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ABSTRACT

AUTOMATIC VEHICLE DETECTION AND OCCLUSION HANDLING AT
ROAD INTERSECTIONS

Ülker, Berk
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

September 2015, 110 pages

Vision based intelligent transport system applications are extensively utilized and re-
searched in recent years. Several applications with tracking, classification and count-
ing functionalities are used for automatization of traffic management. Work in this
thesis aims to provide an accurate vehicle detection method for improving perfor-
mance of these tasks. Vehicle detection starts with detection of moving objects, us-
ing a background subtraction algorithm. Then, accuracy of the foreground mask is
improved using a shadow detection algorithm. Occlusions are detected from both ge-
ometrical properties of blobs in binary mask, and associations between objects from
consecutive observations. A segmentation method based on the assumptions on ob-
ject geometry under occlusion is proposed and implemented, to detect vehicles under
occlusion correctly.

Proposed solution is tested on several videos collected from different intersections.
Results indicate a significant improvement in performance compared to the existing
methods in literature.

Keywords: Vehicle Detection, Occlusion, Segmentation
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ÖZ

KAVŞAKLARDA OTOMATİK ARAÇ TESPİTİ VE KAPANMA İŞLEME

Ülker, Berk
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Eylül 2015 , 110 sayfa

Görüntü işleme tabanlı akıllı ulaşım sistemleri son yıllarda yaygın şekilde uygulan-
maya ve araştırılmaya başlamıştır. Hedef takibi, sınıflandırma, sayım gibi görevleri
yerine getiren pek çok uygulama geliştirilmiştir. Bu tez çalışmasının amacı, söz ko-
nusu uygulamaların başarı oranını yükseltecek bir araç tespit metodu sağlamaktır.
Araç tespiti, arka plan modeli oluşturularak sahnedeki hareketli objelerin tespiti ile
başlamaktadır. Elde edilen ikili imgenin isabeti, gölge tespit metodu kullanılarak yük-
seltilmiştir. Kapanma durumu, ikili büyük objelerin geometrik özeeliklerinden, ve ob-
jelerin ardışık kesmelerde birbirleri ile olan ilişkilerinden elde edilen bilgilerle tespit
edilmektedir. Kapanma durumundaki objelerin geometrik özelliklerine ait varsayım-
lara dayanan, ve bu objelerin doğrulukla tespitini amaçlayan bir kesimleme algorit-
ması önerilmiş ve gerçeklenmiştir.

Önerilen çözüm farklı kavşak noktalarından toplanan çeşitli videolar üzerinde test
edilmiştir. Sonuçlar literatürde bulunan metodlara göre kayda değer bir performans
artışına işaret etmektedir.

Anahtar Kelimeler: Araç Tespiti,Kapanma,Kesimleme
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Demand for efficient and reliable transportation rises globally due to growth of indus-

tries and human population. This demand drives increase in both number of vehicles

and distance traveled, which means increased traffic volume. Steady increase of the

traffic volume reached to a point that handling of congestion and emergency situa-

tions could only be possible with a detailed traffic management approach. In recent

years, efforts on traffic management field centralized under Intelligent Transport Sys-

tems (ITS). Today ITS covers methods for analysis of traffic related parameters for

planning and management, control and optimization of traffic flow, detection and han-

dling of traffic related events. Furthermore combined with surveillance applications,

ITS decrease complexity and cost of imposing regulations and inspecting drivers.

Development of first generation ITS are triggered by increase in traffic accident re-

lated deaths and injuries, and ineffective traffic flow [20–23]. These systems were

often based on invasive sensors, which are costly to maintain and install such as road

surface inductive loops, and mechanical sensors. Moreover, most of the systems re-

quire an operator at observation, decision and control stages. Limited accuracy of

sensors and human induced errors by operators limit success of these systems.

Development of sensor technology and intelligent applications enabled design of

advanced and accurate ITS applications. Advances in sensor technology and cam-

eras lead to development of complex vision applications to collect traffic parameters.

Widespread use of cameras provided traffic analysts valuable parameters and met-
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rics, which lead to developing efficient management applications for traffic control.

Furthermore, installation and maintenance costs are dramatically reduced, as invasive

sensor applications become obsolete. Although need for operators for ITS is not com-

pletely eliminated, increase in computational power and advances in data processing

methods refined the data need to be handled by operators. Furthermore, vision based

applications enabled covering larger areas of interest, improving efficiency of ITS

applications.

Introduction and integration of vision based solution to ITS enabled handling of much

more complex tasks which were not practical to handle with existing methods. These

solutions range from collection of traffic analysis data such as vehicle counts by class,

traffic volume, congestion statistics, to event based real time management tasks such

as detection of violations, emergency detection, accident detection and toll collection.

Furthermore, long term data collected from these systems is a key input for planning

of new infrastructure and systems. Vision based solutions play a key role in these

systems by handling object detection, classification and tracking. Completing these

tasks with accuracy and high speed becomes a challenge, as working environment of

these systems has a complex nature. Illumination variations, irregular vehicle move-

ment patterns, presence of occlusions are some of the challenges researchers have

been working on.

1.2 SCOPE OF THESIS

Purpose of this thesis work is to provide an object detection solution, with occlusion

detection and handling capabilities. Most tasks in vehicle surveillance applications

are based on tracking, classification and counting of the vehicles. All these tasks re-

quire robust and accurate object detection to perform their function properly. Also

real time operation is crucial, as most of these tasks are implemented for online sys-

tems. Therefore, a solution to accurately detect vehicles, while maintaining a consid-

erable speed is targeted.

Intersections are the points where traffic flow becomes highly irregular, and vehicles

accumulate. Therefore occlusion frequently occurs, and performance of higher layer
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tasks like tracking and classification degrade. The solution proposed in this thesis

aims to reduce this degradation by improving object detection accuracy, with a geom-

etry based occlusion handling algorithm.

When scene geometry, vehicle motion and camera placements are considered, it is

concluded that a moving object detection is needed. Therefore, many methods from

literature with different approaches to the problem, are examined. Theoretical per-

formance expectations are compared with both qualitative and quantitative results to

select optimal solution.

Occlusion detection and handling tasks are the main focus of this thesis work, and

both inter frame and intra frame features are utilized for this purpose. A wide range of

ITS solutions are examined from literature, and existing methods are analyzed from

different aspects. An improved occlusion handling framework for accurate object

detection is proposed, which is based on shape geometry properties of the objects

appearing in foreground binary mask.

Vehicle group or vehicle level association is utilized for inter frame occlusion de-

tection. It must be stated that target tracking is not in the scope of this work, but

the solution proposed in this thesis can work in conjunction with a target tracking

algorithm, resulting a higher performance for both functions.

To evaluate performance of the proposed system, several tests in subsystem and

framework levels are conducted. Also, a base method in literature is selected and

implemented for comparative evaluation of both performance and computational cost.

1.3 OUTLINE OF THESIS

Thesis consists of five chapters. In Chapter 2, existing methods for occlusion detec-

tion, occlusion handling and object detection are examined in detail. A theoretical

analysis supported by provided experimental results is done to evaluate each method

proposed.

In Chapter 3, a multi stage solution for object detection is proposed. For each stage,

detailed explanations of used and proposed methods are given.
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In Chapter 4, implementation details, system and subsystem level tests and evaluation

metrics are given. Results are compared to existing methods.

In the last chapter, results obtained in Chapter 4 are discussed along with theoretical

expectations. Improvements and weak points of the proposed solution are given with

possible future extensions.
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CHAPTER 2

BACKGROUND AND LITERATURE

2.1 MOVING OBJECT DETECTION

Moving object detection is one of the most important and popular topics in vision.

It is mostly utilized in first stages of more complex vision applications, since most

of higher level tasks such as tracking and classification require precise detection of

moving objects. Most surveillance applications, including surveillance based ITS

applications, are dependent on moving object detection.

Moving object detection can be defined as operation of defining pixels belonging to

moving objects relative to the scene or background. Different approaches are adopted

for moving and stationary camera scenarios. In scope of this thesis, only stationary

camera based moving object detection methods are examined and utilized.

There are many completed works and many challenges present in moving object de-

tection field. Most common challenges present in literature can be listed as follows:

• Lack of robustness to global illumination variations

• Lack of robustness to change in camera parameters and non-uniformities in

sensors

• Noise caused by imaging device

• Difficulty in detection of moving objects or object parts similar to background

• Non stable background objects (vegetation, light emitting objects)
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• Moving objects with movement patterns like slowing or stopping for certain

amounts of time

• Local illumination variations on background caused by light sources associated

with moving objects, such as headlights of vehicles

Many different approaches are discussed in literature, each one answering the above

challenges with different success. In this thesis work, these challenges are going

to be examined and prioritized according to our application domain. Then suitable

algorithms will be evaluated quantitatively and qualitatively.

There are also works discussing groupings of moving object detection methods [24–

27]. Based on these work, there are three main types of moving object detection

algorithms, grouped by the method of detecting foreground pixels.

2.1.1 TEMPORAL DIFFERENCING

Temporal differencing based methods rely on the assumption that a moving object

causes noticeable intensity difference in intensity values of pixels associated with

movement. Basic approach here is using previous frame as a background model for

the next frame [28]. Although it is computationally efficient with small memory

usage, this approach lacks precision in object localization, and prone to produce erro-

neous results as illustrated in Figure 2.1. Results are dependent on temporal distance

between consecutive frames. If temporal distance is small, and object overlaps itself

in two consecutive frames, resulting in cavities in object mask. Conversely, if tempo-

ral distance is large, object may have moved away from previous position, resulting

a ghost of object in object mask. It must be noticed that different objects with differ-

ent speeds relative to the scene may produce both of these erroneous responses, and

adjusting temporal distance is not a solution.

To improve object localization and reduce erroneous response, several methods are

proposed. Collins et al [29] proposed a three frame differencing algorithm, which

improves object localization by incorporating object mask from previous frame in de-

cision for current frame. To further improve object localization and eliminate ghosts,

6



(a) Slow movement case (b) Fast movement case

Figure 2.1: Fail cases for simple temporal differencing

Motion History Images (MHI) is proposed [30,31]. MHI is not restricted to any tem-

poral distance as in three frame differencing. Instead, motions from distant frames

are weighted accordingly to enable decaying. MHI can also utilize future frames, in

expense of constant a delay in generation of output mask. Although MHI has better

performance, processing load and memory usage significantly increases compared to

basic approaches mentioned before.

It is worth to emphasize that, temporal differencing based methods do not produce any

robust background model. Lack of a maintained background model is major disad-

vantage, considering scenarios in which objects show irregular motion characteristics

like moving with different speeds or stopping for a certain amount of time.

2.1.2 BACKGROUND MODELING

This type of methods are based on construction of a background model, and often

adaptation of this model based on changes occurring in observed scene. Then a

foreground mask is constructed, by observing differences between current frame and

constructed background model. Although many different approaches exist, nearly all

proposed work under this category consists this two main steps. Difference between

methods are variations of these steps, namely constructing and updating background
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model, and measurement of difference from this model.

Early methods proposed often utilized pixel level independent models. These models

often include pixel intensity levels. Simplest form of this approach is pixel intensity

averaging, and using a Kalman filter [32] to update background model [33–35]. Al-

though averaging costs less computational power, and requires lower memory usage,

results often suffer from artefacts like ghosts, or cavities within objects as illustrated

in Figure 2.1. To overcome these problems several methods are proposed such as

utilizing an adaptive threshold and learning rates. Later, more complex models are

introduced, which can be grouped under two main categories as Parametric Models

and Non-Parametric Kernel density estimations.

Parametric models have become a popular research area, and many methods and im-

provements are proposed in literature. Earlier form of this approach is a simple single

Gaussian kernel for modelling background. In this approach, a Normal Distribution

N (µ, σ) is constructed for each pixel. This distribution is initialized as µ being tem-

poral average of pixel, and σ is variance of intensity value in this period.

Then for each new frame, foreground mask M is obtained as in Equation 2.1, while

K is a distance parameter typically set to 2.5 in most applications.

M (i, j) =

1, |I (i, j)− µ (i, j) | > Kσ.

0, otherwise.
(2.1)

Parameters of the model are updated as in Equation 2.2 and Equation 2.3, while α is

learning rate and i and j are pixel coordinates.

µnew (i, j) =

αI (i, j) + (1− α)µ (i, j) , M (i, j) = 1.

µ (i, j) , otherwise.
(2.2)

σ2
new (i, j) =

α (I (i, j)− µ (i, j)) + (1− α)σ2 (i, j) , M (i, j) = 1.

σ2 (i, j) , otherwise.
(2.3)

As an extension of this approach, Staufer and Grimson [36] proposed using of a

weighted mixture of Gaussian distributions to model each pixel. Model is expressed

as in Equation 2.4, where −̂→µ m and σ̂m are estimates of mean and variance for each
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mode respectively, π̂m are mixture weights, I is identity matrix, and chiT is sample

set for training.

p̂ (−→x |χT , BG+ FG) =
M∑
m=1

π̂mN
(−→x ; −̂→µ m, σ̂

2
mI
)

(2.4)

This approach further refined by utilizing information that foreground pixels appear

significantly less compared to background pixels as in Equation 2.5, where B is the

number, which defines how many of the largest modes are selected. An adaptation

rate is used to determine B, in order to prevent foreground data to influence back-

ground model [37].

p (−→x |χT , BG) ∼
B∑

m=1

π̂mN
(−→x ; −̂→µ m, σ

2
mI
)

(2.5)

Gaussian mixture models become quite popular, and used in many vision applica-

tions [38–44]. Also, several improvements are introduced to both governing equa-

tions of model update [45–48], and distance measure. One of the most noticeable

of these works is introduced by Zivkovic and Geijden [49]. They present a new set

of recursive equations to constantly update Gaussian Mixture Model (GMM) param-

eters, and to determine number of required mods for each pixel dynamically. They

also present a non-parametric density estimation method. Utilizing this method, they

achieved superior segmentation performance compared to their predecessors [36,50],

with reduced computational cost. Later, Self-Adaptive GMM (SAGMM) [51] is in-

troduced, addressing to the problems caused by constant learning rate, such as incor-

poration of slow moving objects into background, or large amount of false positives

due to slow adaptation. SAGMM introduces a separate learning rate for each mode of

the mixture model. With this extra parameter, they achieved improvement in conver-

gence and accuracy of the background model, without losing temporal adaptability.

Non-Parametric models based on Kernel Density Estimation (KDE) are introduced

and developed along with parametric methods. In Non-Parametric model based meth-

ods, probability density functions (PDF) associated with background and foreground

differ for different scenes, and they do not have a parametric generalized form. PDF

is estimated directly from set od samples, without using assumptions on distributions.

Work of Elgammal et al [50] being a milestone, several improvements and new meth-

ods are proposed based on this approach [1, 37, 52–56]. In most methods based on
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this approach, modelling of repetitive movements with long and short periods became

problematic, due to high memory requirements caused by stored observations [4].

Due to same reason, these methods are highly data driven, and considered for hard-

ware platforms specialized in parallelization, such as FPGAs or GPUs.

