0.87180 0.87570
Potted Plant 0.32210 0.30890 0.28680
Sheep 0.50980 0.64760 0.55200
Sofa 0.46650 0.33550 0.37900
Train 0.81060 0.83860 0.76440
Tv / Monitor 0.60150 0.59660 0.55730
Mean 0.58250 0.64360 0.59180

ologies are similar: even though there is a lot of inherent randomness in training of

both models - for the FV, constructing the generative GMM; for the ConvNet, ran-

domization of the order of images and random weight initialization - the results are

quite reliably within a small range of values.

As a final remark, we see that the handcrafted methods still are not too far behind,

even beating the full CaffeNet representation on a few VOC class challenges. Can we

do better by combining the two, or would it be too costly? Would an ensemble of sev-

eral deep representations be more useful instead? While we do not comprehensively

tackle this area of ensemble learning, the experiments on Subsection 4.4.2 deal with

this topic.
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CHAPTER 4

OBJECT DETECTION: SELECTING THE CORRECT

REGION

In the prior chapters, we have established that deep ConvNets are able to perform

image classification at a significantly high accuracy. On the other hand, the compar-

atively harder problem of object detection has not seen the same level of success. In

this chapter, we give a line of reasoning for why the state of the art ConvNets, origi-

nally used for classification, form the backbone of leading object detection systems;

then we describe the methods used in those systems to generate candidate region

proposals, which are required to complete the detection framework in a manner that

reduces it to making a choice between proposed regions according to their classi-

fication score. We also propose an enhancement to one of the existing approaches

that aims to improve detection accuracy at no additional computational cost. Finally,

we share the results of some experiments that 1) compare the original and enhanced

methods, and 2) explore a couple of ensemble strategies that combine handcrafted

and learned representation techniques for object detection.

4.1 Motivation

Do we have to use a classifier in an object detection system? Yes, since the problem

of object detection, according to the definition used throughout this thesis, requires

for a successful detection to correctly answer these two questions:
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• Where is the object?

• What is the class of the object?

Our solution will depend on the order in which we approach these two questions.

If we decide to first tackle the ‘Where?’ problem, we have to first look for regions

of interest in which an object resides, in accordance with some, possibly learned,

objectness criterion. Then we can answer the ‘What?’ question by obtaining the rep-

resentation for a region found to contain an object and classifying it. Alternatively,

we may decide to first try to classify the whole image, answering the ‘What?’ ques-

tion; then attempt to localize that object within the image. In practice, neither of the

approaches are great: classifying first might be useful only if the image contains a

single object, and trying to obtain the location without considering the type of the ob-

ject is clearly suboptimal. One example situation where such a strategy fails is when

parts of an object is identified as the objects in the image, instead of the target object

itself; such as the head and the shirt of a person instead of the person as a whole [71].

The practical approaches try to handle these tasks together, taking the classification

scores into account while deciding on the location of the object.

Let us imagine that we have the perfect classifier, that is, one that predicts the class of

every image correctly, and whose confidence in its prediction drops when the object

covers a smaller part of the image, or when part of the object is occluded or cropped

out of the image . In other words, as we better localize the object, the classifier score

increases, and the object resides at the local maximum of the space of possible object

localizations. If we have a perfect classifier, we can also achieve perfect detection,

provided that we can afford to run the classifier through each possible object localiza-

tion exhaustively. While the state of the art in classification is by no means perfect, it

is good enough that such an approach becomes viable.

It is quite common in object detection to output the result as a rectangular box that

encapsulates the detected object, called the bounding box. This also allows detection

algorithms to ignore arbitrarily shaped regions, and work only with rectangular re-

gions. If an exact segmentation of the detected object is necessary, it can be extracted

by a separate segmentation algorithm afterwards. This approach reduces the search

space for possible object regions to a much more reasonable level, making brute force
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methods such as Sliding Window (Section 4.2.1) viable. However, problems may

arise when the object of interest is not rectangular shaped, which is demonstrated in

Figure 4.1. In such cases, the true bounding box will encompass a significant amount

of background clutter; which may cause a smaller bounding box that encapsulates

only parts of the object to have a better classification score, if it includes the most

discriminative features of the object.