One of the methods introduced to reduce memory use in non-parametric methods is

ViBe [1, 54, 57]. This method has become a base method for most of the successful

methods competing with benchmarks, on [1]. ViBe opposes the traditional approach

that, oldest samples are removed first, from the set of observations when construction

background model. Instead, a stochastic sampling approach with random observation

replacement is adopted. This approach is further improved in [55, 56]. Each back-

ground pixel is modelled as an array of samples from different frames as in Equation

2.6.

M (x) = {v1, v2, ..., vN} (2.6)

Decision on pixel level is different from classical approaches. Unlike parametric

model based methods, a pixel can be identified as background, even if it is only close

to a ‘few’ of the samples in observation set. This means, new value does not need to

be close to the majority of the sample set. Exact mechanism is illustrated in Figure

2.2 [57]. A sphere with radius R is formed on 2D space, centered on the current pixel

value v (x). A decision threshold, #min, is defined. If number of samples intersecting

with the sphere is larger or equal to #min, then pixel is classified as background.

After decision, a randomly selected sample from the set M is replaced with current

value v (x). ViBe also increases spatial consistency, by propagating a pixel value to

observation set of a randomly selected neighbor, if a pixel is detected as background.

This is a major advantage versus pixel-based methods, which rely only on parameter

adaptation to achieve spatial consistency. Some work [58] is done to achieve similar

consistency with pixel based GMM, utilizing a region based algorithm, although with

limited success and high computational cost.

In [56], an improved version of ViBe, Pixel Based Adaptive Segmenter (PBAS) is

introduced by Hoffman et al. Based on ViBe implementation in [57], this method

replaces static thresholds imposed in ViBe, with dynamic state variables. Firstly, it

replaces 2D distance threshold R, with R (xi). R (xi) is independent for each pixel,
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Figure 2.2: Pixel level decision in ViBe. v (x)

is center pixel, and vn are samples from training set [57].

and updated after each frame, where xi is index of each pixel. By adding an update

mechanism for R (xi), this variable is adapted to increase for highly dynamic areas,

and decrease for static areas of the scene. Therefore, false positive rate in dynamic ar-

eas are reduced, and foreground detection accuracy is increased in static background

regions.

PBAS also improves ViBe by introducing a variable learning rate, T (xi) for each

pixel. Instead of replacing a randomly selected neighbor sample every time a back-

ground pixel decision is made as in ViBe, this replacement is done with probability

of 1/T (xi). This change enables control of the learning rate. Also T (xi) is increased

for large blobs, and decreased for small blobs. This way, large blobs corresponding

to the moving objects in the scene are only slightly ‘eaten up’, while small erroneous

blobs are completely eliminated.

With discussed methods and improvements, pixel-based method family offers a light-

weight and effective solution for moving object detection. But an important infor-

mation supplied in video sequences, spatial relations between pixels are not utilized.

Region, texture and block based methods are introduced to exploit this information

by using feature descriptors, block descriptors, [3,58,59] and color distributions [60].

Use of local binary descriptors are studied, an a solution based on Local Binary Pat-
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tern (LBP) is proposed in [3]. A LBP descriptor is defined as in Equation 2.7 and

calculated as in Figure 2.3.

LBPP,R (xc, yc) =
P−1∑
p=0

s (gp − gp) 2c, s (x) =

1 x ≥ 0

0 x < 0
(2.7)

where R is the nxn neighborhood of center pixel, P is the selected subset od R,

(xc, yc) is pixel coordinate of center pixel, gc is gray value of center pixel, gp is the

gray value of selected pixel from the set P , s is the decision function.

Figure 2.3: LBP sampling pattern, retrieved from [3]

As LBP is a texture primitive statistic, it strongly describes the spatial relation be-

tween local pixels, without being affected from mean intensity levels. This means,

this descriptor is invariant to the global or local illumination changes, and shadows.

To improve LBP feature, and enable detection of both texture and intensity varia-

tion, Local Binary Similarity Pattern (LBSP) is proposed [61]. LBSP is defined as in

Equation 2.8 and Equation 2.9, and calculated as in Figure 2.4.

LBSPR (xc, yc) =
P−1∑
p=0

d (ip − ic) 2p (2.8)

d (x) =

1 |x| ≤ Td

0 |x| > Td

(2.9)

where R is the nxn neighborhood of center pixel, P is the selected subset od R,

(xc, yc) is pixel coordinate of center pixel, ic is intensity of center pixel, ip is the
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intensity of selected pixel from the set P , d is the decision function, and Td is the

decision threshold.

Figure 2.4: LBSP sampling pattern, retrieved from [4]

Two LBSP descriptors are proposed, namely intra-LBSP and inter-LBSP for updating

background model and detecting foreground respectively. Intra-LBSP is calculated

within background model. Inter-LBSP is calculated by selecting center pixel in cur-

rent frame instead of background model. In Figure 2.5, these two descriptors, and a

typical evaluation is shown.
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(a) Pixel is tagged as background

(b) Pixel is tagged as background

(c) Pixel is tagged as foreground

Figure 2.5: LBSP pixel level decisions, retrieved from [4]
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New methods utilizing LBSP descriptor are proposed by St-Charles et al [4, 62], and

achieved considerable success. First, an upgrade to lightweight ViBe is proposed,

with using a vector of LBSP descriptors, instead of directly using pixel intensity val-

ues [62]. New method is named Local Binary Similarity Segmenter (LOBSTER).

Introduction of LBSP descriptor into a pixel-level algorithm caused an increase of

computational cost of sampling and distance measurement [62]. To overcome this,

a per-channel approach for reducing number of sample comparisons conducted on

LBSP descriptor vectors. This per-channel approach dictates that, descriptors and

color values for each channel are compared sequentially. First, a significant difference

is checked between pixel intensity values. If intensity values are close, then LBSP

strings are compared using Hamming distance thresholding. As this second step is

more expensive, first check reduces cost by avoiding unnecessary LBSP descriptor

comparison. For each channel of pixel, these checks are performed sequentially until

pixel is tagged. This way, average number of comparison and distance calculation

operations is reduced.

Another important step to reduce computational complexity is changing the distance

measure used in measurement of sample similarity. Instead of using L2 distance as

in ViBe, L1 distance is used, which is a cheaper operation. Authors claim that, L1

distance also results better overall performance compared to L2 distance, based on

their experiments. Benchmarks done on CDNET dataset indicate that, LOBSTER has

achieved significant improvement in overall performance for all videos, compared to

the base method ViBe [62]. Results of this benchmark are shown in Table 2.1.

Improvements achieved by introduction of LBSP proved that LBSP descriptors in-

crease spatial consistency of background subtraction. Motivated by these results,

St-Charles proposed that PBAS method [56], which is an improved version of the

ViBe algorithm, can also be improved using LBSP descriptors. A new method, SuB-

SENSE [4], is proposed based on PBAS. With utilization of LBSP, SuBSENSE offers

better spatial consistency compared to PBAS. Also, adaptability improvements inher-

ited from PBAS enables fast and stable responses to variations in the background.

SuBSENSE also improves adaptability by introducing a new feedback scheme. Au-

thors claim that feedback process proposed in PBAS have two major drawbacks:
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Table 2.1: ViBe benchmark results, retrieved from [1]. Metrics are explained in Chap-
ter 4

Category Recall Specificity FPR FNR PWC Precision F-Measure

baseline
0.8955 0.9983 0.0017 0.0045 0.5774 0.9558 0.9242

(+9%) (∼0%) (-17%) (-40%) (-35%) (+3%) (+6%)

cameraJitt
0.6742 0.9921 0.0079 0.0141 2.0930 0.8368 0.7423

(-5%) (+2%) (-74%) (+22%) (-48%) (+58%) (+24%)

dynamicBg
0.7670 0.9820 0.0180 0.0023 1.9984 0.5923 0.5679

(+6%) (-1%) (+73%) (-15%) (+56%) (+11%) (∼0%)

intermittObj
0.5589 0.9752 0.0248 0.0428 5.8427 0.7102 0.5770

(+9%) (+2%) (-48%) (∼0%) (-25%) (+9%) (+14%)

shadow
0.8784 0.9930 0.0070 0.0052 1.1549 0.8765 0.8728
(+12%) (∼0%) (-14%) (-44%) (-30%) (+5%) (+9%)

thermal
0.8135 0.9934 0.0066 0.0093 1.4210 0.8572 0.8248
(+49%) (∼0%) (+72%) (-71%) (-55%) (-8%) (+24%)

overall
0.7646 0.9920 0.0110 0.0130 2.1812 0.8048 0.7515
(+12%) (+1%) (-35%) (-26%) (-30%) (+9%) (+13%)

1. Local comparison results cannot be used when a pixel is detected as a back-

ground.

2. Pixel value is only incorporated into the model by a probability of 1/Ti.

Results of these drawbacks are long convergence time for variables, and false fore-

ground detections, which are observed in noisy and dynamic areas. To solve these

issues, a feedback mechanism observing background dynamics are proposed.

First, a continuously updated moving average,Dmin (x) is defined as in Equation 2.10

for each pixel x, where dt (x) is minimal normalized color-LBSP distance between all

samples in sample set of background model for both LBSP descriptors and intensities,

α is the learning rate. This moving average is used as measure of model fidelity.

Dmin (x) = Dmin (1− α) + dt (x)α (2.10)

However this type of continuous update regardless of pixel classification is not adopted

in [56] as updating adaptive distance thresholdR (x), and learning rate T (i) based on

this variable may cause false classification of slow moving objects into background
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model. Slow moving foreground objects or large foreground objects may cause an

increase in Dmin (x). A new feedback variable, v (x) is introduced by authors, to

eliminate this effect. v (x) is an indicator of blinking in a pixel, and defined as in

Equation 2.11, where x (t) is a map constructed by XOR operation on consecutive

frames to detect blinking.

v (x) =

v (x) + 1 ifXt (x) = 1

v (x)− 0.1 otherwise
(2.11)

Using these two indicators, R (x) and T (x) are controlled as in Equations 2.12, 2.13,

2.14, 2.15, where R0
color and R0

lbsp are static thresholds, and S (t) is resulting binary

map before application of feedback.

R (x) =

R (x) + v (x) ifR (x) < (1 + 2Dmin (x))2

R (x)− 1
v(x)

otherwise
(2.12)

Rcolor (x) = R (x)R0
color (2.13)

Rlbsp (x) = 2R(x) +R0
lbsp (2.14)

T (x) =

T (x) + 1
v(x)Dmin(x)

ifSt (x) = 1

T (x)− v(x)
Dmin(x)

ifSt (x) = 0
(2.15)

With these improvements and adaptations, SuBSENSE becomes an efficient fore-

ground/background segmentation method with successful responses to the multiple

challenges presented by complex scenes in surveillance applications.

Figure 2.6 illustrates development of discussed algorithms, with key improvements

introduced to base algorithms.

2.2 SHADOW DETECTION

Moving shadow detection has been an active topic, as in most surveillance applica-

tions imaging unit requires scene to be illuminated by an external source. This source

may be sun or a lighting unit, which causes formation of shadows observable in gen-

erated images.
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Figure 2.6: Development stages and improvements of some popular state of art back-
ground subtraction methods

Moving shadows have a deteriorating effect on performance of vision based applica-

tions, as differentiating foreground and background becomes more complex. There-

fore, tasks as object detection, tracking and classification require careful considera-

tion of effects of shadows on their performance. In literature, there are several works

proposing methods to detect, identify and eliminate shadow.

Shadow is formed by occlusion of the light source by an object. Two regions of

shadow are formed in this case, which are self-shadow and cast shadow. Self-shadow

is part of the object, which is not illuminated by the light source due to obstruction

caused by itself. Cast shadow is the shadow occupying the area behind obstructing

object. This area is a two dimensional projection of the object. These two types of

shadows are shown in Figure 2.7, with a rendered image.

Cast shadow has two regions, umbra and penumbra [6]. Umbra is the part of the

shadow, where light source is totally blocked by the occluding object. Penumbra is

the area, where light source is partially blocked. Penumbra area is illuminated directly

by some portion of the light source. Notice that a point light source produces only

umbra where an area light source can produce both umbra and penumbra. Umbra and
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Figure 2.7: Rendering of a pawn under a light source. Self shadows are visible on the
body of the object. Image retrieved from [5]

penumbra regions are illustrated in Figure 2.8.

In the context of moving object detection, cast shadows become problematic as they

often decrease accuracy of object detection. For most surveillance applications with

object tracking feature, moving object detection is a crucial step, bounding an upper

limit for overall performance. Without proper segmentation and isolation of each

object, errors will be introduced, and propagated to the further steps of surveillance

applications such as tracking and classification.

Surveillance tasks on ITS applications are often performed continuously, which re-

quires independence from, or adaptation to, external parameters such as daytime and

weather conditions. As weather conditions and daytime change, structure and posi-

tion of the cast shadows of objects in the observed scene change. For urban traffic

scenes in daytime there are two main sources of illumination, sun and ambient light

from sky. These two sources have different effects on the observed scene.

Ambient light can be modeled as continuous light source spanning entire sky. This

source generally does not produce large cast shadows. Cast shadows from this source

become significant only in the areas where large portion of source is blocked such as

area under a vehicle. For most surveillance applications, this area is mostly blocked

by object itself, and performance degradation caused by these areas are not signifi-

cant.

Effect of sun can be modeled as a point source, as penumbra area generated by ob-
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Figure 2.8: Shadow regions, retrieved from [6]

struction of a portion of sun is negligible and often lost due to digitization of the

captured scene. Therefore generated cast shadows are often significantly different

from non-shaded areas, and shadow area has stronger edges at boundaries. Shape and

structure of still and cast shadows change with angle of sunlight during daytime, but

when adaptation rate of a foreground detection algorithm is considered, this change

is negligible. Therefore still shadows cast by sun are often counted as background

features. Figure 2.9 illustrates static shadows from Highway sequence.

Still cast shadows which can be assumed to be stationary during observation interval,

are incorporated into the background model. After a learning period, pixels belonging

to the still cast shadow areas are regarded as background pixels. Similar case applies

to the frame differencing based foreground segmentation algorithms.

Moving cast shadows generated by obstruction of sunlight are problematic cases for

surveillance applications, as color values of these shadow pixels are often signifi-

cantly different from those of background model and shadow regions have similar
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Figure 2.9: Static shadows in a background model

motion characteristics with object. For moving object detection methods, moving

cast shadow area has different color values which are often enough for misclassifying

these pixels as foreground pixels. Also their movement pattern is nearly same as the

object casting them. These properties of moving cast shadow pixels cause moving

objects to be extracted with their cast shadows after foreground detection stage. As

illustrated in Figure 2.10 after the application of GMM based background foreground

segmentation, object blobs include object bodies with their cast shadows.

A connected component analysis performed on this erroneous foreground mask can

yield errors on object properties such as shape, orientation, size and position. Fur-

thermore, separate objects which are connected by a cast shadow can be misclassified

as one object in single blob. An example of such misclassification can be seen on Fig-

ure 2.10, where three vehicles without any occlusion have connected blobs in binary

mask. These effects can introduce errors to the counting, classification, segmentation

and tracking algorithms which are employed widely in vision based ITS applications.

There are various methods to handle moving cast shadows in literature, and several

studies are made to evaluate these methods [2, 7, 8]. Prati et al [7] examined several

proposed methods up to year 2001, and suggested a two level taxonomy. At first level,

they grouped methods by considering whether methods are deterministic or statistical.

Then at second level statistical and deterministic methods are further divided into two

groups separately, as illustrated in Figure 2.11.
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(a) Original image

(b) Binary Foreground Mask

Figure 2.10: Foreground detection under effect of shadow

Later, Al Najdawi et al [2] examined methods up to year 2010, and suggested a new 4

level taxonomy. At first stage, algorithms are classified by checking whether they are

designed for shadow detection on specific objects like vehicles or human. At second

stage, classification is done by checking whether algorithms are designed for operat-

ing on a specific environment like indoor, road or aerial. Third stage classification is

based on the domain in which shadow detection features belong. At the fourth stage,

algorithms are classified by the color space in which shadow features are extracted.

Groupings and evaluated algorithms can be seen in Table 2.2.

Sanin et al [8] proposed another taxonomy, which is mainly based on the features

algorithms use for shadow detection. They grouped algorithms into four main groups,
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Figure 2.11: Taxonomy based on work of Prati et al [7]

as in Figure 2.12.
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Table 2.2: Taxonomy based on work of Al Najdawi et al [2]

Layer 1
Object Dependence

Layer 2
Environment Dependence

Layer 3
Domain

Layer 4
Color Domain

Dependent
Dependent

Spatial
Color
Monochrome

Frequency -
Independent Spatial Monochrome

Independent

Dependent
Spatial

Color
Monochrome

Frequency -

Independent
Spatial

Color
Monochrome

Frequency -
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Figure 2.12: Taxonomy based on work of Sanin et al [8]
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Taxonomy provided by Sanin et al [8] is used for classification of shadow detection

algorithms evaluated in this thesis work. Performance and cost analysis based on

feature types are easier, and algorithms based on similar features tend to produce

similar quantitative results.

2.2.1 CHROMACITY BASED METHODS

Chromaticity is defined as a measure of color quality independent of luminance.

Methods exploiting chromaticity information are based on the assumption that cast

shadow on a surface causes a limited change in chromaticity, while changing inten-

sity significantly. This assumption is called color constancy [63] or linear attenua-

tion [64]. Based on this assumption, multiple regions are defined on 3D color space,

according to their luminance difference and chromaticity similarity compared to a

base color. For shadow/highlight detection, two different thresholds are defined [9],

as in Figure 2.13.

Figure 2.13: Chromaticity thresholds, retrieved from [9]

Another threshold, ταlo is defined to avoid noise, when intensity becomes very low.

All chromaticity based methods use this approach to identify shadow/highlight areas.
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2.2.2 PHYSICAL PROPERTIES BASED METHODS

Chromaticity method is based on Linear Attenuation model, which assumes that pure

white light is produced by illumination source. This is often not the case, as sun light

greatly varies depending on time and location. Also, sky illumination is present in

most cases, and can become more significant than sun when sunlight decreases. This

can be observed as a shift of color in the shadow area, towards blue component [6].

To overcome this problem, a dichromatic model [64] is proposed. Later, non-linear

attenuation models [64, 65] and introducing adaptability into these models [66–69]

are proposed. Although these methods have better overall performance compared to

chromaticity based methods as stated in [66,67], they do not utilize any spatial infor-

mation. Performance degrades when dealing with objects with similar chromaticity

with background model [64].

2.2.3 GEOMETRY BASED METHODS

Geometry based methods utilize scene and object geometry to predict and detect shad-

ows. Location of illumination sources, location and shapes of objects and orientation

of ground plane are key properties utilized in these methods. By utilizing this infor-

mation, several methods are proposed to detect shadows [70–74]. Geometry based

methods do not require a background reference for detection of shadows. But they

are limited to the scenarios where object and light source properties are known accu-

rately. Therefore, they are not optimal solution to the shadow detection challenge in

dynamic outdoor scenes, which are case for this thesis work.

2.2.4 TEXTURE BASED METHODS

Textures are strong features, and they retain their properties under illumination changes.

Cast shadow on a surface changes intensity values at area significantly, while pixels

under the shadow tend to preserve their spatial relationship with surrounding pix-

els. Therefore, correlation of texture descriptors becomes a strong feature for shadow

detection.
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Texture based methods generally consist two main steps:

1. Detection of shadow candidate pixels and regions

2. Classification of candidate areas using texture correlation

Shadow candidates are typically generated by using a lightweight shadow detector.

For most methods, spatial features like chromaticity are utilized. This step reduces

number of costly texture feature calculations and comparisons.

In second step, several methods are used for measuring texture similarity, like nor-

malized cross-correlation [75], gradient or edge correlation [76,77], orthogonal trans-

forms [78], Markov or conditional random fields [79,80], Gabor filtering [81]. While

having a superior performance compared to other methods [8] , computational cost is

increased by memory access patterns and calculations done in this step.

Texture based methods are further classified into groups based on the texture corre-

lation level, as shown in Figure 2.12. Correlation level is an important parameter, as

correlation area is proportional to the amount of spatial information used.

Test results provided by Sanin et al [8] indicate that, as correlation level increase

from pixel to large region, shadow detection performance increases. Large texture

based methods offer more independence from object, scene and shadow types. Also

robustness to noise and penumbra detection increases.

2.3 OCCLUSION DETECTION AND HANDLING

Occlusion of vehicles is a challenging problem in Vision Based Intelligent Transport

Systems. Unhandled occlusion cases deteriorate performance of key vision algo-

rithms such as vehicle count, vehicle classification, lane change detection and viola-

tion detection. These algorithms are used to gather critical information needed for

traffic management applications of ITS, therefore accuracy of these applications are

critical. Also, as higher layer information such as travel speed, queue lengths, and

traffic condition assessments are dependent on algorithms such as vehicle detection

and classification, any inaccuracy in these algorithms propagates to higher layers. As
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a result, various occlusion detection and handling algorithms are employed in ITS

applications to improve performance.

Occlusion occurs when an object obscures view of another object from camera point

of view. For most ITS applications, camera placement is done under physical restric-

tions such as height and available space for installation. There are few applications

that provide top down view of the road surface and traffic, by setting up visual sen-

sors looking down from a high platform. But due to restrictions imposed by urban

environment, this configuration is not widely used, and not discussed considerably

in ITS scope. Also for most applications, cameras are placed in such a way that all

areas of interest are covered for different vision applications. Combined by these

infrastructure related factors, urban traffic management applications mostly focus on

intersections, where traffic density is significantly high compared to highway scenar-

ios [82]. Reduced traffic flow speed and increased congestion triggered by high traffic

density increase rate of occlusion events drastically. Variation of moving directions

and paths of the vehicles, and increased interaction with surroundings in intersections

further contribute to this rate [82–84]. Figure 2.14 shows images from most widely

used visual sensor setup and configurations. As a result of these factors, occlusion

cases between vehicles in areas of interest are mostly inevitable for higher layer ap-

plications such as vehicle counting, vehicle classification, vehicle tracking and event

detection.

Occlusion events can be grouped into two cases, according to the proportion of blocked

part of the occluded objects, which are partial and full occlusion. Full occlusion can

be observed when an object is completely or nearly completely obscured by another

object. In this case detecting or identifying occluded object is not possible without us-

ing extra information [13]. Figure 2.15 shows a full occlusion event with past and pre-

vious frames from same observation. Handling this type of occlusion is possible only

when information from past or future frames is utilized, which is the case in many

tracking applications. Another approach is using multiple sensors and cameras com-

bined with stereo vision applications to detect and handle full occlusion cases [85],

but due to increased complexity and costs, monocular vision based applications are

preferred.
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(a) Rectilinear (b) Rectilinear

(c) Fiseheye

Figure 2.14: Occlusion cases from different camera setups

Second type of occlusion is partial occlusion, which occurs when occluded object

is partly blocked. This means object can still be identified and distinguished visually

from the blocking object using information supplied in current frame. This is the case

mostly observed when a scene has occlusion event, as full occlusion cases are mostly

temporary, and reduce into partial occlusion cases as observation proceeds. High

traffic density and camera placement restrictions also increase rate of occurrence, as

mentioned before. Also when using blob based moving object detectors, effects of

moving cast shadows can generate effect of a partial occlusion on binary masks as in

Figure 2.16. Partial occlusions can be solved by utilizing occlusion handling methods,

which is the main focus of this thesis work.

Effects of occlusion on performance of vision based ITS algorithms are varying

greatly. Some algorithms such as queue length estimation, vehicle presence detec-

tion or lane violation detection can be robust to these effects. But when vehicles

are required to be detected and identified individually, occlusion becomes problem-
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(a) Partial Occlusion (b) Full Occlusion

(c) Partial Occlusion

Figure 2.15: Progress of a full occlusion

atic. Overall performance of low level applications such as tracking, classification or

counting deteriorates due to track losses, misdetections and misclassification. Perfor-

mance of higher layer applications such as path tracing, event detection, flow analysis

and traffic control systems are also affected, as they rely on low level applications

mentioned.

To overcome occlusion problem and improve performance of vision based ITS ap-

plications, several methods of occlusion handling are developed. In early stages of

development of ITS systems, several non-visual sensors are used for these applica-

tions, such as ultrasonic, infra-red and mechanical sensors. These methods are often

invasive for transportation infrastructure and less accurate compared to vision based

systems. Use of visual sensors in ITS became widespread, as sensor technology ad-

vanced and processing power increased [86]. Occlusion handling became an impor-

tant and challenging part of ITS applications. While physical restrictions regarding
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(a) (b)

Figure 2.16: Binary mask under partial occlusion

camera placement, and challenges in urban traffic scenes enforce an increase of com-

plexity of proposed methods, requirement of real time processing of large amount of

data constrains this complexity.

Occlusion handling methods are first addressed as a subset of vehicle tracking ap-

proaches [11], as solving occlusions require a priori information. This information

can be object model, or past information regarding state of objects in the scene.

Therefore, occlusion detection and handling methods are often combined and dis-

cussed with tracking algorithms. Main advantage of these approaches is availability

of a tracker feedback, which can be used to solve full occlusions and partial occlu-

sions that cannot be solved by current scene information. There are also different

approaches, in which occlusion handling methods are used for accurate object detec-

tion and classification, without using any tracking algorithm. These algorithms use

various object models, motion characteristics or certain object properties as a priori

information to be supplied to occlusion handling algorithms. These methods often

lack ability to detect and handle full occlusions.

Approaches in literature differ greatly depending on the problem definition and pur-

pose of occlusion handling. Therefore, a distinct classification of occlusion handling

methods is not possible. To classify and group proposed solutions, occlusion detec-

tion and occlusion solving approaches are examined separately as:

• Occlusion detection and reasoning
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• Occlusion solving

2.3.1 OCCLUSION DETECTION AND REASONING

Occlusion reasoning is crucial part of any occlusion handling method. Detection

results are used to trigger occlusion solving methods. Therefore, methods achieving

this task need to be accurate, as any misdetection or false alarm affect success of

whole application due to propagation.

Vision based ITS applications with occlusion handling solution are mainly focused on

tracking algorithms. For ITS applications, occlusion is mostly discussed as a problem

encountered in tracking algorithms, and often solved by incorporating concept of oc-

clusion into the tracking algorithms [87]. There are also applications which use only

current frame information to handle occlusions [14], but majority of works on occlu-

sion handling uses either a tracking algorithm or an object model to associate objects

in different frames in time. Therefore, it is necessary to examine these algorithms,

which provide inter-frame information, in scope of occlusion detection.

Detection of occlusion event is based on certain features, which can indicate pres-

ence of occlusion when observed. These features vary depending on the purpose and

scope of the framework in which occlusion handling is implemented. As mentioned

before, these features may include results or observations from inter frame object

association. In addition, occlusion can be detected without using any inter-frame in-

formation, using only information derived from current frame. In this thesis work,

occlusion detection methods are grouped into two based on their time independence

as following:

1. Inter frame level occlusion detection

2. Intra frame level occlusion detection
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2.3.1.1 INTER FRAME LEVEL OCCLUSION DETECTION

INTER FRAME OBJECT ASSOCIATION / OBJECT MODELS

Visual object tracking problem is discussed in many ITS applications. While some

higher layer applications such as path tracing and speed measurements are mostly

dependent on a tracker algorithm output, applications like classification or vehicle

counting are not fully dependent. But for increasing consistency and accuracy of

results, object association with tracking or association based on object model is used.

In this thesis work, tracking algorithms or object models are not examined in depth,

but their role and efficiency in occlusion detection are to be discussed.

Object association is a critical step in occlusion handling, as inter frame level oc-

clusion features can only be extracted by evaluation of object behavior on time axis.

Abrupt changes in object models or properties, split merge events are used as features

of inter frame occlusion detection.

Most preferred object association method is using tracker feedback. While there are

wide range of trackers available, use of blob matching is most common. [83] uses

a blob matching algorithm with using an undirected bipartite graph to represent ob-

ject associations. Vertices in one partition of the graph belong to previous frame

blobs, where other partition holds vertices corresponding to current frame blobs. Blob

matching is done by finding nearest neighbor or nearest with average centroid. Simi-

lar graph based association is also done in [88], but instead of using blob centroid dis-

tance as a matching feature, overlap between bounding box areas are used. In [16], a

feature vector is extracted from shape properties of extracted blobs like area, perime-

ter, centroid and orientation. These feature vectors are used in a fitness function,

to match with previous frame blobs. In [89] blobs in consecutive fames are linked

based on object trajectories, with imposing a path and shape coherence constraint.

A similar approach based on blob trajectories with observing change in object shape

properties is used in [15]. In [17], blobs are first segmented by subtractive clustering

of motion vectors. Then these objects are matched by applying separate thresholds on

area change, and deviation from estimated position. Srinivas et al. [87] use a nearest

neighbor matching with estimated position, while maintaining a Kalman filter using

velocity and position information for estimations. Work proposed in [90] has similar
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approach using Kalman filter for position estimations, but introduces road geometry

to increase accuracy. In [91], a distance matrix constructed by calculating Euclidean

distances between centers of bounding boxes is used. Then a correspondence matrix

is calculated, by matching objects with minimum distance, between frames. As this

method cannot handle split and merge situations, a merge-split detection procedure

based on this correspondence matrix and bounding box areas are developed.

Frameworks proposed in [11, 12, 92] use a generalized deformable model to repre-

sent objects. In these works, objects are first detected and segmented. Results of

these stages are used for generating an object model for each detected object. For ob-

ject association, object generated model is checked for any match with models from

previous frames. In [10], a rectangular region detection method is used for object

detection. Then, Kalman filtering is used to compute associations between detected

objects. [93] combines appearance model of detected foreground objects combined

with a bounding box distance measure. This distance measure is introduced to avoid

abrupt distance change during merge and split events, when using centroid distance

as a measure.

Part based models are also used to detect and track vehicles. In [94], a hybrid image

template is applied to part based model. Combined with this part modeling, location

and scale information is used to construct vehicle model and tracking.

Wu et al. [95] extends conventional Histogram Of Gradients (HOG) into Relative

Discriminative HOG (RDHOG) to represent and track vehicles. For estimation of

tracking state variables, a two stage particle filter based on two-scale RDHOG is used.