Figure 4.1: The problem with restricting regions to be rectangular. The blue bounding

box, while true, includes a greater percentage of background clutter compared to the

red one. Arbitrarily shaped regions alleviate this problem.

4.2 Related Work

4.2.1 The Sliding Window

The exhaustive search method is a brute force way of performing object detection

with classification. In exhaustive search, the detector blindly moves through the

search space in all directions, trying to classify every possible region. The method

offloads all decision making to the classifier, ensuring that the region with the best

classification score is detected with certainty.
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The main problem with the exhaustive search is that the amount of classifications

required to complete the search on a single image is too high, even when only rectan-

gular regions are taken into account. The search space is actually 4 dimensional, since

a rectangular region can be defined by the coordinates of two opposite side corners.

To make an estimate, we may also define it by the coordinates of its center, its size

and aspect ratio. For a 640x480 image, there are:

• 300,000 candidate center points,

• 250 possible scales for each center (on average),

• 200 possible aspect ratios for each scale (on average).

That comes up to 300, 000∗250∗200 = 15 billion possible bounding boxes per a sin-

gle image! This is obviously infeasible, so typically a few constraints are introduced

to reduce this number [72]. One is to increase the step size, that is, skip every few

pixels while going through the search space. Another is to fix the size and/or aspect

ratio of the search window, which provides immense computational relief by reduc-

ing the dimensionality of the problem; but requires a prior to be set for the system

about the shape and size of the objects to be found, which is fine if most objects to

be detected are of similar size. The Sliding Window, used in [76], [17], [34], [25],

[24] among many others, is not a purely exhaustive search method, but one with such

constraints.

The Sliding Window is demonstrated in Figure 4.2. When the window size and aspect

ratio are fixed, searching through the image can be implemented as sliding a bounding

box from left to right, going one step down when the border is reached. In most object

detection tasks, sizes and shapes of objects have a large variety, so a pure Sliding

Window approach is not very useful. Using a number of windows with varying scales

has been proposed by [76], but smarter approaches that reduce the search space to

a tractable number of candidate windows(object proposals) without adding too much

computational overhead are also used. These methods can be divided into two groups:

objectness, and similarity based methods per [79]; or window-scoring and grouping

based methods per [40]. In this work we adopt the former (objectness vs. similarity)

60



Figure 4.2: The sliding window detection, applied to an image.

because it fits well with our focal point on the topic, which is the question of what

constitutes a good basis for evaluating the candidacy of a region.

4.2.2 Objectness Based Region Proposal Methods

Objectness based approaches reduce the number of proposals via some sort of object-

ness measurement - a measure of how much an image region resembles an object.

They can be considered as a preliminary classification stage that divides the search

space into windows that might contain objects, and those that definitely do not. This

classifier is tuned to have very high recall; any missed object at this stage will never

be seen by the final, more accurate classifier. The objectness classifier trades off pre-

cision in favor of very low computation cost per region, but not recall, which makes

it feasible to apply to more object windows.

Objectness classifiers make use of a large variety of easily computable features, from

color contrast to saliency to symmetry [64]. As the computational complexity of fea-

61



ture extraction grows, the portion of the search space that can be explored by the

algorithm gets lower to accommodate. Even with a very simple classification algo-

rithm, it is still impractical to process all possible windows. Typically, a uniformly

distributed sample of all windows are subjected to the objectness classifier, meaning

that it depends on random chance whether any sample window aligns well with the

actual object boundary. Therefore, it may not be possible to have great localization

with this approach.

4.2.2.1 Binarized Normed Gradients (BING)

The Binarized Normed Gradients algorithm is an extraordinarily fast, objectness-

based proposal generation technique [13]. Compared to other state-of-the-art algo-

rithms for the same task which require a few seconds to generate proposals for a

single image [2][72], BING can process the same image on the order of milliseconds.

The BING algorithm (Figure 4.3) is, in essence, a sliding window detector. At the first

stage of the algorithm, the input image is reshaped to different scales and aspect ratios.