Template matching is used to match objects from consecutive frames, based on Bhat-

tacharyya distance of HOG descriptors. Pan et al. [96] also use template matching,

but to avoid erroneous matching due to occlusion second stage - Variant Mask Tem-

plate Matching (VMTM) - based on occlusion analysis Content Adaptive Progressive

Occlusion Analysis (CAPOA) is used. In [82], a Spatio-Temporal Markov Random

Field Model is utilized to determine state of each pixel. Instead of classifying each

pixel independently, algorithm labels blocks of 8x8 pixels.

INTER FRAME LEVEL OCCLUSION DETECTION FEATURES

Inter-frame occlusion detection features can be generalized as state transitions and

35



events related to associated objects. In this level, occlusion reasoning is mainly de-

pendent on the relation of the objects from consecutive frames.

Most common feature extracted from tracker feedback for occlusion detection is

merging and splitting events. A merge event means more than one object is present

in a tracked entity, which could not be separately associated into different objects.

Presence of occlusion can be deduced from these events, as this type of failure in

association can only occur at the starting instant of an occlusion event. A split event

means multiple objects in current frame are originated from same tracked entity, and

yields information about presence of occlusion in previous frames. Also, state of

tracked objects are maintained as state vectors or graph representations, using merge

and split event information. Blob matching based association approaches generally

provide this information. In methods described in [87, 88, 90, 91, 93], these events

are only feature for inter-frame occlusion reasoning. Although a significant feature,

methods combining these with more information yield more successful results. [83]

Combines merge-split event information with a shape estimator to detect occlusion

events. Relationship between blobs from consecutive frames is represented in a bi-

partite graph. Size increase or decrease in a tracked blob is also used as a feature for

occlusion detection.

There are also several methods, which do not rely on information on merge or split

events. [15] Introduces trajectory based occlusion event prediction. For each object,

trajectory is estimated using Kalman Filter. If distance between estimated center

points of two objects becomes smaller than a certain threshold, then an occlusion

event is predicted. Trajectory based decision is also supported by observation on

change of object mask area. In [82], 8x8 image blocks which are labeled as object

blocks are subjected to motion vector analysis. Any difference in motion vectors

indicates presence of different objects, with occlusion. [96] Uses backward motion

estimation to detect any other object interferes with the Region Of Interest (ROI) of

another object.

Association failures between objects from different frames are also used as a feature

for detection. Occlusion is considered as reason of failure to match object with any

present model, or object. An example of this approach is [16], where objects without
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any match with any object from previous frame are assumed to be in partial or full oc-

clusion. In [17], each object is applied a backward and forward matching operation.

Any matching failure is assumed to be caused by occlusion. Also subtractive clus-

tering [10, 17] is applied on motion vectors of each object mask. Here, it is assumed

that if there is no occlusion, number of clusters should be 1. This value is expected to

be more than one in this method, as occluding objects are assumed to have different

velocity on image plane, and different motion vectors. [89] Uses similar approach

with motion vectors, but supports this method by keeping a trajectory for each object

and observing any discontinuities.

Model based tracking approaches also provide features for detection of occlusion in

inter-frame level. [11] Uses changes in generalized deformable model parameters as

detection feature. In this work, an area ratio is defined and used as in Equation 2.16

Rarea =
Areamask
Areamodel

(2.16)

For each frame,Rarea is calculated, and together with width, height and length param-

eters of deformable model, is used as feature for detection. Main assumption here is,

difference between these parameters in consecutive frames become significant, when

an occlusion event occurs. Detection is based on this observation, and a threshold is

applied to each parameter to permit small changes.

[92] also uses generalized deformable model. An area ratio is also defined here,

but different from [11], is the ratio between area of blob and area of its convex hull.

For each blob, this value and fitted 3D dimensions of generalized deformable model

are maintained. Change in these parameters is observed as a feature for occlusion

detection.

2.3.1.2 INTRA FRAME OCCLUSION DETECTION

Intra frame level occlusion handling uses features based only on current frame infor-

mation. These features are based either on object shape properties, or fitting results

of a predetermined object model, as there is no information regarding to behavior of

object on time axis in intra frame level.

FEATURES BASED ON SHAPE PROPERTIES
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Most of the approaches in literature focus on shape properties of objects, based on

certain assumptions as a priori information. These features are extracted from output

masks of moving object segmentation functions.

[15] Applies a threshold to object size, and deduce if there is more than one object in

segmented blob. Weakness of this method is requirement of accurate object size esti-

mation. Also when variance of vehicle size in traffic is taken into consideration, this

method can produce erroneous results with single hard threshold. Also, applicability

of this method is further restricted to the scenario in paper- which is observation of

scene using a far positioned rectilinear camera. Any application with close positioned

rectilinear camera, or a fisheye camera would not produce accurate results, as effects

of perspective and fisheye projection further increases variance in object sizes.

[14] Uses binary mask of the foreground objects to create a statistical graph for each

blob. This statistical graph is formed by accumulating foreground pixels for each row,

and storing these values indexed by row number. Then, a search for discontinuity be-

tween consecutive rows is conducted to detect occlusion. This approach can segment

two vehicle occlusions, but more complex cases such as more than two vehicles or

vehicles with different shape properties induce unpredictable changes in statistical

graph.

Methods described in [13, 16, 17] introduce a different and more complex shape fea-

ture for intra frame occlusion detection. These methods come up with assumption

that, unoccluded vehicle shapes tend to be convex, where objects shapes in partial

occlusion tend to be concave. Considering vehicle shapes and possible camera setups

in ITS applications, this assumption is reasonable.

In [16], convexity of an object is measured by how well it fits into convex hull con-

structed from object binary mask, where convex hull is defined as the binary mask

constructed from minimum convex set of points to cover object binary mask. A con-

vexity metric is defined as in Equation 2.17, where Areav represents the area of the

object, and Areach represents the area of convex hull of the object.

C = RA =
Areav
Areach

(2.17)

This convexity measure converges to 1, when object mask is perfectly convex. For
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occluded objects, area of convex hull increases and this measure becomes less than

1. In [16], presence of an occlusion is detected by applying a threshold, ThRA to this

measure. [13] uses same convexity metric, but introduces two classifiers to minimize

overall error an overall risk. To minimize overall error, a Bayesian Minimum Error

Classifier is used. By comparing probability distributions as in Equation 2.18 partial

occlusion is detected.

p (PartiallyOccluded|C) > p (Non− PartiallyOccluded|C) (2.18)

To minimize risk by identifying and segmenting an object as a partially occluded

object, a Bayesian Minimum Risk (BMR) classifier is used. Two actions are defined

as:

1. Classification as partial occlusion and segmentation.

2. Classification as full or no occlusion. No segmentation.

Then decision based on risk is made as follows: If

R (A1|C) < R (A2|C) (2.19)

Object is classified as partially occluded, where

R (A1|C) = 2 ∗ p (NPO|C)

R (A2|C) = p (PO|C)

[17] also uses assumption of convexity as in [13, 16], but uses different metrics to

decide how much object mask is deviated from its convex hull. A quantity called

compactness is introduced as in Equation 2.20, where BL is boundary length of ob-

ject, and AO is area of object.

Γ =
BL2

AO
(2.20)

Γ is computed for object as ΓV and its convex hull as ΓC . Then a ratio between these

two is defined as compactness ratio, ΓR:

ΓR =
ΓC
ΓV

(2.21)

Also Interior Distance Ratio (IDR) is defined to express deviation from convex hull

independent of area ratio as in Equation 2.22, where MA is length of minor axis of
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current blob, andDistM is the maximum Euclidean distance of pixels on blob contour

to closest pixel on convex hull contour.

IDR =
Dist|M
MA

(2.22)

IDR with ΓR is used as a feature for occlusion detection. IDR tends to result lower for

unoccluded vehicles, as convex shape of the blob is not distorted much. ΓR tends to

result close to 1 for unoccluded vehicles, as ΓC and ΓV becomes equal for perfectly

convex blobs, where ΓV is larger for occluded vehicles, as border length increases.

[12] uses camera parameters and 3D deformable model extensively, for occlusion

detection. Combining road geometry and camera parameters with fitted deformable

model, contour of object mask is analyzed to detect number of objects included in

blob. In this work, model parameters are not directly used as a feature, while curvature

of the object contour is used as main feature for occlusion detection.

FEATURES BASED ON MODEL PARAMETERS

Object models are used in many applications requiring tracking or classification tasks.

For these applications, object models are constructed and are used for detection of

objects of interest. In intra frame context, use of adaptive models as used in kernel

based trackers are not possible, as this model is constructed and updated using inter

frame information. Therefore, only training or rule based models are applicable.

Part based models are used in many object detection and tracking applications. Gen-

erally, part based models are used for tracking by detection frameworks. [97] uses

part based representation for detection of occlusion in a human tracking application.

This segments human object into three segments and detection of a human is achieved

by successful association of detected segments. [94] applies similar approach to ITS

domain, with several adaptations. Front views of vehicles are used, as this is the

most common case in ITS applications. Parts are selected according to their visibility

during occlusions, and information they contain regarding to vehicle class. Method

divides each object into two parts representing occluded and unoccluded regions.

Considering area around license plate is easily occluded, and area around front win-

dow is unoccluded most of the time, these two areas used as parts. This way, loss

of easily occluded part can be compensated by detection of unoccluded part. Also

occlusion events are detected, if there is any missing part.
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Another approach is use of object models constructed by rules or training. In [10],

vehicle templates are constructed from 3D vehicle models. These templates are used

for matching, and objects are detected. Occlusions up to a certain level can be handled

by this approach, as long as object can still be matched to a 2D template.

In [98], a generalized deformable model is fitted to each object. In this work, it

is assumed that, in presence of occlusion, ratios between model dimensions are sub-

stantially different from the norm. Also, area ratio defined in [11] is calculated. While

occlusion is not present, this parameter is expected to be closer to 1. Deviation of this

parameter from norm is used as a detection feature.

2.3.2 OCCLUSION SOLVING

For occlusion solving, methods are wide range as in the case of occlusion detec-

tion. Works on this field are mainly shaped by requirements enforced by higher layer

applications. A vehicle classification algorithm often requires more accurate infor-

mation of object location and shape, compared to a vehicle counting algorithm. For a

counting algorithm, it is often expected to handle full occlusion cases, during which

a classification is not possible. Therefore, these approaches can be grouped into two

groups as following:

1. Partial occlusion solving method

2. Full occlusion solving method

2.3.2.1 PARTIAL OCCLUSION SOLVING

Partial occlusions are main concern of most of the work in literature. As majority

of occlusion cases are partial occlusion, and frequency of this event in urban traffic

scenes are high, there are many approaches discussing possible methods for partial

occlusion handling.

During partial occlusions, occluded object is not totally blocked, and features ob-

tained from unblocked part are sufficient for detection or identification of the object.
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Therefore, solutions for partial occlusion problem are developed as part of tracking

classification and counting applications in ITS domain.

For partial occlusions, both inter-frame level and intra-frame level features are used

extensively. While some methods only maintain identity of occluding objects, major-

ity of the methods examined aims to segment objects from each other. Main reason

behind this difference is scope of the framework occlusion handling is done. For

example, simple tracking tasks and counting can be achieved by using only vehicle

count and identities on a blob, while more complex applications such as classifi-

cation, path tracing, and violation detection may require segmentation of occluded

objects with accurate borders.

MAINTAINING OBJECT IDENTITY

Some work in literature are focused only on eliminating negative effects of partial

occlusion, without solving problem without finding identity or object boundaries.

One example for this type of solutions is discussed in [83]. In this work, two states

are defined for tracker as tracking and prediction only modes. When occlusion occurs,

instead of identifying and separating occluding objects, method treats occlusion as an

absence of measurement, and measurements are ignored for position and shape filters

used for tracking. This way, erroneous object data is disregarded, and object models

are kept accurate through occlusion events.

For applications without accurate border extraction requirement, finding and main-

taining object identity is sufficient. These methods are often regarded as a solution to

problem of tracking objects through partial occlusions. When a partial occlusion oc-

curs, these methods are utilized to ensure tracker has sufficient information of object

identities, and continue tracking object until object leaves scene, or is no longer ob-

ject of interest. Also, erroneous data is disregarded in most of these methods, which

increases accuracy of object models or object parameter estimations such as motion

characteristics. One example for this approach is [87]. In this work, all objects are

associated with a track as Ta, Tb etc. Then for each possible merge event, combina-

tion of objects is decomposed to multiple tracks. Then one to one correspondence

is checked for each track. This way, correct tracks are matched to each object af-

ter split events, by maintaining identity and parameters of occluded objects during
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combined track. [91] Also uses a similar approach. Difference from [87] here is in

matching procedure after split events. In this work, color distribution of objects is

used as a correspondence feature. This information is added into the occluded group,

and used when any split even occurs. Distance between two color distributions are

calculated using Kullback-Liebler (KL) distance during process. [90] Uses motion

estimation based on a Kalman filter to correctly match splitting object. During occlu-

sions, Kalman filter parameters are not updated for occluded objects. Instead, a new

Kalman filter is constructed for occluded group and matching is done based on this

filter estimation. Split events are handled based on the estimations from filters stored

before occlusion event. Another similar approach discussed in [88], maintains iden-

tity of tracked objects using an association graph for connected components. This

work utilizes a two level tracking algorithm, to increase tracking accuracy through

occlusions. First stage is vehicle level tracking. In second level, instead of treating

each connected component as an object, method treats these components as regions

of tracked objects. Each region is associated to best matching object by evaluation of

motion characteristics, to segment occluding vehicles.

MODEL BASED METHODS

Object models are also used as a feature for partial occlusion solving. Different object

models are employed for ITS applications, especially for tracking and classification

frameworks. In [94, 98] part-based object models are used for object classification in

congested traffic conditions. These methods are based on identification and classifica-

tion of vehicles from their visible parts. This enables framework to process occluded

vehicles, if sufficient part information is obtained from current frame. Therefore,

occlusion is handled without use of any segmentation approach.

Object models based on vehicle shape are also widely used for occlusion handling

purposes. A 2D object model is used in [10], for detection and tracking of the ve-

hicles. In this work, videos from a single calibrated camera placed at a few meters

above ground are used. 2D projections of 3D vehicle model in different camera tilt

angles and object orientation angles are constructed as in Figure 2.17. In this work,

occlusion handling is achieved indirectly, by achieving accurate model match during

partial occlusions up to certain level.
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Figure 2.17: 2D vehicle model used in [10]

[93] also uses model matching to handle partial occlusions. An appearance based

model is used with split-merge information. When a merge event occurs, appearance

models of merging objects are used to estimate location and depth ordering of each

object. This is achieved by using a maximum likelihood classifier for each pixel to

determine which model is most likely to have produced that pixel.

Another model based approach is use of generalized deformable models for occlu-

sion handling. [11,12] are examples of this approach. In this approach, a Generalized

Deformable Model (GDM) is fitted into each connected component. Then this model

is decomposed to individual objects, using different segmentation and decomposition

methods. In [11], contour of the fitted model is analyzed for decomposition. Cur-

vature points are extracted from the filtered contour of the model, as in Figure 2.18.

Then model is decomposed into 2D projections of modified 3D rectangular prisms. A

3D model and position information for each object in occluded group are obtained as

in Figure 2.19. [12] Improves this method by implementing projection of GDM into

2D using camera and road parameters. Also, a resolvability index is calculated for

each occluded group. Then for each vehicle in group, GDM is resolved by recovering

missing lines of vehicle model geometrically, using the non-occluded lines. A result

of this algorithm can be seen in Figure 2.20.

CUT BASED METHODS

For applications with accurate object segmentation requirement and low execution

time, cut based object splitting methods are proposed. These methods are widely used

for intra frame object segmentation. For ITS frameworks, which involve foreground

detection and object mask generation at any point of framework, these methods are
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(a) Borders of 3D model projection

(b) Detected curvature point on contour

Figure 2.18: Extraction of curvature points , retrieved from [11]

preferred as they have low computational cost compared to model based approaches.

These methods mostly use 2D geometric properties of the occluded object masks for

segmentation. A cutting line or cutting region is calculated to separate and isolate

occluding objects. Most of methods based on this approach in literature, depends on

some geometrical assumptions regarding to object shape. Also, none of the works

examined for this thesis work, proposes a solution to handle cases involving vehicle

groups with more than two occluding objects.

Several methods and features are discussed to determine cutting line or region. A

cutting region is defined in [89], based the critical assumption that if two vehicles are

occluding, they must have different speeds. Therefore, if variance of motion vectors

in a region is greater than a threshold, then motion vectors inside an object can be

clustered into two regions. Then dilation operation is applied on these two regions,
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(a) Original Image (b) Segmented Objects

Figure 2.19: GDM based segmentation, retrieved from [11]

and overlap area is defined as cutting region Figure 2.21. This method is different

from other cut based methods discussed in this work, as it utilizes motion vector

information instead of geometric properties of object mask.

Methods based on a cutting line are more common in literature. Several methods are

discussed in literature to find two points forming the cutting line to separate occluding

objects. These methods are using shape and contour of the object blob as feature. A

statistical graph is formed in [14], based on horizontal projection of object mask Fig-

ure 2.22. Then graph is checked for any sudden increase or decrease. Points defining

cutting line are chosen on object contour according to this observation. In [15], three

types of cutting lines are defined as vertical, horizontal and diagonal. Approach here

is to find cutting line with minimum length, if occlusion is detected. To find vertical

line, on each contour point, vertical distance of contour to top and bottom sides of

bounding box are calculated. A vertical line at minimum of this value is defined as

cutting line Figure 2.23. Similar approach is used for horizontal and diagonal lines.

Assumption that object shape is convex unless object is occluded, is used also for

solving partial occlusions, as it was used for detecting if occlusion is present. In

works, which use this assumption, dividing points are selected as points on object

contour, at which deviation from convex hull is maximum. Deviation is evaluated

differently at each work. In [13], deviation is considered as distance from convex

hull. After convex hull and difference image is calculated as in Figure 2.24, two
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(a) Detected Group of Objects (b) Segmented Objects

Figure 2.20: GDM based segmentation in a crowded scene, retrieved from [12]

Figure 2.21: Formation of cutting region, retrieved from [13]

largest parts of the difference image is selected. Then for this two parts, vertices of

convex hull is calculated. For each set of vertices, vertex with maximum distance to

object convex hull is selected as cutting point. After points are determined, cutting

line is removed from object mask. [17] uses a similar approach. First, a single cutting

point is defined as in Figure 2.25. As in [13], selection is based on the distance of

point from object convex hull. Then for every tilt angle, cutting lines are formed and

convex distance ConD is calculated for split objects as in 2.23, where IDR is defined

in Equation 2.22, and ΓR is defined in Equation 2.21. By minimizing this parameter,

cutting line is found.

ConD = IDR2 + (1− ΓR)2 (2.23)
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(a) Binary Mask (b) Statistical Graph

Figure 2.22: Calculation of statistical graph, retrieved from [14]

Considering computational cost of method discussed in this work, a different ap-

proach is proposed in [16]. In this work, it is assumed that maximum deviation

from convex hull is observed at the points at which curvature function given in Equa-

tion 2.24 is equal to zero. Object contour is first smoothed to avoid false positives.

Smoothing is applied until exactly at two points curvature function results zero. Then

these two points are selected as vertices of cutting line Figure 2.26.

κ (u) =
ẋ (u) ÿ (u)− ẍ (u) ẏ (u)√(

ẋ (u)2 + ẏ (u)2
)3 (2.24)

2.3.2.2 FULL OCCLUSION SOLVING

Full occlusion solving methods are generally dependent on inter-frame occlusion de-

tection features, as occluded object is blocked and no feature can be extracted during

full occlusion. As no feature from the object can be obtained from current frame,

these methods are used to maintain identity, or detect presence of occluded objects.
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Figure 2.23: Vertical cutting line, retrieved from [15]

Figure 2.24: Convex hull and cut point extraction, retrieved from [16]
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Figure 2.25: Iterative cut progress, retrieved from [17]

Figure 2.26: Zero crossings of curvature points, retrieved from [16]
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CHAPTER 3

PROPOSED SOLUTION

In this chapter, a multi stage framework to detect vehicles at intersections automati-

cally in presence of occlusions is proposed. Design steps and implementation details

for the proposed solution are presented.

Performance issues related to the occlusion presence in ITS applications are discussed

in several works in literature. Decrease in accuracy of object detection and tracking

propagates to higher level tasks, which are often statistical or event based data in

commercial ITS applications. It must be stated that, the solution proposed in this work

is restricted to object detection problem in occlusion presence. In this sense, tasks like

tracking and classification are not in scope of this work, and will be considered as

higher level tasks, as the proposed framework aims to increase performance of these

tasks by providing accurate data on objects in scene.

Vision based ITS applications are mostly solutions proposed to handle subtasks of a

larger traffic management task. Therefore, accuracy and reliability are key features,

as risk of causing accidents or disrupting traffic flow imposes a low fault tolerance.

Apart from offline analysis applications, which are often used for detailed analysis

based on collected data, most applications related to management have a real time

constraint. Real time applications must guarantee response within a limited time in-

terval, controlled by deadlines [99]. Satisfying these constraints become more chal-

lenging, as many ITS applications are implemented on field hardware, which have

computational power limitations due to costs and infrastructure limitations. A Speed-

Accuracy Trade-off [100] must be considered, as both computational power and fault

tolerance is limited. Proposed work in this thesis work is designed considering Speed-
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Accuracy Trade-off. At each stage, methods to handle subtasks are evaluated for both

accuracy and computational cost.

Another restriction on the scope of this work is on environmental properties. Low

level vision tasks have restrictions and variations on performance, based on target en-

vironment properties. One example can be failure of background subtraction based

algorithms, when scene is observed with a non-stationary sensor unit. Therefore, the

solution proposed in this work is designed based on a widely utilized surveillance sce-

nario in ITS applications. Stationary cameras installed above road level, overlooking

intersections are used.

In an intersection, there may be many different objects while object we are inter-

ested in are vehicles, which have different movement patterns depending on traffic

flow. Static objects either belong to scene, or out of interest when tasks like track-

ing or counting are performed. Therefore, moving objects are objects of interest for

our case, and their detection is a crucial step. Static camera placement and Speed-

Accuracy Trade-off must be considered at selection of a reliable object detection

method. Due to their low cost and parallelization potential, moving object detec-

tion based methods have significant advantage compared to model matching based

methods. Also, modularity must be considered as object detection is generally used

as first stage of most applications. MOD based methods have better modularity, as

they do not require a predefined model, training set or template set.

Moving object detection becomes a challenging task, when illumination changes,

shadows or irregular movement patterns are present in the scene. Also, object de-

tection errors propagate to higher level tasks, reducing overall performance of these

tasks. Once pixels belonging to moving objects are detected, results must be refined

using different methods to handle errors introduced by these properties of objects and

scene.

Shadow and highlight effects are significant in urban intersection environments, due

to presence of different light sources, and objects blocking illumination in some re-

gions of the scene, like trees, poles or buildings. Also cast shadows are present gener-

ated by both sun and lighting installations. Therefore, a method for shadow/highlight

detection and removal, or an object detection method resistant to these effects is
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needed to increase accuracy.

Detection of objects from mask of moving objects is the step where erroneous out-

puts due to occlusion are generated. Occlusion cases as in Figure 2.16 are common in

urban intersection environment, and a connected component analysis based on fore-

ground mask can cause misclassification of multiple vehicles as one vehicle. There-

fore occlusion must be detected and handled to improve detection performance.

In Chapter 2, several different approaches are examined, and grouped according to

features and methods they exploit for detecting and solving occlusion events. Consid-

ering cost and improvement in detection performance, improved occlusion detection

and segmentation methods are proposed.

In Figure 3.1 modules and input/output relations of these modules are shown with

low detail. Proposed method first uses a Vehicle Detection module based on moving

object detection, to find object candidates. Then Occlusion Analysis is performed on

candidate objects, with using association data and geometrical properties of objects.

Based on analysis result, Segmentation is done, and association object data is updated.

Figure 3.1: System overview
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In following sections, these stages will be discussed in detail and methods in literature

will be evaluated. For Occlusion Detection and Segmentation, improved methods

based on the selected methods from literature will be introduced.

3.1 BACKGROUND SUBTRACTION

In this section, a method to generate accurate foreground mask is proposed. Main

objective of this stage, is to provide stable and accurate mask of the pixels belonging

to the objects of interest in the scene.

As the traffic flow in an intersection is highly variable, vehicles have often irreg-

ular movement patterns. These patterns include cruising, waiting, moving slowly,

turning and different combinations of these behavior. Therefore, a vehicle does not

necessarily move in whole duration of the observation. Therefore, background model

generation is required for accurate detection. Although having lower computational

cost and memory requirements, frame differencing based methods are ruled out, due

to issues addressed in Chapter 2, Section 1. Figure 2.1 illustrates response of frame

differencing to different movement patterns.

There are many methods for background subtraction, which are examined in detail at

Chapter 2, Section 1.2. Selection of a base method for this work is done considering

several aspects of examined methods, including qualitative and quantitative results.

As segmentation process, which will be explained in detail later in this chapter, uti-

lizes object geometry, obtained from binary mask. Therefore, method is expected to

preserve object properties. Two successful approaches, proven with extensive bench-

marks [1], are implemented and evaluated. First method is SAGMM, which is based

on parametric density estimation with various adaptation and learning improvements

compared to base method GMM. Development of this algorithm is shown on Figure

2.6. SAGMM has a lower accuracy compared to recent non parametric based meth-

ods evaluated on CDNET [1]. However, computational cost is low, and there is a

huge potential for parallelization, as method has a pixel based nature. This means,

same operations are done for each pixel, while pixel each being independent from

each other. This means, parallelization can be achieved with high speed-ups. Also,

54



memory access is contiguous, which means a coalesced memory access is possible.

This is a major advantage, as high cache utilization is enabled, while time spent for

data retrieval from memory decreases. This property of GMM is exploited in a CUDA

based work [18], with a significant speed-up as shown in Figure 3.2. Considering this

parallelization potential, SAGMM is considerably low cost, considering acceptable

detection performance it offers.

Figure 3.2: Speedups obtained using CUDA, retrieved from [18]

Second method evaluated for use in framework, is SuBSENSE. In benchmarks con-

ducted on CDNET datasets of 2012 and 2014, method has proved itself with su-

perior performance in most metrics and in different scenarios, compared to many

modern background subtraction approaches. Although, computational cost is higher

than most pixel based methods, as SuBSENSE utilizes LBSP descriptors, which are

expensive to sample and compare. Also, sampling pattern shown in Figure 2.8 causes

a reduced parallelization potential. This is due to non-contiguous memory access

during sampling of LBSP, which causes non-coalesced access.

To decide the method which will be part of the framework, two methods are tested

and results are evaluated quantitatively. As segmentation method is based on geo-

metrical properties, high boundary adherence must be achieved. Therefore, outputs

are evaluated to deduce which method produces binary masks that preserves object

geometry most. Some preliminary results as shown in Figure 3.3 show one of the
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cases which SAGMM performs poorly compared to the SuBSENSE.

(a) SAGMM (b) SuBSENSE

Figure 3.3: Preliminary results on background subtraction. Overlays of the fore-
ground masks on the frame.

As SAGMM does not use spatial relationship between local pixels, some parts of

the objects which have similar intensity values compared to the background model

are misclassified as background. This effect can be observed in the wind shields

and vehicle hulls which have similar RGB intensity values with the road surface at

background. As shown in Figure 3.3, SuBSENSE overcomes this problem. LBSP de-

scriptors used in pixel level contains local texture information, therefore unlike pixel

based GMM, SuBSENSE is more robust to similar color values between background

and foreground regions. Apart from that, as GMM is pixel level, due to eliminate

errors, and to compensate missing local spatial information, some post processing

steps are needed before using binary mask. These steps are median filtering of binary

mask to eliminate single pixel foreground regions caused by noise, and morphologi-

cal closing operation to connect erroneously partitioned blobs. Even after these steps,

a higher boundary adherence is achieved with SuBSENSE.

Considering performance and cost of both algorithms, SuBSENSE is selected as mov-

ing object detection algorithm to detect vehicles. It must be stated that most important

factor in this decision is the fact that Occlusion Detection and Segmentation methods,

which will be described in detail in next sections, are highly sensitive to the errors

in object geometry. Therefore, to prevent propagation of error to these stages, SuB-
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SENSE is selected. Accuracy and stability advantage of SuBSENSE surpass lower

computational cost offered by SAGMM.

3.2 SHADOW DETECTION

Negative effects of moving cast shadows were explained in Chapter 2, Section 2. As

regions under shadow tend to preserve texture information, SuBSENSE is able to

discriminate background and foreground robustly in soft shadow presence [4]. When

shadow strength increase performance of both SAGMM and SuBSENSE degrade.

SAGMM does not utilize texture information, therefore a significant intensity change

caused by shadow leads to misclassification. For SuBSENSE, as intensity decreases

to the point where LBSP based texture information loses accuracy, misclassification

rate increases dramatically. Therefore shadows are misclassified as foreground, which

can be seen in Figure 3.4.

To increase robustness against shadows, a shadow detection stage is proposed. A de-

tailed performance evaluation of existing methods is done by Sanin et al [8] shows

that texture based methods have better performance compared to other algorithms.

Problem here is, as shadow strength increases, texture correlation performance also

decreases. LBSP descriptor comparison actually exploits similar information with

small region (SR) texture correlation. Therefore a large region (LR) texture cor-

relation based method is required. The algorithm proposed in the survey [101] is

evaluated and selected for shadow removal. This can be explained in 3 main steps:

1. Detection of candidate regions

2. Correlation of candidate regions with background model

3. Classification of candidate regions as foreground or shadow region

In first step, candidate detection is done on existing foreground mask based on a weak

shadow detector. Chromaticity and intensity values of pixels are used for candidate

selection. This step is expected to find largest possible regions with shadow can-

didates. The chromaticity based method Cucchiara et al [7] proposed is used, with
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relaxed thresholds. This way, largest possible regions are tagged as shadow candi-

dates. A connected component analysis is done on this mask, for defining regions. To

avoid regions with both foreground pixels and shadow pixels, connected components

are split from the edges which are present in foreground only.