A fixed size (8x8 pixels) sliding window is scrolled through each of the rescaled

versions of the image. This is equivalent to using several windows of a variety of

sizes and aspect ratios; but is more efficient in implementation. Each window is

represented by its normed gradients(NG), which is easy to compute while remaining

discriminative towards objects and non-objects.

The Sobel operator [22] is a well-known method used to compute the gradient image.

The horizontal directional gradient of an image I can be computed as:

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

 ∗ I, (4.1)

Similarly, for the vertical gradient:
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Figure 4.3: The BING Algorithm. (a) Red bounding boxes indicate objects, green

ones are non-object boxes; (b) The image is reshaped to different scales and aspect

ratios; normed gradient(NG) maps are extracted at each scale; (c) NG features for the

bounding boxes in (a); (d) The linear model weights used to classify the NG features.

Taken from [13].

Gy =


−1 −2 −1

0 0 0

+1 +2 +1

 ∗ I, (4.2)

The magnitude of the gradient, or the normed gradient at some point P on the image,

is the L2 norm of [Gx,PGy,P ]T :

G =
√

Gx
2 + Gy

2, (4.3)
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where each operation is done elementwise.

The NG representation is discriminative for objectness, since there tends to be a

strong boundary between an object and the background. The obtained features are

translation, scale and aspect ratio invariant. Each bounding box is represented by its

8x8 NG map, which is flattened to a 64 dimensional vector for classification.

The classifier is a linear SVM [15], learned with ground truth object windows and

randomly sampled background windows. The learned model is shown in Figure 4.3.

The objectness score of a window is the inner product of its NG representation with

this model. To further refine the objectness scores, a linear adjustment, with learned

weights, is made to the score depending on its scale and aspect ratio. The motivation

is that bounding boxes with some sizes and aspect ratios are more likely to contain

objects compared to others. So, the final objectness score ol of a window l, with a NG

representation ~gl and a scale/aspect ratio identifier i, is given as:

ol = vi < ~w, ~gl > +bi, (4.4)

where (vi, bi) are the learned adjustment terms for the corresponding scale and aspect

ratio. This main algorithm is sped up immensely by approximating w as a weighted

sum of binary vectors, and binarizing the NG representations.

4.2.3 Similarity Based Region Proposal Methods

Similarity based methods try to construct object regions, instead of trying to elimi-

nate a large amount of windows from a huge set of candidate regions. In place of

classification, they perform segmentations of the image into areas that possibly cor-

respond to objects. Multiple segmentations of the same image are used to generate

a large variety of proposals, in order to ensure that all objects are included in the set

of proposals output to the final classifier stage. These methods can generally achieve

better localization, since regions are generated from actual segmentations of an image

as opposed to random sampling.

There are different segmentation strategies used; one common approach is hierarchi-
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cal merging where starting from an oversegmentation of the image, neighbor regions

are merged together according to some criteria to form larger regions. At each step,

the newly created regions are added to the pool of object window proposals. The

criteria for merging regions tend to be not objectness-related, but rather measures of

similarity of regions such as color and texture. One problem with similarity based

methods is that the algorithms do not differentiate between object regions and other

regions.

4.2.3.1 Selective Search

Selective Search is a proposal generating algorithm that generates proposals from hi-

erarchical, similarity based segmentations [72]. It is arguably the most well-known

algorithm of its kind thanks to its use in many state-of-the-art detection frameworks

such as R-CNN (Regions with Convolutional Neural Network Features) [32]. The

method uses a hierarchical, bottom-up grouping process to generate regions of vary-

ing sizes, starting from an oversegmentation, i.e. superpixels as described in [26].

Diversification in proposals is achieved in three ways: one way is to run the algo-

rithm in several, complementary color spaces; another is to vary the similarity mea-

surement formula, and the final one is to vary the oversegmentation hyperparameter

which changes the initial region map.

The algorithm starts with obtaining the superpixel segmentation which generates the

initial regions in the hierarchy. A graph is created from the region map, on which the

nodes are the regions, and nodes corresponding to neighboring regions are connected.