In second step, textures corresponding to the each candidate region are correlated

between frame, and background model. Texture correlation is based on gradient. To

calculate gradient direction and magnitude, Equation 3.1 and Equation 3.2 is used.

|∇p| =
√
∇2
x +∇2

y , (3.1)

θp = arctan2

(
∇x

∇y

)
, (3.2)

Where∇y and∇x are directional gradients, and arctan2(.) is a modified arctan(.) to

allow gradient direction to be treated as a circular variable. To avoid noise, a gradient

magnitude threshold is applied on each pixel. Then gradient direction difference is

calculated between current frame and background ,as in Equation 3.3:

∆θp = arccos

 ∇F
x∇B

x +∇F
y∇B

y√(
∇F
x
2 +∇F

y
2) (∇B

x
2 +∇B

y
2)
 . (3.3)

Where F and B are foreground and background respectively. Gradient direction cor-

relation between F and B is estimated as in Equation 3.4:

c =

∑n
p=1H(τa −∆θp)

n
, (3.4)

Where τa is angular difference threshold, and H(.) is unit step function. c gives

the fraction of pixels with similar gradient direction in F and B. At third step, this

fraction is thresholded to decide if a region is foreground or shadow.

Resulting method for foreground mask generation is shown in Figure 3.5.
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3.3 VEHICLE OBJECT DEFINITION

After foreground mask is obtained, a connected component analysis is done to detect

vehicle blobs. A vehicle class with following properties is defined:

1. ID

2. Contour

3. Centroid

4. Area

5. Association Data

Each blob with area above a static threshold, is used to define a vehicle object. Con-

tour and centroid of the blob are calculated, as they are required in Occlusion Detec-

tion and Vehicle Association.

3.4 VEHICLE ASSOCIATION

The association scheme proposed in this work is kept simple, as it is required to

demonstrate performance increase using intra frame level occlusion detection. Occlu-

sion detection and segmentation approach proposed in this work aims to improve per-

formance of methods requiring accurate vehicle detection in any stage. This means,

most tracking applications can benefit from utilization of this method, as they require

detection of vehicles at track initialization stage.

Association provides information regarding presence of a merge event in a detected

vehicle or vehicle group. Also, by keeping track of split and merge events in lifetime

of each object, estimation of number of vehicles in a group is provided. A foreground

object with multiple vehicles means these vehicles are occluded, partial or full.

Association block in this framework can be replaced, as there are wide range tracking

algorithms, which can generate similar information with greater accuracy. Applica-
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tions depending on blob trackers [83, 102] are most suitable for this purpose, as they

generate blob based object data.

For association scheme in this work, following statistics are calculated and kept for

each object group:

1. Contained Vehicle Objects (Members)

2. Position and velocity estimates for each member

3. Merge or split event data

A two stage association method is implemented. First, a position estimation is done

for all vehicles from previous frame. In this step, estimation is done using last known

position and velocity. Velocity is assumed to be unchanged in consecutive frames,

and position estimation is done based on this assumption. However, estimate error

increases, if object is occluded for long time intervals. A validity flag is used for each

parameter. This flag is set to false, if vehicle is occluded more than a certain number

of frames.

Matching is done if position estimate is valid, and is within a certain proximity of an

object in current frame. Another proximity threshold is used to match objects based

on distance between centroids, if velocity and position estimations are not valid.

Past frame objects without match are processed in second stage of association. In

this stage, each unmatched past frame object is associated using similar proximity

threshold and distance between centroids. There are five possible events which will

be used as inter frame occlusion detection feature :

1. New Object : Unmatched objects from current frame object list are treated as

new vehicles entering the scene. A new vehicle object is generated.

2. Missing Object : Unmatched objects from past frame object list are treated

as vehicles leaving scene or failed detections. Vehicles associated with these

objects are not used in future frames.
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3. Merge Event : If an object from current frame list is associated to more than

one objects from previous frame list, then a merge event occurs. Positions and

velocities of merging vehicles are recorded for use in position estimation.

4. Split Event : If an object from past frame list is associated to more than one

objects from current frame list, then a split event occurs. Using estimated po-

sitions of vehicles inside object, each vehicle is assigned to the closest of the

split objects.

5. No Change : No merge split event occurs, and object is successfully matched

to a single object from past object list.

An overview of the object association stage can be seen in Figure 3.6.

3.5 OCCLUSION DETECTION

In this section, the occlusion reasoning method proposed in this framework is ex-

plained in detail. Methods in literature, often address occlusion problem in context of

higher level tasks such as tracking or classification. Therefore, various methods with

different features, performance and computational cost are proposed. In this thesis,

as stated in previous sections, both performance and computational cost is considered

during evaluation of existing algorithms, and design of the proposed solution.

Occlusion detection relies on both inter frame and intra frame information in most

existing applications. This two set of features are independent from each other, and

utilization of both is expected to improves detection rate. Therefore, two methods for

each information set is proposed. Occlusion is detected, if any of these two methods

result with occlusion detection.

The method proposed in this work, relies on the fact that if occlusion is present be-

tween two moving objects, then a single connected component exists in foreground

mask, including both objects. It must be noted that blobs of multiple unoccluded

objects may be connected due to misclassification of background pixels. Either way,

segmentation is needed for splitting connected blobs, and both situations will be re-

garded as occlusion cases.
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An overview of the proposed occlusion detection stage is shown in Figure 3.7, and

details are explained in next sections.

3.5.1 INTER FRAME OCCLUSION DETECTION

Inter frame occlusion detection features are extracted from the relations of objects

and motion characteristics obtained from between different frames. Most methods in

literature utilize relations and events of objects in temporal axis.

As blobs with multiple objects are regarded as occlusion cases, and segmentation

method relies on splitting them, inter frame relations between vehicle blobs can be

used for occlusion reasoning.

In this work, a blob association scheme based on simple position estimation is used.

Each blob is regarded as an object, which may contain single or multiple vehicles.

Blobs with multiple vehicles are considered as occlusion events, and number of ve-

hicles in a blob is the feature used for intra frame occlusion reasoning. Number of

vehicles in a blob is determined and updated in object association stage each frame.

Therefore, this stage provides necessary information for intra frame occlusion detec-

tion. Blobs with multiple vehicles from current object list are considered as under

occlusion, and Segmentation is applied if possible.

3.5.2 INTRA FRAME OCCLUSION DETECTION

In this section, an occlusion reasoning method based on only current frame infor-

mation is proposed. Results of intra frame feature based occlusion analysis will be

used in conjunction with intra frame detection results, which is a simply logical OR

operation.

Model based approaches examined in Chapter 2 Section 3 are not selected for this

framework, although they are successful with satisfactory results as seen in [11, 12].

Main reason behind this, as these model based approaches are highly dependent on

scene geometry, and object properties. Also, they rely on a sequence of stages with

moderated computational cost, to construct and analyze the constructed model. With
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this complexity, it is not possible to provide a lightweight solution to object detec-

tion problem. Also, models are highly dependent, and must be updated for different

camera placements.

Some part based models are also used for vehicle detection, but they are specialized

for a very specific scene geometry. This restricts the environment and scene geometry

for the solutions based on this approach. Therefore, they are ruled out for occlusion

detection in this work.

Shape properties are widely used for occlusion reasoning in recent works. Ranging

from simple area thresholding to detailed analysis of shape properties like contour

curvature or shape convexity, these methods often offer occlusion detection with low

computation cost compared to model based approaches. Detection is based on certain

assumptions about geometrical properties of object shapes.

Area thresholding is simplest form of this methods. Although very easy to implement,

this approach cannot provide desired results, as object sizes vary depending following

factors:

• Different size of different class of vehicles

• Different size with varying distance from camera

In the proposed solution to intra frame occlusion detection, area thresholding is uti-

lized as a candidate detection method. If area of a binary blob is larger than a scene

dependent static threshold, blob is considered as a candidate for occlusion presence,

and further analysis is done. Considering cost of other methods are significantly high

compared to area calculation, and connected component analysis is already done on

binary foreground mask, this step has practically negligible cost. Also, cost further

operations are avoided for non-occluded objects.

Second feature used for occlusion detection is convexity of binary blob. Underlying

assumption here is that vehicles without occlusion have a highly convex shape, and

occlusion disrupts this convexity. First part of assumption mostly holds for vehicles

in ITS surveillance applications. Unoccluded objects appear in convex shapes unless

their shape is irregular, which is the case for some trailer trucks and boat towers. Sec-
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ond part of this assumption also mostly holds, while there are rare occlusion cases

with connected shape of objects are convex. Also, full occlusion cases cannot be

detected, as shape of the front object is mostly undistorted. Considering these obser-

vations, convexity is a strong feature for occlusion with low computational cost, and

selected as main feature for intra frame occlusion detection in the proposed solution.

There are several metrics proposed to measure how convex an object is. Most popular

approach is using ratio between object area and its convex hull as a measure. As

illustrated in Figure 3.8, when object is occluded, there is a significant area difference

between object contour and convex hull. Considering this observation, area ratio

defined in Equation 2.17 is used in this work.

To calculate convex hull of a vehicle, first contour is of binary connected component is

extracted. Then algorithm to find convex hull of a 2D point set proposed by Sklansky

[103] is used for convex hull extraction. Since algorithm has O(n) complexity, and

number of 2D points in a typical binary blob contour is small, cost of this operation

is negligible. For implementation, C++ code provided by Open Source Computer

Vision (OpenCV) [104] library is used.

A static threshold is defined to detect possible occlusion events. This value is cal-

culated for each candidate filtered by area thresholding. It must be stated that, area

threshold is set low, in order to detect maximum number of occlusion events. False

positives detected here do not effect accuracy, as they are eliminated in Segmentation

part.

3.6 SEGMENTATION

3.6.1 EVALUATION OF EXISTING METHODS

Segmentation of occluded vehicles based on convex hull analysis is discussed in lit-

erature. Works of Zhang et al [17] and Heidari et al [13],are examined in detail, as

they exploit difference between convex hull and object contour for segmentation.

Heidari et al [13] proposed a method that simply cuts an occluded blob into two parts,
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with a dividing line defined by dividing points. To select two points, a set of points is

constructed from deepest point in each convexity defect.

While this method can solve occlusion cases with two vehicles, blobs formed by oc-

clusion of three or more objects cannot be handled. Also, convexity defects may

appear irregular, depending on the vehicle shape and accuracy of binary mask. Se-

lecting closest two of deepest point set may cause dividing lines which does not divide

actual vehicles.

Zhang et al [17] uses an iterative method to find cutting points that define dividing

line. Instead of finding two points, they first find point on object contour with max-

imum distance to convex hull. Then for each angle in 360 degree range, they draw

a line to segment blob. After each division, they recompute convex distance given

in Equation 2.23. This approach has a high computational cost as for each iteration,

object contours, convex hulls, area ratio and IDR must be recalculated, for each blob.

Also blobs formed by occlusion of three or more objects cannot be handled.

3.6.2 PROPOSED METHOD OVERVIEW

Proposed method is inspired by methods mentioned in previous section, and can be

considered as an extension to the methods proposed by Heidari et al [13] and Zhang et

al [43]. Thess methods are used as base because of the low execution speed they offer.

As the proposed solution aims to provide a lightweight vehicle detection tool, keeping

execution time low while increasing overall performance is key. Major advantages

of the proposed method are robustness to shape irregularities, and ability to handle

occlusions with three or more vehicles.

An overview of the proposed segmentation stage is shown in Figure 3.9, and details

are explained in following sections.

3.6.3 CONVEXITY DEFECTS ANALYSIS

In this part, convexity defects for occluded blobs are extracted and analyzed. Con-

vexity defects are connected pixels between convex hull and object contour, which
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are illustrated in Figure 3.10.

We are interested in depth of each pixel on object contour, which is the orthogonal

distance to the convex hull of the blob. In base method, only point with maximum

depth is analyzed, restricting candidate points for each defect to a single point.

In the proposed work, persistent maxima of the depth along the contour is calculated.

For this purpose, Persistence1D algorithm, which calculates all extrema and their

persistence in pairs. A persistence threshold, τp is which is set to 0.4 in this work, is

used to eliminate noise and maxima points with low persistence. This way, for each

convexity defect, more than one maxima points can be defined. These maxima points

are actually candidate points, and segmentation will be completed by forming a cut

between matched candidate points.

It must be noted that, each convexity defect has its own point set. This is important,

as the method proposed in this work matches points from different convexity defects.

For each blob, which is subject to occlusion detection analysis, convex hull and con-

tour is already extracted. Depth is calculated as in Equation 3.5

DNp =
| (y2 − y1)xp − (x2 − x1) yp + x2y1 + y2x1|√

(y2 − y1)2 + (x2 − x1)2
(3.5)

Where DNp is calculated depth, N is index of the depth in blob, p is position along

the object contour, (x1, y1) and (x2, y2) are starting and ending points of the defects

on convex hull. Start and end points of the defects are marked with red in Figure 3.10.

3.6.4 CUT POINT SELECTION

After candidate points are generated, pairs of matched points must be formed. A

matching procedure is done with following steps:

1. A N by N score matrix is formed, where N is number of candidate points in a

single blob.
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2. For each candidate, a match score Ms is calculated, but only with candidates

from other defects. Matrix in first step is filled.

3. To detect matches, a segmentation score threshold τs is defined. An array of

matching pairs are constructed, and pairs with score higher than τs are stored.

In base method, match score is based only on distance between two candidates. Al-

though a strong feature for simple occlusion cases where two convex shapes overlap,

this metric is not sufficient for complex cases. There may be more than two objects,

and binary masks may include misclassified regions which may result with many

convexity defects, as illustrated in Figure 3.11.

Also, in most cases, ideal match points are from two convexity defects, which tend

to extend towards each other, from the convex hull. This means extending direction

of a defect can also be used as a feature in matching process. A case, in which this

behavior can be seen is shown in Figure 3.12. Figure illustrates a 3 vehicle occlu-

sion scenario, with candidate points are marked with A,B,C and D. If only distance

between two points are used as match criteria, then resulting matches would be A,B

and C,D, while correct match set isA,C and B,D. To prevent this, another metric

which measures the similarity of the extension directions must be introduced.

To calculate match score Ms, between candidate points, first two metrics are defined.

Two metrics, Md and Mo are defined and calculated for this purpose.

Md is based on the distance between two candidate points, and indicates how much

distance cutting line covers within the segmented blob. Instead of using 2D Euclidean

distance directly, Md is calculated as in Equation 3.6.

Md = exp (MSC (− (dist− Td) / (CW (D1 +D2)))) (3.6)

Where MSC is smoothing coefficient, dist is 2D distance between candidate points,

Td is minimum distance threshold, CW is the weight coefficient, D1 and D2 are

depths of candidate points. Td is introduced to boost effect of distance in decision,

when two points are very close. Sum of D1 and D2 in denominator is added to have

adaptability to changing blob size. For larger blobs, depth values will be larger. Thus
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same metric value will be obtained, even there is a larger distance between candi-

date points. Exponentiation is used to increase decay of the metric with increasing

distance.

Mo is defined to measure how aligned two convexity defect areas are with each other.

First an angle, θn is defined for each point, which is the deviation angle between these

two lines:

1. Line between two candidate points

2. Line between current candidate point, and closest point to candidate on convex

hull

These two lines intersect at the candidate point, and deviation angle between them is

calculated for both candidate points. θ1 is calculated as in Equation 3.7.