The edge weights relate to the similarity between the regions. Iteratively, pairs of re-

gions are merged one at a time. At every step, the pair of nodes with the largest edge

weight is merged together, and the similarity weights between the newly generated

region and its neighbors are calculated from scratch. Each newly constructed region

in hierarchy is added to the list of candidate windows. The process continues un-

til the whole image is merged into a single region. The algorithm is repeated with

the other combinations of color spaces with different values of the oversegmentation

hyperparameter and different similarity measures.

The similarity measure is made up of a combination of color similarity, texture simi-
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larity, size, and the fill measure. The color similarity is computed from the color dis-

tributions of regions. For a pair of regions (ri, rj) with normalized color histograms

(~ci, ~cj), the color similarity is computed as:

scolor(r
i, rj) =

∑
k

min(cik, c
j
k), (4.5)

where each cik corresponds to a bin count of the histogram. The normalized color his-

togram of the merger region is the average of the merged regions, weighted according

to their relative size. After computing histograms of the initial regions, the rest of

color similarity computations becomes a much simpler task.

The texture similarity is computed in a closely related manner. Texture histograms
~ti are obtained for each region using a fast, SIFT-like method. The histograms are

compared in the same way:

stexture(r
i, rj) =

∑
k

min(~tik,
~tjk). (4.6)

The size metric is a way to enforce merging of smaller regions first; therefore it

decreases as the size of the region pair increases:

ssize(r
i, rj) = 1− size(ri) + size(rj)

size(im)
. (4.7)

Finally, the fill measure is used to encourage the algorithm to fill the holes. The

motivation here is that a region enclosed by another has a good chance to belong to

the same object, even if they share no color or texture similarity. Wheels of a car are

enclosed by its chassis, and they are parts of the same object even though they are

nothing alike. The fill measure is calculated as:

sfill(r
i, rj) = 1− size(Bi,j)− size(ri)− size(rj)

size(im)
, (4.8)

where size(Bi,j) is the size of the bounding box that contains both regions. The final

similarity measure can be the sum of any combination of these 4 measures. If size
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and fill are used together, the measure reduces to the bounding box size of the merger

relative to the size of the image.

In the end, the diversification strategies help to create a very long list of object pro-

posals. If only a select quantity of proposals is desired, these proposals need to be

ordered in some way according to their likelihood of containing an object. Since no

objectness measure is used, the list is reverse sorted according to the place of each

region in the hierarchy, except randomized to avoid having only the larger regions in

the final list. Actual object regions are expected to be found in many of the diversifi-

cation strategies; so it becomes quite likely that at least one of those regions makes it

through the randomization stage to the final list of proposals.

4.3 Fisher-Selective Search

The Fisher-Selective Search (FSS) algorithm is our extension to the standard Selective

Search algorithm. A drawback of all algorithms described in Section 4.2 is that there

is no interaction between the proposal generation stage and the classifier stage. If

some part of the region classification process can be reused in the region proposal

generation part of the framework, not doing so would be a waste of resources. And

since the goals of both stages are not far apart from each other, we should be able

to find some smart approach to make the algorithms more similar, so that we can

compute the common part of both stages in one go.

An argument against such an approach is the generalization angle: if we take a pro-

posal generating algorithm and infuse it with parts of our specific classification al-

gorithm, it does not suddenly become unusable with any other classification strategy,

but in that case it certainly loses its computational advantages. Even so, the fusion al-

gorithm might still be preferred over the original one if it provides enough additional

accuracy to justify the trade-off in computation time. Such an approach is similar to

using ensembles of classifiers in the sense that it combines more than one classifica-

tion method to improve overall accuracy. Ensemble methods are quite prevalent in

machine learning and classification literature [29] [30]; while they improve accuracy,

the improvement is not linear with the number of classifiers to be combined.
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In Fisher-Selective Search, we take advantage of the fact that Fisher encoding is addi-

tive in the new feature space. This means that in a merging strategy, the Fisher Vector

representation of the merger region is the weighted average of FV’s of the merged

regions. Therefore, after computing the FV’s of the initial oversegmentation regions,

propagating the FV’s throughout the merging process comes at virtually no cost. It

is important to note that the Improved Fisher Vector(IFV) formulation does not have

this additive property, but can be derived from the original FV easily (with Eqn. 2.17)

when needed. Equation 4.9 describes the mathematical relation between the FV’s of

two regions and the FV representation of the merged region:

Φ̂t =
ciΦ̂i + cjΦ̂j

ci + cj
, (4.9)

where ci, cj are the number of local features contained in regions ri, rj .

4.3.1 Fisher-Selective Metrics

The Fisher-Selective Search proposes two new decision metrics to be used as part of

the merging strategy: one describing the similarity between two regions in terms of

their FV representations and another that tries to construct high scoring regions.

The FV similarity metric has its basis in the fact that distance between two FV’s is a

good indicator of similarity between the regions they represent. Linear distances in

the FV feature space is meaningful in the sense that they are equivalent to computing

dissimilarity with the Fisher Kernel. Thus, we propose the FV similarity metric as

the inverse of Euclidean distance between two FV’s:

sFV (ri, rj) =
1

1 +
√∑

k(Φk(Xi)− Φk(Xj))2
. (4.10)

Here, Xi corresponds to the local features contained in ri, and Φ(Xi) is the Improved

FV representation of region ri. This operation maps the L2 norm of the distance

vector between two FV’s to a value between 1 and 0, which is important since all

other Selective Search metrics have the same property which allows us to combine
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them into more robust similarity metrics appropriately. The function is monotonically

decreasing: similarity always decreases as distance increases.

The second metric is a problem-specific metric that prioritizes merging of high-

scoring regions with some classifier. Since many object recognition problems are

multi-class, we propose a strategy of defining the score of a potential merge as the

maximum of its scores on all tasks:

sFishObjectness(r
i, rj) =

1

1 + exp[−max(y(Φt))]
, rt = ri ∪ rj, (4.11)

where y(Φt) is the multiclass classification score vector for the IFV of the merged

region. Again, the scores are mapped to between 0 and 1, this time with the monotoni-

cally increasing sigmoid function. It should be noted that this metric is, for all intents

and purposes, an objectness metric for a given problem. In some sense, the inclu-

sion of this metric bridges the gap between the similarity-based and objectness-based

proposal generation methods.

4.3.2 Detection With Fisher-Selective Search

The inclusion of FSS-specific metrics defined earlier allows us to skip having a sep-

arate classification stage; the outputted bounding boxes come with already computed

classification scores. This results in a very compact detection framework. The process

as a whole is described in Algorithm 1.

4.4 Experiments

4.4.1 Comparison of Fisher-Selective Search with Vanilla Selective Search

In this section, we put our Fisher-Selective Search algorithm to the test: we check the

performance of the method on the VOC2012 detection task. We directly compare the

results with the results of the same experiment conducted with the vanilla Selective

Search algorithm.
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Algorithm 1: The Fisher-Selective Search object detection algorithm.
Input: Image, Local features with locations, Generative model parameters,

Classifiers

Output: Set of bounding box-corresponding classification score pairs (B, Y )

Obtain initial regions R = r1, r2, ..., rn with oversegmentation;

for i← 2 to l do

Count and store the number of features in ri as C = c1, c2, ..., cn;

Compute the FV Φ̂i of ri;

Compute the corresponding IFV Φi;

Initialize similarity set S ← ∅;
for each neighboring pair (ri, rj) do

Calculate similarity s(ri, rj);

S ← S ∪ s(ri, rj);

while S 6= ∅ do

Get s(ri, rj) = maxS;

Merge rt ← ri ∪ rj;
Compute the new FV Φ̂t using merged region FV’s and feature counts;

Compute the corresponding IFV Φi;

Remove old similarities: S ← S − (s(ri, r∗) ∪ s(rj, r∗));

Calculate new similarities St ← s(rt, rk) for each neighbor rk of rt;

S ← S ∪ St, R← R ∪ rt;

Extract bounding boxes B from each region R;

Compute corresponding classification scores Y from FV’s.

We construct two different versions of both methods: one full and one lite version

for each. The full versions try out more merging strategies and work in more color

spaces than their lite counterparts; therefore, the full versions are richer in the number

of proposals. The differences between each version are explained in Table 4.1.