θn = arctan(| (Sp − Sn) / (1 + (SpSn)) |); (3.7)

Where Sp is slope of the first line, and Sn is the slope of the second line.

Then Mo is calculated as in Equation 3.8:

Mo =
((

1− cos2 (θ1)
) (

1− cos2 (θ2)
))

(3.8)

Where θ1 and θ2 are deviation angles for two candidate points evaluated. As two

convexity defects become oriented with low deviation angles, Mo becomes close to

zero. Note that Md get close to 1 when distance between two points decrease. Values

close to the 1 in both metrics indicate that selected candidate point set is good match.

After these two metrics are calculated, they are combined into Ms, which is actu-

ally segmentation score. For each possible candidate match, this value is evaluated

as in Equation 3.9, and thresholded with τs to decide if they are matched. Formula-

tion of Ms is done to boost effect of extreme values for both metric within range of

[0, 1]. This means, extremely close candidate point pairs, and pairs with well aligned

convexity defects with reasonable distance yields a higher Ms.
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Ms = MdM
2
o + (1−MdMo)Md (3.9)

3.6.5 CUT PATH GENERATION

After matching point set is generated, blobs are segmented to smaller ones, using

cuts between matched points. In base method, a dividing line is formed between two

points, which is basically removal of pixels along this line, from the binary map. This

approach have two major drawbacks. First one is, dividing line does not overlap with

the actual border between vehicles. This may result with both segmented objects have

a small part of each others hull, after segmentation. Second drawback is, if a pixels

are removed from mask, then a connected component analysis must be performed

again, for object detection. Although, cost of this operation is not very significant, it

can be avoided.

To solve first problem, which actually degrades boundary adherence of object de-

tection, a edge based solution is proposed. Instead of using a dividing line, a path

between two points which along the edges of the image is used. As borders between

the objects can be exposed with edge detection methods, a dividing path through these

edges may result with better boundary adherence.

To detect edges, Sobel Operator [105] is chosen, as 3 by 3 separable filter is low cost

with satisfactory edge detection.

After edges are detected, a path along these edges must be calculated. For this pur-

pose, a minimum cost path finding algorithm is needed. Dijkstra’s algorithm is a

popular approach [106], and widely used in many similar problems. Considering the

fact that the path we are trying to find is actually close to the dividing line with some

deviation, path finding operation can be optimized by "guiding" the search along this

direction. Therefore, a modification of Dijkstra’s algorithm, which is named A star

(A*) [107] Search algorithm is selected. A* introduces a heuristic based guidance to

the search process. This way a better performance compared to exhaustive methods

are obtained, and algorithm become popular in real time strategy games, used for unit

path finding [108].
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To run A* algorithm, first a graph with nodes and connections must be formed. For

our case each pixel is considered as a node, and has connections to the 8 pixel around

them. To guide path through pixels with edge presence, node weights are adjusted.

First, edge strengths are normalized to [255-0] range, with 0 being the strongest edge

value. Then these values are set as node weights. Heuristic to guide search is defined

as 2D Euclidean distance between two points. This way, search is guided to the

direction of the line connecting two points.

Figure 3.13 shows results of dividing line and dividing path methods for segmenta-

tion. It is clear that, edge based path follows border between vehicles closely, thus

achieving a higher boundary adherence.

For the cases, in which A* search cannot find a path, dividing line approach is utilized.

An overview of the path extraction stage is shown in Figure 3.14.

To solve second problem of the base method mentioned before, all operations on ob-

jects are conducted on contours. First, after segmentation path is found, contour of

the segmented blob is cut into two parts from cut points. Then each part is concate-

nated with segmentation path, yielding two separate contours. Segmented object is

removed from the current list of objects, two new objects are formed using contours

extracted and object data for the next frame is updated.
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(a) Vehilce with hard cast shadow

(b) SAGMM mask overlay (c) SAGMM mask

(d) SuBSENSE mask overlay (e) SuBSENSE mask

Figure 3.4: Comparison of performance under hard shadow effect.
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Figure 3.5: Overview of foreground mask generation

Figure 3.6: Overview of object association
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Figure 3.7: Overview of the object occlusion reasoning method proposed
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(a) Occluded Vehicles (b) Mask and Convex Hull

(c) Unoccluded Vehicle (d) Mask and Convex Hull

Figure 3.8: Convex hulls, and convexity defects for occluded and unoccluded vehi-
cles. Defects are marked with red.
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Figure 3.9: Overview of segmentation stage
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Figure 3.10: Object(hand), convex hull and convexity defects. Convexity defects are
marked with letters. retrieved from [19]
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(a) Original Image (b) Binary Mask

(c) Convex Hull and Defects

Figure 3.11: Multiple convexity defects with three vehicle occlusion case

Figure 3.12: Candidate points in a three vehicle occlusion case
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(a) Dividing line (b) Edge based dividing path

Figure 3.13: Dividing line and dividing path approaches

Figure 3.14: Overview of object association
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CHAPTER 4

EXPERIMENTAL WORK

4.1 EXPERIMENTAL WORK OVERVIEW

Implementation of the proposed solution is first done on MATLAB in subsystem

level, to obtain primitive results. Libraries from other sources in C++/C languages

are imported to this environment.

After design and development phase is complete, solution is implemented in C++

language using Visual Studio 2012 IDE. Following open source libraries are used in

this implementation:

• OpenCV 2.4.10 [109]

• OpenGL 4.2.0 [110]

• freeGLUT 2.8.1 [111]

OpenGL and freeGLUT libraries are used only for visualization purposes, and does

not take part in functional part of the implementation.

For implementation in C++, following source codes are used after adaptations to the

VS2012 IDE with updates and modifications:

• GMM implementation from BGSLibrary 1.9.2 is updated to the SAGMM [51].

• Shadow detection source codes provided by A. Sanin [8] are used as base for

shadow detection functions.
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• LBSP implementation provided by P. St-Charles is used after minor updates,

and provide basis for LBSP feature descriptors used in SuBSENSE and LOB-

STER.

• SuBSENSE implementation provided by P. St-Charles is used as a basis. Up-

dates to increase speed, and remove memory leaks are done.

• LOBSTER implementation provided by P. St-Charles is used as a basis. Up-

dates to increase speed, and remove memory leaks are done.

• OpenCV function "convexityDefects(...)" is used as a base for functions calcu-

lating candidate points.

• A* implementation of Justin Heyes-Jones [112] is used as a base for A* search

used in cut path generation. Graph structure, node structure, graph construction

and traversal parts of the code is updated to work with increased efficiency with

2D edge map.

Tests and time measurements are done on a PC with Intel I7-4072MQ @ 2.20 GHz

CPU, and a GeForce 820M GPU. Two different software configurations are defined

in order to determine and compare optimization potential of different methods.

• Software Configuration 1 (SW1) :

– Implemented compatible to 32-Bit Architecture (x86 Instruction set)

– Single thread, single core

– No OpenMP support

– No Single Instruction Multiple Data (SIMD)support

– No GPU support

• Software Configuration 2 (SW2) :

– Implemented compatible to 64-Bit Architecture (x86 Instruction set)

– Multi core (4) multi threaded operation is enabled

– OpenMP support enabled, OpenMP directives are used in parts of the

code, which are suitable for parallelization.
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– No SIMD (Single Instruction Multiple Data) support

– No GPU support

Quantitative and qualitative results with computation times for each sub stage of the

solution are evaluated in following sections. For each sub stage, performance is com-

pared with existing alternatives.

Also, a detailed analysis for computational cost and execution speed is done. For each

function block, following metrics are calculated:

• Average of Execution Time (AET): Mean of the execution time, calculated by

dividing total time spent on the function by the number of function calls. Indi-

cates expected time function requires to complete.

• Maximum of Execution Time (MET): Maximum value of the execution time.

This statistic is critical for real time applications. To guarantee a real time

operation, this value must be considered before using a function.

• Variance of Execution Time (VET): Variance calculated from all individual

execution times of the function. This metric indicates dependency of execution

time to input data.

Microsoft Visual Studio 2012 IDE provides a wide range of tools for benchmark and

profiling purposes, which are utilized for calculation of above metrics.

Different datasets are used for evaluation of different stages of the proposed solution.

List with video details are given in Table 4.1.

For video sequences Seq 1-4, number of vehicles and occlusion events are counted

manually for each frame, to construct ground truth. Also, vehicle pixels are tagged

with different values for different vehicles, to construct a ground truth for segmenta-

tion accuracy. This marking is done once per 25 frame. Duration and frame rate of

sequences are as following:

• Seq1 : 10 FPS, 2450 frame, 4:05 min
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Table 4.1: Video Sequences used for testing phase

Description Source Supplementary information Stage Used
Seq 1 Top view of an

intersection, fish-
eye lens

Recorded Ground Truth for vehicle count,
and some vehicle silhouettes

Occlusion
Detection and
Segmentation

Seq 2 Top view of an
intersection, fish-
eye lens

Recorded Ground Truth for vehicle count,
and some vehicle silhouettes

Occlusion
Detection and
Segmentation

Seq 3 Top view of an
intersection, fish-
eye lens

Recorded Ground Truth for vehicle count,
and some vehicle silhouettes

Occlusion
Detection and
Segmentation

Seq 4 Top view of an
intersection, fish-
eye lens

Recorded Ground Truth for vehicle count,
and some vehicle silhouettes

Occlusion
Detection and
Segmentation

highway Top view of a
highway

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

traffic Top view of a
highway with
camera jitter

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

boulevard Top view of a
road with camera
jitter

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

streetlight Top view of a
highway

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

tram cross-
road

Top view of an
intersection with
tram

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

turnpike Top view of a
highway

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

tunnelexit Top view of a tun-
nel exit

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction

intermittent
pan

Top view of a
road, PTZ camera

CDNET Ground Truth for foreground,
background and shadow pixels

Background
Subtraction
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• Seq2 : 10 FPS, 2250 frame, 3:45 min

• Seq3 : 10 FPS, 2400 frame, 4:00 min

• Seq4 : 10 FPS, 2400 frame, 4:00 min

4.2 BACKGROUND SUBTRACTION

Background subtraction is the first step in the object detection procedure proposed

in this work. A binary mask of foreground pixels is computed using subtraction of

background model from the current frame. As occlusion detection and segmentation

stages utilize vehicle geometry, precision of this stage is crucial.

For moving object detection, two methods are selected from wide range of available

methods; [51], and [4]. Implementation is done based on open source C++ codes, and

OpenCV library.

4.2.1 PERFORMANCE MEASURES

Benchmarking tools provided in CDNET [1] are extensively used in recent works on

change detection, and most state-of-art algorithms are evaluated by same metrics and

methodologies provided in their benchmark guide. Therefore, quantitative perfor-

mance analysis is of background subtraction methods are done using same metrics.

Following metrics are calculated for each algorithm, in different videos.

• TP : True Positive

• FP : False Positive

• FN : False Negative

• TN : True Negative

• Re (Recall) : TP / (TP + FN)

• Sp (Specificity) : TN / (TN + FP)
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• FPR (False Positive Rate) : FP / (FP + TN)

• FNR (False Negative Rate) : FN / (TP + FN)

• PWC (Percentage of Wrong Classifications) : 100 * (FN + FP) / (TP + FN +

FP + TN)

• F-Measure : (2 * Precision * Recall) / (Precision + Recall)

• Precision : TP / (TP + FP)

MATLAB script provided on CDNET [1] is used to calculate results obtained in this

work.

For each method, a qualitative analysis is also performed. Metrics defined above

describe overall pixel based performance in this stage, independent of effect on per-

formance in later stages. As occlusion detection and segmentation method is depen-

dent on binary mask geometry, two algorithms with similar metrics can affect further

stages differently, depending on the distribution of the error.

4.2.2 DATASET

Evaluation of background subtraction algorithms requires video datasets with differ-

ent properties. For this work, moving object detection is done on intersection envi-

ronment. For accurate evaluation, videos recorded in similar scenarios are preferred.

Another important point in dataset selection is existence of ground truth, as metrics

described in previous section are calculated based on them. CDNET datasets of 2012

and 2014 offer a wide range of scenarios with ground truth masks. Therefore, this

dataset used for subsystem level quantitative analysis.

For qualitative analysis, selected videos from CDNET dataset are used, which are

listed in Table 4.1.
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Table 4.2: SuBSENSE results from CDNET [1]

Re Sp FPR FNR PWC F-Measure Precision
SuBSENSE
2012 dataset

0.8281 0.9938 0.0062 0.1719 1.5447 0.8260 0.8576

SuBSENSE
2014 dataset

0.8124 0.9904 0.0096 0.1876 1.6780 0.7408 0.7509

Table 4.3: Results obtained from selected videos of 2012 and 2014 datasets of CD-
NET

Re Sp FPR FNR PWC F-Measure Precision
SuBSENSE 0.8364 0.9934 0.0066 0.1636 1.7425 0.8692 0.9046
SAGMM 0.7727 0.9853 0.0147 0.2273 2.9377 0.7845 0.7966

4.2.3 EXISTING EVALUATIONS

A detailed evaluation of SuBSENSE with results are provided on CDNET. Average

rankings of SuBSENSE among evaluated methods based on given metrics are, 4.14

for 2012 dataset and 5.29 for 2014 dataset. Detailed results are given in Table 4.2, as

reported on CDNET website.

SAGMM is not evaluated on CDNET, and an evaluation with similar detail does not

exist. Authors [51] provide a detailed comparison with ZHGMM [49], but calculated

metrics and video dataset are different. Therefore, metrics given in previous section

have to be calculated for SAGMM, with same dataset used for SuBSENSE.

4.2.4 RESULTS

For quantitative evaluation, videos with moving vehicles from the datasets provided in

CDNET are used. Using MATLAB script provided in website, metrics are calculated

form output of two algorithms, Table 4.3. Thresholds are inherited from original

implementation for SuBSENSE, and from parameter set of base method in CDNET

for SAGMM [49].

Quantitative comparison of two methods indicate that SuBSENSE is more success-

ful, with better results for all metrics. Obtained results for SuBSENSE have slight
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difference from existing evaluation in CDNET, as whole dataset is not used.

Two algorithms are also run on different intersection videos for qualitative evaluation.

SuBSENSE, has a considerably better performance compared to SAGMM in all cases.

Apart from quantitative results, SuBSENSE is better at object localization. Exploita-

tion of spatial information by utilization of LBSP descriptors increase spatial consis-

tency of the binary mask generated. In contrast, SAGMM does not use spatial infor-

mation between local pixels, and resulting performance difference can be seen in Fig-

ure 4.1 and Figure 4.2. When two masks are compared, it is evident that SAGMM re-

quires certain post-processing steps for eliminating single pixel misclassification, and

achieving a local spatial consistency between pixels. Also, SuBSENSE has shown

superior performance in both hard and soft shadow areas. This is expected as LBSP

is mostly unaffected by intensity change caused by moving cast shadows, while in-

tensity is only feature for pixel classification in SAGMM.

SuBSENSE has also another major advantage, which is adaptation to dynamic scenes.

For weather conditions like rain or snow, scene variance greatly increases, therefore

variance of the estimated PDF of the background model also increases. For SAGMM,

this case become problematic, as after adaptation, this often leads to misclassification

of foreground pixels as background, due to increased variance of Gaussian modes.