During testing, we found that fixing the maximum number of guesses per class per

image to a finite value increases performance. After all, almost all images contain

only a reasonable number of object from each class, a number that does not exceed

1 in many cases. We consider this value to be a critical hyperparameter that should
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Table 4.1: Differences between each test scenario.

Acronym Merge Strategies Color Types k Values Nr. of Hierarchies

SS_full

Color+Texture+Size+Fill,
Texture+Size+Fill,
Size,
Fill

HSV, Lab,
RGI, H,
Intensity

100, 200 4 ∗ 5 ∗ 2 = 40

FSS_full

FV Objectness,
FV Similarity,
Color+Texture+Size+Fill,
Texture+Size+Fill

HSV, Lab,
RGI, H

100, 200 4 ∗ 4 ∗ 2 = 32

SS_lite
Color+Texture+Size+Fill,
Texture+Size+Fill

HSV, Lab 50, 150 2 ∗ 2 ∗ 2 = 8

FSS_lite
FV Objectness,
FV Similarity

HSV, Lab 50, 150 2 ∗ 2 ∗ 2 = 8

be optimized with respect to the accuracy with the validation data. However, due

to time constraints, we do not make such an optimization beforehand. Here, we

instead submit the variation of average precision scores for different values of this

hyperparameter.

We also note that all of the classifiers used in these algorithms were trained using

SS proposals. Specifically, we use the ground truth bounding boxes as the positive

examples, and produce negative examples by running the SS algorithm on the training

data and selecting the proposals that have a small overlap with one or more of the

ground truth bounding boxes. Since the hardest test cases are regions that have some

overlap with the object but have bad localization, training specifically with these cases

is expected to improve performance. [32] proposes running the first iteration of the

classifier through the training images a second time, and adding misclassified regions

to the training examples for the final classifier. We skip this, since we only care about

the relative performance of the algorithms, and since the classifier is common in all

compared methods, its quality has no effect on the relative performance. We also

point out that learning with SS bounding boxes should favor the SS methods slightly;

training a separate classifier with FSS proposals for FSS algorithms may improve

their performance.

The results for each of the 4 variants are given in Table 4.2. Comparing the full

71



versions, we see a good amount of improvement even with a slightly reduced number

of merging strategies, i.e. hierarchies. Where the FSS algorithm really shines is the

comparison of the lite versions: discarding all of the merging strategies used in the

original SS algorithm still leaves us with two very strong merging strategies, namely

the Fisher similarity score and the Fisher objectness metric. The reduction in average

precision is very low, and the lite version still beats the full SS algorithm by a healthy

margin. By contrast, the lite version of the original SS algorithm falls of quite a bit

compared to the full version.

Table 4.2: Comparison of methods in terms of the average precision of classification.

Average Precision
Maximum Objects Per Image SS_full FSS_full SS_lite FSS_lite

1 0.110 0.135 0.077 0.144
2 0.132 0.149 0.092 0.142
3 0.137 0.154 0.091 0.136
4 0.136 0.153 0.089 0.134
5 0.133 0.151 0.089 0.132

The results show that incorporating a discriminative representation into the merging

strategy removes the need for much variation in proposal generation. Instead, we can

stick with few strong strategies to construct the proposals and achieve better recall in

a reduced number of proposals (Figure 4.4). The magic of Fisher-Selective Search

is in its additive formulation and applicability to arbitrarily shaped regions. These

properties allow us to compute the FV for the whole hierarchy in linear time, so we

may even be able to combine it with other classifiers to obtain even better results. The

next set of tests explore this possibility.

4.4.2 Comparison of Ensemble Strategies

A question lingers in our minds from Chapter 3: can we perform better by combining

the best handcrafted method with the best learned representation? It would be a waste

to throw away decades of experience gained from working with handcrafted features,

but how can we use it efficiently? In the recent years, attempts were made to combine

Fisher Vector based methods with deep networks [68, 61], which were successful to

some extent; however, winning entries to the ILSVRC competitions are virtually all
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Figure 4.4: Airplane detection results with the lite FSS region proposals. The pro-

posals are color-coded in a green-red spectrum, with a higher classification score

corresponding to a greener bounding box. Only the top 5 proposals are shown.

purely based on deep network architectures [66].

In this section, we propose using FSS as a way of incorporating the power of hand-

crafted representations in an otherwise purely deep framework. Instead of using the

Fisher Vector based classifier from the earlier section, we have trained another clas-

sifier from the second-to-last layer of CaffeNet representations of regions. Addition-

ally, we also trained an ensemble classifier from the concatenation of the FV and the

CaffeNet representations. This time, we compare 3 different scenarios: the first one

is the classification of FV representations of FSS region proposals, the leading algo-

rithm tested in the earlier section. The competing algorithms are both ensembles of

FV’s and deep representations. The third strategy (Selective Search proposals, clas-

sified with ensemble classifier trained with both FV and ConvNet features) is a fairly

standard way of combining different techniques into a single, better, classifier; our

main goal is to test whether the novel approach of using the FV representation strictly

to produce better region proposals, then using a purely deep representation in the
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classifier portion of the framework, gives comparable results to the standard method.

The ConvNet representations here are computed from CaffeNet, described and used

for classification in Chapter 3. The methods are matched to their acronyms in Table

4.3, and the average precision results are given in Table 4.4.

Table 4.3: Description of which detection framework each acronym represents.

Acronym Description

FSS_FV
Fisher-Selective Search proposals,
classified with Fisher Vectors only

FSS_ConvNet
Fisher-Selective Search proposals,
classified with ConvNet features only

SS_FVConvNet
Selective Search proposals,
classified with ensemble classifier
(trained with both FV and ConvNet features)

Table 4.4: Comparison of ensemble methods in terms of the average precision of
classification.

Average Precision
Max Objects/Image FSS_FV FSS_ConvNet SS_FVConvNet

1 0.135 0.258 0.274
2 0.149 0.293 0.295
3 0.154 0.299 0.296
4 0.153 0.297 0.294
5 0.151 0.296 0.295

From the tables, we see that the introduction of deep convolutional representations

to our framework has an immensely positive effect on performance: the Average

Precision is doubled in both ensemble strategies. It is also very promising to see

that implicitly formulating the information contained in Fisher Vectors in the form of

better region proposals is practically equivalent to an explicit formulation within the

ensemble classifier.
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CHAPTER 5

CONCLUSIONS

Throughout this thesis work, we explored the area of visual, automatic object recog-

nition with a tailored focus on the specific problems of image classification and object

detection. We started off with the claim that the representation is the cornerstone of

any object recognition framework, that the stepping stones in the field have always

been a jump in the capability of the state-of-the-art representation.

A lot of time was spent on handcrafted representations, in particular the Fisher Vector

representation, to understand how and why the paradigm shift in Computer Vision

happened so suddenly; and we tried to identify the point where deep representations

surpassed their handcrafted counterparts. We found that the availability in very large,

labeled datasets allowed us to learn a discriminative representation from scratch and

saw that it performed better than handcrafted approaches; even when a problem in-

volving classification is not accompanied by a large dataset, deep representations

trained in other, large datasets still performed very well due to their immense dis-

criminative strength.

We devoted Chapter 4 to exploring the relation between the classification and detec-

tion problems. We mentioned some popular proposal generation methods and talked

about their advantages as well as limitations. Furthermore, we proposed an extension

to the widely used Selective Search algorithm, called the Fisher-Selective Search, that

showed great promise in experimental results, beating the vanilla Selective Search al-

gorithm by a healthy margin. We argued that the extension adds no additional cost to

the standard proposal generation followed by classification framework, as long as a

Fisher Vector classifier is used.
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Finally, we proposed a novel, implicitly ensemble detection framework that makes

use of discriminative information supplied by the Fisher Vector at the proposal gen-

eration stage, followed by a deep representation classifier. We envision that going

into the future, such approaches may help the experiences gained through years of

research with handcrafted features live on.

As future work, the hypothesis that performance of a Convolutional Neural Network

is either bounded by the size of the training set or the depth of the network must

be tested thoroughly. Also, an empirical study of the computational cost of Fisher-

Selective Search compared to the vanilla Selective Search may be considered. Finally,

for a classifier-independent evaluation of Fisher-Selective Search, the recall versus

number of proposal windows curve of the algorithm could be studied.
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