But for SuBSENSE, different adaptive thresholds are used if scene variance is high,

which enables accurate detection in regions with high variance.

Another important performance difference is in accuracy of object shape data. A

commonly encountered problem which degrades this accuracy, is misclassification of

wind shields of vehicles as background. Due to close intensity values of wind shield

and road surface, wind shields are often classified as background. This becomes

problematic, as, misclassification of this area can lead to false positives in occlusion

detection. This situation can be seen in Figure 4.1. As seen, binary mask generated

using SuBSENSE is more accurate, and misclassification in SAGMM output has a

potential negative effect on whole system. Due to missing area, there is a signifi-

cant difference between object and its convex hull, which degrades performance of

occlusion detection and segmentation.
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Table 4.4: Execution Time statistics for two algorithms

SW1 SW2
AET MET VET AET MET VET

SuBSENSE 145 ms 221 ms 3436 ms2 92 ms 120 ms 264 ms2

SAGMM 76 ms 84 ms 22 ms2 29 ms 35 ms 2.281 ms2

While having a superior accuracy, SuBSENSE has a significantly higher execution

time. This is expected, as computation of LBSP descriptors have non coalesced

memory access with low cache utilization. Pixel-wise operations access values of

neighboring pixels, while pixel-wise operations are independent in SAGMM.

Measurements of execution times for 512x512 RGB videos are given in Table 4.4.

As seen in results, SAGMM has a higher a speed-up of 2.62 between SW1 and SW2,

while SuBSENSE has only 1.576. This indicates a higher optimization potential,

which means optimization via parallelization yield better results in SAGMM com-

pared to SuBSENSE.

Both methods have significant variance in execution time, dependent on the object

motion in scene. More time is spent in frames with more foreground pixels. Max-

imum values are observed when scene is crowded with many moving vehicles, for

both algorithms.

4.3 SHADOW DETECTION

For shadow detection, texture based methods are selected considering their proven

performance [8]. C++ implementation provided by A.Sanin [113] is used as a base.

Large Region Texture (LRTex) and Small Region Texture (SRTex) Methods are tested.

For quantitative performance analysis, results reported in [8] are used. Qualitative

analysis is done by observing and discussing possible negative effects of misdetec-

tions. Algorithms are also tested in two software configurations, and execution time

statistics are analyses.
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4.3.1 PERFORMANCE MEASURES

Two metrics are used by Sanin et al [8], to evaluate performance of shadow detection

algorithms. First of these metrics is Shadow Detection Rate, which is same as Re-

call(Re) defined in previous section. Second is Shadow Discrimination Rate, which

is same as Specificity(Se). Metrics are calculated as in Section 4.2.1, but some defi-

nitions change:

• TP : True Positive : Shadow pixel classified as shadow

• FP : False Positive : Non-shadow pixel classified as shadow

• FN : False Negative : Shadow pixel classified as non-shadow

• TN : True Negative : Non-Shadow pixel classified as non-shadow

4.3.2 EXISTING EVALUATIONS

In [8], several shadow detection algorithms are evaluated using a 7 video dataset.

Quantitative results reported are shown in Figure 4.3. Also, effects of selected shadow

detection algorithms on the performance of a tracking application is analyses. Results

show that, LRTex method is most successful with most improvement in track accuracy

and precision while SRTex method comes second.

Execution times are also analyses in same work. On a 32-bit Intel CPU with 2.6 GHz

clock speed, SRTex method had an average of 211.93 ms execution time. This time

is reduced by using simpler version of texture filter, to 70.30 ms. LRTex has a better

execution time in same hardware, with an average of 21.78 ms.

4.3.3 RESULTS

A quantitative analysis is done to detect possible effects of shadow detection stage

on occlusion detection and segmentation. As both methods are texture based, perfor-

mance decreases when shadow strength increase. This is observed in both algorithms,
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Table 4.5: Execution time analysis for LRtex and SRTex methods

SW1 SW2
AET MET VET AET MET VET

LRTex 106 ms 185 ms 1537 ms2 72 ms 123 ms 532 ms2

SRTex 156 ms 247 ms 6934 ms2 127 ms 196 ms 4081 ms2

while LRTex is slightly better at classifying hard shadows. However there is a notice-

able performance difference in shadow discrimination. When SRTex method is used,

more vehicle parts are classified as shadows. This leads to the similar problem ad-

dressed in previous sections, which is inaccurate object geometry in binary mask.

LRTex method is more robust to these effects, as features are extracted from largest

possible regions.

An execution time analysis is also done for both algorithms. Results can be seen in

Table 4.5. LRTex method has a significant advantage in terms of speed. Also, both

algorithms have high variance in execution time, as their operation is fully dependent

on the number of foreground pixels in given foreground mask.

It must be also noted that, although shadow detection is used as a step to increase

accuracy of foreground mask, execution time is comparable to the background ex-

traction. Reason behind this is the cost of calculation of directional gradients where

costly trigonometric functions are used.

4.4 OCCLUSION DETECTION

Occlusion detection stage is tested in two configurations. In first configuration, a

simple area ratio based thresholding approach is utilized. This part of the proposed

work uses same area ratio definition with base methods [13, 43], given in Equation

2.17. Second stage is inter frame occlusion detection, where association data is used

for reasoning. It is expected that, true positive rate would increase with exploitation

of inter frame information.

First performance measure for occlusion detection is detection rate of multi vehicle

occlusions. Unlike base methods [13, 43], multi vehicle occlusions with more than
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two occluding vehicles can be handled in the proposed work. Second is measure is

the ratio of false positive occlusion detections. Main reason behind presence of false

positives, is erroneous binary mask, which received from moving object detection

stage.

4.4.1 EXISTING EVALUATIONS

Existing methods in literature often used ratio of detected true positive occlusions

to total number of occlusions, to evaluate success of occlusion detection. In [16],

detection rates are given and Receiver Operating Characteristic (ROC) curves for

partial occlusion detection is calculated for different methods. In results of [13, 43],

only detection rate is used for measuring performance. Results are heavily dependent

on static threshold enforced on area ratio, therefore ROC curve analysis is required to

measure this dependence.

4.4.2 DATASET

As dataset in the base method [13, 43] is not provided, a new dataset to evaluate

both methods is formed. For 4 different video sequences, following steps are done to

construct a dataset:

• Definition of Region of Interest (ROI)

• Determination of occlusion events in sequence inside ROI (N)

• Determination of occluded vehicles in a group inside ROI (TOV)

• Determination of vehicle count in each frame inside ROI (TV)

4.4.3 RESULTS

For each video sequence, following statistics are calculated based on comparison of

detected events and ground truth:
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Table 4.6: Occlusion Detection results compared with Ground Truth for both methods

Base Method [13] Proposed Method
N TP FP FN N TP FP FN

Seq1 234 196 20 38 234 214 20 20
Seq2 171 133 18 38 171 150 18 21
Seq3 226 190 16 36 226 219 16 7
Seq4 125 101 9 24 125 107 9 18

• TP : True Positive

• FP : False Positive

• FN : False Negative

• TN : True Negative

• N : Total number of occlusions in video sequence. Number is obtained after

manual counting of independent occlusion events with at least three frame per-

sistence.

Proposed method performed better in all sequences, yielding better Recall and Preci-

sion values. Results are shown in Table 4.6. Area ratio threshold RA is set to 0.8.

In order to show improved accuracy, and reduced dependence to the static threshold

RA, a ROC curve is calculated for both methods. To obtain ROC curve, area threshold

RA is set to values between 0.0 to 1.0. Result can be seen in Figure 4.4.

Execution time for area ratio calculation is observed to be lower than 200 µs. There-

fore, detailed analysis is not conducted for this part.

4.5 SEGMENTATION

Segmentation stage is the final part of the proposed solution. In this part, both base

method [13] and the proposed method are implemented and tested. Work of Zhang et

al [43] is not implemented, as iterative nature of their algorithm is not very efficient

for real time applications.
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Quantitative evaluation is mainly based on the number of vehicles after segmentation.

Vehicle count after a correct segmentation should match with ground truth. Therefore,

evaluation is done based on this comparison. However, as both base method and

the proposed method do not utilize a multi frame memory, temporal consistency is

low. Therefore, instead of checking successful segmentation each frame, a unique

occlusion event is counted as segmented correctly, if segmentation result matches

with ground truth at least 3 consecutive frames. Following metrics are defined for

quantitative evaluation :

• No : Number of correctly detected occlusion events. Method is evaluated these

cases.

• TS : Number of successfully segmented events

• FS : Number of events with failed segmentation

An accuracy measure is defined to evaluate selection of cut path. If vehicles are

separated from incorrect points or path, resulting vehicle masks contain pixels from

different. This is illustrated in Figure 4.5. Therefore, to measure success of segmen-

tation accuracy, a ground truth is formed by marking pixels of each individual vehicle

under occlusion in certain frames. This way, improvement achieved by using a cut

path based on edge strength can be measured. To calculate segmentation accuracy,

following metrics are defined:

• AT : Calculated for each segmented vehicle. Equal to the number of pixels

of the largest group with same mark in segmented object. For ideal case, this

value is equal to the area of the vehicle in ground truth, which means perfect

segmentation.

• AN : Area of each segmented blob

• SC : Segmentation score, calculated as 100 ∗ AT/AN

Dataset used in this part is the same dataset used in previous section. Seq 1-4 listed

in Table 4.1, are used as a ground truth of vehicles is extracted for them. Results are

illustrated for each video sequence, and for both methods in Table 4.7.
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Table 4.7: Segmentation results for both methods. These results are obtained by
segmenting TP occlusion events, using the proposed method for occlusion detection.

Base Method [13] Proposed Method

NoN TS FS
Average

S_C
No TS FS

Average
S_C

Seq1 214 146 68 57 214 181 33 81
Seq2 150 82 78 54 150 135 15 79
Seq3 219 120 99 44 219 194 25 84
Seq4 107 66 41 48 107 92 15 78

Table 4.8: Execution time analysis for Segmentation stage

SW1 SW2
AET MET VET AET MET VET

Proposed 7795 µs 10240 µs 5.049 ms2 3994 µs 5106 µs 0.968 ms2

Base [13] 2795 µs 3407 µs 0.068 ms2 1285 µs 1592 µs 0.0622 ms2

4.5.1 RESULTS

Proposed method performs better at both in ability to solve occlusions, and segmenta-

tion accuracy. An exemplary result on test map is shown in Figure 4.5. In Figure 4.5

(c), object segmentation is done with base method. Figure 4.5 (f) shows cut path gen-

erated with the proposed method, achieving a greater accuracy. Furthermore, base

method fails when more than two vehicles are in same occluded group. Proposed

method handles these cases to some extent.

Detailed analysis of execution time is done on both methods. Although more accurate,

the proposed method takes longer to segment vehicles. This is mainly caused by A*

search algorithm, as shown in Table 4.9. Execution time measurements are shown

on Table 4.8, for both methods and different software configurations. It must be

noted that, although execution time increases in the proposed method, execution time

of previous steps are significantly higher. Therefore, this part is far from being a

bottleneck for whole system.

Results indicate that, segmentation part achieved a considerable improvement in ac-

curacy, while maintaining a low execution time, for real time operation. Also, seg-

mentation is not restricted to only groups of two vehicles, which is the case for base
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Table 4.9: Detailed execution time analysis of stages of the the proposed method.

Convexity &
Defect Analysis

Candidate Point
Generation

Cut Point
Selection

Cut Path
Generation

New Object
Generation

Percentage of
execution time
spent (average)

% 19 % 9 % 28 % 38 % 6

method [13].
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(a) GMM output, Frame 455/Seq 1 (b) GMM output, Frame 817/Seq 1

(c) SuBSENSE output, Frame 455/Seq 1 (d) SuBSENSE output, Frame 817/Seq 1

Figure 4.1: Binary masks generated by SAGMM and SuBSENSE. Foreground pixels
are marked in red channel of the image. Notice that vehicle bodies are mostly intact
in SuBSENSE masks, while there are holes and missing parts in SAGMM masks
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(a) GMM output, Frame 455/Seq 2 (b) SuBSENSE output, Frame 817/Seq 2

Figure 4.2: Binary masks generated by SAGMM (a) and SuBSENSE (b). Foreground
pixels are marked in red channel of the image. Notice that SuBSENSE classifies
shadow and highlight pixels as background, while SAGMM fails to achieve this for
large number of pixels

Figure 4.3: Comparison of different algorithms by Sanin et al [8]
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Figure 4.4: ROC curves for base method and proposed method
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(a) Test Image (b) Object mask of test image

(c) Cut points and path, base method [13] (d) Incorrectly grouped pixels, base method [13]

(e) Incorrect cut points and path with markings,
base method [13]

(f) Correct points and correct path, proposed
method

Figure 4.5: Comparison of segmentation accuracy of base method and proposed
method. Incorrectly grouped pixels are marked in red
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CHAPTER 5

CONCLUSION

Vision based methods are widely utilized for ITS solutions, with increasing demand.

While traffic management become more complex, performance requirements and

range of tasks for vision based also increase dramatically. This work is motivated

by this trend, and aims to provide an accurate vehicle detection framework, which

operates robustly under presence of occlusion.

Results obtained from experimental work show that, method is successful in detec-

tion and segmentation of partial occlusion cases. Compared to available methods,

object detection performance significantly increased, while maintaining a relatively

low execution time.

In moving object detection stage, a recently developed background subtraction method

is implemented. As expected, SuBSENSE algorithm achieves better results, com-

pared to the popularly used SAGMM. Spatial consistency introduced by use of LBSP

descriptors is a key improvement, as segmentation methods perform better, if shape

properties are not distorted due to misclassified pixels. Moreover, illumination in-

variance of the texture based LBSP feature enabled method to work robustly under

different illumination conditions.

Occlusion detection and segmentation part was proposed to close the gap in speed

accuracy trade off. Existing methods were either too inaccurate, or very costly in

terms of computational power. Result of this study is a light weight framework, with

considerable accuracy and ability to handle multi vehicle occlusions.

Experimental results and observations indicate that, the proposed framework handles
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object detection under occlusion successfully. Resulting method can be used with

tracking applications to increase target detection and tracking performance, while

benefiting from the increased association accuracy provided by tracker algorithms.

There are also some notable failure cases, as mentioned in Chapter 4. Segmentation

method is mainly based on intra-frame level features. Occlusion cases without any

significant convexity defect can occur, as seen in Figure 5.1. Therefore, some de-

tected occlusion cases cannot be segmented using convexity measure. This problem

can be solved by using inter frame level data, as intra frame level lacks necessary

information. Depending only on intra frame level information is the main reason be-

hind this fail case. Thus, introduction of inter frame features into segmentation stage

can be a further work to increase performance of the proposed solution.

(a) Image (b) Foreground Mask

Figure 5.1: Occlusion case without significant convexity defect.

Furthermore, assumption that vehicle shape is convex unless there is occlusion does

not hold for some vehicles with uncommon shapes such as crane carriers and vehi-

cles with construction equipment. Vehicles without a convex shape will be detected as

occlusion cases, and segmented erroneously using the proposed method. Therefore,

these false positive detection and segmentation events should be handled either utiliz-

ing inter frame data, or extending assumption on object geometry such that vehicles

with uncommon shape can also satisfy.
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